ELECTRONS AND PHONONS

IN DISORDERED MEDIA

```
A thesis presented by
        Gwynne James Morgan to the
    University of London in application
for the degree of Doctor of Philosophy.
```

November 1907

Withdrawn
from

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed a note will indicate the deletion.

ProQuest 10107266
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract

An investigation of the nature of vibrational modes in a structurally disordered solid and the thermal conduction properties of such a solid is described. Analogies between the vibrational mode problem and the subject of electrons moving in a disordered system of potential wolls are discussed and a method for calculating the electronic band structure of perfect solids proposed by Ziman (1965) is interpreted, compared with the A.P.W. method and used to consider the scattering of a Bloch wave from an impurity potential.

Acknowledgements

I am grateful to Dr. Mino Green and Mr. Gcoffrey Wexler of Zonith Radio Research Corporation for the encouragement and help they have given me while carrying out the research for this thesis. My thanks are also duc to Professor E. Sondheimer ior arranging for me to become a part-time research student in his department. Many of the ideas considered here are the result of discussions with Propessor J.M. Ziman and this I wish to acknowledge together with my appreciation of the interest he has shown in my work and the encouragement this has given me. I am especially indebted to Grace Minting who has typed this thesis and it is a great pleasure to thank her.

TABLE OF CONTENTS

Page
Introduction. 5
Part l. The vibrational modes and thermal conductivity of a disordered solid.
1.1. Remarks on existing theories of disordered solidis. 12
1.2. Two simple models of disordered solids. 19
2.3. Averaged equations of motion for disordered solids. 32
1.4. Thermal conduction. 70
2.5. Biorthonormal functions. 103
Part 2. Electrons.
2.1. Possible methods for electrons in
a disordered system of potentials. 110
2.2. The Greenian and A.P.W. methods for calcuJating the elcotronic band structurc of a perfect solid and the scattering of a Bloch wave from an impurity potential. 126
Appendix A. Continum elasticity theory. 125
Reforences. 153

Whe noture of the nrobl om

The main thome of this thesis is the development of methods for investigating the nature of the vibrations and the transport of heat in structurally disordered solids. Some of these methods can also be applied to the analogous problem of electrons moving in a disordered system of potential wells; hence the title of this thesis.

The essence of the problem is that the standard perturbation methods of mathematical physics are often not readily applicable. By this we mean that it is not usual to have a set of vibrational modes or wave functions associated with an "unperturbed" Hamiltonion which can be consjdered to be reasonable approximations to the real modes or wave functions of the disordered system. To take a specific example, it is not feasible to describe the vibrational properties of amorphous Germanium in terms of the modes of perfect erystaline Germanium. Setting aside the question of whether a perturbation expansion in terms of perfect lattice modes would converge, the major obstacle is the fact that there is no simple or unique way of associating an atom in the amorphous structure with a perfect lattice atom. This means that it is difficult to see how to set up a perturbation method based on perfect lattice waves in the first
place. Λ similar dioficulty axises when thinking abowt the properties of electrons in amorphous solids or Iicuid metals. It is possible in this case to construct wave functions in terms of the Rloch states of some perfect lattice of atoms, but this is mathematically clumsy and unless the potential wells in which the electrons move are weak is not a fruitful approach. In the case of the conduction electrons in a simple liquid metal a free electron wave representation may be used with success for some purposes because the potential wells have a weak effect, but the area of applicability is rather limited.

There is a clear need for the development of new methods particularly in the study of vibrating solids. The theory of electrons in disordered systems is rather more advanced but thexe is still a large number of unexplored areas.

Examples of disordered systems

There is a vast number of different types of disorder problems. We shall restrict ourselves to those aspects concerned with structural inhomogeneities in the arrangements of atoms rather than the cifects of impurities. Broadly speaking the kinds of structural disordex may be divided into threc categories corresponding to the presence of (a) long range order, (b)
medium range order and (c) only short renge order.
In the first category are solids containing disIocations, crystals joined via a grain boundary and solicis containing interstitial atoms or vacancies. These three examples come within the scope of this thesis because the solids are not describable as a perturbed or ceformed lattice excopt by rather artificial means. (b) refers to polycrystalline materials where although each crystallite is highly ordered their orientation with respect to each other is random. By far the largest class is (c), encompassing in the solid phase the glasses, many complex organic solids and amorphous films. In addition to these examples there is evidence that Iiquids behave like "frozen solids" in response to stresses which vary rapidly with time. As far as electrons are concerned there is a rich variety of situations in the liquid phase, including liquid metals, Iiquid semiconductors and liquid insulators.

This work does not, of course, cover all these situations but the methods, with appropriate modification, should be fajrly generally applicable.

Contents

The thesis is divided into two parts, the most important being Part 1 which deals with the modes of vibration and the thermal conductivity of a disordered
solid.
The first chapter is a brief outline of previous work in the rield and the difficulties which exist. Two simple models are then deseribed in Chapter 2 which have been used to develop the axguments of the subsequent chapters. The first model involves assuming that pairs of atoms are coupled by harmonic and anharmonic forces which are functions only of the relative separation of the two atoms. The second model is called the loaded continuum model and has been extremely useful for testing out ideas and methods. It consists of rigid spheres of mass M embedded in an elastic medium of zero density. The elastic medium provides the restoring forces on the "atoms". (Morgan and Ziman, 1967). Chapter 3 is concerned with the development of methods for calculating the average wave amplitude of a vibrational mode in an amorphous or polyerystalline solid by averaging the equation of motion. Squations for calculating the average Green function are also formulated but no attempt has yet been made to solve them for a specific model of a disordered solid. The most important chapter is 4 which is concerned with the calculation of thermal conductivity. The method proposed is applicable to the three classes of structuxal disorder discussed in 1.2. It involves making a point transformation of the position
and momentum coordinates of the atoms to new colleotive variables analogous to the use of the Pounter componcnts of the consity fluctuations as colloctive variables in theorios of liquids. A Boltamam type of equation is dednced usting whis representation and the "col2ision verms" cxamined. The final chaptor (5) in Part 1 is a discussion of the usc of mon-orthogonal representations IOx describing vibrational modes and the construction of biorthogonal functions, the point being that the groat majority of mathometical mothods used in physics are bascd on orthogonal transformation and represcntations.

Chapter 1 in the socond part of the thesis is a discussion of how the mothods developed for the vibrational problem can be adapted to treat clectrons in disordered systems. For oxample, analogies are drawn between the mathomatics describing olectrons ocoupying a tightly bound "bond" and that used for investigating vibrational modes. The concluding chapter (2) is divorced to some catent from the matn theme of the thesis. It is concerncd with the "Greenian" and A.P.V. methods for calculating clectron band structures and an approximate mothod of calculating the scattering of a Bloch wave by an impurity potential.

PART 1

The vibrational modes and thermal conductivity of a disordered solid.
1.1. Remarks on existing theories of disordered solids. The purnose of this chapter is to give examples of the kind of problems which have been taclried and the kind of methods which have been used in studies of jmperfect solids.

Almost all the work to date has been concerned with the properties of solids containing jmpurities and simple types of strain field. Such a solid can be described as a perturbed lattice and the vibrational modes as perturbations of perfect lattice states, i.e. either classical lattice waves or phonon states. This means that all the mathematical apparatus of advanced scattering theory and quantum statistical mechanjes can be and is being used to investigate the vibrational and transport properties. Machine calculations have been made of the density of states in disordered systems manly for one-dimensional "solids" where all the difficulties assocjated with three dimensions are not realised, though recently calculations of the vibrational properties of a model of fused silica have been made, which is a great step forward. Paradoxicelly, the major developments in the theory of "solids", which cannot be described as perturbed lattices, have been in the theory of collective oscillations in "liquids" when the frequency of the
oscillations is sufficiently hist for the liquid to be considered as a "frozen solid". Part of this thesis is concemed with the application of similar methods to those used for liquids to the study of general kinds of structural disorder in solids.

The simplest kind of problem which occurs is the presence of an isolated point defect in an otherwise perfect lattice, examples being substitutional impurities or isotopes. Modern interest in this subject was initiated by Lifshitz (1943), although developments had taken place as far back as the last century, (Maradudin, 1905, p.332). In the main, theories have been developed Within the framework of the classical equation of motion for a solid which is sufficient for many purposes. Quantum mechanics is necessary for discussing transport and thermodynamic properties at low temperatures but even then the quantization can be done at a late stage rather than at the beginning of a calculation. If $\underline{U}(j)$ denotes the displacement of the j^{\prime} th atom in a solid from its equilibrium site then the time independent equation of motion takes the form

$$
\begin{equation*}
L \underline{u}(j)=L^{0} \underline{u}(j) \div L^{\prime} \underline{u}(j)=M_{j} \omega^{2} \underline{u}(j) \tag{1}
\end{equation*}
$$

where Mj is tho mass of the ith atom, ω is the vibrational Mrectumoy, - is a lincar oporator characberizing the mpertuxbed lattioe and L' an operator
charaoterialing the powbation caused by the point defect. Many methats developed for differential
oquations can bo takon over to solve whis lineax equation and whon simple modols are used for the atomic interactions exact solutions are obtainable. rwo recent roviows of this subject are those by Maradudin (1905,1900) and LiPshitz and Kosevich (1906).

In the case of extended defects two separate situations arise, (a) whon the operator Lan be split into an whperturbed lattice operator plus a perturbation operator and (b) whon this soparation is not possible. As Cemarked earlier, case (a) nas received most attention ank we methods used are based on approximation techniques originally developed in other areas of physies. For example, Klomens (1958) and Carruthers (1901) have calculated the scattering of phonons $w y$ strain fields using the perturbation methods of quantum field theory and recently Taylor (1907) has calculated the density of vibrational states for a crystal contaititi.g large concentrations of impurities using a theory of multiple scattoring doveloped by Lax $(1951$, 1952) Ior difPerential oguations. It is lux foom being simple to obtain
accurabe solutions in case (a) but at least thore is a Well developed mathomatical background for developing approximations which is absent in casc (b). An important piece of recent work on the properties of highly disordored solids is the computer caloulations of Dean and co-workers (to be publishof) of the vibrational modes and density of states in fused silica. Fabricated models have been built to define atomic positions for use in the numerical calculations (1900). Despite the intrinsic worth of these methods they are not substitutes for good analytical approximations when we wish to consider more complicated properties which involve say the density of states. The other major area of research where case (b) has been considered is the theory of collective oscillations in liquids whon the periodic time is small compared with the Maxwel2 relaxation time τ_{m}. This is the mean time an atom in a Iiquice stays at an "equilibrium" site before jumping to another one, and is typically of the ofter $10^{-11}-10^{-12}$ secs. in liquid mevals, (Cocking 1907). The idea that for rapidly varying stresses a liquid can be treated as a "frozen solid" with the instantancous configuration of atoms in the liquid was Rixst considered in detail by Frenkel (ICinotic Theory of Liquids, isj)and subsoctiontly by a number of authors, for example, Exsher (Statistical Theory of Liquids,1964),

Schorield (1960) and Schneider and Stall (1907). Collactive oscillations also occur in liquids at low Irequencies but this is an ever more complicated subject involving the motion of atoms between "equilibrium" sites. A characteristic feature of theories of low frequency oscillations in liquids and gases (ecg. Percus and Yovick,1958; Tomonaga, $1955 \mathrm{a}, \mathrm{b}$; Mori,1962) and those for a "frozen solid", is that the Fourier components of the density fluctuations ρ_{k} can be introduce as collootivo coordinates. The ρ_{k} are destined by

$$
\begin{equation*}
\rho_{\underline{K}}=\frac{1}{N^{\frac{1}{2}}} \sum_{j} e^{i \underline{k} \cdot \Gamma_{j}} \tag{2}
\end{equation*}
$$

where N is the number of particles in the system and Oj is the position oi the j'th particle. To a first approximation each individual coordinate $\rho_{\underline{k}}$ oscillates harmonically with a frequency $\omega\left(\begin{array}{rl}\text { (}) \text { which } \\ \text { is analogous to }\end{array}\right.$ the dispersion law for a perfect solid. The success of this kind of approach suggests that analogous transformations should be sought for describing general kinds of structurally disordered solids since in the case oi liquids a problem which looks intractable using the realspace coordinates of the atoms becomes much more amenais in terms of the collective coordinates. The thermal conductivity of a solid is a very important physical parameter and vac measurement of it a very
uscful tool gor testing theorevioal predictions of the bohaviour of waves in disorderec solids. Another important tramsport property in this respect is the contribution to the thormopower of a solid duc to pinomonelectron interaction, i.e. piomon drag. We will, however, only considor vae thexmal coniuction problom. Nost ureatments (e.g. Iclemons, 1958; Carruthers, 1961) have been within the Pramewonle of the phonon Boltzmann cquation Cixst doveloped by Peionis (1929, 1955). AIthough the mathomatical Trameworls for going beyond this simple equation is well understood (e.g. Mardy and Schiove, 1900; Rannimger, 1907), in practice the solving of the Boltzmann equation itself is very difilcult, so that Iurther sophistications axe often of acadomic interest. The Boltzmann equation deseribes heat being transported through a solid by poriect hammonic latbice states which are scattered by the various kinds of imperfection which can ocour. The thermal conductivity ol a structurally disordered solid cannot therefore be handiled by the standard theory. At very low temperatures it is possible to make some very qualitative remarks beceuse only very low frequency modes are excited. If those modes are assumed to de the modes o: vibration of an clastic continum the description of a solid as a qisorete suruovure ban ise replacod by a continumm
description where imperfections are represented by
Rlucbuations in donsity and clasticity. This approachhas been used by Komons $(19.65$) to discuss amorphoussolids but no presoription has boon given for calcu-lating the mioroscoptc =2uotrations in olastiotty. ACailing of this mothod is that it camot describe any-thing analogous to the Well known "Umklapp" processeswhich occur in a discrete lattice structure.
Tho subject of structurally disordered solids istherofore a very challenging one, where it is not possibleto procecd by means of mathematical methods already incommon use. It is this aspect of the problem whichhas been found most intriguing.
1.2. Two stmple monela of disordoned solide.

The case for usimg simple models to dovolop a theory is that too many complications can obscure the frundamontals. Whilst aware of whe shorbcomings of the models to be described wo consider that they contain the essential Peatures of disordered solids.
1.2.1. The "sprjing" model.

The traditional development of the theory of a lattice of point atoms begins with the assumption that the total potential enorgy due to the atomic interactions can be expanded in a Taylor series in torms of the atomic displacoments from the perfect lattice sitos, (Maradudin, Montroll and Weiss, 1963). The requirement that no net force acts on any atom when all of them are at the equilibrium sites means that terms in the potontial encrgy which are lincar in the displacemenus from equilibrium must vanish. This procedure and conclusion is equally valid for disordered solids. We takce the view that the extremely difficult problem of detormining how a disordered solid remains stable is outside the scope of this thesis. We therefore assume that the exact equilibrium sites are lonown and that reasonable approxtmations can be construetod for the haxmonic and anhazmontio Lhweraetions between the atoms.

In particular we will consider monatomic solids dotinod Dy the Jramilzonion
$H=\sum_{\alpha} \sum_{j} \frac{P_{\alpha}^{2}(j)}{2 M}+\frac{1}{2} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{j=1} \sum_{j^{\prime}} B\left(\varepsilon_{\alpha j}-\sum_{j^{\prime}}\right)\left(u_{\alpha}(j)-u_{\alpha}\left(j^{\prime}\right)\right)\left(u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right)$
$+\frac{-}{6} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{\alpha^{\prime \prime}} \sum_{j \neq j^{\prime}} \sum_{\alpha \alpha^{\prime} \alpha^{\prime \prime}}\left(r_{j}\right)\left(u_{\alpha}(j)-u_{\alpha}\left(j^{\prime}\right)\right)\left(u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right)\left(u_{\alpha^{\prime \prime}}(j)-u_{\alpha^{\prime \prime}}\left(j^{\prime}\right)\right)$.
In wis expression \sim_{j} denotes tho equilibrium site of the $j^{\text {tot }}$ atom, $P_{\alpha}(j)$ and $U_{\alpha}(j)$ denote cartesian components of the momentum and displacement from equilibrian of this atom, and M is the atomic mass. The functions $B_{\alpha \alpha^{\prime}}\left(E_{j}-I_{j}\right)$ and $C_{\alpha \alpha^{\prime} \alpha^{\prime \prime}}\left(\Sigma_{j}-I_{j^{\prime}}\right)$ are harmonic and inharmonic force constants respectively. It is assumed that the force constants are unaltered by interchange of the subscripts and interchange of j and j^{\prime}. Quadratic and higher terms in the displacements are assumed negligible.

The form assumed for the harmonic and enharmonic Tore constants is, of course, a gross simplification. In general they will not we just functions of the separation of a pair of atoms and they will depend on the coordinates of surrounding atoms as well. Equation (3) is valid for solids where the atomic interactions can be described approximately by pair interactions, as for example in ionic solids. This does not moan that if some pair potential function is assumed to calculate the force constants that the conditions for stability

Will be setisciiod. Wc assume that the struobure is stable amd mowoly roguires somo method for estrimating the Force constants.

Whon it is essontial to imolude non-contral intoractions botwoon whoms it is not possible to covise a Ammiltonion of the lom (3) Without violating tho condition that it should bo invariont with rospeot to rotations of tho systom, Laz (1903). In any ovent the mothods which will bo discussod can be extendod to cover moro goneral Hamiltonions but it helps to take a specinic stmple form.
1.2.2. The loaded continuun model.

The scoond model is wathor different. We make no metcnce at gaysical reality. Nac model consists of rigid sphores of mass 16 and radius N_{s} cmbedied in an elastic modium of zero donsity which is assumed to have purely harmonic properties. It is a simple and conveniont way of investigating the general properties of a system of masses bound by harmonic forees and is useful for tosting out ideas and methods.

We consider the olastic medium to be isotropic and Sor simplicity take the spocial choice Por the Lamé constants, $\lambda=-\mu(\mu>0)$, nowt books on classical elosticity theory show that λ and μ must be greater thon zoro,
(c.g. Sokolimkoff, Mathematical Theory of Elasticity, p.09). However, many of the general features of wave mopagation can be investigated by means of this model. It corresponds to making the central and non-central forces of equal strength in a "spring" model un a solid. This unrealistic assumption is quite commonly used to clarify the mathematics in vibration problems. These and related points are discussed in Appendix A. For this special choice of the Lame constants the elastic wave equation of an isotropic solid reduces to three scalar ones. If $U(r)$ denotes a cartesian component of the displacement field, then
$\nabla^{2} U(r)+V(r) U(r)=0$
where $V(\underline{\square})$ denotes an operator symbolizing the departmure of the system from a structureless elastic medium of zero density, i.e. the presence of rigid spheres. Equation (4) is rather similar in form to Schrodinger's equation for an electron moving in a system of spherical potentials and straightforward adaptations of methods developed for electrons can be used to refommiate this equation.
1.2.2.2. The analogue to the "Greonian" method lox electrons.

One of the most sucecssiul methods for solving the

Schrodinger equation for perfect lattices is that originally proposed by Korringa (1947) and by Moho and Rosvoker (1954). This method was generalised to arbitrary arrangements of potentials by Phariscark and Ziman (1903) and Will be called the "Greenian" method. Equation (4) can be changed to the integral form
$U(\Sigma)=\int G\left(\Sigma-\Sigma^{\prime}\right) V\left(\Omega^{\prime}\right) U\left(\Omega^{\prime}\right) d \Sigma^{\prime}$
where $G\left(r-I^{\prime}\right)$ is the Green function for the Laplace operator, i.e.

$$
\begin{equation*}
G\left(\Sigma-r^{\prime}\right)=\frac{1}{4 \pi\left|r-r^{\prime}\right|} \tag{6}
\end{equation*}
$$

It is not necessary to enquire into the precise nature of the operator $V(I)$ because the problem can be comalated in terms of the displacements on the surfaces of the rigid spheres. A convenient way to do this is by using the condition (Ziman, 2960)
$\sum_{j^{\prime}} \int\left\{G\left(\rho-\rho^{\prime}-\tilde{r}_{-j j}\right) \frac{\partial}{\partial \rho^{\prime}} U\left(\rho^{\prime}\right)-U\left(\rho^{\prime}\right) \frac{\partial}{\partial \rho^{\prime}} G\left(\rho-\rho^{\prime}-r_{j^{\prime} j}\right)\right\}_{\rho^{\prime}=R_{s}+\epsilon} d \Omega\left(\rho^{\prime}\right)$ $=0$.
Hove $U_{j}(\rho)$ is the displacement field around the j^{\prime} th sphere, ϵ is a positive infinitesimal and
$\underline{I}_{j j t}=\underline{I}_{j,}-I_{j,}$
$P_{-}=r-\underline{I}_{j}$,
$\underline{p}^{\prime}=\underline{I}-\underline{E}_{j^{\prime}}$,
where I_{j} is the position of the auth $^{\prime}$ thehere. In the neighbourhood of the surface of a sphere the Uisplacomont field $U_{j}(\rho)$ can be expanded in terms of the solutions of Laplace's equation separated in spherical coordinates;
$U_{j}(p)=\sum_{L} \frac{\beta_{\ell, m}^{j}}{(2 l+1)}\left(\rho^{-2-1}+\gamma_{e} \rho^{2}\right) y_{\ell, m}^{(\rho)}$.

The label L denotes collectively the angular label ℓ and the azimuthal label m and $y_{L}(\rho)$ denotes a real normalised spherical harmonic (Segall and Imam, 19ul). The coefficients β_{L} and γ_{2} are to be determined.

The γ_{e} can be obtained from the boundary conditions on the surface of a rigid sphere. This information is contained in the equation of motion for the j^{1} th sphere:
$-M \omega^{2} U_{j}(\underline{S})=\int \mu\left\{\nabla U_{j}\left(\underline{S^{\prime}}\right)+U_{j}\left(\underline{S^{\prime}}\right) \nabla-\operatorname{div} U_{j}\left(\underline{s}^{\prime}\right)\right\} \cdot d \underline{S}^{\prime}$
where $U_{j}(\underline{S})$ is the displacement component on the surPace of the rigid sphere and ω is the vibrational erequenoy. The right hand side of (1O) is the force due
to the stress field around the sphere, (see Appendix A) Substitution of (9) into (10) gives

$$
\begin{align*}
& \gamma_{0}=\frac{4 \pi \mu}{M \omega^{2}}-\frac{1}{R_{s}} \\
& \gamma_{e}=-\frac{1}{R_{s}^{2 e+1}} \quad(e>0) \tag{II}
\end{align*}
$$

Equations for the β_{L}^{j} may now be obtained by substituting from (9) into (7) using the expansion (Morgan and ziman, 1907)

$$
\begin{align*}
& G\left(\rho-\rho^{\prime}-r_{j^{\prime} j}\right)=-\delta_{j j^{\prime}} \sum_{L} \frac{1}{(2 l+1)} \rho^{2} \rho^{-l-1} y_{L}(\rho) y_{L}\left(\rho^{\prime}\right) \\
& -\left(1-\delta_{j j^{\prime}}\right) \sum_{L^{\prime}} \sum_{L^{\prime \prime}} B_{L^{\prime} L^{\prime \prime}}\left(r_{j j^{\prime}}\right) \rho^{e^{\prime}} \rho^{e^{\prime \prime}} y_{L^{\prime}}(\rho) \mathcal{y}_{L^{\prime \prime}}\left(\rho^{\prime}\right) \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
B_{L^{\prime} L^{\prime \prime}}\left(I_{j j^{\prime}}\right)=4 \pi \sum_{L} \frac{i^{e^{\prime}-e-e^{\prime \prime}} \delta_{e^{\prime}+e^{\prime \prime}, l^{2}}(2 l+1)!!C_{i^{\prime} L^{\prime \prime}}^{L} y_{L}\left(r_{j^{\prime} j}\right)}{\left(2 e^{\prime}+1\right)!!\left(2 e^{\prime \prime}+1\right)!!\left(2 l^{+1}\right) \mid \tilde{-}_{-\left.j^{\prime}\right|^{l+1}}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{L^{\prime \prime}}^{L}=\int Y_{L}(\rho) y_{L}(\rho) y_{L}\left(p_{-}\right) d \Omega\left(\rho_{-}\right) \tag{14}
\end{equation*}
$$

Using the orthonormal properties of the spherical hatmonies we find on substituting from (9) and (12) into (7) that
$\left(2 e^{+1}\right)^{\prime} \gamma_{\ell} \beta_{L}^{j}=\sum_{L} \sum_{j^{*} * j} B_{L L}\left(r_{j j}\right) \beta_{J^{j}}^{j}$
This equation is analogous to the equation of motion for a "spring" model of a solid.

One of the original purposes of investigating this model was to discover whether it would allow direct application of methods developed for electrons in disordered systems. For example, if we consider the problem of an electron in a system of spherical nonoverlapping potentials of radius R_{s}, the wave function Within the jrth potential may be written as (Phariseau and Ziman, 1903)

$$
\begin{equation*}
Y_{j}(p)=\sum_{L} \frac{i^{2} \beta_{L}^{j}}{\left[\mathcal{R}_{i} j_{l}\right]} \mathcal{R}_{e}(\rho) Y_{L}(p) \tag{16}
\end{equation*}
$$

where, for emphasis, we use the same symbol as before for the coefiricients. The function $\mathcal{Q}_{e}(p)$ is a solustron of the radial Schrodinger equation for the energy $E=\alpha^{2}$ and

$$
\begin{equation*}
\left[-Q_{i}, j_{i}\right]=\mathcal{Q}_{e}\left(R_{s}\right) \frac{d}{d R_{s}} j_{i}\left(k R_{s}\right)-j_{l}^{\left(\beta R_{s}\right)} \frac{d}{d R_{s}} \mathcal{R}_{i}\left(R_{s}\right) \tag{17}
\end{equation*}
$$

where $J_{i}\left(\not \subset R_{3}\right)$ is a spherical Vessel function. In this case the \mathcal{P}_{L} savisidy who exudation (Phariscau and Zimon,
2903)
$k\left(i-\cot \eta_{e}\right) \beta_{L}^{j}=\sum_{L^{\prime}} \sum_{j^{\prime}=j} B_{L L^{\prime}}\left(\alpha, r_{j j^{\prime}}\right) \beta_{L^{\prime}}^{j^{\prime}}$
where η_{e} is the l th phase shift for a spherical potential. Equation (18) is rather more complicated than (15) because the matrix on the right hand side is a function of the energy whereas that in (15) is independent of the Frequency.
1.2.2.2. A perfect lattice of spheres.

It is desirable at this stage to give a brief discussion of a perfect lattice of spheres showing that the system behaves qualitatively like a "spring" model. In this case the problem of determining the β_{L}^{J} is enormously simplified. The Bloch theorem can be invoked whereby there exists a real wave vector such that
$\beta_{L}^{j}=\beta_{L} e^{i \underline{k} \cdot r_{j}}$
and equation (15) is simplified to
$(2 L+1)^{-1} \gamma_{2} \beta_{L}=\sum_{L^{\prime}}-\mathcal{S}_{L L^{\prime}}(K) \beta_{L^{\prime}}$
whore

It is convenient to talk e the axis of the spherical harmonics in the direction of \underline{K}. Tho displacement amplitude $U(j)$ of the $j^{\prime t h}$ sphere is obtained from (9); $u(j)=(4 \pi)^{-\frac{1}{2}}\left(\frac{4 \pi \mu}{M \omega^{2}}\right) \beta_{00}^{j}$.

To obtain some idea of how the loaded continua depends on the parameter R_{s} the limiting behaviour of ω as a function of \underline{k} will be investigated near $|\underline{k}|=0$ and at the zone boundary for \underline{k} in the ($1,1, I$) direction of a simple cubic lattice, The spacing between the spheres will be denoted by a. The vibrational frequentdies are given by the condition for a nontrivial solustion to the simultaneous equations (20) ie. $\operatorname{det}\left|\int \mathcal{Z}_{L L^{\prime}}(K)-(2 \ell+1)^{-1} \gamma_{\ell} \delta_{L L^{\prime}}\right|=0$
The $\mathcal{O}_{\text {LL }}(K)$ are unaltered by adding a reciprocal lattice vector to \underline{K} and therefore $\omega(\underline{K})$ will show the usual periodic properties found in conventional models.

Near $|\underline{K}|=0$ the elements of the matrix $\mathcal{S}_{\text {LL }}$ may be estimated by replacing the summation in (2i) by an integral so that
$\mathcal{S}_{L W} \simeq \Delta^{-1} \int B_{L L}(\Sigma) e^{-i \underline{I} I} d \Sigma$
where $\Delta=a^{3}$. In this Limit
$\mathcal{B}_{L!}(\underline{K}) \propto|\underline{K}|^{2+e^{\prime}-2}$
Using (25) it can readily be ascertained that for smell |K| the only important spherical harmonics in dotermining $\omega(\underline{k})$ are those with $l=0$ and $t=1$. Furthermore, along the $(1,1,1)$ direction symmetry arguments may be used to show that only spherical harmonies with
$m=0,+3,+6 \ldots-$
need be retained in the expansion (9). (Sogall and Tram, 1901). The deteminantal condition then gives
$\omega^{2}(\underline{k})=\frac{4 \pi \mu R_{s}}{M}\left(1+R_{s} 3_{00,00}-\frac{3 R_{s}^{4} \mathcal{S}_{10,00} 3_{00,10}}{1+3 R_{s}^{3} 3_{10,10}}\right)^{-1}$
where

$\simeq \frac{4 \pi i}{3^{\frac{1}{2}} \Delta|\underline{k}|}$,
$y_{10,10}(\underline{k})=-\frac{4 \pi}{3} C_{i 0,10}^{20} \sum_{j \neq j} \frac{e^{-i \underline{k} \cdot r_{j j}} \bigcup_{20}\left(r_{j, j}\right) \simeq \frac{8 \pi}{\Delta} .}{r_{j, 1}}$

Tn the small |k| limit

$\omega^{2}(\underline{K})=\frac{\mu}{D}\left(\frac{1+2 \nu / \Delta}{1-\nu / \Delta}\right)|E|^{2}$
where ν is tho volume of a sphere and D is tho mean
density, M / Δ. The model t mesons behaves like an
clastic continuum with an effective elastic constant
$\mu_{e f f}=\mu\left(\frac{1+2 \nu / \Delta}{1-\nu 1 \Delta}\right)$.

The value of ω at the band edge may also be obtaincd in a simple way by writing
$\underline{k}=\frac{\pi}{a}(\hat{x}+\hat{y}+\hat{z})-k^{\prime}$
where \hat{x}, \hat{y} and \hat{z} are unit vectors along the cube axes. We then find that
$3(\underline{k}) \propto\left|\underline{k}^{\prime}\right|^{l+e^{\prime}}$

This conclusion is arrived at by splitting the summation (21) into positive and negative parts using (31) and replacing the sums by integrals. Only the $l=0$ harmonic need be retained to determine the band edge frequency. As the band edge we find
$j_{00,00}=-\frac{z}{a} \simeq-\frac{1.75}{a}$
where \mathcal{J} is Madelung ${ }^{\text {s }}$ s constant for an Na-Cetype lattice. The band edge frequency ω_{ρ} is therefore defined by

$$
\begin{equation*}
\omega_{D}^{2}=\frac{4 \pi \mu R_{s}}{M}\left(1-\frac{\zeta R_{S}}{a}\right)^{-1} . \tag{34}
\end{equation*}
$$

These limiting formulae for $\omega(\underline{k})$ indicate that the loaded continuum behaves like a lattice of point masses coupled by harmonic springs. For example, the ratio of ω_{0} to the frequency ω_{0}^{\prime} which would be obtained without dispersion is

$$
\begin{equation*}
\frac{\omega_{D}}{\omega_{D}^{\prime}}=\left\{\frac{4 R_{5}(1-\nu / \Delta)}{3 \pi a(1+2 \nu / \Delta)\left(1-\zeta R_{s} a\right)}\right\}^{\frac{1}{2}} \tag{35}
\end{equation*}
$$

The parameter R_{s} can be chosen to give a value oi this ratio typical of the values found for more conventional models.
1.3. Averagod oquations of motion Por disordered solids.

When a measurement is made of a physical property of a disordered system, an averaged result is mequently obtained for onc of two reasons. First, a measuremont made on a single specimon can involve sampling of a whole ensemble of sub-systoms; for cxample, the velociby of sound in a glass would be the avorage of the velocity in different parts of the specimen and providing it is large enough one would not expect dilfcrent results for tro specimens prepared in identical manners. Secondly, the structure of the system may be changing with time, so that a measurement of say the density of electronic states in a liquic metal is time averaged.

This means that in many cases of intorest the result of a measurement on a single systom can be equated to the everage of measurements on a vory large number of sysuems. This is very important because instead of trying to calculate say the density of vibrational states of a single amorphous solid we can try to calculate the average density of states, and this is olten a simpler problem.

PoIdy (1945) was one of tho first to use this idea. Ke construeted oquations : Lor the average amplitude and
intensity of a wave squttered by a systom of random point soatbereas. Pordy's bastie method has stince boch developed by many authors (e.g. Lax, 1951.1952; Waterman and Trae11, 1961; Zimm, 1966), and app1ice to many types of wave propagation problett (.f. comtinuous modia. Recontly it has also boon usod in an investigation of vibrational waves in lattices contatining large concentrations of impurities, (Taylor, 1967).

These ideas aro particularly valuable for studying structurally disordered solids whore there is a dearth of alternative methods.
1.3.1. The average wave amplitude.

We begin by considering how the use of averaging methods can holp determine the Eeneral shape of the vibrational modes in amorphous and polycrystalline solids.

The idea here is that, although the Iine details of waves in disordered systems depend on the microscopic nature of the medium in which the waves travel, there exist grosser features of the waves which are inscnsitive to the precise details of the structure. Por example, we know that at least some of the low Arequency modes of a glass are just the elastic waves of an isotropic conttintum. Io now consider a whole
onsomble of disorder systems whore the mioroscopio structure of evory member of the ensemble dificors from othor mombers of the enscmble. Il the volume of each momber is large onough it is reasonable to assume thet the eigen frequencios of visration forth a contimuth of states so that for a partioular Proquonoy thore oxists a mode of vibration for every mombor of the ensemble. To compare waves in diflorent systems we must lirst insist that the phase of the time dependence of the waves is idontical for every momber of whe enscmble, and secondly that each momber is operating under the macroscopic boundary conditions. For example, we could consider rectangular blocks of amorphous solids (there will be microscopic surface irregularities, of course), With the condition that surface atoms are held fixed; or anothor possibility is a semi-infinito material with a preschibed driving Porce applicd to the surface. The basic technique of averaging mothods is to seek an equation for the average quantity itself. In this case we are interested in the average displacements from equilibrium of the atoms in a disordered solid.

In 1.2.1. we denoted a cartesian component of the displaccment of the j'th atom by $U_{\alpha}(j)$. The time indepondont equation of motion for $U_{\alpha}(j)$ can be written down Prom (3) using Mamiaton's equations,
$M \omega^{2} u_{\alpha}(j)=2 \sum_{\alpha^{\prime}} \prod_{j^{\prime} \neq j} \sum_{\alpha^{\prime}}\left(\Gamma_{j}-r_{j}\right)\left\{u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right\}$
where ω is the vilurathonal Prequency with which the
atoms oscillate. Anhammonic tomas will se omitted in this discussion or averaging methods. The extension of the methods to be described to anhammonio effects should be possible.

The procedure 2 or constructing average quantities is a well established one. Following the notation oi $\operatorname{Lax}(1951)$ we define $P^{e}\left(\Gamma_{1} r_{2} \ldots I_{N}\right)$ as the probability on finding the equilibrium site of the first atom at I_{1} in dr, the equilibrium site of tho second atom at \underline{r}_{2} in $d r_{2}$ and so one For convenience the system is considered to have unit volume and contains N atoms. The conditional movability $P^{e}\left(I_{s+1} \cdots r_{N} \mid r_{1} \cdots r_{s}\right)$ denotes the probability oi finding the (st 1) th site at I_{s+1} in $d \sum_{s+1}$ ctr. when sites $\ldots s$ are definitely at $r_{1} \ldots r_{s}$ A useful relation between the conditional probabilities is
$\rho^{e}\left(\Gamma_{-5+1} \cdots I_{N} \mid r_{-1} \cdots r_{s}\right)=D^{e}\left(I_{S+11} \mid r_{-1}-r_{-5}\right) D^{e}\left(r_{-s+2} \cdots r_{N} \mid r_{-1} \cdots r_{-5+1}\right)$ (37)

Tho simplest kind of average amplitude which can Wo constructed is the average value of $U_{\alpha}(j)$ when there is corinitely an atom I_{j} but the othor atoms can have any distribution which is consistent with there betimes an atom at I_{j}. A convenient notation for this quantity is $\left\langle U_{\alpha}\left(\Gamma_{j}\right)\right\rangle$ and it is defined by
$\left\langle u_{\alpha}\left(r_{j}\right)\right\rangle=\int \cdots \int u_{\alpha}(j) p^{e}\left(r_{1} A^{\prime} r_{N} \mid r_{j}\right) d I_{1} '^{\prime} d r_{N}$
whore $U_{\alpha}(j)$ is to be understood as being dependent on all the atomic coordinates and whore the prime indicates omission of an atomic coordinate, in this case I_{j}. A general type of average amplitude contains more informavion than $\left\langle u_{\alpha}\left(r_{j}\right)\right\rangle$ and is defined by
$\left\langle u_{\alpha}\left(I_{j} \mid r_{j 1}-\cdots\right)\right\rangle=\int \cdots \int u_{\alpha}(j) P^{2}\left(r_{1} \cdots I_{N} \mid r_{j} r_{j} \cdot \cdots\right) d r_{1} \cdots \cdot d I_{N}$ and is interpreted as the average value of $U_{\alpha}(j)$ when there are also atoms dolinitoly at $\tilde{T}_{j} r_{j,} \cdots$.

This is the mathematical apparatus for constructing average quantities. Our task now is to obtain equations for them. If we set $j=1$ in (36), multiply by $p^{e}\left(r_{-}-r_{N} \mid r_{1}\right)$ and integrate over $\tilde{I}_{2} \cdots I_{N}$ then the Ie ft hand side is just $M \omega^{2}\left\langle u_{\alpha}(r)\right\rangle$.
The right hand side is not so simple. Taking a single term from the sum, say $j^{\prime}=S$ then we have to consider

$$
\begin{equation*}
2 \sum_{\alpha^{\prime}} \int \cdots \int B_{\alpha \alpha^{\prime}}\left(r_{T} I_{s}\right)\left\{U(1)-u_{\alpha^{\prime}}(s)\right\} p^{e}\left(r_{2} \cdots I_{N} \mid r_{1}\right) d r_{2} \cdots d I_{N} \tag{2.1}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
p^{e}\left(r_{2} \cdots r_{5} \cdot r_{N} \mid r_{1}\right)=p^{e}\left(r_{s} \mid r_{1}\right) p^{e}\left(r_{2} \dot{A}^{\prime} r_{N} \mid r_{1} r_{s}\right) \tag{42}
\end{equation*}
$$

then (41) is simply

$$
2 \sum_{\alpha^{\prime}} \int B_{\alpha^{\prime}}\left(I^{\prime}-I_{s}\right) \rho^{e}\left(I_{s} \mid I_{1}\right)\left\{\left\langle u_{\alpha^{\prime}}\left(r_{1} \mid r_{s}\right)\right\rangle-\left\langle u_{\alpha^{\prime}}\left(I_{s} \mid I_{1}\right)\right\rangle\right\} d r_{s}
$$

This quantity is independent of I_{s} and so the sum over j 'can be replaced by $(N-1)$ yielding the equation

$$
\begin{align*}
& M \omega^{2}\left\langle u_{\alpha}\left(I_{1}\right)\right\rangle= \tag{4,4}\\
& (N-1) \sum_{\alpha^{\prime}} \int B_{\alpha \alpha^{\prime}}\left(I_{1}-I_{2}\right) P^{e}\left(r_{2} \mid I_{1}\right)\left\{\left\langle u_{\alpha^{\prime}}\left(I_{1} \mid I_{2}\right)\right\rangle-\left\langle u_{\alpha^{\prime}}\left(I_{2} \mid I_{1}\right)\right\rangle\right\} d I_{-2}
\end{align*}
$$

Where we have set $S=2$ for convenience. This cannot be called an equation for $\left\langle U_{\alpha}\left(I_{1}\right)\right\rangle$ since it contains another unknown function $\left\langle u_{\alpha}\left(r_{2} \mid f_{1}\right)\right\rangle$. This is a characteristic feature of averaging methods. If instead we multiply equation (30) by $P^{e}\left(I_{3}-I_{N} \mid I_{1} I_{2}\right)$ and integrate over $I_{3}-I_{N}$ then

$$
\begin{equation*}
M \omega^{2}\left\langle u_{\alpha}\left(r_{1} \mid r_{2}\right)\right\rangle=\sum_{\alpha^{\prime}} B\left(r_{\alpha \alpha^{\prime}}-r_{2}\right)\left\{\left\langle u_{\alpha^{\prime}}\left(r_{1} \mid r_{2}\right)\right\rangle-\left\langle u_{\alpha^{\prime}}\left(r_{2} \mid r_{1}\right)\right\rangle\right\} \tag{4.5}
\end{equation*}
$$

$+(N-2) \sum_{\alpha^{\prime}} \int_{\alpha u^{\prime}} B_{\alpha}\left(r_{-} r_{3}\right) p^{e}\left(r_{3} r_{1} I_{2}\right)\left\{\left\langle u_{\alpha^{\prime}}\left(r_{1}\left|r_{2} r_{3}\right\rangle\right\rangle-\left\langle u_{\alpha^{\prime}}\left(r_{3}\left|r_{1} I_{2}\right\rangle\right\} d_{3}\right.\right.\right.$.

Thus every equation we construct by this means contains an unknown function of a higher order. Alter going through this hierarchy of equations wo obtain the equation for a particular configuration of atoms, i.c. equation (36).

Before investigating these equations in detail it is convenient to state how the idea of averaging the equation of motion differs from previous applications of this technique to wave propagation in continuous media and waves in lattices containing impurities. The most important point is that the equation of motion leaves the boundary conditions unstated. This is to be contrasted with work on electron waves in disordered systems of potentials where instead of averaging Schrodinger's differential equation an equivalent integral equation is averaged which implicitly states the boundary conditions imposed on the system. For example, in Waterman and Truckle's work (1901) the problem is considered of a free electron wave
impinging on a somi-infinito region of disordered poteenvials. This is also the problem consiclored by Phariseau and Ziman (1905) and Ziman (1906) though this fact is Somewhat veiled in these papers. Recently Taylor (1967) has considered tho multiple scattering of vibrational. waves by impurities in a lattice and again the Nammulation is in terms of an integral equation. This is a very convenient mocedure but the reason we are unable to follow it directly in tho case of structurally disordered solids is the basic difficulty that we do not have a set of waves which we can use as a representation and it is difficult to develop an integral equation Formulation without introducing a representation.

Returning to the first of the averaged equations of motion (44) we can make as a first step the "quasicrystalline approximation cue to Lax (1952). This consits of writing

$$
\left\langle u_{\alpha}\left(r_{2} \mid a_{1}\right)\right\rangle \simeq\left\langle u_{-}\left(r_{2}\right)\right\rangle
$$

This means that (44) is simplified to an equation containting a single function $\left\langle U_{\alpha}\left(r_{1}\right)\right\rangle$ namely
$M \omega^{2}\left\langle U_{\lambda}\left(G_{1}\right)\right\rangle=$
$\left.(N-1) \sum_{\alpha^{\prime}} \int_{\alpha \alpha^{\prime}} B_{\mu_{2}}\left(r_{2}\right) p^{e}\left(r_{2} \mid r_{1}\right)\left\{u_{\alpha}\left(r_{1}\right)\right\rangle-\left\langle u_{\alpha}\left(r_{2}\right)\right\rangle\right\} d r_{2}$
Approximation (46) suates that the average value $\left\langle u_{\alpha}\left(I_{1} \mid I_{2}\right)\right\rangle$ is insensitive to the lact that there is definituly an afom at I_{2}. Wo would expect this to be so when I_{1} and I_{2} are fer apart and hence would expeot this appromimation to be partioularly good when the force constants $B_{\alpha \alpha}\left(I_{1}-I_{2}\right)$ are of a slowly varying long range nature so that the integrand in (4y) is not dominated by the regions of \tilde{I}_{2} near tor.

Equation (47) is quite genoral but we now specialise to the case of homogencous disorder where

$$
\begin{equation*}
P^{e}\left(I_{2} \mid G_{1}\right)=P^{e}\left(\left|I_{2} I_{1}\right|\right) \tag{48}
\end{equation*}
$$

The function $P^{e}(|R|)$ is the pair distribution function for cquilitmium sites. Mhis is not quite the same as the usual pair distribution function $P(\mid \underline{B})$ which can be measured by X-ray or neutron difPraction experiments. The function $P^{e}(|R|)$ is the probability of finding an equilibrium site in $d \underline{R}$ when there is another site at \underline{R}, whereas $P(1 R-1)$ is the probability oif Inding an atom in $d \underline{R}$ whon there is another aton at \underline{R}. The typical form of $\rho(18!)$ in an amorphous soliti is sletohed in Pigure I. The dava have been taken ...o... the measurements of
and substitution of this into (4\%) Ieacls to the Hollowing equation cor the entrosian components $\left\langle U_{\alpha}(K)\right\rangle$;
$M \omega^{2}\left\langle u_{\alpha}(K\rangle\right\rangle-\sum_{\alpha^{\prime}} \int_{\alpha^{\prime}}(\underline{K})\left\langle u_{\alpha^{\prime}}(K\rangle\right\rangle=0$.
 in standard lattice aymamios theory (Maratudin, Nontroll and Weiss, 1903) and is defined by
$\bigcup_{\alpha_{\alpha^{\prime}}}(\underline{k})=2(N-1) \int_{\alpha\left(\underline{\alpha^{\prime}}\right.} P^{e}(\underline{R} 1)\left\{1-\bar{e}^{i} \underline{\underline{R}}\right\} d \underline{R}$.
It is convenient to illustrate the nature of the cigon vectors of equation (50) and the relationship between ω and the wave vector of the average wave, by using a simple model for $P^{e}(\mid R 1)$ and $B_{\alpha,}(R)$. Not us consider the pair distribution function
$P^{e}(|R|)=\Lambda_{0} \delta\left(|\underline{R}|-r_{0}\right)+\Lambda_{1} H\left(|\underline{R}|-r_{1}\right)$
whore $H(x)$ is Heaviside's mitt function, r_{0} is the distance of the nearest neighbour equilibrium sites and r_{1} is tho closest equilibrium site of any other atom. The parameter λ_{0} is chosen so that there are \bar{n} nearest sites on the average, i.c.
$\lambda_{0}=\frac{\bar{n}}{4 \pi N r_{0}^{2}}=\frac{8 r_{0}}{3 \pi}$
whore N is the number of atoms per unit volume. λ, will bub taken as when as il all the atoms are
distributed at random when $|\underline{R}| \geqslant \Gamma_{1}$.In particular, we consider a hypothetical disordorod solid having the same density and coordination numbers as a body centred lattice, $A \cdot \sigma \cdot \vec{n}=8, r=\frac{2 r_{0}}{\sqrt{3}}$ and $N=\frac{3 \frac{3}{2}}{4 r_{0}^{3}}$. This function is shown in Figure B. A simple model. for the $B_{\alpha}(R)$ is obtainoct if we assume central forces

Figure 2. The pair distribution function defined by equation (52).
which are only finite in the region of To. Let $\alpha=1$, $\alpha=2$ and $\alpha=3$ correspond to the x, y and z directions respectively, then for $\left|r_{j j 1}\right|=r_{0}$ we can write the matrix $3_{\alpha \alpha \prime}\left(\Gamma_{j \mu \prime}\right)$ as
$B\left(r_{j j^{\prime}}\right)=\frac{\gamma\left(x_{j j^{\prime}}\right)^{2}}{r_{0}^{2}}, \quad B_{i 2}\left(r_{j \prime}\right)=\gamma \frac{\left(x_{j j^{\prime}}\right)\left(y_{j j^{\prime}}\right)}{r_{0}^{2}}, B\left(r_{j j^{\prime}}\right)=\frac{\gamma\left(x_{j j^{\prime}}\right)\left(z_{j j^{\prime}}\right)}{r_{0}^{2}}\left(5 \mu^{2}\right)$
where the remaining elements can be deduced from symmetry arguments, and $V \quad i s$ constant. It can readily

De ascertained what ils, say, the x-axis is always rotated to point in tho direction $0.1 \leq$ the matting $\mathcal{S}_{\text {Li }}(k)$ is diagonal. For any value of K tho elgon vectors of (50) consist of one Longitudinal. Mode with $\langle\underline{u}(\underline{k})\rangle$ pointing in the esmoetion on \leq and two transverse modes with $\langle\underline{U}(\underline{k})\rangle$ porpondfowlan to $\underline{\text {. The longitudinal }}$ frequency $\omega_{L}(\underline{)}$ is wherefore given by

$$
\begin{aligned}
& \omega_{L}^{2}(\leq)=M \cdot 3_{H}(k)= \\
& \frac{8 V}{M}\left\{\frac{2}{3}-\frac{4 \cos \mid \leq 1 r_{0}}{\left(1 \leq 1 r_{0}\right)^{2}}-2\left(\left(k \mid r_{0}\right)^{2}-2\right) \frac{\sin |\leq| r_{0}}{\left(1 K 1 r_{0}\right)^{3}}\right\}
\end{aligned}
$$

and the degenerate transverse frequencies by

$$
\begin{align*}
& \omega_{T}^{2}(k)=M \cdot J_{22}(k)=M^{1}-3 S_{33}(k) \\
& =\frac{8 \gamma}{M}\left(1-\frac{\sin |k| r_{0}}{1 k \mid r_{0}}\right)-\frac{1}{2} \omega_{L}^{2}(k) \tag{50}
\end{align*}
$$

These $\omega(K)$ relationships are sketched in Figure 3.

The interpretation of these figures flor small veluos of IKIr。 is plain. These monies correspond to the long wavelonguh acoustic vibrations of an isotropic
 suggest that chappastion ogomas fist as in a portions. lattice, but they fugally te dh us very 11tidic olsen. It is CilPioult to boliove that the $\omega(5)$ Pf motion Pox $\|\left|r_{0}\right\rangle \pi$ is of any significance since the curves axe the product of approximation (4.6) which is expected to be valid for long wavelength vibrations. For example a large value of $|\underline{K}| r_{0}$ means that wo only have to shift the equilibrium site of an atom a very small distance completely to change its vibrational amplitude which does not seem sensible. If we wish to consider the average waves as crude approximations to the normal modes of a single system then wo must introduce a cutoff in the wave vectors just as in the Deby theory of specific heats, that is we choose the wave vectors to lie in a spherical zone with a radius

$$
\begin{equation*}
I_{k_{\max }}=2 \pi\left(\frac{3 N}{4 \pi}\right)^{\frac{1}{3}}=\frac{2 \pi}{r_{0}}\left(\frac{3^{\frac{5}{2}}}{16}\right)^{\frac{1}{3}}=1.3538 \frac{\pi}{r_{0}} . \tag{57}
\end{equation*}
$$

In the same way a cut-ows would allow us to construct a rough approximation to the donsity of statos Srom (55) and (56) but this must De viowod as a nlast resort" procaluro.

It shoukd 3o stated that these kimd of restat ts havo also beon obvalmod in stadios of tho high Nroquency collootive oscilliations in Iiquids, (Schomiola, 2900) although tho mothods usod thone are wethos dichcront. Rocontly Schncidor and Stoll, (2907), havo publishod curves showing the "disporstion"oi high Arequoncy waves in a liquid using Schoificld's thoory. Those are vory similan to those in Figure 3. A very interesting feature of work on liquids is that neutron scattering, oxporiments have indicated "dispersion" laws 1ikc those in Pigure 3, (Egalstaff, 1907, Cocking, 1907), and thore doos seem to bo evicionce that the ω (k) curve has some moaning beyond I I I max.

The conclusion we draw from these results is that We must go beyond thc "cuasi-crystalline" approximation (46) if we arc to obtain really useful results. The dispersion laws produced by this approximation can bo obtained in a numbor of difforent ways, for example by substibuting a planc wave trial function into the variational prituiplo Non ω^{2} (Nowol1, 2958),

Incidontally, this variational argument does give the additional information that tho maximum frequonoy of a disordered solid is groutcr than or equal to those obtainod from equation (47). Tho uscfulness of the avoraging mothod is that we have plenty of room to "manocuvre" and construct a bettor approximation than (4) . One of the most disappointing features of these results is that equation (4y) can be satisfied by plane waves with a purely coal propagation constant. This is to be contrasted with work on wavos in contimuous modia (c.g. Poldy, 1945; Lax, 1951,1952; Waterman and Truel1,1901) whero plane weve solutions are found with a complox propagetion constant, i.e. the disorder causes the wave to attonmate as it passes through the solid. This failure to find a complex propagation constant is intimatoly linked with the fact that equation (47) coes not contain any information about boundary conditions. Ne must distinguish betweon "standing wave" bomadary condittons and "out-

ial with tho surface atoms held fluod. Wo could satisfy this condition by forming the plane waves into sino and cosine waves but whis is not a physically very invaresting situation. Whe second oategory is usuazly wheh more interesting comespondtag wo mavos bosing prodncod by some extornal ageney aouing on e disordorod systom. For orample it couta be poriodio forec appliod to tho surDace of a semi-inlinite slab of material or perhaps just to a singlo atom in an infinite system.

The kind of behavioun to bo expectod for the two types of boundary condition can be guessed at by extrepolating what wo know about solids containing impuritios to the strmeturally disordered caso. In the first case With the surface atoms held fixed we can think about the modes in torms of (a) perfect lattice waves which are modifiod to a small extont by the impuritios and (b) modes which difler arastically trom a single lattice wave For example, if we introduce a single light isotope into a monatomic lattice most of the modes have an extended form corresponding to modiliod lattice waves, but in addition a triplet oi states is producod which have frequencies greator than any of the lattice waves and these vibrational modos are Iocalised around the isotope. If we now put a Lot on 1sobopes 1 atuo a solid the same somt of thing

by a vory small amount) giving rise to a bend of suewos Whose vibrettonal modes aro extuendod, even though they are made up of a suporpositition of localisod modes.

On the othor hand the case of atn applitod draving force is rathor dirfercotio. Mien a periodio loreo is applica to the sumataco oi a slats of matcrial a wave starts to travel invards into the solid. The disorder "scattors" this wave so that as it progrosses more and more encrgy is dissipatod from the wave Iront resulting in attonmation of the wave amplitude as it rocedos from the surface. This kind of behaviour can often be described in terms of a wave with a comploa propagation constant; the imaginary part producing attenuation. The same genoral behaviour is to be expected for an amorphous solid. This is why tho approximnte equation (4) camot be expected (a) wo produce localised vibrational modes and (b) to give attonuated wave solutions (since in the case of (b) there is nothing in the equation which states the inhomogencous boundary condition). The resolution of those difficulties requires an investigation of Green functions for disordered solide and this is doseribed in the noxt section.
1.3.2. Greon Iunctions

The Groon Lumotion -orc as solida, donoved by $C_{\text {daj }}\left(j_{0}\left|j_{0}\right| \omega\right)$ is the displadomont of when wom the the a dirocotion,
hon a milt periodic fores with frequency ω is appliod in the d_{0} extraction to mn atom at E jo. Phis Emotion $^{\text {jon }}$ satistiles the inhomogeneous equation of motion,

$$
\begin{align*}
& M \omega^{2} C_{\alpha j_{0}}\left(j\left|j_{0}\right| \omega\right)-2 \sum \sum_{\alpha^{\prime}} B\left(\sum_{j j}\right)\left\{C_{j j_{0}}^{\left.\left(j\left|j_{0}\right| \omega\right)-C_{\alpha^{\prime} j_{0}}(j, \mid \omega)\right\}}\right. \tag{59}\\
& =-\delta_{\alpha \alpha_{0}} \delta_{j j_{0}} .
\end{align*}
$$

The Creon function is an extremely usocut quantity and occupies a central position in any study of the vibrational properties of a solid. For example tho displacomont field due to a periodic force applied to the surface of a semi-incinite pice on material is obtained by adding up the Green functions originating from every driven atom on the surface. Whore are other reasons for trying to construct this function. The density of vibrational. states $\cap(\omega)$ may be written as (Edwards, 1951)

$$
n(\omega)=\frac{M \omega}{i \pi} \sum_{\alpha} \sum_{j}\left\{G_{\alpha \alpha}^{+}(j|j| \omega)-G_{\alpha \alpha}^{-}(j|j| \omega)\right\}
$$

Where the positive and negative signs denote "outgoing" and "incoming" Green functions respectively. This means that if $\underline{u}^{n}(j)$ denotes a normalised cigen function of the homogeneous form oi f (59) with an eigen frequency ω_{n} then

$$
\overbrace{\alpha \alpha_{0}}^{I}\left(j_{0} j_{0} \mid \omega\right)=-\frac{U_{\alpha}^{n}(j) U_{\alpha_{0}}^{n}\left(j_{0}\right)}{n \cdot M\left(\omega^{2}-\omega_{n}^{2} \pm \epsilon\right)}
$$

whore 6 is a positive inilinitostmoi which indicates how to carry ont the "integration" over states roar the pole at $\omega_{n}=\omega$.

The purpose of this chapter is to show what the "average oquation of motion method" am be used to calcuInto average Creon I unctions which behave roughly Ithe
 $e||R|$ whore $| \underline{R} \mid$ is the distance from tho source and k is a complex quantity so that the Green function decays exponentially. This world has not yet been applied to a specitio realistic model of a disordered solid.

Average Green functions can bo domino in procisuly the same way as the average amplitudes in the previous chapter. For cxamplo $G_{\alpha \alpha_{0}}^{:}\left(r_{-} \mid \omega\right)$ is dotinod by
and denotes the average response of an atom definitely at Γ_{2} when the force is applied to the atom at ϱ_{1}. The average density of states is simply
$\bar{n}(\omega)=\frac{N M \omega}{i \pi} \sum_{\alpha}\left\{G_{\alpha \alpha}^{1+}\left(I_{1} \mid \omega\right)-G_{\alpha \alpha}^{1-}\left(C_{1} \mid \omega\right)\right\}$
where
$C_{\alpha \alpha_{0}}\left(I_{1} \mid \omega\right)=\int C_{\omega \alpha_{2}}^{1}\left(I_{1}\left|I_{2}\right| \omega\right) P^{2}\left(I_{2} \mid r_{1}\right) d I_{2}$

The function $G \frac{1}{-}\left(c_{0} \mid \omega\right)$ is the average displacement of the driven atom whom no other atoms are at definite positions, whilst $C_{i d_{0}}^{\prime}\left(G_{2} \mid \omega\right)$ is the average displacemont when whore is doxinituly another aton at I_{2}.

We will bo partioulamy concomod with average

 equations for the functions $C:\left(\Omega_{2}\left|I_{1}\right| \omega\right)$ and $C_{i}^{\prime}\left(I_{1}\left|I_{2}\right| \omega\right)$ In j_{0} is set equal to I, j sot equal to 2 in (39) ind tho equation multipliod by $P^{e}\left(I_{3}-I_{N} I_{1} I_{2}\right)$ then intogration over $r_{3} \ldots r_{N}$ gives$$
M \omega^{2} G_{\alpha \alpha_{0}}^{1}\left(\varepsilon_{2}\left|G_{1}\right| \omega\right)-2 \sum_{\alpha^{\prime}} B\left(\Sigma_{\alpha}-I_{1}\right)\left\{G_{\alpha^{\prime} \alpha_{0}}^{1}\left(I_{2}\left|I_{1}\right| \omega\right)-C_{\alpha^{\prime} \alpha_{0}}^{1}\left(\square_{2} \mid \omega\right)\right\}
$$

$$
-2(N-2) \int \sum_{\alpha^{\prime}} B\left(I_{\alpha}-I_{3}\right) p^{e}\left(I_{3} \mid I_{1} I_{2}\right)\left\{G_{\alpha^{\prime} d_{0}}^{1}\left(I_{2}\left|C_{1} \Gamma_{3}\right| \omega\right)-G_{\alpha^{\prime} \alpha_{0}}^{1}\left(I_{3}\left|I_{2}\right| \omega\right)\right\} d r_{3}
$$

$$
=0
$$

where $G\left(\Gamma_{2}\left|\Gamma_{1} I_{3}\right| \omega\right)$ denotes the average response at When there is an atom douinitely at Γ_{-}in addition to the driven atom which is at I_{1} A different equation to (65) results when $j=j_{0}=1$ then
$M \omega^{2} G_{\alpha_{0}}^{\prime}\left(\square_{1}\left|I_{2}\right| \omega\right)-2 \sum_{\alpha^{\prime}} B\left(I_{1}-\square_{2}\right)\left\{G_{\alpha^{\prime} \alpha_{0}}^{1}\left(I_{1}\left|r_{2}\right| \omega\right)-G_{\alpha^{\prime} \alpha_{0}}^{1}\left(\square_{2}\left|r_{1}\right| \omega\right)\right\}$
 $=-\delta_{\alpha \alpha_{0}}$.

Equations (65) and (66) show tho charecotoristic feature of this find of wrowagting method, hatholy they contain higher order average functions, which mus u be eliminated for any progress to bo made. It will be noted that these equations contain three pertidoze correlation functions. These quantities enmot be measured emporimontally mike the simpler two particle com relations. This lack of knowledge of these functions Is the major impodimont to prectioel application of tho method to be described. We take the view that the construction of theoretical models of correlations in a disordered solid is a question for subsequent study Which cannot be avoided. In liquids the situation is simpler because the superposition approximation can often be invoked namely
$P\left(r_{3} \mid I_{1} r_{-2}\right) \simeq P\left(I_{3} \mid I_{1}\right) P\left(\Gamma_{-3} \mid I_{2}\right)$.
This relation holds for amorphous solids when I_{3}, I_{2} and If are separated by cistances larger than a length characterizing the range of order in the solid. Phis length can bo of the order of a lew atomic spacings. For closer distances models must be devised to describe the short range correlations. This would not seem to be an insurmountable taste, for example in used silica it is known from the navar o of tho chemical bond between
silicon ane oxygen atoms that the oxygen atoms are approximately st the corners of a tetrahodron centred around the silicon atoms. Setting aside the question of the correlation Inunctions we then to the problem of solving (65) and (66) assuming 2 modal for $P^{c}\left(I_{3} \mid G_{1} I_{2}\right)$ is available.

Clearly the most obvious finest stop towards solveing these equations is tho introduction oi s a quasicrystalline approximation. In contrast to tho simpler equation (4.) there is now a choice as to which parivicto coordinate to drop in tho functions under the integral. signs in (65) and (66). The simplest procedure is to putt $G_{\alpha \alpha_{0}}^{1}\left(r_{-2}\left|r_{-} \cdot r_{3}\right| \omega\right) \simeq G_{\alpha \alpha_{0}}\left(r_{2}\left|r_{1}\right| \omega\right)$
in (65), and in (66)
$C_{\alpha \alpha_{0}}^{1}\left(r_{1}\left|r_{2} I_{3}\right| \omega\right) \simeq C_{\alpha \alpha_{0}}\left(I_{1}\left|I_{3}\right| \omega\right)$.
The choice (68) is motivated by the Pact that the coordinto of the driven atom must be retained while (69) seems most reasonable in view of the fact that the intergrand in (66) will be dominated by values of \square_{3} close to I_{1}, at least for short range forces. A possible improvement on (69) is
$C_{\alpha \alpha_{0}}^{1}\left(I_{1}\left|I_{2} I_{3}\right| \omega\right) \simeq C_{c \alpha_{0}}^{1}\left(\Gamma_{2}\right) \div C_{d \alpha_{0}}^{1}\left(I_{1}\left|I_{3}\right| \omega\right)-C_{\alpha_{0}}^{1}\left(I_{1} \mid \omega\right),(70)$
since this has the correct induing behaviour Nor

The consequences of taking a quasi-crystalline approximation will be investigated for a very simple model, namely the loaded continuum model. Sore a random distribution of splices when they have a radius which is small compared with tho moan spacing. It will bo shown that the quast-omystalline approach loads to an mattenuated Green function just as was found for tho plane wave solution in the previous section. -.ttenuation can be introduced by using the nowt equation in tho hierarchy of averaged equations. This procedure is much too Involved for realistic models but a practical altonnative is described at the end of the chapter which will. give an attonuatod Creon function solution.

In the case of small spheres the equations for the loaded continuum model (15) Hay be simplified because only S-waves need be retained in the expansion (9). Writing β_{00}^{j} as β^{j} then $\gamma_{0}(\omega) \beta^{j}=\sum_{j^{\prime} \neq j} \frac{1}{\left|r_{j}-r_{j}\right|} \beta^{j^{\prime}}$.
The corresponding inhomogeneous tom of (YI) is required When a unit force is applied to the atom Jo along one of the cartesian ames. Equation (9) must be amended to read (including only S-wavos),

$$
\begin{equation*}
U_{j}(\rho)=(4 \pi)^{-\frac{1}{2}}\left(\rho^{-1} \div \gamma_{0}(j, \omega)\right) \beta j j_{0} \tag{78}
\end{equation*}
$$

where $\gamma_{0}(j, \omega)$ now depends on the position of the atom j. Equation (10) must also bo modified if a unit Force is applied to the j_{0} atom, namely

$$
\begin{equation*}
-M \omega^{2} U(\underline{s})=\int \mu\left\{\nabla U\left(\underline{s}^{\prime}\right)+U\left(\underline{s}^{\prime}\right) \nabla-\operatorname{div} \underline{U}_{j}\left(\underline{s}^{\prime}\right)\right\} \cdot d \underline{s}^{\prime}+\delta_{j} \tag{73}
\end{equation*}
$$

Substitution from (72) into (73) gives

$$
\begin{align*}
& \gamma_{0}^{\prime}\left(j_{0}, \omega\right)=\gamma_{0}(\omega)+\frac{(4 \pi)^{\frac{1}{2}}}{M \omega^{2} \beta j j_{0}} \tag{74}\\
& \gamma_{0}(j, \omega)=\gamma_{0}(\omega) \quad\left(j \neq j_{0}\right) \tag{75}
\end{align*}
$$

and using condition (7) we find

$$
\begin{equation*}
\gamma_{0}(\omega) \beta^{j j_{0}}-\frac{\sum}{j^{2} j} \frac{!}{I-r_{j}} B^{j^{\prime} j_{0}}=-\frac{(4 \pi)^{\frac{1}{2}}}{M \omega^{2}} \delta_{j j_{0}} \tag{75}
\end{equation*}
$$

The equation for the creon function is obtained by using
(22) j

$$
\begin{equation*}
\gamma_{0}(\omega)<\left(j\left|j_{0}\right| \omega\right)-\sum_{j^{\prime} j} \frac{C\left(j^{\prime}\left|j_{0}\right| \omega\right)}{\left|r_{j 1}-r_{j}\right|}=-\frac{4 \pi \mu}{\left(M \omega^{2}\right)^{2}} \delta_{j j_{0}} \tag{77}
\end{equation*}
$$

It is convenient to consider a force of strength
so that the response denoted by $\ell\left(j\left|j_{0}\right| \omega\right)$ satisfies the equation

The densivy of states is givon in torms of tisis Pumcuion $15 y$

$$
\begin{equation*}
n(\omega)=-\frac{12}{M \omega^{3} i} \sum_{j}\left\{\cdot e^{\div}(j|j| \omega)-(j|j| \omega)\right\} \tag{79}
\end{equation*}
$$

The averaging prococlume may now Do appliod to (78) and the cquations andlogous to (65) and (66) are

$$
\begin{aligned}
& \gamma_{0}(\omega) \ell^{\prime}\left(r_{2}\left|r_{1}\right| \omega\right)-\frac{1}{r_{-2} I_{1}} \cdot \\
& -(N-2) \int \frac{1}{\left|r_{-2} I_{3}\right|}-C_{1}^{\prime}\left(r_{-3} \mid \omega\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma_{0}^{\prime}(\omega) C^{\prime}\left(\Gamma_{1} \cdot \Gamma_{2} \mid \omega\right)-\frac{1}{\Gamma_{-} I_{2} \mid} \vartheta^{\prime}\left(\Gamma_{2}\left|\Gamma_{1}\right| \omega\right) \\
& -(N-2) \int \frac{1}{\left|r_{-} \underline{I}_{3}\right|} \quad C^{\prime}\left(r_{3}\left|r_{-} r_{2}\right| \omega\right) d r_{3}=-1
\end{aligned}
$$

where all coimelation Punctions have boen roplaced by unity commesponding to a completely random distribution of spheres. This is not strictiy possible because the spheres have a innite size and camot ovenlap but this is of no consequence in the tol1oning ancumont. Mhis patir of equations aro a littole stimplen than whe gonoral ones (65) and (66) weoauso onay a simgle 2unction ocouns
nader the integral sigh ant there is no dilemma as to which particle coorditurto to drop. We thowotione wat to

$$
\begin{equation*}
g^{\prime}\left(r_{3}\left|\varepsilon_{1}, c_{2}\right| \omega\right) \simeq g^{\prime}\left(r_{3}\left|c_{1}\right| \omega\right) \tag{82}
\end{equation*}
$$

in (80) and (81).
The equations can bo ciecompled and solved by a combination of the method of rourion transforms and succossive appunomtimation but wo will constion only the asymptotic form of $\mathcal{O}^{\prime}\left(f_{2}\left|f_{1}\right| \omega\right)$ which can De obtained. Dy a simpler process.

The function $G^{\prime}\left(C_{1}\left|G_{2}\right| \omega\right)$ is not oxpeotod to be strongly dopondent on I_{2} espocially Row "large" values of $\left|r_{-}-r_{2}\right|$. We therefore write

$$
\begin{equation*}
g^{\prime}\left(r_{1}\left|r_{2}\right| \omega\right) \simeq Y^{\prime}\left(r_{1} \mid \omega\right) \tag{83}
\end{equation*}
$$

in (80) and solve for $\ell^{\prime}\left(r_{2}\left|r_{-}\right| \omega\right)$ in terms oi $\ell^{\prime}\left(r_{1} \mid \omega\right)$.
We now substitute the will solution

$$
\begin{equation*}
f^{\prime}\left(r_{2}\left|r_{1}\right| \omega\right)=\frac{\alpha e^{i b \mid}\left|r_{-2}-r_{1}\right|}{r_{2}-\Xi_{1} \mid} \tag{84}
\end{equation*}
$$

into (80) assuming that k has a small positive imaginary

$$
\begin{aligned}
& \alpha\left\{\gamma_{0}(\omega)-\frac{4 \pi(N-2)}{b^{2}}\right\} \frac{e^{i d\left|I_{2} I_{1}\right|} \frac{r_{2} r_{1}}{}!\left\{\frac{4 \pi(N-2) d}{\alpha^{2}}-Q^{\prime}\left(r_{1} \mid \omega\right)\right\} \frac{1}{\left|r_{-}-r_{1}\right|}}{=0}
\end{aligned}
$$

values of |r$r_{2}-r_{\mid} \mid$we must have
$W^{2}=4 \pi(N-2) /\left(\frac{4 N \mu}{M \omega^{2}}-\frac{1}{R_{S}}\right)$,
$\alpha=\mathcal{I}^{1}\left(\Xi_{1} \mid \omega\right) /\left(\frac{4 \pi}{M \omega^{2}}-\frac{R_{s}}{R_{s}}\right)$,
and therefore k is purely fowl Cor $\omega^{2}<\frac{4-7 \% R_{s}}{M}$ and purely Imaginary $\cos \mathrm{cs}^{2}>\frac{4 \pi \mu R s}{M}$ This is just the sort of behaviour found in perfect lattices but in tho disorderod case wo would expect to Rind a complork. R. isis is in feat the problem encountered when solving the homogeneous equation of motion.

Before going on to discuss how the attenuation
effects are introduced into the Green function the densty of states prodictod by this sLuplo approximate solution will be briefly discussed. The list approximation to $V^{\prime}\left(r_{1}\left|r_{2}\right| \omega\right)$ is obtained by substituting from (84) and (86) into (8.) whereby
$\partial^{\prime}\left(I_{1}\left|r_{2}\right| \omega\right) \simeq \bar{\gamma}_{0}^{-1}(\omega)\left\{\frac{d e^{i \alpha\left|r_{1}-r_{2}\right|}}{\left|r_{1}-r_{2}\right|^{2}}-\frac{4 \pi(N-2) d-1}{i k}\right\}$
and therefore
$G^{\prime}\left(r_{-1} \mid \omega\right)=\int G^{\prime}\left(r_{1} \mid \omega\right) d r_{2} \simeq-\gamma_{0}^{-1}(\omega)\left\{1-\frac{4 \pi i(N-1) \alpha}{\alpha}\right\}(88)$

The constant od gan now be detominned using (86), namely

$$
\begin{equation*}
\alpha=\frac{-y_{0}^{-2}(\omega)}{\left(1-\frac{\pi i(N-1)}{\left(1 \gamma_{0}^{2}(\omega)\right.}\right)} \tag{89}
\end{equation*}
$$

It may bo readily ascertained that $\rho^{\prime}\left(C_{1}\left|r_{2}\right| \omega\right)$ is insensitive to there meting an atoll at I_{2} especially for Low Irequencios whore the "asymptotic" Horn holds everywhere except at the driven atom. Debtor approximations vo $b^{\prime}\left(r_{2}|c| \omega\right)$ can be obtained by "reedin gi" (87) wack Into equation (80) but this will not be constidoxed here. Using (79), (88) and (89) the normalised density of states is

$$
\begin{equation*}
\overline{g(\omega)}=\frac{\bar{n}(\omega)}{3 N}=\frac{32 \mu(N-1) \pi}{M \omega^{3} \gamma_{0}^{3}(\omega)|\alpha|\left(1+\left[\frac{4 \pi(N-1)}{|\alpha| \gamma_{0}^{2}(\omega)}\right]\right)} \tag{90}
\end{equation*}
$$

and this function is skotchod in Figure 4 .

Figure 2. Sketch of $\omega^{2} \vec{g}(\omega)$ against ω / ω_{m} where $\omega_{m}=\sqrt{\frac{4 \pi R_{s}}{M}}$ and R_{s} has ween waken as $\frac{1}{4}(N)^{-\frac{1}{3}}$.

There is little to secy about this extremely acute result othor than tho Moet that it is in accord with the intuitive iou that thane should he a carly sharp out oft in the density of states in a disordered system just as in an ordered ono. A program could bo enbathod upon for solving ogtatiotis (65) aud (6S) within tic quasicrystalline approximation for a model where a machine calculation has been made but this cannot reality ho justified in view of the fact that this approximation does not predict any attenuation effect, which is a serious flaw.

An additional reason why it is important io determine the rate at which the Green function attenuates is that this can be measured experimentally. It is also related to the resistance to hent Mow in a solid, though not in any simple way. The loaded continuum model will again be used to elucidate the basic features of tho problem. The insight gained from this has helpodin constructing a practical improvement on the quasicrystalline approximation.

The next equations in the hierarchy of equations for the loaded continutm are
$i_{0}^{\prime}(\omega)-Q^{\prime}\left(I_{3}\left|G_{1} r_{2}\right| \omega\right)-\frac{1}{I_{3}-E_{1} \mid} \exists^{\prime}\left(r_{1}\left|r_{2} r_{3}\right| \omega\right)-\frac{1}{\left|r_{-} I_{2}\right|} \quad O^{\prime}\left(I_{2}\left|r_{1} I_{3}\right| \omega\right)$
$-(N-3) \int_{I_{3}-I_{4} \mid}^{\int} \bigcup^{i}\left(I_{4}\left|a_{1} I_{-3}\right| \omega\right) d \Phi_{4}=0$

$$
\begin{align*}
& \gamma_{0}(\omega) g^{\prime}\left(I_{1}\left|G_{2} I_{3}\right| \omega\right)-\frac{1}{\left|G_{1}-I_{2}\right| \partial^{\prime}\left(G_{2}\left|G_{1} G_{3}\right| \omega\right)-\frac{1}{\left|I_{1}-I_{3}\right|} \cdot \ell\left(I_{3}\left|G_{1} G_{2}\right| \omega\right)} \\
& -(N-3) \int \frac{1}{r_{-}-r_{4} \mid}-e^{\prime}\left(r_{4}\left|r_{1} r_{2} r_{3}\right| \omega\right) d_{4}=-1 . \tag{92}
\end{align*}
$$

These equations are becoming exceedingly compliontod especially when we include tho correlation emotions. However, the intent here is to show that by obtaining an approximate solution to $Y^{\prime}\left(G_{3}\left|I_{1} G_{2}\right| \omega\right)$ in towns of the unknown function $Y^{\prime}\left(a_{3}|r| w,\right)$ and by patting this back into (80) an imaginary part is introduced into tho propagation constant h.

In (9.1) we write and then substitute

$$
\begin{align*}
& e^{\prime}\left(r_{4}\left|r_{1} r_{2}\right| \omega\right)=g^{\prime}\left(r_{4}\left|r_{1}\right| \omega\right)+g^{\prime}\left(r_{4}\left|r_{1} r_{2}\right| \omega\right) \tag{94}\\
& g^{\prime}\left(r_{1}\left|r_{2} r_{3}\right| \omega\right)=g^{\prime}\left(r_{1}\left|r_{3}\right| \omega\right)+g^{\prime}\left(r_{1}\left|r_{2} r_{3}\right| \omega\right) .
\end{align*}
$$

Using (80) equation (91) can then be recast in the inhomogeneous form

$$
\begin{align*}
& \gamma_{0}(\omega) g^{\prime}\left(r_{3}\left|a_{1} r_{2}\right| \omega\right)-\frac{!}{\left|r_{3} I_{1}\right|} g^{\prime}\left(r_{1}\left|r_{2} r_{3}\right| \omega\right)-\frac{1}{r_{-}-I_{2} \mid} g^{\prime}\left(r_{2}\left|G_{1} r_{3}\right| \omega\right) \tag{25}\\
& \left.-(N-3) \int \frac{1}{1 I_{5} I_{4}} g^{\prime}\left(r_{4}\left|r_{1} r_{2}\right| \omega\right) d r_{4}=\frac{1}{\left|I_{3}-a_{2}\right|} \quad-\right\}^{\prime}\left(a_{2}\left|I_{1}\right| \omega\right) .
\end{align*}
$$

The second that third terms in (95) will bo troated as porturbautons which can bo ignored in a first approxthation. Neglecting the second torn is justiliod when $\left|\varepsilon_{2} a_{1}\right|$ and $\left|\varepsilon_{5}-a_{1}\right|$ are large. If α_{0} denotes the propsgation constant given Dy equation (86), then comparison of (95) and (80) shows that an approximate solution to (95) is

$$
\begin{equation*}
g^{\prime}\left(I_{3}\left|r_{1} r_{2}\right| \omega\right) \simeq g^{\prime}\left(I_{2}\left|I_{1}\right| \omega\right) \frac{e^{ \pm i R_{0}\left|r_{3} I_{2}\right|}}{\gamma_{0}(\omega)\left|r_{3} I_{2}\right|} \tag{90}
\end{equation*}
$$

$$
\begin{equation*}
\ell^{\prime}\left(r_{3}\left|r_{-} r_{2}\right| \omega\right) \simeq V\left(r_{3}\left|r_{1}\right| \omega\right)+\ell^{\prime}\left(r_{2}\left|r_{1}\right| \omega\right) \frac{e^{ \pm i K_{0}\left|r_{3} r_{2}\right|}}{\gamma_{0}(\omega)\left|r_{5} r_{2}\right|} \tag{97}
\end{equation*}
$$

This result has a simple interpretation. The aron function $Z^{\prime}\left(\underline{I}_{3}\left|I_{1}\right| \omega\right)$ travels out from $I_{\text {, through }}$ the average medium and is scattered by the departure of the solid from the average, introduced by there being a sphere at E_{2}. The approximate result (9y) can now bo substituted back into (80). If this is carried out and tho solution

$$
\begin{equation*}
g^{\prime}\left(r_{2}\left|a_{1}\right| \omega\right)=\alpha_{1} \frac{e^{i \alpha_{1}\left|r_{2}\right|}}{I_{2}-I_{1} \mid} \tag{98}
\end{equation*}
$$

is tried, then instead of (55) wo find

$$
\begin{align*}
& \alpha_{1}\left\{\gamma_{0}(\omega)-\frac{\left.4 n(N-2)-i \alpha_{0}\right\} \left.\frac{e^{i \alpha_{1} r_{2}--1}}{a_{2}-I_{1}} \right\rvert\,}{\alpha_{1}^{2}}\right. \\
& +\left\{\frac{4 \pi(N-2) \alpha_{1}}{\alpha_{1}^{2}}-\gamma^{\prime}\left(r_{1}(\omega)\right\} \frac{1}{r_{2}-I_{1} \mid}=0\right. \tag{99}
\end{align*}
$$

Hence

$$
\begin{equation*}
K^{2}=\frac{4 \pi(N-2)}{\gamma_{0}(\omega)-i \alpha_{0}}=\frac{4 \pi(N-2)\left(\gamma(\omega)+i \alpha_{0}\right)}{\left(\gamma_{0}^{2}(\omega)+\beta_{0}^{2}\right)} \tag{100}
\end{equation*}
$$

which can bo solved for the real and imaginary parts
of d_{1} by writing
$k_{1}= \pm \alpha_{r}+i k_{i}$.
α_{1} is purely imaginary for $\omega / \omega_{m}>$. The values of α_{r} and P_{i} are plotted out in Figure 5 for $\omega / \omega_{m}<1$.

Figure 5. Tho real and imaginary parts of bl_{1}. The broken curve -presents ϕ_{i}.

These result ts are probably mot momingrul now s $\omega / \omega_{m}=$! but they indicate the Dellaviour to be expected for more realistic models. The quantity k_{i} is small compared with $k_{\text {s for }}$ most of the frequency range and then Pesos rapidly to become roughly equal to bo near $\omega=\omega_{\text {en }}$. Tho procedure used for tho loaded continumen model is not likely to bo useful in general because it is difficult to see the important features through a maze of correlation functions and various letinds of average Green functions. Wo now consider an approach which has practical possibilities.
The exact equation for the Green function (59) will
be symbolized by
$L C-M \omega^{2} C=\delta$
and wo suppose that the operator L can bo split into an "unperturbed" part L° plus a perturbation L^{\prime}. If G. denotes the solution to
$L^{0} G^{0}-M \cdot \omega^{2} C^{0}=\delta$
then the "perturbation" series for G takes the form $C=G^{0}-C^{0} L^{\prime} G^{0}+G^{0} G^{0} L^{0} C^{0}--$
whore an obvious symbolic notation has been used. It has been stressed that this lend of argument is ditchcult to uso for calculating tho Green function for structurally disordered solids because the operator does not split Lw ot an - and L' in any natural way.

However, slight :mmipnlabeon of this formal expansion makes it possible to generate successive apportimbtions begintilig with an arbitrary "guessed" solution. We first note then Co and C: must satisfy tho conditions
$G^{\circ}=C^{0}-C^{0} L^{0} G^{\circ}$
$G=G-C \cdot G$,
or
$G^{0} L^{\circ}=O$,
$G L C=O$.

These conditions (102) have a very simple meaning. The force acting on any atom consists of the applied driving forces plus the forces due to the motion of the atoms to which it is coupled. Thus if a Pores is applied to one particular aton the response at a second atom is made up of a Green Function coming Prom the driven atom plus secondary sommees from every atom in the system. The secondary source Green Inunctions must cancel each other, and this is the interpretation of (106). If C^{0} is a good approximation to C then
$C \simeq G^{0}-C^{0} G^{\circ}$
and using (106) (a) we can rewrite this as
$G=G^{\circ}-C^{\circ} L$.
The beauty of this simple "uxiok" is thee wo no longer need to construct an "unperturbed" operator. We guess an tupneopriate C° and assume that an L° cubists such What G_{0}^{0} satisfies (103), than an improved approximation to G can bo obtained from (.08). The success of this approach depones on the initial choice for G^{0} being a Good one but it offers great scope when we have an intuitive idea as to the form G should tale. IV can, OL course, repeat the process using (108) as a zeroth approximation to C- but this will not be considered Further.

This icon is particularly useful for constructing chan a bettor approximation \wedge tho quasi-crystallime one, using the idea that $G_{\alpha \alpha_{0}}^{\prime}\left(r_{3} \mid r_{1} r_{2}(\omega)\right.$ is something Ithe $G_{\alpha \alpha_{0}}\left(r_{3}\left|r_{\mid}\right| \omega\right)$ plus a "scattorod" wave originating Iron \underline{I}_{2}. This work is still at an exploratory stage. We define an unporturbod Creon function by

$$
\begin{aligned}
& G_{\alpha \alpha_{0}}^{0}\left(j\left|j_{0}\right| \omega\right)=C_{\alpha \alpha_{0}}^{j_{0}}\left(I_{j}\left|I_{j_{0}}\right| \omega\right) \quad\left(j \neq j_{0}\right) \\
& C_{d \alpha_{0}}^{0}\left(j_{0}\left|j_{0}\right| \omega\right)=C_{\alpha \alpha_{0}}^{j_{0}}\left(I_{j_{0}} \mid \omega\right) ;
\end{aligned}
$$

that is, wo toke as the Ronoth appromimation to the Groon fumotion Ros a prationtas contiguration of atome the (makmova) avorage Green Amobion. The first two torms of ($(.08)$, whon whetiten out in Iull, are
$\because\left(j j_{0} \mid \omega\right) \simeq \because_{i \alpha_{0}}\left(j_{0} \mid \omega\right)$
 We thorefore have an approximation to the Grecn function for a particular configuration of zuoms in torms of avorage Greon Armotions, so that approwimetions to the Punctions $G_{\alpha \alpha_{0}}^{1}\left(r_{3}\left|r_{1} r_{2}\right| \omega\right)$ and $G_{\alpha \alpha_{0}}^{1}\left(r_{1}\left|I_{2} \cdot r_{3}\right| \omega\right)$ can be obtainod by averaging (110). It is confidently expected that these approximations will lead to attonuated Grecn function solutions whon substituted beck into (65) and (66). Whe procedure is complicated bob until a partioular calculation is attompted it is not possible to say if all tho complications are necessary for obtaining a satisPaotory pioture of Greon Imotions in disordered solids. This chapter has been watton with blithe disregard Ior the fact that the correlation functions which occur camot be doterminod oxperimentally and, as Cor as we are aware, there has been no theoretioal work on that parobion. It is not so mic... that nothing is kmom anout

The viow is taken that tho complexitios described in this chaptor are probebly a oonsoquonce of tho neture of the problom rathor than the partioular kind of appronch. The noture on tho correlation fumotions in a solid must be facen ap to and a calcutabion fox a specitio modol attomptodt, ovon if wis moans taking the retrograde step of wowking with one-dimensional models in the Rinst instance so that comparison may be mado with machinc calculations.

1. 4 . Thermal conduction.

The subjoct of hoat transport in structurazly disoriered solids is vixtuklly monouched apart from a setomatio thoory of Memons $(1950,1905)$ which involves Wentilag an anompons sozid as an clasuic continum containtig fluctatations of donsity and clasticity (Tmumhansl, 1903). This does not moan that there is any basic diPieronce in the nature of heat NIOW in perturbed lattices and in structurally disordored solids. The problem is to find an adequate mathomatical description in the latter case, taking into account the discrete structure of solids.

This Lrustrating situation has been resolved by transforming from the individual coordinates of the atoms to new collective ones. The kind of transformation is Well mown in theories of collective oscillations in 1iquids (c.g. Zubarev,1953; Green,1954; Tomonaga, 1955 a,b; Percus and Yevick,1958; Mori,1902) but has not previously been used in the theory of vibrating solids. Dy this means it is found possible to develop a theory of heat transport within the framework of a Boltamann equation which is quito amalogous to the standard theory and indeed is exactly the same in the Iimit when atoms ocedre ar Ma....tioe sites. Whis approach is presented in
bim simphosh amd most basic Tom since further sophistiundions are not justified in general at this stage.

Although this method was developed with the problem of amorphous solids in mind there are a large number of simphos sibumbions whore its masc is neqesemry, namely Whenever a solid cannot be described easily as a distorted Imbtice. In addition it is possible to investigate vie chicer of suructmal disorder on the traditional voice phonon processes cncomtored in anharmonic lattices.

TH0 "spring" model oi a solid with the Jiamiltonion donincd by equation (3) is used to develop the argument although more general kinds of mamiltonion could be dealt With along the same I ines.
1.4.1. Point transformations

The form of the lamiltonion (3), which is expressed in teams of "real-space" coordinates, is inconvenient in General because it Goes not separate into a part with known elgon Itmotions and a part which may be regarded as a perturbation. One particular way of scelcing more attractive forms is by using a point transformation of the type
$u_{\alpha}(j)=\frac{1}{N^{\frac{1}{2}}} \sum_{s} U_{\alpha}(s) O O_{s}(j)$
Whore the $O_{i s}(j)$ denote a complete set of independent functions of the discrete variable f, and S is a label

Which has just in values, if Doing the number of atoms Sin the system being considered. These formations must, of course, satisfy the prescribed boundary placed on the system.

It is not necessary to use an orthonormal sot of Immetions Dub it is clearly desirable to do so whenever possible and it is usual to employ functions which are approximations to the shape of the normal modes of the system. With regard to structurally disordered solids we do not know functions with both these properties but if the condition of orthonormality is dropped then it is easier to devise functions which have the second propeaty.

New momenta $P_{\alpha}(s)$ which are canonically conjugate to the "displacements" U. (s) may be defined by

$$
\begin{equation*}
P_{\alpha}(s)=\frac{\partial \dot{\alpha}}{\partial \dot{U}_{\alpha}(s)} \tag{112}
\end{equation*}
$$

Where

$$
\begin{equation*}
\text { U. }(s)=\frac{d}{d t} U \cdot{ }_{\alpha}(s) \tag{113}
\end{equation*}
$$

wo therefore have

$$
\begin{equation*}
P_{\alpha}(s)=\frac{1}{N^{\frac{1}{2}}} \sum_{j} P_{\alpha}(j) O_{s}(j) \tag{114}
\end{equation*}
$$

and
$P_{\alpha}(j)=\frac{1}{N^{\frac{1}{2}}} \sum_{s} P_{\alpha}(s) \psi_{s}^{*}(j)$

Where the $\Psi_{S}(j)$ denote a second set of functions which sabisty
$\frac{1}{N} \sum_{j} Y_{S}^{*}(j) \phi_{S}(j)=\delta_{S S^{\prime}}$
and
$\frac{1}{N} \sum_{s} Y_{s}^{*}\left(j^{\prime}\right) \phi_{s}(j)=\delta_{s s^{\prime}}$.
The Pmotions $Y_{S}(j)$ are said to be biorthonormal to
the set $\phi_{s}(j)$ with respect to the scalar product dorined in (116).

We now assume that for most types of structurally disordered solid it is possible to find a set of N independent plane waves such that

$$
\begin{equation*}
u_{\alpha}(j)=\frac{1}{N^{\frac{1}{2}}} \sum_{\underline{K}} U_{\alpha}(\underline{K}) e^{i \underline{K} \cdot E_{j}} \tag{118}
\end{equation*}
$$

and that for every value of \underline{k} there is a corresponding value - \underline{K}. This is not strictly possible in all cases but should not affect the general conclusions of this chapter. This is discussed in detail lator on. The real nature of the atomic displacoments is preserved by insisting that

$$
\begin{equation*}
U \cdot{ }_{\alpha}(\underline{k})=U \int_{\alpha}^{*}(-\underline{k}) \tag{112}
\end{equation*}
$$

The difference betweon (118) and the conventional transformation to normal coordinates for a perifect 1attice (Maradudin, Montro11 and Weiss, 1963) is the appearance of the actual equilibriua sites instead of perfect lattice sites. A Purther difference is the
use of am maspocifica (as you) sot of plano waves Abhor than wave vectors lying in the first Brillouin zone. The plane waves here are not orthogonal except When the atoms are locabod on lattice sites.

In is convonicsi to impose periodic boundary conditions by imaghangy that the solid considered is part of a super-systom of identical adjoining systems. The shape of the normalization volume will, in general, be dictated by the symmetry properties of the solid. For omample, in a perfect lattice it is usual to employ a parallelapiped whose edges lie in the same direction as the primitive translation vectors of the lattice. Relatively important considerations such as these Will be omitted here and it will be assumed that the normalization volume is a "box" having sides of length L. The allowed values of from which the N independent Waves can be chosen are therefore given by $K_{\alpha}=\frac{2 \pi t}{L} ; \quad t=0, \pm 1, \pm 2-\cdots-$
In the limit when the normalization volume $V=L^{3}$ tends to infinity the wave vectors form a continuum and this is the reason why the shape of the volume is important. It is not possible to give a precise and unique method for choosing the wave vectors in general but it is clear that the choice should be governed by the following general considerations. First, it is desirable that
this theory should yicld the familiar results of a perturbed elastic contimuan in the limit of long waves and it is therefore reasonable to choose wave vectors Within a zone contred about $|\underline{K}|=0$. The rough limits of this zone are dotexmined by the fact thet atoms in a solid camot approach closer than a wimimum distance r_{0}, hence wave vecbors much larger bhan π / r_{0} are not necessary to describe a coarse grained function like $\underline{u}(j)$. Another consideration to be taken into account is that tho waves should be chosen such that thoy are as orthogomal as possible, because the exact normal modes are oxactly orthogonal. Finally, symmetry can help in rixing the shape of the zone. Por example in a solid having average spherical symmotry (e.g. a vitreous or polycrystalline solid) the wave vectors will be assumed to Iic within a spherical zono having a radius $|K|_{\max }=\frac{2 \pi}{2}\left(\frac{3 N}{4 \pi}\right)^{\frac{1}{3}}$
i.e. the wave vectors lie within the Debye sphere. In practice IKImax is of the order π / r_{0}.

In solids retaining a large amount of crystalline orientation one would expect the zone to be roughly the same shape as the Brillouin zone of the corresponding pericet lattice. The question of the zone shape is discussed again in a subseguent section and reasons are
mat forward as to why the exact details of the shore Wavelength cutoff should not be of overriding importane in the calculation of thermal conductivity.
1.4.2. The new form for the maniltonion.

The basic difficulty with using a non-orthogonal representation lies in constructing the biorthonormal Functions which in the case of the plane wave representaton are denoted by $\mathcal{Y}_{\underline{k}}(j)$. If these functions are known then from (114) wo may write

$$
\begin{equation*}
P_{\alpha}(j)=\frac{1}{N^{\frac{1}{2}}} \sum_{\underline{k}} P_{\alpha}(\underline{k}) V_{\underline{k}}^{*}(j) \tag{122}
\end{equation*}
$$

and using (118) tho Mamiltonion may bo expressed in terns of the new coordinates by substitution.

In practice it is extremely difficult to generate closed forms for the $\mathcal{U}_{\underline{k}}(j)$ and approximations have to De introduced. One method for constructing a series expansion for tho $\Psi_{\underline{k}}(j)$ and the practical application of this expansion is discussed in the next chapter.

However, to develop the simple argument of this chapter we adopt an alternative but equivalent approach which avoids introducing the biorthonormal functions explicitly and has rather more physical content.

The kinetic energy terms in (3) may be written as
$T=\frac{1}{2} \sum_{\alpha} \sum_{\underline{K}} P_{\alpha}(\mathbb{E}) \dot{U}_{\alpha}^{(E)}$
(6. 6. 12 8 g

$$
\begin{equation*}
P(-\underline{k})=\frac{M}{N} \sum_{\underline{k}^{\prime}} \dot{U}_{\alpha}\left(\underline{k}^{\prime}\right) \sum_{j} e^{i\left(\underline{k}^{\prime}-\underline{k}\right) \cdot \Gamma_{j}} \tag{124}
\end{equation*}
$$

equation (123) can be rearranged to read,

$$
\begin{equation*}
\left.T=\frac{1}{2 M} \sum_{\alpha \underline{k}} \sum_{\alpha} P_{\alpha}\right) P_{\alpha}(-\underline{k})-\frac{1}{2} \sum_{\alpha} \sum_{\underline{k} \neq \underline{k}^{\prime}} P_{\alpha}(\underline{k}) \dot{U}_{\alpha}\left(k^{\prime}\right) \frac{1}{N} \sum_{j} e^{i\left(k^{\prime}-\underline{k}\right) \cdot r_{j}} \tag{125}
\end{equation*}
$$

Mae First term in (125) will be denoted by T° and the second by $?$

The potential energy terms in (3) which will be denoted by V can be expressed in terms of the variables $U(\underline{L})$ by substituting from (118). We then obtain

$$
\begin{align*}
& V=\frac{1}{2} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{\underline{k}} \bigotimes_{\alpha \alpha^{\prime}}(\underline{k},-k) U_{\alpha}(\underline{k}) U_{\alpha^{\prime}}^{(-k)} \\
& +\frac{1}{2} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{\underline{k} \neq-k^{\prime}} \sum_{\alpha \alpha^{\prime}}\left(\underline{k}, \underline{k}^{\prime}\right) U_{\alpha}(\underline{k}) U_{\alpha^{\prime}}\left(\underline{s}^{\prime}\right) \tag{126}
\end{align*}
$$

$$
\begin{align*}
& B_{\alpha \alpha^{\prime}}\left(\underline{k}, k^{\prime}\right)=\frac{1}{N} \sum_{j \neq j^{\prime}} \sum_{\alpha \alpha^{\prime}} B_{j}\left(\Gamma_{j}-\underline{F}_{j}\right)\left(e^{i \underline{K} \cdot \underline{I}_{j}} e^{i \underline{K} \cdot \Gamma_{j^{\prime}}}\right)\left(e^{i \underline{K}^{\prime} \cdot \Gamma_{j}} e^{i \underline{K}^{\prime} \cdot \Gamma_{j^{\prime}}}\right) \tag{127}
\end{align*}
$$

and.

The first term in (126) will be denoted by V^{0}, the second by V^{\prime} and the third by $V^{\prime \prime}$.

The morita of wis representation is tho fact that $H^{\circ}=T^{0}+V^{0}$ is the Itmilttonion of in threc-dimensional
harmonic oscillators and wo now explore the possibility of using the origen states of H° as a basis for the
development of conventional perturbation theory. Hamilton's classical equations of motion are
$\dot{U}_{\alpha}(\underline{k}) \simeq \frac{\partial H^{0}}{\partial P_{\alpha}(\underline{k})}=\frac{1}{M} P_{\alpha}(-\underline{k})$
and

$$
\begin{equation*}
\dot{P}_{\alpha}(\underline{k}) \simeq-\frac{\partial H^{0}}{\partial U_{\alpha^{2}}(\underline{k})}=-\sum_{\alpha^{\prime}} B_{\alpha \alpha^{\prime}}(\underline{k},-k) U_{\alpha^{\prime}}(-\underline{k}) . \tag{130}
\end{equation*}
$$

The combination of these two equations gives

$$
\begin{align*}
& M \ddot{U}_{\alpha}(k)=-M \omega^{2}(\underline{k}) U_{\alpha}(k)=-\sum_{\alpha^{\prime}} B(k,-k) \bigcup_{\alpha \alpha^{\prime}}(k) . \tag{1.31}\\
& \text { The matrix } B_{\alpha \alpha^{\prime}}(k,-k) \text { is analogous to the dynamical. }
\end{align*}
$$

mavrizs in standard lattice dynamics and it is convenient to use the terminology of the standard theory. Hence the orthonormal eigen vectors of (131) will be denoted by $G(K, \rho)$ and the eigen frequencies by $\omega_{\rho}(k)$ where ρ is a polarization index.

Since $\boldsymbol{B}_{\alpha \alpha^{\prime}}(k, \underline{k})$ is real and symmetric the eigen vectors $\underline{E}(\underline{K}, p)$ can be chosen to be purely real. We will use the convention that (Maradudin, Montroll and Weiss, 1903, p.13) $(\underline{E}, \underline{0})=-\underline{E}(-\underline{k}, p), \omega_{p}(\underline{K})=\omega_{p}(-\underline{K})$.

For amorphous or polycrystalline systems the suludion of (13!) is particularly simple. The matrix $B_{\alpha \alpha}(\underline{k},-\underline{k})$ is identical with the matrix $\mathcal{S a}_{\alpha \alpha^{\prime}}^{(K)}$ defined by (51) lithely,

$$
\begin{align*}
& \left.B(k,-k)=\frac{1}{N} \sum_{j \neq \alpha^{\prime}} \sum_{j^{\prime}} B\left(\underline{r}_{j j \prime}\right)\left(e^{i \underline{k} \cdot}\right) e^{i \underline{r_{j}}}\right)\left(e^{-\underline{K}_{j}}-e^{-i \underline{r_{j}}}\right) \\
& =2(N-1) \int B_{\alpha \alpha^{\prime}}(R) P^{e}(1 R 1)(1-\cos \underline{k} R) d R=\mathcal{J}_{\alpha \alpha^{\prime}}^{(k)} \tag{132}
\end{align*}
$$

The elgon frequencies of H° are therefore just the same as those obtained from the averaged equation of motion (47). In the case of solids which retain a large amount of crystalline orientation and large areas of perfect crystal the matrix $B(K,-k)$ will be virtually the same as that for tho perfect crystal.

It is desirable to make a further change of variables which completely diagonalizes H° namely

$$
\begin{equation*}
U_{\alpha}(\underline{k})=\sum_{\rho} \epsilon_{\alpha}(\underline{k}, \rho) U_{\rho}(\underline{k}) \tag{133}
\end{equation*}
$$

$=-\sum_{\rho} i\left(\frac{\hbar}{2 M \omega_{\rho}(\underline{k})}\right)^{\frac{1}{2}} E_{\alpha}(\underline{k}, \rho)\left\{a_{p}^{*}(\underline{k})-a_{\rho}(-\underline{k})\right\}$
and
$P_{\alpha}(k)=\sum_{\rho} \epsilon_{\alpha}(k, \rho)-\bigodot_{\rho}(\underline{k})$
$=\sum\left(\frac{\hbar M \omega_{\rho}(\underline{k})}{2}\right)^{\frac{1}{2}} \in_{\alpha}(\underline{k}, \rho)\left\{a_{p}(\underline{k})+a_{\rho}^{*}(-\underline{k})\right\}$
where the variables $a_{p}^{*}(\underline{k})$ and $a_{p}(\underline{k})$ are the creation and destruction operators in the quantum limit (Ziman, Elecirons and Phonons, p.132), where $Q_{\rho}^{*}(k)$ denoting
the complex conjugate is replaced by $a_{\rho}^{\dagger}(\underline{k})$ meaning the vormibian conjugate of $\mathcal{Q}_{\rho}(\underline{K})$. The variables $\mathcal{Z}_{\rho}(\underline{K})_{\text {and }}$

- $P_{\rho}(E)$ wansform as

$$
\begin{align*}
& U_{\rho}(\underline{k})=-\mathcal{U}_{\rho}^{*}(-\underline{k}) \tag{1.35}\\
& -Y_{\rho}(\underline{k})=-\mathcal{P}_{\rho}^{*}(-\underline{k}) .
\end{align*}
$$

In terms of the creation and destruction operators (Going over to quantum mechanics) the Mamiltonion is

$$
\begin{align*}
& H=\sum_{\rho} \sum_{\underline{k}} \hbar \omega_{\rho}(\underline{k})\left\{a_{\rho}^{\dagger}(\underline{k}) a_{\rho}(\underline{k})+\frac{1}{2}\right\} \\
& +\frac{1}{2} \sum_{\rho} \sum_{\rho^{\prime}} \sum_{\underline{k} \neq K^{\prime}} \sum_{\alpha}\left\{\sum_{\alpha} \epsilon_{\alpha}(k, \rho) \epsilon_{\alpha}\left(\underline{K}^{\prime}, \rho^{\prime}\right) \frac{1}{N} \sum_{j} e^{\left.i\left(\underline{K}^{\prime}-\underline{K}\right) \cdot \underline{r}\right)}\right\}\left(\frac{\hbar M \omega_{\rho}(\underline{k})}{2}\right)^{\frac{1}{2}} \\
& x\left\{a_{\rho}(\underline{k})+a_{p}^{+}(-\underline{k})\right\} i\left(\frac{\hbar}{2 M \omega_{\rho^{\prime}}\left(\underline{k}^{\prime}\right)}\right)^{\frac{1}{2}}\left\{\dot{a}_{\rho^{\prime}}^{+}\left(\underline{k}^{\prime}\right)-\dot{a}_{\rho^{\prime}}^{\left(-\underline{k}^{\prime}\right)}\right\} \\
& -\frac{1}{2} \sum_{\rho} \sum_{\rho^{\prime}} \sum_{\underline{k} \neq-\underline{k}^{\prime}} \sum_{\rho \rho^{\prime}} \mathcal{B}^{\left(\underline{k}, k^{\prime}\right)}\left(\frac{\hbar}{2 M \omega_{\rho}(\underline{k})}\right)^{\frac{1}{2}}\left\{a_{\rho}^{+}(\underline{k})-a_{\rho}(-\underline{k})\right\} \tag{130}\\
& X\left(\frac{\hbar}{2 M \omega_{\rho}\left(k^{\prime}\right)}\right)^{\frac{1}{2}}\left\{a_{\rho^{\prime}}^{+}\left(\underline{k}^{\prime}\right)-a_{\rho,}\left(-\underline{k}^{\prime}\right)\right\} \\
& +\frac{1}{6} \sum_{\rho} \sum_{\rho^{\prime}} \sum_{\rho^{\prime \prime}} \sum_{\underline{k}} \sum_{\underline{k}^{\prime}} \sum_{\underline{k}^{\prime \prime}} \mathcal{G}_{\rho}\left(\underline{\underline{\rho^{\prime}} \rho^{\prime \prime}} \underline{k}^{\prime}, \underline{k}^{\prime \prime}\right) i\left(\frac{\hbar}{2 M \omega_{\rho}(\underline{k})}\right)^{\frac{1}{2}}\left\{a_{\rho}^{+}(\underline{k})-a_{\rho}^{(-k)}\right\} \\
& x\left(\frac{\hbar}{2 M \omega_{\rho^{\prime}}\left(k^{\prime}\right)}\right)^{\frac{1}{2}}\left\{a_{\rho^{\prime}}^{+}\left(\underline{k}^{\prime}\right)-a_{\rho^{\prime}}^{\left(-k^{\prime}\right)}\right\}\left(\frac{\hbar}{2 M \omega_{\rho^{\prime \prime}}^{\left(k^{\prime \prime}\right)}}\right)^{\frac{1}{2}}\left\{a_{\rho^{\prime \prime}}^{+}\left(\underline{k}^{\prime \prime}\right)-a_{\rho^{\prime \prime}}^{\left(-\underline{k}^{\prime \prime}\right)}\right\} .
\end{align*}
$$

$$
\begin{align*}
& x\left(e^{i K \cdot r_{j}}-e^{i K \cdot I_{j}^{\prime}}\right)\left(e^{i K^{\prime} \cdot r_{j}}-e^{K^{\prime} \cdot G_{j}}\right) \tag{137}
\end{align*}
$$

$$
\begin{align*}
& x\left(e^{i K^{\prime} \underline{I}_{j}} e^{i \underline{K} \cdot \underline{r}_{j}}\right)\left(e^{i k^{\prime} r_{j}}-e^{i k^{\prime} \cdot r} j^{\prime}\right)\left(e^{i \underline{k}^{\prime \prime} \Gamma_{j}}-e^{i \underline{K}^{\prime \prime} \cdot r_{j} \prime}\right) . \tag{138}
\end{align*}
$$

This form (136) contains the time derivative of the creation amd destruction operators which must be eliminabed for Anther progress to we made. One way of achieving this is by using Heisenberg's equation of motion, namely,
$\dot{a}_{p}(\underline{k})=\frac{i}{\hbar}\left[H, a_{p}(\xi)\right]$.
The right hand side of (139) still contains $\dot{Q}_{p}(\underline{\text { g ht }}$) but this equation can be solved by successive approximation Dogiming by writing

$$
H \simeq H^{0}=\sum_{\rho} \sum_{\underline{k}} \hbar \omega_{p}(k)\left\{a_{\rho}^{+}(k) a_{p}(\underline{k})+\frac{1}{2}\right\}
$$

To a first approximation we then find that

$$
\begin{equation*}
\dot{O}(k) \simeq-i \omega_{\rho}(k) a_{p}(\underline{k}), \quad \dot{a}_{\rho}^{\top}(\underline{k}) \simeq i \omega_{\rho}(k) a_{\rho}^{\top}(\underline{k}) \tag{141}
\end{equation*}
$$ This is equivalent to replacing $M \dot{U}_{\alpha}(K)$ by $P_{\alpha}(-k)$ in (125).

The subsequent analysis o: thermal conductivity will be developed within the I imitations of (141) and first order perturbation theory. Successive approximations vo $C_{\rho}(k)$ can we goncrabed by iteration of equation (139)
bat this is a Iittio clumsy to carry out and it is pobably best to use the expansion for the functions $\psi_{\underline{k}}(j)$ which is described in the noxt chaptere

The validity of this simple argument depends on tho assumption that the cigen statos of H° are reasonable zoroth oxdor approximations and that perturbation mothods based on H° are convergent. The validity of the second assumption does not nocossarily follow if the Cirst is justified. The evidenco that H° is a reasonable choice is that the vibrational frequencies are the sane as those predieted by the averaged equation of motion, but this is basically a long wavelength theory. The ascfulness of this approach for short wavelength vibration is uncertain but this is not a special feature of this mothod since the same doubts arise in the standard theory of thermal conductivity.

It is recognisod that in general a complete analysis of the perturbation T^{\prime} will be required; for example, positive density fluctuations should give rise to resonance scattering in the same way that heavy isotopes in a lattice do, (e.g. Takeno, 1953; Morgan, 1960) and first order perturbation theory is inadequate for describing this phenomena. Another situation whore first order perturbation theory can be inadequate is when the Porce constunts, are locally weaker than the average.

Itrumansl and Nathow (1905) have shown this to be the case for a ono dimensional lattice but this will not Do so important in three dimensions.

These rather intricate questions are reserved for Subsequent study.
1.4.3. The Boltzmann Equation.

We are now in the position of having a set of modes suitable for describing the Plow of energy through a structurally disordered solid. Broadly speaking two properties of the representation are required if we wish to use a Boltzmann equation to calculate the thermal conductivity. First, the perturbations to the Hamiltonion H° should have a weak effect and secondly, the energy current operator should be nearly diagonal.

Detailed derivations of transport equations in a perturbed lattice have been given by IIardy (1963, 1905, 1900); hardy, Swanson and Schieve (1905), and Hardy and Schicve, 1900). The methods of these authors may be readily used to derive the Boltzmann equation for the plane representation, indeed the derivation is identical.

Using the Kubo formalism, Hardy (1965) showed that the thermal conductivity tensor $K^{\alpha \alpha^{\prime}}$ can be written as $K^{\alpha \alpha^{\prime}}=\frac{V}{k_{b} T^{2}} \sum_{\beta} \sum_{\beta^{\prime}} f(\beta) S_{\alpha}^{\alpha}(\beta) S_{\alpha}^{\alpha^{\prime}}\left(\beta^{\prime}\right){ण_{\beta}}\left(\beta, \beta^{\prime}\right)$
to Lowost order in a perturbation parameter λ whon the Nemiltomion is assumed to be of the form
$H=H H^{\circ}+\lambda H^{\prime}$.
In (141) Sd denotes the diagonal part oí the energy flux oporabor in whe phonon represcntation, β labels a "manyphonon" state, f is the equilibrim density matrix, V is the volume of the solid, T is the temperature and k_{b} is Roltzmann's constant. The quantily $\widetilde{P}_{\eta}\left(\beta, \beta^{\prime}\right)$ is

$$
\left.\tilde{P}_{3}\left(\beta, \beta^{\prime}\right)=\frac{\hbar}{2 \pi} \int_{0}^{\infty} d t e^{-3 t}\left|\langle\beta| e^{-\frac{H}{\hbar}}\right| \beta^{\prime}\right\rangle\left.\right|^{2}
$$

where η is a real positive infinitesimal. Equation (142) is also valid for the representation described in this chapter and in future the eigen states of H^{0} will also be referred to as "phonons".

We now consider the form of the energy flux operator. This quantity has been investigated by a number of authors for liquids and solids, for example, Eisenshitz (1955), Mori (1958), hardy (1903) and Magid (1964). Following Iardy's discussion we write

$$
\begin{equation*}
U(j)=\frac{1}{2} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{j^{\prime} \neq j} B\left(L_{\alpha j^{\prime}}\right)\left(u_{\alpha^{\prime}}(j)-u_{\alpha}\left(j^{\prime}\right)\right)\left(u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right) \tag{145}
\end{equation*}
$$

then the mean energyitux is (ignoring anhaxmonic contributions)
$\underline{S}=\underline{S}_{2}+\underline{S}_{3}$

Where S_{2} is quadratic in tho particle coordinates and Sa is a cubic formation of the coordinates, ie. $_{3}$ is

$$
\begin{align*}
& E_{2}=\frac{1}{2 M \vee} \sum_{j \neq j^{\prime}} \sum_{j}\left(r_{j}-r_{j^{\prime}}\right) \sum_{\alpha}\left\{P_{\alpha}(j) \frac{1}{i \hbar}\left[P_{\alpha}(j), v\left(j^{\prime}\right)\right]\right. \tag{147}\\
& \left.+\frac{1}{i \hbar}\left[P_{\alpha}(j), V\left(j^{\prime}\right)\right] P_{\alpha}(j)\right\} \\
& {\underset{S}{3}}^{\text {and }}=\frac{1}{2 V}\left\{\sum \frac{P(j)}{M}\left[\sum_{\alpha} \frac{P_{\alpha}^{2}(j)}{2 M}+V(j)\right]\right. \\
& +\frac{1}{2 M} \sum_{j \neq j^{\prime}}\left(\underline{u}(j)-\underline{u}\left(j^{\prime}\right)\right) \sum_{\alpha}\left(P_{\alpha}(j) \frac{1}{i \hbar}\left[P_{\alpha}(j), V\left(j^{\prime}\right)\right]\right. \tag{14:8}\\
& \left.\left.+\frac{1}{i \hbar}\left[P_{\alpha}(j), V\left(j^{\prime}\right)\right] P_{\alpha}(j)\right)\right\}+H . C .
\end{align*}
$$

where I.C. denotes the Hermitian conjugate of the prescoding terms. The quantity S_{2} is a quadratic function of the coordinates because

$$
\begin{equation*}
(i \hbar)^{-1}\left[P_{\alpha}(j), V\left(j^{\prime}\right)\right]=-\sum_{\alpha^{\prime}} B\left(I_{\alpha \alpha^{\prime}} \underline{I}_{j^{\prime}}\right)\left(u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right) \tag{149}
\end{equation*}
$$

The tern Swill be ignored for the reasons given by Hardy $(1903) \cdot \underline{S}_{3}$ can be called the kinetic energy contribution to the energy flux which can be assumed small providing the vibrational amplitudes of the atoms are small compared with the mean spacing. This leaves $S \simeq S_{2}$

$$
\begin{equation*}
=\frac{1}{2 M V} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{j \neq j^{\prime}} \sum_{-\prime^{\prime}}\left(r_{j}\right)\left\{P_{\alpha}(j) B_{\alpha^{\prime}}\left(r_{j j^{\prime}}\right)\left(u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right)+H \cdot C .\right\} \tag{150}
\end{equation*}
$$

or in terms of the creation and destruction operators

$$
\begin{aligned}
& S \simeq \frac{1}{N V}\left[\sum _ { p } \sum _ { k } \left\{\sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{j \neq j^{\prime}} \sum_{\alpha} \in\left(-\underline{k}_{, p}\right) \in(k, p) B\left(I_{\alpha^{\prime}} j^{\prime}\right)\left(1-e^{i k \cdot r_{j \prime} j^{\prime}}\right)\right.\right. \\
& \left.x\left(r_{j}-I_{j},\right)\right\} \frac{h}{2 M \omega_{p}(\underline{k})}\left\{\dot{a}_{p}^{\top}(-\underline{k})-\dot{a}_{p}(\underline{k})\right\}\left\{a_{p}^{+}(k)-a_{p}(-k)\right\} \\
& +\sum_{\rho \neq \rho^{\prime}} \sum_{\underline{k}}\left\{\sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{j \neq j^{\prime}} \sum_{\alpha^{\prime}} G_{(-k, p)} \in_{\alpha^{\prime}}\left(k_{,}, \rho^{\prime}\right) \Xi_{\alpha \alpha^{\prime}}\left(I_{j j^{\prime}}\right)\left(1-e^{\left.i k \cdot r_{j, j}\right)}\left(I_{j} I_{j, \prime}\right)\right\}\right. \\
& x \frac{\hbar}{2 M} \frac{1}{\left(\omega_{\rho}(k) \omega_{\rho}(k)\right)^{\frac{1}{2}}}\left\{\dot{a}_{\rho^{\prime}}^{+}(-k)-\dot{a}_{\rho}(\underline{\prime})\right\}\left\{a_{\rho}^{+}(k)-a_{\rho}^{(-k)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.x\left(I_{j}-r_{j \prime}\right)\right\} \frac{\hbar}{2 M} \frac{1}{\left(\omega_{\rho}(\underline{k}) \omega_{\rho^{\prime}}\left(k^{\prime}\right)\right)^{\frac{1}{2}}\left\{\dot{a}_{\rho}^{+}(-k)-\dot{a}_{\rho}(k)\right\}\left\{a_{\rho^{\prime}}^{+}\left(k^{\prime}\right)-a_{\rho^{\prime}}\left(-k^{\prime}\right)\right\}} \\
& +H \cdot C .]
\end{aligned}
$$

The First term in (151) will be denoted by \underline{S}_{d}, the scoond by $\underline{S}_{n \cdot d}^{1}$ and the third by \underline{S}^{2} ned Invoking approximatron (141) and using

$$
\begin{equation*}
\omega_{\rho}^{2}(\underline{k})=M^{-1} \mathcal{Z}_{\rho \rho}(\underline{k},-\underline{k}) \tag{152}
\end{equation*}
$$

then it is straightforward to show that

$$
\begin{equation*}
\underline{S}_{d}=V^{-1} \sum_{\underline{k}} \sum_{\rho} \hbar \omega_{p}(\underline{k}) \frac{\partial \omega_{p}(k)}{\partial \underline{k}} Q_{p}^{+}(\underline{k}) a_{p}(\underline{k}) \tag{153}
\end{equation*}
$$

Within the limits of approximation (141) both \underline{S}_{n}^{1} and S nd $_{n}^{2}$ are non-diagonal in the creation and destruction operators. The contribution of \underline{S}^{\prime} ned will be assumed small using the argument that if $Q_{\rho}^{+}(k)$ and $O_{\rho}(k)$ are treated as classical variables with the (approximate)
time dependent behaviour
$a_{p}(k) \propto e^{-i \omega_{p}(\underline{k}) t}, a_{\rho}^{+}(\underline{k}) \propto e^{i \omega_{\rho}(\underline{k}) t}$
then if $\omega_{p}(\underline{k})$ and $\omega_{p r}(\underline{k})$ are different the time average 01 Std is zero. The special case when $\omega_{\rho}(\underline{K})=\omega_{\rho}(\underline{K})$ causes no difficulty because the contribution to the energycurrent is zero in this situation, (Tardy, 1963). The neglect of S_{n}^{2} is not at all easy to justify. However, even in the extreme case of an amorphous solid it seems reasonable to do so because the configuration average is zero and it is unlikely that it will play a significant role in a thermal conductivity calculation. A precise evaluation of the effect of non-diagonal contributions to the energy flow requires an investigation of their role in higher order equations than the Boltzmann equation.

It is not necessary to go through with Hardy's (1960) derivation of the Boltzmann equation using (142) and (144) because the Mamiltonion (136) is of the same form as that for a perturbed lattice and (153) is also identical with the standard expression for the diagonal contribution to the energy flow in a perturbed lattice. The Boltzmann equation, therefore, also takes the standard form
$\left.-\frac{\partial}{\partial T} \bar{N}_{0}(k, \rho) \frac{\partial \omega_{p}(k) \cdot \nabla T}{\partial k}=-\frac{\partial}{\partial r} \bar{N}(k, \rho)\right]_{\text {collisions }}$
whore $\bar{V}(k, p)$ is expected number of phonons in the state $k \rho$, ∇T is the temperature gradient and $N_{0}(K, p)$ is the Bose-Einstein distribution function

$$
\begin{equation*}
\bar{N}_{0}(k, \rho)=\left\{\exp \left(\frac{\hbar \omega_{\rho}(k)}{k_{b} T}\right)-1\right\}^{-1} \tag{156}
\end{equation*}
$$

The heat current is simply

$$
\begin{equation*}
S_{H}=V^{\prime} \sum_{\underline{K}} \sum_{\rho} \hbar \omega_{\rho}(\underline{k}) \frac{\partial \omega_{\rho}(k)}{\partial \underline{k}} \bar{N}(\underline{k}, \rho) \tag{157}
\end{equation*}
$$

amd the collision term in(155)is to be evaluated from the perturbations to the Mamiltonion H^{0} to first order in perturbation theory in the usual manor.

In practice it is reasonable to use equation (155) With the collisions term calculated to an arbitrary order of perturbation theory, providing the scattering is weak. This is sometimes necessary because although a perturbation expansion may diverge, summation of terms in the expansion can give a final result corresponding to weak scattering (egg. Krumhansl and Mathew, 1965). 1.4.4. Elastic scattering.

The thermal conductivity of a solid is primarily determined by the rate at which phonon are scattered rather then the details of the $\omega_{p}(K)$ function which is insensitive to the microscopic structure. The form of
the collision terms in the Boltzmann equation is prociscly tho same as those encountered in the standard theory of heat conduction ($0 . \mathrm{g}$. Ziman, 1900, Electrons and Phonons) so that attention can be concentrated on the intrinsic transition probabilities. The calculation of these quantities also follows familiar lines so that only a brief outline will be given of the procedure. We use the general formula
$\left.P_{s}^{s^{\prime}} \simeq \frac{2 \pi}{\hbar} \delta\left(E_{s}-E_{s^{\prime}}\right)\left|\left\langle s^{\prime}\right| V\right| s\right\rangle\left.\right|^{2}$
Cor the transition probability from a state s with energy E_{s} to a state s^{\prime}, due to a perturbation V. If a manyphonon state is specified by the kat
$\left|\cdots \cdots, N(k p), \cdots N^{\prime}\left(k^{\prime} p^{\prime}\right), \cdots\right\rangle$
where $N(\underline{k}, p)$ denotes the number of phonon with wave vector \leq and polarization ρ, then using the relations

$$
\begin{align*}
& a_{p}^{+}(\underline{k})|\cdots N(\underline{k}, p) \cdots\rangle=\sqrt{N(k, p)+1} \quad|\cdots, N(\underline{k}, p)+1, \cdots\rangle \tag{160}\\
& a_{p}(\underline{k})|\cdots N(k, p) \cdots\rangle
\end{align*}
$$

it may readily bo ascertained that the second and third teams in (136) only cause transitions in which a phonon is destroyed in one state and another is created in a second state. The transition probability ${\underset{K}{K} \rho}_{{\underset{K}{f}}^{\prime} \rho^{\prime}}$ may de written as

$$
P_{\underline{K} p}^{\underline{k}^{\prime} p^{\prime}}=N(\underline{k}, p)\left(N\left(\underline{k}_{1}^{\prime}, p^{\prime}\right)+1\right) Q \begin{align*}
& \underline{k}^{\prime} \rho^{\prime} \tag{IGI}\\
& \underline{k} p
\end{align*}
$$

whore $\bigodot_{-}^{k^{\prime} p^{\prime}}$ is called the intrinsic transition probewillity and is independent of the phonon occupation numbers. This kind of process can be termed "clastic" because phonons are only scattered into other phonon states which have the same frequency.

For these elastic processes we have
$\left.-\sum_{\partial r} \bar{N}(\underline{k}, \rho)\right]_{\text {elastic }}=\sum_{\underline{k}^{\prime}} \sum_{\rho^{\prime}}\left(\bar{N}(\underline{k} \rho)-\bar{N}\left(\underline{k}^{\prime} \rho^{\prime}\right)\right) Q_{\underset{k}{ }}^{k^{\prime} \rho^{\prime}}$
where
$Q \frac{k^{\prime} \rho_{p^{\prime}}}{\underline{k}_{-}}=\frac{2 \pi}{\hbar} \delta\left(\hbar \omega_{\rho}(\underline{k})-\hbar \omega_{\rho_{1}}\left(\underline{k}^{\prime}\right)\right)$
$x\left|-\frac{\hbar \omega_{p}(\underline{k})}{2} \in(-k, p) \cdot E\left(\underline{k}^{\prime} \rho^{\prime}\right) \frac{1}{N} \sum_{j} e^{i\left(k^{\prime}-\underline{k}\right) \cdot \underline{r}}+\frac{\hbar}{2 M \omega_{\rho}(\underline{k})} \mathcal{S}_{\rho \rho^{\prime}}\left(-\underline{k}, k^{\prime}\right)\right|^{2}$ (163) A convenient way of writing $\mathcal{J}\left(-k, k^{\prime}\right)$ here is $\mathcal{H}_{p p^{\prime}}\left(-\underline{k}, k^{\prime}\right)$
$=\frac{1}{N} \sum_{j} e^{i\left(k^{\prime}-k\right) \cdot} I_{j} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{j^{\prime} \neq j} \epsilon_{\alpha}\left(-k_{p}\right) E_{\alpha^{\prime}}\left(\underline{k}^{\prime}, \rho^{\prime}\right) B_{\alpha \alpha^{\prime}}\left(r_{j j^{\prime}}\right)\left(1-e^{i \underline{k} \cdot r_{j j^{\prime}}}\right)\left(1-e^{-i \underline{k}^{\prime} \cdot r_{j j^{\prime}}}\right)_{\left(104^{\prime}\right)}$
The interpretation of (163) is plain. The first term inside the modulus sign represents scattering due to density fluctuationswhilst the second term is the effect of variations in the elastic properties of the solid. Te now consider some situations where this simple formula will be of practical importance and the difficultic involved in evaluating (163).

Amorphous solids.
The low temperature thermal conductivity of amorphons solids should be described quite well in terms of
this simple Doltaman cquation approach since in this region the mean Prec path of the phonons is long, (KIcmens, 1960, 2965). Of course, the force constant nodel used is unrealistic in general but the qualitative Ieatures medicted by (163) should ibe substantially correct. This is the most that can be hoped for in a solid of this complexity.

Although it is possible to replace (163) by its conifiguration average, this will involve two, three and four particle correlation functions of the equilibriunsites and this information is not available from experiment or theory. This is precisely the problem encountered With the Green Punctions in the previous chapter and justiries the remark that the need to know these functions is a characteristic feature of disordered solids. However, the position is not quite hopeless.

In the case of a hypothetical solid with a liquid degree of disorder (164) can be estimated by approximating the sum over j^{\prime} by its average value. This is justified when the sum for one value of j is uncorrelated with neighbouring ones. We then obtain for long waveIength phonons
$Q_{\underline{k} \rho}^{k^{\prime} \rho^{\prime}} \propto \omega^{2} a^{e}\left(\underline{k}-\underline{k}^{\prime}\right)$
where $a^{e}\left(k-k^{\prime}\right)$ is the two-body correlation function of equilibrium sites defined by
$\operatorname{a}^{e}(\underline{q})=\frac{1}{N} \sum_{j} \sum_{j^{\prime}} e^{i q \cdot f_{j j^{\prime}}}-N \delta_{q_{i}}$
$=1+(N-1) \int p^{e}(1 \underline{Q} \mid) e^{i q \cdot R} \underline{R}-N \delta_{q_{1},}$.

Hhis rosult is equivalont to Rayleigh soattorers distriDutod at the oquilibrium sites. The extreme king of aisordor does not appear to occux in practice but there are cases where groups of atoms are likely to be uncorrelated, for example IKlemen's (1965) has suggestied that the observed thermal conductivity in amorphous selenium is produced by the structure consisting of spiral chains of atoms which are orientated at random. A simple approach would be to estimate (164) for the atoms in a single chain, assuming that the other chains are ramdomly orientated, and then average over all airections.

Whis kind of approach can only give qualitative answers but at least it might be possible to explain the observed variation with temperature of the thermal conductivity of amorpious solids. The merit of (163) is that it provides a simple formula ior testing theoretical models. It might De usciul to calculate (164) by means of Pabricated models oi disordered solids, (Dean anà Bell, 1966.)

2islocabions.
Whe thermal resistamee due to the presence of disloontions in a solid is anomalous particularly for the alkali halitios. Although the experimental data is not conclugive (Moss,1963) thore scons to be large discrepancies betweon thoory and experiment. The theoretical estimates are due to Momens (1958) and Carruthors (1961), who have, however, only considered the scattering Trom the long range strain field predicted by elassical clasticity theory. Equation (163) enables the corc of tho dislocation to be treated in a straightforward mamer Wut a model is necded for the atomic positions. RecentIy computer calculations have been made of the atomic positions in model solids so that in the future it may be possible to compute $Q \frac{k_{k}^{\prime} p^{\prime}}{\underline{k} p}$. 2olycrystalline solids.

When the mean free path due to other effects is large compared with the crystallite dimensions in polycrystalline material, the situation is not very different from the amorphous casc but in the more likely event of a short mean free path we must think in terms of the transmission of phonons through a single grain boundary or perhaps an amorphous layer. The problems with evaluabing (163) are then essentially the same as those occurring in the casc of aislocations.

The difricultios oncombered hore with mating even the simplest ostimate of tho bxansition probabilities can be contrasted with the theory of "nearly Proo" cleotrons in simplo metals (Ziman, 1964) where the pair corrolation Cunction is surficiont to obtain a Pairly reasonable theory of eloctrical resistance. Whe basic reason why this is not possible acre is that thc "local" clasticity in a solid is in fact not a local property at all at the microscopic level, since it depends on the positions of the surrounding atoms. 1.4.5. Anharmonic scattering.

One of the most important features of the method is that the offoct of structural disorder on the wollknown "Normal" and "Umklapp" three phonon processes is rovealod in a simple way. Threc phonon processes are important in the standard theory, not only because Uprocesses are oftcon the major cause of resistance at Wigh temperatures, but because N-processes affect the 100 temperature thermal conductivity even though they are not supposed to give rise to thermal resistanco on their own. It seems likely that anharmonic offects could play a similar role even in amorphous solids, in spite of the fact that there will be strong elastic scattering due to structural disorder. The collision term in the Boltzmann equation due
to the Tout h term in (136) is (Limen 1900, Electrons
and Phonons)
$\left.-\frac{\partial}{\partial r} \bar{N}(s, \rho)\right]_{\text {anharmonic }}=$

whore $Q_{\underset{-k}{k^{\prime}} \rho^{\prime}, k_{s}^{\prime \prime} \rho^{\prime \prime}}^{k}$ is the intrinsic transition probability
for a phonon in $\underline{K} \rho$ to decay into the states $\underline{k}^{\prime} \rho^{\prime}$ and $\underline{k}^{\prime \prime} \rho^{\prime \prime}$
and $Q_{\underline{k} \rho, k^{\prime} \rho^{\prime}}^{\frac{k^{\prime \prime}}{\prime \prime}}$ is the probability that phonons in $k \rho$ and $\underline{K}^{\prime} \rho^{\prime}$ will combine to give a final state with a phonon in $\underline{k}^{\prime \prime} \rho^{\prime \prime}$.

The first kind of transition probability is given
by
$\mathcal{Q}_{\underline{\underline{k}}}^{\underline{k}_{\rho}^{\prime}, \underline{k}^{\prime \prime} \rho^{\prime \prime}}=\frac{2 \pi}{\hbar} \delta\left(\hbar \omega_{\rho}(\underline{k})-\hbar \omega_{\rho}\left(\underline{k}^{\prime}\right)-\hbar \omega_{\rho \prime \prime}\left(k^{\prime \prime}\right)\right.$
$\left.x \frac{\hbar^{3}}{8 M^{3} \omega_{\rho}(\underline{k})} \omega_{\rho^{\prime}}\left(\underline{k}^{\prime}\right) \omega_{\rho \prime \prime}\left(\underline{k}^{\prime \prime}\right)\left|\quad G_{\rho \rho^{\prime} \rho^{\prime \prime}}\right|-\underline{k^{\prime}}, \underline{k}^{\prime \prime}\right)\left.\right|^{2}$
and the second kind by
$Q_{\underline{K}^{\prime} \rho, K^{\prime} \rho^{\prime}}^{\underline{K}^{\prime \prime} \rho^{\prime \prime}}=\frac{2 \pi}{\hbar} \delta\left(\hbar \omega_{\rho}(\underline{k})+\hbar \omega_{\rho},\left(\underline{K}^{\prime}\right)-\hbar \omega_{\rho^{\prime \prime}}\left(\underline{K}^{\prime \prime}\right)\right.$
$x \frac{\hbar^{3}}{8 M^{3} \omega_{\rho}(\underline{k}) \omega_{\rho^{\prime}}\left(k^{\prime}\right) \omega_{\rho_{\prime \prime}}\left(k^{\prime \prime}\right)}\left|\zeta_{\rho \rho^{\prime} \rho^{\prime \prime}}\left(-\underline{K}^{\prime},-k^{\prime \prime}\right)\right|^{2}$.
Only (168) will be considered in detail since the same remarks apply to (169).

It is convenient to write $\mathcal{C o n}_{\rho \rho^{\prime} \mu^{\prime \prime}}^{\left(-\underline{k}, \underline{k}^{\prime \prime}\right)}$ as $Q_{\rho \rho \rho^{\prime \prime}}^{\left(-\underline{k}, \underline{k}^{\prime}, k^{\prime \prime}\right)}=N^{\frac{3}{2}} \sum_{j} e^{i\left(\underline{k}^{\prime}+\underline{k}^{\prime \prime}-\underline{k}\right) \cdot \Sigma_{j}}\left\{\sum_{j=j}^{\rho} \sum_{\alpha} \sum_{\alpha^{\prime}} \sum_{\alpha^{\prime \prime}}\right.$

Which is a suitable form for making comparisons between the perfect lattice and disordered situations.

The are now faced with the same kind of computational difficulties as occur in the elastic scattering terms. We can, however, isolate one aspect of the change introduced by disorder by replacing the sum over j^{\prime} in (170) by its average value, namely

$=N^{-3} \frac{3}{2} \sum_{j} e^{i\left(\underline{k}^{\prime}+\underline{k}^{\prime \prime}-\underline{k}\right) \cdot \underline{r} \quad \underset{\rho \rho^{\prime} \rho^{\prime \prime}}{ }\left(-\underline{k}, \underline{k}^{\prime}, \underline{k}^{\prime \prime}\right) .}$
This is not intonded as a serious approximation to (170) cxcept porhaps in tho case of an amorphous solid. We merely wish to show one aspect of how disorder affects the usual selection rules for three phonon processes. In general it will be necossary to add correction terms to (171) which may in Pact be more important than the cfect which will be discussed.

Tho intrinsic transition probability is now roughly given by

$$
\begin{equation*}
Q_{\underline{k} \rho}^{k_{p}^{\prime} k^{\prime} k^{\prime \prime} p^{\prime \prime}} \simeq \frac{2 \pi}{\hbar} \delta\left(\hbar \omega_{p}(k)-\hbar \omega_{p^{\prime}}\left(k^{\prime}\right)-\hbar \omega_{p^{\prime}}\left(k^{\prime \prime}\right)\right) \frac{\hbar^{3}}{8 N^{2} M^{3} \omega_{p}(k)\left(\omega_{p}\left(k^{\prime}\right) \omega_{p^{\prime}}\left(k^{\prime \prime}\right)\right.} \tag{172}
\end{equation*}
$$

$x\left|F\left(-\underline{k}, \underline{k}^{\prime}, \underline{k}^{\prime \prime}\right)\right|^{2}\left\{N \delta_{\underline{k}, \underline{k}^{\prime}+\underline{k}^{\prime \prime}}+a^{e}\left(\underline{k}-\underline{k}^{\prime}-\underline{k}^{\prime \prime}\right)\right\}$
Whe man intorest in this expression lies in the torms Whthin the curly breckets, because the other factors Will not diffor in any radical way from the perfect lattice casc.

The quantity
$N \delta_{\underline{\underline{k}}, \underline{k}^{\prime}+\underline{k}^{\prime \prime}}+a^{e}\left(\underline{k}-\underline{k}^{\prime}-\underline{k}^{\prime \prime}\right)$
gives "selection rules" for the scattering process.
In the case of a perfect lattice it reduces to
$N \delta_{\underline{k}, \underline{k^{\prime}}+\underline{k}^{\prime \prime}}+N \sum_{\underline{g} \neq 0} \delta_{\underline{k}, \underline{k}^{\prime}+\underline{k}^{\prime \prime}+\underline{g}}$
where \underline{g} is a reciprocal lattice vector. The form of $a^{e}(\underline{q})$ is sketched in Pigure 6 for amorphous seleniun (uncorrected for thermal offects). It can be scen that disorder causes the sharp selection rules for a perfect lattice to be relaxed, though \mathbb{N}-processes represented by $\delta_{\underline{k}, \underline{k}^{\prime}+\underline{k}^{\prime \prime}}$ persist.

This relamation means that the observed rise in the thermal conductivity of crystalline solids at low temperatures due to the "Preezing out" of U-processes, will be strongly damped in amorphous solids, though it may be difficult to disentangle this offect from damping due to olastic scattoring. It is possible that interesting

Pigure 6. Tho pair correlation function of the atomic positions in amorphous selenium, taken from the data of Meminger et al (1967).
modilications of the selection rules may be revealed by more precise estimates of (170) for defocts like dislocations. In amorphous solids the presence of partial order, such as the chains of atoms in amorphous selenim, should also be taken into account.

These simple arguments indicate that anharmonic procosses are likely to be as important for disordered solids as they are for ordered ones.
1.4.6. The choice of plane waves.

The pair correlation function $a^{e}\left(\underline{k}-\underline{k}^{\prime}\right)$ is a measure of how two plane waves with wave vectors \underline{K} and \underline{K}^{\prime}
dopart from orthogonality. This is because $N^{-1} \sum_{,} e^{i q} \underline{q} \cdot r_{j}$ is of the ordor $\bar{N}^{\frac{1}{2}} \sqrt{a^{e}(\underline{q})}$ It is sensible to choose Whe plane waves so that they are as nearly orthogonal as possible because tho real normal modes are oxactly orthogonal. An addivional reason for choosing the plane Waves in this way is that the scattoring due to density Iluctuations as predicted by (163) is minimised by making $a^{e}\left(\underline{k}-\underline{k}^{\prime}\right)$ as small as possible.

In practice, however, there are relatively Iew situations where this eriterion can be used to definc a short wavelongth cut-off preciscly. For amorphous and polycrystalline solids $a^{e}(\underline{q})$ depends only on $|\underline{q}|$ and is only of the ordor unity at its maximum value, (see Figure 6). We therefore choose the wave vectors to lie within the Debye sphere. In the case of dislocations in an otherwise perfect lattice there is no obvious way of making a unique choice and for some kinds of lattice defech it is not possible to choose N waves which are all nearly orthogonal. For example, if a single intersuitial atom is present in a lattice $(N-1)$ wave vectors can be chosen which lie within the first Brillouin zone but any additional wave with a propagation vector outside the zone will be nearly "parallel" to one of the waves inside the zone, and in any case the condition that a negative \leq oxists for every positive one camot
we preserved.
In this kind of situation we amend (118) to read
$U_{\alpha}(j)=\frac{1}{N^{\frac{1}{2}}} \sum_{\underline{K}} U_{\alpha}(\underline{k}) e^{i \underline{K} \cdot \underline{r}}+\frac{1}{N^{\frac{1}{2}}} \sum_{s} U_{\alpha}(s) Q_{s}(j)$
Where it is to be moderstood that the sum over k contains N^{\prime} torms $\left(N^{\prime} \leqslant N\right)$ and the sum over S just $\left(N-N^{\prime}\right)$ terms. It can be assumed that the $\phi_{s}(j)$ Iunctions are orthogonal to each othor and also to the plane waves and that a $-\underline{K}$ value exists for every value \underline{k} without loss of gencrality. The conclusions of this chapter will not be affected providing the $\phi_{s}(j)$ are associated with high frequency modes or providing the number $\left(N-N^{\prime}\right)$ is Small so that these modes carry a negligible amount of heat and have a small effect on the transition rates from plane wave states.

The reas on for supposing that the absence of a precise cut-off should not be of critical importance at low tomperatures is that only low frequency modes are excited. so that high frequency modes associated with high K values do not enter the picture in a first-order perturbation theory. If we go to higher orders of perturbation theory they are introduced in two ways. They oceur as the intormediatc states of virtual processes and they also occur in making corrections to (141). We do not know how to circumvent this problem but it should not

De necossary to spocify the high mrequency modes because the low Troquency inchaviour of a solid can be deseribed by continum theory where no cut-ofi is introduced. It Seens likely that in the calculation of say a secondorder matriak element between initial and Pinal states of low froquency, the sum over virtual transitions will De sensitive to the dotails of the high frequency modes.

ADove the Dobye temperature modes of all frequencies are eacited so that the necossity for considering aigh frecuency waves becomes more acute. Mowever in the standard theory of thermal conduction it is often assumed that this is compensated by the fact that high frequency Waves travel with a small group velooity and that thoy tond to be scattered more strongly; thus theix contriDution to the heat Rlow might be small, although this has not beon demonstrated explicitly. Using this idea themal conduction data at high temperatures are often analysed in terms of theories using transition probabilities calculated for low frequency waves, ignoring dispersion but putting a Debye cut-off in the spectrum (e.g. Parrott 1953). This reasoning can be invoked to avoid specifying the precise details of the upper limit in the sum over plane waves.
1.4.7. Conclusion. The simple theory which has been presented can be
compared in spirit with the nearly-frec electron theory of electrons in simple metals (ziman 1964). There are nany amkward features such as the Pact that it is difficult in general to go beyond first order perturbation theory and thereby check the validity of the approximations made. We have to rely on comparisons with cxperiment and intuition. This is not a special Peaturc of this new approach since the same difficulties already exist in the standard theory. The machinery for constructing an improved theory is there but its use is not justificd in general until it is shown that the simplest approach (which is complicated enough) is inadequate. It is romarkable that so much is undorstood about thomal conduction considering the chain of approximations and assumptions which are necessary to obtain a result.
1.5. Biorthonornel Punctions.

Dhe perturbation methods of mathematical phystics are fomace on the properties of orthogonal sots of functions which are usunlly the eigen functions of some simple equation. It is perfectly possible, hovever, for a set of fmetions to be good approximations to the solutions of a given problcm without then being orthogonal, but if the exact solutions are known to be orthogonal then the approximate functions must be nearly orthogonal. If full usc is to be made of this notion it is necessary to introduce a sccond sct of functions which are biorthonormal to the first set. We consider here the possibility of constructing the functions $\Psi_{\underline{k}}(j)$ deitined in tho previous chapter.

The transformation of the kinctic energy part of the Mamiltonion (3) is fomally achieved by writing $P_{\alpha}(j)=\frac{1}{N^{\frac{1}{2}}} \sum_{\underline{k}} P_{\alpha}(\underline{k}) \psi_{\underline{k}}^{*}(j)$
whence
$T=\frac{1}{2 M} \sum_{\underline{k}} \sum_{\underline{k}^{\prime}} P_{\alpha}(\underline{k}) P_{\alpha}\left(-\underline{k}^{\prime}\right) \frac{1}{N} \sum_{j} \Psi_{\underline{k}}^{*}(j) \psi_{-\underline{k}^{\prime}}^{*}(j)$,
the $\psi_{\underline{k}}(j)$ can be expanded in terms of plane waves, namely
$\psi_{k}^{*}(j)=\sum_{\underline{k},} A\left(\underline{k}, \underline{k}^{\prime}\right) e^{-i k^{\prime} \cdot \underline{r}}$
and using the assumed biorthonormal properties it is casily shown that
$\frac{1}{N} \sum_{j} \Psi_{\underline{k}}^{*}(j) \Psi_{-\underline{k}^{\prime}}^{*}(j)=A\left(\underline{\underline{k}}, \underline{k}^{\prime}\right)$
Wherefore attention can be concentrated on determining the amplitudes $A\left(K, k^{\prime}\right)$,

If both sides of (i78) are multiplied by $N^{-1} e^{i k_{i} \cdot r_{j}}$ and summed over j then we obtain

$$
\begin{equation*}
A\left(\underline{k}, \underline{k}_{1}\right)=\delta_{k_{,}, k_{1}}-\sum_{\underline{k}^{\prime}}\left(1-\delta_{\underline{k}^{\prime}, k_{1}}\right) A\left(\underline{k}, \underline{k}^{\prime}\right) \frac{1}{N} \sum_{j}^{i\left(k_{1}-\underline{k}^{\prime}\right) \cdot I_{j}} . \tag{180}
\end{equation*}
$$

To determine the amplitudes it is necessary to invert the matrix
$L_{\underline{E}, \underline{k}^{\prime}}=\delta_{\underline{\underline{k}, \underline{K}^{\prime}}}+\left(1-\delta_{\underline{\underline{k}, \underline{k}^{\prime}}}\right) \frac{1}{N} \sum_{j} e^{i\left(\underline{k},-\underline{k}^{\prime}\right) \cdot I_{1}}$.
Although the non-diagonal clements oi Lk,k'are small compared with the diagonal ones. if the plane waves are nearly orthogonal, $L_{\underline{k}, k^{\prime i}}$ not a "diagonally dominant" matrix, namely (Varga 1902, p.23)

$1>\sum_{k^{\prime} \neq \underline{k}_{1}} N^{-\frac{1}{2}} \sqrt{a^{e}\left(k_{1}-\underline{k}^{\prime}\right)}$.
For example $a^{e}(\underline{q})$ is of the order unity for amorphous
solids so that the right hand side of (183) is oi the order $N^{\frac{1}{2}}$. This means that if (180) is solved by successave approximation beginning with

$$
\begin{equation*}
A(\underline{k}, \underline{k},) \simeq \delta_{\underline{k}, \underline{k}} \tag{184}
\end{equation*}
$$

the resulting series

$$
\begin{align*}
& +N^{-2} \sum_{\substack{k^{\prime}+k \\
+k_{1}}} \sum_{j \prime} \sum_{j^{\prime \prime}} e^{i\left(\underline{k}^{\prime}-\underline{k}\right) \cdot \underline{r}^{\prime}} e^{\left.i\left(\underline{k}_{1}-\underline{k}^{\prime}\right) \cdot \underline{r}\right)^{\prime \prime}} \tag{185}\\
& -N^{-3} \sum_{\substack{k^{\prime} \neq \underline{k}}} \sum_{\substack{k^{\prime \prime} \neq k^{\prime} \\
\neq \underline{K}_{1}}} \sum_{j^{\prime}} \sum_{j^{\prime \prime}} e^{i\left(\underline{k}^{\prime}-\underline{k}\right) \cdot r_{j}} e^{i\left(\underline{k}^{\prime \prime}-\underline{k}^{\prime}\right) \cdot r^{\prime \prime}} e^{i\left(\underline{k}-\underline{k}^{\prime \prime}\right) \cdot \underline{r}_{j \prime \prime \prime}}+\cdots
\end{align*}
$$

is not likely to be convergent. This lack of convergence is not considered to be an objection to the use of (185) in practice, provided it is used in conjunction with perturbation methods for calculating, say, transition probabilities.

The reason for this supposition, which we have not yet proved in General, comes from the theory of scattering of elastic waves in a continua containing density Fluctuations. The kinetic energy can be expressed in the form

$$
\begin{equation*}
T=\frac{1}{2} \sum_{\alpha^{\prime}} \int \frac{P_{\alpha}(r) P_{\alpha}(r)}{P(r)} d r \tag{186}
\end{equation*}
$$

where $P_{\alpha}(r)$ denotes a component of the momentum density at r and $p(r)$ is the mass density. (Ziman, Electrons and Phonons, P.50). The momentum variables $P(I)$ can be emended in plane waves;

$$
\begin{equation*}
P_{\alpha}(\underline{r})=\frac{1}{\sqrt{V}} \sum_{\underline{k}} P_{\alpha}(\underline{k}) e^{-i \underline{r}} \tag{187}
\end{equation*}
$$

Whose bine sm foams over an infinite set of wave vectors Which arc chosen to satisfy periodic boundary conditions. Th this continuum theory the plane waves are orthogonal. With regpoeb to intersection;
$\frac{1}{V} \int e^{i q \cdot r} d \underline{r}=\delta_{q, 0}$.
The kinetic energy is now
$\eta=\frac{1}{2} \sum_{\alpha} \sum_{k} \frac{P_{\alpha}(k) P_{\alpha}(-k)}{\bar{p}}$
$+\frac{1}{2} \sum_{\alpha} \sum_{k} \sum_{k^{\prime}} P_{c \alpha}(\underline{k}) P \rho_{\alpha}\left(-\underline{k}^{\prime}\right) \frac{1}{V} \int\left(\frac{1}{\rho(\underline{r})}-\frac{1}{\rho}\right) e^{i\left(\underline{k}-k^{\prime}\right) \cdot r} \frac{d r}{r}$
Where \bar{p} is the moan density. The inst torn in (189) is analogous to T_{0} in equation (125). 'The creation and destruction operator formalism can now be introduced as an aid, to carrying out perturbation theory, but the interesting thing about (189) is the form of the second tern which is to be regarded as a perturbation. We can.
$\frac{1}{\rho(r)}-\frac{1}{\bar{\rho}}=\frac{\bar{\rho}-\rho(r)}{\bar{\rho} p(r)}=-\frac{1}{\bar{\rho}} \frac{\frac{\Delta \rho(r)}{1+\frac{\Delta}{1}} \frac{\Delta p(r)}{\bar{\rho}}}{\text { Wite }}$
then the Fourier transform of this quantity occurs s the
times in $\wedge^{\text {'th }}$ order term of the perturbation series ion the scattering matrix. If however the scattering of an clastic wave is considered by using the elastic wave equation the terms in the standard perturbation series contain the Fourier transform of $\frac{\Delta \rho(r)}{\rho}$ instead, but the two rinds of series must give the same final result if the pervurination series are carried to infinite order.

They will, however, not be the same to any finite order in perturbation thoory. The fact that the perturbation scrics for the scattering of lattice vaves from an isolope can be arranged either as powers of $\frac{\Delta M}{M}$ or $\frac{\Delta M}{M} /\left(1-\frac{\Delta M}{M}\right)$ has been pointod out by Liftshitz and Kosevich (190u, p.222). ΔM is the differcnce botween the isotope mass and the host atom mass M. The point is that the low Prequency scattoring is given correctly by first order perturbation theory using an expansion in $\frac{\Delta \rho(\sigma)}{\bar{\rho}}$ or $\frac{\Delta M}{M}$ because higher order terms are proportional to higher powers of the frequency.

With this hindsight it is therefore sensible to
wite
$\frac{\frac{\Delta \rho(r)}{\bar{\rho}}}{1+\frac{\Delta \rho(r)}{\bar{\rho}}}=\frac{\Delta \rho(r)}{\bar{\rho}}\left\{1-\frac{\Delta \rho(r)}{\bar{\rho}}+\left(\frac{\Delta \rho(r)}{\bar{p}}\right)^{2} \ldots\right\}$
Which can be a divergent sories in general. We know, however, that if this expansion is combined with perturbation theory the divergent terms must be cancelled. To calculate the scattering using the creation and destruction operators to first order in perturbation theory we therefore write
$\frac{\frac{\Delta P(r)}{\bar{\rho}}}{1+\frac{\Delta P(r)}{\bar{\rho}}} \simeq \frac{\Delta P(r)}{\bar{\rho}}$
and if the local mass density is expressed in terms of
the abom positions as
$\rho(r)=\frac{M}{V} \sum_{j} \delta^{c}(r-r$,
where $\delta^{c}(I)$ is ir course grained delta function (Green 1954), it may be readily ascertained that this gives the same estimate of the scattering due to density Pluctuations as found in equation (163). These are the reasons why the divergent nature of (185) is not considered to be serious. The properties of this series are being considered in more detail at the present time.

2.1. Possible mothods for clectrons in a disordered system of potentials.

In this chapter we wish to indicate where the ideas about phonons should be applicable to the motion of clectrons in disordered (frozen) configuration of potentials. The understanding of electrons is more advanced mainly becanse they can propagate in cmpty space and a frec clectron representation can be used which is independent of the structure. Phe state of the theory of clectrons has recently been reviewed by Mott (1967)

The analogies betwcen electrons and vibrational waves will not be laboured. The differences are more important. We will consider how the method of averaging which we were forecd to adopt for vibrational waves can be of usc in the electron problem.

The equation of motion for a harmonic solid is a difference equation while electrons are desoribed by Schroodinger's difforential equation. They are both Iincar equations however so that methods developed for one problom can often be translated and applied to the other. Phe possibility of interchanging methods becomes particularly obvious when Schrocdinger's equation is transformed to a discrete variable or finite difference
creation.
2.1.1. The bight binding method.

One of the earliest schemes for calculating the band structure of a perfect lattice was the "linear combination of atomic orbitals" method or as it is more simply know, the tight binding method. This method is also useful for thinking about disordered systems because of its simplicity. Tho basic idea of this approach is to approximate the wave functions in a solid by a superposition of atomic wave functions for the isolated atoms. Let $\rho\left(\underline{\rho}\left(r_{j}\right)\right.$ denote an eigen Auction of an isolated potential at r_{j} with an eigen value E_{0} where the level E_{0} is assumed to be widely separated in energy from neighbouring ones. The function $\phi\left(r-r_{j}\right)$ satisfies the equation
$\frac{\hbar^{2}}{2 m} \nabla^{2} \phi\left(r_{-} r_{j}\right)-v\left(r-r_{j}\right) \phi\left(r-r_{j}\right)=E_{0} \phi\left(r-r_{j}\right)$
Where $V\left(\underline{-} \underline{r}_{j}\right)$ is an atomic potential. We now suppose that the total potential for a collection of atoms may De witt en as
$V_{T}\left(r_{-}\right)=\sum_{j} v\left(r-r_{j}\right)+\sum_{j} \Delta v\left(r-r_{j}\right)$
Where $\Delta V\left(I-I_{j}\right)$ is a small correction to $V\left(I-r_{j}\right)$. Sohroedinger's equation is therefore

$$
\begin{equation*}
\frac{\hbar^{2}}{2 m} v^{2} \psi(E)-v_{T}(r) \psi(\Sigma)=E \psi(E) \tag{190}
\end{equation*}
$$

and we can attempt to construct approximate solutions for values of E close to $E_{o b y}$ writing

$$
\psi(\Sigma)=\sum_{j} \alpha_{j} \dot{\phi}\left(I-r_{j}\right)
$$

where the coefficients are to be determined. In the
case of a crystalline solid
$\alpha_{j} \propto e^{i K \cdot I_{j}}$
and the single level of an isolated atom is broadened to form a band which can accommodate just N electrons. If Eris widely separated from neighbouring levels of the isolated atom this band does not overlap other ones. Substituting from (197) into (194) and using (196), we obtain

$$
\begin{align*}
& \sum_{j^{\prime} \neq j^{\prime \prime}} \alpha_{j^{\prime}} \phi\left(r-r_{j}\right) v\left(I-r_{j^{\prime \prime}}\right)+\sum_{j^{\prime}} \sum_{j^{\prime \prime}} \alpha_{j^{\prime}} \phi\left(I-r_{j^{\prime}}\right) \Delta v\left(I-r_{j}\right) \tag{199}\\
& =\left(E-E_{0}\right) \sum_{j^{\prime}} \alpha_{j^{\prime}} \phi\left(r-r_{j^{\prime}}\right)
\end{align*}
$$

Tho essential assumption of the tight binding method, as the nome implies, is that for a low lying level of the isolated atom the wave functions fall off rapidly away from the origin. Thus if we multiply (199) by $\phi^{*}\left(\Gamma-\Sigma_{j}\right)$ and integrate over, "three-centre" integrals like

$$
\begin{equation*}
\int \varrho^{*}\left(=-r_{j}\right) v\left([= r _ { j }) \left(\dot{P}\left(r=r_{j \prime \prime}\right) d r\right.\right. \tag{200}
\end{equation*}
$$

cam bo assumed to be negligible. We may normalise the

$$
\begin{align*}
& \phi\left(\underline{r} \underline{r}_{j}\right) \text { sack that } \\
& \int p^{*}\left(\underline{-} \underline{r}_{j}\right) d\left(\Gamma-r_{j}\right) d r \tag{201}
\end{align*}
$$

The coestioionts αj satisfy the equation

$$
\begin{align*}
& \alpha_{j}\left\{\int()^{* *}\left(\underline{r}-r_{j}\right) \sum_{j \neq j} v\left(\underline{r} \underline{r}_{j}\right) \quad()\left(\underline{-}-\underline{I}_{j}\right) d r\right\} \\
& +\alpha_{j}\left\{\int \dot{b}^{*}\left(\underline{-}-\underline{I}_{j}\right) \sum_{j \prime} \Delta v\left(\underline{r}-r_{j \prime}\right) d\left(r-r_{j}\right) d r\right\} \\
& +\sum_{j \neq j} \alpha_{j},\left\{\int\left(b^{*}\left(r-r_{j}\right) v\left(\underline{r}-r_{j}\right) \dot{\rho}\left(\underline{r} \underline{r}_{j}\right) d r\right\}\right. \\
& +\sum_{j=1} \alpha_{j},\left\{\int \hat{b}^{-x}\left(\underline{r}-\underline{r}_{j}\right) \Delta v\left(\underline{-} \underline{r}_{j \prime}\right) \dot{\phi}\left(\underline{r}-\underline{m}_{j, \prime}\right) d r-\right\} \tag{202}\\
& -1 \sum_{j^{\prime} \neq 1} \alpha_{j},\left\{\int \dot{p}^{*}\left(\underline{r}-\underline{r}_{j}\right) \Delta v\left(\underline{r} \underline{r}_{j}\right) \phi\left(\underline{r} \underline{r}_{j}\right) d r\right\} \\
& =\left(E-E_{0}\right) \alpha_{j}+\left(E_{-E_{0}}\right) \sum_{j^{\prime} \neq j} \alpha_{j},\left\{\int \dot{D}^{*}\left(\underline{r_{-}} \underline{-}_{j}\right) \stackrel{1}{\theta}\left(r_{-} \underline{r}_{j}\right) d r\right\}
\end{align*}
$$

In practice it is also usual to neglect the second term on the right hand side of (202) and some of the terms on tho right hand side may also be neglected in the first instance, $e \cdot g$. by putting $\Delta V(I)=0$. The equation then has the form

$$
\begin{equation*}
\sum_{j^{\prime}} \times\left(\Sigma_{j}-r_{j,}\right) \alpha_{j,}=\left(E-E_{0}\right) \alpha_{j} \tag{203}
\end{equation*}
$$

Which is analogous to the equation of motion for a

Ahrmonic Jabbice, though it is a little simpler becouso the α_{j} are scelurs.
thats kind of oquabion has recently boen investigated by De Jyeker and Phariscart ($3007, a, b$) asting the method 0." ivosuging doseribod in 2.3.2, and the quasi crystallince approwimation. The procedure for improving on the quasi erystalline appromimation suggestod inl.3.2.may be pervicularly useful in the caso of clectrons in liguicis, (troating tho atoms ats a Trozon conitguration) beoanse the smporposition amprozimation may ofton be used to overeome the difficulbies with high pextiole correlation Amovions.
2.1.2. Who Groonian Nothod.

Onc of the moribs of the tight binding mothod is thad it takes into accomb from the start the fact that tho potential wells in a roal solid are very docp, becuase the functions $\left\langle\left(\underline{r} r_{j}\right)\right.$ satisiny the Schrocdinger cgution vithin the deep potontials. Another more general procedure which also achioves this is the Greenian method which can describe eloctrons of all energies. Honever some sacrifice of reality has to be made for this method to be used for linuids and amorphous solids. In the case of a crystalline solid it is possible to approximato to the lattice potential by a lattice of spherical non-overlapping potentials (Itam and Segall,
1901) Waich has como bo 7o mown as a "muficin tin"
potontial. Whis is a groab stmplification wion formaInting medtods for solving Schroodingon's equation and It is usual to assume that tho potontials in a disordorod nolid or liquic aro also of a spherical non-overlapping Minc. Whe emor made by this assumption is Iikely to be Hore serious in this case ($\mathrm{Himan}, 1966$) but whtil the simpilified sittation is bettor monerstood there is 1ittle point in consicering these rofinemonts.

The principles of the Greenian method have been doalt with bricoly in 1.2.2, which deals with the loaded contimum model. This mothod will be described in more detail were because some rather subtle points arise With regard to electrons in disordered systems.
We begin vith Schroodinger's differential equation Tor an infinito system of spherical non-overlapping potontials
$\nabla^{2} Y(r)+\beta^{2} Y(I)=\sum_{j} u\left(r-r_{j}\right) Y(r)$
where α^{2} donotes the energy (in mints of $\frac{2 m}{\hbar^{2}}$) and $U\left(r-r_{j}\right)$ denotos a spherical potential centred at r_{j}. The onergy scale is chosen such that the potential energy in between the wolls is sero. If there are no electron someces on sinks within the system the integral equation cquivalent of (204) is

$$
\begin{equation*}
\psi(s)=\sum_{j} \int G\left(\varepsilon, r^{\prime}\right) u\left(\varepsilon^{\prime}-r_{j}\right) \psi\left(s^{\prime}\right) d s^{\prime} \tag{205}
\end{equation*}
$$

Ware $C\left(\underline{r} r^{\prime}\right)$ is a Creon function sautsiying

$$
\begin{equation*}
\nabla^{2} G\left(r, r^{\prime}\right)+\alpha^{2} C\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right) \tag{200}
\end{equation*}
$$

and the same boundary condition imposed on $Y(r)$.
Mace ore three kinds of solution to (206) for an fn:"inite medium, namely
$G^{+}\left(r, r^{\prime}\right)=-\frac{1}{4 \pi} \frac{e^{i \alpha \mid I-r^{\prime}!}}{\underline{-}-r^{\prime}!}$,
$G\left(r, r^{\prime}\right)=-\frac{1}{4 \pi} \frac{e^{-i \alpha} \mid r-r^{\prime}!}{\mid r r^{\prime}!}$
$G^{s}\left(r, r^{\prime}\right)=-\frac{1}{4 \pi} \frac{\cos \alpha!r r^{\prime}!}{1 I-r^{\prime}!}$.
Then α is purely real (energy positive), $G^{+}\left(r_{,} r^{\prime}\right)$ corresponds to an outgoing flux of particles, $G\left(r, r^{\prime}\right)$ to an incoming mun and $G^{S}\left(\Gamma, r^{\prime}\right)$ to a zero flux. Since wo have stipulated that there are no sources on sinks in the system $G^{s}\left(I, r^{\prime}\right)$ mast be the correct choice for positive energies. When b is purely imaginary (energy negative) these three Green functions give rise to a zero slum but if we examine the in behaviour for large values of $\left|\underline{E} \underline{I}^{\prime}\right|$ both $G^{-}\left(\underline{I}, r^{\prime}\right)$ and $G^{s}\left(r, r^{\prime}\right)$ diverge which would result in the wave function $\mathcal{Y}(\underline{r})$ being nonnormalisable so that $G^{+}\left(r, r^{\prime}\right)$ is the correct choice for negative energies since $i t$ tends to zero as $\left|\underline{r} \underline{I}^{\prime}\right|$ tends to infinity.

Who wave fraction within the fth potential may be expressed in tho general form

where $R_{e}(p)$ in a solution of the radial Schrodinger equation for a single potential, corresponding to an onorgy $E=\alpha^{2}$. Tho quantity [QejJe] is included for convenience to tidy up the subsequent algebra and is defined by
$\left[R_{e}, j_{e}\right]=R\left(R_{s}\right) \frac{d}{d R_{s}} j_{e}\left(k R_{s}\right)-j_{e}\left(\phi R_{s}\right) \frac{d}{d R_{s}} R_{e}\left(R_{s}\right)$,
R_{s} being the radius of the potential wells and $j_{e}\left(b R_{s}\right)$ is a spherical Dosser function.

The procedure for obtaining an equation for the coefinicionts β_{L}^{J} follows the pattern described for the loaded convimunh. Our interest lies in the form of the equations so that only the essential stops will be sketched. First a condition analogous to (7) can De written down in which the Green function for the Laplace operator is replaced by $G^{S}\left(r, r^{\prime}\right)$ or $G^{+}\left(r, r^{\prime}\right)$ depending on whether the energy is positive or negative, and $U_{j}(\rho)$ is replaced by $Y_{j}(\rho)$. Substitution Prom (210) and use of standard expansions for the Green function (Phariscan and tim, 1963) in terms of spherical Marmonies and Bessel Punctions leads to the equations

Ye is the l th phase shift for a spherical potential at to energy E, dopinod by
$\cot \eta_{e}=\frac{\mathscr{R}_{e}\left(R_{s}\right) \frac{d}{d R_{s}} n_{e}\left(\alpha R_{s}\right)-n_{e}\left(\alpha R_{s}\right) \frac{d}{d R_{s}} R_{e}\left(R_{s}\right)}{R_{e}\left(R_{s}\right) \frac{d}{d R_{s}} j_{e}\left(\alpha R_{s}\right)-j e\left(\alpha R_{s}\right) \frac{d}{d R_{s}} R_{e}\left(R_{s}\right)}=\frac{\left[R_{e}, n_{e}\right]}{\left[R_{e}, j e\right]}$
where $\cap_{\rho}\left(b R_{s}\right)$ is a spherical Nomamn function. The matrixos $B_{L L^{\prime}}^{\prime}\left(\alpha, r_{j j^{\prime}}\right)$ and $B\left(k, r_{j J^{\prime}}\right)$ are defined by

$$
\begin{equation*}
B_{L L^{\prime}}^{\prime}\left(\alpha, r_{j J^{\prime}}\right)=4 \pi \sum_{L^{\prime \prime}} C_{L^{\prime}}^{L^{\prime \prime}} i^{-e^{\prime \prime}} \alpha \cap_{e}\left(\alpha\left|r_{j)^{\prime}}\right|\right) Y_{L^{\prime \prime}}\left(\underline{r}_{j \prime^{\prime}}\right), \tag{215}
\end{equation*}
$$

and

he $\left(\alpha \mid r_{j j}, l^{\prime}\right) \operatorname{sing}$ a spherical Tanked function and the cocrificients $C_{\text {LL }}^{L \prime \prime}$ are defined in equation (14).

As pointed out before these equations differ slightly in form from the equation of motion for a harmonic solid because the matrix operator is a function of the energy. This does not load to any special diffioulties, except that (212) and (213) cannot be solved explicitly and some adjustments are necessary to derive
oznuossions AOM the cionsity of states mrom the solutions of intomogoncons fomm of (212) anc (213). Bcionc going on vo discuss tow this moprosontation of Schroedinger's Grmation mey be msod to calculabe tho density of statos in disonderod syston it is desirable to digress a
 from unose considered by Pueniscen and Eiman (1963). Fhese authors used the Grecn function $G^{+}\left(r_{-,}\right.$r)woth son positive and nogetive cnorgies, but although this seans
 Hzuithul procodurc. Whis Joeds to a modification whereby equation (212) is smpposed to dold rom bobin negative and posivive cnengies. This has no efiect in the case of a porfect Iabtice but Ior a disorderod system it has guite a pronomad exnect.

In Lise equation

$$
\begin{equation*}
\sum_{L^{\prime}} \sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(\alpha, r_{j j^{\prime}}\right) \beta_{L^{\prime}}^{j!}+\alpha\left(\cot 7 e^{-i}\right) \beta_{L}^{j}=0 \tag{217}
\end{equation*}
$$

is avoraged as described in $2 \cdot 3 \cdot 3$, then we obtain

$$
\begin{align*}
& \left.(N-1) \sum_{L} \int B_{L}\left(k, r_{1}-r_{2}\right) p\left(r_{2} \mid r_{1}\right)<\beta_{L_{1}}\left(\underline{r}_{2} \mid r_{1}\right)\right\rangle d r_{2} \tag{218}\\
& +\alpha\left(\cot \eta_{e}-i\right)\left\langle B_{L}\left(r_{1}\right)\right\rangle=0
\end{align*}
$$

Whore the evorage coonficionts aro dorinod in mocisoly the some way as proviously and $P\left(r_{2} \mid r_{1}\right)$ is the poir disumibution of atoms. If the quasi-crystellinc approximation is involcoe ;
$\left\langle\beta_{L}\left(r_{2} \mid r_{1}\right)\right\rangle \simeq\left\langle\beta_{L}\left(r_{2}\right)\right\rangle$
Whan it is found that (218) coes not admit a solubion of tiog Iorm
$\left\langle\beta_{L}\left(\underline{r}_{1}\right)\right\rangle=\left\langle\beta_{L}\right\rangle e^{i \underline{K} \cdot \Gamma_{1}}$
i." K is a purely roal wave vector. On tire other hand in K is allowed to be complox the integral in (218) diverges at the upper limit of integration. Mais must be contrasted with the behaviour for negutive enorgies When only waves witt real propagation vectors occur. This is also the casc whon equation (2/2) is averaged. Aowevor if the divergent uppor Iimit to the integration over Γ_{2} is igmored the imaginary part of the wave vector can be eatractod oxplicithy in the limit when the potenwial wells are woak soatterers, i.e. when $\sin h_{\mathrm{p}}$ is small and t'is imaginary part or attonuation coerficient is proportional to the total cross section per unit volume Lor an assembly of seatterers. (Ziman 1966). Whe explamation of why this apparently hazardous procodure gives extremely reasonable results lies in the earlion worls of Lam $(1951,1952)$ and Waterman and Nrueli (1901). The Iatter two authors considered the
muoblon on a planc wave normelly incident on a disoriorod Syston of potontials which aro contined to a hath space as copicted in Pisume?

Pigure 7

The enorgy of the incident electron is by dotinition groater or equal to noro and is equal to K^{2}. Thero is nov a sompce of electrons present so that equation (205) is amonded to read
$\left.Y(r)=e^{i k z}+\int G^{+}(r) r^{\prime}\right) \sum_{j} u\left(r_{-}^{\prime}-r_{j}\right) \psi\left(r^{\prime}\right) d r^{\prime}$.
Nois scattering problen can also be rommlated in terms of the amplitudes of the spherical solutions within cach potontial. Adapting Vaterman and Truell's (1961) results to tise notation of this chapter we have
$\sum_{L^{\prime}} \sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(K_{,} r_{j j^{\prime}}\right) \beta_{L^{\prime}}^{j^{\prime}}+K\left(\cot \eta e^{-i}\right) \beta_{L}^{j}=\frac{4 \pi}{R_{s}^{2}} y_{L}(0) e^{i K Z_{j}}$

Whore the matase shilite wro to be ovaluatod for an encrgy $E=K^{2}$ i.e. at the energy of the ineident plane wave. Whioramo amd Frncll showed what if this equation is averaged and tac gucsi-crystalline approximation made, the inhomogencous terns are cancellod by the upper limit of the invegral waici occurs when the first torm is averaged. This is interpreted as cancellation of the ineiciont wave within the somi-infinite medium by waves produced ab the interface.

The reason why solutions to the averaged equation of motion for a harmonic solid, and the averaged forms on. ecuations (212) and (213), fasi to give attentated planc wavos, was stated in $1 \cdot 3 \cdot 1$, to be due to the pact that the equations do not contain any information about the boundery conditions. Equation (218) does contain this iniomation but it is fair to say that this is a 2ittle Cortuitous sinco it is dorived starting from the "mrong" equation (217) instead of (222).

The question may be asked: Why is it not possible to set up the same kind of problem for vibrational naves and electrons with negative energies? In the case of vibrational waves the answer is that we do not have a suitable representation amalogous to free electron waves while for electrons in the negative energy region, plane

Waves will not mopagate in tho space $z<0$
Anton this digression wo tam to the problem of calculating thc density of electronic states nesting the Greondian thooxg. It is convenient to mite equations (212) and (213) as

$$
\begin{align*}
& \frac{1}{\lambda_{e}(\alpha)} \sum_{L} \sum_{j \neq j} \tilde{B}\left(k, r_{j j^{\prime}}\right) \beta_{L^{\prime}}^{j!}+\alpha \beta_{L}^{j}=0 \tag{225}\\
& \text { Whore } \\
& \left.\widetilde{B}_{L L^{\prime}}^{\left(\mu_{j}, r_{j}\right)}\right)=\vec{B}_{L^{\prime}}^{\prime}\left(\mu_{,}, r_{j j^{\prime}}\right)(E>0) ; \lambda_{e^{\prime}}^{(k)}=\cot \eta e \quad(E>0) . \\
& =\sum_{L L}\left(k, r_{j \prime^{\prime}}\right)(E<0) ; \quad=\cot { }_{L} \sum_{e}-i(E<0) \text {. }
\end{align*}
$$

We may formally define a Green function which is the solution to
and try to express the density of states in terns of this function. The standard procedure outlined in 1.3 .2 is not directly applicable here for the following reason: If $\beta_{L}^{s . j}$ demotes the $s^{\prime} t h$ solution to equation (223) it may readily be shown by standard means (ecg. Friedman p.199.) that it is not orthogonal to a solution $\beta^{s^{\prime}} L^{\prime}$ commesponding to a different energy, namely $\sum_{L} \sum_{j} \beta_{L}^{*} s_{j}^{\prime} \beta_{L} S_{j} \neq \delta_{S S^{\prime}}$.
Different solutions corresponding to the same energy can De assumed orthogonal since in principle if they
are nob the Somite procedure can bo used bo construct a sect of solutions which are orthogonal. This moans What tic Green fimetion cannot be constructed out of the $\beta^{s j}$ by moans of the bilinear expansion (Lanozos p. 291) and hone the method of Edwards (1061) cannot be used directly to derive the density of states in worms of the Green function.

This situation can be remedied however by means of a very simple device. Suppose we want the Green function for a particular energy $E_{0}=\alpha_{0}^{2}$ we can write down a fictitious homogoncous equation

$$
\begin{equation*}
\frac{1}{\lambda_{e}\left(\alpha_{0}\right)} \sum_{L} \sum_{j^{\prime} \neq j} \widetilde{B}_{L L^{\prime}}\left(\alpha_{0} r_{j \prime}\right) \alpha_{L^{\prime}}^{j^{\prime}}+\alpha \alpha_{L}^{j}=0 \tag{227}
\end{equation*}
$$

Which differs mon (223) because k which occurs in the matrix in (223) is replaced by b_{0} We now assume that a sot of solutions to (227) exist which will bo called $\alpha_{L}^{s j}$ and these solutions are orthogonal to each other. The Green function may therefore be written as

$$
\begin{equation*}
r_{L L_{0}}^{ \pm} j j_{0}=\sum_{s} \frac{\alpha_{L_{0}}^{*} j_{0} \alpha_{L}^{s j}}{\alpha_{0}-\alpha_{s} \pm \epsilon} \tag{228}
\end{equation*}
$$

Where \in is a positive infinitesimal to indicate how the integration around the pole should be carried out. The solutions $\alpha_{L}^{5 j}$ will only be equal to the $\beta_{L}^{s j}$ when they both correspond to an energy E_{0}

Using the theorem
$\int \frac{f(x)}{x \pm \epsilon} d x \equiv P \int \frac{f(x)}{x} d x \mp i \pi \int \delta(x) f(x) d x$
wo have
gmaginary part $\sum_{L} \sum_{j} C_{j j}^{ \pm}=\mp 2 i \pi \sum_{s} \delta\left(E_{0}-E_{S}\right) \alpha_{0}$
Whore the values of E_{s} change as E_{0} is altered. Dut We lmow that whon $E_{S}=E_{0}$ this corresponds to an energy lovel of the "correct" equation (223) so that the truc densiby of states is given by

$$
\begin{equation*}
n(E)=\frac{1}{4 \pi i \alpha} \sum_{L} \sum_{j}\left\{C_{L L}^{-j j}-G_{L L}^{+j j}\right\} \tag{231}
\end{equation*}
$$

because it is on I_{y} when $E_{5}=E_{0}$ that the right hand side of (230) is non-zero. The methods discussed in 1.3.2. for constructing average Grecn functions can thereforc also be used to calculate the average density of states using the Greenian equations.

Pimally it should be pointed out that a qualitative andorstanding of the properties of electrons can be achicved by averaging Schroedinger's differential equation. It is hovover difPicult to take into accomet the pact that the potential wells in a real solid are very deep by this means although for a hypothotical model with very weak potontials it is usciul as an aid to understanding.
A.:. Whe Groonion and A.P.V. mothods for calculating the electronic band structure of a perfeet solid and tho scattoring of a Dloch wave from an impurity potential.

In the casc of a perfect latbice of identical potenbials Dloch's theorem may be invokod so that the cooriicionts $\beta_{L} j$ which occur in (212) and (213) may be written as
$\beta_{L}^{j}=\beta_{L} e^{i \underline{K} \cdot r_{j}}$
where K is a real wave vector for the stationary states of an infinite system or when periodic boundary conditions are imposed. Despite the remarks made in 2.1.2. about the correct choice of the Greon function in formulating the equations we will assume that the form
$\sum_{L^{\prime}} \sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(\alpha,-j j^{\prime}\right) \beta_{L^{\prime}}^{j^{\prime}}+\alpha\left(\cot \eta^{-i}\right) \beta_{L}^{j}=0$
is correct for both megative and positive energies. It
is a curious fact that for positive energies it does not matter whether we use $C^{s}\left(r, r^{\prime}\right)$ or $G^{+}\left(r, r^{\prime}\right)$ when considering a perfect lattice. The reason is that owing to the Aigh symmetry in a lattice there is zoro not current out of the systom, the currents which arise from using $G^{+}\left(f, f^{\prime}\right)$ cancel out exactly. Substituting from (232) into (233) we then have to solve

$$
\begin{equation*}
\sum_{L^{\prime}} \mathcal{V}_{L L^{\prime}}(\alpha, k) \beta_{L^{\prime}}+k\left(\cot \eta_{e}-i\right) \beta_{L}=0 \tag{234}
\end{equation*}
$$

Where

$$
\begin{equation*}
\mathcal{J}_{L L}(\alpha, k)=\sum_{j^{\prime} \neq j} B\left(\alpha, r_{L j}\right) e^{\left.-i \underline{k} \cdot r_{j}\right)^{\prime}} \tag{235}
\end{equation*}
$$

and is usaally callod a structure constant, the point being that it is independent of the nature of the potontial wolls which make up the solid. Onc of the chiof merits of this method is that once the structure constants are calculated for a particular kind of latbice the mumerical work involved in solving (234) is conlinod to the calculation of the phase shitts and the actual solving of the simultaneous equations.

The use of computers make it possible to calculate the most complicated bend structure from (234) as shom for eatample by tho calculations of Segall (1962) and recently by Ballinger and Marshall (19,7) for coppor. Nowever it is opten desirable to work with equations Which show the physies of a situation in the clearest perspective. Thus for example equation (234) is particularly suitable for ciscussing the origin of tightly bound bands of elcotrons, where the structure constants can be estimated by including just a fov values of j ' close to j wceause the $B_{L L}\left(k, r_{j \prime}\right)$ diminish rapidly with
increasing $\left|r,-\underline{r}_{j}\right|$. In the ease on tho conduction band of simple motel $\sin 3 \ell$ can bo small and $\cot \eta e$ whoreTome becomes large which corresponds to the potentials Doting work scattering enures. Tho energy hovels ane Given by the condition
$\operatorname{det}\left|B_{L L^{\prime}}(\alpha, k)+\alpha\left(\cot _{\eta_{e}}-i\right) \delta_{L L^{\prime}}\right|=0$
and it was pointed out by kiman (1965) that the singular Dohaviour of $\cot ^{-3}$ makes it amkmand to extract the essential properties of conduction electrons from this determinant if we wish to oznmine why the conduction electrons behave as tiny co, namely like electrons in a system of weak potentials.

Simon showed what the determinantal equation (236) could be transformed to an equivalent reciprocal lattice representation
$\operatorname{det}\left|\Gamma_{\underset{\sim}{g} g},\left(|\underline{k}+\underline{g}|^{2}-k^{2}\right) \delta_{\underline{g} g^{\prime}}\right|=0$
whore

$$
\Gamma_{\underline{g} g^{\prime}}=-\frac{4 \pi N}{R} \sum_{l}(2 l+1) \tan 3_{e}^{\prime} \frac{j_{e}^{(}(\underline{k}+\underline{g} \mid R) j_{e}^{\left(\left|K+g^{\prime}\right| R^{\prime}\right)}}{j_{e}(\alpha R) j_{e}\left(\mu R^{\prime}\right)} P_{e}\left(\cos \theta_{\underline{g} g^{\prime}}{ }^{\prime}\right)
$$

In $(237) \underline{9}$ is a reciprocal lattice vector, N is the number of atoms per mitt volume, R and R^{\prime} lie with a unit cell of the lattice where the coordinate origin is at the centre of the cell mut are ownerwise arbitrary, $P_{\ell}\left(\cos \theta_{g g 1}\right)$
is a Legenciro polynomial, $\theta_{g} g g^{\prime}$ is the anglo between \underline{g} and $g^{\prime} \mathrm{and}$
$\cot \eta_{e}^{\prime}=\cot \eta_{e}-\frac{n_{e}\left(\alpha R^{\prime}\right)}{j_{e}\left(\alpha R^{\prime}\right)}$
whore $\cap_{e}\left(\nless R^{\prime}\right)$ is spherical IVoumann function. The important point about this new rom is that when \sin he becomes small the matrix ${\underset{\sim}{g}}_{\underset{\sim}{g}}^{\underset{\sim}{g}}$, also becomes small Tether than singular. This result will now be rederived by a less abstract method than that used by RAmon which indicates its significance more clearly. This derivation is however confined to the special choice $R=R^{\prime}=R_{s}$.

First we consider the form of the structure constunts, which can be defined by (Mom and Rostoker 1954) $N \sum_{\underline{g}} \frac{e^{i(\underline{k}+\underline{g}) \cdot\left(\rho-\rho^{\prime}\right)}}{|\underline{K}+\underline{g}|^{2}-\alpha^{2}}-\frac{1}{4 \pi} \frac{e^{i \alpha\left|\rho-\rho^{\prime}\right|}}{\left|\rho-\rho^{\prime}\right|}$
$=-\sum_{L} \sum_{L} i^{\ell-e^{\prime}} j_{L L}(\alpha, k) j_{e}(k \rho) j_{e^{\prime}}\left(k p^{\prime}\right) y_{L}(\rho) y_{L^{\prime}}\left(\rho^{\prime}\right)$
where ρ and ρ^{\prime} lie with a unit coll of the lattice, the coordinate origin being at the centre of the cell. For convenience we assume that $P<\rho^{\prime}$, then using the standard formulae

$$
\begin{align*}
& \left.-\frac{1}{4 \pi} e^{i|\alpha| \underline{p}-p^{\prime} \mid} \right\rvert\, \underline{p-p^{\prime} \mid}=-i \alpha \sum_{L} j_{e}(\alpha p) h_{e\left(\alpha p^{\prime}\right) y_{L}(\rho) y_{L}\left(p^{\prime}\right)}^{e^{i \underline{q} \cdot \underline{R}}=4 \pi \sum_{L} i^{e} j_{e}(q R) y_{L}(R) y_{L}(\underline{q})} \tag{24.1}
\end{align*}
$$

the 10 Nt hand side of (240) may be arranged as

$$
\begin{aligned}
& N \sum_{g} \frac{1}{|k+g|^{2}-k^{2} L} \sum_{L^{\prime}}(4-\pi)^{2} i^{e-e^{\prime}} j_{\left.e^{(1 k+g} \mid \rho\right)} j_{e^{\prime}\left(k+g \mid \rho^{\prime}\right)}^{y_{L}(\rho) y_{L}\left(\rho^{\prime}\right)} \\
& \times \mathcal{Y}_{L}(\underline{k}+\underline{g}) y_{L}(k+g) \\
& -i k \sum_{L} j_{e}(\alpha \rho) h_{e}\left(k \rho^{\prime}\right) y_{L}(\rho-) y_{L}\left(\rho_{-}^{\prime}\right) .
\end{aligned}
$$

$$
(243)
$$

mo $B_{L L}(k, k)$ may now bo written down using the orthogonality properties of the spherical harmonics if ρ and ρ^{\prime} are less than or equal to the inscribed sphere radius, i.e. the radius of the largest sphere which lies complotely within the unit cell. In practice this is the same as tho radius of the spherical potiontials R_{s}. For particular values of ρ and ρ^{\prime} say R and R^{\prime} we then have

$$
\begin{equation*}
B_{L L}(k, \underline{k})=-N \sum_{\underline{g}} \frac{(\underline{4})^{2}}{|\underline{k}+\underline{g}|^{2}-\alpha^{2}} \frac{j_{e}(|\underline{k}+\underline{g}| R) j_{e^{\prime}}\left(\underline{k}+\underline{g} \mid R^{\prime}\right)}{j_{e}(k R) j_{e^{(}}\left(\alpha R^{\prime}\right)} y_{\underline{L}}(\underline{k}+\underline{g}) y_{L^{\prime}}(\underline{k}+\underline{g}) \tag{244}
\end{equation*}
$$

$$
+i \alpha \frac{h_{e}\left(\alpha R^{\prime}\right)}{j_{e}\left(\alpha R^{\prime}\right)} \delta_{L L^{\prime}}
$$

This formula branks down if cither $j_{e}(K R)$ or $j_{e}\left(K R^{\prime}\right)$
is zero making the matrix indeterminate, but a more

General form is obtained by differentiating both sides 0: (240) With respect to ρ and ρ^{\prime} an arbitrary number of times. Titis gives
$\mathcal{U}_{L L^{\prime}}(\alpha, k)$

$+\mathcal{H} \frac{h^{s^{\prime}}\left(\alpha R^{\prime}\right)}{j e^{s^{\prime}\left(\alpha R^{\prime}\right)}} \delta_{L L^{\prime}}$
$j_{e}^{s}(a x)=\frac{d}{d x} j_{e}(a x), h_{e}^{s}(a x)=\frac{d}{d x} h_{e}(a x)$.
However for the present purpose it will be assumed that (244) presents no difficulties.

Who nowt step is to expand tho Bloch wave $\mathcal{Y}_{\underline{K}}(\rho)$ in
plane waves, namely
$\mathcal{V}_{\underline{k}}\left(\rho_{-}\right)=\sum_{\underline{g}} \alpha_{\underline{k}+\underline{g}} e^{i(\underline{k}+\underline{g}) \cdot \rho_{-}}$
This expansion is valid for all values of f but here we only require this expansion to converge to the correct answer in a restricted region of space, namely the region where the potential is zero in between the mirin tin potentials. The cocficicionts are not mique For this reason, (ham and Segall 1901). These authors have shown explicitly that only a lev coefficients are necessary to represent $\mathcal{Y}_{\underline{K}}(p)$. The $\beta_{L}(\underline{K})$ may be expressed in terms of the $\alpha_{\underline{k}+g}$ by writing

$$
\begin{align*}
& \left\{\sum_{\underline{g}} \alpha_{\underline{k}+\underline{g}} e^{i(\underline{k}+\underline{g}) \cdot \rho_{-}}\right\}_{\rho=R_{s}} \tag{248}\\
= & \left\{\sum_{L} \frac{i l}{\left[R_{e}, j_{l}\right]}(\underline{K})\right. \\
R_{e}(\rho) Y_{L}(\rho) & S_{\rho}=R_{S} .
\end{align*}
$$

Assuming that tho Ametrions $Q_{f}(\rho)$ do not vanish at $\rho=R_{s}$ vo find

$$
\begin{align*}
& =\sum_{\underline{g}} \beta_{L_{\underline{g}}} \alpha_{\underline{k}+\underline{g}} \text {. } \tag{249}
\end{align*}
$$

Altematively, if the denominator in (249) goes through
a zero the procedure of differentiating both sides of (248) till a Finite answer is obtained can be adopted but this consideration will again be set aside.

If we now take (249) and (244) in the special case when $R=R^{\prime}=R_{s}$ and note that

$$
\begin{align*}
& {\left[j_{e}, n_{e}\right]=\frac{1}{\alpha<R_{s}^{2}},} \tag{250}\\
& \tan \eta_{e}^{\prime}=\left\{\cot \eta_{e}-\frac{n_{e}\left(\alpha R_{s}\right)}{j_{e}\left(\alpha R_{s}\right)}\right\}^{-1}=b<R_{s}^{2}\left[R_{e}, j_{e}\right] \frac{j_{e}\left(1 \alpha R_{s}\right)}{R_{e}\left(R_{s}\right)},
\end{align*}
$$

substitution into (233) and a little rearrangement gives

$$
\begin{align*}
& F_{L \underline{g}}=4 \pi N^{\frac{1}{2}} Y_{L}(\underline{k}+\underline{g}) j_{p}\left(|\underline{k}+\underline{g}| R_{s}\right) / j_{e}\left(\alpha R_{s}\right), \tag{252}\\
& p(\underline{g})=|\underline{k}+\underline{g}|^{2}-k^{2} . \tag{253}
\end{align*}
$$

Condition (251) can be satisfiod for all values of L if

$$
\begin{equation*}
\sum_{g^{\prime}} \alpha_{\underline{k}+g^{\prime}}\left\{\sum_{L^{\prime}}-\frac{\tan 3 \rho^{\prime}}{\alpha} F_{L_{g}} F_{L_{g^{\prime}}}+\rho(\underline{g}) \delta_{\underline{g} g^{\prime}}\right\}=0 \tag{254}
\end{equation*}
$$

and using tho addition formula

$$
\begin{equation*}
\left.\sum_{m=-l}^{e} y_{L}(\underline{k}+\underline{g}) y_{L}\left(\underline{k}+\underline{g}^{\prime}\right)=P e^{\left(\cos \theta_{\underline{g}} \underline{g}^{\prime}\right.}\right) \tag{255}
\end{equation*}
$$

we can make the identification

$$
\begin{equation*}
\left\{\Gamma_{\underline{g} \underline{g}^{\prime}}\right\}_{R=R^{\prime}=R_{s}}=\sum_{L^{\prime}} \frac{-\tan 3^{\prime} l^{\prime}}{\alpha} F_{L_{\underline{g}}^{\prime}} F_{L^{\prime} \underline{g}^{\prime}} \tag{256}
\end{equation*}
$$

The matrix $\Gamma_{\underline{g}} \underline{g}^{\prime}$ can bo called an "effective matrix element" for the following reason. Suppose we use the expansion (247) in plano wave to represent the Bloch function in all regions of space, ic.

$$
\begin{equation*}
\mathcal{V}_{\underline{k}}(\rho)=\sum_{\underline{g}} \gamma_{\underline{k}+\underline{g}} e^{i(\underline{k}+\underline{g}) \cdot \rho} \tag{257}
\end{equation*}
$$

then the coefficients $\gamma_{\underline{k}+g}$ satisfy the equation

$$
\begin{equation*}
\sum_{\underline{g}} \gamma_{\underline{k}+\underline{g}^{\prime}}\left\{V_{\underline{g} \underline{g}^{\prime}}+p(\underline{g}) \delta_{\underline{g}} \underline{g}^{\prime}\right\}=0 \tag{258}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{\underline{g} \underline{g}}=N \int u(p) e^{i\left(\underline{g}-\underline{g}^{\prime}\right) \cdot \rho} d \rho_{-} \tag{259}
\end{equation*}
$$

$U(\rho)$ being a single spherical potential. This method oil calculating band structures is hopeless in mactice because so many of the $\gamma_{\underline{K}+\underline{g}}$ are nodded to represent the wave Function. The potential wells are so deep that the wave function oscillates rapidly hoar the contra of tho. In contrast wo expect that only a Low of the $\alpha_{\underline{k}+\underline{g}}$ are hooded in equation (254) i.c. 「 $\underline{g}_{\underline{g}}$ i seems to be something like the matrix element of a wok potentdial. This is borneo out by considering a situation where $\left.\left|\alpha^{2} \simeq\right| \underline{k}\right|^{2}$ and the coepricient $\alpha_{\underline{k}}$ is assumed to be large compared with the other coefficients (Ziman 1965) then

$$
\begin{equation*}
b^{2} \simeq|k|^{2}+\Gamma_{0} \tag{260}
\end{equation*}
$$

Where

$$
\begin{equation*}
\Gamma_{00} \simeq-\frac{4 \pi N}{\alpha} \sum_{l}(2 l+1) \tan 3^{\prime} l \tag{201}
\end{equation*}
$$

Tho significance of this result is found by examining
the exact transition probability for scattering of a plane wave with wave vector k to a state \underline{K}^{\prime}, due to a single spherical potential. The standard result of phase shift analysis is

$$
\begin{equation*}
P \frac{\underline{k}^{\prime}}{\underline{k}}=\frac{2 \pi}{\hbar} \delta\left(|\underline{k}|^{2}-\left|\underline{k^{\prime}}\right|^{2}\right)\left|-\frac{4 \pi}{\alpha} \sum_{l}(2 e+1) \sin \eta e^{i \eta e} p_{l}\left(\cos \theta_{\underline{k} k^{\prime}}\right)\right|^{2} \tag{262}
\end{equation*}
$$

and the quantity inside the modulus sign can be thought of an as cfloctive matrix element of the potential for the scattering problem. It is properly called the T matrix element and will be denoted by $T_{\underline{k} \underline{k}^{\prime}}$ In the Imit When $\sin y_{1}$ is small (ie. weak scattering) we have $\Gamma_{00} \simeq N T_{\underline{k} \underline{K}}$.

This connection with scattering theory is importthe ant because it directs attention to primary role played by the phase shifts in determining the band structure. The more general form for the $\prod_{\underline{g}}$ gin (237) does not seem to be readily interpretable but the arbitrariness in the choice of R and R^{\prime} is not of great moment. It is a general feature of the effective or pseudo matrix element argument that many different choices can be made which will give the correct eigen values of the Schrodinger equation (e.g. Lloyd 1905). Another example of this arbitrariness is that
$\left\{\cot z_{e}-\frac{n_{e}\left(\alpha R_{s}\right)}{j_{e}\left(\beta R_{s}\right)}\right\}^{-1} \frac{j_{e}\left(\left|k+g_{-}\right| R_{s}\right) j_{e}\left(\left|k+g^{\prime}\right| R_{s}\right)}{j_{e}^{2}\left(\alpha R_{s}\right)}$
occurring in $\int_{\underline{g} \underline{g}^{\prime}}$ can be replaced by
$\left\{\cot \eta_{\rho}-\frac{n_{e}^{\prime}\left(\alpha R_{s}\right)}{j_{e}^{\prime}\left(\alpha R_{s}\right)}\right\}^{-1} \frac{j_{e}^{\prime}\left(|\underline{k}+\underline{g}| R_{s}\right) j_{e}^{\prime}\left(\left|\underline{k}+g^{\prime}\right| R_{s}\right)}{j_{e}^{2}\left(\alpha R_{s}\right)}$
whenever it is convenient to do so to avoid singularities.

This may easily be shown using (245) and the comments below equation (249). This singular land on behaviour should not he serious in practice however since the equations (254) arc closely related to those for motion method of bund calculation, namely the "augmented plane Wave method" (Slater 1937, 1945) which has been used succossixully many times.

The basis of tho A.P.... method is to expand a Bloch W: vo withinasingle unit cell. in tho form

$$
v_{\underline{k}}\left(\rho_{-}\right)=\sum_{\underline{g}} \alpha_{\underline{k}+g} \oint_{\underline{k}+\underline{g}}\left(\rho_{-}\right)
$$

whore the A.P.V's, $\underset{(\underline{K+g}(\underline{P})}{ }$ are defined by

$$
\begin{equation*}
\oint_{\underline{k+g}}^{\prime}(p)=H\left(p-R_{s}\right) e^{i(\underline{k}+\underline{g}) \cdot \rho_{-}}+H\left(R_{s} p\right) \sum_{L} \frac{i^{\ell} \beta_{L} q_{e}(\rho) y_{L}(p)}{\left[Q_{l}, j_{l}\right]} \tag{267}
\end{equation*}
$$

$H(x)$ being Moavisico's mit function and the $\beta_{L g}$ arc defined by equation(249)The A.P.W's are continuous but have a discontinuous derivative at $\rho=R_{s}$. The conventional equation for the $\alpha_{\underline{k}+g}$ is obtained by substituting from (266) into tho variational sommula which gives the energy of a D lock state namely

$$
\begin{equation*}
\delta[E]=\delta\left[\frac{\int U^{*}(r) H(r) d r}{\int U^{*}(r) U(r) d r}\right] \tag{268}
\end{equation*}
$$

By this means the form

$$
\begin{equation*}
\sum_{\underline{g},} \alpha_{\underline{k}+\underline{q}}\left\{\Gamma_{\underline{\underline{g}} \underline{1}}^{\prime}+\rho(\underline{g}) \delta_{\underline{\underline{g}}}\right\}=0 \tag{209}
\end{equation*}
$$

is obtained where

$$
\begin{align*}
& \Gamma_{\underline{g} \underline{g}^{\prime}}^{\prime}=4 \pi R_{s}^{2} N\left[-\left\{(\underline{k}+\underline{\underline{g}}) \cdot\left(\underline{k}+\underline{g}^{\prime}\right)-k^{2}\right\} j_{1}\left(\left|\underline{\underline{g}}-\underline{g}^{\prime}\right| R_{s}\right)\right. \tag{270}\\
& +\sum_{l}(2 e+1) R_{l}^{\prime}\left(R_{s}\right) j_{e}\left(|\underline{k}+\underline{g}| R_{s}\right) j_{e}\left(1 \underline{k}+\underline{g}^{\prime} \mid R_{s}\right) P_{e}\left(\cos \theta_{\underline{g} 9}\right) .
\end{align*}
$$

This ROMA of the effective matrix clement con bo com-
pared with (256) by using the relation

$$
\begin{equation*}
\frac{R_{e}^{\prime}\left(R_{s}\right)}{R_{e}\left(R_{s}\right)}=\frac{j_{e}^{\prime}\left(\alpha R_{s}\right)}{j_{l}\left(\alpha R_{s}\right)}-\frac{\tan 3_{l}^{\prime}}{\alpha R_{s}^{2} j_{e}^{2}\left(\alpha R_{s}\right)} \tag{271}
\end{equation*}
$$

which is just the doninition on $\tan \eta^{\prime}$.It is found that

$$
\begin{equation*}
\Gamma_{\underline{g} \underline{g}}^{\prime}=\Gamma_{\underline{g} \underline{g}^{\prime}}+\Gamma_{\underline{g} \underline{g}^{\prime}}^{0} \tag{272}
\end{equation*}
$$

where $\Gamma_{\underline{g} \underline{g}}^{0}$ is tho value oi $\Gamma_{\underline{g} \underline{g}^{\prime}}^{\prime}$ Low an empty Iutuice, namely when $\mathcal{R}_{e}(\rho)=j_{\ell}^{(d \rho) \text { In general } \Gamma_{\underline{g}}^{0}, \text { is not moro no }}$ an empty Lattice which is to be contrasted with the
 K when the potential welles ane absent.

The ... P. . . Method dance the reciprocal lattice
representation of the Greenian equations have been
compared by Jommon (gu) who is of the opinion that there is little to choose between the methods as regimes
esfictomoy in calculading cnorgy bancls using is commator. The simple Fome of $\overline{1 g} \underline{g}$, is dofintbely an aid to thinking dbovt thow eloctron bands wre formed, for erample Eiman Nes given atiscussion on tioc origin of d-bands (1065) in a gualitative way.

To conclucle this cheptor we constider the scattering of a Bloch wave from an "impurity" potential. The mocicl usod is highly simplificd. Although a lattice of identical atoms may be represented very well by a murfin tin potential the introduction of an impurity spoils the picture miess it has the sane valeney as the host atoms.

In addition, the Iattice around the impurity will usually bo strained but ve sot all those points aside and consider a system on spherical potentials of radius R_{s} where the potentials are locatod at lattice sites. It would not bo too dixfioult to calculate the errors introcuced by the muffin tin approrimation by standard perturbation metiods, but the purpose here is to show that in the simplified case the transition probability Ior scattering of a Bloch wave is similar in form to $\Gamma_{\underline{g} \underline{g}^{\prime}}$.

If $\Delta u(\rho)$ denotes the difference bobween an impurity potential and a perfect lattice pobential then the transition probability from a M10ch state Y $\underset{K}{(\rho) \text { to a }}$ state ソ ${ }_{\underline{k}}(\rho)$ may jo writuen as

$$
\begin{equation*}
P \frac{k^{\prime}}{\underline{k}}=\frac{2 \pi}{\hbar}\left|T_{\underline{k} \underline{k}^{\prime}}\right|^{2} \delta\left(E(\underline{k})-E\left(\underline{k}^{\prime}\right)\right) \tag{273}
\end{equation*}
$$

whore $T_{\underline{k} \underline{K}^{\prime}}$ is tho $T_{\text {-matrix }}$ defined by

$$
T_{\underline{K} K^{\prime}}=\int Y_{\underline{K}^{\prime}}^{*}(\rho) \Delta u(\rho) Y(\rho) d \rho
$$

The onorgy $E\left(\underline{K}^{\prime}\right)$ of tho state \underline{K}^{\prime} is the same as the
initial state K and $Y(\rho)$ is the solution to the time equation
independent Schrodinger describing the scattering of
 potential has the same radius as the host potentials so that the integration in (274) is over a sphere with radius R_{s} centred on a perfect lattice site.

TKḰ́an be expressed as an integral over tho suriace of the sphere using the equations satisfied by $\mathcal{Y}_{k^{\prime}}(\rho)$ and $\because\left(p_{-}\right)$

$$
\begin{equation*}
T_{\underline{K} \underline{K}^{\prime}}=R_{s}^{2} \int\left\{Y_{\underline{K}^{\prime}}^{*}(\rho) \frac{\partial}{\partial \rho} Y(\rho)-Y(\rho) \frac{\partial}{\partial \rho} Y_{\underline{k}^{\prime}}^{*}(\rho)\right\}_{\rho=R_{s}} d \Omega(\rho) \tag{275}
\end{equation*}
$$

WheT-matriz will be expressed in terms of the Fourier coefficients of the Bloch waves in between the potential vols namely

$$
\begin{equation*}
T_{\underline{k} \mathbf{I}^{\prime}}=\sum_{\underline{g}} \sum_{\underline{g},} \alpha_{\underline{k+g}}^{*} \alpha_{\underline{k}+\underline{g}} V_{\varphi f f}\left(\underline{k}+\underline{g}, \underline{k}^{\prime}+\underline{g}^{\prime}\right) \tag{276}
\end{equation*}
$$

and $V_{\text {eff }}\left(\underline{k}+\underline{9}, \underline{K}^{\prime}+\underline{q}^{\prime}\right)$ will bo wormed an effective matrix clement.

On the surface of and just outside the perturbation $\Delta U(\rho)$ the function $Y_{\underline{k}}^{(}(\underline{f})$ may be expanded as
$\left.\mathcal{r}_{K}(\rho)=\sum_{L} i^{\eta} a_{L}(K)\left\{j_{e}^{(k \rho)}+i \sin \eta e^{i \eta \ell} n_{l}(k p)\right\}\right\}_{L}(\beta)$

Where the coonnicients G(k)are mrosumed mown wron the solubion o: the Greontion equtions for a perfect latbice. Fhey aen aasily be ohtatnad Aron the P which ocour in osuation (234). Inside the perturbation the rave function $Y(\rho)$ will ise of the general some
$\because(\rho)=\sum_{L} i^{\ell} C_{L}(K) \dot{\phi}_{e}^{i}(\rho) \mathcal{y}_{L}(\rho-)$
whore $\mathcal{P}_{e}^{i}(\rho)$ is a solution of the radial Schroodinger equation for the impurity potential and the $C(k)$ are to De detormined.

The pioture of wave sunction $Y(\rho)$ is that it is composed of an "inciciont" wave $Y_{\underline{k}}(\rho)$ mhicii is seatberod Dy bhe impurity. The seatucroc mave ean be broken dom into two parts: outgoing sphorical waves diverging from the imparity just as in the scattering of a plane wave frou a single potential, and secondary waves produced by the initial ontgoing waves Deing scattered by the sumrounding lattice. Thus just outside $\Delta U(\rho)$ the scattered wave can be written as
$\vartheta_{S}(\rho)=\sum_{L} i^{\ell}\left\{b_{L}(\underline{k}) h_{\left.e^{(\alpha \rho}\right)}+\sum_{L^{\prime}} T_{L L^{\prime}} b_{L^{\prime}}(k) j e^{(\alpha \rho)}\right\} \eta_{L}(\rho)$.
The sigmificance of the matriz $T_{\text {LL }}$ is that an outgoing
wave $b_{L^{\prime}}(k) h_{\ell^{\prime}}(k \rho) \mathcal{Y}_{L^{\prime}}(\rho)$ diverging Tron the impurity is scatbored by tho swrounding lattice causing is wave $T_{L L} b_{L}(K) j_{e}(k \rho) y_{L}(\rho)$ beach on thee surface of the impurity . Tho impurity potential is not itself counted as a scattering conte in calculating $T_{\text {LL' }}$.

The requirement that the wave function and its racial derivative mast be continuous on the surface of the impurity potential moans that

$$
\begin{aligned}
& \left\{Y_{\underline{K}}(\rho)+Y_{s}(\rho)\right\}_{\rho=R_{s}}=\left\{Y_{P}(\rho)\right\}_{\rho=R_{s}} \\
& \left\{\frac{\partial}{\partial \rho} V_{\underline{K}}(\rho)+\frac{\partial}{\partial \rho} Y_{s}(\rho-)\right\}_{\rho=R_{s}}=\left\{\frac{\partial}{\partial \rho} W(\rho)\right\}_{\rho=R_{s}}
\end{aligned}
$$

On substitution from equations (277), (278) and. (279) it is found that the coofricionts $b_{L}(\underline{k})$ satisfy the equation

$$
\begin{equation*}
b_{L}-i \sin \eta_{e}^{i} e^{i \eta_{e}^{i}} \sum_{L}^{-} T_{L L} b_{L}=a_{L}\left\{i \sin \eta_{i}^{i} e^{i \beta_{e}^{i}}-i \sin \eta e^{i \xi e}\right\} \tag{281}
\end{equation*}
$$

whore 7_{l}^{i} is the ℓ 'th phase shift for the impurity potenttrial. The coofinicients C_{L} are defined in terms of the $b_{L} D_{y}$

$$
\begin{equation*}
C_{L}=\frac{i a_{L}\left\{1+\sum_{L} T_{L L_{L}} b_{L} / a_{L}\right\}}{\alpha R_{s}^{2^{i}}\left[Q_{e}^{i}, h_{e}\right]} \tag{282}
\end{equation*}
$$

Mre T-munian may now be writutuon as

$$
\begin{align*}
& T_{K K^{\prime}}=W^{-1} \sum_{L} a_{L}^{*}\left(k^{\prime}\right) a_{L}(\underline{L}) e^{i 23^{i} e}\left\{1+\sum_{L} T_{L L^{\prime}} b_{L^{\prime}}\left(a_{L}(K)\right\}\right. \\
& x\left\{\sin \eta_{e} e^{-i \eta \ell}-\sin \eta_{e}^{i} e^{-i \xi_{e}}\right\} \tag{283}
\end{align*}
$$

Dy subsuibuting from (2Y7) and (2Y8) invo eruation (275). If the product $A_{L}^{*}\left(K^{\prime}\right) a_{L}(K)$ is ompressed in terns on Whe Fourion coonnicionts on $\bigcup_{k^{\prime}}^{*}(\rho)$ and $Y_{\underline{k}}(\rho)$ as shomm in equation (248), then

$$
\begin{align*}
& V_{e f f}\left(\underline{k}+\underline{g}, k_{-}^{\prime}+g^{\prime}\right)= \\
& \frac{(4 \pi)^{2}}{\alpha} \sum_{L} \frac{\tan ^{2} 3^{\prime}}{\sin ^{2} \eta l} e^{2 i \eta^{i} l}\left\{\sin 7 e^{-i \eta}-\sin 3^{i} e^{-i i^{i}}\right\} \tag{284}\\
& x\left\{1+\sum_{L^{\prime}} T_{L L^{\prime}} b_{L} / a_{L}(\underline{k})\right\} Y_{L}\left(\underline{k+g)} \mathcal{Y}_{L}\left(k^{\prime}+\underline{g}^{\prime}\right) j_{e}\left(|\underline{k}+\underline{g}| R_{S}\right) j_{e}\left(\underline{k^{\prime}+g^{\prime}} \mid R_{S}\right)\right.
\end{align*}
$$

Which howevon still contains the mhlnomn cocfifeicnts b_{L}, so this is just a formal empression.

It is usceul to compare the procedure given here With anothor approach to tho same prowlem given by Dupree (1951) and applied to the residual resistance produced by alkali meval impuritios in other alkali movels. Dupree ${ }^{7}$ S Pormmantion required the mowledge On the Grecn Amotion Sor a pericet lattice which is andiogous to tho metriz Tha nhicin ocouns in equation (281). They are Dowis difficult guantitios to calculato

But it is LoLu whet it is mbhow oastox to cnvisaco stimpe mpnnoximutions to The watiocx tham tho Gmocn Sumction. Doth motiocts howovon moquize tho solution of oquations lilic (28i) which can become quite involved if it is nocessemy to uso a Iarge mambor of L's to obtain un aceutato solution.

Forvanately in tho oase of simplo motals wore the conduction elccuroms benave us if vise potentiols are Weak, a reasonable answor can be obtaince suraight away. A Mrec electron wavo travoluing through a poricot motal, With an encrgy lying in the conctaction bind, can bo seatuered vory litule by a singlo potontial woll in the $\sin \not \geqslant \ell$ are smazl and surong roclecetion ocours onzy whon the eloctron is mage ronkceted. The same type on Dehaviour is to De expecued Ior a sphoricaz have spreading out from i lattice point. If the renlectod waves are ignoned, i.c. in $T_{\text {LL }}$ is put oqual to zoro it is Fownel Prom (284) that

$$
\begin{aligned}
& V_{e f f}\left(\underline{k}+\underline{g}, \underline{k}^{\prime}+g^{\prime}\right) \simeq \\
& \frac{4 \pi}{\alpha} \sum_{l}(2 l+1) \frac{\tan ^{2} 7^{\prime} e e^{2 i} 3^{i} t}{\sin ^{2} \eta \varphi}\left\{\sin 7 e^{-i 3} t-\sin \xi^{i} e^{-i 3^{i} l}\right\} \\
& x j_{\ell} \frac{\left(\underline{k}+\underline{g} \mid R_{5}\right) j_{\ell}\left(\left|\underline{k}^{\prime}+\underline{g}^{\prime}\right| R_{s}\right)}{j^{2}(k R)} P_{\rho}\left(\cos \theta_{\underline{k}+g, \underline{k}^{\prime}+\underline{g}^{\prime}}\right)
\end{aligned}
$$

Whore $\theta_{\underline{k+g}, \underline{k^{\prime}+g}}$, is the angle between $\underline{k+g}$ and $\underline{K}_{\underline{\prime}+g^{\prime} \text {. The }}$ above approximation is especially good wisen tho ow bgoing waves are weak, because in (284) who product TLL' b_{L} is small. Tais result is clearly very similar in form to who explesetion (238) for Tog'.

Lt is interesting to compare (285) with the cinective matrix element suggested by Simon (19s4) in the situation When the plane nave amplitude $\alpha_{\underline{k}}$ is much larger then all the others. Zimon's compcotured matrix element was (albeit for the much more general case of overlapping potentials)

Veff. $\left(K, K^{\prime}\right)$
$\simeq \frac{4 \pi}{\alpha} \sum_{l}(2 e+1)\left\{\sin \eta_{e} e^{i \eta}-\sin \eta_{l}^{i} e^{i \eta_{l}^{i}}\right\} P_{e}\left(\cos \theta_{k}, k^{\prime}\right)$
and (285) reduces to this when $\sin 3 e$ and $\sin 3^{i} 4$ are small and $\left.\right|^{2}=|k|^{2}$.

It is tantalising to mow that there must be much wore gemomal results than (285), which however should be of similar form, applying to the case of overlapping potential wells. In addition a general method is needed for calculating the transport properties on structurally dicombored solids, which goes beyond the nearly tree electron approach, and it is possible that this may be dohioved by working along the limes described tor vibrating solidus.

Appondix A. Continuma clasticity theory.
The Lame constants λ and μ which specify an isotropic clastic continuan cannot take just any values but are subject to restrictions obtained arom the requiremond that there should be a positive change in the potential enorgy of a solid when it is deformed from the cquilibrium statc. This leads to the conditions (Landau and Liishitz, p. |1)
$\mu \geqslant 0$,
$K=\lambda+\frac{2}{3} \mu \geqslant 0$
where K is the modulus of compression. In adaition the fact that Youncts modulus E and Poisson's ratio σ are always positive means that (Sokolmikoif p.69) wo must have
$\mu \geqslant 0$,
$\lambda \geqslant 0$.
These conditions are violated by taking $\lambda=-\mu$ as has been done for the loaded continum model. This unphysical choice of the clastic constants will not lead to misleading results for the simple arguments of this thesis and has many precodents in simplified descriptions of the properties of vibrating lattices.

The Pull clastic wave equation for an isotropic medium of uniform clasticity and density is
$\mu \nabla^{2} \underline{U}(\rho)+(\lambda-\mu)$ grad.div. $\underline{U}(\rho)+\rho \omega^{2} \underline{U}(\rho)=0$

Whe special choice $\lambda=-\mu(\mu \geqslant 0)$ reduces this complicatiod vector equation to
$\mu \nabla^{2} \underline{U}(\rho)+\rho \omega^{2} \underline{U}(\rho)=0$
which is equivalont to three independent scalar equations for the components of the displacement field $\underline{U}(\rho)$. The solations of this equation for an infinite mediam may be expressed as transverse and longitudinal rumning waves which have cqual velocities $\sqrt{\frac{\mu}{\rho}}$. The unphysical nature of the elastic constants is umimportant if we wish to obdain an outline of tae way in whic. clastic waves are scabtered by variations in density and elasticity. The tromble occurs whon wo consider, say, tac response to an isotropic pressure.

An apparent contradiction of the conditions (A.) is found by considering a lattice model whic: is often used as an introduction to the way vibrating solids benave, (e.g. Maradudin, Montroll and Weiss 1963, Montro11 1956). The model consists of a monatomic simple cubic lattice (a structure which does not ocour in nature) where the Aarmonic potential energy is assumed to be

$$
\begin{align*}
& \frac{1}{2} \sum_{l} \sum_{m} \sum_{n}\left(g \left[\left\{u_{x}(l, m, n)-u_{x}(l+1, m, n)\right\}^{2}+\left\{u_{x}(l, m, n)-u_{x}(l-1, m, n)\right\}^{2}\right.\right. \\
& +\left\{u_{y}(l, m, n)-u_{y}(l, m+1, n)\right\}^{2}+\left\{u_{y}(l, m, n)-u_{y}(l, m-1, n)\right\}^{2} \\
& \left.+\left\{u_{z}(l, m, n)-u_{z}(l, m, n+1)\right\}^{2}+\left\{u_{z}(l, m, n)-u_{z}(l, m, n-1)\right\}^{2}\right] \\
& +h\left[\left\{u_{x}(l, m, n)-u_{x}(l, m+1, n)\right\}^{2}+\left\{u_{x}(l, m, n)-u_{x}(l, m-1, n)\right\}^{2}\right. \\
& +\left\{u_{x}(l, m, n)-u_{x}(l, m, n+1)\right\}^{2}+\left\{u_{x}(l, m, n)-u_{x}(l, m, n-1)\right\}^{2} \tag{AS}
\end{align*}
$$

$$
\begin{aligned}
& +\left\{U_{y}(l, m, n)-u_{y}(l+1, m, n)\right\}^{2}+\left\{u_{y}(l, m, n)-u_{y}(l-1, m, n)\right\}^{2} \\
& +\left\{u_{y}(l, m n)-u_{y}(l, m, n+1)\right\}^{2}+\left\{u_{y}(l, m, n)-u_{y}(l, m, n-1)\right\}^{2} \\
& +\left\{U_{z}(l, m, n)-u_{z}(l+1, m, n)\right\}^{2}+\left\{u_{z}(\ell, m, n)-u_{z}(l-1, m, n)\right\}^{2} \\
& \left.+\left\{u_{z}(l, m, n)-U_{z}(l, m+1, n)\right\}^{2}+\left\{u_{z}(l, m, n)-u_{z}(l, m-1, n)\right\}^{2}\right)
\end{aligned}
$$

$U_{x} \cdot U_{y}$ and U_{z} denote the cartesian components of the displacement of the atom at
$l a \hat{x}+m a \hat{y}+n a \hat{z}$
where a is the lattice spacing and l, m and n are intogers. The attractiveness of this form is that the equation of motion again separates into three scalar ones, for example for the x-component of the displacemont we have
$g\left\{u_{x}(e+1, m, n)+u_{x}(e-1, m, n)-2 u_{x}(e, m n)\right\}$
$+h\left\{u_{x}(\varphi, m+1, n)+u_{x}(\varphi, m-1, n)-2 u_{x}(\varphi, m, n)\right.$
$\left.+u_{x}(l, m, n+1)+u_{x}(l, m, n-1)-2 u_{x}(l, m, n)\right\}$
$+M \omega^{2} U_{x}(\varphi, m, n)=0$
where M is the mass of the atoms.
When the wavelength of a disturbance passing through
the solid is large compared with a this difference
equation can be replaced by the differential equation

$$
\begin{equation*}
\frac{g}{a} \frac{d^{2}}{d x^{2}} u_{x}(r)+\frac{h}{a}\left\{\frac{d^{2}}{d y^{2}}+\frac{d^{2}}{d z^{2}}\right\} u_{x}(r)+\rho \omega^{2} u_{x}(r)=0 \tag{AB}
\end{equation*}
$$

If we now set $g=h$ then (A7) is equivalent to (A4) if the identification $\frac{g}{a}=\mu$ is made. The paradox is that the change in potential energy on deformation of the lattice is positive definite if g is positive.

Whe Plaw in the argument is that the Porm (A5) is not invariant with respect to rotations of the solid (Lax, 1963) and is therefore unaceeptable as a realistic doscription of atomic interactions. The unrealistic part of the potential is that part multiplied by the "non-central" Sorce constant h. Let us consider a covalently bound solid as depicted in Figure 8

Figure 8

Where the bonds are represented by the lines joining nearest neighbours. The potential energy (A5) means that when the atom $(l, m+1, n)$ is displaced in the x direction the force exerted on the atom (ℓ, m, n) is in the samc direction irrespective of the positions of any other atoms. In reality the non-central forces between the atoms in covalent solics arise from Dending of the angles between the bonds and therefore involves the displacements of other atoms. These points werc realised long ago by Born (1914) when constructing a model for diamond.

However, it often happens that in working out the modes of vibration of a lattice an "incorrect" potmentrial can give the same results as a "correct" potential Which is rotationally invariant. (De mamey 1956). This is due to the hight degree of symmetry present in a lattice. In a disordered system it is rather more dangerous to use a potential like (A5) but providing. the results are not taken too seriously it remains a useful means of testing ideas about the disorder probloom.

In 1.2.2. the force acting on a rigid sphere was calculated using the formula (Morse and Feshbach, p. 1808) for the stress dyadic
$S=\mu(\nabla \underline{U}(\underline{r})+\underline{U}(\underline{r}) \nabla)-\mu \operatorname{div} U(\underline{r}) I$
where λ has been sot equal to $-\mu$ and I denotes the unit dyadic. The corresponding form for the model described by (A5) is

$$
\begin{equation*}
S=\frac{9}{a} \underline{U}(r) \nabla \tag{AlI}
\end{equation*}
$$

where g has been set equal to h and the long wavelength limit has been taken.

These two forms for the stress dyadic both give the same value of the γ_{l} defined by equation ($\|$) so that if desired the material filling the spaces between the
rigid spheres in the loaded continum model can be looked on as being an elastic contimum whose microscopic properties are derined by (A5).

List of References

Ba17inger, R.A., and Marshall, G......, 1907, Proc.Piys. Soc., 21, 203.

Dorn, M., Amn. Pinysik, $44_{4}, 605$.
Carrabhers, P., 1961, Rov.Nod.Phys., 33, 92.
Cocking, S.J., 1907, Adv. Mhys., 16, 189.
Dean, P., and Bell, N.J., 1900, Nature, 212, 1354.
De Dycker, E., and Phariscad, P., 1967, (a) Physica,这, 325. (b) Physica, 25, 405.

De Lamey, J., 1956, Solid Stato Phys., 2, 219.
Duprec, T.I., 1961, Am. Phys., 15, 63.
Edwards, S.F., 1961, Phil.Mag., G, 617.
Egalstaif, P.A., 1907, Adv. Phys., 16, 147.
Riscnshiť R., 1955, Phys.Rov., 22, 1059.
Pisher, I.Z., Statistical Theory of Liquids, (Univ. Chicago Press, 1904).

Poldy, L.L., 1945, Phys.Rev., 67, 107.
Frenkel J., Kinetic Theory of Liquics. (Dover Publications, 1955).

Priodman, B., Principlos and Techniques of Applied Mathomatics. (Jom Viley and Sons.Inc., 1956).

Green, M.S., 1954, J.Chem. Phys., 22, 398.
Ham, F.S., and Segal1, D., 1961, Phys.Rev., 124, 1786.
Mardy, R.J., 1903, Phys.Rev., 132, 168.
Mardy, R.J., 1965, J.Math. Phys., 6, 1.749.
Mardy, R.J., Swenson, R.J., and Schieve, V.C., 1965, J. Nath. Phys., 6, 1742.

Mardy, R.J., and Schieve, T.C., I966, J.Math.Phys, 1, 1439 .
fardy, R.J., 1900, J.Nath. Phys., Z, 1435.
ficminger, E.II., Puschert, R.C., and Heaton, L., I907, J.Chem. Phys., 40, 580.

Johmson, IK.if., 1900, Phys.Rov., $150,429$.
Klemens, P.G., 1958, Solid Stato Phys., Z, J.
Klemons, P.G., 1960, Non-crystalline Solids, 508. (dom Wiley and Sons.Inc.)

Mlemens, P.G., 1905, Physics of Non-crystalline Solids, 102. (North Holland, ed. Prins, J.A.)

Kom, W., and Rostoker, N., 1954, Phys.Rev., 24, 1111.
Korringa, J., 1947, Physica, 12, 392.
Mrumhans 1, J.A., 1963, Lattice Dynamics, 523. (Pergamon Press, od. Vallis, R.F.)

Mrumhansl, J.A., and Matthow, J.A.D., 1965, Phys.Rev., 140, 1812.

Lanczos, C., Lincar Differential Operators. (Van Nostrand, 1961).

Landan, L.D., and Lifshikz, I.M., Theory of Elasticity, (Pergamon Press, 1959).

Landau, L.D., and Kosevich, A.M., 1966, Rep.Prog.Phys., 14, 217.

Lax, M., 1951, Rev.Mod. Phys. 23, 287.
Lax, M., 1952, Phys.Rev. S5, 621.
Lax, M., 1903, Lattico Dynamics, 583. (Pergamon Press, ed. Wallis, R.F.)

Lilishitz, I.M., 1943, J.Phys.U.S.S.R., Z, 215.
Lloyc, P., 1905, Proc.Phys.Soc., S6, S25.
Nagid, L.M., 1964, Phys.Rev., 154, 158.
Naradudin, A.A., Montroll, E. EV_{I}., and Woiss, G.II., 1963. Theory of Lattice Dynamics in the Itarmonic Approximation, (Acadomic Press, 1963).

Naradudin, A.A., 1900, Solid State Piysics, 18, 273.
Maradudin, A.A., 19Gu, Solid State Physios, 12, 1.
Nontroll, E.W., 1956, Proceedings of the Third Eerkeley Symposim on Nathematical. Statistics and Probability, 2, 209. (Univ.Calif.Press).

Norgan, G.J., 1960, Proc. Phys.Soc., 82, 305.
Morgan, G.J. 1906, Moc. Mhys.Soc., 82, 470.
Morgan, G.u., and Ziman, J.M., 1967, Proc.Phys.Soc., 21, 689.

Moxi, II., 1902, Prog. Mheor. Phys., 28, 763.
Mori, II., 1958. Phys.Rev., 112, 1829.
Morse, P.M., and Peshbach, IT., Methods of Theoretical Physios. (McGraw Mill, 1953).

Moss, M., 1963, J.App.Phys., 37, 43.68.
Mott, N.F., 1907, Adv. Phys., 16, 49.
Newell, G.F., 1958, J. Phys.Chem.Solids, 6, 190.
Parrott, J.E., 1903, Proc. Phys.Soc., 81, 726.
Poicris, R.E., 1929, Am. Playsik, 2, 1055.
Poierls, N.E., Quantum Theory of Solids. (Omford Univ. Press, 1955).

Percus, J.K. and Yevick, G.J., 1958, Phys.Rev.llo, 1. Phariscau, P., and Ziman, J.M., 1903, Phil.Mag., 8, 1487 .

Raminger, J., 1967. A.E.R.E., IIarwell Rept.
Schmeider, I., and Stoll, E., 1967, Solid State Comm., 5, 455 .

Schoricla, P., 1906, Proc.Phys.Soc., 88, 149.
Segall, B., and Tham, F.S., 1961, Tables oi structure constants for encrgy band calculations with the Greon fumction mothod. (General Electric Report, No. 61-122-2876 G).

Scgall, B., 1962. Phys.Rev., 125, 109.
Slabor, J.C., 1937, Phys.locv., 51, 846.
Slater, J.C., Quantum Theory of Molecules and Solidis, V.2. (McGraw Mill, 1905).

Sokolinkoff, I.S., Mathomatical Theory of Blasticity. (MoGraw IIIT1, 2950).

Takono, S., 1963, Prog.Theor. Phys., 20, 191.
Taylor, D.W., 1907, Phys.Rov., 155, 1017.
Tomonaga, S., 1955, (a) Prog. Theor. Phys., 13, 467, (b) Prog.Theor. Phys., 13, 4:82.

Varga, R.S., Matrix Iterative Analysis. (Prentice-Mall International, 1902).

Waterman, P.C., and Pruell, R., 1961, J.Math.Phys., 2, 512.

Ziman, J.M., Rlectrons and Phonons, (OxPord Univ.Press, 1960).

Ziman, J.M. 1964, Aciv. Phys., 13, 89.
Ziman, J.M., 1965. Proc. Pays.Soc., 86, 337.
Ziman, J.M., 1966, Proc.Phys.Soc., 88, 387.
Ziman, J.M., 1907, Adv. Phys., 16, 551.
Zubarev, D.N., 1953, Zhur. cksp.tcar.Fiz., 25, 548-559.

Wave propagation through an assembly of spheres V . The vibrations of a loaded elastic continuum

G. J. MORGAN \dagger and J. M. ZIMAN:
\dagger Zenith Radio Research Corporation (U.K.) Ltd., Stanmore, Middlesex
\$ 11. H. Wills Physics Laboratory, University of Bristol
MS. received 7th February 1967, in revised form 22nd March 1967

Abstract

The properties of a 'loaded continuum'-an assembly of rigid spheres embedded in an clastic medium of zero density-are investigated. When the spheres are arranged in a perfect lattice the model shows the characteristic dynamical properties of a harmonic solid. Some of the qualitative effects of structural disorder have been investigated by means of this model.

1. Introduction

The system to be studied in this paper consists of rigid spheres of mass M and radius R_{s} embedded in an elastic medium of zero density. This model is not intended as a substitute for the usual 'spring' model of a solid, nor is it necessarily a realistic description of the restoring forces acting on atoms in a real solid. The merit of the model is that it provides a simple and convenient way of investigating the general properties of a system of masses bound by harmonic forces. The model is described by the elastic wave equation for which modern methods of treating the propagation of waves in ordered and disordered systems can be used.

The prime motivation for this work was the fact that at the present time a theory of wave propagation and thermal conductivity in disordered solids hardly exists, except when a solid can be described as a perturbation of a perfect lattice or when continuum theory can be used. Vitreous, polycrystalline and dislocated solids cannot be described as perturbed lattices except by rather artificial means (i.e. introducing atoms of zero mass), and it was hoped that the loaded continuum would provide a guide to the effects of these kinds of structural disorder. The origin of the difficulty is the impossibility of using perfect lattice states as a basis for the representation of dynamical excitations. In the problem of electrons in liquid metals one may fall back from a representation in perfect lattice states (i.e. Bloch functions) to a description in terms of free-electron plane waves. There is no natural analogue of free-electron waves for disordered solids.

Recent developments in the theory of electrons in disordered systems (e.g. Edwards 1965, Waterman and Truell 1961) appear to by-pass the introduction of a set of basic states and the construction of a transport equation. In particular, the ayeraging methods introduced by Foldy (1945) and reviewed recently by Ziman (1966) offer new possibilities for investigating the loaded continuum. These methods involve looking for a complex propagation constant for waves in a disordered medium. For example, the imaginary part of the propagation constant, in the case of electrons in liquid metals, is related to the electrical resistivity (Edwards 1965).

In this paper this approach is used to treat a disordered loaded continuum. It turns out, however, that within the approximations of the method the propagation constant is purely real and the thermal resistivity of the system apparently zero, which of course is nonsense. The application of averaging methods to a conventional spring model of a solid similarly fails to produce a complex propagation constant and the reasons for this are discussed.

This paper is basically an account of the theory of a loaded continuum in its own right. The insight gained from this investigation has helped in constructing a new approach to the thermal conductivity of disordered solids which will be given in a later publication.

2. The loaded continuum

Our view is that the mechanical properties of a harmonic solid ought to be similar to those of a system of rigid spheres, embedded in an elastic medium of zero density, and that

The γ_{1} can be obtained from the boundary conditions on the surface of the rigid spheres. This information is contained in the equation of motion for the j th sphere:

$$
\begin{equation*}
-M \omega^{2} \mathbf{U}_{j}(\mathbf{S})=\int \mu\left\{\nabla \mathbf{U}_{j}(\mathbf{S})+\mathbf{U}_{j}(\mathbf{S}) \nabla-\operatorname{div} \mathbf{U}_{j}(\mathbf{S})\right\} \cdot d \mathbf{S} \tag{6}
\end{equation*}
$$

where S lies on the surface of the sphere, M is the mass of a sphere, ω is the vibrational frequency and the right-hand side of (6) is simply the total force due to the stress field round the sphere (Morse and Feshbach 1953, p. 1808). Substitution of (5) into (6) gives

$$
\begin{align*}
& \gamma_{0}=\frac{4 \pi \mu}{M \omega^{2}}-\frac{1}{R_{\mathrm{s}}} \\
& \gamma_{t}=-\frac{1}{R_{\mathrm{s}}^{2 l+1}} \quad(l>0) . \tag{7}
\end{align*}
$$

The main problem is to obtain an expansion of $\mathrm{G}\left(\rho-\rho^{\prime}-\mathbf{r}_{j^{\prime}, j}\right)$ in spherical harmonic functions of ρ and ρ^{\prime}. When $\left|\mathbf{r}_{j^{\prime}}\right|=0$ and $\rho^{\prime}>\rho$, then

$$
\begin{equation*}
\mathrm{G}\left(\rho-\rho^{\prime}\right)=-\sum_{L} \frac{1}{2 l+1} \rho^{l} \rho^{\prime-1-1} \mathscr{Y}_{L}(\rho)_{\mathscr{Y}_{L}}\left(\rho^{\prime}\right) \tag{8}
\end{equation*}
$$

and when $|\mathbf{R}|=\left|\boldsymbol{\rho}-\boldsymbol{\rho}^{\prime}\right|$ is less than $\left|\mathbf{r}_{j^{\prime}, f}\right|$

$$
\begin{equation*}
\mathrm{G}\left(\mathbf{R}-\mathbf{r}_{j^{\prime} \cdot}\right)=-\sum_{L} \frac{1}{2 l+1} R^{l} r_{j^{\prime} j^{-j}-1}^{2} \mathscr{Y}_{L}(\mathbf{R}) \mathscr{Y}_{L}\left(\mathbf{r}_{j^{\prime} j}\right) . \tag{9}
\end{equation*}
$$

The function $R^{l} \mathscr{\mathscr { O }}{ }_{L}(\mathbf{R})$ can be obtained in terms of $\mathscr{Y}_{L}(\rho)$ and $\mathscr{Y}_{L}\left(\rho^{\prime}\right)$ by using the expansion of $\mathrm{j}_{i}(\eta R) \mathscr{Y}_{L}(\mathbf{R})$ given by Kohn and Rostoker (1954), in the limit as η tends to zero. By this means the following form is obtained:

$$
\begin{equation*}
R^{\prime} \mathscr{Y}_{L}(\mathbf{R})=4 \pi \sum_{L^{\prime}} \sum_{L^{\prime \prime}} \frac{i^{l^{\prime}-l-l^{\prime}} \delta_{l^{\prime}+l^{\prime}, l}(2 l+1)!!C_{L^{\prime} L^{\prime \prime}}^{L^{\prime}} \rho^{l^{\prime}} \mathscr{Y}_{L^{\prime}}(\rho) \mathscr{Y}_{L^{\prime}}\left(\rho^{\prime}\right)}{\left(2 l^{\prime}+1\right)!!\left(2 l^{\prime \prime}+1\right)!!} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{L^{\prime} L^{\prime \prime}}^{L}=\int \mathscr{M}_{L}(\rho) \mathscr{Y}_{L^{\prime}}(\rho) \mathscr{Y}_{L^{\prime \prime}}(\rho) d \Omega(\rho) \tag{11}
\end{equation*}
$$

$G\left(\mathbf{R}-\mathbf{r}_{j^{\prime} j}\right)$ can now be expanded as

$$
\begin{align*}
\mathrm{G}\left(\mathbf{R}-\mathbf{r}_{j^{\prime \prime}}\right)= & -\delta_{j j^{\prime}} \sum_{L} \frac{1}{2 l+1} \rho^{l} \rho^{\prime-l-1} \mathscr{Y}_{L}(\rho) \mathscr{Y}_{L}\left(\rho^{\prime}\right) \\
& -\left(1-\delta_{i j^{\prime}}\right) \sum_{L^{\prime}} \sum_{L^{\prime \prime}} B_{L^{\prime} L^{\prime \prime}}\left(\mathbf{r}_{j j^{\prime}}\right) \rho^{l^{\prime}} \rho^{\prime l^{\prime \prime}} \mathscr{Y}_{L^{\prime}}(\rho) \mathscr{Y}_{L^{\prime \prime}}\left(\rho^{\prime}\right) \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
B_{L^{\prime} L^{\prime \prime}}\left(\mathbf{r}_{i j^{\prime}}\right)=4 \pi \sum_{L} \frac{i^{l^{\prime}-l^{\prime \prime}-l} \delta_{l^{\prime}+l^{\prime \prime}, l}(2 l+1)!!C_{L^{\prime} L^{L^{\prime}}}^{L} \mathscr{Y}_{L}\left(\mathbf{r}_{j^{\prime} j}\right)}{(2 l+1)\left(2 l^{\prime}+1\right)!!\left(2 l^{\prime \prime}+1\right)!!r_{j^{\prime} j}^{l+1}} . \tag{13}
\end{equation*}
$$

Substitution of the expansion for $U_{j}(\rho)$ and (12) into the matching condition (4) gives the equation satisfied by the $\beta_{L}{ }^{j}$:

$$
\begin{equation*}
(2 l+1)^{-1} \gamma_{l} \beta_{L}^{j}=\sum_{L^{\prime}} \sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(\mathbf{r}_{j j^{\prime}}\right) \beta_{L^{j^{j^{\prime}}}} \tag{14}
\end{equation*}
$$

Equation (14) is very similar in form to the equations derived by Phariseau and Ziman (1963) for electrons in liquid metals. In their notation the wave function within the j th potential is of the general form

$$
\begin{equation*}
\psi_{j}(\rho)=\sum_{L} \frac{i^{l} \beta_{L}{ }^{j}}{\left[\mathscr{R}_{l}, \mathrm{j}_{l}\right]} \mathscr{R}_{l}(\rho) \mathscr{Y}_{L}(\rho) \tag{15}
\end{equation*}
$$

the qualitative effects of structural disorder can be investigated by means of this model. In some senses this model is akin to the continuum theory of lattice defects. For example, in the continuum theory the scattering of long-wave lattice vibrations from impurity atoms is held to be equivalent to the scattering of sound waves from a sphere whose density and elastic constants differ from the continuum in which it is embedded. However, the model is not supposed to simulate the actual forces between atoms in any real solid. It is a physical toy' (Ziman 1965 a) which is highly convenient for testing out methods and ideas about the properties of non-crystalline systems.

In view of the complicated vector algebra of the solutions of the elastic wave equation, the problem has again been simplified by assuming that the Lame constants of the elastic medium μ and λ are related by $\lambda=-\mu$. This again lacks physical reality since in practice we must have $\lambda>-\frac{2}{3} \mu$ and $\mu>0$ (Landau and Lifshitz 1959, p. 11), but the general features of the loaded continuum can be obtained by this means and that is sufficient for the present purpose. This simplification is equivalent to the common assumption that central and non-central forces are of equal strength in a conventional model of a solid.

The special choice $\lambda=-\mu$ allows the elastic wave equation to be separated into three scalar equations. If $U(r)$ denotes a Cartesian component of the stratim field, then

$$
\begin{equation*}
\nabla^{2} U(\mathbf{r})-V(\mathbf{r}) U(\mathbf{r})=0 \tag{1}
\end{equation*}
$$

where $V(\mathbf{r})$ is an operator symbolizing the departure of the system from a structureless elastic medium of zero density, i.e. in our case the presence of the spheres. Equation (1) differs from, say, the Schrödinger equation for an electron in a system of spherical nonoverlapping potentials, where plane waves can propagate in between the potentials, whereas the elastic medium in between the spheres in our model will not propagate plane waves with a finite velocity. This difference has important consequences when we attempt to find a complex propagation constant for a disordered loaded continuum.

One of the most successful methods for solving the Schrödinger equation for a lattice of spherical potentials is that originally proposed by Korringa (1947) and by Kohn and Rostoker (1954). This method was generalized to arbitrary arrangements of potentials by Phariseau and Ziman (1963). An analogue to the generalized theory will be used here.

Equation (1) can be changed to the integral form

$$
\begin{equation*}
U(\mathbf{r})=\int \mathrm{G}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) U\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime} \tag{2}
\end{equation*}
$$

where $G\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ is the Green function for the Laplace operator, i.e.

$$
\begin{equation*}
\mathrm{G}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=-\frac{1}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{3}
\end{equation*}
$$

Fortunately, it is not necessary to inquire into the precise form of the operator $V(\mathbf{r})$ because this problem can be reformulated in terms of the field on the surface of the spheres. A convenient way to do this is by using the condition (Ziman 1965 b, 1966)

$$
\begin{equation*}
\sum_{j^{\prime}} \int\left\{G\left(\rho-\rho^{\prime}-\mathbf{r}_{j^{\prime} j}\right) \frac{\partial}{\partial \rho^{\prime}} U_{j^{\prime}}\left(\rho^{\prime}\right)-U_{j^{\prime}}\left(\rho^{\prime}\right) \frac{\partial}{\partial \rho^{\prime}} \mathrm{G}\left(\boldsymbol{\rho}-\rho^{\prime}-\mathbf{r}_{j^{\prime}}\right)\right\}_{D^{\prime}=R_{s}+\varepsilon} \quad d \Omega\left(\rho^{\prime}\right)=0 \tag{4}
\end{equation*}
$$

where $\mathbf{r}_{j^{\prime} j}=\mathbf{r}_{j^{\prime}}-\mathbf{r}_{j}, \boldsymbol{\rho}=\mathbf{r}-\mathbf{r}_{j}, \rho^{\prime}=\mathbf{r}^{\prime}-\mathbf{r}_{j^{\prime}}, \epsilon$ is a positive infinitesimal,

$$
R_{\mathrm{s}}<\rho<R_{\mathrm{s}}+\epsilon
$$

R_{s} is the sphere radius and $U_{j}(\rho)$ is the stiaplfacement compont around the j th sphere located at \mathbf{r}_{j}. The component $U_{j}(\rho)$ can be expanded in terms of the spherical solutions of Laplace's equation:

$$
\begin{equation*}
U_{j}(\rho)=\sum_{L} \frac{\beta_{l, m}{ }^{j}}{2 l+1}\left(\rho^{-l-1}+\gamma_{l} \rho^{l}\right) \mathscr{Y}_{l, m}(\rho) \tag{5}
\end{equation*}
$$

where L denotes collectively the angular label l and the azimuthal label $m, \mathscr{I}_{L}(\rho)$ denotes a real normalized spherical harmonic (Segall and Ham 1961), and the coefficients $\beta_{L}{ }^{j}$ are to be determined.
where

$$
\begin{align*}
& B_{00,00}(\mathbf{k})=4 \pi C_{00.00}^{00} \sum_{j^{\prime} \neq j} \frac{\exp \left(-i \mathbf{k} \cdot \mathbf{r}_{j j^{\prime}}\right)}{r_{j^{\prime} j}} \mathscr{Y}_{00}\left(\mathbf{r}_{j^{\prime} j}\right) \\
& B_{10,00}(\mathbf{k})=-B_{00.10}(\mathbf{k})=\frac{4 \pi}{3} C_{10.00}^{10} \sum_{j^{\prime} \neq j} \frac{\exp \left(-i \mathbf{k} \cdot \mathbf{r}_{j j^{\prime}}\right)}{r_{j j^{\prime}}{ }^{2}} \mathscr{Y}_{10}\left(\mathbf{r}_{j^{\prime} j}\right) \tag{25}\\
& B_{10,10}(\mathbf{k})=-\frac{4 \pi}{3} C_{10.10}^{20} \sum_{j^{\prime} \neq j} \frac{\exp \left(-i \mathbf{k} \cdot \mathbf{r}_{j j^{\prime}}\right)}{r_{j^{\prime} j^{\prime}}{ }^{3}} \mathscr{Y}_{20}\left(\mathbf{r}_{j^{\prime} j}\right) .
\end{align*}
$$

These structure constants have been estimated by replacing the sums by integrals, whence
$B_{00.00}(\mathbf{k}) \simeq \frac{4 \pi}{\Delta|\mathbf{k}|^{2}}, \quad B_{10,00}(\mathbf{k})=-B_{00,10}(\mathbf{k}) \simeq \frac{4 \pi i}{3^{1 / 2} \Delta|\mathbf{k}|^{2}}, \quad B_{10,10}(\mathbf{k}) \simeq \frac{8 \pi}{9 \Delta}$.
In the limit of small $|\mathbf{k}|$

$$
\begin{equation*}
\omega^{2}(\mathbf{k}) \simeq \frac{\mu}{D} \frac{1+2 \nu / \Delta}{1-\nu / \Delta}|\mathbf{k}|^{2} \tag{27}
\end{equation*}
$$

where ν is the volume of a sphere and D is the mean density. The model, therefore, behaves like a continuum with an effective elastic constant

$$
\begin{equation*}
\mu_{\text {eff }}=\mu \frac{1+2 \nu / \Delta}{1-\nu / \Delta} \tag{28}
\end{equation*}
$$

The value of ω at the band edge may also be obtained in a simple way. If the wave vector \mathbf{k} is written as

$$
\begin{equation*}
\mathbf{k}=\frac{\pi}{a}\left(\mathbf{k}_{x}+\hat{\mathbf{k}}_{y}+\mathbf{k}_{z}\right)-\mathbf{k}^{\prime} \tag{29}
\end{equation*}
$$

then

$$
\begin{equation*}
B_{L L^{\prime}}(\mathbf{k}) \propto\left|\mathbf{k}^{\prime}\right|^{l+l^{\prime}} . \tag{30}
\end{equation*}
$$

This conclusion is arrived at splitting the summation in (19) into negative and positive parts using (29), and replacing the summations by integrals. Only the $l=0$ harmonic need be retained to determine the band-edge frequency. The zero-order structure constant at the zone boundary is simply

$$
\begin{equation*}
B_{00,00}=-\frac{\zeta}{a} \simeq-\frac{1 \cdot 75}{a} \tag{31}
\end{equation*}
$$

where ζ is the Madelung constant for an $\mathrm{Na}-\mathrm{Cl}$ type lattice. The band-edge frequency ω_{L} is therefore given by

$$
\begin{equation*}
\omega_{L}^{2}=\frac{4 \pi \mu R_{\mathrm{s}}}{M}\left(1-\frac{\zeta R_{\mathrm{s}}}{a}\right)^{-1} . \tag{32}
\end{equation*}
$$

These limiting formulae for $\omega(\mathbf{k})$ indicate that the loaded continuum behaves like a lattice of point masses coupled by harmonic springs. For example, the ratio of ω_{L} to the frequency $\omega_{L}{ }^{\prime}$, which would be obtained using (27) without dispersion, is

$$
\begin{equation*}
\frac{\omega_{L}}{\omega_{L}^{\prime}}=\left\{\frac{4 R_{\mathrm{s}}(1-\nu / \Delta)}{3 \pi a(1+2 \nu / \Delta)\left(1-\zeta R_{\mathrm{s}} / a\right)}\right\}^{1 / 2} . \tag{33}
\end{equation*}
$$

The parameter R_{s} can be adjusted to give a value of this ratio typical of the values found for more conventional systems. It is interesting to consider the formulation of the perfect lattice problem in terms of a plane-wave representation. This is discussed in the appendix where some modifications of the corresponding procedure for electrons are also derived.

The coefficients $\beta_{L}{ }^{j}$ then satisfy the equation

$$
\begin{equation*}
\kappa\left(1-\cot \eta_{t}\right) \beta_{L}^{i}=\sum_{L^{\prime}} \sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(\kappa, \mathbf{r}_{j j^{\prime}}\right) \beta_{V^{\prime}} . \tag{16}
\end{equation*}
$$

The similarity between (14) and (16) makes clearer the motive for studying the loaded continuum. There is, however, an important difference between these two equations. The loaded continuum equations are simpler because the frequency does not occur in the matrix on the right-hand side. This means that the frequencies can be found explicitly. In the electron case the energy $E=\kappa^{2}$ occurs in the matrix and the energy levels come out as the solution of an implicit equation.

3. The perfect lattice

The solution of equation (14) will now be considered for spheres arranged on perfect lattice sites. The problem is enormously simplified for a perfect lattice of spheres. The Bloch theorem can be invoked whereby there exists a real wave vector \mathbf{k} such that

$$
\begin{equation*}
\beta_{L}{ }^{j}=\beta_{L} \exp \left(i \mathbf{k} \cdot \mathbf{r}_{j}\right) \tag{17}
\end{equation*}
$$

and the equation is reduced to

$$
\begin{equation*}
(2 l+1)^{-1} \gamma_{l} \beta_{L}=\sum_{L^{\prime}} B_{L L^{L}}(\mathbf{k}) \beta_{L^{\prime}} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{L L^{i}}(\mathbf{k})=\sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(\mathbf{r}_{j j^{j}}\right) \exp \left(-i \mathbf{k} \cdot \mathbf{r}_{j j^{\prime}}\right) \tag{19}
\end{equation*}
$$

The axis of the spherical harmonics is taken in the direction of \mathbf{k}. The amplitude of motion of the j th sphere, A_{j}, is obtained from (5):

$$
\begin{equation*}
A_{j}=\lambda\left(\frac{4 \pi \mu}{M \omega^{2}}\right) \beta_{0,0} \exp \left(i \mathbf{k} \cdot \mathbf{r}_{j}\right) \tag{20}
\end{equation*}
$$

It is clear from the form of the structure constants $B_{L L^{\prime}}(\mathbf{k})$ that equation (18) will give a periodic dispersion law for $\omega(\mathbf{k})$. This is because the structure constants are unaltered by adding a reciprocal lattice vector to \mathbf{k}.

In order to obtain some idea of how the loaded continuum depends on the parameter R_{s}, the limiting behaviour of $\omega(\mathbf{k})$ will be obtained near $|\mathbf{k}|=0$ and at the zone boundary for a simple cubic lattice with \mathbf{k} in the (111) direction. The vibrational frequencies of the loaded continuum are given by the usual determinantal condition for a non-trivial solution to a set of simultaneous equations, i.e.

$$
\begin{equation*}
\operatorname{det}\left|B_{L L^{\prime}}-(2 l+1)^{-1} \gamma_{l} \delta_{L L^{\prime}}\right|=0 . \tag{21}
\end{equation*}
$$

Near $\mathbf{k}=0$ the structure constants may be estimated by replacing the summation by an integral, i.e.

$$
\begin{equation*}
B_{L L^{\prime}}(\mathbf{k}) \simeq \Delta^{-1} \int B_{L L^{\prime}}(\mathbf{r}) \exp (-i \mathbf{k} \cdot \mathbf{r}) d \mathbf{r} \tag{22}
\end{equation*}
$$

where $\Delta=a^{3}$ and a is the lattice spacing. For small values of $|\mathbf{k}|$

$$
\begin{equation*}
B_{L L^{\prime}}(\mathbf{k}) \propto|\mathbf{k}|^{l+l^{\prime}-2} . \tag{23}
\end{equation*}
$$

Using (23) it can readily be ascertained that for small $|\mathbf{k}|$ the only important spherical harmonics in determining $\omega(\mathbf{k})$ are those with $l=0$ and $l=1$. Along the (111) direction, symmetry arguments can be used to show that only spherical harmonics with

$$
m=0,+3,+6, \ldots
$$

need be retained in the expansion (5) (Segall and Ham 1961). The determinantal condition then gives

$$
\begin{equation*}
\omega^{2}(\mathbf{k})=\frac{4 \pi \mu R_{\mathrm{s}}}{M}\left(1+R_{\mathrm{s}} B_{00,00}-\frac{3 R_{\mathrm{s}}{ }^{4} B_{10,00} B_{00,10}}{1+3 R_{\mathrm{s}}{ }^{3} B_{10,10}}\right)^{-1} \tag{24}
\end{equation*}
$$

Hence equation (37) is simplified to

$$
\begin{equation*}
(2 l+1)^{-1}\left\langle\beta_{L}(\mathbf{r})\right\rangle=(N-1) \sum_{L^{\prime}} \int d \mathbf{r}^{\prime} p\left(\mathbf{r}^{\prime} \mid \mathbf{r}\right) B_{L L^{\prime}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\left\langle\beta_{L}\left(\mathbf{r}^{\prime}\right)\right\rangle . \tag{40}
\end{equation*}
$$

In an isotropic homogeneous medium when $p\left(\mathbf{r}^{\prime} \mid \mathbf{r}\right)=p\left(\left|\mathbf{r}^{\prime}-\mathbf{r}\right|\right)$ the spatial dependence of $\left\langle\beta_{L}(\mathbf{r})\right\rangle$ can be removed by writing

$$
\begin{equation*}
\left\langle\beta_{L}(\mathbf{r})\right\rangle=\left\langle\beta_{L}\right\rangle \exp (i \mathbf{k}, \mathbf{r}) \tag{41}
\end{equation*}
$$

providing $\left.\beta_{L}\right\rangle$ satisfies

$$
\begin{equation*}
(2 l+1)^{-1} \gamma_{l}\left\langle\beta_{L}\right\rangle=\sum_{L^{\prime}} B_{L L^{\prime}}^{\mathrm{d}}(\mathbf{k})\left\langle\beta_{L^{\prime}}\right\rangle \tag{42}
\end{equation*}
$$

The matrix $B_{L L}^{d} \cdot(\mathbf{k})$ is defined by

$$
\begin{equation*}
B_{L L^{\prime}}^{\mathrm{d}}(\mathbf{k})=(N-1) \int d \mathbf{R} p(|\mathbf{R}|) B_{L L^{\prime}}(\mathbf{R}) \exp (-i \mathbf{k} \cdot \mathbf{R}) \tag{43}
\end{equation*}
$$

and $B_{L L^{\prime}}^{\mathrm{d}}(\mathbf{k})$ is purely real. This means that the solution of (43) will yield a purely real relation between the frequency ω and the wave vector \mathbf{k}, in contrast with the electron case.

This is not a peculiarity of the loaded continuum, as can be demonstrated by averaging the equations of motion for a 'spring' model of a disordered solid. Let us assume that the Hamiltonian of a disordered solid can be written in the form

$$
\begin{equation*}
H=\sum_{a} \sum_{j}\left[\frac{p_{\alpha}^{2}(j)}{2 M}+\frac{1}{2} \sum_{\alpha^{\prime}} \sum_{j^{*} \neq j} \mathscr{M}_{\omega^{\prime}}\left(\mathbf{r}_{j}-\mathbf{r}_{j^{\prime}}\right)\left\{u_{\alpha}(j)-u_{\alpha}\left(j^{\prime}\right)\right\}\left\{u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right\}\right] \tag{44}
\end{equation*}
$$

where $p_{\alpha}(j)$ and $u_{\alpha}(j)$ are Cartesian components of the momentum and displacement of the j th atom located at $\mathbf{r}_{j} . \mathscr{B}\left(\mathbf{r}_{j}-\mathbf{r}_{j^{\prime}}\right)$ is a harmonic force constant which depends only on the separation of the atoms at \mathbf{r}_{j} and \mathbf{r}_{j}. and M is the mass of an atom. From (44) the timeindependent equation of motion is

$$
\begin{equation*}
M \omega^{2} u_{\alpha}(j)=2 \sum_{\alpha^{\prime}} \sum_{j^{\prime} \neq j} \mathscr{B}_{\alpha \alpha^{\prime}}\left(\mathbf{r}_{j}-\mathbf{r}_{j}\right)\left\{u_{\alpha^{\prime}}(j)-u_{\alpha^{\prime}}\left(j^{\prime}\right)\right\} \tag{45}
\end{equation*}
$$

and this equation can be averaged in precisely the same way as before. Let us set $j=1$ in (45), multiply by $p\left(\mathbf{r}_{2} \ldots \mathbf{r}_{N} \mid \mathbf{r}_{1}\right)$ and integrate over $\mathbf{r}_{2} \ldots \mathbf{r}_{N}$. The equation analogous to (37) is
$M \omega^{2}\left\langle u_{\alpha}\left(\mathbf{r}_{1}\right)\right\rangle=2 \sum_{\alpha^{\prime}} \int d \mathbf{r}_{2} p\left(\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|\right) \mathscr{B}_{\alpha \omega^{\prime}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\left(\left\langle u_{\alpha^{\prime}}\left(\mathbf{r}_{1} \mid \mathbf{r}_{2}\right)\right\rangle-\left\langle u_{\alpha^{\prime}}\left(\mathbf{r}_{2} \mid \mathbf{r}_{1}\right)\right\rangle\right)$.
Using the approximations

$$
\begin{align*}
& \left.u_{\alpha}\left(\mathbf{r}_{1} \mid \mathbf{r}_{2}\right)\right\rangle \simeq\left\langle u_{\alpha}\left(\mathbf{r}_{1}\right)\right\rangle \tag{47}\\
& \left.u_{\alpha}\left(\mathbf{r}_{2} \mid \mathbf{r}_{1}\right)\right\rangle \simeq\left\langle u_{\alpha}\left(\mathbf{r}_{2}\right)\right\rangle
\end{align*}
$$

and writing

$$
\begin{equation*}
\left\langle u_{\alpha}(\mathbf{r})\right\rangle=\left\langle u_{\alpha}\right\rangle \exp (i \mathbf{k} \cdot \mathbf{r}) \tag{48}
\end{equation*}
$$

then

$$
\begin{equation*}
M \omega^{2}\left\langle u_{\alpha}\right\rangle=2 \sum_{\alpha^{\prime}} \mathscr{B}_{\alpha \alpha^{\prime}}(\mathbf{k})\left\langle u_{\alpha^{\prime}}\right\rangle \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{B}_{\alpha \alpha^{\prime}}(\mathbf{k})=(N-1) \int d \mathbf{R} p(|\mathbf{R}|) \mathscr{B}_{\alpha u^{\prime}}(\mathbf{R})\{1-\exp (-i \mathbf{k} \cdot \mathbf{R})\} . \tag{50}
\end{equation*}
$$

It is obvious that equations (49) and (50) will also yield a purely real relation between ω and \mathbf{k}.

Before we go on to discuss the reason for the absence of attenuation in the average wave amplitude, the sort of dispersion law generated from (42) will be briefly considered. Because of the spherical symmetry of the disordered system it is unnecessary to use

4. The disordered loaded continuum

Having obtained a general idea of the properties of the perfect loaded continuum, we shall now consider the disordered case.

The similarity between the angular momentum representation of the Schrödinger equation (16) and the equations for the loaded continuum (14) suggests that averaging methods which have been applied successfully to (16) might also provide useful information here. The properties of an amorphous loaded continuum will be considered, perhaps something like a 'monatomic glass'.

The basic idea behind averaging methods is that, although the fine details of waves in disordered systems depend on the microscopic nature of the medium in which the waves travel, there exist grosser features of the waves which are insensitive to the precise microscopic structure. It is convenient to consider an ensemble of disordered systems each of unit volume, containing a large number (N) of rigid spheres. Using the conventional notation (Lax 1951, Ziman 1966), $p\left(\mathbf{r}_{1} \mathbf{r}_{2} \ldots \mathbf{r}_{\mathrm{N}}\right)$ will denote the probability of finding the first particle in $d \mathbf{r}_{1}$, the second in $d \mathbf{r}_{2}$ and so on. The conditional probability $p\left(\mathbf{r}_{S+1} \ldots \mathbf{r}_{N} \mid \mathbf{r}_{1} \ldots \mathbf{r}_{S}\right)$ will denote the probability of finding the $(S+1)$ th particle in $d \mathbf{r}_{S+1}$, etc., when particles $1 \ldots S$ are definitely at $\mathbf{r}_{1} \ldots \mathbf{r}_{S}$. A useful relation between the conditional probabilities is

$$
\begin{equation*}
p\left(\mathbf{r}_{S+1} \ldots \mathbf{r}_{M} \mid \mathbf{r}_{1} \ldots \mathbf{r}_{S}\right)=p\left(\mathbf{r}_{S+1} \mid \mathbf{r}_{1} \ldots \mathbf{r}_{S}\right) p\left(\mathbf{r}_{S+2} \ldots \mathbf{r}_{N} \mid \mathbf{r}_{1} \ldots \mathbf{r}_{S+1}\right) . \tag{34}
\end{equation*}
$$

A hierarchy of equations can be constructed in the usual way for various averages of the coefficients which occur in equation (14). The β_{L}^{\prime} for a particular disordered system depend on the positions of all the other rigid spheres. The simplest type of average coefficient will be denoted by $\beta_{L}\left(\mathbf{r}_{i}\right)$ and is defined by

$$
\begin{equation*}
\beta_{L}\left(\mathbf{r}_{j}\right)=\int p\left(\mathbf{r}_{1} \ldots{ }^{\prime} \mathbf{r}_{N} \mid \mathbf{r}_{j}\right) \beta_{L^{\prime}}^{\prime} d \mathbf{r}_{1} \ldots^{\prime} d \mathbf{r}_{N} \tag{35}
\end{equation*}
$$

where the prime denotes omission of a position coordinate. A general type of average is defined by

The series of equations for these functions is generated by multiplying equation (14) by a probability function and integrating over all positions not held fixed. For example, setting $j=1$ in (14), multiplying by $p\left(\mathbf{r}_{2} \ldots \mathbf{r}_{N} \mid \mathbf{r}_{1}\right)$ and integrating over $\mathbf{r}_{2} \ldots \mathbf{r}_{N}$ gives

$$
\begin{equation*}
(2 l+1)^{-1} \gamma_{l}\left\langle\beta_{L}\left(\mathbf{r}_{1}\right)\right\rangle=(N-1) \sum_{L^{\prime}} \int d \mathbf{r}_{2} p\left(\mathbf{r}_{2} \mid \mathbf{r}_{1}\right) B_{L L^{L}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\left\langle\beta_{L} \cdot\left(\mathbf{r}_{2} \mid \mathbf{r}_{1}\right)\right\rangle . \tag{37}
\end{equation*}
$$

This equation is linked to a second equation containing $\left\langle\beta_{L}\left(\mathbf{r}_{1} \mid \mathbf{r}_{2}\right)\right\rangle$ and $\left\langle\beta_{L}\left(\mathbf{r}_{1} \mid \mathbf{r}_{2} \mathbf{r}_{3}\right)\right\rangle$, obtained by setting $j=1$ in (14), multiplying by $p\left(\mathbf{r}_{3} \ldots \mathbf{r}_{N} \mid \mathbf{r}_{1} \mathbf{r}_{2}\right)$ and integrating over $\mathbf{r}_{3} \ldots \mathbf{r}_{\mathrm{N}}$. By this means it is found that

$$
\begin{align*}
(2 l+1)^{-1} \gamma_{L}\left\langle\beta_{L}\left(\mathbf{r}_{1} \mid \mathbf{r}_{2}\right)\right\rangle= & \sum_{L^{\prime}} B_{L L^{\prime}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\left\langle\beta_{L^{\prime}}\left(\mathbf{r}_{2} \mid \mathbf{r}_{1}\right)\right\rangle \\
& +(N-2) \sum_{L^{\prime}} \int d \mathbf{r}_{3} p\left(\mathbf{r}_{3} \mid \mathbf{r}_{1} \mathbf{r}_{2}\right) B_{L^{\prime}}\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right)\left\langle\beta_{L^{\prime}}\left(\mathbf{r}_{3} \mid \mathbf{r}_{1} \mathbf{r}_{2}\right)\right\rangle . \tag{38}
\end{align*}
$$

Each successive equation contains more and more information about the precise details of the vibrations of the rigid spheres. The final equation in the series is (14), i.e. the equation for a particular configuration of rigid spheres. Only the simplest equation (37) will be considered here.

In a recent paper by Ziman (1966) it was shown that the equivalent equation to (37) for electrons in liquid metals could be solved using the quasi-crystalline approximation of Lax (1951). This is equivalent to the assumption that

$$
\begin{equation*}
\left\langle\beta_{L}\left(\mathbf{r}_{2} \mid \mathbf{r}_{1}\right)\right\rangle \simeq\left\langle\beta_{L}\left(\mathbf{r}_{2}\right)\right\rangle . \tag{39}
\end{equation*}
$$

The spatial dependence may be removed by writing

$$
\begin{equation*}
\left.\left\langle\beta_{L}(\mathbf{r})\right\rangle=\beta_{L}\right\rangle \exp (i \mathbf{k} \cdot \mathbf{r}) \tag{55}
\end{equation*}
$$

which reduces equation (54) to

$$
\begin{equation*}
\kappa\left(i-\cot \eta_{I}\right) \beta_{L^{\prime}}=\sum_{L^{\prime}} B_{L L^{\prime}}(\kappa, \mathbf{k})\left\langle\beta_{L^{*}}\right\rangle \tag{56}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{L L L^{\prime}}(\kappa, \mathbf{k})=(N-1) \int d \mathbf{R} p(|\mathbf{R}|) B_{L L^{\prime}}(\kappa, \mathbf{R}) \exp (-i \mathbf{k} \cdot \mathbf{R}) \tag{57}
\end{equation*}
$$

It is not possible to satisfy equation (56) for real values of \mathbf{k} (except when $E<0$); but, on the other hand, the integral in (57) diverges for complex values of \mathbf{k}. Equation (54) is in fact not appropriate for the average standing-wave solutions of the Schrödinger equation. It is the equation for a plane wave with energy $E=\kappa^{2}$ which is scattered by a system of potential wells, but with the inhomogeneous terms representing the incident plane wave omitted. Lax (1951) and Waterman and Truell (1961) have shown that it is legitimate to ignore the inhomogeneous terms providing the contributions from the upper limits of the integral in (57) are also ignored. This is a case of the extinction theorem whereby waves produced at the boundary of the system of scatterers cancel the incident wave within the system.

The reason why the loaded continuum and the spring models do not produce a complex propagation constant is that the equations are appropriate to 'standing-wave' boundary conditions. Apart from localized modes (which this theory is not sensitive enough to show), there is no reason to suppose that the standing waves should not be spread throughout the system, in view of the assumption of homogeneous disorder. Because the propagator (3) in the empty space between the spheres satisfies the Laplace equation rather than the wave equation it is not possible to set up the seattering type of boundary condition in this case. We should have to modify the model by considering waves travelling through a continuum of finite density before they impinge upon the loaded continuum. If this is attempted the simplicity of the equations (14) is lost. It is possible that attenuation effects might be calculated by using higher-order approximations to the hierarchy of averaged equations. The renormalization procedure used by Lloyd (1967) may be applicable to this problem.

The conclusion of this work is that, although the work of Phariseau and Ziman (1963) and Ziman (1966) seems to be a way of circumventing the need for introducing a set of basic states, their work implicitly involves the use of free-electron waves as a basic set. The use of averaging methods might provide interesting information about the vibrations of disordered systems if investigated in greater detail, but the route seems paved with difficulties, for example, the need to know higher particle-correlation functions. One approach which might prove useful is a direct attempt to calculate a Green function for the loaded continuum or spring model by averaging the inhomogeneous form of (14) or the equations of motion (45). In the electron problem Edwards (1958) showed that the Green function was of the form $\exp (i \lambda|\mathbf{R}|) / \mathbf{R}$, where λ is complex. Surely it must be possible to obtain a similar result for vibrating harmonic solids without using a perturbation method which starts from unperturbed lattice waves. There seems to be a real need for a set of basic states suitable for describing the vibrations and transport properties of a disordered solid. It is this problem which will be broached and partially answered in a later paper.

Appendix. The plane-wave representation

The strain-field in the elastic medium can be expanded in plane waves in the usual way desplasament

$$
\begin{equation*}
U(\rho)=\sum_{\mathbf{g}} \alpha_{\mathbf{k}+\mathbf{g}} \exp \{i(\mathbf{k}+\mathbf{g}) \cdot \rho\} \tag{A1}
\end{equation*}
$$

where \mathbf{g} denotes a reciprocal lattice vector. Once the coefficients β_{L} are known, the Fourier coefficients can be determined using the procedure given by Ham and Segall (1961). The
spherical harmonics with $m>0$ if the axis of the harmonics is taken to be in the direction of \mathbf{k} (Phariseau and Ziman 1963). If just the $l=0$ term is retained, then

$$
\begin{equation*}
\omega^{2}(\mathbf{k})=\frac{4 \pi \mu R_{\mathrm{s}}}{M}\left\{1+R_{\mathrm{s}} B_{00,00}^{\mathrm{d}}(\mathbf{k})\right\}^{-1} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{00,00}^{\mathrm{d}}(\mathbf{k})=(N-1) \int \frac{d \mathbf{R} p(|\mathbf{R}|) \exp (-i \mathbf{k} \cdot \mathbf{R})}{|\mathbf{R}|} \tag{52}
\end{equation*}
$$

The 'dispersion law' obtained from (42) when $p(\mathbf{R})=1$ for $|\mathbf{R}| \geqslant 2 R_{\mathrm{s}}$ and $p(|\mathbf{R}|)=0$ for $\mathbf{R}<2 R_{s}$ is sketched in the figure using just the $l=0$ and $l=1$ harmonics.

Sketch of $\left(D a^{2}+\pi \mu\right)^{12} \omega$ against $x=2 \mathbf{k} R_{*}$, where a^{2} is the volume per sphere.
In the figure it is noticeable that for high densities the 'dispersion law' echoes the perfectly repeating structure of a perfect lattice. The long-wavelength region corresponds to acoustic waves, but the significance of the short-wavelength oscillations is not clear. Although one might be tempted to impose periodic boundary conditions on the plane waves, the counting of modes loses its significance because of the averaging process. This presumably occurs because an infinite number of atoms are introduced by taking an ensemble average, turning the discrete structure of a single system into a smeared continuum.

The reason why unattenuated plane-wave solutions are found for the loaded continuum can be found by examining the corresponding electron theory. Equation (16) constitutes a precise formulation of the Schrödinger equation for an electron with $E=\kappa^{2}$ moving through a system of spherical potential wells. However, if we had used 'standing wave boundary conditions', (16) would have been replaced by the equally valid pair of equations (Ziman 1965 b)

$$
\begin{align*}
-\kappa \cot \eta_{t} \beta_{L^{j}} & =\sum_{L^{\prime}} \sum_{j^{\prime} \neq j} B_{L L^{\prime}}\left(\kappa, \mathbf{r}_{j j}\right) \beta_{L^{j^{\prime}}} \tag{53a}
\end{align*} \quad(E>0)
$$

where $B_{L L^{\prime}}$ denotes the real part of the $B_{L L^{\prime}}$.
In this form the Greenian theory for electrons also seems to have purely real solutions. The question that must be answered is: why does the average form of (16) (for $E>0$) have an attenuated plane-wave solution while ($53 a$) yields an unattenuated solution after averaging? The answer to this paradox lies in the work of Lax (1951) and Waterman and Truell (1961).

After making the quasi-crystalline approximation the averaged form of (16) is

$$
\begin{equation*}
\kappa\left(i-\cot \eta_{I}\right)\left\langle\beta_{L}(\mathbf{r})\right\rangle=(N-1) \sum_{L^{\prime}} \int d \mathbf{r}^{\prime} p\left(\left|\mathbf{r}^{\prime}-\mathbf{r}\right|\right) B_{L L^{\prime}}\left(\kappa, \mathbf{r}-\mathbf{r}^{\prime}\right)\left\langle\beta_{L^{\prime}}\left(\mathbf{r}^{\prime}\right)\right\rangle . \tag{54}
\end{equation*}
$$

in the electron problem (Ziman 1965 b) by using

$$
\begin{align*}
\Delta^{-1} \sum_{\mathbf{g}} & \frac{\exp \left\{i(\mathbf{k}+\mathbf{g}) \cdot\left(\rho-\rho^{\prime}\right)\right\}}{|\mathbf{k}+\mathbf{g}|^{2}}-\frac{1}{4 \pi} \frac{1}{\left|\rho-\rho^{\prime}\right|} \\
= & \sum_{L} \sum_{L^{\prime}} B_{L I^{\prime}}(\mathbf{k}) \rho^{\prime} \rho^{\prime \prime} \mathscr{O}_{L}(\rho) \mathscr{Y}_{L^{\prime}}\left(\rho^{\prime}\right) \\
= & \sum_{k} \frac{1}{|\mathbf{k}+\mathbf{g}|^{2}} \sum_{L} \sum_{L^{\prime}}(4 \pi)^{2} i^{I-l} \mathscr{Y}_{L^{\prime}}(\mathbf{k}+\mathbf{g}) \mathscr{Y}_{L^{\prime}}(\mathbf{k}+\mathbf{g}) \mathrm{j}_{l}(|\mathbf{k}+\mathbf{g}| \rho) \mathbf{j}_{l^{\prime}}\left(|\mathbf{k}+\mathbf{g}| \rho^{\prime}\right) \\
& \quad \times \mathscr{Y}_{L}(\rho) \mathscr{Y}_{L^{\prime}\left(\rho^{\prime}\right.}\left(\rho^{\prime}\right)-\sum_{L} \frac{1}{2 l+1} \rho^{\prime} \rho^{\prime-l-1} \mathscr{Y}_{L}(\rho) \mathscr{Y}_{L}\left(\rho^{\prime}\right) . \tag{A11}
\end{align*}
$$

The structure constants can be obtained from (A11) as it stands, setting $\rho=\rho^{\prime}=R_{\mathrm{s}}$ or by taking the derivative of both sides with respect to ρ and ρ^{\prime} and then taking $\rho=\rho^{\prime}=R_{\mathrm{s}}$. The best form for the present purpose is obtained by taking the derivative of (A11) with respect to ρ or ρ^{\prime} for terms with l or l^{\prime} greater than zero. The structure constants may then be written as
where

$$
\begin{equation*}
B_{L L^{\prime}}(\mathbf{k})=\sum_{\mathbf{g}} \frac{F_{L \mathbf{g}} F_{L^{\prime} \mathbf{g}}}{|\mathbf{k}+\mathbf{g}|^{2}}+S_{l} \delta_{L L^{\prime}} \tag{A12}
\end{equation*}
$$

$$
\begin{align*}
F_{00, \mathbf{k}} & =4 \pi N^{1 / 2} \mathrm{j}_{0}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) \mathscr{Y}_{00}(\mathbf{k}+\mathbf{g}) \\
F_{L \mathbf{k}} & =\frac{4 \pi N^{1 / 2} i^{l} \mathrm{j}_{l}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right)^{2}{ }_{L}(\mathbf{k}+\mathbf{g})}{l R_{\mathrm{s}}{ }^{L-1}} \quad(l>0) \tag{A13}
\end{align*}
$$

and

$$
\begin{align*}
& S_{0}=-R_{\mathrm{s}}^{-1} \\
& S_{l}=\frac{(l+1) R_{\mathrm{s}}{ }^{-2 l-1}}{l(2 l+1)} \quad(l>0) \tag{A14}
\end{align*}
$$

Substitution for the β_{L} from equation (A14) and use of (A12) finally gives

$$
\begin{equation*}
\sum_{\mathbf{k}} \alpha_{\mathbf{k} / \mathrm{g}}\left(\Gamma_{\mathrm{gk}}-|\mathbf{k}+\mathbf{g}|{ }^{2} \delta_{\mathrm{gk}}\right)=0 \tag{A15}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{\mathrm{gg}}=\sum_{L} N^{1 / 2} t_{l} F_{L \mathrm{~g}}{ }^{*} F_{L \mathbf{g}^{\prime}} \tag{A16}
\end{equation*}
$$

and

$$
\begin{align*}
& t_{0}=\frac{M \omega^{2}}{4 \pi \mu N^{1 / 2}} \\
& t_{l}=-\frac{l R_{\mathrm{s}}^{2 l+1}}{N^{1 / 2}} \quad(l>0) \tag{A17}
\end{align*}
$$

This is the required result, an equation which looks as if the rigid spheres can be treated as weak perturbation to the elastic medium of zero density.

The procedure used here for deriving (A15) may be of interest in the corresponding problem of electrons in a periodic lattice. In Ziman's (1965 b) original derivation of a reciprocal representation of equation (16) effective matrix elements of the lattice potential were obtained in the form

$$
\begin{equation*}
\Gamma_{\mathbf{g k}^{\prime}}=-\frac{4 \pi N}{\kappa} \sum_{l}(2 l+1) \tan \eta_{l}^{\prime} \frac{\mathrm{j}_{l}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\left|\mathbf{k}+\mathbf{g}^{\prime}\right| R_{\mathrm{s}}\right) \mathrm{P}_{l}^{0}\left(\cos \theta_{\mathbf{g g}}\right)}{\mathrm{j}_{l}{ }^{2}\left(\kappa R_{\mathrm{s}}\right)} \tag{A18}
\end{equation*}
$$

with

$$
\begin{equation*}
\tan \eta_{l}^{\prime}=\left\{\cot \eta_{i}-\frac{\mathrm{n}_{l}\left(\kappa R_{\mathrm{s}}\right)}{\mathrm{j}_{l}\left(\kappa R_{\mathrm{s}}\right)}\right\}^{-1} \tag{A19}
\end{equation*}
$$

and with the usual meaning for the other symbols. This effective matrix element can become infinite, at the zeros of $\mathrm{j}_{l}\left(\kappa R_{\mathrm{s}}\right)$ or at the zeros of $\mathscr{R}_{1}\left(R_{\mathrm{s}}\right)$, where $\mathscr{R}_{1}(\rho)$ is a radial
strain field outside the spheres is given by

$$
\begin{equation*}
U(\rho)=R_{\mathrm{s}}^{2} \int\left\{\mathscr{G}\left(\rho-\rho^{\prime}\right) \frac{\dot{\partial}}{\partial \rho^{\prime}} U\left(\rho^{\prime}\right)-U\left(\rho^{\prime}\right) \frac{\partial}{i \rho^{\prime}} \mathscr{G}\left(\rho-\rho^{\prime}\right)\right\}_{D^{\prime}=R_{,}} d \Omega\left(\rho^{\prime}\right) \tag{A2}
\end{equation*}
$$

where $\mathscr{G}\left(\rho-\rho^{\prime}\right)$ is the Greenian (Ziman 1965 b)

$$
\begin{equation*}
\left.\mathscr{G}\left(\rho-\rho^{\prime}\right)=-\frac{1}{4 \pi} \sum \frac{\exp \left(i \mathbf{k} \cdot \mathbf{r}^{\prime \prime}\right)}{\mid \rho-\rho^{\prime}-\mathbf{r}^{\prime},} \right\rvert\, \quad=-\frac{1}{\Delta} \sum_{\mathbf{g}} \frac{\exp \left\{i(\mathbf{k}+\mathbf{g}) \cdot\left(\rho-\rho^{\prime}\right)\right\}}{|\mathbf{k}+\mathbf{g}|^{2}} . \tag{A3}
\end{equation*}
$$

Adopting the procedure of Ham and Segall, we can expand the Greenian (for $\rho>p^{\prime}$) in the form

$$
\begin{equation*}
\mathscr{T}\left(\rho-\rho^{\prime}\right)=\sum_{L} D_{L}(\rho) \rho^{\prime \prime} y_{L}\left(\rho^{\prime}\right) \tag{A4}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{L}(\rho)=-\frac{+\pi}{\Delta} i^{-i} R_{\mathrm{s}}^{-l} \sum_{\mathbf{g}} \frac{\exp \{i(\mathbf{k}+\mathbf{g}) \cdot \rho\}}{|\mathbf{k}+\mathbf{g}|^{2}} \mathrm{j}_{i}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) M_{L}(\mathbf{k}+\mathbf{g}) . \tag{A5}
\end{equation*}
$$

Using (A4) and (A5) in (A1), then

$$
\begin{equation*}
\alpha_{\mathbf{k}+\mathbf{g}}=\sum_{L} \frac{4 \pi i^{-i} R_{\mathrm{s}}^{-1}}{|\mathbf{k}+\mathbf{g}|^{2}} \beta_{L} j_{i}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) y_{L}(\mathbf{k}+\mathbf{g}) . \tag{A6}
\end{equation*}
$$

At low frequencies it has been shown that only the $l=0$ and the $l=1$ harmonics are important, so that β_{00} and β_{10} will be assumed to be the only non-zero coefficients. Using equation (18) and the approximate values of the structure constants (26), then

$$
\begin{equation*}
\beta_{10} \simeq \frac{3^{1 / 2} i}{\Delta|\mathbf{k}|}\left(\frac{\mu-\mu_{\mathrm{etf}}}{\mu \mu_{\mathrm{eff}}}\right) \beta_{00} . \tag{A7}
\end{equation*}
$$

From equation (A6) it can be seen that σ_{k} is larger than any of the other coefficients by a factor \mathbf{k}^{-1}.

This suggests that a reciprocal lattice representation (Ziman 1965 b, Morgan 1966) might be a useful means of investigating the loaded continuum. This approach turns out to be of limited usefulness, however, but the derivation of the equations illustrates a number of points which can arise in the corresponding electron theory, and so the opportunity to set them out will be taken here.

A simple way of obtaining the equations satisfied by the α_{k+g} is straightforward substitution for the β_{L} in (18) in terms of the α_{k+g}. On the surface of a sphere the expansion (5) must be matched to the expansion in plane waves (A1). To obtain the β_{L} in terms of the Fourier coefficients it is necessary in this case to consider the matching of both the amplitude and radial derivative. This is because the terms with $l>0$ in equation (5) vanish for $\rho=R_{\mathrm{s}}$. By this means it is found that

$$
\begin{equation*}
\beta_{L}=\sum_{g} \beta_{L \mathrm{~g}} \gamma_{\mathrm{k}+\mathrm{g}} \tag{A8}
\end{equation*}
$$

where

$$
\begin{align*}
\beta_{00, \mathbf{g}} & =\frac{M \omega^{2}}{\mu} \mathrm{j}_{0}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right)^{\mathscr{Y}_{00}(\mathbf{k}+\mathbf{g})} \\
\beta_{L \mathbf{g}} & =-4 \pi i^{l} R_{\mathrm{s}}^{l+2} \mathrm{j}_{t}^{\prime}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) \mathscr{Y}_{L}(\mathbf{k}+\mathbf{g}) \quad(l>0) \tag{A9}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{j}_{l}{ }^{\prime}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right)=\frac{d}{d R_{\mathrm{s}}} \mathrm{j}_{l}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) . \tag{A10}
\end{equation*}
$$

The next step is to obtain a suitable expression for the structure constants in terms of a summation over reciprocal lattice vectors. This can be done in precisely the same way as

Variational estimates of the scattering of phonons from static lattice imperfections

Abstract

A comparison is made between the results of a calculation using the Schwinger variational method (Lippmann and Schwinger 1950) and an exact calculation of the single mode relaxation time for phonons scattered by pairs of isotopes. The aim is to provide a guide to the accuracy which can be expected for more complicated defects.

The calculation of the scattering of phonons from small lattice imperfections is simple in principle. The isotope problem can be solved easily enough (Lifshitz 1956, Takeno 1963) but, once changes in force constants are introduced, the labour required to obtain an exact solution increases rapidly. The merit of using an approximate method is that more complicated models can be used and the effect of changes in the details of a model investigated more easily. A pair of isotopes is the only lattice defect (apart from a single isotope) for which an exact solution of the scattering problem has been given (Takeno 1963).
solution of Schrödinger's equation for a spherical potential well. The procedure used for the loaded continuum to avoid such singularities may be employed to show that

$$
\begin{equation*}
\left\{\cot \eta_{\mathrm{t}}-\frac{\mathrm{n}_{\mathrm{l}}\left(\kappa R_{\mathrm{s}}\right)}{\mathrm{j}_{\mathrm{i}}\left(\kappa R_{\mathrm{s}}\right)}\right\}^{-1} \frac{\mathrm{j}_{\mathrm{l}}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\left|\mathbf{k}+\mathbf{g}^{\prime}\right| R_{\mathrm{s}}\right)}{\mathrm{j}_{t^{2}\left(\kappa R_{\mathrm{s}}\right)}} \tag{A20}
\end{equation*}
$$

in (A18) can be replaced by

$$
\begin{equation*}
\left\{\cot \eta_{l}-\frac{\mathrm{n}_{t}{ }^{\prime}\left(\kappa R_{\mathrm{s}}\right)}{\mathrm{j}_{l}^{\prime}\left(\kappa R_{\mathrm{s}}\right)}\right\}^{-1} \frac{\mathrm{j}_{l}{ }^{\prime}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) \mathrm{j}_{l}{ }^{\prime}\left(\mathbf{k}+\mathbf{g}^{\prime} \mid R_{\mathrm{s}}\right)}{\mathrm{j}_{l}^{\prime 2}\left(\kappa R_{\mathrm{s}}\right)} \tag{A21}
\end{equation*}
$$

whenever it is convenient.
Returning to the loaded continuum equations (A15), if all the coefficients except α_{k} are assumed to be zero, then we find that the long-wavelength form for $\omega^{2}(\mathbf{k})$ is

$$
\begin{equation*}
\omega^{2}(\mathbf{k})=\frac{\mu}{D}\left(1+\frac{v}{\Delta}\right)|\mathbf{k}|^{2} . \tag{A22}
\end{equation*}
$$

This result contradicts equation (27). The reason is that it is not possible to ignore higher Fourier coefficients, even for long waves, despite the fact that α_{k} is much larger than the other terms. This can be seen by setting $\mathbf{g}=0 \mathrm{in}$ (A15) and writing

$$
\begin{equation*}
\Gamma_{00}-|\mathbf{k}|^{2}=\frac{1}{\alpha_{\mathbf{k}}} \sum_{\mathbf{g}^{\prime} \neq 0} \alpha_{\mathbf{k}+\mathbf{g}^{\prime}} \Gamma_{0 \mathbf{g}^{\prime}} \tag{A23}
\end{equation*}
$$

If the right-hand side of (A23) can be neglected then (A22) is obtained, but, in fact, $\alpha_{\mathbf{k}-\mathrm{g}} / z_{\mathbf{k}}$ is of the order \mathbf{k} from (A6), and $\Gamma_{0 \mathrm{~g}}$ is of the order $|\mathbf{k}|$. This means that the right-hand side of (A23) is of the order $|\mathbf{k}|^{2}$ and cannot be neglected. This seems to be a peculiarity of the elastic wave equation and not a defect of the method.

References

Edwards, S. F., 1958, Phil. Mag., 3, 1020-31.

- 1965, Proc. Phys. Soc., 85, 1-25.

Foldy, L. L., 1945, Phys. Rev., 67, 107-19.
Hand, F. S., and Segall, B., 1961, Phys. Rev., 124, 1786-96.
Kohn, W., and Rostoker, N., 1954, Phys. Rev., 94, 1111-20.
Korringa, J., 1947, Physica, 13, 392-400.
Landat, L. D., and Lifshitz, E. M., 1959, Theory of Elasticity (Oxford: Pergamon Press).
Lax, M., 1951, Rev. Mod. Phys., 23, 287-310.
Lloyd, P., 1967, Proc. Phys. Soc., 90, 217-31.
Morgan, G. J., 1966, Proc. Phys. Soc., 89, 365-71.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics II (New York: McGraw-Hill). Phariseal, P., and Ziman, J. M., 1963, Phil. Mag., 8, 1487-501.
Segall, B., and Ham, F. S., 1961, Tables of Structure Constants for Energy Band Calculations with the Green Function Method, General Electric Rep., No. 61-RL-(2876G).
Waterman; P. C., and Truell, R., 1961, J. Math. Phys., 2, 512-37.
Ziman, J. M., 1965 a, Nature, Lond., 206, 1187-92.

- 1965 b, Proc. Phys. Soc., 86, 337-53.
- 1966, Proc. Phys. Soc., 88, 387-405.

Variation of ρ with $x:(a) Q=1$; (b) $Q=-1$; (c) $Q=-10$; broken lines correspond to the approximate solutions, and full lines correspond to the exact solutions.

Two directions of the incident wave are considered: A, when \mathbf{k} is the same direction as the line joining the two isotopes and B , when \mathbf{k} is normal to this line. For case B the variational answer is exact. The exact solutions given by Takeno (1963) are also plotted and a sketch of the fractional error is given. For $Q=1$ the maximum fractional error is about $0 \cdot 1$, while for $Q=-1$ and $Q=-10$ where resonance occurs the error rises to about 0.3.

The variational approximation, therefore, gives quite reasonable accuracy using the unperturbed solutions as trial functions even when resonant scattering occurs. It is suggested that the errors involved in a variational calculation of the scattering from other localized defects will not be very different from those found for a pair of isotopes.

Zenith Radio Research Corporation (U.K.) Ltd., Stanmore, Middx.

Lifshitz, I. M., 1956, Nuovo Cim. (Suppl.), 3, 716-34.
Lippmann, B. A., and Schwinger, J., 1950, Phys. Rev., 79, 469-80.
Takeno, S., 1963, Progr. Theor. Phys., Japan, 29, 191-205.
Yussouff, M., and Mahanty, J., 1965, Proc. Phys. Soc., 85, 1223-35.

The equation of motion for a perfect lattice can be written symbolically as (Takeno 1963)

$$
\left(\omega^{2}-L\right) \mathbf{u}(l)=0
$$

where $\mathbf{u}(l)$ is the displacement of the l th atom. The scattering of a perfect lattice wave $\mathbf{u}_{\mathrm{k} i}{ }^{\circ}(l)$ of frequency ω is described by the equation

$$
\mathbf{u}_{\mathbf{k}^{j}}(l)=\mathbf{u}_{\mathbf{k} j^{\prime}}{ }^{0}(l)+\sum_{l} \mathbf{G}_{i(j}\left(l, l^{\prime}\right) \cdot V \mathbf{u}_{\mathbf{k} j^{j}}\left(l^{\prime}\right)
$$

where V is an operator symbolizing a perturbation to the perfect lattice and $\mathbf{G}_{o}\left(l, l^{\prime}\right)$ is a Green dyadic. The important quantity to determine is

$$
M\left(\mathbf{k} j, \mathbf{k}^{\prime} j^{\prime}\right)=\sum_{l} \mathbf{u}_{\mathbf{k}^{\prime} j^{\prime}}{ }^{\mathrm{O} *}(l) \cdot V \mathbf{u}_{\mathbf{k} j}(l)
$$

where $\mathbf{u}_{\mathrm{k}}{ }^{0}(l)$ is a perfect lattice wave having the same frequency as $\mathbf{u}_{\mathrm{k} j}{ }^{0}(l)$. The quantum-mechanical T-matrix element can be written as

$$
T\left(\mathbf{k} j, \mathbf{k}^{\prime} j^{\prime}\right)=\frac{h}{2 \omega} M\left(\mathbf{k} j, \mathbf{k}^{\prime} j\right)
$$

and using the optical theorem the single-mode relaxation time of a system containing n defects per unit volume can be expressed in terms of the imaginary part of M, i.e.

$$
\tau_{\mathrm{s}}^{-1}=-\frac{n}{\omega} \mathscr{I} M(\mathbf{k} j, \mathbf{k} j)
$$

Let $\mathbf{u}_{\mathbf{k} \cdot(}(l)$ denote the solution to

$$
\mathbf{u}_{\mathbf{k}^{\prime} \gamma}(l)=\mathbf{u}_{\mathbf{k}^{\prime} j^{\prime}}(l)+\sum_{l^{\prime}} \mathbf{G}_{\omega}\left(l, l^{\prime}\right) \cdot V \mathbf{u}_{\mathbf{k}^{\prime} \gamma^{\prime}}\left(l^{\prime}\right)
$$

Schwinger's variational method states that
reduces to $M\left(\mathbf{k} j, \mathbf{k}^{\prime} j^{\prime}\right)$ and is stationary when the trial functions $\mathbf{u}_{T \mathbf{k}^{j}}$ and $\mathbf{u}_{T \mathbf{k}^{\prime} j^{\prime}}$ are equal to $\mathbf{u}_{\mathbf{k} j}$ and $\mathbf{u}_{\mathbf{k}^{\prime} j^{\prime}}$. Furthermore, an error $\mathrm{O}(\eta)$ in $\mathbf{u}_{T \mathbf{k}^{j}}$ and $\mathbf{u}_{T \mathbf{k}^{\prime} j^{\prime}}$ leads to an crror $\mathrm{O}\left(\eta^{2}\right)$ in M. Using Schwinger's method M has been calculated for a pair of isotopes in a monatomic simple cubic lattice using a nearest-neighbour model with equal non-central and central spring constants (denoted by γ). This is the only model for which tables of the Green dyadic are available (Yussouff and Mahanty 1965). The only trial functions which have been considered are $\mathbf{u}_{T \mathrm{k} j}=\mathbf{u}_{\mathbf{k} j}{ }^{0}$ and $\mathbf{u}_{T \mathrm{k}^{\prime} j^{\circ}}=\mathbf{u}_{\mathbf{k}^{\prime} j^{\circ}}{ }^{\circ}$. It is found that M is given correctly in the limits of very long and very short waves using these trial functions. It is convenient to write $\tau_{\mathrm{s}}{ }^{-1}$ in the form

$$
\tau_{\mathrm{s}}^{-1}=\frac{2 n}{N}\left(\frac{2 \gamma}{m}\right)^{1 / 2} \rho(x)
$$

where $x=m \omega^{2} / 2 \gamma$ and N is the number of atoms per unit volume. Let

$$
Q=\left(m-m^{\prime}\right) / m
$$

where m is the mass of a host atom and m^{\prime} is the isotope mass. In the figure $p(x)$ is plotted for $Q=1,-1$ and -10 , when the isotopes occupy nearest-neighbour sites.

Reprinted from

Proceedings of the Physical Society

Bloch waves and scattering by impurities

G. J. MORGAN
Zenith Radio Research Corporation (U.K.) Ltd., Stanmore, Middlesex
MS. received 9th June 1966

Abstract

The reciprocal lattice representation of the Green function method used by Ziman in 1965 for calculating band structures is derived. It is shown that the coefficients $\|_{g}$ introduced by Ziman are the Fourier coefficients of the wave function outside the potential wells of a 'muffin tin' lattice. The relationship between the method and the augmented plane wave approach is discussed.

An exact formulation of the problem of Bloch wave scattering from an impurity potential is given. Simple approximations are suggested for tightly bound electrons for nearly free electrons and for d-band electrons.

1. The Green function method

The Green function method for electronic band structure has been developed by various authors (Korringa 1947, Kohn and Rostoker 1954, Ham and Segall 1961). It is assumed there that the potential wells of a lattice can be considered as spherically symmetric and that the potential in between the wells is zero. Let R_{s} denote the cut-off radius of the spherical wells. The wave function $\psi(\rho)$ must satisfy a condition

$$
\begin{equation*}
\int\left\{\mathrm{G}\left(\rho, \rho^{\prime}\right) \frac{\partial}{\partial \rho^{\prime}} \psi\left(\rho^{\prime}\right)-\psi\left(\rho^{\prime}\right) \frac{\partial}{\partial \rho^{\prime}} \mathrm{G}\left(\rho, \rho^{\prime}\right)\right\}_{\rho^{\prime}=R_{-}-c} d \Omega\left(\rho^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

where $G\left(\rho, \rho^{\prime}\right)$ is the Greenian (Ziman 1965), ϵ is an infinitesimal positive quantity and $\rho<R_{\mathrm{s}}-\epsilon$. Let $\mathscr{R}_{1}(\rho)$ denote a solution to the radial Schrödinger equation for a single potential well, with energy $E=\kappa^{2}$ and $\mathscr{V}_{L}(\theta, \phi)$ denote a real normalized spherical harmonic. It may be assumed that

$$
\begin{align*}
\psi(\rho) & =\sum_{L} i^{l} \alpha_{L} \mathscr{R}_{l}(\rho) \mathscr{Y}_{L}(\theta, \phi) \quad\left(\rho \leqslant R_{\mathrm{s}}\right) \\
& =\sum_{L} \frac{i^{i} \beta_{L} \mathscr{R}_{l}(\rho) \mathscr{Y}_{L}(\theta, \phi)}{\left[\mathscr{R}_{l}, \mathrm{j}_{l}\right]} \tag{2}
\end{align*}
$$

with the usual notation for the spherical Bessel functions and with

$$
\begin{equation*}
[g, f]=g\left(R_{\mathrm{s}}\right) \frac{d}{d R_{\mathrm{s}}} f\left(R_{\mathrm{s}}\right)-f\left(R_{\mathrm{s}}\right) \frac{d}{d R_{\mathrm{s}}} g\left(R_{\mathrm{s}}\right) . \tag{3}
\end{equation*}
$$

Kohn and Rostoker (1954) have shown that the coefficients satisfy the equation

$$
\begin{equation*}
\sum_{L^{\prime}} \beta_{L^{\prime}}\left\{B_{L L^{\prime}}+\kappa\left(\cot \eta_{l}-i\right) \delta_{L L^{\prime}}\right\}=0 . \tag{4}
\end{equation*}
$$

η_{I} is the l th phase shift for a potential well and the $B_{L L^{\prime}}$ are structure constants. It has recently been shown (Ziman 1965) that the equation for the β_{L} can be transformed to a reciprocal lattice representation and effective matrix elements of the lattice potentials can be defined. This will now be derived in a less abstract manner but with less generality.

The wave function outside the spherical wells can be expanded in terms of plane waves, i.e.

$$
\begin{equation*}
\psi_{\mathbf{k}}(\rho)=\sum_{\mathbf{g}} \alpha_{\mathbf{k}+\boldsymbol{g}} \exp \{i(\mathbf{k}+\mathbf{g}) \cdot \rho\} \tag{5}
\end{equation*}
$$

The coefficients in this Fourier expansion are not unique because the sum is required to converge to the correct answer only in a restricted region of space (Ham and Segall 1961). The expansion (5) must be matched to the expansion (2) which is valid for $\rho \leqslant R_{\mathrm{s}}$. Therefore

$$
\begin{equation*}
\left\{\sum_{\mathbf{g}} \alpha_{\mathbf{k}+\mathbf{g}} \exp \{i(\mathbf{k}+\mathbf{g}) \cdot \rho\}=\sum_{L} \frac{i^{\ell} \beta_{L} \mathscr{R}_{l}(\rho) \mathscr{y}_{L}(\theta, \phi)}{\left[R_{l}, \mathrm{j}_{l}\right]}\right\}_{\rho=R_{n}} . \tag{6}
\end{equation*}
$$

Using the orthogonality of the spherical harmonics and the usual expansion of a plane wave in spherical Bessel functions it is found that

$$
\begin{align*}
\beta_{L} & =\sum_{\mathbf{g}} \frac{4 \pi\left[\mathscr{R}_{l}, \mathrm{j}_{l}\right] \mathscr{Y}_{L}(\mathbf{k}+\mathbf{g}) \mathrm{j}_{l}\left(\mathbf{k}+\mathbf{g} \mid R_{\mathrm{s}}\right) \alpha_{\mathbf{k}+\mathbf{g}}}{\mathscr{R}_{l}\left(R_{\mathrm{s}}\right)} \\
& =\sum_{\mathbf{g}} \beta_{L \mathbf{g}} \alpha_{\mathbf{k}+\mathbf{g}} . \tag{7}
\end{align*}
$$

The structure constants $B_{L L^{\prime}}$ may be expressed as (Ziman 1965)

$$
\begin{equation*}
B_{L L^{\prime}}=-\sum_{\mathbf{g}} \frac{F_{L \mathbf{g}} F_{L^{\prime} \mathrm{g}}}{\rho(\mathbf{g})}+\frac{\delta_{L L^{\prime}} i \kappa \mathrm{~h}_{l}\left(\kappa R_{\mathrm{s}}\right)}{\mathrm{j}_{1}\left(\kappa R_{\mathrm{s}}\right)} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{L \mathbf{g}}=\frac{4 \pi N^{1 / 2} \mathscr{Y}_{L}(\mathbf{k}+\mathbf{g}) \mathrm{j}_{\mathrm{l}}\left(\mathbf{k}+\mathbf{g} \mid R_{\mathrm{s}}\right)}{\mathrm{j}_{l}\left(\kappa R_{\mathrm{s}}\right)} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(\mathbf{g})=\mathbf{k}+\left.\mathbf{g}\right|^{2}-\kappa^{2} . \tag{10}
\end{equation*}
$$

N is the number of atoms in the lattice. If we substitute for the coefficients β_{L} in terms of the plane wave amplitudes in the Kohn-Rostoker equation (4), it is found that

$$
\begin{equation*}
\sum_{\mathbf{g}} F_{L \mathbf{g}}\left[\sum_{\mathbf{g}^{\prime}} \alpha_{\mathbf{k}+\mathbf{g}^{\prime}}\left\{\sum_{L^{\prime}} \frac{-\tan \eta_{l}^{\prime} F_{L^{\prime} \mathbf{g}} F_{L^{\prime} \mathbf{g}^{\prime}}}{\rho(\mathbf{g})_{\kappa}}+\delta_{\mathbf{g} \mathbf{g}^{\prime}}\right\}\right]=0 . \tag{11}
\end{equation*}
$$

This form is obtained by using (Morse and Feshbach 1953)

$$
\begin{equation*}
\left[\mathrm{j}_{l}, \mathrm{n}_{l}\right]=\frac{1}{\kappa R_{\mathrm{s}}{ }^{2}} \tag{12}
\end{equation*}
$$

and by defining

$$
\begin{equation*}
\tan \eta_{l}^{\prime}=\left\{\cot \eta_{l}-\frac{\mathrm{n}_{l}\left(\kappa R_{\mathrm{s}}\right)}{\mathrm{j}_{l}\left(\kappa R_{\mathrm{s}}\right)}\right\}^{-1}=\kappa R_{\mathrm{s}}^{2}\left[\mathrm{j}_{l}, \mathrm{n}_{l}\right] \frac{\mathrm{j}_{l}\left(\kappa R_{\mathrm{s}}\right)}{\mathscr{R}_{l}\left(R_{\mathrm{s}}\right)} . \tag{13}
\end{equation*}
$$

Condition (11) will be satisfied for all values of L if

$$
\begin{equation*}
\sum_{\mathbf{g}^{\prime}} \alpha_{\mathrm{k}+\mathbf{g}^{\prime}}\left\{\Gamma_{\mathbf{g g}}+\rho(\mathbf{g}) \delta_{\mathbf{g g}^{\prime},}\right\}=0 \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{\mathbf{g} g^{\prime}}=-\frac{4 \pi N}{\kappa} \sum_{l}(2 l+1) \tan \eta_{l}^{\prime} \frac{\mathrm{j}_{l}\left(|\mathbf{k}+\mathbf{g}| R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\left|\mathbf{k}+\mathbf{g}^{\prime}\right| R_{\mathrm{s}}\right)}{\mathrm{j}_{l}{ }^{2}\left(\kappa R_{\mathrm{s}}\right)} \mathrm{P}_{l}{ }^{0}\left(\cos \theta_{\mathbf{g} \mathbf{g}^{\prime}}\right) \tag{15}
\end{equation*}
$$

and $\theta_{g g}$, is the angle between $\mathbf{k}+\mathbf{g}$ and $\mathbf{k}+\mathbf{g}^{\prime} \cdot \mathrm{P}_{l}{ }^{\circ}\left(\cos \theta_{\mathrm{gg}}\right)$ is a Legendre polynomial.

Equation (14) is similar to the equation

$$
\begin{equation*}
\sum_{g} \gamma_{\mathbf{k}+\boldsymbol{k}^{\prime}}\left\{V_{\mathrm{kg}}+\rho(\mathbf{g}) \delta_{\mathrm{kg}^{\prime},}\right\}=0 \tag{16}
\end{equation*}
$$

which can be obtained by expanding a Bloch wave in plane waves. V_{gg}, is a matrix element of the lattice potential between the states $\mathbf{k}+\mathbf{g}$ and $\mathbf{k}+\mathbf{g}^{\prime}$. Therefore $\Gamma_{\mathbf{g g}}$. can be thought of as an effective matrix element. Equation (14) and the definition of $\Gamma_{\mathrm{gg}^{\prime}}$ are identical with the results obtained by Ziman (1965) when the arbitrary radii R and R^{\prime} occurring in his equation (52) are taken to be R_{s}.
'The significance of replacing R_{s} by a smaller radius is not apparent, nor is the meaning of taking $R \neq R^{\prime}$ in Ziman's equation (52) readily interpretable. R_{s} can, of course, be replaced by any radius between R_{s} and the inscribed sphere radius.

2. The relationship between the Green function method and the augmented plane wave approach

Within a single unit cell a Bloch wave can be constructed from a set of basis functions called augmented plane waves (Slater 1937). These are of the form

$$
\begin{equation*}
\Phi_{\mathbf{k}+\mathbf{g}}(\rho)=H\left(\rho-R_{\mathrm{s}}\right) \exp \{i(\mathbf{k}+\mathbf{g}) \cdot \rho\}+H\left(R_{\mathrm{s}}-\rho\right) \sum_{L} \frac{i^{l} \beta_{L \mathrm{~g}} \mathscr{R}_{l}(\rho)_{M_{L}}(\theta, \phi)}{\left[\mathscr{R}_{l}, \mathrm{j}_{l}\right]} \tag{17}
\end{equation*}
$$

where $H(x)$ is Heaviside's unit function and the $\beta_{L g}$ are defined by equation (7). At $\rho=R_{\mathrm{s}}$ the augmented plane waves are continuous but have a discontinuous normal derivative. A Bloch wave can be expanded in the form

$$
\begin{equation*}
\psi_{\mathbf{k}}(\rho)=\sum_{\mathbf{k}^{\prime}} \alpha_{\mathbf{k}+\mathbf{k}^{\prime}} \Phi_{\mathbf{k}+\mathbf{g}^{\prime}}(\rho) \tag{18}
\end{equation*}
$$

Usual augmented plane wave theory involves calculating the matrix elements of the Hamiltonian between two augmented plane waves. The Green function method, however, is only concerned with that part of an augmented plane wave which lies within a spherical well. If the expansion (18) is substituted into the matching condition (1), ρ^{\prime} is less than R_{s} and the plane wave part of the augmented plane wave is irrelevant. This substitution gives

$$
\begin{equation*}
\sum_{\mathbf{g}^{\prime}} \alpha_{\mathbf{k}+\mathbf{k}^{\prime}}\left(\sum_{L} \beta_{L^{\prime} \mathbf{g}^{\prime}} B_{L L^{\prime}}+\kappa\left(\cot \eta_{t}-i\right) \beta_{L \mathbf{g}^{\prime}}\right\}=0 . \tag{19}
\end{equation*}
$$

From the definition (7) of the $\beta_{L g}$,

$$
\begin{equation*}
\beta_{L \mathrm{~g}}=\frac{\tan \eta_{\mathrm{l}}{ }^{\prime} F_{L \mathrm{~g}}}{\kappa R_{\mathrm{s}}{ }^{2} N^{1 / 2}} . \tag{20}
\end{equation*}
$$

Using the Wronskian (12), equation (19) can be reduced to

$$
\begin{equation*}
\sum_{\mathbf{g}} F_{L \mathbf{g}}\left[\sum_{g^{\prime}} \alpha_{\mathbf{k}+\mathbf{g}^{\prime}}\left\{\sum_{L}-\frac{\tan \eta_{l}^{\prime} F_{L^{\prime}} F_{L^{\prime} \mathbf{g}^{\prime}}}{\rho(\mathbf{g}) \kappa}+\delta_{\mathbf{g g}}\right)\right]=0 \tag{21}
\end{equation*}
$$

which is precisely the same as equation (13). This illustrates that there is no fundamental difference between an expansion in augmented plane waves and the usual Green function method. Every plane wave can be associated with a set of interior functions which are matched at $\rho=R_{\mathrm{s}}$, or each interior function can be matched to a set of plane waves.

The conventional augmented plane wave formulae can be derived by putting the sum (18) into a variational formula which gives the energy of a Bloch state (Slater 1937). By this method the form

$$
\begin{equation*}
\sum_{\mathbf{k}} \alpha_{\mathbf{k}+\mathbf{k}^{\prime}}\left\{\Gamma_{\mathbf{g k}^{\prime}}+\rho(\mathbf{g}) \delta_{\mathbf{k g}^{\prime}}\right\}=0 \tag{22}
\end{equation*}
$$

can be obtained. F_{gg} ' is defined by

$$
\begin{align*}
\Gamma_{\mathrm{kg}}= & +\pi R_{\mathrm{s}}{ }^{2} N\left[-\frac{\left.i(\mathbf{k}+\mathbf{g}) \cdot\left(\mathbf{k}+\mathbf{g}^{\prime}\right)-\kappa^{2}\right\rangle \mathrm{j}_{\mathbf{\prime}}\left(\mathbf{g}-\mathbf{g}^{\prime} \mid R_{\mathrm{s}}\right)}{\left|\mathbf{g}-\mathbf{g}^{\prime}\right|}\right. \\
& \left.+\sum_{\mathrm{l}} \frac{(2 l+1) \mathscr{R}_{l}^{\prime}\left(R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\mathbf{k}+\mathbf{g} \mid R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\left|\mathbf{k}+\mathbf{g}^{\prime}\right| R_{\mathrm{s}}\right) \mathrm{P}_{l}{ }^{0}\left(\cos \theta_{\mathbf{k g}^{\prime}}\right)}{\Re_{l}\left(R_{\mathrm{s}}\right)}\right] \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
\mathscr{R}_{l}^{\prime}\left(R_{\mathrm{s}}\right)=\frac{d}{d R_{\mathrm{s}}} \mathscr{R}_{l}\left(R_{\mathrm{s}}\right) . \tag{24}
\end{equation*}
$$

This definition of the effective matrix element can be compared with that obtained from the Kohn-Rostoker equations by using the relation

$$
\begin{equation*}
\frac{\mathscr{R}_{l}^{\prime}\left(R_{\mathrm{s}}\right)}{\mathscr{R}_{l}\left(R_{\mathrm{s}}\right)}=\frac{\mathrm{j}_{l}{ }^{\prime}\left(\kappa R_{\mathrm{s}}\right)}{\mathrm{j}_{l}\left(\kappa R_{\mathrm{s}}\right)}-\frac{\tan \eta_{l}{ }^{\prime}}{\kappa R_{\mathrm{s}}{ }^{2} \mathrm{j}_{l}{ }^{2}\left(\kappa R_{\mathrm{s}}\right)} \tag{25}
\end{equation*}
$$

which is just the definition of $\tan \eta_{l}{ }^{\prime}$, equation (11). It is found that

$$
\begin{equation*}
\Gamma_{\mathrm{gg}}{ }^{\prime}=\Gamma_{\mathrm{gg}}+\Gamma_{\mathrm{gg}}{ }^{0} \tag{26}
\end{equation*}
$$

where $\Gamma_{g g}{ }^{0}$ is the value of $\Gamma_{g g}{ }^{\prime}$ when $\mathscr{R}_{l}(\rho)=j_{l}(\kappa \rho)$, i.e. it is the value of $\Gamma_{g g^{\prime}}$ for an empty lattice. In general $\Gamma_{\mathbf{g g}}{ }^{0}$ is not zero unless $\kappa^{2}=|\mathbf{k}|^{2}$. This is an example of how different effective matrix elements can yield the same final result if the equations are solved exactly. In contrast with the behaviour of $\Gamma_{g g^{\prime}}, \Gamma_{\mathrm{gg}}$ vanishes for all values of κ and \mathbf{k} for an empty lattice.

3. The scattering of Bloch waves by an impurity

The scattering of a Bloch wave $\psi_{\mathbf{k}}(\rho)$ by a perturbation $V(\rho)$ centred on a perfect lattice site will be considered, where $V(\rho)$ is the difference between an impurity potential and the perfect lattice potential. The transition probability per unit time from \mathbf{k} to \mathbf{k}^{\prime} is given by

$$
\begin{equation*}
P_{\mathbf{k}, \mathbf{k}^{\prime}}=\frac{2 \pi}{\hbar}\left|T_{\mathbf{k}, \mathbf{k}^{\prime}}\right|^{2} \delta\left\{E(\mathbf{k})-E\left(\mathbf{k}^{\prime}\right)\right\} \tag{27}
\end{equation*}
$$

where $T_{\mathrm{k}, \mathrm{k}^{\prime}}$ is the T-matrix element, defined by

$$
\begin{equation*}
T_{\mathbf{k}, \mathbf{k}^{\prime}}=\int \psi_{\mathbf{k}^{\prime}}{ }^{*}(\rho) V(\rho) \psi(\rho) d \rho . \tag{28}
\end{equation*}
$$

$\psi_{\mathbf{k}^{\prime}}(\rho)$ is a Bloch state having the same energy as the initial state $\psi_{\mathbf{k}}(\rho) . \psi(\rho)$ is the solution to the time-independent Schrödinger equation when a wave $\psi_{\mathbf{k}}(\rho)$ is scattered by $V(\rho)$. It will be assumed that the perturbation is spherically symmetric with the same radius R_{s} as the host atoms. The perfect lattice potentials themselves will be slightly altered owing to screening and other effects. A Bloch state will now mean a
state calculated for the 'perfect perturbed' lattice, $T_{\mathrm{k}, \mathrm{k}^{\prime}}$ can be expressed as a surface integral over the volume of the perturbation by using standard methods, i.e.

$$
\begin{equation*}
T_{\mathrm{k}, \mathrm{k}^{\prime}}=R_{n}{ }^{2} \int\left\{\psi_{\mathrm{k}^{*}}{ }^{*}(\rho) \frac{\partial}{\partial \rho} \psi(\rho)-\psi(\rho) \frac{\partial}{\partial \rho} \psi_{\mathbf{k}^{*}}{ }^{*}(\rho)\right\}_{\rho=R_{s}} d \Omega(\rho) \tag{29}
\end{equation*}
$$

$T_{\mathbf{k}, \mathbf{k}}$ will be expressed in terms of the Fourier coefficients of the initial and final Bloch states in the form

$$
\begin{equation*}
T_{\mathrm{k}, \mathbf{k}^{\prime}}=\sum_{\mathrm{kg}} \alpha_{\mathbf{k}^{\prime}}+\mathbf{k}^{\prime} \alpha_{\mathbf{k}+\mathrm{g}} V_{\mathrm{eff}}\left(\mathbf{k}+\mathbf{g}, \mathbf{k}^{\prime}+\mathbf{g}^{\prime}\right) \tag{30}
\end{equation*}
$$

and $V_{\text {off }}\left(\mathbf{k}+\mathbf{g}, \mathbf{k}^{\prime}+\mathbf{g}^{\prime}\right)$ will be defined as an effective matrix element between the states $\mathbf{k}+\mathbf{g}$ and $\mathbf{k}^{\prime}+\mathbf{g}^{\prime}$.

On the surface of, and just outside, the perturbation $\psi_{k}(\rho)$ can be expanded as

$$
\begin{equation*}
\psi_{\mathbf{k}}(\rho)=\sum_{L} i^{l} a_{L}(\mathbf{k})\left\{\mathrm{j}_{l}(\kappa \rho)+i \sin \eta_{l} \exp \left(i \eta_{l}\right) \mathrm{h}_{l}(\kappa \rho)\right\} \mathscr{M}_{L}(\theta, \phi) \tag{31}
\end{equation*}
$$

where the coefficients $a_{L}(\mathbf{k})$ are assumed known, say by a Kohn-Rostoker calculation. Inside the perturbation the wave function will be of the general form

$$
\begin{equation*}
\psi(\rho)=\sum_{L} i^{l} c_{L}(\mathbf{k}) \mathscr{M}_{l}^{1}(\rho) \mathscr{Y}_{L}(\theta, \phi) \quad\left(\rho \leqslant R_{\mathrm{s}}\right) \tag{32}
\end{equation*}
$$

where $\mathscr{R}_{l}^{1}(\rho)$ is a solution of the radial Schrödinger equation for the impurity potential and the c_{L} are to be determined. The scattered wave can be written as

$$
\begin{equation*}
\psi_{\mathrm{s}}(\rho)=\sum_{L} i^{l}\left\{b_{L}(\mathbf{k}) \mathrm{h}_{l}(\kappa \rho)+\sum_{L^{\prime}} T_{L L^{\prime}} b_{L}(\mathbf{k}) \mathrm{j}_{l}(\kappa \rho)\right\} \mathscr{Y}_{L}(\theta, \phi) \tag{33}
\end{equation*}
$$

for ρ just greater than, or equal to, R_{S}. The significance of the matrix $T_{L L}$, is that an outgoing wave $b_{L^{\prime}}(\mathbf{k}) \mathrm{h}_{l^{\prime}}(\kappa \rho)^{\mathscr{Y}} L_{L^{\prime}}(\theta, \phi)$ diverging from the impurity is scattered by the surrounding lattice and produces a wave $T_{L L^{\prime}} b_{L}(\mathbf{k}) \mathrm{j}_{(}(\kappa \rho)^{\mathscr{W}_{L}}(\theta, \phi)$ at the origin. The impurity potential itself is not counted as a scattering centre. The wave function and its normal derivative must be continuous at $\rho=R_{\mathrm{s}}$. This gives
$\left[a_{L}\left\{\mathrm{j}_{l}(\kappa \rho)+i \sin \eta_{l} \exp \left(i \eta_{l}\right) \mathrm{h}_{l}(\kappa \rho)\right\}+b_{L} \mathrm{~h}_{l}(\kappa \rho)+\sum_{L} T_{L L} \cdot b_{L} \mathrm{j}_{l}(\kappa \rho)=c_{L} \mathscr{M}_{l}^{1}(\rho)\right]_{\rho=R_{s}}$
and

$$
\begin{equation*}
\left[\frac{d}{d \rho}\left[a_{L}\left\{\mathrm{j}_{l}(\kappa \rho)+i \sin \eta_{l} \exp \left(i \eta_{l}\right) \mathrm{h}_{l}(\kappa \rho)\right\}+b_{L} \mathrm{~h}_{l}(\kappa \rho)+\sum_{L^{\prime}} T_{L L^{\prime}} b_{L} \mathrm{j}_{l}(\kappa \rho)=c_{L} \mathscr{R}_{l}^{1}(\rho)\right]\right]_{\rho=R_{s}} \tag{35}
\end{equation*}
$$

From (34) and (35) it is found that the coefficients $b_{L}(\mathbf{k})$ satisfy the equation

$$
\begin{equation*}
b_{L}-i \sin \eta_{l}^{\mathrm{i}} \exp \left(i \eta_{l}^{\mathrm{i}}\right) \sum_{L^{\prime}} T_{L L^{\prime}} b_{L^{\prime}}=a_{L}\left\{i \sin \eta_{l}^{\mathrm{i}} \exp \left(i \eta_{l}^{\mathrm{i}}\right)-i \sin \eta_{l} \exp \left(i \eta_{l}\right)\right\} \tag{36}
\end{equation*}
$$

where $\eta_{l}{ }^{1}$ is the l th phase shift for the impurity potential. The coefficients c_{L} are given in terms of the b_{L} by

$$
\begin{equation*}
c_{L}=\frac{i a_{L}\left\{1+\sum_{L^{\prime}} T_{L L} \cdot b_{L^{\prime}} \mid a_{L}\right\}}{\kappa R_{\mathrm{s}}{ }^{2}\left[\mathscr{R}_{l}^{\mathrm{i}}, \mathrm{~h}_{l}\right]} . \tag{37}
\end{equation*}
$$

Using an expression of the form (31) for $\psi_{\mathbf{k}^{\prime}}(\rho)$ and expansion (32) for $\psi(\rho)$ it is found
that

$$
\begin{align*}
T_{\mathbf{k}, \mathbf{k}^{\prime}}= & \kappa^{-1} \frac{\sum}{L} a_{L}^{*}\left(\mathbf{k}^{\prime}\right) a_{L}(\mathbf{k}) \exp \left(i 2 \eta_{l}^{\prime}\right)\left\{1+\frac{\sum_{L} T_{L L^{\prime}} b_{L^{\prime}}}{a_{L L}(\mathbf{k})}\right\} \\
& \times\left\{\sin \eta_{l} \exp \left(-i \eta_{t}\right)-\sin \eta_{l}^{\prime} \exp \left(-i \eta_{l}^{\prime}\right)\right\} . \tag{38}
\end{align*}
$$

If the product $a_{L}^{*}\left(\mathbf{k}^{\prime}\right) a_{L}(\mathbf{k})$ is expressed in terms of the Fourier coefficients of $\psi_{\mathbf{k}^{*}}$ and ψ_{k}, then

$$
\begin{align*}
& V_{\mathrm{ecf}}\left(\mathbf{k}+\mathbf{g}, \mathbf{k}^{\prime}+\mathbf{g}^{\prime}\right) \\
& \qquad \begin{array}{l}
=\frac{(4 \pi)^{2}}{\kappa} \sum_{L} \frac{\tan ^{2} \eta_{l}^{\prime}}{\sin ^{2} \eta_{l}} \exp \left(i 2 \eta_{l}^{\prime}\right) \dot{\left.\sin \eta_{t} \exp \left(-i \eta_{i}\right)-\sin \eta_{l}^{\prime} \exp \left(-i \eta_{l}^{\prime}\right)\right\}\left\{1+\frac{\sum_{L^{\prime}} T_{L L^{\prime}} b_{L^{\prime}}}{a_{L}(\mathbf{k})}\right\}} \\
\quad \times \frac{y_{L}(\mathbf{k}+\mathbf{g}) \dot{y}_{L}\left(\mathbf{k}^{\prime}+\mathbf{g}^{\prime}\right) \mathrm{j}_{t}\left(\mathbf{k}+\mathbf{g} \mid R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\mid \mathbf{k}^{\prime}+\mathbf{g}^{\prime}\left(R_{\mathrm{s}}\right)\right.}{\mathrm{j}_{t}^{2}\left(\kappa R_{\mathrm{s}}\right)} .
\end{array}
\end{align*}
$$

There are two main difficulties in calculating the scattering of Bloch states. Firstly, knowledge of the matrix $T_{L E}$ is required. Other formulations of the problem involve calculating the lattice Green function (Dupree 1961) which requires the evaluation of rather difficult integrals over the Brillouin zone. This difficulty has not been evaded, but phrasing the problem in terms of $T_{L L^{\prime}}$ gives more insight into the scattering process, and simple approximations to $T_{L L^{\prime}}$ can be envisaged more easily. The problem of calculating the Green function is replaced by the problem of determining the scattering by the surrounding lattice of a wave diverging from a lattice point. The second difficulty is solving equations like (36). If a large number of phase shifts are required to describe the scattering, this becomes rather difficult. Some situations will now be considered where simplifications can be introduced.

3.1. Nearly free electrons

A free electron travelling through a metal, with an energy lying in the conduction band, can be scattered very little by a single potential well, and strong reflection occurs only when the electron is Bragg reflected. The same type of behaviour is to be expected for a spherical wave spreading out from a lattice point. If the reflected waves are ignored, i.e. if $T_{L L^{\prime}}$ is put equal to zero, it is found from equation (39) that

$$
\begin{align*}
& V_{\text {eff }}\left(\mathbf{k}+\mathbf{g}, \mathbf{k}^{\prime}+\mathbf{g}^{\prime}\right) \\
& \simeq \frac{4 \pi}{\kappa} \sum_{l}(2 l+1) \frac{\tan ^{2} \eta_{l}^{\prime}}{\sin ^{2} \eta_{t}} \exp \left(i 2 \eta_{l}{ }^{i}\right)\left\{\sin \eta_{t} \exp \left(-i \eta_{t}\right)-\sin \eta_{l}^{1} \exp \left(-i \eta_{l}{ }^{1}\right)\right\} \\
& \quad \times \frac{\mathrm{j}_{l}\left(\mathbf{k}+\mathbf{g} \mid R_{\mathrm{s}}\right) \mathrm{j}_{l}\left(\mathbf{k}^{\prime}+\mathbf{g}^{\prime} \mid R_{\mathrm{s}}\right)}{\mathrm{j}_{l}{ }^{2}\left(\kappa R_{\mathrm{s}}\right)} \mathrm{P}_{l}{ }^{0}\left(\cos \theta_{\mathbf{k}+\mathbf{g} \cdot \mathbf{k}^{\prime}+\mathbf{g}^{\prime}}\right) \tag{40}
\end{align*}
$$

where $\theta_{\mathbf{k}+\mathbf{g}, \mathbf{k}^{\prime}+\mathbf{g}^{\prime}}$ is the angle between $\mathbf{k}+\mathbf{g}$ and $\mathbf{k}^{\prime}+\mathbf{g}^{\prime}$. The above approximation is especially good when the outgoing waves are weak, because in equation (39) the product $T_{L L}, b_{L}$, is then small. In other words $\psi(\rho)$ can be very nearly matched to the incoming wave alone. It is interesting to compare (40) with the form for $V_{\text {eff }}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)$ suggested by Ziman (1964). This was

$$
\begin{equation*}
V_{e f f}\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \simeq \frac{4 \pi}{\kappa} \sum_{l}(2 l+1)\left\{\sin \eta_{l} \exp \left(i \eta_{l}\right)-\sin \eta_{l}^{i} \exp \left(i \eta_{l}^{\mathrm{i}}\right)\right\} \mathrm{P}_{l}^{0}\left(\cos \theta_{\mathbf{k} \cdot \mathbf{k}^{\prime}}\right) \tag{41}
\end{equation*}
$$

Equation (40) reduces to this when $\sin \eta_{t}$ and $\sin \eta_{t}{ }^{i}$ are small and $\kappa^{2} \simeq|\mathbf{k}|^{2}$. For an outgoing wave with an energy close to the band edge, coherent reflection will occur. This effect should be of secondary importance if the outgoing wave is weak. $T_{L L^{\prime}}$ could be calculated approximately by ignoring multiple scattering effects, but even this simplification would involve quite a considerable amount of computation.

3.2. Tightly bound electrons

'The transition probability from \mathbf{k} to \mathbf{k} ' for tightly bound electrons is not as important a problem as for electrons which can participate in electrical conduction. However, it is interesting to note that equation (40) is also a good approximation in this situation. This is because the energy of these states is negative. 'The outgoing waves now decay rapidly, and in consequence barely reach the surrounding lattice. This conclusion can also be obtained by using the tight-binding approximation for the lattice Green function given by Beeby and Edwards (1963).

3.3. d-band electrons

The most interesting and apparently most difficult situation is when an electron band crosses a resonant d level as in the noble metals. A free electron introduced into the lattice with these energies can be scattered strongly by a single potential well. However, if an impurity potential is introduced which has phase shifts $\eta_{t}{ }^{1}$ close to the unperturbed η, then the scattered wave must be weak and the remarks made in $\S 3.1$ will be valid. Even in this extreme case, (40) should provide a reasonable estimate of the scattering.

When the outgoing waves are not weak and the lattice reflects strongly it is difficult to construct a simple approximation. It is suggested that $T_{L L^{\prime}}$ might be calculated approximately by considering only the scattering from the nearest neighbours of the impurity. The outgoing wave may be 'trapped' in the region of the impurity if the scattering from the surrounding atoms is large.

Acknowledgments

I am grateful to Professor J. M. Ziman for suggesting this problem and for generous advice.

References

Beeby, J. L., and Edwards, S. F., 1963, Proc. Roy. Soc. A, 274, 395-12.
Dupree, T. H., 1961, Ann. Phys., N.Y., 15, 63-78.
Ham, F. S., and Segall, B., 1961, Phys. Rev., 124, 1786-96.
Kohn, W., and Rostoker, N., 1954, Phys. Rev., 94, 1111-20.
Korringa, J., 1947, Physica, 13, 392-400.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics (New York: McGrawHill), p. 1573.
Slater, J. C., 1937, Phys. Rev., 51, 846-51.
Ziman, J. M., 1964, Advanc. Phys., 13, 89-137.

- 1965, Proc. Phys. Soc., 86, 337-53.

