by

Colin Bean

```
A THESIS SUBMITTED TO
THE UNIVERSITY OF LONDON
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
```


PHYSICS DEPARTMENT
ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE UNIVERSITY OF LONDON EGHAM HILL EGHAM SURREY TW2O OEX JUNE 1988

ProQuest Number: 10090182

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10090182
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Colin Bean

Abstract

This thesis describes the theory and implementation of a system for the active control of acoustic noise in a small enclosure ('small' infering that only a small number of acoustic modes dominate the reverberant field in the enclosure)


```
    The theory for a multicharnel active noise control
system is developed. A system could consist of a number of
detectors and cancellation sources controlling the field
at a number of monitor positions. The simplest system
comprises a single detector and a single source and is
capable of controlling the field at one position. The
controller for this system could consist of a pair of
electronic filters, one between the detector and the
source in parallel with another cancelling the feedback
from the source to the detector. It is shown that for any
configuration of transducers the required controllers can
be realised by repeatedly using the same filter pair as
described above.
                                    <.ven -ib4,
```

```
    A particular study is made of the active controloof.
reverberant fields. A system was successfully implemente"d
to partially control the reverberarit field in a small
```

```
enclosure (0.5 人0.6 < 0.7m). This consisted of a sirigle
detector microphone and a single control loudspeaker
controlling the field at a single monitor microphone.
```

The system was controlled with two finite impulse
response filters realised using a Texas Instruments
TMS 32020 microprocessor accessed via a ferranti PCB60XT
personal computer. The first two modes of the reverberant
field were successfully attenuated.

In summary, the theory for a multichannel controller has been developed and the simplist case tested. The importance of this is that the basic unit of a multichannel controller has been successfully implemented and this unit could be replicated as the basic building block for more complex controllers. This facilitates the implementation of controllers to attenuate the sound field at a number of points in a practical enclosure.

ACKNOWLEDGEMENTS

I am very grateful for the support and direction of Dr. Stuart Flockton who supervised this work.

I also thank Nick Abbott and Mike North who played a large part in the design and construction of the hardware used and also Tom Gurrie for our exchanges of information. All of the above made up the electroacoustics section of the Physics department of Royal Holloway and Bedford New College, London University.

This work was funded by the Science and Engineering Research Council under a CASE award with Plessey Research (Caswell) Ltd. Acknowledgement also to Tony Salloway, my industrial supervisor for his interest and encouragement.

CONTENTS

Abstract 2
Acknowledgements 4
Contents 5
List of Figures 10
List of Symbols 14
1 Introduction
1.1 Situation 19
1.2 Complication 22
1.3 Solution 24

$$
\begin{aligned}
& \text { Theory of a reverberant field and the requirements } \\
& \text { of an active noise control system. }
\end{aligned}
$$

2.1

> Theory of the reverberant field inside a rectangular enclosure.
2.1.1 Introduction. 28
2.1.2 The theoretical form of the reverberant sound field inside a rectangular enclosure. 29
2.1 .3 The modal nature of the sound field inside an enclosure. 32
2.1.4 The effect of the sound source position on the modal amolitudes.

34
2.1.5 Calculation of the reverberant sound field
inside a rectangular enclosure. 36
2.1.6 Amplitude response of the reverberant field at a point in the enclosure. 38
2.1.7 Phase response of the reverberant field at a point in the enclosure. 39
2.1.8 Attenuation achievable by individually removing the low order modes. 42
2.1.9 Summary. 44
2.2

Requirements of an active sound controller.
2.2.1 Introduction. 45
2.2.2 Essential elements and action of an active noise control system operating in a duct. 46
2.2.3 Transducers. 49
2.2.4 Digital signal processing using Finite Impulse Response filters. 51
2.2.5 Control theory. 54
2.2.6 Desired controller resoonses for an active noise control system operating in a duct. 57
2.2.7 Summary.

61
2.3

The application of active noise control
to attenuate a reverberant field.
2.3.1 Introduction. 63
2.3.2 The requirements of an active control system attenuating a reverberant field. 64
2.3.3 Requirements of the monitor positions of an active control system attenuating the low order modes of a reverberant field. 65
2.3.4 A mathematical treatment of the requirements of the monitor positions. 67
2.3.5 Requirements of the positions of the control sources and detectors for an active control system attenuating the low order modes of a reverberant field. 70
2.3.6 The theory of how a single mode could be attenuated; Frequency domain. 72
2.3.7 The theory of how a single mode could be attenuated; Time domain. 74
2.3.8 The effect of damping on the controller response. 77
2.3 .9 Summary. 80
A theoretical method of realising the controller for a
$\frac{\text { multichannel active contral system and the practical }}{\text { implementation of the digital controller for a }}$
$\frac{\text { single channel system. }}{} \quad 81$
3.1

Multichannel controllers.
3.1.1 Introduction. 83
3.1.2 Theorv of a general multichannel active control system.
3.1.3 The need for multichanriel controllers.
3.1.4 An analysis of some soecific examples of multichannel controllers. 91
3.1.5 A method to realise the controllers for a multichannel active control system. 94
3.1.6 Summary. 99
3.2
A practical imolementation of a digital controller
for a single channel active noise control system.
3.2.1 Introduction. 101
3.2.2 Two methods of implementing the electronic feedback compensator. 102
3.2.3 The hardware used in the practical implementation and the additional hardware developed. 106
3.2.4 Implementation of the digital controller on a Texas Instruments TMS 32020 microorocessor. 109 3.2.5 Checking the operation of the digital controller.

114
3.2.6 Testing the FIR filters by modelling a simble system. 116
3.2.7 Testing the closed loop of the controller using filters of simple known responses. 119
3.2.8 Imolementation of a digital controller for a two channel active noise control system. 123
$\begin{array}{ll}3.2 .9 & \text { Summary. } \\ 125\end{array}$
3.3

A practical method implemented
to derive the desired controller.
3.3.1 Introduction. 127
3.3.2 Review of the filter structure used to realise the controller. 128
3.3.3 Aims and requirements of measurements needed to characterise the controller. 129
3.3.4 A series of measurements to characterise the control system. 133
3.3.5 The practical method implemented to record the responses of the control system. 136
3.3.6 The system modelling used to derive the digital filters. 140
3.3.7 The practical method implemented to measure the oven loov transfer function of the single channel active noise control system. 144
3.3.8 Summary. 147
Practical implementation of an active sound control
$\frac{\text { system operating on the reverberant field }}{\text { inside a small enclosure. }} 148$

```
4.1 Test conditions.
```

4.1.1 Introduction. 149
4.1.2 Test enclosure and sound field. 150
4.1.3 Working range and samoling frequency of the

```digital system.152
```

4.1.4 Imoulse response of the reverberant sound

```field.153
```

4.1.5 Onerating limitations of the controller. 155
4.1.6 Positions of the transducers inside the
enclosure. 157
4.1.7 Summary. 159
4.2Acoustical measurements on the enclosureand derivation of the digital filters.4.2.1 Introduction.161
4.2.2 Generation of the transient test signal. 161
4.2 .3 Procedure to record the acoustical
measurements. 164
4.2.4 Deriving and assessing the digital control
filters. 167
4.2.5 Theoretical attenuation achievable on the
reverberant field. 172
4.2.6 Summary. 177
4.3
Practical imblementation of
the active control system.
4.3.1 Introduction. 178
4.3.2 Closed loon transfer function measurements on the control system. 179
4.3.3 Gper loop transfer function measurements on the control system. 184
4.3.4 Resulting attenuation at the monitor position
when the control system is imblemented. 188
4.3.5 Effect of the controller at another position in 190
4.3.6 Summary. 191
4.4Arialysis of the control system at differing samplingfrequencies and monitor positions and imolementation ofa two channel active control system.
4.4.1 Introduction. 193
4.4.2 Analysis of the controller performance atdiffering samoling rates and degrees of damping. 194
4.4.3 Implementation of a single channel systemcontrolling the field at a different monitor position. 195
4.4.4 Practical arrangement of the two channel
control system.197
4.4.5 Series of measurements used to derive the
digital controllers for the two chanriel control system. 199
4.4.6 Result of the practical implementation of the
two chaninel control system. 201
4.4.7 Summary. 205
5 Conclusioris.
5.1 Review of the theory presented in this thesis. 206
5.2 Review of the digital systems implemented. 209
5.3 Discussion of the results of chapter four. 211
5.4 Gerieral conclusions and suggestions for further
work.
214
Figures 215
6 Appendices 290
1 Multiplexer-demultiplexer unit interfaced to the
TMS32020 board. 291
2 Texas TMS32020 assembly lariguage program to realise
the single channel digital controller. 301
3 Texas TMS 32020 assembly language program to realise
the two channel digital coritroller. 310
4 Fortran program to numerically generate the transient
test signal.
316
5 Texas TMS 32020 assembly language program to measure
the acoustical responses of the control system. 319
6 Texas TMS 32020 assembly lariguage program to measure
the oven loop response of the single channel control
system.
324
7 C.Bean and S.J.Flockton. Active control of acoustic
noise in a small enclosure. Paper presented by the author
at the institute of acoustics annual meeting, Cambridge:
April 1988.
3.30
References 338

LIST OF FIGURES

4.2.7 Signal y32. 253
4.2.8 Signal 812 253
4.2 .9 Signals y 30 and y 32 254
4.2.10 Derived feedback filter 128 point FIR. 254
4.2.11 Spectrum and inverse transform of Y12/X2. 254
4.2.12 Derived feedforward filter 128 point FIR. 255
4.2.13 Spectrum and non-causal inverse transform of
Y30/Y32. 255
4.2.14 Amplitude spectra of feedforward filter and
Y30/Y32.255
4.2.15 Theoretical attenuation at the monitor. 256
4.2.16 256 boint feedforward filter. 256
$4.2 \cdot 17$ Theoretical attenuation produced by a point
filter. 256
4.2.13 $1,0,0$ mode shape 257
4.2.19 $0,1,0$ mode shape 257
4.3.1 System to perform measurements of the closed loop
transfer function of the control system operating on the
enclosure. 258
4.3.2 Schematic diagram of the filter paths. 259
4.3.3 Configuration of filter paths in the practicalcontrol system.259
4.3.4 Closed loop transfer function of low pass filters
and one cycle delay through the digital system. 260
4.3.5 Closed loop transfer function of the control
system with both feedback paths connected and a single
cycle delay through the feedforward filter. 260
4.3.6 Schematic diagram of the filter paths. 261
4.3.7 Configuration of the filter paths in the practicalcontrol system.261
4.3.8 Transfer function of figure 4.3.6. 262
4.3.9 Transfer function of figure 4.3.7. 262
4.3.10 Transfer function of figure 4.3.7 with the
loudsoeaker terminals reversed. 263
4.3.11 Closed loop transfer function of the activecontrol system with the feedback filters disconriected. 2644.3.12 Closed loop transfer function of the controlsystem with both feedtack vaths and the feedforward filterconriected.264
4.3.13 System to measure the control system open loopresponse.265
4.3.14 Configuration to measure the implemented response
of the feedback bath alone. 265
4.3.15 Signal vdi2. 266
4.3.16 Signal y $12+$ vdi2. 266
4.3.17 Open loop transfer function of both feedback paths
and a single cycle delay through the forward path;
(Y12+YD12)/X2. 266
4.3.18 System to measure the open loop response of the
feedback paths alone. 267
4.3.17 Signal captured in figure 4.3.18. 268
4.3.20 Measured open loop transfer function of both
feedback paths and a single cycle delay through the
forward path. 268
4.3.21 Signal captured in figure 4.3.13. 269
4.3.22 Measured open loop transfer function of thecontrol system. 269
4.3.23 Measured open loop transfer function of both
feedback paths and a single cycle delay through the
forward bath: system resporise derived with a test signal starting at only 10 Hz .

270
4.3.24 Measured oven loon transfer function of the control system; system response derived with a test signal starting at only 10 Hz . 270 4.3.25 Active noise control system implemented in an enclosure.

271
4.3.26 Amplitude spectra of the response at the moritor microohone with and without the control system operating. 272 4.3.27 Phase swectra of the response at the monitor microphone with and without the control system overating. 273 4.3.28 Control system transducer positions; plan view and side projections.

274
4.3.29 Pictures showing the oositions of the transducers inside the enclosure. 275
4.3.30 Amplitude spectra of the response at the observer microphone with and without the control system operating.
4.3.31 Phase spectra of the response at the ohserver microphone with and without the control system overating. 277
4.4.1 Measurements at 1 KHz with heavy damping; signals y10, $y 30, ~ y 32, ~ s p e c t r u m ~ Y 30 / Y 32$ and its inverse transform and the 128 point FIR filter derived from the measurements. 278 4.4.2 Measurements at 5 KHz with heavy damping; signals Y10, $Y 30, ~ Y 32, ~ s w e c t r u m ~ Y 30 / Y 32$ and its inverse transform and the 128 point FIR filter derived from the measurements. 279 4.4.3 Measurements at 10 KHz with heavy damping: signals $y 10, y 30, Y 32$, spectrum $Y 30 / Y 32$ and its inverse transform and the 128 point FIR filter derived from the measurements. 280 4.4.4 Theoretical atteruation plots at 1,5 and 10 KHz . 281
4.4.5 Measurements on the single channel control system with the monitor at a different nosition; $y 10, y 30, y 32$ and y12. 282
4.4.6 Derived feedback and feedforward filters; 128
point FIR and the non-causal spectrum Y $30 / Y 32$. 283 4.4.7 Amplitude and phase spectra at the monitor microphone with and without the control system operating. 284
4.4.8 Amplitude and phase spectra at the observer
microvhone with and without the control system
operating.
4.4.9 Two channel active noise control system operating
in an enclosure.
4. 4.10 Two channel active control system;
projection. side
4.4.11 Two chamel active noise control system showing
the relevant transfer functions.
4. 4.12 Effect of the two channel control system at the
monitor microphones.

LIST OF SYMBOLS

```
A list of the most common notation used in this thesis;
```

a
complex mode amplitude.
A Mode amplitude of $i^{t h}$ mode.
tis Characteristic function of the j mode at the ith monitor position.
a b d Dimensions of enclosure.
A Matrix of transfer furictions betweer roise source and monitor microphones.

B Matrix of transfer functions between noise source and detector microphones.

C
Matrix of transfer furictions between coritrol
speakers and monitor microphones.
E Matrix of transfer functions between detector and monitor microphones.

Ex Ey Ez Directional coupling coefficients of a mode.
F Matrix of transfer functions between control
sources and detector microphones.
k Damping factor of a mode.
H. Filter coefficients.

LO AO Noise source loudspeaker and its amplifier:
L2 A2 Coritrol loudspeaker ard its amplifier.
M1 A1 Detector microphone and its amplifier.
M3 A3 Monitor microphone and its amplifier.
Pryzwt Sound pressure at a point. controllers.

Q	Volume velocity of a sound source.
1 mm	mode orders in x, y and z directions.
r or p	Density of air.
T60	Reverberation time.
t_{n}	Decay time of a mode.
v	Velocity of air.
v	Volume of enclosure (m^{3}).
w	Arigular frequericy.
w_{n}	Modal angular frequency.
$x 0, y 0, z 0$	Position of sound source.
x_{1}	Numerically generated swept sine signal.
x_{2}	Swept sine sigrıal used as the excitation signal
in the acoustical measurements.	
Y10	Sigral resporise at the detector microphone due
to noise source loudspeaker being excited by x_{z}.	
$y=0$	Signal response at the monitor microphone due to
noise source loudspeaker being excited by x_{z}.	
Y_{12}	Signal resporise at the detector microphone due
to control loudspeaker being excited by x_{z}.	
Y>2	Signal response at the monitor microphone due to
control loudspeaker being excited by yoo	
yd_{12}	Signal response at the exit from the digital
feedtack	path due to being excited by x_{z}.
Z	impedarice.

THIS PAGE IS BLANK

THE ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL ENCLOSURE

1 INTRODUCTION

```
    Chapter one consists of a broad introduction to
active sound control and describes the type of situations
to which it may be applied. In particular, recent work on
the active control of the reverberant field in small
enclosures is referred to and the particular areas of
interest of the subject are highlighted. These topics are
covered within the framework of a review of the material
presented in this thesis.
```


1.1 SITUATION

Abstract

The active control of acoustic noise aims to attenuate unwanted low frequency sounds by using a number of loudspeakers to produce sound in antiphase to the unwanted sound. An active control system consists of a number of serisors and excitors, the former sensing the displacement, velocity or pressure etc. and the latter exciting the system to control the measured quantity. An active sound control system can use microphones to sense the sound pressure and loudspeakers to excite the sound field. The signal sensed by the microphones reeds to be appropriately processed before being used to excite a control loudspeaker. A new generation of commercially affordable digital microprocessors with high processing speeds enable the signals to be suitably processed and the active systems to be controlled at costs that are sufficiently low to be attractive to industry.


```
    Passive damping, such as acoustic tiles and
partitions, operates by dissipating the acoustic energy by
friction and is most successful at high frequencies. It
becomes inefficient as the wavelength of the sound to be
attenuated becomes much greater than the dimensions of the
absorbing material. At higher frequencies an active system
would be required to operate with high timing accuracy to
give a pressure wave almost exactly out of phase to the
unwanted sound, thereby greatly increasing the complexity
```

```
of the system but an active sound control system that
operates at low frequencies can act as an appropriate
complement to passive control methods.
    Ideally it is desirable to implement control systems
which adapt to changes in the environment and would be
capable of operating in many differant practical
situations. Changes in the system to be controlled may be
brought about by changes of temperature, movement of
people or objects within the enclosure. It would also be
an advantage to include some measure of the sensitivity of
the human ear in the control system perhaps by relating
the attenuation achieved to a phon scale. However, given
these physical and psychoacoustic realities, it is first
necessary to implement fixed (non-adaptive) control
systems to gain an understanding of their requirements.
    Much of the published work on active sound control
systems has been concerned with the attenuation of the low
frequency noise in ducts, particularly at frequencies
below the cut off frequency of the first cross-mode of the
duct. This is approximately a one-dimensional situation,
thereby greatly simplifying the sound field to be
controlled compared with a full three-dimensional system.
Recently a commercial device has been marketed in the USA
claiming to actively attenuate industrial fan noise (Ref.
Nelson Industries Inc.). Another relatively simply
situation is where a loudspeaker and microphore can be
incorporated into a headphone making an active device
designed to give attenuation only at the ear. This
situation may, to a first approximation, be regarded as a
zero dimensional case.
```

```
    The sound field inside a room is much more
complicated than these simple cases because of the
multiple reflections and standing waves inside the room.
The theory of how a three dimensional sound field may be
actively attenuated is both less well understood and also
is much more complicated to implement in practice.
```


1.2 COMPLICATION

Abstract

Any sound field in an enclosure can be thought of as the sum of the propagating and reverberant fields. As previously mentioned, published study has concerned the control of propagating fields inside ducts and given sufficient processing power a one dimensional propagating field can be attenuated (Ref. Flockton). However, the control of the propagating field inside a room is much more complicated due to the multiple reflections involved and fundamentally requires that the control speakers be positioned in the line of the propagating field. Indeed, a propagating field is best controlled with a secondary source positioned as close as possible to the primary noise source. However, with multiple or large sources this may be difficult or impossible.

A practical situation can be envisaged of a machine operator requiring a quiet zone within a loud environment. A possible solution for this may be a general portable active sound control system consisting of a number of microphones and loudspeakers sampling and controlling the propagating field in a number of directions to produce a zone of attenuation.

In a practical situation it may be desirable to differentiate between the control of the direct and the reverberant sound fields. However, the principle of superposition can be applied to linear sound fields, therefore the propagating and linear sound fields can be considered seperately.

Abstract

Although in reality the modes of a reverberant field will be complicated due to the shape of the enclosure, objects and people within the enclosure, resulting in shifts in the resonant frequencies and damping, the obvious simple situation to consider is a rectangular enclosure. A number of papers have been published concerning the active control of the low order modes of a reverberant sound field. Nelson (Ref.) has studied the problem in terms of what is the optimum attenuation that can theoretically be achieved with a number of loudspeakers controlling the field. The theory shows that substantial reductions in the net acoustic power radiated can be achieved if the control sources are within half a wavelength of the noise source. Bullmore (Ref.) has extended this theory to sound fields of low modal density by minimising the sum of the squared pressures at a number of sensor locations and has shown that attenuation close to the optimal levels can be achieved. Also, it is shown how attenuation can be achieved with control sources separated from the noise source by distances of greater than half a wavelength.

Many of the studies mentioned are theoretical and rely on prior knowledge of the noise source. Recent work (Ref. Elliott, Stothers and Nelson) demonstrates the practical attenuation of a harmonic sound field dominated by a few low order modes, the control system operating at a single frequency. Little material has been published concerning experiments on the active control of broadband noise within an enclosure.

1.3 SOLUTION

Abstract

The theory and practical implementation described in this thesis demonstrates a number of aspects of active sound control applied in particular to the control of the low order modes inside a small enclosure. What follows is a breakdown of the structure of the thesis and the work presented.

Chapter two is divided into three sections, the first
of which reviews the theory of the reverberant field
inside an enclosure and shows how the dominant modes of
the sound field need to be attenuated to produce
worthwhile attenuation throughout the enclosure. Section
2.2 reviews the basic concepts of active sound control and
indicates how the inherent feedback present in a system
and the frequency responses of the environment and
transducers may be compensated for. Section 2.3 combines
and extends the known theory presented in the first two
sections to show how an active system can operate to
attenuate the low order modes of the sound fieldinside an
enclosure. A general multichannel system is considered
which can attenuate a number of modes and the requirements
for the transducer positions are presented. An
understanding of one way in which a control system can
operate is presented by considering the attenuation of a
single mode in the frequency and time domains.

Chapter three is also split into three sections; the

Abstract

first reviews the theory by which may be derived the required responses of the coritrollers for a general multichanriel control system (first presented by Elliott and Nelson Ref.). The material is develoned to give a new method whereby the digital controller for a multichannel control system can be readily realised arid it is shown how the controller used to implement a single channel control system can be used as a basic unit, so that when used repeatedly a general multichannel control system can be implemented.

The first sted in verifyirg the fractical success of such a system is the practical implementation and testing of the basic umit of a multichannel controller. Therefore the next section describes the practical implementation of a single chanmel digital controller on a Texas Instruments TMS 22020 microprocessor. The controller consisted of a nair of 128 point FIR filters; one in the forward direction positioned in the forward path from the detector microphone to the control sueaker and the other in a feedtaack oath to caricel the acoustic feedback.

Havirig developed a method of implementing a control system, section 3.3 aresents the aractical method whereby the digital control filters were derived for a single chanmel controller.

```
    Chavter four wresents the wractical experiments
carried out to verify the solution presented in section
2.3 and chavter 3. This particular aporoach shows how a
```

```
single channel control system can be imolemented to
attenuate the low order modes of the sound field iriside an
enclosure. The exoeriments are also iritended to sumport
the theory that the single charriel controller could be
used as the basic building block of a multichanmel
controller and the first step in testing this theory is
the testing of the biasic unit.
    Section 4.1 describes how a suitable test enclosure,
uractical amparatus and test conditions were configured to
produce a situation in which a control system could be
successful. The riext section mresents the measurements and
analysis (theoretically presented in section 3.3) used to
derive the digital control filters. Section 4.3 presents
the results of measurements used to assess the degree of
atteruation achieved by the control system and the results
of the actual implementation of the system.
    Section 4.4 presents the results of some additional
measurements (i) Analysing the performance of the control
system at higher samnling frequencies. (ii) Imalementing a
single channel control system configured to give
attenuation at a different monitor position to the main
experiment presented in the first three sectioris. (iii) A
series of measurements is presented by which the digital
controllers for a single detector, double source system
can te derived. These measurements were carried out and
the results of the imolementation of the two chanmel
control system discussed.
```

```
    Chanter five discusses the main results and the
conclusions that can be drawn from the work presented.
```


2 THE THEORY OF A REVERBERANT FIELD AND THE REQUIREMENTS OF AN ACTIVE SOUND CONTROL SYSTEM

This chapter consists of three sections. Section 1 is a review of the theory of the reverberant field inside a rectangular enclosure and section 2 consists of a review of the fundamental aspects of a simple active control system. In section 3 the material covered in the first two sections is brought together and expanded to gain a greater understanding of how the low order modes of a reverberant field may be actively controlled.

2.1 THEORY OF THE REVERBERANT FIELD
 INSIDE A RECTANGULAR ENCLOSURE

2.1.1 INTRODUCTION

This thesis is concerned with the active control of the low order modes of vibration of the reverberant sound field inside a rectangular enclosure. An appropriate introduction to the work presented is a theoretical study of the reverberant field inside a rectangular ericlosure; in particular the sound field inside a rectangular enclosure generated by a single source within the enclosure. A practical implementation of an active sound control system operating inside such an enclosure is presented in chapter 4.

The modal nature of the reverberant sound field is discussed and the effect of the position of the sound source on the modal amplitudes is presented. These concepts are brought together in a single equation.

The sound pressure at a point inside a rectangular enclosure is expressed as the sum of pressure components from each of the modes of vibration of the air inside the enclosure. It is shown how each mode is excited to an extent depending on the source position.

The form of the amplitude and phase responses of the sound field inside the enclosure are explained. Finally, the effect on the sound pressure level of removing the dominant mode at any given frequency is shown and also the
way in which the modes need to be controlled to attenuate the reverberant sound field in an enclosure.

2.1.2 THE THEORETICAL FORM OF THE REVERBERANT SOUND FIELD INSIDE A RECTANGULAR ENCLOSURE

A general equation for the pressure at a point in an enclosure due to a harmonic source is given by (Ref. Bullmore);

$$
P(x, w)=\sum_{n=1}^{N} f_{n}(x) a_{n}(w)
$$

where the excitation source and the pressure have a time dependence $e^{3 w t}$. + are the characteristic functions of the enclosure and a are the complex mode amplitudes.

The reverberant sound field inside an enclosure can be thought of as being made up of the sum of the modes of vibration of the air inside the enclosure. Therefore the pressure at a point inside an enclosure consists of components from each mode.
The equation expressing the pressure at a point
inside a rectangular enclosure can be found in many
standard texts (such as cremer or pierce). The
presentation that follows is intended to separate the
relevant concepts within the equation.

The pressure at a point inside a three dimensional rectangular enclosure is given by the equation in figure 2.1.1. It is expressed as the sum of pressure comporients
from each mode of vibration of the air inside the enclosue.

The pressure of each mode at a point is determined by three distinct factors. Firstly, the complex mode function; the mode amplitude and phase response to a given excitation. This is determined by the excitation frequency, the natural (modal) frequency and the degree of damping of the mode. This part of the equation shows that each mode acts as a second order system; (the response of an individual mode is studied in section 2.3).

Secondly, the complex source strength distribution. The position and driving function of the sound sources determines the extent to which each complex mode is excited. An obvious concept, sometimes overlooked in the mathematical theory, is that in a damped enclosure, unless an excitation source is present, a sound field will not exist.

This part of the equation relates the pressure generated to the volume velocity of the source. The source strength is always expressed by the element Q, the volume velocity of the source. The position of the source (the cosine terms) determines the extent to which it produces a pressure. This fits in with the fact that a baffled loudspeaker acts as a monopole source of strength determined by the rate of mass outflow from the source (rQ). Strictly the overall equation is valid for a point source. For generality, a summation is included to represent a number of sources; each source exciting the system at the specific angular frequency.

The complex mode function and the complex source

```
strength distribution combine to determine the complex
mode amplitudes (the magnitude and phase response of each
mode):
The final part of the equation is the characteristic function of the mode. This takes into account the fact that the pressure at a particular point inherently depends on the position of that point. The function describes how the pressure amplitude of the mode varies with spatial coordinates.
The equation gives a greater understanding of the pattern of the sound field inside the ericlosure; how the sound field is made up of the individual modes (standing waves) in the enclosure and what is the state of the sound pressure at a particular point.
The equation theoretically represents the sound field inside a rectarigular enclosure where a sound source is exciting the field. It shows how the sources excite the modes of vibration and sets up standing wave patterns inside the ericlosure (determined by the source positions and the complex mode shapes). These standing waves sum to give the pressure levels at all points in the enclosure.
```


2.1.3 THE MODAL NATURE OF THE SOUND FIELD INSIDE AN ENCLOSURE

Abstract

The column of air inside a closed pipe can resonate around certain frequencies. When the air is excited a standing wave pattern is set up along the length of the pipe. Under ideal conditions when both terminations have identical impedances (different from the characteristic impedances of the pipe) the air in the pipe resonates at those frequencies where an integral number of half wavelengths fit into its length.

Consider a three dimensional enclosure: standing waves can exist in three mutually perperdicular directions; along the length, breadth or height of the enclosure. These waves are one dimensional, similar to the standing waves inside a pipe. The lowest frequency at which the air inside the enclosure will resonate is at the frequency for which one half-wavelength is equal to the longest dimension of the enclosure. Theoretically, the pressures associated with this standing wave across the breadth and vertical dimension of the enclosure are constant.

Standing waves can also be set up in two or three dimensions inside the enclosure; for example the pressure field varies across two dimensions as shown in figure 2.1.2. A standing wave can be present only when a source is present. However a standing wave is not necessarily equal to a mode; a mode is a mathematical solution to the wave equation with the appropriate boundary conditions, independent of a source being present. With a source


```
present a sound field can be described in terms of
different modal amplitudes and shapes.
    A specific notation is used to distinguish the modes
of the sound field. The first longitudinal mode referred
to above is called the 1,0,0 mode. The 0,1,0 mode refers
to the first mode in the y direction and the 1,0,2 mode
has non-zero components in the }x\mathrm{ and }z\mathrm{ directions. The
numbers specified in this notation are refered to as the
order of the mode in that dimension. The 1,3,0 mode has
order 1 in the x direction and order }3\mathrm{ in the y direction.
The 2,0,0 mode is the second order mode <the second
harmonic) in the }x\mathrm{ direction.
```

```
    A mode is significantly excited (resonates) only when
the excitation frequency is in the region of the natural
frequency of the mode (the modal frequency) or the source
distribution matches the mode shape well.
    Exciting an enclosed volume of air at a particular
frequency with a small source will excite all the standing
waves within that volume. However, only those modes with
natural frequencies in the region of the excitation
frequency will be excited to any great extent and
therefore these modes will dominate the sound field.
```


2.1.4 THE EFFECT OF THE SOUND SOURCE POSITION
 ON THE MODE AMPLITUDE

The amplitude of a mode may be defined as the amplitude of the maximum pressure fluctuations of that mode within the space being studied. It is a useful quantity to define the strength of a mode. However, we are concerned with attenuating the modal pressures; whether this is achieved or not can be determined by knowing the pressure at a single point in the standing wave.

The position of a sound source determines the extent to which that source can excite a particular mode. This can be illustrated by considering a simple system of a standing wave in a closed pipe (figure 2.1.3). For the first mode of the pipe the pressure at a distance x down the pipe is given by;

$$
P=A \cos \frac{2 \pi x}{X} e^{3 \omega t}
$$

The rate of change of momentum equals the force. In an acoustic pressure wave this determines that;

$$
r \frac{d v}{d t}=-\frac{d P}{d x}
$$

```
where v is the velocity of the air at a value of }x\mathrm{ and }r\mathrm{ -
is the density of air. Differentiating the pressure
equation gives;
```

```
                r \frac{dv}{dt}=\frac{2\piA}{x}\operatorname{sin}\frac{2\pix}{x}\mp@subsup{e}{}{3\omegat}
integrating this gives;
    v=-j\frac{2\piA}{wrX}\operatorname{sin}\frac{2\pix}{x}\mathrm{ ejwt}
The impedance of the standing wave in the pipe at a
distance x is given by;
\[
Z=\frac{P}{v}=j \frac{w r x}{2} \cot \frac{2 \pi x}{x}
\]
It can be seen from this equation that the impedance of the pipe is theoretically infinite at the ends where there is a wall and zero in the middle.
Towards the middle of the pipe the acoustic pressure variation gets less and less. In an ideal undamped standing wave the pressure does not vary at the exact centre of the pipe; a pressure node is said to occur here. A very small impedance is presented to a loudspeaker positioned on a node. The speaker is able to move easily for a small driving force. It can displace a relatively large volume of air without producing much pressure thereby operating primarily as a volume velocity source and not as a pressure source.
A loudspeaker at the ends of the pipe operates on a very large impedance; this impedance enables the speaker to get a hold of the air it is operating on thereby producing a pressure wave in the air; the speaker operates primarily as a pressure source. More specifically, whether the source acts as a velocity or pressure source depends on the ratio of the impedance of the source to the radiation impedance presented to the source.
```


Abstract

Each frequency componerit of a sound source will excite a mode to the extent that the source couples into that mode. Likewise, a mode can only be detected to the extent that the detector couples into that mode. The equation of figure 2.1.1 incorporates these two concepts by expressing the pressure at a point in a rectangular enclosure in relation to the position of the sound source.

2.1.5 CALCULATION OF THE REVERBERANT SOUND FIELD
 INSIDE A RECTANGULAR ENCLOSURE

Having presented the equation determining the modal form of the sound field and the pressure at a point in an enclosure this equation can be used to determine the amplitude, phase and time response of the sound field inside the enclosure.

The sound field inside a rectangular ericlosure of dimensions $0.5 \times 0.6 \times 0.7 \mathrm{~m}$ was calculated, using the equation in figure 2.1.1 for a position one fifth along a diagonal from the corner containing a point source (figure 2.1.4). Using an experimentally estimated damping the sound pressure at each frequency was determined by summing the pressure componerits from all modes up to order six. The modulus and phase pressure response were both calculated.

The degree of damping present in the enclosure

```
determines the amplitude response of the modes of
vibration of the sound field. The smaller the damping, the
more wrominent the reverberant field, the longer the
reverberation time (T&O) of the enclosure and the peakier
the amplitude spectrum of the response. A form of the
pressure equation (Ref. Cremer) represents the damping
component of the complex mode function in terms of the
decay time of a mode (tn) such that;
2w
The decay time of a mode can be represented in terms of
the reverberation time of the mode;
TE0}=6\operatorname{ln}10 t
The reverberation time of the enclosure used in the practical demonstration of chapter four was measured as being 1.6 s. Therefore the simulation was carried out using a decay time of 0.12 s for each mode (ie. the damping of all the modes was assumed to be the same).
The amplitude and phase response at the representative point are shown together in figure 2.1.6. This section contirues by viewing the amplitude and phase response of the reverberant field in turn.
```


2.1.6 AMPLITUDE RESPONSE OF THE REVERBERANT FIELD
 AT A POINT IN THE ENCLOSURE

```
The amplitude response of the sound field shows the low order modes of vibration of the sound field (figure 2.1.5). The first peak represents the first natural resoriance of the enclosure. Arourid this frequency the pressure field inside the ericlosure is largely made up of a standing wave of half-wavelength equal to the length of the enclosure. The next peak represents the resonance for the height of the enclosure. At higher frequencies the modes become denser in frequency and overlap but at the lower frequencies the modes are distinct.
The figure shows the amplitude response due to a source of unit volume velocity. The linear amplitude resporise indicates the horrendous peaks that a control system has to deal with. The modal frequencies and the order of each mode with a natural frequency less than 700 \(H z\) are listed in figure 2.1 .6 ; these can be related to the peaks in the spectrum.
```


2.1.7 PHASE RESPONSE OF THE REVERBERANT FIELD

AT A POINT IN THE ENCLOSURE

Abstract

The complex part of the pressure equation determines the phase of the pressure response. The relative phase of the pressure in a standing wave changes by a half cycle (180 degrees) each half wavelength along a standing wave. A phase variation also exists due to the modal nature of the sound field; consider the phase response at the chosen point (figure 2.1.4). A plot of the amplitude response is shown in sequence with the phase response so the plots can be compared.

A more detailed explanation of the phase response is worthwhile. At resonance, the response of the system (the acoustic sound pressure level) is in phase with the excitation signal (in this case the velocity of the speaker cone); for an undamped system the frequency of maximum amplitude response and zero phase shift will coincide exactly. There is a rapid phase charige on passing through the modal frequency; the less damped the system the more rapid the phase change. At frequencies above resonance the phase response begins to lag the excitation response more and more. However, at a frequency in between two modal frequencies the response is again in phase. There has had to be a reversal in the graph so that another phase lag could occur on passing through the next resonance. The pressure of this antiresonance can be seen by representing the pressure at a point as the sum of the pressures from just the two modes dominating the field at a frequency between adjacent modal frequencies. From the


```
equation of figure 2.1.1;
P=}\frac{Aw}{w1k+j(\mp@subsup{w}{}{2}-w\mp@subsup{1}{}{2})}+\frac{Bw}{w2k+j(\mp@subsup{w}{}{2}-w\mp@subsup{2}{}{2})
```

A and B are constants relating to the complex mode amplitudes. This expression assumes the source was positioned at the origin so the cosine terms of the complex source strength distribution are constant for all modes. If the low order modes are considered then the characteristic function of a low order mode could have a similar magnitude for a gereral position inside the enclosure. For these reasons, to illustrate the shape of the phase response, the factors A and B can be considered equal and the pressure response considered proportional to;

$$
\frac{1}{b+j\left(1-(w 1 / w)^{2}\right)}+\frac{1}{b+j\left(1-(w 2 / w)^{2}\right)}
$$

where $b \ll 1$; the damping factors for each mode are taken as small constants (ie. it is a lightly damped system) of the same magnitude.

Ignoring the very small terms the imaginary part of this response can be represented by;
$\left(2-(w / w 1)^{2}-(w / w 2)^{2}\right)\left(1-(w / w 1)^{2}\right)\left(1-(w / w 2)^{2}\right)$

There will be no phase lay when the imaginary part is zero; ie. when $w=w 1$ or $w 2$, the modal frequencies, or when;

```
w =w1 w2 (2/(w12 +w22) >0.5
```


Abstract

it can be shown that this frequency lies between w1 and w 2 verifying the existence of a frequency lyirig between the two resonant frequencies where the pressure is in phase with the source velocity. This has been shown for the phase response of a low order mode using a few assumptions; the phase resporise at higher frequericies will be more complicated but will have the same general properties.

In this mumerical simulation the phase response was calculated at a point one fifth along a diagonal from the corner where the point source was placed. The pressure response at this point is not equal to the resporise at other points inside the enclosure. The acoustic pressure perturbation increases towards an antinode of a mode and the phase differs depending on the half cycle of the standing wave in which the pressure is monitored. If the phase response is monitored r half wavelengths from the source then the phase resporise cof an undamped reverberant field) will lag that of the velocity of the speaker cone by n half cycles.

In this simulation, for the low order modes below about 700 Hz the response has been calculated at a point in the same quarter wavelength as the source. The maximum phase difference is ninety degrees. However, at higher frequencies, the distance from the source to the detector
can be greater than a quarter wavelength; more accurately, in the case of 2 and 3 dimensional standing waves, the source and detector lie or opposite sides of a rodal plane.

At higher frequencies the density of the modal frequencies increases (figure 2.1.4) and many modes dominate the field at a sirigle frequency (Ref. Hough). At higher frequencies still, the field may be able to be regarded as a diffuse field with a uniform distribution of sound energy. This thesis is concerned with the active control of the low order modes of the reverberant field. It can be seen from the pressure equation how the modes can be regarded as independent systems. Therefore to attenuate the reverberant sound field it is necessary to attenuate each mode.
2.1.8 ATTENUATION ACHIEVABLE BY INDIVIDUALLY ATTENUATING

THE LOW ORDER MODES

Abstract

The principle of superposition applies to the reverberant sound field inside an enclosure; the sound field is composed of the linear sum of the modes of vibration of the enclosure. Because the modes are orthogonal and the principle of superposition applies then the reduction of the amplitude of one mode reduces the space averaged sound pressure level inside the enclosure. This quantity is representative of the overall sound level

in an enclosure.

The effect of removing the locally dominant mode at all frequencies is shown in figure 2.1.7. The sound pressure levels are displayed on an arbitrary scale. It can be seen how the removal of a single mode leaves a pressure level which can be extrapolated from the response curves of the adjacent modes. At frequencies in between two modal frequencies the sound field is largely made up of contributions from the two nearest modes plus smaller contributions from all the other modes present in the simulation. If two modes are equally dominant at a particular frequency, then removing orie of them will decrease the SPL by the order of $3 d B$ as seer.

Removing the dominant mode at all frequencies demonstrates the significant reduction that can be achieved in the space averaged sound pressure level inside an enclosure. The noise heard by a listener would also be subjectively less annoying with the mode resonances removed.

Now consider the sound pressure level at one particular point, in this case one fifth distance along a diagonal from the source in a corner, and the effect of removing the most dominant mode at this point (figure 2.1.8). At frequencies in between two modal frequencies the two dominant modes vibrate out of phase; the mode of lower natural frequency lags the source and the mode with higher natural frequency leads. Therefore initially the modes are cancelling and removing one mode stops this

2.1.9 SUMMARY

An active control system can only operate by working to attenuate the sound pressure level at a representative position or positions inside an enclosure. To attenuate the reverberant field inside an enclosure the system rieeds to be designed to control the field at a number of positions such that the dominant modes of the field are attenuated.

This section has presented the basic theory of the reverberant field inside a rectangular enclosure. The rext section presents some basic concepts of how an active sound control system can operate, the information presented in these first two sections is then brought together in section 2.3 where the requirements of an active system to control the modes of vibration of the reverberant field are presented.

2.2 REQUIREMENTS OF AN ACTIVE SOUND CONTROLLER

2.2.1 INTRODUCTION

Abstract

This section reviews some essential elemerits of an active noise control system ; it aims to present an understanding of the basic theory of active noise control. The theory is partly presented in the context of a system operating in a duct, which has been widely studied, since in a one dimerisional situation the concepts involved can be grasped more easily.

The geometry of a basic active noise control system operating in a duct is presented and the essential concepts of digital signal processing are presented with particular reference to finite impulse resporise filters. Some basic control theory is covered to highlight the problems of instability. Finally the desired response of the controller is derived and control theory introduced at this stage to show how the problem of instability may be overcome by a suitable arrangement of FIR filters.

This information forms a solid introduction to the subject as a base for extending the ideas to active control in a small enclosure.

2.2.2 ESSENTIAL ELEMENTS AND ACTION OF AN ACTIVE NOISE CONTROL SYSTEM OPERATING IN A DUCT

Sound emanating from a noise source propagates through a medium in all directions in a manner depending on the characteristics of the source and environment. A noise source in a room or free space will send pressure waves in all directions but there may be a particular area where noise control is desirable. If we are concerned with only the direct field then the situation may be expressed as requiring the noise to be attenuated in a particular direction. The simplest version of this occurs in duct or pipe, an area which has received much study (Ref. Ross among others).

Publications on active noise contol in ducts have mostly been concerned with attenuating frequencies of half-wavelength greater than the largest cross sectional dimension of the duct; ie. those frequencies which ideally travel as plane waves down the duct.

A simple active noise controller in a duct could in principle operate by detecting the noise propagating down the duct and processing this signal so that, at a later time, a loudspeaker further down the duct can be caused to operate in such a way as to attenuate the noise.

The acoustic noise takes a time to travel from the detector to the loudspeaker, this time depending on the distance between the two. The responses of the transducers and the electronics connecting them in the control system

```
itself must also cause the signal to be delayed. To
achieve attenuation a signal must take as long to pass
through the control path (and be inverted) as it takes the
noise to travel along the duct. The controller cannot work
for random noise if the acoustic delay is shorter than the
unavoidable delay through the contol system.
```

The essential elements of the situation are shown in figure 2.2.1

1. A noise source (represented by a loudspeaker) causing sound waves to propagate down the duct.
2. A microphone detecting the sound to be attenuated. In this thesis this microphone is referred to as the detector; it is an essential part of the control system.
3. An electronic control system.
4. A loudspeaker driven in such a way as to attenuate the unwanted noise. This loudspeaker is referred to as the control speaker or secondary speaker.

5 A microphone monitoring the sound level, thereby monitoring the success of the control system. This microphone is referred to as the monitor. Its function is to indicate the sound pressure at a position and as such it is not an integral part of the contol system, as the system will operate without it. However it is a necessary element in establishing the way in which the control
system needs to operate.

```
Provided the right hand end of the duct is not perfectly reflective, then if the sound field at the monitor is identically zero, then the field will also be identically zero everywhere to the right of the monitor.
```

The idea that plane waves propagate in one direction only down a duct is a gross oversimplification that confused human active controllers for some time. The sourd field iri a duct (as well as the higher frequency cross modes) may predominantly consist of plane waves propagating dowr the duct from the roise source but waves travelling in the opposite direction will always be present from reflections at bends in the duct or at the open end (due to the change in impedance here). These reflected waves are sigrificant and can be incorporated into the model as standing waves. The mair study of this thesis concerns starding waves in enclosures and at this stage suffice it to say that it is importarit that transducers are not positioned at nodes of a standing wave if that frequency is to be controlled.

2.2.3 TRANSDUCERS

In a practical situation it is important that the
transducers be sturdy enough to operate continuously
within the environment and that their working frequency
range encompasses the frequencies of the noise to be
attenuated.
A microphone has a reduced response at low
frequencies and if very low frequencies are to be
controlled it is necessary to take particular care to
choose a suitable microphone.

A loudspeaker, being an object with mass and stiffness, has a mechanical resonance; it approximates a mass-spring-damper system and a large phase change of the volume velocity (180 degrees if ideal) occurs on passing through the resonance frequency. The volume velocity of the loudspeaker diaphragm determines the strength of the equivalent monopole source. At frequencies below resonance the volume velocity of the speaker cone leads the driving voltage and above resonance it lags. The large phase change around resonance need not be a significant problem in the control system if it can be accommodated for by the digital controller. At frequencies near resonance the velocity of the cone is greatest for a constant input voltage. Therefore, for efficiency, it is desirable for the speaker used in a control system to operate near to the mechanical resonance of the speaker. The question

Abstract

arises as to over what frequency range the speaker can be said to be operating 'near' to resonance. Theory of a second order system indicates that below resonance the velocity of the speaker cone is proportional to frequency and above resonance it falls inversely to the frequency. The approximate form of this response is shown on a logarithmic scale in figure 2.2 . 2 . It can be seen that if the speaker operates with a certain velocity at a frequency above resonance then the same velocity is also achieved at a frequency below resonance. Because of the logarithmic form of the response the lower frequency will be the same order of magnitude below resonance as the upper frequency is above. For example, if a speaker resonates at 200 Hz a suitable working range for the speaker to operate over may be from, say 20 to 2000 Hz . This frequency span can be defined as the range 'near' resonance over which the source will operate successfully.

Abstract

The environment in which a source is to operate affects the output from the source; the sound power output in free space will be different from the output when the source is loaded by the impedance of some other system. The relevant concern in the implementation of active sound control systems is that the sound field to be cancelled may significantly influence the movement of the control source. It has been demonstrated theoretically (Ref. Silcox) "that the finite impedance of real sources in no way affects the linearity or the use of superposition": ie. the loading effect on the source does not affect the sound field produced and the cancelling field can be


```
regarded as being linearly added to the sound field to be
cancelled. However, this thesis is concerned with the
active control of the low order modes of vibration inside
an enclosure; it is at these modal frequencies that the
loading effect on the source will be greatest. The
question as to whether or not in practice the environment
loads the source to a significant extent remains
unresolved, the implementation of a system indicating
whether this is the case or not.
```

The transducers act as filters; they react
differently to different frequencies. By far the most
complicated filter in the system is the acoustic
environment itself. As previously mentioned, standing
waves are present in the duct; this constitutes
frequencies being transmitted along the duct at varying
amplitude and phase. This effect needs to be accounted for
in the control system. To understand how this is achieved
the effect needs to be representedmathematically. At this
stage it is suitable to introduce some basic concepts used
in digital signal processing.
USING FINITE IMPULSE RESPONSE FILTERS
The implementation of a suitable controller
between the detector microphone and secondary speaker

Abstract

necessitates filtering the signal. The signal needs to be processed quickly (in real time); by the time any lumped data had been analysed the propagating sound would have left the region of interest. A generation of new, commercially affordable microprocessors has made a sampled data system the most attractive option for this task as easily alterable complex analogue filters are time consuming to design and construct. Digital filters have the advantage that;

1. They are easily implemented and changed.
2. They are not subject to drift or other physical problems; their performance is guaranteed.
3. The hardware system can be used for other purposes.

This thesis describes the implementation of an active control system using finite impulse response filters. Although other methods of filtering are available this method is the simplest to understand and simplist to use in practice.

A FIR digital filter works by sampling a signal at equal intervals of time and convolving the sampled time series with another time series (the digital filter tap weights). The resultant value of the convolution is output from the digital system at the next clock pulse. The analogue input signal is sampled by an analogue to digital converter (ADC); the action is mathematically equivalent to multiplying the continuous signal by a chain of delta pulses at intervals of T, the sampling period. The output signal $y(i)$, sent to the digital to analogue converter
(DAC), is the result of convolving the sampled input signal x (i) with the sampled impulse response of the digital filter $h(i)$.

$$
y(i)=x(i) * h(i)
$$

The process of convolving two time series does not
directly provide information about the various frequency
components in the time series. Standard texts (Ref.
Newland) cover the fourier transform; an operation
transforming a time series into its frequency spectrum and
vice versa. If the successive samples of a signal $x(t)$ are
ao, al, a2 etc. then the signal can be represented in the
Z plane as;

$$
x(Z)=x_{0}+x_{1} Z^{-1}+x_{z} Z^{-2}+\cdots x_{1} Z^{-1}
$$

```
where Z = eswT and T = the sampling period
The coefficient }\mp@subsup{x}{1}{}\mathrm{ is the sampled value of }x\mathrm{ at }t=iT\mathrm{ .
Multiplication by Z represents a shift in time of +T. The
convenience of this notation is that a simple relationship
exists between the input spectrum }X\mathrm{ and the output
spectrum Y.
```

$$
Y(Z)=X(Z) \quad H(Z)
$$

This enables the transfer function $H(Z)$ to be established more easily. This function, transformed to the frequency domain, represents the response of the system at a particular frequency.

```
If the time series are sampled at intervals of \(T\) seconds then the resulting frequency domain is defined at intervals of \(1 / T\) Hertz. The Nyquist criterion states that only frequencies up to a certain frequency can be resolved from sampled data. For an infinite length of data this Nyquist frequency is half the sampling frequency. Consequently it is necessary to sample at over twice the highest frequency of interest.
To prevent high frequency components being treated as lower frequencies (aliasing) the digital system needs to be band limited. A low pass filter (antialiasing filter) is needed at the entrance to the digital system. Another low pass filter (reconstruction filter) is needed at the exit from the digital system to remove the high frequency components which are present in the quantized signal.
The electronic controller needs to be designed to control the active system. At this stage it is instructive to review some basic concepts of control theory to understand the requirements of the controller.
```


2.2.5 CONTROL THEORY

Consider the action of the active control system in figure 2.2.1. Any sound generated by the control speaker will be detected by the detector microphone and the signal subsequently passed to the control speaker. This process

```
is called feedback; the signal is continuously fed back to
an earlier position in its path. In control theory terms a
closed loop exists, a loop round which a signal can travel
continuously. The howl sometimes heard in public address
systems occurs because a feedback system has become
unstable; i.e. the transfer function of the gain and phase
round the loop are such that the signal level grows of its
own accord, becomes very large and overdrives the speaker.
This instability can occur at any frequency.
```

```
    A simple model of a closed loop system is
investigated to show how a closed loop system can become
unstable. Consider the system shown in figure 2.2.3. The
forward path of the system is shown to have a transfer
function of }A\mathrm{ and the feedback path a transfer function of
B. The signal at point x is given by;
```

$\mathbf{x}=\mathbf{X}-\mathbf{B} Y$

The output signal Y is given by;

$$
Y=A \times
$$

Therefore the transfer function of the complete system is given by:

$$
H=Y / X=A /(1+A B)
$$

This is the closed loop transfer function of the system, the frequency response measured across the closed loop.

For any system it is useful to have a meaure of how near a system is to being unstable; a system may be stable but be on the verge of being unstable. The closed loop transfer function does not give a measure of the degree of stability of a system. To quantify the degree of stability of a system a measure is needed of the transfer function AB.

The transfer function $A B$, known as the loop transfer function, is the response round the loop. To measure this response it is necessary to break the loop.

A system is unstable if the magnitude of the loop gain is more than one and the phase lag round the loop is an odd number of half cycles. The open loop response can be plotted in the complex plane (figure 2.2.3). It can be shown that the system will be unstable if, for increasing frequency, the response curve encircles the point $-1,0$. The margin of stability of a system is judged by how close the response curve approaches this point. Two criteria are used to determine the margin of stability. The gain margin is defined as the distance of the curve from $-1,0$ when the phase is an odd number of half cycles. The phase margin is defined as the angle between the negative real axis and the phase of the response when the gain is unity.

An important consideration for the acoustic system is that a time delay exists between the control speaker and the detector microphone. Whenever a significant time delay is present in the system then, because of reflections, there will be many frequencies that will be delayed by an odd number of half cycles (and at nearby frequencies the

```
phase shift will be of the order of an odd number of
cycles). Therefore the major criterion determining the
stability of an acoustic noise control system is the
amplitude gain round the loop.
```

In summary the digital controller needs to drive the
speaker to attenuate the sound field and ensure that the
system remain stable. To achieve this the digital
controller needs to have a frequency response specific to
the particular conditions it is operating in.
the particular conditions it is operating in.

2.2.6 DESIRED CONTROLLER RESPONSES FOR AN ACTIVE NOISE CONTROL SYSTEM OPERATING IN A DUCT

```
    Having developed the theory whereby frequency
responses of a filter can be defined, then the desired
response of the digital controller can be derived. The
responses of various paths in the control system were
labelled in figure 2.2.1;
```

E : The transfer function between the signal at the detector microphone and the signal at the monitor microphone; these signals are representative of the pressure levels at these positions. This path needs to be cancelled by a combination of paths T and C.

C: The transfer function between the signal at the
the control speaker and the signal at the monitor microphone.
T : The transfer function of the electronic controller.

F : The transfer function between the signal at the control speaker and the signal at the detector microphone. This feedback path causes a closed loop in the system which can be, and probably will be unstable at some frequencies. This acoustic feedback needs to be dealt with if the system is to work.

```
    The required controller T is given by Ross (Ref.)
among others and can be simply derived as follows;
    The pressure at the detector microphone ( }\mp@subsup{P}{1}{}\mathrm{ ) is due to
that resulting from the noise source directly (Poi) plus
the pressure due to the control speaker
```

$$
P_{1}=P_{0_{1}}+T F P_{1}
$$

Similarly, the pressure at the monitor microphone downstream is given by

$$
P_{z}=P_{02}+T C P_{1}
$$

Substituting in P1 from the first equation gives

$$
P_{z}=P_{O 2}+\frac{T C P_{O 1}}{1-T F}
$$

For zero pressure level at the monitor microphone then:

$$
T=\frac{P_{02}}{F P_{02}-C P_{01}}
$$

The ratio of the pressure levels at the microphones due to the noise source alone ($P_{o z} / P_{O_{1}}$) is the transfer function E. Therefore the desired response of the controller is given by:

$$
T=\frac{E}{E F-C}
$$

The filter required to cancel the unwanted sound and compensate for the feedback may be non-causal. A non-causal response may be thought of as needing to filter the signal ahead of time, ie. before it has reached the physical filter.

A understanding of the non-causality of a system may be seen by example. Consider the filter that would need to be implemented if the acoustic feedback did not exist. Refering to figure 2.2.1 the situation still exists of needing to filter the detected signal in such a way as to drive the control speaker to give cancellation downstream. It can be seen from the above equation that if the feedback F is set to zero then the response of the controller needs to be $-E / C$. The non-causality can be seen directly here; the system needs to model the transfer function of E and the inverse transfer function of C. C has a causal impulse response, of finite length, between the control source and the monitor microphone. However, the inverse impulse response needs to be such that, when convolved with the impulse response, the result is a pulse at a position $t=0$ on the time axis. For this to be
achieved, the time response of the inverse transfer function needs to extend into the negative section of the time domain and, depending on the complexity of the response, may need to be quite long. The inverse response implemented can only lie in the positive region of the time domain. This necessary shift in time needs to be available in the acoustic path. In other words the delay through the control system is comprised of the delay through the electronic components and a delay resulting from the digital filtering modelling the inverse impulse response of the control system. This total delay needs to be shorter than the acoustic delay for the system to cancel the direct sound.

However, the inverse response of any real system will be of infinite length thereby always ensuring that any implemented filter will be a causal approximation to a non-causal solution. this may be seen intuitively by considering the control system of figure 2.2.4. Consider a pulse leaving the control speaker; this pulse may, as intended give cancellation downstream. The pulse is also transmitted upstream and will be reflected from the upstream termination and will propagate downstream; this component of the pulse also needs to be cancelled by the controller. It is realistic that residual elements of this pulse will exist for a significant period of time thereby requiring the forward filter to be of substantial length.

[^0]implemerit successful systems will come from linking together the fields of digital signal processing and control theory. The approach taken here does this in a basic way.

The approach being taken at RHBNC (Ref. Flockton, Gurrie) has recently conceritrated on splitting the controller into two paths; a forward path from the detector microphone to the coritrol speaker in parallel with a feedback path (figure 2.2.4). This electroric feedback path is present to mimic and cancel the acoustic feedback path thereby stabilising the system and giving the engineer greater flexitility in the design of the forward path.

The resporise of the desired controller can be writen in the form;

$$
T=\frac{1}{F-C / E}
$$

Control theory states that a response of this form can be represented by incorporating a positive feedback path $-F$ with a forward response of $-E / C$ (figure 2.2.5). The digital path F iritentiorally carcels the acoustic feedback path. This thesis shows how a controller of this form was used to implement ari active sound coritrol system operating in a small enclosure.

2.2.7 SUMMARY

In section one the theory of the reverberant field
inside a rectangular box was presented. Section two
covered some basic concepts of an active noise control
system and how such a system may be implemented. Section
three uses and extends the material covered in the first
two sections to show how an active control system may be
used to attenuate the low order modes of the reverberant
field inside a rectangular enclosure.

2.3 THE APPLICATION OF ACTIVE NOISE CONTROL TO ATTENUATE A REVERBERANT FIELD

2.3.1 INTRODUCTION

2.3.2 THE REQUIREMENT8 OF AN ACTIVE CONTROL SYBTEM ATTENUATING A REVERBERANT FIELD

This sub-section develops the important requirements of how an active control system needs to attenuate the modes of the reverberant sound field inside an enclosure.

It is instructive to consider some different situations which will arise due to different noise sources. A single frequency noise source will drive all modes at that one frequency and the sound field will be dominated by those modes with modal frequencies nearest to the excitation frequency. Alternatively a broadband noise source will excite significantly all those modes which have modal frequencies within the bandwidth of the source. In all cases the reverberant sound field inside an enclosure will be dominated by a number of modes.

If the reverberant field is due to a single point source then the antisound can be produced using a single point source no matter how many modes are excited and substantial reductions can be achieved over all frequencies (ie. the direct field can also be attenuated) if the control source is within half a wavelength of the noise source (Ref. Bullmore). However, in general, a reverberant field will be generated from arbitrary noise sources and the modes will vibrate in an indeterminate maniner.

In section 2.1 it was shown how the removal of the locally dominant mode at all frequencies can significantly attenuate the space average sound pressure in the region

```
of that modal frequency. However, in that numerical
simulation the modal frequencies were distinct in
frequency; ie. the modes can be readily distinguished in
the spectrum. At higher frequencies and in enclosures of
different aspect ratio or shape some modal frequencies
will be almost coincident and the mode responses will
significantly overlap in the spectrum.
    In practice it may be possible to control a number of
modes with a single degree of freedom control system if
the modes are sufficiently seperate in frequency. In
general the modes of a reverberant sound field need to be
controlled independently using a single control system to
control each mode.
```


2.3.3 REQUIREMENTS OF THE MONITOR POSITIONS OF AN
 ACTIVE CONTROL SYSTEM ATTENUATING THE LOW ORDER MODES OF A REVERBERANT FIELD

Before considering how the mode amplitudes can be attenuated it is appropriate to consider how a control system can operate. Although it is required to remove the dominant modes of the sound field a control system cannot directly do this but can only operate to give attenuation at one or more monitor positions.

To attenuate the sound field over a volume the monitor wositions need to be representative of the field over that volume. For example, an active system controlling the field at a downstream monitor results in

```
the control of the plane waves travelling down the duct
(section 2.2). The standirig waves inside the duct will be
attemuated if the transducers are positioned such that the
waves cari be detected, excited and monitored. However, a
standing wave carmot be attenuated if a trarisducer lies on
a node of the wave.
    Likewise, ir the case of a reverberant field, the
monitors need to be positioned so that they see all the
modes within the working range of the controller. This
does not necessarily imply that the control system needs
to resolve the amplitude of each mode but only that the
monitors are positioned such that the signals from the
monitors contain sufficient information that all the modes
within the working range can be resolved.
```

The coitrol system needs to isolate the modes in space or frequency. Furthermore the control system must be sure not to enhance other modes of the sound field which may not have been excited by the noise source. For example a mode may not be excited by the noise source if the source lies near a rode, but if the modal amplitude lies within the bandwidth of the system then it must be taken into consideration. Therefore a general system controlling a reverberant field needs to be a broadband system and control all the modes within the working frequency range of the controller.

[^1]
2.3.4 A MATHEMATICAL TREATMENT OF THE REQUIREMENTS OF THE MONITOR POSITIONS

```
    Let the sound field in an enclosure be dominated by }
modes and the amplitude of the i'th mode be A (t). Let the
pressure in the enclosure be sensed by n sensors and the
pressure at the j'th sensor be Ps(t). Then;
P1}(t)=\mp@subsup{t}{11}{}\mp@subsup{A}{1}{}(t)+\mp@subsup{t}{21}{}\mp@subsup{A}{2}{}(t)+\ldots..++\mp@subsup{t}{n1}{}\mp@subsup{A}{n}{}(t
P2}(t)=\mp@subsup{t}{12}{}\mp@subsup{A}{1}{}(t)+\mp@subsup{t}{22}{}\mp@subsup{A}{2}{}(t)+\ldots...++\mp@subsup{t}{n2}{}\mp@subsup{A}{n}{}(t
etc.
where fls is the characteristic function of the j'th mode
at the i'th sensor position. It represents the fraction of
the standing wave present at a position. t = 0 at a node
and is maximum at an antinode.
The equations can be represented in matrix form;
\[
P=+A
\]
where the matrix \(+=\) characteristic function of the modes,
    and the matrix A = mode amplitudes
The modal pressures at a point can be obtained from the
inverse equation;
\[
A=t-1 \quad P
\]
```



```
resolved. This has occured because the chosen monitor
positions were rot irrdependent: each position detected the
same component of each mode. Mathematically, maximum
independence is achieved by maximising the determinant of
*. A small determinant indicates that the simultaneous
equations are very similar ard i| practice the noise
present may make the solution unreliable.
```

This theory overcomes the problem of not being able to directly detect a modal pressure. If the characteristic furctions of all modes withir the bandwidth are included in the analysis arid the pressure sensed at enough independent points then the modal amplitudes can be resolved.

It is possible to resolve n modes with nensors provided they are appropriately positioned. However, using more sensors than the inumber of modes will give an excess of information to characterise the sound field; this may be desirable in a practical situation.

The matrix equation preserited above coritains information about the mode amolitudes; however it is not riecessary that a control system determines the mode amplitudes in practice. Indeed, as previously mentioned the requirement is only that the information about the mode amplitudes be present in the signals.

2.3.5 REQUIREMENTS OF THE POSITIONS OF THE CONTROL SOURCES AND DETECTORS FOR AN ACTIVE CONTROL SYSTEM ATTENUATING THE LOW ORDER MODES OF A REVERBERANT FIELD

If it is desired to control a mumber of modes which are distinct in frequency (section 2.1) the problem is theoretically easier; at frequencies near to a modal frequency the resporise is dominated by a single mode alone. The frequency response of a single speaker control system specified over the working range of the system may attenuate all the modal peaks in the spectrum (figure 2.1.7). This may theoretically occur because at and around the modal frequencies only one mode dominates the sound field.

The rectangular box used for the demonstration

```
presented in chapter 4 had dimensions such that the low
order modes were distirict in frequency. Even though the
mode resonances are sharp, difficulties will be
encountered if some modes are degenerate; ie. if two or
more modal frequencies are very close.
    The difficulty can be seen by considering the case of
two modes of similar modal frequencies or the case of two
modes both excited at a frequency in between their modal
frequencies. The phase shift will be such that the
pressure response of one mode (with the lowest modal
frequency) will lead the velocity of the exciting signal
and the other will lag. Such a situation indicates why the
modes need to be controlled independently; a control
signal at a particular frequercy may attenuate one mode
but necessarily enhance the other mode. Therefore it is
necessary to control both modes simultaneously using two
coritrol sources.
    Similarly, the number of microphones detecting the
sound field needs to be equal to or greater than the
number of degrees of freedom of the system. Each
detector-speaker pair can be regarded as a single channel
of the control system. In summary, the number of
independent channels of a control system needs to be equal
to or greater than the number of degrees of freedom of the
sound field and each detector-loudspeaker pair needs to
couple into at least one mode of the sound field. This is
discussed further in section 3.1.
```


2.3.6 THE THEORY OF HOW A SINGLE MODE
 CAN BE ATTENUATED; FREQUENCY DOMAIN

Abstract

Having developed the general requirements of the positions of the transducers in an active noise control system this section proceeds by looking at the action of the control system working to attenuate a single mode. To atteruate the reverberant field the control system rieeds to attenuate the modes of vibration of an enclosure; therefore it is appropriate to look at how a single mode could be attenuated.

Consider the control of a single mode; because of the large amplitude resporise of the mode it seems realistic that if a particular mode can be detected then there is a good chance of cancelling it. It is instructive to look at the cancellation needed in terms of the frequencies preserit; a typical amplitude response of a mode is shown in figure 2.3.2. To cancel the mode response it is necessary to superimpose a spectrum with the same amplitude response but in antiphase.

Consider the control system operating on a reverberant field in figure 2.3 .3 analagous to the duct system of figure 2.2.1.

It can be seen how the magnitude response of the feedforward filter will be inversely proportional to the amplitude response of the feedback filter by analysing the control system with the transfer furictions shown in figure 2.3.3. The feedback path is given by;

A1 H1 A2

The feedforward path is given by;

H 2 / H 3 A 2 H 4 A 1

All paths through the acoustic system will have similar spectra, therefore it can be approximated that;

$$
H=H 1=H 2=H 3=H 4
$$

Therefore, the feedback filter is given by;

$$
F=A 1 A 2 H
$$

and the feedforward filter is given by;

$$
F=1 / A 1 A 2 H
$$

Therefore the magnitudes of the responses are approximately the irverse of each other.

The detector microphone sees a signal of amplitude spectra shown in figure 2.3.2. The response of the path from the control speaker to the monitor will be of the same form; the antisound which reaches the monitor is the result of a signal passing twice through an acoustic system. The sound at the detector resulting from the roise source has passed through an acoustic system only once; therefore, to produce an antisound of the same spectrum

Abstract

the signal from the detector needs to pass through an electronic coritroller which models the inverse transfer function of a typical acoustic system. The amplitude response of the forward path of the electronic controller needs to model the reciprocal of the amplitude response of a mode (figure 2.3.4). The phase response required is such the the two signals are in aritiphase at the detector.

2.3.7 THE THEORY OF HOW A SINGLE MODE CAN BE ATTENUATED;

IIME DOMAIN

The theoretical response of the controller can also be determined in the time domain ie. the impulse resporise of the controller can be found. The impulse response of a system is the response of that system when it is excited by a unit impulse at time $t=0$; an impulse contains all frequencies and therefore the impulse resporise mathematically defines the complete response of a linear system. The impulse response of a lightly damped enclosure will be similar to that of the sum of a number of second order systems (the modes of the enclosure); it will corisist of a number of superimposed damped sinusoids. A single decaying sinusoid and its Z transform is shown in figure 2.3.5. The inverse function is simply the reciprocal of the Z transform which directly gives the cnefficierits of the inverse filter. It can be seen that, theoretically the desired controller consists of only
three coefficients.
In practice the theoretical impulse response of the control system cannot be implemented because the response is non-causal; one of the coefficients occurs in negative time on the time axis. Furthermore, inherent delays will be present in the control system; the delay of the loudspeakers and the electronics. These elements and the reality of the acoustic system will, of course, make the desired response of the digital filter more complicated than that derived above.

An active system operating on a propagating field or in a duct can sample the sound field and then attenuate the sound downstream thereby overcoming the inherent time delays in the system. This time may not be available for a system working to attenuate a reverberant field and the method whereby the modes can be attenuated rieeds to be understood.

A mode acts as a narrow band pass filter which responds well over a narrow frequency range. Therefore the time response of a mode to broadband excitation approximates a single sinusoid slightly varying in frequency over time. Consider the impulse response of a mode system (a second order system). The mode amplitude can vary between cycles by an amount determined by the damping in the system; the response of a lightly damped system will not vary much between cycles because little energy is dissipated in the system. the response of a heavily damped system will decay rapidly if no energy is added to maintain the oscillation.

Abstract

Therefore the maximum rate of decay of a system is determined by the impulse response of that system. A practical example of a system whose response decays at this maximum rate could be a heavy press exciting the field in an enclosure with an impulsive sound. A system continuously excited by a broadband noise source will not decay at this rate. If significant atterruation can theoretically be achieved in the extreme case represented by the impulse resporise of the mode then the mode can be attenuated in all cases.

Because of the inherent delay in the system the cancellation signal will arrive after the noise signal. However, consider how a single impulse response could be actively attenuated; this is represented by the autocorrelation function of the mode. The first few cycles could not be cancelled because of the inherent time delay. However the controller is able to cancel the remaining cycles of the response (this is represented in figure 2.3.6); the impulse response of the controller is such that the response of the mode can be cancelled after a certain time. The reverberation present in the enclosure enables the control system to overcome the non-causality encountered if the walls were not present and the system were trying to attenuate the direct field; because the cancellation is occuring towards the tail of the impulse response the cancellation can be thought of as occuring in the far field. Alternatively, the cancellation can be viewed by considering how the control system would operate continuously; a particular cycle of a mode response can be

Abstract

cancelled by superimposing on it a processed version of a previous cycle. The attenuation achievable will depend on the damping in the system; a heavily damped system will not ring on for long and sufficient time will not be available to achieve worthwhile attenuation. For a lightly damped system or when any system is being continuously excited ther the amplitude and time period of the response will not vary much over time and cancelling a cycle with a processed version of a previous cycle will achieve worthwhile attenuation.

2.3.8 THE EFFECT OF DAMPING ON THE CONTROLLER RESPONSE

The amount of damping in a system determines the
required length of the impulse response and the amplitude
response of that system. The sound fieldin any real
enclosure will be the sum of the direct and the
reverberant fields. The relative importance of the
reverberant field will be determined by the energy ratio
of the reverberant field to the direct field. All physical
systems are damped and damping implies the dissipation of
energy; if energy is dissipated then energy must be
continuously added to the system to maintain the
vibration. The less damped the system, the less energy
needs to be added to maintain the motion and the greater
the amplitude response of the system. In an undamped
system the pressure and velocity of the standing waves are a half cycle out of phase and their product, representing the energy transport is zero. The energy in the wave circulates with the harmonic motion, between potential and kinetic energy; if litte energy is dissipated then there can be little directional sound.

When designing a control system to attenuate a reverberant field it is instructive to obtain a measure of the lerigth of the impulse response of the system. This will irdicate the length of the impulse response of the digital controller needed. The control system that was implemented and is described in chapter 4 was realised with finite impulse response filters of 128 points. It is instructive to use this practical example to demonstrate how the length of a digital filter affects the degree of attenuation that can be acheived.

The sound pressure level of the impulse response of a reverberant field can be represented by the mean square pressure. The decay curve will be of the form shown in figure 2.3.7. The system described in chapter 4 was implemented at a sampling rate of 1 KHz and the group delay through the analogue elements of the control system was measured as being of the order of eight milliseconds. Therefore the control system can only attenuate the part of the decay curve beyond this time. The length of the FIR filters (128 points) determines that attenuation can only be achieved over this time length. These critical time intervals are shown in the diagram. The fraction of energy between these two intervals determines the attenuation

```
achievable; this fraction is given by;
```

$$
\int_{8}^{128} e^{--t} / \int_{0}^{\infty} e^{--t}
$$

Therefore, from the decay curve of a reverberant field it is possible to determine the degree of attenuation that a system can achieve. For the enclosure used in the demonstration presented in chapter 4 the time taken for the curve to decay to a significantly small level was of the order of 300 mS (ie. 300 sample points at 1 KHz). Therefore, the fraction of energy that can be cancelled can be estimated by first deriving a value for the decay constant a. This can be found from the decay curve itself; by estimating a 60% decay to occur in 250 mS it is known that;

$$
0.4=e^{-0.25 a}
$$

$$
a=3.75^{-1}
$$

Therefore

$$
p^{2}=A e^{-3-7 t}
$$

The fraction of energy that can be successfully cancelled is given by;

$$
\begin{aligned}
& \sum_{8}^{128} e^{-3.7 t} / \sum_{0}^{300} e^{-3-7 t} \\
& =0.52
\end{aligned}
$$

In order to attenuate a significant fraction of the reverberant field it is necessary to match the lengths of the digital filters to the impulse response of the acoustic system. It is described in section 4.1 how a small amount of damping was added to the test enclosure to shorten the impulse response of the acoustic system and increase the attenuation that could be achieved.

2.3.9 SUMMARY

This chapter has concluded by combining the theory of a reverberant field with the principles of active noise control to show theoretically how the low order modes of a reverberant field can be attenuated.

3. MULTICHANNEL CONTROLLERS; A METHOD TO REALISE THEM DIGITALLY AND A PRACTICAL IMPLEMENTATION OF

A SINGLE CHANNEL DIGITAL CONTROLLER.

In section 2.3 it was shown how multichannel active control systems would be needed to attenuate a reverberant sound field. This is discussed in more depth in section 3.1 and the theory determining the desired frequency responses of a multichannel controller is presented. It is shown how the controller for a single channel system could consist of a pair of electronic filters; one between the detector microphone and the control speaker and the other cancelling the acoustic feedback from the loudspeaker to the detector.

The theory is extended to develop a method whereby the digital controller for a multichannel controller can be readily realised. It is shown how such a multichannel controller can be realised by repeatedly using the same filter pair as described above, thereby easing the practical apparatus needed to implement such a system.

The initial step in verifying this theory was the testing of the single channel digital controller which, it is shown, can be configured as the basic unit of a general multichannel controller. Section 2 therefore describes the practical implementation and testing of a digital controller on a Texas Instruments TMS32020 microprocessor. The controller consisted of two 128 fixed point $F I R$ filters capable of operating a single channel active

```
control system consisting of a single detector microphone
and a single control speaker.
```

 As well as suitable hardware and software to operate
 the control system it is necessary to derive the impulse
response of the digital filters by some means. Section 3
presents the practical method used to derive the $F I R$
filters. The method consists of a series of acoustical
measurements on the control system and their subsequent
analysis.

3.1 MULTICHANNEL CONTROLLERS

3.1.1 INTRODUCTION

```
    Firstly this section reviews the theory which gives
the required responses of the controllers for an active
control system consisting of a number of detectors and
speakers controlling the field at a number of monitor
positions. A method is developed whereby a general active
noise controller can be realised readily.
    The material at the start of the section is largely a
review of previously published work on single degree of
freedom and multichannel control systems. This material is
extended to develop what is, as far as is known, a
previously unpublished method whereby the digital
controller for a multichannel controller can be realised.
    The practical need for multicharmel control systems
with a number of detectors and sources controlling the
field at a number of positions is discussed. The response
for a single source, single speaker system controlling the
field at a number of positions is derived. This is
developed to derive the response for a general
multichannel controller. It is shown how the controllers
for any multichannel control system can be realised by
repeatedly using the same filter pair used in the single
detector, single speaker control system.
```


3.1.2 THEORY OF A GENERAL MULTICHANNEL

ACTIVE CONTROL SYSTEM

Abstract

Many noise control situations can be simplified by controlling the noise at source. In active noise reduction it is advantageous to detect the noise field to be attenuated as near to the source as possible, more information about the sound field being available at this position and giving more time for the signal to be processed. Therefore study of active noise controllers has concentrated on systems which could detect the sound at some location and process the signal before activating the control spaekers to attenuate the field at other locations. The positioning of the transducers is important and the requirements for an active system operating in a small enclosure are discussed in section 2.3. However, given this, it is still necessary to have the correct controllers between the detectors and the sources to atteruate the field at the chosen poisitions.


```
        An active system consisting of a number of detectors
and sources controlling the field at a rumber of positions
is shown in figure 3.1.1. A distinction is made between
detector microphones and monitor microphones; the detector
being the element which senses the sound field to be
attenuated and the monitor being the position at which the
system works to give attenuation.
    It has been shown (Ref. Elliot and Nelson) how the
responses of the controllers needed between the detectors
```

```
and sources can be derived. Using the notation of figure
3.1.1 (and the single channel control system of section
2.2) where all terms are matrices of frequency responses
(transfer functions) between the elements.
```

T : Desired controllers needed to give optimum attenuation at the monitors.
C : Responses between the control sources and the monitors.
F : Responses of the acoustic feedback paths between the control sources and the detectors.

E : Responses between the detectors and the monitors. $E=A / B$

A : Responses between the noise sources and the monitors.
B : Responses between the noise sources and the detectors.

```
    Assuming the system is linear and using the principle
of superposition, the signal at the monitor microphone is
given by;
```

$$
P_{2}=A P_{1}+B T C P_{1}
$$

where, representing the noise source as a loudspeaker, the
signal at input to the noise source speaker is given by P_{1}.

The sum of the squares of the outputs from the monitor microphones can be written as;

$$
P_{2}{ }^{H} P_{2}
$$

```
where the superscript }H\mathrm{ denotes the conjugate of the
transpose of the matrix. Applying the complex form of a
standard minimisation formula the sum of the squares of
the outputs of the monitors are minimised by a controller
of response given by;
```

$$
T=\left(C^{H} E F-C^{H} C\right)^{-1} C^{H} E
$$

```
    The notation of the individual terms of the matrices
may be seen by example; the transfer function from the
second source to the third monitor is given by csz ie. the
element in the third row and second column of the matrix
C. The transfer function representing the response between
the third source and the second detector, f23 is
positioned in the second row and third column of the
matrix F. Briefly, if the transfer function describes the
response from the transducer i to the transducer j it is
positioned in row j, column i of that matrix. The
convention used here is that each column of a matrix
refers to a different loudspeaker and each row refers to a
different microphone.
```

Matrix E is slightly different; it represents the

```
response between the detector and monitor microphones.
This response cannot be measured without a noise source
being present and each element is therefore represented by
the response from the noise source to the monitor (A)
divided by the frequency response from the the noise
source to the detector (B).
```

Consider the case of each matrix having only one element, analogous to the duct system presented in section 2.2; one upstream noise source, ore detector with a control source downstream from it and a downstream microphone to monitor the resultant sound passing down the duct. The matrix equation reduces to;

$$
t=\frac{e}{e f-c}
$$

At this stage it is worth emphasising that use of a single detector, single source control system is not necessarily confined to use in a duct. The main experiment presented in this thesis demonstrates the implementation and usefulness of such a system in a small enclosure.

It was shown in section 2.2 how this controller can be realised using a pair of fixed filters and thereby overcoming the inherent feedback problem. The controller can be represented as;

$$
t=\frac{1}{f-c / e}
$$

In this form it is easier to see the feedforward and feedback paths more readily. The electronic feedback path is given by f and necessarily rieeds to cancel the acoustic feedback path. The feedforward path is given by the reciprocal of the second term of the denominator, ie.

```
-e/c. This is a negative term to cancel, rather than
reinforce the acoustic path. The feedforward and feedback
components of the controller are perhaps obvious in this
simple case. They are by no mears obvious when designing a
controller with a number of detectors, sources or
monitors. Representing the desired controller in this form
readily distinguishes the two componerits and this
understanding of the simple case leads to an understanding
of more complex situations.
```


3.1.3 THE NEED FOR MULTICHANNEL CONTROLLERS

make the pattern of the sound field very complex.

```
    In many cases it may be possible to obtain an
independent estimate of the frequency of excitation, such
```

```
as the case of a motor or fari operating at a particular
frequency where the detection signal may be able to be
tapped off from the mechanical system itself, thereby
eliminating the acoustic feedback. Plane waves travelling
down a duct or pipe may also be detected with a single
microphone at a suitable position. However, where the
sound field results from a source with many degrees of
freedom, a large machine or resulting from a number of
vibrating panels, then a number of microphones may be
necessary to adequately define the field.
    The major body of this work is concerned with active
sourd control in enclosures. It is instructive to consider
the sound field in an enclosure as being generated by a
number of loudspeakers. At the low frequency modes with
which we are concerned here each speaker is small enough
to lie within a quarter wavelength of a mode
characteristic function. This model lets the speakers be
considered as point sources with each independent speaker
contributing one degree of freedom to the sound field. In
the case of a direct field resulting from a single source,
the pressure response at a single point has one degree of
freedom. In the case of a diffuse field the number of
microphones required to give attenuation over a given
volume depends on the wavelengths of the sound to be
attenuated and the volume over which the the attenuation
needs to be achieved. However, the pressure at a point in
a reverberant field can have many degrees of freedom
depending on the number of independent sources. Therefore
n points in a reverberant field can have n degrees of
freedom.
```

A system with n degrees of freedom can only be adaquately defined by n or more independent outputs from that system, resulting in n simultaneous equations which can be solved. Urider these conditions it is necessary to monitor the sound field with as many, or more independent monitors as there are degrees of freedom. In theory it is an advantage to overspecify the sound field by using more monitors than the number of degrees of freedom in the system, thereby being more sure of designing a system to attenuate the field over a given volume.

The number of control sources and microphones detecting the field in an active system are governed in a similar way to the number of monitors required. (see section 2.3 .3$)$ The number of independent control speakers and the number of detectors reeded in an active system needs to be the same as or greater than the number of degrees of freedom of the sound field. In the case of the reverberant field the number of degrees of freedom is determined by the number of point sources in the enclosure. An additional requirement is that at least one microphone loudspeaker pair is coupling into each mode to be controlled.

In summary the rumber of channels of an active control system needs to be equal to or greater than the number of degrees of freedom of the sound field to be controlled. Each channel consists of a detector microphone and a control speaker.

The need for multichannel active controllers has been

```
discussed. Given an active system consisting of a number
of detector microphones, control speakers and monitor
microphones the controllers connecting the transducers
still need to be realised. At this stage some specific
cases of multichannel controllers are presented to
illustrate how the desired responses of the controllers
can be obtained from the controller matrix equation.
```

3.1.4 AN ANALYSIS OF SOME SPECIFIC EXAMPLES
OF MULTICHANNEL CONTROLLERS
Consider a controller consisting of one detector and
one source controlling the field at two monitor positions.
Let the matrices C and E have components c_{1}, c_{2} and e_{1},
ez. The required controller is then given by;

$$
\left.t=\left(\left.\left(c_{1}^{*}, c_{2}^{*}\right)\right|_{e_{2}} ^{e_{1}}\right)_{f}-\left(c_{1,}^{*} c_{2}^{*}\right)\binom{c_{1}}{c_{2}}\right)^{-1} \quad\left(c_{1}^{*}, c_{2}^{*}\right)\binom{e_{1}}{e_{2}}
$$

and hence

$$
t=\frac{c_{1}+e_{1}+c_{2} e_{2}}{\left(c_{1}+e_{1}+c_{2}+e_{2}\right)+\left(c_{1}+c_{1}+c_{2} * c_{2}\right)}
$$

Extendirig this by induction to a controller with n monitors, the required response of the controller is given
by;

$$
t=\frac{\sum^{n} c_{1} * e_{1}}{f \sum^{n} c_{1} * e_{1}-\sum^{n} c_{1} * c_{1}}
$$

and hence

$$
t=\frac{1}{f-\sum c_{1} * c_{1} / \sum c_{1} * e_{1}}
$$

An analogy with the controller for the single monitor system shows that the feedback path needed in the controller has not changed. This follows because the acoustic feedback has not changed.

A simple but important statement: increasing the number of or moving the monitor microphones does not affect the acoustic feedback present in the active system. Designing the controller with independent feedback compensation infers that the monitors can be adjusted in position or number without altering the feedback compensation present in the controller. Only the forward electronic path needs to be changed. This suggests an advantage in designing stable control systems.

The feedforward path is the ratio of two terms. The first term is the sum, summed over the number of monitors, of the transfer functions between the detector and a monitor multiplied by the conjugate of the transfer function between the control source and the same monitor. This sum is divided by a second term. The second term is

THIS PAGE IS ALSO BLANK

```
the sum of the transfer functions between the control
source and a monitor multiplied by their respective
conjugates. The feedforward path needs to have a response
such that (denoting the forward paths as having frequency
responses k);
```

$$
e_{j}=\sum^{n} k_{1} c_{i j}
$$

The complexity of the algebra of the desired controller responses increases faster than the number of elements in control system; realising the more complicated controllers in an understandable format is not immediately obvious.

3.1.5 A METHOD TO REALISE THE CONTROLLERS
 FOR A MULTICHANNEL ACTIVE CONTROL SYSTEM

```
    What follows is a development of a method whereby the
controllers for a general multichannel controller can be
readily realised by repeatedly using the same filter pair
used in the single detector, single speaker control
system. The theory presented so far in this section is
largely a review and clarification of known results. The
remainder of this section presents a method whereby the
topology of the controller for any multichannel controller
```

```
can be readily realised.
```

```
    Consider the situation of wanting to control a two
degree of freedom system; for example where it is required
to control two modes of the reverberant field inside an
enclosure and the resonance frequencies of the modes are
near. It would be appropriate to use two speakers and two
monitors yiving two degrees of freedom in the active
control system. The desired response of the two
controllers is given by;
```

 \(T=\left(\mathrm{C}^{H} E \mathrm{~F}-\mathrm{C}^{H} \mathrm{C}\right)^{-1} \mathrm{C}^{H} \mathrm{E}\)
 In this case the matrix C is square; it can be shown that
if the matrix C is square then the equation factorises to
give;
$T=\left(C^{H}(E F-C)\right\rangle^{-1} C^{H} E$
and using the associative rule of multiplication for
matrices;

```
    T=(EF-C}\mp@subsup{)}{}{-1}
    Now, inserting the matrix elements and multiplying
out the equation will result in the individual terms of
the controllers. However, this is a lengthy process and
increasingly more complex systems would require the use of
computer algebra to solve the equations. The method also
results in feedback terms which are more complicated than
```


Abstract

the acoustic feedback itself. This is a result of the structure of the control system model used up to this point; in this model a feedforward and a feedback path are used to model each individual cortroller (figure 3.1.3). It can be seen that in this case the acoustic feedback paths do not match the electronic feedback paths. Each electronic feedback path needs to mimic an acoustic feedback path plus an additional term resulting from the signal at the microphone passing through the other branch of the system and feeding back to the microphone via the other acoustic path. This pheromenon results in two simultaneous equations which need to be solved to determine the responses of the electronic paths. A simpler solution can be found.

It is instructive to review the simpler systems already presented and the way in which their controllers were realised, specifically the use of an electronic feedback path to cancel the acoustic feedback. We can extend this method to the two source controller. The acoustic feedback paths are from each control speaker (actually the point of exit from the digital system) to the detector microphorie. The acoustic feedback paths add together at the detector microphone (actually the point of entry to the digital system). This feedback can be counteracted by modelling each acoustic feedback path electronically and summing the electronic feedback paths at an equivalent position to the acoustic feedback (figure 3.1.4) before the forward paths thereby cancelling the summed acoustic feedtack.

Abstract

The success of this method lies in the position where the feedback paths meet; ie before the signal splits to enter the feedforward filters before each speaker. The advantage is that the electronic feedback filters have a simple response which only needs to model the acoustic feedback for that channel. These paths are causal ensuring that they can be adaquately modelled. This also eases the extraction of the desired response of the feedforward filters from the matrix equation.

With the feedback path cancelled the response of the forward path is given by;

$$
K=-C^{-1} E
$$

This is a familiar expression; the forward response for the controller of a single detector, single source, single monitor system is given by - E/C. The expression above is simply the matrix form of the same equation. It can be expanded to give;

$$
K=-C^{-1} \quad A B^{-1}
$$

$$
K=-\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)^{-1}\binom{a_{1}}{a_{2}} \quad B^{-1}
$$

$$
K=\frac{1}{B\left(c_{11} c_{22}-c_{21} c_{12}\right)}\left(\begin{array}{lll}
a_{1} & c_{22} & -a_{2} \\
c_{12} \\
a_{2} & c_{11} & -a_{1} \\
c_{21}
\end{array}\right)
$$

The method is worth demonstrating for a more complex system. A system consisting of two detectors and two
speakers is shown in figure 3.1 .5 . Again the electronic
feedback paths are arranged to cancel the acoustic
feedback and the matrix equation determining the
controller reduces to the form given above.

Abstract

It has been previously shown how a sound field with n degrees of freedom can theoretically be attenuated with an active system of n channels. Each channel consists of a detector microphone connected to a loudspeaker via an electronic controller. Using the method developed here to realise the controller it can be seen from figure 3.1 .5 that the number of filter pairs needed in the controller is equal to the square of the number of chanriels; the complexity of the controller increases as the square of the number of channels thereby limiting the number of channels that can be practically implemented.


```
Consider a general control system where the number of monitors is greater than the number of speakers, which is a likely situation. In this case the term inside the brackets does not factorise because \(C\) is not square. However, by arranging the electronic feedback to cancel the acoustic feedback the term \(F\) can be set to zero to obtain the derired response of the feedforward filter;
```

$$
K=-\left(C^{H} C\right)^{-1} C^{H} E
$$

This expression for the feedforward path is valid for control systems consisting of any number of detectors, sources and monitors providing that the electronic and

```
acoustic feedback paths match.
```


Abstract

By using the topology indicated in figure 3.1 .5 to realise the controllers the filter pair connecting each detector to each source is repeated a number of times. This is of great advantage when designing a controller; the reproducibility prevents each new controller needing to be redesigned from scratch. The filter pair consisting of a forward filter in parallel with a feedback filter can be used as the basic building block with which to realise all controllers. If the controller was to be implemented on a single microprocessor then the software forming the filter pair could be duplicated the desired number of times. Perhaps a more likely situation is that the basic unit of the controller be implemented on a single chip and to implement higher order controllers a number of chips could be used.

The first step in demonstrating the idea in practice is to implement and test the basic controller unit. The implementation of the basic controller unit on a Texas Instruments TMS32020 microprocessor is described next.

3.1 .6 SUMMARY

The practical need for multichannel active noise controllers has been discussed and the equation giving the required responses of the controllers reviewed.

The controller responses were derived for specific

```
cases and it was shown how the topology of the filters
making up the controller needs to be considered. A new
method was presented whereby, by using a specific
arrangement of filters where electronic feedback paths are
specifically designed to cancel the acoustic paths, the
expression for the desired responses of the controller is
simplified and the controller for any multichannel
controller can be readily realised.
    It was shown how any multichannel controller can be
realised by repeatedly using the same filter pair as used
in the single detector-single source system. This thesis
proceeds by describing the practical implementation of
this basic unit of a multichannel controller.
```


3.2 A PRACTICAL IMPLEMENTATION OF A DIGITAL CONTROLLER

FOR A SINGLE CHANNEL ACTIVE NOISE CONTROL SYSTEM

3.2.1 INTRODUCT ION

This section is concerned with the implementation of the digital controller for an active noise control system consisting of a single detector and a single source which could control the field at one or more positions. The digital controller is realised by a pair of finite impulse response filters, one in the forward direction to be positioned in the path from the detector to the source, and the other in a feedback path to cancel the acoustic feedback.

It was shown in section 3.1 how the controller for a multichannel system could be realised by repeatedly using the same filter pair as described above. This implementation of the single channel controller therefore tests the basic unit of a multichannel controller.

It is shown how the filter pair can be implemented using one or two digital systems; the methods are compared, the advantage of implementing the controller on a single microprocessor is highlighted and it is explained how such a system can be stable.

The hardware used and the additional hardware

```
developed are presented (3.2.3). The implementation of the
controller on a Texas Instruments TMS32020 microprocessor
is described. The operation of the program is tested and
particular attention is paid to the position of the filter
coefficients and the convolutions within the program
(3.2.4-3.2.7).
    Finally, the development of a digital system to
implement a two charriel active noise controller is
presented.
```


3.2.2 TWO METHODS OF IMPLEMENTING

 THE ELECTRONIC FEEDBACK COMPENSATOR```
The next step in the verification of the ideas presented in section 3.1 was to implement a single detector, single source control system to show that the digital controller constructed in this manner could successfully operate a sound control system. If the single channel controller could be shown to be successful then, in theory, a multichannel controller could be implemented by repeatedly using the digital system for the single channel controller.
```

```
 It was required to implement a controller of the form
shown in figure 3.2.1 where the feedforward filter
connects the detector microphone to the control speaker
and the feedback filter cancels the acoustic feedback.
```

This sub-section presents two methods of implementing the configuration of filters needed. It is explained how each method can be inherently stable and a suitable method is chosen to be implemented in practice.

The digital controller is essentially an infinite impulse response filter because the feedback results in a closed, therefore infinite loop. For this reason the electronic filter itself may be unstable; it will be absolutely stable however when the electronic feedback path is cancelling the acoustic feedback path, therefore the electroric feedback path would seem to need to match the acoustic feedback at all frequencies to ensure stability. However this is not practically possible because the the digital filter has a finite bandwidth. It is however only necessary to ensure that the digital filter gives a good match over its whole frequency range and that outside the working range the level is sufficiently attenuated in the electronic path. The question then becomes one of how to appropriately band limit the digital feedback filter to ensure good system behaviour outside the working range. This subsection presents two methods of implementing the digital feedback filter.

The digital feedback filter can be band limited with analogue low pass filters at entrance to and exit from the system. The first to remove high frequency components in a signal entering the digital system and the second filter to remove the high frequency components present in the sharp discontinuities in the digital signal at exit. The

```
feedforward and feedback paths can be split so that each
digital filter uses a pair of analogue filters. The
complete control system then takes the form shown in
figure 3.2.2. Let the following symbols refer to the
following transfer furictions;
 F: acoustic feedback path to be cancelled.
 H:combined transfer function of the two low pass
```

filters.

To cancel the acoustic feedback $F$, the digital feedback filter needs to have a frequency response given by $F / H$. The disadvaritage of this method is that the electronic filter required is rot causal (see section 2.2); it needs to model the inverse transfer function of the analogue filters.

An alternative method of implementing the control system is shown in figure 3.2 .3 . This is the method that was practically implemented and presented in this thesis. Both the feedforward and feedback paths are combined in the same sampled data system; ie. implemented on the same microprocessor. In this case the desired frequency response of the feedback filter is simply $F$, the acoustic feedback itself from the exit to the entry of the digital system.

```
 The obvious advantage in implementing the controller
this way is that the system needs only one set of analogue
filters, analogue to digital and digital to analogue
converters and one microprocessor chip. In addition, the
digital feedback filter only needs to model a causal path
```

as opposed to the first method. These advantages heavily outweigh the fact that the feedback filter in the second system may need to be longer than in the first case because it incorporates the response of the analogue filters.


#### Abstract

The digital system of figure 3.2 .3 forms a closed loop and as previously presented, to ensure stability it is necessary that the system is band limited. A digital system sampling at $F \mathrm{~Hz}$ has frequency components defined up to $\mathrm{F} / 2 \mathrm{~Hz}$ (they will only be correctly defined if an infinite time length record is analysed). The spectrum is the result of a discrete fourier transform on sampled data and therefore the spectrum is repeated at intervals of $F / 2$ $H z$. The response of the digital system is therefore defined over all frequencies. However, attention need only be paid to the response of the digital system up to a certain frequency (half the sampling frequency); if the closed loop of the digital system is stable over this frequency range then it is stable over all frequencies because the response at higher frequencies is simply a repetition of the response at a lower freqency.

This explains how the closed loop digital filter configuration can be stable. It is also necessary that the complete control system be stable. This can only be achieved if the match between the digital feddback and the acoustic feedback is accounted for over the whole frequency spectrum. If the digital filter is long enough to sufficiently model the acoustic feedback then the match can be achieved over the working range of the


digital system (ie. up to the nyquist frequency) (see section 2.2).

This explains how the closed loop digital filter configuration can be stable. For stability the fall off of the analogue filter at exit from the digital system needs to be sharp enough to attenuate the high frequency components sufficiently.

### 3.2.3 THE HARDWARE USED IN THE PRACTICAL IMPLEMENTATION

AND THE ADDITIONAL HARDWARE DEVELOPED

The hardware presented in this sub-section was used both to implement the digital controller and record the necessary acoustic responses in the experiments described in chapter four.

The digital control system was realised using a Texas Instruments TMS 32020 microprocessor. The chip has a single cycle multiply and accumulate instruction using 32 bit arithmetic making it ideal for convolving two time series thereby implementing FIR filters. The microprocessor was mounted on a board from Loughborough Sound Images Ltd, housed in a Ferranti PC860XT personal computer. The same system was also used to record measurements on the acoustic system needed to derive the digital filters (sections $3.3 \& 4.2$ ). Additional hardware was constructed to interface to the digital system:

The TMS320 board incorporated an analogue to digital converter and a digital to analogue converter. An ADC furctions by converting the analogue signal at the input to a quantised digital value. However, the conversion is not instantaneous and the voltage level presented to the input of the $A D C$ needs to be held constant during the conversion. The conversion time of the ADC was given as 17 microseconds (Ref. TMS 32020 board User Manual). Dver this time the signal presented to the imput carn change. At 300 Hz the fraction of a cycle that the signal can change by is given by; $0.000017 \times 300=0.0051$ ie. about 2 degrees of a cycle which can introduce a significant error at the lower signal levels. Therefore the analogue value presented at the input to the ADC needed to be held constant while the $A D C$ was quantising the signal. This can be achieved by holding the voltage level constant with a sample and hold device clocked at a suitable rate.

This thesis also describes the implementation of a digital controller for operation with a control system consisting of a single detector and two control sources. This required the output from the DAC to be demultiplexed between two channels; ie. for the single DAC to serve two output channels. It was also considered that in future work in this laboratory the processor may be required to operate with two inputs; for example when running an adaptive filter system which would require another input to generate an error signal aswell as requiring the signal which was to be filtered. For this reason an interface to the TMS32020 board was desigried and constructed to input and output two channels. This electronic device needed to
be purpose designed to operate with the TMS 22020 board. The technical specifications of this multiplexer demultiplexer circuit are covered in appendix 1 .


The next four sub-sections describe the operation and testing of the software used to implement the digital control system. This sub-section explains the organisation and flow of the control filter program.

The implementation of the digital controller involved writing a program in assembly language to run on the TMS32020 microprocessor. The program realised two FIR filters configured as in figure 3.3 .1 and is listed in appendix 2. The processor has an on chip memory (the memory which is easily accessible) of 544 words, 512 of which are stored in two blocks such that the blocks can be convolved easily (Ref. Texas TMS32020 User Guide). To implement the two filters it was necessary to store two sets of filter coefficients and the input and output time series of the same length. Therefore the 512 words of on-chip memory (known as data memory) were equally divided between the four time series that needed to be stored. This resulted in filter lengths of 128 points. A diagram of how the main data storage blocks were used is shown in figure 3.2.4.

The program listed in appendix 2 shows that the coefficients are listed as part of the program itself and are therefore stored as part of the program memory when the program is loaded to the microprocessor. A new set of coefficients could be loaded into the program as follows. The coefficients were stored separately as integers in a

```
data file and a Fortran program read the assembly language
program and the set of filter coefficients, combined the
two anid wrote a newly formed assembly language program.
The coefficients listed in the program are the
coefficients used in the active sound controller
imalemerited in section 4.
 What follows refers to the manmer of operation of the
prouram itself (appendix 2). The coefficients are first
loaded from the program memory to the data memory block
BO. The block is then configured as program memory to
enable use of the instruction which performs the
convolution. The MACD instruction (standing for multiply
and data move) multinlies the contents of a data memory
address with the contents of a program memory address in
block BO. The result is added to the conterits of a
specific register and nointers automatically move to refer
to the next locations to be multiplied making the
instruction ideal for performing corivolutions.
 The samoling rate of the controller was set to 1 KHz,
although this could easily be altered. The program was set
to overate in ars interrupt mode; ie. for much of the
sample period the processor idles and on each clock cycle
it jumps to verform the main program routine; the
interrupt service routine. What follows is a list of the
sequential set of overations performed in the iriterrupt
service routine.
 read in XN
the current sample from chanmel A
of the MDMU
```

```
 XN = XN / 2
both large
 XN=XN + FN
 add FN, the feedback term
 YN= }\mp@subsup{\sum}{1=1}{128}\mp@subsup{X}{1}{}(1<129-1
 convolution of feedforward filter
 YN = YN / 8
 because forward filter
coefficients are scaled by a factor of 0.125
 CHANA = YN }\times
 get result ready to be output.
Note that the filters cammot be convolved together in the
implementation because the result of the convolution sum
from the first filter is needed. The output time series
from the feedforward filter is used as the input to the
feedback filter.
 FN= \mp@subsup{\sum}{1=1}{120}\mp@subsup{Y}{1}{}C2(129-1)
 convolution of feedback filter
 output CHANA
```


#### Abstract

At this time the program returns to the top of the above list to read in the next input value. The cycle operates continuously until the processor is reset.


#### Abstract

It was shown in section 2.3 how, for a control system operating in a reverberant field the magritude of the gains of the feedforward and feedback filters will be inversely proportional to each other; if one gain is of the order of $n$ the other gain will be of the order of $1 / n$. In practice (section 4.2) the system was desigried such that the feedforward and feedback paths both had gains of the order of one. It was found in practice that a gain of the order of unity in the feedback path resulted in a maximum coefficient of about 0.1 in that path. However, the maximum coefficient values in the feedforward path were typically greater than one and to implement this filter it was necessary to divide the coefficients by a scale factor (chosen as 8) and therefore necessary to scale the product of the forward convolution by the same scale factor.


```
 The filter coefficients are positioned in program
memory in reverse order. For example in the case of the feedback filter the larger coefficients at the start of the impulse response are positioned in the higher program memory locations. This can be seen in the increase in magnitude of the coefficients towards the end of the list.
```

The coefficients are loaded into the data memory in the same order with the start of the impulse response at the higher data memory locations. The feedback coefficients are convolved with the time series in the manner shown in figure 3.2 .5 . Let the current value of $Y$ be $Y_{1} ;$ ie. the result of the feedforward convolution sum in this sample period. Let the value of $Y$ from 127 samples ago be $Y_{120}$. The product of the convolution is given by the sum shown in the list above. $C 2_{1}$ is the first coefficient in the impulse response of the filter. The feedforward filter operates in a similar way. It car be seer how the convolution occurs by visualising the progression of the time series over time; the values of $Y$ are moved along the impulse response of the filter. A particuar value of $Y$ is multiplied with the first value of the impulse resporise first and progresses along to the end of the filter being multiplied by the successive coefficients of the filter in each sample period.

## 3.2 .5 CHECKING THE OPERATION OF THE DIGITAL CONTROLLER

```
The following checks were made on the operation of the program to determine that the coefficients were in the
correct places and operating in the desired manner.
 It was observed that the coefficients were correctly
transfered from the orogram memory to the correct
locations in the data memory.
The closed loon of the program was broken and checks were made with the output signal as \(Y N\), the result of the first filter convolution and the output signal as \(F N\), the feedback term resulting from the imput signal passing through both filters. Tests were made with short length filters which had definable responses.
```

```
 A single coefficient equivalent to unity was loaded
into the first position of a filter and the remainder of
the values set to zero. A check was made that the transfer
function between the input and output sigrials had an
amplitude of unity and a phase delay of one clock cycle.
The transfer function was viewed on a Hewlett Packard
spectrum analyser and needed, as always, to be measured
with low pass analogue filters at entrance to and the exit
from the digital system. The phase delay through the
digital system could only be measured by calculating the
difference in the phase delay of the digital system and
```

```
analogue filters and the delay throughi the analogue
filters alone. It is interesting to note that in measuring
the timing through the system in this way causes the
digital system itself to result in an effective time delay
of orie and a half samole periods (ie. 1.5 ms at 1 KHz}\mathrm{).
This phenomenon is illustrated in figure 3.2.6 where the
effective inout and output waveforms resulting from a
filter of a single coefficient are shown. The signal
levels of the input and outwut moiruts are shown. However.
the slorial levels at the output are held at that value for
the whole cycle; the sigrial riasses through the
reconstruction filter to the spectrum analyser which
effectively records a voltage level as occuring half wav
along a sample period.
 The wosition of the first coefficient in the filters
was determined by the position at which a single non-zero
coefficient gave a delay of only one cycle (ignoring the
extra half cycle exolained above). Positioning the pulse
at the n'th coefficient position gave a delay of n+1
cycles through the digital system.
```


### 3.2.6 TESTING THE FIR FILTERS

BY MODELLING A SIMPLE SYSTEM


```
ans the digital controller was operating in the intended
fastimon.
 Let the transfer function through the analogue
filters be }H\mathrm{ and the transfer function of the digital
filter arid tre time delay be H1 and T resaectively.
Refering to figure 3.2.7 it is required that;
H1 = T/H
 The digital system was used to pass a broad bard
swent sirie sigrial through a time delay (where 'swept,
refers to the frequency sweep of the signal). The sigrial
x = ~ w a s ~ d a s s e d ~ f r o m ~ t h e ~ d i g i t a l ~ s y s t e m ~ t h r o u g h ~ t h e ~ t i m e ~
delay via the low pass filters and recaptured on the
digital system. The spectrum of the resultant signal is
given by;
```

    H T X \(=\)
    The same swept sine signal was dassed from the digital
system through the analogue filters and recaptured. This
process was repeated with the captured signal resulting in
a sigral which had nassed though both sets of analogue
filters twice. The spectrum of this signal is given by;
$\mathrm{HHX}_{2}$

The ratio of these two spectra is given by $T / H$ (figure 3.2.8). This represents the desired response of the digital filter. The amplitude spectrum is flat over the

```
frequency ranife up to the cut off frequency of the low
Hass filters and the whase spectrum shows a linear delay
of 4 cycles in 287 Hz; ie. a delay of the order of 14 mS.
The inverse Fourier transform of this spectrum is shown in
f1gure 3.2.9. Again the delay through the digital filter
can be estimated by noting that the largest coefficients
of the filter are of the order of 14 mS alorig the time
a<15. The missing }0\textrm{mS}\mathrm{ can te accounted for from the groun
delay through the analorue filters and a sample delay
through the digital system itself. The impulse response of
figure 3.2.7 is not a pure time delay because the digital
filter has to compensate for the frequency response of the
analogue filters: it needs to model the inverse response
of the filters and the non-causal part of the imoulse
response resulting from trying to model a non-causal
system can be seen at the right harid side of the imaulse
response; this effect is refered to further in the results
of section 4.3.
 A 128 coefficient finite imoulse response filter was
derived by deconvolving the two signals (figure 3.2.10).
The filter was loaded into the feedforward filter of the
prosram and the circuit of figure }3.2.7 implemented by
breaking the closed loov of the program. The transfer
functions of both the digital system and the time delay
itself were measured and compared: it was verified that
the electronic path matched the time delay. Similar
measurements were verified when the filter was implemented
in the position of the feedback filter of the program,
with a single coefficient of unity magnitude in the first
position of the forward filter and the result of the
```

```
second convolution being used as the output from the
digital system.
This test showed that the coefficients were correctly negated resulting in cancelling the path which was being modelled. The test also verified that the convolutions were operating in the intended manner in the program.
The convolution results in a value \(Y N\) which has been calculated from \(X N\) and previous input values. However, \(Y N\) is output one clock cycle later than \(X N\) is input because the system is operating in sample delay mode. It was important to be aware of this when implementing the system. However, to compensate for this a similar delay was present in the recording of the measurements used to derive the filters. What was practically important was that the measurement procedure and the filter implementation were compatible in their manipulation of the time series and the procedure resulted in the successful modelling of a system.
The previous test which modelled the time delay device confirmed that the filter coefficients were correctly positioned in each filter but did not test how the filters operated together in the closed loop.
```


### 3.2.7 TESTING THE CLOSED LOOP OF THE CONTROLLER USING FILTERS OF SIMPLE KNOWN RESPONSES

The operation of the control program has been explained and its practical testing described. However,


#### Abstract

the fully working controller consisted of a closed loop round the two digital filters. It was necessary to devise a test to verify the operation of this closed loop in practice. This needed to be achieved without breaking the loop arid thereby altering the program. This sub-section describes the operation of the closed loop of the digital system and then proceeds to test the operation of the loop in oractice.


The displacement of the coefficients in the digital feedback system also needed to be considered. If the coefficients were implemented as derived then the feedback term added to the inout term would be one sample out of symchronisation. The current feedtack term is the result of convolving the time series containing the previous, and not the current input sample.

The reason this phenomenon occurs in the feedback filter but not in the feedforward filter may be understood from the following; there is a sample delay through the feedforward path because the path passes through the input and output of the digital system between which there is a delay of orie samvle verlod. The digital feedback bath is contained wholly within the digital system and does not incolvorate the samble delay because the processilig itself occurs in a very short time. The sample delay which is inherently compensated for in the measurement system is only needed in the forward filter and is not reeded in the feedtrack filter. Therefore it is required to time advance the signal passing through the feedback path by one sample; this was achieved by shifting the filter. coefficients by one place forward in time; ie. to the


#### Abstract

right in figure 3.2.5. Effectively the first coefficient of the feedback filter derived from decomvolving the two measured time series was ignored. (Alternatively the situation could have been resolved by deconvolving the two time series with the input time series advanced by one noint). This theory was subsequeritly verified in practice when the feedback match could be upset by displacirig the coefficients one slace in either direction.


```
Tests presented so far have involved operating on the input and output signals from the controller urogram with the closed loop broken by not adding the feedback term to the imput value. It was necessary to corisider the two types of instability that could occur in this closed loop digital system. Firstly, a numerical overflow could occur in the convolution, and maybe rot the result of the convolution itself tut during the accumulation of the total as the sum alternates between positive arid negative values. The scaling of the coefficients and samoles prevented this. Secondly, the closed loop of the program needed to be stable.
Although in mractice it was difficult to verify the successful operation of the closed loop program what follows is a test that indicated the closed loop functioned as required. A single coefficient of unity magnitude was positioned at the start of the feedforward filter and a single coefficient of magnitude one half was positioned at the start of the feedback filter. The resultant system is shown in figure 3.2 .11 . For an input value of \(x\) the current value of \(x\) is given by;
```

$$
\begin{aligned}
& x=x+f e^{J \omega T} \\
& x=x+0.5 y e^{J \omega T}
\end{aligned}
$$

```
where T is the samole weriod ie. the current value of }
results from the input value and the feedback term
resulting from convolutions occuring ir the cycle before.
The output from the system, Y is eusal to the value of y
calculated in this cycle which is simaly the current value
of x multiplied by the filter coefficient of unity;
 Y}=
 Y=X+0.5Y e JwT
rearranging the equation results in;
X=Y (1-0.5 ejwT}
The transfer function has a complex gain depending on
frequency. At higher frequencies the gain falls off. It
can be calculated at what frequency the magnitude gain
equals one. This occurs when;
```

$$
1-0.5 e^{J \omega T}=1
$$

```
 1-0.5 coswT-0.5 j sin WT = 1
```

```
cos}\omega/1000=0.2
```

ie. the magnitudes of the input and output are equal at 210 Hz . This was confirmed ir practice (figure 3.2.12). This test using simple definable impulse responses in each filter confirmed that both filters were correctly positioned relative to each other. The transfer function across the controller agreed with theory indicating that the closed loop of the program was acting successfully.

### 3.2.8 IMPLEMENTATION OF A DIGITAL CONTROLLER FOR A TWO CHANNEL ACTIVE NOISE CONTROL SYSTEM


#### Abstract

Having developed an assembly language program to control a single channel active noise control system the technical methods used to implement the system were duplicated to implement a controller for a two channel system. The digital controller developed could be used to operate an active sound control system consisting of a single detector microphone and two control loudspeakers capable of controlling the field at two locations. Such a system would rot be used to control the field at only one location because this would overspecify the controller required. The assembly language program for a two channel system is listed in appendix 4.


#### Abstract

The size of the memory of the TMS 32020 microprocessor and the sampling rate required limited the number of $F I R$ filters that could be implemented on a single chip. The two channel controller needed four filters configured as in figure 3.1.4. As well as storing four sets of coefficients, the input time series and two output time series needed to be stored; seven data sets in all. The controller was to operate in the same environment and therefore it was desired to implement filters of the same length as the single chamel controller (ie. 128 points). The on-chip memory of the microprocessor was only 512 words so some data transfer operations needed to occur during the program cycle. As in the single channel controller the input time series was stored in page seven of the memory (figure 3.2.4). The filtering operations of each chanmel were performed in turn. Before the convolution can take place both sets of filter coefficients are loaded from program memory to the data memory block $B O$ where they need to be for the convolution. The output time series for that channel, also stored in program memory, is loaded into the data memory block B1 (page 6). After the convolution, the output time series, which has shifted by one point is returned to be stored in the urogram memory. The coefficients are not shifted and do not need to be restored. The same operations need to be performed on the other channel of the controller. The time required for thse data movement operations means that the maximum clock rate of the program is 3.7 KHz ; operating at a quicker rate the processor does not have sufficient time


```
to complete all the required instructions.
```


#### Abstract

The two channel controller was implemented after a single channel control system had been successfully implemented (chapter 4). The filter coefficients derived in section 4.2 could be used successfully with the input and output to the system through either chammel. This demonstrated the successful operation of both channels of the multiplexer/demultiplexer unit. The single channel controller could also be operated with the two channel controller program operating through either chanmel. This verified the successful operation of the two channel controller program.


## 3.2 .9 SUMMARY

```
It has been discussed how it is necessary to band limit the electronic feedback path of the controller to obtain a suitable match with the acoustic feedback path. It has been shown how it is possible to realise both the feedforward and feedback filters of the controller on a single digital system and that the system can be stable.
The implementation of the controller on a TMS32020 microprocessor has been described. It was shown how the sampling of the signals and the convolutions need to be carefully considered in the implementation.
The controller program was successfully used to model
```

```
the response of an analogue time delay device and the
frequency response of the controller containing simple
definable filters was shown to agree with theory. These
tests demonstrated that the coritroller was operatirig as
intended. Finally the practical implementation of a
digital controller implemented for use with a two chanrel
active control system was described.
 Having developed a practical method of implementing a
control system the next section describes a method used to
derive the filter coefficients needed for a particular
controller.
```


# 3.3 A PRACTICAL METHOD OF DERIVING THE DESIRED CONTROLLER 

3.3.1 INTRODUCTION



```
measurements need to be analysed to derive the digital
filters; also the method used in practice to do this is
presented.
```

Finally, a practical method is developed to quantify the stability (or instability) of the control system. It is shown how the controller of section 3.2 and the practical method used to characterise the system were combined to form a system to record the open loop transfer function of the controller.

### 3.3.2 REVIEW OF THE FILTER STRUCTURE USED <br> TO REALISE THE CONTROLLER


#### Abstract

The previous section described how the digital controller was practically realised; by using two finite impulse response filters which have fixed impulse responses. The requirement of the filters is that they have a frequency resporise particular to the response of the control system and the environment it operates in.

The frequency response of a filter can be realised digitally in a number of ways, using filters with finite or infinite impulse responses (Ref. signal processing texts). Ideally it is desired that a control system would work adaptively, continually updating to changes in the noise source and environment. Adaptive filters and IIR filters both operate by having feedback in the filter structure. This feedback can cause instability; although


```
works have been published describing the use of adaptive
digital filters in active noise control systems (Ref.
Erikson, Poole) employing these filtering methods is not
straightforward and the most appropriate methods have yet
to be defined. The most straightfoward method of digital
filtering employs finite impulse response filters. This
thesis describes the successful implementation of a
controller using FIR filters which have fixed impulse
responses.
```

The filter vesponses are determined by the responses of other paths through the system (see section 2.2), therefore it is required to measure these responses by some method and process the measurements to derive the control filters.

### 3.3.3 AIMS AND REQUIREMENTS OF MEASUREMENTS <br> NEEDED TO CHARACTERISE THE CONTROLLER


#### Abstract

The response of the controller needs to be defined over the frequency range to be controlled. Therefore it is necessary to measure the system responses over a frequency range which encompasses the desired working range of the control system. Beyond this, however, it is necessary to ensure that the system does not cause enhanced noise levels at outlying frequencies and that the system is stable. Instabilities often occur at high frequencies


```
outside the working range, demonstrated by the howl
sometimes heard in acoustic systems, so it is necessary to
specify the system response at all frequencies.
The digital control system is band limited by the low pass filters at the entrance to and exit from the system; therefore it is necessary to measure the system responses up to and beyond the cut off frequency of the low pass filters, to a frequency where components are no longer passed significantly.
```



```
the time series and distort the result. The transformation
will be most inaccurate at low frequencies where the time
period approaches that of the record length.
 As the intended result of this system analysis is a
time series (the impulse resporse of the digital filter)
it is desirable to process the data wholly in the time
domain.
```

The first lotie of the spectrum of a rectangular pulse of length $T$ has a frequency width of $1 /(2 T)$ and if we are concerned with defining frequency responses of the order of 250 Hz a pulse of less than 2 mS lony would be needed. It is difficult to measure responses with very short duration pulses, there is often not enough energy in such a pulse to excite a system and signal to noise ratios are very small because only a small amount of energy is present in each frequency component.

The filter whose response is to be measured needs to be excited by a suitable signal. This signal meeds to be defined in frequency up to and beyond the upper frequency of interest; in this case beyond the cut off frequency of the low pass filters. It would be possible to use a random noise source with a suitable frequency range but the measurement can be performed much more quickly and efficiently using a transient signal sweeping the desired frequency range. This method has previously been used successfully.in acoustical studies in this laboratory (Ref. Howes, Chapman). This method has the advantage that the spectrum of the signal is well defined for whatever frequency range is required and can be arranged to have a

In summary, it has been discussed how the response of
the controller needs to be defined over all frequencies.
Therefore the measurements used to characterise the system
and derive the filters need to be defined over the working
range of the system. It has been shown why the
measurements used to characterise the system meed to be
performed with the same hardware used to implement the
controller. It is preferable to perform the analysis in
the time domain and a suitable method of measuring the

### 3.3.4 A SERIES OF MEASUREMENTS <br> TO CHARACTERISE THE CONTROL SYSTEM


#### Abstract

The method used to measure the system responses was as follows; The digital system used as the controller was used to excite the acoustic system whose response was to be measured. The response was also captured on the digital system. Before presenting the practical details of this measurement method, the measurements used to characterise the acoustic system and derive the digital filters are presented.

Previous work at RHBNC (Ref. Gurrie) has established a series of acoustic measurements from which the digital controllers can be derived. The procedure involves exciting the system with a transient swept sine signal and synchronously capturing the response.


A signal was numerically generated using a Fortran program (Appendix 4) in which the frequency limits, the sampling rate and the number of points in the signal could be chosen. The sigrial was of the form

```
x(t) = x0 sin((a+b t) t)
```

where $b$ is the angular frequency range of the sweep divided by twice the time length of the sweep;

$$
b=(w u-w 1) /(2 T)
$$

where wu and wl are the upper and lower angular

```
frequencies of the sweep and a is the angular frequency of
the start of the sweep;
```

$a=w l$

The instantaneous frequency of the signal at a time $t$ is given by the rate of change of the angle inside the sin term.

$$
\begin{aligned}
& w=\frac{d}{d t}((a+b t) t) \\
& w=a+2 b t
\end{aligned}
$$

```
 Hence the frequency of the signal linearly increases
from the lower frequency a to a frequency a + 2 b T
 In what follows capital letters denote SPECTRA and
small letters are used for signals as functions in time.
 Consider the control system acting in the enclosure
(figlure 3.3.1). The relevant transfer functions are shown
in the diagram and the notation is the same as that used
for the duct system in section 2.2.
 The desired response of the feedback filter is F and
the desired response of the feedforward filter is -E/C
(where E = A/B) = - A/< B C)
```

    The resporise of the acoustic feedback path is
    relatively easy to measure; let the swept sine signal $x z$
injected into the control speaker result in a signal yoz
(y denoting an output signal, and $z$ denoting points in
figure 3.3.1). The spectrum $Y_{12}$ is the product of the
spectrum $x_{z}$ and the transfer function F. Therefore the
response of the acoustic feedback path is given by;

$$
F=Y_{10} / X_{2}
$$

```
This response is the desired response of the digital feedback filter.
The method of measuring the feedforward filter is slightly more complicated. The swept sine signal \(x_{z}\) injected at point o to excite the noise source loudspeaker results in responses \(y_{10}\) at the detector microphone and \(y=s\) at the monitor microphone. The transfer function between the two microphones is given by;
```

$$
E=Y_{30} / Y_{10}
$$

The transfer function $C$ is the ratio of the spectrum of a broadband signal exciting the control source and the response at the monitor microphorie. However, consider the action of the digital controller; it only receives those frequency components which have been detected at the monitor; only these frequency components proceed to excite the control speaker. Therefore it is valid to excite the control speaker with the signal previously captured at the detector ( $y_{10}$ ). Denote the response at the monitor as $y=z$ and the transfer function $C$ is given by;

$$
C=Y_{32} / Y_{10}
$$

The response of the feedforward filter is given by;

$$
-\frac{E}{C}=-\frac{Y_{30}}{Y_{10}} \quad \frac{Y_{10}}{Y_{32}}=-\frac{Y_{30}}{Y_{32}}
$$

Conveniently the spectrum $\mathrm{Y}_{10}$ has dropped out of the

```
analysis leaving the filter response given by the ratio of
two swectra.
```

    In summary, the following measuremerits are recorded;
    A transient swept sine signal ( $x=$ ) excites the noise
source loudspeaker and the reswonses captured at the
detector microphone $\left(y_{1} 0\right)$ and monitor microphone ( $y=0$ ).

```
 The signal Y&o is used to excite the control sreaker.
and the resporise captured at the moritoor micropitone (y sz).
```

    The transient swept sine signal is used to excite the
    control speaker and the response captured at the detector
microptione $\left(y_{1} z\right)$.
This section proceeds by describing the practical
procedure developed to record these system resporises.

### 3.3.5 A PFFFCTICAL METHUD OF RECORDING THE RESPONSES GF THE CONTFOL SYSTEM

This subsection describes the aractical mettiod developed to record the time responses of the acoustic system. The method presented riere is appilicable for messuring the response of any device or system. The

```
digital system used for the measurements was the same
system on which the controller was implemented (section
3.2).
```

The swept sine signal used as the excitation signal
was numerically generated by a fortran program (appendix
4). The mathematical form of the signal determined that
the instantaneous frequency of the signal increased
linearly between two frequency limits. The range of the
frequency sweep could be specified by the user of the
program. The sampling rate, the number of points in the
signal and the length of signal to be windowed at each end
(to reduce sharp discontinuties) are also specified by the
operator. The more precise requirements of the practical

At this stage the development of a suitable excitation signal has been described. What follows is a description of the practical method used to record the response of the system under test.

The swept sine signal was downloaded to the TMS32020 by converting the numerical data points into Texas object code (see Ref. Texas) and loading the object code into the program memory of the microprocessor.

The structure of the program used to excite a system and record the response is quite simple; on each clock cycle a data point of the output signal (the swept sine

```
signal) is output from the digital system and the input
channel to the digital system is sampled.
 It was explained in section 3.2 how the digital
system (the TMS32020 and interface electronics) was
adapted to input and output two channels on each clock
cycle, irrespective of the program in operation. The input
and output operations peculiar to the digital system are
covered in appendix 1.
 The assembly language program used to excite a system
with a stored signal and capture the system response
referred to in the text as the data capture program is
listed in Appendix 5. The program outputs and inputs }190
data points: The output signal is initially stored in
program memory (off-chip) and output via a specific data
memory location (on-chip). The input signal is input via a
data memory location to be stored in the program memory.
 The operation of outputting and inputing 1900 data
points is repeated sixteen times and the sampled responses
averaged. This averaging was intended to increase the
signal to noise ratio of the captured signal. The
averaging is achieved by dividing each input sample by
sixteen and summing the signals. Initially zero is stored
in the program memory locations where the signal is to be
stored. On each clock cycle a data point is input, divided
by sixteen and added to the current sum of that particular
point. Because the dynamic range of each input point is
reduced by a factor of sixteen the quantisation noise of
the measurement is reduced. However, the overall signal to
noise ratio is governed by that of the electronic input
unit (see section 3.2 and appendix 1) and is of the order
```

of 40 dB .


#### Abstract

When the signal has been stored and the averaging is complete the program is able to repeatedly output the captured signal enabling it to be displayed on an oscilloscope until the processor is reset. This enables the user to check the form of the captured signal. If the signal were truncated, clipped or the measurement had been disturbed by an unwanted noise then the measurement could be repeated.


The captured signal could be uploaded to a data file on the host personal computer by saving the relevant section of the program memory.

```
 Having obtained the response of a system to a broad
band excitation the system responses can then be analysed.
The report proceeds by presenting the signal analysis used
to derive the required digital filters.
```


### 3.3.6 THE SYSTEM MODELLING USED TO DERIVE THE DIGITAL CONTROL FILTERS

```
The digital filters to be used in the control system are derived from an analysis of the system itself. The filters are numerical models of a desired system response; hence the term system modelling. The analysis determining the desiredresponses of the digital filters has been presented in terms of the spectra of the signals used to characterise the control system but, as discussed previously, it is desirable to operate in terms of the time signals themselves. Indeed, the raw data available from the measurements constitute a number of time series.
```

```
 In the frequency domain the desired response of the
```

    In the frequency domain the desired response of the
    feedforward filter is given by;
feedforward filter is given by;
H
H
and the response of the feedback filter is given by;
and the response of the feedback filter is given by;
Hz}=\mp@subsup{Y}{10}{\prime}/\mp@subsup{X}{2}{
Hz}=\mp@subsup{Y}{10}{\prime}/\mp@subsup{X}{2}{
where the terms Yso, Y }\mp@subsup{Y}{2}{\prime},\mp@subsup{Y}{10}{}\mathrm{ and }\mp@subsup{X}{2}{}\mathrm{ are the spectra of
where the terms Yso, Y }\mp@subsup{Y}{2}{\prime},\mp@subsup{Y}{10}{}\mathrm{ and }\mp@subsup{X}{2}{}\mathrm{ are the spectra of
the measurement signals. The end result of this analysis
the measurement signals. The end result of this analysis
is to determine two time series; ie. the impulse responses

```
is to determine two time series; ie. the impulse responses
```

```
of the filters. However, the result is not readily
available in the time domain. Transforming the equations
into the time domain gives;
```

$$
y \leq 2 * h_{1}=y \leq 0
$$

$$
x_{2} * h_{z}=y_{10}
$$

To obtain the impulse responses $h_{i}$ and $h_{z}$ it is necessary to deconvolve the time series $y s z$ with $y$ so and $x z$ with Yı0.

Consider a system having input $x$ and output $y$ related by the convolution;

```
 y=x*h
where each term is a sampled time series. The individual
terms of the series y can be specified as;
 y(1)=x(1)h(1)+ n_(
 y(2)=x(2) h(1)+x(1) h(2)+\mp@subsup{n}{2}{}
 y (3) = x (3) h (1) + x (2) h (2) + x (1) h (3) + h 3
 etc.
The convolution is only a linear numerical approximation
to a real system. Therefore terms representing the non
linearity and the system noise have been added. The result
```


#### Abstract

of the operation of deconvolving the series $x$ and $y$ is to obtain a set of values for the series h such that when convolved with $x$ the result gives the best fit to the series $y$. It is desired to obtain a numerical approximation to the series h. There are a number of different methods to model the series (see texts on system modelling). The method used in practice was a least squares fit in the time domain. This method may not be the best method but it is one of the most straightforward to understand.

Let the result of the convolution between $x$ and $h$ be $y$ " and let the output from the real system be $y$. A set of values of h can be derived by minimising the squared error between the measured system output, $y$ and the finite impulse $1 \cdot \frac{s p o n s e ~ f i l t e r ~ o u t p u t, ~}{}{ }^{\prime}$. A Fortran program of a least squares system identification algorithm (Ref. Marple) was used to deconvolve the time signals, resulting in a least squares error approximation to the system impulse response.


The remairider of this sub-section details the particular procedure used to derive the FIR coefficients. The data capture program output and input 1900 data points in total. However, the package used to display the signals and their spectra (Ref. ILS) could only analyse signal lengths of 512 points maximum. It was found that this signal length was adequate to derive the digital filters. Therefore the captured signal response was 1 imited to 512 points in length and input and output signal lengths of 512 points were used as input to the deconvolution
program.


#### Abstract

The length of heeds to be chosen to be long enough to model the impulse response of the system adaquately. Given this then the estimate of hill improve as the length of $h$ decreases relative to the length of $x$ and $y$. This can be seen by considering the situation of heing longer than $x$ and $y$; in this case the simultaneous equations camot be uniquely solved. As the length of $h$ decreases with respect to $x$ and $y$ the excess of equations are more adequately able to define the set of h. For this reason it was an advantage to perform the analysis with time signals of significantly greater length than the filters to be derived.

The filter lengths were to be 128 points (see section 3.2) and the signal lengths from the measurement were 512 points long. However it was known that there was no input to nor output from the system before it was excited by the swept sine signal. Therefore, to increase the signal lengths used in the analysis, the deconvolution was performed with signal lengths of 1024 points, the first 512 of which were of zero level.

The operation of the program was the most time consuming part of the analysis of the control system, taking about twenty minutes to perform the deconvolution on the Ferranti personal computer.


It has been shown how a series of measurements can be performed on a single channel active control system from which the required digital controllers can be derived. The practical method developed to record these measurements
has been described and the theory of the signal processing used to derive the flters has also been presented. The Fortran program of the least square system identification algorithm was used to derive the digital feedforward filter from the measurement signals $Y>z$ and $Y=0$. The feedback filter was derived from deconvolving the signals $y_{12}$ and $x_{z}$.

# 3.3.7 THE PRACTICAL METHOD IMPLEMENTED TO MEASURE <br> THE OPEN LOOP TRANSFER FUNCTION <br> OF THE SINGLE CHANNEL ACTIVE NOISE CONTROL SYSTEM 

Having developed a digital system to implement the active controller and a method to derive the specific digital filters needed it was desirable to test the stability of the system; to find over what frequency range, if any, the system was likely to be (or was) unstable. As remarked in section 2.2 instability round a loop of a system occurs when the loop has a gain greater than or equal to one at a phase lag of an odd number of cycles. To measure the extent that the loop gain of a system approaches this it is necessary to break the loop and record the transfer function round the loop.

Consider the active noise control system shown in figure 3.3.2. The path through the digital system is shown
broken. It is required to determine the complex loop gain round the system starting and ending at this point. Note that the loop does not include the monitor microphone which is not needed for the controller to operate (but is only needed for the derivation of the digital filters).

The loop is broken in the feedforward path of the digital controller. It is necessary to break the loop here because breaking the circuit in either the digital or acoustic feedback path would have resulted in a closed loop remaining in the circuit (the loop round the opposite feedback path to the one that was broken). If this loop was unstable then the instability would become apparent as a saturated signal level from that loop but the test would not indicate over what frequency ranges the loop was unstable.

Therefore to test the stability in this manner it was necessary to break the circuit at a place common to both feedback loops ie. along the digital feedforward path. Therefore the open loop frequency response of an active control system could not be readily measured with a spectrum analyser but a program had to be implemented on the digital system itself to break the loop in the forward path and record the complex gain round the loop. The symmetrical position of the break indicated that some useful measurements could be recorded; such as the match between the digital and acoustic feedback paths.

The method used to perform the necessary acoustic measurements on the control system involved exciting the system with a swept sine signal and synchronously capturing the system response. A similar measurement

```
procedure was used to record the open loop transfer
function of the system. The swept sine signal was used to
excite the system at a point just before the feedforward
filter (figure 3.3.2) and the resultant signal captured at
the same place.
```

    The program to perform these measurements was
    developed by adapting the controller program (see section
3.2) and incorporating into it the elements of the data
capture program. The program is listed in appendix 6.


```
This program is used in section 4.3 to record the responses of the controller implemented.
```


### 3.3.8 SUMMARY

```
 It has been shown how the frequency response of the
active sound control system needs to be characterised to
derive the necessary digital filters to control the
system. It was shown how it is desirable to measure the
system responses with the same digital system on which the
controller is to operate and to process the raw data in
the time domain.
 The development of a practical method to record
measurements on the controller has been presented and the
series of measurements used to characterise the control
system were derived. It was shown how the measurements
were analysed to derive the digital filters:
 Finally, the practical method used to record the open
loop response of the controller has been presented.
```


## 4. THE PRACTICAL IMPLEMENTATION OF AN ACTIVE SOUND CONTROL SYSTEM GPERATING <br> ON THE REVERBERANT FIELD <br> INSIDE A SMALL ENCLOSURE.


#### Abstract

This chapter presents the practical work carried out (using the methods preserited in sections 3.2 and 3.3) to support the theory of sections 2.3 and 3.1 . The chapter is divided into four sections the first three of which are concerned with the implementation of a single channel active sound control system inside a small enclosure.

Section 1 describes the test conditions and apparatus used. Section 2 presents the acoustical measurements on the enclosure and the digital control filters derived from the measurements. Section 3 presents some practical measurements used to assess the degree of success of the control system and the practical attenuation achieved by the system. The first three sections can be viewed as a whole, presenting the results of a practical implementation of a single channel control system.

Section 4 concerns some additional experiments on the single chammel control system (i) operating at a higher sampling rate and (ii) working to achieve attenuation at a different monitor position from the experiment forming the bulk of this chapter. A single detector, double source control system is also implemented and the results discussed.


### 4.1 TEST CONDITIONS

### 4.1.1 INTRODUCTION

This section describes the small enclosure under
test, the test conditions, practical apparatus, the
physical limitations present and how these were optimised
to design an experimental situation where an active noise
controller could be expected to work.
are described showing the suitability of the box for a
demonstration of an active control system attenuating the
reverberant field. fher major constraints of the electronic hardware are
shown to determine the maximum length of finite impulse
response filters that could be readily implemented. The
working range and sampling frequency of the system are
chosen. finally the foperating limitations of the
controller are discussed and the trars fucer positions for
the control system operating inside the enclosure are
chosen and the reasons for these choices discussed.



#### Abstract

the centre of the enclosure; the microphone here was positioned on a node of the low order modes within this frequency range (the $1,0,0$ and $0,1,0$ modes). A similar pattern is seen in the phase plots, large phase shifts occuring around the resonance frequencies but not present in the phase response recorded at the centre of the enclosure.


#### Abstract

The apparatus of figure 4.1 .2 was used to investigate if suitable levels of attenuation could be achieved inside the enclosure to make an active noise control demonstration worthwhile in this environment.

The sound field was excited using a loudspeaker positioned in one corner of the enclosure and a second speaker driven from the same noise source via a phase shifter was used to cancel the sound field (figure 4.1.2). The degree of cancellation achieved was recorded on a microphone placed at various positions throughout the enclosure. Two experiments were performed to test the suitability of the enclosure.

Firstly it was observed how the field dominated by a single mode could be cancelled with a single speaker. The first low order mode was excited at the modal frequericy with two sources driven from the same oscillator (figure 4.1.2); the phase shifter could be adjusted so that the mode could be significantly attenuated with the cancelling speaker in a variety of positions.

Secondly a noise source of 100 Hz bandwidth, centred at 250 Hz was used to excite the first two low order modes. With the speakers placed as near as was practically


#### Abstract

possible (centres about 10 cm apart) the maximum attenuation measured was 8 dB at a point distant from the speakers in the enclosure. This was achieved by driving the two speakers from the same oscillator and reversing the terminals to one of the speakers. Similar attenuation levels could be measured throughout the enclosure. However, with the cancelling speaker in an opposite corner broadband attenuation could not be achieved. In this case the direct field could no longer hope to be cancelled, but cancellation could be achieved over a narrow frquency range centred round the mode resonances.

These preliminary demonstrations showed that the direct field could only be attenuated by placing a contol speaker riear to the noise source. The reverberant field could be attenuated by a loudspeaker in other positions inside the enclosure.


### 4.1.3 WORKING RANGE AND SAMPLING FREQUENCY OF THE DIGITAL SYSTEM

```
 A diagram of the control system showing the apparatus
used is shown in figure 4.1.4. Some of the apparatus can
be seen in the picture of figure 4.1.3 and the remainder
is shown in the picture in figure 4.1.5.
```

The first two modes of the enclosure had resonance frequencies at 246 and 292 Hz . The two low pass filters at

```
entrance to and exit from the digital system determine the
working frequency range of the system. The cut off
frequency of the low pass filters was chosen to be 350 Hz
to encompass the two low order modes of the enclosure.
 The sampling theorem states that only frequencies up
to the Nyquist frequency can be detected in a sampled time
series. Frequencies above the Nyquist frequency will be
aliased as reflections about the Nyquist frequency. In
order that frequency components beyond the Nyquist
frequency would be sufficiently attenuated it was
important that the sampling frequency was greater than
twice the cut-off frequency of the low pass filters. For
this reason the sampling frequency was chosen to be 1 KHz.
```

4.1.4 IMPULSE RESPONSE OF THE REVERBERANT SOUND FIELD
When modelling any system with a finite impulse
response digital filter it is important to know the time
length of the impulse response of the system to be
modelled. In this case the impulse response of the
electronic feedback filter needed to be long enough to
model the acoustic feedback path. Any acoustic path in the
enclosure has a resonant response; the impulse response at

```
any position is representative of other positions so a
digital controller able to model the enclosure response at
one point would also be adequate to model the response at
any other point in the enclosure. To model a system well
the model needs to be long enough to encompass most of the
energy of the system impulse response. Less and less
payoff is to be had (in terms of fit against complexity)
from extending the model beyond a certain accuracy.
 The response of the feedforward filter approximates
the inverse of a typical enclosure response (section 2.3).
It is shown in section 2.3 that the inverse of a decaying
second order system is shorter than the impulse response
of the system itself. Therefore if the feedback filter is
long enough to model an enclosure response then a
feedforward filter of the same length should theoretically
be long enough.
A loudspeaker at an enclosure corner was excited with a swept sine signal increasing in frequency from 0.1 to 500 Hz sampled at 1 KHz reconstructed via a low pass filter with a cut off frequency of 350 Hz . The response was captured at a microphone. The increase in length of the response over the input signal gave a measure of the typical impulse response length of the enclosure. The undamped response of the enclosure was of the order of 0.35.
To reduce the impulse response to the order of 0.12 S (short enough to be modelled with the 128 point filter
```


#### Abstract

sampling at 1 KHz ) a small amount of foam ( 3 cm covering half of each face) was added to the ceiling and one end of the enclosure (figure 4.1.3). It was important not to damp the enclosure too much or the reverberant field that the control system was to work on would become unimportant compared with the direct field.


4.1.5 OPERATING LIMITATIONS OF THE CONTROLLER
The diagram of the control system (Figure 4.1.4)
shows that the distance from the detector to the monitor
is less than the distance from the control speaker to the
monitor. This establishes the fact that this system could
not attenuate the direct field over all frequencies but
could only hope to cancel the reverberant field inside the
enclosure.
welle be applied to the attenuation of a travelling sound
field provided the acoustic delay was greater than the



#### Abstract

The total delay of the control system is estimated by adding the group delay, the processing delay and a millisecond estimate (typical order of magnitude) for the delay of the control speaker. Using a model of the sound propagating along a direct path from the monitor to the control speaker, an estimate is made of the minimum distance betweer the two speakers for the system to operate at this sampling frequency. The number of points needed in the digital filter is also given. For the direct field to be attenuated the physical dimensions, the sampling rate and the analogue delay through the control system need to give suitable conditions. When sampling at 1 kHz the microphone loudspeaker distance needed to be at least 1.7 m , much longer than the enclosure itself. The controller would need to run at over 10 KHz to have a hope of carcelling any of the direct field. This would require filter lengths of over 1000 points (more points are needed to cover the same time length when sampling at a higher frequency), much more than was available, so it was not practically possible to control the direct field inside the enclosure (these figures are based on the sound propagating in one direction, and this is not the case in an enclosed three dimensional space, but they serve as a guide).


#### Abstract

This demonstration was intended to give an insight irto how an active control system could be implemented in a practical environment and to show that such a controller could be implemented successfully. The controller elements, the detector microphone and the control speaker. were placed in "sensible" positions where theory and common sense indicated that the system could work.

A single detector, single source system was under test. A single source can successfully mimic the field from another single source. It cannot replicate the field created from two sources and using two or more speakers as a noise source would have introduced more degrees of freedom into the sound field resulting in a more complicated field to be controlled. The demonstration was concerned with testing and understanding a realisable control system; a single primary source was chosen and positioned in a corner so it would excite all the modes of the ericlosure.


A single monitor position was chosen to avoid overcomplication. The microphone was placed in an arbitrary position roughly one third way along a diagonal from a corner 50 as to be sure of detecting the low order modes adequately. It was positioned in a quadrant of the box away from both speakers to be distant from the near field.

```
Following the rationale that any real field will be the sum of travelling and reverberant fields, the detector microphone is placed near the primary source. The nearer the detector is to the noise source the sooner the changes in both components of the sound field are detected.
```

```
The control speaker was positioned in another corner so as to be sure of being able to excite all modes within the working range of the control system.
```

The working frequericy range of the controller had been designed to incorporate the first two modes of vibration of the enclosure; the 100 mode in the horizontal direction and the 010 mode in the vertical direction. Because the major concern of the control system was to attenuate these modes the enclosure can be thought of as a two dimensional system. The diagram of the control system in figure 4.1 .4 is a plan looking down on the top of the box.

A picture of the enclosure and transducers is shown in figure 4.1.7. A projection of the side of the box is shown in figure 4.1.8. In this view the noise source and the control source become coincident; they are in the same position relative to the horizontal mode and the vertical mode. The view represents a vertical section through the enclosure; along any section the amplitude and phase of each mode is theoretically the same as that through any section. In practice, edge effects at the walls and coupling of the modes will alter the sound field but it is useful to ease the understanding of the sound field by

```
regarding the field as two dimensional. In this respect
the active control system is only operating on a two
dimerisional sound field. However, the difficult
practicalities of implementing an active control system
still make this a worthwhile demonstration.
```


### 4.1.7 SUMMARY

```
The acoustic system was coriditioned and the sampling rate chosen in the steps described in order to design an experiment with suitable conditions in which an active noise controller could operate.
```



```
This final adjustment to the acoustic field would probably not have been possible in designing a system to actively control the field in a practical situation. A practical system would need to be designed in the following steps:
The frequency range of the noise levels to be attenuated would determine the required working range of the system which would determine the sampling frequericy. The sampling frequency and the impulse response of the acoustic system would determine the hardware required.
Having described the initial conditions of the experiment the rext section presents the practical derivation of the digital control filters and a theoretical assessment of their performance.
```


# 4.2 ACOUSTICAL MEASUREMENTS ON THE ENCLOSURE AND DERIVATION OF THE DIGITAL FILTERS 

### 4.2.1 INTRODUCTION


#### Abstract

This section describes the measurements and analysis performed on the test enclosure to determine the digital filters to be used in the controller. Measurements through various paths of the system are recorded and processed to derive the digital controllers. The digital controllers are compared to the theoretical spectra reeded to give cancellation. A more precise understanding of the action of the controller is presented and the maximum theoretical attenuation achievable with the digital filters is derived.


4.2.2 GENERATION OF TRANSIENT TEST SIGNAL
The procedure used to derive the finite impulse
response filters has been detailed in section 3.3 . The
method involved recording the response of various paths


#### Abstract

through the control system by exciting the system with a test signal and capturing the system response. The test signal (generated by the Fortran program in Appendix 4) consisted of a continuous sine wave rapidly increasing in frequency between two frequency 1 imits in 0.128 S.


#### Abstract

A signal was numerically generated linearly increasing in frequency range from 0.1 Hz to 500 Hz . As described in section 3.3 this range covers the intended working range of the control system and beyond the cut off frequency of the low pass filters up to the Nyquist frequency. The signal was comprised of 128 points at intervals of 1 mS . A signal which begins with a sharp onset and ends suddenly will have ripple in its spectrum due to the discontinuties in the signal; the amplitude spectrum can be flattened by increasing and decreasing the signal amplitude gradually at the start and end of the signal, so the first and last 20 points were modified by a cosine window.


The measurement system operated by outputting a sigrial of 512 points length and synchronously capturing an input signal of the same length. Therefore the total length of the signal was 512 points; the last 384 points of the numerically generated signal were of zero level leaving time for the captured response which would necessarily be longer <by a length equal to the impulse response of the system) after passing though the acoustic system.

The signal $x_{1}$ is shown with its corresponding

```
spectrum }\mp@subsup{x}{1}{}\mathrm{ in figure 4.2.3.
```



### 4.2.3 PROCEDURE TO RECORD ACOUSTIC MEASUREMENTS


#### Abstract

The following procedure was used to record various measurements on the control system from which the digital controllers were derived. The apparatus was set up as in figure 4.2.1.


```
LO is the noise source
L2 is the cancelling source
M1 is the detector microphone
M3 is the monitor microphone
```

The maximum input and output voltage levels to and from the TMS32020 microprocessor board were $+/-10 \mathrm{~V}$. The output signal $x z$ covered the complete dynamic range of the chip memory and hence resulted in a maximum output level of $+1-10 \mathrm{~V}$ at exit from the digital to analogue converter (DAC). The signal level at the analogue to digital converter (ADC) needed to be less than 10 V .

It was necessary that the signal levels in the system were conditioned so that the dynamic range of the microprocessor was not exceeded. The following procedure was used to set appropriate gain levels on the power amplifiers to the loudspeakers and the measuring amplifiers connected to the microphones;

By repeatedly driving the noise source $L 0$ with the signal $x z$, the resultant level at the detector microphone M1 was observed and the amplifiers $A O$ and $A 1$ were adjusted


#### Abstract

to give a maximum sigral level comfortably below $10 \quad V$ modulus. Neither amplifier was set too low as to give a poor sigral to moise level at that point. The acoustic path itself was probably the noisiest part of the system, especially as its response could change with for example a change in temperature arid using high gain levels improves the $S / N$ ratio through the acoustic path.

It was important that neither the amplifier gain levels mor the transducer wositions were altered during measurements or implementation. The desired response of the controller was determined by the responses of the rest of the system and the derived filter responses were, within experimental constraints, the 'right answers' to that acoustic environment; adjusting a gain in the system would alter the controller needed to attenuate the field. This procedure fixed the amplifier AO and A1 for the remainder of the demonstration.

The loudspeaker and microphone amplifiers were adjusted so that each speaker was of the same strength and each microphone was of the same strength. The sources were required to create the same pressure fields but in antiphase at the monitor position, consequently the amflifier A2 was adjusted so that source L2 gave the same pressure level at the monitor as when the field was excited by LO. The microphone gains were made approximately equal by placing both microphones in the same position, exciting one source and adjusting the amplifier $A B$. This procedure fixed the gains in the feedforward and feedback paths to be both of the order of unity (see section 3.2).




```
modes are out of phase, cancelling and resulting in the
lower SPL at this position. This effect can also be seen
at the dip in the spectra between the two modal
resonances.
 The speaker used for the noise source does not
transmit frequencies well below about 100 Hz. The spectrum
Y1z is similar to Y>o but is only well defined beyond 180
Hz. The control speaker resonated at a higher frequency
than the noise source speaker.
 The signal ysz is much longer than the others by the
order of 0.1 to 0.2 S (the impulse response of the
enclosure). This is because it is the result of passing
through the acoustic system twice. The peaks in the
spectrum are much more pronounced because the spectrum is
the result of the broadband signal }xz\mathrm{ travelling twice
through the acoustic bardpass system as opposed to the
other signals passing through the system only once.
```

4.2.4 DERIVING AND ASSESSING THE DIGITAL CONTROL FILTERS



#### Abstract

coefficient magnitude in the feedback filter was 0.11 and the maximum magnitude in the feedforward filter was 1.56. It was shown in section 3.2 how, when operating in a reverberant field, the gain of one filter was theoretically inversely proportional to the gain of the other. However, the maximum coefficient values do not directly represent the gain in that path, especially as the feedforward filter is modelling a non-causal path.


#### Abstract

The desired spectrum of the feedback filter is given by dividing $Y_{12}$ by $X_{2}=X_{z}$ is flat over the working range so the ideal frequency response of the feedback filter (figure 4.2.11) is similar to $Y_{12}$. The amplitude response is dominated by the modal nature of the sound field. The phase response shows an overall linear characteristic from the acoustic delay and the group delay of the analogue filters. Superimposed on this are the rapid phase changes around the mode resonances: a phase change approaching a half cycle is noticable around 250 Hz at the first mode, as the response of the sound field, dominated by this mode, changes from leading the velocity of the speaker to lagging (section 2.1). A smaller phase change is noticeable around the second mode; but the shape of the spectra is evidently disrupted.


```
 Y1z was the result of passing }\mp@subsup{x}{2}{}\mathrm{ through a filter
(the acoustic system); yoz has resulted causally from xz
(}\mp@subsup{x}{2}{}\mathrm{ causes }\mp@subsup{y}{1z}{}\mathrm{ to occur) and consequently the filter is
totally causal (section 2.2). Therefore the derived
digital filter closely resembles the inverse fourier
```

transform of the spectrum $\mathrm{Y}_{12} / X_{2}$ (cf. figures 4.2.10 and 4.2.11) the ideal impulse response needed to model the acoustic feedback path.

The digital filter needs to be long enough to contain most of the energy contained in the measured impulse response. It can be seen that this condition is satisfied; most of the energy in the impulse response is within the first 0.128 S .

Figure 4.2.9 shows the two spectra $Y_{30}$ and $Y_{32}$ superimposed. Over most of the frequency range the amplitude of $\mathrm{Y}_{32}$ lies below $\mathrm{Y}_{30}$ but goes above at the mode resonance frequencies. $\mathrm{Y} 3 z_{z}$ will have less energy than Y so because it has passed through the filter system twice; but it will not necessarily have less energy at a particular frequency. The result of dividing $Y_{30}$ by $Y_{3 z}$ is shown in figure 4.2 .13 . Over the range of interest the amplitude response approximates a flat spectrum with dips at the modal frequencies as predicted in section 2.3.

Modelling the response between $Y \approx z$ and $Y \approx o$ ideally requires a partly non-causal filter; $y=2$ does not cause $y=0$ (section 2.2). Unlike the signals used to derive the feedback path, signal $y=0$ is not a filtered version of signal $V_{32}$. The inverse transform of the spectra $Y_{30} / Y_{3 z}$ (figure 4.2.13) does not give clear information about the digital filter required. What has happened?

The acoustic path from the detector to the monitor has a shorter delay than the cancellation path so any filter implemented in the cancellation path will still result in the cancellation signal arriving too late to


#### Abstract

cancel the direct noise. What is needed is a filter which would cause the signal to jump ahead of time. This phenomenon is represented mathematically in the fourier transform by extending the impulse response into negative time; ie. before the $t=0$ axis, so the filtering mathematically occurs before it could actually happen with a real filter, which is what is required. Due to the circular nature of the functions calculated using a discrete Fourier transform this negative direction starts from the right hand side of the impulse response time series (figure 4.2 -13) and continues backwards. As this part of the impulse response is superimposed on the causal part it is not possible to distinguish the two. If the causal and non causal parts of the response were shorter than the displayed length then it might be possible to distinguish them if they both decayed to a sufficiently low level before they overlapped. This can be useful when designing a filter to control a direct field; the proportion of energy contained in the non-causal part of the response represents the part of the response that cannot be practically realised and the extent to which the field cannot be attenuated.


Either part of the response may be longer than the time length of 0.512 S (determined by the resolution of the spectra; $1 / 0.512=1.95 \mathrm{~Hz}$ which in turn was determined by the length of the original signals). Because either, or both parts of the response are greater than 0.512 s then the time series gets 'wrapped around; continuing at one end of the time axis where it finished
at the other. Both parts of the impulse response appear to be very long and have wrapped round the axis a substantial distance. The spectrum of the filter shows two spikes around 125 Hz ; these frequency components dominate the impulse response (which has a beating frequency of about 6 Hz; the spacing between the peaks). This illustrates the fact that a single spike in the frequency domain affects all of the time domain. This time series does not give useful information about the digital controller needed to attenuate the field.

The feedforward filter, derived by a least squared error fit of the time signal $y>z$ to $y>0$, was a causal filter approximating a non-causal response. The filter and the ideal spectrum have similar shaped amplitude responses (figure 4.2 .14 ) although they differ in magritude considerably;- the causal filter is able to model the non-causal response with only a limited degree of success. A comparision of the phase spectra of the two responses is illuminating: It is known that to attenuate the direct field at the monitor position the filter needs to make the control signal jump ahead in time; this is represented by the overall trend of phase gain shown in the spectra of the ideal response. As shown, the causal finite impulse response filter cannot match this phase gain. Note the phase responses around 250 and 300 Hz ; the mode resonances: Again the causal filter cannot match the non-causal system because it cannot cancel the direct field. However it can be seen that the phase response of the filter around the modes differs from the ideal response by approximately a half cycle. Two effects need

```
to be considered here, the first one technical. The FIR
filter had its coefficients negated to cause the control
signal to be inverted and cancel the acoustic path. It
could be said, therefore that the phase response of the
filter matches the response of the non-causal filter
around the acoustic resonances. However, this cannot be
true, because as already stated the delay in the control
path is greater than the delay in the acoustic path and
the phase responses cannot match.
 The signal from the detector contributes to a
particular cycle of the resonance of the first mode. This
same signal from the detector is processed and generates,
in antiphase, a cycle of the same mode; but this cycle
will occur an odd number of half cycles later than that
due to the original signal. It is the highly resonant
nature of the mode, approximating a sinusoidal response
that enables a half cycle from the control source to
attenuate a half cycle from the noise source even though
it is arriving a number of half cycles later; it
attenuates the mode by cancelling with a different half
cycle from the noise source.
```


### 4.2.5 THEORETICAL ATTENUATION ACHIEVABLE

```
ON THE REVERBERANT FIELD
```

It has been discussed how, because the acoustic feedback path has a causal resporise it cari be adequately modelled if a long enough filter is used. The feedforward filter, which is modelling a riontcausal resforise is the

```
unknown quantity here. A theoretical simulation was
carried out to determine the maximum attenuation that
could be achieved with this feedforward filter. The
feedback filter was assumed to work perfectly sie. the
feedback paths were ignored). Figure 4.2.15 shows the
spectrum Y so captured at the monitor microphorie when
driving the noise source with a swept sine sigrial. This
swectrum can be regarded as the svectrum at the monitor.
when the noise source is driven with a broadband signal.
Superimposed on this is a wlot of the theoretical spectrum
at the monitor position with the controller on.
 The attenuated spectrum was calculated as follows
with the notation used in sections 2.2 and 3.1.
 The spectrum at the monitor microphone is given by;
```

    \(P_{z}=P_{O z}+P_{1} T C\)
    In this analysis the spectrum at the monitor due to
    the noise source alone ( $\mathrm{P}_{\mathrm{oz}}$ ) can be represented by Yoo.
The spectrum at the detector $\left\langle P_{1}\right\rangle$ can be represented by
Yo. Ignoring the feedback, the controller $T$ is given by
the response of the feedforward filter FF. The response of
the path from the control speaker to the monitor (C) is
given by dividing the measured spectra $\mathrm{Y}_{32} / Y_{10}$. Hence the
spectrum at the monitor is given by;

$$
P_{z}=Y_{30}+F F Y_{3 z}
$$

[^2]that of the feedforward filter.
The theoretical spectrum at the monitor with the controller on shows the first two low order modes significantly attenuated by about 10 dB each at the resonant frequencies. The remainder of the spectrum is left largely unaffected; the controller carinot cancel the direct field, but importantly, does not theoretically enhance the direct field at this position. This 128 point filter was used in the practical implementation in section 4.3; it can be seen how the theoretical response compares well with the actual response in figure 4.3.2. Figure 4.2.16 shows a 256 point filter derived from signal $y=z$ and $y>0$. The theoretical maximum attenuation given by this filter is shown in figure 4.2.17. The increase in filter length has not significantly increased the attenuation; a 128 point filter is long enough to model the causal part of the response and produce the maximum attenuation achievable in these physical circumstances.

The high frequency region of figure 4.2 .17 is not a valid prediction of the spectra with or without the controller because the measuerments were band limited with the low pass analogue filters. The simulation does not predict the effect of the controller at high frequencies outside the working range. It can be seen (figure 4.2.12) that the feedforward filter has a high amplitude response at high frequencies. It is thought that this has resulted from the $F I R$ identification program modelling a nor-causal response. The actual system response at high frequencies will only be correctly specified if the low pass filters attenuate this region to a significant extent.

transducers and the electrical system) the filter needs to delay the signal by an odd number of half cycles to attenuate each mode seperately. The optimum solution using the least squared error model was to delay the frequencies dominating the first mode by a certain number of half cycles and the frequencies dominating the second mode by an additional two half cycles. Given this solution, at frequencies inbetween the mode resonances the controller needs to delay a frequency by so many half cycles to attenuate one mode and an additional cycle to work on the other mode; it camot do both. This highlights a previously unforseen difficulty in using the least squared error routine to derive the digital filters.

Summarising the above, there seem to be two reasons for the controller not attenuating the pressure level over a frequency range inbetween the two modal frequencies. Firstly, complete cancellation cannot be achieved because the theoretical controller needed is non-causal. Secondly, because of the poor signal to noise ratio arithmetic inaccuracies result in the FIR modelling being insufficient at these frequencies. Doubling the filter length still does not prevent the enhancement at the inter modal frequencies. This suggests that it is the non-causality; the underlying physical problem that causes this enhancement. The one degree of freedom control system canriot control the frequency range where the field is dominated by two degrees of freedom.

4.2 .6 SUIMMARY


#### Abstract

The swept sine signal used as the iriput signal for the acoustical measurements was generated and suitably conditioned. A procedure was developed to successfully record the measurements on the enclosure. The digital control filters were derived by a least sudared error fit; it was shown how suitable lengths had teen chosen for the filters and their form was explained by theory.

The results have given a more precise understanding of the action of the controller in particular how two low order modes can be attenuated. It is shown how, theoretically the single detector, single source controller will atteriuate the first two modes of the reverberant field in the enclosure.

The digital controller was derived and its theoretical performance evaluated; the next section presents some experimental measurements recording the actual atteruation when the control system was practically implemented.


# 4.3 PRACTICAL IMPLEMENTATION <br> OF THE ACTIVE CONTROL SYSTEM 

### 4.3.1 INTRODUCTION

```
 Having obtained filter coefficient values for the
digital controllers and also predicted their performance
in the previous section, this section presents some
practical measurements used to assess the degree of
success of the control system.
 Transfer function measurements of the closed loop and
open loop system are presented to assess the stability of
the controller. The results of the practical
implementation of a single detector, single source control
system operating in the enclosure are presented. The
attenuation given by the system at the monitor position is
shown as well as the effect of the controller at another
position.
```


#### Abstract

It is instructive to quantify the degree of stability of a control system and whilst imblementing the working system various measurements were taken to try to assess the degree and areas of instability of the controller. Assessing the stahility of the controller involves assessing the stability over the whole frequency range as the degree of instability is determined by the least stable frequency. Although the measurements of closed loop responses presented here do not give a quantifiable measure of the system stability they give a strong indication of the match of the digital feedback filter to the acoustic feedback. ```The results of three separate experiments measuring various closed loop responses of the system are presented. The first measures the match between the amplitude spectra of the two feedback filters. The second verifies the match of the phase responses and the third demonstrates the successful match of the paths with the feedforward filter present in the system.```


A primary requirement of the controller is that it remains stable. The stability is initially governed by the match of the feedback paths; if the electronic path perfectly cancelled the acoustic feedback path then no matter what filter was in the forward path then the system


#### Abstract

would remain stable. An investigation was made into the cancellation achieved by the digital feedback path using the apparatus shown in figure 4.3 .1 . The noise source loudspeaker was still present in the enclosure but only the elements of concern here are shown in the diagram. The spectrum analyser was used to inject noise into the system before the digital controller and samole the resultant siqnal at exit from the controller. Various closed loop transfer functions were recorded.

The concept of how the feedback controller is to operate is shown in figure 4.3 .2 ; with both feedback paths operating the system is desigried to be stable. However, with only one feedback path in operation stability is not ensured; indeed this returns to the original situation of needing to overcome the instatility introduced by the acoustic feedback. The experimental arrangement did not quite correspond to this block diagram. The actual arrangement is shown in figure 4.3.3. The necessary difference is introduced because the signal rieeded to be band limited at entrance to and exit from the digital system.


The first coefficient in the digital feedforward
path was made non-zero and the remaining taps set to zero
to make the filter an all pass filter up to the cut off
frequency of the low pass filters. The transfer function
was recorded (figure 4.3 .4 ).
ie. the acoustic path connected and the figital
coefficients loaded. The resulting closed loop transfer

```
function of the system in figure 4.3.1 is shown in figure
4.3.5. The similarities in the amplitude spectra are
evident indicating the successful cancellation of the
feedback paths. The phase spectra differ because the
responses are measured over different paths. The
difference is due to the fact that the transfer function
was recorded at a different point from where the feedback
paths met and cancelled.
The limitations on the digital filter matching the acoustic path are;
```

1. The digital filter is of a finite length and is inevitably truncated with respect to the impulse response of the acoustic path. This was probably the most serious limitation on the match of the digital system.
2. The control system was implemented and the closed loop measurements taken at a later time from when the measurements were recorded to derive the digital filters; the characteristics of the system will change slightly over time.
3. The digital filter is a numerical model of the real filter, in this case a set of coefficients resulting in a sigral with the least squared error over time compared to the signal from the acoustic path; these coefficients themselves are subject to rounding errors as they are implemented as integers. The overall resolution of the digital system was determined by the resolution of the analogue to digital and digital to analogue converters. Although the microprocessor operated with 16 bit arithmetic the $A D C$ and $D A C$ resolution was only 12 bit
```
determining a signal to roise ratio of less thari}78\mathrm{ dB.
This is the quantisation signal to noise ratio resulting
from the analogue signals being quaritised to specific
digital values. It was estimated that the sample and hold
devices connected to the ADC and DAC had a S/N ratio of
the order of 50 dB.
 4. Both low pass filters used to band limit the
digital system had eight order roll offs, equivalent to
96dB/octave. Using filters with cut off frequencies at 350
Hz the S/N ratio would be about 40 dB by 500 Hz. Any
acoustic or electrical noise in the system with a SN ratio
less than about 40 dB would have affected the system
accuracy.
A second closed loop experiment is presented to verify the phase response match of the digital feedback filter. Measurements were recorded of the transfer functions of the seperate feedback paths shown in figures 4.3.6 and 4.3.7. The responses are shown in figures 4.3.8 and 4.3.9. The responses of the two feedback paths are different because the measurements are of two different systems. Let the following transfer functions be represented by the following notation;
H1 feedforward digital path
H2 feedback digital path
H3 acoustic feedback path
\(H\) the two analogue filters
```

The transfer function of figure 4.3 .6 is given by;

PAGE 182


#### Abstract

$\qquad$

The transfer function of figure 4.3 .7 is given by; $\frac{H H 1}{1-H H 1 H 3}$

The digital feedback bath is desigried so that it models trie response of the acoustic feedrack wath arid the analogue filters, wut the signal iri the digital system is also $\quad$ riverted: 19. multibliga ry minus one. Hence the modelling the digital math is trying to achieve is given たり;


$$
H Z=-H H
$$

Therefore the responses of figures 4.3.6 and 4.3.7 glven above are rot equal. The analysis shows that if the disital feedrack aath or the acoustic feedrack path is inverted then the resmonses stould tie equal. Practically the easiest way to do this was to reverse the terminals on the control loudsweaker. The response of this transfer function is shown in fighre 4. 3.10 . The match with fisure 4. 3. $\mathcal{B}$ is evident thereby sumporting the analysis presented above verifyung the match of the phase soectra and again verifying the match of the amwiitude of the feedtack filters.

The feedforward filter was loaded into the forward oath and the closed loop responses with and without both feedtiack baths commected were recorded (figures 4.3.11 \& 4.3.12). The shape of the feedforward filter was as expected (cf. figure 4.2 .12 ) and again comecting the

```
feedtuct: waths did wot sighificantly affect the resworise.
In this case the response could not be recorded with only
one feedtiack wath commected because the loov was uristable.
```

All these measurements indicate the success of the feedtack filter $\quad$ n cancelling the acoustic feedtack. However the measurements do not give a suantitative measure of the statility of the system. The way to measure this would have heen to implement the system and increase the gain in the forward bath until the system became lnstable. However, the aynamic range of the digital system did hot make this hossible. Therefore a hrogram was Written (see section 3.3 and appendix 6 ) to run on the miciourocessor to measure the owen loou transfer function round a 100 .

### 4.3.3 OPEN LOOP TRANSFER FUNCTION MEASUREMENTS ON THE CONTFOL SYSTEM


#### Abstract

Measurements of the owen loow transfer function round a 1000 were recorded to gain an insight into the degree of instakility of the controller and at what frequencies it was most likely to uno unsable. The results of three experiments are mresented. The first uredicts the open loop response of the system with a single non-zero coefficient uresent in the feedforward filter. The second experiment meassues this response. The third experiment


measures the open loop response with the feedforward filter in the system.

The swept sine sigral (described in section 4.2) was injected into the system at a point immediately before the forward filter and the resultant signal captured at the same position (figure 4.3.13).

A single coefficient of unity was placed in the forward path and the acoustic path disconnected to measure the response of the implemented feedback path only (figure 4.3.14). The resultant sigral was derioted $y d_{1 z}$ (figure 4.3.15), the digital counterpart of $y_{1 z}$. The signals $y_{1 z}$ and $y d_{1 z}$ were added and the resultant signal is shown in figure 4.3.16; a significant reduction in the height of the modal peaks can be seen. The spectrum of this signal was divided by the spectrum of the swept sine signal resulting in the open loop transfer function through the system (figure 4.3.17).

A system will be unstable when the magnitude of the loop gain is greater than one and the phase shift round the loop is an odd number of half cycles. It can be seen from figure 4.3 .17 that the phase shift round the loop is very variable and for a half cycle shift to occur round the loop is quite common. Therefore the chance of the system slipping into instability is essentially determined by whether or not the gain round the loop ever exceeds one. If this is the case then it would be quite easy for the phase change round the loop to vary to such an extent as to give irstability. The diagram shows that the system is liable to becoma uristable at very low frequencies below
 filter.

A measurement was recorded of the resoonse round the system with both feedback paths connected (figure 4.3.1B). The cantured signal is shown in figure 4.3 .19 and the

```
Vesulting open loow tramsfer fumction 1H figure 4. 3. 2O.
The noisiness of the spectrum comoared to the theoretical
match is evident, Harticularly around the mode resonances
where the resporise is 10 dB worse. The system is more
likely to twe unstatile at very low frequencies.
 Interpretation of the signals themselves should be
made with care as each sigmal is scalea to the same
amolitude to be disulayed: the very messy signal of figure
4.3.19 is mostly roise contaluing the vesoliant comoonents
within it.
```

The owen loon transfer function of the comblete system, with feedforward filter included was recorded (figures 4.3 .21 \& 4.3 .22 ). Again the restionse shows decreased stability at low frequency. While setting up the working system it kecame otivious that low frequency instability was causing difficulty. Initially measurements oin the acoustic system had been recorded usirg a swept sine siqnal ranulny from 10 Hz to 500 Hz as opposed to a signal starting at 0.1 Hz in the successful implementation. The controller showed a similar feedtack match (figure 4.3 .23 cf. 4.3 .20 ) 上ut the oven loow function of the comalete system (forward filter included) shows a higher gain round the loou at low frequencies (fighre 4.3 .24 cf. 4.3 .22 ). Indeed, this controller was unstable. When the controller was imblemented it could be viewed on an oscilloscope how the output from the digital system would be saturated for a time then it would decrease to a realistic level when a sinule spectrum on

```
the analyser would show that the reverberant field had
been attemuated at that i|stant. Saturation would then
occur auain, driving the control speaker very hard and
emharicing the noise levels. This wattern was repeated with
a time period of seconds indlcating that the instability
was occurirg at very low frequencies. This showed that the
system was made stable by conductinu trie lnitial
measurements on the systemwith a sweut sine sigmal of
frequency ranqe down to 0.1 Hz.
```

4.3.4 FESILTING ATTENUATION AT THE MONITOR POSITIUN WHEN THE CONTFOL SYSTEM WAS IMPLEMENTED



```
filters at trie entrance to amitexit from the disital
system have lemoved the highi frequency combonents in the
siqnal sufficiently.
 The relative ritiase charige between the noise source
and the sicmal at the monitor is shown with arid without
the controller in figure 4.3.27. It can bie seeri how the
sharp phase changes at the modes are removed by the action
of the controller: Fecause a lalge wart of the modal
nature of tho field has been cancelled at these
frequericies the phase changes due to the vesonarices have
Been removed.
 The control system was stable and attenuated the
field to the same extent months after the system had been
set uw and the digltal filters rad been derived:
demonstratinus substantial stability over time.
 The effect of the control system at the monitor
position (fisures 4.3.26 ard 27) arid at another.
otrservation wosition (figules 4.3.30 and 31) is shown. The
attenuation of the reverberant field is investigated,
however no attemat was made to determine the overall
reduction in tre sadce averaged sound pressure level
inside the ericiosure.
```

4.3.5 EFFECT OF THE CINTFOLLER<br>AT FNDTHEF: PQSITION IN THE ENCLUSURE


#### Abstract

The frecuency combonents around the first two modes of the enclosure were attenuated at the monitor position. These frewhencies excite the first two modes of the enclosure and as they had theen removed at one wosition then theoretically the modes themselves had been attemuated, $1 e$, the standing waves were no longer fresent in the enclosure.

To illustiate this whenomenon the field was viewed at another position in the enclosure. The observation bosition was chosen to be in a different quadrant of the enclosure from the monitor and detector positions. Diagrams and bictures are shown in figures 4.3 .28 and 4. $3.2 \xi$. The noise level with and without the controller is shown in figure 4.3 .30 (and the bhase spectra in figure 4.3.31). It cen be seen that the freduencies around the mode resomances have been attenuated. This demonstrates the success of the controller in removinus the reverberant field in the enclosule; as wedicted atteruating these freuuencies at one position attenuates them throughout the enclosure tecause these frequencies make up the standing wave pattern inside the enclosure.

However, at the observation position the noise levels at fresuencies intuetween the mode resonances have been enhanced. The resultant $H 0$ ise level at the monitor gosition was explained by considering the action of the


```
controller in section 4.2. Over the frequency range of a
single mode which is well defined in frequency relative to
other modes the acoustic system can be approximated to a
single degree of freedom system which can be controlled by
a single controller. However at frequencies inbetween the
mode resonances the acoustic system is domiriated by two
vibrations; ie. has two degrees of freedom; such a system
carinot be adequately coritrolled by a coritroller with orily
one degree of freedom.
 The important fact demonstrated here is that the
first two modes of the reverberant field had been
significantly attenuated and this attenuation has been
shown to occur at two representative points in the
enclosure, not just at the point that the system was
designed to operate at.
```


## 4.3 .6 SUMMARY

The closed loop transfer furiction measurements indicated the success of the digital system in modelling the controller required. However they did not give a quantifiable measure of the degree of success of the control system. Therefore the open loop transfer function was measured to give a measure of the degree of stability.

Finally, the actual attenuation achieved when the control system was implemented was presented.

The implementation of the single detector, single source control system successfully attenuated the first two resonances of the reverberant field of the enclosure. However, the single degree of freedom coritroller could rot control the field at frequencies where the field was dominated by two modes, ie. had two degrees of freedom.

# 4.4 ANALYSIS DF THE CONTEOL SYSTEM AT DIFFERING SAITPLING FFEEUENCIES AND MONITUE POSITIONS. AND IMPLEMENTATION OF A TWO CHANNEL ACTIVE CONTFOL SYSTEM. 

### 4.4.1 INTFODUCTION

```
 This section rresents some additional exoeriments
performed on the sinule chanmel control system operating
luside the enclosule and the imalementation of a two
chammel active control system consisting of a single
detector aud two sweakers.
 Measurements were taken at different samuling rates
with different deurees of dampinf present in the enclosure
amd the theoretical attemuation achievatole from a simgle
chanmel control system under such conditions derived. This
amalysis practically demonstrates the weiformance
limitations of the active control system.
 The implementation of a single chammel system is
oresented (as in the experiment forming the bulk of this
chawter) but designed to give atteruation at a different
position to that in section 4.3.
 A series of measurements is preseuted by which the
control filters for a single detector, double source
```

```
system can be derived. These measurements were performed
experimentally and the results are discussed.
 This section refers to results and discussioris
presented in wrevious sections, particularly sections 4.2
and 4.3. For this reason it would be difficult to read the
bulk of this section out of this context.
```

4.4.2 ANALYSIS OF THE CONTROLLER PERFGRMANCE AT
DIFFERENT SAMPLING RATES AND DEGREES OF DAMPING


#### Abstract

It was demonstrated in section 4.1 how it was not possible using the available signal processing hardware to control the direct field in this enclosure given the small acoustic travel time across the enclosure compared to the group delay of the analogue filters and the loudspeaker. Some experiments were performed to verify this and observe if the controller had a significantly detrimental effect on the field at the monitor.

The enclosure was heavily damped by lagging all the walls and the ceiliny with $b \mathrm{~cm}$ of foam. This removed a large proportion of the reverberant field leaving the direct field dominant in the enclosure. A series of measurements at 1,5 and 10 KHz are shown in figures 4.4.1, 2 and 3 . Each series of measurements shows the signals (and spectra) Yıo, $y=0, y>z$, the ratio of the spectra $Y$ so/ $Y s z$ and the impulse response of this spectrum (derived from the inverse fourier transform). Lastly, the


```
128 Loint FIF feedforward filter derived from the signals
ysz andt }y=s,\mathrm{ is showr.
 The reduced signal lengths and flatriess of the spotra
are evident, although resonances are still apparent.
Comparisons of the ideal non-causal spectra and causal
model show the similarities which are discussed in the
main experiment of section 4.3. Plots of the theoretical
attenuation achievable (ignoring the feedback) are shown
in figure 4.4.4. These Hlots show that no worthwhile
attenuation is achieved but the response at the monitor
microahone is not significantly enhanced.
```

    4.4.3 IMPLEMENTATION OF A SINGLE CHANNEL SYSTEM
    CONTROLLING THE FIELD AT A DIFFERENT MONITOR POSITION

```
 The experiment presented in section 4.3 described the
im&lementation of a single detector, single speaker
control system attenuating the field at a particular point
inside the enclosure. It was shown in section 3.1 how
moving the monitor microphone does not alter the acoustic
feedtack path. Therefore the digital feedback path does
not need to be altered, only the feedforward filter need
be adjusted.
An experiment was performed where the roles of the monitor and observation microphones of section 4.3 were reversed. The digital controller was redesigned to control the sound field at the new monitor position. The feedback
```


#### Abstract

filter remains the same. However this experiment was carried out at a different time and all measurements were repeated and both digital filters redesigned. The signal measurements are shown in figure 4.4.5.


The signals $y_{10}$ and $y_{1} z$ compare with the corresponding sigmals in the experiment of section 4.2 and 4.3 (cf. figures 4.2 .5 \& 4.2.8). Signals $y \leqslant 0$ and $y \leqslant z$ differ from figures 4.2 .6 and 4.2 .7 because of the different position of the monitor.

The 128 point finite impulse response filters and their responses are shown in figure 4.4.6. The non-causal shectra resulting from dividing yiso by $Y$ fiz is also shown. The feedback filter is similar to that of figure 4.2 .10 and the feedforward filter differs from figure 4.2.12.

The amplitude and phase responses at the monitor Hosition with ard without the controller are shown in figure 4.4.7.


```
inbetween the mode resonances and the controller does not
have a detrimental effect.
 The good match of the feedforward filter at the
frequencies inbetween the resonances is also demonstrated
in the response at the observation microphone <previously
the monitor) shown in figure 4.4.S. The modal frequencies
have tieen attenuated as always and, in addition, inbetween
the resonances the sigmal level has remained largely
unchanged.
 However significant enhancement is seen at
frequencies immediately before the first mode. A similar
effect tias occured as at the inter modal frequencies in
the first experiment; without the controller the two
significant modes were cancelling over these frequencies
and the controller, being unable to control the two
degrees of freedom has resulted in the favourable
cancellation being destroyed. To be sure of being able to
control the two degree of freedom sound field it is
necessary to use a two degree of freedom control system.
```

        4. 4. 4 PRACTIC:AL ARRANGEMENT OF THE TWO CHANNEL
    CONTROL SYSTEM
It was shown in section 3.1 how the digital
controller for a single channel control system could be
used as the basic building tolock to implement a general
multichannel control system.


#### Abstract

Havinis successfully implemented a single channel control system experimental work proceeded to demonstrate the implementation of a two channel control system operating on the sound field inside the small enclosure.

The control system consisted of a single detector microphone and two control loudspeakers positioned as in figure 4.4.9, the side projection of figure 4.4 .10 and the picture of figure 4.3 .29.


#### Abstract

As discussed in section 4.1 , because the noise source is a single loudspeaker, it is appropriate to use a single detector microwhone. In this case however because two control speakers were to be used it as appropriate to monitor the field at two Hositions. If only one monitor were used then the digital controller needed to operate the system would no longer be unique; it is indeterminate. The control filter feeding one of the speakers can be arbitrarily chosen and the other then chosen to give the desired result at the monitor. Practically it is not realistic to implement such a system.


[^3]```
functions of the monitor positions is ron-zero implying
that the positions were independent.
    Having descrited the practical configuration of the
control system it is necessary to show how the digital
filters for the two chammel control system were derived.
The method is similar in essence to the series of
measurements presented in section s.3 and in the practical
implementation of section 4.2. Therefore the next
subsection is of a theoretical nature and can be left
unread without detracting from the practical information
presented in this chapter.
```

 4.4.5 SERIES OF MEASUREMENTS USED
 TO DERIVE THE DIGITAL CONTROLLERS
 FOR THE TWO CHANNEL CONTROL SYSTEM

```
    Figure 4.4.11 is used to illustrate the control
system; the diagram can be used to aid the visualisation
of the measurements undertaken.
    The feedback filters can be simply measured by
exciting each control speaker in turn and capturing the
response at the detector. The pairs of signals then need
to be deconvolved to derive the filters.
    The feedforward filters are given by (section 3.1);
```

```
                    K=C-1 A B B 
The matrix equation can be expanded to give;
\[
k_{1}=B\left(\frac{a_{1} c_{22}-a_{2} c_{12}}{c_{11} c_{22}-c_{12} c_{21}}\right)
\]
\[
k_{z}=B \frac{a_{z} c_{12}-a_{1} c_{21}}{\left.c_{11} c_{2 z}-c_{12} c_{21}\right)}
\]
where \(k_{1}\) and \(k_{z a r e}\) the forward filters to the first and second control speakers. It can be seen that the denominator of both these terms is the same; this term is the equivalent of the signal \(y>z\) in the derivation of the single channel controller. The numerator of the equations (equivalent to the the \(y\) so signal) differs.
The method available for deriving the control filters was that of deconvolving two time series. Therefore the result of any measurements on the coritrol system needed to be two time series. A summary of the measurements performed is presented below. The captured signals are listed together with the input signal, loudspeaker and microphorie used for the measurements and the transfer function recorded.
```

CAPTURED	INPUT			
SIGNAL	SIGNAL		TOUDSPEAKER	MICROPHONE

$y a_{12}$	x_{2}	LA	D			f_{1}
yb_{12}	x_{2}	LB	D			$f 2$
Y 10	x_{2}	LO	D			B
aso	x_{2}	LO	MA			a_{1}
$b \leq 0$	x_{2}	LO	MB			a_{2}
asz	Y10	LA	MA		B	c_{11}
b_{32}	Y10	LA	MB		B	c 21
basz	a_{32}	LB	MB	B	C_{11}	C_{22}
$a b_{32}$	b_{32}	LB	MA	B	c_{21}	C_{12}
aaso	aso	LA	MB		a_{1}	c_{21}
$a b_{30}$	b 30	LA	MA		a_{2}	c_{11}
baso	$a \leq 0$	LB	MB		a_{1}	c_{22}
bbso	bso	LB	MA		a_{2}	C_{12}

```
where czi denotes the transfer function from the first
loudsveaker to the second monitor <notation of section
3.1).
    The three signals that are needed to derive the
feedforward filters can be derived from;
    yamo = abmo - aamo
    ybso = baso-bbso
    ysz = basz - absz
    These measurements were recorded on the control
system described above and the two feedforward and two
feedback filters (from ya,1z, yboz and }\mp@subsup{x}{2}{}\mathrm{ ) derived by
deconvolving the time series.
```


4.4.6 RESULT OF THE PRACTICAL IMPLEMENTATION OF THE TWO CHANNEL CONTROL SYSTEM

The implementation of the two channel control system resulted in a stable system. This in itself was a success; it showed that the two interacting feedback paths were decoupled and stabilised by the controller configuration (figure 4.4.9).

However, the control system did not attenuate the sound levels at the monitor positions; the enhanced sound levels are shown in figure 4.4.12.

Some additional analysis helps to explain what has possibly happened. Consider the configuration of
transducers shown in figure 4.4.10. It is demonstrated in the figure how, using representative values for the positions of the microphones;

$$
\binom{\mathrm{P} 1}{\mathrm{P} 2}=\left(\begin{array}{cc}
-0.7 & -0.7 \\
-0.7 & 0.7
\end{array}\right) \quad\binom{\mathrm{A} 1}{\mathrm{~A} 2}
$$

However, the mode amplitudes A1 and A2 are excited by the loudspeakers LO, LA and LB at positions $0,00,0$ and $x, 0$. Let the speakers have strengths $Q O, Q A$ and $Q B$.

The excitation of two modes from two sources is considered first before the more complicated sound field from three sources. Consider how the mode amplitudes are excited using only loudspeaker LA (as in the experiment forming the bulk of this chapter) and LO;

$$
\binom{A 1}{A 2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad\binom{Q A}{Q O}
$$

This equation demonstrates that the pressure at the monitor positions due to the control speaker is the same as the pressure due to the noise source loudspeaker. This is evident because the speakers are coincident. Therefore it is easy to use this speaker as the control source by making the source strengths have opposite signs.

Now consider how the mode amplitudes are excited by the second control loudspeaker and LO;

$$
\binom{A 1}{A 2}=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) \quad\binom{Q B}{Q 0}
$$

Hence;

$$
\binom{P 1}{P 2}=\left(\begin{array}{cc}
0 & 1.4 \\
1.4 & 0
\end{array}\right) \quad\binom{Q B}{00}
$$

The first equation demonstrates how the two speakers driven with the same source strength drive the first mode of amplitude $A 1$, in antiphase. This is evident because the speakers are at opposite ends of the $1,0,0$ mode. If the analysis is performed considering the modes seperately then it can be shown how the elements of the matrix are comprised of a term from each mode such that;

$$
\binom{P 1}{P 2}=\left(\begin{array}{cc}
0.7+-0.7, & 0.7+0.7 \\
0.7+0.7, & -0.7+0.7
\end{array}\right)\binom{\mathrm{QB}}{\mathrm{QO}}
$$

It may be considered that around the modal frequencies only one mode is dominant and only one term of the matrix in the above equation will apply. However, the implication of this equation is unclear; it serves to demonstrate the more complicated theory representing the two speaker control system where;

$$
\binom{A 1}{A 2}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
Q A \\
Q B \\
Q O
\end{array}\right)
$$

resulting in;

$$
\binom{P_{1}}{P 2}=\left(\begin{array}{ccc}
-1.4 & 0 & -1.4 \\
0 & -1.4 & 0
\end{array}\right)\left(\begin{array}{l}
Q A \\
Q B \\
Q O
\end{array}\right)
$$

It is thought that the experiment was ill-conditioned and did not result in a control system producing attenuation because the second control loudspeaker was positioned in an inappropriate place. Consider the analogous case of two microphones monitoring almost the same sound; the

Abstract

situation will not be indetermirate but the two simultaneous equations will be very similar and noise will yreatly affect the validity of the result. In reality the zero terms in the matrix above will be small non-zero values (the monitor positions were not exactly equal to the numerical values used) and what mav have happeried was that one of the forward filters was derived from a small signal resulting from the difference of two sizeable signals.

Theoretically it is advantageous to control the two modes with two control speakers. However the system did not succeed. The sound field resulting from each loudspeaker can be thought of as resulting from that source and an infinite number of images. The sound field produced by three sources will be the result of three such interference patterns. Perhaps the position of the speakers was inappropriate or the modes sufficiently distinct in frequency such that using two control speakers has overcomplicated the system. A good test of the two channel contiol system would be to implement the system operating on the sound field from two independent noise sources; this would require two detector microphones and there was not sufficient processing time available to implement a system with eight control filters on the TMS32020 microprocessor.

The situation is very complicated with a number of factors (transducer positions and number of modes within the system working range) contributing to the resultant sound field; the experimental work was concluded having

```
reached a plateau of understanding sufficient to show how
the low order modes can be attenuated in a simple
experimental situation and demonstrating how the modal
pattern greatly complicates any practical situation.
```


4.4.7 SUMMARY

It has been demonstrated how the control system cannot operate outside certain limits of the sampling frequency and dambing present in the enclosure. The system does not attenuate the direct sound field inside the enclosure. The reproducability of the method of implementing the single detector, single speaker control system is verified and the conclusions of sections 4.2 and 4.3 supported. At frequencies where the sound field is dominated by two modes the single degree of freedom controller may enhance the sound pressure level depending on the position at which the controller is designed to control the field.

5. CONCLUSIONS

5.1 REVIEW OF THE THEORY PRESENTED IN THIS THESIS

```
    Active control systems can only operate by workirig to
attenuate the sound field at one or more sensor locations.
In chapter z it was shown how, to globally attenuate a
sound field or produce a volume of attenuation it is
necessary that these points be representative of the sound
field throughout the volume of interest. In the case of a
reverberant field it is necessary that the microphones
pick up sufficient information about the dominant modes.
Section 2.3 considered the requirements of an active
sound control system operating on a reverberant field
inside an enclosure. It was shown how n modes can be
monitored with n monitor microphones and a mathematical
treatmerit was used to demonstrate how these monitor
positions need to be independent. It was also shown how n
modes can in theory be controlled with a control system
consisting of n channels each comprising of a single
detector microwhone and a single control speaker, each
channel coupling into at least one mode of the sound
field.
    The active attenuation of a single mode was studied
in section 2.3; the controller operation was studied in
the frequency and time domains and the degree of
attenuation achievable by a digital system of specific
length considered.
```


Abstract

Section 3.1 presented the theory giving the desired responses of the controllers for an active control system consisting of a number of detectors and speakers controlling the field at a number of monitor positions. The controller response was derived for the simplist version of such a control system consisting of a single detector and a single speaker capable of controlling the field at a single monitor position. It was shown how the controller could consist of a pair of electronic filters; one between the detector and the source in parallel with another cancelling the acoustic feedback from the detector.

The responses of some specfic multichannel controllers were derived and a suitable configuration of filters derived, such that any multichannel controller can be readily realised.

It was shown how the complexity of the controllers is reduced if the number of monitors is the same as the number of sources. It was also shown how increasing the number of or moving the monitor microphones does not alter the acoustic feedback wresent in the system. Therefore designing a controller with independent feedback compensation infers that the monitors can be adjusted without having to adjust the feedback compensation.

The major result of section 3.1 was to show a simple topology for multichannel controllers. The method relies on summing the digital feedback paths at the start of the digital system before the point where the signal divides

```
to enter the feedforward filters prior to the control
speakers. The acoustic feedback paths are thereby directly
cancelled by the electronic feedback paths, which
themselves are assured of being causal filters. The method
demonstrates how any multichammel controller can be
readily realised by repeatedly using a number of the same
type of filter pairs used in the sirigle channel system;
therety gaining considerable advantages for the practical
development (hardware) of multicharriel systems. However,
it was roted that the number of filter pairs is equal to
the suuare of the number of channels, thus limiting the
number that could be imolemented in practice.
```


Abstract

The same hardware was used both to record the various frequency responses of the system used to derive the digital filters for the controller and also to implement the digital filters. Additional hardware was developed to enable two channels to be input and output simultaneously.

In section 3.2 it was shown how, to ensure stability, it is necessary that the digital feedback filter gives a good match to the acoustic feedtack over the entire working frequency range and also that outside this range the feedback gain is sufficiently low. It was shown how this could be achieved by implementing both the feedback and the feedforward filters on a single digital system. The practical aspects of the implementation of this system were presented, particular attention being paid to the operation of the convolutions within the controller and the testing of the program listed in appendix 2. It was verified that the measurement procedure and the filter implementation were compatible in their manipulation of the time series and filter coefficients and that the procedure resulted in successful system modelling.

The suitablity of the measurement method was discussed in section 3.3. It was observed that it was necessary to define the frequency response over the entire working range of the system; ie. beyond the cut-off frequency of the low pass filters and how an easy way to enable the electronic control system to comperisate for its own operation is to record the acoustical system responses


```
with the same hardware system used to implement the
control system. It was also discussed how it was desirable
to operate on data in the form of a time series.
    The practical method used to derive the filter
coefficients for a single channel active control system
was presented in section 3.3. The method consisted of a
series of acoustical measurements on the control system.
The measurements were performed by exciting the control
system with a swept frequency sine wave output from the
digital system and capturing the resporise ori the same
system (program of Appendix 5) and deconvolving pairs of
signals using a least squared error fit to derive the FIR
filters. The open loop transfer function round a single
charinel coritrol system was also measured and a digital
controller to operate a single input, double output
control system was implemented.
```


Abstract

The main results of the practical work presented in this thesis were contained within chapter four, the first three sections of which were concerned with the implementation of a broadtuand active sound control system overating in a small enclosure. Section 1 was concerned with conditioning an experimental situation in which an active control system could be made to work with the available hardware. The loudspeakers used had dimensions much less than the half wavelengths of the modes to be attenuated and could therefore, to a first approximation be regarded as point sources. The practical implemeritation represented a simple case of the theory presented in section 2.3 and the successful imolementation thereby supported this theory.

Section 4.2 presented the measurements and analysis performed to derive the digital control filters and the filters and their operation were explained. The theoretical attenuation produced by 128 point and 256 point feedforward filters was derived. It was shown how the longer filter did not significantly improve the attenuation and it was infered from this that the filter was adaquately modelling the causal part of the spectrum and the non-causality of the system was the furdamental limit to the attenuation achievable.

Section 4.3 presented various measurements used to

Abstract

assess the degree of stability of the control system governed by the match of digital and acoustic feedback paths. Closed loop transfer function measurements indicated the match of these paths and open loop transfer function measurements indicated the stability of the control system. The measurements and the practical imblementation of the control system demonstrated how the test signal used to derive the filter coefficients needed to be defined over the entire workirig range of the control system.

The control system consisting of a single detector microphone and a single control speaker successfully attenuated the first two low order modes of vibration of the sound field inside the enclosure.
The demonstration showed how a controller can be
successfully implemented on a single microprocessor; it
was shown in section 3.1 how this single channel
controller may be regarded as the basic unit of a
multichamel controller. A control system consisting of a
single detector and two control sources did not attenuate
the sound field. However, the system was stable thereby
demonstrating the success of the digital feedback
compensation used.

The single channel control system could not control the sound field at frequencies where it was dominated by two modes of vibration. This was exolained in terms of the frequency response of the feedforward filter in section

```
4.2. This agrees with the conclusions of Nelson (Ref).
```

The implemention demonstrated that the single chanmel
control system did not significantly enhance the direct
field inside the enclosure. This was also demonstrated by
measurements and analysis performed at higher sampling
frequencies in section 4.4 .

5.4 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The successful implementation of an active sound
control system, over a narrow frequency range in a simple
test enclosure demonstrates how such a system may be
implemented over a broader frequency range in a more
practical enclosure to attenuate the reverberant field.
A practical system requires the control of the sound
field at a number of monitor positions representative of
the sound field. To understand how such a system may be
implemented requires further study of the operation of a
two channel controller. Also a study of adaptive digital
filtering can indicate how the control system can be made
adaptive.

A 2 DIMENSIONAL STANDING WAVE PATTERN SHOWING RELATIVE PHASES

FIGURE 2.1.2

FIGURE 2.1.3

FIGURE 2.1.4.

Frequency (Hz)	mode order
241	100
286	010
347	001
374	110
443	101
449	011
482	200
492	111
560	210
572	020
594	201
620	120
668	021
694	002

THEORETICAL MODAL FREQUENCIES OF A $0.5 \times 0.6 \times 0.7 \mathrm{~m}$ RECTANGULAR ENCLOSURE

FIGURE 2.1.6

THEORETICAL AMPLITUDE SPECTRUM OF THE SPACE AVERAGED SOUND PRESSURE LEVEL IN THE ENCLOSURE; SHOWING THE EFFECT OF REMOVING THE LOCALLY DOMINANT MODE AT ALL FREQUENCIES

FIGURE 2.1.7

THEORETICAL AMPLITUDE SPECTRUM
OF THE SOUND PRESSURE LEVEL AT A POINT IN THE ENCLOSURE; SHOWING THE EFFECT OF REMOVING THE LOCALLY DOMINANT MODE AT ALL FREQUENCIES

FIGURE 2.1.8

ELECTRONIC
CONTROUER
AN ACTIVE NOISE CONTROL SYSTEM OPERATING IN A DUCT.
THE LETTERS INDICATE THE RELEVANT TRANSFER FUNCTIONS OF THE SYSTEM.
FIGURE 2.2.1

SCHEMATIC DIAGRAM TO DEMONSTREATE THE VELOCITY RESPONSE OF A LOUDSPEAKER CONE; USING ARBITRARY SCALES AND EXAMPLE VALUES

FIGURE 2.2.2

DIAGRAM OF NEGATIVE FEEDBACK SYSTEM WITH AN EXAMPLE NYQUIST PLOT OF THE OPEN LOOP RESPONSE

FIGURE 2.2.3
$\begin{array}{lll}\text { DETECTOR } & \text { CONTROL } & \text { MONTIOR } \\ \text { MICROPHONE } & \text { SPEAKER } & \text { MICROPHONE }\end{array}$
NOISE
SOURCE $4 \underbrace{10}$
AN ARRANGEMENT OF FILTERS USED TO CONTROL
AN ACTIVE NOISE CONTROL SYSTEM OPERATING IN A DUCT.
FIGURE 2.2.4

A FILTER WITH A RESPONSE OF $1 /(\mathrm{F}-\mathrm{C} / \mathrm{E})$

FIGURE 2.2.5

DEMONSTRATING INAPPROPRIATE MONITOR POSITIONS
FIGURE 2.3.1

FIGURE 2.3.2

AMPLITUDE RESPONSE
OF THE FEEDFORWARD FILTER TO CANCEL

A MODE
FIGURE 2.3.4

ACTIVE NOISE CONTROL SYSTEM
 OPERATING IN AN ENCLOSURE

SHOWING RELEVANT TRANSFER FUNCTIONS
FIGURE 2.3.3

CANCELLATION NOT POSSIBLE TO HERE BECAUSE OF THE INHERENT DELAY IN THE SYSTEM

THEORETICAL ATTENUATION OF THE TIME RESPONSE OF A MODE
FIGURE 2.3.6

CANCELLATION ACHIEVABLE OF MODE
TIME DOMAIN

FIGURE 2.3.7
CONTROL MONITOR
SPEAKERS
1

$\frac{1}{0}$

THE GENERAL FORMAT FOR AN ACTIVE NOISE CONTROL SYSTEM
Showing the relevant transfer functions
FIGURE 3.1.1
NOISE SOURCES DETECTOR
MICROPHONES

ACTIVE CONTROL SYSTEM TO CONTROL THE FIELD AT A NUMBER OF LOCATIONS
THE DESIRED RESPONSE OF THE DIGITAL CONTROLLER IS SHOWN
FIGURE 3.1.2

COMPLICATED METHOD OF IMPLEMENTING
A TWO CHANNEL CONTROLLER DEMONSTRATING HOW THE ELECTRONIC FEEDBACK DOES NOT MATCH THE ACOUSTIC FEEDBACK FIGURE 3.1.3

THE CONFIGURATION OF DIGITAL FILTERS USED TO IMPLEMENT A TWO CHANNEL CONTROLLER

FIGURE 3.1.4

DEMONSTRATION OF HOW A SINGLE CHANNEL CONTROLLER CAN BE REPEATED TO IMPLEMENT MULTI-CHANNEL CONTROL

FIGURE 3.1.5

FORM OF THE ELECTRONIC CONTROLLER TO BE IMPLEMENTED

FIGURE 3.2.1

POSSIBLE REALISATION OF AN
ACTIVE NOISE CONTROL SYSTEM
OPERATING IN AN ENCLOSURE
FIGURE 3.2.2

ACTIVE NOISE CONTROL SYSTEM OPERATING IN AN ENCLOSURE

FIGURE 3.2.3

MEMORY MAPS OF THE TMS32020 MICROPROCESSOR DATA MEMORY

FIGURE 3.2.4

- SAMPLES INPUT TO DIGITAL SYSTEM
- SAMPLES OUTPUT FROM THE DIGITAL SYSTEM (1 CYCLE LATER THAN INPUT)
- - - SIGNAL EFFECTIVELY RECONSTRUCTED BY A SPECTRUM ANALYSIS RECORDING THE PHASE DELAY THROUGH A SYSTEM

ILLUSTRATING THE INHERENT DELAY THROUGH THE DIGITAL SYSTEM FIGURE 3.2.6

SIMULATION OF AN ANALOGUE TIME DELAY DEVICE TO TEST THE OPERATION OF A DIGITAL FILTER

FIGURE 3.2.7

MEASURED TRANSFER FUNCTION OF THE ANALOGUE TIME DELAY
FIGURE 3.2.8

DERIVED IMPULSE RESPONSE OF THE ANALOGUE TIME DELAY
FIGURE 3.2.9

128 POINT FIR FILTER MODELLING THE ANALOGUE TIME DELAY AND LOW PASS FILTERS

FIGURE 3.2.10

TESTING THE CLOSED LOOP OF THE CONTROLLER USING FILTERS OF SIMPLE.KNOWN RESPONSES

FIGURE 3.2.11

TRANSFER FUNCTIONS OF THE FILTER OF
FIGURE 3.2.11 AND THAT OF THE ANALOGUE FILTERS ALONE
FIGURE 3.2.12

FIGURE 3.3.1

SYSTEM TO MEASURE THE
OPEN LOOP TRANSFER FUNCTION
ROUND AN ACTIVE CONTROL SYSTEM

FIGURE 3.3.2

CIRCUITS USED TO TEST THE OPERATION OF THE OPEN LOOP TRANSFER FUNCTION PROGRAM

FIGURE 3.3.3

TEST TO VERIFY THE INTERNAL OPERATION OF THE OPEN LOOP TRANSFER PROGRAM

FIGURE 3.3.4

CENTRE OF ENCLOSURE

AMPLITUDE

MID WAY ALONG A DIAGONAL IN THE OPPOSITE CORNER TO THE SPEAKER

FIGURE 4.1.1 REPRESENTATIVE PLOTS OF THE SOUND FIELD

PHASE SHIFTER
FIGURE 4.1.2

PICTURE OF TEST ENCLOSURE SHOWING PASSIVE DAMPING

ON TWO FACES
FIGURE 4.1.3

DIGITAL SYSTEM : LOUGHBOROUGH SOUND IMAGES TMS32020 BOARD

ACTIVE NOISE CONTROL SYSTEM OPERATING IN AN ENCLOSURE SHOWING PRACTICAL APPARATUS USED

FIGURE 4.1.4

PICTURE OF PRACTICAL APPARATUS USED
FIGURE 4.1.5

PICTURE OF TRANSDUCERS INSIDE THE TEST ENCLOSURE
FIGURE 4.1.7

SAMPLING FREQUENCY (Hz)	CUT OFF FREQ OF LOW PASS FILTERS (Hz)	GROUP DELAY OF FILTERS (mS)	ESTIMATED DELAY OF ELECTRONIC PATH (mS)	LOUDSPEAKER- MICROPHONE SPACING (m)	NUMBER OF POINTS IN FIR FILTER
1000	350	4	6	2	128
1200	450	2.45	4.3	1.5	154
4000	1500	1.1	2.4	.8	512
5000	1800	.9	2.1	.7	640
10000	3500	.45	1.6	.5	1280

ILLUSTRATIVE DATA OF THE ELECTRONIC DELAY OF THE CONTROL SYSTEM AT VARIOUS SAMPLING FREQUENCIES SHOWING THE LOUDSPEAKER-MICROPHONE SPACING REQUIRED AND THE LENGTH OF THE FIR FILTERS NEEDED
FIGURE 4.1.6

SIDE PROJECTION
OF THE TEST ENCLOSURE
FIGURE 4.1.8

FIGURE 4.2.1

> ACTIVE NOISE CONTROL SYSTEM OPERATING IN AN ENCLOSURE SHOWING LINK TO HOST PROCESSOR

FIGURE 4.2.2

FIGURE 4.2.3 SIGNAL x1

FIGURE 4.2.4 SIGNAL x2

FIGURE 4.2.5 SIGNAL y10

FIGURE 4.2.6 SIGNAL y30

FIGURE 4.2.7 SIGNAL y32

FIGURE 4.2.8 SIGNAL y12

FIGURE 4.2.9 SIGNALS y30 and y32

ARBITRARY
AMPLITUDE

FIGURE 4.2.10 DERIVED FEEDBACK FILTER 128 POINT FIR

FIGURE 4.2.11 SPECTRUM AND INVERSE TRANSFORM OF Y12/X2

DERIVED FEEDFORWARD FILTER 128 POINT FIR
FIGURE 4.2.12

SPECTRUM AND NON-CAUSAL INVERSE TRANSFORM OF Y30/Y32
FIGURE 4.2.13

AMPLITUDE SPECTRUM OF FEEDFORWARD FILTER AND Y30 Y 32
FIGURE 4.2.14

ARBTRARY
 AMPLITUDE

THEORETICAL ATTENUATION AT THE MONITOR
FIGURE 4.2.15

256 POINT FEEDFORWARD FILTER
FIGURE 4.2.16
ARBITRARY AMPLITUDE

THEORETICAL ATTENUATION PRODUCED BY A 256 POINT FILTER
FIGURE 4.2.17

1,0,0 MODE SHAPE
FIGURE 4.2.18

0,1,0 MODE SHAPE
FIGURE 4.2.19

> SYSTEM TO PERFORM MEASUREMENTS OF THE CLOSED LOOP TRANSFER FUNCTION OF THE CONTROL SYSTEM OPERATING ON THE ENCLOSURE

FIGURE 4.3.1

SCHEMATIC DIAGRAM OF THE FILTER PATHS
FIGURE 4.3.2

CONFIGURATION OF FILTER PATHS
IN THE PRACTICAL CONTROL SYSTEM
FIGURE 4.3.3

LINEAR AMPLITUDE

CLOSED LOOP TRANSFER FUNCTION OF LOW PASS FILTERS AND ONE
CYCLE DELAY THROUGH THE DIGITAL SYSTEM
FIGURE 4.3.4

AMPLITUDE

LINEAR AMPLITUDE
RAT10

CLOSED LOOP TRANSFER FUNCTION THE CONTROL SYSTEM WITH BOTH FEEDBACK PATH'H CONNECTED AND A SINGLE CYCLE DELAY THROUGH THE FEEDFORWARD FILTER

FIGURE 4.3.5

SYSTEM RESPONSE $=\mathrm{H} 1 \mathrm{H} /\left(1-\mathrm{H}_{1} \mathrm{H} 2\right) \quad \mathrm{H}=\mathrm{AR}$

SCHEMATIC DIAGRAM OF THE FILTER PATHS
FIGURE 4.3.6

SYSTEM RESPONSE
CONFIGURATION OF FILTER PATHS IN THE PRACTICAL CONTROL SYSTEM
$=\mathrm{H} 1 \mathrm{H} /(1-\mathrm{H} 1 \mathrm{H} \mathrm{H} 3)$

FIGURE 4.3.7

$$
H=A R
$$

LINEAR AMRITUDE

AMPLITUDE

LINEAR AMPLITUDE

TRANSFER FUNCTION OF FIGURE 4.3.6

FIGURE 4.3.8

TRANSFER FUNCTION OF FIGURE 4.6.7
FIGURE 4.3.9

AMPUTUDE

LINEAR AMPITTUDE

TRANSFER FUNCTION OF FIGURE 4.3.7 WITH THE LOUDSPEAKER TERMINALS REVERSED

FIGURE 4.3.10

Amplitude
 ${ }^{D} 8$

AMPLITUDE

LINEAR AMPLITUDE

CLOSED LOOP TRANSFER FUNCTION OF THE CONTROL SYSTEM WITH BOTH FEEDBACK PATHS AND THE FEEDFORWARD FILTER CONNECTED

FIGURE 4.3.12

SYSTEM TO MEASURE THE CONTROL SYSTEM OPEN LOOP RESPONSE

FIGURE 4.3.13

CONFIGURATION TO MEASURE THE IMPLEMENTED RESPONSE OF THE FEEDBACK PATH ALONE

FIGURE 4.3.14

FIGURE 4.3.15 SIGNAL yd12

FIGURE 4.3.16 SIGNAL y12 + yd12

OPEN LOOP TRANSFER FUNCTION OF BOTH FEEDBACK PATHS AND A SINGLE CYCLE DELAY THROUGH THE FORWARD PATH; (Y12+YD12)/X2

FIGURE 4.3.17

SYSTEM TO MEASURE THE OPEN LOOP RESPONSE OF THE FEEDBACK PATHS ALONE

FIGURE 4.3.18

SIGNAL CAPTURED IN FIGURE 4.3.18
FIGURE 4.3.19

FIGURE 4.3.20

SIGNAL CAPTURED IN FIGURE 4.3.13

FIGURE 4.3.21

MEASURED OPEN LOOP TRANSFER FUNCTION

 OF THE CONTROL SYSTEMFIGURE 4.3.22

AMPLITUDE

MEASURED OPENLOOP TRANSFER FUNCTION OF BOTH FEEDBACK PATHS
AND A SINGLE CYCLE DELAY THROUGH THE FORWARD PATH; SYSTEM RESPONSE DERIVED WITH A TEST SIGNAL STARTING AT ONLY 10 HZ

FIGURE 4.3.23

PHASE (RAD)

MEASURED OPENLOOP TRANSFER FUNCTION OF THE CONTROL SYSTEM;
SYSTEM RESPONSE DERIVED WITH A TEST SIGNAL STARTING AT ONLY 10 HZ

FIGURE 4.3.24

ACTIVE NOISE CONTROL SYSTEM IMPLEMENTED IN AN ENCLOSURE

FIGURE 4.3.25

AMPLITUDE
D:

AMPLITUDE SPECTRA OF THE RESPONSE AT THE MONITOR MICROPHONE WITH AND WITHOUT THE CONTROL SYSTEM OPERATING

FIGURE 4.3.26

PHASE SPECTRA OF THE RESPONSE AT THE MONITOR MICROPHONE WITH AND WITHOUT THE CONTROL SYSTEM OPERATING

FIGURE 4.3.27

CONTROL SPEAKER

PLAN VIEW

SIDE PROJECTION

CONTROL SYSTEM TRANSDUCER POSITIONS PLAN VIEW AND SIDE PROJECTION

FIGURE 4.3.28

PICTURES SHOWING THE POSITIONS OF THE OF THE TRANSDUCERS INSIDE THE ENCLOSURE

FIGURE 4.3.29

Amputude
(iv)

AMPLITUDE
(:)

AMPLITUDE SPECTRA OF THE RESPONSE AT THE OBSERVER MICROPHONE WITH AND WITHOUT THE CONTROL SYSTEM OPERATING

FIGURE 4.3.30

PHASE SPECTRA OF THE RESPONSE AT THE OBSERVER MICROPHONE WITH AND WITHOUT THE CONTROL SYSTEM OPERATING

FIGURE 4.3.31

MEASUREMENTS AT 1 KHz WITH HEAVY DAMPING;
SIGNALS y10, y30, y32,
AND THE SPECTRUM Y30/Y32 AND ITS INVERSE TRANSFORM AND THE 128 POINT FIR FILTERDERIVED FROM THE MEASUREMENTS

FIGURE 4.4.1

MEASUREMENTS AT 5 KHz WITH HEAVY DAMPING; SIGNALS y10, y30, y32,
AND THE SPECTRUM Y30/Y32 AND ITS INVERSE TRANSFORM AND THE 128 POINT FIR FILTERDERIVED FROM THE MEASUREMENTS

FIGURE 4.4.2

FIGURE 4.4.3

THEORETICAL ATTENUATION PLOTS AT 1,5 AND 10 KHZ
FIGURE 4.4.4
(ARBITRARY AMPLITUDE)

MEASUREMENTS ON THE SINGLE CHANNEL CONTROL SYSTEM WITH THE MONITOR AT A DIFFERENT POSITION Y10,Y30,Y32 AND Y12

FIGURE 4.4.5
(ARBITRARY AMPLITUDE)

DERIVED FEEDBACK AND FEEDFORWARD FILTERS 128 POINT FIR AND THE NON-CAUSAL SPECTRUM Y30 Y32 (ARBITRARY AMPLTUDE)

FIGURE 4.4.6

AMPLITUDE AND PHASE SPECTRA AT THE MONITOR MICROPHONE WITH AND WITHOUT THE CONTROL SYSTEM OPERATING FIGURE 4.4.7

AMPLITUDE AND PHASE SPECTRA AT THE OBSERVER MICROPHONE WITH AND WITHOUT THE CONTROL SYSTEM OPERATING FIGURE 4.4.8

TWO CHANNEL ACTIVE NOISE CONTROL SYSTEM OPERATING IN AN ENCLOSURE

FIGURE 4.4.9

NOISE SOURCE SPEAKER

APPROXIMATING $\mathrm{x} 1=\mathrm{x} 2=0.75 \Pi \mathrm{X} \quad \mathrm{y} 1=0.75 \Pi Y \mathrm{y} 2=0.25 \Pi Y$

$$
\begin{gathered}
P 1=A 1 \cos 0.75 \Pi+A 2 \cos 0.75 \Pi \\
\mathrm{P} 2=\mathrm{A} 1 \cos 0.75 \Pi+\mathrm{A} 2 \cos 0.25 \Pi \\
\Psi=\left(\begin{array}{cc}
-0.7 & -0.7 \\
-0.7 & 0.7
\end{array}\right) \quad|\Psi|=-1
\end{gathered}
$$

TWO CHANNEL ACTIVE CONTROL SYSTEM SIDE PROJECTION

FIGURE 4.4.10

FIGURE 4.4.11

EFECT OF THE TWO CHANNEL CONTROL SYSTEM AT THE MONITOR MICROPHONES

FIGURE 4.4.12

APPENDICES

APPENDIX 1

MULTIPLEXER-DEMULTIPLEXER UNIT

INTERFACED TO THE TMS32020 BOARD.


```
        A block diagram of the MDMU circuitry.
    A timing diagram of the control logic signals.
    A circuit diagram of the MDMU.
    The operation of the unit may be understood by
refering to the above while reading the description of the
software below;
    OUT TEMP,TIM The on-board interval timer is
used; to use this sample clock source, link LKGa of the
TMS32020 board must be inserted, and link LK6b must be
absent (Ref. LSI).
    RXF XF = 0 so mux switch looks at
charia first
ISR EQU $ clock cycle initiates INTO signal
which causes the interrupt service routine to start.
clock sends SH high causing the two input sample and hold
devices to hold; therefore the two input signals are
captured at the instant of the clock pulse. The clock also
iritiates a conversion of the ADC (chana sigrial) such that
chana is held on the ADC latches
    SST1 STATUS load status register values into
data memory address STATUS
```

LACK BIT4 load value of data memory address BIT4 (= >10) into accumulator
AND STATUS AND STATUS with accumulator to
determine the value of the forth bit of the status
register (which contains the value of $X F$)

BNZ NEXT branch to statement NEXT if accumulator (now containing the value of $X F$) is not equal to zero; initially $X F=0$ so program continues to the next statement on the first pass through the program

SXF XF $=1$ causes mux switch to link charriel 2 through to $A D C$, next pass through the program causes it to jump to the NEXT instruction

CALL DELAY
CALL DELAY 10 microseconds delay to wait for switch moved by XF to settle before releasing the signal level from the sample and hold; need to wait sufficient time to be sure of seeing the desired channel at the switch and not part of the voltage level from the other channel

IN CHANA, 3 causes the signal (chana) on the $A D C$ gates to pass to the data bus; this is the sigral whose conversion was initiated on the clock pulse. Because the ADC is being read as port 3 ariother conversion (chanb signal passing through the MUX switch) is initiated.


```
outputting chanb sample from DAC. note; unlike the
situation on the input side the system does not need to
wait 10 microseconds after changing XF because in case the
switch is switching in the direction of the signal flow;
as long as the voltage level is present at the output from
the DAC buffer it will be seen by the SHA device after the
switch has settled
```

OUT CHANB, 2 send chanb sample to DAC from bus
OUT CHANB, $3 \quad$ send chanb sample from DAC to
buffer; chana is output from the buffer
O microseconds after XF is set to
delay is present to ensure that the sample and hold device
SHA is on hold before chanb is passed through the signal
XFP going high
the samples at SHA and SHB have
been held at different times so another set of sample and
holds are needed to output both values at the same time
EINT
RET SCO going low from the clock
pulse causes the final set of sample and holds at the
output to change to sample; in this state the output
voltage levels are output to the output ports. after 4
microseconds the $S H$ devices return to hold and those
signal levels continue to be output uritil the next clock
pulse.

```
* I/P & O/F TEST PROGRAM }40\mathrm{ dB INTERMODULATION
* CHANA I/P TO CHANA O/P BETWEEN CHANNELS
* CHANB I/P TO CHANB O/P
PAGEO EQU O
IMASK EQU PFFC1 ENABLES INTERRUPT O & MASKS OFF OTHERS
IMR EQU 4 INTERRUPT MASK REGISTER
TIM EQU 1
BIT4 EQU >10
TIMVAL EQU >EC7F TO SET & KHz CLOCK RATE;
DUM EQU >63 TO SET A SAMPLING FREQUENCY OF N
TEMP EQU >64 TIMVAL = 1 - 5000000/N in HEX
STATUS EQU >65
CHANA EQU >66
CHANB EQU >67
```



```
*
*
* INSERT EXTRA ADDRESS & DATA CONSTANTS IN HERE
*
*
```



```
\begin{tabular}{llll} 
AORG & 0 & BRANCH TO START ON RESET \\
B & START & & \\
AORG & 2 & BRANCH TO ISR ON INTO \\
B & ISR & & \\
AORG \(>400\) & START OF PROGRAM
\end{tabular}
START AORG >400 START OF PROGRAM
*:
```



```
*
;
* DATA STORED IN PROGRAM MEMORY & INITIAL PROGRAM SET UF IN HERE
*
*
```



```
* SET CLOCK RATE
    SAR O.DUM
    PSHD DUM
    LDPK PAGEO
    LRLK O,TIMVAL
    \XiAF O,TEMP
    OUT TEMP.TIM
* ENABLE INTERRUPT
    RXF XF = O SO SAMPLES CHANA FIRST
    LRLK O. IMASK
    SAR O.IMR
    FOPD DUM
    LAR O,DUM
    EINT
HERE B HEFE
*
```

```
STORE IMASK VALUE
```

STORE IMASK VALUE
IN INTERRUPT MASK REGISTER
IN INTERRUPT MASK REGISTER
TO ENABLE INTERRUPT O
TO ENABLE INTERRUPT O
CLOCK INITIATES CONVERSION FOR CHANA
CLOCK INITIATES CONVERSION FOR CHANA
EOC SENDS SH HIGH, ie. TO HOLD
EOC SENDS SH HIGH, ie. TO HOLD
TRAILING EDGE OF EOC ENABLES INTO

```
TRAILING EDGE OF EOC ENABLES INTO
```



```
*****************************
```



```
* SAMPLING PROCESSING TIME
* FREQ (KHz) AVAILABLE (MICROSEC
* ENTER MAIN PROGRAM ROUTINE HERE _
* 10 79
:* 5
* 229
* 2 2 479
* 1 1 979
:**************:*********************
    LDPK PAGEO
    OUT CHANB.2
    OUT CHANB, 3 DUTPUT CHANNEL 'A' SAMPLE
    CALL DELAY WAIT FOR EOC (DAC)
    RXF RESET XF = O
    RPTK }3\mathrm{ MICROSEC DELAY SO THAT SHA IS SURE TO
    NOP HOLD CHANA OUTPUT FROM DAC
    OUT CHANA. 2
    OUT CHANA.3 OUTPUT CHANNEL 'B' SAMPLE
        IMMEDIATELY AFTER XF SET TO O
                                DUE TO & MICROSEC PULSE ON XFP
                                WHEN CHANB IS ADDRESSED
    EINT
    RET
*********************************
\begin{tabular}{llll} 
DELAY & SAR & O, DUM & \\
& PSHD & DUM & \\
& INNER & LARK & 0,4 \\
& & 25 CYCLES \\
& LARP & 0 & 5 MICRO SECOND DELAY \\
& BANZ & INNER & \\
& FOPD & DUM & \\
& LAR & O.DUM & \\
& RET & &
\end{tabular}
```


BLOGK DIAGRAM OF THE CIRCUITRY FOR THE MDMU
FIGURE Al.I

TIMING DIAGRAM FOR THE MDMU CONTROL LOGIC
FIGURE A1. 2


```
    APPENDIX 2
    Texas TMS32020 assembly lariguage program to realise
the single charmel digital controller.
```

```
* SN RATIO DETERMINED BY 40 dB INTERMODULATION BETWEEN CHANNELS
* IDT 'MFIR2A'
****************
* *
* MFIR2A *
* *
*****************
*
*
* TO RUN ON LOUGHBOROUGH 32020 BOARD VIA MULTIPLEXED INPUT & OUTPUT
*
* C. BEAN 12/86
*
********************************************************************
*
* 2 FIR FILTERS --- /2 ------- FFF -X8---- X2 ---
* LENGTH-128 COEFFICIENTS
* SAMPLING FREQUENCY = 1 KHZ
*
```



```
*
* chana I/P to chana o/p
* GHANP I/F TO CHANB O/P
*
PAGEO EQU O
IMASK EQU >FFC1 To enable interrupt o
IMR EQU 4
TIM EQU 1
BIT4 EQU >10
TIMVAL EQU >EC7F For 1 KHz clock rate
DUM EQU >63
TEMP EQU >64
STATUS EQU >65
CHANA EQU >66
CHANB EQU >67
PAGE6 EQU 6 Page 6 is in B1, starting at >300
PAGE7 EQU Page 7 is in B1, starting at >380
YN EQU >0 START OF PAGE6 >300
XN EQU >0 START OF PAGE7 >380
FN EQU >68 IN PAGEO
OLDX EQU \SFF OND OF PAGE }
OLDY EQU >37F END OF PAGE }
*
****************************
*
    AORG O BRANCH TO START ON RESET
    AORG 2 BRANCH TO ISR ON INTO
    B ISR
* FILTER COEFFICIENTS INITIALLY IN PROGRAM MEMORY
* WITH FEEDFORWARD COEFFICIENTS FIRST
CTAB1 AORG >400
```

DATA	-540
DATA	531
DATA	-757
DATA	671
DATA	-605
DATA	617
DATA	-617
DATA	478
DATA	-826
DATA	667
DATA	-683
DATA	798
DATA	-474
DATA	129
DATA	218
DATA	-966
DATA	966
DATA	-986
DATA	982
DATA	-429
DATA	-76
DATA	433
DATA	-1314
DATA	679
DATA	-998
DATA	133
DATA	135
DATA	-704
DATA	568
DATA	-1031
DATA	282
DATA	-556
DATA	-380
DATA	352
DATA	-908
DATA	271
DATA	-536
DATA	-445
DATA	96
DATA	-663
DATA	314
DATA	-389
DATA	198
DATA	-148
DATA	-683
DATA	386
DATA	-937
DATA	63
DATA	-544
DATA	228
DATA	18
DATA	-478
DATA	536
DATA	-384
DATA	15

DATA	-376
DATA	400
DATA	560
DATA	40
DATA	671
DATA	527
DATA	450
DATA	-237
DATA	118
DATA	728
DATA	17
DATA	147
DATA	581
DATA	740
DATA	-162
DATA	-638
DATA	589
DATA	390
DATA	-373
DATA	244
DATA	1199
DATA	104
DATA	-630
DATA	46
DATA	413
DATA	-150
DATA	-291
DATA	1838
DATA	1924
DATA	724
DATA	957
DATA	1003
DATA	929
DATA	-552
DATA	62
DATA	1678
DATA	361
DATA	-74
DATA	68
DATA	1314
DATA	-90
DATA	-1482
DATA	1732
DATA	371
DATA	-597
DATA	-324
DATA	-378
DATA	309
DATA	-2973
DATA	-564
DATA	1211
DATA	-1351
DATA	1396
DATA	210
DATA	1027

```
DATA 377
DATA -2756
DATA 1420
DATA -2100
DATA -98
DATA -139
JATA -790
DATA 4218
DATA -5570
DATA 5529
DATA -4873
DATA 2395
DATA -2088
DATA -740
DATA }317
DATA -6389
DATA 728
DATA -3882
DATA 84
DATA -39
LATA -52
DATA 206
DATA 143
DATA -186
DATA 59
DATA 343
DATA -9
DATA -230
DATA 241
DATA 315
DATA -133
DATA -66
DATA 363
DATA 151
DATA -135
DATA 99
DATA 206
DATA 1
DATA 100
DATA 74
DATA -44
DATA 237
DATA 231
DATA -209
DATA 51
DATA 513
DATA 69
DATA -359
DATA 308
DATA 589
DATA -263
DATA -275
DATA 618
DATA . }27
DATA -422
```

DATA	109
DATA	468
DATA	-68
DATA	-58
DATA	220
DATA	14
DATA	129
DATA	247
DATA	-250
DATA	-96
DATA	504
DATA	55
DATA	-697
DATA	127
DATA	874
DATA	-513
DATA	-805
DATA	956
DATA	461
DATA	-1002
DATA	11
DATA	841
DATA	-224
DATA	-559
DATA	294
DATA	217
DATA	-279
DATA	77
DATA	-102
DATA	-330
DATA	422
DATA	241
DATA	-933
DATA	-78
DATA	1388
DATA	-543
DATA	-1608
DATA	1444
DATA	985
DATA	-1883
DATA	-175
DATA	1569
DATA	-260
DATA	-1300
DATA	369
DATA	1090
DATA	-835
DATA	-428
DATA	815
DATA	-569
DATA	60
DATA	785
DATA	-1169
DATA	-418
DATA	1883

```
    DATA -399
    DATA -2594
    DATA 1729
    DATA 2194
    DATA - 3014
    DATA -766
    DATA 3037
    DATA -119
    DATA -2440
    DATA 181
    DATA 2833
    DATA -1392
    DATA -2267
    DATA 2899
    DATA -481
    DATA -1592
    DATA 2404
    DATA -1601
    DATA -867
    DATA 3086
    DATA -1034
    DATA -2774
    DATA 2227
    DATA 2663
    DATA -3603
    DATA -1257
    DATA 3440
    DATA -821
    DATA -1713
    DATA 641
    DATA 517
    DATA 45
    DATA 4
    DATA -4
    DATA 27
    DATA 31
*
START EQU $
* SPM 0
        SPM
        PM = O FOR NO SCALING IN APAC
        SXM = 1 SIGN EXTN IN ACC
        SET OVERFLOW MODE
* LOAD FILTER COEFFICIENTS TO DATA MEMORY
    LDPK PAGEO
    LARP ARO
    LRLK ARO,>200 POINT TO BLOCK BO
    RPTK >7F 2 X }128\mathrm{ COEFFICIENTS
    BLKP CTAB1,*+ PM 400-47F TO DM 200-27F
    RPTK >7F
    BLKP >480,*+
    CNFP USE BO AS PROGRAM AREA
* - ONLY DO THIS AFTER TRANSFERING COEFF TO DATA MEMORY
* set clock rate
```

```
SAR O,DUM
PSHD DUM
LDPK PAGEO
LRLK O,TIMVAL
SAR O,TEMP
OUT TEMP,TIM
```

* Enable Interrupt
RXF FXF - CHANA IS SAMPLED FIRST
LRLK O, IMASK
SAR O,IMR
POPD DUM
LAR O,DUM
EINT
HERE B HERE
*

POP
EINT
RET
*
NEXT IN CHANB, 2 READS IN CHANNEL 'B' SAMPLE

* POP

*

LDPK PAGE7
LAC XN, 15
LDPK PAGEO
ADDH FN
LDPK PAGE7
$\mathrm{SACH} . \mathrm{XN}$
*

LRLK	AR1, OLDX	LOAD OLDEST VALUE OF INPUT SIGNAL INTO REGISTER IN PREPARATION
LARP	AR1	
MPYK	0	FOR MULTIPLICATION WITH FIRST
ZAC		OQEFFICIENT (IN PM >FFOO)
FFTK	37 F	AT BTAFT GF OONVOLUTION
MACD	>FFOO, *-	FEEDFORWARD FILTER
APAC		
LDPK	PAGE6	
SACH	YN, 4	YN X 8 (X2 TO RETURN TO Q15 FORMAT) BECAUSE COEFF DIVIDED BY 8
LAC	YN, 1	
LDPK	PAGEO	
SACL	CHANA	CHANA X 2 FOR OUTPUT
LDPK	PAGE6	
LFLK	1, OLDY	LSAD OLDEET VALUE OF OUTFUT
LARP	AR1	SIGNAL INTO REGISTER IN
MPYK	0	PREPARATION FOR CONVOLUTION
ZAC		
RPTK	$>7 \mathrm{~F}$	
MACD	>FF80,*-	FEEDBACK FILTER
AFAC		
LDPK	PAGEO	
SACH	FN, 1	: FN BACK TO Q15 FORMAT
		$\begin{aligned} \text { GAIN - } 1 \text { WHEN DMA } 47 \mathrm{~F} & -+409 \mathrm{C} \\ \& \text { DMA } 4 \mathrm{FF} & =+32767 \end{aligned}$
		; +32767 = ONE IN Q15 FORMAT

OUTPUT SEQUENCE
*

```
    LDPK PAGEO
    OUT CHANB,2
    OUT CHANB,3 OUTPUT CHANNEL 'B' SAMPLE
    CALL DELAY
    RXF RESET XF = 0
    RPTK 3
    NOP
    OUT CHANA,2
    OUT CHANA,3 OUTPUT CHANNEL 'A' SAMPLE
    EINT
    RET
```

DELAY	SAR	O,DUM	
	PSHD	DUM	
	LARK	0,4	25 CYCLES
	LARER	0	5 MICRO SECOND DELAY
	BANZ	INNER	
	POPD	DUM	
	LAR	O,DUM	
	RET		

APPENDIX 3

Texas TMS32020 assembly language program to realise the two channel digital controller.

```
* IDT 
```

* PROGRAM TO IMPLEMENT AN ACTIVE CONTROL SYSTEM CONSISTING
* OF A SINGLE DETECTOR AND TWO CONTROL SOURCES
* C. BEAN 4.87
**

```
* 4 FIR FILTERS 
```

**
*

$*$	YNA	YNB	>300	+5901	+6029
$*$	OLDYA	OLDYB	$>37 \mathrm{~F}$	+6028	+6156

*

UNITY EQU 1
ONE EQU $>6 \mathrm{~A}$
PMYNA EQU $>6 \mathrm{~B}$
PMYNB EQU $>6 \mathrm{C}$

AORG	O	BRANCH TO START ON RESET	
B	START		
AORG	2	BRANCH TO ISR ON INTO	
B	ISR		
ORG	>400	PAGE 311	

```
LIST OF 4 人 128 = 256 FILTER COEFFICIENTS
```

```
        DATA 2522
        DATA -1274
        DATA -2293
        DATA 2001
        DATA 2152
        DATA -3374
        DATA -1175
        DATA 3096
        DATA -812
        DATA -1641
        DATA 612
        DATA 540
        DATA 90
        DATA 34
        DATA -3
        DATA 39
        DATA 23
*
*
START EQU $
* SPM O
        SSXM
        SOVM
* INITIALISE CONSTANTS
    LDPK PAGEO
    LRLK AR1,UNITY
    SAR 1,ONE
    LRLK AR1, PYNA
    SAR 1,PMYNA
    LRLK AR1, PYNB
    SAR 1,PMYNB
* SET TIMING
    SAR O,DUM
    PSHD DUM
    LDPK PAGEO
    LRLK O,TIMVAL
    SAR O,TEMP
    OUT TEMP,TIM
* ENABLE INTERRUPT
    RXF XF = O LOOKS AT CHANA FIRST
    LRLK O,IMASK
    SAR O,IMR
    POPD DUM
    LAR O,DUM
    EINT
HERE B HERE
*
*************************
*
* ---------------------
        INPUT
            SEQUENCE
*
*
```

```
CAN ONLY CONVOLUTE BO WITH B1
```

CAN ONLY CONVOLUTE BO WITH B1
BO CONTAINS XN,YNA \& YNB : COEFFS IN B1
BO CONTAINS XN,YNA \& YNB : COEFFS IN B1
1354 CYCLES = 270.8 MICROSECONDS
1354 CYCLES = 270.8 MICROSECONDS
MAX CLOCK RATE = 3.6 KHz
MAX CLOCK RATE = 3.6 KHz
A READ IN ON XF = 0
A READ IN ON XF = 0
A READ IN ON XF = 1

```
A READ IN ON XF = 1
```

```
* A FUT OUT ON XF = 1
*
ISR EQU $
    PUSH
    LDPK PAGEO
    SST1 STATUS CHECK STATUS OF XF
    LACK BIT4
    AND STATUS
    BNZ NEXT BRANCH TO NEXT IF XF = 1
    SXF SET XF = 1
    CALL DELAY WAIT FOR SWITCHES TO SETTLE
    CALL DELAY
    LDPK PAGE7
    IN XN,3
*
*
*
*
    POP
    EINT
    RET
*
NEXT IN CHANB,2
*
    POP
*
    LDPK PAGE7
        LAC XN.15 ; XN + FN ; DIVIDE XN BY 2
        LDPK PAGEO FNA : TO AVOID OVERFLOW
        ADDH FNB
        LDPK PAGE7
        SACH XN ISR HAS 78 CYCLES UP TO HERE
    *
    * LOAD FILTER COEFFICIENTS
*
    CNFD
    LDPK PAGEO
    LARP ARO
    LRLK ARO,>200 ; POINT TO BLOCK BO
    RPTK >7F ; 2 X 128 COEFFICIENTS
    BLKP CTAB1,*+ ; PM 400-47F TO DM 200-27F
    RPTK >7F
    BLKP >480,*+
    LAC PMYNB STORE YNB IN PM +6029 TO +6156
    LRLK O,>300 RETRIEVE YNA FROM PM +5901 TO +6028
    RPTK >7F
    TBLW *+
    LAC PMYNA
    LRLK 0,>300
    RPTK >7F
    TBLR *+
    CNFP ; USE BO AS PROGRAM AREA
```

```
        LRLK 1,OLDYA
        LARP AR1
        MPYK O
        ZAC
        RPTK >7F
        MACD >FF80,*-
        APAC
        LDPK PAGEO
    SACH FNA,1 ; FN BACK TO Q15 FORMAT
5 4 9 ~ C Y C L E S ~ S I N C E ~ C N F D ~ ; ~ G A I N ~ = ~ 1 ~ W H E N ~ D M A ~ 4 7 F ~ = ~ + 4 0 9 6 ~
                                    & DMA 4FF=+32767
                    ; +32767 = ONE IN Q15 FORMAT
    LRLK ARO.>380 134 CYCLES FOR THESE }4\mathrm{ LINES
    LARP ARO
    RPTK >7F
    BLKD >381,*+
    CNFD
    LDPK PAGEO
    LARP ARO
    LRLK ARO,>200
    RPTK >7F
    BLKP >500,*+
    RPTK >7F
    BLKP >580,*+
    LAC PMYNA STORE YNA IN PM +5901 TO +6028
    LRLK 0,>300 RETRIEVE YNB FROM PM +6029 TO +6156
    RPTK >7F
    TBLW *+
    LAC PMYNB
    LRLK O,>300
    RPTK >7F
    TBLLR *+
    CNFP
```

*

```
        LDPK PAGE7
        LRLK AR1,OLDX
        LARP AR1
        MPYK O
        ZAC
        RPTK >7F
        MACD >FFOO,*-
        APAC
        LDPK PAGE6
        SACH YNB,4 YN X 8 (X2 TO RETURN TO Q15 FORMAT)
        LAC YNB,1
        LDPK PAGEO
        SACL CHANB CHANA X 2 FOR OUTPUT
    LDPK PAGE6
    LRLK 1.OLDYB
    LARP ARI
        MPYK O
        ZAC
        RFTK >7F
        MACD >FF80,*-
        AFAC
        LDPK PAGEO
    SACH FNB,1 ; FN BACK TO Q15 FORMAT
*
*************************************
* OUTPUT SEQUENCE
************************************ R**沚** OF ISR HAS 44 CYCLES
    LDPK PAGEO
    OUT CHANB,2
    OUT CHANB.3
    CALL DELAY
    RXF RESET XF = 0
    RPTK 3
    NOP
    OUT CHANA,2
    OUT CHANA, 3
*
*
*
    EINT
    RET
***************************
DELAY SAR 0,DUM
    PSHD DUM
    LARK 0.4 25 CYCLES
INNER LARP 0 5 MICRO SECOND DELAY
    BANZ INNER
    POPD DUM
    LAR O,DUM
    RET
    END
```

*

APPENDIX 4

Fortran program to numerically generate the transient test signal.

```
C PROGRAM TO PRODUCE SWEPT SINE SIGNAL
C ISWEPT ==> ARRAY WHICH WILL HOLD SIGNAL
C LEN =}=>\mathrm{ TOTAL NUMBER OF POINTS INCLUDING ZEROS
C LN ==> NUMBER OF ZEROS AT END
C F1,F2 => START & END FREQUENCIES OF SWEEP
C T =}=>\mathrm{ TIME LENGTH OF SIGNAL
C CLF ==> SIGNAL OUTPUT RATE
C ISTART,IEND ==> NUMBER OF WINDOWED POINTS
    CHARACTER*12 FNAME
        DIMENSION ISWEPT(4000),SWEPT(4000)
        FORMAT(F12.6)
    9% FORMAT (IG)
    59 FORMAT(A)
        PI=3.14159265
        WRITE(*,'(A\)')' FILENAME SIGNAL TO BE STORED IN
        READ(*,59) FNAME
        OPEN(41,FILE=FNAME,STATUS='NEW')
        WRITE(*,'(A\)')' START & END FREQS
        READ(*,*)F1,F2
        WRITE(*,'(A\)')' SIGNAL OUTPUT RATE (Hz)
        READ(*,*)CLF
        WRITE(*,'(A\)')' TOTAL NUMBER OF POINTS INCLUDING ZEROS : '
        READ(*,28)LEN
        WRITE(*,'(A\)')' NUMBER OF END ZEROS
        READ(*,28)LN
        LN=LEN-LN
        T=LEN/CLF
        WRITE(*,8)T
    8 FORMAT(1X,'LENGTH OF SIGNAL IS ',G10.5,'S')
        TT=T*(FLOAT(LN)/FLOAT(LEN))
        A=PI*(F2-F1)/TT
        B=PI*2*F1
        DO }50 I=1,L
        TFS=(FLOAT(I)/FLOAT(LN))*TT
        SWEPT(I)=SIN(A*(TFS**2)+B*TFS)*32767
    5 0 ~ C O N T I N U E ~
        WRITE(*,'(A\)')' NUMBER OF WINDOW POINTS AT START & END : '
        READ(*,*)ISTART, IEND
        IF((ISTAFT, EC),0), AND), (IEND, EQ.O))GOTO 60
        EALL WINDHW(㣻WEFT,LN,ISTART,IEND)
    CQNTINUE
    [O }70\mathrm{ I-1, LN
    ISWEPT(I)=IFIX(SWEPT(I))
    70 CONTINUE
        LNN-LN+1
        DO 80 I=LNN, LEN
        ISWEPT(I)=0
    80 CONTINUE
        WRITE(41,28) LEN
        WRITE(41,28) (ISWEPT(I),I=1,LEN)
        WRITE(41,28) LN
        END
C
    SUBROUTINE WINDOW(SWEPT,ILEN,ISTART,IEND)
C PROGRAM TO PRODUCE A PLUS OR MINUS ONE COSINE WINDOW
```

C OVER THE FIRST ISTART \& LAST IEND POINTS OF AN ILEN POINT ARRAY DIMENSION SWEPT (4000) $P I=3.14159265$
LAST=ILEN - IEND
DO $200 \mathrm{I}=1$, ISTART
FRACT $=(F L O A T(I) / F L O A T(I S T A R T)) * P I$
$\operatorname{SWEPT}(I)=((1.0-\operatorname{COS}(F R A C T)) / 2.0) * S W E P T(I)$
200
CONTINUE
DO $210 \mathrm{I}=1$, IEND
FRACT $=(\mathrm{FLOAT}(I) / \mathrm{FLOAT}(I E N D)) * P I$
$I I=L A S T+I$
$\operatorname{SWEPT}(I I)=((1.0+\operatorname{COS}(F R A C T)) / 2.0) * \operatorname{SWEPT}(I I)$
210
CONTINUE
RETURN
END

APPENDIX 5

Texas TMS32020 assembly language program to measure the acoustic responses of the control system.

```
    IDT 'MINOAA'
    PROG TO I/P 1900 WORDS OF DATA --
    & O/P 1900 WORDS OF STORED DATA
    -- MAX I/P = +/-10V --
    ----- /16 ---->--I/P O/P------------
            TO RUN ; -
                                FPM +2612 +5900 0
                                SB }47
            TO SAVE DATA ;-
                                    SPM +4000 +4512
*
*
PAGEO EQU O
IMR EQU >4
IMASKO EQU >FFC1
CLCK EQU >EC79
BIT4 EQU >10
*
* dATA MEMORY lOCATIONS
*
DUM EQU >63
ONE EQU >64
ZERO EQU >65
NUMAVG EQU >66 NUMBER OF TIMES MEASUREMENT REPEATED
EIGOTTT EOTI KEF ETART OF OUTPUT SIGNAL
SIGIN EQU >68 START OF INPUT SIGNAL
STATUS EQU >60
DPOUT EQU >6A OUTPUT DATA POINT
DPIN EQU >6B INPUT DATA POINT
TEMP EQU >6C
CHANA EQU >6D
CHANB EQU >6E
*
    AORG O
    B ENTRY
    AORG 2
    B ISR
TBLE AORG >400
    DATA +1 ONE
    DATA +0 ZERO
    DATA +16 NUMBER OF MEASUREMENTS
    DATA +2100 PMA OF START OF O/P SIGNAL
    DATA +4000 PMA OF START OF I/P SIGNAL
                            PMA = PROGRAM MEMEORY ADDRESS
* transFER dATA VALUES TO RELEVANT DATA MEMORY ADDRESSES
*
ENTRY EQU $
    LARP 0
    LRLK O,ONE
    RPTK >4
    BLKP TBLE,*+
```

```
        CNFP CNF = 1 BLOCK BO = PROG MEM
        SSXM SXM = 1 SIGN EXTN IN ACC
    SPM 0 PM = O NO SHIFTS IN ADDITION
* SET ClOCK RATE
    LDPK PAGEO
    LRLK O,CLCK
    SAR O,TEMP
    OUT TEMP,1
* SET COUNTING CONSTANTS
    LAC SIGOUT
    LARK 0,18
    LARK 1.99
* enABLE InterRuPT
    RXF XF = O FIRST SAMPLE IS FROM CHANNEL A
    LRLK 2,IMASKO
    SAR 2,IMR
    EINT
LOOP B LOOP
ISR EQU $
* INPUT SEQUENCE
    PUSH
    SST1 STATUS
    LACK BITL
    AND STATUS
    BNZ NEXT
    SXF N
    CALL DELAY
    CALL DELAY
    CALL DELAY
    IN DPIN,3
*
    POP
    EINT
    RET
*
NEXT IN CHANB,2
*
*************************************
*
\begin{tabular}{llcl} 
LAC & NUMAVG & CHECK IF MEASUREMENTS COMPLETED \\
BZ & DISP & & \\
POP & & & \\
TBLR & DPOUT & FETCH DATA POINT TO BE OUTPUT \\
PUSH & & \\
LAC & DPIN, 12 & DIVIDE I/P POINT BY 16 TO \\
SACH & DPIN,0 & ACHIEVE AVERAGING & \\
POP & & & \\
LT & ONE & & \\
MPYK & 1900 & &
\end{tabular}
```

```
ADD DPIN ADD CURRENT I/P POINT TO
SACL DPIN CURRENT SUM
POP
TBLW DPIN WRITE CURRENT SUM TO PROG MEM
ADD ONE
LT ONE
MPYK 1900
SPAC
LARP 1
BANZ JUMP CHECK IF 100 CYCLES OF AR1 DONE
LARK 1.99
LARP O
BANZ JUMP CHECK IF 19 CYCLES OF AR2 DONE
*
LARK 1,99
LARK 0,18
LAC NUMAVG
SUB ONE
SACL NUMAVG
BZ FIN CHECK IF MEASUREMENT DONE }16\mathrm{ TIMES
LAC SIGOUT
*
* OUTPUT SEQUENCE
* NEED TO OUTPUT A ZERO AT END OF SEQUENCE
* TO PREVENT DC OFFSET BEING O/P AT END
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{10}{*}{J UMP} & OUT & CHANA, 2 & \\
\hline & OUT & CHANA, 3 & \\
\hline & CALL & DELAY & \\
\hline & RXF & & \\
\hline & RPTK & 3 & \\
\hline & NOP & & \\
\hline & OUT & DPOUT, 2 & \\
\hline & OUT & DPOUT, 3 & \\
\hline & EINT & & \\
\hline & RET & & \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow[t]{3}{*}{DELAY} & EAR & ¢, DUM & \\
\hline & PSHD & DUM & \\
\hline & LARK & 0,4 & \\
\hline \multirow[t]{5}{*}{INNER} & LARP & 0 & 5 MICROSECOND DELAY \\
\hline & BANZ & INNER & \\
\hline & POPD & DUM & \\
\hline & LAR & O, DUM & \\
\hline & RET & & \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow[t]{7}{*}{FIN} & NOP & & \\
\hline & NOP & & \\
\hline
\end{tabular}
```

```
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
*
* to output captured SIGNal
* LAC SIGIN
    LAC SIGIN
    LARK 1.99
    PUSH
*
DISP RXF
    RPTK 3
    NOP
    POP
    TBLR DPOUT
    OUT DPOUT,3
    ADD ONE
    LARP 1
    BANZ BOUNCE
    LARK 1,99
    LARP O
    BANZ BOUNCE
    LARK 1.99
    LARK 0,18
    LAC SIGIN
BOUNCE
EINT
RET
END
```


APPENDIX 6

```
Texas TMS 22020 assembly language program to measure the owen loob response of the single channel control system.
```

```
                                    'MOLTFA'
*****************
* PROGRAM TO INPUT A SIGNAL TO THE OPEN LOOP OF THE
* CONTROL SYSTEM AND CAPTURE THE RESPONSE
* C. BEAN 3/87
*
*************************************************************
*
* 2 FIR FILTERS I/P->-/16--------------------------------
* LENGTH-128 COEFFICIENTS
* SAMPLING FREQUENCY = 1 KHZ -------------------------
*
************************************************************
*
* 40 dB INTERMODULATION
* chana I/P TO Chana o/P
* CHANB I/P TO CHANB O/P
PAGEO EQU O
IMASK EQU >FFC1
IMR EQU 4
TIM EQU 1
BIT4 EQU >10
TIMVAL EQU >EC7F
DUM EQU >63
TEMP EQU >64
STATUS EQU >65
CHANA EQU >66
CHANB EQU >67
SIG EQU >69 DATA LOCATION OFSTART OF INPUT SIGNAL
ONE EQU PGEG FQU FAge 6 is in BO, starting at >300
PAGE7 EQU Page 7 is in B1, starting at >380
YN EQU >0 START OF PAGE6 >300
XN EQU >0 START OF PAGE7 >380
FN EQU >68 IN PAGEO
OLDX EQU >3FF END OF PAGE7
OLDY EQU >37F END OF PAGE6
UNITY EQU 1
SIGIN EQU +4000 PROGRAM MEMORY ADDRESS OF START OF I/P SIG
*
************************
*
    AORG O BRANCH TO START ON RESET
    B START
    AORG 2 BRANCH TO ISR ON INTO
*
************************
CTAB1 AORG >400
```

```
LIST OF 2 < 128=256 FILTER COEFFICIENTS
```

```
DATA O
DATA O
DATA O
DATA O
DATA O
DATA 0
DATA O
#ATA O
DATA O
DATA O
DATA O
DATA O
DA.TA O
DATA O
DATA O
DATA O
DATA 0
DATA O
DATA 0
DA.TA 0
DATA O
DATA O
DATA O
*
START EQU $
*
    SPM O
    SOVM
PM = O SO NO SCALING IN APAC
SXM = 1 SO SIGN EXTN IN ACC
SET OVERFLOW MODE
* LOAD COEFFICIENTS INTO DATA MEMEORY
    LDPK PAGEO
    LARP ARO
    LRLK ARO,>200 POINT TO BLOCK BO
    RPTK >7F 2 < 128 COEFFICIENTS
    BLKP CTAB1,*+ PM 400-47F TO DM 200-27F
    RPTK >7F
    BLKP >480,*+
    CNFP CNF = 1 FOR MACD
* - ONLY DO CNFF AFTER TRANSFERING COEFF TO DATA MEMORY
* SET UP CONSTANTS IN RELEVANT DMA
    LRLK ARI,SIGIN
    SAR 1.SIG START OF I/P SIG AT PMA + 4000
```

```
                            LRLK AR1,UNITY
SAR 1.ONE
* INITIAL CONDITIONS & PROGRAM SET UP
* LRLK AR1,0
SAR 1,FN ; INITIALLY SET FEEDBACK VALUE TO O
LAC SIG ; TBLW PUTS FIRST CAPTURED SAMPLE IN
    PMA SPECIFIED BY ACCUMULATOR
    LARK ARO,15 ; O/P & I/P REPEATED 16 TIMES
    LARK AR2,18 ; 19 X 100=1900 SAMPLES
    LARK AR3.99
```

* SET UP TIMING
SAR O.DUM
PSHD DUM
LDPK FAGEO
LRLK O,TIMVAL
SAR O.TEMP
OUT TEMP,TIM
* EnABLE INTERRUPT
RXF $\quad X F=0$ LOOKS AT CHANA FIRST
LRLK O.IMASK
SAR O.IMR
POPD DUM
LAR O,DUM
EINT
HERE B HERE
*

ISR	EQU
$*$	$-\cdots$
$*$	INPUT
$*$	ROUTINE

 400 CYCLES \(=80+\) MICROSECONDS
 A READ IN ON XF \(=0\)
 A READ IN ON XF \(=1\)
 A PUT OUT ON \(X F=1\)
 B PUT OUT ON \(X F=0\)
 PUSH
 LDPK PAGEO
 SST1 STATUS CHECK STATUS OF XF
 LACK BIT4
 AND STATUS
 BNZ NEXT BRANCH TO NEXT IF XF \(=1\)
 SXF SET \(X F=1\)
 CALL DELAY WAIT FOR SWITCHES TO SETTLE
 CALL DELAY
 LDPK PAGE7
 IN XN, 3
 *
*
*
*
* POP
EINT
RET
NEXT IN CHANB, 2 READS IN CHANNEL 'B' SAMPLE
*. READS IN ONLY, NO INITIALISING

POP

```
    LDPK PAGE7
    PUSH XN XN + FN
    LDPK PAGEO
    ADD FN
    LDPK PAGE7
    SACL XN
    POP
* THE AVERAGING ; BY ADDING 16 CAPTURED SAMPLES
    LDPK PAGEO
    TBLR TEMP
    PUSH
    LAC TEMP
    LDPK FAGE7
    ADD XN
    SACL XN
    POP
    TBLW XN ; WRITE SUMMED CAPTURED VALUE
    LDPK PAGEO
    LT ONE
    LDPK PAGE7
    MPYK 1900
    SPAC ; DECREASE ACC TO LOOK AT O/P SAMPLE
    TBLR XN ; READ SAMPLE TO BE O/P
    LDPK PAGEO
    LT ONE
    LDPK PAGE7
    MPYK 1901
    APAC ; INCREASE ACC
    PUSH
    LAC XN,12 ; DIVIDE XN BY }1
    SACH XN TO STORE AVERAGE OF }16\mathrm{ MEASUREMENTS
    LRLK AR1,OLDX
    LARP AR1
    MPYK O
    ZAC
    RPTK >7F
    MACD >FFOO,*-
    APAC PAGE6
    SACH YN,4 YN X 8 (& X2 TO RETURN TO Q15 FORMAT)
        BECAUSE COEFF DIVIDED BY 8
    LAC YN,O
    LDPK PAGEO
    SACL CHANA
    LDPK PAGE6
    LRLK AR1,OLDY
    LARP AR1
```

```
            MPYK O
ZAC
RPTK >7F
MACD >FF80,*-
APAC
LDPK PAGEO
SACH FN,1 ; FN BACK TO Q15 FORMAT
POP
LARP AR3
BANZ JUMP
LARK AR3.99
LARP AR.2
BANZ JUMP
LARK AR3.99
LARK AR2,18
LAC SIG
LARP ARO
BANZ JUMP
B
FIN
**************************
JUMP \begin{tabular}{lll} 
LDPK & PAGEO \\
& OUT & CHANB, 2 \\
& OUT & CHANB, 3 \\
& CALL & DELAY \\
& RXF & \\
& RFTK & 3 \\
& NOP & \\
& OUT & CHANA, 2 \\
& OUT & CHANA,3
\end{tabular}
*
*
    EINT
    RET
*************************
DELAY SAR O,DUM
            FSHD DUM
            LARK 0.4 25 CYCLES
INNER LARP 0 5 MICRO SECOND DELAY
            BANZ INNER
            POPD DUM
            LAR O,DUM
            RET
FIN NOP
            NOP
            NOP
            NOP
            NOP
            NOP
            NOP
            END
* BEFORE RUNNING ---
*
* LPM MOLTFA OR TEMP3
* LPM X2 OR SIG
* FDM 300 3FFO
* FPM +2612 +59000
```


APPENDIX 7

```
    C.Bean ard S.J.Flockton. Active control of acoustic
noise in a small enclosure. Paper presented by the author
at the Institute of Acoustics annual meeting, Cambridge;
Aoril 1988.
```


ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL, ENCLOSURE

C. Bean (1) and S.J.Flockton

Royal Holloway and Bedford New College, University of London
(1) Now with B\&W Loudspeakers, Worthing

INTRODUCTION

Any sound field can be thought of as the sum of propagating and reverberant fields. Much study has concemed the control of propagating fields; particularly in ducts. However, the control of the propagating field inside a room is much more complicated due to the multiple reflections involved and fundamentally requires that the control speakers be positioned in the line of the propagating field. Indeed, a propagating field is best controlled with a secondary source positioned as close as possible to the noise source. However, with multiple or large sources this may be difficult or impossible.

The principle of superposition can be applied to linear sound fields enabling the direct and reverberant fields to be considered separately. This paper is concerned with the active control of the low order modes of a reverberant field. In real situations the acoustic wave pattern of a reverberant field will be complicated, due to the shape of the enclosure and to objects and people within the enclosure, but a useful underastanding of the problem may be obatined by studying the simple stuation of a rectangular enclosure. A number of papers have been published concerning the active control of harmonic sound fields. Nelson [1] has shown that substantial reductions in the net acoustic power radiated can be achieved if the control sources are within half a wavelength of the noise source. Bullmore [2] has extended this theory to sound fields of low modal density by minimising the sum of the squared pressures at a number of different sensor locations and has shown that attenuation close to optimum can be achieved. It has also been shown how attenuation can be achieved with control sources separated from the noise source by distances of greater than half a wavelength. Little material has been published concerning experiments on the active control of broadband noise within an enclosure.

This paper describes the implementation of a system for the active control of the low order modes of the reverberant field in a small enclosure (where "small" infers that only a small number of acoustic modes dominate the field)

THEORY

In order to attenuate globally a sound field or produce a volume of attenuation it is necessary that the monitoring positions are chosen to be representative of the sound field throughout the volume of interest. In the case of a reverberant field it is necessary that the microphones pick up sufficient information about the dominant modes of the field. Let the sound field in an enclosure be dominated by n modes and the amplitude of the i 'th mode be $A_{i}(t)$. Let the pressure in the enclosure be sensed by n sensors and the pressure at the j 'th sensor be $P_{j}(t)$. Then the pressures at sensors 1 and 2 will be

$$
P_{1}(t)=\Psi_{11} A_{1}(t)+\Psi_{21} A_{2}(t)+\ldots+\Psi_{n 1} A_{n}(t)
$$

ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL ENCLOSURE

$$
P_{2}(t)=\Psi_{12} A_{1}(t)+\Psi_{22} A_{2}(t)+\ldots+\Psi_{n 2} A_{n}(t)
$$

where $\Psi_{i j}$ is the characteristic function of the i 'th mode at the j 'th sensor position. It represents the fraction of the standing wave present at a position: $\Psi=0$ at a node and is a maximum at an antinode. The equations can be represented in matrix form:

$$
P=\Psi A
$$

and the modal pressures at a point obtained from the inverse equation

$$
A=\Psi^{-1} P
$$

Therefore in principle the characteristic functions (or eigenfunctions) of the modes need to be known in order to determine the modal pressures. Some knowledge of the mode shapes is also necessary when determining appropriate monitor positions. The important consideration in choosing the monitor positions is that the information present in the signals from the sensors is sufficient to define adequately all the modal amplitudes within the working range of the control system. Each monitor needs to be placed in an independent position from the others such that the simultaneous equations presented above can be solved.

An example will illustrate the meaning of the term independent. In practice it will be desirable to monitor a mode at or near an antinode to maximise the pressure detected. However, consider the case of monitoring the 1,0 and 0,1 modes in a 2 -dimensional rectangular enclosure at positions in diagonally opposite corners. The matrix Ψ is then equal to $\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$, and as this matrix is singular, i.e. the determinant is zero, it cannot be inverted and hence the modal pressures cannot be resolved. This has occured because the chosen monitor positions were not independent; each position detected the same component of each mode. Note, however, that it is not necessary for the monitors to determine the modal amplitudes completely, only that there is sufficient information about the modal amplitudes present in the signals to avoid its being swamped by interfering noise.

MULTICHANNEL CONTROL SYSTEM

An active system consisting of a number of detectors and sources capable of controlling the field at a number of monitor positions is shown in figure 1 . The letters in the figure are matrices of frequency responses between the elements. It has been shown [3] how the responses of the controllers needed between the detectors and sources are given by

$$
\boldsymbol{T}=\left(\boldsymbol{C}^{\mathrm{H}} \boldsymbol{E} \boldsymbol{F}-\boldsymbol{C}^{\mathrm{H}} \boldsymbol{C}\right)^{-1} \boldsymbol{C}^{\mathrm{H}} \boldsymbol{E}
$$

where $\quad T$ is the matrix of the transfer functions of the controller needed to give optimum attenuation at the monitors,
C is the matrix of the transfer functions between the control sources and the monitors,
\boldsymbol{F} is the matrix of the transfer functions of the acoustic feedback paths between the control sources and the detectors,
\boldsymbol{A} is the matrix of the transfer functions between the noise sources and the monitors,
B is the matrix of the transfer functions between the noise sources and the detectors, and

ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL ENCLOSURE

E is the matrix of the transfer functions between the detectors and the monitors, and is equal to $A B^{-1}$.

Single Detector, Single Secondary Source, Two Monitors

Consider a controller consisting of one detector and one source controlling the field at two monitor positions. The required controller is given by

$$
t=\left(\left[\begin{array}{ll}
c_{1}^{*} & c_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right] f-\left[\begin{array}{ll}
c_{1}^{*} & c_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
c_{1}^{*} & c_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]
$$

where the matrices $\boldsymbol{T}, \boldsymbol{C}, \boldsymbol{E}$ and \boldsymbol{F} have components $t, c_{1}, c_{2}, e_{1}, e_{2}$ and f. Multiplying out the matrices leads to

$$
t=\frac{c_{1}^{*} e_{1}+c_{2}^{*} e_{2}}{\left(c_{1}^{*} e_{1}+c_{2}^{*} e_{2}\right) f-\left(c_{1}^{*} c_{1}+c_{2}^{*} c_{2}\right)}
$$

and extending this to a controller with n monitors gives

$$
t=\frac{1}{f-\frac{\sum_{i=1}^{n} c_{i}^{*} c_{i}}{\sum_{i=1}^{n} c_{i}^{*} e_{i}}}
$$

Simple control theory indicates that this can be implemented with a pair of electronic filters; one between the detector and the source in parallel with another cancelling the acoustic feedback from the source to the detector. Increasing the number of or moving the monitor microphones does not affect the acoustic feedback in the system. Hence designing a controller in this way, with independent feedback compensation, means that the monitors can be moved without altering the feedback incorporated in the controller.

Two Detectors, Two Secondary Sources

Consider the general arrangement of figure 2. The acoustic feedback paths add together at the detector microphone (actually the point of entry to the digital system). This feedback can be counteracted by modelling each acoustic path electronically and summing the electronic feedback paths at an equivalent position to the acoustic feedback paths. The success of the method lies in the simple topology of the multichannel controller, the simplicity is rendered by the positions where the feedback paths meet, namely before the signal splits to enter the separate feedforward paths to the speakers. The advantage of this configuration is that the electronic feedback filter has a simple response which only

ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL ENCLOSURE

needs to model the acoustic feedback due to that channel alone. These paths are also causal ensuring that they can be adequately and simply modelled. The method also eases the extraction of the required feedforward filters from the matrix equation; under ideal conditions the feedback paths cancel exactly and the feedforward filters are given by the matrix equation $\boldsymbol{C}^{-1} \boldsymbol{E}$. This is a familiar expression; it is the matrix form of the one dimensional situation consisting of a single detector and single speaker controlling the field at a single monitor position.

Consider such a single channel controller (figure 3). It can be realised simply by just a pair of electronic filters; a feedback path modelling the acoustic feedback and a feedforward filter of transfer function E / C.

Multiple Detectors, Multiple Secondary Sources

Figure 2 indicates that a multichannel controller can be readily realised by repeatedly using a number of the filter pairs used in the single channel control system. The implementation of a single channel controller therefore tests the basic unit of a multichannel system. However, it can be seen that the number of filter pairs needed is equal to the square of the number of channels (where each channel consists of a detector-speaker pair) thereby limiting the number of channels that can be implemented practically.

PRACTICAL IMPLEMENTATION OF A SINGLE CHANNEL CONTROL SYSTEM

This section contains a description of the experimental results obtained from an implementation of a single channel broadband control system partially attenuating the reverberant field inside an enclosure. The filter pair required was implemented as two 128 point FIR filters realised using a Texas instruments TMS32020 microprocessor housed in a Ferranti PC860XT personal computer. A method is needed whereby the coefficients for the (digital) control filters described above can be obtained. The practical method used in these experiments consisted of a series of acoustical measurements on the control system. The same hardware was used both to record the various frequency responses of the system from which the digital filters were derived and also to implement the controller. This ensured an easy means whereby the electronic filter compensated for its own imperfections and ensured that the sampling rates used for the various measurements and for the subsequent filter implementation were all the same.

A suitable test enclosure ($0.5 \times 0.6 \times 0.7 \mathrm{~m}$), practical apparatus and test conditions were configured to produce a situation in which a control system could be successful (figure 3). The first two modes of the enclosure had modal frequencies at about 240 and 290 Hz . Therefore the working range of the system was conditioned to be up to 350 Hz (determined by the cut off of the low pass filters at the entrance to and exit from the digital system). The sampling rate used was 1 kHz . Measurements were recorded by exciting the system with a swept frequency sine wave output from the digital system and capturing the response on the same digital system. The following measurements were recorded: a transient swept sine signal $\left(x_{2}\right)$ was used to excite the noise source loudspeaker and re-

ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL ENCLOSURE

sponses captured at the detector microphone monitor $\left(y_{10}\right)$ and the monitor microphone $\left(y_{30}\right)$; the signal y_{10} was used to excite the control speaker and the response captured at the monitor microphone (y_{32}); the transient swept sine signal was used to excite the control speaker and the response was captured at the detector microphone $\left(y_{12}\right)$.

The feedback filter was derived from a deconvolution of the signals x_{2} and y_{12}. The deconvolution was achieved with a least squared error FIR fit in the time domain. The feedforward filter was derived by deconvolving the signals y_{30} and y_{32}.

RESULTS

The results of the practical implementation of the control system operating in the enclosure are shown in figure 4. The noise source was driven with a pseudo-random signal from a Hewlett packard spectrum analyser. The signal from the monitor microphone was connected to the spectrum analyser to record the transfer function between the noise source signal and the signal at the monitor. The response with and without the control system in operation is shown. The control system was stable and attenuated the field to the same extent months after the system had been set up and the digital filters had been derived, demonstrating substantial stability over time.

CONCLUSIONS

A simple topology for the controllers for a multichannel control system has been presented. The method demonstrates how any multichannel controller can be realised by repeatedly using a number of the same type of filter pairs used in the single channel control system. A single channel broadband digital control system consisting of a single detector microphone and a single speaker attenuating the field at a single monitor position has been implemented. The active system successfully attenuated the first two modes of the reverberant field inside an enclosure.

ACKNOWLEDGMENTS

The work reported here was supported by an SERC CASE studentship in cooperation with Plessey Research (Caswell).

REFERENCES

[1] P A I elson et al. Quadratic optimisation problems in the active control of free and enclosed sound fields. Proc. IOA Vol. 7 Pt. 2 pp 45-54, 1985.
[2] A J Bullmore et al. Active control of harmonic enclosed sound fields of low modal density. Proc.IOA Vol. 7 Pt. 2 pp 55-54, 1985.
[3] S J Elliott The active minimisation of sound fields. Proc.Inter-Noise 1985 Vol. 1 pp583-586, 1985.

ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMALL ENCLOSURE

Figure 1. Two channel active noise control system

Figure 2. Two channel controller

ACTIVE CONTROL OF ACOUSTIC NOISE IN A SMAI.L ENCLOSURE

Figure 4. Amplitude spectra of the response at the monitor microphone with and without the control system operating.

REFERENCES

BRACEWELL $R \quad N$ The Fourier Transform and its applications. McGraw Hill.

BULLMORE $A J$, NELSON P A \& ELLIOTT $S ~ J ~ A c t i v e ~$ control of harmonic enclosed sound fields of low modal density: a computer simulation. Proceedings: Institute of Acoustics Vol.7:Part 2 (1985) pp. 55-64.

BULLMORE A J, ELLIOTT S J \& NELSON P A The Active Minimisation of periodic sound in enclosures: An experimental investigation. Proceedings: Inter-Noise 1985 Munich Vol. 1 pp.575-578.

CREMER L Principles and applications of room acoustics. Applied Science Publishers.

ELLIOTT S J \& NELSON P A The active minimisation of sound fields. Proceedings: Inter. Noise 1985 Munich Vol. 1 pp.583-586.

ELLIOTT S J, STOTHERS I M \& NELSON P A A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Transactions on ASSP Vol. 35 No. 10 Oct.87. pp.1423-1434

ERIKSON L J, ALLIE M C \& GREINER R A The selection and application of an IIR adaptive filter for use in active sound attenuation. IEEE Transactions on ASSP Vol. 35 No. 4 April 87. pp. $433-436$

FLOCKTON S J
Cancellation of acoustic noise in a pipe using digital adaptive filters. Proceedings ICASSP April 87 Dallas. pp.5.8.1-5.8.4

GURRIE T The application of system modelling to digital electronic systems for the active control of acoustic noise. Ph.D. Thesis, Royal Holloway and Bedford New College, 1987.

HOUGH S D, DAVIES P \& NELSON P A Digital modelling of room acoustic frequency response functions. Proceedings: Institute of Acoustics Vol.7:Part 21985 pp . 165-171.

HOWES R The acoustic properties of porous absorbers at elevated ambient pressures. Ph.D. Thesis, Chelsea College, 1983.

ILS IEEE Manual Signal technology incorporated.
KUNG CH \& SINGH R Experimental modal analysis technique for three-dimensional acoustic cavaties. Journal of Acoustical Society of America 77 (2), Feb. 85. pp.731-738

```
LOUGHBOROUGH SOUND IMAGES Ltd. TMS32020 Board User Manual Issue 2 March 1986.
MARPLE \(S\) L Efficient least squares finite impulse response system identification. IEEE transactions on ASSP Vol. 29, No. 1, Feb-81. pp.62-73
Nelson Industries Inc. "dx-30 Digital sound control system" Digisonics Unit, PO Box 600 Stoughton, Wisconsin USA
```

NELSON P A, CURTIS $A \quad R$ \& ELLIOTT $S J$ Quadratic optimisation problems in the active control of free and enclosed sound fields. Proceedings: Institute of Acoustics Vol. 7 part 2 (1985) pp. 45-54.

NELSON P A The active minimisation of harmonic enclosed sound fields, parts $1,2 \& 3$ Journal of Sound and Vibration (1987) 117(1) pp.1-58

NEWLAND D E An introduction to random vibrations and spectral analysis Longman 1984.

PIERCE Acoustics, an introduction to its physical principles and applications. McGraw-Hill 1981.

POOLE L A, WARNAKA $G E \&$ CUTTER $R \quad C$ The implementation of digital filters using a modified Widrow-Hoff algorithm for the adaptive cancellation of acoustic noise. IEEE Transactions on ASSP Vol. 32 No5 May 84

ROSS C An algorithm for designing a broadband active sound control system. Journal of Sound and Vibration (1982) 80(3) pp 373-380.

SILCOX R J \& ELLIOTT S J Applicability of superposition and source impedance models of active noise control systems. Proceedings: Inter.Noise Munich 1985 Vol.1 pp. 587-590

TEXAS INSTRUMENTS TMS32020 User guide

[^0]: It is important that the control system is stable; a system that would work well if it was stable, but is not, is of limited practical value. The understanding of how to

[^1]: What follows is a mathematical investigation of the requirements of the monitor positions.

[^2]: The spectrum at the monitor was calculated by adding the spectrun $Y \approx o$ to the product of the spectrum $Y_{s z}$ with

[^3]: It was shown in section 2.3 how the monitor positions need to be appropriately chosen 50 that they independently monitor the field and all the dominant modes are monitored. The two monitor positions used in practice were the same two positions used in the main experiment (the single monitor and observation position). The analysis in figure 2.3 .10 shows two monitor positions which give an indeterminate solution. A similar analysis in figure 4.4.10 shows that the determinant of the characteristic

