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ABSTRACT
A number of methods for the inclusion of quantum effects 
in the computer simulation of simple systems have been 
studied. The systems principally studied are fluids 
such as neon or fluorine, (modelled by simple potentials 
such as the Lennard-Jones 12-6) , for which quantum 
effects are small, in some sense. These methods all 
follow the structure of classical Monte Carlo or 
molecular dynamics methods, to a greater or lesser extent.

The Wigner expansion of the partition function in 
powers of Planck's constant allows quantum corrections 
to the free energy to be expressed in terms of classical 
ensemble averages, which ( to order can easily be
estimated by classical simulation. The Wigner expansion 
can be derived from Feynman's path integral formulation 
of quantum mechanics, which also leads to a number of 
other methods, all resembling classical Monte Carlo 
methods. These range from effective, temperature dependent, 
potentials, to approximate schemes for estimating path 
integrals.

Since Monte Carlo methods can give no dynamical data, 
an attempt has been made to represent the solids and 
liquids of interest as systems of wavepackets, and to 
derive equations of motion for these using the time- 
dependent Schrodinger equation.

All of the Monte Carlo methods give results for neon 
that are in accord with all previous work, while attempts 
to simulate helium provide an insight into the range of 
validity of the methods. The wavepacket methods give 
excellent results for the solid and liquid states of neon.
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1. Introduction

Real liquids are very complex many body systems indeed, 
with no obvious simple approximation that enables even 
a simple model of their properties to be derived. The 
interparticle interactions cannot be neglected, or taken 
to involve only infrequent collisions between widely 
separated atoms, as they can be in simple models of gases 
and other similarly dilute systems. Liquids also lack the 
symmetry of crystals, and so are not amenable to lattice 
dynamical calculations, normal mode analysis, and such 
solid state techniques.

Liquids are, however, extremely important physical 
systems, with virtually every process on earth dependent 
on their properties. Liquid water is the medium in which 
all of biochemistry takes place, for instance. Water also 
happens to be one of the more complicated of all liquids, 
and certainly not the simple system with which any study 
of liquids must start.

The study of simple liquids has increased very much 
in recent years, with ideas developing from hard sphere 
models in the 1950's , through atomic fluids modelled by 
simple potentials such as that of Lennard-Jones, to the 
present day models of molecular fluids using potentials 
that have been fitted to accurate ab initio calculations, 
or accurate experimental data, or even both. Theoretical 
approaches have one crucial drawback, however. It is not 
possible to separate the effects of the potential used 
from those of the approximations inherent in the theory.
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For example, an attempt to model argon by assuming a 
Lennard-Jones potential and using some integral equation 
might disagree with experiment either because the potential 
was not representative of argon, or because the integral 
equation was not exact.

With the advent of fast electronic computers, it has 
become possible to make direct computer simulations of 
a liquid, assuming only the potential acting in the system. 
These simulations are essentially exact, and so can be used 
to check the validity of more theoretical approaches.
The validity of the model potential used can be checked 
by comparing the simulation results with experiment, and 
the accuracy of any integral equation, etc. can be checked 
by comparison with the simulation for the same model.

The first simulations were of the hard sphere system, 
but the systems studied have become more complicated as 
the computers used have increased in power. Recent work 
includes molecular fluids such as water, aqueous solutions, 
ionic melts, and much ijiore.

All of this work, however, assumes a framework of 
classical mechanics. Indeed, most non-simulation work 
also uses this framework. The use of classical mechanics 
is an approximation that may be seriously in error for 
systems composed of light atoms at low temperature. The 
most obvious possible example is liquid Helium, which 
quite certainly cannot be described by classical mechanics. 
Quantum mechanical effects are dominant in its behaviour. 
Other fluids would show lesser effects, examples being 
Hydrogen and Neon. Very little work has been done on the 
inclusion of quantum effects in computer simulations of
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simple liquids such as these.. It is the aim of this work 
to study various ways of including these effects in 
simulations, and to draw some conclusions about their 
importance. The systems studied will for the most part 
be atomic fluids, but some will be diatomic.

The quantum effects can be grouped into two classes, 
those due to interference effects, and those due to the 
exchange of identical particles. The first relates to 
the Heisenberg uncertainty principle, the second to the 
Pauli-exclusion principle. These last are very small in 
the systems to be studied in this work,,and will be 
neglected. They are important in liquid helium only at 
very low temperatures, and for systems involving very 
light particles such as electrons. The importance of the 
interference effects may be assessed by comparing the De 
Broglie wavelength with the interparticle separation.
If the De Broglie wavelength is not negligible compared 
with the separation, then interference effects may be of 
significance. The dimensionless ratio of the two is often 
quoted as a measure of the importance of these effects, 
and is often called the De Boer parameter, A. There is 
no particular definition of this quantity; the values 
tabulated below were obtained from the formula 

= K^/mea^
where m,e, and a are the mass'and Lennard-Jones potential 
parameters appropriate to the system. Generally the 
characteristic mass,energy and length associated with 
the system may be used.
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Before considering the inclusion of quantum effects in 
computer simulations, the two basic classical simulation 
techniques must be understood. A brief discussion of the 
two methods is given in chapter 2. These methods are very 
different in their approach. The Monte Carlo method is, 
most generally, a way of estimating the value of a multiple 
integral, such as those arising in statistical mechanics.
It uses essentially statistical averaging techniques. The 
molecular dynamics method, on the other hand, estimates 
expectation values by averaging over a sufficient part of 
the history of the system, obtained by numerically solving 
the equations of motion that govern the system, along one 
trajectory in phase space. This means that time dependent 
properties are available for study, which is a definite 
advantage of the molecular dynamics method.

In passing, it may be noted that the methods described 
for Monte Carlo simulation of liquids at finite (non-zero) 
temperature can also be used for ground state calculations 
for liquid helium, for instance. Since this technique is 
restricted to the ground state, it will not be discussed 
further. There is a more sophisticated Monte Carlo method. 
Green's Function Monte Carlo, that does not require an 
initial form for the wavefunction. This method has so far 
only been applied to ground state properties, but can be 
extended to non-zero temperature. A recent review of both, 
approaches is contained in C28i. Since the aim of this 
work is to ektend classical simulation methods into the 
regime where quantum effects are small, but not negligible, 
rather than to carry out totally quantum calculations, 
this work will not be described further.
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The easiest approach to the inclusion of quantum effects 
is to calculate some form of correction in the course of 
a classical simulation. That is, seek some such that:

(i) the A^ are classical ensemble averages,
(ii) the true quantum results are given by

A = + I K"

(iii) this series converges sufficiently rapidly.
Such a series expansion, originally due to Wigner, is the 
subject of chapter 3.

Another simple approach, suggested by the Wigner method, 
is based on the replacement of the true potential by some 
effective, temperature dependent, potential. It transpires 
that such an effective potential can easily be derived by 
arguments based on Feynman's path integral formulation of 
quantum mechanics. This formulation leads to several 
further ways of including quantum effects in simulations, 
and these are all described in chapter 4.

Finally, in chapter 5 we describe methods that depend
on an approximate solution of the time dependent Schrodinger
equation, to give a computation that resembles classical
molecular dynamics. There are two approximations to be
made in this work. Firstly, some form must be assumed
for the wavefunction, and secondly, some approximations
are required to derive a set of equations of motion that

»can be numerically solved. These may or may not resemble 
their classical counterparts.
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1.1 The potentials used.

All of the work to be described below has used one 
of two potentials. The Lennard-Jones 6-12 potential

u(r) = 4E{(a/r)i2 - (a/r)®} (1.1)

has long been used as a simple representation of the 
interaction between inert gas atoms, or similar near- 
spherical particles. The parameters e,a that have been 
used are given in Table 1. These have generally been 
obtained by fitting to experimental virial or viscosity 
data. As an alternative to this potential, a simple sum 
of two gaussians has been used;

u(r) = A^ exp(-B^ r^) - A^ expC-B^ r^) (1.2)

It is possible to choose the parameters such that this 
form approximates the Lennard-Jones potential. (1).
However, this form is used primarily as a convenience, 
since it has no singularity at r=0. No attempt has been 
made to fit the four parameters in (1.2) to any experiment, 
the parameters used have been taken from (1), or scaled 
by the Lennard-Jones parameters from the values in (1).
Any agreement with experiment is thus slightly fortuitious, 
and could probably be improved if the parameters were to 
be fitted in the usual way.

Throughout this work the classical hamiltbnian has been- 
assumed to have the form

H = I P?/2m + 1 1  uCr. .) (1.3)
1  ̂ i<j

The potential has thus been assumed pairwise additive,
neglecting three body interactions.
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Table 1. Parameters used in the simulations
a. Atomic fluids
System: Helium Neon Argon
atomic mass/ .06648 .33504 .66335
L-J e/10"22j 1.4109 5.0804 16.538
L-J a/10”^°m 2.556 2.79 3.405
A^ /10"i7j .2046 .737 2.401

/lO^l m ^ .1389 .116 '.0783
A^ /10"2°J .0778 .280 .912

/lO^o m 2 .1881 .158 .106
De Boer A 1.06 .23 .074
b. Diatomic fluids
System: Fluorine
atomic mass/10 kg .31551
L-J E/IO':: J 7.28
L-J a/lo"io m 2.825
A^ /10~17 J 1.057
B^/ 10=1 m”2 .113
A^ /10"=o J .402

/lO^o m"2 .153
bond length/10”10 m 1.426

This data has :been taken from refs. 2,15.
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2. Classical simulation techniques.
The techniques used for the classical simulation of 

fluids have largely been developed in parallel with the 
large computers which they require. There are many good 
reviews of these techniques, (3), and so only briefdetails 
will be given here. The two approaches differ very much, 
and will thus be described separately.
2.1 Monte Carlo methods.

These methods are so called because they depend on the 
statistical properties of random numbers, in exactly the 
manner of games of chance. The name is generally applied 
to any method that estimates some quantity by using large 
quantities of random numbers having specified properties. 
The method was developed for calculations connected with 
the behaviour of neutrons in reactors, but has since been 
widely used in other fields.(4). It provides the only 
means, generally, for estimating the value of multiple 
integrals, especially when the number of dimensions is 
large. Such integrals arise in the statistical mechanics 
of liquids.

Consider a system with Hamiltonian given by (1.3). Here 
the are the momenta of N atoms, labelled 1,...,N, and 
r^j is the distance between atoms i and j,lr^ - at
positions r^ and r^. For a system of N atoms there are 6N 
coordinates. The expectation value of any property A(r)
(we write r as shorthand for the 3N dimensional vector of 
coordinates) can be written as an integral over these 6N 
variables :-

— 16 —



_ / A(r) exp (-3H(r,£)) dr d£
A =-----;---------------------------  (2.1)

/ exp (-gH(r,£)) dr d£

If we wish to deal with a bulk system, then N will be
2 3of the order of 10 , which is clearly quite impossible.

For N of the order of 100-1000, however, this is quite 
feasible if the method of Metropolis et.al. (5) is used.
In fact the problem can be simplified, because the form 
of the Hamiltonian allows the momentum integrals to be 
performed analytically. Provided that A is a configurational 
property, independent of the momenta, this leads to the 
result

/ A(r) exp’ (-3U(r))dr
<A> = A=  ---------------------  (2.2)

/ exp (-3U(r))dr
where U (r) is the potential. This simplification is not
always available. The expression in the denominator of
(2.2) is just the configurational partition function, Q.
The configurational properties of most interest are the
internal energy, and pressure. These are defined in terms
of the partition function by the usual relations of
statistical mechanics.

a In QU = kT^

P = kT

3T
sol

V

8V
1
QT

The configurational internal energy is thus easily shown 
to be given by (2.2) , with A = U. The pressure is not 
so easily obtained, but a volume scaling device gives 
the result

PV = RT - 1/3 < S E r . . >i<j
for a pairwise additive potential. The quantity in the 
angular brackets is the virial, which will be denoted by
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0. These integrals are just expectation values over a 
probability distribution function P(ri, given by

P(r) = exp (-3U(r)) / Q 
which is a function of 3N coordinates, or 6N, should the 
momenta not separate out. It is possible, and usually 
convenient, to define one-body, two-body, etc, functions 
by integrating out most of the variables. Integrating 
over all coordinates gives simply that the probability 
distribution is normalised. Integration over the 3N-3 
coordinates of all but one atom leads to the probability 
of finding an atom in a given place, which is clearly the 
density. The second such distribution function is the 
radial distribution function, g(r), defined by

g(r) = / expC-BU(r)) drg-.-drj^
/ exp(-3U(r)) dr^...dr^

It is essentially the probability of finding two atoms 
separated by a distance r. Higher functions can be defined 
similarly, but are not usually needed. If the potential 
is pairwise additive, then all of the configurational 
properties of the system can be expressed in terms of g(r) 
For instance,

U = 2ttN^/V /u(r) g(r) r^ dr (2.3)

$ = 2ttN^/V f  u'(r) g(r) r^ dr (2.4)
where the prime denotes the derivative.

All of the above refers to atomic systems only, since 
the orientation of molecules must also be taken into 
account, which considerably complicates matters. The 
radial distribution function can be generalised in a 
number of ways. It could be represented as a function of 
both centre-of-mass separation and relative orientation,
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and since this is not a simple representation, expanded 
in spherical harmonics. Alternatively, the orientational 
dependence could be averaged out, giving essentially the 
probability of finding two molecules with a given centre- 
of-mass separation, and no information about their 
orientation.

Instead of using the centre-of-mass separation, the 
separations between interaction sites can also be used.
There may be several site-site correlation functions if 
the molecules are heteronuclear.

Corresponding to the choice of site-site or c-o-m 
separations and pair correlation functions, there is a 
choice of cutoff scheme, since interactions can be cut off 
if either the site-site distance is above a certain limit, 
or if the c-o-m distance exceeds this limit. The two are 
clearly different, and lead to different long range 
corrections. In this work, a site-site cutoff has been 
used, with the expressions for virial, long range correction, 
etc given by (15).

The Metropolis algorithm is quite simple to implement,
with due care. A system of N atoms is considered, within
a cubic box of side L. Since the inert gases have face
centred cubic cryfetal structures, this box is constructed
as some multiple of the unit cell, and so N conveniently

3takes values of the form 4m , for some integer m. In this 
work N=32 or 108. These values of N are hardly large 
enough to qualify as 'bulk*, and so a system of periodic ■ 
boundary conditions is used, with all space filled with 
replicas of the fundamental box. Thus if an atom has
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position r, then there are images of it at r + mL, where 
m is a vector having integer components. This device also 
keeps all N atoms within the box, in the sense that an 
atom leaving one face of the box is replaced by the image 
entering through the opposite face.

When evaluating the interactions between the atoms, we 
clearly do not wish to consider an infinity of pairs, and 
so adopt the minimum image convention , whereby each atom 
interacts only with the nearest image of the other N-1.
This neglects interactions between atoms separated by a 
distance greater than L/2. In this work, all such terms 
have been neglected, that is, no interactions over larger 
distances than L/2 have been included.

The simulation starts by setting the coordinates of all 
atoms to form a face-centred cubic lattice, and summing 
all pair interactions to obtain the total potential energy. 
Any other quantities may also be calculated, of course.
One of the atoms is then chosen, either randomly or by 
some rule, and given a small random displacement, such 
that its final position is uniformly distributed in a 
small cube centred on its initial position. The size of 
this cube is a parameter of the method. The change in 
energy resulting from this move is calculated, and used* 
to decide whether or not the move should be allowed. If 
the move is not allowed the atom is returned to its initial 
position. The total potential energy is then updated to 
reflect the current positions of all atoms, along with any 
other quantities being calculated. Another atom is then 
chosen, and the procedure repeated many times. Usually 
*See appendix II.
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the size of the small cube is chosen such that about 50% 
of the moves are allowed, and the number of moves attempted 
is large enough for all atoms to move several times each.
The desired expectation values are estimated by the averages 
over all moves made. The procedure is exact in the limit
of a large number of moves.

It might be expected that computational efficiency 
could be improved if all of the atoms were displaced at 
each move, rather than one. This is not the case, as may 
easily be shown. If the algorithm for moving one atom is 
set such that about 50% of moves are allowed, and the same 
algorithm is used to displace all of the N atoms in each 
move, then the probability of accepting the move will be 
of the order of 0.5^, which is very small. In fact the 
small cube within which the new position of an atom lies 
becomes very small, if the probability of accepting a 
move is kept near 50%, and the method is very inefficient.

In the last few years, a variety of different methods 
of biasing Monte Carlo calculations have been proposed,
(29). These generally bias the moving of each particle by
using the forces (and turques) acting on it. These are not
normally calculated in the usual algorithm described above, 
and so there is some additional computation involved.*

In order to compare these biased methods with the-usual 
form, some quantitative measure of the efficiency of the 
methods must be defined. The simplest such measure is the 
rms distance moved per particle, per move. The larger 
this is, the better. The computer time used will suffice 
as a measure of the computational effort involved.
*See appendix II
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Using this measure, it has been found that the "Smart" 
method leads to a larger rms displacement then the usual 
method, for a given acceptance ratio. Under optimum 
conditions for each method, the biased algorithm is about 
30% more efficient. However, it also requires about 30% 
more computer time, and so offers no great advantage.
These tests, however, were carried out only for atomic 
liquids, and this conclusion may not hold in molecular 
fluids.

The progress of these calculations is monitored by 
calculating subaverages over blocks of moves. Care must 
be taken with these, since the results of each move are 
highly correlated with those that preceeded it. The 
subaverages must be taken over sufficient moves that 
successive subaverages are uncorrelated. Since the initial 
lattice may have a distorting effect on the averaging, 
the first moves made are discarded, until all traces of 
the lattice have disappeared. This equilibriation, which 
may take many moves, is continued until the subaverages 
show no steady trend; in this work at least the first 
50000 moves were discarded. Of course, the calculation 
need not start from a lattice, any configuration can be 
used provided that a sufficient number of moves are used 
to equilibriate the system.

The accuracy.of the final average can be estimated in 
several ways, none of which is particularly reliable. The 
spread in the subaverages gives some information, but the 
most reliable method is to repeat the entire calculation 
using different random numbers. This is computationally 
expensive, and so not applied to many of the simulations.
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It is possible to correct the estimated potential
energy, etc. for the effects- of the cutoff by assuming
that the fluid may be replaced by a continuum beyond the
cutoff distance. This is not likely to be correct either
for solids, or for very small systems, but is a very good
approximation for larger systems. Such corrections will
be included in all results quoted, even when they are not
likely to be correct. The precise form of the corrections
to the potential and virial are given by (2.3,2.4), with
the lower limit of the integration at the cutoff distance,
and g(r) = 1, that is

U_ = 2ttN^/V u(r) r^ dr Ju o ' rc
= 2wNg/V u'(r) r̂  dr 

c
The method has been applied to the Lennard-Jones fluid, 

with parameters appropriate to either helium or neon, for 
systems of 32 or 108 atoms. The potential energy and 
virial obtained are tabulated below. The pressure can 
be obtained by using the virial with the result given 
above. It should be noted that this result is a special 
case of a more general result, (10),

PV = 2/3 K - 1/3 I  

where K is the average kinetic energy; since this is known 
classically to be 3RT/2, the result given above is clear. 
Quantum mechanically, K is bounded below by 3RT/2.

During these simulations the radial distribution 
function has also been calculated. This function is the 
probability distribution for the atomic separation, and 
so can be calculated by accumulating a histogram of the 
interatomic distances. In this work the interval (0,L/2)
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has been divided into 150 equal parts, and a count kept 
of the number of interatomic distances within each part. 
Examples of g(r) for both 32 and 108 atom simulations are 
given in Fig.l, for the same state point.

The same method has been applied to the Gaussian fluid, 
giving the results in Table 2.2 below. All of these results 
were obtained using a 108 atom system. Fig.2 shows one 
of the radial distribution functions obtained, along with 
one of the corresponding Lennard-Jones results.

The method can be applied to molecular systems with no 
great difficulty. At each step the orientation of the 
chosen molecule must be changed, as well as its position.
In this work, this change of orientation was carried out 
by choosing one of the coordinate axes, randomly, and 
rotating the molecule about this axis, through an angle 
chosen at random within a small interval. The size of 
this interval is a second parameter of the method. In 
the simulations of fluorine that have been carried out 
using this method, the atom-atom pair correlation function 
has been calculated in exactly the same fashion as given 
above for the atomic fluid. The potential energy, virial 
and pressure obtained for the 2-centre model of fluorine 
using the gaussian potential are given in Table 2.3, for 
a number of state points.

The results for the solid state points in Table 2.1 
show clearly the discrepancy between the 32 and 108 atom 
simulations, especially in the virial. In the liquid state, 
however, there is good agreement, confirmed by the 
similarity between the radial distribution functions in 
Fig.l.The'estimated error in the potential energy is about
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Table 2.1 Results obtained by classical Monte Carlo for 
the Lennard-Jones fluid.

a. 32 atoms, 
V/(cm^mol“ )̂

Neon
T/K PE/Jmol“^ $/Jmol"l P/MPa

16.5 25 -1774 1700 -22
30 -1739 1067 — 6.4
35 -1687 113 . 15

17.0 25 -1709 1616 -19
30 —1686 1271 -10
35 -1642 419 9

17.5 25 -1669 1924
1

-25
30 -1636 1420 -13
35 -1598 682 4

18.0 25 -1620 2133 -28
30 -1587 1586 -15
35 -1563 1227 —6
II -1556 977 -2

18.5 25 -1584 2392 -32
30 -1547 1804 -19
35 -1511 1111 -4

15.0 15 . -2149 4360 -89 *
20 ■ -2104 3543 —68 *

15.5 15 -2071 4569 —90 *

* These are solid state points.
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b . 108 atoms, Neon 
V T PE
16.5

17.0

17.5

18.0

18.5

19.0

25
30
35
40

25
30
35
40
45
50

25
30
35
40

25
30
35
40

25
30
35
40

45
50

-1775
-1732
-1694
—1664

-1721
-1684
-1651
-1617
-1587
-1552

-1672 
— 16 40 
-1605 
-1573

-1624
-1594
-1564
-1534

-1584
-1551
-1520
-1492

-1432
-1408

1587
826
181
-341

1767 
109 8 
524 
-81 
-605 
-1192

1990
1314
738
181

2067
1517
933
475

2089
1544
1073
635

390
9

-19
-2
14 
27

-22
-7
7
21
34
48

-26
-11
2
15

-27
-14
1
10

-26
-14
-4
7

13
22
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b ,continued
V ______________T_______________ PE__________$_________ P
21.0 45 -1301 742 6

50 -1277 590 10

23.0 45 -1182 976 2
50 -1167 713 8

15.0 15 -2129 4086 -82 *
20 -2080 3154 -59 *

15.5 15 -2054 4315 -84 *

* These are solid state points.
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c. Ip8 atoms, helium
V_______________ T___________PE_________2__________ E_
22 12.5 -268 322 0

15.0 -263 199 3

23 12.5 -255 315 0
15.0 -249 212 2

. 24 12.5 -247 271 1
15.0 -236 230 2

25 12.5 -242 283 0
15.0 -232 214 2

26 12.5 -232 277 0
15.0 -218 233 2
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Table 2.2 Results obtained by classical Monte Carlo 
using the Gaussian potential.

V/cm^mol _̂____T/K PE/Jmol-1 -1

16.5 25 -1589 805 -4
30 -1551 52 14
35 -1527 -369 25
40 -1485 -1139 43

17.0 25 -1554 1241 -12
30 -1513 440 6
35 -1478 -173 21
40 -1450 — 681 33
45 -1426 -1095 44
50 -1396 -1680 57

17.5 25 -1510 1448. -16
30 -1468 601 3
35 -1441 152 13
40 -1414 -345 26

18.0 25 -1463 1440 -15
30 -1434 953 -4
35 -1403 281 11
40 -1376 -175 22

18.5 25 -1431 1711 -20
30 -1397 1212 -8
35 -1365 440 8
40 -1341 41 17

19.0 45 -1278 -319 25
50 -1262 —566 32
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b . 108 atoms,Helium 
V T PE 0
22 12.5

15.0
-237
-234

227
127

23 12.5
15.0

-244
-240

160
138

24 42.5
15.0

224
214

222
154

25 12.5
15.0

214
211

222
141

26 12.5
15.0

205
•198

242
183
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Table 2.3 Results obtained by Monte Carlo simulation
of Fluorine using a 2-centre Gaussian potential

-1 -1 -1

22 50 -6469 3921 -40
60 -6365 1165 5
70 -6309 142 24
II -6280 -72 27

24 50 -6028 8573 -101
60 -5919 6729 -72
70 -5823 5486 -52

26 50 -5528 9576 -106
60 -5475 8422 — 88
70 -5345 6639 — 62

28 50 -5316 8562 -87
60 -5072 7822 -75
70 -4940 7366 —66
80 -4893 6388 -52
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1% in the worst case, and usually less than this. The 
error in the virial is considerably larger. This estimate 
is based on the behaviour of subaverages over'.blocks of 
10000 moves, and on the agreement between 300000 move 
simulations that used different starting configurations, 
random numbers, and displacement parameters. Note that 
the standard deviation of the potential energy, as found 
from the square mean and the mean square, is not useful 
as a measure of accuracy.

2.2 Molecular dynamics methods.

These methods follow the time evolution of a system, 
rather than using statistical techniques to generate an . 
ensemble average. The approach has the advantage that 
dynamical properties, such as diffusion, can be studied 
at little extra computational cost. The system is defined 
by specifying the coordinates and momenta of each atom 
or molecule initially, and then solving equations of 
motion to determine the positions and momenta at future 
times. These equations of motion are usually taken as 
Hamilton's equations,

r = (1/m) £

2 =  -

where r,£ are the 3N dimensional vectors of coordinates 
and momenta, respectively. The dots indicate time deriv
atives, U is the potential, here assumed pairwise additive, 
and m is the atomic mass. This is a system of 6N first 
order differential equations, which can be numerically 
solved by a variety of well-known methods, (6).
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The same boundary conditions and potential cutoff are 
used as in the Monte Carlo method already described. In 
this method, however, the momenta of the particles, as 
well as their positions, must be set initially. This has 
been done by choosing the momenta from the normal 
distribution appropriate to the desired temperature, with 
the constraint that the total momentum be zero. Initial 
positions are set on a face-centred cubic lattice, as 
before. The energy required to melt this lattice is fed 
into the system by scaling the momenta at intervals in the 
course of the first steps. When the system is sufficiently 
equilibriated, as judged by subaverages, this scaling is 
discontinued, and averages are accumulated over several 
thousand steps.

The solution of the equations of motion is carried out 
using a timestep of between 1 and 10 fs, depending on the 
system being studied. The accuracy of the solution can be 
monitored by looking at the total energy, which ideally 
should be conserved exactly. Any change in total energy

4should be less than about 1 part in 10 , and may well be 
less than this in some cases.

The differences between this method and the Monte Carlo 
method described above are thus quite considerable. The 
Monte Carlo method generates canonical ensemble averages, 
while the molecular dynamics method leads to averages in 
the microcanonical ensemble. There are variants of both 
methods which provide other ensemble averages, these are 
described in the reviews (3), and have not been used in 
this work.
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The molecular dynamics method has been applied to 
atomic systems only as a check on the Monte Carlo 
calculations, which required the writing of totally new 
programs. Those results that were checked agreed well.
In the case of diatomic systems, the method has been 
applied to the 2-centre Lennard-Jones model of fluorine. 
The method has to be extended to deal with the rotation 
of the molecules, which requires some care. Details are 
given in (15). The method used has also to deal with the 
constraint imposed by rigidity of the molecule. The 
results obtained are given in the table below. They were 
obtained from 3000 steps of 10 fs, after the system had 
been equilibriated. The system consisted of 108 molecules, 
256 being used as a check at one state point only. The 
site-site pair correlation function was calculated during 
the course of these simulations, and one of the results.; 
is shown in fig. 3, along with one obtained by Monte 
Carlo for the 2-centre Gaussian potential.

The results obtained have been checked against those 
in (15), as far as possible. In all cases good agreement 
has been obtained.
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Table 2.4 Results obtained by Molecular dynamics simulation
of

3 -1 V/cm mol

F2 using a 

T/K

2-centre

PE/Jmol

Lennard-Jones
-1 -10/Jmol

; potential. 

P/MPa
24 58.1 -6592 5057 -50

70.5 — 6444 2109 -5
76.6 -6378 813 15
91.1 -6227 -2238 63

25 63.6 -6271 5548 -53
76.7 —6136 2799 -12
92.1 -5987 -186 33
92.8 -5986 -136 32

26 48.1 -6181 9719 -109
62.5 —6038 7065 -71
90.5 -5788 2157 1

27 58.8 -5843 8063 -81
69.7 -5741 6783 -62
78.5 -5662 5142 -39
92.9 -5556 3040 -9
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3. The Wigner expansion.

The classical form of the expectation value (2.2) given 
in the previous chapter does not carry over into quantum 
mechanics, unfortunately. The uncertainty principle does 
not allow simultaneous knowledge of the position and the 
momentum, so we cannot ask for some function P(r,p) such 
that P(r,£)dr dp is the probability of finding the 
system in a volume element dr dp centred at (r,p) in 
phase space.

Wigner (7) has defined a function P^(r,p) that gives 
the correct probability distribution for the r when the 
p are integrated out, and vice versa. If the system has 
eigenfunctions (j)(r) with associated eigenvalues E^,

then the density matrix can be written, in the coordinate 
representation

p(r,r') = I exp(-GE^) (r) (f)Ÿ(r')
and in the momentum representation

p(p,P*) = I exp(-gE^) (*)ĵ(p) c|)|(p')

= / P (r,r ' ) exp (“i/];i{p.r - p*.r'})drdr'
The diagonal elements of the density matrix give the
probability of finding the system at a particular point 
in coordinate or momentum space, according to the form 
used. It is easy to verify that

= /p (r + ,r - %Ti) exp (-i/Kp.p) dp 
has the property described above. This is not a unique 
definition of such a function, however.
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This function is not itself a probability distribution, 
since it is not everywhere positive. The expectation of 
any operator A can be found, provided that A is a linear 
combination of r and p, or a linear combination of 
functions of r only and p only. We have then

Â = jA(r,£) P^(r,E)drdE 

/ drd£

This result is not particularly useful, since is known 
in terms of the density matrix or the eigenfunctions, 
and given these the expectation value could be found 
anyway. In the systems being considered in this work, 
the eigenfunctions are not known, nor are they likely 
to be found.

The expansion of P^ in powers of Planck's constant 
gives rise to a considerable number of useful expressions 
for dealing with the case of systems with only small 
quantum effects. Such systems are the principal interest 
of this work. The first term in these expansions tends 
to be simple, and successively higher terms become more 
complicated, being completely intractable after the first 
few. Each term involves the derivatives of the potential, 
and their powers. This means that the method cannot be 
used without modification for systems such as hard spheres, 
or systems with hard core potentials. The easiest calcul
ations that can be carried out using the method lead to 
quantum corrections to the second virial coefficient, or 
directly to free energy corrections.

An expression for the quantum second virial coefficient
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is given in (30), along with tables giving the relative 
magnitudes of different contributions. It is generally 
the case that corrections due to interference effects 
involve only even powers of pi, while those due to exchange 
effects (here neglected) involve odd powers. Table 3.1 
gives this data for helium and neon, as taken from (30).
We have

B = + (#^/m)B^ + (pi^/m) ± B^
Here B^ is the contribution from spin effects, its sign 
depending on whether the system obeys Bose (+), or Fermi 
(-), statistics. As is clear from the table, this is a 
negligible effect except at the lowest temperatures.
The convergence of the expansion in powers of pi is also 
rapid except at the lowest temperatures, where all terms 
become equal in magnitude. It is worth noting that the 
successive terms alternate in sign. For neon at about 
35 K, the first correction is of the order of 8% of the 
classical value, and the second an order of magnitude 
smaller still.

Table 3.2 contains values for the second virial coeff
icient, calculated for neon using the equations below,

B^^ = -2wN^ J(exp(-3u(r)) - 1 ) r^ dr
B^ = 2ïïN^Ç/ (exp(-3u(r))(qL(f)/kT)2 r^dr 

where Ç = #2/12mkT, and B = B^^ + , for both the
Lennard-Jones and Gaussian potentials. It can be seen 
from these results that the corrections for neon are of 
the order of 10%, and that those for the Gaussian potential 
are slightly larger than those for the Lennard-Jones.
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Table 3.1 Contributions to the second virial coefficient, 
for the Lennard-Jones system.
T/K B* B* - -B^: '

He" 27.3 -4.87 0.5 9.16 -4.05
83.5 8.87 0.093 1.82 -0.19
256 11.13 0.017 0.48 -0.01

Ne 35.6 — 66.2 0.03 3.80 -0.47
95.0 -6.23 0.007 0.55 -0.01
392 12.1 0.0008 0.07 0.0

*arbitrary■ units

Table 3.2 Virial coefficients for neon.
L-J Gaussian

T/K B:i Bî BJl Bî
27.6 -11.37 0.781 -10.19 0.819
46.0 -4.65 0.227 -3.84 0.236
55.2 -3.27 0.156 -2.59 0.162
64.4 -2.36 0.115 -1.76 0.119
73.6
*units of

-1.70 
10  ̂m

0.090
3mol-l

-1.17 0.093
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The free energy of a quantum system can be written 
as a power series in X :-

A = (3.1)

a result originally due to Wigner (7). It is also an 
expansion in the derivatives of the potential, and so 
cannot, for instance, be applied to systems of hard spheres 
without modification. The method is well described in 
the literature, (8-12), and so only those results used 
will be quoted.

2The correction of order pi can be related to the mean 
square force and torque acting on a rigid molecule (12), 
and these quantities can be evaluated easily in the normal 
course of a molecular dynamics simulation. For an atomic 
fluid the result is ;-

2
A. = ---2------------------  13.2)

^ 24 m
where F^ is the classical mean square force on one atom 
due to all others. In the case of rigid linear molecules 
the result also involves the moment of inertia. I, and 
the mean square torque, T^, with the molecular mass M 
replacing the atomic mass m.

A, =
M I

1
—  (3.3)
61

Once the corrections to the free energy are known, for a 
range of temperature and molar volume, the corrections 
to other thermodynamic quantities can be found using the 
usual thermodynamic relations:-
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p - - (§#) T (3.4)

U = -T^ 3 (A/T) = A - T ^  (3.5)

It is also possible to formulate these results, for 
atomic fluids, as integrals involving the radial 
distribution function, g(r). This method has been used 
by Hansen & Weis (13) for liquid neon near the triple 
point, and by some others, eg (14). The particular result 
used is, (9),

= 245kTV f%4wr2?:u(r) g (r) dr (3.6)

where g(r) is the radial distribution function, and u(r) 
is the interatomic potential.

The mean square force (and torque) have been calculated 
for the atomic systems neon and helium, both using the 
Lennard-Jones potential, and for the diatomic fluorine, 
using a 2-centre Lennard-Jones potential. The results 
obtained are shown in Tables 3.3,3.4, along with the free 
energy correction obtained via equation [3.2 or 3.3.
Some results obtained via (3.6) are also shown, as a 
check. Table 3.5 contains results obtained via (3.6) for 
the Gaussian model of helium and neon. These results give 
free energy corrections that decrease with increasing 
temperature or molar volume, which is in accord with the 
expectation that the correction should vanish in the 
classical limit. Figure 3.1 shows the free energy 
correction as a function of volume, for several temperatures.

In order to estimate the corrections to the internal
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Table 3.3 Mean square force, and free energy corrections
for the Lennard-Jones fluid.

—1 T -20 2 -1V/ccmol T/K F /lO N AA/Jmol
____________________________________ (eqn 3.2) (eqn'3.6)
16.5 25 25 .148 103

30 .192 93
35 .250 89
40 .303 83

17.0 25 .138 96
30 .184 89 91
35 .231 . 82
40 .282 77
45 .339 73
50 .405 71

17.5 25 .128 89 91
30 .171 83 83
35 .217 77
40 .266 72

18.0 25 .121 84 86
30 .159 77
35 .203 72
40 .246 67

18.5 25 .116 81
30 .153 74
35 .192 68
40 .234 64
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Table 3.3, 
V

continued
T AA

(eqn 3.2) (eqn 3.6)
19.0 45 .263 57

50 .311 54

21.0 45 .221 48
50 .255 44

23.0 45 .190 41
50 .223 39

b. Helium. 
V T

1

AA(eqn 3.2)
22.0 12.5 .128 180

15.0 .172 168

23.0 12.5 .120 169
15.0 .161 157

24.0 12.5 .121 170
15.0 .148 144

25.0 12.5 .115 162
15.0 .141 142

26.0 12.5 .111 156
15.0 .132 129
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Table 3.4 Mean square force and torque, and free energy 
correction, for , 2-centre L-J potential. 

V/ccmol~^ T/K*______ F^/loT^O^Z r^/lo'^^J^ AA/Jmol~^
24 58.1 1.218 .478 144.51

70.6 1.623 .634 130.14
76.6 1.857 .721 125.9
91.1 2.408 .941 115.5

25 63.6 1.217 .477 120.0
76.2 1.578 .616 106.4
92.1 2.037 .796 94.9
92.8 2.087 .815 95.7

26 48.1 0.736 .289 127.1
49.1 0.793 .311 131.4
62.5 1.068 .418 108.8
90.5 1.756 .682 84.2

27 58.8 0.923 .362 106.1
69.7 1.145 .450 93.3
78.5 1.407 .550 90.0
92.9 1.773 .693 80.8

* The temperature quoted is an average over the molecular 
dynamics simulation, rather than a fixed parameter as 
in a Monte Carlo simulation.
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energy and pressure, a series of least-squares fits of 
the correction AA in terms of the volume and temperature 
were carried out. The resulting cubic splines were then 
used to interpolate the data, and thus to estimate the 
derivatives required by (3.3,3.4). For neon, in the range 
covered by Table 3.1, the internal energy term in T 3A/9T 
is between 25 J/mol at the highest (V,T) point and 50 
J/mol at the lowest point. These are very rough figures, 
in view of the fitting procedure used. The pressure 
correction varies between 15 and 5 MPa over the same 
range. The Lennard-Jones data can be scaled to correspond 
to any other set of parameters (eja), with care, by using 
the relations below.

T' = T (e'/e)
V  = V (a'/a)^
AA * = AA (ma ̂/m * a '^)

Note the presence of the atomic mass m in these results, 
which distinguishes this scaling from that applicable 
to classical Lennard-Jones systems, in which all energies 
scale as e. This difference means that the relative 
importance of the quantum corrections varies as the mass 
changes.

In the case of the results for fluorine, the three terms 
in equation (3.3) are all substantial, and approximately 
in the ratio 2:2:1.
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4. Path Integral methods.

The complete dynamical description of any system is 
contained within the evolution operator G(t) for that 
system. This operator is the solution of the operator 
equation

iX = H G, G(0) = I (4.1)

or, formally,
G ( t )  = exp(-iHt/K) (4.2)

The operator G has two fundamental properties

G(ti + t^) = G(t2)G(t^) (4.3)

G(t)G*(t) = I if H = H* (4.4)
The Hamiltonian H usually has a complete orthonormal 

set of eigenfunctions satisfying
H I d) >  = E I d) >

The kernel of the operator G , the Green's function, is
given, in the coordinate representation, by

G(q^rqj^;t) = Z exp (-iE^t/X)
n

(4.5)
where q^,q^ are the final and initial coordinates of 
the system, separated by time t. G(q^,q^;t) may be viewed 
as a conditional probability for finding the system at 
q^, given that it was at q^ at time t before. Equation 
(4.3) can now be written as an integral:-

G(qf ,q^;t^+t2 ) = / G (q^,q;t2 ) G (q,q̂ ;tĵ ) dq
(4.6 )

The trace of the evolution operator, the spectral function.
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Y(t) = /G(q,q;t)dq = Tr G 
can easily be related to the partition function, in fact 
Y(-iXB) is the partition function Z(3). This analogy is 
quite general, in that most results for time-dependent 
problems can easily be transformed to give temperature 
dependent solutions, since the Schrodinger and Bloch 
equations are very similar in form. In either case, if 
we have a short-time (fiigh temperature) approximation, we 
can use (4.6) recursively to extend the result to longer 
times, (lower temperatures). Ultimately, we could take 
the recursion to some limit, and integrate an expression 
like (4.6) over all points on a path linking initial and 
final positions. This corresponds to a functional integral, 
over the path linking the positions, and to that quantum 
mechanical formulation due to Feynman known as the Path 
integral. The method is described in (16-18) .

Specifically, we have for the density matrix
PCqf.qi/’u) = I exp(-uE^/X) (4.7)

where u = X3* Differentiating this with respect to 8, we 
find

ft = -HP
which is the Bloch equation. Note the resmblance between 
this and (4.1), and.between (4.7) and (4.5). Clearly 
this is related to the partion function Z,

z(3) = p(q,q;X3) dq = Tr p = % exp(-gE^)

The problem with using this directly is that the (f)̂ and 
E^ are not known for any but the simplest systems, and 
certainly not for liquids.
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For small r \, this can be approximated:-

P(qf,qi;n) = exp -{ ™ ^  V i i q ^ + q ^ ) / 2 ) }

Using (4.6), we can then write, for any u,
N

pCqf/q^/'u) = /exp - I  { ^ ( q j + 1  - qj)= + ^ v(gj)} uq
j=i

^ - ' 2 , B V j j

(4.8)
where Dq is shorthand for dq^...dq^_^, together with the
constant factor, and the integral is over all paths q(u) 
s.t. q^=q^, qj=q(jn),q^=q^, u=Nn, and we take the limit 
N->- oo. The partition function is then obtained by taking 
q^=q^, and integrating again:-

Z(3) = / exp{-(l/X)/ %mq(u) + V(q(u)) du}Dq(u)
(4.9)

where the integral is over all closed paths, the inner 
integral is over (0,X3), and q is dq/du. The requirement 
that the paths be closed is essentially taking the trace.

If V(q) is essentially indepenent of u , that is, if 
the potential V changes only on a scale large compared 
with the De Broglie wavelength, then the expression above 
can be simplified by use of V(q(u)) = V(q(0)), to obtain 
the classical result.

Taking this approximation one stage further, 
V(q) can be expanded about some value, not necessarily 
u=0, and the expansion truncated at some point. A number 
of useful results can be derived in this way, including 
the Wigner expansion of the free energy as used in the 
previous chapter.
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4.1 Effective potentials.

If a mean position is defined for any one path, the 
result (4.9) can be transformed into an integral over 
all paths having a given mean position, and then an 
integral over this position, rather than the integration 
over all starting positions involved in (4.9). If the 
potential is replaced by a Taylor expansion about this 
mean position, defined by

q = / q (u) du
then a whole series of approximations can be obtained, as 
higher terms in the Taylor expansion are retained. TheI
classical partition function results if V(q(u)) is taken 
as V(q). The next term, in V*(q) (q(u) - q), clearly 
vanishes given the definition of q, as will all terms 
in odd derivatives of V. Retaining the second derivative, 
we find

Z(6) = / exp -BCVCq) + V" (q) ) dq
(4.10)

Since we have neglected terms in the exponent in , 
we can expand the exponential, and again neglect terms 
in X** 2“

Z(6) = Jfexp -gV(q)}(l - V "  (q) ) dq

(4.11)

The corresponding free energy may easily be derived, using 
ln(l+x) = X, and shown to be precisely the result given 
by the Wigner expansion, equation (3.2). This was derived 
in (12) by a completely different argument. If higher 
terms were retained, higher derivatives would be entering 
through the expansion in (4.10), while powers of lower
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derivatives enter into the expansion of the exponential.
An alternative approach would be to carry out classical 

simulations, but with a potential that contained the 
necessary modifications to lead to approximate quantum 
results. For instance, one might use

Vgff = V(q) + (KV24mk^T^) V" (q)

or even include higher terms. However, Feynman has given 
a variational theorem (16,17) that allows the choice of 
an optimum effective potential, with the result

Veff(q) = /v(s) exp -6mkT (q-s) ds
(4.12)

in one dimension. A very similar result is in fact to be 
found in (9). When generalised to three dimensions, the 
result is

3/2
Veff(q) = /v(r + 2.) exp -vrV4 dr

(4.13)
2where v=12mkT/X . This integral can easily be evaluated 

for the Gaussian potential (1.2), when the effective 
potential is also Gaussian, but with modified parameters, 
given by

A* = (v/(4B + v) ) A
(4.14)

B* = (v/(4B + v)) B 
The effect of these changes is to make the potential 

well shallower, and to make the potential more repulsive. 
This is in accord with the fact that the quantum effects 
are essentially repulsive. Note also that the parameters 
tend to their classical values in the high temperature, 
high mass limit, as they should. Taylor expansion of 
V(r+3 )̂ about r=0 shows that the first term agrees with 
the result obtained via the Wigner expansion, but that 
higher terms do not.
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The approach is clearly very simple to implement, since 
all that is required is that replace V. Some care
is required with the integral in (4.13), since it may 
not exist for some potentials with a singularity. In 
these cases, such as the Lennard-Jones potential, the 
result may be approximated by expansion of the potential 
about its minimum. In the case of the Lennard-Jones 
potential, this procedure again leads to effective e,a, 
to be used in classical calculations. Expressions for
these have been given by Young (19):-

(4.15)
E* = (1 - 14.3x  ̂+ 104.9x )̂ e
a* = (1 + 3.77x )̂ a 

where x=va^/4. The scaling properties of the Lennard- 
Jones potential make simulations using these parameters 
unecessary, but the Gaussian potential does not have 
this property.Table 4.1 thus contains results similar 
to those presented in Table 2.2, but using the effective 
parameters given by (4.14). The Monte Carlo method was 
used in precisely the same fashion as described above 
in chapter 2. The results of Table 2.1 have been scaled 
with the effective parameters (4.15), to obtain the results 
shown in Table 4.2. The method has one disadvantage, in 
that the kinetic energy is not calculable. This is not 
a serious problem, but makes the calculation of pressure 
and internal energy difficult. The pressures in the two 
tables have been calculated by assuming the value 3RT/2, 
which is the classical result. Figures 4.1,4.2 show 
typical radial distribution functions obtained for the 
gaussian potential by this method, and also the classical 
results for comparison. The change in the position and 
height of the first maximum should be noted, this will be 
discussed in more detail in chapter 6.



The effective parameters for the gaussian potential 
have also been used on simulations of the diatomic fluid 
previously simulated to give the results in Table 2.3.
The results are shown in Table 4.3, and one of the radial 
distribution functions obtained is compared with its : 
classical counterpart in figure 4.3. This system, which 
roughly models fluorine, will be discussed further in 
chapter 6.
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Table 4.1 Results obtained by Monte Carlo simulation 
using the effective Gaussian potential, for 
108 atoms.

a.Neon
-1 -1 -1 P*-1V/ccmol T/K PE/Jmol"^ 0/Jmol"l

16.5 25
30
35
40

1542
1508
1467
1440

-9
-716
-1363
-1908

12.2
29.6 
45.1
58.7

17.0 25
30
35
40
45
50

1500
1465
1437
1405
1385
1351

362
-398
-867
-1470
-1800
-2410

5.1 
22.5
34.1 
45.9 
57.3 
71.7

17.5 25
30
35
40

1453
1435
1404
1370

486
117
-470
-1088

2.6
12.0
25.6
39.7

18.0 25
30
35
40

1413
1390
1373
1340

704
262
-55
-690

-1.5
9.0
17.2
31.2

18.5 25
30
35
40

1387
1363
1334
1311

1089
639
96
-318

-8.3
1.9
14.0
23.7

— 58 —



a f cont.
V_________T_________ PE________ $_______________ p*
19.0 45 -1256 -555 29.4

50 -1226 -1130 41.7

21.0 45 -1141 117 16.0
50 -1122 -183 22.7

23.0 45 -1044 371 10.9
50 -1030 216 14.9

* Pressures assume classical KE of 3RT/2.
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b. Helium
V_________T_________ PE_________ $______________ p*
22 12.5 -132 -1039 20.4

15.0 -146 -832 18.3

23 12.5 -129 -827 17.2
15.0 -138 -785 16.7

24 12.5 -127 -731 14.4
15.0 -133 -703 14.9

25 12.5 -124 -609 12.3
15.0 -127 -621 13.3

26 12.5 -118 -599 11.6
15.0 -127 -492 11.1

* Pressures assume classical KE of 3RT/2

— 60 —



Table 4.2 Results obtained by scaling the results of
Table 2.1 with effective L-J parameters.

a.Neon
-1V/ccmol T/K PE/Jmol”^ /Jmol  ̂ P/Mpa *

17.27 23.6 -1671 1496 -17.5
17.14 28.56 -1649 785 -1.4
17.05 33.56 -1624 172 13.0
16.98 38.55 — 1603 -328 25.3

17.80 23.6 -1622 1665 -20.1
17.67 28.56 — 1603 1045 -6.3
17.57 33.56 -1583 502 6.4
17.49 38.55 -1558 -72 19.8

18.33 23.57 -1576 1875 -23.4
18.18 28.56 -1560 1251 -9.8
18.08 33.56 -1539 707 2.4
18.01 38.55 -1515 174 14.6

18.85 23.6 -1531 1948 -24.0
18.70 28.56 -1517 1444 -13.0
18.60 33.56 -1499 894 -1.0
18.53 38.55 -1478 457 9.1

19.37 23.6 -1494 1969 -23.7
19.22 28.56 -1476 1469 -13.1
19.12 33.56 -1456 1028 -3.3
19.04 38.55 -1438 612 6.1

* Pressures assume classical KE of 3RT/2.
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Table 4.3 Results obtained for the 2-centre gaussian
model of fluorine, using an effective potential

V/ccmol  ̂T/K PE/Jmol-1 0/Jmol-1 P/MPa *
22

24

26

28

50
60
70

50
60
70

50
60
70

50
60
70
80

-6287
—6262
-6143

-5889
-5789
-5737

-5416
-5359
-5302

-5115
-4977
-4836
-4817

525
-722
-2278

5079
4201
3715

8568 
6900 1 
6455

7592
6452
5989
4991

11
33
61

-53
-37
-27

-93 
-69 
— 60

-75
-58
-50
-35

*Pressur3S assume classical KE 3RT/2.
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4.2 The method of Stratt and Miller.

The result (4.9) can be used to derive less severe 
approximations in which the kinetic energy can be found 
directly. However, the classical framework of the previous 
approaches will be lost. The possibilities are many and 
varied, but those that retain some similarity to classical 
methods would seem preferable.

Equation (4.9) is an integral over all closed paths in 
configuration space. As an approximation to this, we 
might restrict the set of paths in some way. This can 
be done if, for each initial point q^, we consider only 
the one path making the largest contribution to the 
integral. That is, we require that path q(u) for which

W
I ^m qZ(u) + V (q (u) ) du 
O

is a minimum. If we write p = mq(u), and use the Euler- 
Lagrange equation, we find at once that

II = P (4.16)

This defines one path for each starting point. Since we 
require the path to be closed, we consider the path from 
u=0 to u=hW r and then return to the starting point by 
the same path. The final result for the partition function 
is

h w
Z(3) = / exp{ + V(q(u))du} Dq(u)

(4.17)
where the integral is over all points q(0), p=qm, and 
p=9V/9q. This approach has been used by Feynman (17),
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and described fully, with simple applications, by Stratt 
and Miller (20). The method is exact for the harmonic 
oscillator, but underestimated quantum effects when 
applied to simple systems such as two helium atoms with 
a Lennard-Jones potential. This is to be expected in any 
such approximation.

The calculation proceeds exactly as in a classical 
Monte Carlo calculation, but calculates the integral in 
the exponent of (4.17) at each move. This requires the 
approximate solution of the equations of motion that 
define the path, which in turn requires methods similar 
to those used for molecular dynamics. The only notable 
differences are the sign of 3V/9q in (4.16), and the 
requirement that the solution be found only over the 
interval (0,KB). The Monte Carlo method used differs 
from the normal version in that every atom is given a 
random displacement in both position and momentum at 
each move. The momenta are of course involved in the 
integration, since they cannot be separated as they can 
classically. The number of steps of "molecular dynamics" 
required to cover the interval (0,#&) clearly increases 
as the temperature is reduced. In this work 8-12 steps 
were found to be adequate, and the results show no 
significant if this figure is increased. The potential 
and kinetic energy averages are easily obtained by taking 
the average over all moves of the values obtained at u=Xg/2.

The method has been applied to both the Lennard-Jones 
and Gaussian models of both neon and helium, using a 
system of 32 atoms with the boundary and cutoff exactly
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as in classical simulations. 12000 Monte Carlo moves, 
each of 8 steps, were used, starting from an equilibriated 
configuration. Note that a configuration produced by a 
classical simulation cannot be used to start a simulation 
using this method. The results obtained are presented 
in Tables 4.4,4.5 for the Lennard-Jones and Gaussian 
potentials, respectively. Figures 4.4-4.7 show some 
of the radial distribution functions obtained, compared 
with their classical counterparts. The accuracy of this 
method is not as high as might be desired, and certainly 
worse than the classical simulation results already 
reported, as is clear from the data in the tables. The 
results will be discussed alongside those obtained by 
other methods in chapter 6.

4.3 Use of Fourier series.

The integrals used so far have been over closed paths, 
or, more precisely, over the one most important path for 
each starting point. If the whole set of paths is to be 
included, then the expression (4.8), for finite N, is a 
clear place to start. It has been shown (31) that this 
result for the partition function can be related to the 
classical partition function of a hypothetical system 
with N times as many atoms. This approach has been used 
by Chandler (21), Barker (22), and others. This can 
easily be seen if the integral in the exponent of (4.9) 
is replaced by a finite quadrature, and x is replaced by 
some difference scheme.
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Table 4.4 Results obtained for the Lennard-Jones fluid 
using the method of Stratt and Miller.

a.32 Neon atoms
V T
(ccmol ) (K)

PE 1 0 , KE , P
(Jmol" ) (Jmol" ) (Jmol" ) (MPa)

16.5

17.0

17.5

18.0

18.5

25
30
II

35
40

25
30
35
40

25
30
35
40

25
30
35
40

25
30
35
40

1730
1667
1666
1635
1578

•1709
1658
1562
1601

1615
1610
1553
1523

1539
1486
1485
1486

1471
1500
1480
1503

1236
74

-107
-400
-1393

1865
1204
-337
70

1485
1189
415
-661

1430
559
318
-155

733
1214
1096

1138

420
422
428
468 
512

376
347
503
482

337
379
514
529

371
445
481
517

469 
453 
490 
551

-7.9
15.5
19.4
27
49

-32
-10
26
17

-15.4
-8
12
32

-13
6
12
22

3.6
-5
- 2

-0.4
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Table 4.5 Results obtained for the Gaussian fluid, using 
the method of Stratt and Miller, 

a. 32 Neon atoms
V T
(ccmol ) (K)

PE T 0 1 KE P
(Jmol ) (Jmol ) (Jmol" ) (MPa)

16.5

17.0

25
30
35
40

25
30
35

1554
1526
•1488
■1419

1476
1429
1387

468
180
-582
-2065

505
-377
-1069

428
449
458
489

415
418
479

7.8
14.5 
30.3
61.5

6.4
23.7
39.7

17.5 25
30
35
40

1460
•1442
1385
•1367

395
741
-611
-926

372
406
464
558

6.6
1.3
29.3 
38.9

18.0

18,5

25
30
35
40

25 
30 
35 
40

b. 108 atoms 
18.0 30

-1406
-1372
-1390
-1313

-1385
-1356
-1323
-1329

-1373

984
668
361
-1103

1388
996
221
-5

-264

389
426
452
570

447
446
483
484

425

-3.8
3.4 
10.0 

41.0

-8,9
- 1.8
13.4
17.5

20.6
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c 32 Helium atoms
V_________T_________ PE_________ 0________ KE__________ P
22 12.5 -208 474 134 -3.1

15.0 -208 500 172 -2.3

23 12.5 -194 439 143 -2.2
15.0 -197 555 169 -3.1

24 12.5 -185 511 132 -3.4
15.0 -185 539 175 -2.6

25 12.5 -178 594 125 -4.5
15.0 -178 635 161 -4.2

-178 618 164 -4.2
26 12.5 -165 532 138 -3.2

15.0 -168 637 161 -4.0
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, N . -
/ exp f  %mZ_^x^(u) + V(x^...x^) du Dx(u)

"  /  exp - f  I { â W P '  - %i)' + V(%],...%])}] —JL 1—1

This is the classical partition function for a system 
of N molecules, each being cyclic, and having P atoms.
These molecules interact, but note that each site only 
interacts with the corresponding sites in the other 
molecules.

An alternative method involves a change of variables.
Since the path is closed, q(0) = q(#g), it is possible 
to write the path as a fourier series

q(u) = + I sin (4.18)

= I (4.19)

The kinetic energy is then given by ^mq^, and the kinetic 
energy term in the exponent in (4.17) can be integrated 
analytically. This leaves the potential term to be 
estimated numerically. Essentially, the N points used to r 
define the path in (4.8) are replaced by N fourier 
coefficients, where we would like in principle to take 
N infinite. The integrations over the intermediate points 
are replaced by integrations over the fourier coefficients, 
which require similar Monte Carlo techniques. The method 
lacks the similarity with a classical, polymer system, 
but it is to be hoped that the convergence with N is 
different, and hopefully better.

The method has been tested by carrying out several 
runs for helium using the Gaussian potential, and 
truncating the fourier series at between 4 and 32 terms.
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The results obtained are shown in Table 4.6. The radial 
distribution functions obtained for N=4 and N=32 are 
plotted in figure 4.8. There is little N dependence in 
these results, which suggest that the method may be more 
useful than the method of Chandler et.al., although 
it lacks the analogy with classical polymer systems.

Table 4.6 Results obtained for the Gaussian model of 
helium using the fourier series method with N 
coefficients , V=24 cc/mol,T=15K, 32 atoms.

N PE $ KE
__________ ( J/mol) (J/mo1) (J/mol)..............
4 -201.5 -22.5 130.2
10 -200.2 124.8 136.9
24 -206.0 33.2 138.6
32 -199.8 193.4 134.0
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5. Wavepacket methods.

The methods described in the preceding chapter were 
all Monte Carlo methods, and thus could give no answers 
to dynamical questions. This section will introduce a 
semiclassical analogue of the molecular dynamics method, 
by which dynamical information could in principle be 
obtained. The objective of the work is to derive a set 
of equations of motion for an assumed time-dependent 
wavefunction, and then to numerically solve these, in 
precisely the manner of a molecular dynamics simulation.

The form of the wavefunction is important, since it 
is central to the whole approach. The form used here is 
a product of atomic functions

H' = n (}). (5.1)
j ^

where the atomic functions (f) ̂ , j=l,...,N, are gaussian 
wavepackets with time dependent parameters specifying 
the position, momentum, and shape. This form combines 
several useful properties, apart from being physically 
realistic (i.e. continuous, etc.) The precise form used 
is, in two dimensions,

= exp Ajx(x-Xj)^ + Ajy(y-Yj)' +

Bj^y(x^Xj)(y-y^) + Pjx(x-X.) +

Here the upper case letters denote functions of time, 
that is, A. = A. (t). The A,B,D parameters are complex,3)X ]X
while X,P are real. The generalisation to 3 dimensions 
is obvious. The subscript j will be omitted where this
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does not affect clarity. The complex parameters specify 
the shape of the wavepacket, and its extent. With this 
form, we have

<4|x|4> = X(t) (5.3)

(5.4)
and require D to be such that the wavepacket is correctly 
normalised to unity:-

<4|$> = 1 (5.5)
In fact, this requirement leads to a relation between 
Im D and the A,B parameters, and also to the constraint 
that the Im A must be positive. Various integrals thfet 
have been used in the manipulation of these wavepackets 
are summarised in appendix I.

The next stage of the work involves deriving a set
of equations of motion for all of the parameters. Two 
methods for doing this have been suggested by Heller,
(23,24), in connection with applications in scattering
theory. The first of these methods relies upon Taylor 
expansion of the ^potential about the instantaneous 
centre X,Y,Z of the wavepackets, while the second relies 
on a variational principle (25) . This second method is 
considerably more complicated to implement.
5.1 Expansion of the potential.

The Schrodinger equation is

IK— 3̂ —̂  = fif(r,t) (5.6)
with Hamiltonian H given by

H = + V(r) (5.7)
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Here N atoms of mass m are located at positions given by 
the 3N dimensional vector r, and V(r) is the potential.
If we assume a wavefunction of the form (5.1,5.2), we can 
write

3^ (5.8)^ J

where the sum is over atoms j, and parameters f^, the 
parameters being the various X,P,A,B,D. With the form 
(5.2) it is easy to see that the r.h.s of (5.8) is a 
quadratic function of the coordinates, multiplying the 
wavefunction. The same is true of the kinetic energy 
operator in (5.7). The potential V(r) does not generally 
have this property, but we can replace it if we Taylor 
expand about the centre of the wavepackets, and discard 
cubic and higher terms. This will of course be exact for 
harmonic potentials.

The expression (5.8) can be substituted into the 
Schrodinger equation, with the approximate potential, and 
powers of the coordinates equated to obtain a set of 
equations of motion, since the time derivatives will be 
involved only on the l.h.s. of (5.6). These will be valid 
provided that the neglected part of the potential is 
small. This is not true for systems with Lennard-Jones 
or similar potentials except at very low temperatures.

At this point it is convenient to recall Ehrenfest's 
theorem, which states that the expectation values of the 
position and momentum obey the classical equations of 
motion, that is,

at . at = " âïï̂
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a. 1-dimenéional harmonie oscillator.
We have

« = ■ S  (5.9)

Y = exp A(x-X): + P(x-X) + D) (5.10)

Taylor expand the potential about X :-
^mw^xZ = m̂ui,-{X̂  +2 (x-X) X + (x-X)^} (5.11)

Substituting into (5.9), and collecting terms in powers
of (x-X), we find three equations:-

D = XP - ^mw^X^ - ^  + — A (5.12a)zm m

-P + 2AX = mw^X + 2AP/m (5.12b)

A = -%mw2 - 2A^/m (5.12c)
Equation (b) of this set is nothing more than the 
classical equations of motion, as expected by Ehrenfest's 
theorem. Using the same equation in (a), we find

D — %—  — ^mw^X^ + -^A 2m m
Further, if we set A(0)=%imw, then A(t)=A(0) for all t, 
and the wavepacket does not spread. D(0) is set by the 
requirement that the wavepacket be normalised, and we 
choose the time origin such that X(0)=0. These initial 
conditions lead easily to a solution of these equations 
of motion;-

X(t) = sin wt (5.13a)mw
P(t) = P (0) cos wt (5.13b)
A(t) = A(0) = %imw (5.13c)

-It) - (I * * a  1. (g)
1(5.13d)
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We thus have the wavefunction, (and hence density matrix) 
as a function of time. The diagonal elements of the 
density matrix are given by

- Q  exp (-g (x - "t)’ )
(5.14)

This is clearly a gaussian whose centre oscillates 
in time between the classical turning points at x=P(0)/mw 
Note that if P(0)=0, this reduces to the correct ground 
state wavefunction result, whiclj is well known, and that 
(5.13d) is such as to preserve normalisation. The kinetic 
and potential energy expectation values aret

<%mw^x2> = + (P(O)sin wt)^/2m (5.15)

^ 2 >= + (P(O)cos wt)^/2m (5.16)

We thus obtain the correct zero point energy, and have 
energy conservation. Note that the zero point energy is 
shared equally between the potential and kinetic terms.

In summary, the method is exact for this problem, as 
it should be. The essential point to note are that the 
correct zero point energy emerges, shared equally between 
the two halves of the Hamiltonian, that the wavepacket 
can be chosen to retain normalisation, and that energy 
is conserved. These points may be obvious here, but in 
a more complicated system they might not be. Such more 
complicated systems might not be analytically soluble.
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b . N body problem.

The N atoms will each be represented by a wavepacket 
of the form (5.2). The Taylor expansion of the potential 
is more complicated now, but not unduly so. Let r^ be 
the space coordinate of particle j, and let be its 
time-dependent centre. The Schrodinger equation is now

(5.16)91 2m —1 ̂ —̂N‘
In this work the potential has been assumed to be pairwise 
additive. The condition of normalisation gives a relation 
between the imaginary parts of the A,B and D parameters.

<4>j Uj > = (K'fr)3/2

is the determinant

®jxy BÎ]XZ

®jxy ^jyz

®jyz ^jyx (5.17)
and U ' is used as shorthand for Im Q. This condition is 
used to set the initial vlue of D^, but is not used at 
any other point in the calculation. It therefore gives 
a check on the stability of the numerical solution of 
the eqautions of motion. It would be possible to use 
the condition to eliminate some of the equations, but 
the ability to use it as a check is more important.
Energy conservation provides another such check.

The expansion of the potential about the point R leads 
to a rather lengthy expression
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 V  = V(Rl + I (^ja-'^ja’ (âî^)] ,a 30L

^ Rja)(fk6-Kke)(ar.^3r%g)
ot, 3

\5 .i8 )
Here a,3 represent the cartesian components of r,R, etc, 
j,k run over atoms 1...N, and the derivatives are to be 
evaluated at r=R. Higher derivatives are neglected. The 
last term on the r.h.s contains cross term involving two 
atoms, which cannot be accomodated unless the wavefunction 
contains similar cross terms, that is, unless the product 
(5.1) is abandoned. This would be prohibitively awkward 
to do. We therefore use an approximation in the spirit of 
Hartree, and replace

where v^^ is a pair interaction, and r “ I—k ” —j^' ky

Vj = h i (5.19)
iKk

When applied to (5.18) this has the effect of eliminating 
the cross terms, since the expectation value of r̂ -̂R̂  ̂
vanishes by symmetry. The terms in the potential first 
derivative also vanish, by the same argument. Using these 
results, (5.16) becomes

i^lfj = Vj 4'j (5.20)
This immediately can be written as a set of N equations
each involving only one atom. These equations involve
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the other atoms only through the potential derivatives.

 ̂ <^ja"^ja’ 3 Î ~
+ I (r. -R.J^ja *'ja' 3 ^

9^V
 ̂ (fja ^ja’ (fjB ®je’ SrjaSrjg

(5.21)
The time derivatives can be substituted from (5.8), with 
the results shown below:-

I ‘"i - ""j)'
^  = i (X. -X.)(y. -Y.)

3̂  = ^ (Xj - Xj) *j

^  (2Aj^(x. - X.) + B.^y(y. - Y.) + B.^^(z. - Z.)

+ Pjx> 4>j (5.22)
All of these results can then be substituted into (5.21), 
and coefficients of powers of the coordinates collected.
This will result in a set of equations which will, with 
a little rearrangement, give a useful set of equations of 
motion. We find:- .
Constant terms—

D = (Ax + Ay + ^jk + g-: - É  C'P;
(5.23)

Since the equations now involve only atom j, the subscript 
j will be omitted for clarity.
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Linear terms—
These give a set of equations which are again 
satisfied by the classical equations of motion; 
Xj = Pjx/m

P j x =  -  ( a v / a r j ^ )  ( 5 . 2 4 )

Quadratic terms—
These give two sets of equations, for the A and B 

parameters respectively:-

\y =  -k +  2 B ^ z ® y z >  '  '

( 5 . 2 5 )

These results could be written more elegantly using 
matrix and vector notation, but since FORTRAN does not 
allow such things the full notation used above will be 
used to remain as close as possible to the expressions 
actually written in FORTRAN.

The potential derivatives used in the equations of 
motion are, in the case of the Lennard-Jones potential,

( H -  }= -24s I (d / R !  ) (s - 2T) (5.26)JcKj 5k
2
8 VZTT }= 24e I {(S - 2T)/R=. + (dVRl; ) (28T - 8 S) }A3r‘- J i ' jk x' jk

■ (̂ 5̂ (5.27)
( â Æ - ) =  24s I  (d^dy/R^%) (28T - 8 S) (5.28)

kKi

Here we have written d = R, -R. ; S=(cr/R.,)® , and T=S^.X KX J  X J  K
We thus have a complete set of equations of motion, and 
can set up a molecular dynamics style simulation. Since 
the potential has been Taylor expanded, the method will 
be applicable only at low temperatures for solids, that
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is, only within the region where the harmonic approx. is valid
The potential expectation value can be calculated from

2(5.26-5.28), and the expectation values of (x-X) , etc,
which are given by

<%:> = <<|>[(x - X)2|0> = 1  ( 4A'A^ - B'l )/fi (5.29)

Here (5.17) has been used to eliminate a factor of unity.
The kinetic energy expectation is given by a sum of 
terms like 0 (̂j)/9 x^) , and each of these is given by

-2Ü: + k  (^x + 4A^<x^'> + B:y<xy>+ B^^<xz>
+ 2B B <yz> + 4A (B <xy> + B: <xz>)}xy xz  ̂ X xy  ̂ xz

\5.30)
Note the presence of the classical kinetic energy. We 
now have a complete prescription for carrying out a 
molecular dynamics calculation , in that the equations of 
motion can be numerically solved using standard methods, 
and the expectation values of both potential and kinetic 
energies can be calculated. However, before this can be 
attempted, initial values must be supplied for all of 
the parameters. The positions can be set on a face-centred 
cubic lattice, precisely as in a classical simulation, 
and the momenta can be chosen from the appropriate normal 
distribution. There remain only the A,B,D parameters, 
and the D are determined by the requirement of normalisation. 
The real parts of the D, the phase of the wavefunction, 
can be ignored, as'they nowhere enter into the calculation.
In the case of the harmonic oscillator, these parameters 
were chosen such that the derivatives A vanished. Hence 
these parameters are chosen by requiring that initially 
their time derivatives vanish.
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The method has the advantage that the classical kinetic 
and potential energies can be calculated alongside the 
quantum results, which in turn allows checking against 
a classical molecular dynamics simulation. This also means 
that a comparison of classical and quantum results is 
possible without carrying out a separate classical 
calculation.

The method has been implemented using a standard Runge- 
Kutta algorithm to integrate the equations of motion of 
108 wavepackets. As an initial test, the harmonic oscillator 
problem was used, since the results are already known.
The potential used was

V(r ,...,r ) = %k % (r. - L.)^ (5.31)j J J

where is the jth lattice site. The equations of motion 
obtained are those for a set of 3N non-interacting 
oscillators, with force constant k. The wavepacket 
parameters were set so that their derivatives vanished, 
and the mass and force constant were chosen . These were 
appropriate to a frequency w= 4.216 xio^^ Hz, and thus 
to a zero point energy 3N^#w/2 = 4016.31 J mol . This 
was the value obtained in the simulations. Several points 
were checked with this program, notably that energy and 
normalisation were conserved. Some of the results are 
given in Table 5.1.

The method is exact for harmonic potentials, numerically 
as well as analytically. The effect of non-harmonic terms 
in the potential has been investigated by adding such a 
term to the potential given by (5.31), and varying its
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magnitude. This term gives rise to a loss of energy 
conservation, loss of normalisation, more so if the 
enharmonic part is larger. This failure is entirely in 
accord with bhe derivation of the method.

Table 5.1 Results obtained for 108 harmonic oscillators 
using Heller's first method.

Steps Potential
(classical)

Kinetic Potential
(quantum)

Kinetic

150 74.839 72.89 2089.9 2080.0
1450 74.365 73.36 2081.5 2080.5
150 748.39 728.9 2755.5 2736.0
150 3741 3644 5749 5551
1450 7436 7336 9443 9343

The method has been applied to the Lennard--Jones solid
at low temperatures, 1 ,2 K for Neon, and 10 K for argon.
The results obtained are presented in Table 5.2, where 
each result was obtained from a run of 1000 steps of .75 
fs, starting from an equilibriated 108 atom system. The 
difference between the classical and quantum total energy 
will be referred to as the Zero point energy. It is clear 
that the zero point energy of Argon is. larger than that 
of Neon, at the minimum in the quantum total energy.
This is in accord with the prediction of the Debye model, 
and the known Debye temperatures of the two substances. 
The results for the quantum total energy are shown in 
Figure 5.1, along with ground state results obtained by 
Hansen (26).
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It is possible to formulate this method slightly differently,
(27), to obtain an added insight into the structure of
the equations. Fot this application, the matrix notation 
is most convenient. Equation (5.25) can be written

A = (-l/2m) A A - %V" (5.32)
where V" is the 3x3 matrix of potential second derivatives. 
Define

= = A y = 1//^
Then

I = y (Z A + Z A)
Z A = -d/2m) Z A A - V"

and
Z = - %Z V" (5.33)

This equation has just the form of the harmonic oscillator 
equation, but where V" varies with time.lt is especially 
obvious from this formulation that problems will arise 
if ever the second derivatives become negative, since 
this corresponds to imaginary frequencies. -
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5.2 Variational approach.

The method described above obtains an approximate 
solution of the time-dependent Schrodinger equation by 
expanding the potential about the instantaneous centre 
of the wavepackets, and discarding cubic and higher terms 
This clearly assumes that these terms are negligible, 
which certainly restricts the method to low temperature 
solids. An alternative approach is suggested by Heller, 
(24). This uses a variational principle due to McLachlan, 
(31), which says that for a system having wavefunction 
and hamiltonian H, and if 0 is to be an approximation 

to d^/dt, then
I = f{H<p -  0}^ (5.34)

should be a minimum for all allowed variations in ip.
The method has many possible applications, wherever the 
wavefunction can be written in a form containing time 
dependent parameters, such as (5.2), or a form like

’(' = I a^^t)n
for some basis set {(j) }. The form (5.2) will be usedn
throughout this work, and the time-dependent parameters 
will be referred to as the s^, collectively. The 
variational principle leads easily to a set of equations 
in the s^, (eqn 2.7 in (24)):-

/ Ht dv = iK/ (5.35)
m m n

This is clearly a set of linear equations, and if written 
as such we have

A £ = B (5.36)
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For a wavefunction of the form (5.2), with 13 parameters, 
this gives rise to a set of (complex!) equations in 13N 
unknowns, where N is the number of atoms represented. 
Equation (5.19) is thus used to reduce the problem to 
N sets of 13 X 13 equations, one for each atom. It must 
be stressed that no expansion of the potential is used.

The elements of A are related only to the form of the 
wavefunction used, whereas the elements of B depend on 
the Hamiltonian also. In the results below, the notation 
<#|Y> has been used for the integral / (9cj)/9X) 8(j)/9Y, ̂ and 
the expectation values defined by (5.29) have been used. 
All results not quoted below can be obtained by symmetry. 
The subscript labelling the atoms has been omitted for 
clarity, these equations hold for each atom.

<X|X> = { 4|a |:<x2> + 2(A B* + A*B )<xy>' ' X ‘ X xy X xy

+|Bxy|:<y:> + + A*B^^)<xz>

+ + < V x z  + B*yBx,t<yz>

+ }/%: (5.37)

<Y|X> = <X|Y>* = { 2A*B^y <%2> + (4A^A* + |B^y|=')<xy>

+2 A*B^y<y^> + (2 A^B*^ + B^^B*y)<xz>

+BxzB;z<:=> + <2 A*B^z + BxyB*2 )<yz> 
+ P^Py }/%" (5.38)

<P%|X> = - {2A^ <x=> + B <xy> + Bx2 <xz> } / % 2

(5.39)
<Py|X> = - {2A^<xy> + B^y<yZ> +

15.40)
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= <x2>/#2 (5.41)

< P x l V = <xy>/#^ (5.42)

<Ax|X> = -P^<x:>/X: (5.43)

<Ay1X> -Px<y=>/X= (5.44)

<B^y|X> = -P^<xy>/#: (5.45)

<Bxy|Z> = -P^<xy>/)i2 (5.46)

<D|X> -Px/)<̂ (5.47)

<AxlAy> = <x2 y 2 > / # 2 (5.48)

^®xy1®xy> = <x2 y 2 > / # 2 (5.49)

<D|A^> = <X2>/X= (5.50)

<D|Bxy> = <xy> / # 2 (5.51)

<d |d > = 1/X= (5.52)

<Px|Ax> = <p |b > = <p |d> = 0  X ' xy X ' (5.53)

All others may be obtained from the above by using 
the symmetry with respect to (x,y,z). The other values 
required are

<x^> = 3<x^>*
<x^yz> = 3<x^xyz> + 

etc, where A is given by (5.17), and the ' denotes the 
imaginary part.

The terms arising from the kinetic energy part of the 
Hamiltonian are more complicated, and again only some 
will be quoted. The remainder are either related by 
symmetry to those given, or simply related to the kinetic 
energy expression (5.30).
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dV = P^A^/m + X {

4A^<x^> + B 2 y<y2 > + b 2 ^<z^> +

+ 4Ax(Bxy<xy> + Bx2 <xz>) + 2 B^yB^^<yz>

+ 4A*(2A <x^> + B <xy> + B <xz>)X X xy xz

+ 2B*y(2A^<xy> + B^y<y:> + B^^<yz>)

+ 2B*^(2A^<xz> + B^y<yz> + Bj^^<z^>)} (5.54)

3*
3Px

* 2 dV = -l/(2m)^) X {

4A P <x > + 2B P <xy> +2B P <xz>X X  xy x xz X
+ 4A P <xy> + 2B P <xz> +2B P <x^>y y yz y xy y
+ 4A p <xz> 4- 2B P <x^> +2B P <xy> }z z xz z yz z

(5.55)
The only remaining elements to be evaluated are the 

potential energy terms, which depend on the form of the 
potential, as well as the form of the wavefunction. 
Initially, the harmonic oscillator potential was used, 
binding each atom to its initial position. This system 
can easily be solved exactly. The results obtained were 
in precise agreement with the exact answer, and the same 
results as obtained using the first method above.

The addition of an anharmonic term to the potential
did not lead to the same problems as the first method,
that is, the wavepackets did not spread in the same way. 
These simple cases do not require the Hartree-like 
approximation,which makes them much simpler to implement
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The form of the integrals involved is much simplified 
if the potential is taken as a sum of Gaussians, indeed, 
the integrals do not exist if the potential has the 
Lennard-Jones form. This is one of the main reasons for 
the use of the Gaussian potential. The difficulty could 
be removed by the use of devices such as the expansion 
of the potential about its minimum, or truncating it in 
such a way that the integrals exist, but that the results 
are not affected.

The Gaussian potential also has the advantage that all 
of the integrals required can be evaluated analytically, 
using the results given in the Appendix. Specifically,
(A.2) is used twice, once to obtain V^, and again to 
find the expectation value<#j|Vj|#j>. The substitutions

Ek - Çj - Ek - Ek - (rj - %k)
(5.56)

-j “ ^  ^ -j " -j “ '-k “ -j’ 
will be found useful in this context. Specifically,

Vj = I <*k|Ujkl*k>

= h I  A j  ** exp(-B^ Zjk) *k ^£k
where the summation is over k^j, and n=l , 2  from (1 .2 ) 
Then, using (A.2), we have

% I (8irV<3et g^) ̂  exp(

where
■  ^kj>

Pkj = 2/K D-
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and

% = 2  (Bn + 2 /K A-^) 2 /K B 2 /J< B

2/K B^xy 2 (B^ + 2/K A-y) 2/M B^y:

2/M B'^^ 2/M B-y^ 2(B^ + 2/M A'^)

Note that the is a symmetric, positive definite 
matrix, independent of particle j.This much simplifies 
the computation, since the matrix inverse need only be 
calculated once for each atom, rather than for each pair. 
The same devices can be used again to obtain the final 
expectation value. The various integrals like

<<p̂  I (Xj - Xj) Vj|*j>

and
< * j  I (X. - X . ) ^ v .  |(j).>

can readily be obtained by differentiating the final 
result with respect to parameters, as shown in the 
appendix.

It is worth noting that the are functions of the 
parameters etc., which was not the case in the first
method, where the equations of motion for particle j 
were independent of the shape of the wavepackets k, only 
depending on their centres. This is a very significant 
difference, and is expected to lead to very considerable 
differences between the two methods. It also implies a 
considerable difference in the computational effort needed 
to implement the two methods.
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Given all of these integrals, it is possible to set 
up, and solve, the set of linear equations (5.36) to 
obtain the time derivatives of the parameters. These can 
then be used in a numerical integration algorithm to 
obtain the wavefunction as a function of time. A check 
on the accuracy of the algorithm can be obtained if the 
normalisation of each wavepacket is calculated at each 
step, since this should be unity always. The algorithm 
used for the first method, ( a fourth order Runge-Kutta 
scheme) requires the evaluation of the derivatives four 
times for each step. This is not possible with this method, 
because of the computer time involved, and so a predictor- 
corrector algorithm was used. In order to achieve good 
conservation of normalisation, a fifth order algorithm 
was required, with a timestep of .75 fs.

The method has been tested, as far as possible, by 
allowing only one atom to move, with the remainder held 
fixed. This is of course very much quicker than a full 
scale simulation. These tests show that normalisation and 
total energy are both conserved, as they should be. These 
results apply for the Gaussian potential modelling neon, 
at temperatures in the liquid region.Similar tests for 
the first method were unsatisfactory above about 5 K, as 
a* comparison.

The method has been applied to a number of low temperature 
simulations of neon, comparable with those carried out 
using the first method. The results are shown in table 
5.3, for a system of 108 atoms interacting through the 
Gaussian potential. Note especially that the zero-point 
energy obtained is larger, and that the wavepackets are
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narrower, than in the corresponding results in Table 5.2. 
These are more likely due to the difference between the 
Lennard-Jones and Gaussian potentials, than to the methods 
used. To test this, the first method was applied to the 
Gaussian potential, to obtain the results in Table 5.4. 
Comparing these with equivalent Lennard-Jones data from 
Table 5.2. we see;-

1. The potential energy is some 300 J/mol more positive
for the Gaussian potential than for the L-J.

2.The total energy'has a minimum at about 13.5 cc/mol.
3 The wavepacket widths are very similar.

Lookingto the results in Table 5.3, using the second 
method, we see that the method leads to a slightly more 
negative potential energy, and a considerably more 
positive kinetic energy, with the total energy being 
more positive. The wavepackets are noticeably narrower 
than in the results for the first method. These differences 
are readily explained in terms of the better handling of 
the strongly repulsive part of the pair potential in the 
second method.

The zero point energies are also larger, but these 
should not be taken seriously, since the classical 
averages obtained in the second method are not in fact 
true classical averages, because the trajectory is not 
the classical one. V?e have, by Ehrenfest's theorem,

k

and note that the r.h.s. is not generally equal to the 
classical force. If, and only if, they are equal, then 
the centre of the wavepacket follows the classical
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trajectory, and classical and quantum results can be 
obtained simultaneously. Since they are not equal in 
the second method, the classical averages cannot be found. 
As a consequence, it has not been possible to define the 
temperature. In a classical simulation, this would be 
done by using the known relation between temperature and 
mean kinetic energy, but no such relation is possible 
quantum mechanically.

In passing, it should be said that Ehrenfests theorem 
also leads to some equations of motion for the parameters 
of the wavepackets. In addition to the result quoted 
above, we have

i t

These results can be used to eliminate six of the thirteen 
equations for each atom, leading to a 7x7 matrix problem, 
which is computationally much easier. This simplification 
does not in any way alter the results, which provides 
a very useful check on the programming.
The method has been applied to neon, and to a lesser 

extent helium and argon, over a wide range of conditions. 
Each run was started from an fee lattice, and the wave
packets were initialised by the same condition as was 
used in the first method, that is, by requiring that the 
wavepacket width be initially stationary. The dependence 
of the Vj on the wavepacket parameters complicates this 
procedure, since no equation analogous to (5.32) can be 
written. 32 atoms were used, in the usual periodic 
boundary conditions, with a timestep of .75 fs. Each run 
consisted of 6000 steps, with averages being taken over
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the last 4000. Table 5.5 gives the results obtained. A 
comparison of these results with classical data is not 
easy, lacking temperature, but the results seem to be 
generally reasonable. The lower energy states are solids, 
the higher liquid. Note that the method is totally stable 
under all of the conditions used here. The wavepackets 
representing helium are the widest, with those representing 
the heavier systems being narrower by a factor of about 
three. This is expected, since the expectation values of 
kinetic and potential energy tend to the classical values 
as the A^ etc. tend to infinity, in which limit the width 
of the wavepackets becomes zero. The extent of the wave
packets can clearly be seen in the single particle density 
matrix, nl(r), defined by

nl(r) = / 1'*(r^+r,r2 ,...,r^) '1'(£3 .̂ • • ■/£jj) dr^...dr^

This function has been calculated as a function of |r| 
by averaging over all atoms, and over each 1 0 0 th step in 
the simulations reported above. While the wavepackets 
are not generally spherically symmetric, at any given 
time, they are so on average. The results obtained for 
typical helium and neon runs are shown in Figure 5-3.
Note that nl(O) = 1, by normalisation of the wavefunction.

The radial distribution function can be estimated by 
calculation of the expectation value of a delta-fvinction, 
and using the definition of the latter,

CO

6 (x) = / exp ikx dx. /

Clearly, this is related to the probability of finding 
two particles a distance r apart,
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< Y I 6 (r. - r . -r) I Y > .I — 1  —] — '
It is not easy to calculate g(r) from this approach, and 
the computational effoert involved is considerable. 
Classically, if two particles are located at r,r', then 
the distance between them is certainly |r - r'|, but 
in the case of wavepackets centred at R,R' there is a 
finite probability of finding the particles separated 
by a range of distances in the neighbourhood of |R - R'|.
The extent of this neighbourhood clearly depends on the
extent of the wavepackets. Two examples of the results 
obtained are shown in Figures 5.4,5.5, the first being 
for Argon at = 33.5 cc/mol, T= 120 K, the second for 
Neon, = 18.5 cc/mol, T- 40 K. These should be regarded 
with caution, in view of the small size of the system,
(32 atoms), and the limited number of time steps used in 
the simulation, (each tenth step, in a run of 1 0 0 0 ).
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6. Conclusions and discussion.

In the preceeding chapters a number of different 
approaches have been used to include quantum effects in 
the computer simulation of simple systems. This chapter 
will gather together the results from all of these, and 
attempt to compare them, both to determine the importance 
of quantum effects, and the usefulness of the various 
methods. Several other possibilities will also be briefly 
discussed, although this dscussion will not be exhaustive.

6.1 The magnitude of quantum corrections.
The quantum corrections for Neon, as shown in chapter

3 using the Wigner expansion, are about 8-10%, with the
O(X^) correction to the second virial coefficient being
about an order of magnitude smaller again. The same
conclusion has been reached by Hansen & Weis (13), who
used (3.6) and the higher order equivalent for a single
state point. They used the Lennard-Jones potential, with
e=36.76K, a=2.786 A, T=23.92K, and molar volume 15.76 

3 -1cm mol . The free energy correction obtained was, to 
second order in 132 Jmol ^, with the next term of the

-IWigner expansion amounting to 3.3 Jmol . The classical
-Ifree energy is given as -1367 Jmol . at this state point.

This result is entirely comparable with the figures 
presented in chapter 3 of this work. Note that the second 
correction has the same sign as the first, which was not 
the case in the virial coefficients tabulated in table
3.1. The scaling properties of the Lennard-Jones potential 
enable this result to be scaled to correspond to both 
helium and argon, as pointed out previously. The results
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are ; -
A/(Jmol“ )̂ ^1 A2

Helium -380 790 119
Neon -1367 132 3.3
Argon -4452 44 0.4
(These all correspond to kT/e=.65,pa^=.83). The figures 
for helium clearly show that the Wigner expansion, as 
used in this work, does not converge nicely under the 
conditions of large quantum corrections. The results 
presented in chapter 3 are for a much higher temperature 
and lower density, where the convergence is likely to be 
better.

The free energy corrections have been fitted with a 
cubic spline, using a least-squares procedure, and the 
fitted function has been used to estimate the derivatives 
of the free energy with respect to both temperature and 
volume, for Neon. These results are tabulated in Table
6.1, for both Lennard-Jones and Gaussian potentials.
The errors in the fitted function are everywhere small 
compared with the function values, and of the same order 
of magnitude as the errors in the simulation data.

The variation in AU and AP with both temperature and 
volume is marked, and in accord with the expectation that 
the corrections decrease with increasing'temperature and 
molar volume. Figures 6.1 - 6.3 show these corrections 
as functions of either temperature or volume.The Gaussian 
potential leads to slightly larger corrections than the 
Lennard-Jones potential, for the reasons already stated 
above.
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Table 6.1 Derivatives of free energy correction obtained 
from least squares spline fit, and related 
thermodynamic properties.

V/(ccmol ) T/(K) -9AA/8V=AP/(MPa) 3AA/3T AU

16.5 25
30 -1.53 139
35 -1.12 128
40 -0.85 117

17.0 25 13.8
30 11.5 -1.34 129
35 10.8 -1.11 121
40 10.9 -0.88 112
45 10.9 -0.67 103
50 10.0

17.5 25 10.9
30 10.3 -1.25 120
35 9.8 -1.09 115
40 9.7 -0.84 106

18.0 25 8.4
30 9.0 -1.24 121
35 8.9 -1.06 114
40 8.6 -0.86 106

18.5 25 6.4
30 7.9 -1.29 113
35 8.1 -1.03 104
40 7.5 -0.80 96

19.0 45 -0.52 80
21.0 45 -0.44 68
23.0 45 -0.36 57
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b . Neon, Gaussian potential 
V T AP 8AA/9T AU

16.5 25
30 -1.69 157
35 -1.57
40 -1.36 145

17.0 25 16.6
30 14.7 -1.46 141
35 12.9 -1.37 138
40 11.4 -1.19 132
45 10.1 -0.92 119
50 9.1

17.5 25 12.3
30 12.1 -1.32 131
35 11.1 -1.24 127
40 10.1 -1.04 119

18.0 25 10.5
30 9.9 -1.24 121
35 9.4 -1.17 121
40 8.9 -1.01 114

18.5 25 8.1
30 8.0 -1.21

■ 35 8.0 -1.15* 115
.40 7,9 ' -0.97 109

19.0 45 6.9 -0.66 93

21.0 45 4 .6 -0.64 78

23.0 45 -0.57 68

- 120 -



oo
om
oo
co

oo
o

oo
00

oo
“CNJ

•H
•H

Oo
“oM-l

Oo•H
’CDK)

OO

OO

OO

OO
O
ro

oo

o
o
"oC\J

oo oo oo oo oo oo oo oo oo oo oooC\J 00 o CM o oo (M o

(VdW) d

- 121 -



oo

•H

m

oo■H
rH ’O

OJ

•H Oin
'o

n

oorH

CN•H -H

'CD

•H

OO
CD

Om

§
oo oo oo oo oo oo oo oo oo oo ooo
CNJ

CD >0 CNJ O CD SD CNJ O

O
C_JU

(VdN) d

- 122 -



oo

•H

OO
~c\CNJ

oo

M-J

Oo
‘esm

oo•H

03

OO
OOO OO OO oo oo oo oo oo oooS3 o oCNJ Oo o03 O>o o oCM O

CJo

(ION/D n
- 123 -



The effective potential approach used in chapter 4 
has the advantage that the radial distribution function 
can be calculated, exactly as in a classical simulation. 
Unfortunately, a classical simulation must also be carried 
out if any comparison is to be made. The method gives 
no details of the kinetic energy average, which has been 
assumed to be 3RT/2 where necessary, as in the pressure 
calculation.

The use of the effective potential in place of its 
classical analogue in an otherwise unmodified simulation 
is not entirely correct, of course. The partition 
function is given by the usual expression

Q = / expC-BV^ffCr) dr 

and then the internal energy is given by

U = kT^ —

_ kT^ 3Q 
Q 3T

= / Vgff(r) exp(-6Vgjj(r))dr

- t /{|y  Vg^^(r) }exp(- dr
The last term here does not vanish, since the effective
potential is temperature dependent. There is thus a term
in the internal energy that is omitted if the classical
formalism is used. A calculation for neon using the

-1Gaussian potential gave 86.2 Jmol for this contribution, 
which is not negligible. Interestingly, the free energy 
correction for the same state point, as obtained from 
the mean square force, was 86.1 Jmol . It is thus 
possible to calculate the corrections using the effective
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potential method, but not by simply replacing the usual 
potential by its effective analogue.

Table 6.2 shows the differences, (quantum-classical), 
for the potential energy and pressure,APE, and AP, as 
obtained from Tables 2.2 and 4.1. Also shown is the term 
in T(9AA/3T), which can be identified as the correction 
to the internal energy due to the potential, (9). These 
are very inaccurate figures, and should not be taken as 
more than qualitative results. Even so, the agreement 
between the effective potential method and the Wigner 
expansion is reasonable. In the case of helium, the 
effective potential leads to an average potential energy 
that is considerably more positive than might be expected 
from the method of Stratt and Miller, but in agreement 
with the free energy corrections, as far as any numerical 
comparison can be made.

The radial distribution functions obtained for the 
effective potentials show, especially for helium, but to 
a lesser extent also for neon, a shift in the position 
of the first maximum compared with’the classical result.
The peak is shifted to larger distance, which is hardly 
surprising in view of the difference between the classical 
and effective parameters. As can easily be seen from (4.14) , 
the parameters in the gaussian potential are all reduced 
to obtain the effective potential, which has the effect 
of reducing the well depth, and increasing the range of 
the potential. Both of these changes reflect the known 
repulsive nature of the quantum effects.
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Table 6.2 Quantum-classical differences obtained by
Monte Carlo simulation using effective
and classical potentials, (Tables 2.2,4.1)
compared with -T9AA/9T, from Table 6.1.

V T APE AP -T9AA/AT *
(ccmol” ) (K) (Jmol ) (MPa) (Jmol )

16.5 25 47 16.0
30 43 15.5 50.7
35 60 20.0 55.0
40 . 44 15.6 54.0

17.0 25 54 17.2
30 48 16.5 43.8
35 41 13.6 48.0
40 45 13.0 47

17.5 25 57 18.3
30 33 9.2 39.6
35 37 12.4 43.4
40 44 14.1 41.6

18.0 25 50 13.6
30 44 12.1 37.2
35 30 6.3 41.0
40 36 9.5 40.4

18.5 25 44 11.3
30 34 10.2 ' 36.3
35 31 6.3 40.2
40 30 6.5 38.0

* See table 6.1b for this data.

— 126 —



The height of the first peak is increased by this 
method, which is not the result expected in consequence 
of all previous work on the subject. However, there are 
two effects involved, which must be separated carefully. 
Classically, increasing a at constant volume will increase 
the height of the peak. Decreasing a, however, means 
that atoms can penetrate further into the repulsive 
region, in distance terms, for a given temperature. This 
last effect will tend to broaden and shorten the peak.
There are thus two opposing effects, and in approximate 
treatments of this kind it is not clear that both will 
be correctly included.

The method of Stratt and Miller differs from the other 
methods described in that the kinetic energy is estimated, 
(by a Monte Carlo method'.*.) , although the computational 
effort required is substantial, compared with the other 
methods. As a consequence of this computational limitation, 
the results obtained are not as accurate as the classical 
results, and so no useful numbers can be found by looking 
at the differences between the classical and quantum data. 
The quantum corrections are of the order expected from 
the other methods, but beyond this nothing can be said.

The radial distribution functions again show a shift 
in the position of the first peak, to larger separations, 
and now the peak height is reduced, albeit slightly.
The results obtained for helium are quite striking, and 
very different from those obtained using the effective 
potential method. (Compare figs. 4.2,4.5).
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The fourier series method is even more expensive, and 
the results quoted Were obtained from exceedingly short 
simulations, as can be seen from the level of noise in 
the radial distribution functions,(Fig. 4.8). They show 
that the method might be useful, especially if the Monte 
Carlo algorithm were improved, possibly using some more 
refined form of importance sampling.

The wavepacket methods described in the previous 
chapter have produced sufficient results to justify further 
development. The extension to more realistic potentials, 
possibly including coulomb interactions, (and, even more 
remotely, to diatomic systems), might lead to many very 
interesting results.

The first method, based on an expansion of the potential, 
is valid only when this expansion is accurate,i.e., when 
the potential is essentially harmonic. This is true for 
solids at very low temperatures, with the exception of 
helium, for which no temperature is sufficiently lowl 
The method may find some application for the study of 
such low-temperature systems, especially if extended to 
deal with mixtures, or molecular solids.

The second method, using a variational approach, is 
very much more powerful, although correspondingly harder 
to implement. The potential energy expectation here is 
interesting, as it is not strictly a pairwise additive 
function, even if the potential itself is, because of 
the complicated interdependence of the wavepacket width 
parameters. A small simulation has bee carried out for 
a system of two atoms, and the potential energy expectation 
value plotted as a function of their separation, along

—  1 2  8  T



with the original potential used, (Fig. 6.4). The same 
potential is shown in Fig. 6.5, along with its effective 
analogue, as a comparison. The effective potential is 
everywhere greater than the original, whereas the result 
obtained using the wavepacket is less than the original 
for small separations. . This property will clearly solve 
the problem with the effective potential, as described 
above.

The method is completely stable and produces results 
in very good agreement with the Monte Carlo methods.
For comparison. Table 6.3 gives results obtained for 
one neon state point, using the Gaussian potential. This 
case is not handled at all well by the method of Stratt 
and Miller. All of the methods lead to a potential 
correction of the order of 30 J/mol, and a kinetic energy 
correction of the order of 70-100 J/mol. This agreement 
is extremely good.

The possibilities for future development of this 
method are considerable. It can be extended to use other 
potentials, other forms of wavefunction, etc. One of 
the most interesting possibilities would be to replace 
the wavepackets used here, with time dependent parameters, 
by linear combinations of wavepackets with fixed centres 
and widths, the coefficients being time dependent. Such 
a scheme would allow proper handling of tunnelling, in 
a way not possible in the method used here.
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6.2 Other possibilities :-
There are a number of approaches to the inclusion 

of quantum effects in simple models of liquids that 
have not been explored in this work, because they are 
not simulation based methods. Perhaps the most interesting 
of these, since it is related to the path integral in a 
quite obvious way, is that of Klemm and Storer (32).This 
essentially is an iterative method based on (4.6). These 
authors, and others since, (see eg. 33), have dealt with 
a two body problem, involving only 1-dimensional integrals, 
and extended the results to N-body problems by defining 
an effective potential

gCr) = exp
where g(r) is the density-independent part of the pair 
correlation function. The results obtained are comparable 
with those given in this work. Given such an effective 
potential, the problem becomes equivalent to a classical 
one, and can be solved by simulation, or by use of the 
various integral equation methods (34) in precisely the 
same fashion as a classical problem. In (33) g(r) is 
taken as the two body Slater sum.

The solution of the two-body problem reduces to a series 
of matrix squaring operations, each halving the temperature. 
The method cannot be generalised to more particles, as 
th.e repeated numerical integration implicit in (4.6) is 
then impossible. The relationship between this method 
and path integrals is discussed in (35), where the method 
is applied to the two-body Coulomb problem.
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Given the potential, whether effective or not, the 
thermodynamic properties can be obtained by the use of 
various approximate integral equation theories, as well 
as computer simulation. The approximations made in these 
theories can only be tested by comparison with the exact 
(in principle, at least I) simulations. There are two 
main integral equations, Percus-Yevick and Hypernetted- 
chain . These will be referred to as the PY and HNC 
equations. Both relate the radial distribution function 
g(r) to the pair potential uCr), but involve another 
unknown function as well. The Ornstein-Zernicke equation 
also relates these three functions

h(r^2) = cCr^g) + p/h(r^2)c(r2g) dr^ (6.1)

where h(r) = g(r) - 1, and this equation defines c(r), 
the direct correlation function. Before this equation 
can be used to find h(r), a second expression is needed, 
to give two equations in two unknowns. The PY equation 
supplies such a closure

cCr) = C l -  exp-guCr) ) g(r) (6.2)
and tire HNC equation supplies an alternative :-

cCr) '= -guCr) + gCr) - 1 - log g(r) (6.3)
These two equations can then be solved by a variety of 
methods to obtain approximate gCr) from u(r). Once g(r) 
is known, thermodynamic properties can be estimated by 
using the appropriate integrals over g (.r) , Csuch as 
C3.6H. Dynamical properties cannot be obtained by these 
methods. There are extensions of this work to more 
accurate closures, and the two described above are not 
unique.
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A great deal of work has been done for the 
ground state of both bose and fermi fluids, using these 
integral equations or Monte Carlo techniques identical 
to those in use for classical fluids. The wavefunction 
of the system is taken as

Y  = n  f ..(r..) bosons
K j
= D n f..(r..) fermions

K j
where D is a Slater determinant, C of plane waves, for 
instance), and f^j(r^j) is a function such that the 
wavefunction vanishes if any two particles overlap, and 
tends to a constant if the particles become widely 
separated. The form of f is usually decided by considering 
the asymptotic form of the two-body wavefunction, and by 
requiring that the energy expectation values exist. The 
earliest use of the form can be traced back to Jastrow, 
Bijl, and Dingle, and it is frequently referred to as a 
Jastrow wavefunction. Usually f has an exponential form,

f Cr) = exp -uCr) 
with. uCr) being called the pseudopotential. The expression 
for quantum-mechanical expectation values is then very 
similar to the classical form (2.2);-

<A> = /A exp - Zu(r^j)//exp - lu(r^j) (6.4)
The pseudopotential is written with a number of parameters, 
and the variational theorem is then used to determine 
the parameters which minimise the energy. The method is 
therefore limited to the ground state.

The integral equations can be used with little change, 
(.36) , apart from requiring the energy to be a minimum.
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Monte Carlo techniques precisely as described for classical 
fluids can be applied to this problem. There is little 
point in using molecular dynamics, since the dynamical 
information that is so desirable classically is without 
meaning in this case. A recent review is given in (2 8,
37) .

Since the variational theorem is used, the results 
obtainable by this method are limited to the ground state, 
that is zero temperature. The method also assumes the 
form of the pseudopotential, which is a serious problem.
It has in fact been shown that the form commonly used 
gives results 10-15% above the true experimental ground 
state, and that if the wavefunction includes three-body 
terms, better agreement is obtained, at greater cost!
A Monte Carlo method that is not restricted to the zero 
temperature case, and which does not assume a form for 
the wavefunction, has been developed over the last 20 
years by M.H.Kalos, and co-workers, C38), under the name 
"Green's function Monte Carlo", which will be abbreviated 
to GFMC here. This is a general method of obtaining the 
solution of a certain class of integral equation, the 
integral representation of the Schrodinger equation being 
a member of this class. The Bloch equation is also a 
member. Consider a system of N particles, with coordinates 
CXj^f.../X^) = X* Then the Schrodinger equation is

"I 3^?- Y(X) + vex) I’CXl = E f(X) (6.5)zm » 1  — — — —
i 1

Suppose that E is known, and negative, say -B. Write 
R = (2ma)VK X ,
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V(X) = -XBW(R)
and thus

( -V= + 1 ) T(R) = AM(R)Y(R) (6.6)
(The Laplacian is 3N dimensional here). This can be 
transformed into an integral equation by the Green's 
function G(R>R'), which can be expressed in terms of 
certain Bessel functions. The Schrodinger equation then 
becomes, in an iterative form and for any Xo

, T (R) = X / G(R,R') W(R')T^(R') dR' (6.8) n+1 — o — — — n — —
It can be shown that this iteration is stable only if

is the correct value, and that the normalisation of
the Y will increase or decrease as X is above or below n o
this value. An improved estimate of X^ can be obtained 
from the change in normalisation, and thus the value of 
B need not be known a priori. More seriously, G(R,R') 
may not be known explicitly. It is still possible to 
devise a Monte Carlo scheme to sample it, however, by 
relating it to the known solution of the same problem 
in a subdomain of the domain of the main problem. Full 
details are given in (28).

The extension to non-zero temperatuees, (3$) follows 
from the Bloch equation, and the finding of a suitable 
Green's function for it. As of 1979, the method had been 
implemented for two hard spheres, for which analytical 
answers can also be obtained. This paper includes a full 
description of the algorithm employed.

The method is not restricted to the systems 
of atoms which have been the main focus of this work.
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Kalos has used a form of GFMC to calculate the ground 
state of the helium atom, (40). Very similar methods 
have been described by Anderson, (41), in application 
to tbe helium atom and The calculation for this last
required 6-30 hours of computing on an IBM 370-3033, so 
the use of this method for larger systems seems unlikely, 
at least in the immediate future.-
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6.3 Conclusions ;-

In this work we have shown that it is possible to 
include quantum mechanical effects into the computer 
simulation of very simple liquids and solids, using a 
variety of methods. With the exception of the Wigner 
expansion, none of these methods has been applied to 
many body problems previously. All agree fairly well.

The quantum corrections obtained are significant in 
neon, and large in helium, and can be seen to vary with 
both temperature and density. There are small, but still 
significant, differences between the corrections from 
the Gaussian and Lennard-Jones potentials, at a given 
state point, and these differences are in accord with 
the slightly narrower minimum of the gaussian potential 
giving slightly larger quantum effects.

Less work has been done for diatomic systems, with 
Fluorine the main system studied. The quantum effects 
here were again significant, although it was not possible 
to apply all of the methods, or to perform least squares 
fits of the free energy corrections.

All of the methods can be extended, more or less 
simply, to deal with more general potentials, such as 
Coulomb interactions, or more complicated systems, 
diatomics for instance. The wavepacket methods also offer 
the possibility of using different forms for the wave
function, and of obtaining time-dependent properties.
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Appendix I :- Useful Integrals.
(All integrals are over (-°°,°°) , unless otherwise stated)

/ exp(-ar^) dr = (w/u)  ̂ (A.l)

/ exp(-{ar^ + 3r + y})dr

= (tt/u )  ̂exp(B^/4a - y)

/ r^ exp(-ar^) dr = (ir/a) ̂  (2a)  ̂
differentiating (A.l) w.r.t a.

/ exp(- r^ A r ) dr = (tt̂ / det A) ̂  
where A is an n x n matrix. Note that this reduces to 
(A.l) if n=l, and to a product of such integrals if A 
is diagonal. ^ is required to be positive definite, 
as is the case in all applications in this work.

r TJ exp(-{r A r + £.r }) dr

= (TT^/det A) ̂  exp(p*^ A ̂  p/4) (A.2)
Note that this reduces to the forms above if n=l, or
£ = 0. Other integrals required can easily be derived 
from this result by differentiating w.r.t. elements of 
£ or A.
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Appendix II:- Monte Carlo Algorithms.

The usual algorithm employed in the Monte Carlo 
simulation of liquids, etc, is due to Metropolis et.al.,
(5). In recent years several alternatives have been 
proposed. One of these, known as "Smart" Monte Carlo,
(29), has been used in some of the simulations reported 
above, and is here descibed briefly, along with results 
relating to its performance.

Consider a system of N particles, 1 , . .,k,...,N, 
interacting via a pair potential Uj^(rj^). The Metropolis 
algorithm uses 4 random numbers, uniformly distributed 
in (0,1), to move one particle, j, say, and proceeds as 
follows:-
i) calculate 7 u., = U

k/j ^
ii) use 3 random numbers to form a displacement 

vector with components uniform in (-1,1), 
and displace j by this vector.

iii) Again calculate 7 u., = U'
iv) Choose a random number R in (0,1), and goto

(vi) if R < exp(U - U')/kT
v) restore j to its previous position.
vi) calculate the current configurational properties, 

and include in averages.
vii) goto (ii) , after changing j, appropriately.
This procedure continues until each particle has been moved 
many times,(typically 1000-10000 times}. 1 is a parameter, 
and is chosen such that about h of the moves are accepted 
at step (iv).
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The "Smart" method uses the forces acting on the particle 
being moved, and also uses normally distributed random 
numbers. Let the force acting on particle j be F .
Then proceed as follows:-
i) Calculate U and F
ii) Calculate ^  = 3AF + R

where the R is distributed according to

w(R) = (4Aw)"3/2 exp(-R.R/4A)
and displace particle j by this amount.

iii) Calculate U' and F '.
iv) Choose a random number R in (0,1), and goto (vi)

if
R < exp(U - U')/kT . exp ( ^  - 3AF) ̂ /4A

. exp (- ( ^  - 3AF')^/4A)
v) restore j to its previous position.
vi) change j, and goto (i).
Again the whole procedure is repeated until all particles
have been moved many times. A is a parameter which is
chosen to optimise the performance of the algorithm.
This algorithm clearly requires a greater computational 
effort than the Metropolis method,(about 30% more cp 
time per move), but is hoped to give a more efficient 
sampling of phase space. If the mean square displacement 
<Ar.Ar> is used as a measure of the efficiency, then 
it is found that the "Smart" method is about 30% more 
efficient than the Metropolis algorithm, under optimum 
conditions, for the atomic fluids described in chapter
2. This gain almost exactly offsets the extra computing 
needed.
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