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ABSTRACT

E.A. Nemesszeghy, ON THE NOTION OF NEGATION IN CERTAIN NON-CLASSICAL

PROPOSITIONAL LOGICS.

The purpose of this study is to investigate some aspects of how

negation functions in certain non-classical prepositional logics.

These include the intuitionistic system developed by Heyting^^^, the
(2)minimal calculus proposed by Johansson , and various intermediate 

logics between the minimal and the classical systems. Part I contains

the new results which can be grouped into two classes: extension- 

criteria results and infinite chain results. In the first group 

criteria are given for answering the question: when do formulae added

to the axioms of the minimal calculus as extra axioms extend the mini

mal calculus to various known intermediate logics? One of the results

in this group (THEOREM 1 in Chapter II, Section 1) is a generalization
(3)of a result of Jankov . In the second group certain intermediate 

logics are defined which form infinite chains between well-known 

logical systems. One of the results here (THEOREM 1 in Chapter II, 

Section 2) is a generalization of a result of McKay^^^. In Part II 

the new results are discussed from the viewpoint of negation. It is 

rather difficult, however, to draw definite conclusions which are 

acceptable to all. For these depend on, and are closely bound up 

with, certain basic philosophical presuppositions which are neither 

provable, nor disprovable in a strict sense. Taking an essentially 

classical position, it is argued that the logics appearing in the 

defined infinite chains are such that they diverge only in the 

vicinity of negation, and the notions of negation in them are simply 

ordered in a sense which is specified during the discussion. In 

Appendix I a number of conjectures are formulated in connection with 

the new results.
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INTRODUCTION

"Negation, one might say, is 

a gesture of exclusion, 

rejection. But such a 

gesture is used in a great 

variety of ways."

(L.Wittgenstein)

From ancient times philosophers found something puzzling about negation. 

Plato speaks of these puzzles in his Theaetetus^^^ and Sophist^^^.

In the latter he expresses the problem through the words of the 

Stranger;

"My dear friends, we are engaged in a very difficult 

speculation - there can be no doubt of that; for how 

a thing can appear and seem and not to be, or how a 

man can say a thing which is not true, has always 

been and still remains a very perplexing question."

The problem of "non-existence" and that of "non-truth"(falsity),

to which Plato refers in the quoted text, exercised the minds of

philosopers up to the present age. Although J.L. Austin warns us
(3)that one should not confuse falsity with negation , nonetheless, 

the fact that many philosophers tried to define negation in terms 

of truth and falsity raises the question of the interrelation 

between these concepts. That negation is a basic logical notion.
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is a point which hardly needs elaboration. Still to illustrate 

the fundamental character of this notion I single out four items:

i. Logical consistency is commonly defined in terms of negation.

ii. The principle of excluded middle essentially depends on the 

notion of negation.

iii. The question of the relation of negation to falsity raises 

some fundamental epistemological and ontological issues.

iv. The problems of logical and semantical paradoxes, at least 

indirectly relate to the question of the notion of negation.

In the present century, however, a new problem arose. A great 

number of logical systems have been proposed in which certain classi

cal laws concerning negation do not hold, showing thereby that the 

notion of negation in these systems is different from that of the 

classical logic. I here refer to the intuitionistic system devel

oped by Heyting^^^, the minimal logic proposed by Johansson/^^, and 

the various intermediate logics between the minimal logic and the 

classical logic. The question arises whether the different notions 

of negation implicit in these systems relate to each other, and if so, 

how? One way to answer this question is to look at the use of the 

negation-symbol in the different logics and try to make precise 

"the difference in notion" through "the difference in use". The 

purpose of the present study is precisely to investigate the variety 

of ways in which negation functions in certain non-classical preposi

tional logics. This is done with the help of a concept which is 

called specific theorem of negation. A formula F, by definition.
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is a specific theorem of negation of a logic with respect to 

a logic Lg if and only if F contains at least one negation-symbol and 

is a theorem of but not a theorem of . For instance,

(p V “I p) is a specific theorem of negation of the classical logic 

with respect to the intuitionistic logic because it contains a 

negation-sign and is a theorem of the classical logic but not a 

theorem of the intuitionistic logic. If we adopt this terminology 

then the present study may be described as an investigation of, 

and a comment on, the specific theorems of negation in certain non- 

classical logics relative to each other. Since these logics can 

be ordered by certain relations, and under certain interpretations, 

it is hoped that one can outline a similar ordering among the various 

notions of negation.

In the third chapter the extension-criteria results are applied to 

the nine formulae which are given by Johansson in his paper and 

which in fact are all specific theorems of negation of the intuition

istic logic with respect to the minimal logic. The second part of 

the thesis begins with Chapter IV in which general philosophical 

questions are discussed. The fifth chapter examines the intuition

istic account of the connectives. The sixth and final chapter is 

a comment on the new results of Part I. In Appendix I several 

conjectures are formulated in connection with the new results.

In the presentation my chief aim was clarity. This is why I used 

a slight variation of the Peano-Russell symbolism which is more 

transparent than the Polish notation, although in discussing certain 

observations of Lukasiewicz in the third chapter, I kept to the 

Polish notation. Since both vagueness and pedantic accuracy can 

hinder the clarity of presentation, I tried to be exact to the
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degree which avoids ambiguities as far as possible but does not 

over-burden the text with unnecessary qualifications. This was the 

reason why I did not use different symbols for the logical connec

tives in the different logics. The signs * -i *, *v', *&*, * — ^ ' 

should always be understood within the defined systems. The signs 

* 1 * ŝ rid * — ^ * are also used to denote "complementation" and 

"relative pseudo-complement" in implicative lattices with standard 

negation, in order to bring out their similarities with the notions 

of negation and of implication. They should not cause confusion 

for the context will always indicate clearly how they should be 

understood. If any ambiguities still remain the reader is referred 

to the Index and the List of Symbols. Reference to the items 

listed in the Bibliography is given by the name of the author (in 

capitals) followed by the year of publication both in one pair of 

brackets, as for instance (JOHANSSON, 1936). Reference within the 

text is made by the help of sections and sub-sections of the chapters. 

Chapters are indicated by Roman numerals, sections with Arabic 

numerals without brackets, sub-sections with Arabic numerals within 

brackets. Thus, for instance, II.3. (9) refers to Chapter II, 

section 3, sub-section (9). When reference is made within the same 

chapter and within the same section, then only the sub-section is 

indicated. For example, (2) refers to sub-section (2) within the 

same section and chapter. Reference to items listed in the Notes 

is given by Arabic numerals in brackets as superscripts. Thus,

e.g. Heyting^^^ refers to the fourth item in the Notes. For the 

sake of convenience Part I and Part II each has a separate Biblio

graphy.
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PART I.

CHAPTER I BASIC CONCEPTS AND THEIR NOTATIONS

"It is an old idea that the 
more pointedly and logically 
we formulate a thesis, the 
more irresistibly it cries 
out for its antithesis."

(H. Hesse)

The object of this chapter is to define certain concepts which will be 

used later, and to establish their notation. Many of these concepts 

are familiar; others, less familiar, can be easily understood from those 

which are. In this chapter I shall also list some well-known results 

which will be referred to in subsequent chapters.

1. Formulae and negation-schemata

The alphabet of our formal languages contains (as letters) countably

many prepositional variables, p, q, r, ... (with or without subscripts),

and some or all of the following logical connectives, -i (not), & (and),

V (or), — > (implies). Formulae are built up from the letters of our
(1)alphabet by the well-known formation rules. I shall use metavariables

P, Q, R, ...; F, for any well-formed formulae; F^, F^, . F^, ...; F*, 

F**, F*, F** will designate special formulae. I shall use brackets as 

auxiliary symbols to indicate the scope of the connectives but adopt the 

convention that any connective in the list above binds more strongly than 

any subsequent one. This convention enables us to omit brackets when no
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confusion will result* By the degree of a formula F is meant the

number of occurrences of the logical connectives in F* I denote a
(k'iformula of degree 'k* by F ,

(l).....By a negation-schema I understand a formula which contains at 

least one negation-sign * -, • and possibly some other logical 

connectives* Thus, for instance, the following are negation-schemata;

- IP

p V n p 

P Sc 1 q 

"I "I P —^ P 

-I p —> (p —» q)

1 p —> (p —> p)
< 1 P — > p) — > p

2. Certain non-classical prepositional logics

By classical prepositional logic I mean any prepositional calculus 

that has the same set of t h e o r e m s a s  the prepositional calculus of 

Principia Kathematica (WHITEHEAD — RUSSELL 19*10)* Thus I call classical 

l o g i c f o r  instance, the system presented by Frege (FREGE 1 8 7 9 )t the 

logic given by Hilbert and Ackermann (HILBERT - ACKERMANN 1 9 2 8 ), the 

system of Lukasiewicz (LUKASIEWICZ 1 9 2 9 ). I  abbreviate classical 

logic by CL.

By non-classical prepositional logic I understand any calculus that 

does not have the same set of theorems as CL. Perhaps the simplest
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example for such a logic is the system in which every well-formed 

formula is a theorem. This system is called the absolute inconsistent 

logic by some logicians; Another, much more important, logic has been 

presented by Hey ting (HEYTING, 1930) and was represented by him with 

slight and inessential alterations in his book Intuitionism.(HEYTING, 

1966). He used -i , v, — > , as primitive symbols and the following 

formulae as axioms;

(1) h p — > (p & p)

II. 1- (p & q) — ^  (q & p)

III. h (p — > q) — > ((p & r) — >  (q & r))

IV. 1- ((p — > q) & (q-^r )) — > (p — > r)

V. 1- q — > (p — ^ q)
VI. h (p & (p — > q) ) — ^ q

VII. h p — ^ (p V q)

VIII. h (p V q) — > (q V p)

IX. h ((p — ^ r) & (q — ^ r)) — > ((p V q)

X. h -1 P — ^ (p — ^ q)

XI. h ( (p — ^ q) Sc (p — ^ -1 q) ) — ^ “1 p

(4)The rules of deduction are substitution and modus ponens.

We may observe that there are only two negation-schemata among these 

axioms, namely X. and XI. It is well-known that neither (p v -i p) 

nor n "1 P — ^ p, nor (p — > q) V (q — > p) is derivable in this system,

I abbreviate any calculus which has the same set of theorems as 

Heyting's logic by HL. For instance, Kleene and Lukasiewicz have
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given different presentations of H L . ( K L E E N E ,  1932 and 

LUKASIEWICZ, 1932).

In 1936 Johansson published a paper (JOHANSSON, 1936) in which he 

developed a calculus called by him minimal calculus. This we get 

from Heyting's system by dropping axiom X. above and leaving the 

remaining axioms and rules unchanged. Johansson showed in the same 

paper that a number of negation-schemata which are derivable in HL 

are underivable in the minimal calculus. For instance ((p v q) & 

n p) — ^  q; ( n p v q )  — ^ (p — ^  q), -»-» ( -1 -% p — ^ p) are all
V I  ( 6 )unprovable.

I abbreviate any prepositional logic that has the same set of ' 

theorems as Johansson's minimal logic by ML.

In my study I am particularly interested in prepositional logics which 

we get by adding extra-axioms to the axioms of ML and leaving the 

rules of ML unchanged. From the way Johansson defined his minimal 

logic it is obvious that we can get HL by adding -, p — ^ (p — ^ q) as 

an extra axiom to the axioms of ML. In symbols;

(2).....(m l , -, p — ^ (p ) q)) = HL

(7)It is also well-known that we can get the classical calculus CL 

by adding the following two extra-axioms to the axiom of ML;

 ̂p — ^ (p — >-q) ; (p V T p)f and retaining the rules of ML.

(3)*.***(ML, 1 p (p — ^ q), (p V n p)) = CL
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Let me immediately define a calculus which we get by adding to ML 

the extra axiom Cp v -, p) only^^^ and which I designate Cal^:

(4) (ML, p V -, p) = Cal^ by def.

If we leave out axioms X and XI from the calculus of Heyting^^^ and 

restrict the vocabulary of logical constants to the binary connectives, 

we get a calculus which is called positive logic. I shall denote any 

calculus which has the same set of theorems as positive l o g i c by 

PL.

PL, ML and HL are closely related. This can perhaps be best seen, if 

instead of the unary-connective we introduce a Zero-order

connective, i.e. a fixed proposition " f ", usually interpreted as 

something false, or absurd, and define np in terms of " — > " and 

" f " a s  follows ;

(3)  “I P = P — ^ ^

In this case the axioms of PL with definition (5) give us a system in
(11 )which all and only the theorems of ML are derivable • And if we 

add to this system of ML the following formula as an extra axiom

(6).....  f — > q
(12)then we get HL •

This result gives us a rough characterization of ML with respect to 

HL; ML is such a subsystem of HL, in which a false proposition does 

not imply every proposition.
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The relationships between PL, ML, HL, CL are simple in that we can get 

ML, HL, CL by certain simple extensions of PL. To give an exact 

formulation of what I mean by an extension of a calculus, I introduce 

the following definition:

(7)..... Let Cal^ be a prepositional calculus given as an axiomatic 

system in a formal language L^ and let be formulae in a

formal language L ^ ^  L^ then by definition

Cal^ = (Cal^,F^,F^,.....,F^) is an extension^^^^ of Cal^

In particular, if F^,F^ .... ,F^ are all derivable in Cal^ then Cal^

collapses into Cal^. In this case I speak about a non-proper 

extension of Cal^. A little more generally,

(8).....If Cal^ is an extension of Cal^, and Cal^ = Cal^, then by 

definition Cal^ is a non-proper extension of Cal^, On the other hand, 

if Cal^"D Cal^, then again by definition Cal^ is a proper extension 

of Cal^.

Let me introduce now some other technical expressions which are 

evidently related to the definitions of extension and proper-extension 

of a calculus.

(9),...# If Cal^ has the same set of theorems as Cal^ ( Cal^ = Cal^) 
then Cal^ and Cal^ are said to be equivalent.
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(10)...., If Cal^ Cal^ (i.e. if the set of the theorems of Cal^ 

is a subset of the theorems of Cal^) then Cal^ is said to be a 

fragment of Cal^»

(11).....If Cal^ d  Cal^, then Cal^ is said to be a proper fragment 

of Cai^. Alternatively, I say that Cal^ strictly succeeds Cal^.

(12).....If Cal^ ^  Cal^ and Cal^ Cal^, then I say that Cal^ and 

Cal^ are incomparable.

(13)1•••• A calculus Cal* is an intermediate logic^^^^ between HL and 
CL iff HL C  Cai* C  CL. Plainly any such intermediate logic Cal* 

which is a proper fragment of CL is a non-classical logic.

More generally

(14).....A calculus Cai* is an intermediate logic between two calculi

Cal^ and Cal^ iff Cal^ C  Cal* CL Cal.1 2  1 —  '—  2

(15)Finally in this paragraph I introduce a definition which will be 

useful later.

(13).#*.# A calculus Csü.* is a predecessor of Cal^ over Cal^ iff 

Cal ^ C C a l *  d C a l ^ .

Thus, for instance, both ML, HL are predecessors of CL over ML. It 

should be remembered that predecessors of a logic over another can be 

incomparable. For example, HL and Cal^ (defined by (2) and (4)) are
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incomparable predecessors of CL over ML.

Another class of non-classical logics is usually referred to as many

valued logics. The first three-valued logic has been invented by

Lukasiewicz (LUKASIWICZ 1920). His ideas were motivated by certain 

considerations of modality, namely that statements expressing future- 

contingent events (that are possible but not necessary) are neither, 

strictly speaking, "true" or "false"; so they must possess a third 

value (say "neutral", "indifferent") which he designated by "J". He 

used two primitive functors C and N corresponding to implication and
(17)negation. An axiomatic presentation of this system was given by

Wajsberg (WAJSBERG 1931)* Other many-valued prepositional logics were 

given by Post (POST, 1921), by Slupecki (SLUPECKI, 1936), by D.A. 

Bochwar (BOCHWAR, 1939) by Kleene (KLEENE, 1938) and by Reichenbach 

(REICHENBACH,1944).

3 . Specific theorems of negation

As has already been mentioned in the Introduction, one way of

registering the different notions of negation implicit in different

calculi is to look at and compare the different sets of negation-

schemata derivable in the calculi under investigation. If, for

instance, two calculi Cal^ and Cal^ have the same formal language, the

same rules, but different sets of derivable negation-schemata then the(18)
notion of negation implicit in Cal^ and Cal^ must be different. Taking 

a concrete example, each of the following negation-schemata is 

derivable in CL but underivable in HL (and in ML).
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(1 )  (p V -, p)

(2)..... ( 1 n p — ^ p)

(3 )....  ( - I  p V  n  -, p)

(4)..... ( -, p — ^ p) — ^ p

These negation-schemata are sometimes called in the literature 

"excluded middle", "law of double negation", "weakened form of 

excluded middle" and the "law of Clavius" respectively. I call (1)

(2) (3) (4) instances of specific theorems of negation of CL with 

respect to HL (and to ML). Still these specific theorems are not all

equivalent in derivative strength with respect to HL or ML. This can

be seen if we extend HL or ML by some of the negation-schemata of

(1), (2), (3), (4) and compare the calculi we get in such a way.

For example.

(3 )  (HL , (1)) = CL but (HL , (3)) / CL

On the other hand, although

(6 )  (HL ,(1)) = CL and (HL ,(2)) = CL

nevertheless

(7 )....  (ML, (1)) /  CL but (ML ,(2)) = CL

These suggest the careful definitions of the derivative strength of 

formulae in a calculus relative to another. Here are the needed 

definitions:

(8 ) F is a specific theorem of negation of Cal^ with respect to

Ccil̂ , iff F is a negation-schema that is derivable in Cal^ but

underivable in Cal^. In symbols F and F
1 2
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(9)••••«Formula F^ is equivalent to F^ in Cal^ with respect to Cal,
iff (Cal^F^j) = (Cal^F^) = Cal^.

(10)••••.Formulae F^,F^,....,1^ are jointly equivalent to F in

Cal,j with respect to Cal^ iff

(Cal̂ , F,j, F2,....,Fĵ) — (Cal̂ , F̂ ) = Cai,̂

By using this terminology we may say, for instance, that the "excluded 

middle" is jointly equivalent to £l11 the specific theorems of negation 
in CL with respect to HL.

4. Semantics

Since I shall be using matrices and lattices as models for the 

prepositional calculi under investigation, it will be convenient to 

define certain concepts in connection with them.

Following the terminology of Lukasiewicz and Tarski (LUKASIEWICZ- 

TARSKI, 1930'P*39); slightly adapted by Jaskowski (JASKOWSKI, 1936 

p. 239) I give the definition of a (logical) matrix as follows;

(D.....A (logical) matrix is an ordered sextuple M =^A,B, — ^

& , V , -, \ which consists of two disjoint sets (with elements ofM M
any kind whatever) A and B (usually called the set of non-designated

and d e s i g n a t e e l e m e n t s  respectively), four functions — ^ ^ «

& 1, » V 11 » -I IX defined for all elements A + B and taking valuesM M M
elements of A + B exclusively.

(2).....The matrix M is called normal if when x É. B and y ^  A then
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X y £ A

Let F be a formula. Replace in F the prepositional connectives

— ) I V, , by the functional symbols — 4 , & , V -, ,
M M M M

respectively, and put in place of the prepositional variables p, q,.... 

occurring in F the elements of A + B. We obtain a function from the 

elements of A + B into the elements of A + B. We call this function 

the value-function of F and designate it by V (F). A value of V(F) is 

called valuation of F.

(3 ).... By definition F is valid in matrix M iff the range of V(F) is

within B; i.e. iff V(p)g In other words, F is valid iff every

valuation of F is a designated element. In symbols |= F.
M

(4)..... For example, let N be such that A = ̂ o^ , B = ^ , and let

the four functions be defined by the following value-tables:

— ^ 1 0  & 1 0
1 1 0  1 1 0
0 1 1  0 0 0

1 1 

1 0

I designate this particular matrix by M^.Let F* be ((p & p — ^q)) — ^ q< 

Since the value—function of this formula is identically 1, F* is valid 

in Mg.

It is well-known that for any F if (ttt F then 1= F. I call M.
Mg

a matrix model for CL. More generally,
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(3)*#***By definition M is a (matrix) model for a calculus Cal iff 
the following holds

And again by definition

(6 ) M is a characteristic matrix (model) for a calculus Cal iff
the following holds

Icii ■■ '

Instead of saying that M is a characteristic matrix (model) of Cal, I 

sometimes say that M characterizes Cal.

It is well-known, for instance, that Mg is a characteristic matrix 

for CL.

(7 )..... {.^ii * i = 1, 2,... is a characteristic matrix-set for a

calculus Cal iff the following holds

^  1 = 1. 2. ...
Instead of saying that ĵ M̂  is a characteristic matrix-set for Cal, I 

sometimes say that the set'^M^, i = 1, 2,..* characterizes Cal.

PWe need to define further two operations on matrices; the 

operation on matrices and matrix-multiplication. These were first 

introduced by Jaskowski (JASKOWSKI, 1966. pp. 260-201).

(8 ).....Let M and N be two matrices having the same element b for

their sole designated element; ~ ^^t A ^  is
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composed of the elements of A ̂  and one additional element ^a^ :

~ ^  is a function defined by the following two
conditions :

(i) <X(b) = a

(ii) if X 6 A 0((x) = X

the functions of the matrix N are defined in terms of those of M and 

that ofC< by the following tables:

— » b c/(y) & b c<(y)
b b — > b C<(b — > y) b b &  b OC(b & y)

c<(x) X — > b X — > y <X(x) c<(x & b) CK(x & y)

V b C<(y) -4

b b V b b V y b c4(-» b)
(x) X V b (X(x V y) (x) -1 X

Under these conditions, by definition, N is the result of the 

operation performed on M . In symbols : N = 1

(9) As a simple example let us now forral^. Let the additional

element be *a* and the sole designated element 1. The function oC
will be

(i) 0<(1) = a

(ii) C<(0) = 0

Thus the function-tables o f w i l l  be according to (8).
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A
1

a

0

1

a

0

I call this matrix Thus

1 a 0

a a 0

0 0 0

In the same way we can form from any n-element matrix an n + 1 element 

matrix by using the operation*

(10) Let M and N be two matrices. By definition M x N is a

product of M and N iff the elements of M x N are the ordered pairs 

n ^  , m 6  M and n G. N, and the four functions defined are as 

follows :

M X N M N

^m,j,n^> — > <^mg,n^ = > mg,n^ — > n^^

< ’m,j,n,j> & ^ m g , n ^  & “2 ’̂ 1 ^ ^2^

<^m^,n^> V ^ m g , n ^  = (m^ v v ng>

^-1 1
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(11) For example, let us form M ^ x  Mg . Since M ^  contains

two distinct elements 1, 0, M ^ x  Mg will contain the following

four elements ̂ 1, 0/, ̂ 0, 1^ i ^0, 0 ^  . If we rename these

elements by 1, a, b, 0 , respectively then the function tables can be 
given as ;

1 a b 0 & 1 a b 0 V ' 1 a b 0 n
1 1 a b 0 1 1 a b 0 1 1 1 1 1 1 0
a 1 1 b b a a a 0 0 a 1 a 1 a a b

b 1 a 1 a b b 0 b 0 b a 1 b b b a

0 1 1 1 1 0 0 0 0 0 0 1 a b 0 0 1

I shall designate this matrix by M^ •

(12 ).....More generally, a matrix M multiplied by itself k times will
k Icbe denoted by ' (M) or simply M •

(13),#,..Jaskowski has proved (JASKOWSKI, 1936) that the intuitionist 

logic HL is characterized by an infinite set of matrices which can be 

given recursively in terms of M the operation and matrix- 

multiplication as follows:

(14 )...........  Iq  = M g

F o r k  =  0 , I k ^ 1  =  =  « 3

Thus we get the matrix given by (9)* This is a three-element matrix.
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For k = 1 we have =ll^ =1(M^ x M ). This is a ten-element 

matrix. And the following matrix in the sequence has 1001 elements.

In any case, Jankowski's result gives us a completeness result; the 

set of matrices I^^ given by (l4) characterizes HL.

It should be observed that all the matrices I spoke about in this 

paragraph form lattices, and hence can be given in lattice- 

representation by using Hasse-diagrams. Since these lattice- 

representations are visually far more suggestive than matrices given 

in value-tables, I shall use them whenever I can.

First we need some basic definitions about lattices:

(13)•••••By definition a lattice is an ordered couple ^A, where 

A is a set^'A  * is a reflexive, antisymmetric and transitive relation 

defined for arbitrary' elements a, b, c G  A, and for each a, b ^ A 

the greatest lower bound (denoted by a O b )  and the least upper bound 

(denoted by a W b )  exist. A lattice is called degenerate iff it has 

only one element.

(16 ).....A subset A* of A is a sublattice of A iff it is closed under

operations / O  , W  i.e. iff

a O b  €. A* and a W b  é  A' for any a, b €  A*.

(17).....A lattice homomorphism h from lattice A into lattice B is a 

mapping h of A into B such that for any a, b ̂  A

h(a^^b) = h(a)/^ h(b) 

h ( a W  b) = h(a)vV h(b)
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\
(18)#....If a lattice homomorphism h is such that the homomorphic- 
image h(A) is not a proper subset of B, then we say that h is a 

lattice-homomorphism of A onto B.

(19)«***«The top and the bottom element of a lattice A will be denoted 

by 1 ^ and 0^ respectively whenever they exist. A lattice may or may 

not have a top or bottom element.

(20).....A non-empty set of elements of a lattice A is said to be a 

filter in A provided for any a, b 5  A

a C\ b G  ̂ 7^ iff a ̂  and b é

(21 ).....A non-empty set of elements of a lattice A is said to be an

ideal in A provided for any a, b ^  A

a b 6 A  iff a ̂  ^ a n d  b Er

»

(22).....For every fixed element Sq G  A, the set of all elements

a a^ (a ^  a^) is a filter (an ideal) called the principal filter 

(ideal) generated by a^.

(23).....A lattice A is said to be relatively pseudo-complemented if for 
all a, b G  A there is a greatest element: A such that a G ^ x ^ b .

This element X is called the pseudo complement of "a" relative to "b", 

and is denoted by a — ^ b.

Obviously, every relatively pseudo-complemented lattice can be 

conceived as an algebra

A , ^ , V ^ ,  — > ^ w i t h  three binary operations W  , — >

It is well-known that^^^^
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(24).....Every relatively pseudo-complemented lattice has the unit 

element, is distributive, and in it the following relations hold :

(a) X ̂  a ^  b iff a / ^ x  ̂  b for any x, a, b G  A

(b) a — ^ b = iff a ^  b for any a, b G  A

(c) ^ b = b for any b G  A

(d) a — ^ (b — ^ c) = (a/^b) — ^ c = b — ^ (a — ^ c)

(e) ( a W b )  — ^ c = (a — ^ c)/^(b — > c)

(f) a — ^ (b - c) A  (a — ^ b) — ^ (a — ^ c)

(g) a ^ b  — ^ (a/^b)

(h) a / ^ ( a  — ^ b) = a/^ b

(i) b ̂  (a — ^ b)

(21 )(23)*••••It is also known that positive logic PL is characterized 

by the set of relatively pseudo-complemented lattices.

(26).....A lattice homomorphism h from a relatively pseudo-complemented 
lattice A into a relatively pseudo-complemented lattice B is a mapping 

h of A into B such that

h{a.r\h) = h(a)/^h(b) 
h ( a W b )  = h(a) W h ( b )  

h(a — ^ b) = h(a) — ^ h(b) 

for any a, b G  A.

(27 ).....If a relatively pseudo-complemented lattice A is a lattice

with a unary function • -% * and a distinguished element c^ such that 

for any a G  A, -, a = a — > c^, then • • is called a standard

negation.
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(28)•#...Another name for a relatively pseudo-complemented lattice is 

implicative lattice.

(29) .....For any implicative lattice A with standard negation the
(22)following relations hold :

(a)

(b) a > -, b = b — > -, a

(c) a ^2 &

(d) -, 1 a n a = c^

(30).....Minimal logic ML is characterized by the set of implicative
lattices with standard negation. A formula F is derivable in ML iff

F is valid in every implicative lattice with standard negation with at 
2i*+1

most 2 elements, where *r* is the number of sub formulae in F. 

(RASIOWA-SIKORSKI, 1933).

I shall also use a completeness theorem concerning the prepositional 

theories of ML. (RASIOWA, 1974 p. 236):

(31).**..For every consistent prepositional theory of ML, there is a 

non-degenerate implicative lattice A with standard negation such that 

for any formula F, F is derivable in the theory iff F is valid in A.

(24)(32).....It is well-known that the set of implicative lattices 

with standard negation such that the distinguished element c^ = 0, is 

characteristic of HL.

(33).....Another name for such lattices is pseudo-complemented lattices,
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Evidently, any such pseudo-complemented lattice can be conceived as 

an algebra ^  A, , O^with three binary operations

/ \ , ^ and a distinguished element 0^. These algebras are

also called pseudo-Boolean algebras or simply Heyting algebras.

(34)....«Lattices will be represented by Hasse-diagrams, arrows 

indicating complementation (negation). For instance, the classical 

matrix model Mg (see (4)) can be represented as a two-element 

implicative lattice in which *1* is the unit element and *0* is the 

zero element. (Fig. l)

(33)....«I shall call the lattice represented in Fig.1 *1^*

Let me represent now all the four different unary functions on a 

two-element implicative lattice, (see Fig.2)

(36).....I wish to name the implicative lattices represented in Fig.2 
as I^, M^, and respectively. Observe that apart from only 

M^ is a lattice with standard negation.

(37).....Fig.3 represents the 27 different unary functions on a 

three-element implicative lattice. Observe that there are only 

three lattices among the 27 which have standard negations:

(a) The lattice in the first row and first column.

(b) The lattice in the second row and first column.

(c) The lattice in the third row and third column.



Fig.1

Fig. 2
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I name this last lattice as In view of what has been said in

(33) this is the only three-element implicative lattice which 

represents an intuitionistic type of negation. I denote a lattice of 

Fig.3 appearing in the ith row and jth column by

(38).....The lattice in the first column and third row in Fig.3 will 
be denoted as

2(39) The four-element matrix is represented

in Fig. 4.

(40) In Fig.3 I give the lattice representations of (I_ x N_),

(M_ X M ), (M X S ), (S X P ) and (M x I.). 0 0 0 0 0 0  0 1

(4l).,,,.If A is an implicative lattice represented in a Hasse- 

diagram, we can easily represent f T  where X^is Jaskowski’s matrix- 

operator. For instance, in Fig.6 we find the Hasse diagram of 

Notice that is the three-element implicative lattice which I have 

named . (see above (37)(c)).

(42).....In Fig.? I give the lattice-representations of the three first 

matrices in the sequence of Jaskowski*s matrices that characterize HL. 

(see (14) above). These lattices are, of course, implicative lattices 

with standard negations and distinguished elements = 0.

Finally, since in one of the proofs I use Zorn's lemma, I formulate it 

here in a convenient form.
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(43)*....If every chain of elements of an ordered set S has an upper 

bound in S, then S contains a maximal element. (ZORN, 1935)
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CHAPTER II IW RESUIiTS

"There is always a possibility 
of error; though in the case 
of some logical and mathematical 
proofs, this possibility may be 
considered slight." (K.P. Popper)

The new results can be grouped in two distinct types: extension-

criteria results and infinite chain-results•

1. EXTENSION-CRITERIA RESULTS

In (JANKOV, 1963 p.1103) Jankov gave the definition of a super- 
constructive propositional calculus as follows : "By a super-

constructive prepositional calculus (sc.-calculus) we will mean any

calculus that is constructed from a language of logical propositions

in the following manner: as axioms of the sc.-calculus one takes all

the basic axioms of Heyting*6 intuitionistic calculus and a certain

finite set of additional axioms; as deduction rules of the sc.-calculus

one tcikes modus ponens and substitution." In the same paper Jankov 
(1)announced the following result: "In order that the sc.-calculus P

be equivalent to the classical calculus it is necessary and sufficient

that all the additional axioms of P be valid over I and at least oneo
of them be disproved over I^." This result can be formulated
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according to our terminology as

(HL,F^,F^, = CL iff each additional axiom F^ (1 -^i ^ n )  is

valid in I and there is at least one F. such that it is invalid in I..o 1 1

Harrop commented on this result of Jankov in (HARROP, 1965 p.289).

J.G. Anderson gave a proof of this theorem of Jankov in (ANDERSON,

1969) but he used Kripke-type semantics, developing a theory of 

structures which he called contracted Kripke models as a preliminary 

to the proof. Consequently his proof is rather long. I shall prove 

Jankov*s result in a simple manner. It will come out as an easy 

consequence of the following more general theorem:

(1) THEOREM 1 ; (ML,F^,F^,....,F^)3 Cal^ iff there is an additional

axiom F. (1 ZL i /C n) such that F. is invalid in I..1 —  —  1 1

( 7I recall that Cal is defined by (ML, p v n p) and that I^ is the 

three-element implicative lattice with standard negation and 

distinguished element = 0.

Proof; First, observe that without loss of generality it is sufficient 

to give the proof for the case in which there is one additional axiom, 

say F, because we can replace F^iF^,....,!^ additional axioms by the 

single axiom F = F^ & F^ &...& F^ since this single axiom F will be

invalid in I^ iff there is at least one F^ (1-^ i ^ n )  which is invalid 

in I^. Thus I shall prove THEOREM 1 in the form 

(NL,F)3 Cal^ iff F is invalid in I^.
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n
Necessity ; If (ML,F)3 Cal then F is invalid in I^« This easy part

nof the theorem follows immediately from the definition of Cal and the

fact that p V 1 p is invalid in I^ because if the value of 'p* is

a then V(p v -» p) = a k V  a / 1 .
1 -̂1 -̂1

Sufficiency; If F is invalid in I^ then (ML,F)5 Cal^. To prove this, 

suppose indirectly that F is invalid in I^ but (ML,F)^ Cal^. Then by 

the completeness theorem concerning the propositional theories of ML 

(see 1.4.(31)), there is a non-degenerate implicative lattice A with 
standard negation and distinguished element c^, such that F is valid 

in A but p V -, p is invalid in A. Let one of the values of *p* be 

a , a ^  A, for which a a / 1^. I shall show that there is a

sublattice A* of A, which is closed under * — ^ * and is isomorphic to 

I^. The existence of such a sublattice entails that F is valid in 

I^, and this contradicts our supposition.

It remains to be shown that there is such a sublattice A*. Take the 

following three elements of A; 1^, d, c^ , where d = akV-, a. These 

three elements of A are distinct, and on them the operations 

* ^ * are closed as the following considerations demonstrate :

(I)..... d / 1^, for if d = 1^ then aVX-, a = and this contradicts

(II)..... /  1^, for if c^ = then d = a W - %  a = a W ( a  —y c^)
= a V y ( a  — ^ 1 ) = a V V l . = 1. and this contradicts (I).



54

/ d, for if = d, then by 1,4 (24) = -i d =

= (aV-/-, a) — ^ = (a — ^ c^)/^( -, a — > c^) =
( -I a a) = and this contradicts (II)

Thus the elements of 1^, d, c^ are indeed distinct. In order to show 

that they are closed for the operations ' W ' , • — ^ * it will

be useful to observe that

(IV) d, for

c = -| a -\ a ̂  -I a ̂  a W  a = d

Hence the lattice-ordering among our three elements is c ^ d « ^ 1 . ,  soo —  ““ A
for any two elements a*, b* of these three elements a*V-/b* = max (a*, 

b*) and a'/^b* = min (a*, b*)« Thus these three elements form a sub

lattice A*.

Finally, again by using 1.4. (24) we see that the operation * — ^ * is 

closed on the elements of A*:

— 4 c =' o ^A
co — > d = ^A
co ^A
d - ^ ' a  = ^A

- > \  = ^A
— ^ d = d

— V c =' o co
d — 4 c = ' o co

Since F is valid in A, it remains valid in the sublattice A*. But A* is 

evidently isomorphic -to I^, thus F is valid in I^ and this contradicts



55

our original supposition.

(2) COROLLARY; (ML, = Cal^ iff each of the
_

additional axioms F. is derivable in Cal and there is at least one1
F^ among them which is invalid in

This follows directly from THEOREM 1 and the fact that (ML,F^,F2»
7 7,,.,F )CZ Cal iff each additional axiom is derivable in Cal . n —

(3) REMARK ; Both THEQREI'4 1 and its COROLLARY can be given in a

more general form: THEOREM 1 and its COROLLARY remain true if there

are infinitely many F^,F2**o additional axioms in the formulations.
The sufficiency part is immediate from what has been proved. The

7 .necessity part follows again from the fact that Cal is finitely 

axiomatizable over ML by a single additional axiom which is invalid 

in .

Let us immediately see how we can use the extension-criteria expressed 

in THE0REÎ‘Î 1 and its COROLLARY.

(4) EXAî'iPLE 1 ; Since formula F* = - r p v n - i p i s  valid in

Cal* = (ML,F*)^ Cal^ by THEOREM 1. From this it follows that 

p V -) p is underivable in Cal*. On the other hand, it is clear that F* 

is derivable in Cal^, for substitution ^ p in place of 'p* in formula
7

p V T p gives us F*. Hence by COROLLARY ML ̂  Cal* d  Cal . Thus Cal*
7is an intermediate logic between ML and Cal , such that it is a

7proper fragment of Cal •
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EXAJ»ÎPLE 2 : Formula F** = (p — ^ q) —  ̂ (-» p v q) is invalid

in because if the value of both 'p' and.*q* in F** is 'a^ *, then 

(a^ — ^ ) - > ( - ,  a^ ) =  a^ / 1,. By THEOREM 1
■̂1 h  h  ii A ---------

Cal** = (ML,F**)^ Cal • On the other hand, since F** is a classical 

tautology, we know that Cal** is an intermediate logic between Cal^ 

and CL.

I shall now prove Jankov's result as an easy consequence of THE0REÎ4 1 

The proof is given here again, without loss of generality, for the 

case in which there is one additional axiom:

(6) THEOREM 2 : (HL,F)D CL iff F is invalid in .

Proof : If F is invalid in I^ then (HL,F) =' (ML, -, p — > (p — ^ q)»F)2 
n

(Cal , p — ^ (p — ^ q)) = CL by THEOREM 1. This proves the 

sufficiency part.

The necessity part is immediate from (HL, p v -, p) = CL and the fact

that p v -1 p is invalid in I , for if the value of 'p* is *a * then
1

a vy-, a = a / 1? .
1 -̂1

(7)««... COROLLARY : (HL,F) = CL iff F is a classical tautology and

invalid in I^.

This follows directly from THEOREM 2 and the fact that (HL,F)^ CL 

iff F is a classical tautology.

(8).....REMARK: THEOREM 2 and its COROLLARY remain true if there are 
infinitely many additional axioms to HL in the formulations. (See
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previous remark under (3))*

(9).....EXAMPLE 1 : Since formula F* = (p — ^ q) v (q — > p) is valid 

in I^, by THEOREM 2^Cal* = (HL,F*)^ CL. Thus, Cal* is an intermediate 

logic between HL and CL, such that it is a proper fragment of CL.

M. Dummett investigated this intermediate logic in (DÜMMETT, 1959)#

(10 ) EXAMPLE 2; The formula F* * = ( -, P — > p) — > P is invalid in

I because if the value of *p* is *a * then V(F'*) = a / 1 . By 1 ^1
THEOREM 2 (HL,F* *)D CL. Since F* * is a classical tautology, by (?)

(4)(ML,F) = CL. L>ukasiewicz calls F* * the law of Clavius.

(11 ).....THEOREM 3 : (ML,F^,F2, ...,F^)D HL iff there is an F^ ( l ^ i ^ n )

such that F. is invalid in M .1 o

Proof; I recall^^^ that is the two-element implicative lattice

with standard negation and distinguished element = 1^ . Since it is
(6) ° again sufficient to give the proof for the case in which there is

one additional axiom, say F, I prove the theorem in the simpler form :

(ML,F)D HL iff F is invalid in M —  o

Necessity: If (M1,F)3 HL then F is invalid in M^. This easy part of

the theorem follows immediately from the definition of HL: (ML,F*) = HL 

where F* = -, p —} (p — ^ q) and the fact that F* is invalid in M^.

S u f f i c i e n c y If F is invalid in M^, then (ML,F)^ HL.
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Lemma; If A is an implicative lattice with a distinguished element

c and a zero element 0,, such that c / 0. then there is a lattice o A • o A
homomorphism h from A onto such that h(c^) = 1^ ,

o

Proof of Lemma: Let S be the set of proper filters ^  ̂in A

such that for each , c^ C  • S is not empty for the principal

filter generated by c^ is a member of S. This filter is proper 

because c^ / 0^* Since each is a subset of A, S can be partially 

ordered by set-inclusion. Each chain in S has an upper-bound in S for 

the union of the proper filters occurring in each chain is such an 

upper bound. By Zorn *s lemma there is a maximal element in S, say ^

It is well-known that each filter in an implicative lattice A 

determines an equivalence relation ^ ^ ( f o r  all a, b é- A, a is 

equivalent to b iff (a — ^ b) ë  and (b — ^ a) £  S/ , and there is

a natural homomorphism h from A onto the subalgebra of A determined by 

, which I shall denote by A/,^ . It can be shown that ■ 

whenever SI is maximal A / ^  contains exactly two elements (RASIOWA- 

SIKORSKI, 1963) p.66.
The proof of the lemma is completed by the application of this fact

h
from the existence of the m^imal filter : A — ^ A / ^  =

h(Co) = and h(O^) = Oĵ  .
o o

\h continue now the proof of the sufficiency. Suppose indirectly that

F is invalid in but (ML,F)^ HL. If (ML,F) ̂  HL, then by the

completeness theorem concerning the propositional theories of ML,

there is an implicative lattice A with standard negation (distinguished

element; c ) such that F is valid in A, and F* is invalid in A. o
Notice that if there is a zero element 0, of A then c / 0. because ifA o A
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= Ôf F* is valid in A# The validity of F in A means that the

value-function of F in A is identically 1^. If we were able to find

a lattice A* in which this remains true and A* has a zero element, then

by the lemma we would arrive at a contradiction. Take a principal fil-

ter A' in A generated by some element below c^, say c*. A* fulfils

the requirements we are looking for; it has a zero element, namely

c*. The value function of F in A* is identically 1^, = 1^ for A*,

being a filter, if a, b(E A*, a^Nb, a W b ,  a — ^ b define the same

elements in A* as in A. Thus by the lemma, there is a lattice

homomorphism h from A* onto such that h(c^) = , which means that
o

F is valid in and this contradicts our supposition that F is

invalid in M .o

(12) COROLLARY: (ML,F^ ,F2*... ,F^) = HL iff each of the additional
axioms F^ (i = 1,2,...,n) is derivable in HL and there is at least one

F. such that F. is invalid in M .1 1  o

This follows directly from THEOREM 3 and the fact that (ML,F^,...,F^)Ç H L  

iff each additional axiom F^ is derivable in HL.

(13).....REMARK: Both THEOREM 3 and its COROLLARY remain true if there
/ o \

are infinitely many additional axioms.

Let us now see how we can use the extension-criteria expressed in THEOREM 3 

and its COROLLARY.

(14) EXAMPLE 1 : Since formula F* = - % - * ( n - % P  — ^ p) is valid in

M^, Cal* = (ML,F*)^HL by THEOREM 3 # and since F* is derivable in HL and
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imderivable in ML, Cal* is an intermediate logic between ML and HL 

such that it is a proper extension of ML and a proper fragment of HL.

(15).... .example 2 ; Formula F** = (-, p v q) — ^ (p — ^ q) is invalid

in M because if the value of *p* is 1., and that of *q* is 0̂, , then o M Mo o
V(F**) = 0^ X . Hence Cal** = (ML,F**)^HL. On the other hand,

o o
since F** is a classical tautology, Cal** is an intermediate logic 

between HL and CL.

(16 ).... THEOREM 4 : (ML,F^,...,F^)2 CL iff there is an F^ ( l é i é n )

which is invalid in M^, and there is an F^ ( l ^ i ^ n )  which is invalid

in .

Proof ; This is a direct consequence of THEOREM 3 and THEOREM 1.

(17 ).... COROLLARY: (ML,F^,... ,F^) = CL iff each F^ ( l é i é n )  is a

classical tautology, and there is an F^ (1 ̂  i &n) such that F^ is 

invalid in M^, and there is an F^ ( 1 ^ i — n) such that F^ is invalid 

in I^.

This is a direct consequence of THEOREM 4 and the fact that (ML,F^,. ..,F^)C 

CL iff each F^ ( l ^ i — n) is derivable in CL.

(18 ).... REMARK: THEOREM 4 and its COROLLARY remain true if there are

infinitely many additional axioms F^.

(19 ).... EXAMPLE 1 ; Since F* = -, p is valid in M^, (ML,F*)^ CL by

THEOREM 4.
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(20).... .EXAMPLE 2; Since formula F** = "i p — ^ p is invalid both in

and in because if the value of 'p* is 0^ and 0^ respectively,
. o 1

V(F**) = 0  / I  and V(F*#) = 0  / 1 , hence (ML,F**)D CL by
o o "̂1

THEOREM 4. ■■ .

(21) EXAMPLE 3 : Formula F*** = (-,-% P — ^ p) is a classical tautology

and is invalid both in M and in I., for if the value of *p* is 0̂ ,o 1 Mo
and Oy respectively then V(F***) X 1 and V(F***) X  1-r • Thus by 

1 o ^1
COROLLARY (17) (ML,F***) = CL. Similar simple tests show that each

of the following negation-schemata extend the minimal calculus exactly

to the classical calculus, some of which .have also been proved by

K. Segerberg (SEGERBERG, 1968).

(i).....(n p y -» q) — ^ (q p)

(ii)   (-1 P & n q) — > P V q

(iii)   (n P V -, q) — ^ p & q

(iv)   (p Sc n q) — ^ (p — ^.q)

(22) THEOREM 3 : (Cal*^,F^ ,F2». . . ,F^) 3  CL iff there is an F^

(1 ̂  i —  n) such that it is invalid in M^.

The proof is again given here in the simpler form:

(Cal^,F)3 CL iff F is invalid in M^.

n
The necessity part follows from (Cal ,F*) = CL where F* = p — ^

(p — ^ q) and the fact that F* is invalid in M^.
The sufficiency part is an easy consequence of THEOREM 3 :

(Cal^,F) = (ML,p V -, P, F) 2  (ML, p v -, p) = CL if F is

invalid in M .o
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(23) COROLLARY: (Cal^, F^, F^,...,F^) = CL iff each F.

is a classical tautology and there is an such that it is invalid

in M . o

(24) REfiARK: THEOREM 3 and its COROLLARY remain true if there
(9)are infinitely many additional axioms.

2, Infinite chain results

In 1968 C.G.McKay proved (MeKAY, I968) that there exist denumerably 
many distinct logics between HL and CL, which strictly succeed^^^^ HL

(11 )and which have the same ICD fragment as HL. The proof presented by 

McKay was constructive: he has given countably many formulae F^, F^,...

by a recursive definition and showed that

CL 2  (HL,F^) 2  (HL,F2)3 ^.HL

In a similar way I could prove that there exist denumerably many
7 7distinct logics between ML and HL, ML and Cal , Cal and CL. But

instead of proving these separately I shall prove two more general

theorems from which any of the above results come out as an easy
(12)consequence .
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(1)•.•..THEOREM 1 : If F* is a theorem of HL, then there are countably
7many distinct logics between (ML,F*) andCCal ,F*).

Proof : Let F** be -, v -, -% p^, and consider the following formulae

= F**

^n+1 - ((Pn+1 Pn+T* ^n+l

First, observe that

(KL,F*, F ^  2  F', F g ) 2

To prove this, suppose indirectly that for some value of '

(ML, F*. F J ^  (ML, F*, F^+^)

Then by the completeness theorem concerning the propositional theories

of ML, there is an implicative lattice A with standard negation such

that F is valid in A but F . is invalid in A. The validity of F n n+1 n
in A entails that the value-function

Vt(Pn+1 V )  = h  by a

V((Pn+1 Pn+l) = by - f  a = a

V(Fn+l) = V(F^+i) - >  V(P%+i) = by a a =

and this contradicts the supposition that F^^^ is invalid in A.
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Secondly, I shall prove that each of these logics is distinct, i.e 

for each n = 1, 2, •••

(ML, F*, F^) / (ML, F*, F ^ ^ p

To prove this it is sufficient to show that there is an implicative 

lattice with standard negation for each n = 1, 2,... such that the 

axioms of ML, F* and are valid in it, but F^ is invalid.

Consider the sequence of implicative lattices A^, A^, ... shown on

Fig.8. The axioms of ML, and F* are valid in each of these lattices

because the distinguished element c^ is the zero element. On the other

hand, F is invalid in A but F - is valid in A . This statement can n n n+1 n
be proved by induction:

Basic step: For n = 1, F^ = -, p^ v p^ is invalid in A^ because

if the value of *p^' is either *a* or *b* then V(F^) = d / 1^ .

Note that for any other valuations V(FL) = 1. . On the other hand,
1

F^ is valid in A^ because

and if the value of p^: V(p^) ̂  d, then

V(F̂ ) = (1̂  — > V(p2)) — > VCp̂ ) = ;
and if the value of p^: VCp^) ̂  d, then VCp^) = 1^ and then clearly

Induction hypothesis: Suppose the statement is true for n = k, i.e

Fĵ  is invalid in A^ but is valid in A^. I would like to show

that the statement remains true for n = k + 1, i.e. F^^^ is invalid
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Fig. 8

Fig.9
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in but Fĵ ^2 is valid in

First observe that by definition contains 3 + k elements, say

0, a, b, (i = 1,2,.,.,k), 1 ; one element more than whose 

elements I denote by 0*, a*, b*, d*^ (i = 1, 1*.(See Fig.8)

Notice that d^ and d*^-^ d*^ iff i-^ j.

Lemma; There is a valuation of F^ in such that V(f^) ^  d^ ;

and for all valuations of in A^^^ : ^  d^.

To prove the first part of the lemma, suppose indirectly that for all 

valuations of F^ in A^^^ : V(Fj^)^ d^. Consider the following map h

from A^^^ onto Â :̂

h(l) = 1*

h(dj^) = 1 *

h(d^) = d*^ (i = 1, 2, ..., k - 1)

h(a) = a*

h(b) = b*

h(0) = 0*

Since h is a lattice-horaomorphism, it ensures that is valid in
(13)and this contradicts the induction hypothesis.

To prove the second part of the lemma, suppose indirectly that there is 

a valuation of F^^^ in A^^^, say V*(F^^^) such that V*(F^^.^)^ d̂ .̂ In 

other words V*(F^^^) d^ Consider the valuation of in

determined by V* ) and the defined la t tic e-homomorphism h. Clearly 

for this valuation, which I shall denote by V**(F^^^), is true that 

V* * ^  d*ĵ  ^. But this means that F|̂ ^̂  is invalid in A^, and this
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contradicts the 2nd part of the induction hypothesis*

To prove that is invalid in we exhibit a valuation of

in such that it does not equal the top element 1• By definition

^k+1 = ((Pk+1 — ^ ^k) Pk+i) “ > i'k+1

where p^^^ is a new propositional variable, not occurring in F^. ^

the lemma there is a valuation of in A^^^ such that V(F^) d^.

Taking this valuation for F^ and the value d^ for the propositional 

variable p^^^, we have

- >  =

( V(F^) d%) =

This proves that is indeed invalid in

Finally I demonstrate that valid in A^^^. By definition

^k+2 = ((l'k+2 Fk+l) ^k+2^ ^k+2

where ^ new propositional variable, not occurring in F^^^. By

the lemma, for all valuations of :m A^^^ : V(F^^^ d^. Hence

if then = 1 ,  and then clearly the value of

F^^2 is 1. On the other hand, if ^^^k+1^’ then again the
(14)value of f^^2 is the top element of Â ,̂̂  •
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(2).... .REMARK: It is also true that (ML,F*,F ) have the same ICDn
fragment as (ML,F*). This is clear from the way McKay proved the 

same for his intermediate logics between HL and CL .

(3)«•> » »COKOLLAHY 1 : There are denumerably many distinct logics

between HL and CL.

Take n p Cp q) for F*, then (ML,F*) = HL and (Cal?,F*) = CL.

(4).«...COHOLLAPY 2 : There are denumerably many distinct logics
7between and Cal •

Take for F* a formula which is derivable in ML, then (ML,F*) = ML and 

(Cal?,F*) = Cal*^.

(3)#****THEOREM 2: If F* is a theorem of Cal^ then there are countably

many distinct logics between (ML,F*) and (HL,F*).

Proof ; It goes exactly the same way as the proof of THEOREM 1 except 

that for F** we now take -i -i (-i n p^ — > p^) and for the implicative 

lattices A^, A^,.. • ,A^,... we use the lattices in Fig. 9»

(6) REMARK; Mutatis mutandis REÎ IARK (2) applies also to the result

of THEOREI-Î 2^^^\

(7)«"'..COROLLARY 1 ; There are denumerably many distinct logics between 
7Cal and CL.
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If for F* we take (p v -i p), then (ML,F*) = Cal^ and (HL,F*) = CL.

(8).....COROLLARY 2 : There are denumerably many distinct logics between 

ML and HL.

If for F* we take a formula which is derivable in I-îL, then (ML,F*) =. ML 

and (HL,F*) = HL.

3. More extension-criteria results.

In the previous section it was proved that the following sequence of
7logics form infinite chains between ML and Cal , HL and CL, ML and HL,

7Cal and CL respectively.

C a l^ 3  (ML,F.,)D (M L .F ^ )^  . . .  3  . . . 3  ML

CL 3  (E L ,F .^ )3 (E l,F g )3  . . .  3 (HL,F^^.j) 3  . . .  O  HL

HL 

CL 3

3  (M,F.J)3 ( M L , F p 3  ... 3(KL,F^^.])3 . . . 3 K L  

3  (Cal^,FJ{)3(Cal^,Fp3 . . . 3  (Cal^,F^^.,)3 ... DCal'^

where formulae F. and FÎ are defined recursively as 1 1

= n V n n

^n+1 = ((Pn+1 ^n+1
= n n ( n n P^ — ^ P-̂ )

Â+1 = ((Pn+1 —  ̂ Pn+1̂ —> Pn+1



70

The theorems proved in the first part of this chapter gave criteria
7 7for extending ML to Cal , HL to CL, ML to HL and Cal to CL. The

question may be asked whether it is possible to give similar criteria

with respect to certain other logics contained in these four infinite

chains? The answer to this question is affirmative.

(1 ).....THEOREM 1 ; For any i = 1, 2,...,n + 1,...

(ML,F^,F)2 Cal’̂ iff F is invalid in

This is a direct consequence of II.1.(1) and the fact that F^ is valid 

in I^ .

(2 ).... COROLLARY : For any i = 1, 2,... ,n+1,...

(ML,F^,F) = Cal^ iff F is invalid in I^ and F is derivable in Cal^. 

This is a direct consequence of II. 1.(2) and the fact that F^ is 

derivable in Cal^.

(3 )..... THEOREM 2 ; For any i = 1, 2,... ,n+1,., .

(HL,F^,F)3 c l  iff F is invalid in I^. This is a direct consequence of

11.1, (6) and the fact that F^ is valid in I^.

(4).....COROLLARY: For any i = 1, 2,...,n+1,...

(HL,F^,F) = CL iff F is invalid in I^ and F is a classical tautology. 

This is a direct consequence of 11,1,(7) and the fact that F\ is a 

classical tautology.

(3) THEOREM 3 : For any i = 1, 2,... ,n+1,...

(ML,F^,F)3 HL iff F is invalid in M^. This directly follows from

11.1,(11) and the fact that F^ is valid in M^.



71

(6).....COROLLARY; For any i = 2,..., n+1,...

(ML,F.',F) = HL iff F is invalid in M and is derivable in HL. This 1 o
directly follows from 1,1,(12) and the fact that F^ is derivable in HL.

(7).....THEOREM 4: For any i = 1, 2,..., n+1...

(Cal"^,F^F)^ CL iff F is invalid in M^. This again follows from II.1.

(22) and the fact that F.' is valid in M .1 o

(8 ).... COROLLARY ; For any i = 1, 2,,.., n+1,...

(Cal*^,F^,F) = CL iff F is invalid in and F is a classical tautology. 

This again follows from 11.1.(23) and the fact that F^ is a classical 

tautology.

(9) THEOREM 5: (ML,F)3  (ML,F^) iff F is invalid in the five-■ I
element implicative lattice defined in 11,2.(l).

Necessity : If (ML,F)D (ML,F^ ) then F is invalid in A.̂ . This easy

part of the theorem follows immediately from the fact that F^ is 

invalid in A^.

Sufficiency ; If F is invalid in A^ then (ML,F)D (ML,F^)« Suppose 

indirectly that F is invalid in A..J but (ML,F) ̂  (ML,F^). Then by the 

completeness theorem concerning zero-order theories of ML, there is a 

non-degenerate implicative lattice A with standard negation, such that 

F is valid in A^ but F^ is invalid in A^. Let •a • be a value of *p^’ 

such that

(10) V(F^) = -1 a W n  -n a /  1^. The following five elements of A;
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1^, d= n n  a, -i a, -, n a, are distinct as the subsequent 

considerations demonstrate : •

I. / d, for if = d, this contradicts (lO).

I I . / - I  a and a, for otherwise d = 1^, and this contradicts

(I).

III. / c^ for otherwise d = and this again contradicts (I).

IV. d / -I a, for suppose d = -, a then 1^ = -,-,d = T-i-ia = -,a and 

this contradicts II.

V. d ^ n 1 a, for if d = -, n a, then 1^ = i n d  = n n - i - , a  = n - , a  

and this contradicts II.

VI. d / c , for if d = c then 1 = - , - , d  = -,-,c = c and thiso o A o o
contradicts III.

VII. -, a / a, for suppose -, a = a, then d = -, a and this 

contradicts IV.

VIII. -, a / c , for if n a = c then -, -, a = -, c = 1. and this' o o o A
contradicts %I.

IX. -, -, a / c^, for if -, -, a = c^ then -,a = -,-,-,a = -,c^ = 1^ and

this contradicts VIII.

Thus the five elements are indeed distinct. I assert that they also 

form a sublattice A* of A, i.e. they are closed under operations 

By definition -, a\^-, -, a = d and by I.4.(29)(d) n  a 

-, -, a = c^. For the remaining elements a*, b* A*, a*V-^b* = max 

(a*, b') and = min (a*, b*) because the lattice ordering among

the elements are as follows : 1 d -, a ̂  c and 1 ^ d ^ - , - , a \ c  .

Finally I show that the operation * — ^ * is closed on the elements of
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A*:

d —  ̂ -, a - (-, aV-/̂ -, -, a) — -, a = (-, a — V -, a)/^\(-, -, a — ^ n a)

= -1 -1 a — ^ -, a by 1.4.(23) (e)

-, -, a — ^ -I a = a — ^(a — ^ c^) = (-,-, a/^a) — ^ = a — ^ =

= n a by 1.4 (23) (d) & 1.4.(29) (c)

d — ^ -1 n a = (-1 a\v^-, -, a) • i -, a = (-, a — ^ -, -, a)/̂ ^\(-, -, a — ^

-, -, a) = -, a -, n a

1 a — ^ -, -1 a = -, a — ^ (n a — ^ c^) = (-, a -, a) — ^ a

by 1.4.(23) (d)

d —y = (-, a\^-j -, a) — y = (-, a — > c)/^(-, -, a — > c^) =

by 1.4.(24) (d)

1 ^ —y = -, -, a

1 -, a — ^ = -, a

It is easy to see by 1.4.(24) (b) & (c) that the operation —y is 
closed under the remaining elements of A*. Since F is valid in A, it 

is valid also in the sublattice A*. But A* is evidently isomorphic 

with A^. So F is valid in A^ and this contradicts our original 

supposition that F is invalid in A^.

(11) COROLLARY: (ML,F) = (ML,F^) iff F is invalid in A^ and is

derivable in (ML,F^).

(12) THEOREM 6 : (ML,F)3 (ML,F^) iff F is invalid in A^.

Necessity is evident from the fact that F^ is invalid in A.̂ *

Sufficiency: (ML,F) = (ML, -, p — ^ (p — ^ q),F) D  (ML, -, p —y (p —y q), 
F.j) = (ML,F^) by (9) if F is invalid in A^.
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(13) COROLLARY : (HL,F) = (HL,F^) iff F is invalid in and F

is derivable in (HL,F^).



75

CHAPTER III: APPLICATION OF THE NEW RESULTS

"The aggregate of all 

application of logic will 

not compare with the 

treasure of the pure theory 

itself

(C.S. Peirce)

In this chapter I apply the extension-criteria to certain formulae.

In the first section I consider those formulae which appear in 

Johansson's p a p e r a n d  are said to be unprovable in ML but provable 

in HL. In the second section I undertake the investigation of 

classical tautologies not greater than degree three.

1. Some formulae which are provable in HL but not provable in ML.

(2)When Johansson compares his paper with Heyting's , he remarks 

that the following 9 formulae fail to be theorems of ML;

(1 )....  “I p — ) (p — ^ q)

(2 )....  (p & T p) — ^ q

(3 )....  ((p & T p) V q) — ^ q

(4 )....  ((p V q) & n p) — > q

(5) ..... (q V 1 q) — ^  (n -I q — ^  q)

(6 )....  (n P V q) — ^ (p — ^ q)

(7 )....  (P V q) ----^ (-J p —  ̂q)

(8 )....  (p — ^ (q V r)) — ^ ((p & v) —y q)
(9 )....  1 T (l T P P)
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With the exception of (9), each of these formulae is invalid on

M as the following valuations demonstrate; o

-i 1 —y (1 — y 0) - 1  — ^ 0 = 0 f 1

(ir^nl) — > 0  = 1 — > 0  = 0?^1
((If^n 1)\J0) — > 0  = 1 — > 0  = 0 f l

((lU 0 ) 1 1 )  — > 0 = 1 — > 0 = 0 f 1

( 0  W  - I  0 )  — >  ( n  “I 0  '— >  0 )  =  1  — >  0  =  0  f  1

(“11 w  0) — > (1 — ^ 0) = 1 —y 0 = 0 f 1
( I W  0 ) — > ( - % ! — > 0 ) = l — > 0  = 0 f l

(1 — > (ow-i D) ((ir\i) — >o) = i — > o  = o f i

Applying the Corollary of Theorem 3 of Chapter 11 i.e. 11.1.(12)

we can state that each of these 8 formulae extend the minimal

calculi to Heyting's calculus. In other words for i = 1,...,8

(10)  (ML, (i)) = HL

This means that in Heyting's calculus the axiom (1) can be replaced 

by any of (2), (3), (4), (6), (6), (7) and (8). The fact that (2) 

can replace (1) in HL is not surprising for already in ML

(11)  p — > (q — y r) (p & q) — r holds, and,

thus in particular

(12)............  1  p —y (p —y q) (p & T p) —> q

But it is somewhat interesting that (4) can replace (2). This is 

because intuitively (2) gives rise to problems which have been named
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"paradoxes of material implication", but (4) which is sometimes 

called "scheme of disjunctive syllogism" seems to be intuitively 

more innocuous. The fact that (4) can replace either (2) or (1) 

in HL without altering the strength of the axiom system shows that 

in spite of our "intuitions" (4) is equivalent to (2), or, alterna

tively to (1). Formula (5) is interesting in that it is the only

formula among the eight which is a formula of one variable. S.
(4)Kanger has given a formula of one variable which is simpler than

(5) and still extends ML to HL:

(13 )....  1 T P — >  (l P — >  P)

which can be more conveniently written as (-» P & “i P) — > P*

It is easy to see that this formula is less than degree 6, and is

invalid on M^ as the following valuation shows

(14 )....  (“I 0 I 0) — > 0 = (1 1) — > 0 = 0 f 1

Formula (6) is provable in HL but its converse

(15 )....  (p —y q) — >  (t P V  q)

is not provable in HL. However (15) is a classical tautology and

is invalid in I^:

(a — > a) —y (“I a U  a) = 1 — ^  (0 L/a) = 1 — >  a = a f 1

Hence by applying the Corollary of Theorem 4 in Chapter II, i.e. II.1 

(17) we get the result that (6) and (15) jointly extends the minimal 

calculus to the classical calculus.



78

(16 )....  (ML, (6), (15)) = CL

One may ask the question whether there is any other formula among 

the 8 formulae (i), i = 1,...,8 which has the same property, i.e.

which together with its converse extends ML exactly to CL. The

answer to this question is affirmative. The only other formula

which has that property is (7).

(17 )....  (-% p — > q) — ^  (p V  q) is a classical tautology, and

is invalid in as the following valuation demonstrates.

in a — y a) — >  (aVa) = (0 — > a) "— ^ a — 1 - > a — a

Thus by II. 1.(17)

(18).... (ML, (7), (17) ) = CL

Finally we remark that formula (9) is valid in I^ as the following

value-table demonstrates

P 1 P I I P T i p  —y P n (n n P — > p) n n (n i P — > l>)

1 0 1 1 0 1

a 0 1 a 0 1

0 1 0 1 0 1

Thus by II. 1. (1)

(ML, i9))d; CalT Yet since (9) is provable in HL and is valid

in M , o
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(19)..... (ML, (9))CHL by 11.1.(11). Thus the set of theorems 

of (ML, (9)) is a proper part of the intuitionistic theorems.

With this remark we end the comments on the formulae (i) i = 1,...,9
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P A R T  II

The object of the second part of the dissertation is to comment on the 

results of the previous chapters and to discuss certain philosophical 

problems about negation. First, I would like to raise the question 

'what is a negation-sign?'. In answering this question in Chapter IV, 

I adopt a basically classical standpoint even when I consider Heyting's 

intuitionistic logic and the various intermediate logics between the 

minimal logic and the classical logic. Then as an alternative view 

I discuss the intuitionistic account of logical connectives and the 

philosophical basis of intuitionistic logic. Finally I make some 

comments on the results of the previous chapters and explore the 

feasibility of ordering the different negation-signs occurring in 

the various investigated intermediate logics.

A word must be said, however, why this apparently reverse order has 

been chosen to attain the object of Part II. In the first draft of 

Part II, I began with the comments on the results of Part I, and the 

attempt to order the negation-signs. But I found that the whole 

undertaking was dependent on, and bound up with, definite standpoints 

on basic philosophical issues such as what is a negation-sign, what 

is a connective, what are the philosophical motivations and intentions 

in constructing different logical systems, etc. So I came to realize 

that at least some brief discussion of some of these issues were 

necessary before the rest. At the same time the reverse order 

enables me to delimit the questions in which I am mainly interested.
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CHAPTER IV: WHAT IS A NEGATION-SIGN?

"It is just as important to 

neglect distinctions that do 

not touch the heart of the 

matter as to make distinctions 

which concern what is essential, 

But what is essential depends

on one's purpose.

(G. Frege)

In order to answer the question 'what is a negation-sign?', I intend 

to deal briefly with the following questions: 1. What is a definition

for negation? 2. What is a connective? 3. Can inference rules or 

axioms define a connective? 4. Do rules which give the truth-values 

of sentences containing the connective determine the meaning of the 

connective? 5. How does negation fare in the light of the discussion 

above?

1. What is a definition for negation?

In discussing the usual definition of negation found in many logic 

book, G.E.M. Anscombe expresses a certain uneasiness: 'I can define

something as the so-and-so only if I am justified in being sure, first 

that there is a so-and-so, and second that there is only one. If I 

have no such assurance, it is not certain that I am succeeding in 

defining anything.' Miss Anscombe's uneasiness is certainly well- 

founded if we intend to define a thing. Her requirement about the
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definition would then ensure that the definition must pin you down

to exactly one object. But if we are giving the definition of an

abstract term such as 'liberty* or 'culture' would it be sound to

seek an assurance that there is at least one thing and at most one

thing which is 'liberty' or 'culture'? Or, if we are defining an

English adjective such as 'large' or 'black', does the question 'there

is one and only one so-and-so' really arise? Obviously not. It is

also evident that in defining logical words like 'and', 'or', 'if...

then', and in particular 'not', it would be incorrect to seek the same
(2)referential definiteness that we rightly seek in defining a thing.

It should be also noted that a definition is to a certain extent 

relative to the degree of accuracy we seek. Thus it counts as a 

definition (at least in certain standard dictionaries) if the defini

tion pins down the meaning to within reasonable limits; e.g. one

could give the same correct definition for 'fright' and 'terror',
(3)though a more precise definition would distinguish between them.

The same applies when we are considering a family of related notions, 

and our concern is less with one particular notion than with what is 

common to them all.

When I introduced the different logics in Chapter I, I simply said that 

the formal languages in which our logics were formulated, contained in 

their vocabularies the connective n , and suggested the reading of it 

as 'not'. According to this if P is a metavariable for a proposition, 

then -I P should be read as not-P. We may say that by definition

(1)  -X P is the negation of P.
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The question immediately arises whether the suggestion that n should be 

read as 'not* is philosophically significant. The answer to this 

question is affirmative. The sign n is introduced with the philoso
phical motivation that i may serve as a rational reconstruction of 

negation of (parts of) English for certain purposes. The qualifica

tion 'for certain purposes' indicates the admission that i cannot

capture the flexibility and functional multiplicity of negation in
(4)English. But within the limits of the qualification the conviction

is expressed that in simple languages such as in giving information 

in certain automatic systems, the negation-sign n may adequately 

represent the word 'not'. This in turn may throw light how negation 

functions in a natural language. The idea that an artificial, formal 

language can help to understand a natural language is in a strong 

philosophical tradition which goes back, even in modern times, to 

Frege or Boole.

In spite of the above remark about the connection between i and 'not',

(1) remains notably unenlightening for at least three reasons. First, 

the negation-sign n must be understood relative to the formal language 

L in which the prepositional logic is formulated. This raises the 

questions, what is a connective of L?, is its occurrence arbitrary?, 

what the symbols and formulae of a formal language are used for?

(These questions will be discussed in Section 2) Secondly, the 

negation-sign must be understood relative to the logical system^^^ 

in which it occurs. This is why certain authors use different signs 

for negation in CL, in HL and in ML though the formal language L to 

which these different logical systems pertain is the s a m e . T h i s  

makes us ask what special requirements are imposed on the negation- 

sign by the different logical systems and which way; through special 

axioms and inference-rules? are these axioms or rules sufficient to 
fix the 'meaning' of a connective like negation? (I deal with these
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questions in Section 3) Thirdly, (1) does not make clear, supposing

a truth-condition theory of meaning how n P makes sense if P is 
replaced by a concrete proposition, or more precisely what is the 

role of “I in making sense of i P, and whether this role could deter

mine the meaning of the connective. (This problem is treated in 

Section 4)

But before we deal with these questions in detail, one may ask why 

an explicit definition of negation would not do. In some books of 

logic the negation-sign is introduced by the following explicit 

definition

(2)....  P = P — > f

Here the meaning of the definiendum (the combination of the symbols to 

the left of the definitional equation) is given by the definiens 

(the combination of the symbols to the right of the definitional 

equation) . But this definition is informative only if the meaning of 

the combination of the signs in the def iniens is already known. In

(2) the def iniens is P — > f where *f' is usually interpreted as a 

fixed false (or absurd) proposition, and thus negation is reduced to 

a special case of material implication.

/Q\
Johansson has shown that in his minimal calculus if we introduce 

negation by (2), then we could interpret *f* as t p & i n p  for in that 

logic these two expressions imply each other. That (n p & i n p) — ^ f

is derivable in ML is shown by substituting l p for p, and f for q in

(p & (p — ^ q) ) — ^ q; and the reverse implication f — ^ ( i p  & n p)

is proved by substituting f for q in q — ^ (p —  ̂q) , and f for q and

-j p for p again in q — >• (p ^ q) and combining the two results.
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Yet it would be a mistake to think that in (2) we may replace f 

by T P  &-1 T p for if we did that, (2) would become a viciously cir

cular definition. (2) avoids being circular by having f as a 

primitive sign in it.

It is also worthy of notice that f is in a different category from a

prepositional variable, hence the addition of f to the vocabulary

of a language L which contains prepositional variables and the connec-
(9)tives &, v, — ^ only, is a definite extension of that language.

It was already mentioned in Chapter I that if we add f to the vocabu

lary of the positive logic then with definition (2) we get a system 

in which all and only the theorems of the minimal logic are derivable.^^^^ 

This can be shown by substituting f for R in the following thesis of 

the positive logic

(3 )....  (P — y (Q —y R)) — > (Q —y (P — > R)); then by using (2)

we get

(4) ..... (P — ^ T Q) — y (Q —y T P) which is interdeducible with
that extra axiom of the minimal calculus which contains the negation-

sign. In this example (2) is a creative definition, i.e. not

simply an abbreviation (typographical convenience) but it adds to the
(12)theoretical strength of the system. Lukasiewicz called such a

creative definition a hidden axiom, and held the view that one 

should avoid the use of creative definitions whenever possible:

"In deductive systems the role of definitions seems to 

consist in allowing us to replace longer and more complicated 

expressions by shorter and simpler ones. Moreover, some
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definitions can bring with them new, intuitively 
valuable insights. Under no circumstances, however,

do definitions seem to be intended to give new 

properties to the undefined primitive concepts of 

the system. Primitive concepts should be charac

terized solely by axioms. If one takes this

position, one should avoid the use of creative
(13)definitions whenever possible."

Whether we accept Lukasiewicz's position or not, an explicit definition 

for the negation like (2) would not do, because it simply shifts 

the burden of the problem to another one, namely how do we define 

another connective ( — y ), or generally, how do we define the 

symbols occurring in the definiens.

2. What is a connective?

English language contains a number of words (phrases) by which we 

can make new sentences from others. A few examples are

(1 )....  '...and...*, *...or...', 'if...then...', 'neither...nor...',

'...but...*, *...if and only if...*,

(2 )....  * it is not the case that...', 'it is not true that...',

(3 )....  'it is necessary that...*, *it is obligatory that...*,

* it is known that...*, 'it is believed that...*.

If we put sentences in place of the markers, new, more complex 

sentences are formed. These words (phrases) are called sentential
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(14)connectives (hereafter simply connectives). Logicians were

always interested in these words (phrases) because the logical form 

of complex sentences to an important extent depends on them. 

Medieval logicians called such words syncategoremata in contrast 

to categorematic words.

Connectives are classified under different aspects. A connective 

is called one-place (unary), two-place (binary), three-place 

connective according to, it needs one, two, three or three sentences 

to form a new sentence. The connectives in (1) are binary, in

(2) and (3) are unary. A more important classification subdivides 

the connectives into truth-functional connectives and non-truth- 

functional connectives. A connective is truth-functional if the 

truth-values of the compound sentence formed by the connective 

depends only on the truth-value of the constituent sentences. Some 

uses of the connectives in (1) and (2) are truth-functional, in (3) 

are all n o n - t r u t h - f u n c t i o n a l . I n  the sequel we are only 

concerned with some uses of the connectives in (1) and (2).

It is important to remember that the definition of a connective must 

be relative to the language, in the sense that what has to be defined 

is ’connective of language L*. If L is a natural language, 

then its connectives are words with meanings and some grammatical 

rules attached. If L is a formal language then it is to some extent 

arbitrary what you count as a connective, but in any case the connec

tives are specified by their shape and grammatical properties, 

without any meaning. In other words the signs of the formal language 

L receive meaning only if they are used for some purpose. In this 

respect L is like the language of an abstract arithmetical structure
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which may be interpreted in all sorts of different ways, and only 

in the interpretations do the symbols become meaningful.

It should be noted that neither in mathematics nor in logic the use 

of a formal language implies formalism. The latter is a philoso

phical view according to which the signs of a formal language L 

are meaningless marks on paper devoid of any intended interpretation. 

J. Thomae describes this standpoint in regard to arithmetics with 

the following words: "For the formalist, arithmetic is a game with

signs, which are called empty. That means they have no other 

content (in the calculating game) than they are assigned by their 

behaviour with respect to certain rules of combination (rules of

the game)... The formal standpoint rids us of all metaphysical

Se
(20)

(191difficulties; this is the advantage it affords us." Frege

argued against this formalistic standpoint with considerable power. 

In the discussion below when we talk about formal languages of 

logics, we, like Frege, do not intend to do this from a formalist 

standpoint.

What are signs of our formal language and what are they used for 

according to the intended interpretation? In our investigation L 

is a propositional language system. It may be defined as follows.

(4).... L is a triple ^V, C, in which

a.) V is a set, at most denumerable, whose members are p, 

q, r,... (propositional variables)

b.) C is a set (disjunct from V) of 6 distinct elements

n (negation), & (conjunction), v (disjunction),

—y (implication), (,) (brackets) as auxiliary signs 

to indicate the scope of the elements of C, which we 

call connectives.
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c.) S (set of propositional formulae) is the smallest set 

including V and such that if P, Q are in S, so are 

T  P, P & Q, P V  Q, P — > Q. P, Q, R, ... etc.

do not belong to the object language L; they are 

used to talk about propositional formulae of L.

According to the intended interpretation p,q,r... represent ele

mentary (or atomic) propositions; the signs t , &, v, — > represent 

the connectives ’it is not the case...*, "...and...*, *.. .oc .. *, 

"if...then..." (or rather some special but basic uses of these 

connectives); P, Q, R are used to talk about propositions whether

elementary or not. An elementary proposition may be briefly des-
(21)cribed as a meaningful string of words (or what they signify)

which is either true or false, and which does not contain any of the

four connectives mentioned above. This description excludes not

only such nonsensical expressions as *quadruplicity drinks procras- 
(22)tination* but also questions, commands, requests and some

performatives which are apparently in the form of a declarative
(23)sentence.

Propositional formulae are used for making true or false statements.

But in the case of compound statements propositional formulae
(24)represent statements in such a way that the logical form of the 

compound statement is made perspicuous. Let me illustrate this 

with an example. The propositional formula

(5).....  ((p — > q) & n q) — => n P

is built up from the signs of, p, q,l, &, and — >  according to 

the syntactical rules (4) c.). Any use of these signs which does
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(25)not agree with the syntactical rules of L is incorrect. But

the uses of these signs even if they are in complete agreement with 

the syntactical rules of L do not answer the question for what these 

signs are used according to the intended interpretation. The inten

tion is that (5) represents all propositions which have the same 

logical form as (5). We may get an instance of these propositions 

if we put two elementary propositions, say *p and *q in place of 

p and q in (5). Then the propositional formula (5) becomes a 

proposition, say *P, with a certain meaning and a definite truth-value. 

The meaning of the compound proposition *P obviously depends on the 

meanings of *p, *q, on the connectives and on the manner *P is built

up from all these. A theory of meaning has to specify this depen- 
( 26 )dence. According to such one theory we are provided with the

meaning of *P if we know the necessary and sufficient conditions for 

the truth of *P. So it is hoped that the contribution which a 

connective makes in determining the truth-values of *P in all possible 

situations will clarify what is a connective. I shall return to this 

point and discuss it more fully in Section 4.

3. Can axioms and/or inference-rules define a particular connective?

In the previous section we made it clear that we use a formal

language L according to an intended interpretation and the correct

use of the signs of L must take into account this intention. But
(27)the major job of a logical system (which pertains to L) is to 

characterize a deducibility relation |— , defined between sets of 

formulae and formulae of L. This is usually done by axioms and/or 

inference rules. The axioms specify what are the formulae which we 

accept as theorems, without proof, and the inference rules specify 

what transformations we may effect between formulae in the system.
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If a formula P can be produced by an application of a finite sequence

of these transformations to a set of formulae X, we say that P is

deducible from X in the system, and denote it by X |—  P. If P
Sys

is such a formula into which any set of sentences (or the null set)

can be transformed, we say that P is provable in the system. In

symbols I—  P, or alternatively 0 |—  P.
Sys Sys

(1) A propositional logic is a logical system where the formal

language to which the system pertains is a propositional
(28)language system and on the relation I—  the following

(29)restrictions are placed:

a.) If P is a member of X then X |—  P.

b.) If X f—  P and XC X* then X* P.

c.) If X h- P and X'U f p} f—  Q then X U X *  [—  Q.

d.) If X P and * is any substitution then X* j—  P*.

Here substitution is any mapping of the set of formulae 

into itself which satisfies (P & Q)* = P* & Q*,

(P V  Q)* = P* v Q*, (P — y Q)* = P* — > Q* and 

(iP)* =lP*; X* is Q*: QfX .

The restrictions on |—  are given implicitly in the definition of a 

propositional logic. But since we have fixed the formal language L 

by 2.(4) in every propositional logic investigated, and since the 

axioms can always be replaced by suitable i n f e r e n c e - r u l e s , t h e  

difference in regard to )—  in the various logics (within the 

investigated family) can be pinned down in the difference of inference- 

rules which characterize the various logics. If, as it has been 

suggested, these inference rules can define a particular connective, 

then it is expected that the difference in meaning of a particular
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connective can also be pinned down by the difference in those rules 

which are characteristic for the various logics. Let me illustrate 

this with an example. In all of the propositional logics intro

duced in Chapter I, the following two inference rules hold

(2 )....  If X H- P, Xf—  Q then X P & Q

(3 ) If X f—  P & Q then X )—  P, X Q

If we say that (2) and (3) define the connective & then we have to 

say also that in all our logics the meaning of & is exactly the same. 

On the other hand in the minimal logic ML only the first of the 

following inference rules hold, in contrast to the classical logic 

CL where both hold

(4)  If X,P I—  Q ; X,P f—  T Q then X h- n P^^^^

(5) If X h- “11 P then X f—  P

If we say again that (4) defines 1in ML, and (4) and (5) defines *l 

in CL, then the difference in meaning between “j in ML and i in CL 

can be pinned down to rule (5).

The idea of giving the full meaning of the logical connectives solely

by inference rules have been attacked by A.H.Prior with subtle irony
(32)in his article "The Runabout Inference Ticket". In it Prior

shows that if we allow the introduction of connectives through infer

ence rules without further assumptions, then some very unpleasant 

consequences follow: any statement may be inferred in an analyti

cally valid way from any other. He does this by introducing a binary
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connective tonk with the rules

(6 )....  from P infer P-tonk-Q;

(7 )....  from P-tonk-Q infer Q.

He then uses tonk to derive 2+2=5 from 2+2=4. It is done in two 

steps:

(8)..... 2 + 2 = 4  by assumption;

(9 )....  2 + 2 = 4 -  tonk - 2 + 2 = 5  by rule (6),

(10 ).... 2 + 2 = 5 by rule (7).

If one asks what is the meaning of tonk, we can simply point to rules

(6) and (7), and say that its meaning is completely given by them.

There is nothing more to knowing the meaning of tonk than being able • 

to perform these inferences, just as there is nothing more to knowing 

the meaning of the connective & than to be able to perform the 

inferences expressed in (2) and (3).

What are the philosophical implications of Prior’s reductio ad 

absurdum? This is not an easy question to answer for Prior’s paper 

is very concise and it is written in an ironical vein. But it is 

the most important question concerning Prior’s paper. Unfortunately

neither Stevenson in his paper ’Roundabout the Runabout Inference-

Ticket’ nor Belnap in his "Tonk, Plonk and Plink’^^^^ 

address himself to this question.
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Stevenson investigates what is wrong with the theory of analytic 

validity as Prior states it and how it should be correctly stated. 

He says ’The important difference between the theory of analytic 

validity as it should be stated and as Prior stated it lies in the 

fact that he gives the meanings of connectives in terms of per

missive rules, whereas they should be stated in terms of truth-
05)function statements in a meta-language. Clearly Stevenson

does not ask what Prior intended to show by his reductio, but 

presents a different theory.

Belnap, on the other hand, takes the position that it is quite 

legitimate to define the meanings of connectives.in terms of the 

role they play in deduction if we have definite assumptions about 

the deducibility relation. These assumptions put certain con

straints on the permissibility of the rules, and in turn, on the 

introduction of new connectives. The assumptions about the 

deducibility relation he characterized after Gentzen as follows;

(11) Axiom A 1—  A

(12) Weakening from A^,A2»...,A^ |—  C to infer

A B C. n

(13) Permutation from A^,...,A_,A^^^,...,A^ |—  B to infer

A.,...,A . , _,A .,... ,A B.i i+± 1 n

(14) Contraction from A^,...,A^,A^ B to infer A^,...,

A B.n '
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15) Transitivity from J—  B, and C^,...,C^,B )—  D

to infer A_,...,A ,C_,C_,...,C )—  D.1 TL ± Z n

(16)  Extension rules If a new connective, say plonk is intro

duced, then

a.) the notion of sentence is extended by introducing 

A-plonk-B as a sentence whenever A and B are sentences.

b.) we add some axioms of rules governing A-plonk-B as 

occurring either as one of the premises or as conclusion 

of a deducibility statement.

c.) the extension must be conservative, i.e. although the 

extension may have new deducibility statements, these 

new statements will all include plonk. (This condition 

states the demand for consistency.)

Belnap adds that ’the justification for unpacking the demand for 

consistency in terms of conservativeness is precisely our antecedent 

assumption that we already have all the universally valid deduci- 

bility statements not involving the new connectives.’ Prior’s

tonk is not conservative in the sense of (16)c.) since A |—  B 

holds for arbitrary A and B in the tonkitish system though it does 

not include tonk. Thus the introduction of tonk is inadmissible 

because it is inconsistent with antecedent assumptions of deducibility. 

Belnap points out that if we had allowed A j—  B initially, then 

there would have been no objection to tonk since then the extension 

would have been conservative. Also, there would have been no incon

sistency had we omitted from our characterization the rule a Transi

tivity. Belnap concludes that ’one can define connectives in 

terms of deducibility but one bears the onus of proving at least 

consistency (existence) and if one wishes further to talk about the
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connective (instead of ^  connective) satisfying certain conditions, 

it is necessary to prove uniqueness as well. But it is not necess

ary to have an antecedent idea of the independent meaning of the 
(37)connective.

Some critical comments are in place here. Belnap is mistaken when 

he wants to unpack the demand for consistency in terms of conserva

tiveness according to (16)c.). For this rule does not state the 

demand for consistency because non-conservative, consistent exten

sions of partial calculi do exist. It is rather a completeness 

claim which is not satisfied in the following extension of positive 

logic PL:(38)

(17)  (Pl^F^yF^) in which F^ and F^ are the following axioms

(18) ^1 ~ ((p — ^ q) & (p T q)) — y T P

(19) ^2 ~ ( n  P — ^ P)

In extension (17) the newly introduced connective is the negation- 

sign "7 , The new axioms about it are F^ and F^. It is well-known 

that this new extension is the classical logic CL. Nevertheless 

Belnap*s rule of (16)c.) is not satisfied, for Peirce’s law 

( (p — ^ q) — > p ) —y p is not provable in the unextended system 
PL, although it does not contain the negation-sign.

The extension (17), or rather its analogue can also be given purely

via inference-rules without axioms, according to Gentzen’s method
(39)of natural deduction. In this method we draw inferences not

only from theorems but also from hypotheses (assumptions) which may



97

be introduced at any point of a proof-procedure. The rules of 

natural inference are usually divided into introduction and elimina

tion rules. Hypotheses are discharged by means of the deduction 

rule. If we denote by P |—  Q that Q has been inferred from 

hypothesis P , and by ^  Q that Q has been proved (inferred from 

the empty set of hypotheses), then we can describe PL with the 

following rules

(20).... ^  as introduction rulesP & Q  P v Q  P v Q  P — >  Q

where the formulae below the line are inferred from the formulae

or inferences above the line. The elimination rules are

(21 )....  P & Q  , P & Q  , P, P Q . P V Q.P — >R, Q — » R
P Q Q R

If we add to (20) and (21) two more rules corresponding to (18) and

(19)

(22 ) PI—  Q, P f—  -I Q
n P

(23 )....  1 “1 P
P

then we get a system in which exactly the theorems of the classical 

logic CL are p r o v a b l e . H e n c e  Peirce’s law is provable in it 

although it does not contain the negation-sign. This shows that 

the introduction of the connective “I is not conservative in 

Belnap’s sense. Thus Belnap’s demand for conservativeness is not

really a demand for consistency.
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But suppose Belnap had correctly unpacked the demand for consistency 

in the sense that it should contradict neither the structural 

assumptions from (11) to (15), nor the extension rules (16) a.) and

b.), nor any theorem which is provable in the unextended system, 

even then, when all these demands are met, the philosopher would be 

unsatisfied. He would like to know what is the point of intro

ducing a connective in such a way? Of what is existence proved 

by meeting the demands of c o n s i s t e n c y ? How and why does 

a proof of consistency establish existence? What are the grounds 

on which we lay down certain conditions for the deducibility 

relation? Why would an alternative set of assumptions not do?

It seems that we cannot answer these questions unless we have some

previous notion or understanding of the particular connective
(43)which we intend to define. This is precisely the philosophical

implication of Prior’s reduction.

In conclusion we may say that the answer to our original question 

whether axioms or inference rules can define a particular connective 

must be negative. From this, however, we should not jump to the 

conclusion that every effort to characterize a particular connective 

by inference-rules is futile. I shall return to this point and 

will discuss it in the next chapter.

4. Do rules which give the truth-values of sentences containing the 

connective determine the meaning of the connective?

In logic books the connectives are usually introduced by definitions 

which give the truth-values of sentences in terms of the truth- 

values of their constituent sentences. Some authors add that these 

definitions give the full meanings of the connectives. Thus, for
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instance, Quine says

(1)..... * The meanings of negation and conjunction are summed up in

these laws: The negation of a true statement is false;

the negation of a false statement is true; a conjunction 

of statements all of which are true is true; and a 

conjunction of statements not all of which are true is
false.'(44)

(1) is problematical not so much because we may doubt whether it

gives a correct account of the meanings of certain connectives of
(45)a natural language but because it fails to explain the relation 

between the meaning of a word (connective) occurring in a state

ment and the statement's truth-value. For this it is necessary 

to supply a theory of meaning which makes this relationship clear; 

and this, in turn, raises questions of such fundamental character as 

when is a sentence true, and why is it that to each sentence we 

may ascribe one of exactly two possible truth-values, true or false.

Certainly (1), as it stands, is inadequate and thus the claim that 

it gives the full meaning of the connectives in question (negation, 

conjunction) is incorrect. But someone might say that there is a 

well-known theory of meaning, already outlined by Frege, which 

takes care of the indicated failure of (1). According to this theory 

we know the meaning of a statement if we know the conditions which 

must obtain for it to be true. And to know the meaning of a word 

in a statement is to know the contribution it makes to determining 

the truth-conditions of any statement in which it occurs.
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It is outside the scope of this discussion to explain the truth- 

condition theory of meaning in detail, and the controversies sur

rounding it. But it must be mentioned that the underlying assump

tion of the theory is that every sentence divides all possible 

state of affairs (possible situations, possible circumstances) into 

two disjoint and e x h a u s t i v e c l a s s e s :  into those in which the

sentence could be used to make a correct assertion, and into those 

in which it could not. If a state of affairs of the first kind 

obtains then the resulting statement is true, and if the second then 

the statement is false.

The question arises whether according to the truth-condition theory, 

the meaning of a statement is determined simply by what truth- 

values it takes in each possible situation. The answer is, of 

course, no. This can be easily seen by comparing the following two 

statements

(2 ) .5 + 5 = 2 4 - 8

(3 ) .A bachelor is an unmarried man.

Both (2) and (3) are such statements that they are true in each

possible situation (they are logically true) but few would suggest

that the meaning of (2) is the same as that of (3). Certainly 

Frege would not. What the truth condition theory of meaning does 

is to provide a set of rules (semantic rules) relating certain parts 

of the statement to the truth-value of the whole statement. By 

working out the truth-value of the statement from its parts accord

ing to the rules, the truth-conditions of the statement are made 

clear and its meaning is grasped. In this process the logical form
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of the statement plays an important role because it indicates the 

structure of the statement, which is relevant for finding the truth- 

conditions. Let me illustrate this with a simple example. Suppose 

in a geography class a teacher utters the sentence

(4)..... London is the capital of England and Paris is the capital 

of France.

The meaning of (4) obviously depends on the two constituent sentences 

'London is the capital of England', 'Paris is the capital of France', 

and on the connective 'and' denoted respectively by *p, *q and 'and'. 

But the meaning of (4) depends on *p and *q in a different way from 

it does on 'and'. Within (4) *p and *q are elementary sentences; 

in certain situations they can be used to make a true or false 

statement. The conditions which have to be satisfied in order 

that *p and *q may be used to make true or false statements do not 

interest us at present because they have to do with the internal 

structure of the propositions *p and *q, and at present we are 

interested only how these propositions are combined. This is dis

played by the symbolic notation of the logical form of (4):

(5 )  p & q

The symbol & is in quite a different sign-category of the formal 

language L from *p and *q. Unlike *p and *q (or any elementary 

propositions in place of p and q), the sign & is not meaningful in 

itself but it contributes to the meaning of (A), or rather of any 

proposition which we get by putting two elementary propositions in 

place of p and q of (5). The truth-table definition of conjunction 

may be understood as specifying this contribution within the truth-
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condition theory of meaning.

By understanding Quine's definition of (1) in this way and only in 

this way, i.e. within an appropriate theory of meaning we may say 

that (1) does indeed give one legitimate explanation of the meanings 

of negation and conjunction. In a similar way the truth-table 

definition of disjunction or implication does provide us with one 

legitimate account and a genuine insight into the meaning of that 

particular connective.

One may ask the question that whether the algebraic semantics as 

defined in Chapter 1.4. can provide a legitimate account of the 

meanings of the connectives of the intermediate logics in a similar 

way, i.e. within an appropriate theory of meaning. One may try to 

do this in making a correspondence between 'true* and 'has a 

designated value', and between 'false' and 'has an undesignated 

v a l u e ' , a n d  the different designated values become different 

ways in which a sentence may be true, the different undesignated 

values become different ways in which a sentence may be false. To 

complete the semantic account of the language, one has to specify 

the conditions under which an elementary proposition has any of the 

various 'truth-values'. As Michael Dummett pointed out in a 

slightly different c o n t e x t t h i s  position is cogent enough but 

it lacks credibility. The truth-condition theory of meaning has been 

devised for a classical outlook, and without a sufficient philoso

phical justification of the interpretation of the 'truth-values', 

algebraic semantics remains a purely formal exercise. This is not 

to deny the fact that algebraic semantics, and valuational systems 

as a whole are useful technical devices with considerable power, and 

retain their interest so long as intermediate logics retain their
. . . (51)interest.
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I conclude this section by saying that the ordinary rules which give

the truth-values of sentences containing the connectives do determine

the meanings of the connectives (negation, conjunction, disjunction,

implication) if they are understood within an appropriate theory

of meaning, namely the theory of truth-conditions. But this theory

presupposes a classical outlook. Furthermore, this theory, as
(52')Michael Dummett pointed out, 'faces formidable difficulties', 

and a philosopher will not rest content until he has shown how it 

is possible to overcome them.

5. How does negation fare in the light of the discussion above?

Negation is not a thing; it is a logical connective relating sen

tences belonging to a language. Although it would be a mistake to 

seek a definition of negation, which would pin you down to one and 

only one thing, nevertheless it is quite legitimate to search for a 

clarification of this notion in the sense how negation is doing its 

job, what is its role and function. The main difficulty of 

elucidating the notion of negation is that negation is a family 

concept; one cannot give a clear content to it, unless one specifies 

the language in which it occurs and the logical system which pertains 

to it. If the language is a formal language, one also has to 

specify what the symbols of the formal language are used for accord

ing to the intended interpretation.

Axioms and/or inference-rules of a logical system can never give 

a full philosophical account of the meaning of negation for to know 

the meaning of a connective we need to know more than to perform 

certain rules. It is also necessary to know for what purpose those
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rules are used. This in turn involves the notions of correct 

and incorrect use, and when a proposition is true or false. Rules 

which give the truth-values of sentences containing negation will 

determine the meaning of negation only within an appropriate theory 

of meaning. The best candidate for an appropriate theory is the 

truth-condition theory of meaning but it has not been worked out 

in sufficient detail. It also presupposes a classical outlook 

with the underlying assumption of a bivalent language, i.e. the 

assumption that a proposition is either true or false in a given 

situation.

The Dutch philosopher G.Mannoury has drawn attention to the fact 

that even in a current language two forms of negation can be found 

which he called choice-negation (Greek ox) ) and exclusion-negation 
(Greekyt^).^^^^ B.C. van Fraassen gave a precise formulation 

of Mannoury's distinction as follows

(1)....Choice-negation; (not-A) is true (respectively,false) if and 

only if A is false (respectively,true);

(2).....Exclusion-négation: (not-A) is true if and only if A is 

not-true, and false otherwise.

The distinction between (1) and (2) is based on the possibility that 

*A is false* is not identical with *A is not true*. Hence in a 

bivalent language the distinction collapses. But in a non-bivalent 

language the distinction is important. If, for example, in 

Lukasiewicz's 3-valued logic the three values 1,?5,0 are interpreted 

as 'true','neither true nor false', 'false' respectively, the 

negation-sign defined by Lukasiewicz is a choice-negation but not an
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excluslon-negatIon for ^ 1  = 0, 0 = 1 and , so i ^ f 1.

On the other hand, in the 3-element chain-lattice of Fig. 3 

(elements 1> a> 0 with interpretations 'true*, 'neither true nor 

false', 'false' respectively) the negation-sign is defined as 

t 1 = 0 , i 0  = ia = 1 is an exclus ion-negation but not a choice- 

negation because (2) is satisfied by not (1).

It is an interesting fact that we find these two forms of negation 

in a natural language, which has no justification if language is 

bivalent. The classical outlook is, however, well-established 

and hence I look at the intermediate logics between ML and CL as 

partial calculi of the classical logic in all philosophical serious

ness, i.e. I regard them as calculi which pertain to the analysis 

of the structure of the classical logic. The negation-signs 

appearing in those calculi also pertain to the analysis of the classi

cal negation-sign. Since within the family of the investigated 

intermediate logics each negation-sign is governed by the following 

inference-rule:

(3) X,P Q, X,P I 1 Q
X h- T P

which expresses a basic partial requirement for the classical 

negation-sign, we legislate that whatever symbol, say , fulfills

(3) is a negation-sign.

It must be realized, however, that some of the investigated logics, 

notably HL can be regarded as a formal statement about an intuitionist 

theory which has its own philosophical foundation. The intuitionist 

account of logical connectives and the philosophical basis of intui- 

tionistic logic will be discussed in the next chapter. Here I only
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give an introductory note on how Heyting explains the notion of 

negations and on what are the major difficulties connected with it.

Heyting distinguishes the use of 'not* in mathematics from the use

of 'not' in explanations which are not mathematical; and he remarks 

that in mathematical assertions no ambiguity can arise. A mathema

tical proposition p* always demands a mathematical construction with 

certain given properties; it can be asserted as soon as such a

construction has been carried out. In this case one says that the

construction proves the proposition p* and calls it a proof of p*. 

Heyting also denotes any construction which is intended by the proposi- 

with the same symbol p*. Then he gives the following definition

(4)....  1 p* can be asserted if and only if we possess a construction
which from the supposition that a construction p* were 

carried out, leads to a contradiction.

These words of Heyting are unclear. It could be taken to mean that 

to prove p* we have to have a construction for converting any 

proof of p* to a proof of absurdity. If this is what Heyting meant 

by (4), it would be difficult to see how one could prove ^ p* at 

all for in fact there is no proof of p* and there could not be any.

But from the example Heyting gives, namely the proof that \f~2 is 
not r a t i o n a l , a n d  also from other saying of his about negation, 

it is clear that (4) means this; To prove -i p* we have to prove 

that supposing there were a proof of p*, then also there would be 

a proof of contradiction. So in (4) a genuine counter-factual 

or rather counter-possible is found, which does not imply the asser

tion of the antecedent, nor the consequent, only the connection 

between the two that is the assertion that if the antecedent were true
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then the consequent would also be true. One can assert 'if 

3+4 = 8 then 1 = 2 '  without asserting either 3 + 4 = 8  or 1 = 2 .

The objection, however may be pressed that although we could assert 

'the proof of p* leads to 1 = 2' without asserting p* or 1 = 2, 

if this is what constitutes the negation of p*, then the notion of 

negation is intuitively unclear. On this ground G.F.C.Griss 

objected to the use of negation in mathematics and tried to rebuild
(59)intuitionistic mathematics without negation.
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CHAPTER V: INTUITIONISTIC ACCOUNT OF LOGICAL CONNECTIVES

It must be remembered that 

no formal system can be proved 

to represent adequately any 

intuitionistic theory.

(A. Heyting)

1. Heyting*s understanding of the logical connectives.

In his book Intuitionism (HEYTING 1966) Heyting makes the preliminary

remark that the intuitionistic logic he describes has only to do

with mathematical propositions. Whether it admits any application

outside mathematics does not concern h i m . B e f o r e  giving the

axioms for his propositional logic, he wants to "fix, as firmly as

possible, the meaning of the logical connectives" and he does this

by giving necessary and sufficient conditions under which a complex
(2)expression can be asserted. Then he gives the following rule

(1 ) P & Q can be asserted iff both P and Q can be asserted.

(2 )....  P V Q can be asserted iff at least one of the propositions

P, Q can be asserted.

(3 ).....    can be asserted iff we have a procedure by which from a

construction for P a contradiction is derivable.
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(4)  P — > Q can be asserted iff we possess a construction R,

which joined to a construction P, would automatically effect 

a construction, which proves Q, In other words, a proof 

of P, together with R would form a proof of Q.

He then proceeds to present the axiomatic system given in 1.2.(1), 

and remarks that * though the main differences between classical and 

intuitionistic logic are in the properties of negation, they do not 

coincide completely in their negationless formulae. The formula 

(p — > q) V  (q —  ̂ p) is a valid formula in classical logic, but 

it cannot be asserted in intuitionistic logic, as is clear from 

the definition. He adds that in the theory of negation, the prin

ciple of the excluded middle fails. p v n P demands a general 

method to solve every problem, or, more explicitly, a general method 

which for any proposition P yields by specialization either a proof

of P or a proof of nP. As we do not possess such a method of
(3)construction, we have no right to assert the principle.

A number of comments are in place here. The way Heyting presents 

his system, and especially the fact that he thinks it necessary to 

fix the meaning of the connectives before giving the axioms, shows 

that here we face a system which cannot be regarded as purely formal.

In a purely formal view any and every interpretation which satisfies 

the axioms and rules would be acceptable. In the intuitionistic 

view only one, which depends on the particular intuitionistic 

interpretation of constructiyity, assertion and proof, is acceptable.

No doubt some of the properties of these, say of intuitionistic 

assertion, are captured by the axiom system. For instance, one 

can prove, regardless of any interpretation that HL has the so-called 

disjunctive property, i.e.
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(5)  if P V Q, then either P or hjjj* Q

Sometimes this fact is explained by saying that HL was constructed 

in such a way that it would make clear the meaning of v; but in

(5) also the assertion sig |—  figures. Do we have in (5) a 

statement about v or l-̂ g- , or about both? It seems clear from the 

writings of Heyting that the basic difference between an intuitionis

tic and classical understanding of an expression like P v Q goes 

deeper than merely a difference in meaning between an intuitionistic 

and classical *v*, and involves the very notion of assertion via 

the fundamental notion of 'construction*. According to Heyting a 

mathematical proposition P (and he considers only mathematical pro

positions) always demands a mathematical construction with certain 

properties; it can be asserted only if and as soon as such a con

struction has been carried out. We say in this case that the con

struction proves the proposition P and call is a proof of P. The

very criterion for P to be a proposition is *P has the form "I have
(4)effected a construction with the following properties..." *.

From definition (3) of negation, it is clear that the notion of 

construction is involved, i P can be asserted iff we possess a 

construction which proves that if there were a proof of P then there 

would be a proof of a contradiction. One might object that 

this definition is viciously circular for a contradiction has the 

form P &-|P in which the notion of negation is already employed.

Heyting himself poses this objection and answers it by saying that 

'contradiction* must be taken as a primitive notion, and suggests
(5)that practically in all cases it can be brought into the form 1 / 2 .
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Similarly the definition (4) shows that in the definition of implica

tion the intuitionistic conception of construction, and hence that of 

intuitionistic proof play an important part. The basic difficulty 

to compare the meanings of connectives in the intuitionistic logic 

and in the classical logic lies in the fact that a proposition P, 

without any connectives is already interpreted differently intuition- 

istically from classically.

2. The disadvantages and advantages of formal approach in describing 

the intuitionistic logic.

The great danger in looking at a formal description of intuitionistic

logic is that its philosophical basis is ignored or disregarded.

This happens, for instance, when in the literature classical and

intuitionistic connectives are compared with respect to the 'strength*.

Heyting himself calls the intuitionistic negation the strong

mathematical n e g a t i o n , b u t  for K.Popper the classical negation is
(7)the strong one. J. Lukasiewicz, after changing his mind, came

to the conclusion that the classical connectives are weaker than the
(8)corresponding intuitonistic ones. He says

'Between the classical functions C, K, and A and the 

intuitionistic functors F, T and 0 there exists a 

simple logical relation: all those classical functors

are weaker than the corresponding intuitionistic ones.

C is weaker than F because FFpqCpq holds in the 

intuitionistic system but its converse FCpqFpq is not 

provable in it. Similarly, the conjunctive functor 

K is weaker than T because the implication FTpqKpq is 

provable in the intuitionistic system, whereas its
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converse FKpqTpq is not provable. For the same 

reason A is weaker than 0, as we can prove the thesis
(9)FOpqApq but not its converse FApqOpq."

The trouble with Lukasiewicz's conclusion is not that there is any 

technical mistake in his argument. In his system FF pqCpq, FTpsCpq, 

FOpqApq are all provable formulae and their converses are not.

It is also true that C, K, A have all the formal properties of the 

classical functors, and F, T, 0 those of the intuitionistic functors. 

Thus, for instance the strong principle of the excluded middle 

OpNp is unprovable, but the weak principle of excluded middle ApNp 

is provable in his system. His mistake is that he ignores the 

philosophical basis for his formulae. The functors Fj T^ 0 

should not be called intuitionistic functors in a strict philosophical 

sense because the full philosophical assumptions concerning the 

intuitionistic conception of 'construction' and 'proof are not met 

by his formal approach. For an intuitionist a hybrid formula like 

FFpqCpq would be inadmissible and unintelligible, just as Cpq is 

inadmissible and unintelligible if we take it with its classical 

interpretation.

In regard to the present question M. Dummett has the following comment 

to make :

'In some very vague intuitive sense one might say that 

the intuitionistic connective —  ̂ was stronger than the 

classical — + . This does not mean that the intuition

istic statement A — ^ B is stronger than the classical 

A — ^ B, for intuitively the antecedent of the intuition

istic conditional is also stronger. The classical



113

antecedent is that A is true, irrespective of whether 

we can recognise it as such or not. Intuitionistically, 

this is unintelligible: the intuitionistic antecedent

is that A is (intuitionistically) provable and this 

is a stronger assumption. We have to show that we 

could prove B on the supposition, not merely that A 

happens to be the case (an intuitionistically meaningless 

supposition) but that we have been given a proof of A.

Hence intuitionistic A — ^  B and classical A — ^ B 

are in principle incomparable in respect of strength.

We may sometimes have a classical proof of A — ^ B 

where we lack an intuitionistic one; but there is no 

reason why the converse should not sometimes hold too...

Since n is really a case of — ^ , the same applies to 

intuitionistic negation. Classically, what we have 

to show to be absurd is the supposition that A should 

be true, irrespective of our knowledge; but intuition

istically, all that we have to show absurd is the 

supposition that we should have a proof of A.

There is however a weak point in Dummett*s argument. He says 

that in A — ^ B the classical antecedent (A is true, irrespective 

of whether we can recognise it as such or not) is a weaker supposition 

than the intuitionistic antecedent (A is intuitionistically provable). 

But on what ground does he assert this? Presumably on the ground 

that the proof of A is a way of recognising that A is true. In 

this case the provability of A is plainly a stronger supposition 

than the truth of A, because the first entails the second, and the 

proof of A contains an additional requirement, namely that the truth 

of A should be recognised in a certain way. But suppose someone
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does not distinguish between 'A is true* and *A is provable* but 

takes the epistemological position that when A is provable and only 

when A is provable can we state *A is true*, then there is no 

ground on which we can state that *A is provable* is a stronger 

supposition than *A is true*. Even if we take the strict intuitionist 

position that *A is true irrespective of our knowledge* is a meaning

less expression, it is very doubtful that we can state that this is 

a weaker supposition than *A is intuitionistically provable*.

The reason for our doubt is that normally both suppositions should be 

meaningful before we can make any comparison of 'weaker* or 'stronger* 

between them.

There is also a paradoxical feature in Dummett's argument in that he 

says that the classical A — ^ B and the intuitionistic A — ^  B 

cannot be compared in respect of strength, and then he compares the 

classical antecedent A with the intuitionist antecedent A. But 

suppose A has the form A* — ^ B', i.e. the antecedent A is itself an

implication. Then according to his argument, the intuitionist 

A* —y B* is a stronger supposition than the classical A* — > B*,

and thus, in fact, he compares an intuitionist implication with a 

classical one, which he may not do according to his own conclusion. 

This paradoxical feature of Dummett*s argument may be avoided if he 

restricts his arguments to implications of the form A — V B where 

A and B are atomic formulae. But our previous considerations show 

that Dummett*s arguments hold good only under certain epistemological 

views. If one takes the strict intuitionist position that 'A is 

true irrespective of our knowledge* is a meaningless expression, and 

thus the classical position is unintelligible, then this itself 

makes the comparison between the intuitionistic A — ^ B and the 

classical A — ^ B impossible in principle.
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It must be also realized that no formal description of a system can 

represent fully an intuitionistic position because the basic intuition

istic epistemological assumptions seem to escape any formal approach. 

This is why Heyting warned us:

'It must be remembered that no formal system can be 

proved to represent adequately any intuitionistic 

theory. There always remains a residue of ambiguity 

in the interpretation of the signs, and it can never 

be proved with mathematical rigour that the system of 

axioms really embraces every valid method of proof.

The same point is made by E.Beth in a slightly different way:

'It should perhaps be emphasized once again that for an 

intuitionist, no formalisation can constitution a 

foundation for intuitionistic mathematics; it can give 

no more than a basically inadequate image of it.

Hence the divergences existing between formalisations 

of classical mathematics are only of secondary impor

tance; the main difference is between the attitudes 

adopted, by intuitionists and by adherents of classical

mathematics in the interpretation of mathematical
(12)theories, whether formalised or not.'

It would, however, be a mistake to think that the formal approach in 

describing the intuitionistic position is useless. It is invaluable 

as an exact method which could clear up certain ambiguities. This 

is why, when in 1930, Heyting presented his celebrated calculus 

which registered the principles of intuitionism, it was hailed as a
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great achievement and an important development within the intuition

istic school. As a consequence of Heyting's formalization certain 

differences between intuitionists came to light. Some complained 

that the axiom p — ^ (p — ^ q) is intuitionistically not clear 

in his calculus, which gave the impetus in developing the minimal 

calculus as a reduced form of intuitionistic formalism. Even more 

importantly, certain features of the intuitionistic logic are 

captured by formal properties. For instance, the disjunction 

property in HL can be proved formally without any recourse to the 

intuitionistic interpretation of the connective 'or*. Thus the 

formal approach remains an indispensible tool for an intuitionist 

yet he knows that without the philosophical basis, his formalism 

is just an inadequate representation of his position.

3. Dummett on the philosophical basis of Intuitionistic Logic.

In a very interesting and thought-provoking paper. Professor M.

Dummett discusses the question: 'What plausible rationale can there

be for repudiating, within mathematical reasoning, the canons of
(13)classical logic in favour of those of intuitionistic logic?'

M.Dummett poses this question not from an eclectic point of view, 

as if intuitionistic mathematics were an interesting and legitimate 

form of mathematics alongside classical mathematics. Rather he is 

concerned with the standpoint of the intuitionists themselves who 

repudiate classical reasoning as invalid on any legitimate construal 

of mathematical statements. Furthermore, he is concerned only 

with the most fundamental feature of intuitionistic mathematics, 

i.e. its underlying logic in which it differs from classical mathe

matics. In effect, he is solely concerned with the logical constants
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and the first order quantifiers. Thus he leaves aside some 

particular features of intuitionistic mathematics, such as the 

theory of free choice sequences, and he is not interested in the 

exegesis of the writings of intuitionistic mathematicians like 

Brouwer and Heyting.

He develops two kinds of arguments. The first is based on general 

semantical considerations and hence is virtually independent of any 

considerations relating specifically to the mathematical character 

of the statements. The second rests upon the special ontological 

status of mathematical statements, namely the thesis that mathematical 

statements do not relate to an objective mathematical reality 

existing independently of us. Since Michael Dummett comes to the 

conclusion that the second type of argument cannot stand up to a 

rigorous scrutiny, and since philosophically his first argument is 

far more interesting, I shall restrict my discussion to his general 

semantical argument. First I give a brief summary of his line of 

thought and then I make some critical comments.

The basic principle of Dummett's argument is that meaning is exhaus

tively determined by use. This Wittgensteinean principle is 

grounded in the thesis that the meaning of a (mathematical) statement 

consists solely in its role of being an instrument of communication, 

and hence it must be manifest and public in its use. If there 

were an ingredient in the meaning of a statement which is not obser

vable (by its use), it would be irrevelant as an instrument of 

communication. Thus if two individuals agree completely about the 

use to be made of a statement, then they agree about its meaning.

This does not mean that meaning and use (in general) are identical; 

it does not involve a holistic view of language as if we had to master
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the language as a whole, or rather the total use of a statement 

in the whole body of the language before we can know the meaning of 

an individual statement. The fact that we can learn a language from 

scratch, and that we can meaningfully criticise existing language-use 

suggests a molecular, as opposed to a holistic view of language: 

each statement must have a determinate individual content as regards 

its meaning. Thus there must be some central features of the use 

of a sentence other than its total use that constitute the meaning 

of a particular sentence. Nevertheless, the theory of meaning 

which M.Dummett advocates, requires that the central features of the 

use of a sentence, and the different features of the use in general, 

must be in harmony with each other. One principal aspect of the 

use of an utterance concerns the grounds on which the statement in 

question can be asserted, and another concerns its inferential 

consequences. Schematically M.Dummett speaks about the conditions 

for the utterance on the one hand, and all the consequences of it, 

on the other hand. He thinks that the harmony between these two 

main aspects issues in the demand that the addition of a new state

ment by which an assertion can be effected, to the language produces 

a conservative extension of the language, i.e. 'that it is not 

possible, by going via statements of this type as intermediaries, to 

deduce from premisses not of that type conclusions, also not of that 

type, which could not have been deduced before.

The central feature which determines the meaning of a sentence is 

various according to the different theories of meaning. It could 

be its truth-conditions, some particular method of its verification, 

the intention of the speaker, etc. According to the theory of 

meaning proposed by Dummett, the principle 'meaning is determined by 

use' is of a different character because, as was explained before.
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there are different features of the use of a sentence. What the 

principle does do is 'to restrict the selection of the features of 

sentences which is to be treated as central to the theory of 

meaning.'

On a platonistic interpretation of a mathematical theory, the central 

notion is 'truth', i.e. 'a grasp of the meaning of a sentence of the 

language consists in a knowledge of what it is for that sentence to 

be true. On this view, in general, we are effectively incapable of 

deciding when the truth-conditions of a sentence do obtain when they 

obtain. Nevertheless, the grasp of the meaning of the sentence 

still consists in the knowledge what the condition is which has to 

obtain for the sentence to be true. This conception violates the 

principle that use exhaustively determines meaning because it is 

quite obscure in what the knowledge of the condition under when a 

sentence is true can consist, when that condition is not one which is 

always capable of being recognized as obtaining in actual linguistic 

practice. This for Dummett constitutes a reason for rejecting 

classical logic in favour of intuitionistic logic for mathematics.

It is, of course, impossible to do justice to Dummett's argument's 

argument in such a brief summary. One should read his whole paper 

to feel the full force of his reasoning. Nevertheless I would like 

to make some critical comments and indicate where his argument is 

weak and should be strengthened.

First, it must be said that there are several attractive traits 

in his argument: It takes the role of language as means of social

communication very seriously. This is in sharp contrast to the 

writings of some intuitionists who undervalue such a role, and thus 

tend to solipsism. Furthermore, if the weak points in Dummett's
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argument can be eliminated, it contains the outline for a general 

theory of meaning since it is virtually independent of considerations 

which are special as regards mathematical statements. When this 

generalisation of the theory is accomplished, the central role of 

truth is replaced with that of a 'proof-procedure* which is not as 

narrow as that that has been proposed by logical positivists.

In fact Dummett*s argument is so broadly based that it can accommodate 

a platonistic ontology and is only incompatible with a platonistic 

meaning-theory. Finally, his insistence on a molecular view of 

language, in contrast to a holistic view, admits the criticism of the 

actual language-use and thus avoids of being to rigidly tied to 

actual language practice.

However, in spite of these attractive traits, there are some major 

weak points in his argument. The principle on which the whole body 

of his reasoning is based, namely that 'meaning exhaustively is 

determined by use' is very q u e s t i o n a b l e . F e w  would quarrel 

with the principle that in many situations 'meaning is elucidated 

by use', but to say that it is exhaustively determined by it, strikes 

us as an unworkable principle. For language-use, as P.F. Strawson 

has pointed out,^^^^ is a very fluid affair. We are continually 

putting words and sentences into new uses which are connected with, 

but not identical with their familiar uses. It is true that when 

we learn the meanings of certain expressions, we often learn them by 

seeing how the expressions are used in the language. But as D. 

Prawitz has o b s e r v e d , t h i s  can be explained by a much weaker 

claim than Dummett's, namely that from their uses we only get some 

hints about their meanings. A sample of uses with which we are 

presented clarifies usually the meaning of an expression, about which 

we already have some notion. Without this preconceived meaning, a
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set of uses only enables us to form some hypotheses about the meaning.

If this is the case, then one has to explain the fact that we

agree rather well about the meaning. Prawitz things that this

could perhaps be explained by reference to a genetic disposition

to see certain kind of patterns and hence to form certain kind of

hypotheses and theories upon seeing a few examples. Prawitz admits

that this view would entail that we could never be sure that we

knew the meaning of a sentence; a new unexpected use of it could

show that we misunderstood the meaning, and would force us to revise

our hypothesis. Presumably, by constant and careful revisions, our

hypotheses about the meaning of a sentence will get a closer and closer

fit, but it is very questionable that even the knowledge of the total

use of a sentence as it exists at a certain period of time in a given

community will provide us with the full meaning of the sentence.

For there are cases where there seems to be no established usage,

and our hypothesis may establish a (new) usage in this area where

the practice seemed floating. Our hypothesis (or theory) about the

meaning of a sentence may have a normative effect on its use, and

Dummett does not take into account the complicated interrelation

between them. In fact Dummett seems to be inconsistent when he

says first that 'meaning is determined exhaustively by use' and then

he asserts that what this principle does do is to restrict the

selection of the feature of sentences which is to be treated as

central to the theory of meaning. For such restriction cannot

determine but only delimit the meanings of sentences. It will

certainly exclude certain theories of meaning but it will not tell

us which particular selection of features is to be treated as central

within the imposed restriction. This is why there are different

opinions among intuitionists themselves what rules we may use to
(19)establish the proof of a sentence.
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When Dummett speaks about the two main aspects of the use of a 

sentence, namely those which govern its conditions for asserting it, 

and those which govern the consequences which follow from it, it 

is not quite clear whether we have to know all the conditions and 

consequences of a sentence to know its meaning, or, alternatively 

only the principles or rules which govern these conditions and 

consequences. The first is very implausible for then we can hardly 

if ever know the meaning of a sentence without a holistic view of 

the language. If, however, the second alternative is the case, 

then again we do not exactly know which particular set of rules 

we have to select that govern those two main aspects of the use of 

the sentences. Here we seem to be back at the problems and impasse 

which we discussed in the previous chapter when we tried to charac

terise proof-theoretically the notion of logical connectives.

To sum up my criticism of Dummett*s argument, i. The thesis on which 

the whole edifice of Dummett*s argument is based, namely that 

'meaning is exhaustively determined by use" is rather questionable, 

ii. The way Dummett interprets this principle in regard to the 

two main aspects of the use of a sentence shows that use only delimits 

but does not determine the meaning.

It must be said that Dummett does not seem to commit himself fully 

to the argument he presents but says that a strong case can be made 

from it for repudiating the canons of classical logic. Although 

his argument deserves great attention, in no way can be regarded as 

conclusive.
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CHAPTER VI; COMMENTS ON THE RESULTS OF PART I

"Much work in logic today has 

philosophical inspiration; 

much philosophy today uses 

logical tools or appeals to 

logical result."

(B.C. van Fraassen)

In the previous chapter I discussed the intuitionistic account of 

the logical connectives and came to the conclusion that the reason, 

put forward for the rejection of the canons of the classical logic 

in favour of the intuitionistic one is not persuasive. Thus I return 

now to the classical standpoint suggested at the end of Chapter IV, 

and make some comments on the results of Part I. According to 

that standpoint we regard ML and all intermediate logics between ML 

and CL as partial calculi in all philosophical seriousness, i.e. 

we regard them as calculi which pertain to the analysis of the struc

ture of the classical logic. This enables us to look at the specific 

theorems of negation, and the negation-schemata in general, as 

indicating partial requirements for the use of the classical negation- 

sign.

1. The heuristic principle of the new results.

The extension-criteria results were based on the work of Helen 

Rasiowa (RASIOWA, 1974), who presented algebraic semantics for a
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large class of non-classical logics, including those in which I was 

interested. In Rasiowa’s treatment, the semantics of ML and its 

extensions are implicative algebras (lattices) with certain comple

mentation properties, ML is characterized by the class of non

degenerate implicative lattices of standard negation (complementation).

I recall that an implicative lattice A is of standard negation if 

there is a distinguished fixed element c^ of A, such that for any 

element a of A ~i a = a — ^ c^ where — ^ is the sign for the 

relative pseudo-complement. Thus every negation-schema which is 

derivable in ML is valid in each of those implicative lattices, and 

only negation-schemata which are derivable in ML are valid in all 

those implicative lattices. Let us designate this class of implica

tive lattices by ^ A ^ ^  , i = 1, 2, 3, ... The extensions of ML 

in which I was interested were generated by adding negation-schemata 

as new axioms to the axioms of ML and leaving the rules of ML un

changed. In the semantics of those extensions the new axioms 

appeared as additional complementation properties which marked out 

subsets in ^ , i = 1,2,3,... and those subsets were characteristic 

in regard to the particular extensions of ML. So concerning the 

specific theorems of negations of those extensions with respect to ML,

I was looking for implicative lattices of standard negation, in which 

the particular specific theorem of negation was invalid, but was 

valid in the subset of ̂ A ^ ^  which was characteristic of the parti

cular extension. Let me illustrate this in two simple examples.

Concerning the extension Cal^ = (ML, p v -, p) I was looking at 

implicative lattices of standard negation in which p v -, p was 

invalid. I found that I^ (three-element chain) with c^ = was

such a lattice. From here it was only a short step to seek the proof
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of Theorem 1 of Chapter II, Section 1, in the form (ML,F)^ Cal^ 

iff F is invalid in I^. The proof of the difficult, sufficiency 

part of this theorem depends on the completeness result of Rasiowa 

concerning zero-order theories of the minimal logic, i.e. the fact 

that if (ML,F) ̂  Cal^, then there is an implicative lattice A of 

standard negation in which F is valid but (p v t p) is invalid.

Hence F is valid in any sublattice of A, in particular in A* =

^  1^, d = aL/-1 a, c^| . That A* is a three-element chain which is 

closed under the operation — ^ follows from the invalidity of 

(p v -| p) in A and from certain properties of the implicative 

lattices of standard negation. (See II.l.(l)). Hence whenever 

(ML,F)^Cal^, F is valid in A* ; and since A* is isomorphic with I^,

F is valid in I^. This is exactly the sufficiency part of Theorem 1 

in its contrapositive form.

Concerning HL = (ML, p — ^ (p — ^ q)) I was looking at implicative

lattices of standard negation in which -, p — > (p — ^ q)

was invalid. I found that M (two-element chain with c = L, ) waso o Mo
such a lattice. From here it was easy to seek the proof of Theorem 3 

of Chapter II, Section 1 in the form (ML,F)2 HL iff F is invalid 

in The proof of this theorem, however, was more difficult than

the previous one. It did not go through without the help of Zorn's 

lemma, although I spent a lot of time in trying to prove Theorem 3 

in the same simple way as Theorem 1 was proved.

The heuristic principle in regard to the other extension-criteria 

was similar as in the cases of Theorem 1 and Theorem 3.
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2. Minimality conditions.

It is interesting to notice that certain minimality conditions obtain 

in regard to the implicative lattices occurring in the extension- 

criteria results. The three-element implicative lattice I^, the two- 

element implicative lattice M^, and the five-element implicative 

lattice (See Fig. 8) all contain a minimal number of elements in 

a certain sense. In order to formulate these minimality conditions 

in a precise way let me introduce the following definition:

(1)  A non-degenerate implicative lattice A of standard negation,

by definition, is minimal in a class of such lattices S = Â ,̂

(See I. A. (15)) iff A 6 S and A contains a minimal number of elements.

We can now formulate the following conditions:

(2) The implicative lattice I^ in which p v -| p is invalid,

is minimal in the class of S.

This can be justified by looking at the table of Fig. 2 and Fig. 3.

On Fig. 2 we see the four different two-element implicative lattices

o f I , M , S , P .  Out of these only two, namely I and M are of o o o o  o o
standard negation. But on both of these lattices (p v -| p) is 

valid. On Fig. 3 we see the twenty-seven different three-element 

implicative lattices. Out of these only three, namely A^^ (first 

two, first column), A^^ (second two, first column) and A^^ (third two, 

third column) are of standard negations with distinguished fixed 

elements c^= 1, c^= a, c^= ) respectively. But in both A^^ and A^^ 

p V -, p is valid and only in A^^ (i.e. I^) is invalid. Evidently 

there are denumerably many other implicative lattices of standard
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negation in which p v-, p is invalid but they all contain more than 

three elements,

(3) The implicative lattice in which n p — ^ (p — ^ q)

is invalid is minimal in the class of S.

This statement can again be justified by looking at the table of Fig. 2

(A) The implicative lattice in which -\ p v n n p is invalid

is minimal in the class of S.

Again this can be seen by examining the different non-degenerative 

implicative lattices of standard negation up to four elements and 

noticing that none is such that -i p v -, -i p is invalid in it.

Similar minimality conditions are satisfied as regards the other 

extension-criteria results.

In Appendix I, I formulate some conjectures in which the minimality 

conditions appear as clues for finding further extension-criteria 

results. Unfortunately the existence of A* in Conjecture 2 is 

rather a daring supposition. As was mentioned earlier I could not 

even prove the existence of such a sublattice in trying to simplify 

Theorem 3 of Chapter II, Section 1.

3. The ordering of the negation-sign in the different infinite 

chains of logics.

In Chapter II, Section 2, it was proved that the following sequence 

of logics form infinite chains between CL and HL, Cal^ and ML, HL and 

ML, CL and Cal^ respectively
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CLD(HL,F^)3 (HL,F^)3 ... D  (HL,F^^^) D  ... D HL

Cal^D (ML,F^)3 (ML,F^)3 ... 3(ML.F ) 3  ... D  ML

HL 3  (ML.FprJ (ML.FpD ... 3  (ML,F^^^)3 ... Z) ML

CL 3  (Cal^.Fp D  (Cal^,Fp3 ... 3  (Cal^,F^^^)3 ... D  Cal^

where formulae f^ and F^ are defined recursively as

F^- -7 p V  -I p

Fn+l=((Pn+l ^n+l^ ^n+l

 I T  ( n  n  — > p^)

^n+l ° (( Pn+1 - »  Pn+]) Pn+1

In each of the logics of these four infinite chains the symbol -| ful

fills the requirement of IV.5.(3) and thus is a negation-sign.

But, apart from ML, in each logic the symbol -\ fulfills other 

additional proof-theoretic requirements. For instance, in CL it 

fulfills also

(1)  X 1— ' 1 ^-------------  where X is any set of formulae.
X h  P

If we compare the semantics of ML with the semantics of CL, the 

additional proof-theoretic requirement corresponds to an additional 

complementation property. This determines a sub-class in the class 

of implicative lattices ^  of standard negation, namely the class

of which single member is the two-element implicative lattice I^.

The validity of any formula in this sub-class corresponds to the 

derivability of the formula in CL. In general, if we are looking 

at the semantics of the logics which we get by extending ML in the 

way we described above, what the additional complementation properties
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are doing is nothing else than marking out different subclasses of

^  ^ in which the validity corresponds to the derivability in

the various logics. Furthermore these sub-classes are simply

ordered by class-inclusion. This suggests that the negation-sign

in (ML,F^^^) indicates a semantically stronger notion, i.e. a more

general concept than the negation-sign in (ML, F^). An obvious

consequence of this statement is that if a negation-schema is provable

in (ML,F^^^), then the negation-schema of the same form is also

provable in (ML,F^). The same can be said about the subsequent

logics appearing in the other three infinite chains. Let us

summarize these in the following four statements by abbreviating

two subsequent logics in each of the four infinite chains with L^

and L . , . n+1

(2)....  Statement 1 There are denumerably many distinct logics L^,

n = 1,2,3,... which are strictly between CL and H L . T h e s e  logics
(2)diverge only in the vicinity of negation and the negation-signs

in them are simply ordered: the negation-sign in L^^^ is stronger

than in L .n

(3)  Statement 2 There are denumerably many distinct logics

L^, n = 1,2,3,... which are strictly between Cal^ and ML. These 

logics diverge only in the vicinity of negation and the negation- 

signs in them are simply ordered: the negation-sign in L^^^ is

stronger than in L^.

(4)  Statement 3 There are denumerably many distinct logics L^,

n = 1,2,3,... which are strictly between HL and ML. These logics 

diverge only in the vicinity of negation and the negation-sign in 

them are simply ordered: the negation-sign is L^^^ is stronger than
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In L . n

(5)....  Statement 4 There are denumerably many distinct logics

L^, n = 1,2,3,... which are strictly between CL and Cal^. These 

logics diverge only in the vicinity of negation and the negation- 

signs in them are simply ordered: the negation-sign in L^^^ is

stronger than in L^.

It should be observed, however, that it would be a mistake to say 

that any two extensions of ML, say L^ and L^ are such that the nega

tion-sign in one of them is stronger than in the other one. An obvious 

counter-example to such a statement is HL and Cal^. One should 

also remember that we looked here at ML and HL, and other intuition- 

istic formalisms, essentially in a classical way. As has been noted 

before if we had taken the intuitionistic standpoint with its full 

philosophical commitment, the ordering of the negation-signs between 

the intuitionistic logic and the classical logic would have become, 

in principle, impossible.

4. Summary and conclusion.

It is rather difficult to draw definite conclusions from the dis

cussion which is acceptable to all. The reason for this is that 

the outcome of several questions, such as can we order the different 

negation-signs occurring in the various investigated logics, are 

closely bound up with certain philosophical positions which are 

outside the realm of logic, and are neither provable nor disprovable 

in a strict sense. Taking an essentially classical position, I 

have argued that whenever two extensions of the minimal logic which
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appear in the four infinite chains, say and are such that 

then the negation-sign in is stronger than in L^.
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NOTES

INTRODUCTION

(1) Theaetêtus, l8?# See, for instance, in Platonis Opéra

(ed.J.Burnet), Oxford, I899-I906.

(2) Sophist, 237 ff. Translated by B.Jowett in The Dialogues of

Plato, 2nd ed.. Clarendon, Oxford, 1873, vol.IV. p.4^0.

(3) J.L. Austin, Truth in Proceedings of the Aristotelian Society,

Supp.Vol.XXIV (1930)" Reprinted in Philosophical Papers

(ed. J.O, Urmson and G.J, Warnock), Clarendon, Oxford 196I,

pp.96-97.

(4) (HEYTING, 1930).

(3) (JOHANSSON, 1936).
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(1) Thus I do not distinguish between formulae and well-formed 

formulae.

(2) Theorems are derivable formulae in my terminology, hence they 

include the class of axioms if a calculus is given as an axiomatic 

system. Some logicians distinguish sharply between theorems and 

axioms and use the word thesis in the sense I use the word 

theorem.

(3) Since I investigate only prepositional logics, I often say simply 

logic in place of prepositional logic.

(4) These rules are often called the rule of uniform replacement and 

detachment respectively.

(3) A fairly comprehensive list of the different presentations of the 

classical and intuitionist logic and related systems can be found 

in (PRIOR, 1933) pp.301-313.

(6) The proof of Johansson that the negation-schem-a-i (-1 -1 p — ^ p) 

is underivable in his minimal logic can be somewhat simplified. 

(NEI-ÎESSZEGHY, E.A., 1976). See Appendix II.

(7) See, for instance, (HEYTING, 1930).
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(8) Johansson recommended the study of this calculus as an interesting 

one. (JOHANSSON, 1936). p.129.

(9) In other words, if we leave out the only negation-schema as an 

axiom from the minimal calculus of Johansson.

(10) See, for instance, (RASIOWA,1974) p.234.

(11) See, for instance, (RASIOWA 1974) p.39 and p.234.

(12) See (SEGERBERG 1969) p.37.

(13) If Cal^ = (Cal^, i = 1,2,...) I speak about an infinite

extension of Cal^.

(.14) In the literature the definition of intermediate logic is usually 

restricted to the definition given in (13).

(13) These are slight modifications of the definitions used by 

Trolestra (TROLESTRA 1963) p.l43.

(16) See, for instance, (RESCHER 1969).
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(17) For a new technical interpretation of three-valued logic see 
NEMESSZEGHY, G. & NEMESSZEGHY, E.A., On a technical 

interpretation of three-valued logic. See Appendix III.

(18) This statement will be discussed in Chapter III.

(19) The name "designated” seems to originate from Bernays, see 

(BERNAYS, 1926) p.316.

(20) See, for instance, (RASIOWA, I963) p .38 ff.

(21) See, for instance, (RASIOWA, 1974) p.234 ff.

(22) See, for instance, (RASIOWA, 1974) p.60 ff. and (JOHANSSON, 1936)

p. 130.

(23) ^ee else in (RASIOWA, 1974) p.234. It should be noted that 

Rasiowa calls a relatively pseudo-complemented lattice with 

standard negation contrapositionally complemented lattice.

(24) See, for instance, (TARSKI, 1938), (SKOLEM, 1938) or (TROLESTRA,

1963).

(23) VJe may observe that only the lattices (I^ x M^), (M^ x M^),

(M X I ), (M X I.) are lattices with standard negation. 0 0  0 I  )
distinguished element c^_=(p 1} , = ̂ 1 1^ , c^ = ̂ 1 0 ^  ,

c = ̂  1 0 ^ ,  respectively.
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(1) In the paper referred to Jankov did not give a proof.

(2) See (ANDERSON, I969) p.239.

(3) See 1.2.(4).

(4) See (LUKASIEWICZ, 1970) p.l68. Another name for this formula is 

"consequentia mirabilis".

(3) See 1.4.(33).

(6) The argument goes exactly sis in the proof of THEOREM 1. See II.I.(l).

(7) This algebraic way of proving "sufficiency" has been suggested to

me by my supervisor Dr.W.A. Hodges. The helpful comments of 

Prof.A.Horn are also gratefully acknowledged.

(8) See REI-IARK II.1.(3).

(9) See REMARK II.1.(3).

(10) I recall that by definition Calculus 1 strictly succeeds Calculus 2 

iff Calculus 1 (2 Calculus 2.

(11) By cLn ICD fragment of calculus Cal* McKay understands that part

of Cal* which contains formulae only with implication, conjunction 

and disjunction but no negation.
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(12) See below COROLLARIES (3), (4), (?), and (8).

(13) Here we used the fact that a lattice-homomorphism preserves the

valuations on all subformulae of F. More precisely: h (V(F)) =

(hV)F where h is a lattice homomorphism from A onto B, V(F) is 

any valuation of F in A, and (hV)F is the valuation of F in B 

determined by V(F) and the lattice-homomorphism h. See, for 

instance, (RASIOWA-SIKORSKI, I963).

(14) See Basic step. Note also that Aĵ ^̂  = ̂ A^, where f^s Jaskowski's

operation.

(13) McKay proves that his intermediate logics have the same ICD

fragment as HL in the following way: let A** be the ICDN algebra

obtained by adding a zero-element to the ICD algebra A* of HL.

The formula F** = t p.j v p^ is valid in A** because for any

valuation either -, p^ or -, -, p^ takes the value 1^**. Hence

(HL, n p^ V -, -, P^)<2X (A**) where X (A**) is the logic 

characterised by A**. But if F is an ICD formula such that it is 

underivable in HL- (invalid in A*) then it is underivable in X (A**) 

because for the same valuation for which V (F) / 1^*, V (F) /  1^**. 

Thus (HL, -1 P.J V -1 -, p^) has the same ICD fragment as HL.

Notice that McKay*s proof can be applied to the result of THEOREM 1

because (HL t p^ . v -, -, p^) =(ML, -, p — > (p — > q), n p v n -, p) 5
(ML, F*, F**). Hence if F is an ICD formula which is underivable 

in (ML, F*), then F is underivable in X (A**). Thus (ML, F*, F**) 

has the same ICD fragment as (ML, F*).
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(16) Here F** p — ^ p), and let A** be the ICDN algebra
nobtained by adding a zero-element to the ICD agebra A* of Cal . 

The formula F** is valid in A** because F**is a theorem of EL. 

The rest of the reasoning goes the same way as in the previous 

note.
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CHAPTER III (NOTES)

(1) (Johansson 1936), pp. 121-126.

(2) (Johansson 1936), pp. 123-124.

(3) The sign F G is used as an abbreviation for (F -— ^  G) &

(G F).

(4) (K anger 1955), p. 100.



140

CHAPTER IV (NOTES)

(1) (Anscombe 1961) p.51. In asking this question Anscombe refers 

to Frege.

(2) It is not suggested that Miss Anscombe thought that negation was 

a thing; we suggest only that her writing could be easily 

misunderstood.

(3) For this example and the whole observation I am indebted to 

my supervisor Dr. W.A. Hodges.

(4) For a study of negation in English see E.S.Klima, Negation in 

English in (Fodor & Katz 1964) pp.246-323.

(5) See (Frege 1879) or (Dummett 1973) especially pp.XVII-XVIII; 

(Boole,1854). For a modern defence of the approach to language- 

study through formal languages see (Wiggins 1971).

(6) We may define a logical system after van Fraassen as follows 

(van Fraassen 1971) p.71:

A logical system is a triple ̂ Syn,Th, )— ^  where

a) Syn is a syntactic system which comprises a vocabulary 

and a grammar. The vocabulary is usually given by a 

specification of its elements, and the grammar by certain 

rules (formation rules) which tell us how sentences 

are constructed from the elements of the vocabulary.

A logical system is said to pertain to Syn.
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b) I—  is a relation from sets of sentences of Syn to

sentences of Syn (the consequence relation). This 

relation is usually specified by the so-called 

transformation rules. Note that these rules specify 

syntactic transformations, hence |—  should not be 

confused with a semantic entailment relation |=. 

Admittedly, it often happens that the philosophical 

motivation in constructing a logical system is that

I—  should correspond to /= under the intended inter

pretation. On this point see (Dummett 1973) p.433; 

on the distinction between 1—  and 1= see (Smiley 1954); 

(Smiley 1976); (Beth 1955).

c) T h = * ^ P :  0 I—  P (The set of theorems)

(7) See (Rasiowa 1974).

(8) See (JOHANSSON 1936) pp.129-30.

(9) Some logicians call f a zero-order connective.

(10) I.2.(1) axiom XI.

(11) See, e.g. (HORN,1962) or (GOODSTEIN,1971) p.27.

(12) The expression 'creative definition' in this sense goes back to 

Lesniewski. See (RICKEY,1975) p.273. That the definition for 

the material implication in the system of Principle Mathematics 

is creative was first proved by my brother and myself.
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(NEMESSZEGHY E.Z. & NEMESSZEGHY E.A.,1971); see other (NEMESSZEGHY, 

E.Z. & NEMESSZEGHY,E.A.1973). A critical comment on our result 

was published by V.F.Rickey; see (RICKEY,1975a). An answer 

to Rickey's criticism appeared in (NEMESSZEGHY E.A. & NEMESSZEGHY, 

E.Z.1977).

Although some logicians maintain that a definition should be 

called a proper definition only if it is non-creative, there is 

no compelling reason either to accept or to reject the methodo

logical position that in a logical system only non-creative 

definitions are to be used. But it does seem to be reprehensible 

or at least inelegant to present a system in such a way that the 

logical status of a definition is obscured. If a definition 

is a disguised (hidden) axiom then it should be clearly stated 

that its logical status is that of a thesis. In particular, 

if a definition which contains the negation-sign is creative 

then the notion of the negation in the system is dependent on 

that creative definition.

(13) (LUKASIEWICZ,1970) p.277.

(14) Sentential connectives are also called sentence functors.

(15) See for instance (KNEALE,1968) pp.233-4.

(16) Not all uses of 'if...then...' are truth-functional. Even 

'...and...' may be used non-truth-functionally as indicating

a chronological order. On the different varieties of modalities 

(temporal, alethic, deontic, epistemic, intentional) see 

(SNYDER,1971) pp.5-12.
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(17) Natural languages other than English have corresponding connec- 

tices of their own. See (DOHMANN,1959)

(18) On this point see the beginning of (BOOLE,1948).

(19) Quoted by Frege (FREGE,1903) ii.Pargr.88-89. On a more moderate 

formalism see (KNEALE,1962) pp.686-88.

(20) (FREGE,1903) ii.Pargr.86-137.

(21) I do not want to go into the controversy concerning the dis

tinction between a statement and a proposition. On this see

(LEMMON,1965).

(22) See (RUSSELL,1967) p.168.

(23) See (AUSTIN,1962).

(24) The logical form of a proposition depends on the aim of the

logical analysis. In prepositional logics, for instance we are

uninterested in the internal logical structure of a proposition.

We do not analyse a proposition in different constituent parts 

such as subjects, predicates and quantifiers. In a predicate 

calculus, however, all these concepts become important.

(25) For instance &P— ^ , w-i PnQ are meaningless expressions with 

respect to L. They may be compared to completely ungrammatical 

group of words such as 'this is no what'which is not a meaningful
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string of words in English although there might be some 

secret language in which it is meaningful.

(26) Naturally it has to do much more. It must specify how

elementary propositions are related to the 'world' (are true or

false) and must give an account of synonymy and ambiguity, etc. 

On this point see (KEMPSON,1977)

(27) See note (6).

(28) See 2.(4)

(29) (DUMMETT,1973) p.430.

(30) On this point see (CARNAP,1959) pp.1-4 and 167-175.

(31) X,P is used as an abbreviation for x W { p } -

(32) (PRIOR,1960).

(33) (STEVENSON,1961) pp.124-28.

(34) (BELNAP,1962) pp.130-134.

(35) Ibid.p.127.

(36) Ibid.p.135.

(37) Ibid.p.137.
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(38) For the observation that Belnap's requirement of conservative 

extension is a completeness claim, I am indebted to Prof, B.van 

Fraassen. The example about the extension of PL is from me.

(39) (GENTZEN,1934)

(40) I have taken over the description of PL and CL from (GOODSTEIN, 

1971) p.30. An elegant presentation of ML,HL and CL can be 

found in (PRAWITZ,1965) pp.20-1. See also (PRAWITZ,1971a). I 

am grateful to Prof.R.I.G. Hughes for drawing my attention to 

this article of Dag Prawitz.

(41) Mutatis mutandis my extension-criteria can be applied to 

inference-rules.

(42) For the formulation of this question I am grateful to Dr. W.

Hart.

(43) This seems to be the position of I.Hacking. See (HACKING,1979) 

'First, it is clear that these rules could not define the 

constants for a being that lacked all logical concepts. One 

must understand something like a conjunction to apply the 

conjunction rule...' (p.299).

See also Putnam's demonstration that the inference rules cannot 

fix the meaning of the connectives. (PUTNAM,1976)
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(44) (QUINE,1974) p.10

(45) See beginning of Section 2.

(46) See (DUMMETT,1977) pp.67-137.

(47) Exhaustive in the sense that there are no possible relevant

circumstances which are left out from the classification.

On this point see (DUMMETT,1973) pp.417-419.

(48) 'To say something true is to say something correct, to say

something false is to say something incorrect. Any workable 

account of assertion must recognize that an assertion is 

judged by objective standards of correctness, and that in 

making an assertion, a speaker lays claim, rightly or wrongly, 

to have satisfied those standards. It is from these primitive 

conceptions of the correctness or incorrectness of an assertion 

that the notion of truth and falsity take their origin.*

(Dummett,1977) p.83. See also (HODGES,1977) pp.27-41.

(49) See (DUMMETT,1973) p.431 and (RESCHER,1969) pp.l07f.

(50) (DUMMETT,1973) p.205.

(51) (DUMMETT,1973) p.432.

(52) (DUMMETT,1977) p.67.

(53) Mannoury's distinction is briefly discussed in (BETH,1968) p.631.
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(54) (VAN FRAASSEN,1969) p. 69

(55) One can press this further. In Greek ov are (roughly

speaking) indicative and subjunctive -, . Polish distinguishes 

between indicative and subjunctive — ^ viz. jesli and gdyby- 

For this observation I am indebted to Dr. W.A.Hodges.

(56) (HEYTING,1966) p.102

(57) Ibid. p.102

(58) Ibid. p.18 " *The proposition p is not true* or *the proposition 

p is false* means * if we suppose the truth of p, we are led to

a contradiction*'*.

(59) (GRISS,1950)
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CHAPTER V (NOTES)

(1) (HEYTING,1966) p.97

(2) (HEYTING,1966) p.98

(3) Ibid.pp.99-100

(4) Ibid.p.99

(5) Ibid.p.98

(6) Ibid.p.98

(7) (POPPER,1947) p.289, Footnote 20.

(8) (LUKASIEWICZ,1970) p.333

(9) Ibid.330

(10) (DUMMETT,1977) pp.16-17

(11) (HEYTING,1966) p.102

(12) (BETH,1968) pp.433-434. In view of these statements from 

leading intuitionists one has to say that completeness proofs 

from Heyting*s calculus, e.g. by Kripke structures, have a 

rather limited value for an intuitionist. He may regard Kripke 

structures as a useful took, a technical device to obtain certain
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results about an intuitlonistic formal system, but he will not 

regard them in terms of which one can give an adequate account 

of his intuitionistic theory.

(13) (DUMMETT,1975). See also (DUMMETT,1973,1975a,1976) where 

similar questions are discussed.

(14) (DUMMETT,1975) p.12

(15) Ibid.p.14

(16) See, for example, (RYLE & FINDLAY,1961) reprinted in 

(PARKINSON,1968) pp.109-127.

(17) (STRAWSON,1974) p.230

(18) (PRAWITZ,1977) p.10

(19) Some find the principle n p — > (p — > q) intuitionistically 

unclear and thus unacceptable.

(20) See IV.3.
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(1) This has been proved by C.C. McKay (McKAY,1968) and it is 

stated here only for the sake of completeness.

(2) I have taken over this expression from D.C.Makinson (MAKINSON, 

1973) p.39. We may say that, by definition, two logics

and Lg diverge only in the vicinity of negation iff f 
and both have the same ICD fragment.
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APPENDIX I

I shall now formulate some conjectures in connection with the'new 

results. Concerning the extension-criteria results I surmise the 

following ;

CONJECTURE 1 ; (ML,F) O  (ML,F*) iff F is invalid in A*, a minimal 

(non-degenerate) implicative lattice with standsLrd negation, in which 

F* is invalid.

As was mentioned in the Discussion, all the extension-criteria results 

come under this conjecture, as well as Conjectures 3 and 4 below. It 

should also be observed that to prove the necessity part of Conjecture 1 

is again easy, and the sufficiency part could also easily be proved if 

Conjecture 2 is correct.

CONJECTURE 2 ; If (ML,F)^ (ML,F*) then there is an A* yhich is a mini- 

mal sublattice of any implicative lattice A with standard negation, in 

which F is valid and F* is invalid; moreover * — ^ • is closed on the 

elements of A*.

Clearly, if F is valid in A then F is also valid in any sublattice of 

A, so it is valid in A*; and this is exactly the sufficiency part of 

Conjecture 1 in its contrapositive form.
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CONJECTURE 3 : For any i = 1,2,3,...

(ML,F)^ (ML,F^) iff F is invalid in where F^ and are defined as 

in II.2.(1).

Note that fo r  i  = 1, th is  has been already proved in  1 1 1 .3 .(9 ) .

CONJECTURE 4 : For any i  = 1 , 2 , 3 , . . .

(H L ,F )3  (ML,F^) i f f  F is  in v a lid  in  A  ̂ where F^ and A  ̂ are defined as 

in  I I . 2 . ( 3 ) .

In  the fo llow ing conjectures I  go beyond minimal log ic  ML and formulate 

some e x te n s io n -c r ite r ia  concerning the p o s itive  calculus PL.

CONJECTURE 3 : (P L ,F )D  ML i f f  F is  in v a lid  in  P^, S^, and P  ̂ where

P  ̂ and are defined as in  F ig .2 o f Chapter I ,  and P  ̂ is  defined as in

F ig .3 o f Chapter I .  (page 43)

Notice th a t i f  Conjecture 3 is  correct then the fo llow ing conjectures  

are also true ;

CONJECTURE 6 ; (P L ,F )3  HL i f f  F is  in v a lid  in  P^, S^, P  ̂ and M^.

CONJECTURE ?: (PL,F) D  CL iff F is invalid in P_, S_, P^, M_ and I^.' — ■ O O 1 O 1

CONJECTURE 8 ; (PL,F) = CL iff F is a classical tautology and invalid 

“  ^o’ ^o’ ^1' "o 1̂*
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APPENDIX II —

438
Notre Dame Journal of Form al Logic 
Volume X V II,  Number 3, July 1976 
NDJFAM

NOTE ON AN INDEPENDENCE PROOF OF JOHANSSON

E . A. NEMESSZEGHY

In [ l ] ,  p. 124, I. Johansson proves that the prepositional formula  
n ( T l a 3 a )  is underivable in his m inim al logic. He establishes this 
result by the well-known m atrix-m ethod; he gives certain  m atrices in 
which a ll the axioms of the m inim al logic are valid, the rules of the system  
preserve valid ity , but l l ( T l a  ^ a) is invalid. The m atrices he uses are  
5 x 5  m atrices, i.e .,  of 5 rows and 5 columns for the binary connectives. 
The purpose of this short note is to point out that there a re  s im pler 3 x 3  
m atrices which do the same job. The m atrices for the connectives are  
given below. The only designated value is 1.

D 1 2 3 A 1 2 3 V 1 2 3 X IX

*1 1 2 3 ♦1 1 2 3 *1 1 1 1 *1 2
2 1 1 3 2 2 2 3 2 1 2 2 2 1
3 1 1 1 3 3 3 3 3 1 2 3 3 1

It is easy to check that a ll the axioms of the m inim al logic are  valid in 
these m atrices, and the rules of the system preserve validity; yet 
n ( m a  Da) is invalid, fo r if  the value of *a* is 3 then 1 1 (1 1  3 D 3) = 
11(2  3  3) = 113  = 2 # 1.
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[1] Johansson, I . ,  *‘D er M intm alkalk iil, ein reduzierter intuitionistischer Form alis- 
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Heythrop College, University of London 
London, England
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APPENDIX III.

ON A TECHNICAL INTERPRETATION OF THREE-VALUED 
LOGIC

Present-day computer-technology is, to a great extent, based on a 
technical interpretation of two-valued logic. In two-valued logic 
the prepositional variables (say a,b,c,....) can have only two 
values (say "true" — "false", 1 — 0, "yes" — "no") and hence their 
technical interpretation demands physical elements with only two 
different states ("on" — "off"; "zero potential" - "non—zero potential" 
etc.). The simplicity of the technical interpretation of the two
valued logic is obviously a great convenience. Nevertheless in certain 
automatic control systems the use of three-valued logic offers 
considerable advantages in that the transfer of information can. be 
speeded up.

The first three-valued logic has been invented by J Lukasiewicz (1). 
His ideas were motivated by certain considerations of modality,namely 
that statements expressing future-contingent events (that are possible 
but not necessary) are neither, strictly speaking, "true" or "false"; so 
they must possess a third value (say "neutral", "indifferent") which he 
designated by He used two primitive functors (logical constants)
"C" and "N", corresponding to implication and negation. They can be 
defined by the following value-table;

b
Cab 1 i 0 , Na

1 1 i 0 0a i 1 1 i i
0 1 1 1 1

Table 1
As one can read from this table, the values of Cab and Na can be 

expressed from the values of "a" and "b" in a simple way:
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V(Cab) = minimum (1, 1 - V(a) + V(b))
V(Na) = 1 - V(a) 

where V(P) means the value of P. He defined the other usual binary 
logical functions Aab (disjunction) and Kab (conjunction) in terms of 

and N':

Aab = CCabb 

Kab = NANaNb 

Eab = KCabCba

The values of Aab and Kab can again be expressed in a simple manner 
in terras of the values of *a* and 'b';

V(Aab) = maximum ( V(a), V (b))

V(Kab) = minimum (V(a), V(b))

The system of Lukasiewicz is not functionally complete. For instance,
the following unary function Ta : T1 = T& = TO = & cannot be expressed
in terms of the defined ones. However, Siupecki has shown that if we 
add the Ta function to the Lukasiewicz system then the supplemented system 
is functionally complete (2).

The technical interpretation of a three-valued logic must deal success
fully with the following problems:

(a) It must choose three-state physical elements in accordance with the 
three possible values of the prepositional variables, and make correspond
ences between them in a suitable way.

(b) It must show how these three-state elements may be combined to realise 
certain primitive functions. There must not be great technical difficulties
in constructing such combinations of the elements,

(c) It must show how all functions can be expressed in terms of the 
chosen primitives. (This amounts to functional completeness.)

The rest of the paper is devoted to solving these problems.

(a) Let us consider an electrical network. The usual two alternative 
states (there is a potential on its output - there is no potential on its 
output) can be extended to a three-state system by distinguishing between
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positive and negative potentials. For example, we can ascribe the 
value 1 to the state of positive potential, the value of^ to that of 
negative potential, and the value of 0 to that of zero potential. The 
introduction of negative potential in addition to positive- and zero- 
potentials is not new, and in certain conmiunication-systems is already 
used in practise. Analogously to electrical systems, pneumatic systems 
and mechanical systems can also realise three different states:

1 : positive pressure ^ : negative pressure 0 : zero pressure
(vacuum) (ambient pressure)

1 : moves to right
(rotates clockwise)

^ ; moves to left O : does not move
(rotates anti

clockwise)

Our first task is to find those basic fourterminal configurations that 
will help us to realise the suitable correspondences between the values 
1, 0 and the potential-states described above. We present here four
possible states of fourterminal network and name them 'break', 'cross- 
connection', 'reverse-connection*, and 'through-connection*, (Fig, 1)

BREAK' CROSS
,0'

+

'REVERSE

•'THROUGH^
. r

Figure 1.
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In Table 2 we indicate four possible ways of ascribing (in columns 

I/^, l/g, 1 I l / g )  some of these connections to the values 1, 0,

lA lA iiA iiA1 *"2 '1 '2 
*1* ; Through c. Through c. Through c. o Through c.

Cross c. Cross c. Reverse c. Break

O' : Break Reverse c. Cross c. Cross c.

Table 2

The rationale of these ascriptions can be illustrated if we connect 

one pole-pair of these switches to a D.C. generator and the other pole-pair 

to a voltmeter, (Fig, 2)

g
input outp

ôutpuro y

Figure 2.
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If we substitute in *a* the connections occurring in column I/^, then 
the voltmeter will indicate positive, negative and zero potentials 
respectively. The same will happen if we substitute in *a* the 
connections occurring in column I/^. But if we put in *a* the switches 
occurring in column Il/^or II/^ then the voltmeter will indicate in 
turn positive, zero and negative potentials. In the sequel we shall use 
only correspondence 11/^.

(b) For the interpretation of the logical constants our basic idea 
was to lise those functions which are realised by the 'serial*, and 
'cascade* connections of our double^pole switches. These functions we 
designate by Sab, Lab respectively. Their switch-diagrams and value- 
tables are given in Fig. 3.

Lob

Sab 1 J 0 Lab 1 i 0
1 1 1 1 1 1 è 0
i 1 i 0 i i i i0 1 0 i 0 0 i 1

Fig. 3
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We observe that the matrices of Sab and Lab are symmetrical with 
respect to their main diagonals. So they define commutative functions
with respect to their variables, ( Sab = Sba, Lab = Lba ) The matrix
of Lab is also symmetrical with respect to its minor diagonal. (Lab =
LNaNb where Na is the Lukasiewicz negation-operation.) It is also clear, 
from their definitions, that these functions are associative. (SSabc =
SaSbc, LLabc = LaLbc).

We also need a fixed element (zero-order operation) which will be the 
'cross-connection*, and designate it by *n*. We note that in the 
interpretation we are using ( see 11/^ in Table 2) this corresponds to 
the value 'O',

(c) We would like to show now that all the logical functions of the 
Lukasiewicz-Slupecki three-valued logic can be expressed in terms of the 
functions Sab, Lab and n. In view of the fact that the N, C, T system of 
the Lukasiewicz-Slupecki logic is functionally complete, it is sufficient 
to express only these three functions in terms of S, L, n.

The Lukasiewicz negation-function is expressed by Na = Lan, for LIO = 0, 
L|0 = LOO = 1 ,  The value-table of these functions and their represent
ative circuit can be seen in Fig. 4.

a Na Lan
1 0 0
i i i
0 1 1 r\

a
— o------- n

' o
— o

Lon

Fig, 4
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The Siupecki Ta function is given by Ta = Snn because Snn = SOO = ^
The table of these functions and their switch-diagram can be seen in Fig. 5

a Ta Snn

1 i i

o-------
n

i i i

0 i i • no--------- To
Fig.5.

Finally the Lukasiewicz Cab function is given by LSSLaanbSSLannb and 
its table and switch-diagram is in Fig. 6.

a b n La a SLaan SSLaanb Lan SLann SSLannb LSSLaanbSSLannb Cab
1 1 0 1 1 1 0 l 1 1 1
1 è 0 1 1 1 0 i i i i

1 0 0 1 1 1 0 i 0 0 0è 1 0 è 0 1 & 0 1 1 1è l 0 & : 0 0 & 0 0 1 1è 0 0 i 0 i i 0 i i i

0 1 0 1 1 1 1 1 1 1 1

0 h 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1

Cob

Figur e 6.
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Thus Sab, Lab, n do indeed constitute a functionally complete system.

We remark that in expressing Cab in terms of S,L, and n we did not use 
an arbitrary hit or miss trial procedure. Instead, we have worked out a 
method by which any two-place function can be constructed from S,L and n.
The actual number of the different two-place functions in three-valued logic

is 3'̂ = 19,683. (This number compares with 2 = 16 different two-place
functions in two-valued logic.)

It would take too long to give a precise description of our method. We 
only mention that it is based on the commutativity and associativity properties 
of the functions S, L, and the fact that we were able to express each of the
27 one-place functions in terms cf S, L and n (Table 3), and use these in
suitable combinations in place of the variables in thé functions Sab and Lab,

Let us now illustrate our method in two simple examples;

Example 1: Consider two three-way switches ("a” and ”b”) whose three states
are to mean the following:

**0” : motor is switched on and it rotates clockwise;
: motor is switched off; it does not rotate;

”1” : motor is switched on and it rotates anti-clockwise.

Find an electric*! network which ensures that in any possible state-combination
of the switches "a" and "b” priority is given to the "higher" ( 1 ^  0 )
state. It is easy to see that to solve this problem we have to find the 
electrical network corresponding to the Lukasiewicz Aab function:

V(Aab) = max V(a), V(b)

We get Aab in terms of S, L and n by certain transformations. We start 
from Sab by swapping the second and third rows in its value-table. This can 
be done, according to Table 3 by using Fg = San, i.e. substituting San in

place of "a” in the expression Sab: SSanb, The value-table of this function
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1 1 1 ^1 = Lnn

1 4 1 2̂ = Laa

1 0 1 ^3 = SLanSan

1 1 4 ^4 - LSanSan

1 4 4 ^5 = Saa

1 0 4 ^6 = San

1 1 0 = SaLSann

1 4 0 ^8 = SSann

1 0 0 ^9 = SSana

i 1 1 ^10 = LSLSannnSLSannn

4 4 1 ^11 = SLanLan

4 0 1 1̂2 = LnSLSannn

4
4

1
4

4
4

^13

^14

= SLnSanLnSan 

= Snn

4 0 4 ^15 = LnSLnSanLnSan

4 1 0 ^16 = SnLnSan = LnF^^

4 4 0 ^17 = LnSLanLan

4 0 0 ^18 = LnLSLSannnSLSannn

0 1 1 ^19 = LnSaSan

0 4 1 ^20 = Lna

0 0 1 2̂1 = LnSaSan

0 1 4 ^22 = LnSan

0 4 4 ^23 = LnSaa

0 0 4 ^24 = LnLSanSan

0 1 0 ^25 = LnSLanSan

0 4 0 ^26 = LnLaa

0 0 0 ^27 = n

Table 3
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is given in Table 4, If we compare the value-table of SSanb with the value—
table of Aab then we can see that we can get Aab if we chain-connect SSanb with
Xab. (see Table 4) •

SSanb 1 i 0 Aab 1 i 0 Xab 1 i 01 1 1 1 1 1 1 1 1 1 1 1i 1 0 i & 1 i i i 1 i 00 1 i 0 0 1 i 0 0 1 1 1
Table 4

But again according to Table 3 we can derive Xab from Sab if we substitute 
a" in sab: Sbaab, Thus the final result is LSSanbSLaab,

The switch-diagram of this function can be seen in Fig. 7.
F g = Laa in place of "a" in Sab: SLaab,

Figure 7.

We could have expressed Aab also by LSSanbSSLanab, or by LLSSabaSSabbSSabb 
but obviously these latter solutions are not as economical as the first one 
because they use more switches. The optimal solution from an economical point 
of view is the one which uses a minimal number of switches. At present we 
are working on this problem of minimalization.
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Example 2. This is the well-known problem that presents itself in sleeping 
cars of trains. Suppose each compartment contains two berths each with a 
three-way switch:

0 ; "dimmed light"
^ : "lights out"
1 ; "full light"

Since the dimmed light does not disturb the sleep and provides a certain 
measure of safety, we would like to find an eletrical network that gives
priority to the lower state (0 ̂  ^ ^  1 ) in any possible states of the switches.
It is again easy to see that to solve this problem we have to find the 
electrical network corresponding to the Lukasiewicz Kab function;
V(Kab) = min V(a), V (b). This time we shall not explain in detail how one 
can' find this function in terms of L, S, n, because a solution can be found 
simply by the definition Kab = NANaNb and by some obvious simplification:
Kab = LnLSSLannLnbSLaaLnb, The switch-diagram of this function is 
represented in Fig, 8,

Kob
Figure 8,
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The actual constructions of these and similar networks apd their 
possible applications will be described in another paper. It should be 
only mentioned here that the switches *a*, *b* can be mechanical, 
electromechanical or electronic switches which are either commercially 
available or can easily be built up from those which are. About the 
possible applications of these networks we mention testing for validity 
of certain prepositional formulae, whose analogues are theses in certain 
non-classical systems. The technical interpretation here presented 
provides ways of testing for validity of prepositional formulae not only 
in the Lukasiewicz three-valued logic but also in any three-valued logic 
that can be defined by a set of truth-tables, (This is a direct 
consequence of the constructive functional completeness of L,S,n,) Such 
systems have been presented, for example, by Bochwar (3), Kleene (4), 
and Post (5), In fact, our Lab function formally coincides with the 
equivalence-function of Kleene*s system.

SUMMARY; In order to increase the transfer—velocity of information in 
certain automatic control systems, we have introduced a new technical 
interpretation of three-valued logic. We defined primitive functions Sab, 
Lab and n within this interpretation and proved that three-valued logic is 
functionally complete with respect to the defined primitives. Finally, 
we have illustrated in a few examples how certain functions can . be 
expressed in terms of S, L, n. About the technical construction of 
electrical networks using this new interpretation and their possible 
applications we intend to publish another paper.

G, NEMESSZEGHY,
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LIST OF SYMBOLS

a e  A a is a member (element) of the set A

A ÇA A is a subset of the set A

A C B A is a proper subset of the set B

a = b a is identical with b

Whenever a and b are elements of a lattice A:

a Z b  a is not greater than b; ^  is the lattice ordering; 40

a O b  greatest lower bound of a and b.

a V ^ b  least upper bound of a and b.

the top element of A whenever it exists.

0. the bottom element of A whenever it exists.A
a^, c^ fixed, distinguished elements in a lattice,

a — ^ b the pseudo-complement of a relative to b; 41

-vA* complement of a; n is a unary functor defined on the

elements of A with values in A.

Whenever A and B are lattices: 
h

A — ^ B the map h from A into B.

A X B the direct product (Cartesian product) of A and B; 22

A^ the direct product of A with itself k-times.

£ a  ̂ the result of Jaskowski's gamma functor applied to the

lattice Aj 38,49 

filter in a lattice; 41 

/ \  ideal in a lattice; 41
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Ay the eublattice of A determined by the filter V  in A;38

the two-element implicative lattice with distinguished

element c^= 0^ ; see Fig.1; 43. 
o

the two-element implicative lattice with distinguished

element c^= ; see Fig.2; 43.
o

the two-element implicative lattice of Fig.2, 43. 

the two-element implicative lattice of Fig.2, 43

the three«element implicative lattice in the ith row 

and the jth column of Fig.3» 46

of Fig.3, 46

A*,A**,... special lattices defined in the text.

A',A'*,... special lattices defined in the text.

A^iA^,... special lattices defined in the text.

p,q,r,... prepositional variables, 23

^1*^2**** prepositional variable, 23

f a fixed proposition (zero-order connective), usually

interpreted as something false; 39

Whenever p and q are prepositional variables :

T p not-p; 23
p & q p and q; 23
p v q p or q; 23

P — ^ 1 P implies q; 23

Np -1 p in Polish notation.
Kpq p 8c q in Polish notation.
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Apq p V q in Polish notation#

Cpq p — ^ q in Polish notation.

l^q Lukasiewcz's denotation for the intuitionistic conjuntion.

Opq Lukasiewicz's symbol for the intuitionistic disjuntion.

Fpq Lukasiewicz's symbol for the intuitionistic implication.

Sab the function defined in Appendix III; 180

Lab the function defined in Appendix III; l80
Ta the Slupecki function used in Appendix III; 182

Na Lukasiewicz's negation operation used in Appendix III;l8l

n the symbol for the zero element (cross-connection); l8l

Note ; The connectives should always be understood within the defined 

systems.

F,P,Q,R,... metavariables for any well-formed formulae; 25

F*,F**,... special well-formed formulae defined in the text.

F',F'',... special formulae defined in the text.

F^iFg,... any well-formed fixed formulae except in II.2 and II.3

where they designate special formulae; 63
F.J,F^,... special formulae defined on 69

V(F) value-function of F; 35

(= F F is valid in M; 35
M

CL classical prepositional logic; 26

EL Heyting's prepositional logic; 27

ML minimal logic of Johansson; 28

(ML,F) the prepositional logic obtained by extending ML with the

additional axiom F and leaving the rules of ML unchanged.
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Cal*̂  (ML, p V -V p); 29

Cal^,Cal2 any prepositional calculi

Cal*,Cal** particular calculi defined in the text.

Cal*,Cal** particular calculi defined in the text.

I—  F F is provable (derivable) in Cal^; 33
Cal̂
PL positive logic; 29


