MODEL THEORY OF ABELIAN GROUPS
by

STEPHEN COLIN JACKSON

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098226
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract

This thesis is mainly concerned with the following sort of question. Let A and C be Abelian groups with certain model-theoretic properties. What can be deduced about the model-theoretic properties of $F(A, C)$ where F is some operation on the class of Abelian groups?

Since we never consider any other sort of group, we use the term group to mean Abelian group throughout. We give the following results:
in chapter 1, a characterisation of groups A such that for any group $A^{\prime}, A \equiv A^{\prime}$ if and only if
$T(A) \equiv T\left(A^{\prime}\right)$ and $A / T(A) \equiv A^{\prime} / T\left(A^{\prime}\right):$
in chapter 2 we shew that the above characterisation also characterises groups A and C such that for any groups A^{\prime} and $C^{\prime}, A \equiv A^{\prime}$ and $C \equiv C^{\prime}$ implies
$A s C \equiv A^{\prime}$ 昷 $C^{\prime}:$
in chapter 3 we shew that for any groups $A, A^{\prime}, C, C^{\prime}$ $A \equiv_{x \nu} A^{\prime}$ and $C \equiv_{s \ldots} C^{\prime}$ implies $\operatorname{Tor}(A, C) \Xi_{k \omega} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right):$ in chapter 4 we obtain some results about groups without elements of infinite height:
in chapters 5 and 6 we extend our investigations to Hom and Ext.

Finally in the appendix, we shew how to extend most of these results to modules over Dedekind domains.

Acknowledgements
I take this opportunity to thank my supervisor Dr . W. A.

Hodges for his patience and perseverance in times of trial
and for his advice and inspiration in happier times.

Thanks are due also to the Science Research Council
for their financial support during my post-graduate training.

Contents

Abstract	page 2
Acknowledgements	page 3
Chapter 0, Introduction	page 5
Chapter 1, Pleasant Groups	page 10
Chapter 2, Pleasant Groups and Tensor Products	page 14
Chapter 3, Torsion Products	page 20
Chapter 4, "Low" Groups	page 24
Chapter 5, Some Remarkable Equivalences	page 28
Chapter 6, An Interesting Duality	page 32
Appendix, Some Generalizations	page 38,
References	page 43

Chapter 0

Introduction

It has long been known that the elementary theory of a given Abelian group A can be determined by a set of algebraic invariants (see (7)). It has also been known for some time that the tensor product does not in general preserve elementary equivalence. It is therefore natural to seek an algebraic characterisation of those groups for which the tensor product does preserve elementary equivalence. This has been done successfully and as a bonus we get preservation of elementary embeddings. It is now natural to seek analagous results for Tor, Hom and int. We have complete results for Tor, and also for $\operatorname{Hom}(A, C)$ and $\operatorname{Ext}(A, C)$ where A is restricted to being a torsion group. We also consider infinitary properties of certain tosrion groups. For those again we have algebraic invariants as described in (1).

We use the notation of (3) together with the symbols \equiv, $\equiv_{\text {rus }},\left\ulcorner\prec_{\text {noi }}\right.$, denoting repectively elementary equivalence, $L_{\alpha, \omega}$-equivalence, is elementarily embeddable in and is $L_{n m}$-elementarily embeddable in.

Many of the results we need are found in (3); any page numbers given without any further qualification refer to (3).

Since we never consider any other sort of group, we use the term group to mean Abelian group throughout.

Following (2) we define the S-invariants of A (S for Szmielew) as follows:
for each prime p and natural numbor n :

$$
\begin{aligned}
U(p, n ; A) & =\operatorname{dim}\left(p^{n} A[p] / p^{n+1} A[p]\right) \text { if this is finite } \\
& =\dot{\sim} \text { othervise } \\
\operatorname{Tf}(p ; A) & =\lim _{i n} \operatorname{din}\left(p^{n} A / p^{n+1} A\right) \text { if this is finite } \\
& =\cdots \text { otherwise } \\
D(p ; A) & =\lim _{n \rightarrow Y} \operatorname{dim}\left(p^{n} A[p]\right) \text { if this is finite } \\
& =\geqslant \text { otherwise } \\
\operatorname{Bxp}(A) \quad & =0 \text { if } A \text { is of bounded order } \\
& =w \text { otherwise. }
\end{aligned}
$$

We refer to (2) for proofs that for any groups A and A^{\prime},
(i) $A \equiv A^{\prime}$ if and only if A and A^{\prime} have the same S-invariants.
(ii) $A<A^{\prime}$ if and only if $A \doteq A^{\prime}$ and A can be embedded in A^{\prime} as a pure subgroup. Definition

Let A be any group and let p be any prime. We say that
A is of unbounded $p=1$ ength if for infinitely many n, $U(p, n ; A) \neq 0$; otherwise we say A is of bounded p-length. If A is of bounded p-length, we say that A is of $p-l e n g$ th k, if k is the smallest natural number such that $U(p, 1 ; A)$ equals zero for all $1 \geqslant \mathrm{k}$.

Lemma 0.1
If A is of unbounded p-length, then $\operatorname{Tf}(p ; A)=D(p ; A)$
$=\operatorname{Exp}(A)=\infty$.

Proof

This proof is essentially to be found in (2).
The following sequence - where f is multiplication by p - is exact:

$$
0 \rightarrow p^{n} A\left[p^{2} / p^{n+1} A[p] \rightarrow p^{n} A / p^{n+1} A \xrightarrow{P} p^{n+1} A / p^{n+2} A \rightarrow 0\right.
$$

Hence $\operatorname{dim}\left(p^{n} / p^{n+1} A\right)=\operatorname{dim}\left(p^{n+1} A / p^{n+2} A\right)+U(p, n ; A)$
fy induction, for all $m=n$ we have

$$
\operatorname{dim}\left(p^{n} A / p^{n+1} A\right) \geqslant \sum_{j=n}^{m} U(p, j ; A)
$$

Since A is of unbounded p-length, $\operatorname{dim}\left(p^{n} A / p^{n+1} A\right)=w$. for all n. Hence $\operatorname{Tf}(p ; A)=\approx$.

A similar argument yields $D(p ; A)=\infty$, where we consider the exact sequence:

$$
0 \rightarrow p^{n+1} A[p] \rightarrow p^{n} \Lambda[p] \rightarrow p^{n} A\left[p / p^{n+1} A[p] \rightarrow 0\right.
$$

Trivially $\operatorname{Exp}(A)=\infty$.

In our argunents we of ten consider p-basic subgroups and we give their definition and some of thir properties here.

Definition

Let A be any group, B_{p} a subgroup of $\Lambda . B_{p}$ is called a p-basic subgroup of A if
(i) B_{p} is a direct sum of cyclic p-groups and copies of Z.
(ii) B_{p} is a p-pure subgroup of A.
(iii) A / B_{p} is p-divisible.

Lemna 0.2

Let A be any group, p any prime. Then A has a p-basic subgroup; all p-basic subgroups of A are isomorphic; if D is a divisible group, then $A \oplus D$ has the same p-basic subgroups as .

Proof
This is contained in (3) chapter VI.

Lemaa 0.3

If B_{p} is a p-basic subgroup of A then for all $n \in \omega$
$p^{n} B_{p}[p] / p^{n+1} B_{p}\{p] \cong p^{n} A[p] / p^{n+1} A\{p]$ and
$p^{n} B_{p} / p^{n+1} B_{p} \cong p^{n} A / p^{n+1} \Lambda$. In particular,
$U\left(p, n ; B_{p}\right)=U(p, n ; A)$ and $T f\left(p ; B_{p}\right)=T f(p ; A)$.
Proof
This is a straightforward exercise; see pages 146 and 147. Lemma 0.4

If B_{p} is a p-basic subgroup of A, then a p-basic subgroup of $A / T(A)$ is isomorphic to $B_{p} / T\left(B_{p}\right)$.

Proof sketch

One shews firstthat $B_{p}+T_{p}(A) / T_{p}(A)$ is a p-basic
subgroup of $A / T_{p}(A)$, isomorphic to $B_{p} / T\left(B_{p}\right)$ (where $T_{p}(A)$ denotes the p-component of $T(A) ;$. One then shews that p-basic subgroups of $A / T_{p}(A)$ and $A / T(A)$, which are necessarily torsion-free, must be isomorphic. This uses the p-divisibility of $T(A) / T_{p}(A)$.

Lerma 0.5

If for each prime p a group B_{p} is given, which is a direct sum of cyclic p-groups and copies of Z, then
there is a roduced group A, such that fer all p, B_{p} is isomorphic to a p-basic subgroup of A.

Proof

We construct A_{p} from B_{p} by putting $T\left(A_{p}\right)=T\left(B_{p}\right)$ and by replacing each copy of Z with a copy of Q_{p}. Then $A=\Psi A_{p}$ satisfies the conditions of the lemma.

We have one more preliminary lemma.

IE, 0.6

Ii $A_{i}: i$ e $I_{\text {, }}\left\{\Lambda_{i}: 1 \subset I\right\}$ are families of groups such that for all $i, A_{i} \equiv A_{i}^{\prime}$, then the following are elementarily equivalent: $\psi_{i}, \Gamma \Lambda_{i}, 4 A_{i}, \Gamma_{i}$.

Proof
 those of the $\therefore{ }_{i}$ 。

Chapter 1

Pleasant Groups

Theorem 1.1

If Λ and A^{\prime} are any groups such that $T(A) \equiv T\left(A^{\prime}\right)$ and
$\Lambda / T(A) \equiv A^{\prime} / T\left(A^{\prime}\right)$, then $A \equiv A^{\prime}$.

Proof

We shew that given the S-invariants of $T(A)$ and $A / T(A)$ we can determine those of A. We only consider the case where A is not a torsion group.

It is clear that for any p and any $n, U(p, n ; A)=U(p, n ; T(A))$ and $D(p ; A)=D(p ; T(A))$. Λ liso, as A is not torsion, $\operatorname{Exp}(A)$
$=\infty$. It remains to determine $\operatorname{Tf}(p ; A)$.

If $T(A)$ is of unbounded $p-l e n g t h$, then so is A and $\operatorname{Tf}(p ; A)$
$=\infty .0$ thermise we prove (*); if A is of bounded p-length,
then $\operatorname{Tf}(p ; A)=\operatorname{Tf}(p ; \Lambda / T(A))$.

Say $T(A)$ and hence Λ is of p-length k and let $n \geqslant k$.
Then $p^{n}(A / T(A)) / p^{n+1}(N / T(A))$

$$
\cong p^{n} A / p^{n} T(A) / p^{n+1} A / p^{n+1} T(A) \text { by page } 122 \text {, theorem }
$$

29.1 (a) and the purity of $T(A)$ in A. $\cong p^{n} A / p^{n} T(A) / p^{n+1} A / p^{-n} T(A)$, since $p^{n} T(A)$, being a torsion group with no p-component, is p-divisible. $\cong p^{n} A / p^{n+1} A$ by the first isomorphism theorem.

Theorem i. 2

If A and A^{\prime} are any groups such that $A \equiv A^{\prime}$, then
$T(\hat{\Lambda}) \equiv \mathbb{T}\left(\hat{A}^{\prime}\right)$.
Proor
We shew that given the S -invariants of A we can determine those of $T(A)$. Clearly for any p and any n,
$U(p, n ; T(A))=U(p, n ; A)$ and $D(p ; T(A))=D(p ; A)$. If A and hence $T(A)$ is of unbounded p-length, then $T f(p ; T(A))=\infty$. Othervise $T(A)$ is of bounded p-length and by (*),
$T_{i}(P ; T(A))=T f(P ; T(A) / T(A))=0$.
irinally, if for any p, Λ and hence $T(f)$ is of unbounded
p-length, then $\operatorname{sep}(T(A))=\sim$ if for infinitoly many,A has p-length greater than zero, then $T(A)$ is not bounded
and $\operatorname{Exp}(T(A))=\alpha_{2}$;otherwise $\operatorname{Exp}(T(A))=0$.
nefimition
We say a grouy is is wasct if for all groups $A^{\prime}, A \equiv A^{\prime}$
in and only if $T(A) \doteq T\left(A^{1}\right)$ and $A T(A) \equiv A^{\prime} / T\left(A^{\prime}\right)$.
By theoress 1.1 and 1.2 立t is clear that a group A is
pleasant if and oniy if for all groups A^{\prime} such that $A \equiv A^{\prime}$
we have $A / T(A) \equiv A^{\prime} / T\left(A^{\prime}\right)$:
Theorem 1.3
Let A be a group satisfying:
(i) for all pA is of bounded p -length;
(ii) either $T(A)$ is bounded or for some $p \operatorname{Tf}(p ; A) \neq 0$;
then A is pleasant.

Proof

If A is torsion and $A^{\prime} \equiv A$, then by condition (ii) A^{\prime} must be torsion as $\operatorname{Exp}(\Lambda)=0$. So we assume that A is not torsion and we determine the S-invariants of $A / T(A)$ from those of Λ.

Since $\Lambda / T(A)$ is a non-zero torsion-free group, we have for any p and any $n U(p, n ; A / T(A))=D(p ; A / T(A))=0$ ond $\operatorname{Nxp}(\Lambda / T(A))=\infty . A l$ so by condition (i) we can apply (*) to obtain for any $p, \operatorname{Tf}(p ; A / T(A))=\operatorname{Tf}(p ; A)$.

Theorem 1.4

Let A be a group, failing to satisfy either condition (i) or condition (ii) of theorem 1.3. Then A is not pleasant. Proof

Suppose A does not satisfy condition (i) and that for some prime q, A is of unbounded q-length; suppose further that Λ_{d} is the maximal divisible subgroup of Λ. For each prine p, pick a p-basic subgroup of A, B_{p} say. For each prime p, we define the group B_{p}^{\prime} as follows: for all $p \neq q, B_{p}^{\prime}=B_{p} ;{\underset{q}{ }}_{B_{q}^{\prime}}^{\prime}=T\left(B_{q}\right)$ if B_{q} is not torsion; otherwise $\mathrm{B}_{\mathrm{q}}^{\prime}=\mathrm{Z} \Phi \mathrm{B}_{\mathrm{q}}$. By lemma 0.5 there is a reduced group A^{\prime} with p-basic subgroups isomorphic to B_{p}^{\prime}. It is not lifficult to shew that $A^{\prime} \oplus A_{d} \equiv A$. For example, for any p and any $n, U\left(p, n ; A^{\prime} \oplus A_{d}\right)=U\left(p, n ; B_{p}^{\prime}\right)=U\left(p, n ; B_{p}\right)$
$=U(p, n ; A)$. Al so $T f\left(q ; A^{\prime} \oplus A_{\alpha}\right)=\infty=\operatorname{Tf}(q ; A)$.
However, $\operatorname{Tf}(q ; A / T(A)) \neq 0$ if B_{q} is now torsinn, when B_{q}^{\prime} is torsion $2 c$ thai $\min \left(q ; A^{\prime} \nsubseteq A_{d} / T\left(A^{\prime} \oplus A_{d}\right)\right)=0$ and a
similar argument covers the case where B_{q} is torsion, so that $A^{\prime} \oplus A_{\phi} / T\left(A^{\prime} \oplus A_{j}\right) \neq A / T(A)$.

It now suffices to consider the case where A satisfies condition (i), but does not satisfy condition (ii). i.e. for all $p \operatorname{Tf}(p ; A)=0$ and $T(A)$ is not bounded. We shew that if A is torsion, then $A \equiv A \oplus Q$ and if A is not torsion, then $\Lambda \equiv T(A)$.

For any p and any n
$U(p, n ; A)=U(p, n ; T(A))=U(p, n ; A \notin Q)$,
$D(p ; A)=D(p ; T(A))=D(p ; A \notin Q)$,
$\operatorname{Tf}(p ; A \in Q)=\operatorname{Tf}(p ; A)=0$, since Q is p-divisible,
$T f(p ; T(A))=0=T f(p ; A)$ by the proof of theorem 1.2.
$\operatorname{Exp}(A)=\operatorname{Exp}(T(A))=\operatorname{Exp}(A \oplus Q)$, since $T(A)$ is not
boundod.

Chapter 2

Pleasant Groups and Tensor Products

In this chapter we shew that the pleasant groups are precisely those for which the tensor product preserves elementary equivalence. We refer to (3) extensively to obtain facts about tensor products.

Lemma 2.1
If A and A^{\prime} are torsion-free groups and for each prime p, B_{p} is a p-basic subgroup of A and B_{p}^{\prime} a p-basic subgroup of A; then $A \equiv \Lambda^{\prime}$ if and only if for all $p B_{p} \equiv B_{p}^{\prime}$.

Proof

For any torsion-free group, any p and any n, $U(p, n ; G)=D(p ; G)=0, \operatorname{Bxp}(G)=\infty$, where G denotes the group. If for all $p B_{p} \equiv{\underset{p}{\prime}}_{\prime}$, then for all p,
$\operatorname{Tf}(p ; A)=\operatorname{Tf}\left(p ; B_{p}\right)=\operatorname{Tf}\left(p ; B_{p}^{\prime}\right)=\operatorname{Tf}\left(p ; A^{\prime}\right)$
If $A \equiv A^{\prime}$, then for all p the above equality holds. As B_{p} is a direct sum of copies of z, it is clear that for all primes $q, \operatorname{Tf}\left(q ; B_{p}\right)=\operatorname{Tf}\left(p ; B_{p}\right)$ depends only on the number of copies i Z and not on q . Thus the lemma is proved. Lemma 2.2

If A and C are torsion-free groups with p-basic subgroups B_{p} and D_{p} respectively, then $A Q C$ is torsion-free and a p-basic subgroup of $A \otimes C$ is isomorphic to $B_{p} \otimes D_{p}$.

Proof

Lemma 2.3

If Λ and C are torsion-free groups, then for all A^{\prime}, C^{\prime},
$A \equiv A^{\prime}$ and $C \equiv C^{\prime} \Rightarrow A \otimes C \equiv A^{\prime} \otimes C^{\prime}$.
Proof
Imnediate from lemmas 2.1 and 2.2.
Lemma 2.4
Let n be any cardinal number and C any group, then
$\oplus_{\mathrm{n}} \mathrm{Z} \otimes \mathrm{C} \cong \oplus_{\mathrm{n}} \mathrm{C}$.
Proof

Page 255, (G) and (I).
\square
Lemma 2.5
Let A and C be p-groups, such that for all $n U(p, n ; A)=a_{n}$ and $U(p, n ; C)=c_{n}$.
Let $f(n)=a_{n} c_{n}+a_{n} \cdot \sum_{n+1}^{\infty} c_{r}+c_{n} \cdot \sum_{n+1}^{\infty} a_{r}$, where the conventions
for ∞ are that $0.0=0$ and if $n \neq 0$ then nos $=\infty$.
Then (i) $U(p, n ; A(X) C)=f(n)$ for all $n \in W$.
(ii) $D(p ; A \otimes C)=0$ if A or C is bounded
$=\infty$ otherwise.

Proof
(i) follows from two applications of theorem 61.1 on page

261 together with (H) on page 255, the comment that
$Z\left(p^{r}\right) \otimes Z\left(p^{s}\right) \cong Z\left(p^{t}\right)$, where $t=\min (r, s)$.
(ii) follows immediately from theorem 61.3 On page 262.

Lemma 2.6

Let A and C be any groups; then
(i) $A \otimes C / T(A \otimes C) \cong A / T(A) \otimes C / T(C)$
(ii) $T(A \otimes C) \cong(T(A) \otimes T(C)) \otimes(T(A) \otimes C / T(C))$

$$
\Theta(T(C) \otimes A / T(A))
$$

Proof
Page 263, theorem 61.5.
Theorem 2.7
If A and C are pleasant, $A \equiv A^{\prime}, C \equiv C^{\prime}$, then
$A \otimes C \equiv A^{\prime} \otimes C^{\prime}$.

Proof

Since Λ and C are pleasant, we can determine the S-invariants of $A / T(\Lambda), T(A), C / T(C)$ and $T(C)$. We shew that from these we can determine the S-invariants of $A \otimes C / T(\Lambda \otimes C)$ and $T(A \otimes C)$ and hence by theorem 1.1 we obtain the S-invariants of $A \otimes C$ giving the required result.

By lemma 2.3 and lemma 2.6 (i) we obtain the S-invariants of $A \otimes C / T(A \otimes C)$. We complete the proof by determining those of $T(A) \otimes T(C)$ and $A / T(A) \otimes T(C)$ appealing to lemma 0.6. By lemma 2.5 and the fact that $T(A) \otimes T(C) \cong \oplus_{p}\left(T_{p}(A) \otimes T_{p}(C)\right)$, where $T_{p}()$ denotes the p-component of $T()$, we have the S-invariants of
$T(A) \circledast T(C)$. From page 262 we have
$\Lambda / T(A) \otimes C \cong \bigoplus_{p}\left(B_{p}^{*} \otimes T_{p}(C)\right)$, where B_{p}^{*} is a p-basic subgroup of $\Lambda / T(\Lambda)$. Applying lemma 2.4 the result is easy to obtain.a

Theorem 2.8

If A and C are pleasant, $\Lambda \prec A^{\prime}, C<C^{\prime}$, then
$A \otimes C<A^{\prime} \otimes C^{\prime}$.

Proof

Since elomentary equivalence is preserved it suffices to note that purity is preserved on taking the tensor product (page 259, theorem 60.4).

Theorem 2.9
If A is not pleasant, then there are A^{*} and C such that $A \equiv \Lambda^{*}$, but $\Lambda \otimes C \not \equiv \Lambda^{*}(\otimes) C$.

Proof

Suppose A is of unbounded q-length; let $A^{*}=A^{\prime} \oplus A_{d}$ as constructed in the proof of theorem 1.4. Then one of $A \otimes Z\left(q^{\infty}\right), A^{*} \otimes Z\left(q^{\infty}\right)$ is zero and the other is not. Suppose A is of bounded p-length for all primes p, but that condition (ii) of theorem 1.3 fails. Then if A is torsion $A \equiv A \oplus Q ; A \otimes Q=0, \quad$ but $(A \oplus Q) \otimes Q \neq 0$. If A is not torsion, then $A \equiv T(A) ; A \otimes Q \neq 0$, but $T(\Lambda) \otimes Q=0$.

It is not the case that when A and C are pleasant that $A \otimes C$ is necessarily pleasant. In fact we have:

Lerama 2.10
If A_{1}, \ldots, A_{n} are pleasant and $A_{1} \otimes \ldots \otimes A_{n}$ is not, then
(i) for all $p A_{1} \otimes \ldots \otimes A_{n}$ is of bounded p-length.
(ii) $A_{1}(\otimes) \ldots A_{n}$ is not a torsion group.

Proof

(The p-length of $A_{1} \otimes \ldots \otimes A_{n}$ is the minimum of the p-lengths of $\Lambda_{1}, \ldots, A_{n}$.
limf any of $\Lambda_{1}, \ldots, \Lambda_{n}$ is a torsion group it is easy to sec that $A_{1} \otimes \ldots \otimes A_{n}$ must be pleasant. Hence $A_{1} / T\left(A_{1}\right)$, ..., $A_{n} / T\left(A_{n}\right)$ are all non-zero torsion-free groups. By an obvious extension of lema 2.6 (i) we see that $\Lambda_{1} \otimes \ldots \otimes A_{n} / T\left(A_{1} \otimes \ldots \otimes A_{n}\right)$ is nonzero.

Theorern 2.11

If A_{1}, \ldots, A_{n} are pleasant and $A_{1} \equiv A_{1}^{\prime}, \ldots, A_{n} \equiv A_{n}^{\prime}$, then $A_{1} \otimes \ldots \otimes A_{n} \equiv A_{1}^{\prime} \otimes \ldots \otimes_{A_{n}^{\prime}}$.

Proof
By induction: the theorem is true for $n=2$, by theorem 2.7
Suppose the theorem is true for $n=k$. We shew that the S-invariants of $A_{1} \otimes \ldots \otimes A_{k+1}$ are determined by those of $A_{1} \otimes \ldots \otimes A_{k}$ and A_{k+1}. If $\Lambda_{1}\left(\otimes, \otimes_{k}\right.$ is pleasent there is nothing to do. Suppose $A_{q} \otimes \ldots \otimes A_{k}$ is not pleasant. By (i) of lemma 2.10, $A_{1} \otimes \ldots \otimes A_{k}$ is of bounded p-length for all p and this makes it strajghtforward to determine $\operatorname{Tf}\left(p ; A_{1} \otimes \ldots \otimes A_{k+1}\right)$ and $D\left(p ; A_{1} \otimes \ldots \otimes A_{k+1}\right)$.

If A_{k+1} is a bounded group, then $\operatorname{Exp}\left(A_{1} \otimes \ldots \otimes A_{k+1}\right)=0$ Otherwise $\operatorname{Exp}\left(A_{1} \otimes \ldots \otimes A_{k+1}\right)=(1)$,
for by pleasantness A_{k+1} is not torsion and neither is
$A_{1} \otimes \ldots \otimes A_{k}$ by (ii) of lema 2.10.

Theorein 2.12
If A_{1}, \ldots, A_{n} are pleasant and $A_{1}<A_{1}^{\prime}, \ldots, A_{n}<A_{n}^{\prime}$,
then $A_{1} \otimes \ldots \otimes A_{n}<A_{n}^{\prime} \otimes \ldots \otimes A_{n}^{\prime}$
Proof
As proof of theorem 2.8.

Chapter 3

Elementary and Infinitary Properties of Torsion Products

Wo begin with three lomas that shew that in order to
consider torsion products, we need only consider torsion
groups.

Lemma 3.1
If A is any group, then for $\omega \leqslant \kappa \leqslant \Delta$, we have
if $A \equiv_{\text {kw }} A^{\prime}$, then $T(A) \equiv_{\text {nw }} T\left(A^{\prime}\right)$.
Proof
For $x=u$, this is theorem 1.2.
For $k \geqslant \omega, T(A)$ is a definable subset of A.
Lemuna 3.2

If A and C are any groups, then
$\operatorname{Tor}(A, C) \cong \operatorname{Tor}(T(A), T(C)) \cong{\underset{p}{p}}^{T} \operatorname{Tor}\left(T_{p}(A), T_{p}(C)\right)$
Proof
Page 265, (B) and (F).

Leman 3. 3
For $u \leqslant k \leqslant \otimes$, if for all torsion groups A and C

$$
A \equiv_{k w} A^{\prime} \text { and } C \equiv_{k \omega} C^{\prime} \Rightarrow \operatorname{Tor}(A, C) \equiv_{k \omega} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right)
$$

then for arbitrary groups A and C

$$
A \equiv_{\kappa \omega} A^{\prime} \text { and } C \equiv_{k \omega} C^{\prime} \Rightarrow \operatorname{Tor}(A, C) \equiv_{\kappa \omega} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right) .
$$

Proof
Imnediate.

Since we are only considering torsion groups, we can
use the methods of (1) for infinitary languages.

Lemma 3.4
Let A, Λ^{\prime} be torsion groups and $\omega \leqslant \kappa \leqslant \infty$, then $A \equiv_{k \omega} A^{\prime}$
if and only if for all $p, A_{p} \equiv_{i s \omega} A_{p}^{\prime}$, where A_{p} (resp. A_{p}^{\prime})
denotes the p-component of A (resp. $\left.A^{\prime}\right)$.
Proof
For $k=u$, this is obvious from what has gone before.
For $\kappa>\omega$, this is in (1) page 36 corollary 3.6.
Lemma 3.5
Let A (resp. C) be a torsion group and A_{p} (resp. C_{p}) its p-component. Then $\operatorname{Tor}\left(A_{p}, C_{p}\right)$ is isomorphic to the p-component of $\operatorname{Tor}(A, C)$.

Proof
By lemma 3.2, it suffices to sham that mor' A_{p}, C_{p}) is a
p-grouf: +hic fatin-n frn... (A) on page 265.
Lemma 3.6
For $\omega \leqslant k \leqslant x$, if for all p-groups A and C

$$
\Lambda \equiv_{k \omega} A^{\prime} \text { and } C \equiv_{\kappa \omega} C^{\prime} \Rightarrow \operatorname{Tor}(A, C) \equiv_{k \omega} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right),
$$

then for arbitrary groups A and C

$$
A \equiv_{\kappa . \omega} A^{\prime} \text { and } C \equiv_{k \omega} C^{\prime} \Rightarrow \operatorname{Tor}(A, C) \equiv_{k \omega} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right)
$$

Proof
Immediate.
Definition
Por any p-groun 1 - Jofino for auch ordinal α,

$$
\begin{aligned}
f_{\alpha}(A) & =\operatorname{dim}\left(p^{\alpha} A[p] / p^{\alpha+1} A[p]\right) \text { if this is finite } \\
& =\infty \text { ntherwise. }
\end{aligned}
$$

$$
\begin{aligned}
r_{\mathrm{x}}(A)= & \operatorname{dim}\left(p^{\alpha} A[p]\right) \text { if this is finite } \\
= & \infty \text { otherwise. } \\
I(A)= & \text { the least ordinal } \beta \text {, such that for all } \alpha \geqslant \beta, \\
& f_{\mathrm{o}}(A)=0 .
\end{aligned}
$$

Lerma 3.?

Let \cdots s. : : $\begin{gathered}\text {; } \text { then }\end{gathered}$
(i) if $\Lambda, \Lambda^{\prime}$ are p-groups such that $A \equiv_{\text {kw }} \Lambda^{\prime}$, then for
all $x<K, f_{x}(A)=f_{\alpha \alpha}\left(\Lambda^{\prime}\right)$ and $r_{\alpha}(A)=r_{\alpha}\left(A^{\prime}\right)$.
(ii) If A, A^{\prime} are p-groups, such that for all $x<k$
$f_{Q}(A)=f_{A}\left(A^{\prime}\right)$ and if $I(A)<K$ implies $r_{I(A)}(A)=r_{I(A)}\left(A^{\prime}\right)$,
then $A \equiv_{K W^{\prime}} \hat{\Lambda}^{\prime}$.
Prco:-

then (i) is in (1) pago 39 lemma 2.2 and (ii) is in (1)
page 42 theoren 3.1.
Lerma 3.8
If Λ and C cors p-groups, then $r_{\alpha} \operatorname{Tor}(A, C)=r_{\alpha}(\Lambda) \cdot r_{\alpha}(C)$
$f_{\alpha}(\operatorname{Tor}(A, C))=f_{\alpha \alpha}(A) \cdot f_{\alpha}(C)+f_{\alpha}(A) \cdot r_{\alpha+1}(C)+f_{\alpha}(C) \cdot r_{\alpha+1}(A)$
Proof
Page 273 theorem 64.4, (2) and (1).
Lomma 3.9
For $\omega \leqslant k \leqslant \infty$ and for all p-groups A and C we have $A \equiv_{K \omega} A^{\prime}$ and $C \equiv_{\kappa \omega} C^{\prime} \Rightarrow \operatorname{Tor}(A, C) \equiv_{\kappa \omega} \operatorname{Tor}\left(A^{\prime}, \mathcal{U}^{\prime}\right)$.

Proof

This io n etraightinurvard noplication of Iemmas 3.7 and 3.8 .

Theorem 3.10

For $\omega \leqslant k \leqslant \omega$ and for any groups A and C we have
$A \equiv_{K \omega} A^{\prime}$ and $C \equiv_{K, 1} C^{\prime} \Rightarrow \operatorname{Tor}(A, C) \equiv_{\kappa \omega} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right)$.
Proof

This is inmediate fron lema 3.6.
\square

Theorem 3.11
For $\omega \leqslant k \leqslant \infty$ and for any groups A and C we have
$A \prec_{K w^{\prime}} A^{\prime}$ and $C<_{K W^{\prime}} C^{\prime} \Rightarrow \operatorname{Tor}(A, C)<_{k, J^{\prime}} \operatorname{Tor}\left(A^{\prime}, C^{\prime}\right)$.
Proof

For $k=w$ it suffices to note that purity is preserved on taking the torsion product (page 270 theorem 63.2).

For $k>w$ this is a result of Hodges (see (4) page 20).

Chapter 4
"Low" Groups

Dofinjtion

We say an elenerit x of a group A is of infinite height, if for all positive integers n, there is an element y of A such that $x=n y$.

The elements of infinite height in A form a subgroup A^{1} of A called the first Ulm subgroup of A.

The quotient group $A / A^{1}=A_{0}$ is called the Oth Ulm fiuctor of A.

We prove a lema about the Oth Ule factor whion will be useful in the next chapter and we then prove some results about torsion groups without slements of infinite height.

Lema 4.1

Given any orouf A, a p-Easic subgroup of A is isomorphic to a p-basic subgroip of ion

Proof

Let B_{p} be a p-basic subgroup of A. Then $B_{p} \oplus A^{1} / A^{1}$ is the required p-basic subgroup of A_{0}, for the sum $B_{p}+A^{1}$ is clearly a direct sum since elements of B_{p} are of finite p-height (where p-height is defined analogously to height in the obvious manner) and elements of A^{1} are of infinite p-height. It is straightforward to check that $B_{p} \oplus \Lambda^{1} / A^{1}$ is p-pure in A_{0} and that $A_{0} /\left(B_{p}\right.$ 2 $\left.A^{1} / A^{1}\right)$ is p-divisible,

Lemna 4.2

If A is a reduced group, then $A \equiv A_{0}$.
Proof
Λ_{0} is clearly roduced and it is easy to check that two reduced groups with isomorphic p-basic subgroups for all p are elenentarily equivalent.

We now turn our attention to p-groups and it is clear how our results extend to torsion groups. We generalize a well-known result of Abelian group theory, which appears as corollary 4.7.

Lemnia 4.3

If A is a p-group, then Λ has no elements of infinite
height if and only if $l(A) \leqslant w$ and $r_{w}(A)=0$.
Proof
If A has no element of infinite height, then $p_{A}=0$,
whence $1(A) \leqslant w$ and $r_{w}(A)=0$.
If A has an elenent of infinite height, then $p^{w} A \neq 0$. If
$p^{\omega+1} A=p^{\omega} A$, then $p^{v} \wedge$ is divisible and $r_{u}(A) \neq 0$; if
$p^{w+1} A \neq p^{\omega} A$, then $f_{. w}(A) \neq 0$ and so $I(A)>\omega$.

Lemma 4.4

If A, A^{\prime} are p-groups without elements of infinite height and $A \equiv \Lambda^{\prime}$, then $A \equiv_{\infty} \omega^{\prime} A^{\prime}$.

Proof
For all $\alpha<\omega f_{\alpha}(A)=U(p, \alpha ; A)=U\left(p, x ; A^{\prime}\right)=f_{\alpha}\left(A^{\prime}\right)$
For all $\alpha \geqslant \omega f_{\alpha}(A)=0=f_{\alpha}\left(A^{\prime}\right)$
and $r_{1(A)}(A)=0=r_{1(A)}\left(A^{\prime}\right)$.

Lemma 4.5

For every reduced p-group A there is a countable group B, which is a direct sun of cyclic groups, such that $\Lambda \cong B$. Proof

For all $n \in w$ if $U(p, n ; A)$ is finite, put $k_{n}=U(p, n ; A)$; otherwise put $k_{n}=N_{0}$. Then let $B=ब_{n}\left[\int_{k_{n}} Z\left(p^{n+1}\right)\right] \quad$ I Theorem 4.6

A p-group A is a group without elements of infinite height if and only if it is reduced and $I_{\alpha, \omega}$-equivalent to a countable group which is a direct sum of cyclic groups. Proof

If A is $L_{0_{W}}$-equivalent to a direct sum of cyclic groups, then $I(A) \leqslant w$; if in addition A is reduced, then $r_{u}(A)=0$. If A has no elenent of infinite height, then clearly A is reduced. By lemaa 4.5, there is a countable group B, which is a direct sum of cyclic groups such that $A \equiv B$. B claarly contains no element of infinite height and so by by lerina 4.4, $A \bar{E}_{\infty}$ B.

Corollary 4.7

If A is a countable p-group without elements of infinite height, then \mathbb{A} is a direct sum of cyclic groups.

Proof
This is a well-known property of $I_{\infty, \infty}$; see e.g. (1). E

We close this chapter with a result about tensor products of p-groups. It is clear how one can extend the result to torsion groups.

Lemaia 4.8

If A, A^{\prime}, C and C^{\prime} are p-groups and $A \equiv A^{\prime}, C \equiv C^{\prime}$,
then $A\left(\bar{x} C \equiv A^{\prime}\left(\underline{X} C^{\prime}\right.\right.$.

Proof

This is inuediate from lema 2.5.

Lemna 4.9

If A and C are p-groups, then $A \otimes C$ is a direct sum of cyclic groups.

Proof

Page 262, theorem 61.3.

Theorem 4.10

If A, A^{\prime}, C and C^{\prime} are $p-g r o u p s$ and $A \equiv A^{\prime}, C \equiv C^{\prime}$, then
$A \otimes C \Xi_{\text {on }} A^{\prime} \otimes C^{\prime}$.

Proof

Inmediate.

Chapter 5

Some Remarkable Equivalences

In this chapter and the next, we extend our discussion to the functors Hom and Bxt. We consider only the case where A is a torsion group in $\operatorname{Hom}(A, C)$ and $\operatorname{Ext}(A, C)$, since there is sufficient known in this case to give satisfactory results (see chapters VIII and IX of (3))

Lemma 5.1

Let A be a torsion group with p-components A_{p} and let C be an arbitrary group. Then
(i) $\operatorname{Hom}(\Lambda, C) \geq \prod_{p} \operatorname{Hom}\left(A_{p}, C\right)$, where each $\operatorname{Hom}\left(A_{p}, C\right)$ is a reduced p-adic group.
(ii) $\operatorname{Ext}(A, C) \geqslant \Gamma_{p} \operatorname{Ext}\left(A_{p}, C\right)$, where each $\operatorname{Ext}\left(A_{p}, C\right)$ is a reduced p-adic group.

Proof
(i) is page 182 theorea 43.1 together with page 188 exercise 5 (straightforward exercise).
(ii) is page 222 theorem 52.2 together with page 237 leman 55.3 and (I) page 223.

In what follows we will obtain results for p-groups and it will be clear, using lema 0.6 and 5.1 , how to extend the results to torsion groups. For the rest of the chapter we assume that A and C are reduced p-groups, with $U(p, n ; A)=a_{n}, U(p, n ; C)=c_{n}$ for each n 。

As in lerama 2.5 ve define

$$
f(n)=a_{n} c_{n}+a_{n} \cdot \sum_{n+1}^{\infty} c_{r}+c_{n} \cdot \sum_{n+1}^{\infty} a_{r}
$$

We note that if A and Care of unbounded p-length, then $f(n)=0$ if $\varepsilon_{n}=c_{n}=0$ $=$ othervise;
if A (resp. C) is of unbounded p-length and C (resp. A)
is of p-length k then,
$f(n)=0$ if $a_{n}=c_{n}=0$ or $n \geqslant k$
$=*$ otherwise.

Theoren 5.2

The invariants $(f(n))_{n=\ldots}$ determine $A \subset$ up to elementary equivalence.

Proof

This is the substance of lema 2.5.

Theoren 5.3
The invariants $(P(n))_{n \div \ldots}$ dotermine $\operatorname{Tor}(A, C)$ up to
elementary equivalence.

Proof
This is a straightforward consequence of the structure of $\operatorname{Tor}(A, C)$, using lema 3.8.

Theoren 5.4
The invariants $(f(n))_{n E w}$, determine $\operatorname{Hon}(A, C)$ up to elementary equivalence.

Let E be a basic subgroup of A and D a basic subgroup of C. By the definition of final rank on page 150 , since B (resp. C) (resp. D) is reduced fin $r(B)$ (resp. fin $r(C)$) (resp. fin $\mathrm{r}(\mathrm{D})$) is zero if B (resp. C) (resp. D) is bounded and is infinite othcrwise. We use theorem 46.4 on page 197, putting the sywbol ω in place of any infirite cardinal. $\operatorname{Hom}(\Lambda, C)$ is the pure-injective envelope of $*=\left\{{ }_{n}\left[\Theta_{f}(n)^{Z\left(p^{n+1}\right)}\right] \in\left[\Theta_{j} J_{p}\right\}\right.$
where $j=0$ if A or C is bounded and is infinite otherwise. Since Hoin (A, C) is the pure-injective envelope of * it is not difficult to see that it is an elementary extension of * and in particular, that for all n e w
$U(p, n ; \operatorname{Hoin}(A, C))=f(n)$.
If A and C are of unbounded $p-1 e n g t h$, then Fow (A, C) is of unbounded p-length and the invariants $(f(n))_{n}$ determine $\operatorname{Hom}(A, C)$ up to elcmentary equivalence. If A or C is of bounded p-length, then * is bounded. A bounded group is its own pure-injective envelope, so $\operatorname{Hom}(A, C)$ is bounded and again the invariants $f(n)_{n \in,}$ determine $\operatorname{Hom}(A, C)$ up to elcuentary equivalence.

Lemma 5.5

Let B be ε basic subgroup of A and D a basic subgroup of C, then $\operatorname{Ext}(A, C) \equiv \operatorname{Ext}(B, D) \oplus \operatorname{Ext}(A / B, D)$.

Proof

By leruas 4.2 and 5.1, $\operatorname{Ext}(A, C) \equiv \operatorname{Ext}(A, C)_{0}$
By page 244 theorem 57.2, $\operatorname{Ext}(A, C)_{0} \cong \operatorname{Bxt}(B, D) \nsubseteq \operatorname{Ext}(A / B, D)_{0}$
By leumas 4.2 and 5.1, $\operatorname{Bxt}(A / B, D)_{0} \equiv \operatorname{Bxt}(A / B, D)$.

Theorem 5.6

The invariants $(f(n))_{n c w}$ deterimine $\operatorname{Bxt}(A, C)$ up to elementary equivalence.

Proof

Let B be a basic subgroup of Λ and D a basic subgroup of C.

$$
\begin{aligned}
\text { Then } \operatorname{Bxt}(B, D) & =\operatorname{Ext}\left(\Theta_{n} \Theta_{a_{n}} Z\left(p^{n+1}\right), \Theta_{m} \Theta_{C_{m}} Z\left(p^{m+1}\right)\right) \\
& \cong \Pi_{n} \Pi_{a_{n}}\left[\operatorname{Bxt}\left(Z\left(p^{n+1}\right), \Theta_{m} \oplus_{c_{m}} Z\left(p^{m+1}\right)\right)\right] \\
& \equiv \Theta_{n} \Theta_{a_{n}}\left[\operatorname{Ext}\left(Z\left(p^{n+1}\right), \Theta_{n} \Theta_{C_{m}} Z\left(p^{m+1}\right)\right)\right.
\end{aligned}
$$

(by lemna 0.6)
$\cong \Theta_{n} \Theta_{n}\left(\Theta_{n} \Theta_{C_{m}} Z\left(p^{m+1}\right) / p^{n+1} \Theta_{n} \oplus_{C_{n}} Z\left(p^{m+1}\right)\right.$
(by page 222 (D))

Frou here it is easy to see that
$U(p, n ; \operatorname{Bxt}(B, D))=a_{n} \cdot \sum_{n}^{\infty} c_{n}+c_{n} \cdot \sum_{n+1}^{\infty} a_{n}=f(n)$.
By page 237 lemia 55.1, $U\left(p, n ; \operatorname{Ext}(A / B, D)=r(A / B) \cdot c_{n}\right.$ if this is finite and is ∞ othervise. This terii can only be non-zero if A is of unbounded p-length, in which case $f(n)=\infty$ unless $a_{n}=c_{n}=0$ or n is greater than the p-length of c. Thus if $f(n) \neq \infty$, then c_{n} is necessarily 0 . If $f(n)=0$, then $\alpha=U(p, n ; \operatorname{Bxt}(B, D) \leqslant U(p, n ; \operatorname{Ext}(A, C)=\infty$.

If A and C are of unbounded $p-l e n g t h$, then so is $\operatorname{lx}(A, C)$ and we have shem that the invariants $(f(n))_{n \in w}$ determine $\operatorname{Ext}(A, C)$ up to elementary equivalence.

If A or C is of bounded p-length (and hence bounded since We are considering reduced p-groups), then $\operatorname{Ext}(A, C)$ is bounded (by page 223 (ii)) and again the invariants ($f(n)$ now deteraine $f=t(i, C)$ up to elementary equivalence. We have shewn that for reduced p-groups A and C, $\Lambda \otimes C \equiv \operatorname{Tor}(A, C) \equiv \operatorname{Hom}(A, C) \equiv \operatorname{Fxt}(A, C)$.

Chapter 6

An Intercsting Duality

In the previous chapter we restricted our attention to reduced p-Eroujs and we row wish to relax some of that restriciion. :'o first ce all give tro lemas on honomorphisn groups.

Lerma 6:1
If $A=\Theta_{m} Z\left(p^{\infty}\right), C=\Theta_{n} Z\left(p^{\infty}\right)$ where n and n are any non-zero cardinals, then Hoia (A, C) is a torsion-free p-adic group, Where $\operatorname{Tf}(p ; \operatorname{liom}(A, C))=m n$ if n and n are finite $=\infty$ othervise,

Proof

This is exercise 8, page 203
Lema 6.2
If A is a i Groue with $U(P, i i ; A)=a_{n}$ an $C=G_{k} Z\left(p^{+1}\right)$, where k is funite or infinity, then $U(p, n ; \operatorname{Hom}(A, C))=k a_{n}$ Proof

Let B be a basic subgroup of A. Then the pure-exactness of $0 \rightarrow B \rightarrow A \rightarrow N / B \rightarrow 0$, together with the injectiveness of c, gives a pure-exact sequence: $0 \rightarrow \operatorname{Hom}(\Lambda / B, C) \rightarrow \operatorname{Hom}(A, C) \rightarrow \operatorname{Hon}(B, C) \rightarrow 0$, by page 187 proposition 44.7 and page 136 proposition 44.5 .

Using theoren 29.1 page 122 a number of times we obtain

$$
U(p, n ; \operatorname{Hou}(A ; r))=U(p, n: \operatorname{Hom}(B, C)+U(p ; n ; \operatorname{Hom}(A / B, C)
$$

$$
=U(p, n ; \operatorname{Hom}(B, C))
$$

B is a direct sur of cyclic groups and from here it is straightforward to obtain the result.

We now give a lema which will be very useful in
what follows: let A and C be p-adic groups with
$U(p, n ; \Lambda)=a_{n}, U(p, n ; c)=c_{n}$. Then our definition of $f(n)$ which we gave for p-groups is still valid.

Loma 6.3
Suppose A and C are of unbounded $p-l e n g t i n$ and s and t are either nonnegative integers or infinity. Then for each n $f(n)+s a_{n}+t c_{n}=f(n)$.

Suppose A (resp. C) is of unbounded p-length and C (resp. A) is of p-length k and s, t are as above. Then for $n<k$ $f(n)+s a_{n}+t c_{n}=f(n)$.

Proof
If $a_{n}=c_{n}=0$, then there is nothing to do; otherwise
$\infty=f(n) \leqslant f(n)+s a_{n}+t c_{n}=\infty$.
The theorens we prove now will be about p-groups. It will be clear how to extend the results to torsion groups. Theorem 6.4

Let A, Λ^{\prime} be p-groups and C, C^{\prime} arbitrary groups, such that $A \equiv A^{\prime}$ and $C \equiv C^{\prime}$. Then (a) $A \otimes C \equiv A^{\prime} \otimes C^{\prime}$ and
(b) $\operatorname{Hom}(A, C) \equiv \operatorname{Hom}\left(A^{\prime}, C^{\prime}\right)$, if one of the following holds:
(i) A is of unbounded p-length,
(ii) $D(p ; A)=0$,
(iii) C is of bounded p-length.

Proof
For (a) we shew that the S-invariants of A (C are deterriined by those of Λ and C. Since $A(\searrow) C$ is a p-group it suffices to obtain $U(p, n ; \Lambda \otimes C)$ for all $n \in \omega$ and if $A \otimes C$ is of bounded $p-l e n e t h$ to obtain $D(p ; A(x) C)$. By pace 261 theoren 61.1, if D is a p-basic subgroup of C, then $A \otimes C \cong \Lambda(X) D$.

Wa assume $A=A_{r} \oplus \oplus_{a_{d}} Z\left(p^{p}\right)$, where A_{r} is reduced;
$D=T(D) \oplus \omega_{c_{t}}^{Z}$
If A is of bounded p-length, then $a_{d}=D(p ; A)$;
if C is of bounded p-length, then $c_{t}=\operatorname{Tf}(p ; C)$.
Now $U(p, n ; A \otimes C)=U\left(p, n ; A_{r} \otimes T(D)\right)+U\left(p, n ; A_{r} \otimes \Theta_{C_{t}}^{Z}\right)$ $=f(n)+a_{n}{ }^{c}{ }^{\prime}$.

If A is of unbounded p-length $U(p, n ; A \otimes C)=f(n)+a_{n} T f(p: 0)$ since for n less than the $p-l e n g t h$ of c, if $a_{n} \neq 0$, then $f(n)=\infty$. The $U(p, n ; \Lambda \otimes C)$, therefore, determine $A \otimes C$ up to elementary equivalence unless $\operatorname{Tf}(p ; C)=0$, but then
$D(p ; A(X) C)=D\left(p ; \oplus_{a_{d}}^{Z}\left(p^{\infty}\right) \otimes \Theta_{c_{t}}^{Z}\right)=0$.
Now suppose A is of bounded p-length and $D(p ; A)=0$. By a similar argument as above $U(p, n ; A(X) C)=f(n)+a_{n} \operatorname{Tf}(p ; C)$ and clearly $D(p ; A \otimes O)=0$, if C has unbounded p-length. Ir both A and C are of bounded p-length, it is easy to see how to ohtain the s-invariants of $A(x) C$.

For (b) we shew that the S-invariants of Fom (A, C) are determined by those of A and C. Since $\operatorname{Hom}(A, C)$ is a reduced p-adic group, it suffi, es to obtain $U(p, n ; \operatorname{Hom}(A, C))$ for all $n \in \omega$ and if $\operatorname{Hom}(\Lambda, C)$ is of bounded $p-l e n g t h$, to obtain $\operatorname{Tf}(p ; \operatorname{Hom}(\Lambda, C))$.

It is not difficult to see that we can assune that C is a p-group and that in particular:
$A=A_{r} \oplus \mathcal{S}_{\alpha} Z\left(p^{\infty}\right)$ and $C=C_{r} \oplus \oplus_{d} Z\left(p^{\infty}\right)$, where A_{r} and C_{r} are reduced.

If Λ is of bounded p-length, then $a_{d}=D(p ; \Lambda)$;
if C is of bounded p-length, then $c_{d}=D(p ; C)$.

$$
\text { Now } \begin{aligned}
U(p, n ; \operatorname{Hom}(A, C) & =U\left(p, n ; \operatorname{Hom}\left(A_{r}, C_{r}\right)+U\left(p, n ; \operatorname{Hom}\left(A_{r} \oplus_{C} Z\left(p_{d}^{\infty}\right)\right)\right.\right. \\
& =f(n)+a_{n} c_{d} \text { (by Lema 6.2) }
\end{aligned}
$$

By lemaa 6.1, if $\operatorname{Hom}(A, C)$ is of bounded p-length, then
 An exactly analagous arguent to that used in the proof of (a) gives the S-invariants of $\operatorname{Hom}(A, C)$.

Theorem 6.5

Let A be a p-group of bounded p-length such that $D(p ; A) \neq 0$ and let C be a group of unbounded p-length. Then we can find a group C^{*} such that $C \equiv C^{*}$, but $\Lambda \otimes C \not \equiv \Lambda \otimes C^{*}$ and $\operatorname{Hom}(\Lambda, C) \neq \operatorname{Hom}\left(A, C^{*}\right)$.

Proof
For convenience wo assume that C is p-adic. Let D be a p-basic subgroup of C. Let $D^{*}=T(D) \oplus_{c_{t}} Q_{f}$, where $c_{t}^{*} \neq c_{t}$ and let $C^{*}=D^{*} \Theta \Theta_{c} Z\left(p^{(\alpha)}\right)$, where $c_{d}^{*} \neq c_{d}$.

Then $C \equiv C^{*}$, but $D(p ; A \otimes C)=a_{d} c_{t} \neq a_{d} c^{*}=D\left(p ; A \otimes C^{*}\right)$ and $\operatorname{Tf}(p ; \operatorname{Hom}(\Lambda, C))=a_{d} c_{d} \neq a_{d^{\prime}} C_{d}^{*}=\operatorname{Tf}\left(p ; \operatorname{Hom}\left(A, C^{*}\right)\right.$. $\quad \square$ Lemala 6.6
(i) If A is a p-group and C is an arbitrary group, then $\operatorname{Ext}(\Lambda, C) \equiv \operatorname{mot}(\Lambda, D)$, where D is a p-basic subgroup of C. (ii) If A is a p-group and $C=G_{k} Z$, then $\operatorname{Ext}(A, C) \cong \operatorname{Hom}\left(\Lambda, \Theta_{k} Z\left(p^{\infty}\right)\right)$
(iii) If C is a reduced p-group, then $\operatorname{Ext}\left(Z\left(\mathcal{P}^{(\alpha)}\right), C\right) \equiv C$. Proof
(i) is leman 4.2 together with page 246 exercise 1.
(ii) is page 224 theorem 52.3.
(iii) follows from page 237 lema 55.1.

Theoren 6.7

Let A, A^{\prime} be p-groups and C, C^{\prime} arbitrary groups such that $\Lambda_{1} \equiv \Lambda^{\prime}$ and $C \equiv C^{\prime}$. Then (a) $\operatorname{Tor}(A, C) \equiv \operatorname{Tor}\left(\Lambda^{\prime}, C^{\prime}\right)$ and (b) $\operatorname{Bxt}(\Lambda, C) \equiv \operatorname{lixt}\left(A^{\prime}, C^{\prime}\right)$.

Proof
(a) clearly follows from the results of chapter 3.

For (b) we shew that the S-invariants of $\operatorname{dxt}(\Lambda, C)$ are determined by those of A and C. Since $\operatorname{Ext}(A, C)$ is a reduced p-adic group it suffices to obtain $U(p, n ; \operatorname{Bxt}(A, C))$ for all $n \in w$ and if $\operatorname{Ext}(A, C)$ is of bounded p-length, to obtain $\operatorname{Tf}(p ; \operatorname{Bxt}(A, C))$.

Let D be a p-basic subgroup of C and assume $\Lambda=\Lambda_{r} \oplus \Theta_{a_{d}} Z_{p}\left(p^{\infty 0}\right)$ and $D=T(D) \oplus \oplus_{c_{t}}^{Z}$, where A_{r} is reduced.

If A is of bounded p-length, $a_{d}=D(p ; A)$;
if C is of bounded $p-1 e n g t^{n}, c_{t}=\mathbb{T}(p ; C)$.

$$
\begin{aligned}
U(p, n ; \operatorname{Ext}(\Lambda, C))= & U\left(p, n ; \operatorname{Bxt}\left(\Lambda_{r}, T(D)\right)\right)+U\left(p, n ; \operatorname{Dxt}\left(A_{r}, \oplus_{c_{t}}^{Z}\right)\right) \\
& +U\left(p, n ; \operatorname{Bxt}\left(\dot{A}_{a} Z\left(p^{(D)}\right), T(D)\right)\right) \\
= & f(n)+a_{n} c_{t}+c_{n}{ }^{2} d
\end{aligned}
$$

It is easy to see, bearing in mind the properties of $f(n)$ that if either Λ or C is of unbounded p-length, then
$U(p, n ; \operatorname{Rxt}(A, C))=f(n)+a_{n} T P(p ; C)+c_{n} D(p ; A)$.
Ext (A, C) can only be of bounded p-length in this case if either $\operatorname{Tf}(p ; c)$ or $D(p ; A)$ is zero, but then
$\operatorname{Tf}(p ; \operatorname{Rxt}(\Lambda, C))=\operatorname{Tf}\left(p ; \operatorname{Bxt}\left(\oplus_{a_{d}}^{Z}\left(p^{(v)}\right), \Theta_{c} Z\right)\right)=a_{d} c_{t}=0$. If both A and C are of bounded p-length, it is easy to see how to obtain the S-invariants of $\operatorname{Bxt}(A, C)$.

Appendix

Some Generalizations

Whenever one investigates properties of Abelian groups, the question always arisss: for modules over what sort of rings do the properties still hold? We have essentially considered three different sorts of properties elenentary properties of groups, infinitary properties of torsion groups and the way these two interrelate. We shew how to extend our results, with suitable modifications to modules over Dedekind rings. For the definition of a Dedekind ring end its simple properties, we refer to (2) page 161 and the references given there.

In (2) a sat of invariants are defined which determine a module over a Dedekind ring up to elementary equivalence. Let R be a Dedekind ring. Bruaking with tradition, we let A rather then il denote a module over R . Ve define the S_{R}-inveriants es follows: For each prime ideal P of R and each $n \in \omega$, we let $U(P, n ; \Lambda)=\operatorname{dim}\left(P^{n} A\left[P / P^{n+1} A[P]\right)\right.$ if this is finite $=\infty$ otherwise
$\operatorname{Tf}(P ; A)=\lim _{n \rightarrow \infty} \operatorname{dim}\left(P^{n} \Lambda / P^{n+1} A\right)$ if this is finite
$=\infty$ otherwise

$=\infty$ otherwise.

Now for each prime ideal P of R such that R / P is finite, we put $U^{*}(P, n ; \Lambda)=U(P, n ; \Lambda), \operatorname{Tf}^{*}(P ; A)=T f(P ; A)$ and $D *(P ; A)=D(P ; A)$.

For each prine ideal P of R such that R / P is infinite, we put:

$$
\begin{aligned}
U *(P, n ; A) & =0, \text { if } U(P, n ; \Lambda)=0 \\
& =\infty \text { otherrise } \\
\operatorname{Tf}^{*}(P ; A) & =0, \text { if } \operatorname{Tf}(P ; \Lambda)=0 \\
& =\infty \text { otherwise } \\
D^{*}(P ; A) & =0, \text { if } D(P ; A)=0 \\
& =\infty \text { otherwise }
\end{aligned}
$$

Finally we define

$$
\begin{aligned}
\operatorname{ixp}(A) & =0, \text { if } A \text { is of bounded order } \\
& =\text { otherwise. }
\end{aligned}
$$

It is proved in (2) that tho S_{P}-invariants, $U *(P, n ; \hat{A})$, $T f *(P ; A), D *(P ; A)$ and $\operatorname{inp}(A)$ deterune A up to elementary equivalence.

We assuale a knowledge of what is meant by localization (see e.g. (5) page 36). It is noted in (2), that $\operatorname{Tf}^{*}(\mathrm{P} ; \mathrm{A})=\operatorname{Tf*}\left(P ; A_{P}\right)$, with similar results for the other S_{R}-invariants, where A_{P}, the localization of A to $P_{\text {, }}$ is a module over the principal ideal domain (in fact, discrete valuation domain) R_{P}. Since R_{P} is a principal ideal domain, we can say, for example, $\mathrm{Tf} *\left(\mathrm{P} ; \mathrm{A}_{\mathrm{P}}\right)=\mathrm{Tf} *\left(\mathrm{p} ; \mathrm{A}_{\mathrm{P}}\right)$ for some non-zero $p<P$.

Also, given an R_{P}-nodule A_{P}, we can define a basic subnodule B_{P} of λ_{P} which has analogous properties to those of a p-basic subgroup of a p-adic group, (not quite the same since a p-basic subgroup contains copies of Z ratier than copies of Q_{p} or $\left.J_{p}\right)$. This follows from (6) paga 51, lemia 21, because R_{P} is a discrete valuation ring. We now assert that all our results on elementary properties of groups go over to modules over Dedekind domains. Where P is a prime ideal of a Dedekind ring R such that R / P is finite, the proofs are similar to the f belian group case. Where R / P is infinite the proofs are even simpler, by the definition of the S_{R}-invariants.

It is clear inwediatcly that the results of chapters 0 and 1 go over. For chapter 2, it suffices to note the following facts:
(i) The tensor product of torsion-free nodules over a Dedekind ring is torsion-free (see page 274, notes), and (ii) Λ torsion module A over a Dedekind ring R is isomorphic to the direct sum $A_{p}^{+} A_{p}$, where the sum is takon over all prime ideals (see page 70 , notes).

These two facts together with the preceding rewarks serve to extend all our results on elementary properties of groups to modules over Dedekind rings.

We now turn our attention to infinitary properties of torsion groups. We note that it follows from the 'blanket assertion' on page 36 of (6), that Ulais theorem holds for
countably generated torsion modules over principal ideal jomains. Dy our fact (ii) we can replace the words principal idcal donain by Dedekind ring. Sections 2 and 3 of (1) are a generalization of Ula's theoren and the only place where their proofs come unstuck in the case of Dedekind dowains is the question of definability in the languages $L_{\kappa \omega}$ Suppose the ring R that we are considering has cardinality λ. Then the results of sections 2 and 3 of
(1) go over to torsion modules over R for the languages $L_{k \omega}$ where $k>\lambda$.

We note too that for $k>\lambda, T(A)$ is a definable subsct of a module A and if A is a torsion module, then A_{P} is a definable subset of A, in the language $I_{k \omega}$. Lema 3.8 also works for modules over Dedekind rings as cen be straightforyardly checked and so our results of chepter 3 for infinitary languages go over, with the nodification that wo only consider languages $\mathrm{L}_{\mathrm{k} w}$ with $k>\lambda$.

The results interrelating elementary and infinitary properties do not go over in general, since by the definition of the S_{R}-invariants the conditions on tro nodules to be elementarily equivalent are weaker than in the dbelian group case, while the conditions for infinitary equivalence are as strong; thus, for example one might have two modules without elements of infinite height that are elementarily equivalent, but not Ifewequivalent.

The study of the elementary properties of Abelian groups suggests the following two questions, one specifio and one roore general. The specific question is how far do these results extend to :odules over general rings; we have seen they eaterd as far as Dedekind rings. The other question is wore in the nature of a progran. Find a class of algebraic structures whose elenontary theorios can be dotermined by algebraic inveriants. By purely algebraic means find out about the elementary properties of this class of structures.

One would clearly like to know sonething about the infinitary properties of torsion-free groups, hovever tursion-frce groups - even countable ones - have notoriously pathological properties. Here is a result of Hodges (see (4)):

If $A, \Lambda^{\prime}, C, C^{\prime}$ are aridtrary groups such that
$\Lambda \equiv \equiv_{-1} A^{\prime}$ and $J \equiv_{2 \ldots C^{\prime}} C^{\prime}$, then $\Lambda(x) C \equiv_{\omega_{1}, \Lambda^{\prime}} \Lambda^{\prime} \otimes C^{\prime}$.
It is an open question as to whether this can be inproved in the obvious way.

One interesting fact brought out nore by the extension to Dedekind rings than by the Abelian group case is how for sufficiently large k (in the case of a countable ring, all uncountable k), the languages. $L_{k \omega}$ are in a sense similar and are very different from L_{wn}.

References
(1) J. Barwise and P. Fklof

Infinitary Properties of Abelian Torsion Groups
Annals of Rath. Logic 1970
(2) P. Wklof and T.Fisher

The Rlementary Theory of Abelian Groups
Annals of Math. Logic 1972
(3) L.Fuchs

Infinite Abelian Groups Volune I
Acadenic Press 1970
(4) W.Hodges

Infinitary Definability and Construction by Generators and Relations (Proprint)
(5) J.Knight

Comutative ilgebra
Ca:ibriage University Press 1970
(6) I.Kaplansky

Infinite Abelian Groups (revised edition)
Ann Arbor Press
1968
(7) W.Szraielew

Elementary Properties of Abelian Groups
Fund. l.ath. 41
1955

The above are all explicitly referred to in the text.
The permutation from the natural ordering was due to a sad miscalculation while typing the text.

