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ABSTRACT

A primarily numerical investigation of the nonlinear g mode in che 

reverse field pinch is presented.

A two dimensional study of the nonlinear m=0 g mode is made using 

two computer codes. One code solves the resistive incompressible MHD 

equations, for the m=0 mode, using a mixed explicit/alternating 

direction implicit scheme. Whilst for the second code a truncated 

Fourier expansion is used to reduce the two dimensional m=0 equations 

to a larger one dimensional set, which are then solved using a mixed 

explicit/Crank-Nicholson scheme. A stabilising mechanism has been 

found in which the g mode acts to flatten the pressure in the vicinity 

of its singular surface. A quasi-linear scaling argument is given to 

explain this pressure flattening mechanism. Ohmic heating is found to 

counteract this stabilising effect by increasing the gross pressure in

the pinch. The final nonlinear state of the g mode depends on the

competition between the pressure flattening and ohmic heating

mechanisms.

To study modes of any helicity a spectral code is developed to 

solve the compressible resistive MHD equations in a periodic 

cylindrical system. Simulating energy loss processes by removing the 

ohmic heating terms is shown to lower the final nonlinear growth rate 

of the m=0 g mode. The m=l mode is examined and the same dominant 

nonlinear mechanisms are found to apply. Some tentative mixed helicity 

calculations are also presented, but these studies are far from

complete.
. ' ' j
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The two dimensional studies allow the magnitudes of typical 

magnetic fluctuations due to the g mode to be estimated. Using a field 

line tracing code these fluctuations are shown to give rise to ergodic 

field line behaviour. Estimates of the enhanced electron transport 

which occurs because of this behaviour are given. The relevance of 

these results to experimentally observed phenomena is discussed.
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CHAPTER 1 INTRODUCTION

1.1 MOTIVATION

Throughout the entire industralised world the single most important 

"raw material" is energy. For the past century the primary sources of 

energy have been the fossil fuels - coal and to an increasing extent 

oil. However the accessible reserves of these fuels are unlikely to 

keep abreast of world demand for more than a few decades. It has 

therefore become increasingly important to develop alternative energy 

sources. To this end increasing importance is being attached to 

existing but under exploited methods of electricity generation, notably 

fission power, wind power, and hydro-electric power. Also new 

possibilities such as solar energy, geo-thermal energy and controlled 

thermo-nuclear fusion are being examined.

Controlled nuclear fusion has several advantages over its rivals. 

Deuterium, one of the hydrogen isotopes capable of fueling a fusion 

reactor exists in and is extractable from sea water, thus providing a 

cheap and virtually limitless supply of fuel. Also the fusion reactor 

has no geographical or climatic dépendance, unlike many of its rivals.

Fusion is the process of coalescing the nuclei of light elements to 

form heavier ones; a process which yields a nett energy gain. In 

order to acb^ ̂  ve fusion a criterion given by Lawson must be 

satisfied [i]



nT > 10^^ cm 

where n is the plasma particle density( cm ^ ) 

and T is the energy containment time in seconds.

Two basic alternative methods of achieving controlled nuclear 

fusion are currently under investigation. One method involves 

irradiating the surface of a high density pellet of fuel 

(eg. deuterium) with laser or ion beams. As the surface of the pellet 

melts and expands so its fuel contents are compressed. Thus producing 

a very high density plasma, but for a very short time. The other 

method involves containing a rather less dense plasma in a magnetic 

field for a relatively long period of time. Since the plasma is a good 

electrical conductor at typical temperatures (>10 °C), it is not free 

to move across the magnetic field and so the plasma is magnetically 

trapped. Early experiments on magnetic containment were conducted 

using cylindrical configurations. These however suffered from high 

plasma losses at their ends. Therefore practically all present 

experiments are conducted using toroidal configurations to circumvent 

this problem. Within the toroidal containment devices a further 

sub-division exists depending on the shape and magnitudes of the 

magnetic fields. Currently the most promising toroidal device appears 

to be the tokamak [2]» which is characterised by a very strong toroidal 

magnetic field. There are several alternatives to the tokamak of which 

the reverse field pinch (RFP) is one [3]» The chief attraction of the 

RFP over the tokamak is that it can achieve higher ratios of plasma 

pressure to containing magnetic pressure - a quantity known as beta(3). 

Since the magnetic field is energetically expensive to provide, 3 is 

essentially a measure of efficiency.
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1.2 PLASMA INSTABILITIES

One of the major problems from which all magnetic containment 

systems suffer is that of large scale instabilities. These 

instabilities manifest themselves as large scale plasma flows and as 

perturbations to the magnetic field. Such instabilities can have very 

detrimental effects on the plasma containment. They may cause the 

plasma to come into contact with the wall in which case sputtering of 

heavy impurities will occur. These heavy impurities can dramatically 

increase the radiative loss from the plasma. Also the instabilities 

can enhance convective and conductive losses of energy. Indeed if the 

instabilities are sufficently wide spread throughout a volume they may 

cause the magnetic field lines in that volume to wander randomly - a 

process known as ergodic field line behaviour. Since the thermal 

conductivity parallel to the magnetic field is very high, ergodic field 

line behaviour seriously degrades the energy containment [4 ]. Another 

consequence of gross instabilities occurs in tokamaks where the 

interaction of tearing instabilities is thought to lead to the major 

disruption, which totally destroys the discharge [5].

During the late 1950's and 1960's virtually all research on 

instabilities concentrated on linear behaviour. Such research on the 

effects of a small perturbation to an equilibrium revealed much useful 

information on the avoidance of instabilities. However nonlinear 

studies which have been conducted during the last decade have shown 

that many instabilities saturate at a tolerably small level. For this 

reason and because the nonlinear instability phase is far longer than 

the linear phase, the study of nonlinear instabilities is of utmost
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importance.

. The vast majority of nonlinear instability studies are conducted 

numerically, primarily because the equations are analytically 

intractable. However the numerical studies often reveal simplifying 

assumptions which render analytic solutions possible. Such analytic 

explanations are important in establishing the validity of the 

numerical results.

The primary magneto-hydro-dynamic (MHD) instability which afflicts 

an established RFP field configuration is the g mode [6]. The g mode 

is driven by the interaction of pressure and curvature and is an 

analogue of the Rayleigh-Taylor instability. In their review paper 

Bodin and Newton [3] state that the g mode may well determine an upper 

limit on the attainable 3 in an RFP. It is therefore extremely 

important to investigate the nonlinear behaviour of the g mode. Such 

an investigation is pursued in this thesis.

1.3 OUTLINE OF THIS THESIS

A brief review of the MHD equations and instability theory is given 

in chapter 2 , particular emphasis being placed on the pressure driven 

Suydam and g modes. Numerical methods applicable to resistive 

instabilities are examined in chapter 3 and two algorithms to study the 

nonlinear g mode are developed. These algorithms solve specifically 

for the g mode which occurs about the toroidal field reversal point. 

Using the FORTRAN codes developed from these algorithms, an extensive
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study has been made of a particular RFP equilibrium developed by 

Robinson [7]. These results are presented in chapter 4, where a 

potential saturation mechanism for the g mode is exhibited. A scaling 

argument is given to explain this saturation mechanism. A second 

important nonlinear effect is shown to be the ohmic heating which 

increases the gross pressure in the pinch. Since the g mode is 

pressure driven this gross pressure increase tends to negate the 

effects of the saturation mechanism. The final nonlinear state depends 

on the competition between these two mechanisms and a scaling argument 

is again given in chapter 4 to explain this facet of the behaviour.

Having completed the studies described in chapter 4 it was desired 

to extend the studies to g modes which occur in other places than about 

the field reversal point. It was also desired to be able to study 

interactions between g modes. An algorithm which fulfils these 

requirements is developed in chapter 5. The algorithm employs a 

Fourier resolution in two spatial dimensions; a technique which has 

only just begun to be used in plasma physics [g]. The results of using 

this algorithm to study the nonlinear behaviour of the m=0 g mode are 

given in chapter 6 . These results are found to be qualitatively in 

agreement with those given in chapter 4. The nonlinear m=l g mode is 

also examined in chapter 6 and the same dominant nonlinear processes 

are found as for the m=0 mode. The interaction between an m=0 g mode 

and an m=l g mode, in the core, is studied in chapter 6 . This 

interaction is shown to lead to very rapid growth which gives rise to 

ergodic field line behaviour. This ergodic behaviour is studied in 

detail in chapter 6 where it is shown that such behaviour will always 

occur due to the g mode. Ergodicity has important consequences in 

relation to the pinches ability to contain energy. The enhanced
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electron transport due to ergodic behaviour is discussed and 

comparisons are made with contemporary RFP results. Lastly the 

experimental RFP phenomenon known as pump out, in which a very rapid 

decrease in density occurs, is explained as a consequence of ergodic 

behaviour. Finally in chapter 7 the conclusions of the preceeding 

chapters are re-emphasised and future extensions to this work are 

indicated.
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CHAPTER 2 MAGNETO-HYDRO-DYNAMIC THEORY

2.1 INTRODUCTION

In this chapter some topics of relevance to this thesis are briefly 

reviewed. Firstly in section 2.2 the magneto-hydro-dynamic (MHD) 

equations are examined. The conditions of applicability and the 

utility of the MHD equations are dwelt upon at some length because of 

the central role they play in' this thesis. In section 2.3 the 

instabilities of an infinitely conducting plasma are reviewed. 

Particular emphasis here is placed on the properties of a localised 

pressure driven mode, known as the Suydam mode. Finally in section 2.4 

resistive instabilities are discussed. The formation of magnetic 

islands as a consequence of resistive instabilities is explained and 

the linear theory of the resistive interchange or g mode is examined.

2.2 THE MHD EQUATIONS

In order to study the behaviour of a plasma we require a closed set 

of equations describing the time evolution of a moving plasma 

interacting with an electromagnetic (EM) field. The MHD equations 

constitute such a set.
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2.2.1 THE EM EQUATIONS FOR A CONTINUOUS MEDIUM

In an inertial frame of reference Maxwell's equations are [9 ]

3D
V X H = J + 35

3B

2 .2.1

V X E " " Ft" 2 .2.2

V,.D 2.2.3

V,.B = 0 2.2.4

where D is the electric displacement

E is the electric field

H is the magnetic intensity

B is the magnetic field

J is the current density

& Pc is the charge density

Examination of the orderings in eqn 2 .2.2 shows that

|e |/£' c ^ |B|/t ‘ ' c 2.2.5

where and t^ are respectively, typical length and time scales. If 

it is now assumed that typical speeds in our system are very much 

smaller than the speed of light, i.e. 2^/t^<< C then using eqn 2.2.5

3D

3t £
% —

ft £ |e|
c c «  I 2.2.6

V x HI I b I / ij £ t  c2 | b |—  I — ' <2 c ' — '

where the constitutive relations have been used
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^  = )i H and D = e ^

£, |i, being the permittivity and permeability of the plasma,

respectively. Relation 2.2.6 allows us to rewrite eqn 2.2.1 in reduced 

form.

V X H = J 2.2.7

We require one more equation to close our set, namely Ohm's law. For a 

stationary conductor this is

Ti J = E 2.2.8

where -p is the electrical resistivity. Since this is valid only in a 

stationary conductor we must derive a form applicable to our continuous 

medium. We consider a typical fluid element of our plasma moving with 

velocity V relative to the inertial frame of reference in which we 

stated Maxwell's equations. Then using the above assumption that 

V^/C^«l,the Lorentz transformations of special relativity yield [10]

E ’ = E + V x B  2.2.9

J' = J - p V 2.2.10

where primed quantities are in a frame of reference moving with the 

fluid and unprimed quantities are in our inertial frame of reference. 

We may now write eqn 2.2.8 as

n(J - p V ) = E  + V x B  2.2.11

Now in the situations relevant to thermonuclear fusion the plasmas are 

very good conductors and so n=0 . Eqn 2.2.9 then shows us that

E = -V X B 2.2.12
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since otherwise we would drive nearly infinite currents; a condition 

which is physically unacceptable. Eqns 2.2.12 and 2.2.7 then give

IPcII I V.D| |.V| |V X b | |V|
---  ^ e - ^ —  << 1
|j| |V X h| IhI c2

Hence eqn 2.2.11 may be simplified to give

n J = E + V x B  2.2.13

Summarising, the EM equations valid in the limit V^/C^->0 , are in 

rationalised M.K.S. units (e=jj=])

J = V X B 2.2.14,

SB
87 " -V X E ,2.2.15 .

V.E = p 2.2.16—  c

V.B = 0 2.2.17

p J = e; + V x B 2.2.18

2.2.2 THE FLUID EQUATIONS

By analogy with ordinary fluid mechanics, equations describing the 

conservation of mass, momentum, and energy are expected. This is 

generally the case, however in many MHD formulations various other 

equations of state are often used to replace or make the energy 

equation redundant. The MHD fluid equations may be obtained by taking 

moments of the Boltzmann equation [11]. However here it is chosen to 

present the equations and then give physical insight into their various 

terms.
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^  + V.(pV) = 0 2.2.1991 —

'9V
p(—  - J(_.vv_y - ^ Ü

9V \
—  + v.vvl = J X B - VP 2.2.20

+ V.VP = -yPV.V + (y-l)n|j|^ 2.2.21ot —  —  —

where p is the mass density

P is the pressure

& Y is the ratio of specific heats( usually taken to be 5/3)

Eqn 2.2.19 is a statement of mass conservation which may be derived 

by applying the divergence theorem.

Eqn 2.2.20 is an expression relating the acceleration to the local
9V

forces (i.e. Newton's second law). T h e + 7 * berm, often known as 

the convective derivative of V , is the acceleration of an element 

moving with the fluid. The J. ^ ^  term is an approximation of the 

Lorentz force equation

F = p E + J x B  2.2.22— em c—  —  —
where F^^ is the EM force. Using the assumption V^/C^«l together with 

eqns 2.2.3 & 2.2.12

p El IV.eIIeI , IeI2 ,VxB|2
J & l  ~ ^ 1 W I b I  '^7, 1 Ê T  ~ :2 TbT^ ‘1-1

Eqn 2.2.22 becomes

F = J X B 2.2.23— em —  —

The final term on the R.H.S. of the eqn 2.2.20 is the hydrodynamic
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pressure. The inclusion of viscosity would of course require the use 

of a stress tensor form for P. The general stress tensor for a plasma 

is greatly complicated by the anisotropy introduced by the magnetic 

field. A full form for it is given by Braginskii [12],

Finally eqn 2.2.21 says that the rate of change of pressure for a 

fluid element, moving with the fluid, is equal to the effects of 

compression, -yP V.V, plus the ohmic heating (y-l)n|j|^. Some authors 

choose to ignore the ohmic heating contribution, in which case 

eqn 2.2.21 then becomes an expression of the adiabatic gas law for a 

given fluid element. Additionally, the need for an energy equation may 

be removed by the approximation of incompressibility i.e. V.li=0 . This 

approximation lowers the number of dependent variables and so renders 

the equations more tractable both analytically and numerically.

2.2.3 SUMMARY AND DISCUSSION OF THE M.H.D EQUATIONS

The MHD equations are summarised in Table 2.2.1 below

Table 2.2.1

9B
= -V X ^  2.2.24

J = V X B 2.2.25

V.B = 0 2.2.26

nJ = E + V X B 2.2.27

1^ + V.(pV) = 0 2.2.28
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Table 2.2.1 (Cont.)

9V
p|—  + V.VV) = J X B -VP 2.2.29

||- + V.VP = -yPV.V + (y-l)n|j|2 2.2.30

Eqns 2.2.24 to 2.2.27 may be combined to give

9B
—  = V X (V X B) - V X (qV X B) 2.2.31
o t  -----  —  —

The MHD equations represent only a first approximation to reality. 

However, as such, they provide a useful insight into the behaviour of a 

plasma. Their use in the study of instabilities has provided a wealth 

of information on the attainment of stable operating regimes in

containment devices. Although, even after all MHD stability

requirements have been satisfied one may still be plagued by

micro-instabilities [13]. Satisfying the MHD stability requirements 

does however remove one of the major possible sources of plasma loss. 

Conversely, it will prove extremely difficult to contain a plasma if 

these requirements are not satisfied.

2.3 INSTABILITIES OF AN IDEAL PLASMA

In this section we shall use the ideal, or infinitely conducting 

MHD equations, to study the stability of equilibria. An equilibrium 

may be defined as the situation when forces are balanced at every point 

in space. At equilibrium, the equation of motion, eqn 2.2.20 becomes

“ 20



the familiar equilibrium relation

VP = J X B 2.3.1

An equilibrium is said to be unstable to a given perturbation, if that 

perturbation grows in time. Conversely an equilibrium is stable if the 

perturbation decays. As pointed out by Bateman [i4] we should strictly 

use a velocity perturbation to study stability, otherwise we do not 

initially have an equilibrium.

We shall look at the instabilities of a periodic cylindrical 

system. A cylinder is often chosen to model a toroidal system as the 

algebra is simple enough not to mask the physics, and yet the 

approximation is still good enough to exhibit most toroidal 

instabilities. It should be noted however, that one important class of 

instabilities, the ballooning modes [15] occur in a toroidal system but 

are precluded in cylindrical geometry.

By linearisation to first order in perturbed quantities it is 

possible to Fourier analyse in space and time, taking the 8,z and t 

dependence of all perturbed quantities to be:-

^wt + i(m0 + nk%)

Where w is referred to as the growth rate, m the poloidal mode number, 

n the toroidal mode number, and k the wavenumber. The ratio of m to n 

is referred to as the helicity of that mode.

We divide our MHD instabilities into two classes

(i) Those with fixed boundaries - often a conducting wall. Here the
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instabilities appear as an internal motion of the plasma.

(ii) Those with a vacuum region surrounding the plasma. Here free 

boundary modes representing gross motions of the plasma may occur.

2.3.1 FIXED BOUNDARY INSTABILITIES

The linearised MHD equations may be combined into a single relation

U.e].

9t-
= V/yP V.C + C.VP ) + (V X B )x(Vx(5 x B ))

+ (V X (V X (£ X ^ ) ) ) x 2.3.2

where "0" subscripts indicate equilibrium quantities and ”1" subscripts 

perturbation quantities and ç is the displacement defined as

Ç(r,t) = V (r.f)dt
Jo '

Writing eqn 2.3.2 symbolically

p   = F(Ç)
3f

2.3.3

where F may be shown to be Hermitian [16], hence

9t‘

- 1

9t -

■H 1 9 C.F(C)dV

where integrals are taken over the entire plasma volume.

'9C
So F E \ 2 j ^ o V 9 t ; ^  2 C.F(5)dV = 0 2.3.4
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Now the first term is the kinetic energy (K.E.) of the perturbation so

we may identify the second .term as the change in the potential

energy (P.E.) due to the perturbation. Now in any physical system, if 

there exists any perturbation which lowers its P.E., then that 

perturbation grows in time. If we use ôw to denote the change in P.E. 

then we may state an energy principle

If 6w>0 for all then the equilibrium is stable and conversely if

there exists an such that 6w<0 then the equilibrium is unstable.

This gives us a very powerful tool with which to study the

stability of equilibria to ideal modes.

Much physical insight into the possible sources of instability and 

their stabilisation may be gained by careful formulation of <Sw, a 

particularly informative form is given by Furth et al [17]

ôw ~ 2' J |BJ
2 ,

+ yP V . C r  o — '

J .B
+ — B X Ç.B, - 2E.VP E.KI g 12  * O —

o *
dV 2.3.5

vdiere ^  and _B|| are the components of perpendicular and parallel to

B respectively and K is the normal curvature to B .
—o — —o

The first three terms of eqn 2.3.5 are positive definite and hence 

represent stabilising terras. The first term is the energy stored in 

the Alfven waves, the second is that stored in the fast magneto-sonic

waves, and the third that stored in sound waves. The final two terms
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may be negative and hence represent possible sources of instability. 

The penultimate term is associated with unstable modes (instabilities) 

driven by parallel current and known as kink modes. The final term 

represents modes driven by the interaction of pressure and curvature 

and known as interchange or Suydam modes.

If we now apply our energy principle to a single Fourier harmonic 

the calculus of variations allows us to minimise 5w with respect to ^
0

and The result is that 6w is minimised by incompressible velocity

perturbations [18]. This allows us to write do\-m a simplified form for 

ÔW in terms of only [ig] (for simplicity we denote as Ç for the 

rest of this section) 

rwall/
6w = Y 2.3.6

where
mr^inkü^ +

f(r) =
r3(nkS + -  B^)2 z r 0
n^k^r^ + 

and
g(r) = E. + + Eg )2 - 1

n^k^r^+ ^ z r n^k^r^ +

+   (n2k2B 2- 2)
(n2k2r^ + m2)2  ̂ r

Now f is positive definite and so if we are to have instability

(ôw<0) it must come from the g term being negative. Further, the range

over which the g term is negative will give us a fair indication of the

range of the instability, because  ̂ must be larger in this region to

render 6w<0. For m=0 the expression for g reduces to
.p B 2

g(r) = 2 — + (n2k2r2+ 1) 2.3.7
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Most pinches have higher pressure in the core decreasing towards the

wall. Hence the pressure generally has a negative gradient and may be

a source of instability. Also from eqn 2.3.7 we observe that

increasing k increases the size of a positive definite term in g. Thus

the shorter the wavelength, the narrower the range of the instability.

For m=0 we may conclude that the instability is fairly localised

provided ! —  jis not large. For modes with poloidal mode number m ̂  we

refer to an analysis by Shafranov [1 9 ]» who showed g to be quadratic in 
_nkr Bzthe variable x -   =-nq , where q is known as the safety factor.

In the limit that << 1 , which is true of all tokamaks but notm
necessarily of other confinement devices, Shafranov shows the m :̂2 modes 

to be similar in character to the m=0 mode with a fairly localised 

structure provided the pressure is not too high. For m=l modes the 

situation is very different with the two roots in X being given by

Here, given that P ' < 0, the instability is global in character being

contained within the entire region**nq<l . In Tokamaks q is generally a

monotonie increasing function and hence q>l on axis is a prerequisite

for stability to the m=l mode.

If we assume the modes to be spatially localised in nature then we 

can derive a general stability criterion. Again referring to 

Shafranov's analysis it is shown that a given (m,n) mode will localise

about a surface of radius r where ~ B n ( r  ) + nk B (r )=0. This surfaces r ° s z ss
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represents a regular singularity of the ideal MHD equations and is thus 

often known as the singular surface. At this surface the perturbations 

produce least bending of the field lines and so this surface is 

energetically the most favourable for the given Fourier harmonic to 

occur at. If we define x=r-r^ then we may expand f for localised modes 

as

2.3.9rs

Then noting that the Schwarkg inequality yields the inequality (which 

is valid for any C such that = 0 )

^ 1 Î dx y  { %2dx 2.3.10
aJ, V3xy " 4  J

we see that our stability criterion <5w>0 is definitely satisfied if

f ̂  /l 3^ f I \
(i air I dx > 0

where since we are considering localised modes a and b are taken to be 

arbitarily close to (a<r^<b). This integral in turn is satisfied if 

the term of the integrand inside the bracket is positive. After some 

simple algebra, this gives us a necessary condition for stability

This result was first derived by Suydam [20] and is known as Suydam's

Criterion. Physically its interpretation is that for a given — , the3r
localised mode may be stabilised by raising the shear in the region of 

the singular surface.
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2.3.2 FREE BOUNDARY INSTABILITIES

If the plasma is surrounded by a vacuum then the plasma column is

free to bend and contort. These modes were often observed by early 

experimentalists [2l] and were given graphic names relating to the 

shape they produce.

For surface modes of poloidal mode number, m=0 the instability is

known as a sausage mode (fig 2.3.1). This mode is stabilised by the

application of a longitudinal field, B^, satisfying B  ̂ /2 [22].

On being forced to compress the mode becomes energetically

unfavourable.

FIG.2.3.1 m=0 Sausage Mode

Modes with poloidal wavenumber, m%l, contort the plasma into 

corkscrew shapes and are known as kink modes (fig 2.3.2). They may be 

stabilised by surrounding the plasma by a conducting wall. The image 

currents generated in the wall oppose the plasma motion and stabilise 

it.

7 -



B.
FIG. 2.3.2 m=l Kink Mode

For higher poloidal mode numbers the distorted plasma takes on the 

appearance of a fluted column and these modes are known as flute modes. 

An m=4 flute mode is illustrated in fig 2.3.3.

FIG.2.3.3 ra=4 Flute Mode
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2.4 RESISTIVE INSTABILITIES

It might be thought that the inclusion of resistivity into the 

ideal MHD framework, discussed in the last section, would merely 

provide a slight damping factor in their growth rates. This was shown 

to be a fallacious assumption by Furth, Killeen, and Rosenbluth in 

their classic paper [23]»

The resistivity allows to vary in time at the singular surface 

and permits the formation of structures known as magnetic islands. 

These will be discussed in detail in section 2.4.1. In the case of 

Suydam modes the inclusion of resistivity allows instability to occur 

even when Suydam's stability criterion is satisfied [24]. These new 

resistive counterparts of the Suydam mode are known as resistive 

interchange or g modes. They will be discussed in detail in section 

2.4.2.

2.4.1 MAGNETIC ISLANDS

In order to estabilish the importance of resistivity the 

constraints imposed by infinite conductivity must first be examined. 

Forn =0 the first order Ohmfe law is

E. + V, X = 0 2.4.1— 1 — 1 — u

So considering a singular surface defined by k^.B^ |r^ = 0 and taking 

the r component of the vector product of k and eqn.2 .4.1 we obtain
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Ik.B  ̂ - B = 0 o T 2.4.2

Hence at 1^.6^= 0 .
B = 0 
•■i

The inclusion of resistivity introduces an rijJ term to the R.H.S. 

of eqn 2.4.1 and relaxes the constraint on B at r ,5

If we restrict attention to the singular surface associated with a
mgiven ^=(0 ,-,nk) , then we may define a flux function, ^as:~

k.B = i   r or

where

T = m0 + nkz

^ has the property that B ^ ^ =  0 , hence field lines are constrained

to lie on surfaces where ip is constant. For an equilibrium situation,

k.B ,by definition has a root at r and hence ^ has the form shown in - ~o s o
fig 2.4.1.

%

r.

FIG. 2.4.1 Typical form for (note that in general value

^olr=0 ^ '^^r=wall^
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FIG.2.4.3 Magnetic Island Structure 

The outermost flux surface of the island structure is known as the 

separatrix, the point where it crosses the singular surface is known as 

the x-point and the point at the centre of the island as the o-point. 

In a torus these island flux surfaces join onto themselves after 

traversing the torus m times toroidally and n times poloidally. 

Applying a field line following code to a suitably perturbed 

equilibrium we do indeed find these island structures. Fig 2.4.4 shows 

the intersection of a single field line with the azimuthal plane as 

that field line spirals round and round the torus.
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FIG.2,4.4 Azimuthal cross section of torus. The unbroken lines
are flux contours of equilibrium obtained from a 2D
code and the 'A' the intersection of a field with the
azimuthal plane as it spirals around the torus after
the equilibrium has been perturbed to form m=3 , n-2
islands. The dotted line is the separatrix of the 
equilibrium flux surfaces.

A simple formula may be derived for the width of the island. 

Examination of figs 2.4,2 and 2.4.3 shows

= ih -ijj*x-point 0 1

Expanding as a Taylor series

(r-r ) ̂
2 3r
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3*0 Iqinrm ------  = r k„B =0, At the farthest point on the separatrixbxiiut: 9r 'r s“ -o'rs s
from the singular surface

.1 w=  ij; 1 +  —o r  8 9r"s

where w is the island width. Now both this point and the x-point lie 

on the separatrix, hence their fluxes must be equal. Equating and 

rearranging gives a formula for the island width

w

where the minus sign is necessary since in this case ^^2 ^ ̂ . Repeating

the argument for ^ ® removes this minus sign. Hence in general

w 2.4.3

Bateman has found this formula provides a good estimate of island 

width even for large islands occupying as much as 30% of the minor 

radius [25].

The importance of these island structures is that the thermal 

conductivity parallel to B is very large and hence there exists very 

good thermal conductivity across islands. This can result in 

detrimental effects to the heat containment of the pinch, particularly 

when a series of islands are nested side by side. Furthermore in 

tokamaks the interaction of islands of different helicity is thought to 

lead to random field line behaviour and cause the major disruption
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which totally destroys the containment [26 ]•

2.4.2 THE RESISTIVE INTERCHANGE MODE

At the singular surface a second order pole occurs in the ideal 

M.H.Ü equations. The inclusion of resistivity however introduces 

higher order derivatives into the system and thus removes the 

singularity. Since, as mentioned previously the resistance of typical 

thermonuclear plasmas is very low, we can ignore the higher derivatives 

in all but a narrow layer about the singularity. Near the singularity 

the ideal and resistive solutions may differ dramatically; in 

particular as proved previously B^is free to vary in time, at the 

singular surface for the resistive case.

The situation described in the last paragraph, where a higher order 

derivative may be ignored in all but a narrow layer, where a 

singularity of the reduced equations occurs, defines a boundary layer 

problem. Using the techniques of boundary layer analysis Coppi,Greene, 

& Johnson analysed the resisitive stability of a cylindrical 

system [2 4 ]. Their results relating to the resistive interchange mode 

will now be briefly reviewed.

Central to any boundary layer analysis is the introduction of an 

expansion parameter which allows the relative magnitudes of the terms 

of the equations to be assessed in the boundary layer. The choice of 

expansion parameter relies on some a priori knowledge of which terms in 

the equations must be of equal magnitude. Coppi et al introduce an 

ordering such that:-

(i) The resistive layer thickness is comparable with the resistive skin
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depth [27].

(il) The inertia perpendicular to the magnetic field is comparable to 

the restoring force resulting from the bending of the magnetic field 

(evaluated at the boundary layer edge).

For low poloidal mode numbers these two assumptions yield a 

consistent ordering known as the slow interchange ordering [28]. Under 

this ordering Coppi et al reduce the resistive MHD equations within the 

boundary layer to the following:-

b 2 + yP V.^ 2.4.4

imk B
P “ ^B2Çg= -P 'by + -------   X 2,4.5

2m^B^B?Bg^ imB £ ’k
pw^C" =      +  7T----  " 2.4.6

r r: B %s z 
imkB £'x

where subscripts B relate to quantities parallel to the equilibrium
2xBe

magnetic field, and £= ----  is the rotational transform (all otherkrB z
quantities being as previously defined). All equilibrium quantities

here being evaluated at the singular surface, r .s

Implicit in the above ordering is the assumption that the growth
I/3rate scales as a fractional power of the resistivity, namely n . Thus 

outside the boundary layer not only do the MHD equations reduce to the 

ideal MHD equations but also to lowest order we may discard all time
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derivatives. The result is that outside the boundary layer we are left 

to solve the marginal ideal MHD stability equation.

Where f and g are as defined for eqn 2.3.6. Defining x - r-r^ and 

the small x solution of eqn 2.4.9 is [is]

5 = Clr ^s

I I —1—h
+ C2 —  2.4.10r' s '

where

2.4.11
r=rs

After some simple algebra we find 

where 9 is the safety factor.

Thus D<| is the Suydam stability criterion (eqn 2.3.11),

Returning now to the equations within the boundary layer, for 

convenience Coppi et al recast eqns 2.4.4-2.4.8 in dimensionless form. 

Defining
kr B ( r ) £ ’(r)

B = |b | F ’ = --------2itB
2P(r ) -2B^2(r )D

« = -1 ^  = = s s

and introducing a scale length and frequency

_ / 2„p, 2 3 2 ^ / 3

we can define new variables

' X = x/L^ Q = q/Q^ 0 =

ip = (ia/L_ mF'B)B v = (Db 2/P')BR B^
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Eqns 2.4.4-2.4.8 then yield

= Q(if; + X0) 2.4.12

X2I" = ^  0 + -  4 _ 2.4.13

’* = + Q(s-D- ^ ) 9  + “  2.4.14\  QZ Y8/ V +  ye' Q

The large X solution of these equations is (X>0)

6 = (A1 + A2 x-a(l-t))e=Z/2P
h “1—h.+ A3 X + A4 X

+ (A5 x-3(l+s))e-% 2.4.15

where P=Q^. Since s,t do not figure further they will not be defined. 

(Their definition may be found in Coppi et al [24])

Since eqns 2.4.12-2.4.14 constitute a sixth order set of 

differential equations, we shall require six matching conditions at the 

boundary layer edges. Two of these are implied by requiring that 0 

remains bounded as X-^ , this requirment gives A1=A2=0. Two more 

matching conditions follow from similar considerations as X -> _oo. 

Matching to the solutions exterior to the boundary layer yields the 

final two matching conditions by giving a value for A3/A4 as X ^  ™ and 

similarly as X -> -f».We thus have a well defined eigenvalue problem 

which we may in principle solve for Q.

We can simplify the problem by noting a particular property of the 

eqns 2.4.12-2.4.14; if we have a solution 4),0,v valid for X>0 then we
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can construct solutions valid for X <0 by

l|j(X) = -ijj(-X) ; 0(X) = 0(-X) ; V(X) = V(-X) for X<0

or ijjCX) = ijj(-X) ; 0(X) = -0(X) ; V(X) = -V(-X) for X<0

these correspond to the odd and even boundary conditions of Coppi et 

al : -

EVEN 0=1 0'=O \p=0 v'=0

ODD 0=0 =1 V =0

In general these modes are non-degenerate and so one will dominate by 

having a faster growth rate. The problem has thus been reduced to 

solving for X>0 (or X<0) and using either the odd or even boundary 

conditions at X=0,

To make further progress Coppi et al use a so called low 3 

approximation. They reduce 3 and the shear to zero such that D remains 

finite. Eqn 2.4.14 then reduces to

V  = D0 2.4.16

Using this eqn 2.4.13 becomes

8" = l e  + _ 2.4.17
Q Q Q

Defining Fourier transforms of the functions 6 and ^ by

X = (X) e'^^^dX (p = l|j(X)e dX

eqns 2.4.12 and 2.4.17 yield

2 \ ̂
=0 2.4.18

One boundary condition arises from the series solution near the origin

Dllw |h + D2 |M|-l-h 

the ratio D1/D2 being fairly simply related to C1,C2 of eqn 2.4.10
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(Coppi et al Appendix B) and the other boundary condition arises by 

requiring boundedness at infinity.

A particular set of solutions of eqn. 2.4.18 is

j=0
|i exp^- —  Q u^ j ̂  ^

where V =
h+2n+i+(4hn-K2n+i) ̂ ^

and n is an integer.

It should be noted that although this solution only satisfies a 

particular set of boundary conditions at the origin it does exhibit the 

important property that resistive interchange modes may grow in 

situations that are Suydam stable (i.e. satisfying eqn 2.3.11). Coppi 

et al numerically solve eqn 2.4.18 for the complete spectrum of A3/A4 

ratios (ie D1/D2 ratios). Their results are shown in fig 2.4.5.

120'

90*

60*

d
Even

.Odd30*

60'

90*

_1FIG.2.4.5 a = Cot ( A3/A4) v growth rate (Q) for numerical
solution of eqn 2.4.18 with odd and even boundary 
conditions.(D=0.1875)

It can be seen that at and beyond marginal ideal MHD stability (ct<0)

the even mode dominates. Hence for ideallv stable cases the odd mode
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will dominate and farther the odd mode has ^ I (i.e. b I #0 ) ̂ll r r ' rs s
hence the existence of islands is predicted by this theory.

In conclusion it must be noted that other valid boundary layer 

orderings exist; notably the tearing ordering and the fast interchange 

ordering [24], In practice the solution is not purely a single 

ordering but a mixture in which one ordering is generally dominant. An 

analysis has been given by Classer et al [29] which includes both the 

tearing and slow interchange orderings in various limits, for a system 

with toroidal geometry. The effects of including a non-hydrostatic 

stress tensor have also been investigated by various authors. For a 

curved geometry system parallel viscosity [30] is the lowest order term 

and represents the most important effect. Hosking and Robinson [31 ] 

have found that the inclusion of parallel viscosity can stabilise the 

m=l resistive g mode at modest beta. In a straight (slab) geometry the 

higher order perpendicular viscosity terms dominate and provide a 

stabilising effect [32]. Another effect of including resistivity is to 

cause a radial equilibrium flow [23], whose effects have been ignored 
in the above analysis. Dobrott et al [3 3 ] have found this effect 

reduces the growth rate of the tearing mode but has no effect on the 

resistive g mode. The nonlinear theory of the tearing mode has been 

studied in great detail over the last decade. Notable contributions 

being made analytically by Rutherford [34] and both numerically and 

analytically by White et al [35]. Numerical analyses have now been 

extended into 3D for the tearing mode. The most notable work here 

being done by the Oak Ridge Group [3 6 ]»

— 41 —



CHAPTER 3 NUMERICAL METHODS FOR THE m=0 g MODE

3.1 INTRODUCTION

In order to gain some insight into the behaviour of the nonlinear 

g mode, it was decided to initially study a reduced and simplified 

problem. The particular assumptions and resulting equations are 

discussed in section 3.2. A brief review of the numerical methods 

applicable to such equations is given in section 3.3 and the m=0 mode 

code developed to use these methods is discussed in section 3.4. Use 

of this code revealed that an efficient Fourier harmonic formulation is 

applicable to the g mode problem. This alternate formulation is 

described in section 3.5.

3.2 REDUCED FORMULATION

In the vicinity of the surface where the longitudinal field 

reverses in a Reverse Field Pinch (RFP), an m=0 g mode may occur. It 

is known from previous work that the m=0 mode is least likely to be 

stabilised by finite Larmor radius (FLR) effects, such as parallel 

viscosity [3 1 ]. Also the work of Schnack indicates that this mode may 

continue growing far into the nonlinear regime [37]* With these points 

in mind it was chosen to initially focus attention on the m=0 mode 

only. To achieve this a 2D approximation is made in which all
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0
variables are taken to be functions of r and z only, so that -gg-EO. To 

further simplify the problem the plasma is assumed to be

incompressible. This assumption does affect the growth of the mode but 

in no way does it alter the basic character of it [38].

3.2.1 MATHEMATICAL FORMULATION

If one is not to impose a fictitious gravitational term to drive 

the g mode [23] it is necessary to study it in some curved geometry 

system. As the RFP is a toroidal containment system, toroidal 

co-ordinates might seem the obvious choice. However, a periodic 

cylindrical system produces a much simpler formulation, and because 

contemporary RFP's do not have tight aspect ratios, represents a fairly 

good approximation.

The conditions of incompressibility, V.V=0 , and Maxwell’s equation, 

V.B=0, permit the definition of a velocity stream function (j) and a 

magnetic stream function ijj , for our 2D system:-

(■ r If ’ ^8' F  I f )  3.2.1

^  = (- 7  If' ® 8 ' f l f )  3 2 2
The r and z components of Faraday’s law 

3b

may be integrated with respect to z and r respectively to give:-

rEg = - + C(t) 3.2.3

where C(t) is as yet an arbitrary function of time. We impose a 

perfectly conducting wall as a boundary condition, hence the tangential
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component of JE at the wall must be zero [39], and in particular 

Egl^aii^O* We are also free to apply a gauge constraint which is taken 

to be ip = constant at the wall for all time. Evaluating eqn 3.2.3 at 

the wall we find C(t)=0. Hence

=  - I f  3 . 2 . 4

Using the 8-component of Ohm's law (eqn 2.2.27) to substitute for Eg in 

eqn 3.2.4 we obtain

f • s)
The 0-component of the resistive diffusion equation (eqn 2.2.31) yields

T T  = l ï  ( / 1 ?  ■ \  ®e) ■ I f  ( v e  F ^ l f )

. , 8b \ 8=B B \
+ n I -  4 -  r +      (n=const) 3.2.6r 3r \ 3r / n. 2dz r

and the 0-component of the equation of motion (eqn 2.2.29) yields 

The 0-component of the vorticity equation yields

a a 1 /
8F < V e >  + 8F < V e >  + F  ^ 8^  ' s T  ' 2 .2.8)

where W is defined as w=(VxV)g.

The system to be solved is closed by the relation

which follows directly from the definition of w.
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3.2.2 BOUNDARY GONDITIONS

At the wall

At the perfectly conducting outer wall we choose, as mentioned 

above, the guage constraint that ^=constant.

If we also take the wall to be non-porous then we must have

Hence
V , = 0r wall

4 ^  = 0  ^  (j) = fn(t) at walldz

As cf) is not time advanced we are free to choose any constraint which is 

in accordance with this equation. We choose the simplest

11 = 0 wall

As mentioned previously in section 3.2.1 the tangential component of 

at the wall, is zero and hence in particular E^=0. This together with 

the z-coraponent of Ohm's law gives

9rB
1 7 "  " °

The final two boundary conditions required on oj and Vg are rather more 

arbitrary. We choose those given by Schnack [40]«

dr
and

9V
-7^ = 0
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This latter condition together with I ..,=0 gives^ wall

o)| . - = 0wall

So in summary, at the wall, we take the boundary conditions as

3rBg 3rVg
d) = — jr  = — 7T—  = Ü) = 0 and üi = const.3r dr

At the origin (r=0)

Here the boundary conditions are governed by symmetry

considerations. We take those given by Dibiase [38]

3V 3b
\  " '̂ 6 " ®e " °

all variables being evaluated at r=0 .

Using these relations and eqn 3.2.5 we find that

=  03ip
3t r=0

hence

I _ = const. ̂' r=0
Also the above relations give

“ lr=0 = °
The final boundary condition required is that on cj) at r=0. This is by 

far the most difficult boundary condition to derive. First we shall 

present physical arguments to justify it and then support this with 

some mathematical detail.

The code developed to solve the above equations is primed by 

introducing a solution from a linear code. Thus initially the solution
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is symmetric about the X-point in the z-direction and there is no 

reason why, as it evolves, either z-direction should be preferred. 

Hence will always remain zero along a radius passing through the 

X-point. Thus

Hence

rail
rV dr =

z=Xpt
4)

z=Xpt _

wall
=  0

^^r=0, 2 = Xpt ^

, . 9(f)and since -5—  dz r=0
- 0 we have 6 I = 0, ‘ r=0

The above argument is not wholly valid because a solution of any 

phase is free to arise from noise. However these perturbations will 

remain negligible as we follow the evolution of the solution for only a 

few e-folding times. Thus if any asymmetry arises in the solution, it 

must come from the convolutions that occur in the nonlinear terms. 

Taking an initially symmetric solution it is easy, though tedious, to 

show that it remains symmetrical. Choosing a symmetric solution with 

its X-point at z=0, we have

ip = y  ̂ Ip̂  Cos nkz
n=o

00

^8 = Ve0 n=i n

Bq = ̂  Bq Cos nkz 
n=0 ^

00

W = W + y  ' 0) Sin nkz

now V =*"—  and so v =0 thus r r dz r
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V = 7 V Cos nkz r rn=l n

examining the first nonlinear term of eqn 3.2.5
00 00 9i|;

V = /  ' V Cos mkz / J  Cos nkzr 3r ^  ^  3r

1 3$= —  7 V 7T-(Cos(m-n)kz + Cos(n+m)kz)2 y J r dr
n,m=0

and so no asymmetry (sine phased terms) can be generated by this term. 

Similar reasoning shows the same to be true for all nonlinear terms in 

eqns 3.2.5-3.2.8 . Thus
00

V = V + \  V Sin nkzz z /j z o "  n n=l

It now remains to show that V =0, in order to prove that V _ . =0.z z z=Xpto
The zeroth harmonic of the z-component of the equation of motion is 

/avz . \ 1 a
Po + 7  37 V z ^ o /  = 7  37''(

But

= ( è " " W  V z  è ''zV m / \ o n=i n
V Vg =  ̂ > V Cos mkz I | V_ + 7 . V Sin nkz

m=l

V '  1 f .= V / .V Cosmkz + —  7 V V (Sin(n-m)kz + Sin(n+m)kz) z r 2 . r z0^-1 m m,n=l m n

hence

<Vz>o = °
Similarly

(B B ) = 0r z o

hence the initial condition that V L « =0 impliesz 't=0

V = 0 zo

Hence the boundary condition (j) ] 0 is proven.
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Summarising, the boundary conditions at the origin are

V - = B q =  ()) = W = 0 and ijj =  const0 8

At Z=0 , 2w/k

Since we are approximating a torus we require periodicity in the

z-direction e.g.^l om-/i for all r, where k is the waveZ=0 Z=2Tr/K
number of the first harmonic in the torus (ie. k =1/R, R being the 

major radius).

3.2.3 NON DIMENSIONAL FORM

Before proceeding to a numerical solution it is convenient to cast 

the equations in non-dimensional form. There are two characteristic 

time scales applicable to the problem. The resistive diffusion time

T = -  3.2.10
«

and the Alfven transit time 

a Po^
^ H = V -  3 :O

where 'a' is the characteristic length for the problem and B ,p and qo o o
are typical values of magnetic field, density and resistivity 

respectively. The ratio of these two times 8=%^/%^ is the magnetic 

Reynolds number.

We choose to normalise to the Alfven transit time and accordingly 

define dimensionless variables
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r = r/a ; î = t/Tjj ; fi = n/n^

P = P/P_ ; B = B/B ; ùü = T Cü0 —  —  o H

$ = Tjj((./a3 ; $ = 4,/B^a^ ; aJg/B^ ; Vg = T^Vg/a

Because we choose p, p constant we set q=p=i and our equations then 

become

V 1 — —  r { V V„ 4  — —  I — — { V V^+   1 3.2.14
.A

A A AAA  ̂ r.A\  ̂/J^ A A « A A ./A 3rV,9(1)
3t 3S \ g  32/ at"-2 32/ 32 " aS " 2 3%\ ° a2

A AA
2/," Ü 6N _ 1 3/a y ® o \  ^ y e \

- -j/l 2$^ _ 1 32$
2 3$, 3.2.16

3.3 NUMERICAL METHODS

The above equations are intractable analytically and so one is 

virtually forced to solve them numerically. The technique employed in 

any numerical method for solving systems of differential equations is
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to replace that system by a discrete system. One method which has been

particularly successful in the study of tearing modes, is finite

differences [41]. In a finite difference method the exact differential

, is replaced by the ratio , AZ, over a finite set of points known
9x Ax

as a grid or mesh. This discretisation is used both spatially and 

temporally in our application.

To elucidate the method the one dimensional diffusion equation will 

serve as a good example

l t =  'I 3 3 1

where q is the diffusion coefficent.

The second derivative may be approximated as [42 ]

yj.i - + fj.i
(Ax)2

where Ax is the spatial grid spacing (assumed constant), and subscripts 

refer to spatial grid location.

Writing eqn 3.3.2 symbolically as D.(y), a general form for eqn 3.3.1 

is n+1 ny — y
 ̂  ̂= n(6D (y“ ) + (l-6)Dj(y“ '̂ l)) 3.3.3

where superscripts refer to temporal grid location. At is the temporal 

grid spacing, and 0 8 < 1 .

Setting 0=1 the right hand side of eqn 3.3.3 involves y values at 

the 'old' timestep only and hence eqn 3.3.3 may be trivially advanced 

in time - this i-s known as an explicit method. Conversely, setting 0=0
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the right hand side involves y values at the 'new' timestep only and to 

time advance eqn 3.3.3 one is forced to solve a coupled set of linear 

equations for the y this is known as an implicit method.

At first sight the simplicity of the explicit method would seem to 

make it the obvious choice. There are however two important criteria 

which any differencing scheme must satisfy

(i) Convergence, which is the property of the difference approximation 

that it tends to the continuum value uniformly, at any given time as 

the grid spacings and timestep go to zero. Convergence may be 

conditional on some relation between grid spacings (Ax and At in the 

example above)

(ii) Stability, which is the property that any given initial 

conditions yield a solution at a given time which remains uniformly 

bounded as the timestep goes to zero. Again this may be dependent on 

relations between grid spacings.

Lax's Equivalence theorem [43] states that stability is a necessary 

and sufficient condition for convergence. Hence in practice it is only 

necessary to test for stability.

A Von-Neumann stability analysis shows the explicit method to be 

stable provided that 2qAt/Ax^ < 1 [44], whereas the implicit method is 

unconditionally stable [45]. Hence although the implicit method 

requires far more computations per timestep , it will in general be 

more efficient for diffusive problems, since it requires far fewer
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timesteps to advance the solution a certain distance in time, than the 

equivalent explicit calculation.

With 0=0 eqn 3.3.3 is only first order accurate in time, since the 

lowest order term in the discretisation error of the time derivative is 

O(At^). Setting 0=^ however, renders eqn 3.3.3 second order accurate 

in time, whilst still preserving the unconditional stability. This is

known as a Crank-Nicholson weighting [46].

The solution of the coupled linear equations, which is necessitated 

by any non explicit method, may be greatly aided by considering their 

particular form. Defining as [ Y ^ ] y ^ ^ ^ f o r  1 ^ j ̂  J-2,where j is

the total number of spatial mesh points, we may symbolically write our 

implicit difference system (i.e. eqn 3.3.3 for 2 j J-1 and boundary 

conditions) as

A Y^"^^ = 3.3.4

where ^  and ^  are (J-2) x (J-2) matrices and the boundary conditions have
, ,  ̂ - n+1 n+1 n , n+1been used to replace y ,y ,y , and y1 J 1 J

Examining eqn 3.3.3 we find that it couples only 3 adjacent spatial

mesh points. Accordingly, except for its top and bottom rows, A will 

be non-zero only on the leading diagonal and the diagonals immediately 

above, and below it. Such a matrix is known as tridiagonal. Simple 

and efficient algorithms exist for solving tridiagonal systems and 

their associated boundary conditions. These are discussed in 

section 3.4.1 for some specific applications. The general problem is

dealt with in detail by Richtmyer and Morton [47].
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The numerical methods presented so far have been concerned with the 

solution of equations in one spatial dimension only. Extending these 

ideas to two or more dimensions leads to certain problems. If we take 

the two dimensional diffusion equation

and apply the Crank-Nicholson weighted differencing scheme in both 

spatial dimensions we obtain

C j - rl.j , //fj+i.j- Sfi.j +

At  ̂\ (Ax)2 (Az)2

+ ----------------------------- +  =  I 3.3.6
(Ax)2 (Az)2

where the subscript i relates to x grid position and j to z grid

position. Unfortunately eqn 3.3.6 no longer gives a tridiagonal form

and so one is forced to invert a large matrix. Certain methods exist

for solving such problems, notably successive over relaxation [48],

The practicality of this method is however, still somewhat questionable

for such a large set of equations, as the MHD equations, on a

reasonably refined mesh.

These computational difficulties can be overcome by the 

introduction of multi-step methods. If we advance half a timestep with

X fully implicit and z fully explicit and the other half timestep with

the roles of x and z reversed we obtain the following differencing

scheme

----------- =  n  I ---------------------------------------- +  — '
(At/2 ) \ (Ax)2 (Az)
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•  C - .
 .----------  = T] I ------------- -̂--- :------ + -------  —

(At/2) \  (Ax)2 (Az)2
3.3.7

This method is aptly known as the alternating direction implicit (ADI) 

method [49]. It is second order accurate in time and unconditionally 

stable provided that the equations are linear. However while nonlinear 

effects introduce some timestep restrictions these are generally far 

less severe than for explicit methods. The great advantage of the ADI 

method lies in the fact that one only has to solve a tridiagonal system 

of equations at each half timestep. This brings the numerical solution 

of the MHD equtions within the potential of modern computers.

3.4 THE m=0 CODE

In this section, details of the application of the the numerical 

methods of the last section to the particular problem, of solving 

eqns 3.2.12-3.2.16 are given. The particular algorithm chosen is 

explained in section 3.4.1. From this algorithm a FORTRAN program 

"INSTAB" was developed.

Having developed such a large code one of the main problems is to 

ensure that there are no ’bugs' (errors) in it. Details of the various 

tests applied to the code are given in section 3.4.2.
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3.4.1 THE ALGORITHM

The algorithm developed is an extension of the mixed 

explicit - implicit algorithm developed by Waddell et al [41].

The equations are differenced on a uniform mesh in the r-z plane. 

The r-mesh has its first point at r=0 and its final point at the wall. 

The z-mesh must be constructed so as to incorporate the periodicity in 

z direction. Accordingly the mesh is constructed so that z=0 lies 

halfway between the first and second mesh point and similarly z=2TT/k 

lies halfway between the last and last but one mesh point. The periodicity 

requirement then becomes

h , i  = h , j - i

^i 2 = ^i J 1 < i s< I
where I and J are the total number of r and z mesh points respectively.

Writing eqn 3.2.12-3.2.14 symbolically in the form

It ■ 3.4.1

= R + Z 3.4.2

)9 T  = \  ^ \  H  ' 3.4.3

where R^ contains the r derivatives of ip, contains the z derivatives 

of ip, and Rg contains the r derivatives of Bq and Vq etc, and further 

writing eqn 3.2.15 symbolically

l r =  30' ^e- h -  h ’
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the technique of solution is as follows (superscripts indicate 

times tep)

The R implicit j timestep

(i) The explicit equation

n+J n03 - (JÜ _
( 2 At)

is solved for

(ii) Eqn 3.2.16 is then solved for and hence can ber z
obtained

(iii) Next the implicit equation

_ n+i n 
(iAt) ■ ^ *

is solved for where the y , y are included at n+i in R and at nr z
in the Z terms.

(iv) Finally the coupled implicit equations

„n+i n
_e i = R - i  + z;
(iAt) 8

y»+i n n+i 1

— — = r“'"* + z° - 4  ( M ' *  
(iAt) ^8 ' \ r ® ^ )

are solved for , Bg^^where V^, V^, ifj are at n+i in R terms and at

n in Z terms.
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The Z implicit j timestep

(i) The explicit equation

n+1 n 1(JÜ - 03 ^n+i
Ât " ^

is solved for 0)^^\

(ii) Eqn 3,2.16 is then solved for and hence can be

obtained.

(iii) Next the implicit equation

^ ph+i n+1 
(iAt) ip ip

is solved for , where the V^, are at n+i in R terms and at n+1

in Z terms.

(iv) Finally the coupled implicit equations

p.n+1 %n+i

(iAt) B,

n+1 n+i ! n+1

)
are solved for B^^} Vn^^where V , V , i|3 are at n+i in R terms and at D o  r z
n+1 in Z terms.
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Eqn 3.2.16 is solved by a standard Fourier transform method. Using 

a fast Fourier transform routine [50] the harmonics of o) can be 

obtained.

Nmax
CO = / (A (r) Sin nkz + B (r) Cos nkz)

/ J n n
n=0

If we define C , D by n n

D^X
(j) = /  , (C (r) Sin nkz + D (r) Cos nkz)n nn=0

then eqn 3.2.16 implies

9
r 9r y r n\  3.4.4.(a)

(r ^ ' 3^ 3.4.4. (b)

Since A^, B^ are known, eqns 3.4.4 represent a system of tridiagonal 

equations which may be solved for C^, D^. The values of (]) may now be 

obtained by use of a fast Fourier transform routine to invert the 

transform.

The solution of the implicit equations for ip varies according to 

whether the r or z direction is implicit

R implicit

If we rewrite our difference form for ip as (for any j such that U  j>̂ J)

h C L  + 3 . + h C L  = 3^ 3 .4.5

and take the boundary conditions (see section 3.2.2) as
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Ip I = Cl and ip I = C2‘r=0 'r=wall
Then assuming

• r ‘ ■ ' i * : : ! , )  •

and substituting into eqn 3.4.5

h C L  + 3i =3i

hence

= ' ! h - - ‘ 'j 3.+C.F._i -i.l.j

comparison with eqn 3.4.6 gives

h  , ,  3.
3i = - B.+C.F. , 3. = B. + C.F. , 3 4 71 1 1^1 1 1 1-1

Now the boundary condition at the origin gives

= 0 and = Cl

using eqns 3.4.7 one can then obtain for SL^i^:!-!. Using these

values for F^ , G^, eqn 3.4.6 and the boundary condition at the wall to

initiate the recursion relation, one can obtain forl^i^I.
 ̂> J

Z implicit

The r implicit solution above requires two sweeps of the mesh - one to 

solve for F^ , G^ and the other to obtain the solution, ip̂ '*'j.The 

solution for z implicit is further complicated by the periodic boundary 

conditions and three sweeps of the mesh are necessitated.
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Again defining our difference form as (for any i such that 

and noting the periodic boundary conditions imply

We proceed by assuming

C j = L  + 3 j  C - l  + » j

Substituting into eqn 3.4.8 yields

j+CjFj_l ( ■  * j h ,  j+1 ■

comparison with eqn 3.4.9 reveals

3j " B.+C.F. 3.4.10(a)
J J J-1

-3j Gj_i
3j = B.V.F. , 3.4.10(b)

J J J-1

3j = 3.4.10(C)
J J J-1

To start these recursion relations (eqns 3.4.10) off we require a 

starting condition. This is obtained by application of the boundary 

conditions to eqn 3.4.9 which yields

= 0 and = 1

If we further assume
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then substituting into eqn 3.4.9 we obtain

" L ' j + i  " "j

Comparison with eqn 3.4.11 reveals

h  = L  T j + l  "  3 j  3 . 4 . 1 3 ( a )

" j  = L  S j + 1  "  " j  3 . 4 . 1 3 ( b )

Again we require some initial values for S, T to start these recursion 

relations - these may trivially seen to be

V l  = 1 S j - l  = 0

Applying eqn 3.4,11 we have now expressed all variables in terms of 

So to complete the solution it remains to obtain a value for 

^i^J 1* may be achieved by applying eqn 3.4.8 at J-1 and using

eqn 3.4.11. The result is

, n + l  3 J - 1  ■ V l  ®2 •  3 j - i  S j _ 2

The implicit solution for Vg, Bg is slightly more involved again, 

since these two equations are coupled, thus necessitating a 2x2 matrix 

formalism. The tridiagonal solution techniques above carry over in a 

straightforward manner with matrix inversion and multiplication 

replacing scalar division and multiplication.
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3.4.2 TESTING THE CODE

Firstly it is necessary to ensure the code is executing the

specified algorithm correctly. At the time of writing, each routine

was tested in isolation. In particular each of the tridiagonal

inverters was checked to ensure that it really was obtaining the

solution of the equations. The cp solver was also carefully checked by

taking a specified V^, V^, working out w from these, solving eqn 3.2.16

for (p, and then checking that V = - —  Vr r oz z r dr

Having passed these initial tests the code as a whole was checked

for numerical convergence. It is unnecessary to check for timestep

convergence as the code contains a routine which repeatedly halves the 

timestep until a desired degree of convergence is obtained. This

timestep checking is performed every 30 or so timesteps, thus ensuring 

continued timestep convergence.

The r-mesh testing was performed in a straightforward manner, the 

number of radial mesh points being increased until suitable convergence 

occurs. It was found that for a magnetic Reynolds number, S=1000, 

fifty radial mesh points were sufficient.

Testing the z-mesh presents more of a problem, because the fast

Fourier transform routine requires 2^ input data points and so one is 

not free to vary the number of z-mesh points at will. Instead the 

actual z length was increased to 4ïï/k , whilst maintaining the number 

of z-mesh points constant, and two islands instead of the normal one 

were primed in (see figs 3.4.1 and 3.4.2). The comparison between the 

growth rate curves for this run and an equivalent one island run shows
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the z-mesh convergence to be fairly good (see fig 3.4.3),

r

I 50. $ ? 10 12 13 IS

xo

r

1.S -

30 30

FIG. 3.4.1 and 3.4.2 Comparison of normal island structure (top) 
and double island structure (bottom) used for mesh testing.
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FIG. 3.4.3 Comparison of growth rates between one and two 
island runs.

Finally it is necessary to check the answers which the code obtains 

are correct. This is a much more difficult area as no analytic 

solutions exist to test the code against. However, by priming the code 

with an equilibrium perturbed by eigenfunctions from a linear code, a 

certain degree of checking is possible. It is found that if the 

eigenfunctions are sufficently small to stay within the linear regime 

then the growth rates of the linear and the nonlinear codes agree to 

within 2% over a range of 500<S<5000. It must be stressed that this 

comparison is to the initial growth rates of the nonlinear code, since 

particularly at lower S subsequent diffusion of the equilibrium alters 

the growth rates.

It is also worth noting here that detailed explanations and 

independent confirmation of results from the code presented in
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Chapter 4 serves as an additional validation of the code

3.5 THE FOURIER HARMONIC CODE

Use of the code described in the last section revealed that a more 

efficient Fourier harmonic formulation was applicable to the m=0 g mode 

problem. The derivation of the Fourier harmonic equations is described 

in section 3.5.1 and the numerical algorithm used to solve them is

described in section 3.5.2.

3.5.1 FOURIER HARMONIC EQUATIONS

If the linear part of the g mode development is chosen to have:-

^^r,z,t) = l|̂ .(r,t) Cos kz

Vg(r,z,t) = Vg(r,t) Sin kz 

Bg^r,z,t) = Cos kz

CO|(r,z,t) = 0),(r,t) Sin kz

then it is proven in section 3.2.2 that the nonlinear solution will be

COCO

Cos nkz• n 
n=0

Bq - ^ 2  ^0 Cos nkz
n=0 ^
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Z )  “°
(JÜ = (jÜq + 7 (jü._ Sin nkz

n=l

V = /  . V Cos nkz; V = V Sin nkz

Considering the zeroth harmonie of the V equation (eqn 3.2.7)

P
O'

now 3.5.1

- I ^  Cos mkz^ ( Vg + ' ^  Vg Sin nkz
\m=l ” / \ 0 ^  n /

00

Vj, Cos mkz + i 7 ^  Vg (Sin(n-m)kz + Sin(n+m)kz)
° “=1 ” mTZZl m n

Hence
< V r > o  = °

Similarly

\ l f ) ^  = (''z = °

and so eqn 3.5.1 shows = 0. The initial condition that Vg(r,z ,t=0) =0
then implies that V_ =o • Similar reasoning shows (jü =0 also. ThereforeDq 0
if it is chosen to truncate the Fourier series after the first three 

harmonics, the Fourier components of equation 3.2.12 result in a set of 

equations for time advancing (|̂2

^  = I  (7 I?-- ^  - f  3 s :(*)

1 a 1 1

= i ( 7 & 2 ^ - ' = ' ^ - 7 ^ )  3.5.2(b)
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3^2 1 9 1ar + 7 " 2 Vr > + Vz >
l/l 3 \  2 3^2\= 3(7 3F? 37- - 4k:*2 - - a;-j 3.5.2(c)

(where the "hats" have been omitted for simplicity). Similarly the

Fourier components of eqns 3.2.13 to 3.2.15 yield equations for time

advancing , B^ *, , V« and w 0J_« The set of equations to®o ®1 ®2 ®2 ^ ^
be solved is closed by the Fourier components of eqn 3.2.16

^1 _ 3.5.3(a)

» 3 -

The justification for truncating the Fourier series after three 

terms arises primarily from comparing with results obtained by solving 

the full set of reduced MHD equations; some comparisons are given in 

the next section. The physical explanations of the nonlinear g mode 

behaviour given in the next chapter, also indicate that a small number 

of Fourier harmonics should resolve the dominant non-linear behaviour. 

Further, studies using the Oak Ridge Fourier harmonic code RSF have 

shown that three harmonics can adequately resolve the behaviour of a 

single helicity tearing mode far into the nonlinear regime [36].

3.5.2 NUMERICAL ALGORITHM

The algorithm is broadly similar to that given in section 3.4.1. 

The Fourier resolution means however that the problem has been reduced 

from a 2D to a ID problem. Consequently the ADI time advancement must 

be replaced by an applicable scheme. In this case a Crank-Nicholson 

scheme was chosen.
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In detail the algorithm chosen is:-

(i) Solve the coupled set of eqns 3.5.2(a), (b), & (c) for

using a Crank-Nicholson weighted differencing scheme, including the

V *s and V ’s at their "old" values, r z

(ii) Obtain the time centred value for by taking the average of the

"old" and "new" iD values. Similarly obtain the time centred values0
for ip̂ , jp̂ .

(iii) Solve the coupled Bq , V q equations for B. , 6^ , , V^ , and8 8 8^ 8^ 8g 8^
V q using a Crank-Nicholson weighted differencing scheme. Include the

V ’s and v 's at their "old" values and the ih's at their time centred r z
values.

(iv) Obtain the time centred values of V „ ’s and B « ’s«

(v) Solve the coupled equations for and using a Crank-Nicholson

weighted differencing scheme. Including all dependent variables except

the V 's and V ’sat their time centred values, r z

(vi) Solve eqns 3.5.3(a) and (b) to obtain the new timestep values for

({)i, cj)2 . Hence obtain the "new" V , V , V , and V
^1 ^2 ^1 ^2

All variables have now been time advanced and the algorithm is 

repeated.

Validation of the code based on the above algorithm was performed 

by comparing the results with those of the code described in
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section 3.4. Defining the percentage difference between the results as 
rwall /r wall
y|g -g |drxlOO// g dr where g^(r) is the growth rate from the code
o o
described in this section and g^(r) is the growth rate from the code 

described in section 3.4. The percentage error for a case with a

magnetic Reynolds number of a 1000 primed such that it is far into the

nonlinear regime is 10%, 14% and 6% at 20, 40, and 60 Alfven transit

times, respectively.
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CHAPTER 4 m=0 MODE RESULTS AND DISCUSSION

4.1 INTRODUCTION

In this chapter the results arising from application of the 

numerical methods of the last chapter to the m=0 g mode in an KFP are 

discussed.

Firstly in section 4.2 the equilibrium and its tearing mode 

stability properties are examined in detail. A brief review of the 

linear stability properties of this model is given in section 4.3. The 

diagnostic quantities output from the codes are explained in 

section 4.4 and in section 4.5 the nonlinear results obtained are 

presented and discussed at length. Finally in section 4.6 an attempt 

is made to draw some coherent conclusions from section 4.5.

4.2 THE EQUILIBRIUM

The equilibrium used for all the results presented in this chapter 

is the tearing mode stable (TMS) equilibrium developed by

Robinson [7 ].

If we take the equilibrium equation (eqn 2.3.1)
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3P „ =8
37 - '®Z 3 ^  - —  - 37- 4 2.1

rB
and define the pitch, |j(r)=^^ then

*̂ 9̂ ^ p. (p2/r - pp' - r + Crp'2)
dr 0 '

(dP Wu'\2 1
dr'^^^zJ I the Suydam parameter ( C.̂  —  being the 

Suydam stability criterion - eqn 2.3.11)

Specific analytic equilibria can now be obtained by defining functional 

forms for p(r) and C(r) . Following Robinson C is taken to be constant 

and d is chosen as

H(r) = 2(1 - -  - J  ) 4.2.3

Robinson found A =400 gives optimal tearing mode stability properties 

and this value is used for the work presented in this chapter. This 

form for the pitch function has the advantage of implicitly satisfying 

Robinson's on axis stability criterion [51].

As an added refinement a vacuum region can be included in which

—  and B = constant. To avoid discontinuities at the plasma vacuum 0 r z
interface a matching zone is necessitated. In this region variables 

are matched smoothly to each other, in particular C is taken smoothly 

to zero with zero gradients at either end. A typical RFP equilibrium 

given by the TMS model is shown in fig 4.2.1.

It is important for our purposes that the equilibrium be tearing 

mode stable in order to isolate the nonlinear g mode behaviour. At 

zero beta using the boundary layer methods of section 2.4.2 a tearing
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mode stability criterion can be be derived [24], The result is that 

for an equilibrium to be tearing mode unstable

A' =
lim f dij; dij;
e-K) ^dr rg+e dr fs-E > 0 4.2.4

= 0 .

Using an ingenious technique to integrate across the singularity of the 

ideal MHD equations [52] Robinson has developed a code RCWALL to test 

for tearing mode stability. This has allowed an exhaustive study of 

the tearing mode stability properties of the TMS model. The results 

are summarised for C=0., X=400 and a vacuum radius, R^=4.2 in

fig 4.2.2.

Vacuum edge

/

0.5

radius-0.25

Wall

FIG.4.2.1 Tearing mode stable equilibrium with a vacuum 
edge included.
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m = 1

m = l
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/ k . B = 0(m =1 )

j<. B =0 (m = 0)

FIG. 4.2.2 Position of wall for marginal tearing mode
stability for TMS model to m=0 and m=l modes.

The A ’ analysis can be extended to low beta configurations and a 

modified stability criterion derived [29]• Unfortunately at the 

pressures applicable to g mode instability the validity of the A' 

analysis becomes dubious, which leaves us in a dilemma over testing our 

equilibria for tearing mode stability. The m=0 tearing mode however, 

is very weak and stability should therefore be dominated by the g mode 

behaviour. In an attempt to satisfy ourselves that our finite beta 

equilibria are tearing mode stable we have adopted two methods. Both
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involve reducing the pressure to zero while maintaining some property 

of the fields. In the first method we maintain the pitch constant, and 

in the second we maintain the quantity a = J.B/| b |2 constant. The 

second method is probably preferable as it is the gradient of a which 

drives the tearing mode. The reduced pressure configurations are then 

tested for stability using RCWALL. Both methods show all the 

equilibria used for results presented in this chapter to be tearing 

mode stable.

4.3 LINEAR RESULTS

In this section previous linear results are very briefly reviewed. 

These results form the cornerstone of our nonlinear analysis since a 

linear growth phase precedes the nonlinear phase. Indeed to avoid 

unnecessary use of computer time the nonlinear code is primed with 

eigenfunctions from a linear code.

Several linear cylindrical resistive MHD codes have been developed 

by Robinson, Killeen and co-workers. The majority of this work is 

detailed in the thesis of Dibiase [38]. The incompressible MHD code, 

RIP4A, detailed in Dibiase"s thesis, is the linear counterpart of our 

nonlinear m=0 code. RIP4A solves the linearised equations

- p = V X  V X  (B .VB^ + B^.VB ) 4.3.10 dt — 1 — O -1 — 1 — O

8b
= V X  (V, X  B ) -  V X  (n (V X  B ) + n, (V X  B )) 4.3.2dt — 1 — o o — 1 1 o
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as an initial value problem for using a Crank-Nicholson weighted

finite difference method.

Using the TMS equilibrium of the previous section for Rwall=4.5, 

C=0.05, m=0, k =0.4 and a magnetic Reynolds number 3=1000, the

eigenfunctions shown in fig 4.3.1 are obtained. These eigenfunctions 

exhibit the odd mode symmetry detailed in section 2.4 and also 

exhibit very rapid variations in the region of the singular surface, 

thus vindicating the use of boundary layer techniques. It is of 

interest to increase C beyond marginal ideal instability. The 

resulting eigenfunctions are shown in fig 4.3.2 for a 0=0.8. These 

show the even mode symmetry characteristic of ideal instabilities.

V RADIUS
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0.1

0.0 0.1 i.e 1.1 10 11 10 IS 10 IS
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-1.0

00
IS

-0.1

FIG. 4.3.1 Linear eigenfunction for C=0.05 (all magnitudes
in arbitrary units). The singular surface is at 
r=2.66.

_ 76 _



Bp V RADIUS Bg V RADIUS

Vp V RADIUS

0.0 0.5 1.0 1.5 2.0 2.5 10 15 4.0 4.5

Vg V RADIUS

FIG.4.3.2 Linear eigenfunctions for C = 0.8.(All magnitudes 
in arbitrary units) .

4.4 DIAGNOSTICS FROM THE CODE

Running a large code one is in a similar situation to performing an 

experiment requiring diagnostics to tell what is happening and more 

importantly to hopefully explain why it is happening !

Apart from the obvious diagnostics of printing the values of the 

dependent variables, various other quantities are also output. 

Following Schnack the primary diagnostic of mode behaviour was taken to 

be the growth rate of reconnected flux at the singular surface [40]

. 3*.

where

2tt
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Subsequently it was found that the spatial variation of mode growth 

rate meant that an average growth rate represented a more appropriate 

diagnostic. The average growth rate is defined as 

.wall

J o
dr

where is the first harmonic of ip.

In attempting to explain the code results quasi-linear processes 

similar to those detailed by Rutherford for the tearing mode [34], have 

been sought. Accordingly the Fourier harmonics of all dependent 

variables and additionally of the axial and azimuthal currents are 

calculated. Also since the g mode is pressure driven the pressure and 

its Fourier components are required. Since the pressure is not time 

advanced, due to our incompressible formulation, an additional elliptic 

partial differential equation must be solved to obtain it. Taking the 

divergence of the equation of motion (eqn 2.2.29) and remembering V.V=0 

we obtain

V^P = V.(J X B) - V.(pV.VV) 4.4.1

if'we now normalise P as P=2P/B^^ (see section 3.2.3) then after some 

tedious algebra we rewrite eqn 4.4.1 in non-dimensional form as

V2(P + |B|2) =
9B 2 2 91 2 9V
9r + 3z 9r 9z

+ B - V 2r - V
+ |w|2 - IJ 4.4.2

Since P + |B12 is periodic in the z direction eqn 4.4.2 is solved for

P +|B] by a Fourier harmonic method similar to that used in solving for
1^12(j) (see section 3.4.1) and P is then obtained by subtracting |£| .
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4.5 NONLINEAR RESULTS AND DISCUSSION

As mentioned previously the nonlinear code is primed with linear 

eigenfunctions. A typical island structure and flow pattern resulting 

from the odd mode resistive eigenfunction is shown in fig 4.5.1. The 

correct priming level is determined by performing a series of runs at 

different priming levels to determine the point at which the behaviour 

becomes significantly nonlinear.

Wall

4

2

00 5 10 15

Length (z )

FIG.4.5.1 Typical island structure and velocity flow pattern
with which nonlinear run is primed.

Fig 4.5.2. shows the nonlinear development of pressure profile at 

various times for a run with S=10^ , C=0.05, k=0.4 and ^^^22^.5, S being 

the magnetic Reynolds number. Two distinct effects are evident in this 

figure. Firstly the pressure at the singular surface flattens and
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secondly the general pressure increases. The pressure flattening at 

the singular surface, is an analogue of Rutherford tearing mode 

saturation [34]. For the tearing mode the driving mechanism is the 

parallel current gradient and it saturates by flattening the parallel 

current at its , singular surface [34]. For the g mode the driving 

source is the pressure gradient and as the mode grows the pressure at 

its singular surface is flattened. The general increase in pressure is 

caused by ohmic heating which increases the temperature and hence the 

pressure. Alternatively this pressure rise may be explained by noting 

that resistive decay of the magnetic field lowers the gross magnetic 

energy and correspondingly increases the pressure energy, to conserve 

energy (both views are of course equivalent). This pressure rise 

mechanism is sometimes known as the overheating effect [53 ]•

0.12 r
Wall

tn
cD
>.
L_oI—
nL_

Dinin0;

0.08 -

0.04 -

I = 40ta

t =1001*

Radius (r)

FIG. 4.5.2 Nonlinear development of pressure profile for 
S = 10^ case.

The effects of these mechanisms on the growth rate of the g mode
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are shown in fig 4.5.3, where the growth rate at the singular surface 

is plotted against time for runs with C=0.05, S=10^ & 4x10^, and

k =0.4. The decrease in growth exhibited is due to the pressure 

flattening. Whilst the subsequent increase in growth may be attributed 

to the gross pressure rising and thus enhancing the g mode growth rate. 

The effects of this pressure rise can be seen to be much less marked 

for the S=4xlO^ run. This is because the increase in central beta due 

to the ohmic heating scales as S"^. Fig 4.5.4 shows the increase in 

central beta for these two cases, S=10^ and 4x10^, and confirms the 

scaling.

2.5r
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2.0

5 = 1000 K =0.4

X
Û)
ak_
£
%o 5 = 4000 K =0.4
k_
o

0.5, 100

Time (alfven units)

FIG.4.5.3 Nonlinear development of growth rate at the
singular surface for S=10^ and 4 x 10^.
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FIG.4.5.4 Increase in central beta for S=10^ and 4 x 10^
cases confirming the S“^ scaling.

Examination of the magnitudes of perturbations in the nonlinear 

runs shows that we are still in a quasi-equilibrium state. Thus

VP = J X B 0 — 0 —0 4.5.1

where subscripts zero indicate zeroth harmonics. Near the m=0 surface

B by definition must be small, hence the flattening of pressure in 
%o

this region must be due to modifications to J or Bu . Again
^o °o

examining the results we find to be almost totally dominant in the
o

pressure flattening mechanism. Fig 4.5.5 shows ^^^oU=16^r *

<ioit=16 * 5olt=oV the S=1000 ,
k=0.4 run, examination of this diagram substantiates the statements of 

this paragraph. Fig 4.5.6 shows the nonlinear variation of for

S=10^, k =1.0. The decrease in at , which gives rise to the

pressure flattening , is evident.
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FIG.4.5.5 Comparison of various approximations to the 
pressure gradient.
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FIG.4.5.6 Nonlinear development of showing behaviour
which accounts for pressure°ffattening at r .
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Using the above knowledge we can obtain an order of magnitude 

estimate to the saturation width. We have at the singular surface, r

nJ = E - (VqB ) 4.5.2z z Ü r oo o
since =0 (odd mode symmetry - section 2.4.2). It is primarily the

(VqB^)^ term which causes the flattening in the pressure profile at r̂ , 
since for the range of beta of interest the g mode layer width is less 

than the resistive skin depth and so ^ is able to partially relax 

resistively (this effect is discussed in more detail below). Hence for 
= 0 we must have9r rs

^ \ ' o r i g ^ W o  4-5-3
where the subscript 'orig' implies the initial equilibrium value.

Linearising the 0-component of the equation of motion, we have at r^ 

that

PO)Vq = J I . B 4.5.4
0 1 z^'orig ri

where w is the linear growth rate and the subscript 1 indicates a

linear perturbation term. Eqns 4.5.3 and 4.5.4 then give
B 2 r

" I'̂ Oi ®ri = I  ^z^lorig ^  ~ ^^z^lorig

hence B  ̂ 4.5.5
^1

p m  ^ -Y~

but from Furth, Killeen and Rosenbluth [23] the resistive layer

thickness, &, is given by
%pnw

Using eqn 4.5.5 we find
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B
^ island width

kB
( 1 . 4  3) 4 .5.7

Hence appreciable pressure flattening at will occur when the island 

width and resistive layer thickness are comparable. Fig 4.5.7 shows

the level of B such that 37 t=30T
s’ A

=0 and the correspcnding layer

thickness plotted against magnetic Reynolds number, S for 500<S<50,000. 

The gradients in this graph show the resistive layer thickness 

decreases as while the radial field perturbation decreases as

S ’ , which is in good agreement with eqn 4.5.7.

I xIO

Br, gradient =-0.38

o
0>*DD

Layer width grad lent =-0.22xlQ-

5x103
Magnetic reynolds number

FIG.4.5.7 Comparison of layer width and associated perturbed
radial field necessary to cause pressure flattening
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A scaling argument may also be given for the variation of the final

nonlinear state with S. The final state depends on the competition

between the pressure flattening and ohmic heating mechanisms and occurs

when the rate of increase in driving energy available to the mode from

ohmic heating exactly balances the rate of increase of energy in the

mode. Let E be the energy in the mode, E be the driving energy and m D
be the final nonlinear growth rate of B^. Then if the resistive 

layer thickness scales as S ^we have

-a
¥ T  = ® 4 5-8

where the factor S ^o n  the right hand side occurs because the mode can

only draw energy from its immediate vicinity [54]. Now it is shown

above that, when pressure flattening is effective, the layer width and

island width are comparable hence

B ^ ^ S~^ 4.5.9r
and so

-4ctE = S 4.5.10m

Therefore in its final nonlinear state

9E
— -  cc 2y 4.5.11
9t ® -1As mentioned above the ohmic heating rate scales as S and so

=  S 4 . 5 . 1 2ot

This relation, eqn 4.5.8 and eqn 4.5.11 then imply

Y  oc 4.5.13' s
Putting in the numerical value of a =0.22 gives

y cc 4.5.14s
However, the results from fig 4.5.7 show that the island width scales
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as S Using this value for a gives

Y oc s s
-0.43 4.5.15

To investigate the validity of this argument two runs were

conducted at much higher S. Since these runs were to be allowed to

evolve far into their nonlinear states the computer time using INSTAB

to solve the full set of equations would be prohibitive. Hence the

much faster three Fourier harmonic code was used. Fig 4.5.8 shows the

average growth rate versus time for runs with S=10^, 5x10^, k=0.4 and

C=0.05. It can be seen that the final nonlinear growth rate is

essentially static. The scaling implied by these final nonlinear 
-0 44growth rates is S ' which is in good agreement with eqn 4.5.15. 

Fig 4.5.9 shows the nonlinear development of the various components of

the mode energy. It can be seen that the above argument which relies

on the mode energy growing at the same rate as the radial field energy 

is correct.

m
o

S’ 0.5

150010005000
Time(alfven units)

FIG.4.5.8 Average b growth rates against time for S=10
^4and 5 X 10 cases.

— 87 —



CL

Linear growth 
rate

500 1,000

Time (alfven units)

FIG. 4.5.9 First harmonic energy components for S=5 x 10 
case (V^ negligible).

The argument given above, to show that the island width necessary to

produce significant pressure flattening scales as the resistive layer

width requires that the is able to relax resistively. Numerically
o

it is found that the layer width is such that the is able to relax

resistively but requires a finite penetration time. Fig 4.5.10 shows

the various components of the axial Ohm's law for 3=5x10** at 655T^ .

The E can be seen to be only partially able to relax resistively. zo
The effect of this is that the island width must become larger than the 

layer width before the pressure flattening can occur. The factor 

between the layer and island width is however practically invariant 

with S and so the above island/layer width scaling argument remains 

valid.
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FIG.4.5.10 Nonlinear development pf components of axial 
Ohm's law for S=5 x 10^ case.

The variation of growth rate with wavenumber, k has also been 

investigated. Fig 4.5.11 shows the growth rate at the singular surface 

for runs with S=10^ and k =0.4 and 1.0. It can be seen that the 

pressure flattening mechanism is more quickly dominated by the 

overheating effect for the k=1.0 case. A possible explanation of this 

arises from linear properties of the m=0 g mode. Fig 4.5.12 shows the 

variation of the linear growth rate with the Suydam parameter, C for 

k =0.4 and 1.0. It can be seen that the growth rate of the k =1.0 mode 

increases significantly faster with pressure than the k =0.4 mode. 

Hence the mode will be more quickly affected by the overheating effect 

for the k=1.0 case.
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FIG. 4.5.11 Nonlinear development of growth rates at the 
singular surface for k=1.0 and 0.4.
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FIG.4.5.12 Variation of linear growth rate with Suydam
parameter for k=1.0 and 0.4.
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A second possible explanation for the discrepancies between the 

k=0.4 and 1.0 case may be found by examining the scaling of the 

resistive layer width with k • If we take the layer width to scale as 

k ^ and use the above notation for mode energy etc, then

4.5.16

then since the island width and layer width in the nonlinear phase of 

the g mode have the same k scaling (eqn4.5.7) we have

4.5.17

Hence
, 30-2Yg = k 4.5.18

The analytic values of 8 are 6=0.33 for the slow interchange mode and 

0=1.0 for the fast interchange mode [24], The numerical value 0=0.8 

lies between these two. Using this value we find

Y = k^'^ s
for any given S. Hence the final nonlinear growth rate increases with 

k . This may account for the differences between the two curves in 

fig 4.5.11.

Figs 4.5.13 and 4.5.14 show the time development of the island

structure and velocity flow pattern, respectively for the S=1000,

k =0.4 case. The basic structure of the island and flows can be seen 

to be unaltered in the nonlinear phase. Following the nonlinear 

development for times approaching a resistive transit time does reveal 

significant distortions to the flux surfaces [37]. However for such a 

large island a mixed helicity simulation is required to produce

anything physically meaningful.
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Jg is shown in fig 4.5.15 to exhibit the flattening characteristic 
o

of Rutherford saturation [3 4 ] for the S=10^ , kO.4 case. Here, 

however the behaviour is of little consequence as the g mode is driven 

by perpendicular current (pressure gradient) rather than by parallel 

current as is the case for the tearing mode.

.6 Wall

t = 0

0
1.00 2.0 3.0 4.0

Radius ( r )

FIG. 4.5.15 Zeroth harmonic of at t=0 and 40 T

The linearised 0-component of the equation of motion at r^ is

9V( 
’0 at" = J B

?!
4.5.19

Now the pressure flattening corresponds to J =0 and hence in thez r o s
absence of any nonlinear term altering eqn 4.5.19 V q ^ should stop

s
growing as j I approaches zero. Fig 4.5.16 shows (J x B ) I as a 

=o 's ^  '■s
function of time for the S=5xlO^ case. Fig 4.5.17 shows the first
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harmonic of V q as a function of time for the same case. It can be
0  V s

seen that V q | does indeed stop growing and actually decays. The decay 
s

rate of Vg] is almost exactly the same as the growth rate of \|;. Hence 
s

(VqI|;)| tends to an approximately time static value as shown in u rs
fig 4.5.18. Since it is the VgB^ (= -kip^ Vg/r) which perturbs

the axial Ohm's law and causes the pressure flattening this accounts

for the approximately time static final value of (J xB ) I .—0 —o r r
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FIG. 4.5.16 Nonlinear behaviour of (J x B )_ _  ̂̂ 1+ —o —o r rS = 5 X 10 case. s
for
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One effect of the presence of the nonlinear m=0 mode is to enhance 

the pressure gradient to either side of its singular surface. 

Fig 4.5.19 shows this effect for the S=10 , k=1.0 case. This increase

in pressure gradient will enhance the growth of the m=l modes, which

lie to either side of the m=0 mode. Fig 4.5.20 shows the effects on 

the growth rate, of the m=l modes, obtained by using a linear code on 

the evolved 16 pressure profile. It can be seen that the growth

rates are very much enhanced in the core. This effect may be very

important because the m=l, m=0 mode interaction leads to ergodic field

line behaviour (see chapter 6).
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FIG. 4.5.19 Nonlinear development of pressure gradient. 
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FIG.4.5.20 Effects of m=0 mode on linear m=l growth rates.

One of the main problems with choosing an incompressible

formulation has been the loss of independent control over plasma energy 

content. While real plasmas have energy loss mechanisms, such as 

radiation and thermal conduction, the incompressible formulation 

contains no provision to include these terms. However, by including a 

non-physical term in the resistive diffusion equation the ohmic heating 

can be prevented and the loss mechanisms thus approximated. The 

procedure used is to exactly negate the resistive diffusion of the 

equilibrium. The modified resistive diffusion equation is

9B
3% = V X  (V X  B) + nV^B - nV^B I ^dt —  —  —  —o t=0

This method is only an approximation because in reality the fields
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continue to diffuse resistively but the ohmic heating is dissipated. 

Whereas here the fields do not diffuse resistively and so the ohmic 

heating never occurs. Using this method the saturation was found to 

U  complete for the S=10^, k=0.4 case, the average growth rate as a

function of time is plotted in fig 4.5.21.
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FIG,4.5.21 Average growth rate v Time for case with suppressed
ohmic heating.
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4,6 CONCLUSIONS

The processes at work in the nonlinear development of the m=0

g mode have been explained. A quasi-linear mechanism has been shown to

exist in which the perturbations interact to flatten the equilibrium

pressure at by modifying . Since the g mode is driven by
o

pressure gradient this flattening of pressure represents a potential 

saturation mechanism.

This potential saturation mechanism is unfortunately counteracted 

by increasing pressure resulting from the resistive decay of the 

equilibrium. The final nonlinear state has been shown to depend on the 

competition between these two mechanisms, with the final nonlinear 

growth rate scaling as S .

The inclusion of a non-physical term to simulate energy loss 

processes has shown that the g mode may saturate completely.

Finally it has been shown that the nonlinear m=0 mode linearly 

destabilises the m=l modes by increasing the pressure gradient in their 

vicinity. This effect may be important because of the ergodic field 

line behaviour which results from the interaction of m=0 and m=l modes 

(see chapter 6).

— 100 —



CHAPTER 5 THE FOURIER HARMONIC CODE

5.1 INTRODUCTION

It was desired to extend the study of the last chapter to include 

features which could not be added to the existing formalism. The new 

features were

(i) The ability to study modes other than m=0, particularly the m=l 

modes in the core.

(ii) The inclusion of an energy equation into the formalism, to allow 

indepedent control over the plasma energy content. This requirement 

means a compressible formalism must be adopted.

(iii) The possibility of extending the study to mixed helicity 
interactions between the m=0 and m=l modes. ^

Recently the Oak Ridge Group have used a spectral Fourier harmonic 

method to study the 3D tearing mode [8 ]• They have shown the Fourier 

method to be faster and more accurate than the comparable finite 

difference method. An extension of this method to the 3D compressible 

MHD equations would be ideally suited to the above requirements. Such 

an extension is described in this chapter.

In section 5.2 the particular form chosen for the MHD equations is
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discussed. The derivation of the Fourier component equations is 

explained in section 5.3 and the associated boundary conditions are 

given in section 5.4. The numerical algorithm used for the solution of 

the Fourier component equations is explained in section 5.5 and finally 

in section 5.6 some of the tests applied to the code are given.

5.2 THE MHD FORMULATION

The MHD equations may be written :- 

9B
= V X (V X B - - V  X B) 5.2.1

9pv
_  = -  V (p v v  - M  + -(P+B2 )^) + 5.2.2

- V*(pV) 5.2.3

= _ V.(PV) - (Y-l)PV.V + 2(Y-l)^^j|: 5.2.4dt —  —  s —

where X  denotes the unit dyadic and the normalisations

r/r r t/T„ t B/B ^ B—  o —  H —  o —

VT„/r V p/p_ p P/P^ P—  fi O —  u o

have been used, the zero subscripted variables being the characteristic
value of that variable. The Vf, V term of eqn 5.2.2 is the parallel
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viscosity. Where Vf,_V is defined as [30]

and

V.V = ?" T„

= - 3((b.V)V.b - V.(b.Vb)- ^V"V)(bb -

^  being the local direction of the magnetic field. Braginiskii gives 

the parallel viscosity coefficient as V = .96Pi/v. , where Pi is theH li
ion pressure and v^^is the ion-ion collision frequency [12]. The

parallel viscosity is included because it contributes beneficially to 

numerical stability. Its effects on the physics are negligible for the 

m=0 mode, however for the m=l mode it can represent a linear

stabilising term [31]. For these reasons the parallel viscosity is

only included linearly.

The pressure equation (eqn 5.2.4) is chosen in preference to a full 

energy equation since the pressure energy of a typical system is much 

less than the magnetic energy and so rounding errors significantly 

affect the pressure which may be deduced from the total energy. The 

pressure equation also directly couples to the Vp term of the equation 

of motion (eqn 5.2.2), a property which is important for the implicit 

numerical method used.

5.3 THE FOURIER COMPONENT EQUATIONS

In a periodic cylindrical co-ordinate system the variables may be 

Fourier decomposed in the 6, z direction.
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Bp^r,8,z,t) ] (B^ (r,t)Sin(m0-i-nkz)+B^ (r,t)Cos(m0+nkz)) 5.3.1
-oo<m<°o ®m,n ^m,n
0<n<a>

The summation is for n positive only since the trigonometric identities 
Sin(m0-nkz) = - Sin(-m0+nkz) etc.

serve to render n negative redundant.

To use the Fourier decomposition in a numerical algorithm, the 

Fourier series must be truncated at some point. For a single helicity 

simulation in which the first harmonic is dominant, the choice of which 

modes to include is simple - the higher harmonics decrease in 

importance and so to the first harmonic and equilibrium, sucessively 

higher harmonics are added until convergence occurs. In practice 

convergence is very rapid with three harmonics giving quantitatively 

correct answers. For mixed helicity simulations an ordering can 

generally be found which allows the importance of each mode to be 

established, eg. If there are two dominant modes m,n and p,q, and m,n 

is of order e and p,q is of order the following ordering tree is 

obtained : -

0(1):- (0,0)
0(E):- (m,n)

0(E%):- (2m,2n), (P,q)

0(e 2):- (3m,3n), (P±m, q±n)

etc.

The convergence process can then be performed by including sucessively 

higher order modes until convergence occurs.
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The convolutions inherent in the nonlinear terms of eqns 5.2.1 

- 5.2.4 give rise to coupling between the various Fourier harmonics.

eg.

if mo=mi+m2 and no=ni+n2

then bp 8in(mi6+nikz) Vg CosCm^G+ngkz)

= b Vp, (Sin(mo9+nokz)+ Sin((m3̂ -m2)6+(n^-n2)kz) ) 5.3.2
Cm,,.,

and so eqn 5.2.1 couples b^ , b^ , and b^
* 0»^0 ^ I ’̂ l * 2 ’̂ 2

The dependent variables that are advanced are V , , V , B , , Pr ’ 0 * z* r* 0 *
and p. has been removed from the set by using the Maxwell equation

V.^ =0 to give

®z = - > ^ “ ®0 I S 3 -3(a)
®m.n \ ^m.n ®m,n

%  = Ik ( ;  ’ - f v  ) 3.3.3(b)
m,n \ 9m,n ^m,n/

A special case arises when n=0 and eqns 5.3.3 cannot be used. A 

particularly important example of this is the equilibrium (m =n =0). A 

special set of equations is solved for the equilibrium; these are 

discussed below. The case m?^0 and n=0 has not yet been implemented in 

the algorithm described here. However this would be a straightforward 

task with Bg instead of being made redundant by using V.^=0 .

Using (AB) to denote the Sin(m0+nkz) part of them,n
convolution of (A - PA ) and (B-qB ) , where A =A (ie. A is theo o o Co,0 o
equilibrium harmonic) and defining C ^ ’̂ (AB) similarly to be the cosine 

phased part, the equations to be solved for a particular m,n mode pair
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are : -

3B

W  " ' (r 89 + ) V  - s
' ° °' Cm.n ' ' Sm_n

+ ; r= ?F ("Be ) ̂ s If (llf ®r - F ®9 ),n '  ̂ Sm^n Am,n

8(PoV ) 8(rP„ )
° ^Cm.n _ 1 Cm.n ^ g
9t 2r 9r r 9r \ 0

(P
^ " 3 z V  - ® e V  ) - | f ' " I : I ' pV >O o Cm,a/

7 <3::;<PVr> - - "k(S:;:(PV,Vr) -

3 %  a  / \
— ^  = - 7 |7(rPoVr ) - (fv0 + °k:Vz jpoY+(l-Y)|̂  |̂ (x-V )

^m.n ' 9m,n Sm,n '
,9B9Bz / z.

^ f  ( - 1 ^  - ®m,n

+ f(Y-i)F iF(r»e >7 3F(fB0_ ) - 7»r - 7 ̂ < C m >
° ^ ^in,n ®m,n'

7 s:::(pv8)-»k

+ — <Y-1)(C°’0(J 2) + ci'l(Ja^) + 5.3.6s m,n r m,n o m,n z
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9p
= - -|-(rC° °(pV )) - -  S° °(pV.)-nkS° °(pV ) 5.3.7

(for simplicltly only the r components of eqns 5.2.1 and 5.2.2 are 

given and the parallel viscosity terms are not included)

where the conventions S°*®(A2) = S°’°(AA) and if D = BC thenm,n m,n
S°»®(ABC) = (AD) etc. are assumed and the resistivity is taken tom,n m,n
be a function of r and t only. The reason for separating the equations 

into the form linearised equation + nonlinear convolution terms will 

become apparent when the numerical algorithm is explained in 

section 5.5. A similar set of equations exist for the opposite phasing 

ie. Bp , Vg, cosine phased and Vp, Bg, B^, p, P sine phased.

It is a well known property of the linearised MHD equations that 

unless special effects such as finite Larmor radius terms are included, 

no coupling occurs between the two phases of any given Fourier harmonic 

[38]. Therefore only one phase need be solved for each harmonic. This 

property also extends to the nonlinear MHD equations as may be 

demonstrated using proofs similar to those of sections 3.2.2 and 3.5.1. 

For example if Bp is chosen to be wholly sine phased

ie.

= Bp Sin(m9+nkz)B =
m n

and Vg, V^ are also sine phased, whilst Vp, Bg, B^, P and p are chosen 

to be wholly cosine phased. Then the nonlinear terms of the Bp 

equation give rise to no opposite phasing
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eg.

^ r M  ( Z ]  Cos (m0+nkz)^ Bg Cos(p9+qkz)
\m,n p,q Cp^q j

" 2r w f Z Z  ^0 (Cos((m+p)0+k(n+q)z)+Cos((m-p)0+k(n-q)z))
\m,n
p,q

,n Cp,q

i
2r (m+p)^^Vp Bg Sin( (m+p) 0+k(n+q)z)

m , n , n , q
p,q

Vj- Bg Sin( (m-p)0+k(n-q)z)
p ’,q Cm,n ^p,q

All the other dependent variales can also be shown to retain their 
initial pure phasing. For a 2D situation in which the first harmonic

is dominant and generates all the higher harmonics the above proof

shows only one phase need be solved for each harmonic. For a 3D mixed

helicity case the situation is less clear. However generally two

harmonics of different helicity will be dominant and generate all other

harmonics for a 3D case. If this is the case then both harmonics can

be taken to have the same phase, since a 0, z origin can always be

defined to achieve this

eg.

if the harmonics are mi, ni and m 2, U 2 end they are sine and cosine 

phased in a particular frame of reference then defining a new origin by 

0''=0-a , z''=z-b where a, b are the solutions of

(mia + nikb) = 2tt

(m2a + n2kb) = 7T/2

renders both harmonics sine phased in the Q ' , z' frame of reference. 

Hence for most 3D cases only one phase need be , solved for each 

harmonic. The ability to solve for both phases is however retained in
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the algorithm described in section 5.5 to allow any 3D problem to be 

solved.

Another consequence of the "pure" phasing property is that only the 

cosine phased terms can possess non zero equilibrium components. Hence 

the only equilibrium quantities which need be time advanced are B g , B ^ , 

Vp, p, and P. The equilibrium equations are

3B,
° = - ^ ( V  B^ ) + - | - ^ | - ( r B .  ) - $-<cl'l(V B_)- C ^ ’^(V.B )) 5.3.89t 9r r 0 ' s 9r r 9r 0 9r o, o r 0 o,o 6 rO 0 o

9B^ . 9B^ .
°  ̂ (rB_ V_ ) + ^  4r|rn I + è  l?-(C^’^(V_B„)-C^’^(V_B_)) 5.3.99t r 9r Sr 9r\ 9r / r 9r o,o z r o,o r z

9(P_V )0 ro 1 9 / . ,.o I 1 9
3t = ■ 7  3 7 V ‘̂o''r I • 27' O '  ' o o

\ o o /

7'5F'’(^‘̂2: O

+ è<cS;S(PVg=) + ) - cJ:5(bj > + cJ;J(b= >)) 5.3.10

3p
8t 7  8F"'"»’»- r

- 7 § 7 r  cJ;J(PV^) - (Y-1)CJ;J(PV.V)

+ 2(y-i) + cJ;J(Jg^) + cJ>J(j^“)) 5 .3.12
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5.4 BOUNDARY CONDITIONS

One problem with developing a code which uses finite difference 

methods in all three spatial dimensions is that of finding consistent 

boundary conditions. Often numerical smoothing has to be used at the 

boundaries. However, the Fourier decomposition performed here allows 

different boundary conditions to be specified for each Fourier

component. The boundary conditions chosen are those used by Dibiase 

for his compressible linear code [38] : -

At the origin (r-0)

The boundary conditions at the origin arise from symmetry

considerations and vary according to the particular harmonic 

Equilibrium

3p 3p
° = ° = __2 = 0 

9r 9r 9r
Bp, = V = 0 
^o 0

m=0 n^O

B = B „  = V  = V q = 0
^o,n ®o,n ^o,n o,n

3 V
^o,n ^^o,n ^pQ,n
9r - 9r " 9r 0

m=l

V = Pi,n = Pi,n = 0

9r 9r 9r 9r
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m>2

\ , n  = = V n  = Pm.n = 0

At the wall

Again the boundary conditions are dependent on the particular

harmonic : -

Equilibrium

The wall is assumed non-porous and so

o
It is also assumed that the equilibrium current at the wall is 

maintained constant

8Jq 3J

The equilibrium boundary conditions at the wall are therefore

-  F t  j  -  i t  V “ a7^ } ~  a r  “  3 r °  ~ °

All other harmonics (m,n)

Taking the wall to be perfectly conducting and non-porous yields

V = B = 0  
,n ^ m ,n

If the perturbed radial current is assumed to vanish at the wall then

—  B = nkB. and —  B = nkB.r z 0 r z 0
®m,n Sm,n ^m,n ^m,n

Combining this with the Maxwell relation V.B=0 yields, at the wall,
9B

0 m2+n*k2R2 _ _ 9r
Cm,a wall
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and * 9B

9m,n 

(where R ,, =

m,n

'e .®m.n
T1 %Pand V = R _  —  V,

-mRwall
r
Cm,n

m2 +n2 R2R2wall 9r

wall^

derived similar boundary

mRwall
9V

m2 +n2 k2 R2wall 9r
9v

-mRwall ^m,n
m2+n2k2R2 wall 9r

^m,n wall m 0m,n 

The final boundary conditions required are taken to be

m ,n - Pm,n “ ®

5.5 NUMERICAL ALGORITHM

It is desirable because of numerical stability problems resulting 

from the resistive diffusion and sound wave terms to solve eqns 5.3.4 

- 5.3.6 implicitly. However the harmonic couplings inherent in the 

nonlinear terms would require the inversion of a lot of matrices of 

size (no. harmonics x no. dependent variables), in order to solve 

using the standard tri-diagonal method (section 3.4.1). The inversion 

of such matrices is computationally impractical and so a compromise 

must be found. If the convolution terms in eqns 5.3.4 - 5.3.7 are
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ignored then the linear problem solved by Dibiase is obtained for each 

particular harmonic [âs], and an implicit method is immediately

applicable. Hence a compromise which achieves the required stability 

properties whilst remaining computationally practical can be achieved 

by solving implicitly for the linearised part of each harmonic and 

including the convolution coupling terms explicitly.

The main problem with such a formulation is the -^(C^ term

of eqn 5.3.5 and the similar terms of the Vg and V^ equations. These

terms require the "new" values of the p, V harmonics and cannot

therefore be included explicitly, yet to include them implicitly would

cause the harmonics to couple, which as explained above must be

avoided. An iteration process has therefore been used to include these

momentum time derivatives. Firstly this iteration method will be

detailed for a single helicity situation. In this case the first

harmonic will be the fastest growing mode of that helicity and the

higher harmonics will be predominantly perturbed by this mode. Hence

if an ordering e is attributed to the first harmonic then the second

harmonic will be of order the third harmonic will be of order E^,

etc. Also the equilibrium radial flow, which is perturbed by the
o

first harmonic is of order E^ and so 

For the zeroth harmonic (equilibrium)

“ ( ( ■ s t )  !  ~ §7 (pc^o + 57 ( IP 2V2)  + . . . .O

For the first harmonic
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For the second harmonic

3t ) 1 I t  ( P o L *  i P i L i )  w f P z I o  - f p i i î j  +

For the third harmonic

Y « - 3  * fpll2 ± i  PzY iY

etc.

where the subscripts denote the harmonics and the arbitrary signs 

occuring in the harmonic convolutions terms must be resolved for each

particular harmonic and component. Hence if the first harmonic is
GPo^i

solved for initially with only the term of the momentum time

derivative included the error will be small, O(e^) . Then solve for

the zeroth and second harmonics with just the order terms included

(NB that now known). Then solve for the third harmonic with

just the terms of order included, etc. Solving in this manner
/^pV 9piV_

reduces the error in including the 1-^ _2ZB | term explicitly to
/ 3 p v \  "  ) n

order — —  ) for the nth harmonic. Hence a good first "guess" to
\ / n

the solution at the new timestep can be obtained. The iteration

process then proceeds in the normal manner with the previous iteration
/3pv 3p^

values being used to evaluate I ^  j .  The iteration is repeated

until a desired degree of convergence is obtained.

The application of this hierarchical ordering method to a mixed 

helicity problem requires that an ordering be found. Generally as 

explained above in mixed helicity simulations two modes of different 

helicity dominate and generate all the other harmonics. The orderings 

of these two dominant modes then generate the hierarchical solution
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order, necessary to produce the initial solution for' the iteration 

process. It is conceivable that some mixed helicity problems may have 

no evident ordering, however such problems are not considered here.

In fact it was found that assuming P to be a function of r only has 

little effect on the g mode; a comparison between two runs one time 

advancing p and the other taking p-p (r) , is given in the next chapter. 

Since taking a static density profile circumvents all the above 

problems associated with the momentum time derivatives, the iteration 

is no longer necessitated and so the code runs two to three times 

faster. For this reason the majority of runs described in the next 

chapter take the density as a static profile.

The algorithm used is given as a flow diagram in fig 5.4.1.
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Advance p 
explicitly 
using time 

centred values

Start

Perform all 
convolutions

Time advance 
pexplicitly

z
Select next 
harmonic in 
hierarchical 

ordering

Update-?-^ 
convolutions

Is X 
harmonic 

equilibrium

yes Solve for

V ^ 9 o  %

^ n o

Solve for 
V,B, and P

— f—

Update all 
variables 
and start 

next timestep

All 
harmonics 
solved?

Obtain time 
centred values of 
all harmonics and 
update convolutions 
with these values

FIG. 5.4.1 Flow diagram for Fourier code algorithm.
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The adaptation of this algorithm to solve for static density 

profiles requires that only the V_ , jB , P solution need be performed 

since the iteration is no longer necessary.

Eqns 5.3.4 - 5.3.7 are differenced using centred finite differences

in the r direction and a Crank-Nicholson weighting for the implicit

part of the time advancement scheme. The implicit solution of

eqns 5.2.4 - 5.3.6 together with the associated equations for v > V9 z
and Bq produces a block tri-diagonal form which is solved using the

methods described in section 3.4.1. The equilibrium equations

(eqns 5.3.8 - 5.3.12) are also differenced and solved in this manner.

The implicit nonlinear terms of the equilibrium equations such as 
9-^(V^ Eg ) of eqn 5.3.8 are included in the temporal differencing as

Bg ) for advancing from timestep n to n+1. Such 
o O o 0

terms are time centred and are therefore not Crank-Nicholson weighted.

Since the convolutions represent one of the most time consuming 

parts of the algorithm they must be optimised as much as possible. To 

achieve this an array INDEX is used where

INDEX(n,l)= Poloidal mode number of n^^ harmonic 

INDEX(n,2)= Toroidal mode number of n^^ harmonic

and at the start of the calculation an array INDEXI is set up, where 

INDEXl(p,q,l)= n if INDEX(p,l)+INDEX(q,l)=INDEX(n,l) 

and INDEX(p,2)+INDEX(q,2)=INDEX(n,2) 

or= 0 if the additive part of the convolution does not 

produce a result in INDEX.
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and If Isign= Sign(INDEX(p,2)-INDEX(q,2)) then

INDEXl(p,q,2)= n if Isign x (INDEX(p,l)-INDEX(q,l))=INDEX(n,l) 

and |lNDEX(p,2)-INDEX(q,2)| =INDEX(n,2) 

or= 0 if the subtractive part of the convolution does not 

produce a result in INDEX.

Having set up INDEXI the convolutions can then be performed very 

efficiently since the result of every possible convolution of harmonics 

that produces a result in INDEX is stored in INDEXI.

5.6 TESTING THE CODE

The 3D Fourier harmonic code was tested in a similar manner to the 

2D codes (see section 3.4). Each of the tridiagonal solvers was tested 

in isolation to ensure it was solving correctly and the convolution 

routines were checked against simple analytically evaluated 

convolutions. ^

The code as a whole was checked for convergence. The r mesh 

convergence checking was performed in the usual manner by repeatedly 

refining the mesh until convergence occurs. For the range of magnetic 

Reynolds number of interest ( 10^ to lO**), 100 radial mesh points were

found to be sufficient. The code is run by initially advancing only 

the first harmonic until settled linear, eigenfunctions result. These 

linear eigenfunctions are then used after suitable rescaling to prime 

the nonlinear run. The timestep convergence checking for the linear
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phase is performed by repeatedly halving the timestep until the 

eigenvalue growth rate converges. For the nonlinear phase of the run 

the code chooses its own timestep by repeatedly halving the timestep 

until a desired degree of convergence occurs. This timestep checking 

is repeated every 30 timesteps thus ensuring continued convergence. 

Convergence in the Fourier resolution must be checked for each case by 

increasing the number of Fourier harmonics until the solution 

converges.

Although the MHD equations implicitly conserve energy, the code 

itself will not conserve energy exactly. This is because the pressure 

equation and not the energy equation is time advanced, and also because 

the discretisation method is not compatible with energy conservation. 

However the code must still conserve energy to a good approximation. 

This is found to be the case - for a long simulation of 1000 Alfven 

transit times the total energy decreased by 0.06% whilst over the same 

period a 4% exchange of energy between the magnetic and pressure energy 

occurred. This high degree of energy conservation serves as a valuable 

validation of the code.

The code was also checked in its linear phase against existing 

linear codes. The linear code RESTAB developed by Dibiase [38] closely 

approximates the code described here, except that it solves the 

temperature instead of the pressure equation. For this reason and 

because the derivatives of equilibrium quantities are obtained 

analytically in Dibiase's code instead of numerically as they must for 

the 3D code, slight discrepancies between the answers of the two codes 

are to be expected. Fig 5.6.1 shows the growth rates obtained from the 

two codes, for a range of k at a magnetic Reynolds number, S=1344 with
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HF=0. Fig 5.6.2 shows c cm par Isons over a range of S with k =0.2 and 

m=0. Although the growth rates do not coincide exactly for these 

cases, the discrepancies are small enough to be accounted for by the 

reasons described above. The larger discrepancies occuring in both 

cases, when the layer width becomes narrower and the differences 

between the two codes more significant. Therefore these results also 

serve to validate the code.

ca

(04-1to

4-

O
hm
c ;

linear

w a v i n u m b a r 1
1.0

FIG. 5.6.1 Comparison of growth rates for linear code and
Fourier harmonic code over a range of wavenumbers
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Checking of the code in the nonlinear phase is achieved by

comparing the results against those obtained by using the 2D

incompressible codes of chapters 3 and 4. Since they are based on an 

Incompressible formulation whilst the present formulation is

compressible, exact quantitative agreement cannot be expected. However 

qualitative agreement is found on comparing the results and dominant 

nonlinear mechanisms given in chapter 4 and chapter 6.
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CHAPTER 6 COMPRESSIBLE g MODE RESULTS

6.1 INTRODUCTION

In this chapter further nonlinear g mode results, arising from use 

of the Fourier harmonic code described in chapter 5 are presented. 

Firstly in section 6.2 the effects of compressibility and energy losses 

are examined for the single helicity m=0 mode. The single helicity m=l 

mode is briefly discussed in section 6.3 and in section 6.4 mixed 

helicity interactions between the m=0 and m=l modes are examined. Such 

mixed helicity interactions are found to lead to ergodic (random) field 

line behaviour in the reverse field pinch. This ergodic behaviour and 

its relation to experimentally observed phenomena is discussed in 

section 6.5. Finally in section 6.6 the results of this chapter are 

reviewed and conclusions drawn.

6.2 m=0 MODE RESULTS

The Fourier harmonic code may be run as a linear code by simply time 

advancing only one harmonic. For such a run the code is primed with 

noise and the solution followed until settled linear eigenfunctions 

result. These eigenfunctions are then rescaled to a magnitude just 

sufficient to precipitate nonlinear behaviour, and used as initial 

conditions for the nonlinear run.
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The m=0 mode case which is studied for all the results presented in 

this section is S=10**, k=0.4, and C=0.05. This case is discussed -in 

the incompressible limit in chapter 4. Firstly with a Fourier harmonic 

code it is necessary to determine how many harmonics must be included 

to obtain a convergent solution. As has been discussed in chapter 5 if 

an order 6 is attributed to the first harmonic m,n (say) then the 

following ordering is obtained

0(1):- Equilibrium

0(E) :- m,n

O ( E ^ ) 2 m , 2 n

O ( E ^ ) 3 m , 3 n  etc.
Fig 6.2.1 shows a comparison between the average b^ growth rate 

^wall dr) ‘ for cases with the first three and
o o ^

five harmonics included. This favourable comparison is in accordance

with that given in chapter 3 between solving the full set of reduced

m=0 mode equations and the results obtained by solving for only the

first three Fourier harmonics of that set.

0.0020

5 harmonics
U)

0.0015c3
I>
<

3 harmonics

00010

o

It2 00005O

100 200 300

Time (Alfven units)

Fig 6.2.1 Fourier harmonic convergence test for m=0 mode
T 3 and 5
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As mentioned in chapter 5 a comparison has been made between a case for

which p(r)=l for all r and t, and a case in which the density is time

advanced. Fig 6.2,2 shows the average b growth rate for these twor
cases. It can be seen that the assumption of a static density profile 

has little effect on the nonlinear behaviour of the g mode. This 

assumption does however save a considerable amount of computer time and 

will thus be used for the remainder of the results described in this 

chapter.

0.0020
Full set compressible MHD equations

3 0.0015

MHD equations with p=1

00010

O 0.0005

300 400 500 600 700100 200
Time (Alven units)

Fig 6.2.2 Average growth rate for cases in which p is 
time advanced and p = p(r).

It has been shown in chapter 4 that ohmic heating plays an important

role in the nonlinear development of the g mode. The Fourier code

contains an energy equation and energy loss terms can thus be included

in the formulation. The exact nature of the anomalous loss processes

in the pinch is however not well understood and so they are included by
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means of a simple approximation. It is assumed that a thermal 

equilibrium exists and that the ohmic heating is exactly balanced by 

the energy loss terms. This approximation may be simply achieved by 

removing the ohmic . heating terms from the equilibrium pressure 

equation. Fig 6.2.3 shows the effect on the average growth rate of 

removing the ohmic heating terms.

0.0020

Ohmic heating
§ 0.0015
cb>
<

00010
o

No Ohmic heatingX

0.0005o

1000 1200600600400
Time (Alfven units)

200

Fig 6.2.3 Effect of removing ohmic heating terms on average 6%. 
growth rate for m=0 mode.

It can be seen that the saturation is still not complete even when the

ohmic heating terms are removed. This is probably because the

resistive diffusion of the equilibrium still continues to cause the

shear to decrease and thus the Suydam driving term, C, to increase.

Fig 6.2.4 shows this effect for the no ohmic heating case.
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1.0 2.0 3.0

Radius

Fig 6.2.4 Nonlinear development of Suydam parameter for no 
ohmic heating case.

Finally it is of interest to examine the time development of the

various energies in the system. The time development of magnetic,

pressure and total energies are shown in figs 6.2.5 & 6.2.6 for the

ohmic and no ohmic heating cases, respectively. The qhmically heated

case (fig 6.2.5) exhibits the interchange of magnetic and pressure

energy which is caused by resistive decay and ohmic heating. The total

energy can be seen to remain almost constant in this case. As

mentioned in chapter 5 this serves as a valuable validation of the

code. For the case in which no ohmic heating is included (fig 6.2.6)

the pressure can be seen to be approximately constant in time which is

accord with the removal of heating terms. The magnetic and total

energies can be seen to decay at the same rate due to the simulated

energy loss processes.
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<
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1000800600400200
Time (A lfven  u n its )

Fig 6.2.5 Nonlinear development of energy components for 
ohmically heated case.

Total energy

in

Magneticc3 energy

o
X I

<
>.o>
ClU Pressure energy

200 400 600 800 1000

Time (A lfven  un its )

Fig 6.2.6 Nonlinear development of energy components for non 
ohmically heated case.
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6.3 m=l MODE RESULTS

The single helicity m=I mode has been very briefly examined. The 

reasons for not examining it in more detail are explained in 

section 6.5 where it is shown that ergodic behaviour occurs long before 

the m=l modes reach a width sufficient to precipitate two dimensional 

nonlinear behaviour. Fig 6.3.1 shows a comparison for an m=l mode of 

average b^ growth rate between an ohmically heated and a non ohmically 

heated case. This m=l mode occurs just inside the field null (nk=1.6) 

and the case considered has a magnetic Reynolds number S=10^ and a

Suydam value, C=0.05.
U)
c
3
C
S:

di
O

0L-
01
(b
CD
aL_<u>
<

3
1.5 X 10

ohmic

3
"no ohmic

■4
0.5 X10

0
1000500

Time (Alfven units)
Fig 6.3.1 Comparison of bj, average growth rates for m=l mode 
cases with and without ohmic heating.

Fig 6.3.2 shows the nonlinear development of the equilibrium pressure
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gradient for the non ohmically heated case and exhibits the 

characteristic pressure flattening at the m=l rational surface. Thus 

the nonlinear behaviour of the m=l mode is dominated by the same 

pressure flattening and ohmic heating mechanisms as the m=0 mode.

0.02
t = 700 T

tn

c3

-  0.01n
o

o£L
O

1.8 2.0 2.2 2.4 2.6
Radius

Fig 6.3.2 Nonlinear development of pressure gradient for m=l 
mode with no ohmic heating.

6.4 MIXED HELICITY RESULTS

The mixed helicity interactions between an m=0 and a nearby m=l

mode has been studied, for a case in which the ohmic heating terms have

been removed from the equilibrium pressure equation (see section 6.2).

Only six harmonics are included in this simulation. They are

Equilibrium, (0,6) , (0,12)

( - 1 , 1 6 )  , ( - 2 , 3 2 )  , ( - 1 , 2 2 )

with an axial wavenumber k=0.1, a magnetic Reynolds number, 6=10^ and a
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Suydam value, C=0.05. The truncation at such a small number of 

harmonics has not been verified by increasing the number of harmonics 

but may in part be justified by comparison with the Oak Ridge 

work [36]. They find using a similar Fourier code to study the (2,1), 

(3,2) tearing mode interaction that 6 harmonics produce qualitatively 

correct answers [55 ].

Fig 6.4.1 shows the nonlinear development of the various island 

widths.

Ü)r.
*5

T)
C
O

m = 0 ,  nk = 0.6

m = -1, nk = 2.2

m = -1, nk = 1 . 6

0 500

Time (Alfven units )

1000

Fig 6.4.1 Nonlinear development of island widths for the 
various helicities included in the mixed helicity run.
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It can be seen that when the m=-l, nk=1.6 island touches the rational 

surface of the 'cross talk' harmonic (m=-l, nk=2.2), that the cross 

talk harmonic grows very rapidly. The effect of this is to destabilise 

the m=-l, nk=1.6 mode (fig 6.4.2) but there is a negligible effect to 

the m=0, nk=0.6 mode (fig 6.4.3). This is analogous to the tearing 

mode case mentioned above where the (5,3) mode grows very rapidly and 

destabilises the (3,2) mode [55].
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500  
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Fig 6.4.2 Comparison of single helicity and mixed helicity 
average growth rate for m=-l, nk=1.6 mode.
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Fig 6.4.3 Comparison of single helicity and mixed helicity 
average growth rate for m=0, nk=0.6 mode.

The two modes which are primed in, m=0, nk=0.6 and m=-l, nk=1.6 give

rise to the normal pressure flattening at their singular surfaces.

This effect is shown in fig 6.4.4 where the pressure gradient is

plotted for t=607 x^.
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Fig 6.4.4 Nonlinear development of pressure gradient for 
mixed helicity run.

As will be discussed in the next section, when islands of differing

helicity touch, ergodic behaviour occurs. Fig 6.4,5 shows the

intersections of field lines with the r,z plane at the start (t=0) and

end (t=880T^) of this mixed helicity simulation (for clarity only the

region between z=0 and /k is plotted). These results are obtained

using a field line tracing code, which is also discussed in the next

section, and each different symbol plotted represents a distinct field

line. At the start of the calculation the three m=0 islands occuring

about r=2.66 are clearly visible whilst the eight m=l islands occuring

about r=2.23 may be just distinguished. Also it is evident that closed

flux surfaces exist between the m=0 and m=l modes at t=0. However at

the end of the calculation (t=880 T̂ ) one field line can be seen to

ergodically traverse the entire region. This stochastic behaviour

gives rise to greatly enhanced radial electron transport and will be

discussed in detail in the next section.
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6.5 ERGODICITY

The majority of studies in this section have involved the use of a 

field line tracing code which is discussed in section 6.5.1. The basic 

nature of ergodity and its occurence in the reverse field pinch are 

examined in section 6.5.2 and finally possible explanations for some 

experimental results are given in section 6.5.3.

6.5.1 THE FIELD LINE TRACING CODE

The field line tracing code used is a modified version of the 

Culham code TORFLD [56 ] • As the name implies TORFLD is designed to 

follow field lines in toroidal geometry, whereas for the present 

application it was required to follow field lines in a periodic

cylindrical system. To achieve this the variables in the cylindrical

co-ordinates r, 0 , z, are converted into cartesians x, y, z. The

problem then reduces to solving the field line trajectory equations
B ^ B B^  ^  _ _y dz z

dS Tb I ’ dS I B I ’ dS " I B I '

whereS , the independent variable, is distance along the field line. 

These equations are integrated using an eighth order accurate method 

given by Butcher [57]. The output from this code is most conveniently 

given in graphical form showing the intersections of the field line 

being followed with a particular plane. In considering field line 

behaviour near the field reversal point (Bg=0 ) it is most informative

to plot field line intersections with an r,z plane (0 ̂ constant). Such 

a representation is used for all field line plots given in this 

chapter.
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6.5.2 ERGODIC BEHAVIOUR IN THE RFP

Ergodic field line behaviour occurs when two or more islands of 

differing helicity overlap. Defining the quantity X by

X = i  6.5.1
I r - r  ̂ ..Im,n m ,n '

where W is the width of the m.n island and r , r  ̂ > are twom,n m,n ’ m ,n
neighbouring rational sufaces, ergodicity is found for X > 1[58]. To 

verify this numerically the interaction of an m=0, n=l and an m=-l, n=4 

set of islands was examined. Fig 6.5.1 shows the field line 

intersections with the r,z plane for X =0.79, 1.0, and 1.14 (from top to 

bottom). The m=0 island is clearly visible in all three cases, whilst 

the m=l islands are most easily distinguished for the X=1»0 case 

(fig 6.5.1(b)). For the X=0.79 case (fig 6.5.1(a)) a closed flux 

surface denoted by x' is clearly evident between the m=0 and m=l 

islands. For the X=1.0 case (fig 6.5.1(b)) the flux surface between 

the m=0 and m=l islands has been destroyed, whilst for the X=l«14 case 

(fig 6.5.1(c)) all the m=l surfaces have been destroyed. Thus the 

onset of ergodicity when X s 1 has been verified.
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illustrating the onset of ergodic behaviour when A exceeds 
approximately 1.
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The width of a magnetic island is given by (section 2.4.1)

y
ÿ' (rn̂ O) 6.5.2

whilst the distance between two neighbouring rational surfaces of 

toroidal mode numbers n^ and %+l ,  and poloidal mode number m^ is

1

6.5.3

dr

where y = rB^/Bg is the pitch of the equilibrium field. Using 

eqns 6.5.2 and 6.5.3 together with the condition that neighbouring 

islands of poloidal mode number m̂  ̂ do not touch (ieA<l), yields the 

inequality

1 )\n n.+l J B3 \ 1 / rnC ^ 6.5.41 IGKZyru

The bound imposed by this inequality for the tearing mode stable

i=i4
in fig 6.5.2. Also plotted in this figure is the magnitude that

equilibrium with m =1 and an aspect ratio a/R=— (ie. k=0.07) is shown

Bp/Bg must attain before appreciable quasi-linear pressure flattening 

will occur for a magnetic Reynolds number, S=10^, and a central beta of 

5%. It can be seen particularly in the vicinity of the field reversal 

point (r=2.66) that several orders of magnitude difference exist 

between the two curves. Hence for contemporary reverse field pinches 

the g mode is still in its linear phase when it precipitates ergodic 

behaviour.
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Fig 6.5.2 Bound imposed by eqn 6.5.4 and typical saturation 
width for m=I mode at S=10^, 3 =5%.

The above considerations are optimistic in that they consider only the 

m=l modes. In practice even at a modest magnetic Reynolds number, 

S=TO^ and a central beta of 5%, the m=2 and m=3 modes are unstable in 

the core. Fig 6.5.3 shows the linear growth rates (resistive units) as 

a function of -nk/m for this case. The region -nk/m=0.5 to 1.0 

corresponds to modes with singular surfaces near r=0 which are unstable 

but are numerically very difficult to resolve. Fig 6.5.4 shows the 

variation of singular surface radius with -nk/m. Reference to 

figs 6.5.3 and 6.5.4 shows that for S=10^ and 6o=5%, almost the entire 

core region is unstable.
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To avoid ergodicity some nonlinear process will have to halt the rapid 

linear g mode growth before the islands of various helicities touch. 

In fact, it is known from the results in this chapter and those of 

chapter 4 that the g mode does not saturate completely. However it is 

certainly sufficient to use the scalings for B at the onset of 

nonlinear behaviour to demonstrate that ergodicity occurs in the RFP, 

since such scalings represent an optimistic view of the scalings.

Also it is known from the results given in chapter 4 that the island 

width at the onset of nonlinear behaviour scales as the resistive layer 

width. Hence the philosphy adopted in all scaling arguments to 

determine whether ergodicity occurs is that the island widths scale as 

their resistive layer widths.

It is evident from examining fig 6.5.2 that the B^/Bg at the onset 

of nonlinear behaviour exceeds the B^/Bg required to give X=1 by at
4least 100 over a large region of the core for S=10 and a central beta 

of 5%. Now from chapter 4 it is known that B at the onset of 

nonlinear behaviour scales as so to render the B^/Bg at the

onset of nonlinear behaviour equal in magnitude to the B^/Bg for A =1 

would require S>1.8xlO^, This estimate is optimistic because only the 

overlap of the m=l modes has been considered, whereas in practice many 

other poloidal mode numbers are unstable. Fig 6.5.5 shows the linear 

growth rates (resistive units) of g modes with m=l to 7 at a point 

within the field null, whose singular surface is given by nk/m=-2 for 

an equilibrium central $ of 5%.
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Examining fig 6.5.5 it is evident that increasingly high poloidal mode 

numbers are destabilised in the core as the magnetic Reynolds number 

increases. Although it is likely that finite Larmor radius effects 

will eventually limit the unstable poloidal mode numbers [59 ].

To quantify the ergodic behaviour with varying m it is necessary to

make some assumption about the variation of with m. It is assumed

that is invariant of m at a given helicity, an assumption which will

be discussed later. Now the number of rational surfaces increases as

wmF/9 for m>2 [60]. So considering two neighbouring m=l surfaces r ^ ,

r ,  ̂, if T is the total number of surfaces between these limits andi'n+1 8
M is the maximum unstable poloidal mode number, the number of rational 

surfaces with poloidal mode number m 2 (l<m^^M) is given by

= a(2m,-l) 6.5.5

Since T « and therefore T =aM^.s s

Hence the distance occupied by the islands with poloidal mode number 

mg, between r̂  ̂ and r^^ n+lls given by

a(2iD2“l) 41 — 6.5.6

So the condition that A<1 in this region is
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Evaluating the sum \  | 2m^- — , j numerically

shows It to Increase at least as fast as M M < 3 0 .  To examine

whether the ergodic behaviour becomes better or worse with S it is 

necessary to understand the variation of the various quantities in 

eqn 6.5.7 with S

(i) A scaling of maximum unstable polodial mode number with S may be 

inferred from fig 6.5.5. A plot of m against the S at which it attains 

a growth of 0.4 is given in fig 6.5.6 for the case -nk/m=2. Also 

plotted in this figure is the curve for modes outside the field null 

with nk/m=l and 3^=10% when they attain a growth of 1.0. Since below a 

certain growth rate the modes will not be significant these curves may 

be interpreted as giving the scaling of maximum unstable poloidal mode 

number with S. The scaling given by these curves is M = S  ‘ for low M 

numbers.

(ii) The scaling ofB /B_ as S ^ ’̂ ^has already been explained above,r 0

It is also necessary to justify the assumption that B is invariant of 

m at a given helicity. Again the philosphy explained above, that at
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best will scale as the layer width is used. It is found

numerically that the layer width at a given helicity varies as m " ^ ’®and 

since the layer width at the onset of nonlinear behaviour scales as the 

island width (chapter 4) this implies that is invariant of m

because the island width formula (eqn 6.5.2) also contains an 

Applying these S scalings to eqn 6.5.7 shows the LHS to decrease as 

g-0.38 whilst the RHS decreases as g-0 79 , hence ergodicity will

always occur in the pinch.
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Growth
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Growth = 0.4
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3
10

Growth =1.0 (C |= 0 .1 )

-̂-----1— I— I 10^ (Growth = 0 .4 )

10 MAGNETIC REYNOLDS NUMBER 10 (Growth =1.0)

Fig 6.5.6 Value of magnetic Reynolds number at which given 
poloidal mode number attains indicated growth rate (in 
resistive units).
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To study the relationship of this theory to experimental situations 

requires a knowledge of the effects of ergodicity on the perpendicular 

electron transport. This topic has been studied in some detail by 

Rochester and Rosenbluth [61], and their results will now be reviewed.

The ergodic behaviour may be quantified in terms of a diffusion 

coefficient, for the field lines [62]

= Mean square radial displacement of field line
2 X dist, travelled along field line 6.5.8

The enhanced electron diffusion which this field line diffusion causes
is governed by whether the plasma is in the collisional or

collisionless regime. A collisionless plasma, with respect to

ergodicity, is defined as one for which the electron mean free path, g ,

is greater than the characteristic length over which neighbouring field

lines diverge from each other, L . Formally the correlation length, Lc c
is defined as

■  ! "  S '

where d(£) is the distance between two field lines as a function of the

distance travelled along them, £ . As the name implies in the

collisionless regime collisions are unimportant because the electron is 
displaced a significant radial (perpendicular) distance between 

collisions by the ergodic wandering of the field lines. Hence the 

enhanced electron diffusion in the collisionless regime is simply

governed by the velocity at which electrons travel along the field

lines. The enhanced electron diffusion, is thus

Xleff = “st 6.5.10 ■
where v̂  ̂is the parallel electron thermal velocity. In the collisional
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regime the role of the collisions must be taken into account. The 

collisions themselves give rise to radial transport but they also 

inhibit the passage of electrons along the field lines. Rechester and 

Rosenbluth give the following formula for the enhanced electron 

transport in the collisional regime [61]

Xleff "  °st )) 6.5.11

where Xjj is the parallel electron conductivity, X̂  ̂is the perpendicular 

electron conductivity and m is the poloidal mode number. Transition 

regimes have been identified by various authors for the region where

0= Lg [63].

6.5.3 ERGODICITY AND EXPERIMENT

Some typical results from the Culham reverse field pinch

experiment, HBTXIA [64], will now be presented.

Fig 6.5.7 shows the average electron number density [65]. This 

shows two distinct features

(i) A rapid decrease in density between t=0.5mS and 1.25mS. This

phenomenon is known as pump out.

(ii) A quieter period during which the density decreases less rapidly 

between t=1.25mS and 2.0mS. This part of the discharge is known as the 

quiescent phase.
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Fig 6.5.7 Average line of sight electron density for shot of 
HBTXIA.

Figs 6.5.8 and 6.5.9 show respectively, the total toroidal current and 

electron temperature for the same shot of HBTXIA [65]. The electron 

temperature is derived from the resistance using the assumptions that 

Zeff-2 and the Coulomb logarithm is 13. The electron energy 

confinement time for this shot during the quiescent phase is 

approximately 80ps.

76
time(mS)

Fig 6.5.8 Toroidal current for typical shot of HBTXIA.
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Fig 6.5.9 Electron temperature derived from resistance for 
same shot as Fig 6.5.8.

To relate the g mode and ergodicity theory of this thesis to the

above experimental observations the effect of perturbing the TMS

equilibrium with a series of g modes has been examined. For the TMS

model with an axial wavenumber, k-0.07, which corresponds to an aspect 

ratio of a/R=l/4, there are at least 50 unstable m=l modes of distinct 

helicities and nearly as many m=2 and 3 modes. It would obviously be a 

huge task to try and include all 150 modes in a field line tracing 

calculation and would also require prohibitive amounts of computer time 

and disc space. Therefore in the calculation presented here the number 

of modes is severely limited by including only the m=l modes in the

core and also by chÆing k=0.2 (which corresponds to an aspect ratio 

a/R=l./I.31). Hence the results presented in this section should be 

regarded as giving qualitative explanations of RFP behaviour. 

Quantitatively the results will be optimistic because far too few modes 

have been included.
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The linear eigenfunctions used to perturb the TMS model and their

magnitudes are given in Table 6.5.1. These magnitudes are chosen "as 

"typical widths" at which significant nonlinear behaviour occurs for an 

ohmically heated case with S=10^ and 3^=5%. Since the ergodicity gives 

rise to energy losses it Is possible that it may be more consistent to 

include the modes at the slightly smaller "typical widths" of a non 

ohmically heated case. To estabilish whether or not this view is 

correct will require a detailed study of the interaction of the g modes

and enhanced transport they produce. In any case the effect of

including the modes at slighly too large a magnitude is more than

offset by the limited number of modes included.

m Singular
Radius r- S

lB| ■“ R
- 1 2 2.32 0.14%
- 1 1.8 2.27 0.17%

1 1.6 2.22 0.21%
— 1 1.4 2.15 0.27%
- 1 1.2 2.07 0.35%-'
- 1 1.0 1.92 0.46%
- 1 0.8 1.67 0.51%
0 0.4 2.66 0.28%

Table 6.5.1 B^/S perturbations to TMS model for fig 6.5.10 

The intersection of the field lines with the r,z plane are shown in 

fig 6.5.10. The two m=0 islands bounded by a closed flux surface at 

r=3.0 are clearly visible. In the core however the m=l surfaces have 

been totally destroyed as can be seen from the field lines which wander
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ergodically. In this ergodic region a field line diffusion coefficient 

may be estimated. Fig 6.5.11 shows the order of intersections with r,z 

of an ergodic field line whose start co-ordinate is r=2.2, z=1.5, 0=0.

Analysing a large number of such field line trajectories with varying 

start co-ordinates gives an average value for D

D
S t

4.9 X 10 6.5.12

It must be remembered that D is dimensional and its magnitude isst
therefore dependent on the normalisations of the TMS model. For HBTXIA 

which has a minor radius of 26 cm

D
s t

3.3 X 10 cm

n
a IDD IDID

2.8 OD

CD
m

2.0 - +

-H-
0 10 20 30

Length (z)
Fig 6.5.10 Field line intersections with the r,z plane for 
TMS model perturbed by fields in Table 6.5.1.
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Fig 6.5.11 Order of intersections of a field line with the 
r,z plane for same case as Fig 6.5.10.

13 9For a machine with the dimensions of HBTXIA and n =3x10 cm and 

T =60eV the parallel electron thermal velocity is 2.64x10® cms ^ and

hence in the collisionless limit (eqn 6.5.10)
5 2 - 18.7.x 10 cm s

Using the Rechester and Rosenbluth expression for the correlation 

length, Lg [66]

Z '
m,n

!/3

mb
m,n 6.5.13

(wherepis the pitch (section 4.2) and "a" is the plasma minor radius)

it is found that L =60 cm for HBTXIA. Hence in the collisional limitc
(eqn 6.5.11)

It must he remembered that these formulae for y, are dimensionalieff
and relate to a machine with a minor radius of 26 cm.
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Assuming a Bessel function model the energy confinement time is 

given by [67 ]

T
^ \ e f f

For the Culham RFP experiment HBTXIA, this gives

( 130 (collisionless )
~  II 24 8 ps (collisional)

The mean free path for HBTXIA with n=3xl0^^cm ^ and T =60eV is 

approximately 40 cm. Hence 8 in this case and so the collisional 

and collisionless values are of the same magnitude.

This ergodic theory may also account for the particle confinement 

times in the RFP and the phenomenon of pump out. Particle losses 

require that the ions also move along the field lines. But the ion 

velocity is limited to some fraction of the ion sound speed, by the 

development of shocks if the ions try to exceed the sound speed. Also 

it must be remembered that the ion Larmor radius is much larger than 

that of an electron at the same temperature. The effect of a large 

Larmor orbit is to average out the fine scale ergodic behaviour and so 

particles with large gyroradii are much less affected by ergodicity. 

However it is likely in contemporary RFP's that the equipartition time 

is such that the ions remain much colder than the electrons and their 

gyroradii therefore remain small.

Examining the field line tracing results relating to the perturbed 

fields given in Table 6.5.1 and assuming the same degree of ergodicity 

to exist across the entire pinch, shows that on average a field line 

requires 82 transits to move from r=0 to the wall. Hence for HBTXIA a
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rough estimate of the transit time of an ion from the centre to the 

wall is

Dist travelled __ ((26tt)^ + (SOtt)̂ )  ---------  = 82 X -----    =1.5 ms
c c

where is the ion sound speed and the electron temperature is taken

to be lOOeV. During the pump out phase the observed fluctuations are 

much greater than those given in table 6.5.1 and so the particle loss 

rate which scales as the square of the fluctuation level [61 ], will be 

correspondingly higher. Hence this theory accounts for the very rapid 

particle loss rates during pump out and the somewhat slower loss

rates during quiescence.

6.6 CONCLUSIONS

It has been shown that including the effects of compressibility

does not alter the nonlinear mechanisms given in chapter 4, for the m=0

g mode. Simulating an energy loss process by removing the ohmic
f>heating terms has been shown to make a dis apointingly small 

improvement to the final nonlinear growth rate of the m=0 g mode. This 

is because resistive diffusion of the magnetic fields still causes the 

Suydam driving term to increase to either side of the g modes rational 

surface.

The m=l g mode in the core, has also been examined and is found to 

possess the same nonlinear behaviour as the m=0 g mode.
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The mixed helicity interaction between an m=0 mode and a nearby m=l 

mode in the core has been shown to cause the "cross talk" harmonic to 

grow very rapidly. This rapid growth in turn destabilises the m=l mode 

in the core. The interaction of these rapidly growing modes, of 

differing helicities, is shown to give rise to ergodic field line 

behaviour.

A criterion for the onset of ergodic behaviour is given and using 

this it is proven that ergodic behaviour will always occur in the 

reverse field pinch. The relationship between this ergodic behaviour 

and enhanced electron transport is explained in terms of the theory 

given by Rechester and Rosenbluth [61]» This theory is shown to be 

capable of explaining the energy confinement times found in 

contemporary reverse field pinch experiments. Finally an explanation 

for the phenomenon of pump out, due to ergodic field line behaviour, 

has been given.
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CHAPTER 7 CONCLUSIONS

7.1 SUMMARY OF THESIS AND CONCLUSIONS

A primarily numerical investigation has been made of the nonlinear 

g mode in the reverse field pinch. Three major computer codes have

been developed to aid in this investigation. The first two codes,

which are detailed in chapter 3, solve the reduced two dimensional m=0

mode equations. One of the codes solves the full set of .reduced m=0

mode equations, whilst the other solves for only the first three

Fourier harmonics of the reduced set of equations. Both codes include 

the resistive diffusion terms implicitly and so avoid excessively 

strict timestep restrictions. The third and most powerful code

developed solves the full set of compressible resistive MED equations 

using a spectral Fourier harmonic method. Details of this code are 

given in chapter 5.

Using these codes an extensive study has been made of the m=0

g mode, which occurs in the RFP about the toroidal field reversal 

point. A quasi-linear mechanism has been found in which the m=0 g mode 

acts to flatten the pressure in the vicinity of its singular surface. 

A scaling argument is given in chapter 4 to explain this mechanism and 

the variation of its onset with magnetic Reynolds number. This 

pressure flattening is analogous to the Rutherford tearing mode 

saturation mechanism, In which the tearing mode saturates by flattening 

the current gradient in the vicinity of its singular surface.
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Unfortunately the potential saturation effects of the pressure 

flattening are counteracted by ohmic heating and resistive decay of the 

shear, which both act to increase the Suydam parameter that is the 

driving term for the g mode. The balance between these competing 

mechanisms determines the final nonlinear state of the g mode. Another 

scaling argument is given in chapter 4 to explain this facet of the 

nonlinear g mode behaviour. Good agreement is found between the 

predictions this argument gives for the variation of final nonlinear 

growth rate with magnetic Reynolds number, and those found 

computationally. Using the spectral Fourier harmonic code an energy 

loss process has been simulated by removing the ohmic heating terms 

from the equilibrium pressure equation. The effect of this is to lower 

the final nonlinear growth rate of the g mode relative to the

equivalent ohmically heated case, but a total saturation is still

inhibited by resistive decay of the shear. Details of these results 

are given in chapter 6.

The nonlinear properties of the m=l g mode are also examined in 

chapter 6. A comparison is made between an ohmically heated case and a 

non ohmically heated case, for an m=l mode which has its singular

surface to the inside of the field null. The nonlinear mechanisms

which dominate the m=0 mode are also found to apply to the m=l mode.

As a prelude to a fully three dimensional calculation, the mixed 

helicity interaction between an m=l mode, in the core, and an m=0 mode 

has been examined. Only six modes are included in this simulation 

since work by the Oak Ridge group has indicated that this is sufficient 

to give qualitatively correct answers. It is found that mode-mode 

coupling dominates the mixed helicity interactions with the "cross talk
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harmonie" growing very rapidly when its singular surface touches the 

m=l mode. This rapid growth has the effect of destabilising the m=l 

mode but has a negligible effect on the m=0 mode. Ergodic field line 

behaviour occurs when these rapidly growing islands of differing 

helicity overlap. As a result of ergodicity enhanced electron 

transport occurs and the effects of this on energy containment must be 

taken into account before a fully self consistent three dimensional 

calculation can be made.

Finally, in chapter 6, the topic of ergodicity is examined in some 

detail. The simple resonance overlapping criterion for the onset of 

ergodicity is verified numerically for magnetic islands in the RFP. 

Using this criterion and the scalings for the onset of nonlinear g mode 

behaviour given in chapter 4, it is proven that ergodicity will always 

occur in the RFP. The theory of Rechester and Rosenbluth is used to 

quantify the enhanced electron transport which arises due to 

ergodicity. The energy confinement times associated with this enhanced 

transport are found to be consistent with contemporary experimental RFP 

results. The experimental phenomenon of pump out is also explained as 

a consequence of ergodicity. .

7.2 FUTURE WORK

The most important effect omitted from the two dimensional 

nonlinear g mode studies of chapters 4 and 6, is that of parallel 

thermal conductivity. This would have the effect of enhancing 

transport around the island flux surfaces and thus flattening the
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temperature profile somewhat in the vicinity of the mode. In 

considering the effect of this on the pressure gradient it must be 

remembered that it is probable in the RFP that the majority of the

pressure gradient is supported by the density gradient. However

parallel thermal conductivity would undoubtedly lower the final 

nonlinear growth rate of the g mode. The reason it has not yet been 

implemented is because of the numerical difficulties in doing so

(i) The parallel thermal conductivity is approximately 10^ times 

greater than the perpendicular conductivity and so any small numerical 

errors in including it would erroneously enhance the perpendicular 

transport.

(ii) The magnitude of the parallel thermal conductivity also produces a 

much stiffer numerical problem in the RFP, than that imposed by the

magnetic Reynolds number timescales. Thus the inclusion of parallel

thermal conductivity would probably impose stricter timestep 

limitations.

A possible solution to these problems is to use a quasi-linear 

expression for the enhanced radial conductivity due to parallel thermal 

conductivity. This would overcome the above objections but is not 

wholly satisfactory because it is only quasi-linear.

The mixed helicity studies of the g mode are obviously far from 

complete. However before a full simulation of the RFP can be made the 

enhanced transport processes must be understood in detail. A start has 

been made in this direction with the study of ergodic transport in the 

RFP. However it is totally impractical to use the field line tracing
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code after every timestep of the mixed helicity code to determine the 

new transport coefficients. A possible compromise may be to use the 

field tracing code to provide exact quantitative expressions for the

enhanced transport as a function of the number of unstable modes and

their magnitudes. If this could be achieved then it should be possible

to theoretically predict temperature, density and beta limits in the

reverse field pinch.
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LETTERS

THE NO N-LINEAR ‘g’-MODE 
IN  TH E REVERSE-FIELD PINCH

T.C. HEN DER*, D. C. ROBINSON (Culham Labora
tory, Abingdon. Oxon, ( Euratom/UKAEA Fusion 
Association), United Klndom)

ABSTRACT. The non-linear development of the m = 0 
resistive g' mode has been studied in the reverse-fieid pinch.
■A saturation process is shown to exist in which the perturbations 
cause a quasi-linear flattening of the'equiiibrium pressure near 
the m = 0 resonant surface. The mechanism for this flattening 
is discussed.

condition then allows us to define magnetic and velo
city stream functions. Using these the resistive MHD- 
equations can be reduced, for the m = 0 mode, to the 
two-dimensional form;

=  T? r

at

3r
1
r 3r (1)

1. INTRO DUCTIO N

The reverse-field pinch ( 1 ] and the Spheromak [2] 
have adverse curvature and as a consequence are 
unstable to the resistive interchange or ‘g’-mode. It  
is, therefore, particularly important to investigate the 
non-linear consequences of this mode. A numerical 
code has been developed to time-advance a reduced 
set of MHD equations.

It is known from previous work that while ‘g’-modes 
with azimuthal mode number, m >  I may be stabilized 
by fmite-Larmor-radius effects, the relatively long- 
wavelength m = 0 mode is unlikely to be stabilized [3]. 
Further, we know from the work of Schnack [4] that 
the m = 0 mode may continue to grow far into the 
non-linear regime. This provides our motivation for 
choosing to study the non-linear development of the 
m = 0 ‘g’-mode. This mode occurs about the point at 
which the longitudinal field reverses and is driven by 
the pressure gradient. To simplify the problem further 
we have assumed the plasma to be incompressible.
This has the numerical advantage of precluding 
magneto-sonic waves which can lead to severe time
step restrictions.

-Ik IV (2)

3V,
3t

+ (V'VV)g

_  1 _3^ 3Bg 1 3rBg
t 3r 3z r^ 3r 3z (3)

where

and

Br 1 3é 
~ r 3z

1 H  
r 3r

T) is the resistivity, V  the fluid velocity, B the magnetic 
field and J the current.

Defining the vorticity w = (7  X V )g

" ('1̂  ^ ^
■ 2. EQUATIONS

We choose to study the ‘g’-mode in periodic cylin
drical geometry. This means that the ‘g’-mode is 
driven ‘correctly’ by the interaction of pressure and 
curvature rather than by a fictitious ‘g’-term [5| which 
is needed in slab geometry. The incompressibility

• Royal Holloway College. University of London.

and the system is closed by the relation

1 3 /i= -F ôF-'ârl? IT

(4)

(5)
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These equations are numerically advanced in time by a 
mixed ADI,'explicit algorithm similar to that used by 
Waddell et al. (6|.

3. EQ UIL IB R IU M

The investigations have been conducted using the 
Tearing Mode Stable (TMS) equilibria [7], This is an 
analytic reverse-field-pinch model for which the pitch, 
P(r), and the Suydam value, C, are specified 
(C =-(dp /dr)/rB ^[(dP /dr)/P ]^<  1/8 is the Suydam 
stability criterion, where p is the plasma pressure).
As a further refinement, a vacuum region is included 
in which B% = const, and Bg= l/r . To avoid discon
tinuities at the vacuum-plasma interface a matching 
zone is necessary. In this region variables are matched 
smoothly to each other, in particular C is taken 
gradually to zero with zero gradients at both ends of th 
the matching zone. In most o f our runs we have taken 
the pitch in the core of the plasma as P(r) = 2(1 -  r^/8 
-r^ /400 ). where the radius is defined such that the 
longitudinal field and current on axis are unity.

The tearing-mode stability properties o f the TMS 
model have been exhaustively studied by Robinson [7]. 
It  is important for our purposes that the equilibrium 
be tearing-mode Stable, in order to isolate the non
linear ‘g’-mode behaviour. The ra = 0 tearing mode is, 
however, very weak for this configuration, even if  
wall stabilization is not effective, and the stability 
should, therefore, be dominated by the ‘g’-mode 
behaviour. This property is fortunate since in testing 
for tearing-mode stability at finite beta we are left in 
the dilemma that the A' criterion (8) does not apply 
whenever the ‘g’-mode is dominant, in such a high-^ 
configuration. In an attempt to satisfy ourselves that 
our finite-beta equilibria are tearing-mode stable, we 
have adopted two methods. Both involve reducing the 
pressure to zero while maintaining some property of 
the fields. In the first method, we maintain the pitch 
constant, and in the second we maintain the quantity 
0 = J'B /|B 1̂  constant. The second is probably prefer
able as it is the gradient of a which drives the tearing 
mode. The reduced-pressure configurations are tested 
for stability using a precise value of A' obtained from 
the code, RCWALL, which is based upon the method 
developed by Robinson [7],

4. RESULTS .AND DISCUSSION

The code is run by priming with linear eigenmodes 
from the code RIP4A [9J. It was found in all cases

Wall

Ltnçth  ( z )

FIG. 1. Magnetic fields and velocity flows (arrowed lines/ with 
which non-linear run is primed.

zsr
1
■I /  S X 1000 K jx .4

2

o
05

100
Tim# (Alfven unils)

FIG .2. Growth rate curves for reconnected flux at the singular 
surface. A ll three curves are for TMS equilibrium with a 
Suydam value, C = 0 .05.

2.3

FIG .3. Non-linear development o f zeroth harmonic o f  
pressure gradient for S = 1000, C = 0.05 and 1.0.

'56 NUCLEAR FUSION. Vot-21. N o .6 ( l9 8 U



LETTERS

attempted, that if  the non-linear code was primed with 
sufficiently small eigenmodes to keep it in the linear 
regime then it produces growth rates to within 27c of 
those of RIP4A. A typical magnetic-island structure 
and velocity flow pattern, with which the non-linear 
run is started, are shown in Fig. 1.

The growth rate defined as at the
singular surface is shown for three full non-linear runs in 
Fig. 2. They are for S = 1000 and 4000, with = 0.4,
C = 0.05 and for S = 1000, C = 0.05 and K%= 1.0 
(where S is the magnetic Reynolds number). All three 
curves exhibit similar behaviour: a marked decrease 
in growth followed by an increase. The decrease in 
growth is caused by quasi-linear flattening of the 
zeroth-harmonic of pressure, in the region o f the 
singular surface. This is shown for the C = 0.05,
S = 1000, K%= 1.0 case in Fig.3. The increasing- 
growth-rate phase corresponds to resistive diffusion of 
the magnetic fields, which increase the average beta 
and drive the ‘g’-mode more unstable again.

The differences between the growth rate-curves 
allows us to deduce some important properties of 
these modes. For the S = 4000, = 0.4 case, it is
seen that the growth rate increases much more slowly 
after turning, than the corresponding S = 1000 case.
This is because the increase in pressure due to the 
resistive evolution o f the equilibrium is slower for the 
S = 4000 case. The different times to the turning 
points for the Kz = 0 .4  and Kz= 1.0, S= 1000, cases 
follow from a linear-stability analysis o f the equilibrium: 
it is found that the growth rate of the Kz= 1.0 mode 
increases much faster with pressure than does the 
Kz = 0.4 case. Thus the decrease in pressure gradient, 
at the singular surface, is more quickly counteracted 
by the increase in pressure in the = 1.0 case.

Examination of the magnitudes o f the perturbations 
in the non-linear runs shows that we are still in a quasi
equilibrium state. Thus

Vpo s  Jq X B(j (6)

where subscripts zero indicate zeroth harmonics. Now 
near the m = 0 surface, Bzo must, by definition, be 
small. Hence, the flattening of the pressure near the 
singular surface can almost totally be accounted for 
by quasi-linear modifications to the Jzo- This can 
easily be demonstrated to be correct: by simply 
altering the Jzo to that at a given timestep while main
taining Jgo, Bgo and Bjq at their original values we 
obtain an almost exact fit to the pressure gradient in 
the region of singular surface at that timestep.

Using this knowledge, we can obtain an order-of- 
magnitude estimate to the saturation width. We have 
at the singular surface, r̂ .

h-lzo ~ Ezo r̂)o (7)
since Vrir, = 0. For the range of betas o f interest the 
‘g’-mode-layer thickness is less than the resistive-skin 
depth, and so Ejo is able to partially relax resistively. 
Hence it is primarily the (VgBr)o term which causes 
the saturation process;

(8)

where the subscript ‘orig’ implies the initial equilibrium 
value. Now, at r ,̂ from linear stability theory

(9)
where w is the linear growth rate and the subscript 1 
indicates a linear perturbation term. Equations (8) 
and (9) then give

B2ri
long p w orig

Hence,

PT?W (10)

but from Furth. Killeen and Rosenbluth [5] the 
resistive-layer thickness, 2, is given by

2 =

Using (10) this then gives 

,1/2
1'TTTZ A uKjIB̂ q) island width.

(11)

(12)

Hence, we can expect appreciable saturation by 
pressure flattening when the island width is comparable 
to the resistive-layer thickness. This is indeed found 
to be the case in our non-linear calculations. A some
what similar situation prevails when considering the 
non-linear behaviour o f the tearing mode [10]. Our 
calculations show that the resistive-layer thickness 
decreases as S for values of S up to 5 X 10“* and 
the radial field perturbation decreases as S This 
is to be compared with the predictions from Eq.(l 1 )

NUCLEAR FUSION. Vol.21. .No.6 (1981) 75?
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Radius (r )

-0.05

FIG.4. Non-linear development o f zeroth harmonic o f axial 
current for S = 1000, C = 0.05 and Kx^O.4.

for a pure resistive ‘g’-mode and from E q .(I2 ) that 
the field perturbation decreases as S'®"*’ .

We have also modified the equilibrium profiles in 
the linear code, RIP4A, to match the pressure profiles 
at various times of the non-linear evolution. The 
linear code then gives growth rates to within 3% of 
the corresponding non-linear calculation. Hence, we 
conclude that we are dealing with a quasi-linear 
phenomenon in which the dominant effect is that of 
perturbations on their own equilibrium. The quasi- 
linear modification to Ĵ o is shown in Fig.4.

5. CONCLUSIONS

The decrease in growth race has been shown to be 
due to the quasi-linear modification to the axial 
current, Jjo- The effect o f this on the growth of the 
linear perturbations can be seen with reference to Eq.(9). 
Setting Jzo I equal to zero (which is equivalent to 
flattening the pressure at r^) essentially stops the 
growth of the azimuthal velocity perturbations, Vq, 
at r*. This is found to be the case on detailed examina
tion of the results from the non-linear calculations.
The coupling between (he radial-field perturbations 
the azimuthal velocity has been broken, and so the 
exponential linear growth will cease.

The increase in growth rates caused by resistive 
diffusion of the equilibrium reflects an unfortunate 
facet o f our reduced MHD formalism. By using an 
incompressible formalism we lose independent control

of the plasma energy content, which could have been 
used to control the diffusive rise in pressure. The 
inclusion o f more physical effects such as parallel 
thermal conduction, to control this pressure rise, 
would allow the saturation process to continue. This 
view is contlrmed by the difference between the 
S = 1000 and the S = 4000 mode evolution.

In re-distributing the pressure to achieve the flattening 
at the singular surface, the m = 0 mode increases the 
pressure gradient markedly in the core of the plasma 
and to some extent in the outer regions of the plasma, 
Fig.3. This effect is further enhanced by resistive 
diffusion. We have examined the linear effect o f this 
on the m = I modes in the core and find that their 
growth rate increases considerably. This could be an 
important effect, but we have not yet examined the 
non-linear effects o f the m = 1 and m = 0 mode inter
action, which would require a three-dimensional 
calculation.
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THE NONLINEAR 'g' MODE
T  C  H e n d e r *  a n d  D  C  R o b i n s o n  

C u l h a m  L a b o r a t o r y ,  A b i n g d o n ,  O x o n ,  0 X 1 4  3 D B ,  U K  
(Euratom/UKAEA F u s i o n  A s s o c i a t i o n )

* R o y a l  H o l l o w a y  C o l l e g e ,  U n i v e r s i t y  o f  L o n d o n

A B S T R A C T  T h e  n o n l i n e a r  p r o p e r t i e s  o f  t h e  m = 0  r e s i s t i v e  

' g ' m o d e  h a v e  b e e n  s t u d i e d  f o r  a  w i d e  r a n g e  o f  m a g n e t i c  

R e y n o l d s  n u m b e r s .  A  q u a s i - l i n e a r  s a t u r a t i o n  m e c h a n i s m  h a s  

b e e n  f o u n d  i n  w h i c h  t h e  p r e s s u r e  i n  t h e  v i c i n i t y  o f  t h e  

s i n g u l a r  s u r f a c e  i s  f l a t t e n e d .  T h i s  s a t u r a t i o n  i s  h o w e v e r  

counteracted by overheating of the plasma. The in=l in
t h e  c o r e  o f  t h e  p l a s m a  has a l s o  b e e n  i n v e s t i g a t e d  a n d  s i m 

i l a r  m e c h a n i s m s  p r e v a i l .  A  f i e l d  l i n e  t r a c i n g  c o d e  h a s  b e e n  

u s e d  t o  s t u d y  t h e  e x i s t e n c e  o f  m a g n e t i c  s u r f a c e s  w h e n  m =0 
a n d  m = l  m o d e s  i n t e r a c t . E r g o d i c  f i e l d  l i n e  b e h a v i o u r  h a s  

b e e n  f o u n d  f o r  p a r a m e t e r s  t y p i c a l  o f  c o n t e m p o r a r y  r e v e r s e  

f i e l d  p i n c h e s  .

I N T R O D U C T I O N  I n  b o t h  t h e  R F P  a n d  s p h e r o m a k  t h e  m o s t  d a n 

g e r o u s  i n s t a b i l i t y  i s  t h e  'g ' m o d e .  I t  i s  t h e r e f o r e  i m p o r t 

a n t  t o  u n d e r s t a n d  i t s  n o n l i n e a r  b e h a v i o u r .

T o  s t u d y  t h e  m = 0  m o d e  a  s i m p l i f i e d  f o r m a l i s m  i s  c h o s e n ;  

a  p e r i o d i c  c y l i n d r i c a l  s y s t e m  i s  a s s u m e d ,  a  2 D  a p p r o x i m 

a t i o n  n . a d e  (|-x = 0 ), a n d  t h e  p l a s m a  i s  a s s u m e d  t o  b e  i n c o m p 

r e s s i b l e .  T h i s  a l l o w s  t h e  i n t r o d u c t i o n  o f  a  f l u x  f u n c t i o n  

a n d  a  v e l o c i t y  s t r e a m  f u n c t i o n .  T h e  r e s u l t i n g  e q u a t i o n s  a r e  

s i m i l a r  t o  t h e  r e d u c e d  t e a r i n g  m o d e  e q u a t i o n s  a n d  a n  e x t e n 

s i o n  o f  t h e  a l g o r i t h m  o f  W a d d e l l  e t  a l ^ ^ ^  i s  u s e d  t o  s o l v e

t h e m .  R e c e n t l y  a  m i x e d  h e l i c i t y  c o d e  h a s  b e e n  d e v e l o p e d .  A
r 21spectral method similar to the Oak Ridge code RSF is used 

to solve the full set of compressible resistive MHD equations. 
T h i s  code h a s  b e e n  u s e d  t o  m a k e  a  s t u d y  o f  t h e  s i n g l e  h e l i c i t y  

m = l  m o d e .

R E S U L T S  A N D  D I S C U S S I O N  T h e  e q u i l i b r i u m  c h o s e n  f o r  t h e

s t u d y  i s  t h e  t e a r i n g  mode s t a b l e  e q u i l i b r i u m  d e v e l o p e d  b y  

R o b i n s o n ^ ^ ^ .  T h i s  R F P  e q u i l i b r i u m  i s  s t a b l e  t o  a l l  i d e a l  

MHD i n s t a b i l i t i e s  a n d  t o  t e a r i n g  m o d e s .  T o  model e x p e r i 

m e n t a l  c o n d i t i o n s  m o r e  r e a l i s t i c a l l y  t h i s  e q u i l i b r i u m



includes a vacuum region between the plasma and the wall.

T h e  n o n - l i n e a r  r e s u l t s  f o r  t h e  m = 0  m o d e  s h o w  t h e  d o m i n 

a n t  n o n l i n e a r  p r o c e s s  t o  b e  t h e  m o d i f i c a t i o n  o f  t h e  a x i a l  

c u r r e n t ,  J ^ g .  F i g u r e  1 s h o w s  t h e  a l t e r a t i o n  t o  n J ^ g  f o r  a

c a s e  w i t h  a

^  m a g n e t i c
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n u m b e r , S  =  

5 x 1 0 ^  ( n  b e 

i n g  t h e  p l a s m a  

resistivity). 
The displace- 
m e n t  o f  E ^ g  

a n d  n J g g  t o  

l a r g e r  r a d i i  

i s  d u e  t o  

r e s i s t i v e  

d i f f u s i o n  

w h i l e  t h e  

b e h a v i o u r  i n  

the vicinity 
o f  t h e  s i n g 

u l a r  s u r f a c e

i s  d u e  t o  t h e  q u a s i - l i n e a r  p e r t u r b a t i o n  t o  O h m ' s

l a w .  T h e  m o d i f i c a t i o n  t o  J ^ g  n e a r  t h e  s i n g u l a r  s u r f a c e  

c a u s e s  a  f l a t t e n i n g  o f  t h e  e q u i l i b r i u m  p r e s s u r e  i n  t h i s  

r e g i o n ,  a n d  s i n c e  t h e  ' g ' m o d e  i s  d r i v e n  b y  p r e s s u r e  g r a d 

i e n t ,  r e p r e s e n t s  a  q u a s i - l i n e a r  s a t u r a t i o n  m e c h a n i s m .  H o w e v e r  

t h e  r e s i s t i v e  d i f f u s i o n  o f  t h e  e q u i l i b r i u m  r e s u l t s  i n  o h m i c  

h e a t i n g  i n c r e a s i n g  t h e  g r o s s  p r e s s u r e  a n d  t h u s  c o u n t e r a c t i n g  

the saturation process. The nonlinear behaviour observed 
d e p e n d s  o n  t h e  c o m p e t i t i o n  between t h e s e  t w o  m e c h a n i s m s ;  o u r  

c a l c u l a t i o n s  i n d i c a t e  t h a t  t h e  S  s c a l i n g  o f  t h e s e  t w o  e f 

f e c t s  c a u s e s  t h e  s a t u r a t i o n  m e c h a n i s m  t o  b e c o m e  i n c r e a s i n g l y
4

d o m i n a n t  a t  h i g h  S ,  H o w e v e r  a t  S  v  5  x  1 0  t h e  g r o w t h  r a t e  

i s  o n l y  r e d u c e d  t o  4 0 %  o f  i t s  l i n e a r  v a l u e .  I t  i s  l i k e l y  

t h a t  b y  i n t r o d u c i n g  p h y s i c a l  e n e r g y  l o s s  m e c h a n i s m s  ( t h e r 

m a l  c o n d u c t i v i t y ,  r a d i a t i o n  e t c )  t h e  s a t u r a t i o n  m a y  b e  c o m p -



p l e t e .  W i t h i n  t h e  i n c o m p r e s s i b l e  f o r m a l i s m  u s e d  f o r  t h e  m = 0  

code this energy loss process can be represented by intrn- 
d u c i n g  a  non-physical t e r m  i n  t h e  r e s i s t i v e  d i f f u s i o n  

e q u a t i o n  t o  s t o p  t h e  f i e l d s  r e s i s t i v e l y  decaying. W i t h  t h i s  

t e r m  p r e s e n t  s a t u r a t i o n  i s  o b t a i n e d  f o r  S = 1 0 0 0 .

T h e  n o n l i n e a r  b e h a v i o u r  o f  t h e  m = 0  l e a d s  t o  a n  e n h a n c e 

m e n t  o f  t h e  p r e s s u r e  g r a d i e n t  i n  t h e  v i c i n i t y  o f  t h e  m = l  

s u r f a c e s . F i g u r e  2  s h o w s  t h e  p r e s s u r e  g r a d i e n t  r e s u l t i n g  

f r o m  t h e

p r e s e n c e  o f  a n  

m =0 m o d e  f o r  

S=1000. The 
p o s i t i o n s  o f  

s o m e  o f  t h e  m = l  

s u r f a c e s  a r e  

a l s o  r e c o r d e d  

o n  F i g . 2 .  T h e  

e f f e c t  o n  t h e  

l i n e a r  g r o w t h  

r a t e s  o f  t h e  

m=l modes due 
t o  t h e  a l t e r 

a t i o n s  t o  t h e  

p r e s s u r e  p r o -

- 0  04
Evolved
Profile

- 0.02 - Unevolved 
Profile

m=1 m=1
n=4 n = 3

Radius

Fig. 2 Evolved pressure profile in the region of 3^-0

f i l e  h a v e  b e e n  i n v e s t i g a t e d .  I n  t h e  c e n t r e  o f  t h e  p l a s m a  

t h e  g r o w t h  r a t e s  c a n  d o u b l e .  T h e  n o n l i n e a r  b e h a v i o u r  o f  a  

s i n g l e  h e l i c i t y  m = l  m o d e  i s  f o u n d  t o  b e  d o m i n a t e d  b y  t h e  

s a m e  m e c h a n i s m s  a s  f o r  t h e  m =0 m o d e .

T o  a s s i s t  i n  a  m i x e d  h e l i c i t y  s t u d y  a  f i e l d  l i n e  t r a c -  

ing code has been used to study the result of the interaction 
between t h e  m = 0  m o d e  a n d  t h e  m = l ,  n = 4  m o d e  i n  t h e  c o r e  o f  t h e  

p l a s m a .  A  l i n e a r  c o d e  i s  u s e d  t o  p r o d u c e  t h e  p e r t u r b a t i o n s  

t o  t h e  m a g n e t i c  f i e l d s  a n d  t h e y  a r e  i n t r o d u c e d  a t  t h e  s m a l 

l e s t  a m p l i t u d e  a t  w h i c h  s a t u r a t i o n  i s  l i k e l y  t o  o c c u r ;  t h e  

r e s u l t s  a r e  t h e r e f o r e  o p t i m i s t i c .  A t  l o w  magnetic R e y n o l d s  

n u m b e r s  e r g o d i c  f i e l d  l i n e  b e h a v i o u r  i s  f o u n d .  F i g u r e  3 

s h o w s  t h e  i n t e r s e c t i o n  o f  t w o  d i f f e r e n t  f i e l d  l i n e s  w i t h  t h e  

6 = 0  p l a n e ,  f o r  S = 5 0 0 0  a n d  a  c e n t r a l  b e t a  o f  5 % .  T h e  c l o s e d
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s u r f a c e  o f  t h e  l a r g e  m=0 i s l a n d  c a n  b e  s e e n  w h i l e  f i e l d  l i n e s  

f o r m i n g  t h e  m = l  i s l a n d s  e x p e r i e n c e  e r g o d i c  b e h a v i o u r  b e t w e e n  

t h e  t w o  s u r f a c e s .  A t  h i g h e r  S  t h e  s u r f a c e s  b e c o m e  c l o s e d  i f  

o n l y  t h e  t w o  i s l a n d  s t r u c t u r e s  a r e  c o n s i d e r e d .  H o w e v e r  i n 

c r e a s i n g  S  c a u s e s  t h e  m=l ( a n d  m = 2 )  m o d e s  i n  t h e  c o r e  w i t h  

n > 4  ( n > 8 ) t o  b e c o m e  d e s t a b i l i s e d  a n d  s o  t h e  s u r f a c e s  d o  n o t  

close. The effect of this non-closure on energy contain- 
m e n t  i s  being i n v e s t i g a t e d .

C O N C L U S I O N S  T h e  n o n l i n e a r  b e h a v i o u r  o f  t h e  m = 0  m o d e

e x h i b i t s  a  q u a s i - l i n e a r  s a t u r a t i o n  m e c h a n i s m .  T h i s  s a t u r 

a t i o n  m a y  b e  p r e v e n t e d  b y  o v e r h e a t i n g  o f  t h e  p l a s m a .

T h e  m = l  m o d e  p o s s e s s e s  a  s i m i l a r  n o n l i n e a r  b e h a v i o u r .

T h e  m = l  m o d e s  a r e  l i n e a r l y  d e s t a b i l i s e d  b y  t h e  p r e s e n c e  o f  

t h e  m =0 m o d e .

T h e  i n t e r a c t i o n  b e t w e e n  t h e  m = 0  a n d  m = l  m o d e s  l e a d s  t o  

ergodic field line behaviour.
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* R o y a l  H o l l o w a y  C o l l e g e ,  U n i v e r s i t y  o f  L o n d o n  
* * U n i v e r s i t y  o f  O x f o r d .

ABSTRACT E C R H  e x p e r i m e n t s  a t  t h e  s e c o n d  h a r m o n i c  s h o w

l o c a l  h e a t i n g  w h e n  t h e  c y c l o t r o n  r e s o n a n c e  i s  o n  t h e  o u t e r  

flux surfaces. Above a critical power level this induces 
continuous m = l  a c t i v i t y  i n  t h e  heating z o n e .  T h e  local 
heat c o n d u c t i o n  c o e f f i c i e n t  i s  c l o s e  t o  t h e  I N T O R  v a l u e  a n d  

t h e  p a r a l l e l  h e a t  c o n d u c t i o n  m a y  b e  a n o m a l o u s .  A t t e m p t s  t o  

d e t e c t  a  w a v e  d r i v e n  c u r r e n t  u s i n g  a  v a r i a b l e  a n g l e d  a n t e n n a  

( ± 5 0 ° )  i n d i c a t e s  t h a t  t h e - c u r r e n t  i s  l e s s  than 3 A / k W  i n  t h e  

p l a s m a s  u s e d  i n  t h e s e  i n v e s t i g a t i o n s .

I N T R O D U C T I O N  T h e  r e s o n a n c e  z o n e  w i d t h  f o r  E C R H  i s  g e n 

e r a l l y  m u c h  l e s s  t h a n  t h e  p l a s m a  r a d i u s  a n d  l o c a l i s e d  h e a t -
n ,  = 7 5 X 1o'®

5 0 kW
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2 6 cm

Heatinq Pulse  

/rcr
50 ps/div



i n g  i s  p o s s i b l e  i n  a n  o p t i c a l l y  t h i c k  p l a s m a ,  w h e n  t h e  d i r 

e c t i o n a l i t y  o f  t h e  injected r a d i a t i o n  i s  c o n t r o l l e d .  T h i s  

i s  i m p o r t a n t  f o r  c u r r e n t  p r o f i l e  a n d  i n s t a b i l i t y  c o n t r o l  a n d  

h e a t  c o n d u c t i o n  s t u d i e s .  E v e n  i n  a n  o p t i c a l l y  t h i n  p l a s m a

w h e n  o n e  m u s t  t a k e  a c c o u n t  o f  r e f l e c t i o n s  t h e r e  i s  a  g e o -  
[ 1 1m e t r i c a l  e f f e c t  w h i c h  p e r m i t s  s t r o n g  l o c a l  m a x i m a  i n  t h e

h e a t i n g  p r o f i l e  t h u s  a l l o w i n g  s u c h  i n v e s t i g a t i o n s  i n  s m a l l  
[ 2 ]

t o k a m a k s . T h e o r y  a l s o  i n d i c a t e s  t h a t  c y c l o t r o n  w a v e s  

should be suitable for generating a current if the absorption
is p r e d o m i n a n t l y  o n  o n e  s i d e  o f  t h e  r e s o n a n c e  w h i c h  i s  p o s 

s i b l e  f o r  t h e  X - m o d e  i n  a  s m a l l t o k a m a k  a t  s u f f i c i e n t l y  h i g h  

t e m p e r a t u r e s  w i t h  t h e  w a v e s  l a u n c h e d  p r e f e r e n t i a l l y  i n  o n e  

d i r e c t i o n .

L O C A L  H E A T I N G  E X P E R I M E N T S  T h e  s o f t  X - r a y  e m i s s i o n  o b s e r 

v e d  v e r t i c a l l y  f r o m  a  s e v e n  c h a n n e l  d i o d e  a r r a y  i n d i c a t e s  

t h a t  s t r o n g  l o c a l  h e a t i n g  o c c u r s  c l o s e  t o  t h e  c y c l o t r o n  r e s 

o n a n c e  b o t h  a b o v e  a n d  b e l o w  t h e  X - m o d e  c u t - o f f  p r o v i d e d  t h e  

resonance is o n  t h e  o u t s i d e  o f  t h e  magnetic s u r f a c e s .  T h e  

emission associated with four different radii during the 
h e a t i n g  p u l s e  i s  s h o w n  i n  F i g . l .  T h e  s i g n a l  s a t u r a t e s  i n  s o m e  

5 0 u s  a n d  f a l l s  w i t h  a  s i m i l a r  t i m e  c o n s t a n t .  I n  t h e  h i g h  

t e m p e r a t u r e  z o n e  c o n t i n u o u s  f l u c t u a t i o n s  i n  t h e  r e g i o n  o f  

5 0 k H z  a r e  p r o d u c e d  p r o v i d e d  t h e  i n p u t  p o w e r  i s  a b o v e  s o m e  

t h r e s h o l d  d e p e n d e n t  o n  t h e  i n i t i a l  v a l u e  o f  q .  T h e s e  

f l u c t u a t i o n s  a p p e a r  t o  b e  c o n t i n u o u s  m = l  a c t i v i t y  a s s o c i a t e d  

with l o c a l  h e a t i n g  a n d  c u r r e n t  c o n c e n t r a t i o n  p r o d u c i n g  a  

s m a l l  r e g i o n  w i t h  q < l .  T h e s e  d i s c h a r g e s  h a v e  q ^7 a n d  b e f o r e  

heating q(0)< 2. The mew magnetic axis is thi^ close to 
the heating zone. Evidently the transport processes in this 
c a s e  d o  n o t  p e r m i t  sawtooth a c t i v i t y .  T h e  w i d t h  o f  t h e  

h e a t i n g  z o n e  i s  t y p i c a l l y  20 m m  a t  a  p a r t i c u l a r  t o r o i d a l  

f i e l d .  I f  t h e  t o r o i d a l  f i e l d  i s  v a r i e d  t h e n  heating i s  

d e t e c t e d  a t  a  p a r t i c u l a r  r a d i u s  i f  t h e  r e s o n a n c e  z o n e  m o v e s  

a p p r o x i m a t e l y  3 0 m m ,  -  F i g . 2 .  T h e  e x i s t e n c e  o f  t w o  s u s t a i n e d  

t e m p e r a t u r e  m a x i m a  a n d  t h e  a b s e n c e  o f  a  p e a k  o n  t h e  o p p o s i t e  

s i d e  o f  t h e  m a g n e t i c  s u r f a c e  i n d i c a t e s  t h e  2 - D  n a t u r e  o f  t h e  

heat conduction process in the tokamak. We have used a 2D



a n i s o t r o p i c  h e a t  c o n d u c t i o n  a n d  f i e l d  d i f f u s i o n  c o d e  w i t h  a  

l o c a l  h e a t i n g  s o u r c e  t o  s i m u l a t e  t h i s  b e h a v i o u r .  T h e  e x p e r i 

m e n t a l  r e s u l t s  c a n  b e  r e p r o d u c e d  b y  r e d u c i n g  t h e  p a r a l l e l  

h e a t  c o n d u c t i o n  b y  1 0 0  x  a s  s h o w n  i n  F i g . 3 .
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profile associated with anomalous 
parallel heat conduction.

F r o m  t h e  h e a t i n g  a n d  d e c a y  t i m e s  a n d  t h e  w i d t h  o f  t h e  

h e a t i n g  z o n e  w e  o b t a i n  a  l o c a l  a v e r a g e  h e a t  c o n d u c t i o n  c o 

e f f i c i e n t  o f  0 , 5  m  s ~  i n  t h e  h o t  c o r e  o f  t h e  p l a s m a  w h i c h  

i s  a b o u t  s i x  t i m e s  s m a l l e r  t h a n  t h e  a v e r a g e  I N T O R  v a l u e .  A n  

a l t e r n a t i v e  e x p l a n a t i o n  f o r  t h e  f a i l u r e  o f  t h e  t e m p e r a t u r e  

t o  b e  u n i f o r m  o n  a  m a g n e t i c  s u r f a c e  i s  t h a t  t h e  E C R H  p r o 

d u c e s  p e r p e n d i c u l a r  r u n a w a y  a n d  e l e c t r o n s  with e n e r g i e s  

o f  ""v S k e V  b e c o m e  t r a p p e d  w i t h  l a r g e  b a n a n a  o r b i t s  o f  w i d t h  

~l-2cm,' w h i c h  i s  i n  a c c o r d  w i t h  t h e  o b s e r v e d  a b s e n c e  o f  

l o c a l  h e a t i n g  o n  t h e  h i g h  f i e l d  s i d e  o f  t h e  p l a s m a .  N o  

e v i d e n c e  f o r  t h i s  n o n - t h e r m a l  p e r p e n d i c u l a r  e l e c t r o n  d i s 

t r i b u t i o n  h a s  h o w e v e r  b e e n  o b t a i n e d .

C U R R E N T  D R I V E  E X P E R I M E N T S T h e o r e t i c a l  r a y  t r a c i n g  a n d

a b s o r p t i o n  c a l c u l a t i o n s  f o r  t h e  X - m o d e  i n  T O S C A  a t  a  c e n t r a l  

d e n s i t y  o f  4 . 5 x l 0 ^ ^ m  ^  a n d  t e m p e r a t u r e s  o f  6 0 0 e V  i n d i c a t e  

t h a t  a  n e t  c u r r e n t  o f  s o m e  3 0 A / k W  s h o u l d  b e  p r o d u c e d .  T h e  

c a l c u l a t i o n s  s u g g e s t  t h a t  t h e  o p t i m u m  a n g l e  o f  i n j e c t i o n  i s  

less than 14 and that although the single pass absorption



c a n  b e  q u i t e  h i g h  ( 8 0 % )  t h e  l o c a l  c u r r e n t  p r o d u c e d  o n  o n e  

s i d e  o f  t h e  r e s o n a n t  l a y e r  i s  a p p r o x i m a t e l y  c a n c e l l e d  b y  

t h a t  o n  t h e  o p p o s i t e  s i d e  o f  t h e  l a y e r .  T h i s  s h o u l d  p r o 

d u c e  a  s u b s t a n t i a l  c h a n g e  i n  t h e  c u r r e n t  p r o f i l e  a n d  i s  

l i k e l y  t o  e x c i t e  m o d e  a c t i v i t y .  T h e  d i r e c t e d  a n t e n n a  i n  

t h e  e x p e r i m e n t s  p r o d u c e s  i t s  p o w e r  i n  t w o  l o b e s  ( n o r m a l l y  

a t  ± 2 0 ° ) ,  a t  + 8 °  a n d  + 4 8 °  a n d  c a n  b e  r o t a t e d  s o  t h a t  o n e  

l o b e  s h o u l d  b e  e f f i c i e n t  f o r  c u r r e n t  d r i v e .

T y p i c a l  d i s c h a r g e  w a v e f o r m s  f o r  s u c h  a n  e x p e r i m e n t  a r e

s h o w n  i n  F i g , 4 .  
,ou s u a l  ±  20 a n t e n n a  a n d  i n  

g e n e r a l  t h e  s o f t  X - r a y  e m i s 

s i o n  i s  n o t  f u l l y  s u s t a i n e d  

t h r o u g h o u t  t h e  h e a t i n g  p u l s e .  

I n  b o t h  d i r e c t i o n s ,  t h e  p l a s m a  

c u r r e n t  i n c r e a s e s  b y  t y p i c a l l y  

10 %  a s s o c i a t e d  w i t h  t h e  d e 

c r e a s e  i n  i n d u c t a n c e ,  a n d  r e s 

i s t a n c e  b u t  t h e r e  i s  a  d i f f e r 

e n c e  i n  t h e  t w o  d i r e c t i o n s  o f  

u p  t o  3 0 0  a m p s  f o r  1 0 0  k W  

i n p u t .  A s  w i t h  t h e  p e r p e n d 

i c u l a r  a n t e n n a e  t h e  h i g h  

p o w e r  E C R H  d o e s  n o t  p r o d u c e  

r u n - a w a y  d i s c h a r g e s .

T h e  h e a t i n g  i s  n o t  a s  e f f i c i e n t  a s  f o r  t h e
V

C O N C L U S I O N S T h e  l o c a l

h e a t i n g  o n  t h e  o u t e r  f l u x  

s u r f a c e s  m a y  b e  a s s o c i a t e d

w i t h  a n o m a l o u s  p a r a l l e l  h e a t  

c o n d u c t i o n  o r  w i t h  t h e  p r e s 

e n c e  o f  p e r p e n d i c u l a r  e l e c t r o n  

r u n a w a y  l e a d i n g  t o  a  b u i l d  u p

iv o lt) A

100 kW

9»a«S.3kG 3«o* 4 7 k GIk A l
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I cml I

i
Out

5 xIO

ECE *

32 GHz

imsl

A

3 I 2 ,msi
Fig.4 Disaharge waveforms for

f o r  c u r r e n t  d r i v e  i n  t h e s e  e x 

p e r i m e n t s  a p p e a r s  . t o  b e  l o w ,   ̂directed a n te n n a .

p o s s i b l y  b e c a u s e  t h e  s i n g l e  p a s s  a b s o r p t i o n  i s  l o w .
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L I N E A R  A N D  N O N L I N E A R  R E S I S T I V E  I N S T A B I L I T Y  S T U D I E S

T  C  R e n d e r *  a n d  D  C  R o b i n s o n  
C u l h a m  L a b o r a t o r y ,  A b i n g d o n ,  O x o n ,  0 X 1 4  3 D B ,  U K  

( E u r a t o m / U K A E A  F u s i o n  A s s o c i a t i o n )

* R o y a l  H o l l o w a y  C o l l e g e ,  U n i v e r s i t y  o f  L o n d o n

ABSTRACT

The linear stability properties of the resistive 'g' 
mode are examined. The effects of including a full stress 
tensor have been examined for this mode. The nonlinear 'g' 
mode has also been examined and a potential saturation mech
anism identified. The results of 2D calculations for the m=0 
and m=l 'g ' modes in the reverse field pinch (RFP) are presented. 
Ergodic field line behaviour is found as a result of the inter
action of mixed helicity 'g' modes.

I N T R O D U C T I O N

B o t h  t h e  R F P ^ ^ ^  a n d  S p h e r o m a k ^ ^ ^  a r e  u n s t a b l e  t o  t h e  r e s i s t i v e  

i n t e r c h a n g e  o r  ' g ' m o d e .  I t  i s  t h e r e f o r e  i m p o r t a n t  t o  i n v e s t i g a t e  

t h i s  m o d e  b o t h  l i n e a r l y  a n d  n o n l i n e a r l y .

T h e  l i n e a r  s t u d i e s  h a v e  b e e n  c o n d u c t e d  u s i n g  i m p l i c i t  c o d e s  

d e v e l o p e d  b y  R o b i n s o n ,  K i l l e e n  a n d  c o - w o r k e r s ^ . T h e  m o s t  r e c e n t  

o f  t h e s e  c o d e s  i n c l u d e s  t h e  e f f e c t s  o f  c o m p r e s s i b i l i t y ,  i s o t r o p i c  

r e s i s t i v i t y .  H a l l  t e r m ,  a n i s o t r o p i c  t h e r m a l  c o n d u c t i v i t y ,  a n d  t h e  

f u l l  s t r e s s  t 

r a d i u s  t e r m s .

r 4 ]
f u l l  s t r e s s  t e n s o r  , i . e .  a n i s o t r o p i c  v i s c o s i t y  a n d  f i n i t e  L a r m o r

T h e  n o n l i n e a r  s t u d i e s ,  i n i t i a l l y  c o n c e n t r a t e d  o n  t h e  m = 0  ’ g ’

m o d e  w h i c h  o c c u r s  a b o u t  t h e  t o r o i d a l  f i e l d  r e v e r s a l  p o i n t  i n  t h e

R F P .  B a s i c a l l y  b e c a u s e  t h i s  m o d e  i s  o f  l o n g  w a v e l e n g t h  a n d  n o t  

r e a d i l y  s t a b i l i s e d  b y  o t h e r  p h y s i c a l  e f f e c t s  a p a r t  f r o m  v e r y  l o w  

3 ( < 1 % ) .  R e c e n t l y  t h e  m = l  m o d e  h a s  a l s o  b e e n  i n v e s t i g a t e d  a n d  

( p o s s i b l e )  e r g o d i c  i n t e r a c t i o n s  b e t w e e n  t h e  m =0 a n d  m = l  m o d e s  

h a v e  b e e n  e x h i b i t e d  u s i n g  a  f i e l d  l i n e  t r a c i n g  c o d e .

2 L I N E A R  S T U D I E S

T h e  l i n e a r  c o d e s  v a r y  i n  c o m p l e x i t y  f r o m  a n  i n c o m p r e s s i b l e

r e s i s t i v e  c o d e ,  R I P P L E 4 A ^ ^ ^ ,  t o  t h e  m o s t  r e c e n t  c o m p r e s s i b l e  c o d e .



G N S T A B ,  d e s c r i b e d  i n  t h e  i n t r o d u c t i o n .  A l l  t h e s e  c o d e s  s o l v e  t h e

M H D  e q u a t i o n s  i n  a  p e r i o d i c  c y l i n d r i c a l  s y s t e m  a n d  e m p l o y  t h e  s a m e

i m p l i c i t  f o r m a l i s m ,  s o l v i n g  t h e  r e s u l t i n g  t r i - d i a g o n a l  e q u a t i o n s  i n  
[ 51

t h e  n o r m a l  m a n n e r  . T h e  c o d e s  a r e  w r i t t e n  s u c h  t h a t  t h e  i m p l i c i t  

w e i g h t i n g  f a c t o r  m a y  b e  e a s i l y  v a r i e d  b u t  a r e  g e n e r a l l y  r u n  u s i n g  

a  C r a n k - N i c h o l s o n  w e i g h t i n g .  G N S T A B  s o l v e s  7 c o m p l e x  p a r t i a l  d i f 

f e r e n t i a l  e q u a t i o n s  f o r  t h e  d i f f e r e n t  p e r t u r b e d  p h y s i c a l  q u a n t i t i e s .

T h e  R F P  s t u d i e s  a r e  c o n d u c t e d  u s i n g  t h e  t e a r i n g  m o d e  

s t a b l e  ( T M S )  e q u i l i b r i u m  d e v e l o p e d  b y  R o b i n s o n ^ T h e  T M S  m o d e l  

i s  d e f i n e d  b y  s p e c i f y i n g  a  p i t c h  f u n c t i o n  P(r)'. A  p r e s s u r e  g r a d i e n t  

i s  i n t r o d u c e d  i n t o  t h e  T M S  m o d e l  s o  t h a t  i t  s a t i s f i e s  t h e  S u y d a m  

c r i t e r i o n  e v e r y w h e r e  w i t h

= = - g  ‘ i

p  b e i n g  t h e  p l a s m a  p r e s s u r e .  T o  m a t c h  e x p e r i m e n t a l  c o n d i t i o n s  a  

v a c u u m  r e g i o n  i s  a l s o  i n c l u d e d  i n  w h i c h  B ^ = c o n s t . ,  B g  «  1 / r  a n d  

d p / d r  = 0 .  A t  z e r o  b e t a  t h i s  m o d e l  i s  s t a b l e  t o  a l l  i d e a l  a n d  t e a r i n g  

m o d e s A  t y p i c a l  T M S  r e v e r s e  f i e l d  p i n c h  e q u i l i b r i u m ,  f o r  P(r)
=  2 ( l - r * / 8 - r * / 4 0 0 )  a n d  C = 0 . 0 5 ,  i s  s h o w n  i n  F i g . l .  S u c h  c o n f i g u r a t i o n s  

h a v e  b e e n  d e m o n s t r a t e d  n u m e r i c a l l y  t o  b e  s t a b l e  t o  i d e a l  m o d e s  f o r  

c e n t r a l  b e t a  v a l u e s  o f  u p  t o  1 7 %  ( 6 g < 0 . 5 ) .

T h e  v a r i a t i o n  o f  l i n e a r  g r o w t h  r a t e  w i t h  m a g n e t i c  R e y n o l d s  

n u m b e r ,  S  h a s  b e e n  e x a m i n e d  f o r  a  l a r g e  r a n g e  o f  p o l o i d a l  m o d e  

n u m b e r s ,  m .  T h e  m o s t  u n s t a b l e  m  i s  f o u n d  t o  i n c r e a s e  w i t h  S .  A t  

l o w  S  h o w e v e r  r e s i s t i v e  d i s s i p a t i o n  i s  f o u n d  t o  h a v e  a  m a r k e d  

e f f e c t  s o  t h a t  t h e  m = 9  m o d e  i s  s t a b l e  f o r  S  < 3  x  1 0 *  a n d  C  =  0 . 1 .  

T h e s e  r e s u l t s  a r e  s u m m a r i s e d  i n  F i g . 2 .  F o r  l a r g e  v a l u e s  o f  S ( ' v i o ^ )  

t h e  h i g h  m  m o d e s  h a v e  a  v e r y  l o c a l i s e d  s t r u c t u r e  a n d  a  v e r y  f i n e  

m e s h  i s  r e q u i r e d  i n  t h e  r e g i o n  o f  t h e i r  s i n g u l a r  s u r f a c e s :  t h i s  i s  

a c h i e v e d  b y  c o n c e n t r a t i n g  t h e  c o m p u t a t i o n a l  d o m a i n  o n  t h e  s i n g u l a r  

s u r f a c e  a n d  a p p l y i n g  s u i t a b l y  m o d i f i e d  b o u n d a r y  c o n d i t i o n s .

T h e  r e s i s t i v e  l a y e r  t h i c k n e s s  f o r  t h e  'g ' m o d e  i s  f o u n d  t o
- 1 / 4s c a l e  a p p r o x i m a t e l y  a s  S  ( t h i s  i s  t o  b e  c o m p a r e d  w i t h  t h e

a n a l y t i c  s c a l i n g  o f  S  ^  ^ ) .  T h i s  v a r i a t i o n  w i t h  S  i s  m u c h  t h e

s a m e  i f  o n e  i n c l u d e s  a n i s o t r o p i c  v i s c o s i t y  a n d  h e a t  c o n d u c t i o n  t h o u g h  

t h e  r e s i s t i v e  l a y e r  t h i c k n e s s  i s  l a r g e r  a n d  t h e  g r o w t h  r a t e  i s  

r e d u c e d  a  l i t t l e  a s  s h o w n  i n  F i g . 3 .



I t  h a s  b e e n  d e m o n s t r a t e d  t h a t  o n l y  t h e  l o c a l  p r e s s u r e  

g r a d i e n t  g i v e s  r i s e  t o  t h e  g r o w t h .  B y  i n c r e a s i n g  t h e  v a l u e  o f  C  

l o c a l l y  t h e  i d e a l  M H D  S u y d a m  m o d e  e v e n t u a l l y  d o m i n a t e s .  T h i s  

o c c u r s ,  f o r  8 = 4 5 , 0 0 0 ,  w h e n  t h e  p r e s s u r e  g r a d i e n t  e x c e e d s  t h e  

S u y d a m  l i m i t  b y  f o u r  t i m e s .

W h e n  t h e  r e s i s t i v e  l a y e r  t h i c k n e s s  i s  c o m p a r a b l e  t o  t h e  i o n  

c o l l i s i o n l e s s  s k i n  d e p t h ,  t h e  i n c l u s i o n  o f  t h e  H a l l  e f f e c t  a n d  

m a g n e t i c  v i s c o s i t y  o r  f i n i t e  L a r m o r  r a d i u s  t e r m s  i s  n e c e s s a r y .

I t  s h o u l d  b e  n o t e d  t h a t  t h e s e  e q u a t i o n s  d o  n o t  r e d u c e  s i m p l y  t o  

t h o s e  o f  s l a b  g e o m e t r y  a n d  c u r v a t u r e  e f f e c t s  d o m i n a t e .  I n  p a r t 

i c u l a r  t h e  p a r a l l e l  v i s c o s i t y  s u r v i v e s  i n  l e a d i n g  o r d e r  w i t h  a  

t e r m  w h i c h  i s  z e r o  i n  s l a b  g e o m e t r y .  I n c l u s i o n  o f  t h e  H a l l  e f f e c t  

a l o n e  m a k e s  t h e  i n t e r c h a n g e s  m o r e  u n s t a b l e  b u t  t h e  r e s i s t i v e  l a y e r  

t h i c k n e s s  i s  t h e n  l i m i t e d  b y  a p p r o x i m a t e l y  t h e  i o n  c o l l i s i o n l e s s  

s k i n  d e p t h ,  c / w ^ ^ ,  o r  i o n  L a r m o r  r a d i u s ,  r ^ ^ ( r ^ ^  0 / 03̂ ^ )  .

F i g u r e  4 s h o w s  t h e  r e s u l t s  o f  i n c l u d i n g  a l l  t h e  f i n i t e  L a r m o r  

r a d i u s  t e r m s  f o r  t w o  v a l u e s  o f  a x i a l  w a v e n u m b e r ,  K ,  f o r  t h e  m = 0  

m o d e  a s  a  f u n c t i o n  o f  c / w ^ ^  -  t h e  i o n  c o l l i s i o n l e s s  s k i n  d e p t h .

A  r a p i d  r e d u c t i o n  i n  g r o w t h  i s  o b s e r v e d  f o r  t h e  s h o r t  w a v e l e n g t h  

m = 0  m o d e  a n d  t h i s  i s  a l s o  o b s e r v e d  f o r  m = 2  m o d e s .  T h e  l o n g  w a v e 

l e n g t h  ra=0 m o d e  h a s  i t s  g r o w t h  r a t e  r e d u c e d  s o m e w h a t  b u t  r e m a i n s  

s t r o n g l y  u n s t a b l e  a t  t h i s  b e t a  v a l u e .

A t  l o w  v a l u e s  o f  b e t a ,  i . e .  c e n t r a l  v a l u e s  o f  6  ̂ 4 % ,  t h e  

p a r a l l e l  v i s c o s i t y  i s  f o u n d  t o  h a v e  a  s t a b i l i s i n g  e f f e c t  a n d  g i v e s  

r i s e  t o  a  c r i t i c a l  l o c a l  p r e s s u r e  g r a d i e n t  d e p e n d i n g  o n  t h e  s h e a r .  

H o w e v e r ,  t h e  r e g i o n  o f  s t r o n g  s h e a r  w h e r e  t h e  f i e l d  r e v e r s e s ,  h a s  

e s s e n t i a l l y  z e r o  c r i t i c a l  p r e s s u r e  g r a d i e n t  a s  t h e  p a r a l l e l  v i s c o s i t y  

d o e s  n o t  s t a b i l i s e  t h e  m = 0  m o d e .  T h i s  g i v e s  r i s e  t o  a  c r i t i c a l  

p r e s s u r e  p r o f i l e  f o r  t h e  R F P  w i t h  a n  a v e r a g e  v a l u e  o f  b e t a  o f  1 0 %
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T h e  i n i t i a l  n o n l i n e a r  ' g *  m o d e  s t u d i e s  c o n c e n t r a t e d  o n  t h e  

m = 0  m o d e  i n  a  p e r i o d i c  c y l i n d r i c a l  s y s t e m .  T h i s  m o d e  w a s  t h o u g h t  

t o  b e  t h e  m o s t  i n t e r e s t i n g  b e c a u s e  o f  i t s  l o n g  w a v e l e n g t h  n a t u r e  

a n d  t h e  f a i l u r e  o f  p a r a l l e l  v i s c o s i t y ^  ^   ̂ t o  s t a b i l i s e  t h e  m o d e .

M a k i n g  t h e  a p p r o x i m a t i o n  o f  i n c o m p r e s s i b i l i t y  t h e  2 D  r e s i s t i v e

M H D  e q u a t i o n s  f o r  t h e  m = 0  m o d e  a r e  s i m p l i f i e d  b y  t h e  i n t r o d u c t i o n
r 9 1

o f  a  f l u x  f u n c t i o n ,  \p, a n d  v e l o c i t y  s t r e a m  f u n c t i o n ,  *  . T h e



e q u a t i o n s  o b t a i n e d  a r e  s i m i l a r  t o  t h e  r e d u c e d  t e a r i n g  m o d e  e q u a t i o n s  

e x c e p t  t h a t  t h e  c o m p o n e n t s  o f  v e l o c i t y  a n d  m a g n e t i c  f i e l d  p e r p e n d i c u l a r  

t o  the i s l a n d  p l a n e  ( r , z )  a r e  r e t a i n e d  ( i . e .  Vg a n d  B g ) : t h i s  i s  

b e c a u s e  a n  o r d e r i n g  o f  t h e  t y p e  u s e d  f o r  t o k a m a k  p r o b l a n s   ̂ c a n n o t  

b e  i n t r o d u c e d  f o r  t h e  p i n c h .  T h e s e  r e d u c e d  e q u a t i o n s  a r e  s o l v e d  

u s i n g  a n  a l g o r i t h m  s i m i l a r  t o  t h a t  o f  W a d d e l l  e t  a l ^ ^ ^ ^ .  ip, V g , B g  

a r e  t i m e  a d v a n c e d  u s i n g  a n  A D I  s c h e m e ,  w h i l s t  t h e  8 - c o m p o n e n t  o f  

v o r t i c i t y  ( w) i s  t i m e  a d v a n c e d  e x p l i c i t l y .  T h e  v e l o c i t y  s t r e a m  

f u n c t i o n  b e i n g  o b t a i n e d  b y  s o l v i n g

A  s e c o n d  c o d e  b a s e d  o n  a  F o u r i e r  r e s o l u t i o n  t e c h n i q u e  w a s  a l s o  

w r i t t e n  t o  s o l v e  t h e  r e d u c e d  m = 0  m o d e  e q u a t i o n s .  T h i s  c o d e  s o l v e s
i Ic tz 2 4 Tf 7

f o r  t h e  f i r s t  t h r e e  h a r m o n i c s  ( i . e .  t h e  e q u i l i b r i u m ,  e  z  , e  z  , 

w h e r e  k ^  =  1 / R )  u s i n g  a  t e c h n i q u e  b r o a d l y  s i m i l a r  t o  t h a t  a b o v e .  

H o w e v e r  s i n c e  t h e  e q u a t i o n s  h a v e  n o w  b e e n  r e d u c e d  t o  a  l a r g e r  s e t  

o f  I D  e q u a t i o n s ,  b y  t h e  F o u r i e r  r e s o l u t i o n ,  a  C r a n k - N i c h o l s o n  s c h e m e  

i s  used f o r  t h e  i m p l i c i t  t i m e  a d v a n c e m e n t .  T h e  t r u n c a t i o n  o f  t h e  

F o u r i e r  s e r i e s  a f t e r  t h r e e  t e r m s  i s  j u s t i f i e d  b y  c o m p a r i n g  t h e  r e s u l t s  

o f  t h e  A D I  a n d  F o u r i e r  codes. V e r y  g o o d  q u a n t i t a t i v e  a g r e e m e n t  i s  

f o u n d  b e t w e e n  t h e  t w o  c o d e s ,  t h e  F o u r i e r  c o d e  h a v i n g  t h e  a d v a n t a g e  

t h a t  i t  r u n s  a p p r o x i m a t e l y  s i x  t i m e s  f a s t e r .

F i g u r e  5  s h o w s  t h e  n o n l i n e a r  d e v e l o p m e n t  o f  t h e  e q u i l i b r i u m

p r e s s u r e  f o r  a  r u n  w i t h  a  m a g n e t i c  R e y n o l d s  n u m b e r ,  S = 1 0 ^  a n d

C = 0 . 0 5 ,  K g = 0 . 4 .  T w o  d i s t i n c t  f e a t u r e s  a r e  e v i d e n t  i n  t h i s  f i g u r e ;

( i )  A  g e n e r a l  i n c r e a s e  i n  p r e s s u r e  w i t h  t i m e .  T h i s  i s  d u e  t o

o h m i c  h e a t i n g ;  o r  e q u i v a l e n t l y  t o  t h e  r e s i s t i v e  d e c a y  o f

m a g n e t i c  e n e r g y  a n d  t h e  c o r r e s p o n d i n g  i n c r e a s e  i n  p r e s s u r e  

e n e r g y  n e c e s s a r y  t o  c o n s e r v e  e n e r g y .

( i i )  A  f l a t t e n i n g  o f  t h e  p r e s s u r e  i n  t h e  v i c i n i t y  o f  t h e  s i n g u l a r  

s u r f a c e .  T h i s  i s  a  q u a s i - l i n e a r  e f f e c t  o f  t h e  m = 0  m o d e  o n  

i t s  e q u i l i b r i u m ^ ^  ^ .

S i n c e  i n c r e a s i n g  t h e  p r e s s u r e  g r a d i e n t , i n c r e a s e s , C ,  ( i) 

r e p r e s e n t s  a  d e s t a b i l i s i n g  e f f e c t  w h i l s t  ( i i )  r e p r e s e n t s  a  p o s s i b l e



s a t u r a t i o n  m e c h a n i s m .  T h u s  i t  i s  t h e  c o m p e t i t i o n  b e t w e e n  ( i )  a n d

( i i )  w h i c h  d e t e r m i n e s  t h e  f i n a l  n o n l i n e a r  s t a t e .  B a l a n c i n g  t h e s e  

t w o  m e c h a n i s m s  a n a l y t i c a l l y  i n d i c a t e s  t h a t  t h e  f i n a l  n o n l i n e a r  

g r o w t h  r a t e  s h o u l d  d e c r e a s e  w i t h  i n c r e a s i n g  S .  F i g u r e  6 s h o w s  

t h e  a v e r a g e  g r o w t h  r a t e  o f  t h e  f i r s t  h a r m o n i c  o f  b  ,

r w a l l  Bbj-, f w a l l1 f
-  d r  /  b r ,  d r

a s  a  f u n c t i o n  o f  t i m e  f o r  r u n s  w i t h  S = 1 0 ^  a n d  5  x 10*, C = 0 , 0 5 .  

T h e  S  s c a l i n g  i m p l i e d  b y  t h e  f i n a l  n o n l i n e a r  g r o w t h  i n  t h e s e  t w o  

r u n s  i s  S

N O N L I N E A R  m = l  S T U D I E S

I n  o r d e r  t o  s t u d y  m o d e s  o t h e r  t h a n  m = 0  a  n e w  f o r m a l i s m  a n d  

c o d e  w e r e  r e q u i r e d .  T o  a t t a i n  i n d e p e n d e n t  c o n t r o l  o v e r  t h e  p l a s m a  

e n e r g y  a  c o m p r e s s i b l e  f o r m u l a t i o n  c o n t a i n i n g  a n  e n e r g y  e q u a t i o n  w a s  

a d o p t e d .  A l s o  i t  w a s  r e q u i r e d  t h a t  t h e  n e w  c o d e  b e  c a p a b l e  o f  

s t u d y i n g  m i x e d  h e l i c i t y  p r o b l e m s .  T o  s a t i s f y  t h e s e  r e q u i r e m e n t s  a  

s p e c t r a l  c o d e  w a s  w r i t t e n  t o  s o l v e  t h e  c o m p r e s s i b l e  r e s i s t i v e  M H D  

e q u a t i o n s .

I n  a  p e r i o d i c  c y l i n d r i c a l  s y s t e m  t h e  d e p e n d e n t  M H D  v a r i a b l e s  

m a y  b e  F o u r i e r  a n a l y s e d  i n  t h e  0 , z  d i r e c t i o n s  e . g .

B  =  /  ( B  s i n ( m e  +  n K _ z )  +  B  c o s ( m 6 +  n K _ z ) )

00 uljfli ni/ll
0 < n < *

O f  c o u r s e  i n  p r a c t i c e  o n l y  a  f i n i t e  n u m b e r  o f  h a r m o n i c s  c a n  b e  

i n c l u d e d .

I t  i s  d e s i r a b l e  t o  t i m e  a d v a n c e  t h e  F o u r i e r  c o m p o n e n t  e q u a t i o n s  

i m p l i c i t l y  t o  a v o i d  t i m e s t e p  r e s t r i c t i o n s  ; h o w e v e r  t h e  n o n l i n e a r  

c o n v o l u t i o n  t e r m s  c a u s e  a l l  t h e  h a r m o n i c s  t o  c o u p l e  a n d  r e n d e r s  a  

t o t a l l y  i m p l i c i t  s o l u t i o n  i m p r a c t i c a l .  A  c o m p r o m i s e  i s  t h u s  u s e d .  

T h e  M H D  e q u a t i o n s  m a y  b e  w r i t t e n  i n  t h e  f o r m :



' L i n e a r i s e d  p a r t '  +  N o n l i n e a r  c o n v o l u t i o n  t e r m s  
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L i n e a r i s e d  p a r t  N o n l i n e a r  p a r t

w h e r e  f o r  s i m p l i c i t y  t h e  r e s i s t i v i t y ,  n , i s  a s s u m e d  t o  h a v e  t h e  

f u n c t i o n a l  f o r m  n  =  n ( r , t ) .

I g n o r i n g  t h e  n o n l i n e a r  t e r m s  y i e l d s  t h e  s t a n d a r d  I D  l i n e a r i s e d  

e q u a t i o n s  f o r  e a c h  h a r m o n i c ,  w h i c h  m a y  b e  s o l v e d  i m p l i c i t y  i n  t h e  

n o r m a l  m a n n e r .  T h u s  t h e  s o l u t i o n  t e c h n i q u e  u s e d  i s  t o  s o l v e  f o r  

e a c h  s e p a r a t e  h a r m o n i c  i m p l i c i t l y  w i t h  t h e  n o n l i n e a r  c o n v o l u t i o n  

t e r m s  i n c l u d e d  e x p l i c i t l y .  T h i s  m e t h o d  a c h i e v e s  t h e  r e q u i r e d  

n u m e r i c a l  s t a b i l i t y  w h i l s t  r e m a i n i n g  c o m p u t a t i o n a l l y  p r a c t i c a l .

T h e  2 D  m = 0  r e s u l t s  o b t a i n e d  a r e  i n  g o o d  a g r e e m e n t  w i t h  t h o s e  

o f  t h e  p r e v i o u s  s e c t i o n  ( s m a l l  d i f f e r e n c e s  i n  g r o w t h  r a t e  o c c u r  

b e c a u s e  o f  t h e  c o m p r e s s i b i l i t y ) . T o  s i m u l a t e  a n  e n e r g y  l o s s  

p r o c e s s  t h e  o h m i c  h e a t i n g  t e r m  w a s  r e m o v e d  f r o m  t h e  e n e r g y  e q u a t i o n :  

t h e  s a t u r a t i o n  o f  t h e  m o d e  w a s  s t i l l  n o t  c o m p l e t e  h o w e v e r  b e c a u s e  

r e s i s t i v e  d i f f u s i o n  o f  t h e  f i e l d s  c a u s e d  t h e  s h e a r  t o  d e c r e a s e  

( a n d  t h u s  C ,  t h e  d r i v i n g  t e r m ,  t o  i n c r e a s e ) .

F i g u r e  7  s h o w s  t h e  n o n l i n e a r  b e h a v i o u r  o f  a n  m = l  m o d e  j u s t  

i n s i d e  t h e  f i e l d  n u l l  ( n K ^ = 1 . 6 )  a t  S = 1 0 *  a n d  C = 0 . 0 5 ,  t h e  o h m i c  

h e a t i n g  t e r m  a g a i n  b e i n g  r e m o v e d .  T h e  d e c r e a s e  i n  g r o w t h  i s  c a u s e d  

b y  t h e  s a m e  p r e s s u r e  f l a t t e n i n g  m e c h a n i s m  a s  t h a t  f o r  t h e  m =0 m o d e .

5  . E R G O D I C  B E H A V I O U R

T o  s t u d y  e r g o d i c  b e h a v i o u r  a  f i e l d  t r a c i n g  c o d e  h a s  b e e n  u s e d

t o  d i s p l a y  m a g n e t i c  s u r f a c e s  f o r  t h e  T M S  e q u i l i b r i u m  p e r t u r b e d  b y

s u i t a b l y  s c a l e d  e i g e n f u n c t i o n s .  T h e  a b o v e  s t u d i e s  i n d i c a t e  t h a t

t h e  i s l a n d  w i d t h  a t  t h e  o n s e t  o f  n o n l i n e a r  b e h a v i o u r  s c a l e s  a s  t h e
C 9  Îr e s i s t i v e  l a y e r  w i d t h  . T h e  e x a c t  n o n l i n e a r  b e h a v i o u r  o f  t h e  ' g '  

m o d e  d e p e n d s  o n  t h e  e n e r g y  l o s s e s  ( r a d i a t i o n ,  c o n d u c t i o n )  f r o m  t h e  

p i n c h .  H o w e v e r  b y  i n c l u d i n g  t h e  l i n e a r  e i g e n f u n c t i o n s  a t  a  l e v e l  

j u s t  s u f f i c i e n t  t o  p r e c i p i t a t e  n o n l i n e a r  b e h a v i o u r  o p t i m i s t i c  

e s t i m a t e s  o f  t h e  e r g o d i c  b e h a v i o u r  c a n  b e  o b t a i n e d .  T h e  r e s u l t s



a r e  o p t i m i s t i c  i n  t h a t  t h e  m o d e s  w i l l  h a v e  t o  b e  a t  l e a s t  a s  g r e a t  

i n  m a g n i t u d e  b e f o r e  2 D  s a t u r a t i o n  w i l l  o c c u r .

F i g u r e  8 s h o w s  t h e  i n t e r s e c t i o n s  o f  s e v e r a l  f i e l d  l i n e s  w i t h
4

t h e  r , z  p l a n e  f o r  a  c a s e  w i t h  S = 1 0  , 8 ^ = 5 %  a n d  K ^ = 0 . 2 .  T h e  m a g n e t i c

f i e l d s  f o r  t h i s  c a s e  a r e  o b t a i n e d  b y  p e r t u r b i n g  t h e  T M S  e q u i l i b r i u m

b y  s u i t a b l y  s c a l e d  l i n e a r  e i g e n f u n c t i o n s .  T h e  m o d e s  i n c l u d e d  a n d

t h e i r  m a g n i t u d e s  a r e  g i v e n  i n  T a b l e  1 .  T h e  t w o  m = 0  i s l a n d s  b o u n d e d

b y  a  c l o s e d  f l u x  s u r f a c e  a t  r = 3 . 0  a r e  c l e a r l y  v i s i b l e .  I n  t h e  c o r e

h o w e v e r  t h e  m -1 s u r f a c e s  h a v e  b e e n  d e s t r o y e d  a s  c a n  b e  s e e n  b y  t h e

f i e l d  l i n e s  d e n o t e d  b y  a n d  '•+" w h i c h  w a n d e r  e r g o d i c a l l y .
r 121

E s t i m a t e s  o f  t h e  f i e l d  l i n e  d i f f u s i o n  c o e f f i c i e n t ,  D  ^  h a v e  

b e e n  m a d e  u s i n g  t h e  f i e l d  l i n e  t r a c i n g  r e s u l t s .  U s i n g  t h e  R e c h e s t e r  

a n d  R o s e n b l u t h  e x p r e s s i o n  f o r  t h e  e n h a n c e d  e l e c t r o n  d i f f u s i o n  i n  

t h e  c o l l i s i o n l e s s  l i m i t ^ ^ ^ ^

° = Ost V||
( w h e r e  V.. i s  t h e  e l e c t r o n  t h e r m a l  v e l o c i t y )  a n o m a l o u s  v a l u e s  

s e v e r a l  o r d e r s  o f  m a g n i t u d e  g r e a t e r  t h a n  t h e  c l a s s i c a l  v a l u e  a r e  

f o u n d .

6 C O N C L U S I O N S  A N D  D I S C U S S I O N

T h e  l i n e a r  ' g *  m o d e  h a s  b e e n  e x a m i n e d  f o r  a  l a r g e  r a n g e  o f  

p o l o i d a l  m o d e  n u m b e r s  a n d  m a g n e t i c  R e y n o l d s  n u m b e r s .  A t  l o w  S  i t  

i s  f o u n d  t h a t  r e s i s t i v e  d i s s i p a t i v e  e f f e c t s  c a u s e  m a r k e d  d e p a r t u r e s  

f r o m  a n a l y t i c  r e s u l t s ^  ^  ^ . I t  h a s  b e e n  d e m o n s t r a t e d  t h a t  t h e  F L R  

effects are o f  l i t t l e  i m p o r t a n c e  f o r  t h e  l o n g  w a v e l e n g t h  m o d e s ,  w h i c h  

a r e  g e n e r a l l y  t h e  f a s t e s t  g r o w i n g  m o d e s .  T h e  p a r a l l e l  v i s c o s i t y  

h a s  b e e n  f o u n d  t o  b e  a  m o r e  i m p o r t a n t  e f f e c t  p r o v i d i n g  a  m a r k e d  

s t a b i l i s a t i o n  t o  t h e  m = l , a l t h o u g h  h a v i n g  l i t t l e  e f f e c t  o n  t h e  m =0 , 

m o d e .

T h e  n o n l i n e a r  b e h a v i o u r  o f  t h e  ' g ' m o d e  h a s  b e e n  f o u n d  t o  

d e p e n d  o n  t h e  c o m p e t i t i o n  b e t w e e n  t h e  s t a b i l i s i n g  e f f e c t  o f  t h e  

q u a s i - l i n e a r  p r e s s u r e  f l a t t e n i n g  a n d  t h e  d e s t a b i l i s i n g  e f f e c t s  a r i s i n g  

f r o m  t h e  r e s i s t i v e  e v o l u t i o n  o f  t h e  e q u i l i b r i u m .  R e m o v i n g  t h e  o h m i c  

h e a t i n g  h a s  b e e n  s h o w n  t o  i m p r o v e  m a t t e r s  a l t h o u g h  t h e  d e c r e a s e  i n  

s h e a r  s t i l l  i n h i b i t s  a  t o t a l  s a t u r a t i o n  p r o c e s s .  T h e  i n c l u s i o n  o f  

p a r a l l e l  t h e r m a l  c o n d u c t i v i t y  i n t o  t h e  c a l c u l a t i o n  h a s  n o t  y e t  b e e n  

a t t e m p t e d .  T h i s  m a y  r e p r e s e n t  a  s t a b i l i s i n g  f a c t o r  b e c a u s e  o f  i t s



a b i l i t y  t o  g r e a t l y  e n h a n c e  c o n d u c t i o n  a c r o s s  t h e  i s l a n d  f l u x  

s u r f a c e s  a n d  t h u s  t o  l o w e r  t h e  t e m p e r a t u r e  g r a d i e n t  i n  t h e  v i c i n i t y  

o f  t h e  m o d e .  I t  m u s t  b e  r e m e m b e r e d  h o w e v e r  t h a t  t h e  p r e s s u r e  g r a d i e n t  

i s  a l s o  s u p p o r t e d  b y  t h e  d e n s i t y  g r a d i e n t  w h i c h  i s  m u c h  l e s s  a f f e c t e d  

b y  t h e  c o n d u c t i o n  a l o n g  f i e l d  l i n e s .

I n t r o d u c i n g  t h e  * g '  m o d e  e i g e n f u n c t i o n s  a t  t y p i c a l  l e v e l s  

i n d i c a t e d  b y  t h e  2 D  n o n l i n e a r  c a l c u l a t i o n s  h a s  b e e n  s h o w n  t o  g i v e  

r i s e  t o  e r g o d i c  f i e l d  l i n e  b e h a v i o u r .  T h e  f i e l d  l i n e  t r a c i n g  

c a l c u l a t i o n s  a l l o w  t h e  s t o c h a s t i c  d i f f u s i v i t y  t o  b e  e s t i m a t e d  b u t  t h e  

e f f e c t s  o f  t h i s  o n  t h e  e n e r g y  c o n t a i n m e n t  t i m e  w i l l  r e q u i r e  a  I D  

e q u i l i b r i u m  s i m u l a t i o n .

F i n a l l y  i t  m u s t  b e  s t r e s s e d  t h a t  t h e s e  f i e l d  l i n e  t r a c i n g  

c a l c u l a t i o n s  o n l y  r e p r e s e n t  a  f i r s t  a p p r o x i m a t i o n .  N o  a t t e m p t  h a s  

b e e n  m a d e  t o  i n c l u d e  a  n o n l i n e a r l y  e v o l v e d  e q u i l i b r i u m  n o r  h a v e  t h e  

s e c o n d  o r d e r  c u r r e n t s  b e e n  i n c l u d e d .  I n d e e d  t h e  f i n a l  r e s o l u t i o n  

o f  t h e  p r o b l e m  c a n n o t  b e  a c h i e v e d  u n t i l  a  f u l l y  s e l f  c o n s i s t e n t  

3 D  c a l c u l a t i o n  i s  m a d e .



m

2
1.8
1.6
1.4
1.2
1.0
0.8
0.4

TABLE 1

S i n g u l a r  
R a d i u s  ;

2.32
2.27
2.22
2.15
2.07
1.92
1.67
2.66

|B|
S i n g u l a r
R a d i u s

0 . 1 4 %

0 . 1 7 %

0 .2 1%
0 . 2 7 %

0 . 3 5 %

0.46%
0 . 5 1 %

0 . 2 8 %
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FIGURE CAPTIONS

F i g . l  T y p i c a l  T M S  r e v e r s e  f i e l d  p i n c h  e q u i l i b r i u m  f o r  a  S u y d a m

v a l u e ,  C = 0 . 0 5  a n d  a  v a c u u m  r a d i u s  o f  4 . 2 .

F i g . 2  G r o w t h  r a t e  i n  r e s i s t i v e  u n i t s ,  p  v  M a g n e t i c  R e y n o l d s

n u m b e r  S , f o r  v a r i o u s  p o l o i d a l  m o d e  n u m b e r s  m  w i t h .

n K ^ / m = l  a n d  a  S u y d a m  v a l u e  C =  0  . 1 .

F i g . 3  C o m p a r i s o n  o f  g r o w t h  r a t e s  ( r e s i s t i v e  u n i t s )  b e t w e e n

i n c o m p r e s s i b l e  c a s e  a n d  c o m p r e s s i b l e  c a s e  f o r  a  r a n g e  . 

o f  m a g n e t i c  R e y n o l d s  n u m b e r  S  w i t h  m = 0 ,  n K ^ = 0 . 4  a n d

C= 0.1.

F i g . 4  L a y e r  w i d t h s ,  A  ( u p p e r  t w o  c u r v e s )  a n d  g r o w t h  r a t e s ,  p

( l o w e r  t w o  c u r v e s )  i n  r e s i s t i v e  u n i t s  a s  a  f u n c t i o n  o f  

i o n  c o l l i s i o n l e s s  s k i n  depth, c / w  ., f o r  m = 0 ,  S = 5 0 0 0  

a n d  a x i a l  w a v e n u m b e r s  K = 0 . 4  a n d  2 . 0 .

F i g . 5  N o n l i n e a r  d e v e l o p m e n t  o f  e q u i l i b r i u m  p r e s s u r e  p r o f i l e

f o r  m = 0  m o d e  w i t h ,  n K ^ = 0 . 4 ,  a  m a g n e t i c  R e y n o l d s  n u m b e r  

S  = 1 0 ^  a n d  a  S u y d a m  v a l u e ,  C = 0 . 0 5 .

F i g . 6  A v e r a g e  g r o w t h  r a t e s  ( A l f v e n  u n i t s )  f o r  m = 0  m o d e  w i t h

n K g = 0 . 4 ,  a  S u y d a m  v a l u e ,  C = 0 . 0 5  a n d  m a g n e t i c  R e y n o l d s

4  4
n u m b e r s , S = 1 0  a n d  5  x  1 0  .

F i g . 7  A v e r a g e  g r o w t h  r a t e  ( A l f v e n  u n i t s )  f o r  m = l  m o d e ,  j u s t

i n s i d e  f i e l d  n u l l  ( n K ^ = 1 . 6 )  w i t h  a  m a g n e t i c  R e y n o l d s
4

n u m b e r  S = 1 0  a n d  a  S u y d a m  v a l u e  C = 0 . 0 5 .

F i g . 8  I n t e r s e c t i o n  o f  f i v e  f i e l d  l i n e s  w i t h  ( r , z )  p l a n e  f o r

T M S  e q u i l i b r i u m  p e r t u r b e d  b y  m o d e s  given i n  T a b l e  1 .
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