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Abstract

This thesis is mainly concerned with the following 

sort of question. Let A and C be Abelian groups with 

certain model-theoretic properties* What can be deduced 

about the model-theoretic properties of P(A,C) where F 

is some operation on the class of Abelian groups?

Since we never consider any other sort of group, 

we use the term group to mean Abelian group throughout. 

We give the following results :

in chapter 1, a characterisation of groups A such that

for any group A ’, A = A' if and only if

T(a ) = T(A’) and aA(A) = A*/T(A'):

in chapter 2 we shew that the above characterisation

also characterises groups A and C such that for any

groups A' and C', A = A ’ and C = C* implies

A C = A* %  C ’ :

in chapter 5 we shew that for any groups A, A ’, C, C*

A A* and C C  implies Tor(A,C) Tor(A',C'): 

in chapter 4 we obtain some results about groups without 

elements of infinite height:

in chapters 5 and 6 we extend our investigations to Horn 

and Ext,

Finally in the appendix, we shew how to extend 

most of these results to modules over Dedekind domains.



Acknowledgements

I take this opportunity to thank my supervisor Dr. W, A. 

Hodges for his patience and perseverance in times of trial 

and for his advice and inspiration in happier times.

Thanks are due also to the Science Research Council 

for their financial support during my post-graduate training.



4

Contants

Abstract page 2

Acknowledgements page 3

Chapter 0, Introduction page 5

Chapter 1, Pleasant Groups page 10

Chapter 2, Pleasant Groups and Tensor Products page 14

Chapter 3, Torsion Products page 20

Chapter 4, "Low" Groups page 24

Chapter 5t Some Remarkable Equivalences page 28

Chapter 6, An Interesting Duality page 32

Appendix, Some Generalizations page 38,

References page 43



Chapter 0 

Introduction

It has long been known that the elementary theory of 

a given Abelian group A can be determined by a set of 

algebraic invariants (see (7)). It has also been known 

for some time that the tensor product does not in general 

preserve elementary equivalence. It is therefore natural 

to seek an algebraic characterisation of those groups 

for which the tensor product does preserve elementary 

equivalence. This has been done successfully and as a 

bonus we get preservation of elementary embeddings. It 

is now natural to seek analagous results for Tor, Hom 

and Ext. We have complete results for Tor, and also for 

Hom(A,C) and Ext(A,C) where A is restricted to being a 

torsion group. We also consider infinitary properties of 

certain tosrion groups. For thbse again we have algebraic 

invariants as described in (1).

We use the notation of (3) together with the symbols 

= , , denoting repectively elementary equivalence,

-equivalence, is elementarily embeddable in and is 

-elementarily embeddable in.

Many of the results we need are found in (3); any page 

numbers given without any further qualification refer 

to (3).

Since we never consider any other sort of group, we use 

the term group to mean Abelian group throughout.
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Following (2) we define the S-invariants of A (S for

Szmielew) as follows:

for each prime p and natural numborn:

U(p,n;A) = dim (p^A[p3/p^'*’̂ A[p] ) if this is finite 

= ÜL othervrise 

Tf(p;A) = I m  dim (p^A/p^^^A) if this is finite 

= c.' otherwise 

D(p;A) = lim dim (p^A[p] ) if this is finite 

= ̂  otherwise 

Exp(a ) = 0 if a  is of bounded order

= «« otherwise.

We refer to (2) for proofs that for any groups A and A*,

(i) A = A' if and only if A and A* have the same 

8-invariants.

(ii) A ̂  A ’ if and only if A = A ’ and A can be 

embedded in A' as a pure subgroup.

Definition

Let A be any group and let p be any prime. We say that 

A is of unbounded p-length if for infinitely many n, 

U(p,n;A) / 0; otherwise we say A is of bounded n-length» 

If A is of bounded p-length, we say that A is of n-length 

Jj,, if k is the smallest natural number such that U(p,l;A) 

equals zero for all 1 % k.



Lemma 0.1

If A is of unbounded p-length, then Tf(p;A) = D(p;A) 

= Exp (a ) .

Proof

This proof is essentially to be found in (2).

The following sequence - where f is multiplication by 

p - is exact;

0 —» p̂ ACp/p̂ '̂ ÂCpl—  ̂p^A/p '̂*'̂A p̂ "*"̂ A/p '̂*'̂A —» 0.

Hence dim (p ”a/p *̂̂ Â) = dim + U(p,n;A)

r.y induction, for all m > n we have

dim (p^A/p ^‘̂'’a ) ^ -f-U(p,j;A)j-n
Since A is of unbounded p-length, dim (p^A/p^^^A) = 

for all n. Hence Tf(p;A) = .

A similar argument yields D(p;A) =ao, where we consider 

the exact sequence :

0 — » p^^^ALpl — p̂̂ A[̂ p\—  ̂P̂ A[p/p̂ '*̂ Â̂ jp\-̂  0. 

Trivially Exp (a) = . □

In our arguments we often consider p-basic subgroups 

and we give their definition and some of thir properties 

here.

Definition

Let A be any group, a subgroup of A. B^ is called a 

p-basic subgroup of A if

(i) Bp is a direct sum of cyclic p-groups and copies of Z.

(ii) Bp is a p-pure subgroup of A.

(iii) A/Bp is p-divisible.



Lemma 0.2

Let A be any group, p any prime. Then A has a p-basic 

subgroup; all p-basic subgroups of A are isomorphic; if 

D is a divisible group, then A ̂  D has the same p-basic 

subgroups as A.

Proof

This is contained in (3) chapter VI. ^

Lemma 0.3

If Bp is a p-basic subgroup of A then for all n e 

P^Bp[pJ/p^'^Sp;-pl = p^A'pj/p^'^^Afp] and 

p^Bp/p^’̂^Bp = p^A/p "̂̂ Â. In particular,

U(p,n;Bp) = U(p,n;A) and Tf(p;Bp) = Tf(p;A).

Proof

This is a straightforward exercise; see pages 1ifé and 147«
d

Lemma 0.4

If Bp is a p-basic subgroup of A, then a p-basio subgroup 

of A/T(a ) is isomorphic to Bp/T(Bp).

Proof sketch

One shews firstthat B + T (a ) / T (a ) is a p-basicp p' ' p
subgroup of A/Tp(A), isomorphic to Bp/T(Bp) (where Tp(A) 

denotes the p-component of T(a );. One then shews that 

p-basic subgroups of A/Tp(A) and A/t (a ), which are 

necessarily torsion-free, must be isomorphic. This uses 

the p-divisibility of T(A)/Tp(A). £3



Lemma 0=5

If for each prime p a group is given, which is a 

direct sum of cyclic p-groups and copies of Z, then 

there is a reduced group A, such that fcr all p, B^ is 

isomorphic to a p-basic subgroup of A.

Proof

We construct A from B by putting T(A ) = T(B ) and by p P p p
replacing each copy of Z with a copy of Q^. Then A =

satisfies the conditions of the lemma. ^

We have one more preliminary lemma.

he.mia 0.6

If A^:i V I_. and [A^;ic are families of groups such 

that for all i, A^ = A^, then the following.are elementarily 

equivalent: <+A^,TiA^, 4A^, !lA%

Proof

It is easy to obtain the 8-invariants of AA^ e+o., from 

those 01 the » q
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Chapter 1 

Pleasant Groups 

Theorem 1.1

If A and A’ are any groups such that T(a ) S T(A') and 

A/T(a ) = A'/t (A’), then A = A ’.

Proof

We shew that given the S-invariants of T(a ) and A/t (a ) we 

can determine those of A. We only consider the case where 

A is not a torsion group.

It is clear that for any p and any n, U(p,n;A) = U(p,n;T(A)) 

and D(p ;A) = D(p ;T(a )). Also, as A is not torsion, Exp (A) 

=C0. It remains to determine Tf(p;A).

If T(a ) is of unbounded p-length, then so is A and Tf (p;A)

= ’̂.Otherwise we prove (*); if A is of bounded p-length, 

then Tf(p;A) = Tf (p:A/l(A)).

Say T(a) and hence A is of p-length k and let n 5̂- k.

Then p” (V T  (a ) (A/T (A) )

= p”a/p*’t(a) / p"^^A/p^*^T(A) ty page 122, theorem 

29.1 (a) and the purity-of T(a) in A.

= p ^A/p^ ( a ) / p^‘̂ ^Vp ^T(a ), since p"T(A), being a

torsion^roup with no p-component,is p-di visible.

= p^A/p/^A by the first isomorphism theorem. °

/
'

/
N  ,
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Theorem. 1.2

If A and A' are any groups such that A = A*, then 

T(A) 5 T(A'),

Proof

V/o shew that given the S-invariants of A we can determine 

those of T(a ). Clearly for any p and any n,

U(p,n;T(A)) = U(p,n;A) and D(p ;T(a )) = D(p;A), If A and 

hence T(a ) is of unbounded p-length, then Tf(p;T(A)) = oo, 

Othervd-se T(a ) is of bounded p-length and by (*),

Ti(p;T(A)) = Tf (p ;T(a )/t (a )) = 0.

F.inally, if for any p, A and hence T(a ) ic of unbounded 

p-length, then Z2zp(T(A)) = if for infinitely many p, A 

has p-length greater than zero, then T(a ) is not bounded 

and Ex p (T(a )) = ; otherwise Exp(T(A)) = 0. q

Definition

We say a group A is lûcasant if for all groups A*, A = A' 

if and only if T(a ) = T(ii* ) and Vt(A) = A ’/t(A‘).

By theorems 1.1 and 1.2 it is clear that a group A is 

pleasant if and only if for all groups A' such that A = A' 

we have A/t (a ) = A ’/ e(A’ )»

Theorem 1.3

Let A be a group satisfying:

(i) for all p A is of bounded p-length;

(ii) either T(a ) is bounded or for some p Tf(p;A) / 0; 

then A is pleasant.
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Proof

If A is torsion and A ’ = A, then by condition (ii) A'

must be torsion as Exp(A) = 0, So we assume that A is not

torsion and we determine the S-invariants of A/t (a ) from 

those of A.

Since A/T(a ) is a non-zero torsion-free group, we have 

for any p and any n U(p,n;A/T(A)) = D(p ;A/t (a )) a 0 and 

'iîxp(a/T(a )) = o^.Also by condition (i) we can apply (*) 

to obtain for any p, Tf(p;A/T(A)) = Tf(p;A). Q

Theorem 1,4

Lot A be a group, failing to satisfy either condition (i) 

or condition (ii) of theorem 1.3» Then A is not pleasant. 

Proof

Suppose A does not satisfy condition (i) and that for 

some prime q, A is of unbounded q-length; suppose further 

that A^ is the maximal divisible subgroup of A.

For each prime p, pick a p-basic subgroup of A, say.

For each prime p, we define the group B^ as follows: for 

all p / q, B' = B ; B' = T(B ) if B is not torsion;p p q q q 
otherwise B' = Z ^  B . lemma 0.3 there is a reducedq q
group A* with p-basic subgroups isomoiphic to B%

It is not difficult to shew that A' $  A^ = A. For example, 

for any p and any n, U(p,n;A'<^ A^) = U(p,n;B^) = U(p,n;Bp) 

= U(p,n;A). Also Tf (q;A* © A^) = oo = Tf (q;A).

However, Tf(q;A/T(A)) / 0 if B^ is not torsion,when 

B^ is torsion sc +hat Tf(q;A' ©  A^/T(A’ ©  A^)) = 0 and a
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similar argument covers the case where is torsion, so 

that A ’ 0  A ^ T  (A* ©  A^ ) / A/T{a ),

It now suffices to consider the case whore A satisfies 

condition (i), but does not satisfy condition (ii). i.e. 

for all p Tf(p;A) = 0 and T(A) is not bounded.

We shew that if A is torsion, thën A = A #  Q and if A is 

not torsion, then A = T(a ).

For any p and any n

U(p,n;A) = U(p,n;T(A)) = U(p,n;A 0  Q),

D(p ;A) = D(p ;T(a )) = D(p;A 0  Q),

Tf(p;A G  Q) = Tf(p;A) = 0, since Q is p-divisible, 

Tf(p;T(A)) = 0 = Tf(p;A) by the proof of theorem 1.2,

Exp (a ) = Ex p (t (a )) = Exp(A0 Q), since T(a ) is not 

bounded. ü
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Chapter 2

Pleasant Groups and. Tensor Products 

In this chapter wo show that the pleasant groups are 

precisely those for which the tensor product preserves 

elementary equivalence. We refer to (3) extensively to 

obtain facts about tensor products.

Lemma 2.1

If A and A* are torsion-free groups and for each prime p, 

is a p-basic subgroup of A and B^ a p-basic subgroup of 

A) then A = A* if and only if for all p B^ = B %

Proof

For any torsion-free group, any p and any n,

U(p,n;&) = d(p;G) = 0, Exp(G) = where G denotes the

group.

If for all p B = B’, then for all p,P P
Tf(p;A) = Tf(p;B ) = Tf(pjBM = Tf(p;A')

If A = A ’, then for all p the above equality holds. As B^ 

is a direct sum of copies of Z, it is clear that for all 

primes q, Tf(q;B^) = Tf(p;B^) depends only on the number 

of copies Z and not on q. Thus the lemma is proved. 

Lemma 2.2

If A and C are torsion-free groups with p-basic subgroups 

Bp and respectively, then A vĵ C is torsion-free and a 

p-basic subgroup of A 0 C  is isomorphic to B̂ Ŝ)

Proof

Page 262 corollary 6I.4.
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Lemma 2.?

If A and C are torsion-free groups, then for all A ‘, C*,

A = A* and C = C’ =^A(g)C = A * 0 C ’.

Proof

Immediate from lemmas 2.1 and 2.2. D

Lemma 2.4

Lot n be any cardinal number and C any group, then

C ^ e  c.
Proof

Pago 255, (a) and (l). q

Lemma 2.3

Let A and C be p-groups, such that for all n U(p,n;A) = a^ 

and U(p,n;C) = c^.
!.r-

Let f(n) = a c  + a . ̂ ^c + c , .a , where the conventions ̂ ' n n n n+1 r n n+1 r'
for 'O are that O.D) = 0 and if n / 0 then n.<v> =00.

Then (i) U(p,n;A ®C) = f (n) for all n t w.

(ii) D(pjA 0  C) = 0 if a  or C is bounded 

= CO otherwise.

Proof

(i) follows from two applications of theorem 6l.1 on page 

261 together with (h) on page 233, the comment that 

Z(p^)0Z(p®) = Z(p^), where t = min(r,s).

(ii) follows immediately from theorem 6l.3 On page 262.a
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Lemma 2.6

Let A and C be any groups; then

(i) A ( â C  / T(a 6?)c ) = V t ( A ) ® cA ( C )

(ii) T ( A ® C )  = (T(A)®T(C)) ®(T(A) ®C/T(C))

@(T(C) ®A/T(A)).

Proof

Page 263, theorem 6I.3, q

Theorem 2.7

If A and C are pleasant, A = A ’, C = C ,  then 

A 0 C  = A' ®  C.

Proof

Since A and C are pleasant, we can determine the 

S-invariants of A/t(a), T(a), C/t(C) and T(c). We shew 

that from these we can determine the S-invariants of 

A 0 C  / T( A 0 C )  and T(A @  C) and hence by theorem 1.1 

we obtain the S-invariants of A 0  C giving the required 

result.

By lemma 2.3 and lemma 2.6 (i) we obtain the 

S-invariants of A %> C / T(A<0C). We complete the proof 

by determining those of T(a) 0  T(C) and A/t(a)®)T(C) 

appealing to lemma 0.6. By lemma 2.5 and the fact that 

T(a) @T(C) = ^(Tp(A) ®Tp(c)), where T^( ) denotes the 

p-component of T( ), we have the S-invariants of 

T(a) ®T(c). From page 262 we have

A/T(a ) 0  C = ^(B*0Tp(C)) , where B* is a p-basic subgroup 

of A/T(A). Applying lemma 2.4 the result is easy to obtain.0
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Theorem 2.8

If A and C are pleasant, A -< A*, C<C', then 

A 0  C < A * 0  C‘.

Proof

Since elementary equivalence is preserved it suffices to 

note that purity is preserved on taking the tensor product 

(page 259, theorem 60.4). 0

Theorem 2.9

If A is not pleasant, then there are A* and C such that 

A S A * ,  hut A ®  C / A * ®  G.

Proof

Suppose A is of unbounded q-length; let A* = A' #  A^ as 

constructed in the proof of theorem 1.4* Then one of 

A 0)Z((f ), A* S  Z((f') is zero and the other is not.

Suppose A is of bounded p-length for all primes p, but 

that condition (ii) of theorem 1,3 fails. Then if A is 

torsion A = A 0  Q; A 0  Q = 0, but (A ©  Q) 0  Q / 0.

If A is not torsion, then A = T(a ); A ®  Q / 0, but

t (a ) ®  Q = 0. . a

It is not the case that when A and C are pleasant 

that A 0  C is necessarily pleasant. In fact we have :

Lemma 2.10

If A^, ... ,A^ are pleasant and A^0 ... @A^ is not, then

(i) for all p A.® ... ®A^ is of bounded p-length.

(ii) A^® ... 05Â  ̂is not a torsion group.
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Proof

(tffhe p-length of 0) ,,. 0)/!̂  is the minimum of the 

p-lengths of A ^  ... ,Â .

Ui)Lf any of A^, ... ,A^ is a torsion group it is easy to 

sec that A^0 ... must be pleasant. Hence A_̂ /t (A^),

••• all non-zero torsion-free groups. Ey an

obvious extension of lemma 2.6 (i) we see that

^  ... 0IA^ / T (Â  0  ... ®A^) is nonzero, Q

Theorem 2,11

If A., ... ,A are pleasant and A. = A ’, , A = A*,• ^ T I Z%
then Â  0  ... ®  A^ = Â  0  ... 0 A \

Proof

By induction: the theorem is true for n=2, by theorem 2.7 

Suppose the theorem is true for n=k. We shew that the 

S-invariants of Â  0  ... are determined ty those

of A^0 ... and . If A ^ ®  ... @A^ is pleasant

there is nothing to do. Suppose A^... 0 - ^  is not pleasant, 

By (i) of lemma 2.10, A^ ®  ... is of bounded p-length

for all p and this makes it straightforward to determine 

Tf(p;A^0 ... and D(p ;A^0 ...

If A^^^ is a bounded group, then Exp(A^0 ... 0A^^^ ) = 0 

OthervTise Exp (A^0 ... ) = ‘•'S

for by pleasantness Â _̂̂  is not torsion and neither is 

A^ 0  ... by (ii) of lemma 2.10. ^
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Theorem 2.12

If A^, ... ,A^ are pleasant and Â  A*, ... ,A^< A^,

then A.0 ... ® A  < A* 0  ... 0 A *1 n n n
Proof

As proof of theorem 2.8. q
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Chapter 3

ElGmo n t ary and Infinitary Properties of Torsion Products 

Wo begin with three lemmas that shew that in order to 

consider torsion products, we need only consider torsion 

groups.

Lemma 3.1

If A is any group, then for w  we have

if A A', then T(A) T(A').

Proof

For K: u) , this is theorem 1.2.

For , T(a ) is a definable subset of A. G

Lemma 3.2

If A and G are any groups, then

Tor(A,G) = Tor(T(A),T(G)) = 3^Tor(Tp(A),Tp(G))

Proof

Page 265, (b ) and (f ). Q

Lemma 3-» 3

For VJ-Ç if for all torsion groups A and C

A =kwA' and C C  => Tor(A,C) Tor(A',C’). 

then for arbitrary groups A and C

A and C C  #»Tor(A,C) Tor(A',C ).

Proof

Immediate. O

Since v/e are only considering torsion groups, we can 

use the methods of (l) for infinitary languages.
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Lemma 5»4

Let A, A ’ be torsion groups and w  ̂  ̂  ̂  oo, then A =ku; A’ 

if and only if for all p, A^ A^, where A^ (resp. AV ) 

denotes the p-component of A (resp. A*),

Proof

For k = u'-, this is obvious from what has gone before.

For K>u>, this is in (l) page 36 corollary 3,6. O

Lemma 3 «-3

Let A (resp. C) be a torsion group and A^ (resp.C^) its 

p-component. Then Tor(A^,C^) is isomorphic to the 

p-component of Tor(A,C).

Proof

By lemma 3*2, it suffices to is a

p-group ; c _ (a ) on page 26$. O

Lemma 3. 6

For ^ K ̂  , if for all p-groups A and C

AS^^A' and C C  ^  Tor(A,C) Tor(A',C ).

then for arbitrary groups A and C

A =^,oA' and C C  => Tor(A,C) Tor(A',C )

Proof

Immediate.

Definition

For any p—groun  ̂  ̂ -cor* each ordinal 0(,

f^(A) = dim(p^A[pj/p^^^ A[p 3) if this is finite 

- CVÔ '^thend-se.
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U  (A) = dim(p''A[p] ) if this is finite 

= %) otherwise.

1(a ) = the least ordinal such that for all 3 (3,

fcj(A) = 0.

Le m a  3*7

Let v' ̂  K c ; then

(i) if A, A ’ are p-groups such that A =^vjA', then for 

all K, f(ĵ (A) = f,,̂ (A') and r^(A) = i;̂ (A' ).

(ii) If A, A^ are p-groups, such that for all % <  x

fĉ (A) = (A* ) and if 1(a ) < j< implies W  = ^i (a )̂ '̂ *̂ ’

then A =_ ,A’.Kw

Proof

^ ^ V s ^ n   ̂ V t ^  v»/%r» K ^ 1*3

^hen (i) is in (1 ) page 39 lemma 2.2 and (ii) is in (1 ) 

page 42 theorem 3*1. Q

Lemma 3^8

If A and C are p-groups, then r^Tor(A,C) = r^(A).i^(c) 

f«(Tor(A,C)) = f«(A).f^(C) + f^(A),r ^/C) + f_^(C).r^^/A)

Proof

Page 273 theorem 64.4, (2) and (1).

Lemma 3.9

For u)% and for all p-groups A and C we have

A =^^A' and C C  Tor(A,C) =^^^Tor(A^o').

Proof

This 0traigh-ferward application of lemmas 3«7 and
a

3,8c

O
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Theorem 3.10

For W  :$ K ÿvü and for any groups A and C we have 

A and C =f;> Tor(A,C) =^jTor(A',C* )•

Proof

This is immediate from lemma 3.6. O

Theorem 3*11

For W  and for any groups A and C we have

A and C < ^ ^ C  Tor(A,C) <  Tor(A',C )•

Proof

For K = W  it suffices to note that purity is preserved 

on taking the torsion product (page 270 theorem 63*2).

For K > w  this is a result of Hodges (see (4) page 20). D
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Chapter 4 

"Lev;" Croups 

Definition

Wo say an element x of a group A is of infinite height, 

if for all positive integers n, there is an element y of 

A such that x = ny.

The elements of infinite height in A form a subgroup
1A of A called the first Ulm subgroup of A.

■1
The quotient group a/A = A^ is called the 0th Ulm 

factor of A.

We prove a lemma about the 0th Ulm factor which vzill 

be useful in the next chapter and we then prove some 

results about torsion groups without elements of infinite 

height,

Le-.ina 4v 1

Given any group a , a c-basic subgroup of A is isomorphic 

to a p-basic subgroup of A^?

Proof
1 1Let be a p-basic subgroup of A. Then B^ ©  A / A is

ithe required p-basic subgroup of Aq, for the sum B^ + A 

is clearly a direct sum since elements of B^ are of finite 

p-height (where p-height is defined analogously to height 

in the obvious manner) and elements of A are of infinite 

p-height. It is straightforward to check that 

B^ @  Â  / Â  is p-pure in A^ and that ^ / ̂  )

ais p-dlvisible.
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Lemma h.,2

If A is a reduced group, then A = Â , 

Proof

Aq is clearly reduced and it is easy to check that two

reduced groups with isomorphic p—basic subgroups for all 
p are elementarily equivalent. Q

Y/e now turn our attention to p-groups and it is clear

how our results extend to torsion groups. We generalize

a well-known result of Abelian group theory, which appears

as corollary 4.7.

Lemma 4,3

If A is a p-group, then A has no elements of infinite 

height if and only if 1(a )^ w  and r̂ .(A) = 0.

Proof

If A has no element of infinite height, then p“̂ A = 0,

whence 1 (a ) ^ w  and t^/a ) = 0.

If A has an element of infinite height, then p A / 0. If

= p'̂ A, then p“i is divisible and rj,k) / 0; if

p'"*^A / p %  then f J a ) / 0 and so 1(a ) > v). D

Lemma 4.4

If Aj A* are p—groups vfithout elements of infinite height

and A = A \  then A ̂  ̂ A'.

Proof

For all wf(^(A) = U(p,gi;A) = u(p,%;A') = fô (A')

For all ^ tJf^(A) = 0 = f̂ (A' )

and r^(^)(A) = 0 = ^
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Lemma 4*5

For every reduced p-group A there is a countable group B, 

which is a direct sum of cyclic groups, such that A = B. 

Proof

For all n e w i f  0(p,n;A) is finite, put k = U(p,n;A);

otherwise put Then let B = (î)̂ fe Z(p"'̂ '') ] Q
n

Theorem 4.6

A p-group A is a group T/ithout elements of infinite 

height if and only if it is reduced and L -equivalent to0̂1A> ^

a countable group which is a direct sum of cyclic groups. 

Proof

If A is L^^-equivaient to a direct sum of cyclic groups, 

then 1(a );^u j ; if in addition A is reduced, then r^(A) = 0.

If A has no element of infinite height, then clearly A is

reduced. ly lemma 4.5, there is a countable group B,

which is a direct sum of cyclic groups such that A = B. B

cloarly contains no element of infinite height and so by 

by lemma 4.4, A O

Corollary 4.7

If A is a countable p-group without elements of infinite 

height, then A is a direct sum of cyclic groups.

Proof

This is a well-known property of see e.g. (1 )• U



27

We close this chapter with a result about tensor products 

p-groups. It is clear how one can extend the result to 

torsion groups.

Lenuiia 4.8

If A, A', C and C  are p-groups and A = A', C = C’, 

then A C = A ’ ®  C.

Proof

This is immediate from lemma 2.5* O

Lemma 4*9

If A and C are p-groups, then A 0 C  is a direct sum of 

cyclic groups.

Proof

Page 262, theorem 61.3* ^

Theorem 4.10

If A, A*, C and C  are p-groups and A = A', C = C*, then

A C» C A ’ C*.

Proof

Immediate. ^
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Chapter 5

Some Reinarkahle Eguivaloro.nR

In this chapter and the next, we extend our discussion to 

the functors Horn and Ext. We consider onJ.y the case where 

A is a torsion group in Horn (A, C) and Ext(A,C), since 

there is sufficient knovrn in this case to give satisfactory 

results (see chapters VIII and IX of (3))

Lemma 3*1

Let A be a torsion group with p-components A^ and let C 

be an arbitrary group. Then

(i) Hom(A,C) ? r^Hom(Ap,C), where each Hom(A^,C) is a 

reduced p-adic group,

(ii) Ext(A,C) 5 [^Ext(Ap,C), where each Ext(A^,C) is a 

reduced p-adic group.

Proof

(i) is page 182 theorem 43.1 together with page I88 

exercise 5 (straightforward exercise).

(ii) is page 222 theorem 32.2 together with page 237 

lemiaa 33*3 and (l) page 223. Q

In what follows we will obtain results for p-groups 

and it will be clear, using lemma 0.6 and 3*1, Bow to

extend the results to torsion groups.

For the rest of the chapter we assume that A and C are

reduced p-groups, with U(p,n;A) = â , U(p,n;C) = for

each
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As in lemma 2.5 we define
rv% Vy.

f(n) = + VnllV
Vfe note that if A and Care of unbounded p-length, then

f(n) = 0 if a = 0  = 0n n
= 0 * othcrvhLse;

if A (resp. C) is of unbounded p-length and C (resp. A)

is of p-length k then,

f(n) = 0 if a^ = = 0 or n % k

= cf- otherwise.

Theorem 5.2

The invariants (f (n))^^ ̂ .determine A C up to elementary 

equivalence.

Proof

This is the substance of lemma 2.5« O

Theorem 3.3

The invariants (f(n)) determine Tor(A,C) up ton̂ : ■
elementary equivalence.

Proof

This is a straightforward consequence of the structure of 

Tor(A,C), using lemma 3*8. □

Theorem 5*4

The invariants (f (n))^^ ̂ determine Horn (A, C) up to 

elementary equivalence.
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Proof

Let B be a basic subgroup of A and D a basic subgroup of 

C. the definition of final rank on page 150, since B 

(resp. C) (resp. d) is reduced fin r(B) (resp. fin r(c)) 

(resp, fin r(D)) is zero if B (resp. C) (resp. D) is 

bounded and is infinite otherwise. We use theorem 46.4 on 

page 197, putting the symbol cy? in place of any infinite 

cardinal. Horn(A,C) is the pure-injective envelope of

where j=0 if A or C is bounded and is infinite otherwise. 

Since Horn(A,C) is the pure-injective envelope of * it is 

not difficult to see that it is an elementary extension 

of and in particular, that for all n <- w 

U(p,rijHom(A,C) ) = f(n).

If A and C are of unbounded p-length, then Horn(A, C) is of 

unbounded p-length and the invariants (f(n))^^ determine 

Horn(a ,G) up to elementary equivalence. If A or C is of 

bounded p-length, then * is bounded. A bounded group is 

its ovm pure-injective envelope, so Horn(A,C) is bounded 

and again the invariants f(n)^^ determine Hom(A,C) up to 

elementary equivalence.

Lemma 5*5

Let B be a basic subgroup of A and D a basic subgroup of 

C, then Ext(A,C) = Sxt(B,D) ©Ext(A/B,D)*
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Proof

By lermiias 4.2 and 5.1, Ext(A,C) = Ext(A,C)Q 

By page 244 theorem 57.2, Ext(A,C)o = Ext(B,D) e  I&t(a/B,D)q 

By lemmas 4.2 and 5.1, ]jbct(A/B,D)Q = Ext(A/B,D). ^

Theorem ‘7.6

The invariants ^  determine Ext(A, C) up to

elementary equivalence.

Proof

Let B he a basic subgroup of A and D a basic subgroup of C.

Then Ext(B,D) = Ext®^ 0
n m

n ra
= [2%t(Z(p*+1),Ŝ  ̂G)Z(p*+1))

n m
(by lemma 0.6)

= (% ©,Z (p“"' )/p"^% %Z )
n m m
(by page 222 (D))

n m n m
From here it is easy to see that

U(p,n;Ext(B,D)) = a^. S  = f(n).

By page 237 leoaa 55.1, D(p,n;Ext(A/B,P) = r(A/'B).o^ if

this is finite and is oo otherwise. This term can only be

non-zero if A is of unbounded p-length, in which case

f(n) =oy unless a = c = 0 or n is greater than the '' ' n n
p-length of C. Thus if f(n) / w,then c^ is necessarily 0. 

If f(n) =L0, then o?= TJ(p,n;Ext(B,D) ̂  U(p,n;Ext(A,C) = *2c.



If A and C are of unbounded p-length, then so is Ext(A,C)

and we have shevm that the invariants (f(n)) determinen e w
Ext(A,C) up to elementary equivalence.

If A or C is of bounded p-length (and hence bounded since 

we are considering reduced p-groups), then Ext(A,C) is 

bounded (by page 223 (#)) and again the invariants (f (n’̂^^^ 

determine Set(A,C) up to elementary equivalence. Q

We have shewn that for reduced p-groups A and C,

A 0 0  = Tor(A,C) = Horn (A, C) = Ext(A,C).
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Chapter 6

M  Interesting hnnli ty

j.n the previous chapter Y/e restricted our attention to 

reduced p-groups and v/e now wish to relax some of that 

restriction. M3 first of all give tvfo lemmas on 

homomorphism groups.

Lemma 6,1

IB A = 0^Z(p^), C = 0^Z(pr^) where m and n are any non-zero 

cardinals, then Horn(A,C) is a torsion-free p-adic group, 

where Tf (p;Iiom(A,C)) = mn if n and n are finite

= 05 otherwise.

Proof

This is exercise 8, page 203 Q

Lemma 6.2

If A is a p-group with U(p,n;Aj = a and 0

where k is finite or infinity, then U(p,n;Hoin(A,C)) = ka^

Proof

Let B be a basic subgroup of A. Then the pure-exactness of 

0 — > B — 7'-A —^  ̂0, together with the injectiveness

of G, gives a pure-exact sequence:

0 — > Hom(A/B,C) — > Horn (A, C) Hon(B,C) — f 0,

by page 187 proposition 44# 7 and page 136 proposition 44»5< 

Using theorem 29.1 page 122 a number of times we obtain 

U(p,n;Hom(A,cl^ U(p,n:Hom(B,C) 4 U(p,n;Hom(A/B,C)

= U(p,n;Hom(B,C))
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B is a direct sum of cyclic groups and from here it is 

straightforward to obtain the result. o
v/e now give a lemma which will be very useful in 

what follows: let A and C be p-adic groups with 

U(p,n;A) = a^, U(p,n;C) = c^. Then our definition of f(n) 

which we gave for p-groups is still valid.

Lormna 6.3

Suppose A and C are of unbounded p-length and s and. t are 

either nonnegative integers or infinity. Then for each n 

f(n) + sa^ + tc^ = f(n).

Suppose A (resp. C) is of unbounded p-length and C (resp.

a ) is of p-length k and s, t are as above. Then for n < k

f(n) + sa + tc = f(n). n n '
Proof

If a = c =0, then there is nothing to do; otherwise n n
ifi = f (n) f (n) + sa^ + tĉ  ̂= co. o

The theorems we prove now will be about p-groups. It will 

be clear how to extend the results to torsion groups. 

Theorem 6.4

Let A, A' be p-groups and C, C‘ arbitrary groups, such 

that A = A ’ and C = C*. Then (a) A ̂  C = A ’ 0)C’ and 

(b) Horn(A,C) = Hom(A’,C’), if one of the following holds:

(i) A is of unbounded p-length,

(ii) D(p ;A) = 0,

(iii) C is of bounded p-length.
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Proof

For (a) we jshew_that the B-invariaiits of A 0 C  are 

determined hy those of A and C. Since A ̂ )C is a p-group 

it suffices to obtain U(p,n;A(^C) for all ne^yJ and if 

A Q C  is of bounded p-lcngth to obtain D(p;A(2)C).

By page 2é1 theorem 6I.I, if D is a p-basic subgroup of C,

then A 0  C = A C^D.

Yfe assume A = A QÉ)Z(ÿ^), where A is reduced; r ' a, ^ rd
D = T ( D ) e $ Z .

^t
If A is of bounded p-length, then a^ = D(p ;A);

if C is of bounded p-length, then c^ = Tf(p;C),

Now U(p,n;A ® C )  = U(p,n;A^<g) T(D)) + U(p,n;A^@ @^Z)

= f(n) +

If A is of unbounded p-length U(p,n;A ® C )  = f(n) + a^TfCntC'' 

since for n less than the p-length of C, if â  ̂/ 0, then 

f (n) =o-). The U(p,n;A ®C), therefore, determine A<^ C 

up to elementary equivalence unless Tf(p;C) = 0, but then

D(p;A®C) = D ( p ; A Z ( f ) ® @ Z )  = 0.
^d ^t

Now suppose A is of bounded p-length and D(p;A) = 0. a 

similar argument as above U(p,n;A(^ C) = f(n) + a^Tf(p;C) 

and clearly D(p;A0C) = 0, if C has unbounded p-length.

If both A and C are of bounded p-length, it is easy to 

see how to obtain +Vip S-irvariants of A @  C.
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For (b) wG shew that tne S-invariants of Horn(A, C) are 

determined by those of A and C. Since Horn(A,C) is a 

reduced p-adic group, it suffices to obtain U(p,n;Hom(A,C)) 

for all n €. vJ and if Horn (A, C) is of bounded p-length, to 

obtain Tf(p; Horn(A, C)).

It is not difficult to see that we can assuiiie that C is a 

p-group and that in particular:

A = and C = 0 vdiere A^ and
d d

are reduced.

If A is of bounded p-length, then a^ = D(p;A);

if C is of bounded p-length, then c^ = D(p;C).

Now U(p,n;Hona(A,C) = U(p,n;Hom(A ,C ) + U(p,n;Hom(A,@ Z(if® ))r r c^
= f(n) + a^c^ (by lemma 6.2).

By lemiaa 6.1, if Hom(A,C) is of bounded p-length, then 

Tf(p;H0B(A,C)) = Tf(p;r:on(az(p’>),©Z(F“)) = a,o,.

/ji exactly analagous argument to that used in the proof 

of (a) gives the S-invariants of Hom(A,C). q

Theorem 6.5

Let A be a p-group of bounded p-length such that D(p ;A) / 0 

and let C be a group of unbounded p-length. Then we can

find a group C* such that C = C*, but A (§) C ^ A ®  C* and

Horn (a, C) ^ Hom(A,C*).

Proof

For convenience wo assume that C is p-adic. Let D be a

p-basic subgroup of C. Let D* = T(d ) 0 where c* /

and let C* = D* @  ©  *Z(p'̂ ), where c* / c .Cd a a
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Then C = C*, hut D(p;A ̂  C) = = D(p;A ® C*)

and Tf (p;IIom(A,C)) = a^c^ / a^c* = Tf(p;Hom(A,C*), 0

Lemma 6.6

(i) If A is a p-group and C is an arbitrary group, then 

Ext(A,c) = Ext(A,D), ?diere D is a p-basic subgroup of C.

(ii) If A is a p-group and C = then 

Ext(A,C) ^ Hom(A,(^Z(p*))

(iii) If C is a reduced p-group, then Ext(z(p^0,C) = C, 

Proof

(i) is lemma 4*2 together with page 246 exercise 1.

(ii) is page 224 theorem 52.3.

(iii) follows from page 237 lemma 55*1* ^ 

Theorem 6.7

Let A, A* be p-groups and C, C  arbitrary groups such 

that A = A ‘ and C = C». Then (a) Tor(A,C) = Tor(A',C') 

and (b) Ext(A,C) = Ext(A',C').

Proof

(a) clearly follows from the results of chapter 3#

For (b) we shew that the S-invariants of Ext(A,C) are 

determined by those of A and C. Since Ext(A,G) is a 

reduced p-adic group it suffices to obtain U(p,n;Ext(A,C)) 

for all n e w  and if Ext (A, G ) is of bounded p-length, to 

obtain Tf (p;Ext(A,C)).

Let D be a p-basic subgroup oP G and assume 

A = A Z(p̂ )̂ and D = T(d ) @ @ Z ,  where A is reduced.
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If A is of bomided p - l e n g t h , = D(p;A); 

if C is of bounded p - l e n g t h , = Tf(p;C).

U(p,n,*Ext(A,C)) = U(p,n;Ext(A^,T(D))) + U(p,n;Sxt (Â ,(0̂ Z) )

+ U (p, n ; Ext (^Z (D ) ) )

= f(n) +

It is easy to see, bearing in mind the properties of f(n)

that if either A or C is of unbounded p-length, then

U(p,n;:axt(A,C)) = f(n) + a^Tf (p;C) + c^D(p;A).

Ext(A,C) can only be of bounded p-length in this case if

either Tf(p;C) or D(p ;A) is zero, but then

Tf(p;Ext(A,C)) = Tf (p ; Ext ($^Z (p*' ) ,@^Z ) ) = a^c^ = 0.
d t

If both A and C are of bounded p-length, it is easy to 

see how to obtain the S-invariants of Ext(A,C), o
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Appendix

Some Generalizations

Whenever one investigates properties of Abelian groups, 

the question always arises : for modules over v;hat sort 

of rings do the properties still hold? We have essentially 

considered three different sorts of properties — —  

elementary properties of groups, infinitary properties 

of torsion groups and the way these two interrelate. We 

shew how to extend our results, with suitable modifications 

to modules over Dedekind rings. For the definition of a 

Dedekind ring and its simple properties, we refer to (2) 

page 161 and the references given there.

In (2) a set of invariants are defined which determine a 

modulo over a Dcdekind ring up to elementary equivalence. 

Let R be a Dedekind ring. Breaking with tradition, we let 

A rather than h denote a module over R. We define the 

S^-invariants as follov;s :

For each prime ideal P of R and each n 6 w , we let 

U(P,n;A) = d i m ( P ^ A A [ P ] ) if this is finite 

= 00 otherwise 

Tf (P;A) = 1 ^  dim(P̂ Â/P̂ '*'̂ A) if this is finite

= c/y otherwise 

D(P;A) = lim dim(P^A[P]) if this is finiten-̂ oo
= on otherwise.
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Now for each prime ideal P of R such that R/P is finite, 

we put U*(P,n;A) = U(P,n;A), Tf»(P;A) = Tf (P;A) and 

D*(P;A) = D(P;A).

For each prime ideal P of R such that R/P is infinite, 

we put:

U»(P,n;A) = 0, if U(P,n;A) = 0 

= othci^ase 

Tf'*(P;Aj = 0, if Tf (P;A) = 0 

= 00 otherwise 

D*(P;A) = 0, if D(P;A) = 0

= 00 othervd.se

Finally we define

Rx p (a ) = 0, if a  is of hounded order 

= CA otherwise.

It is proved in (2) that the Sp-invariants, U*(P,n;A), 

Tf*(P;A), D*(P;A) and Rzp(A) determine A up to elementary 

equivalence.

We assume a knowledge of what is meant by localization 

(see e.g. (h) page 36). It is noted in (2), that 

Tf*(P;A) = Tf*(P;Ap), with similar results for the other 

Sp-invariants, where Ap, the localization of A to P, is a 

module over the principal ideal domain (in fact, discrete 

valuation domain) Rp. Since Rp is a principal ideal 

domain, v/o can say, for example, Tf*(P;Ap) = Tf*(p;Ap) 

for some non-zero p & P.
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Also, given an Rp-modnle Ap, we can define a basic 

submodule Ep of Ap which has analogous properties to those 

of a p-basic subgroup of a p-adic group, (not quite the 

same since a p-basic subgroup contains copies of Z rather 

than copies of or , This follows from (6) page 51, 

lerru.ia 21, because Rp is a discrete valuation ring.

We now assert that all our results on elementary properties 

of groups go over to modules over Dedekind domains. Y/here 

P is a prime ideal of a Dedekind ring R such that R/P is 

finite, the proofs are similar to the Abelian group case. 

Where R/P is infinite the proofs are even simpler, by the 

definition of the Sp-invariants.

It is clear immediately that the results of chapters 

0 and 1 go over. For chapter 2, it suffices to note the 

following facts ;

(i) The tensor product of torsion-free modules over a 

Dedekind ring is torsion-free (see page 274, notes), and

(ii) A torsion module A over a Dedekind ring R is isomorphic 

to the direct sum (4̂ yAp, where the sum is taken over all 

prime ideals (see page 70, notes).

These two facts together with the preceding remarks serve 

to extend all our results on elementary properties of 

groups to modules over Dedekind rings.

We now turn our attention to infinitary properties of 

torsion groups. We note that it follows from the 'blanket 

assertion’ on page 36 of (6), that Ulaib theorem holds for
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couritably generated torsion modules over principal ideal 

domains. By our fact (ii) we can replace the words principal 

ideal domain by Dedekind ring. Sections 2 and 3 of (1) 

are a generalization of Uln's theorem and the only place 

where their proofs come unstuck in the case of Dedekind 

domains is the question of definability in the languages 

^KuJ Suppose the ring R that we are considering has 

cardinality X- Then the results of sections 2 and 3 of

(1) go over to torsion modules over R for the languages 

Mhere k >X.

V/e note too that for /X , T(a ) is a definable 

subset of a module A and ii A is a torsion module, then 

Ap is a definable subset of A, in the language 

Lemma 3.8 also works for modules over Dedekind rings as 

can be straightforwardly checked and so our results of 

chapter 3 for infinitary languages go over, with the 

modification that we only consider languages L ̂ ^with 

K >  >•

The results interrelating elementary and infinitary 

properties do not go over in general, since by the 

definition of the S^^-invariants the conditions on two 

modules to be elementarily equivalent are weaker than in 

the Abelian group case, while the conditions for 

infinitary equivalence are as strong; thus, for example 

one might have two modules without elements of infinite 

height that are elementarily equivalent, but not ^equivalent.
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The study of the elementary properties of Abelian groups 

suggests tho following two questions, one speoifio 

and one more general. The sjjecific question is how far do 

these results extend to modules over general rings; we 

iiavG seen they extend as far as Dedekind rings. The other 

question is iiore in the nature of a program. Find a class 

of algebraic structures whose elementary theories can be 

determined by algebraic invariants. By purely algebraic 

means find out about the elementary properties of this 

class of structures.

One would clearly like to know something about the 

infinitary properties of torsion-free groups, however 

torsion-free groups - even countable ones - have 

notoriously pathological properties. Here is a result of 

Hodges (see (4))-*

If A, A', C, C' are arbitrary groups such that 

A = A' and J =_ C, then A ®  C = , ’A ’®  C'.

It is an open question as to whether this can be improved 

in the obvious way.

One interesting fact brought out more by the extension 

to Dedekind rings than by the Abelian group case is how 

for sufficiently large ^(in the case of a countable ring, 

all uncountable ^), the languages. are in a sense 

similar and are very different from
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