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ABSTRACT

In Chapter 2, we describe some generalized
chromatic numbers of graphs. In Chapter 3, we
describe how these may be regarded as chromatic

numbers of associated hypergraphs.

In Chapter 4, we consider some upper bounds for
the chromatic number of a hypergraph, and attempt to
characterize those hypefgfaphs for which these bounds

are attained.

Chapter 5 is devoted to a study of the chromatic
polynomials of hypergraphs; and an algorithm for

their evaluation 1s described.

In Chapter 6, we are concerned with planar
hypergraphs and some of their colouring properties.

We introduce the face-chromatic number of a hypermap.

Chapter 7 consists of notes on the previous

chapters.,
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CHAPTER 1

DEFINITIONS

Most of our terms will be defined, as they arise,
in the text., This chapter contains some basic termin-—
ology. Here, as throughout the thesis, the first
appearance of a word being‘defined will be indicated
by Ztalics. | |

A hypergraph H (sometimes written (V,E)) consists
of a finite non-empty set V (sometimes written V(X))
of vertices; together with a finite family E (or E(H))
of edges. Each edge is a subset of V and contains at
least two vertices. Let us emphasize: Hypergraphs
may contain multiple edges, but may not contain loops.

An edge containing r vertices may be called an
r-edge: we reserve the name hyperedge for edges
containing more than two vertices, N

A hypergraph, all of whose edges contain the
same number of vertices, is called untiform (k-uniform
if this number is k). An_ r-graph is an-r—uniform
hypergraph. A graph is a 2-graph. A graph is simple
if there are no multiple edges (the edge family E is
a subset of the power set P(V)).

We shall sometimes represent hypergraphs by
drawings. Vertices are represented by points, and

hyperedges each by a closed curve enclosing just



those vertices contained in that edge; 2-edges are
represeﬁted by lines joining their ver;ices. (In
Chapter 5, a different mode of représentation will be
used for hypergraphs derived from the Fano plane.
More will be said about plane representations of éome
hypergraphs in Chapter 6.)

The hypergraph H' = (V',E') |is ; subhypergraph
of H = (V,E) 1if V'€V and E'CE, A subhypergraph
which is a graph may be called a subgraph. I1f SCV
the subhypergraph of # induced by S, denoted <S> ,
is that hypergraph whose vertex set is S, and whose
edges are all those edges of H contained in S
(symbolically { e : eeE, e¢€S } )..

The hypergraph H' = (V',E') 1is a part of H if
V'CV and there is a one~to-one function f:E' + E
with the property that e'Cf(e') for each e'eE’.

The subhypergraph, or part, is proper if H' # H.

A céain (of length 1) in a hypergraph H is a
sequence Uq{,€1,V05€905¢0+87,V7 41 such that

i. VqQ,Vp,eesV7 are distinct vertices of H,

ii. eq1s€9s++.¢7 are distinct (but not necessarily

unequal) edges of 4,
iii. Vg Vk+1 € € for kK = 1,2,000,L.
If 1>1 and vy,.4 = V4 the chain is called a cycle.

In a simple graph, a chain is completely determined



by specifying either all its vertices or all its
edges; 'But in a hypergraph it is essential, in
general, to specify all the vertices and all the
edges.

A hypergraph is connected if there is a chain
joining every pair of its vertices. Those subhyper-
graphs of H which are connected and maximal with
respect to this property (i.e. are not proper sub-
>hypergraphs of any connected subhypergraph of H) are
the connected components of H.

Definitions not given here, or in the text, may
be found in Berge (1973), the translated and revised

edition of Berge (1970).



CHAPTER 2

PARTITION NUMBERS OF GRAPHS

2.1 1Introduction.

This chapter is based on some of the ideas
contained in my M.Sc. thesis, RPJ(1973).

For certain families P of graphs, we shall
define P-~chromatic numbers and P-chromatic indexes.
We shall mention some of the results known about
these partition numbers; and show how some of the
well known parameters of graphs (e.g. arboricity,
thickness, and.point—thickness) are included in

this theory.

2.2: Hereditary Families of Graphs.

A family P of graphs is hereditary if:
E1) é contains at least one non—ﬁull graph,
H2) there is a graph which is not a member of P,
H3) whenever a grafh G is a member of P, and H 1is

a subgraph of G, then # is also a member of P,

Some examples of hereditary families are: the
family of planar graphs; the family of graphs with
no edges (totally disconnected graphs); the family
of graphs with at most N vertices, for some positivé

integer WN.



Proposition 2.2.1: Let P be a hereditary family.
There is a non-negative integer

k = k(P) such that the complete graph X e P, but

k+1

Kk+2 ¢ P

Proof: H1 and H3 ensure that K1 e P.
Suppose the graph, not a member of P, whose
existence is guaranteed by H2, has »n vertices.

It follows from H3 that Kn £ P. (Clearly n>1.)

An integer k(P) with the required property must lie

between 0 and n-1. [/

This parameter k(P) is called the completeness
of the hereditary family P. The completeness of
the family of planar graphs is 3, since K4 is
planar whereas KS is not. The family of outerplaﬁar
graphs has completeness 2j tﬂe family of graphs with
ﬁo cycles has completeness 13 and the compléteness
of the family of totally disconnected graphs is O.

For any positive integer N, the family of graphs

with at most N vertices has completeness N-1.

2.3: P-chromatic Numbers.

Let P be a hereditary family of graphs, and
let 6 = (V,E) be a graph. An m-(P-colouring) of G

is a partition of V into m parts such that the



subgraph induced by each of the parts is a member
of P; ise.

V=S1US2U‘ N JUSm; <S7:>EP,1:=1,2,liu,m0

We note that any graph on n vertices has an
n=(P-colouring) in which each part of the partition
consists of just a single vertex,

The smallest m for.which G has an m-(P-colouring)
is called the P-chromatic number of G, denoted XP(G).

If we denote by D_the family of totally disconnected

0

.graphs, it is apparent that x,. (G) is simply the
Do

familiar chromatic number of G.

The next theorem establishes upper and lower
bounds for xP(G). Firstly, we need to define the
point—independence number MP(G) of G with respect to
P; this is the largest number of vertices of G which

can induce a subgraph which is a member of P.

Theorem 2.3.1 (RPJ 1973):

Let P be any hereditary family of completeness

k. TFor any graph G with n vertices and MP(G) = M:
n n-M :
. —-— ! < 1 + .( f— }_
{ M P oxp(G) 2 e /]



2.4: Some Examples,

If P is a hereditary family, let us denote by
P™ that family of graphs whose P-chromatic number
does not exceed m. P" is a hereditary family of
completeness m(k(P)+1)-1,

With this notation, we may state the five-

colour theorem for planar graphs in the form:

5

cD
QB 0

where QB is the family of planar graphs, and DO is
the family of totally disconnected graphs.

The four-colour conjecture asserts that:
a D4
Q3 O L]

Lick and White (1970) have studied the families
of k-degenerate graphs. Ihe strength, o(G), of a
graph G is defined to be the maximum, over all
subgraphs, of the minimum valency of the subgraphs:
6(G) := Max{S§(H) : H<G} .
A graph whose strength does not exceed k, for some
non-negative integer k, is said to be k-degenerate.

The family, D of all k-degenerate graphs is

k’

hereditary of completeness K.

DO is the family of totally disconnected
graphs, D1 is the family of graphs without cycles;

D2 contains every outerplanar graph, and D5 contains

every planar graph.



(G) is the chromatic number of Gj (G) 1is

X
. D~O XD-]
the point arboricity. Every planar graph is a member

of DS; thus xDS(G) does not exceed the point thickness

of G,

Proposition 2.4.1 (Lick and White (1970)):

G
0, @ < 1+ [$O ]y

Particular instances of thié proposition include
the fact that the point érboricity of a planar graph
does not exceed 3, or that the chromatic number of an
outerplanar graph does not exceed 3.

Simdes-Pereira (1976) has compiled a survey of
results concerning k-degenerate graphs. Other examples
of hereditary families and their associated P-chromatic
numbers may be found in Chartrand, Geller and

Hedetniemi (1968) and (1971).

2.5: P-chromatic Indexes.

If SCE(G) the (edge) induced subgraph <S> has

vertex set ézée and edges S. Let P be a hereditary

family of completeness at least 1. An m-(P-edge-
colouring) of a graph G = (V,E) 1is a partition of E
into m parts, each of which induces a subgraph which
is a member of P:

FE = S1USZU co e USm H <S7:> e P, 231,2,...,m.



The smallest integer m for which the graph G
has an m—-(P-edge-colouring) is called the
P-chromatic index of G, denoted YP(G). We denote
by Em the family of graphs whose P-chromatic
indexes do not exceed m. If P is hereditary of
completeness at least 1, then so is Em for any

positive integer m.

2.6: Some Examples.

For any positive integer k, let Ck be the

family of graphs whose maximum valency does not
exceed k. Ck is a hereditary family of completeness

Yo (G) is simply the chromatic index of the
1

k.
graph G. Relationships between the families gz for
various values of k and m have recently been studied
by Hilton and Jones (1976). We determined those

values of m and k for which ¢ o= g;, and those for

“k
which ¢ = Cp.

Recall that D1 is the family of graphs without
cycles; and Q3 is the family of planar graphs. Let

us denote by Q2 the family of outerplanar graphs.

y_ (G), ¥

(G), and y_(G) are, respectively, the
D4 Q3 Q

2

arboricity, the thickness, and the outerthickness of.

of the graph G.



CHAPTER 3

COLOURINGS OF HYPERGRAPHS

3.17: Introduction.

In Sections 3.2, 3.3, and 3.4 we shall consider
three different chromatic numbers for hypergraphs.
One of these, the weak chromatic number, will be
discussed further in Section 3.5, where its relevance
to the generalized chromatic numbers of Chapter 2
will be described. In Section 3.6 we shall explain
why we do not generalize the weak chromatic number of
a hypergraph as we did the chromatic number of a

graph in Chapter 2.

3.2: The Strong Chromatic Number.

A strong m-colouring of the hypergraph # = (V,E)
is a partition of V into m parts:

Vv = S.]USZU . s .usm

such that:

lens.| < 1 for each eeE and for each 1gizm.
s

The strong chromatic number of H is the smallest

integer m for which there is a strong m-colouring of A.

If # is a graph, the strong chromatic number is

simply the (graph theoretic) chromatic number of H.



It happens that the stfong chromatic number of
a hjpefgraph H is the same as the (graph theoretic)
chromatic number of an associated graph. Let G be
the graph whose vertex set is V(H) and whose edges
are those pairs of vertices which are subsets of at
least one edge of H., It is readily seen that the
strong chromatic number of H is precisely xtG), the

chromatic number of the graph G.

3.3: The Equitable Chromatic Number.

Berge (1973) describes another type of
colouring for hypergraphs: An equitable m—-colouring
of a hypergraph # = (V,E) is a partition of V into
m parts:

Vv = S1u52U . e e USm

such that, for each eeE and for any positive integers
1,J < m., we have:

-1 < |ens;| - |ensj| < 1.

The equitable chromatic number of a hypergraph #
is the smallest integer m > 2 such that H has an
equitable m-colouring.

We note that any strong m—-colouring of a
hypergraph is automatically an equitable m-colouring.
We deduce that the equitable .chromatic number of a

hypergraph never exceeds the strong chromatic number.



3+4: The Weak Chromatic Number.

A weak m-colouring of the hypergraph H = (V,E)
is a partition of V into m parts:

Vv=58Vs U, ..
1ve, USm

such that for each positive integer < < m

induced subhypergraph <Si> has‘no edges. (If we
regard each of the parts of the partition as a set
of vertices ofvthe same colour, with a different
colour corresﬁonding to each part, we note that a
weak m-colouring has the property that none of the
edges of H has all its vertices the same colour.)

The weak chromatic number of H, denoted x(H)
is the smallest integer m for which H has a weak
m-colouring.

We note that the weak chromatic number of a
graph is the same as its (graph theoretic) chromatic
number. We note also that since an equitable |
m-colouring (m>2) of a hypergraph is already a weak
colouring, the weak chromatic number of a hypergraph
does not exceed its equitable chromatic number.

There is no straightforward construction which
will generally associate with a hypergraph a graph
whose chromatic number is the same as the weak

chromatic number(of the hypergraph.



3.5:¢ P-Chromatic Numbers.

In Chapter 2, we discussed the P-chromatic
number, xP(G), of a graph G. For a hereditary
family P, this was the smallest number of parts
into which we could partition the vertex set of G
so that the subgraph induced by each of the parts
was a member of'P. |

Given a graph G and a hereditary family P,
let us construct a hypergraph H in the following
manner: The vertex set V(H) shall be the same as
the vertex set V(G); the edges of H shall be those
subsets of V(G) which induce subgraphs of G which

are not members of P.

Proposition 3.5.1: xpj(G) = x(H#).

Proof: Any_weak m-coiouring of H is also a

- partition of V(G) with the property that
each of the m parts induces a subgraph of G which
is a member of the family P. So a weak m-colouring

of H is an m-(P-colouring) of G. And vice versa.//

Notice that had we, in defining H, insisted
that the edges of # be only those subsets of V(G)
minimal with respect to the property of inducing

subgraphs of G not in P, the assertion of 3.5.1



would still be true, with virtually the same prbof.

Let us now look at the P-chromatic index of a
graph, also defined in Chapter 2. This was the
smallest number of parts into which we could
partition the edge set of the graph sé that each
of the parts induced a subgraph with property P,

Given a graph G and a hereditary family P of
completeness at least 1, let us associate with G
and P a hypergraph H' defined as follows: There
shall be a one-to-one correspondence between the
edges E(G) and the vertex set V(#'’); the edges
of H' shall bé those subsets of V(H') which
cbrrespond to édge families of G which induce
subgraphs of G not in P and which a?e minimal with
respect to this property. (I.e. Any proper subset
of an edge of H' corresponds to a family of_édgéé of

G which induces a subgraph in P.) .

Proposition 3.5.2: Yp(G) = xCH"Y. /]

In Chapter 2 we noted that many of the
partition numbers encountered in Graph Theory may
be regarded as P-chromatic numbers or indexes.
Propositions 3.5.1 an& 3.5.2 now indicate that

all these may be regarded as weak chromatic numbers



of associated hypefgraphs.

Ffom now on, we propose to drop the adjective
weak. An m-colouring of a hypergrapﬁ is understood
to be a weak m-colouring; and the chromatic number

of a hypergraph is its weak chromatic number.

3.6: A Generalized Chromatic Number?

If we define a hereditary family of hypergraphs
in the obvious way, and proceed, as we did in
Chapter 2 with graphs, to define m-(P-colourings)
of hypergraphs, we find there is no difficulty in
defining the P-chromatic number of a hypergraph.
Similarly, there is a very natural way to define
the P;chromatic index of a hypergraph.

There is no significant increase in generality
to be obtained by so doing: For by using ideas
similar to those used in Section 3.5, we find that
the P-chromatic numbef (or index) of a hypergraph
is identical with the ordinary chromatic number of

an associated hypergraph.



CHAPTER 4

SOME BOUNDS ON x(H) - BROOKS' THEOREM

441: Introduction.

R.L.Brooks (1941) has proved:

Theorem 4.1.1: Let G be a connected graph with

maximum valency A(G). Then:
a) x(@) T + A(G);

b) x(G)

[ A

A

A(G) , unless G is a complete
graph or a cycle with an

odd number of vertices. //

Our aim in this chapter will be to attempt to
generalize this résult to hypergraphs. Our
approach will be rather different from that of
Lovidsz (1968) or Gardner 9%). ‘Their versions

of Brooks' theorem will be mentioned in the notes

on this chapter in Chapter 7.

4,2: The Valency of a Hypergraph.

Our first problem is to decide how to extend
to hypergraphs the concept of valency. We shall

do this in three different ways:



Definition 4.2.1: The degree dH(v) of the vertex v

‘ in the hypergraph H is the number
of edges of H which contain v. d(H) will denote the
smallest of the degrees of the vertices of H, and

D(H) the largest.

Suppose thaf two hypergraphs H and H' differ
only in that H' contains additional edges all of
which contain edges already present in H. It ' is
apparent from the definitions that any m-colouring
of H is also an m-colouring of H', and vice versa.
In other words, the colouring properties of a
hypergraph are not affected by the addition of

non-minimal edges. This discussion motivates:our:

Definition 4.2.2: rhe edge e of a hypérgraph H is
miﬁimal if it contains'pfopérly
no other edge of H.
The minimal~degree d;(v) of the vertex v in the
hypergraph H is defined ﬁo be the number of distinct
minimal edges containing v. d*(H) will denote

the sméllest, and D*(H) the largest of the minimal-

degrees of the vertices of 4.

Note that if H* is the hypergraph obtained from

H by removing all those edges which properly contain



another edge, and then replacing all those sets of
identical edges by a single representative from each
set, we have for any vertex v of H (or H*):

d (v) = d;(v).

Definition 4.2.3: Our third generalization of graph-

theoretic valency is due to Lovész
(1968), A set F of edges of the hypergraph H will be
called a v-star if the intersection of any two edges
e,f ¢ F 1is precisely {v}, the single vertex v. We
define the walency GH(U) of the vertex v in the
hypergraph # to be the largest number of edges in a
v-star. O6(H) will denote the smallest and‘A(H) the

largest of the valencies of the vertices of H.

Example: 0

dH(u)
d (v)
H




We would remark that in g simple graph, the
degree; the minimal-degree, and the valency of any
vertex are all equal to its graph-theoretic valency.

For any vertex v of any hypergraph H it 'is
always true that:

d;(v) < dH(v) and

GH(U) dH(v) ;

| A

but, as our example on the previous page has shown,

d;(v) and 6H(v) are not, in general, comparable.

4.3: Upper Bounds for y (H).

If v is a vertex of the hypergraph H, we shall
denote by H-v that hypergraph obtained from X by
removing v and all the edges of # which contain v.
H-v is, in fact, the induced subhypergraph
< V(H) - {v} >.

The hypergraph H will be called n-eritical if

x () = n, but for any vertex v of H, x(A-v) < n.

Lemma 4.3.1: Let H be a hypergraph with chromatic

number n. There is a subset Sc C V(H)
such that the induced subhypergraph < Sc > is

n—-critical,
Proof: Either H is already n-critical (in which case

we may take S5, = V(H) ), or there is a vertex



- 20 -

v1 such that x(H—v1) = n,

Unless ﬂ-v1 is n-critical (in which case we take
S, = V(H) = {v1} ), there is a vertex v, such that
x(C (H-v )=v, ) = n.

And so on. Since V(H) is finite, the process must

terminate with an n-critical hypergraph H—v1—...-v ’

r
say. This is a subhypergraph induced by the set
Sc = V(H) - { 'U.], . . . ,'UP }o //

Lemma 4.3.2: If X is an n-~critical hypergraph,

§(K) > n-1.
Proof: Let v be any vertex of K.
Since K is n-critical, there is an (n-=1)-
colouring of K-v, say:

V(K—U) = S1U52U . . . US

n=1

Since X itself cannot have an (n—1)-aolouring, there

must be, for each £=1,2,...,n—], an edge e; of K,“and
v e e;c S.uivl. |

We know that the sets Si are disjoint; it follows

that, whenever Z#J, eshe; = {v}. |

We have found a set of n-1 edges, the intersectipn

of any pair of which is precisely {v}. This proves

that §x(v) > n-1.

Since » was an arbitrary vertex of X, it follows

that §(X) > n-1. //
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Theorem 4.3.3: Let H* be the hypergraph obtained
from a hypergraph ¥ by deleting all
those edges which are not minimal. For any subset
SCV(H) (=V(H*)), let <S5>* denote the subhype?graph
of H* induced by S. Then:
x(H) < 1 + Max §( <S>* ),

where the Maximum is taken over all subsets S¢V(H).

Proof: Let x(H) = n. We note that also y(#*) = n,

By Lemma 4.3.1, there is a subset Sc < V(H)

such that X = <Sc>* is n-critical.
By Lemma 4.3.2, §(K) > n-1 = x(H) - 1.
Thus x(H) < 1 + 8(K) = 1 + &¢( <Sc>*')

1 + Max §( <S>* ). //

I A

The next three Corollaries provide us with
weaker upper bounds. Each is a generalization to

hypergraphs of Part a) of Theorem 4.1.1, (Brooks).

Corollaries: Let H be a hypergraph:

4.3.4: x(H) < 1+ A(H);

4.3.5: x(H) 1 + D*(H);

Ia

4.3.6: x(H) 1+ p(H). [/

| A

We end this section by mentioning another

upper bound due to Tomescu (1968):
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Theorem 4.3.7 (Tomescu 1968):
Let V(H) = STU"' USm be an m—coiouring of
the hypergraph H, and let
Maox

. = 6 V) H
i veSi H( ) Then

x(B) < MOT yint i, s 41}, )
i<m 7

The two hypergraphs (in fact, they are graphs)
shown below indicate that neither of the bounds of

Theorems 4.3.3 and 4.3.7 is, in generai, better than

the other,

1 2 .X(G1) = 2,
G1 1 2 %gg Mzn{k,6k+1} = 2,
3

Mgz {1+48(<5>#%)} = 3.

1 3 x(G,) = 2,
G =
2 2 Max Minik,8,+1} =3,
k.f.3

ng {1+6(<5>%)} = 2,

In both cases we have a graph and a 3-colouring
(indicated by the numbers next to the vertices; the
vertices labelled 7 are the vertices of 5., =1,2,3).

For G1, the bound of 4.3.7 is "better" than that of

4.3.3. The opposite is true for G,.



4'4:. Brooks' Theorem for ﬁypergraphs,

In the last section we proved the corollary:
4.3.6 x(H) < 1 + D(H)
where H is any hypergraph, and D(#) is the maximum
of the degrees of its vertices. Our next theorem
characterizes those hypergréphs whoée chromatic

numbers attain this upper bound.

Theorem 4.4.1: 1If H is a connected hypergraph,

x(H#) < D(H) , unless:
i, H has at most one edge, or

H is a complete graph, or

| ]
e
.

iii. H is a cycle (graph) with an odd number of

vertices.

Proof: We use the word suitable to describe a

connected hypergraph K which satisfies
x(XK) = 1 + D(X).
Let H be a suitable hypergraph, and let e be an edge
of H containing at least three vertices. (If no
such edge exists, then H is a graph, and our result
follows immediately from Theorem 4.1.1.)

We construct a new hypergraph H' from H as

follows:

Consider all the two-element subsets of e. If each

of these pairs is already a 2-edge of H, we form



our new hypergraph #' simply by removing the edge e
from H. Otherwise, we select a pair u,v of vertices
of e which do not form a 2-edge in H. We replace the
edge e by a new 2-edge {u,v}. If the new hypergraph
is not connected, we make it so by removing all but
one of the connected components, that component
having the largest possible chromatic number. The
resulting hypergraph is H'.

The chromatic number of HA' is at least as large
as that of H; the degree of any vertex of H' cannot
exceed the degree of the same vertex in H.

Combining these two facts with the result of
Corollary 4.3.6 applied to H', we obtain:

. x(H) < x(&') < 1 + D(H") < 1 + D(H).
But x(H) = 1 + D(H) , since H is suitable. It
follows that H' is aygo suitable.

A hyperedge e has been.either removed altogether
or replaced by a 2-edge. We repeat this procedure,
at each stage producing a suitable hypergraph. Since
the number of hyperedges in H is finite, we shall
eventually obtain a suitable graph, say G. By Theorem
Theorem 4.1.1, we know that G is either a complete
graph or a cycle with an odd numbér of vertices.

The only graph of this type which may be

obtained by our construction from a sutitable

hypergraph is the complete graph on two vertices;



'
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and the only suitable hypergraph from which the
compiete graph on two vertices may be formed by our
construction is a hypergraph with only one edge.
There is no way in which a hypergraph consisting of
a single hyperedge and its vertices could be
constructed from é‘suitable hypergraph, using the
above procedure.

Since H is a suitable hypergraph with at least
one hyperedge, we have proved that H consists of a

single hyperedge and its vertices. //

We may deduce that the bound in Corollary 4.3.6
is attained only by hypergraphs H, some of whose
connected components are suitable of chromatic
number ¥ (#), and whose other components have maximum
degree x(H)+1 or less. By adding non-minimal edges
(i.e. edges which contain an already-present edge)
to such a'hypergraph, we obtain a hypergraph whose
chromatic number attains the bound of Corollary 4.3.5.
Our next theorem assures us that all.hypergraphs
whose chromatic numbers attain this stronger bound
are of this form. Recall that if H# is a hypergraph,
then H* is that hypergraph obtained from X by

deleting all the non-minimal edges.



Theqrgm 4.4,2: 1f H is a hypergraph, then
x(H) < D*(H)
unless, when the connected components 01, T ,Ck of

H* are labelled so that

X(C1) = L4 = x(Cr) > x(C

pa1) 2 ere 2 x(C),

at least one of the following conditions holds:

i. Each of 01, Pee ’Cr has exactly one édges

ii. Each of 01, “is ’Cr is a cycle (graph) on an
odd number of vertices.

iiis Each of C1, ces ,C’r is a complete graph.

together with the further condition:

iv. None of the vertices of any of the connected

ces HC

components (C has degree greater

r+l?

k
than y(H)+1.

Proof: Let H be a hypergraph satisfying
x(B) = 1 + D*(H).
For each 2=1, ... ,r we have:

x(B*y = x(H) = 1+ D*(H) = 1 + D(H?*)

X(Ci)

v

1 + D(C;).

We know from Corollary 4,3.6 that X(Ci) < 1+D(Ci)‘
We have proved that Ci is a suitable (as in the

proof of Theorem 4.4,1) hypergraph; our result now

follows from our characterization of suitable

hypergraphs. //
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CHAPTER 5

THE CHROMATIC POLYNOMIAL OF A HYPERGRAPH

5.1: Introduction,

G.Birkhoff (1912) obtained an expression
involving determinants for the number of colourings
of a map with A colours. A theory of chromatic
polynomials of graphs gradually developed, significant
contributions being made by Whitney (1932), and
Birkhoff and Lewis (1946), An introduction to the
theory may be found in the survey article by Read
(1968).

In Section 5.2, we shall define a chromatic
function for hypergraphs; we shall show later that
this function is a polynomial, a generalization to
hypergraphs of the chromatic polynomial of a graph.
We shall also define a rank>polynomia1 for
hypergraphs, and note why some of the techniques
developed by Whitney for the study of chromatic
polynomials of graphs cannot be used for hypergraphs.
We sﬁall end the chapter by describing an algorithm
for determining the chromatic polynomial of a

hypergraph.



5.2: A Chromatic Function.,

'Lét H be a hypergraph and let A be a non-negative
integer. We recall that a A-colouring of H (if it
exists) is a partition of the vertex set V(H) into
A parts, some of which may be empty, but none of them
contains an edge of H.

Our definition of k—cﬁlouring is, in a sense,
"colour-indifferent"., For let us regard our
A-colouring as an assignment of one colour, from a
set {01, ‘e ,ck} of available colours, tg each of
the vertices of H; this assignment of colours is-
proper in that no edge of é has all its vertices
assigned the same colour. A permutation of the
colours will not lead to a distinct A-colouring,
since a partition is essentially an unordered
dissection.

To eacﬁ»l—colouring of H Qith exactly u non-
empty parts, tﬁere correspond:

: = '-‘1 "o A= +1
l(u) A(a=1) (A=u+1)

distinct proper assignments of wu distinguishable
colours chosen from a set of A available colours,

There are k(u) distinct functions:

Ff ot V(H) » {1, «eo ,A1}
whose images have cardinality u, and which are proper

in that for any edge ecE(H#), there are two vertices
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w,v € e with £@) 7 £(v).
The total number of distinet proper functions:
FiV(HE) » {1, ... 2}
is, therefore:

A
$CE3N) =)

A T(H3A ,u)
B (u)

1
where T(H3;A,u) 1is the number of distinct
A-colourings of H with exactly yu non-émpty parts
(colour indifferent).

V(H3X) is the number of proper assignments of A
distinguishable colours to V(H). ¢ may ﬁe regarded
as a function of the non-negative integer variable A}
and we shall, temporarily, refer to Y(H;A) as the
chromatic function of H. (It is well known that,
when G is a graph, y(H;\) is a polynomial in A =

the chromatic polynomial of G.)

EEEEE%E: Colour vertex 1
(0} choicés).
A 0 Colour vertices
H: ,2 2 and 3, not both
2 the same as 1%

(A2-1 choices)
(Similarly 22-1 choices for 4 and 5). Edge C 18

already properly coloured since B 28, (Achoices for 6).

2
Thus: YCH3N) = Az(x2-1) .
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5.3: The Rank Polynomial.

| for any hypergraph #, we define the rank r(¥)
of H to be the difference between the number of
vertices of H and the number c¢c(#) of connected
components:

r(H) = |V(H)| - e(H).
(This rank functién, acting on the edge-induced sub-
hypergraphs of H, is the hyperrank function of the
chromatic hypermatroid of H, defined by Helgason (1974).)

We also define the co-rank s(H) by:

s(#) = |EW@H)| - v(8) = |EWM&E)| - |VAH)]| + c(H).

Let FCE(H). The subhypergraph <nduced by F,

dénoted <F>, has vertgx set égée and edge family F. We

write vF for the number of its vertices, rF for its rank,
sF for its co-rank, and ¢F for the number of its

connected components,

Let # = (V,E) be a hypergraph. Following

Biggs (1974), we define:
' ' rF sF
R(H;z,w) = ) & v
FCE

When G is a graph, R(G;z,w) is a polynomial in 2z and

w called the rank polynomial of G. However, when H

is a hypergraph, there is the possibility that sF is

'a negative integer for some subsets F. »rF 1is always

i ; i lynomial
a non-negative integer; sO R(H,z,wo) is a polyn



expression in 2 for any fixed value wo. We shall
call R(H;z,w) the rank polynomial of the hypergraph
H, although it is to be understood that R(H;z,w) is
not necessarily a polynomial expression in the

variable w.

5.4: The Chromatic Polynomial,

Our aim in this section is to prove thét the
chromatic function Y(H3;A) defined in Section 5.2 1is
a polynomial in A. This we do by demons;rating that
Y is a partial evaluation of the rank polynémial
defined in the last section. We proceéd to deduce
results concerning the coefficients of y. We shall
follow roughly the exposition given by Biggs (1974)
for graphs.

Let A be a positive integer, and let X be a set.

We write AX

to denote the set of all functions
E : X > {1, ... ,A}.
If # = (V,E) is a hypergraph, then with gach function
£ € AV we associate a function
E : £+ {0,1}, given‘by:
1 2f there are vertices u,vee, E(u)#t(v).

Ee) = |

0 otherwise.



We introduce a function W(H;2,A) of the complex
variable 2z and the non-negative integer A, whose
value is 0 when A=0, and is otherwise given by:

vz = a1l 1, TT (€ (e)-2) .
Eeh eekF

Lemma 5.,4.1: For any hypergraph # = (V,E) and any

non-negative integer A

vy = AV wasony

vy = 1 TT G vv v o ()

Proof: A
terV ecE

Let V = S1u PN USX be a A-colouring of H.

The function § € AV given by:
E(v) = < , where © is the index for which v ¢ Si'
contributes 1 to the right-hand side of (1).

So does the function £ given by:

g(w) = a(z), where v.e Si’ and 7 is a permutation
of the set {1, «.. ,A1}.

Thus every A-colouring of H defines A! functions
in kv, each of which contribute 1 to the right-hand
side of (1), These Y(H3;A) functions are all distinct.
Furthermore, any function in AV which does not arise

in this way from a A-colouring of H contributes O to

the right-hand side of (1). //
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Lemma 5.4.2: p(#;x) = AlKl.zlE‘ ) W(<F>;z2,0)z
o F E
Proof:
vesny = A waon
= Zyﬁé(e)
Eed eck
= 1, TT CGE-a)+z)
Eel’ ecFE

= ) ! TT ¢ (é(e)—z)z[El_IFI ).

EeAV FCE ecF

Let us write VF = V(<F>) and vF = [VF « Since any

. . F o, . s .
function in XV is the restriction of precisely
NI

. . |4
functions in A, we may reverse the order of

the summations to obtain:

- F . _
b3 P AR T Ceer-aralEIRIEL

FcE EeA eckF

- A VLGIEL P 5 TT G er-0s7 1P

FCE teAVE geF
= AT GIEL Y peers gm0 1B Ly
F<E "

We may now proceed to prove the main theorem of
this sectionj that the chromatic function ¢y is a

partial evaluation of the rank polynomial.

|7



Theorem 5.4,3: ©Let # = (V,E) be a hypergraph. Then:

1
paasny = alv LR(H;=—,=1)
where R(H;z,w) is the rank polynomial defined in

Section 5.3.

Proof: Setting 2z = 1 1in the result of Lemma 5.4.2,

we have:
IVI. T W(<F>3;1,))
FcFE

PCHZA) = A

1]

T 3Ty T T -,
FcE EeEA eck

where VF = V(<F>) and voF = |[VF

The product ] l(g(e)—1) is non-zero only if
eckF

£ is constant on every connected component of <F>,

and then the value of the product is (-1)[Fl.

. . . F
There are precisely ref such functions in AV

Thus:

NN ) A—vF(_1)|F[AcF
FCE

Y(H3A)

A IV‘. z (_1)lFl'UF+GF(_>\-1)T)F—cF

FcE
F -1
N R I e
FCFE
= lel.R(H;(—A)'1,-1). //



Corollary 5.4.4: Let H = (V,E) be a hypergraph.

V(H;2) 1is a monic polynomial in

A of degree [V[ whose constant term is O,

Proof: From the theorem, and the definition of the

rank polynomial, we have:

vy = ALy Ty eE,
FecF

For any subset F C E, rF is an integer and
0 < rfF < |V|-1.
Furthermore rF = 0 1if, and only if, ¥ = ¢ the

empty set, [/

Having thus established that y(H3;A) 1is, for
any hypergraph H, a polynomial expression in A, we
shall henceforth refer to Y(H3;A) as the chromatic
polynomial of H. We shall also consider ¢(H;A) to
have been defined for all complex numbers XA.

Let us express Y in its polynomial form:

gia) = AT+ AT s +b A+ b
v(HEzA) = 0 1 e n-1 n
(where =n = IVI, and by the Corollary bo = 1 and
bn = 0).
Let us also write:
R(H3z,w) = ) op_ 2 w°

rs
r,s

(where Prs is the number of edge~-induced subhypergraphs

of rank r and co-rank s. The summation extends over



all admissible values of » and s, including some

negative values of s.).

Proposition 5.4.5: For any integer %, 0 < 72 < n,

i _ s
SRR RSN

Proof: By Theorem 5.4.3:

Equating the coefficients of A" °, we have:

b, = L(-1)%T7p
5

, and our result follows.

2 rs

F -
Corollary 5.4.6: <y (H;)) = ) (-1)1 IAlVl rk

FcE

Proof:

_ n-r
Y(H3A) = )bA

.y

/1



Whitney (1932) proved that, when G is a graph,
it ié ﬁossible to divide the edge-induced subgraphs
of G which have rank » into three disjoint classes:
(1) Those which contain no broken cycles (which

occur when a particular edge is removed from
a cycle).
(ii) fhose which contain broken cycles, but whose
co-rank is even.
(iii) Those which contain broken cycles but whose
co-rank is odd,
Whitney established a correspondence between the
members of (ii) and (iii) which demonstrated that the
contributions of their members to the sum Z(-1)Sprs
cancel each other out, °

Any edge-induced subgraph in (i) is a forest.
Its rank is the number of its edges, and its co-rank
is 0., By P¥oposition 5.4.5, we know that

r _ RN
(-1) br = g( 1) P

Thus Whitney established the following result
concerning the coefficients of the chromatic
polynomial of a graph G:

(—1)rbp is the number of edge-induced subgraphs
of G having r edges and containing no broken cycles.
It follows that (—1)rbr is a non-negative

integer: The coefficients of the chromatic polynomial



of a graph alternate in sign. This is not true in
general for hypergraphs. For consider the hypergraph
consisting of a single 3-edge and its vertices. The
chromatic polynomial of this hypergraph is
X3+0A2-A, whose coefficients certainly do not
alternate in sign.

It also follows from Whitney's result tﬁat we
can put upper and lower bounds on (-1)rbr when the

br are the coefficients of the chromatic polynomial

of a connected graph:

..'I .
(") < ot < (M)

where 0 < r < n = |ve)|, and m = |E(G)].

' Neither of these bounds apply in general to the
coefficients of the chromatic polynomial of a
hypergraph. The coefficient b1 of the chromatic
polynomial of the hypefgraph consisting of a single
3-edge and its vertices is 0; so (-1)b1 is certainly
less than the proposed lower bound of 2. The
chromatic polynomial of the hypergraph consisting of
a single 4-edge and its vertices is XA-A. (—1)3b3

is 1, which exceeds the proposed upper bound which

It is not possible to apply to hypergraphs
analysis similar to that applied by Whitney to graphs.

One reason for this we have already noted: It is



possible for a hypergraph to have a negative co-rank}
this eventuality can never occur for a graph.

Another reason is that, whereas the addition to, or
removal from, a graph of a 2-edge can change the
values of the rank and co-rank by at most 1, there is
no limit to the .amount by which the rank and co-rank
of a hypergraph may be varied by the addition of a
hyperedge,

We cannot, therefore, extract from Proposition
5.4.5 some of the powerful results which can be
proved for graphs., We can, however, deduce the
following theorem concerning the coefficients of the

chromatic polynomial of a hypergraph:

Theorem 5.,4,7: Let H be a hypergraph with n vertices

none of whose edges contain less than
k (>2) vertices. Write:

V(H3A) = AT+ b1x"" + « 4« .+ Db _A. Then:

bi = 0, for 1 < 2 < k-1, and

~bj_q is the number of k-edges in H.

Proof: Since each edge contains at least k vertices,
there are no edge-induced subhypergraphs of
rank less than k-1. The only edge-induced subhyper-

graphs of rank k-1 are those induced by single



k-edges; these subhypergraphs have co-rank ~-k. Our

theorem now follows from Proposition 5.4.5. //

5.5: Another Expansion.

Helgason (1974) has defined the Poincaré
polynomial of a hypermatroid. If r is the
hyperrank function of a hypermatroid on a set E,

the Poincaré polynomial is:

F| pE-rF
T(E,r3k,u) = b o(u-1) IK
FCF

Helgason proves that if E is the edge family of
the hypergraph H, and r is the rank function we
defined in Section 5.3, then:

Y(H3A) = At(E,r;x,0).

From this follows the expansion:

V(HN) = ‘z (;1)IFIA1VI'PF
FCFE

which we proved as Corollary 5.4.6,



5.6: An Algorithm for Calculating Y (H3A).

Read (1968) describes an algorithm for
calculating ¢(G;A) when G is a graph., With thé
graph G he associates two graphs G' and G" with the
property that:

W(G3A) = w(GT5A) + Y(GM5A).

Repeated application of this process eventually
enables us to express $(G3;A) as a sum of chromatic
polyﬁomials of complete graphs., It is, of course,
well known that the chromatic polynomial of the
complete graph on »n vertices is:

A(A=1) . . . (A=n+1).,

In this section, we shall describe a process
which enables us to express the chromatic polynomial
of a hypergraph as a sum of chromatic polynomials of
graphs., Combined with Read's process, this enables
us to calculate the chromatic poiynomial of any

hypergraph.

Proposition 5.6.1: The chromatic polynomial of a

disconnected hypergraph is the
product of the chromatic polynomials of its

connected components.

Proof: Immediate from the definitions. //



Proposition 5.6.2: Let H* be the hypergraph obtained
from H by deleting a non-minimal

edge (i.e. an edge which contains another edge):

v(HE*3A) = Y(H3A).

Proof: The removal of non-minimal edges does not in
any way affect the colouring properties of a

hypergraph. //

By the Zdentification of two vertices u and v
in a hypergraph we mean the replacement of u and v
by a single vertex w; edges which previously
contained u or v will instead, in the new hypergraph,
contain the vertex w.

Let u and v be vertices, both contained in the
hyperedge e of the hypergraph Hj and let us suppose
that {u,v} 1is not a 2-edge of H., Denote by H' that
hypergraph obtained from H by replacing e with the
new 2-edge {u,v}. Denote by H"” that hypergraph

obtained from X after the identification of u and v.

Pkoposition 5.6.3:

YCE3A) = p(ET5A) + p(E";N).

Proof: There is a natural one-to-one correspondence
between the set of A-colourings of H which

assign different colours to u and v, and the set of



all A-colourings of H',

fhére is another natural one—-to-one correspondence
between the set of A-colourings of H in which u and v
have the same colour, and the set of all A-colourings

of H". //

H' has fewer hyperedges than has H. O0f the
edges of H'", at least one contains fewer vertices
than does the corresponding hyperedge of H., 1In this
sense, both H' and H" are "more like graphs" than

was H.

The Algorithm:

We begin with a hypergraph H. Proposition 5.6.2
allows us, without affecting the chromatic polynomial,
to remove any edges that properly contain another
edge, and also to remove all but one of'any collection
of mﬁltiple edges.

We then choose two vertices of a hyperedge, and
form two hypergraphs (as we did for Proposition 5.6.3)
the sum of whose chromatic polynomials is the
chromatic polynomial of H.

Each of these hypergraphs may now be dealt with
in a similar manner:

(i) Remove "superfluous" edges;

(ii) Associate with the hypergraph two new hypergraphs,



each of which is "more like a graph" than was
the original., The sum of the chromatic
polynomials of the new hypergraphs is the

chromatic polynomial of the original.,

We continue with this procedure. If, at any
stage, we obtain a disconnected hypergraph, we may
invoke Proposition 5.6.1 and treat the connected
components separately. Since V(E) is finite, our
procedure will eventually enable us to express
Y(Z3;A) as a sum of products of chromatic polynomials
of graphs. The process, incidentally, provides an

alternative proof of Corollary 5.4.4.

Let us illustrate our procedure by determining
the chromatic polynomial of the Fano plane, All the
edges of this hypergraph contain just three vertices;
in the picture below, edges are represented by lines

joining the points representing their vertices.

1

~ The Fano Hypergraph F.

Edges:

123,345,561,174,
376,572,246,




1
6
5 5 v 3
4
(1&2)
(58&6)
* * * * * * * %
ETC.

This diagram shows how we might start applying
our algorithm to ¥, Continuous lines represent

3-edges, while broken lines represent 2-edges.



Although we do not reproduce the palculations
here; we would assure the reader that it is a
relatively simple task to continue the process.
There is not, of course, a unique way to apply the
algorithm - there is considerable latitude in the
choice of vertex-pairs for the application of
Proposition 5.643, Intuitively, it seems to be
useful to select vertex-pairs which appear in a
large number of hyperedgés., The bottom right
hypergraph on the previous page has many fewer hyper-
edges than its predecessor: In that hypergraph, the
vertex-pair {12,7} appears in two hyperedges.

When we did our calculations, we expressed
V(F3;)2) as the sum of the chromatic polynomials of
twenty seven graphs; all of these polynomials were
easy to find by inspectipn. The main result of our
labours 1is: -

b(F3n) = AT =% a2 - 2100 + 6.
The symmetry of F enables us to check this result
quickly using Corollary 5.4.6.

Y(F3;\) factorizes as: A(A-1)(1—2)(A4+3l3-6k+3).
We see that w(é;k) vanishes when A = 0,1, or 2; and
is a positive integer whenever A is an integer > 3.

‘We deduce that the Fano plane has chromatic number

X(F) = 3.



CHAPTER 6

PLANAR HYPERGRAPHS

6,1t Definition.

Let us represent the vertices of a hypergraph,
each by its own distinct point in the plane. Let us
then represent each edge by a subset of the plane
homeomorphic to a closed disc and containing all those
points representing vertices contained in that edge.

If, in such a representation, the subsets
representing any two edges intersect only in points
representing vertices common to both edges, we call
this representation a plane imbedding of the
hypergraph. A hypergraph which has a plane imbedding

is called planar.

Examgles:

Hypergraph Plane Imbedding

T.he shaded
Sy o
é /é represen

I,

edges.

Not Planar

(Proof later)




From now on, we shall use the shorter expression
"closed disc" for any subset of the plane homeomorphic
to a closed disc.

The left-hand representation of the second
example on the previous page would.be regarded by

some aﬁthors (including Zykov) as a plane imbedding;
they would regard the subset extending to infinity as
a closed disc. We prefer not to allow this. (In any
case, a subset extending to infinity can always be
"folded over" into a finite closed disc.)

Our definition of planarity is rather unwieldy:
The reader is invited to prove directly that the
hypergraph of our thiid example on the last page is
not planar. We proceed to remedy this situation.

Let H be a hypergraph. 1Its Konig graph K(H) is
that éraph with vertex set VWE whose edges are those
vertex—-edge pairs {v,el for thch vee. Every

Kénig graph is, of course, bipartite and simple.

Theorem 6.1.1: A hypergraph H is planar if, and only

if, K(H) is planar.

Proof: Given a plane imbedding of H, place a new
vertex inside each of the closed discs

representing edges. Join each new vertex to all the:



"oldf vertices contained in the closed disc containing
that new vertex by non-intersecting iines lyiné

in that disc, Totally ignoring the original closed
discs, we find that we have a plane imbedding of K(H).

Illustration:

To prove the converse, we may simply use the reverse
procedure to obtain from a plane imbedding of K(H)

a plane imbedding of H. //

6.2 The Four—-Colour Theorem.

Bulitko has established fhe equivalence of the
four-colour conjecture for plénar graphs and the
conjecture that any planar hypergraph admits a
4-colouring (See Zykov (1974)5.. It has recently been
announced that K.Appel and W.Haken have verified the
four-colour conjecture for graphs,

In this section, we describe an iterative
procedure which associates with any planar hyperéraph
a planar graph whose chromatic number is not less than
that of the original hypergraph. This will establish
Bulitko's result., If there is a flaw in the proof of
Appel and Haken, we will at least kﬁow that any planar

hypergraph admits a 5-colouring.



The Procedure:

‘Wé first of all remove from the hypergraph any
edges which properly contain another edge; and remove
all but one of any set of multiple edges. This
cannot destroy the planarity, neither can it decrease
the chromatic number, of our hypergraph.

Now take any hyperedge, and select any two of
its vertices, say u and v, Replace the hyperedge by
the new 2-edge {u,v}. Again this cannot destroy the
planarity or decrease the chromatic number of our
hypergraph.

By repeating this process, we will eventually
obtain a planar graph whose chromatic number is not
less than that of the original hypergraph,

Any upper bound on the chromatic number of the
class of planar graphs will therefore apply also to

the class of planar hypergraphs.

Let us say that a hypergraph can be <imbedded in
a surface if its Kbdnig graph can. Let us define the
(hyper)graph-chromatic number of a surface to be the
largest of the chromatic numbers of (hyper)graphs
which can be imbedded in that surface., An argument

almost identical to the above may be used to prove:

Theorem: The hypergraph~chromatic number of a surface

is the same as its graph-chromatic number. //



6.3: The Two-Colour Theorem.,

ﬁ.i.Burstein (1975) has proved that any planar
hypergraph with at most two 2-edges may be 2-coloured.
The proof presented here will make use of the four-
colour theorem for planar graphs; although it must be
stressed that Burstein's proof is independent of that

result,

Theorem 6.3.1: Let H be a planar hypergraph with at

most two 2-edges. Then

x () < 2.

Proof: As with the procedure described in the last
section, the first step is to remove all non-

minimal edges. The planarity is not destroyed, and
the chromatic number cannot decrease.

The second step shows that we may restrict
our attention to hypergraphs all of whose edges
contain exactly thfee vertices, except possibly two
2-edges, Let u,v,w be three vertices-all contained
in an edge e, with (e[ > 3, The hypergraph obtained
by replacing ¢ by the new 3-edge {u,v,w} 1is planar
and its chromatic number is not less than that of H.
All edges with moré than three vertices may be
similarly reélaced by 3-edges.

We may now suppose that H is a planar hypergraph



all of whose edges, except possibly two 2-edges,
contéiﬁ exactly three vertices.

Let G be the graph obtained from H by replacing
each 3-edge {u,v,w} by the three new 2-edges
{u,v}, {v,w} and {w,u}. G is planar, and the 3-edges
of H correspond to triangles in G.

By the four-colour theorem for planar graphs,
the vertices of G may be properly coloured with the
four colours 1, 2, 3 and 4. We may replace two of
these colours by the single colour a, and the other
two by the single colour B, in such a way that the
end-vertices of each of the (at most two) 2-edges of
H.receive different colours (o and B). For example,

if the two 2-edges are

1 3 2 adjacent and coloured as
shown, we might take‘a to replace 1 and 2, and B to
replace 3 and 4.

Wé have ensured that each 2-edge of # recei?eé
two colours (o and B); and since each 3-edge of H
corresponds to a triangle in G, we may be sure that

each 3-edge of H also receives two colours. [/



6.4: The Blocks of a Hypergraph.

‘Biocks of hypérgraphs have beén defined by
Zykov (1974). Unfortunately, because of our
differing definion of hypergraph, some of the objects
which Zykov would call "blocks" are not even
hypergraphs to us. (They contain edges with fewer
than two vertices,) |

Rather than adapt Zykov's definition, we prefer
to proceed from the definition of block of a graph
(as may be found, for example, in Harary (1969)). A
block of a graph is non-trivial if it contains at
least three vertices.

If B is a part of the hypergraph H ﬁith the
property that the Kdnig graph K(B) is a non-trivial
block of XK(H), we say that B is a non-trivial block
of H.

The hypergraph shown>here

0 contains one non-trivial

block: (contract each edge

to 'enclose' only the three

central vertices; then delete
the resulting isolated vertices). Incidentally, we
promised earlier to prove that this hypergraph is
not planar. To see this, note that its Kdnig graph
containé the (non-planar) complete bipartite graph

Ky 3 as a subgraph.



Theorem 6.4.1: A hypergraph # is planar if, and only

if, all its non-trivial blocks are

planar.

Proof: K(H) is planar if, and only if, all its
blocks are planar.
Any trivial (i.e. with less than three vertices)
block in a graph must be planar,
So K(H) (and hence H) is planar if, and only if,
all the non-trivial blocks of XK(H) (and hence of H)

are planar. [/

It is desirable to obtain a characterization of
the non-trivial blocks of a hypergraph without
reference to its Kénig graph. Let us first describe
some notation and introduce a definition.

If e is an edge of the hypergraph # = (V,E)
we denote by H-e the hypergraph ( V, E-{e} ).

Let v be a vertex of the hypergraph H = (V,E).
For any edge eef let:

e-{v} if wvee and |el|>2,
elv = 4¢ if vee and |el|=2,

e if vie.

Write E|v = { e|v : ecE; e|v#¢ } and denote by H|v

the hypergraph ( V-{v} , E|v ).



A hypergraph H is 2-connected if:
(i) _H is connected and has at least three vertices,
(ii) Hlv 1s connected for each vertex v, and
(iii) H-e 1is connected for each edge e.

Notice that a graph G is 2-connected if, and only
if, le (which most graph theorists would write G-v)
is connected and has at least two vertices, for each
vertex V. So our definition of 2-connectedness, when

applied to graphs, accords with that of Berge (1973).

Theorem 6.,4.2: A part, with at least three vertices,

of a hypergraph is a non-trivial block
if, and only if, it is a maximal 2-connected part (i.e.
is not a proper part of any other 2-connected part).
Non-trivial blocgs with less than three vertices

consist of two vertices, and at least two edges.

Proof: It is immediate from the definitions that a
non—-trivial block with two vertices must have
more than one edge.

Let B be a nmon-trivial block, with at least three
vertices, of the hypergraph H. B is 2-connected.
(Otherwise K(B) cannot be a block of X(H).) B is also
maximal. (Otherwise, there would be a part B'; and
K(B) w&uld be a proper subgraph of the 2-connected
subgraph K(B') of K(H); But X(B) is a block.)

Conversely, let M be a maximal 2-connected part.



K(M) is certainly a 2-connected subgraph of K(H) and
has at least three vertices. That K(M) is maximal

(and hence a block) follows from the maximality of M,

6.5: The Faces of a Hypergraph.

Suppose we have a plane imbedding of a hypergraph;
let us shade those subsets of the plane which represent
edges. The unshaded portion of the plane will consist
of several connected open subsets (regiZons). By
analogy with Graph Theory, we should like to be able to
regard these regions as the "faces" of our hypergraph.

Given a plane imbedding of a 2-connected graph,
it is well known that the boundaries of the faces,
including the infinite face, -form what we shall call
a MacLane system: That is a system of cycles with the
property that each edge of the graph appears in exactly
two of the cycles. MacLane (1937) has proved that a
graph is planar if, and only if, each of its non-~trivial
blocks has a MacLane system.

Let H be a 2-connected hypergraph with at least
two vertices. A system of cycles of H is called a
face system if each vertex-edge pair {v,e} of the
hypergraph with wvee appears in exactly two of the
cycles. It follows that each r-edge (r>2) appears in
exactly » cycles; and hence that a face system in a

graph is a MacLane system.



As a justification for our terminology, notice
that the cycles which form the boundaries of the
unshaded regions of a plane imbedding of a 2-connected

hypergraph form a face system.

Theorem 6.5.1: A 2~connected hypergraph has a face

system if, and only if, its Kdnig
graph has a Maclane system.

Furthermore, given a plane imbedding of the 2-
connected hypergraph H, there is a natural .one-to-omne
correspondence between the cycles of the face system
formed by the boundaries of its unshaded regions and
the cycles of the MaclLane system formed by the
boundaries of the faces in the associated (as in the

proof of Theorem 6.1.1) imbedding of K(H).

Proof: Let S be a face system of H.

Let C = v(g,81:V1,;€2s s+« sV7=15€7,V0 be a
cycle in S. Then wvgpeq, €1V, V1€g, +++ sV7_1€1, €1V
are the edges of a cycle C' of K(H).

(If C forms the boundary of an unshaded region in
a plane imbedding of H, then C'’ forms the boundary of
the "naturally corresponding”" face of the associated
imbedding of K(H). )
| With each cycle C in S, let us similarly associate

a cycle C' of K(H). Let S' denote the system of cycles



of K(H) thus obtained.

Since each vertex-edge pair {v,e} of H with
vee appears in exactly two cycles of S, it follows
that each edge of K(H) appears in exactly two cycles
of S'. So S' is a MacLane system.

Conversely, by reversing our argument, we can
associate with each cycle of a MacLane system of K(H)

a cycle of a face system of H. [/

Corollary 6.5.2: A hypergraph is planar if, and only

if, each of its non-trivial blocks

admits a face system.

Proof: Follows from the theorem above, Theorem 6.4.1,

and MaclLane's theorem. //

Corollary 6.5.3: Every face system of a 2-connected

planar graph contains the same

number of cycles.

Proof: Given a face system of H, associate with it
(as in the proof of the above theorem) a
Maclane system of K(H). A Maclane system consists of
a cycle basis together with the (modulo 2) sum of the

cycles of that basis. Every cycle basis of a‘graph

contains the same number of cycles. //



Suppose we have a plane imbedding, with the edges
as usual shaded, of a (not necessarily 2-connected)
planar hypergraph. The regions of the unshaded

portion of the plane are the faces of the hypergraph.

Proposition 6.5.4: ©Let B be a non-trivial block of

the planar hypergraph H., 1If B
has three or more vertices, let f(B) denote the
number of cycles in a face system of B; if B has but
two vertices, f(B) will denote the number of edges
of B. The number of faces in any plane imbedding of
H is: 1+ Y(F(B)-1)
where the summation extends over all the non-trivial

blocks of H.

Proof: By induction on the number of non-trivial

blocks. [/

Corollary 6.5.5: The number of faces in any plane

imbedding of a planar hypergraph #

is équal to the number of faces of X(H). [/



6.6: Euler's Formula and Some Consequences.

Theorem 6.6.1: Let H = (V,E) be a planar hypergraph

with n vertices, m edges, f faces, and
k connected components. Let r(e) denote the number of
vertices contained in the edge e, and let d(v) denote
the degree of (i.e. the nuﬁber of edges containing) the

vertex v. Then:

f +n

Yy d(w) ~m +. k + 1
veV '

1]

J (r(e)=1) + k + 1,

eel . ,

Proof: K(H) is planar and has n+m vertices, f faces
(by Corollary 6.5.5), kK connected components,

and ) dw) = r(e) edges.
velV eck

By the well known Pol&hedron Formula of Euler:

f+n+m Y dw) + k + 1

veV

) r(e) + k + 1. !/

eeFE

Suppose each edge of H contains at least »r
vertices., It follows that:

} r(e) > rm . . . 0 . . ... (1),
eck '

Let us count the number of face-edge incidences.

Since each face is bounded by at least two edges, this



number is at'least 2f, On the other hand, this

number cannot exceed 2 r(e) since an edge e can
eckE

bound at most »r(e) faces. We deduce:

(2).

2f < Y r(e)

eck
Substituting (1) and (2) into Euler's Formula (Theorem

6.6.1), we obtain:

Corollary 6.6.2: Let H be a planar hypergraph with

n vertices, k connected components,
and m edges each containing at least r vertices.

2 (n - (k+1) )
r—2

i

1A

Corollary 6.6.3: Let H be a planar hypergraph with

m edges, kK connected components, and
n vertices, each of degree at least §.

(6-2)n

> 3 k + 1.

Proof: Substituting 2f < Z~r(é) into Euler's Formula:
eck

2m > ) r(e) = 2n + 2(k+1).
eck

Since each vertex has degree at least 6§ we have:

I r(e) = ) dw) > én.
eck vel

The result is now immediate. //



Corollary 6.6.4: The bounds of Corollaries 6.6.2 and

6.6.3 are incompatible if
§r > 2(r+é). In particular, we may deduce that
any planar hypergraph, all of whose edges contain at
least 3 (respectively 4,6) vertices, has a vertex of

degree at most 5 (respectively 3,2).

Proof: The bounds are incompatible if
(r=2)C (6-2)n ; 2k + 2 ) > 4(n-k-1).
This is certainly the case if &r > 2(r+$§).
If » is at least 3 (respectively 4,6) then any value
of 8§ exceeding 5 (respectively 3,2) leads to an

incompatibility in our bounds.  //

An Interpretation: Let us define an r-tile to be any

plane figure bounded by a closed
Jordan curve, r distinct points of which are chosen
and called the corners of the tile. (Notice that we
do not insist that the sides, those portions of the
curve lying between alternate distinguishéd points,
be straight lines.)

We have proved that }t is impossible to arrange
any finite collection of 3-tiles (respectively 4-tiles,
6-tiles) in the plane so that:

(i) they do not overlap, e%cept at cornetrs, and
(ii) each cormer is coincident with at least s

(respectively 3,2) others.



These results are not true for arrangements of
infinitely many tiles: Counterexamples may easily
be constructed from ?e11~known regular tessellations
of the plane.

Over the page are shown some representations of
planar, regular; uniform hypergraphs.

(1) A 2-graph of degree 6;
(1I1) ‘A 3-graph of degree 4;
(I1I) A 4-graph of degree 3;

(1v) A 5-graph of degree 3

(v) A 3-graph of degree 5

we

(Vi) A 6-graph of degree 2.

Notice that Corollary 6.6.2 does not give us an
upper bound for the number of edges in a planar graph.
This is because our aefinition of graph allows for
multiple edges. It is, of course, possiBle to obtain
an upper bound for the number of edges in a planar

simple graph.






Definition: A hypergraph is simple if, for each pair

e, e' of its edges, |efe’| < 1.

Proposition 6.6.5: Each face of a planar simple

hypergraph is bounded by at least

three distinct edges..

Proof: If a face is bounded by just two edges, the
intersection of those two edges contains more

than one vertex., [/

Corollary 6.6.6: Let H be a planar simple hypergraph

with n vertices, k connected
components, and m edges each containing at least »r
vertices,

3 (n = (k+1) )
= 2r-3 *

Proof: From the Proposition, 3f < l r(e).

Substituting into the result of Theorem 6.6.1:

Jr(e) + 3n > 3] r(e) - 3m + 3(k+1).

eck eck
As before, we have z r(e) > rm, and the result
eck

follows from this substitution. //



Corollary 6.6.7: ©Let H be a planar simple hypergraph

with m edges, k connected components,
and n vertices, each of degree at least §.

(26=-3)n

z 3 tk+T

Proof: Similar to Corollary 6.6.3. [/

Corollary 6.6.8: The bounds of Corollaries 6.6.6 and
6.6.,7 are incompatible if A
26r > 3(r+68). In particular, we may deduce that
any planar simple hypergraph, all of whose edges
contain at least 2 (respectively 3,6) vertices, has a

vertex of degree at most 5 (respectively 2,1). //

An Interpretation: If we trace the Jordan curve

boundary of an r-tile in one
direction, we effectively order the corners of the
tile. ©Let us understand by a side of an r-tile any
" section of the bounding curve lying between two
succeésive corners.

We have proved that it is impossible to arrange
any finite collection of 3-tiles (respectively 6-tiles)
in the plane so that:

(i) they do not overlap, except at corners, and
(ii) each untiled area of the plane has a boundary

consisting of at least three sides of tiles, and



(ii1i) each corner coincides with at least 2 others

(respectively 1 other) from different tiles.

This result is not true for arrangements of
infinite collections of tiles; (see the illustrations
over the page).

| On the page after that are representations of
two planar, regular, uniform hypergraphs:
(VII) A 2-graph of degree 5. (This is the graph
of the icosahedron.)

(VIII) A 5-graph of degree 2.
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6.7: The Face-chromatic Number,

The edge e of the connected h?pergraph H is
called an Zsthmus if H-e is not connected. We call
by the name hypermap any plane imbedding of any
hypergraph which is connected and without an isthmus.

A face-colouring of a hypermap is an assignment
of colours, one to each of the faces of the hypermap,
in such a way that no edgg has all its incident faces
coloured the same. (A face and an edge‘are incident
if the intersection of the closure of the face and
the disc representing the edge contains a curve of
positive length.) The smallest number of colours
needed for a face-colouring of the hypermap H is the
face-chromatiec number x*(H). (This number must
exist since a hypermap has no isthmus.)

We shall show that the face-~chromatic number
x*(H) of the hypermap A is the same as the chromatic
number x(H*) of an associated hypergraph H*, . Let us
construct H¥*:

A side of an edge of H is a part of its boundary
joining two vertices of the edge and not meeting any
other vertices. Without loss of geﬁerality, we may
suppose that all the sides are Jordan arcs, and no two
vertices are closer than five inches. Let us think of
H as a set of blue points (vertices) and blue discs

(edges) lying in a white plane.



Choose a face of H, and choose a point v lying
in that face. Colour v red. The boundary of our
face consists of a number of sides. Draw two red
lines from v to each of these sides in such a way
that no two red lines intersect except at v, and the
distance (along the side) from a vertex to the point
of intersection of a red line and a side is at least

two inches. (See diagram.)

o '2,’\._"
k'%@w¥ "tentacle" coloured red.
- :

-

5

Each pair of red lines together with part of a

side forms the boundary of a "tentacle"

from v to
that side. Colour the tentacle (and recolour its
side) red.

Do this for each of the faces of H. Let us
recolour white those blue areas lying (strictly)
within an inch of a vertex of H; and, finally, let
us recolour red the remaining blue areas.

*If an edge has more than one side on a face, we
must delete all but one of the corresponding

tentacles.



We are left with a red drawing on a white plane.

This 1is H*.

Proposition 6.7.1: H* is a plane imbedding of a

hypergraph.

Proof: The vertices of the hypergraph are fepresented

by those points which we chose, one lying in
each face of H. Consider the disc representing one
of the edges of H. 1In constructing H* we removed (or
recoloured white) some parts of the disc lying within
neighbourhoods of its vertices; we also added
"tentacles" to the disc. These altered discs
répresent the edges of our new hypergraph.

It rewmdins to verify that no edge of this new

hypergraph contains fewer than two vertices: This
follows immediately from the fact that H contains no

isthmus. It is obvious that H* is a plane imbedding.

Theorem 6.7.2: Let H be a hypermap, and let H* be

constructed as described above. Let
H* also denote the hypergraph represented by the
plane imbedding H*. Then

x*(H) = x(H*).

Proof: There are obvious one-to-one correspondences

both between the faces of H and the vertices

/7



of H*, and between the edges of H and the edges of H*.
What we must check is that the vertices of any
edge of H* correspond with the faces surrounding the
corresponding edge of H.
This is evident from our construction of the

"tentacles". [/

To translate. Burstein's theorem (Theorem 6.3.1)
into a result concerning the face-chromatic number of
a hypermap, we must know what features of H will give
rise to 2-edges in H*

From the definition of hypermap, we know that H
contains no vertices of degree 1 (for the edge
containing any such vertex would be an isthmus). It
follows that any eage containing at least three
vertices must be incident with at least three distinct
faces. (It is not, however, true that each r-edge
(r>3) is incident with » distinct féces. The diagram.

alongside 1s a hypermap

with a 4—edge incident

éé%:»r_ 4 with only three faces.)
AT T e\ |

g e o S b AT

V75 WYL Ak WA s e 5

Thus we see that any 2-edge in H* must arise from a

2-edge in H. We may deduce:

Corollary 6.7.3: 1If H is a hypermap with at most two

2-edges, x*(H) < 2. //



CHAPTER 7

NOTES ON PREVIOUS CHAPTERS

"Afterthoughts" would not be an apt title for
this chapter. Rather in the nature of an appendix,
our final chapter will comprise results and references

.not directly relevant to our main thesis,

Chapter 4: We characterized those hypergraphs H whose
chromatic numbers attained the bound 1+D(H).
A tighter (in general) upper bound for the chromatic
number is 1+A(H); but it seem§ to be a difficult
problem to establish when this bound is attained.

One approach to this problem (Lovdsz (1968) and
Gardner (1975)) is to restrict the class of hypergraphs
under consideration. A suitable restriction is to
insist that the vertices of maximum valency be normal.
(A vértex v of valency & is mormal if, whenever the

set { €qr €9y +0ey €5 } is a v-star, then

ue.

Ge,
) 7
=1 vee

That is, the union of any v-star contains all the

vertices adjacent to v.)



Theorem (Gardner (1975)): ©Let H be a connected hyper-

graph with the property that
every vertex of valency A(H) is normal. Then
x(H) = 1 + A(H) if, and only if,
i) A(H) = 2, and H is an odd cycle graph with
perhaps some multiple edges,
or
ii) H contains a subhypergraph whose edges are
all the k-subsets of a ( A(k-=1) + 1 )-set of
vertices. (A is A(H) and k is the minimum

cardinality of an edge.) /1!

We mentioned no lower bounds for x(F) in Chapter
43 let us remedy that here. The following bound was
derived for graphs by Bondy (1969); and, as Mitchem
(1974) has pointed out, Bondy's proof holds also for

hypergraphs.

Theorem (Bondy 1969), (Mitchem 1974):

Let H be a hypergraph with n vertices of

valencies 61 > 62 > .0 > 8

- - - n

Define o recursively by:

o, = n - 61 R

o = n-68,, where » = r(j) = Z o, + 1.

k-1
If kK satisfies ) o < 7, then x(H#) > k. [/
J=1 .



Nordhaus and Gaddum (1956) found bounds for the
sum and product of the chromatic numbers of a simple
graph and its (graph theoretic) complement. Mitchem
(1974) defined the complement H of the hypergraph H
to be the hypergraph with vertex set V(H) = V(H)
and edge family (it is actually a set)

E(H) = { eCV(H) : efE(H) ; |e[>2 }.
(If G is a graph, it is not the case that G is the

(graph theoretic) complement of G.)

Theorem (Mitchem(1974)):

Let # be a hypergraph with n vertices:
x(d).x(H) > n and

x() + x(@ < {21 7/

ChaEter‘S:

In Section 5.6 we described an iterative
algorithm for expressing the chromatic polynomial
Y(H3;2) of a hypergraph as a sum of chromatic
polynomials of graphs.

Our attention has since been drawn to a

different procedure.



in.his Ph.D. thesis, Vdclav Chvidtal (1970)
describes a procedure which, when iterated, enables
us to express the chromatic polynomial of a hypergraph
as a sum of chromatic polynomials of hypergraphs
without edges. (The chromatic polynomial of such a
hypergraph with n vertices is simply Xn.)

Let H = (V,E) be a hypergraph; let ¢ be any
edge, and let u be any vertex contained in e. For
any subset SC V 1let us write:

(S-e)v{u} if Spne#¢

S if Sne=¢.
We also write: E|e = {fle : feE-{e}}. Now let:

(V|e,E|e) and

]
Q
I}

S
1

[\
1}

(V,E—{e}) ‘

We remark that H[e may not be a hypergraph: Some
elements of E|e may have cardinality less than 2.

In such a case, we formally define w(HIe;A) = 0,

Theorem (Chvdtal (1970)): With the above notation:

V(H;A) = w(H-e3r) - y(H|e;n).



Chapter 6: In Section 6.7, we described the construc-

| tion of a plane imbedding of a hypergraph
H* from a hypermap H. (Since there is no danger of
confusion, we shall henceforth refer to both a hyper-
graph and its plane imbedding - when it is clear which
imbedding is intended - by the same name.)

Two hypergraphs, (V,E) and (U,F), are Zsomorphic
if there are one—-to-one and onto functions

f: V=10 and g : E + F such that
vee 1f, and only if, f(v)eg(e) for each veV and
for each ecF.

When G is a map (a hypermap is a map if it is a
plane imbedding of a graph) our construction yields a
graph G* which is isomorphic to the geometric-dual of
G. (See Wilson (1972), page 72.)

When H is a hypermap, no edge of which has more than
one side on any single face, some of the relationships*‘

between maps G and G*, hold also between H and H*:

n

i) The number of faces of H the number of

vertices of H*.

ii) The number of vertices of F = the number of

faces of H*.

]

iii) The number of edges of H the number of

edges of H*.
(Moreover, there is a natural correspondence between

the edges of H and H* under which corresponding edges



contain the same number of vertices.)

The hypergraph H* cannot contain an isthmus.
(This may be proved by noting that the removal of an
edge froﬁ H* is, in a sense, equivalent to the
contraction of the corresponding edge in H to a single
point - this involves identification of vertices -
and its subsequent deletion.- Removal of an edge can-
not disconnect H* since the contraction process cannot
disconnect H.) It follows that H* is a hypermap, and
so we may construct (H*)*; denote it H**,

iv) H** is isomorphic to H.
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