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Abstract

A 40 cc Ge(Li) detector has been used to study the 

gamma rays emitted in the decay of Cobalt-60, Areenic-74 and 

Neodymium-147. A system for measuring directional correlations 

has been constructed with a fast-slow electronics arrangement 

utilising the Ge(Li) detector and a Nal(Tl) scintillation 

counter, and the directional correlations of gamraa-gamma 

cascades in Germanium-74 and Promethium-l47 have been studied.
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CHAPTER 1 INTRODUCTION

1.1 Gamma-Ray Spec troscopy

Nuclear spectroscopy can be roughly classified as the 

study of nuclear structure and the quantum mechanical properties 

of the ground state and excited levels of nuclei. In the early 

days the experimenter measured the energies and intensities 

of the alpha-beta-,and gamma-radiations emitted in the decay 

of radioactive nuclei which gave information about the energy 

levels of excited nuclei. With the advances in experimental 

techniques, instrumentation and theoretical methods, the main 

aim of nuclear spectroscopy now is to determine not only the 

relative energy levels but also to determine the state 

characteristics (spins and parities), transition probabilities 

etc. For this reason in addition to measuring the energy and 

intensities of gamma rays and alpha-,and beta-groups, it is 

necessary to determine internal conversion coefficients, K/L 

ratios, and to do experiments on the spatial and temporal 

relationships of the radiations (i.e. angular correlations, 

studies of lifetimes of states etc.).

In the work reported in this thesis we are concerned 

only with gamma-ray spectroscopy; specifically, the measurement 

of the energies, the intensities, and the directional correlations 

of gamma rays.

-  5-



1.2 Ge(Li) Detectors in Gamma-Ray Spectroscopy

The importance of semi-conductor detectors in gamma- 

ray spectroscopy is related to their excellent energy resolution 

(Typically about 3 keV compared to about 100 keV for Nal (Tl) 

at about 1 MeV coupled with detection efficiency orders of 

magnitude larger than that of other high resolution instruments 

(diffraction and external conversion magnetic spectrometers). 

Moreover, Ge(Li) and Si(Li) detectors, like scintillators and 

gaseous counters, work as multichannel devices permitting 

simultaneous measurement of the entire gamma ray spectrum.

The first successful attempts to utilize semiconductor 

detectors for gamma-ray spectroscopy were made using Si(Li) 

detectors; however, their practical use was limited to 

energies below 100 keV, because of the low atomic number of 

silicon. Freck and Wakefield (1962) succeeded in constructing 

the first germanium gamma ray spectrometer. Since then there 

has been rapid progress in the development of construction 

te cliniques which led to sensitive detector volumes of up to 

100 cra"̂ for the coaxial types. In addition the use of field 

effect transistor preamplifiers in the electronic chain and 

refinements in detector construction improved the energy 

resolution from 21 keV (Freek and Wakefield, 1962) to 1.4 keV 

(Heath et-al, 1966) for the 662 keV ^^^Cs line.

The good energy resolution of the semi-conductor
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detector permits the relative determination of the energy of 

a gamma ray with very high precision. The absolute energy 

assigned to a gamma ray transition is then determined by 

comparison with reference gamma ray lines. Since only a few 

gamma ray lines are known with high precision, the energy 

intervals between the unknown peak and the reference peaks 

can be large. It is then desirable for the spectrometer 

system (detector plus associated electronics) to have a good 

linearity. According to theory which predicts a value of 

w (energy required to create an ion pair) which is 

independent of energy, the linearity of the Ge(Li) system 

must be excellent. Several measurements have been under­

taken to check this and Berg and Kashy (I966) have reported 

a linearity value better than - 0 .03^ in the range 662 to 

2614 keV.

If all of the gamma ray energy is deposited in the 

detector by the photoelectric effect, Cong)ton scattering and/or 

pair production the resulting pulse is deposited in the full 

energy peak. In the energy region 100 keV to 8 MeV most of the 

gamma rays are absorbed in the germanium detector by the 

Compton scattering process. If the detector is large enough a 

significant proportion of scattered gamma rays will be totally 

absorbed after undergoing a number of collisions. Others will 

be scattered out of the detector and will then produce an output 

pulse less than the full energy pulse. This generates a

-7-



Compton continuum below the full energy peak. The ratio of the 

peak height to the level of the plateau is called the peak-to- 

Compton ratio and is a useful measure of how easily low intensity 

gamma rays can be seen against a high background.

The efficiency of the germanium detector is usually
60defined as the percentage of Co 1,33 MeV gamma rays that 

lose all of their energy in the detector compared with the 

percentage that lose all their energy in a 3 inch by 3 inch 

Nal(Tl) crystal with the measurement being made at 23 cm from 

the sane source in both cases. The relative photopeak efficiency 

is therefore a function of the sensitive volume of the detector. 

There are now available detectors of about 100 cm^ sensitive 

volume with efficiencies of 10 - 12/o.

Since the development of the first Ge(Li) detectors 

these devices have been used extensively for nuclear decay 

scheme studies. Measurements with Ge(Li) detectors have given 

evidence the existence of many new transitions, even in nuclei 

carefully investigated previously. The construction of large 

volume ( /10 cm̂ ) coaxial detectors has also permitted improved 

coincidence measurements, at first in conjunction with 

scintillation counters but later with other Ge(Li) detectors.

True coincidence pulses, because of the reduced line width, are 

accumulated in a small energy interval and therefore have a 

high probability of being separated from random peaks.

- S -



Before the widespread use of Go(Li) detectors, 

gamma-gainma directional correlation measurements were made 

with Nal(ïl) detectors. The poor resolution of these detectors 

makes the determination of multipole mixtures of gamma rays 

difficult because of interference from gamma rays which are not 

resolved from the gamma ray in question. However, the 

development of large volume Ge(Li) detectors combined with the 

use of pulse height analysers capable of dividing spectra into 

thousands of channels have allowed a dramatic advance in the 

angular correlation technique. By recording a whole spectrum 

of gamma rays in coincidence with a selected gamma at different 

angles it is possible to study the directional correlation of 

a number ofcascades simultaneously.
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CHAPTER 2 THEORETICAL CONSIDERATIONS

2.1 Emission of Electromagnetic Radiation

Excited states of nuclei generally decay to lower 

states with the emission of electromagnetic radiation, i.e.
ofgamma rays. Other rnodeŝ decay, e.g. internal conversion,^-decay, 

may also occur, depending on the particular state.

Classically a source of electromagnetic radiation is 

represented in terms of an oscillating distribution of electric 

or magnetic charges which constitutes a multipole. This 

representation has been carried over into quantum mechanical 

formalism to describe nuclear moments and to classify radiative 

transitions in nuclei. Tlie radiation modes are quantised and are 

represented in terms of spherical harmonics (B", ̂  ) of rank

L. That is, radiation represented by the rank L has multipolarity 

2̂ , e.g. if L=1 the radiation is of dipole character. Ais shown 

by Heitler (1936) L represents the total angular momentum, of 

absolute magnitude h [L(L+l)] carried by 2^ - pole gamma 

radiation with respect to the source of the radiation field.

Each multipole order can have two classes of radiation: electric

2^ pole (EL) and magnetic 2^ pole (ML) depending upon the parity 

associated with the radiation.

Consider a gamma transition between two states of 

specified angular momenta (1̂ ,1̂ ) and parities ( TT̂ , ?^). The
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conservation of angular momentum and parity for the system of 

nucleus plus gamma rays imposes the following selection rules on 

the possible multipolarities of the gamma transition.

ATT =. = (-1)^ for EL radiation

= (-1)^  ̂for ML radiation

where AT[ = +1 denotes no parity change

= -1 denotes parity change

The multipole emission probabilities, which contain a 

terra (R/ ) , decline rapidly with increasing L and there is

a sharp cut-off to even those higher order multipoles allowed 

by the momentum selection rule. Thus in practice one encounters 

only the lowest multipolarities. Another feature of 

electromagnetic radiation is that the probability of electric 

multipole emission is somewhat higher than that of the correspond­

ing magnetic multipole emission. A consequence of this is that ■ 

one frequently encounters multipole mixtures of the type ML with 

E(L+1), e.g. Ml and E2.

2.2 Multipole Transition Probabilities.

Quantum mechanically, the transition probability per 

second T̂  for any process is given by the equation

U  - |2- \ h'| i>|2 dN
dE



where is the Hamiltonian representing the perturbing 

interaction, |h ’| i^ is the matrix element of the

interaction taken between the wave functions of the initial 

and final states and dN/dE is the number of final states per 

unit energy interval.

Because of this dependency on the wave functions of 

the states involved, theoretical gamma transition probabilities 

are calculated on the basis of a specific model of the nucleus. 

Generally they are calculated for the single particle shell 

model which is a very oversimplified picture of the nucleus. 

However, transition probabilities for other more realistic 

nuclear models as well as those measured experimentally can be 

conveniently expressed in terras of the results obtained for the 

single particle model.

IVhen the basic quantum theory of multipole radiation is 

applied to this single particle model (Moszkowski , I963) we 

obtain the following expression for the transition probability 

for emission of a photon of energy E y , angular momentum L,M 

and of electric or magnetic type with the nucleus going from a 

state i to a state f : -

T. .(dIM) = 8 h (L+1) , 1 /E. ) KU'*Um 1 1
r p 2 M 7 ï T j  2 «  fee / ‘

where andj^^ are the electric and magnetic multipole

operators. The transition probability depends on the detailed 

nuclear structure only through the matrix element in the
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expression above. Therefore it is convenient to express the 

transition probability in terms of the reduced transition 

probability B(EL), or B(ML), which is essentially the square of 

the matrix element above summed over m-substates of the final 

state f and averaged over m-substates of the initial state i. 

That is,

= < « >

The reduced transition probabilities are defined 
generally by

= <̂̂ 1̂ 11 >1^11 2

where 11 is a reduced matrix element defined
by the V/igner - Eckart theorem.

The B(^L) values on the Weisskopf single particle 
estimates are given by

B(EL) = p2L
u  W /

and B(ML) % 10 (h/k cR)^ B(EL)
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2.3 Decay Schemes and Nuclear Models

2 .3 .1  General

Our knowledge concerning nuclear structure is derived 

mainly from studies of the decay of radioactive nuclei; nuclear 

reactions also of course contribute to this knowledge especially 

at higher excitation energies. The information gained from 

these studies is presented as decay schemes and energy level 

diagrams. Nuclear models have been proposed to describe and 

predict nuclear properties associated with nuclear structure. 

Such properties are the angular momentum (spin), parity and 

moments of the ground state, as well as those of the excited 

states, their lifetimes, transition probabilities, etc..

The development of nuclear models has proceeded 

along two principal lines, namely, the strong interaction models 

in which the nucleons are strongly coupled to each other because 

of their strong and short range interactions and the independent 

particle models in which the nucleons are assumed to move 

independently in a common nuclear potential. The nuclear shell 

model and its developments into the single-particle shell 

model, the individual particle (many particle) shell model, and 

the j-j coupling model are examples of the independent particle 

model. The liquid drop model is an example of the strong 

interaction model. These tv/o different approaches are combined 

to produce the unified model in which nucleons move nearly
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independently in a common, slowly changing, non-spherical 

potential. Both excitations of individual nucleons and 

collective motions involving the nucleus as a whole are 

considered.

When only the collective motions involving the nucleus

as a whole are considered we arrive at the collective model.

When the number of nucleons in a nucleus differs appreciably

from the closed-shell magic • numbers of the nuclear shell

model, the extra nucleons outside the closed shells are thought

to produce deformation of the nucleus. This explains the

very large quadrupole moments,other shape dependent effects
A

observed in these nuclei. The nucleus, when it is deformed 

into an ellipsoidal shape, is assumed to undergo rotational or 

vibrational collective motions. Even-eveh-nuclei hearer the closed 
shells exhibit characteristic vibrational spectra which can be 

explained by the quadrunole vibrations of the nucleus about a 

spherical equilibrium shape.

2.3 .2  Excited levels of Even-Even Nuclei

In all known even-even nuclei the ground state has 

zero spin and even parity. The first excited states are with a 

few exceptions 2̂ . The exceptions are almost always closed shell 

nuclei. The excitation energies of the first excited states are 

found to show a smooth variation with nucleon number reaching 

maxima at closed shells and minima in between (Scharff-GoIdhaber,
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1953)* Especially small values of the 2̂  excitation energy 

occur at the rare earths and the actinides (Perlman and Asaro *

1954). The higher excited states of the even-even nuclei also 

show some systematic behavior.

The low-energy excitation spectra of even-even nuclei can be 

roughly divided into three classes (i) intrinsic (closed-shell 

region), (ii) vibrational, and (iii) rotational. The position 

of the energy levels of nuclei in the closed-shell class(i) 

region can accounted for by the direct coupling of the nucleons 

in the unfilled shells. For example, the excited levels of 

^^Ni are thought to consist of closed shells of neutrons and 

protons (N=Z=28) plus four neutrons in the (2p̂ ŷ , If^y^

2P1/2) states (Auerbach, I967; Cohen et.al, 1967; Plastino 

et.al, 1966). The observed enchancement of the E2 transitions 

evidently results from the polarisation of the core by the outer 

particles. This polarisation does not alter the level schemes 

significantly but it effectively increases the charge of each 

outer nucleon.

As we move further away from the magic numbers, the 

shell model approach becomes too complicated from a computational 

point of view. However, the excitation spectra acquire a simple 

form. For nuclei moderately far removed from closed shell 

configurations, the spectra are most simply described as collective 

vibrations about a spherical equilibrium shape (Scharff-GoIdhaber
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and Weneser, 1955). The second excited states are predominantly

2̂  , occasionally 4̂ , o"*" and sometimes an odd spin with odd

parity (3 )• The ratio of the energies of the second and

first excited states is usually around 2.2. The basic

vibrational model considers the collective features of nuclei

in terms of harmonic surface Vibrations. It predicts a one-

phonon (quantum of vibrational energy) first excited state of

2̂ , a tvro phonon quadrupole vibrational triplet of 0̂ , 2̂ , 4'*’,

at twice the energy of the first excited state, a one-phonon

octupole vibrational state of character 3 at about the same

energy as the O’*", 2̂ , 4'*’ triplet, etc? (See Meyer, 1970,

for a review of this simple vibrational model). However, to

remove the degeneracy of the two-phonon triplet of levels and 
other discrepancies with experimentally observed properties

(i.e. concerning transition probabilities, static quadrupole

moments etc.) it is necessary to introduce aailiarmonic terms

and interparticle coupling effects (Scharff - GoIdhaber and

Weneser, 1955; Wilets and Jean, 195&; Raz, 1959; Davydov and

Fillipov, 1958).

For even-even nuclei very far from closed shells (155^ A < I85, 

A^ 225) the low energy spectra show very striking regularities 

with respect to energy spacing which are close to being 

proportional to l(l+l), (the spins I follow a unique sequence 

o’*", 2 ,̂ 4"*", ...) which suggests an analogy with the energy

levels of a symmetric top

-n-



E ^I ” 1(1+1) where j is the moment of

inertia of the top. Most of these spectra can be very 

accurately described in terms of the rotational model. In 

this model the nuclear shape is considered to be fixed and 

non-spherical but axially symmetric, i.e. essentially 

spheroidal (Bohr, 1952). Many bands of rotational levels 

have been observed. Sometimes several bands are seen in the 

same nucleus; they are considered to arise from different 

intrinsic states of motion, rotation of each configuration 

giving rise to levels with the 1(1+1) spacing.

2.5 .3  Excited levels of Odd-mass Nuclei

The single-particle shell model offers a reasonable 

description of many general nuclear properties for nuclei in 

which either one proton or one neutron is present outside 

otherwise closed proton and neutron shells, or in which just 

one nucleon is missing from a closed shells configuration.

This is true also for nuclei with one extra or missing nucleon 

outside closed subshells. However this model is not sophisticated 

enough to yield a detailed quantitative account of more model- 

sensitive properties like electric quadrupole and magnetic 

dipole moments, transition matrix elements etc., for the 

majority of nuclei which have several nucleons outside closed 

shells or closed subshells. Some improvement can however be 

achieved with the introduction of additional coupling rules



and other refinements.

For odd-mass nuclei with an appreciable number of 

extra or missing nucleons outside closed shells or subshells 

the unified model which combines features of the collective 

and independent particle aspects of nuclei is found to be 

quite successful. The idea of this unified model is to 

extend the independent particle model and consider a collective 

vibration in terms of independent particles in a vibrating 

field. An odd-mass nucleus can be considered to consist of 

a single nucleon in a spin state Jj coupled to an even-even 

core which can undergo collective vabrational motion. If the 

coupling is weak, i.e. there is little or no interaction 

between the particle and the core, the vibrational spectrum 

of the core persists and the electromagnetic transitions in 

the odd-mass nucleus are related to the corresponding 

transitions in the core purely by geometric factors. These 

results are independent of whether the core is vibrational or 
not. This weak coupling scheme is known as the core excitation 

model (Lawson and Uretsky, 1957I De-Shallt, I96I).

When the nucleus acquires a large permanent 

deformation (i.e. in the rotational region) the strong coupling 

limit of the unified model is employed in which one considers 

the relatively fast motion of the odd particle in a deformed 

field and subsequently the slower rotations of the entire 

system. The intrinsic structure of a deformed nucleus is
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considered to arise from the coupling of the extra-core 

particle to the core derived from the aligned wave functions 

of a nearby even-even nucleus. Use is made of the Nilsson 

model (1955) which calculates the single particle orbitals 
in a deformed shell-model potential.

In the transitional region between the spherical 

and deformed nuclei a similar approach in the unified model 

with intermediate coupling is employed (Bohr, 1952; Bohr and 

Mottleson, 1953). All but one of the nucleons are lumped 

together to form a core that is described in terms of 

collective coordinates. A coupling is introduced between 

the quadrupole vibrations of the core and the shell model 

states of the extra nucleon ( Choudhury., 1954). In such 

calculations the phonon energy of the core vibrations, the 

strength of coupling between single particle motion and core 

vibrations, and the energy spacing between the single particle 

states are varied to reproduce the experimentally measured 

energy levels and spins.

The total Hamiltonian for the system of doubly even 

core plus an extra nucleon (proton in this case) is taken to 

be of the following form

H = \olt ^G.p. + ^int ’

where II H and H. are the Hamiltonian associatedcoll’ s.p. int’
respectively with the harmonic quadrupole vibrations of the

-20-



core, the motion of the odd nucleon in an effective average 

potential and the surface - particle interaction.

Hint is given by

“int = - ( Z  (b^ +(-!)* ) Ï2 (̂6 ><f)

where is the phonon excitation energy of the doubly

even core, b^ and b the annihilation and creation operators 

for phonons of spin 2 with z-component /A. and Y^^a normalised 

spherical harmonic of the angular momentum coordinates of the 

particle. The dimensionless coupling parameter is defined 

by
^  = k(5/2Tlt̂ uiC

where C is the nuclear surface deformation parameter and the 

coupling constant k = ^k ( is A radial average.

The wave functions for the coupled system are 

expanded in the basis

j j,NR; jm j RM^^ IM^ 1 3̂  ̂ where the N-phonon

state of the core with total angular momentum R and projection 

Mp along the z-axis is coupled with the single particle state 

to give a total angular momentum I and projection M 

along the z-axis.

The eigenfunctions for the odd-proton nuclei at an 

energy are constructed from the basis eigen vectors. The

Schroedinger equation will then contain matrix elements which
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are functions of the parameters tw, Ç and A , The solution 

is sought with the requirement that the eigenvalues be

a best fit to the experimental spectra and this is done by 

an iterative least squares procedure.

l4?The energy levels of Pm have been calculated 

with this method by Choudhury and 0'Dwyer (I967) and also 

by Heyde and Brussaard (I967)* Their results are shown in 

Fig. 7*9 (See Chapter 7 section 6 ) together with the decay 
scheme resulting from the measurements of this work.

2,4 Directional Correlations of Gamma-gamma Cascades

The observation of the directional correlation of two 

successively emitted gamma radiations gives direct information 

of the angular momenta (spins) of the states involved and 

of the multipole character of the emitted radiation.

Take the case of a gamma-gamma cascade in which a 

nucleus decays from an initial level with spin through an 

intermediate level with spin to a final level with spin 

(See Fig. 2.1a). We assume that the intermediate state 

is sufficiently short lived so that it is not influenced 
by extra-nuclear fields. The directional correlation function 

W(k^ ,k̂ ) is defined as the probability that a nucleus 

decaying through the cascade emits the two

radiations and in the directions k̂  and k^ into the 

solid angles d a n d  d-fl̂ . The theoretical expression for

-22
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the correlation W(k^, i V/(9) where O’ is the angle

between the two directions k. and k_, has been worked out—1 —2

for most cases of interest.

Generally, this is done by using first order 

perturbation theory and Fane’s concept of the statistical or 

density matrix and then using Racah algebra to simplify and 

obtain the final result. Excellent reviews of the theory of 

gamma-gamma directional correlations have been given by Devons 

and Goldfarb (1957)» Biedenham (I960), Frauenfelder and 

Steffen (I965), and Steffen (1970). The last named review 

(Steffen, 1970) stresses symmetry considerations in the 

general theory of angular correlation phenomena.

For a tv/o component cascade, the directional 

correlation function W(ô-) can be shown to have the form

W(e) = ZL V ï P  Pĵ (oosO-),
k-even

where k = 0,2,4,..., ^ is the angle between the propagation 

vectors of the two gamma-rays, and the (cosô̂  are the 

normalised Legendre polynomials.

If each transition is a mixture of not more than 

two multipoles, the maximum value of k is the smallest of 

2L̂ \ 2Lg and The constant is determined only

by the parameters of the first transition, i.e., by and

L̂ , L̂ . Similarly C(̂ ) depends on the parameters of the 

second transition only. Usually the normalisation



~ = 1 is employed, and the highest value of k
is usually 4 so that

W(D) = 1 +rA, (1)A, ()[.) P, (cos®) 
k=2,4 ^

The coefficients Â (̂G-) are related to the spins and 

multipole mixing ratios as follows

V V  = - V  [ v w * ^
1+S'̂

and

-Ir- L \ ^ W 3 V 2 « ^ 2 V ^ 2 ^ 2  V 2^
1+S^

where +1 and 1^ = Pg + ^

The F - coefficients can be calculated explicitly 

from theory and have been tabulated (Ferentz and Rosenzweig,

1955)» The mixing ratio of the first transition is defined 

by

 ̂ < iz W b T'l II b> < h  # 1̂+1, TTi" II !-,>

’ O 2 H T\̂  H I^> <l2 H ÏÏ -, H I-, >

That iŝ  ^  is the ratio of the reduced emission matrix elements 

(Becker and Steffen, I969) for the particular multipole 
transitions concerned. The ratio of the intensities of the
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+ 1 and components is given by

The mixing ratio for the second transition may

be defined in a similar way,

2,$, Analysis of Gamma-Garnma Directional Correlation Data

2.5 .1  Least Squares Method

The directional correlation function is represented

by

W(9) = Aq + A^2 PgCcos^ + A^^ P^ (co6&)

Experimentally, the directional correlation of the gamma- 

gamma cascade is measured at a number of angles 9^. If the 

measured value of the correlation at angle 0^ is represented 

by V(9), then a least squares procedure is used to obtain

the best values of Aq , Â ,̂ and A^^ by requiring that

A-= 21 (W(9. ) - V(©*.))̂  is a minimum,
i  ̂ ^

This leads to the equation

DA/^A^ = 0 where A^ represents

■̂ 0’ ^22
These are the normal equations of the least squares 

method and are linear in the unknovms. The least squares 

method is very conveniently expressed in terms of matrix notation. 

Tlie directional correlation function may be represented very 

concisely by

W = PA

-26-



where W is a column matrix having elements W , P is a 

rectangular matrix with elements P^ (cos^), i labelling the 

rows and k the columns. Finally A is a column matrix with 

elements ^ , Â p, and Â .̂

It may be shown that (See Ferguson, I965) in matrix 

notation the normal equations are given by 

P P A = *P V

where the sifpi ^  signifies transposition. All the parameters 

of these equations are known excepting the elements of A,

Their solution gives the least squares fitted A^ s which 

correspond to the minimum of A •

The solution can be written formally

A = (P P)"^ P V = N“  ̂P V

where N = P P is the normal matrix.

The above consideration assumes that all measurements 

at the different angles 0% are equally accurate. Insteadp*f 

each measurement is given a weight ŵ , the solution can be

written

A = (PwP)“  ̂PwV

with N = PwP where w is a diagonal matrix

whose diagonal elements are the weights, ŵ .

The theoretical fitted values to the measured points

- 2T“



are given by W = PA with A determined as outlined above.

The actual directional correlation coefficients are 

given by A^ = A^^/A^ and A^ = A^^/A^. They have to be

corrected for finite solid angle effects later discussed in 

Chapter 4.

2.5*2 Errors of the Directional Correlation Coefficients

The standard deviation of the fitted parameter

A^ is given by (Ferguson, I965)

where represent the

diagonal elements of the inverse normal matrix N ^, and

is the error of the measurements. is obtained after them
least squares fitting of the data, from the relation

= [ Z  (W(^) - V(G% )) ^J/(n-m) where m is

the number of parameters calculated and n the number of 

measured points.

Because the directional correlation coefficients are 

obtained as ratios of two parameters resulting from the fitting 

procedure, it is necessary to consider the correlation of the 

fitted parameters. A coefficient of correlation between two 

parameters is given by

fkk' = "here are the

off-diagonal elements of the inverse normal matrix.
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If Sp and are the standard deviations of the 

directional correlation coefficients and A^

(Ŝ /Ag) = (Ô /Agg) +(<2'/Aq)- Z f q2 (^(f^/AgAgg

- 2/oa< ^ < ; / V w

Measurements of the directional correlations reported 

in this work have been done at seven angles and the 

corresponding inverse normal matrix has been calculated and 

is shown in Table 2,1*

TABLE 2*1

Elements of the inverse normal matrix for measurements of unit

weight at 7 angles

k* k=0 2 4

0 0.1820 -0.0697 -0.0993
2 -0.0697 0.5949 -0.3612

4 -0.0993 -0.3612 0.8669

Coefficients of correlation between the parameters 

Aq , Â p, and A^^ as obtained from the off-diagonal elements of 
the inverse normal matrix are

fqg = -0.2113; = -.2499, and = -0.5032
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2.3*3 Graphical Methods of Analysis

The values of A^ and A^ evaluated from the least 

squares fit to experimental data then can be compared to the 

theoretical values of Â  and A^ calculated for various spin 

sequences. The actual spin sequence can in many cases be 

identified uniquely and thereby a definitive or probable spin 

assignment to particular nuclear levels can be made. In most 

cases the comparison of the measured and theoretical values of 

the correlation coefficients can establish the multipole 

mixing ratios of the gamma transitions involved in the measured 

cascades.

Two of the most successful techniques for graphically 

accomplishing the comparisons discussed above are those of 

Coleman (1958) and Arns and Weidenbeck (1938). In the former 
method theoretically calculated values of Â  ̂are plotted against 

corresponding values of A^ using (i =1 or 2) as a 

parameter. When this is done for different spin sequences, a 

family of ellipses results. The experimental values of A^ and 

A^ with their respective errors define a rectangular area in 

the Ap-A^ plane. The proximity of this rectangle to a 

particular ellipse indicates the correct of most probable spin 

sequence and also a value of (See Fig. 2.1b). This method 

is particularly useful when only one transition of the cascade 

is of mixed multipolarity. In such cases theoretical values of 

A^ and A^ tabulated by Taylor et.al (1971) may be used.
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In the method devised by Ams and Weidenbeck (1958)

Ag and A^ are plotted against S^/l+S^ for various spin

sequences and the experimental points compared to the

theoretical values. The A^(5) curve is an ellipse whereas the

A^(S) curve is a straight line, (Sec Fig 2.c). This method

is very useful for analysing cascades in which both transitions

are of mixed multipolarity. It is used in the analysis of

the directional correlation of the gamma transitions in 
l4?Pm and is presented in greater detail in Chapter 7.
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CHAPTER 3 INSTRUMENTATION 

3*1 The Ge(Li) Detector

The detector used in measuring the gamma ray spectra 

reported in this thesis was an end drifted coaxial Ge(Li) crystal 

(Fig, 3.1). The sensitive volume of the detector is 40 cm^ with 

a resolution of 3.3 keV for the 1332 keV gamma ray of ^^Co. It has 

a photopeak efficiency of about h% that of a 3" % 3” Nal(Tl) 

crystal at this energy; and the peak-to-Corapton ratio is l6:l.

The detector is coupled to a charge-sensitive preamplifier 

NE 3287 A with a cooled FET stage. The preamplifier output is 

shaped and amplified by an ORTEC 485 amplifier with pole zero 

cancellation. The pulses are then fed into a multichannel analyser, 

Northern Scientific NS-606, which has a conversion gain of up to 

2048 channels and a 512 channel memory. The analyser output is 

recorded by pen and on paper tape. The data on paper tape is later 

transferred onto punched cards at the University of London Computer 

Centre•

3 .2  Computer Analysis of the Ge(Li) Spectra

The computer program called SAilPG divised by Routti and •

Prussin (I969) is used to analyse the gamma ray spectra. In this

program a mathematical representation of the photopeak shapes and

of the continuum under the photopeaks are determined directly from

-̂ 32-



3̂  13
16.5

Fig. 5.1 End-drifted coaxial Gs(Li) detector of 
40 cc sensitive volune. All dimensions 
are shown in mm.



well defined peaks in the measured spectrum. Data in the region of 

single pealcs or multiple peaks are then fitted with the mathematical 

functions using the parameters obtained. The line shape (Gaussian 

with exponential tailings) calculations and fittings are performed 

using least squares procedures. An algorithm is also developed 

which enables on automatic search to be made for statistically 

significant peaks in the raw data. In addition to line shape 

calibrations the computer code also performs energy and efficiency 

calibrations, calculates relative intensities of the gamma peaks 

obtained, and provides complete statistical and calibration-error 

estimates. For establishing the goodness of fit for each peak the 

output also includes numerical and graphical representations of 

the fit.

3 .3  Energy calibration of the Ge(Li) detector

Energy calibrations were done using standard sources of

^̂ Co, ^ ?̂Cs, ^^a, etc. In a preliminary search for peaks

a linear interpolation between the calibration points was used.

For a final accurate determination of the energies a polynomial 

least squares fit was made to the calibration points by minimising 

the expression

with respect to pj, where
p\ are the constants defining the calibration curve,

are the channel numbers.
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are corresponding energies, and 

the calibration uncertainties,

A calibration curve is shown in Fig 3,2

3 .4 Relative Efficiency Calibration

To determine the relative intensities of the gamma rays

it is necessary to know the relative efficiency of the detector at

different energies, Tliis was done by taking spectra of Ra and
152Eu sources which have lines with well known intensities. These 

nuclides provide the calibration points which are then fitted to 

the relative efficiency curve which is represented by

F = p̂  + p^ exp(p^E)]

where F is the efficiency

p^, p̂ , p̂ ĵâ are constants determined in the fitting, and 

E is the gamma energy in keV,

The relative efficiency curves for the 40 cm^ Ge(Li) 

detector are shown in Fig, 3,3#

3 .3  The Scintillation Counter

For the directional correlation studies a scintillation 

detector was used in conjunction with the Ge(Li) detector in a fast- 

slow coincidence arrangement.

The scintillation detector consisted of a cylindrical 

Nal(Tl) Crystal, 1,3 inches diameter, 1 inch length, optically
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coupled to a fast EMI 959^B fourteen stage photomultiplier tube.

It was operated at an overall voltage of 2000 V, This applied EHT 

was constantly monitored by means of a digital voltmeter. A 

standard non-linear dynode chain was constructed as shown in Fig.

The cathode-to-first dynode voltage was kept constant at 

300 Volts by means of two IS 4150A zener diodes. The deflector - 

D1 voltage and the focus - D1 voltage were adjusted for optimum 

electron collection and maximum gain. They were kept fixed at 
l4 volts and 1̂6 volts respectively.

A linear signal for energy selection was taken from the 

8th dynode and a fast timing signal was taken from the anode.

The energy calibration for the scintillation detector 

was also done with sources of ^̂ Co, ^̂ Ĉs, etc. Efficiency

calibrations were not required as the Nal counter was used only 
to select the gating pulses.

3.6  The Fast-Slow Electronics

A block diagram of the fast-slow electronics is shown in 

Fig. 3*5* The specific units used are listed in Table 3.1# Signals 

from the Ge(Li) detector are allowed to register in the multi­

channel analyser only if a coincident gamma ray of selected energy 

has been detected in the Nal(Tl) counter. The central line assesses 

all pulses from the two detectors to decide whether any two overlap 

in time. In the event of a time overlap, a pulse emerges from the 

fast coincidence unit. The slow coincidence unit then determines

-3g-
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whether one of the pulses corresponded with a selected gamma ray 

as indicated by a pulse from the separate line from the Nal(Tl) 

detector. An output pulse from the slow coincidence system opens 

the gate of the multichannel analyser and permits any pulse from the 

Ge(Li) detector to be recorded. In this way a 512 channel spectrum 

results which indicates all the lines in coincidence with the 
selected gamma ray.

The time resolution of the coincidence system was 40 

nanoseconds, A delay curve is shown in Fig, 3*6, An important 

part is the necessity to ensure that the gating pulse arrives at 

the analyser at the appropriate moment (0,7 psecs early) and 

keeps the gate open long enough for the energy signal to be analysed* 

A gate pulse generator constructed from an integrated circuit module 

was used (Fig, 3,7), A linear delay amplifier, ORTEC 427, had 

to be inserted in the path of the signal from the germanium detector,

3,7 Physical Arrangement for the Directional Correlation

Measurement

The physical arrangement of the counters for the directional 

correlation measurements ie shown in Fig, 3.8, The Ge(Li) detector 

was stationary and the Nal (Tl) counter rotated on a radial arm

about a cylindrical source placed at the axis. The experiment then

ci

1 2 0 1 3 5 %  150%  165% 1 8 0 etc.

o *consists of taking the coincident spectra at angles of 90 , IO5 ,
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D1 %

i?'ig, 3*8 (,t>) The electronics and detectors arranged for 
directional correlation measurements
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A precaution had to be taken to correct for the effects 

of the strong field associated with the magnet on the Ge(Li) 

vacuum ion punqp. It was found that the position of the gamma ray 

peaks from the scintillation counter varied by up to 2̂  according 

to the angular position. A C-magnet was placed under the preamplifier 

attached to the detector with the aim of cancelling the effect of 

the C-magnet on the ion pump. This was not found to be effective. 

Pieces of half-inch thick mild steel were used to shield the 

magnet on the ion pump from the scintillation counter. Although this 

reduced the effect on the scintillation counter it was also not 

found to be sufficiently effective. A rau-metal shield was next 

tried.This was also not effective, finally, the correction was done 

by switching in a suitable resistive potential divider between 

the amplifier and the single channel analyser in the Nal(Tl) line 

for each angular position.
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CHAPTER 4 FINITE SOLID ANGLE CORRECTION FACTORS FOR THE GE(LI) DETECTOR

4.1 Introduction

The development of large volume lithium-drifted germanium 

detectors has prompted their use in gamma-gamma directional correlation 

experiments. Usually a Ge(Li) detector is employed in conjunction 

with a Nal(Tl) scintillation counter (see Fig, 3»5’ and Fig. 3.8,

Chapter 3), but in a few cases two Ge(Li) detectors have been used 

together. In these experiments a problem arises because the finite 

(and considerable) size of the detectors tends to smear the angular 

correlation. Corrections must be made for this effect.

If from a small source, excited nuclei emit two gamma rays, 

and ^21 quick succession, the experimenter seeks the relative 

probability W(0) dJL that is emitted in the solid angle dJI at 

an angle 0 with respect to the direction of the first The

theoretical expression for W(0) has been derived for most cases of 

interest. However, in practice it is the ^   ̂coincidence counting 

rate C(^) that is measured, and this is a function of the angle 

subtended by the axes of the two counters at the source (Fig. 4.1). 

Because of the finite solid angles subtended by the counters them­

selves, the values C(̂ ) are really averages of the true correlation 

over angles 0 distributed around Thus the experimental correlation 

function ) must be corrected to yield ĝ̂ p̂t̂ ^̂  which can
then be compared with the theoretical expression W(0),

For a centred point source and cylindrically symmetric



Tl

1,

II

SOURCE

paap detector

Fig. 4.1 (a) A gamma-gamma cascade, (b) directional

correlation measurement of the gamma-gamma cascade
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detectors, the theoretical correlation function can be written*

W(0) = 1 + A^E^cos ©) + A^;^os(0)) + . . •

where P^Ccos ©), P^(cos ©) etc., are Legendre polynomials. 

Experimentally the measured correlation is given by

N(^) = const + ••• "j

The experimental and theoretical coefficients are related 

by the solid angle correction factor ;

k = 2,4,

The correction factor must include corrections for both 

detectors. They are given by

where detectors A and B observe and respectively.

The solid angle correction factors for cylindrical Nal(Tl) 

crystals have been given by Yates (I968). For coaxial germanium 

detectors they have been calculated by several investigators and 
empirically estimated by others. The most extensive treatment 

has been that of Camp and van Lehn (1969,1970), Using both 

theoretical and experimental absorption cross-sections they employed 

Monte Carlo type calculations to take account of multiple Coup ton 

scattering.

Camp and van Lehn tabulated their values of for various 

detector geometries. However, the variety of available detector 

sizes is large and so interpolation and extrapolation is often

- 50**



necessary, Considerable uncertainty is thus introduced since 

several parameters are involved. To overcome this limitation 

Krane (1972) developed a simpler method of calculation and 

published a computer program for general use. Because the program 

is limited solely to coaxial detectors, we have extended Krane*s 

work to calculate the correction factors for end-drifted coaxial 

detectors which are commonly encountered in laboratories. In fact 

the detector used in our experiment has this end drifted coaxial 

geometry.

4,2 Theoretical Procedure

The values for have been calculated with the method

of Rose (1953).

Here
= fpj^(oosf)(l - ê (Y')x(p')) gin p d(l 

where T ( 0  is the gamma absorption coefficient; is the angle 

between the path of the gamma ray and the symmetry axisof the 

detector; and x(p) is the path length through the active volume of 

the detector.

The integration is performed by dividing the end-drifted 

detector into four regions as shown in Fig. 4.2. The limits of 

integration and the path lengths in each region are as follows

-5/-
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I 0 ^  tan"̂  [a/(D+D J

x(^) = d/cos Ç>

II tan"*"*\A/(D+L)] ^  P» tan”"'pl/(D+d)]

x(p) = [(D+L+d) /cos PJ ~ (A/sinp)

III tan^ P̂A/CD+d)] ^  ^ ^ tan“*̂ [R/(D+L)J

x((3) = 1/cos p

IV tan“  ̂[r/(D+D] < tan“ (̂R/D)

x(p) = (R/sin p ) - (D/cos p)

In region II an additional factor is introduced into the

integrand of the expression for Ĵ (T) to take into account the 

attenuation of the gamma ray in the inactive p-type core of the 

detector. This factor is given by

K(p) = exp [ - J(T) x‘(p)] 

where x’(f>) is the path length through the dead core, i.e.

X* (p) = (A/sinp) - t(D+d)/cos p]

Tlie modified integrand for region II is then given by

JyXV = J  Pĵ Coos p )  [(1 - +

sinpap

where x^ (̂ ) is the path length in the end-drifted part of the 

detector and x̂ ( p) is the extra path length for gamma rays that 

have penetrated the. inactive part of the detector.
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The absorption coefficient 7̂ 0 has to be computed at each 

energy. Camp and van Lelm carried out Monte Carlo type compu­

tations to take into account the effects of multiple Compton 

scattering. As is not particularly sensitive (Camp and van 

Lehn 1969),to theused we follow the method of Krane and consider 

only single Compton scatters.

In the energy region for which pair production is not 

important, we may write down for the absorption coefficient:

T(t) = + Pp^(Yp7,(»

where ^^(Y) and *̂ (f) are the attenuation coefficients for
photoelectric interactions and for Compton scattering; and

Pp^(Yc) is the probability that a Compton scattered photon Y^

will be photoelectrically absorbed. Following the discussion of

Camp and van Lehn (I969) and Krane (1972), we determine P bype
computing ) using ^^(j^) only. As the absolute efficiency

(intrinsic efficiency times solid angle) is nearly equal to

we put

where YL is the solid angle substended by the detector. The 

coefficients /̂ (̂Y) and "^( Y) were obtained from the report by 

Storm and Israel (1967). For each gamma energy there is a continuous 

distribution of Compton scattered photons, but in the computation 

only the average energy of the scattered photons was used. ïhis was 

taken to be

ofPav = Y  ~
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where 0̂'̂  is the Klein-Nishina scattering and is the Compton 

absorption (Evans, 1955)*

The computations were carried out on a CDC 6600 computer. 

The FORTRAN IV program was written in a subroutine form and it 

is presented in the appendix.

Results

The program gives the correction factor as a function 

of the incident gamma energy E , the source-de tec tor distance, and 

the detector geometry.

The correction factors end for our end-drifted

coaxial detector have been calculated. The detector has a sensitive 

volume of 40 cm^ with a length of 5 cm, a radial depletion depth 

of 11 ram, and an axial depletion depth of 13 mm.

Fig. 4.3 shows the dependence of Ey (keV) for

source-detector distances of 3.3, 3*0, 7.0 and 10.0 cm. Fig, 4.4 

shows the variation of with E y (keV) for the same source- 

detector distances. The numerical values of and obtained in 

the calculation are tabulated in Table 4.1. These results will be

used in the analysis of the gamma-gamma directional correlation
yA 1A7experiments on Go and Pm.

It is instructive to gauge the importance of applying 

the appropriate correction factors. In Fig. 4,5 a comparison is 

shown of the factors calculated by our program for an end-drifted

-5S-
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TABLE 4.1

Solid angle correction factors for an end-drifted coaxial Ge(Li) 
detector of 40 cm̂  with dimensions, length = 5cm, radial depletion 
depth = 11mm, axial depletion depth = 15mm. The variables are 
the gamma ray energy in keV and source-to-crystal distance in cm*

E 0=3.5 5 .0 7 .0 10*0

30 0.86236 0*92611 0.96051 0.98014

40 0.86328 0.92655 0*96069 0.98021

50 0.86485 0*92723 0*96098 0.98031

60 0.86706 0.92821 0.96138 0.98047

80 0.87276 0.93076 0.96248 0.98089

100 0.87908 0.93366 0.96374 0.98137

150 0.89231 0.93991 0.96655 0*98247

200 0.90115 0*94427 0*96858 0.98329

300 0.91044 0.94891 0.97078 0*98421
4oo 0.91363 0.95050 0.97154 0*98452

500 0.91519 0*95128 0.97191 0.98467
600 0.91584 0.95160 0.97206 0*98473
Boo 0.91658 0*95197 0.97223 0*98481
1000 0.91682 0*95209 0.97229 0*98483
1500 0.91704 0.95220 0.97234 0.98485
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TABLE 4.1 continued

E D=3.5
Q4

5 .0 7.0 10.0

30 0.58967 0.76780 0.87241 0.93483
4o 0.59238 0.76910 0.87297 0.93503

50 0.59657 0.77114 0.87386 0.93538

60 0.60249 0.77403 0.87515 0.93587

80 0.61794 0.78168 0.87860 0.93724
100 0.63531 0.79038 0.88258 0.93881

150 0.67227 0.80930 0.89142 0.94235
200 0.69738 0.82258 0.89787 0.94503

300 0.72407 0.83682 0.90487 0.94800

400 0.73328 0.84171 0.90727 0.94901

500 0.73779 0.84409 0.90843 0.94957
600 0.73967 0.84509 0.90892 0.94971

800 0.74182 0.84622 0.90947 0.94994

1000 0.74252 0.84659 0.90965 0.95002

1500 0.74315 0.84692 0.90981 0.95009
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coaxial detector, with the factors obtained with Krane’s program 

for a coaxial detector of the same length and diameter. Although 

the difference in the two cases is negligible at larger distances 

and higher energies, it becomes significant at smaller distances 

and energies. And it must be noted that Ge(Li) detectors often 

have to be used at short distances to ensure reasonable counting 

rates.
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CHAPTER 3 STUDIES ON THE DECAY OF COBALT - 60 

5*1 Previous Work

The daughter nucleus resulting from the decay of^^Co 

is ^̂ Ni. The excited levels of this nucleus have aroused 

considerable theoredtical interest for it is thought to be

approximately spherical and to consist of closed shells of neutrons

and protons (N = Z = 28) plus four neutrons in the (2pg., 1fs-̂ ,2py)h- X I .
states. The work of Rauch et.al (I969) on the positron decay of

^^Cu , and Ballini et.al (I968) on the results of ^^Ni (p,p'%)
59 5and Co (He , d) scattering has established the energies and 

parameters of a large number of nickel states; and these have 

been conpared with shell model calculations - e.g. Auerbach (I967), 

Cohen et.al (I967), and Plastin© et.al (I966).

The decay properties of ^̂ Co have been summarised in

the Nuclear Data Sheets by Raman (I968), Fig.l. The 1173 keV and 

1332 keV gamma rays are well known. The presence of the 2303 

keV gamma ray has been indirectly shown by Morinaga and Takahashi 

(1968); they measured the neutron yield from the D((,n) reaction 

caused by the 2303 keV gamma ray. Evidence for the 2139 keV 

gamma ray comes from V/olfson's (1933) detections of a weak 

externally converted gamma ray of this energy. The 826 keV gamma 

transition from the 2139 keV level to the 1332 keV level is

indicated by the measurements of Rauch et.al (I969) on the decay 

of ^^Cu. They have measured the energies of the gamma rays 

deexciting this level as 826.4- 0.2 keV and 2138.9 - 0.2 keV and

-^2 -
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Fig. 5.1 The decay scheme of ^^Co. All energies 
are in keV
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the branching ratio as l(826.4%)/l(2158.9%) = 6.5 - 0.5.Raman (I969)

has used Wolfson's (1953) intensity of 0.0012% for the 2158.9 keV 
Am/ tedto o-f-

gammayto the 2158.9 keV gamma from Cu decay to estimate an 

expected intensity of 0.007% for the 826 keV gamma transition in 

the decay of ^ Ĉo.

Nevertheless, uncertainty remains about the population of 

the nickel states by the beta decay of ^̂ Co. Hansen and Hpemol 

(1968) using a double focussing spectrometer reported evidence 

for a third beta transition of 670 keV to an intermediate level.

In addition on the basis of a peak at 822 keV in their Ge(Li) 

spectrum they propose that this level should be at 2155 keV (and 

not 2158.9 keV). Raman (I969), however, has cast doubt on this 

interpretation by intimating that the 822 keV peak might be an 

annihilation single escape peak from the 1332 keV transition. 

Moreover, Hansen and Spemol's measured intensity of 0.l8% for this 

peak together with their upper limit for the intensity of a 2155 

keV gamma ray gives a branching ratio 1(822.5%)/I(2155f)^120 for 

the second excited state in ^̂ Ni, This disagrees with the 

branching ratio measured by RaMLch et.al (I969) from the decay of 

6°Cu.

The decay scheme proposed by Hansen and Spemol (I968) 

requires that an 0.l8%, 670 keV group feed the (2"**) 2155 keV 

level directly from the 5^ ground state of ^̂ Co. Such a

- transition would have log ft = 11.4, which is unusually low

— 6̂ -



for a second forbidden unique transition,Raman (I989) has noted., 

after studying some second forbidden unique ( J = 3»&*-*no)

transitions in nuclei ranging from ^̂ Be to ^^^Po, that the log 

ft values in such transitions are generally greater than 12.7#

The disagreements noted above prompted a study of ^̂ Co 

to test whether the 822 keV peak reported by Hansen and Spemol 

(1968) was a genuine gamma ray or an annihilation single escape 

peak. At the same time we decided to search for possible weak 

gamma transitions.

5 .2 Experimental Procedure

The gamma spectra have been studied with the 40 cm^
A

Ge(Li) detector coupled to^400 channel pulse height analyser.

For this experiment the energy region from 270 keV to 1400 keV 

was studied by using a Nuclear Enterprises NE5259 amplifier in 
conjunction with a NE 326IA biased amplifier. The energy 

calibration was made using the prominent ^ Ĉo lines and the double 

escape peak at 310.5 keV. A separate energy measurement was made 

on the 822 keV ̂ ^Co peak using the detector coupled to a 1024 

channel pulse height analyser.

An attempt vras made to look for the higher energy gamma 

rays by taking spectra in the region I5OO keV to 2700 keV.

5 .3 Results

The gamma spectra from ^^Co decay in the region of 820



keV are shown in Figure 5»2a, It is seen that a peak clearly 

exists at 822.1 keV, To ascertain whether the peak is the result 

of single annihilation quanta escaping after pair production in 

the germanium, crystal, isotopes of ^̂ Sc, ^^a and were also

studied. These nuclides have prominent gamma rays at 1120, 1274 

and 1368 keV and might thus be expected to exhibit similar single 

escape peaks.

The results of this measurement are shown in Fig,

3*2b, Tlie single escape pealts are very small and lie on high 

Compton backgrounds of the main gamma rays. Therefore it was found 

necessary to determine accurately the Compton continSwm under the 

singlo escape peaks to obtain the areas of the peaks* A third 

degree polynomial least squares fit was made to the background 

choosing at least eight channels on either side of the peak. After 

correction for the variation of efficiency with energy, the 

intensities of the single escape peaks relative to the main gamma 

rays were calculated. Fig. 5*3 shows that the relative intensities 

are a smooth function of the energy. It may be seen that the 

intensity of the peak at 822 keV relative to the 1332 keV gamma ray 

in ^^Co lies on this line, and we therefore conclude that the peak, 
suggested by Hanson and Spemol to be a gamma transition, is a 

single escape peak of the 1332 keV transition.

The 826 keV gamma ray could not be measured in our spectrum. 

The upper limit for the intensity of a gamma ray at this energy was 

calculated to be O.Ol^u,

- a -
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Fig ^.4 shows the spectra of ^^Co in the region

270 - I'ZOO keV. Again the 822 keV peak can be seen. The

double escape peak at 310,5 keV may also be seen. An attempt

was made to look for the 34? keV gamma transition from the

2505 keV level to the 2139 keV level. It was possible only to

estimate an upper limit for this gamma ray as it would be located

in the Compton background of the main ^^Co gamma rays in addition
2l4to lying very close to the 332 keV gamma ray of Pb which 

forms part of the natural background. Fig, 3#3 shows the region 

around 330 keV# The intensity of a possible gamma ray at 346,8 

keV is estimated to be (0,010 - 0,004)%that of the 1173*2 keV 

gamma ray.

The spectra in the region of I3OO keV to 2700 keV

shown in Fig, 3*6 A 10 microcurie source of ̂ Co was placed at a

distance of 5*5 cm from the Ge(Li) detector. The counting time 

was 10 days and 7r hours. The 2503 keV sum peak of the 1173*2 

keV and 1332*3 keV gamma rays can be seen clearly. The gamma rays 

of the natural sources radium and thorium and their daughters are 

also identified in Fig, 3*6, A small peak may be seen at about 

2139 keV, Its intensity relative to the 1332 keV peak (stored in 

channels 1 - 312) was estimated to be (0.93 - 0 ,17) x 10 

This agrees with the intensity of 1,2 x 10 % given by Wolfson

(195’5’)* Spectra were taken with another source of ^^Co of 3 

millicurie strength placed at a distance of 4,8 metres from the 

detector. This did not improve the statistics, ka absorber of
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lead of thickness 1.6 cm was placed between the source and detector 

to enhance the 2139 keV gamma ray and to reduce the pulse pile up 

due to the main gamma rays of ^^Co. This also did not give us 

better statistics for the 2159 keV peak.

5*4 Discussion

It is clear that our results (Rice-Evans and Aung, 1970) 

discount the proposal by Hansen and Spernol (I969) for a prominent 

level at 2155 keV. It may be noted that although these authors 

presented their ^-spectrum, the fact that they omitted the Fermi - 

Kurie analysis makes it impossible to assess the significance of 

their statement that three straight lines resulted, indicating a 

third weak beta transition to the level in question of intensity 

(0 .15 - 0 .03^% Our results definitely show that the 822 keV peak 

reported by Hansen and Spemol (I969) to be a gamma transition is 

an annihilation single-escape peak of the 1532 keV gamma ray of 

^^Co. It appears that our conclusion is corroborated by the 

independent work of Dixon and Storey (1970).

We have been able to estimate an upper limit of 

(0 .93 - 0 .17) X 10" %  for the intensity of a gamma transition of 

energy 2159 keV. This is in good agreement with the value of

1.2 X  10""% measured by Wolfson (1955)* Dixon and Storey (1970) 

have looked for the 2159 laoV gamma ray by studying the radiation 
emerging through the shielding walls of an AECL Gammacell containing 

about 10,000 Curies of ^^Co* They estimated the intensity of the
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2159 keV gamma transition to be (0.7 ^ §7^^ % 10"%.

From our results, an upper limit of (0.012 - 0.004)/u 

has been obtained for the intensity of a possible gamma ray at

826 keV. This result combined with WoIfsons measured value of

1.2 X 10 %j of the intensity of the 2159 keV transition gives an

upper value for the branching ratio of the 2159 keV level

(I(826Y)/(2159 t) ) of 10. This is very different from the value of 

120 given by Hansen and Spemol (I969) but is in agreement with the 

6 .5 of Rauch et.al (1969)»

An estimate has been made for intensity of the 346.8 

keV gamma transition between the 2505.5 keV,4]J and 2158.9,22 

states in %̂Ii, yielding the value (0,010 - 0.004)?o that of the 

intensity of the 1173*2 keV transition. Van Hise and Camp (I969) 

using a Compton suppression spectrometer with a central Ge(Li) 

detector have observed this garx̂ a’ transition with an intensity of 

0 .0078#! of the 1173 keV gamma ray. They have measured the energy to 

be 346,93 - 0.10 keV, This so-called zero-phonon transition is 
strictly forbidden according to the simple vibrational model.

However, if this transition exists it is expected to have a relatively 

low intensity because of its low evergy (Van Hise and Canç), I969), 

and our intensity estimate confirms this observation*

Van Hise and Camp (I989) have also detected the 826 keV 

(2158*9 to 1332*5 keV) transition with an intensity of 0.0055% 
that of the 1173*2 keV gamma. Their measurement yields a value
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of 826.18 - 0.20 for the energy of this transition.

We were not able to detect the 2505 keV transition from 

the 4^ state because of the summing of the intense 1532.5 and 1173*2 

keV gamma rays.

The results of our investigation have been reported in 

Z. Physik. 240 (1970) 392 - 395 and is appended at the end of this 

report.
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CHAPTER 6 STUDIES ON THE DECAY OF ARSENIC-74

6.1 Introduction

Arsenic-74 decays to Germanium-74 by and electron 

capture and to Selenium-74 by ^ with a half-life of 17.9 days. 

Knowledge of the resulting excited states has come from scintillation 

counter studies (Girgis and van Lieshout, 1959; Eichler et.al,

1962), various nuclear reactions ( Darcey, 1964; Weitkamp et.al,

1966) and more recently from the groups working with Ge(Li) 

detectors ( Kukoc et.al, 1968; Hamilton et.al, 1969) whose decay 

schemes are shown in Fig,6.1. Hamilton et.al reported the 

existence of three new transitions but to our knowledge these 

have not yet been confirmed. Directional correlation measurements 

were done by Eichler et.al(l962) as well as by Hamilton et.al

(1969).

74The levels of even-even nuclei such as Ge are of 

interest because they include two-phonon vibrational modes.

The relative intensities of the transitions and the multipole 

mixing ratios provide a basis for the comparison of the different 

refinements of the vibrational model (e.g. Scharff-Goldhaber and 

V/eneser,1955 ; the Wilets and Jean displaced harmonic oscillator 

model,1958; the weak and intermediate surface interactions of 

Raz, 1959, etc. )
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6.2 Measurements of the Gamma-Ray Spectrum

The gamma spectra have been measured with the 40 cc

Ge(Li) detector coupled to a 2048 channel analyser(NS.6o6).
74The As, obtained from the Radiochemical Centre, Amersham, was 

prepared by proton bombardment on natural germanium.

Singles spectra were taken with the source at a 

distance of 7*5 cm from the detector. Spectra with a 4 ram lead 

absorber between the source and the detector were also taken to 

enhance the high energy gammas and also to reduce the intensity 

of the sum peak at 1106 keV (595*6+510.8 keV), Gamma ray 

intensities were determined using a relative efficiency curve 

obtained for the detector with a Ra source. The intensities
226of the gammas from Ra were taken from the work of Lingemann

et.al (1969).

The gamma spectra divided into regions are shown in 

Figures 6.2, 6.5, 6.4 and 6.5 • Fig. 6.2 shows the gamma spectrum

up to 650 keV. The strong annihilation radiation at 511 keV, the
74 74strong 596 keV gamma of Ge and the 654 keV gamma of Se can be

74clearly seen. The 608 keV gamma of Ge is shown in the inset.

The gamma spectrum in the region 6OO keV to about 1220 keV are 

shown in Fig. 6.5* The weak transitions at 715 keV and 867 keV 

can be seen. The peak at about 867 keV includes a contribution 

from the 867*53 keV gamma of the impurity ^̂ Êu. Its contribution 

was subtracted from the peak using the relative intensities of 

"'̂ Êu gammas given by Aubin et.al (1969) after determining the - 

intensity of the 778 keV peak of ^̂ Êu.
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Fig, 6.4 shows the gamma spectrum in the region of

1100 keV taken with a 4 mm lead absorber. The weak gamma ray at

1102 keV can be seen under the tail of the 1106 sum peak which is

considerably reduced in intensity from that seen in Fig. 6 .5 •

Fig. 6.5 shows the gamma spectrum in the region 1550 to 2800 keV
74and shows the two gammas of Ge at 1602.5 keV and 2198.8 keV .

The energies and intensities of the gamma rays in the
74decay of As determined from the present work are shown in

Table 6.1 together with those reported by Kukoc et.al (1968) 

and Hamilton et.al (1969) for comparison.

-?6-



TABLE 6.1
74Gamma ray energies and intensities in the decay of Aa

Kukoc et.al Hamilton et.al Present Work
(1968) (1969)

E^(keV) If Eÿ (keV) E^ (keV) ' If

595.86io.l4 100.00 595.7io.l 100.00 595.6io.l 100.00
1608vd4-0.2 1.0 608.5io.l 0.96i0.04 608.4i0.1 0.96io.lo
634.73-0.15 25.6 634.8io.l 25.2i0.9 634.6io.l 25.3-2.2

715.oil.0 O.OI5-.OO5 714.7-1.0 o.oi3i.oo5
867.5-1.0 0.006i.002 867.2il.O 0.005-.003

887.2^0.7 . 0.048 886.6io.5 0.046i.004 886.8io.2 0.040i.005
993.6^0.8 0.021 993.6io.5 0.038i.004 993.5-0.2 .033-.004

1101.6il.0 O.OI3-.OO3 1102.oil.0 0.01li.004
1204.6±0.4 0.47 1204.3io.3 0.45i0.02 1204.2i0.2 0.44io.05
1604.oil.0 0.013 1602.5io.7 0.012i.002 1602.5-1.0 o.oi4i.oo3
2198.8il.O 0.019 2198.4il.O 0.027i.002 2198.9il.O 0.029i.005



6.3 Directional Correlations in Germanium-74

The directional correlation apparatus described in

Chapter 3 was used for measuring the correlations in Germanium-74. 
74The As source was dissolved in acqueous solution and this was 

placed inside a cylindrical perspex source holder to produce a 

line source of 1.3 mm diameter and 4 mm length. The Ge(Li) crystal 

was kept at 3*5 Am from the source and the Nal(Tl) detector was on 

the movable arm at a distan̂ '̂ e of 7 cm from the source. The source 

was centred to within 19̂ as indicated by observing the peak 

singles intensity over the range 90° to 270° «

The Nal(Tl) detector was gated on the 596 keV gamma.
74This included the unresolved 6o8 keV gamma transition in Ge as

74well as the 634 keV gamma transition in Se . The Ge(Li) 

spectrum on the analyser gated by the Nal(Tl) detector was taken 

at angles of 90°, 105°, 120°, 135°, 150°, 165° and l80°, and was 

repeated in the other quadrant from l80° to 270° again in steps 

of 15° • The counting time was 24 hours at each angle and the 

total counts in the Nal(Tl) gate were also recorded for each 

position. These counts were used to normalise the peak areas 

obtained in the coincidence spectrum to take into account the 

source decay and also any errors in source centring. Altogether

three series of runs were taken.

Corrections for chance coincidences were calculated
74from the area of the 634 keV peak of Se which appeared in the 

coincidence spectra.



The areas of the 6o8 keV peak in the spectra were 
determined by using the computer program SAMPO. These areas, after 

correcting for chance coincidences and normalising by the Nal(Tl) 

singles gate counts were fitted by a least squares procedure to 

the correlation function

W(G-) = Aq + + '̂44̂ 4(000 ©)

Fig. 6.6 gives the correlation curve,that is W(©-) vs Ô, 

for the 608 - 596 keV cascade.

The experimentally determined correlation coefficients 

were then obtained from the least squares fitting procedure by

A^xpt^ = -0.2279^0.0360

^expt^ = 0.1869+0.0479

These results were corrected for finite solid angle 

effects. Correction factors for the Nal(Tl) detector were taken 

from the work of Yates (1963). Correction factors for our Ge(Li) 

detector have been calculated as discussed in Chapter 4. Referring 

to Fig. 4 .3 and Fig. 4.4 and Table 4.1, the correction factor for 

A^ for a gamma ray of 608 keV at a distance of 3-3 cm is 

= 0.9138 and that for the coefficient A^ has a value of

Q4 = 0.7397 .

The corrected values of the directional correlation 

coefficients were,

A^ = -0.2387+0.0409 and A^ = 0.2884+0.0744 

These values agree with the results of Fichier et.al (1962) as 

well as with those of Hamilton et.al (̂ 9̂ 9)• Table 6.2 gives a 
comparison of these values.
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Pig. 6.6 Directional Correlation Curve for the 60S - 596 keV 
cascade in Germanium-74
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TABLE 6,2
7hValues of Â , A^ for the 6o8 - 596 keV cascade in Ge

-0.2587+0.0409 0 ,2884+0.0744 Present Work

-0.24 + 0o04 0.50 + 0.05 Hamilton et.al(l969)

-0.248 + 0.044 0.251 + 0.070 Eichler et.al (1962)

The errors in A^ and Â  ̂were claculated by the method 

outlined in Chapter 2, Section 5*2 •



6.4 Multipole Mixing Ratio

The values of and A^ determined from our experiment 

have been used to determine the correct spin sequence for the 

608 - 596 keV cascade and the mixing ratio for the 608 keV 

transition. The method of Coleman (1958) has been employed in which 

possible values of A^ and A^ for particular spin sequences are 

plotted as a function of the mixing ratio. As the 596 keV transition 

is a pure multipole (electric quadrupole), the tabulated values of 

Taylor et.al (l97l) have been used and when plotted they give the 

ellipses shown in Fig. 6.7 •

Our experimentally determined value of and A^ is 

consistent with a spin sequence of 2 - 2 - 0 for the 608 - 596 keV 

cascade. The mixing ratio S is determined to be 3*1 which gives 

an admixture of(9«4"*"̂ *g)/o' M1 radiation for the 608 keV transition. 

Hamilton et.al (1969) obtained an M1 admixture of (7"*"̂ )̂ for this 

transition while Eichler et.al (1963) gave a value of 9̂  .

The Davydov and Fillipov (l958) theory of 

asymmetric nuclei predicts a value for the ratio of E2/M1 

multipole intensities given by

S^(E2/Mi) = 8.1 X lO’̂ Z^ A^^^ e /  

where S^(E2/M1) is the ratio of the intensities of the E2 and M1 

components and Ê  is in MeV. Using the values Z=32, A=74 for the 
608 keV transition gives

S^(E2/Mi) = 9.538
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The mixing ratio determined from our experiment yields a 

value of for which is in good agreement with the value

predicted by the Davydov-Fillipov model.

Grechukhin (1963) has considered magnetic transitions in 

even-even nuclei with quadrupole type excitations and has given an 

expression for the multipole mixing ratio as follows -

S = (441/500) l/fCl^I^) (ZwMR2/g^)2

where fCl^I^) = , w is the

transition energy in O.5II MeV units, M is the nucleon mass equal 

to 1840, R^= 0.^3 with e^= 1/137* (Z/g^)^ depends on the

dynamics of collective motion and in the hydrodynamic model
Z/gg= A .,

For the 2̂  2̂  transition in ^̂ Ge, Grechukhin's

formula predicts a value,

2 A,. +̂'



6.3 Reduced Transition Probabilities

From the values of the relative intensities and the 

energies of the gamma transitions measured in this experiment, the 

following ratios of reduced transition probabilities have been 

calculated.

B(E2;2^>2;)6o8K  ̂

B(E2 ;2*.0'̂)596Ï

B(E2;2^.Qbl204V  ̂
+ _ +B(E2;2 +0 ) 396Ü

B(E2;0>2;)887< ^

B(E2;2^*0 )396 t

According to the simple vibrational model (Meyer,1970) 

the ratio of the reduced transition probabilities 

B(E2;I^*2^)/ B(E2 ;2^*0 )̂ should equal 2 for I = 0,2,4 members of 

the two-phonon vibrational levels. However most of the modified 

models which introduce anharmonicity to the simple vibrational 

model predict the reduced transition probability B(E2) to have 

larger values for the direct transitions and 2^>0^

than for the crossover transition 2^»0^ (Raz,1959? Scharff-Goldhaber 

and Weneser,1933; Davydov and Fillipov,1938) .

In the linearised quasi-partiele random phase 

approximation theory (Kisslinger and Sorenson, 1963) the two-phonon 

2^ to ground stata transition (2^»0^) transition is forbidden.

This is in qualitative agreement with the small B(E2 ;22>0 )̂ 

value compared to the B(E2;2^fO^) we have measured.

^  h^s 4v> ^
0 *3 ĉi»r\r̂ciL .
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McGowan and Stelson (1962) have measured the values of
74the reduced transition probabilities in Ge by Coulomb excitation

2 -48 4methods. They obtained a value of 0.317 e xiO cm for the
+ 74excitation of the first 2 state in Ge. That is,

B(E2;0%2^) = 0.317 e^xlO"^^ cm^ .

The reduced transition probability in Coulomb excitation 

is related to the reduced transition probability in gamma emission 

through the following formula ( Moszkowski, 1937) 1

B(f i)/ B(i * f) = (21^+1)/(2l^+1) where i and f

refer to the initial and final states respectively. For example, 

if B(i»f) refers to the reduced transition probability in a gamma 

transition from the state i to the state f , B(f*i) would 

represent the Coulomb excitation of the nucleus from the state f 

to the state i.

Using this relationship the reduced transition probability 

for emission of the 39^ keV gamma ray is determined to have a value 

B(E2;2**of)396y = (O.0634+0.0044) e^xio"^^ cm^

In terms of the Weisskopf single particle units 

B(E2 ;2^»0^)396* = 34.1+2.4 spu

Using the ratios of the reduced transition probabilities

we have calculated, the various B(E2) values may be expressed in
2 -48 4units of e xIO cm as:-

+ niAr: Q.crsB(E2 ;22+2 )608f = 4493'8 3̂9.3) % 10 c , o
+ +B(E2 ;2 *0 ) 1204Y = 4-&.2'u 1,13) ][ 10 o-OOo^9L ±o.ooooS

B(E2 ;0^^2^)8 8 7Y = <-3 r̂-i6+0./i8) x 10^  0 0 0 7^ t o.cotf
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6.6 Discussion of the Level Scheme

74The spin of the ground state of As is most likely

to be 2 although it has not been directly measured. Hamilton 

et.
74,
et.al (1969) note that the log ft values to the 2"** levels of

Ge are compatible with log ft values for first forbidden
74non-unique transitions from the 2 ground state of As. The 

transitions to the ground state, the 4̂  state at 146^ keV and the 

0 state at 1483 keV of Ge have log ft values which are in the 

range of first forbidden unique transitions for the 2 state of 

^̂ As. The negative parity is also supported by the j) -Y angular 

correlation work of Habib et.al (1966).

The energies and spins of the 2̂  levels at 395*6,
741204.2 and 2198.8 keV in Ge are well established by previous 

work (Kukoc et.al, 19685 Hamilton et.al, 1969) as well as by the 

present measurements.

The energy of the l483 keV level is also well establish­

ed. Darcey (l964) from his (t,p) work predicts zero spin for this 

level. The directional correlation measurement of Hamilton et.al

(1969) has established the spin of this level to be 0̂ . The 

nuclear photo excitation work of Moreh and Shahal (l970) also 

gives a 0̂  spin assignment to this level.

Our detection of the weak transitions of 867.2 keV 

and 1102 keV supports the existence of levels at 1463 keV and 

1697 keV proposed by Hamilton et.al (1969). The 1463 keV level 

has also been observed in nuclear reaction studies of Weitkamp 

et.al (1966), Darcey (1964) and Brown et.al (1967)* It was also
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seen in the decay of ^^Ga by Camp et.al (1971)* Because of the 

absence of any significant crossover transition to the ground 

state a spin assignment of 0̂  or 4̂  to this level is possible, 

but as the 1483 keV level has been established to have a 0̂  spin 

(Hamilton et.al, 1969) the spin assignment of 4̂  is favoured 

for the i463 keV level. The 2̂ , 1204 keV level, the o"*", l483 
keV level and the (4̂ ), l463 keV level could be the two-phonon 

triplet predicted by the vibrational model.

The level at l697 keV was proposed on the observation
74of the weak 1102 keV gamma ray seen in the decay of As.

A level at about this energy was also observed in the (n,Y )
74work of Weitkamp et.al (1966) and in the Ga decay studies 

of Eichler et.al (1962) and Camp et.al (l97l)* As the log ft 

value to the l697 keV level indicates a first forbidden unique 
transition, a spin of 0̂  or 4^ is favoured.

A relatively strong gamma ray observed at 634.6 keV
+ 74is due to the transition from the first excited 2 state in Se 

We are, however, unable to confirm the existence of a I269 keV
74level in Se tentatively proposed by Kukoc et.al (1968).



6-7 Conclusions

The results of this experiment confirm the existence
74of the three new gamma transitions in Ge reported by Hamilton 

et.al (1969) and support their proposal that the 1697 keV level
74is populated in the decay of As. Our result on the ratio of 

the El/M1 multipole intensities agrees with the value predicted 

by the Davydov-Fillipov theory of asymmetric nuclei. The reduced 

transition probabilities have been calculated for the gamma
74transitions in 'Ge. These values together with the energies

74and spins of the levels indicate that the Ge nucleus can 

be represented by the collective model. Our measurements are 

in agreement with the general qualitative predictions made by 

the various refinements of the basic collective-vibrational 

model.

It appears that the independent work of van Hise

and Paperiello (197Z) also confirms the existence of the gamma

transitions of 713 keV, 867 keV and 1102 keV. Their measured
values of the intensities for these transitions are 0.0l4, O.OO88

and 0.01 respectively. Using a Compton suppression spectrometer

with a central Ge(Li) detector these authors have also reported

two additional gamma transitions of energy 734.2 keV (O.OO39) in
*̂ Ĝe and I269.6 keV (0,0031 ) in *̂ Ŝe. This latter transition

appears to confirm the proposal of Kukoc et.al (1968) for the
74existence of a level at 1269 keV in Se.
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Van Hise and Papierello (1972) have considered the low
7/flying levels of Ge to be separable into a quasi ground

rotational band and quasi ^ - and "Y-vibra.tional._banda..ln' analogy

with similar bands found in highly deformed nuclei. This appears

to be a qualitatively good approach but on comparison with the
70 72levels of neighbouring Ge and "Ge nuclei the trend is found to

be imperfect. Van Hise and Papierello (1972) conclude that this

is not surprising since the rotational formalism is bound to

suffer in the region of traditionally spherical nuclei. However,
7kit is possible that the low lying levels of Ge could be explained 

equally well by both the vibrational and rotational formalisms 

of the collective model.
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CHAPTER 7 STUDIES OH THE DECAY OF NE0DYI4IUM - 14?

7>1 Introduction

The beta decay of 11,1 day neodymium - 147 to excited

states of promethium - l47 has been studied by many investigators

and different decay schemes have been suggested. Excited levels at

91»1, 410,5, 489.3, 531.0 and 685.9 keV above the ground state in 
l47Pm have been established by recent work with Ge(Li) detectors.

Hill and Weidenbeck (I967) used a 2 metre curved crystal spectrometer 

as well as a Ge(Li) detector and have introduced an additional level 

at 680.4 keV, The work of Canty and Conner (I967), Jacobs et,al 

(1967), using Ge(Li) detectoî ĵ  also support the existence of this 

level.

Gunye, Jarabunathan, and Saraf (I961) and Spring (I963) 

from studies with scintillation detectors have proposed a level at 

720 keV depopulating to the 4lO keV level through a 310 keV gamma 

transition, %.is gamma ray was, however, not detected in the work 

of Hill and Weidenbeck (I967), Canty and Conner (I967) and Jacobs 

et.al (1967). More recently Singh et.al (1971) using a Ge(Li) 

detector have proposed a level at 723 keV depopulating via a 312 keV 

transition to the 4ll keV level. These authors also detected the 

590 and 680 keV gamma transitions depopulating the 68O keV level 

proposed by Hill and Weidenbeck (I967). In addition they reported
147another gamma ray of 299*7 keV which was assigned to  ̂Pm but not 

placed in the decay scheme.
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The Ge(Li) - Nal(Tl) coincidence studies of Jacobs et.al 

(1967) suggest the existence and location of a 78 keV gamma 

(489 - 4lOkeV) and a 1^4 keV gamma (686 - 531 keV), These gamma 

rays were not detected by Hill and Weidenbeck (I967) and Canty and 

Conner (I967).

Additional levels have been proposed at 182 keV by Wendt 

and Kleinheinz (I96O), Sastry et.al (1964) and Rajput and Sehgal 

(1967), and at 230 keV by P.R. Evans (1958). Recent measurements 

with Ge(Li) detectors fail to support the existence of these levels.

Directional correlations of the gamma transitions in

^̂ '̂ Pm were studied by Bodenstedt et.al (I96O), Arya (I96I), Saraf

et.al (1961), Spring (I963), and Gopinatham (I966). All these

measurements employed scintillation detectors. Recently, Blaskovich

and Arya (1970) used a 10 cc Ge(Li) detector in conjunction with a

2” X 2" Nal(Tl) crystal to measure the gamma-gamraa directional 
147correlations in Pm.

147The spin of the Nd ground state has been established as 

5 /2 by the paramagnetic-resonance studies of Kedzie et.al (1937) 

and by Cabezas et.al (I96O) who employed the atomic beam magnetic 

resonance method.

l47The ground state spin of Pm has been measured to be 

I = 7/2^ by Klinkenberg and Tomkins (I96O) from their optical hyperfine 

structure studies. This corresponds to the ĝ  ̂ shell-model state. 

Cabezas et.al (I96O) also obtained the same spin value for this state.
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The spin of the $1 keV first excited level of has

been determined to be 5/2% From measurements of subshell ratios 

the 91 keV gamma is known to be a mixture of M1 and 22 radiation.

This limits the spin of the 91 keV level to 5/2, 7/2 or 9/2 with 

positive parity. The nuclear orientation experiments of 

Westenberger and Shirley (I96I) excluded a 7/2 spin assignment. The 

log ft value of 7.4 for the 807 keV beta transition from the ground 

state of the 5/2 ^^^Nd (Jacobs et.al, I967) eliminates the

spin 9/2 possibility. Therefore the 91 keV level is assigned a 

spin of 5/2^.

In previous K-V directional correlation studies 

Bodenstedt et ,al (I96O) obtained a spin of 5/2**" for the 4lO keV level 

while Arya (I96I) determined it to be 7/2^ and Saraf et.al (I96I) 

favoured an assignment of 7/2^ while they do not rule out the 5/2^ 

and 5/2**" possibilities. The recent measurements of Blaskovich and 
Arya (1970) favour a 5/2^ spin assignment to this level. Hill and 

Weidenbeck (I967) from their measurements of relative photon 

intensities with a Ge(Li) detector list 5/2^ and 7/2^ as the possible 

spin choices. Westenberger and Shirley (I96I) from their nuclear 

orientation studies were also only able to limit the spin choices to 

3/2"̂  or 7/2"̂ .

Hill and Wiedenbeck (I967) were not able to eliminate possible 

spin choices of 3/2'*’, 5/2̂ , 7/2^ for the 489 keV level. Bodenstedt 

et.al (i960) favour a 5/2^ spin with 7/2^ being listed as possible 

choice also. Saraf et.al (I96I) favour the spin 7/2^ although
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/ Arya (1970)

5/2^ Canty and Conner (I967) favour a spin of 7/2"*" for this level.

retaining 5/2^ as a possible choice. Arya (1970) affixes a value

The spin of the 531 keV level is assigned a value 5/2**' by 

most investigators (Ewan et.al, I96I; Spring, 1963; Canty and 

Conner, 1967; Hill and Weidenbeck, 19̂ 7; Blaskovich and Arya, 1970) 

Only Bodenstedt (I96O) favours 3/2'*’ spin while listing 7/2^ as 

another possibility.

Ewan et.al (I96I) suggested spin values of 5/2^ or 3/2^ 

for the 686 keV level. Westenberger and Shirley (I96I) propose 

5/2^ or 7 /2 while Hill and Weidenbeck (I967) favour 5/2^ with 7/2*** 

as a possible choice also. Saraf et.al (I96I), Arya (I96I),

Spring (1963), Canty and Conner (I967), Blaskovich and Arya (1970) 

all agree on the choice of spin 5/2'*’ for this level.

Hill and Weidenbeck (I967) suggest the spin of their 
proposed level at 68O keV to be either 5/2’*' or 7/2̂ .

The discrepancies reported in the number of gamma

transitions, the nuclear energy levels and the spin assignments

prompted this study of the gamma transitions and their directional 
147correlations in Pm.



7.2 Experimental Procedure

The radioactive sources were prepared by irradiating 

99.9% pure (spec-pure) neodymium oxide (Nd̂ O^) in the 

thermal neutron flux of the University of London Reactor, The 

sources were used in the powder form in sealed cylindrical 

polythene containers for singles spectra,

A source was also purchased from the Radiochemical Centre, 

Amersham. This was in the form of neodymium chloride in dilute 

hydrochloric acid.

The sources were allowed to decay for about two weeks to 

permit the short lived ^^%d and ^^^Ud to die. Singles spectra 

were measured with the sources 5 cms from the 40 cc Ge(Li) 

detector.

7 .3 Analysis of Ge(Li) Singles Spectra

Tlie gamma spectra obtained with the Ge(Li) detector were

analysed by using the computer program SAMPO Fig. 7*1 shows the

complete gamma spectrum contained within the energy region
l47

0-780 keV. The main gamma rays of Nd are indicated by their

energies in keV Peaks due to naturally occurring

radioactivity ( Ra and daughters) are identified by isotope. 
l47The decay of Nd was followed over a period of two months, that 

is over 5 lifetimes. A peak at about 135 keV was detected by 

SAMPO. The statistical significance of this peak was around 3.8
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in most of the runs.

The statistical significance of a potential peak in

channel is measured as

ss. = dd./sd.1 1 1

whore the generalised second-difference expression

" ir.k "i+j
is divided by its standard deviation 

sd,

The expressions of dd. and sd. are obtained by summing 

over 2k+l channels the counts per channel n̂ ,̂ multiplied by the 

coefficient ĉ . The ĉ  *s define a weighting function which is 

designed to enhance the detection of real photopeaks and to 

discriminate against statistical fluctuations and spurious peaks,

The 155 keV peak corresponds to the gamma transition from 

the 686 keV level to the 531 keV level. The existence of this gamma 

transition was previously reported from coincidence data by Jacobs 

et.al (1967) although it was not directly seen in their Ge(Li) 

spectra.

The gamma ray of 310 keV reported by Blaskovich and Arya

(1970) and proposed by some earlier investigations (Gunye et.al, 

I96I; Spring, 1965) was not found in this experiment. The search 

was made down to a statistical significance of 2.00. However a 

peak at 307*7 keV started appearing in the gamma spectra taken about

-/O7 -



two months after the production of the source. The lifetime of

this peak was estimated from the values of its intensity relative
1^7to the 91 keV gamma of Nd taken at an interval of 120 days.

Its value v/as found to be (29 - 5) days. It has been identified
169as a gamma transition in the impurity Yb which has a half-life

of 32 days. Other gamma rays of ^^^Yb (109*3, 130*6, 177 and

197 keV) were also identified. This conclusion is in conflict

with that of Blaskovich and Arya (1970) who, having found the
1^7lifetime of the transition to be "comparable" with that of Nd, 

proceeded to assign the transition to this isotope.

The 299*7 keV gamma ray reported by Singh et.al (1971) 

was not detected in this experiment. The 78 keV gamma transition 

suggested by Jacobs et.al (I967) was also not observed.

The 589 keV and 68O keV gamma rays first reported by Hill 

and Weidenbeck (I967) were detected in this investigation. These 

gamma rays were not completely resolved from the nearby 394 keV and 

686 keV peaks but were analysed by SAMPO as shown in Fig. 7*2 and 

Fig.7*3*

In both figures the presence of the weak transitions at 

the lower tails of the stronger peaks can be seen in the first 

analysis by SAMPO. A second analysis taking into account the 

presence of the weak transitions gives the excellent agreement 

between data and fit seen in these figures.

The energies and intensities of the gamma transitions
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m m m m m m m m m m m m m < t < t m m m m m mo o o o o o o o o o o o o o o o o o o o o+ + + + + + + + +  + + + +  + + + + + 4 + +<rUJWWLULtJU_'liJWIjJLUWUJLUUJUJLLlLJLJUJLJLiJ )— M — ccrucciTMLTccccooo'-trv'-tr'iomLroco <>trvjoo\ca-,-<ir'mf-ir̂ (vicc(\!Nt'4m(viocorr̂ r- cr̂ vC>ô C'h-\omccr̂ (vf\jmt-<r-h-\C!CV!(V'>-'i-ii--i
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measured in this work are shown in Table 7.1 together with those 

of Canty and Conner (I967) and Hill and Weidenbeck (I967) for 
comparison.

7*4 Directional Correlations of the Gamma Transitions in

Promethium - 147

The sources used in the directional correlation measure­

ment were prepared by neutron irradiation of specpure Nd^O^ at 

the University of London Reactor. Measurements were started about 

3 weeks after irradiation to allow the short lived impurities to 

decay. The irradiated Nd^O^ was dissolved in 0.1N HCl solution 

and placed in small cylindrical perspex holders to produce a 

line source of 2 mm diameter by 5 length.

Directional correlation of transitions involving the 

91 keV transition were measured. The Nal(Tl) detector selected 

the 91 keV gamma rays and after processing in the fast-slow 

coincidence system (See Chapter 3) provided the gating signal 

to the multichannel analyser. The resulting Ge(Li) spectrum which 
is in coincidence with the 91 keV gamma rays was observed on the 

multichannel analyser. The Nal(Tl) crystal was at a distance of 

7 cm from the source and the Ge(Li) crystal was at a distance of 5 cm 

from the source. The source was centred on the directional correlation 

apparatus in such a way that the singles counting rate in the movable 

detector arm (i.e. the Nal(Tl)) was constant to within at each 

angular position. Coincidence spectra were taken with the Nal(Tl)

- / / / -



TABLE 7.1
147Energies and intensities of gamma transitions in Pm

Canty and Conner
(1967)

Hill and Weidenbeck
(1967)

Present Work

E (keV) I £ (keV) I E (keV) I

91.0 211+20,'b 91.105±0.0016 227^35 90.8±0 .2 224*31
120.6 2.5-20:6 120.49-0.009 3.3io.5 120.3Si0.21 2.2io.3

155.oil. 0 0 .03-0.01

196.6 1 .3-10:6 196.66-0 .03^ 1.5-0 .6 i9 6.96io.i3 1.52i0.24
275.1 '6 .5-20^ ' 275.42±0.02 6.8il.4 275.55io.ll 6.29io.91
319.3 14.2±10:6 3i9 .4iio.O3 1 6.3-2 .4 3i9 .58io.ll i4 .99il.06

397 .8 6.4±lo;6 398.22io.O7 6 .8il.l 398.26io.ll 6.62i0.94
409.6 1 .3-10^ 410.3-0.4 l.2io.5 4iO.43io.2i 1.04io.l6
4 3 9 . 4 ' 9.2±10;6 439.85io.O8 9 .3-1 .1 439.87-0.11 9.23io.97
488.5 1 .5-50^ 489.31-0.35 l.iio.5 489.18i0.12 l.l5io.l8

530 .7 100 531.Olio. 07 100 53O.8lio.lO 100
589.0 0.40 589.3-0.7 0 .31-0.14 588.95-0.50 0.29i0.06
594 .4 2.2±10# 594.7-0 .4 1.9-0.4 594.36io.i5 1.83i0.31
680.0 0.28 679.4il.5 0 .23i.l6 680.3-0.8 0.l6io .08
686.1 6.6—10,6 685.sio.35 5 .9-1 .0 685.31-0 .26 6 .33-0.91
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0 0
detector at angles ranging from 90 to 270 from the Ge(Li)

0detector in steps of 15 • The counting time at each position

was about 24 hours. The total counts recorded in the Nal(Tl) 

gate at each position were used to normalise the peak areas 

obtained in the coincidence spectra. Three series of 
measurements were taken.

The areas of the peaks in the Ge(Li) spectrum in 

coincidence with the 91 keV transition were determined by using 

the computer program Si\MPO. Those areas after correcting for chance 

coincidences and normalising by the Nal(Tl) singles gate counts 

were fitted by a least squares procedure to the directional 

correlation function.

W(e) = ÂQ + A^2 ?2 (cos &) + A^^ P^(cos (9)

Figs. 7*4, 7*5* 7.6, and 7.7 give the correlation curves for the 

519 - 91 keV , 598 - 91 keV , 459-91 keV and 595 - 91 keV cascades
respectively. The values of the correlation coefficients resulting 

from the fitting procedure for each cascade are tabulated in Table 

7.2. These have not been corrected for finite solid angle effects. 

These coefficients were then corrected for finite solid angle affects 

The correction factors for the Nal(Tl) detector were taken from the 

work of Yates (1968). Those for the Ge(Li) detector have been 

calculated as outlined in Chapter 4

The corrected correlation coefficients for each cascade 

studied in this work are shown in Table 7.5. The values obtained by

-Hi-
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TABLE 7.2
Directional Correlation Coefficients (not corrected for solid

14-7angle effects) for gamma-gamma cascades in Pm measured in 
this experiment.

Cascade
(keV)

,expt .expt

519 - 91 

598 - 91 

439 - 91 

(389+594)-91

-0.0950+0.0069

-0.0264+0.0136

+0.5955+0.1382

+0.0167+0.0045

-0.0103^0.0075

-0.0260+0.0195

+0.0288+0.0189

+0.0079+0.0063

-



TABLE 7.5
Directional Correlation Coefficients for gamma-gamma cascades
in The coefficients have been corrected for finite solid
angle effects.

Cascade A A,
(keV) 2 4

519 - 91
Present Work -0.1035+0.0077 -0.0146+0.0106
Blaskovich & Arya(l970) -0,083 +0.011 -0.014 +0,013

Arya(l9&l) -0.1030+0.0298 +0.0107+0.0099

Bodenstedt et.al(l96o) -0.087 ±0.008 -0.001 +0.003

398 - 91
Present Work -0.0295+0.0173 -0.0368+0.0273

Blaskovich & Arya(1970) -0.074 +0.019 -0.019 +0.023

Bodenstedt et,al(l96o) -0.022 +0.008 -0.002 +0.009

if39 - 91
Present Work +0.0435+0.0175 +0.0408+0.0268

Blaskovich & Arya(1970) +0.034 +0.018 +0.016 +0.024
Bodenstedt et.al(l96o) -0.063 +0.010 -0.010 +0.013

Saraf et.al(l96l) +0.063 +0.020 -0.035 +0.025

(589+594)- 91
Present Work +0.019+0.003 +0.01+0.008

Spring(1963) -0.02 +0.03 -0.02+0.07
Saraf et.al(l9ôl) +0.06 +0.03 -0.05+0.03

- /IT-



previous investigators are also shown for comparison.

The correlation coefficients measured in this experiment 

were then used to obtain the multipole mixing ratios and to deduce 

the correct spin assignments as discussed in the next section.

7*3 Determination of Multipole Mixing Ratios

14.7 14.7The spins of the ground states of Nd and Pm have

been established to be 3/2 and 7/2^ respectively. The beta
14-7transitions to the excited levels of Pm have been classified

as first forbidden (Jacobs et.al, 1967) with a spin change of 0
14.7or 1 and a change in parity. The excited levels of Pm must

therefore have even parity with spins of 3/2, 3/2 or 7/2.
14.7Consequently the gamma transitions in Pm consist of mixtures 

of E2 and Ml multipolarities.

14-7The spin of the 91 keV first excited state of Pm is

known to be 5/2^ . Barrett and Shirley (I969) undertook new
14-7nuclear orientation measurements on the decay of Nd and also 

reanalysed old data (Westenberger and Shirley, I96I) in the light 

of a revised temperature scale for neodymium ethyl sulphate.

They determined the quadnlpole content of the 91 keV transition to 

be (0.8 i 0.1)% E2 with an admixture of (99.2- 0.1)% Ml radiation. 

This corresponds with a mixing ratio for this transition of ^  =

0.089 - 0.003 which is in agreement with the value j $ j = 0,084 

found in the internal conversion studies of Ewan et.al (I96I).



Barrett and Shirley’s (I969) value of the mixing ratio for the

91 keV transition has been used in the analysis of the results of
l47our directional correlation measurements on Pm.

Because the 91 keV transition is of mixed multipolarity, 

the method of Ams and Weidenbeck (1958) was used to determine the 

mixing ratios and the correct spin sequences of the gamma-gamma 

cascades investigated. In this method, and A^ are plotted 

against S^/ (1+^) for various spin sequences and the 
experimental points compared to the theoretical values.

For a gamma-gamma cascade in which both transitions are 

mixed the directional correlation function is of the form

That is,

\J(B) = l+A^(y^)A^(^^)P^(cos ̂ ) +A2̂ (ŷ )A2̂ ()̂ )̂P̂ (cosO)

The constant A^(^) is determined only by the parameters 

of the first transition, i.e. by and Similarly

depends on the parameters of the second transition only.

Specifically
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and

1+^ {5k̂ 2̂̂ 2̂ 3̂ 2‘*'̂ 2̂ ̂ k̂ 2̂̂ 2̂ 3̂ 2̂  "*" ̂ 2 \̂ 2̂̂ 2̂ 3̂ 2̂  J

A (̂Ŷ ) cind A^(Yg) are related to the experimentally 
measured coefficients A^ in the following way

V h )  \  ^
where <3̂  is the experimental error in Â ,

As the errors in the experimental coefficient Â  ̂are 

usually large only the A^ coefficients are used in the analysis.

The set of values of and satisfying the relationship

above were calculated and plotted to give the equilateral hyperbolae. 

The effect of the error is to produce a band of uncertainty along 
each hyperbola.

Values of Â CX) for different values of the mixing ratio 

were calculated from the formulae given above using the values of 

the Ff coefficients tabulated by Ferentz and Rosenzweig (1955)*

These calculations were done for the spin sequences 7/2 - 3/2,

3/2 - 3/2 and 3/2 - 3/2.

V/hen the A^ coefficients were plotted against û?=^/(l+5^) 

the ellipses in Fig 7.8 resulted.

These single transition mixture curves were then placed 

with scales to coincide with the axes of the

- \ 2 0 -
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experimental graph, as shown in Fig, 7.8. Then a range of 

consistent with the first transition will correspond to a range 

of values ofQi^ for the second transition required by the 

experimental graph and vice versa. To obtain unique spin 

assignments, additional information from internal conversion data, 

nuclear orientation measurements or other directional correlation 

studies must be used. As noted in the beginning of this section 

we have utilised information from nuclear orientation measurements 

to analyse the results of our directional correlation measurements.

The 319 - 91 keV cascade

In this cascade the 4lO.^ keV level deexcites to the 

91 keV level which subsequently depopulates by a $1 keV transition 

to the ground state. Using the multipole mixing ratio of the 9I 

keV transition from the nuclear orientation measurement of Barrett 

and Shirley (I969), the contribution of the 319 keV gamma ray to 

the experimentally measured correlation coefficients was determined. 

The quadrupole content of the 319 keV gamma transition has been 

found to be (23 - 3)% F2 from nuclear orientation measurements 

(Barrett and Shirley,I969) and 20$̂  E2 from the internal conversion 
studies of Ewan et.al (I96I). A spin assignment of 3/2 to the 

410.3 keV level results in a quadrupole content of (76.4 - 

E2 which is inconsistent with the results from nuclear orientation 

and internal conversion data. A 7/2 spin assignment results in a 

multipole mixture of (21.3 "p/gj % ̂ 2 with the mixing ratio

- 1 2 2 -



% = - 0.32 ~Q*Q̂ * Tlie quadrupole content is consistent with

nuclear orientation and internal conversion data but the sign 

obtained is in disagreement with that obtained by Westenberger 

and Shirley (I96I) and Barrett and Shirley (I969)*

A 3/2  ̂ spin assignment results in a quadrupole content

of (16.2 - 2*0  ̂/ E2 and a mixing ratio of S = + 0.44 - q*q^ 
which is in agreement with the nuclear orientation results

& = + 0.33 - 0.03 .

Thus our measurement and analysis affixes the spin of the 

410.5 keV level as 3/2 ^

The 398 - 91 keV cascade

The 489 keV level cloexcit.es via a 398 keV transition to the 91 •

keV level which then decays to the ground state by emitting a 91 

keV gamma ray. Using a similar procedure the contribution of the 

398 keV gamma transition is determined. The quadrupole content of 

this transition has been determined to be (2- 1)% E2 from nuclear 

orientation studies (Westenberger and Shirley, I96I; Barrett and 

Shirley, I969). An attempt to assign a spin of 3/2^ to the 489 

keV level results in an admixture of (6.1- )% E2 with

S = + 0 .233- 0*037 * spin assignment of 3/2^ permits an 
admixture of (7.3 - )% E2 with S= - 0.28 i Finally

a spin assignment of 7/2^ results in a quadrupole content of 

(3.3 - E2 which is in agreement with that found by nuclear

-  123-



orientation studies.

Thus our measurement and analysis of the 398 - 91 keV 

cascade affixes the spin of the 489*3 keV level as 7/2̂ .

The 439 ~ 91 keV cascade

In this cascade the 33I keV level deexcites by the 

emission of the 439 keV gamma ray to the first excited state 

which then deexcites to the ground state by emitting the 91 keV 

gamma ray. The contribution of the 439 keV transition to the 

experimentally measured correlation coefficient was determined 

to be A (439 K ) = + O.I67 - O.O67. If a spin of 3/2'̂  is 
assigned to the 33I keV level, analysis through Fig, 7*8 allows 

an admixture of (1.2 - 0.7)# E2 with <5 = + 0.11 A spin

assignment of 3/2 results in an admixture of (24.3 - E2

with â = - 0.37  ̂0*10 * ^ 7 /2 spin assignment permits a 
quadrupole content of O.l̂ o E2. The quadrupole content of the 

439 keV transition has been determined to be (33 - 6)# E2 by nuclear 

orientation methods (Barrett and Shirley, I969). Consequently 
our data is in agreemnet with the spin assignment of 3/2^ for the 

3 3 1  keV level.

The 394 - 91 keV cascade

The 394 keV gamma ray is not resolved from the 389 keV 

gamma which deexcites the 68O keV level. As the multipole mixing 

and the directional correlation of the 389 keV gamma is not known 

no attempt was made to determine the mixing ratio for this 

cascade.
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7» 6 Conclusions

The decay scheme resulting from the measurements of 

this experiment is shown in Fig. 7 .9 • The spin assignments 

arising from the analysis of the directional correlation measure­

ments of this work are shown in Table 7*4 together with those of 

other investigators. The spins of the ground state and first 

excited state of ^^^Pm have been established as 7/2^ and 

respectively.

Although Arya(l96l) favoured 7/2^ and Bodenstedt et.al 

(i960) favoured 5/2"*" for the spin of the 410 keV level, other 

directional correlation measurements (Spring,19̂ 3; Blaskovich and 

Arya,l970) agree on 3/2̂ . The present investigation also results 

in a 3/2^ spin assignment which is in agreement with the assignment 

from nuclear orientation studies (Westenberger and Shirley,1961; 

Barrett and Shirley,I969) as well as with those from beta decay 

studies (Beekhuis et.al, 1966) .

Concerning the 489 keV level most of the investigations 

have been unable to provide a unique spin assignment. Nuclear 

orientation studies of Westenberger and Shirley and

Barrett and Shirley (1969) favour a spin of 7/2 .̂ Recent directional 

correlation studies with a Ge(Li) - Nal(Tl) system (Blaskovich 

and Arya, 1970) favoured a spin assignment of 3/2 .̂ However, in 

contradiction to this assignment our measurements, also with a 

Ge(Li) - Nal(Tl) system, indicate a spin 7/2^ assignment.
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The spin of the 330 keV level has been assigned a value 

of 3/2  ̂by all previous work with the exception of Bodenstedt et.al 

(i960) v/ho favoured a 3/2"*" assignment. The results of this 

investigation confirm the assignment of spin 3/2^ to this level.

The beta decay to the 68O keV level has a log ft value of 

8 .9 which limits the spin of this level to 7/2, 3/2 or 3/2 . The 

approximate equality of the intensities of the 309 and 68O keV 

gamma rays depopulating this level indicates that the spin choice 

of 3 /2 or 7 /2 is more probable.

Our measurements do not permit us to make a unique spin 

assignment for the 686 keV level. The log ft value of 7*0 for the 

211 keV beta transition from the 3 /2 ground state of ^^^Nd limits 

the choice of spin of the 686 keV level to 3/2, 3/2 or 7/2 . From 

internal conversion measurements (Ewan et.al, 1961) the 686 keV 

gamma transition is known to consist of mainly M1 radiation which 

rules out the spin choice 3/2. Only the spin choice of 3/2 is 

consistent with nuclear orientation measurements (Barrett and 

Shirley, 1969) and previous directional correlation measurements 

(Saraf et.al, I96I; Blaskovich and Arya, 1970) and hence the spin 

assignment of 3/2  ̂to this level is favoured.

IA7The level scheme for Pm has been theoretically 

calculated by Choudhury and O'Dwyer (1967) and also by Heyde and 

Brussard (1967)* Their results are shown in Fig. 7*9 alongside the 

decay scheme consistent with the results of our measurements. The

-izs-



calculations in both cases followed the intermediate coupling
147approach in the unified model. The Pm nucleus is treated as a 

coupled system consisting of a doubly even core which can undergo 

quadrupole vibrations plus the odd proton which has available to it 

the 1g ŷ^ and Pd^y^ single particle shell model states. The three 

parameters used in the calculation are the phonon energy of core 

vibrations fiw, the strength of coupling ^ between single particle 

motion and core vibrations, and the energy spacing between the 

single particle states A= (py^y^ - Choudhury and

O'Dwyer (1967) used Ï l v /  = 433 keV, 3.3 and A =  100 keV while 

Heyde and Brussaard (1967) used "hw = 492 keV, ^ = 3*76 and A= 114 keV, 

Both calculations give reasonably fair reproductions of the level 

scheme, but the calculations give a larger number of levels than 

have been experimentally observed so far.

The calculated levels of Heyde and Brussaard (1967) give 

a better agreement with energies and spins that have been experi­

mentally determined. The only serious discrepancy is in the spin of 

the 330 keV level, the experimental value of which is 3/2^ while 

the possible calculated level has a spin of l/S or at a slightly 

higher energy a spin of 9/2. Their calculation provides a level 

of spin 7 /2 which can be identified with the 489 keV level for 

which we have assigned a spin of 7/2.

Choudhury and O'Dwyer (1967) used a smaller value of the 

energy spacing and obtained good matches for the 3/2̂ , 91 keV level 

and 3/2 ,̂ 4lO keV level. However, the spin of the calculated level 

corresponding to the 7/2̂ , 489 keV level has a value of l/2.

Although there are two calculated levels of spin 9/2 and II/2

- /29-



in the region of 330 keV, it is probable they are not excited in the 

present decay scheme. Finally, the 3/2̂ , 686 keV level may be 

matched with a calculated level with spin 3/2.
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The gamma spectrum from Cobalt 60 decay has been investigated with a 40 cc 
Ge(Li) detector, A  peak at 822 keV is shown to be not a gamma transition but a single 
escape peak and an upper limit of 10 is given to the branching ratio of the 2158 keV 
level.

1. Introduction
The daughter nucleus resulting from  the beta decay of Co^° is N i^°. 

The excited levels of this nucleus have aroused considerable theoretical 
interest fo r it is thought to be approximately spherical and to consist 
o f closed shells of neutrons and protons (N =  Z=2 S)  plus four neutrons 
in the ( Ip , / , .  1 /s /z , '^Pi/z) states. The work of Rauch et a l}  on the 
decay o f Cu^°, and Ballin i c / <7/.^ on the results of N i^ °(/A /? 'y ) and 
Co^^(He^, J) scattering has established the energies and parameters of 
a large number of nickel states; and these have been compared w ith 
shell model calculations —e.g. Auerbach^, Cohen et a l } ,  and Plastino 
et al}.

On the basis of these experiments, the decay scheme recommended 
in the table of Isotopes^ is as shown in Fig. 1. The main evidence fo r 
the excitation of the 2158 keV level in the decay of Cobalt 60 is W olf- 
son’s^ detection of a weak externally converted gamma ray of this 
energy. The 826 keV transition from this level to the 1 332 keV level is 
indicated by Copper 60 decay', and so is a branching ratio of 6.5 fo r 
/(826 y)//(2158 y).

Nevertheless, uncertainty remains about the population of the nickel 
states by the beta decay of Co^®. Recently, Hansen and Spernol ® have

1 Rauch, F., Patter, D . M . van, Hinrichsen, P. F. : Nucl. Phys. A  124, 145 (1969).
2 Ballini, R., Blair, A. G ., Cindre, N ., Delauny, J., Fouan, J. P.: Nucl. Phys. A  111, 

147(1968).
3 Auerbach, N . : Phys. Rev. 163, 1203 (1967).
4 Cohen, S., Lawson, R. D ., Macfarlane, M . H ., Pandya, S. P., Soga, M .: Phys. Rev. 

160, 903 (1967).
5 Plastino, A., Arvieu, R., Moszkowski, S. A .: Phys. Rev. 145, 837 (1966).
6 Lederer, C. M ., Hollander, J. M ., Perlman, I .: Table of isotopes. New York: 

Wiley 1967.
7 Wolfson, J. L.: Can. J. Phys. 33, 886 (1955).
8 Hansen, H . H ., Spernol, A .: Z. Physik 209, 111 (1968).
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1.3325

,60
,Nl28'

Fig. 1. The decay scheme of Co™. All energies are in M eV

reported evidence fo r a th ird  beta transition (670 keV) to an intermediate 
level. In addition, on the basis of a peak at 822 keV in their G e(L i) 
gamma spectrum they propose that this level should be at 2155 keV 
(and not 2158). Raman however, has cast doubt on this interpretation 
by intim ating the 822 keV peak is an annihilation single-escape peak 
from  the 1332 keV transition. The present experiment was designed to 
test this proposal.

2. Experiment and Results
The gamma spectra have been studied w ith  a Nuclear Enterprises 

40 cc trapezoidal G e(L i) detector coupled to a 400 channel pulse height 
analyser. The detector had a nominal resolution of 3.5 keV (FW H M ) 
fo r the 1332 keV line. The biassing was such that the spectra in  the 
region 270-1400 keV were recorded in  the analyser. Throughout the 
experiment the settings remained unchanged; and the energy calibration 
was made using the prominent Ni®° lines and also the double escape 
peak at 310.5 keV. A  separate energy measurement was made on the 
822 keV N i^° peak, using the detector connected to a 1024 channel 
analyser.

The gamma spectra from  Co®° decay in the region 820 keV are shown 
in Fig. 2b. I t  is seen that a peak clearly exists at 822.1 keV. To ascertain 
whether the peak is the result of a single annihilation quantum escaping 
after pair production in the germanium crystal, isotopes of Sc'"' ,̂ Na^^ 
and Na^"” were also studied. These elements have prominent gamma rays

9 Raman, S.: Z . Physik 228, 387 (1969).
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Fig. 2 a and b. Selected portions of the gamma spectra measured with a 40 cc Ge(Li) 
detector, (a) single escape peaks from Sc'**̂ , Na^^, Na^"* gamma rays, (b) single 

escape peaks from the Co* °̂ gamma rays

at 1,120, 1.274 and 1.368 M eV and might thus be expected to exhibit 
sim ilar single escape peaks.

The calibration spectra are shown in  Fig. 2 a. The number of counts 
in  each peak was obtained by using a th ird  degree polynom ial least 
squares f i t  to the background. A fte r correction fo r the variation of 
efficiency w ith  energy, the relative intensities of the single escape peaks 
were calculated. The line in Fig. 3 shows that the intensities are a smooth 
function of energy.

I t  may be seen that the Co®° peak at 822 keV lies approximately on 
this line, and it  is thus possible to conclude that the peak, suggested by
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0.5
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0.2

1100 1200 14001300
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Fig. 3. Relative intensities of the single escape peaks shown as a function of the
gamma ray energy

Hansen and Spernol to be a gamma transition, is a single escape peak 
of the 1332 keV transition. Further, from  Fig. 3, i t  is possible to cal­
culate an upper lim it of 0.012% fo r the intensity of a possible gamma 
ray at this energy.

3. Conclusion
I t  is clear that our results discount the proposal by Hansen and 

Spernol® fo r a prominent level at 2155 keV. I t  may be noted that al­
though these authors presented their j? spectrum, the fact that they 
omitted the Ferm i-Kurie analysis makes it  impossible to assess the signi­
ficance of their statement that three straight lines resulted, indicating a 
th ird  weak beta transition to the level in question of intensity 0.15 +  
0.03%.

W olfson’s value of 1 .2x10 “ ®% fo r the intensity of the 2158 keV 
transition, and our measured lim it on the intensity of the 826 keV line 
gives an upper value fo r the branching ratio of this level (7(826 y)j 
7(2158 y)) of 10. This is very different from  the value 120 given by 
Hansen and Spernol® but is in agreement w ith the 6.5 of Rauch et aî} .
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