```
            ROYAL HOLLOWAY COLLEGE
            ( UNIVERSITY OF LONDON )
                SOME DIOPHANTINE EQUATIONS
            A THESIS SUBMITTED
            BY
```



```
MANORANJITHAM VELUPPILLAI
IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
Department of Mathematics
Royal Holloway College
Egham, Surrey, England

ProQuest Number: 10097852

All rights reserved

\section*{INFORMATION TO ALL USERS}

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 10097852
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

\section*{CONTENTS}
ABSTRACT ..... 1
ACKNOWLEDGEMENTS ..... 3
NOTATIONS, DEFINITIONS; AND PREREQUISITES ..... 4
CHAPTER 1 ..... 6
CHAPTER 2 ..... 59
CHAPTER 3 ..... 78
CHAPTER 4 ..... 83
BIBLIOGRAPHY ..... 96

\section*{ABSTRACT}

For positive integers \(x, y\), the equation \(x^{4}+\left(n^{2}-2\right) x^{2} y^{2}\) \(+y^{4}=z^{2}\) always has the trivial solution \(x=y\). In Chapter 1 , we discuss the conditions under which the above equation cannot have any non-trivial solutions in positive integers. We also prove that if the above equation has no non-trivial solutions, then the \(1^{\text {st }}\), \(3^{\text {rd }},(n+1)^{\text {th }},(n+3)^{\text {th }}\) terms of an arithmetical progression cannot each be square.

In Chapter 2, we prove that any set of positive integers, with the property that the product of any two integers increased by 2 is a perfect square, can have at most three elements. We. also prove that there exist infinitely many sets of four positive integers with the property that the product of any two increased by 1 is a perfect square. Although in general we could not prove that a fifth integer cannot be added to these sets without altering the property, we prove it for a particular set \(\{2,4,12,420\}\). We also give an algebraic formula to find the fourth member of the set, if any three members are given.

In Chapter 3, we prove that the only positive integer solutions of the equation \((x(x-1))^{2}=3 y(y-1)\) are \((x, y)=(1,1) \&\) \((3,4)\).

In Chapter 4, we prove that the only positive integer solution of the equation \(3 y(y+1)=x(x+1)(x+2)(x+3)\) is \((x, y)\) \(=(12,104)\).

The results of this thesis are, to the best of my knowledge original and my own, except for Theorem 1.1 (Chapter 1) \& Theorem
2.4 (Chapter 2), which have been proved by my Supervisor.

Chapter 3 has been published in the Glasgow Mathematical Journal, Volume 17, Part 2, July 1976.

\section*{ACKNOWLEDGEMENTS}

I wish to thank Dr J.H.E. Cohn, Reader in Mathematics, Royal Holloway College, for his supervision during this research, and for providing the initial opportunity to do it.

While preparing this thesis I was financed by a Tutorial Research Studentship provided by Royal Holloway College. I would like to thank Professor H.G. Eggleston, Head of the Mathematics Department, Royal Holloway College, whose support, together with that of my supervisor, helped me to obtain this Studentship.

I am grateful to all the members of the Mathematics Department, Royal Holloway College, who have made my stay in this country such a happy one.

Finally, I would like to thank the Vice-Chancellor, University of Ceylon, who granted me three years leave to complete this work.

\section*{NOTATIONS, DEFINITIONS, AND PREREQUISITES}

An integer \(a\) is said to be divisible by an integer \(b \neq 0\), if there exists an integer \(c\), such that \(a=b c\). We indicate this by writing \(b \mid a\). We write \(b \nmid a\) to indicate that \(b\) does not divide \(a\). The greatest common divisor of \(a \& b\), denoted by \((a, b)\), is defined to be the largest positive integer which divides both \(a \& b\).

We say that \(a\) is congruent to \(b\) modulo \(m\), if \(m \mid(a-b)\). We express this in symbols as \(a \equiv b(\bmod m)\). We say that \(a\) is a quadratic residue of \(m\) if the congruence \(x^{2} \equiv a(\bmod m)\) is solvable. If this congruence has no solutions, then \(a\) is said to be a quadratic non-residue of \(m\).

For an odd prime \(p\), we define the Legendre symbol as follows:
\((a / p)=+1\), when \(a\) is a quadratic residue of \(p\), \((a / p)=-1\), when \(a\) is a quadratic non-residue of \(p\).

The following relations are valid for this symbol:
\((a / p)=\left(a^{\prime} / p\right)\), when \(a \equiv a^{\prime}(\bmod p)\), \(\left(a a^{\prime} / p\right)=(a / p)\left(a^{\prime} / p\right)\),
\((2 / p)=(-1)^{h}\), where \(h=\frac{1}{2}(p-1) \cdot \frac{1}{2}(p+1)\), \((p / q)(q / p)=(-1)^{h}\), where \(p, q\) are odd primes and \(h=\) \(\frac{1}{2}(p-1) \cdot \frac{1}{2}(p+1)\).

When \(P=p_{1} p_{2}-\cdots p_{\mathrm{m}}\), where \(p_{1}, p_{2}, \cdots p_{m}\) are primes, distinct or not, and \(D\) is an integer prime to \(P\), we define the Jacobi symbol \((D / P)\) as
\[
(D / P)=\left(D / p_{1}\right)\left(D / p_{2}\right) \cdots\left(D / p_{m}\right) .
\]

We also assume the following results:
(i) If \(a b=x^{2}\), with \((a, b)=1\), then \(a=x_{1}^{2}, b=x_{2}^{2}, x=x_{1} x_{2}\),
(ii) If \(d=x^{2}+y^{2}\), with \((x, y)=1\), then \(d\) cannot have a prime factor \(\equiv 3(\bmod 4)\).

\section*{Chapter 1}

Introduction:
Equations of the form \(a x^{4}+b x^{2} y^{2}+c y^{4}=d z^{2}\) have a long history going back to Fermat and Euler [4]. One of Euler's results is that the equation \(x^{4}+14 x^{2} y^{2}+y^{4}\) is not a square if \(x\) and \(y\) are relatively prime and \(x\) is even and \(y\) odd (excluding \(x=0\), \(y=1\) ) or if \(x\) and \(y\) are both odd (excluding \(x=1, y=1\) ). An interesting corollary by Fermat is that there cannot be four squares in arithmetical progression. Pocklington [8] has also discussed the solutions of the equation \(x^{4}+n x^{2} y^{2}+y^{4}=z^{2}\) for certain values of \(n\). Equations of the form,
\[
\begin{equation*}
x^{4}+\left(n^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{1}
\end{equation*}
\]
always have the solution \(x=y\).
In this chapter we shall prove some results concerning the integer solutions of (1).

\section*{Definition:}
(1) is said to have a non-trivial solution if it has a solution \((x, y, z)\) with \(x y\left(x^{2}-y^{2}\right) \neq 0\).

\section*{Theorem 1.1:}

A necessary condition for (1) to have a non-trivial solution when \(n=p\), a prime, is that there exist a factorisation of \(p^{2}-4\) in the form \(r s\) with \((r, s)\) not divisible by any prime \(\equiv 3(\bmod 4)\) satisfying,
either (i) \(r \equiv 1(\bmod 8), r \neq \square, r\) has no prime factor \(\equiv 3(\bmod 4)\)
or (ii) \(r \equiv 3(\bmod 8), r\) has no prime factor \(\equiv 5\) or \(7(\bmod 8)\) and \(s\) has no prime factor \(\equiv 3\) or \(5(\bmod 8)\).

Lemma 1.1
The equation \(x^{2}+y^{2}=z^{2}\), with \((x, y)=1, z>0\) has the solution \(x=X^{2}-Y^{2}, y=2 X Y, z=X^{2}+Y^{2}\), when \(y\) is even.

\section*{Proof of Theorem 1.1:}

When \(n=p\), (1) becomes,
\[
\begin{equation*}
x^{4}+\left(p^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{2}
\end{equation*}
\]

Suppose \((x, y, z)\) is a non-trivial solution of (2), with \(z>0\) and minimal. Then \((x, y)=1\) and in particular at least one of \(x\) and \(y\) must be odd. Without loss of generality, we can assume that \(y\) is odd. Then also \(z\) is odd.

\section*{Case I}
\[
\text { Suppose } x^{2} \equiv y^{2}(\bmod p) \text { and } x \equiv 1(\bmod 2)
\]

Then \(p \mid z\) and we can write (2) as
\[
\begin{equation*}
\left(\frac{x^{2}-y^{2}}{p}\right)^{2}+(x y)^{2}=\left(\frac{z}{p}\right)^{2} \tag{3}
\end{equation*}
\]

Since \((\tilde{w}, y)=1\), we have, \(\left(\frac{x^{2}-y^{2}}{p}, x y\right)=1\). Hence by lemma l.l.l, we must have for integers \(X, Y\)
\[
x y=X^{2}-y^{2}
\]

Then, \(\left(\frac{x^{2}+y^{2}}{2}\right)^{2^{2}-y^{2}=2 p X Y .}=p^{2} X^{2} Y^{2}+\left(X^{2}-Y^{2}\right)^{2}=X^{4}+\left(p^{2}-2\right) X^{2} y^{2}+Y^{4}\).
Since \(\frac{x^{2}+y^{2}}{2}<z\) and \(X Y\left(X^{2}-y^{2}\right) \neq 0\), descent applies.
Hence this case is impossible.

\section*{Case II}

Suppose \(x^{2} \equiv y^{2}(\bmod p)\) and \(x \equiv 0(\bmod 2)\).
Then again we have (3) and now,
\[
\begin{aligned}
x y & =2 X Y \\
x^{2}-y^{2} & =p\left(X^{2}-Y^{2}\right)
\end{aligned}
\]

Now, \(\left(x^{2}+y^{2}\right)^{2}=p^{2}\left(X^{2}-Y^{2}\right)^{2}+16 X^{2} Y^{2}\).
\[
=Z^{4}+\left(p^{2}-2\right) Z^{2} m^{2}+m^{4}, \text { where } Z=X+Y, m=|X-Y|
\]

Since \(x^{2}+y^{2}<z\) and \(Z m\left(z^{2}-m^{2}\right)=4 X Y\left|X^{2}-Y^{2}\right| \neq 0\), descent applies. Hence this case is impossible.

\section*{Case III}

Suppose \(x^{2} \neq y^{2}(\bmod p)\).
We can write (2) as,
\[
\left(2 x^{2}+\left(p^{2}-2\right) y^{2}\right)^{2}-y^{4} p^{2}\left(p^{2}-4\right)=4 z^{2}
\]

Hence, \(p^{2}\left(p^{2}-4\right) y^{4}=\left(2 x^{2}+\left(p^{2}-2\right) y^{2}+2 z\right)\left(2 x^{2}+\left(p^{2}-2\right) y^{2}-2 z\right)\),
\[
=A \cdot B, \text { say }
\]

Now, let \(q\) be a prime dividing ( \(A, B\) ).
Then, \(q \mid A B\) and \(q \mid A+B\).
i.e \(q \mid p^{2}\left(p^{2}-4\right) y^{4}\) and \(q \mid 2 x^{2}+\left(p^{2}-2\right) y^{2}\).

Now, \(q \nmid y\), since \(q|y \rightarrow q| x\), which is impossible as \((x, y)=1\).
Also \(q \neq p\), since \(q=p\) would imply that \(p \mid\left(x^{2}-y^{2}\right)\).
Hence \((A, B)^{2} \mid\left(p^{2}-4\right)\), and so \((A, B)^{2} \mid\left(x^{2}+y^{2}\right)\).
Since \((x, y)=1, A\) and \(B\) cannot have a prime factor \(\equiv 3(\bmod 4)\) in
common. Thus we have,
\[
\begin{align*}
& 2 x^{2}+\left(p^{2}-2\right) y^{2} \pm 2 z=p^{2} R c^{4}  \tag{4}\\
& 2 x^{2}+\left(p^{2}-2\right) y^{2} \mp 2 z=S d^{4} \tag{5}
\end{align*}
\]
where \(y=c \dot{d}, R_{S}=p^{2}-4, R \& S\) have no prime factor \(\equiv 3(\bmod 4)\) in common, and \((p c, d)=1\).
\((4)+(5) \rightarrow 4 x^{2}=p^{2} R c^{4}-2\left(p^{2}-2\right) c^{2} d^{2}+S d^{4}\),
\(=\left(R c^{2}-d^{2}\right)\left(p^{2} c^{2}-S d^{2}\right)\),
= C.D, say.
Now, \(D-S C=4 c^{2}, R D-p^{2} C=4 d^{2}\). Since \((c, d)=1\), we have
\((C, D) \mid 4\). Hence we have to consider the following cases:

\section*{Case IIIa}

Suppose \(R \equiv 1(\bmod 8)\).
Then \(S \equiv 5(\bmod 8), C \equiv 0(\bmod 8), D \equiv 4(\bmod 8)\).
Thus we must have
\[
\begin{aligned}
& C=R c^{2}-d^{2}= \pm 16 x_{1}^{2} \\
& D=p^{2} c^{2}-S d^{2}= \pm 4 x_{2}^{2} \\
& x=4 x_{1} x_{2}
\end{aligned}
\]

Then \(c^{2}=\frac{1}{4}(D-S C)= \pm\left(x_{2}^{2}-4 C x_{1}^{2}\right)\) and so the minus sign is impossible. Thus,
\[
R c^{2}=d^{2}+16 x_{1}^{2}
\]

Since \(x_{1}|x, d| y\), we must have \(\left(d, x_{1}\right)=1\) and hence \(R\) cannot have a prime factor \(\equiv 3(\bmod 4)\).
Suppose \(R=\square\), say \(R_{1}\). Then we should have
\(d=X^{2}-Y^{2}, 2 x_{1}=X Y, R_{1} c=X^{2}+Y^{2}\).
But then \(4 R_{1}^{2} x_{2}^{2}=p^{2} R_{1}^{2} c^{2}-R S d^{2}\),
\[
\begin{aligned}
& =p^{2}\left(X^{2}+Y^{2}\right)^{2}-\left(p^{2}-4\right)\left(X^{2}-Y^{2}\right)^{2}, \\
& =4 X^{4}+4\left(p^{2}-2\right) X^{2} y^{2}+4 Y^{4} . \\
\text { i.e } \quad\left(R_{1} x_{2}\right)^{2} & =X^{4}+\left(p^{2}-2\right) X^{2} Y^{2}+Y^{4} . \\
\text { Since }\left(R_{1} x_{2}\right)^{2} & =R x_{2}^{2}<\left(p^{2}-4\right) x^{2}<z^{2} \text { and } X Y\left(X^{2}-Y^{2}\right) \neq 0,
\end{aligned}
\]
descent applies. Thus \(R \neq \square\).
Thus, taking \(R=r, S=s\), we see that this case is impossible if condition (i) does not hold.

\section*{Case IIIb}

Suppose \(R \equiv 5(\bmod 8)\).
Then \(S \equiv 1(\bmod 8), C \equiv 4(\bmod 8), D \equiv 0(\bmod 8)\).
Thus,
\[
\begin{aligned}
& C=R c^{2}-d^{2}= \pm 4 x_{1}^{2} \\
& D=p^{2} c^{2}-s d^{2}= \pm 16 x_{2}^{2} \\
& x=4 x_{1} x_{2}
\end{aligned}
\]

Then \(c^{2}= \pm\left(4 x_{2}^{2}-S x_{1}^{2}\right)\) and hence the plus sign is impossible modulo 4. Thus \(S d^{2}=p^{2} c^{2}+16 x_{2}^{2}\). Since \(\left(p c, x_{2}\right)=1, S\) cannot have a prime factor \(\equiv 3(\bmod 4)\). Suppose \(S:=\square, S_{1}^{2}\), say. Then we showld have \(S_{1} d=X^{2}+Y^{2}, p c=X^{2}-Y^{2}, 2 x_{2}=X Y\), and then, \(\left(S_{1} x_{1}\right)^{2}=\frac{1}{4} S_{1}^{2}\left(d^{2}-R c^{2}\right)\),
\[
\begin{aligned}
& =\frac{1}{4}\left(X^{2}+Y^{2}\right)^{2}-\frac{1}{4}\left(\frac{p^{2}-4}{p^{2}}\right)\left(X^{2}-Y^{2}\right) \\
& =X^{2} Y^{2}+\left(\frac{X^{2}-Y^{2}}{p}\right)^{2}
\end{aligned}
\]

Thus, \(X Y=2 \lambda \mu, X^{2}-Y^{2}=\left(\lambda^{2}-\mu^{2}\right),\left(X^{2}+Y^{2}\right)^{2}=p^{2}\left(\lambda^{2}-\mu^{2}\right)^{2}\)
\(+16 \lambda^{2} \mu^{2}\).
Putting \(\lambda+\mu=\tau, \lambda-\mu=m\), we have,
\[
\begin{aligned}
\left(X^{2}+Y^{2}\right) & =p^{2} Z^{2} m^{2}+\left(z^{2}-m^{2}\right)^{2} \\
& =Z^{4}+\left(p^{2}-2\right) z^{2} m^{2}+m^{4}
\end{aligned}
\]

Since, \(\left(X^{2}+y^{2}\right)^{2}=S d^{2}<\left(p^{2}-4\right) y^{2}<z^{2}\) and \(Z_{m}\left(Z^{2} m^{2}\right) \neq 0\), descent applies. Thus \(S \neq \square\).

Hence, taking \(R=s, S=r\), we see that this case is impos-
sible if condition (i) does not hold.

\section*{Case IIIc}

Suppose \(R \equiv 3(\bmod 8)\).
Then \(S \equiv 7(\bmod 8), C \equiv 2(\bmod 8), D \equiv 2(\bmod 8)\).

Hence we should have,
\[
\begin{aligned}
& C=R c^{2}-d^{2}=2 x_{1}^{2}, \\
& D=p^{2} c^{2}-S d^{2}=2 x_{2}^{2} \text {, } \\
& x=x_{1} x_{2} . \\
& \text { We see that (6) \& (7) cannot hold simultaneously if } \\
& R \text { has a prime factor } \equiv 5 \text { or } 7(\bmod 8) \text { or } S \text { has a prime }
\end{aligned}
\]

Suppose \(R \equiv 7(\bmod 8)\)
Then \(S \equiv 3(\bmod 8), C \equiv 6(\bmod 8), D \equiv 6(\bmod 8)\).
Hence we should have,
\[
\begin{aligned}
-C & =d^{2}-R c^{2}=2 x_{1}^{2} \\
-D & =S d^{2}-p^{2} c^{2}=2 x_{2}^{2} \\
x & =x_{1} x_{2}
\end{aligned}
\]

Now, (8) .\& (9) cannot hold simultaneously if \(R\) has a prime factor \(\equiv 3\) or \(5(\bmod 8)\) or \(S\) has a prime factor \(\equiv 5\) or \(7(\bmod 8)\).

Thus taking \(R=s, S=r\) we see that this case is impossible if condition (ii) does: not hold.

Hence the theorem.

Theorem 1.2:
The equation (1) has no non-trivial solutions if \(n=2 P\), where \(p\) is a prime such that \(p \equiv \pm 3(\bmod 8)\) and \(p^{2}-.1\) has no prime factor \(\equiv 1(\bmod 4)\).

To prove this theorem, we use principally lemma 1.1, and.

\section*{Lemma 1.2:}
\[
\text { If } x y=u v, \text { then } x=\alpha \beta, y=\gamma \delta, u=\alpha \gamma, v=\beta \delta .
\]
(The proofs of both lemmas can be found in Pocklington [81).

\section*{Proof of Theorem 1.2:}

When \(n=2 p\), (1) becomes,
\[
\begin{equation*}
x^{4}+\left(4 p^{2}-2\right) x^{2} y^{2}+y^{4}=z \tag{10}
\end{equation*}
\]

Suppose ( \(x, y, z\) ) is a non-trivial solution of (10) with \(z>0\) and minimal. Then \((x, y)=1\) and without loss of generality we can assume that \(y\) is odd.

Case I
\[
\text { Suppose } x^{2} \equiv y^{2}(\bmod p) \text { and } x \equiv 1(\bmod 2)
\]

Then we can write (10) as,
\[
\left(\frac{z}{2 p}\right)_{2}=\left(\frac{x^{2}-y^{2}}{2 p}\right)^{2}+x^{2} y^{2}
\]

Since \(\left(\frac{x^{2}-y^{2}}{2 p}, x y\right)=1\), and \(x y\) is odd we should have,
\[
\begin{aligned}
x y & =X^{2}-Y^{2} \\
\frac{x^{2}-y^{2}}{2 p} & =2 X Y
\end{aligned}
\]

Then \(\frac{1}{4}\left(x^{2}+y^{2}\right)^{2}=X^{4}+\left(4 p^{2}-2\right) X^{2} Y^{2}+y^{4}\).
Since \(\frac{1}{2}\left(x^{2}+y^{2}\right)<z\), and \(X Y\left(X^{2}-y^{2}\right) \neq 0\), descent applies.
Hence this case is impossible.

\section*{Case II}

Suppose \(x^{2} \equiv y^{2}(\bmod p)\) and \(x \equiv O(\bmod 2)\)
Then \(z\) is odd and we can write (10) as,
\[
\left(\frac{x^{2}-y^{2}}{p}\right)^{2}+4 x^{2} y^{2}=\left(\frac{z}{p}\right)^{2}
\]

Thus, we have,
\[
\begin{equation*}
\left(\frac{x^{2}-y^{2}}{p}\right)^{2}=X^{2}-Y^{2} \tag{11}
\end{equation*}
\]

By lemma l.2, (12) \(\rightarrow x=\alpha \beta, y=\gamma \delta, X=\alpha \gamma, Y=\beta \delta\), where \(\alpha, \beta, \gamma, \delta\) are integers.

Now, suppose \(p \equiv 3(\bmod 8)\). Then \(X\) is odd and \(Y\) is even. Hence
\(\beta\) is even \(\alpha, \gamma, \delta\) are odd.
Then (11) \(\rightarrow \alpha^{2} \beta^{2}-\gamma^{2} \delta^{2}=p\left(\alpha^{2} \gamma^{2}-\beta^{2} \delta^{2}\right)\).
Hence, \(\beta^{2}-1 \equiv 3\left(1-\beta^{2}\right)(\bmod 8)\).
i.e \(4\left(\beta^{2}-1\right) \equiv 0(\bmod 8)\), which is impossible as \(\beta\) is even.

Next suppose that \(p \equiv-3(\bmod 8)\).
Then \(X\) is even, \(Y\) is odd. So, in this case \(\alpha\) is even, \(\beta, \gamma, \delta\)
are odd. Thus we have, \(\alpha^{2}-1 \equiv-3\left(\alpha^{2}-1\right)(\bmod 8)\).
i.e, \(4\left(\alpha^{2}-1\right) \equiv 0(\bmod 8)\), which is impossible as \(\alpha\) is even.

Hence case II is impossible.

\section*{Case III}
\[
\text { Suppose } x^{2} \not \equiv y^{2}(\bmod p) \text { and } x \equiv 1(\bmod 2)
\]

Now, \((10) \rightarrow\left(x^{2}+\left(2 p^{2}-1\right) y^{2}+z\right)\left(x^{2}+\left(2 p^{2}-1\right) y^{2}-z\right)=4 p^{2}\left(p^{2}-1\right) y^{4}\). Let \(A=x^{2}+\left(2 p^{2}-1\right) y^{2}+z, B=x^{2}+\left(2 p^{2}-1\right) y^{2}-z\).

Then \(4 \mid A\) and \(4 \mid B\). In fact \(2^{2} \|(A, B)\).
Suppose an odd prime \(q \mid(A, B)\). Then \(q|z, q| x^{2}+\left(2 p^{2}-1\right) y^{2}\) and \(q^{2} \mid p^{2}\left(p^{2}-1\right) y^{4}\).

Now, \(q|y \rightarrow q| x\), which is impossible since \((x, y)=1\). So \(q \nmid y\). \(q=p \rightarrow x^{2} \equiv y^{2}(\bmod p)\), which is impossible. Hence \(q \neq p\). Thus \(q^{2}\left|\left(p^{2}-1\right) \rightarrow q\right|\left(x^{2}+p^{2} y^{2}\right)\). But since \(p^{2}-1\) has no prime factor \(\equiv 1(\bmod 4)\), this is impossible.

Thus \((A, B)=4\).
Hence we should have,
either
\[
\begin{aligned}
& x^{2}+\left(2 p^{2}-1\right) y^{2}+z=4 p^{2} R c^{4}, \\
& x^{2}+\left(2 p^{2}-1\right) y^{2}-z=S d^{4},
\end{aligned}
\]
or
\[
\begin{aligned}
& x^{2}+\left(2 p^{2}-1\right) y^{2}+z=4 R c^{4} \\
& x^{2}+\left(2 p^{2}-1\right) y^{2}-z=p^{2} S d^{4}
\end{aligned}
\]
where \(y=c d, R S=p^{2}-1,(p R c, S d)=1\). Also, since \(p^{2} \equiv 9(\bmod 16)\)
we have \(R S \equiv 8(\bmod 16)\). Hence \(R\) is odd and \(2^{3}| | S\).
So we have,
either
\(2 x^{2}=4 p^{2} R c^{4}-2\left(2 p^{2}-1\right) c^{2} d^{2}+5 d^{4}\),
or
\(2 x^{2}=4 R c^{4}-2\left(2 p^{2}-1\right) c^{2} d^{2}+p^{2} S d^{4}\).
i.e , either
\[
2 x^{2}=\left(2 R c^{2}-d^{2}\right)\left(2 p^{2} c^{2}-S d^{2}\right)
\]
or
\[
2 x^{2}=\left(2 R c^{2}-p^{2} d^{2}\right)\left(2 c^{2}-s d^{2}\right)
\]

Hence we should have,
either \(2 R c^{2}-d^{2}= \pm x_{1}^{2}, \quad\) or \(\quad 2 R c^{2}-p^{2} d^{2}= \pm x_{1}^{2}\),
\[
2 p^{2} c^{2}-s d^{2}= \pm 2 x_{2}^{2}, \quad 2 c^{2}-S d^{2}= \pm 2 x_{2}^{2}, \ldots
\]
where \(x=x_{1} x_{2}\).
In both cases the minus sign is impossible modulo 4. Hence we have,
either \(p^{2} c^{2}-\frac{1}{2} S d^{2}=x_{2}^{2}\) or \(c^{2}-\frac{1}{2} S d^{2}=x_{2}^{2}\).
Since \(2^{3} \| S\), both equations are impossible modulo 8.

\section*{Case IV}

Suppose \(x\) is even and \(x^{2} \not \equiv y^{2}(\bmod p)\).
Now, we can write (10) as,
\[
\left(x^{2}-y^{2}\right)^{2}+4 p^{2} x^{2} y^{2}=z^{2}
\]

Since \(\left(x^{2}-y^{2}, x y\right)=1\) and \(p x y\) is even, we should have,
\[
\begin{align*}
x^{2}-y^{2} & =X^{2}-y^{2}  \tag{13}\\
p x y & =X Y \tag{14}
\end{align*}
\]

Since \(x\) is even and \(y\) is odd, we have \(X\) is even and \(Y\) is odd.
(14) \(\rightarrow\) either \(x=\alpha \beta, y=\gamma \delta, X=p \alpha \gamma, Y=\beta \delta\),
\[
\text { or } \quad x=\alpha \beta, y=\gamma \delta, X=\alpha \gamma, Y=p \beta \delta \text {. }
\]

Then \((13) \rightarrow\) either \(\alpha^{2} \beta^{2}-\gamma^{2} \delta^{2}=p^{2} \alpha^{2} \gamma^{2}-\beta^{2} \delta^{2}\), or \(\quad \alpha^{2} \beta^{2}-\gamma^{2} \delta^{2}=\alpha^{2} \gamma^{2}-p^{2} \beta^{2} \delta^{2}\).

\section*{Case IVa}

Suppose \(\alpha^{2} \beta^{2}-\gamma^{2} \delta^{2}=p^{2} \alpha^{2} \gamma^{2}-\beta^{2} \delta^{2}\).
Then \(\alpha^{2}\left(\beta^{2}-p^{2} \gamma^{2}\right)=\delta^{2}\left(\gamma^{2}-\beta^{2}\right)\).
Now, \(2^{3}| |\left(\beta^{2}-p^{2} \gamma^{2}, \gamma^{2}-\beta^{2}\right)\). Hence we have \(\left(\beta^{2}-p^{2} \gamma^{2}\right.\),
\(\left.\gamma^{2}-\beta^{2}\right)=8 R\), where \(R\) is odd and \(R \mid\left(p^{2}-1\right)\).
Since \((\alpha, \delta) \mid(x, y)=1\), we have \((\alpha, \delta)=1\).
Thus we have,
\[
\begin{align*}
& \beta^{2}-p^{2} \gamma^{2}= \pm 8 R \delta^{2},  \tag{15}\\
& \gamma^{2}-\beta^{2}= \pm 8 R \alpha^{2}, \tag{16}
\end{align*}
\]
\[
(15)+(16) \rightarrow \gamma^{2}\left(1-p^{2}\right)= \pm 8 R\left(\delta^{2}+\alpha^{2}\right)
\]

The plus sign is impossible since \(\left(1-p^{2}\right)<0\)
Hence \(\gamma^{2}\left(p^{2}-1\right)=8 R\left(\delta^{2}+\alpha^{2}\right)\).
i.e, \(\gamma^{2} \frac{\left(p^{2}-1\right)}{8 R}=\delta^{2}+\alpha^{2}\).

If \(R=1\) and \(p \neq 3\), then the above equation is impossible
modulo 3. If \(8 R=p^{2}-1\), then
\((17) \rightarrow \gamma^{2}=\delta^{2}+\alpha^{2}\). Since \((\alpha, \delta)=1\) and \(\alpha\) is even, we
should have,
\(\delta=\xi^{2}-\eta^{2}, \alpha=2 \xi \eta, \gamma^{2}=\xi^{2}+\eta^{2}\).
Then \(\beta^{2}=\gamma^{2}+\left(p^{2}-1\right) \alpha^{2}\),
\(=\left(\xi^{2}+\eta^{2}\right)^{2}+\left(p^{2}-1\right) \cdot 4 \xi^{2} \eta^{2}\),
\(=\xi^{4}+\left(4 p^{2}-2\right) \xi^{2} \eta^{2}+\eta^{4}\).
Since \(\beta<x<z, \xi \eta\left(\xi^{2}-\eta^{2}\right) \neq 0\), descent applies.
Hence \(8 R \neq p^{2}-1\). Since \((\alpha, \delta)=1\), and \(\frac{p^{2}-1}{8 R}\) has
a prime factor \(\equiv 3(\bmod 4)\), this case is impossible.

\section*{Case IVb}

Suppose \(\alpha^{2} \beta^{2}-\gamma^{2} \delta^{2}=\alpha^{2} \gamma^{2}-p^{2} \beta^{2} \delta^{2}\).
j.e, \(\alpha^{2}\left(\beta^{2}-\gamma^{2}\right)=\delta^{2}\left(\gamma^{2}-p^{2} \beta^{2}\right)\).

Since, \(2^{3} \|\left(\beta^{2}-\gamma^{2}, \gamma^{2}-p^{2} \beta^{2}\right)\), we have \(\left(\beta^{2}-\gamma^{2}, \gamma^{2}-p^{2} \beta^{2}\right)\)
\(=8 R\), where \(R\) is odd. Hence we should have,
\[
\begin{align*}
\beta^{2}-\gamma^{2} & = \pm 8 R \delta^{2}  \tag{18}\\
\gamma^{2}-p^{2} \beta^{2} & = \pm 8 R \alpha^{2} \tag{19}
\end{align*}
\]
\[
(18)+(19) \rightarrow \beta^{2}\left(1-p^{2}\right)= \pm 8 R\left(\delta^{2}+\alpha^{2}\right)
\]

The plus sign is impossible, since \(\left(1-p^{2}\right)<0\).
Hence,
\[
\beta^{2}\left(p^{2}-1\right)=8 R\left(\delta^{2}+\alpha^{2}\right)
\]

If \(R=1, p \neq 3\), then (20) is impossible modulo 3.
\(R=1, p=3 \rightarrow 8 R=p^{2}-1\) and hence,
\[
\beta^{2}=\delta^{2}+\alpha^{2}
\]

Hence, we should have,
\[
\delta=\xi^{2}-\eta^{2}, \alpha=2 \xi \eta, \beta^{2}=\left(\xi^{2}+\eta^{2}\right)
\]

But then, \(\gamma^{2}=p^{2}\left(\xi^{2}-\eta^{2}\right)^{2}+4 \xi^{2} \eta^{2}\).
\(4 \gamma^{2}=4 p^{2}\left(\xi^{2}-\eta^{2}\right)^{2}+16 \xi^{2} \eta^{2}\).
So if we put \(Z=\xi+\eta, m=\xi-\eta\), then we have,
\[
(2 \gamma)^{2}=z^{4}+\left(4 p^{2}-2\right) z^{2} m^{2}+m^{4}
\]

Since \(2 \gamma<2 y<z\) and \(\operatorname{lm}\left(\tau^{2}-m^{2}\right) \neq 0\), descent applies.
If \(8 R \neq p^{2}-1\), then again (20) is impossible as \((\alpha, \gamma)=1\) and \(\frac{p^{2}-1}{8}\) has a prime factor \(\equiv 3(\bmod 4)\).

Hence the theorem .

\section*{Theorem 1.3:}

A necessary condition for the equation (1) to have a nontrivial solution when \(n=4 p\), where \(p\) is a prime \(\equiv 3(\bmod 4)\) is that there exists a factorisation of \(4 p^{2}-1\) in the form \(r s\) with ( \(r, s\) ) not divisible by any prime \(\equiv 3\) (mod 4) satisfying,
either (i) \(r \equiv l(\bmod 8), r \neq 1, r\) has no prime factor \(\equiv 3(\bmod 8)\),
or
(ii) \(r \equiv 7(\bmod 8),(r / p)=-1\).

Proof:
When \(n=4 p\), (1) becomes,
\[
\begin{equation*}
x^{4}+\left(16 p^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{21}
\end{equation*}
\]

Suppose (2l) has a solution ( \(x, y, z\) ) with \(z>0\) and minimal. Then \((x, y)=1\) and without loss of generality we can assume that \(y\) is odd .

\section*{Case I}
\[
\text { Suppose } x^{2} \equiv y^{2}(\bmod p) \text { and } x \equiv 1(\bmod 2)
\]

Then we can write (2I) as,
\[
\left(\frac{x^{2}-y^{2}}{4 p}\right)^{2}+x^{2} y^{2}=\left(\frac{z}{4 P}\right)^{2}
\]

Since \(\left(\frac{x^{2}-y^{2}}{p}, x y\right)=1\), we should have,
\[
\begin{aligned}
\frac{x^{2}-y^{2}}{4 p} & =2 X Y \\
x y & =X^{2}-y^{2}
\end{aligned}
\]

Then \(\left(\frac{1}{2}\left(x^{2}+y^{2}\right)\right)^{2}=\frac{1}{4}\left(64 p^{2} x^{2} y^{2}+4\left(X^{2}-y^{2}\right)^{2}\right)\),
\[
=X^{4}+\left(16 p^{2}-2\right) X^{2} y^{2}+y^{4} .
\]

Since \(\frac{1}{2}\left(x^{2}+y^{2}\right)<z\), descent applies.
Hence this case is impossible.

\section*{Case II}
\[
\text { Suppose } x^{2} \not \equiv y^{2}(\bmod p) \text { and } x \equiv 1(\bmod 2)
\]

We can write (21) as,
\(\left(x^{2}+\left(8 p^{2}-1\right) y^{2}+z\right)\left(x^{2}+\left(8 p^{2}-1\right) y^{2}-z\right)=4^{2} \cdot p^{2} \cdot\left(4 p^{2}-1\right) y^{4}\).
Let \(A=x^{2}+\left(8 p^{2}-1\right) y^{2}+z\) and \(B=x^{2}+\left(8 p^{2}-1\right) y^{2}-z\).
Then \(A\) and \(B\) are both even and \(2^{2} \|(A, B)\).
Suppose \(q\) is an odd prime dividing ( \(A, B\) ).
Then \(q^{2}\left|p^{2}\left(4 p^{2}-1\right) y^{4}, q\right| 2 x^{2}+\left(16 p^{2}-2\right) y^{2}, q \mid z\).
Now, \(q|y \rightarrow q| x\), which is impossible as \((x, y)=1\). So \(q \nmid y\). \(q=p \rightarrow p \mid 2 x^{2}-2 y^{2}+x^{2} \equiv y^{2}(\bmod p)\), which is not true. Hence \(q \neq p\). Thus \(q \mid\left(4 p^{2}-1\right)\). So \(q \mid x^{2}+4 p^{2} y^{2}\). Thus \(q \not \equiv 3(\bmod 4)\)..
Hence we should have,
\[
\begin{aligned}
& x^{2}+\left(8 p^{2}-1\right) y^{2} \pm z=4 R c^{4} \\
& x^{2}+\left(8 p^{2}-1\right) y^{2} \mp z=4 S p^{2} d^{4}
\end{aligned}
\]
where \(y=c d, R S=4 p^{2}-1,(c, p d)=1, R \& S\) have no prime factors \(\equiv 3(\bmod 4)\) in common.
\[
\text { Thus, } \begin{aligned}
x^{2} & =2 R c^{4}-\left(8 p^{2}-1\right) c^{2} d^{2}+2 S p^{2} d^{4} \\
& =\left(2 c^{2}-S d^{2}\right)\left(R c^{2}-2 p^{2} d^{2}\right) \\
& =C \cdot D, \text { say. }
\end{aligned}
\]

Since \(R C-2 D=d^{2}, 2 p^{2} C-S D=c^{2}\) and \((c, d)=1\), we have \((C, D)=1\).

Hence we must have,
\[
\begin{align*}
2 c^{2}-S d^{2} & = \pm x_{1}^{2} \\
R c^{2}-2 p^{2} d^{2} & = \pm x_{2}^{2}  \tag{22}\\
x & =x_{1} x_{2}
\end{align*}
\]

From (22) we have, \(R \not \equiv 5\) or \(7(\bmod 8)\). Hence we only have to consider the following two cases:

Case IIa
Suppose \(R \equiv 1(\bmod 8)\)
Then \(S \equiv 3(\bmod 8), C \equiv-1(\bmod 8), D \equiv-1(\bmod 8)\).
Hence we have,
\[
\begin{align*}
2 c^{2}-s d^{2} & =-x_{1}^{2}  \tag{23}\\
R c^{2}-2 p^{2} d^{2} & =-x_{2}^{2} \tag{24}
\end{align*}
\]
\(R=1 \rightarrow(R / p)=+1\) and in this case (24) is impossible modulo \(p\). So \(R \neq 1\). Now, (24) is impossible if \(R\) has a prime factor \(\equiv 3(\bmod 8)\). Taking \(R=r, S=s\), we see that this case is impossible if condition (i) does not hold.

\section*{Case IIb}
\[
\text { Suppose } R \equiv 3(\bmod 8)
\]

Then \(S \equiv 1(\bmod 8), C \equiv 1(\bmod 8), D \equiv 1(\bmod 8)\).
Hence we should have,
\[
\begin{array}{r}
2 c^{2}-S d^{2}=x_{1}^{2} \\
R c^{2}-2 p^{2} d^{2}=x_{2}^{2} \tag{26}
\end{array}
\]

Suppose \(S=1\). Then \(R=4 p^{2}-1\) and (26) is impossible modulo \(p\). Hence \(S \neq 1\). Now, (25) is impossible if \(S\) has a prime factor \(\equiv 3(\bmod 8)\). Thus taking \(R=s, S=r\) we see that this case is impossible if (i) does not hold.

\section*{Case III}
\[
\text { Suppose } x \equiv 0(\bmod 2)
\]

Then \(z\) is odd and we have,
\[
4^{2} \cdot p^{2}\left(4 p^{2}-1\right) y^{4}=A \cdot B
\]
where \(A=x^{2}+\left(8 p^{2}-1\right) y^{2}+z, B=x^{2}+\left(8 p^{2}-1\right) y^{2}-z\)
\((A, B) \mid 2 z\). Since \(A \& B\) are both even, we have \(2 \|(A, B)\).
Suppose an odd prime \(q \mid(A, B)\).
Then \(q^{2}\left|p^{2}\left(4 p^{2}-1\right) y^{4}, q\right| 2 x^{2}+\left(16 p^{2}-1\right) y^{2}\).
As in case II \(q \nmid y\).
Suppose \(q=p\). Then \(q \nmid\left(4 p^{2}-1\right)\). If \(q \neq p\), then \(q \mid\left(4 p^{2}-1\right)\) and therefore \(q \mid\left(x^{2}+4 p^{2} y^{2}\right)\). Thus \(q \not \equiv 3(\bmod 4)\).

\section*{Case IIIa}

Suppose \(2 \mid(A, B), p \nmid(A, B)\).
Then we have,
\[
\begin{aligned}
& x^{2}+\left(8 p^{2}-1\right) y^{2} \pm z=8 R c^{4} \\
& x^{2}+\left(8 p^{2}-1\right) y^{2} \mp z=2 p^{2} S d^{4}, \text { where } y=c d \\
& (c, p d)=1, R, S \text { have no factor } \equiv 3(\bmod 4) \text { in common. }
\end{aligned}
\]

Thus we have,
\[
\begin{aligned}
x^{2} & =4 R c^{4}-\left(8 p^{2}-1\right) c^{2} d^{2}+p^{2} S d^{4} \\
& =\left(4 c^{2}-S d^{2}\right)\left(R c^{2}-p^{2} d^{2}\right) \\
& =C \cdot D, \text { say. }
\end{aligned}
\]

Now \((C, D)=1\) and hence we should have,
\[
\begin{align*}
4 c^{2}-S d^{2} & = \pm x_{1}^{2}  \tag{27}\\
R c^{2}-p^{2} d^{2} & = \pm x_{2}^{2}  \tag{28}\\
x & =x_{1} x_{2}
\end{align*}
\]
where \(x_{1}\) is odd, \(x_{2}\) is even.
Since \(x_{2}\) is even, \(R \equiv 3(\bmod 4)\) is impossible. Hence \(R \equiv 1(\bmod 4)\).

Suppose \(R \equiv 5(\bmod 8)\). Then \(S \equiv 7(\bmod 8)\) and in this case (27) is impossible modulo 8.

Hence \(R \equiv 1(\bmod 8)\) and we have,
\[
\begin{align*}
4 c^{2}-s d^{2} & =x_{1}^{2} \\
R c^{2}-p^{2} d^{2} & =x_{2}^{2} \tag{29}
\end{align*}
\]

Suppose \(R=1\). Then we have,
\[
c^{2}=p^{2} d^{2}+x_{2}^{2}
\]

Hence, \(p d=X^{2}-Y^{2}, x_{2}=2 X Y, c^{2}=\left(X^{2}+Y^{2}\right)^{2}\).
Then \(\begin{aligned} x_{1}^{2} & =4\left(X^{2}+Y^{2}\right)^{2}-\left(4 p^{2}-1\right)\left(\frac{X^{2}-Y^{2}}{p}\right)^{2} \\ & \left.=16 X^{2} Y^{2}+\left(X^{2}-Y^{2}\right)\right)^{2} .\end{aligned}\)
\(=16 X^{2} Y^{2}+\left(\frac{X^{2}-Y^{2}}{p}\right)^{2} \cdot\).
Thus \(p^{2} x_{1}^{2}=X^{4}+\left(16 p^{2}-2\right) X^{2} Y^{2}+Y^{4}\).
Since \(p^{2} x_{1}^{2}<p^{2} x^{2}<z^{2}\), descent applies. Hence \(R \neq 1\).
(29) is impossible if \(R\) has a prime factor \(\equiv 3\) (mod 4).

Thus taking \(R=r, S=s\), we see that this case is impossible if (i) does not hold.

Case IIIb
Suppose \(2 p \mid(A, B)\).
Then we have,
\[
\begin{aligned}
& x^{2}+\left(8 p^{2}-1\right) y^{2} \pm z=8 p R c^{4} \\
& x^{2}+\left(8 p^{2}-1\right) y^{2} \mp z=2 p S d^{4} \\
\text { Hence, } x^{2}= & 4 p R c^{4}-\left(8 p^{2}-1\right) c^{2} d^{2}+p S d^{4}, \\
& =\left(4 p c^{2}-S d^{2}\right)\left(R c^{2}-p d^{2}\right) \\
& =\text { C.D, say. }
\end{aligned}
\]

Since \((A, B)=1\), we should have,
\[
\begin{align*}
& 4 p c^{2}-S d^{2}= \pm x_{1}^{2}  \tag{30}\\
& R c^{2}-p d^{2}= \pm x_{2}^{2} \tag{31}
\end{align*}
\]

Since \(p \equiv 3(\bmod 4), x_{2} \equiv 0(\bmod 2)\), we have, \(R \not \equiv 1(\bmod 4)\).

\section*{Suppose \(R \equiv 3(\bmod 8)\). Then \(S \equiv 1(\bmod 8)\)} and we cannot have (30). Hence \(R \equiv 7(\bmod 8)\). Then,
\[
\begin{align*}
4 p c^{2}-S d^{2} & =-x_{1}^{2} \\
R c^{2}-p d^{2} & =-x_{2}^{2} \tag{32}
\end{align*}
\]
(32) cannot hold if \((R / p)=+1\).

Thus taking \(S=s, R=r\), we see that this case is impossible if (ii) does not hold.

Hence the theorem.

\section*{Theorem 1.4}

A necessary condition for the equation (1) to have a non-trivial solution when \(n=8 p\), where \(p\) is a prime \(\equiv 5,11,17\) or \(23(\bmod 24)\), is that there exist a factorisation of \(16 p^{2}-1\) in the form \(r s\) with \((r, s)\) not divisible by any prime \(\equiv 3(\bmod 4)\) satisfying,
either (i) \(r \equiv l(\bmod 8), r \neq 1,(r / p)=+1\),
or (ii) \(r \equiv 3(\bmod 8), 3 \mid r,(-r / p)=+1, s\) has no prime factor \(\equiv 3(\bmod 4)\).

Proof:
When \(n=8 p\), (1) becomes,
\[
\begin{equation*}
x^{4}+\left(64 p^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{33}
\end{equation*}
\]

Suppose \((x, y, z)\) is a non-ttivial solution of (33) with \(z>0\) and minimal. Then \((x, y)=1\) and without loss of generality we can assume that \(y\) is odd.

\section*{Case I}

Suppose \(x^{2} \equiv y^{2}(\bmod p)\) and \(x \equiv 1(\bmod 2)\)
Then we can write (33) as,
\[
\left(\frac{x^{2}-y^{2}}{8 p}\right)^{2}+x^{2} y^{2}=\left(\frac{z}{8 p}\right)^{2}
\]

Since \(\left(\frac{x^{2}-y^{2}}{8}, x y\right)=1\), we should have
\[
\begin{aligned}
\frac{x^{2}-y^{2}}{8 p} & =2 X Y \\
x y & =X^{2}-Y^{2}
\end{aligned}
\]

But then,
\[
\begin{aligned}
\left(\frac{1}{2}\left(x^{2}+y^{2}\right)\right)^{2} & =\frac{1}{4}\left(256 X^{2} y^{2}+4\left(X^{2}-Y^{2}\right)^{2}\right) \\
& =X^{4}+\left(64 p^{2}-2\right) X^{2} y^{2}+Y^{4}
\end{aligned}
\]

Since \(\frac{1}{2}\left(x^{2}+y^{2}\right)<z\), descent applies.
Hence this case is impossible.

\section*{Case II}

Suppose \(x^{2} \equiv y^{2}(\bmod p)\) and \(x \equiv 1(\bmod 2)\).
we can write (33) as,
\(\left(x^{2}+\left(32 p^{2}-1\right) y^{2}+z\right)\left(x^{2}+\left(32 p^{2}-1\right) y^{2}-z\right)=p^{2} .64\left(16 p^{2}-1\right) y^{4}\).
Let \(A=x^{2}+\left(32 p^{2}-1\right) y^{2}+z\) and \(B=x^{2}+\left(32 p^{2}-1\right) y^{2}-z\).
Now, \(2^{3} \|(A, B)\). Suppose a prime \(q \mid(A, B)\). Then \(q \mid x^{2}+\left(32 p^{2}-1\right) y^{2}\) \(q^{2} \mid p^{2}\left(16 p^{2}-1\right) y^{4}\).
\(q|y \rightarrow q| x\), which is impossible. so \(q \nmid y\).
\(q=p \rightarrow x^{2} \equiv y^{2}(\bmod p)\), which is not true. So \(q \neq p\)
Hence \(q \mid\left(16 p^{2}-1\right)\). Thus \(q \neq 3(\bmod 4)\) and we have
\[
\begin{aligned}
& x^{2}+\left(32 p^{2}-1\right) y^{2} \pm z=8 R c^{4} \\
& x^{2}+\left(32 p^{2}-1\right) y^{2} \mp z=8 S p^{2} d^{4}
\end{aligned}
\]
where \(y=c d,(c, p d)=1, R S=16 p^{2}-1, R, S\) have no prime factor \(\equiv 3(\bmod 4)\) in common.

By adding the two equations we have,
\[
x^{2}=4 R c^{4}+\left(32 p^{2}-1\right) c^{2} d^{2}+4 S p^{2} d^{4}
\]
\[
\begin{aligned}
& =\left(4 c^{2}-S d^{2}\right)\left(R c^{2}-4 p^{2} d^{2}\right), \\
& =C \cdot D, \text { say. }
\end{aligned}
\]

Since \(R C-4 D=d^{2}, 4 p^{2} C+S D=c^{2},(c, d)=1\), we have, \((C, D)=1\). Hence we have,
\[
\begin{align*}
4 c^{2}-S d^{2} & = \pm x_{1}^{2}  \tag{34}\\
R c^{2}-4 p^{2} d^{2} & = \pm x_{2}^{2} \tag{35}
\end{align*}
\]
(35) \(\rightarrow R \equiv \pm 1(\bmod 8)\) is impossible. Hence we only have to consider the following two cases:

\section*{Case IIa}

Suppose \(R \equiv 3(\bmod 8)\).
Then \(S \equiv 5(\bmod 8), C \equiv-1(\bmod 8), D \equiv-1(\bmod 8)\),
Thus we have,
\[
\begin{align*}
4 c^{2}-S d^{2} & =-x_{1}^{2}  \tag{36}\\
R c^{2}-4 p^{2} d^{2} & =-x_{2}^{2} \tag{37}
\end{align*}
\]

Now, \(3 \nmid R \rightarrow 3 \mid S\). Then (36) is impossible modulo 3 .
Hence \(3 \mid R\). (36) \& (37) cannot hold simultaneously if \(S\) has a prime factor \(\equiv 3(\bmod 4)\) or \((-R / p)=-1\). Thus taking \(R=r, S=s\), we see that this case is impossible if (ii) does not hold.

Case IIb
Suppose \(R \equiv 5(\bmod 8)\).
Then \(S \equiv 3(\bmod 8), C \equiv 1(\bmod 8), D \equiv 1(\bmod 8)\).
Thus we should have,
\[
\begin{align*}
4 c^{2}-S d^{2} & =x_{1}^{2}  \tag{38}\\
R c^{2}-4 p^{2} d^{2} & =x_{2}^{2}, \tag{39}
\end{align*}
\]
\(3 \nmid S \rightarrow 3 \mid R\). In this case (39) is impossible modulo 3.
Hence \(3 \mid S\).

Now, (38) and (39) cannot hold simultaneously if either
\(R\) has a prime factor \(\equiv 3(\bmod 4)\) or \((R / p)=-1\).
Since \(R S=16 p^{2}-1,(R / p)=-1 \rightarrow(-S / p)=-1\).
Thus taking \(R=s, S=r\), we see that this case is impossible if (ii) does not hold.

\section*{Case III}

Suppose \(x \equiv 0(\bmod 2)\)
Then again we have
\[
64 p^{2}\left(16 p^{2}-1\right) y^{4}=A \cdot B
\]
but in this case \(\boldsymbol{z}\) is odd.
Since \((A, B) \mid 2 z\), we have \(2 \|(A, B)\).
Now, suppose an odd prime \(q \mid(A, B)\). Then \(q \mid x^{2}+\left(32 p^{2}-1\right) y^{2}\), \(q^{2}\left|p^{2}\left(16 p^{2}-1\right) . ~ q\right| y \rightarrow q \mid x\), which is impossible. Hence \(q \nmid y\) So \(q=p\) or \(q \mid\left(16 p^{2}-1\right)\). Thus we have the following cases:

\section*{Case IIIa}
\[
\text { Suppose } p \nmid(A, B)
\]

Then we have
\[
\begin{aligned}
& x^{2}+\left(32 p^{2}-1\right) y^{2} \pm z=32 R c^{4} \\
& x^{2}+\left(32 p^{2}-1\right) y^{2} \mp z=2 S p^{2} d^{4}
\end{aligned}
\]

Thus, \(x^{2}=16 R c^{4}+\left(32 p^{2}-1\right) c^{2} d^{2}+S p^{2} d^{4}\)
\[
\begin{aligned}
& =\left(16 c^{2}-s d^{2}\right)\left(R c^{2}-p^{2} d^{2}\right) \\
& =C \cdot D, \text { say } .
\end{aligned}
\]

Now, \((C, D)=1\) and hence we have,
\[
\begin{align*}
16 c^{2}-s d^{2} & = \pm x_{1}^{2}  \tag{40}\\
R c^{2}-p^{2} d^{2} & = \pm x_{2}^{2},  \tag{41}\\
x & =x_{1} x_{2}
\end{align*}
\]
where \(x_{1}\) is odd, \(x_{2}\) is even.

\section*{(41) \(\rightarrow R \equiv 1(\bmod 4)\).}

Suppose \(R \equiv 5(\bmod 8)\). Then \(S \equiv 3(\bmod 8)\) and we cannot have (40). Hence \(R \equiv 1(\bmod 8)\) and therefore we must have,
\[
\begin{align*}
& 16 c^{2}-S d^{2}=x_{1}^{2} \\
& R c^{2}-p^{2} d^{2}=x_{2}^{2} \tag{42}
\end{align*}
\]

Suppose \(R=\) 1. Then \(c^{2}=p^{2} d^{2}+x_{2}^{2}\). Thus we should have \(p d=X^{2}-Y^{2}, x_{2}=2 X Y\). Then
\(\begin{aligned} x_{1}^{2} & =16\left(X^{2}+Y^{2}\right)^{2}-\left(16 p^{2}-1\right)\left(\frac{X^{2}-Y^{2}}{p}\right)^{2} \\ & =64 X^{2} Y^{2}+\left(\frac{X^{2}-Y^{2}}{p}\right)^{2} .\end{aligned}\)
i.e, \(p^{2} x_{1}^{2}=X^{4}+\left(64 p^{2}-2\right) X^{2} Y^{2}+Y^{4}\).

Since \(p^{2} x_{1}^{2}<p^{2} x^{2}<z^{2}\), descent applies. Hence \(R \neq 1\). (42) is impossible if \((R / p)=-1\). Thus taking \(R=r, S=s\) we see that this case is impossible if (i) does not hold.

Case IIIb
\[
\text { Suppose } p \mid(A, B)
\]

Then we have,
\[
\begin{aligned}
& x^{2}+\left(32 p^{2}-1\right) y^{2} \pm z=32 R p c^{4} \\
& x^{2}+\left(32 p^{2}-1\right) y^{2} \mp z=2 S p d^{4}
\end{aligned}
\]

Thus \(x^{2}=16 R p c^{4}+\left(32 p^{2}-1\right) c^{2} d^{2}+S p d^{4}\)
\[
\begin{aligned}
& =\left(16 p c^{2}-S d^{2}\right)\left(R c^{2}-p d^{2}\right) \\
& =C \cdot D, \text { say. }
\end{aligned}
\]

Since \((C, D)=1\), we should have
\[
\begin{align*}
16 p c^{2}-s d^{2} & = \pm x_{1}^{2}  \tag{43}\\
R c^{2}-p d^{2} & = \pm x_{2}^{2}  \tag{44}\\
x & =x_{1} x_{2}
\end{align*}
\]
where \(x_{1}\) is odd, \(x_{2}\) is even.
First consider \(p \equiv 11\) or \(23(\bmod 24)\). Then \(R \equiv 3(\bmod 4)\).

Suppose \(R \equiv 3(\bmod 8)\). Then \(S \equiv 5(\bmod 8)\) and we cannot have (43). Thus \(R \equiv 7(\bmod 8)\). Then we should have,
\[
\begin{align*}
16 p c^{2}-S d^{2} & =-x_{1}^{2}  \tag{45}\\
R c^{2}-p d^{2} & =-x_{2}^{2} \tag{46}
\end{align*}
\]

If \(S=1\) then \(3 \mid R\) and (46) is impossible modulo 3. Hence \(S \neq 1\). Also (45) cannot hold if \((S / p)=-1\).

Thus taking \(R=\boldsymbol{s} S=r\), we see that this case is impossible if condition (i) does not hold.

Next consider \(p \equiv 5\) or \(17(\bmod 24)\). Then \(R \equiv 1\) or 5 (mod 8). Suppose \(R \equiv 5(\bmod 8)\). Then \(S \equiv 3(\bmod 8)\) and in this case we cannot have (45). Hence \(R \equiv 1(\bmod 8)\), and we have
\[
\begin{array}{r}
16 p c^{2}-S d^{2}=x_{1}^{2} \\
R c^{2}-p d^{2}=x_{2}^{2} \tag{48}
\end{array}
\]

If \(R=1\) then \(3 \mid S\) and (47) is impossible modulo 3. Hence \(R \neq 1\). Now, we cannot have (48) if \((R / p)=-1\). Thus taking \(R=r, S=s\), we see that this case is impossible if (i) does not hold.

Hence the theorem.

Theorem 1.5:
A necessary condition for (l) to have a non-trivial solution when \(n=p_{1} p_{2}\), where \(p_{1}, p_{2}\) are primes such that \(p_{1} \equiv p_{2}\) \(\equiv 7,11,13,17(\bmod 24)\), is that there exist a factorisation of \(p_{1}^{2} p_{2}^{2}-4\) in the form \(r s\), with \((r, s)\) not divisible by any prime三 3 (mod 4) satisfying;
either
(i) \(\quad r \equiv 1(\bmod 8), r \neq 1,\left(-s / p_{1}\right)=+1,\left(-s / p_{2}\right)=+1\),
or
(ii) \(r \equiv 3(\bmod 8),\left(-2 s / p_{1}\right)=+1,\left(-2 s / p_{2}\right)=+1\).

\section*{Proof:}

When \(n=p_{1} p_{2}\) (1) becomes,
\[
\begin{equation*}
x^{4}+\left(p_{1}^{2} p_{2}^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{49}
\end{equation*}
\]

Suppose \((x, y, z)\) is a non-trivial solution of (49) with \(z>0\) and minimal. Then \((x, y)=1\) and without loss of generality we can assume that \(y\) is odd.

\section*{Case I}
\[
\text { Suppose } x^{2} \equiv y^{2}\left(\bmod p_{1} p_{2}\right) \text { and } x \equiv 1(\bmod 2)
\]

Then we can write (49) as,
\[
\begin{equation*}
\left(\frac{x^{2}-y^{2}}{p_{1} p_{2}}\right)^{2}+x^{2} y^{2}=\left(\frac{z}{p_{1} p_{2}}\right)^{2} \tag{50}
\end{equation*}
\]

Hence we should have
\[
\begin{aligned}
\frac{x^{2}-y^{2}}{p_{1} p_{2}} & =2 X Y \\
x y & =X^{2}-Y^{2}
\end{aligned}
\]

Then \(\left(\frac{1}{2}\left(x^{2}+y^{2}\right)\right)^{2}=p_{1}^{2} p_{2}^{2} X^{2} Y^{2}+\left(X^{2}-Y^{2}\right)^{2}\),
\[
=X^{4}+\left(p_{1}^{2} p_{2}^{2}-2\right) X^{2} Y^{2}+Y^{4}
\]

Since \(\frac{1}{2}\left(x^{2}+y^{2}\right)<z\), descent applies.
Hence this case is impossible.

\section*{Case II}

Suppose \(x^{2} \equiv y^{2}\left(\bmod p_{1} p_{2}\right)\) and \(x \equiv 0(\bmod 2)\).
Then again we have (50), but now
\[
\begin{aligned}
x y & =2 X Y \\
\frac{x^{2}-y^{2}}{p_{1} p_{2}} & =X^{2}-Y^{2}
\end{aligned}
\]

Then \(\left(x^{2}+y^{2}\right)^{2}=p_{1}^{2} p_{2}^{2}\left(X^{2}-y^{2}\right)^{2}+16 X^{2} y^{2}\)
\[
=z^{4}+\left(p_{1}^{2} p_{2}^{2}-2\right) z^{2} m^{2}+m^{4}
\]
with \(Z=X+Y, m=X-Y\). Since \(x^{2}+y^{2}<z\), descent applies.
Hence this case is impossible.

\section*{Case III}
\[
\text { Suppose } x^{2} \not \equiv y^{2}\left(\bmod p_{1} p_{2}\right) .
\]

We can write (49) as,
\[
\begin{aligned}
p_{1}^{2} p_{2}^{2}\left(p_{1}^{2} p_{2}^{2}-4\right) y^{4} & =\left(2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2}+2 z\right)\left(2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2}-2 z\right) \\
& =A \cdot B, \text { say } .
\end{aligned}
\]

Then \(A\) and \(B\) are both odd and if \(q\) is an odd prime dividing ( \(A, B\) )
we have \(q\left|2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2}, q^{2}\right| p_{1}^{2} p_{2}^{2}\left(p_{1}^{2} p_{2}^{2}-4\right) y^{4}\).
Now \(q|y \rightarrow q| x\), which is impossible as \((x, y)=1\). Hence \(q \nmid y\). \(q=p_{1}\) or \(p_{2} \rightarrow q \chi\left(p_{1}^{2} p_{2}^{2}-4\right) . \quad q\left|\left(p_{1}^{2} p_{2}^{2}-4\right) \rightarrow q\right|\left(x^{2}+y^{2}\right)\) and in this case \(q \not \equiv 3(\bmod 4)\).

Hence we have the following possibilities:

\section*{Case IIIa}
\[
\text { Suppose } p_{1} \nmid(A, B), p_{2} \nmid(A, B)
\]

Then we have,
either \(2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2} \pm 2 z=p_{1}^{2} p_{2}^{2} R c^{4}\),
\(2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2} \mp 2 z=S d^{4}\),
으 \(\quad 2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2} \pm 2 z=p_{1}^{2} R c^{4}\),
\(2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2} \mp 2 z=p_{2}^{2} S d^{4}\),
where \(y=c d,(c, d)=1, R S=p_{1}^{2} p_{2}^{2}-4, R \& S\) have no
factor \(\equiv 3(\bmod 4)\) in common.
Hence either \(4 x^{2}=p_{1}^{2} p_{2}^{2} R c^{4}-\left(2 p_{1}^{2} p_{2}^{2}-4\right) c^{2} d^{2}+S d^{4}\), or \(4 x^{2}=p_{1}^{2} R c^{4}-\left(2 p_{1}^{2} p_{2}^{2}-4\right) c^{2} d^{2}+p_{2}^{2} S d^{4}\).
i.e either \(4 x^{2}=\left(R c^{2}-d^{2}\right)\left(p_{1}^{2} p_{2}^{2} c^{2}-S d^{2}\right)=C . D\), say,
or \(\quad 4 x^{2}=\left(R c^{2}-p_{2}^{2} d^{2}\right)\left(p_{1}^{2} c^{2}-S d^{2}\right)=E . F\), say.
Now \((C, D)|4,(E, F)| 4\). Clearly \(C, D, E, F\) are all even and there are four cases.

Case IIIa \({ }_{1}\)
Suppose \(R \equiv 1(\bmod 8)\).
Then \(S \equiv 5(\bmod 8)\) and we should have,
either \(R c^{2}-d^{2}= \pm 16{ }_{1}^{2}\), or \(R c^{2}-p_{2}^{2} d^{2}= \pm 16 x_{1}^{2}\),
\[
\begin{aligned}
p_{1}^{2} p_{2}^{2} c^{2}-S d^{2} & = \pm 4 x_{2}^{2}, & p_{1}^{2} c^{2}-S d^{2} & = \pm 4 x_{2}^{2}, \\
x & =4 x_{1} x_{2}, & x & =4 x_{1} x_{2}
\end{aligned}
\]

We notice that. In both cases the minus
sign is impossible. Thus we have,
either \(R c^{2}=d^{2}+16 x_{1}^{2}\),
\[
\begin{equation*}
p_{1}^{2} p_{2}^{2} c^{2}-S d^{2}=4 x_{2}^{2} \tag{51}
\end{equation*}
\]
or \(\quad R c^{2}=p_{2}^{2} d^{2}+16 x_{1}^{2}\),
\[
\begin{equation*}
p_{1}^{2} c^{2}-S d^{2}=4 x_{2}^{2} \tag{53}
\end{equation*}
\]

Suppose \(R=1\).
Then (51) \(\rightarrow c^{2}=d^{2}+16 x_{1}^{2}\). Thus we should have,
\(d=X^{2}-Y^{2}, 2 x_{1}=X Y\). Then \(4 x_{2}^{2}=4 p_{1}^{2} p_{2}^{2} X^{2} y^{2}+4\left(X^{2}-Y^{2}\right)^{2}\).
i.e \(x_{2}^{2}=X^{4}+\left(p_{1}^{2} p_{2}^{2}-2\right) X^{2} y^{2}+Y^{4}\). Since \(x_{2}<x<z\),
descent applies. Thus we cannot have \(R=1\) in (51).
Now (53) \(\rightarrow c^{2}=p_{2}^{2} d^{2}+16 x_{1}^{2}\). Thus \(p_{2} d=X^{2}-y^{2}\),
\(2 x_{1}=X Y\). Then \(4 x_{2}^{2}=p_{1}^{2}\left(X^{2}+Y^{2}\right)^{2}-\left(\frac{p_{1}^{2} p_{2}^{2}-4}{p_{2}^{2}}\right)\left(X^{2}-Y^{2}\right)^{2}\)
i.e \(\quad 4 p_{2}^{2} x_{2}^{2}=p_{1}^{2} p_{2}^{2}\left(X^{2}+Y^{2}\right)^{2}-\left(p_{1}^{2} p_{2}^{2}-4\right)\left(X^{2}-Y^{2}\right)^{2}\)
i.e \(\quad p_{2}^{2} x_{2}^{2}=X^{4}+\left(p_{1}^{2} p_{2}^{2}-2\right) X^{2} y^{2}+Y^{4}\).

Since \(p_{2} x_{2}<p_{2} x<z\), descent applies.
Hence we cannot have \(R=1\) in (53).
Now (52) cannot hold if \(\left(-S / p_{1}\right)\) or \(\left(-S / p_{2}\right)=-1\). Also, we cannot have \((53) \&(54)\) if \(\left(R / p_{2}\right)=-1\) or \(\left(-S / p_{1}\right)=-1\). Since \(\left(R / p_{2}\right)=-1 \rightarrow\left(-S / p_{2}\right)=-1,(53) \&(54)\) cannot hold simultaneously if \(\left(-S / p_{1}\right)\) or \(\left(-S / p_{2}\right)=-1\). Thus taking \(R=r, S=s\), we see that this case is impossible if (i) does mot hold.

\section*{Case III \(a_{2}\)}

Suppose \(R \equiv 5\) (mod 8) .
Then \(S \equiv 1(\bmod 8)\) and we have
either \(R c^{2}-d^{2}= \pm 4 x_{1}^{2}\), or \(R c^{2}-p_{2}^{2} d^{2}= \pm 4 x_{1}^{2}\),
\[
\begin{aligned}
p_{1}^{2} p_{2}^{2} c^{2}-S d^{2} & = \pm 16 x_{2}^{2}, & p_{1}^{2} c^{2}-S d^{2} & = \pm 16 x_{2}^{2} \\
x & =4 x_{1} x_{2}, & x & =4 x_{1} x_{2}
\end{aligned}
\]

In both cases the plus sign is impossible. Thus
either
\[
\begin{align*}
& S d^{2}=p_{1}^{2} p_{2}^{2} c_{1}^{2}+16 x_{2}^{2}  \tag{55}\\
& 4 x_{1}^{2}=d^{2}-R c^{2} \tag{56}
\end{align*}
\]
or \(\quad s d^{2}=p_{1}^{2} c^{2}+16 x_{2}^{2}\),
\[
\begin{equation*}
4 x_{1}^{2}=p_{2}^{2} d^{2}-R c^{2} \tag{57}
\end{equation*}
\]

Suppose \(S=1\).
Then \((55) \rightarrow d^{2}=p_{1}^{2} p_{2}^{2} c^{2}+16 x_{2}^{2}\). Thus we should have
\(p_{1} p_{2} c=X^{2}-Y^{2}, 2 x_{2}=X Y\). But then (56) would imply
that \(4 x_{1}^{2}=\left(X^{2}+Y^{2}\right)^{2}-\left(p_{1}^{2} p_{2}^{2}-4\right)\left(\frac{X^{2}-Y^{2}}{p_{1} p_{2}}\right)\)
Thus \(\quad p_{1}^{2} p_{2}^{2} x_{1}^{2}=X^{4}+\left(p_{1}^{2} p_{2}^{2}-2\right) X^{2} y^{2}+Y^{4}\). Since \(p_{1} p_{2} x_{1}\)
\(<p_{1} p_{2} x<z\), descent applies.
\((57) \rightarrow d^{2}=p_{f}^{2} f^{2}+16 x_{2}^{2}\). Thus we should have,
\(p_{1} c=X^{2}-Y^{2}, 2 x_{2}=X Y\). Then (58) would imply that
\(4 x_{1}^{2}=p_{2}^{2}\left(X^{2}+Y^{2}\right)^{2}-\left(p_{1}^{2} p_{2}^{2}-4\right)\left(\frac{X^{2}-Y^{2}}{p_{1}}\right)^{2}\)
Thus \(p_{1}^{2} x_{1}^{2}=X^{4}+\left(p_{1}^{2} p_{2}^{2}-4\right) X^{2} y^{2}+y^{4}\). Since \(p_{1} x_{1}<p_{1} x\) \(<z\), descent applies.

Thus \(S \neq 1\). Now we cannot have (55) if \(\left(S / p_{1}\right)\) or \(\left(S / p_{2}\right)\)
\(=-1\). i.e if \(\left(-R / p_{1}\right)\) or \(\left(-R / p_{2}\right)=-1\). Also (57) \& (58)
cannot hold simultaneously if \(\left(S / p_{1}\right)\) or \(\left(-R / p_{2}\right)=-1\).
i.e if \(\left(-R / p_{1}\right)\) or \(\left(-R / p_{2}\right)=-1\). Thus taking \(R=s, S=r\) we see that case IIIa \(_{2}\) is impossible if (i) does not hold.

\section*{Case IIIa \(_{3}\)}
\[
\text { Suppose } R \equiv 3(\bmod 8) .
\]

Then \(S \equiv 7(\bmod 8)\) and we should have,
either \(R c^{2}-d^{2}=2 x_{1}^{2}\),
\[
\begin{equation*}
p_{1}^{2} p_{2}^{2} c^{2}-s d^{2}=2 x_{2}^{2} \tag{59}
\end{equation*}
\]
on \(\quad R c^{2}-p_{2}^{2} d^{2}=2 x_{1}^{2}\),
\[
\begin{equation*}
p_{1}^{2} c^{2}-S d^{2}=2 x_{2}^{2} \tag{60}
\end{equation*}
\]
(59) is impossible if \(\left(-2 S / p_{1}\right)\) or \(\left(-2 S / p_{2}\right)=-1\). (60) \&
(61) cannot hold simultaneously if \(\left(-2 S / p_{1}\right)\) or \(\left(2 R / p_{2}\right)\)
\(=-1\); i.e if \(\left(-2 S / p_{1}\right)\) or \(\left(-2 S / p_{2}\right)=-1\). Thus taking \(R=r, S=s\) we see that this case is impossible if
(ii) does not hold.

\section*{\({\text { Case } \text { IIIa }_{4}}^{4}\)}

Suppose \(R \equiv 7(\bmod 8)\).
Then \(S \equiv 3(\bmod 8)\) and we have
either \(R c^{2}-d^{2}=-2 x_{1}^{2}\),
\[
\begin{equation*}
p_{1}^{2} p_{2}^{2} c^{2}-S d^{2}=-2 x_{2}^{2}, \tag{62}
\end{equation*}
\]
\[
\begin{align*}
& \text { or } R c^{2}-p_{2}^{2} d^{2}=-2 x_{1}^{2},  \tag{63}\\
& p^{2} c^{2}-S d^{2}=-2 x_{2}^{2} .  \tag{64}\\
& (62) \text { is impossible if }\left(2 S / p_{1}\right) \text { or }\left(2 S / p_{2}\right)=-1 \text {. i.e if } \\
& \left(-2 R / p_{1}\right) \text { or }\left(-2 R / p_{2}\right)=-1 \text {. Also }(63) \&(64) \text { cannot hold } \\
& \text { simultaneously if }\left(-2 R / p_{2}\right) \text { or }\left(2 S / p_{1}\right)=-1 . \text { i.e if } \\
& \left(-2 R / p_{1}\right) \text { or }\left(-2 R / p_{2}\right)=-1 \text {. Thus taking } R=s, S=r \text { we } \\
& \text { see that this case is impossible if (ii) does not hold. }
\end{align*}
\]

\section*{Case IIIb}
\[
\text { Suppose } p_{1} \mid(A, B), p_{2} \nmid(A, B) \text {. }
\]

Then we have
\[
\begin{aligned}
& 2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2} \pm 2 z=p_{1} p_{2}^{2} R c^{4} \\
& 2 x^{2}+\left(p_{1}^{2} p_{2}^{2}-2\right) y^{2} \pm 2 z=p_{1} S d^{4}
\end{aligned}
\]

Hence \(4 x^{2}=p_{1} p_{2}^{2} R c^{4}-\left(2 p_{1}^{2} p_{2}^{2}-4\right) c^{2} d^{2}+p_{1} S d^{4}\),
\[
=\left(R c^{2}-p_{1} d^{2}\right)\left(p_{1} p_{2}^{2} c^{2}-s d^{2}\right)
\]
\[
=C . D \text {, say. }
\]

Now \((C, D)=1\) and we have the following cases:
Case IIIb \(_{1}\)
\[
\text { Suppose } R \equiv 1(\bmod 8) .
\]

Then we have
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 16 x_{1}^{2}  \tag{65}\\
p_{1} p_{2}^{2} c^{2}-s d^{2} & =\theta 4 x_{2}^{2} \tag{66}
\end{align*}
\]
when \(p_{1} \equiv 17(\bmod 24)\),
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 4 x_{1}^{2}  \tag{67}\\
p_{1} p_{2}^{2} c^{2}-s d^{2} & =\theta 16 x_{2}^{2} \tag{68}
\end{align*}
\]
when \(p_{1} \equiv 13(\bmod 24)\),
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =2 x_{1}^{2}  \tag{69}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =2 x_{2}^{2}, \tag{70}
\end{align*}
\]
when \(p_{1} \equiv 7(\bmod 24)\),
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =-2 x_{1}^{2}  \tag{71}\\
p_{1} p_{2}^{2} c^{2}-s d^{2} & =-2 x_{2}^{2} \tag{72}
\end{align*}
\]
when \(p_{1} \equiv l 1(\bmod 24)\), where \(\theta= \pm 1\).
(65) \& \((66) \rightarrow c^{2}=\left(p_{1} x_{2}^{2}-45 x_{1}^{2}\right)\) and hence \(\theta=+1\).
(67) \& \((68) \rightarrow c^{2}=\left(4 p_{1} x_{2}^{2}-S x_{1}^{2}\right)\) and hence in this case \(\theta=-1\).

Suppose \(R=1\). Then \(3 \mid S\) and (66), (68), (70), \& (72) are impossible modulo 3. Hence \(R \neq 1\). Also, we cannot have \((66),(68),(70),(72)\) if \(\left(-S / p_{1}\right)\) or \(\left(-S / p_{2}\right)=-1\). Thus taking \(R=r, S=s\), we see that case IIIb \(_{1}\) is impossible if (i) does not hold.

\section*{\({\underline{C a s e ~} \mathrm{IIIb}_{2}}^{\text {Ca }}\)}

Suppose \(R \equiv 5(\bmod 8)\).
Then \(S \equiv 1(\bmod 8)\) and we have
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 4 x_{1}^{2},  \tag{73}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =\theta 16 x_{2}^{2} \tag{74}
\end{align*}
\]
when \(p_{1} \equiv 17(\bmod 24)\);
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 16 x_{1}^{2}  \tag{75}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =\theta 4 x_{2}^{2} \tag{76}
\end{align*}
\]
when \(p_{1} \equiv 13(\bmod 24)\);
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =-2 x_{1}^{2}  \tag{77}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =-2 x_{2}^{2} \tag{78}
\end{align*}
\]
when \(p_{1} \equiv 7(\bmod 24)\);
\[
\begin{gather*}
R c^{2}-p_{1} d^{2}=2 x_{1}^{2}  \tag{79}\\
p_{1} p_{2}^{2} c^{2}-S d^{2}=2 x_{2}^{2} \tag{80}
\end{gather*}
\]
when \(p_{1} \equiv 11(\bmod 24)\), where \(\theta= \pm 1\).
(73) \& (74) \(\rightarrow c^{2}=\theta\left(4 p_{1} x_{2}^{2}-S x_{1}^{2}\right)\) and hence \(\theta=-1\). (75) \& (76) \(+c^{2}=\theta\left(p_{1} x_{2}^{2}-4 S x_{1}^{2}\right)\) and hence in this case \(\theta=+1\).

Suppose \(S=1\). Then \(3 \mid R\) and (73), (75), (77), (79) are impossible modulo 3. Hence \(S \neq 1\). Now suppose ( \(-R / p_{1}\) ) \(=-1\). Then
\(p_{1} \equiv 1(\bmod 4) \rightarrow\left(-S / p_{1}\right)=\left(S / p_{1}\right)=-1\) and hence \((74)\), (76) are impossible,
\(p_{1} \equiv 7(\bmod 8) \rightarrow\left(2 S / p_{1}\right)=-1\), and hence (78) is impossible,
\(p_{1} \equiv 3(\bmod 8) \rightarrow\left(-2 S / p_{1}\right)=-1\), and hence (80) is impossible.

Similarly if \(\left(-R / p_{2}\right)=-1\), we cannot have (74), (76), (78)
\& (80). Thus taking \(R=s, S=r\), we see that this case is impossible if (i) does not hold. .

Case \(\mathrm{IIIb}_{3}\)
Suppose \(R \equiv 3(\bmod 8)\).
Then \(S \equiv 7(\bmod 8)\) and we have
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =2 x_{1}^{2} \\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =2 x_{2}^{2}, \tag{81}
\end{align*}
\]
when \(p_{1} \equiv 17(\bmod 24)\);
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =-2 x_{1}^{2} \\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =-2 x_{2}^{2} \tag{82}
\end{align*}
\]
when \(p_{1} \equiv 13(\bmod 24)\);
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 4 x_{1}^{2}  \tag{83}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =\theta 16 x_{2}^{2} \tag{84}
\end{align*}
\]
when \(p_{1} \equiv 7(\bmod 24)\);
\[
\begin{align*}
& \quad R c^{2}-p_{1} d^{2}=\theta 16 x_{1}^{2}  \tag{85}\\
& p_{1} p_{2}^{2} c^{2}-S d^{2}=\theta 4 x_{2}^{2}  \tag{86}\\
& \text { when } p_{1} \equiv 11(\bmod 24), \text { where } \theta= \pm 1 .
\end{align*}
\]

In (83) \& (84) we have \(\theta=+1\) and in (85) \& (86) we have \(\theta=-1\).

Now (81), (82), (84) \& (86) are impossible if ( \(-2 S / p_{1}\) )
or \(\left(-2 S / p_{2}\right)=-1\). Thus taking \(R=r, S=s\), we see that this case is impossible if (ii) does not hold.

\section*{\({\underline{C a s e ~} \mathrm{IIIb}_{4}}^{\text {Cl }}\)}

Suppose \(R \equiv 7(\bmod 8)\).
Then \(S \equiv 3(\bmod 8)\) and we have,
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =-2 x_{1}^{2} \\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =-2 x_{2}^{2} \tag{87}
\end{align*}
\]
when \(p_{1} \equiv 17(\bmod 24)\);
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =2 x_{1}^{2} \\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =2 x_{2}^{2} \tag{88}
\end{align*}
\]
when \(p_{1} \equiv 13(\bmod 24)\),
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 16 x_{1}^{2}  \tag{89}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =\theta 4 x_{2}^{2} \tag{90}
\end{align*}
\]
when \(p_{1} \equiv 7(\bmod 24)\);
\[
\begin{align*}
R c^{2}-p_{1} d^{2} & =\theta 4 x_{1}^{2}  \tag{91}\\
p_{1} p_{2}^{2} c^{2}-S d^{2} & =\theta 16 x_{2}^{2} \tag{92}
\end{align*}
\]
when \(p_{1} \equiv 11(\bmod 24)\), where \(\theta= \pm 1\).
In (89) \& (90) we have \(\theta=-1\) and in (91) \& (92) we have
\(\theta=+1\).
Now suppase \(\left(-2 R / p_{1}\right)=-1\). Then
\(p_{1} \equiv 1(\bmod 4) \rightarrow\left(-2 S / p_{1}\right)=\left(2 S / p_{1}\right)=-1\), and hence we
cannot have (87) \& (88),
\(p_{1} \equiv 7(\bmod 8) \rightarrow\left(R / p_{1}\right)=-1\), and hence we cannot have (89),
\(p_{1} \equiv 3(\bmod 8) \rightarrow\left(R / p_{1}\right)=-1\), and hence we cannot have
(91). Similarly if \(\left(-R / p_{2}\right)=-1\), we cannot have (87)
(88), (89) \& (91).

Thus taking \(R=s ; S=r\), we see that this case is impossible if (ii) does not hold.

\section*{Case IIIc}
\[
\text { Suppose } p_{2} \mid(A, B), p_{1} \nmid(A, B)
\]

This case is similar to case IIIb. We will get the same set of equations with \(p_{1} \& p_{2}\) interchanged. We notice that the conditions for case IIIb to be impossible, are all involving modulo 24. Since \(p_{1} \equiv p_{2}(\bmod 24)\), this case is also impossible under the same conditions.

Hence the theorem.

\section*{Theorem 1.6:}

The equation (1) has no non-trivial solutions when \(n=\) \(3 p\), where \(p\) is a prime such that \(p \equiv 5\) or \(7 .(\bmod 8), 3 \dot{p}+2 \& 3 p-2\) are primes.

\section*{Proof:}

When \(n=3 p\) (1) becomes
\[
\begin{equation*}
x^{4}+\left(9 p^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{93}
\end{equation*}
\]

Suppose ( \(x, y, z\) ) is a non-trivial solution of (91) with \(z>0\) and
minimal. Then \((x, y)=1\) and without loss of generality we can assume that \(y\) is odd.

From case I \& case II of theorem 1.5, it
follows that \(x^{2} \equiv y^{2}(\bmod 3 p)\) is impossible. So we only have to consider the case when \(x^{2} \nexists y^{2}(\bmod 3 p)\).

> We can write (91) as
\(9 p^{2}\left(9 p^{2}-4\right) y^{4}=\left(2 x^{2}+\left(9 p^{2}-2\right) y^{2}+2 z\right)\left(2 x^{2}+\left(9 p^{2}-2\right) y^{2}-2 z\right)\), \(=A \cdot B\), say.

Then \((A, B)=1,3\) or \(p\).
Case I
Suppose \((A, B)=1\).
Then we have
either \(\quad 2 x^{2}+\left(9 p^{2}-2\right) y^{2} \pm 2 z=9 p^{2} R c^{4}\),
\[
2 x^{2}+\left(9 p^{2}-2\right) y^{2} \mp 2 z=S d^{4}
\]
\[
2 x^{2}+\left(9 p^{2}-2\right) y^{2} \pm 2 z=9 R c^{4}
\]
\[
2 x^{2}+\left(9 p^{2}-2\right) y^{2} \mp 2 z=p^{2} S d^{4}
\]
where \(y=c d,(R c, S d)=1, R S=9 p^{2}-4\).
Thus either \(\quad 4 x^{2}=\left(R c^{2}-d^{2}\right)\left(9 p^{2} c^{2}-S d^{2}\right)\),
으
\(4 x^{2}=\left(R c^{2}-p^{2} d^{2}\right)\left(9 c^{2}-S d^{2}\right)\).
Case Ia
Suppose \(R \equiv 1(\bmod 8)\)
Then we have
\[
\begin{align*}
& \text { either } \quad R c^{2}-d^{2}=16 x_{1}^{2} \\
& 9 p^{2} c^{2}-s d^{2}=4 x_{2}^{2}  \tag{94}\\
& \text { or } \\
& R c^{2}-p^{2} d^{2}=16 x_{1}^{2}  \tag{95}\\
& 9 c^{2}-S d^{2}=4 x_{2}^{2}
\end{align*}
\]

As in case IIIa of Theorem 1.5 , we cannot have \(R=1\).

We only have to consider \(R=3 p+2, p \equiv 5(\bmod 8)\).
Now, \(R=3 p+2 \rightarrow S=3 p-2\). But then (94) \& (95) are
impossible modulo 3.
Thus we cannot have this case.

Case Ib
\[
\text { Suppose } R \equiv 5(\bmod 8)
\]

Then we have
either \(R c^{2}-d^{2}=-4 x_{1}^{2}\),
\[
\begin{equation*}
9 p^{2} c^{2}-s d^{2}=-16 x_{2}^{2} \tag{96}
\end{equation*}
\]
or
\[
\begin{align*}
& R c^{2}-p^{2} d^{2}=-4 x_{1}^{2} \\
& 9 c^{2}-S d^{2}=-16 x_{2}^{2} \tag{97}
\end{align*}
\]

As in case IIIa \(_{2}\) of Theorem 1.5 , we cannot have \(S=1\).
So we only have to consider \(S=3 p+2, p \equiv 5(\bmod 8)\).
But in this case (96) \& (97) are impossible modulo 3.
Thus we cannot have this case.

Case Ic
Suppose \(R \equiv 3(\bmod 8)\).
Then we have
either \(\quad R c^{2}-d^{2}=2 x_{1}^{2}\),
\[
\begin{equation*}
9 p^{2} c^{2}-s d^{2}=2 x_{2}^{2} \tag{98}
\end{equation*}
\]
\[
R c^{2}-p^{2} d^{2}=2 x_{I}^{2}
\]
\[
\begin{equation*}
9 c^{2}-s d^{2}=2 x_{2}^{2} \tag{99}
\end{equation*}
\]

The only factor \(\equiv 3(\bmod 8)\) of \(9 p^{2}-4\) is \(3 p-2, p \equiv 7\)
(mod 8). Now \(R=3 p-2 \rightarrow S=3 p+2\) and both (98) \& (99)
are impossible modulo 3.
Thus this case is impossible.

\section*{Case Id}

Suppose \(R \equiv 7(\bmod 8)\).
Then we have
either \(\quad R c^{2}-d^{2}=-2 x_{1}^{2}\),
\(9 p^{2} c^{2}-s d^{2}=-2 x_{2}^{2}\),
or \(\quad R c^{2}-p^{2} d^{2}=-2 x_{1}^{2}\),
\[
\begin{equation*}
9 c^{2}-s d^{2}=-2 x_{2}^{2} \tag{101}
\end{equation*}
\]

The only factor \(\equiv 7(\bmod 8)\) of \(9 p^{2}-4\) is \(3 p+2, p \equiv 7\)
(mod 8). Now, \(R=3 p+2 \rightarrow S=3 p-2\), and both (100) \&
(101) are impossible modulo 3 .

Hence we cannot have this case.

\section*{Case II}

Suppose \((A, B)=3\).
Then we have \(4 x^{2}=\left(R c^{2}-3 d^{2}\right)\left(3 p^{2} c^{2}-S d^{2}\right)\).
Case IIa
\[
\text { Suppose } R \equiv 1(\bmod 8)
\]

Then we have
\[
\begin{align*}
R c^{2}-3 d^{2} & =-2 x_{1}^{2}  \tag{102}\\
3 p^{2} c^{2}-S d^{2} & =-2 x_{2}^{2} \tag{103}
\end{align*}
\]

Suppose \(R=1\). Then \(S=9 p^{2}-4\) and (103) is impossible
modulo \(p\). Thus \(R \neq 1\). So we only have to consider \(R=3 p\)
\(+2, p \equiv 5(\bmod 8)\). But then (102) is impossible modulo 3.
Thus this case is impossible.
Case IIb
\[
\text { Suppose } R \equiv 5(\bmod 8)
\]

Then we have
\[
\begin{gather*}
R c^{2}-3 d^{2}=2 x_{1}^{2}  \tag{104}\\
3 p^{2} c^{2}-s d^{2}=2 x_{2}^{2} \tag{io5}
\end{gather*}
\]

Suppose \(S=1\). Then (105) is impossible modulo 3. Hence we cannot have \(S=1\). So we only have to consider the case when \(R=3 p-2, p \equiv 5(\bmod 8)\). Since (104) is impossible modulo 3, we cannot have this case.

\section*{Case IIc}
\[
\text { Suppose } R \equiv 3(\bmod 8)
\]

Then we have
\[
\begin{aligned}
R c^{2}-3 d^{2} & =-16 x_{1}^{2} \\
3 p^{2} s^{2}-S d^{2} & =-4 x_{2}^{2}
\end{aligned}
\]

If \(p \equiv 5(\bmod 8)\) then \(9 p^{2}-4\) has no factor \(\equiv 3(\bmod 8)\) and this case doesn't arise. So we only have to consider the case when \(R=3 p-2, p \equiv 7(\bmod 8)\). But then (106)
is impossible modulo 3.
Thus we cannot have this case.

\section*{Case IId}

Suppose \(R \equiv 7(\bmod 8)\).
Then we have
\[
\begin{aligned}
R c^{2}-3 d^{2} & =4 x_{1}^{2} \\
3 p^{2} c^{2}-s d^{2} & =16 x_{2}^{2}
\end{aligned}
\]

If \(p \equiv 5(\bmod 8)\) then \(9 p^{2}-4\) has no factor \(\equiv 7(\bmod 8)\) and this case doesn't arise. When \(p \equiv 7(\bmod 8)\) we have \(3 p+2 \equiv 7(\bmod 8)\). Since then (107) is impossible modulo 3, we cannot have this case.

Case III
Suppose \((A, B)=p\).
Then we have \(4 x^{2}=\left(R c^{2}-p d^{2}\right)\left(9 p c^{2}-S d^{2}\right)\)

\section*{Case IIIa}
\[
\text { Suppose } R \equiv 1(\bmod 8)
\]

Then we have
\[
\begin{align*}
R c^{2}-p d^{2} & =-4 x_{1}^{2} \\
9 p c^{2}-s d^{2} & =-16 x_{2}^{2} \tag{108}
\end{align*}
\]
when \(p \equiv 5(\bmod 8)\);
\[
\begin{array}{r}
R c^{2}-p d^{2}=2 x_{1}^{2} \\
S p c^{2}-S d^{2}=2 x_{2}^{2} \tag{109}
\end{array}
\]
when \(p \equiv 7(\bmod 8)\).
The only factors \(\equiv 1(\bmod 8)\) of \(9 p^{2}-4\) are \(1 \& 3 p-2\), \(p \equiv 5(\bmod 8)\). In both cases \(3 p+2 \mid S\) and since \(\left(-9 p c^{2} /\right.\) \(3 p+2)=-1\), when \(p \equiv 5(\bmod 8) \&\left(18 p c^{2} / 3 p+2\right)=-1\), when \(p \equiv 7(\bmod 8)\), we cannot have (108) \& (109).

Hence this case is impossible.
Case IIIb
\[
\text { Suppose } R \equiv 5(\bmod 8)
\]

Then we have
\[
\begin{aligned}
R c^{2}-p d^{2} & =16 x_{1}^{2} \\
9 p c^{2}-S d^{2} & =4 x_{2}^{2}
\end{aligned}
\]
when \(p \equiv 5(\bmod 8)\);
\[
\begin{aligned}
R c^{2}-p d^{2} & =-2 x_{1}^{2} \\
9 p c^{2}-S d^{2} & =-2 x_{2}^{2}
\end{aligned}
\]
when \(p \equiv 7(\bmod 8)\).
The possibilities are \(R=9 p^{2}-4 \& R=3 p-2\), when \(p \equiv 5\) \((\bmod 8) ; R=9 p^{2}-4\) when \(p \equiv 7(\bmod 8)\). Thus we have
\[
\begin{aligned}
16 x_{1}^{2} & \equiv-p(\bmod 3 p-2), p \equiv 5(\bmod 8) \\
4 x_{1}^{2} & \equiv 2 p d^{2}(\bmod 3 p-2), p \equiv 7(\bmod 8)
\end{aligned}
\]

Since \((-p / 3 p-2)=(3 p-2 / p)=-1\), when \(p \equiv 5(\bmod 8)\)
and \(\left(2 p d^{2} / 3 p-2\right)=(3 p-2 / p)=-1\), when \(p \equiv 7(\bmod 8)\),
both congruences are impossible.
Thus we cannot have this case.

\section*{Case IIIc}

Suppose \(R \equiv 3(\bmod 8)\).
The only possibility is \(R=3 p-2, p \equiv 7(\bmod 8)\).
Then we have
\[
\begin{aligned}
& \qquad \begin{array}{l}
(3 p-2) c^{2}-p d^{2}=4 x_{1}^{2} \\
9 p c^{2}-(3 p+2) d^{2}=16 x_{2}^{2} . \\
\text { Since }(3 p-2 / p)=(-2 / p)=-1, \text { we cannot have (110). } \\
\text { Thus this case is impossible. }
\end{array} \text {. }
\end{aligned}
\]

\section*{Case IIId}
\[
\text { Suppose } R \equiv 7(\bmod 8) .
\]

Then the only possibility is \(R=3 p+2, p \equiv 7(\bmod 8)\).
Then we have
\[
\begin{aligned}
& \qquad \begin{array}{l}
(3 p+2) c^{2}-p d^{2}=-16 x_{1}^{2} \\
9 p c^{2}-(3 p-2) d^{2}=-4 x_{2}^{2}
\end{array} \\
& \text { Since }(3 p+2 / p)(-1 / p)=-1 \text {, we cannot have (111). } \\
& \text { Hence this case is impossible. }
\end{aligned}
\]

Hence the theorem.

Theorem 1.7
The equation (1) has no non-trivial solutions when \(n=4\) \(p_{1} p_{2}\), where \(p_{1}, p_{2}\) are primes such that \(p_{1} \equiv 5\) or \(17(\bmod 24), p_{2} \equiv\) 7 or \(19(\bmod 24)\), and if \(4 p_{1}^{2} p_{2}^{2}-1\) has prime factorisation of the form
\(3^{t} \cdot \frac{p_{1} p_{2}-1}{3^{t}} \cdot 2 p_{1} p_{2}+1, t \geqslant 1\) and odd.

Proof:
\[
\begin{align*}
& \text { When } n=4 p_{1} p_{2}, \text { (1) becomes } \\
& \qquad x^{4}+\left(16 p_{1}^{2} p_{2}^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2} \tag{112}
\end{align*}
\]

Suppose \(\{x, y, z\}\) is a non-trivial solution of (112) with \(z>0\) \& minimal. Then \((x, y)=1\) and without loss of generality we can assume that \(y\) is odd.

\section*{Case I}

Suppose \(x^{2} \equiv y^{2}\left(\bmod p_{1} p_{2}\right)\) and \(x \equiv 1(\bmod 2)\). Then we have
\[
\left(\frac{x^{2}-y^{2}}{4 p_{1} p_{2}}\right)^{2}+x^{2} y^{2}=\left(\frac{z}{4 p_{1} p_{2}}\right)^{2}
\]

Thus we should have
\[
\begin{aligned}
\frac{x^{2}-y^{2}}{4 p_{1} p_{2}} & =2 X Y \\
x y & =X^{2}-Y^{2}
\end{aligned}
\]

But then \(\left(\frac{1}{2}\left(x^{2}+y^{2}\right)\right)^{2}=\left(4 X Y p_{1} p_{2}\right)^{2}+\left(X^{2}-Y^{2}\right)^{2}\)
\[
=X^{4}+\left(16 p_{1}^{2} p_{2}^{2}-2\right) X^{2} Y^{2}+Y^{4}
\]

Since \(\frac{1}{2}\left(x^{2}+y^{2}\right)<z\), descent applies.
Hence this case is impossible.

\section*{Case II}

Suppose \(x^{2} \notin y^{2}\left(\bmod p_{1} p_{2}\right)\) and \(x \equiv 1(\bmod 2)\).
We can write (112) as
\[
\begin{align*}
p_{1}^{2} p_{2}^{2}\left(4 p_{1}^{2} p_{2}^{2}-1\right) y^{4} & =\left(x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2}+z\right)\left(x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2}-z\right) \\
& =A \cdot B, \text { say } . \tag{113}
\end{align*}
\]

Then \(A \& B\) are both even and \(2^{2} \|(A, B)\)

Suppose an odd prime \(q \mid(A, B)\). Then \(q=p_{1}\) or \(p_{2}\).
Thus \((A, B)=4\) or \(4 p_{1}\) or \(4 p_{2}\).

\section*{Case IIa}
\[
\text { Suppose }(A, B)=4
\]

Then
either \(x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \pm z=4 R c^{4}\), \(x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \mp z=4 S p_{1}^{2} p_{2}^{2} d^{4}\),
\[
x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \pm z=4 R p_{1}^{2} c^{4}
\]
\[
x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \mp z=4 S p_{2}^{2} d^{4}
\]
where \(R S=4 p_{1}^{2} p_{2}^{2}-1,(R c, S d)=1\).
Thus we have
either
\[
\begin{aligned}
x^{2} & =2 R c^{4}-\left(8 p_{1}^{2} p_{2}^{2}-1\right) c^{2} d^{2}+2 S p_{1}^{2} p_{2}^{2} d^{4}, \\
& =\left(2 c^{2}-S d^{2}\right)\left(R c^{2}-2 p_{1}^{2} p_{2}^{2} d^{2}\right),
\end{aligned}
\]
or
\[
x^{2}=2 R p_{1}^{2} c^{4}-\left(8 p_{1}^{2} p_{2}^{2}-1\right) c^{2} d^{2}+2 S p_{2}^{2} d^{4}
\]
\[
=\left(2 p_{1}^{2} c^{2}-S d^{2}\right)\left(R c^{2}-2 p_{2}^{2} d^{2}\right)
\]

Hence either \(\quad 2 c^{2}-S d^{2}= \pm x_{1}^{2}\),
\[
\begin{equation*}
R c^{2}-2 p_{1}^{2} p_{2}^{2} d 2= \pm x_{2}^{2} \tag{114}
\end{equation*}
\]
or
\[
2 p_{1}^{2} c^{2}-s d^{2}= \pm x_{1}^{2}
\]
\[
\begin{equation*}
R c^{2}-2 p_{2}^{2} d^{2}= \pm x_{2}^{2} \tag{115}
\end{equation*}
\]

Both (114) \& (115) implies that \(R \not \equiv 5\) or \(7(\bmod 8)\)
Thus \(R \equiv 1\) or \(3(\bmod 8)\).

\section*{Case IIa 1}

Suppose \(R \equiv 3(\bmod 8)\). Then we have to consider \(R=3^{t} \& R^{\prime}=4 p_{1}^{2} p_{2}^{2}-1\).

Now we have
\[
\begin{align*}
& \text { either } \quad 2 c^{2}-S d^{2}=x_{1}^{2} \\
& \cdot R c^{2}-2 p_{1}^{2} p_{2}^{2} d^{2}=x_{2}^{2} \tag{116}
\end{align*}
\]
or \(\quad 2 p_{1}^{2} c^{2}-S d^{2}=x_{1}^{2}\),
\[
\begin{equation*}
R c^{2}-2 p_{2}^{2} d^{2}=x_{2}^{2} \tag{117}
\end{equation*}
\]

First suppose that \(R=3^{t}\).
Then both (116) \& (117) implies that
\[
x_{2}^{2} \equiv 3^{t} c^{2}\left(\bmod p_{2}\right)
\]

Since \(\left(3^{t} c^{2} / p_{2}\right)=\left(3^{t} / p_{2}\right)=\left(3 / p_{2}\right)=-1\), we cannot have
(116) or (117). Thus \(R \neq 3^{t}\).

Next suppose that \(R=4 p_{1}^{2} p_{2}^{2}-1\).
Then both (116) \& (117) would imply that
\[
x_{2}^{2} \equiv\left(4 p_{1}^{2} p_{2}^{2}-1\right) c^{2}\left(\bmod p_{2}\right)
\]

Since \(\left(4 p_{1}^{2} p_{2}^{2}-1 / p_{2}\right)=\left(-1 / p_{2}\right)=-1\), we cannot have (ll6) or (117).

Thus this case is impossible.

Case \(\mathrm{IIa}_{2}\)
\[
\text { Suppose } R \equiv 1(\bmod 8)
\]

Then we have
\[
\begin{align*}
& \text { either } \begin{array}{l}
2 c^{2}-S d^{2}=-x_{1}^{2} \\
R c^{2}-2 p_{1}^{2} p_{2}^{2} d^{2}=-x_{2}^{2} \\
\text { or } \\
2 p_{1}^{2} c^{2}-S d^{2}=-x_{1}^{2} \\
R c^{2}-2 p_{2}^{2} d^{2}=-x_{2}^{2}
\end{array}, l
\end{align*}
\]

The possibilities are \(R=1 \& R=3^{-t}\left(p_{1}^{2} p_{2}^{2}-1\right)\).
Suppose \(R=1\). Then (118) \& (119) are impossible modulo \(p_{2}\). Thus \(R \neq 1\).
Next suppose that \(R=3^{-t}\left(4 p_{1}^{2} p_{2}^{2}-1\right)\). Then both (118)
\& (119) would imply that
\[
x_{2}^{2} \equiv-3^{-t}\left(4 p_{1}^{2} p_{2}^{2}-1\right) c^{2}\left(\bmod p_{2}\right)
\]

Since \(\left(-3^{-t}\left(4 p_{1}^{2} p_{2}^{2}-1\right) c^{2} / p_{2}\right)=\left(-1 / p_{2}\right)\left(3^{t} / p_{2}\right)\left(-1 / p_{2}\right)\)
\(=-1\), we cannot have (118) or (119).
Thus this case is impossible.
Case IIb
Suppose \((A, B)=4 p_{1}\).
Then we have
\[
\begin{gathered}
x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \pm z=4 R p_{1} c^{4} \\
x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \mp z=4 S p_{1} p_{2}^{2} d^{4} \\
\text { Thus . } \quad x^{2}=\left(2 p_{1} c^{2}-S d^{2}\right)\left(R c^{2}-2 p_{1} p_{2}^{2} d^{2}\right) .
\end{gathered}
\]

Hence we should have
\[
\begin{aligned}
& 2 p_{1} c^{2}-S d^{2}= \pm x_{1}^{2} \\
& R c^{2}-2 p_{1} p_{2}^{2} d^{2}= \pm x_{2}^{2}
\end{aligned}
\]

Since \(p_{1} \equiv 1\) or \(5(\bmod 8)\), we cannot have \(R \equiv 5\) or \(7(\bmod 8)\). Thus \(R \equiv 1\) or \(3(\bmod 8)\).

\section*{Case \(\mathrm{IIb}_{1}\)}

Suppose \(R \equiv 1(\bmod 8)\).
Then we have
\[
\begin{gather*}
2 p_{1} c^{2}-s d^{2}=-x_{1}^{2}  \tag{120}\\
R c^{2}-2 p_{1} p_{2}^{2} d^{2}=-x_{2}^{2}
\end{gather*}
\]

The only possibilities are \(R=1 \& R=3^{-t}\left(4 p_{1}^{2} p_{2}^{2}-1\right)\).
But then \(3 \mid S\) and (120) is impossible modulo 3.
Thus we cannot have this case.

\section*{Case \(\mathrm{IIb}_{2}\)}

Suppose \(R \equiv 3(\bmod 8)\).
Then we have
\[
\begin{align*}
2 p_{1} c^{2}-S d^{2} & =x_{1}^{2} \\
R c^{2}-2 p_{1} p_{2}^{2} d^{2} & =x_{2}^{2} \tag{121}
\end{align*}
\]

But in this case \(3 \mid R\) and (121) is impossible modulo 3. Thus we cannot have this case.

\section*{Case IIc}
\[
\text { Suppose }(A, B)=4 p_{2}
\]

Then we have
\[
\begin{array}{r}
2 p_{2} c^{2}-S d^{2}= \pm x_{1}^{2} \\
R c^{2}-2 p_{1}^{2} p_{2} d^{2}= \pm x_{2}^{2}
\end{array}
\]

Since \(p_{2} \equiv 3\) or \(7(\bmod 8)\), we cannot have \(R^{\prime} \equiv 1\) or \(3(\bmod 8)\). Thus \(R \equiv 5\) or \(7(\bmod 8)\).
\(\underline{C a s e ~}^{I I} C_{1}\)
```

Suppose R\equiv5(mod 8).

```

Then we have
\[
\begin{align*}
2 p_{2} c^{2}-S d^{2} & =-x_{1}^{2} \\
R c^{2}-2 p_{1}^{2} p_{2} d^{2} & =-x_{2}^{2} \tag{122}
\end{align*}
\]

The only value that \(R\) can take is \(2 p_{1} p_{2}-1\). Thus \(3 \mid R\) and (122) is impossible modulo. 3.

Hence we cannot have this case.
\({\underline{C a s e ~} I C_{2}}_{2}\)
\[
\text { Suppose } R \equiv 7(\bmod 8)
\]

Then we have
\[
\begin{gather*}
2 p_{2} c^{2}-s d^{2}=x_{1}^{2}  \tag{123}\\
R c^{2}-2 p_{1}^{2} p_{2} d^{2}=x_{2}^{2}
\end{gather*}
\]

The only possibilities are \(R=3^{-t}\left(2 p_{1} p_{2}-1\right) \& R=2 p_{1} p_{2}\)
+1 . In both cases \(3 / S\) and (123) is impossible modulo 3.
Thus we cannot have this case.

\section*{Case III}

\section*{Suppose \(x \equiv 0(\bmod 2)\)}

Then again we have (113), but now \(z\) is odd. Thus \(2 \|(A, B)\). and we have the following possibilities:

Case IIIa
Suppose \((A, B)=2\).
Then we have
\[
\begin{aligned}
& \text { either } \quad x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \pm z=2 R c^{4} \\
& \\
& x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \mp z=8 S p_{1}^{2} p_{2}^{2} d^{4} \\
& \text { or } \quad x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \pm z=2 R p_{1}^{2} c^{4} \\
& \\
&
\end{aligned} x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \mp z=8 S p_{2}^{2} d^{4}, ~ l
\]
where \(R S=4 p_{1}^{2} p_{2}^{2}-1,(R c, S d)=1\).
Hence
either
\[
\begin{aligned}
x^{2} & =R c^{4}-\left(8 p_{1}^{2} p_{2}^{2}-1\right) c^{2} d^{2}+4 S p_{1}^{2} p_{2}^{2} d^{4} \\
& =\left(R c^{2}-4 p_{1}^{2} p_{2}^{2} d^{2}\right)\left(c^{2}-S d^{2}\right)
\end{aligned}
\]
or
\[
\begin{aligned}
x^{2} & =R p_{1}^{2} c^{4}-\left(8 p_{1}^{2} p_{2}^{2}-1\right) c^{2} d^{2}+4 S p_{2}^{2} d^{4} \\
& =\left(R c^{2}-4 p_{2}^{2} d^{2}\right)\left(p_{1}^{2} c^{2}-S d^{2}\right)
\end{aligned}
\]

Thus we must have
\[
\begin{aligned}
& \text { either } R c^{2}-4 p_{1}^{2} p_{2}^{2} d^{2}= \pm x_{1}^{2}, \\
& c^{2}-S d^{2}= \pm x_{2}^{2}, \\
& \text { or } \quad R c^{2}-4 p_{2}^{2} d^{2}= \pm x_{1}^{2} \text {, } \\
& p_{1}^{2} c^{2}-s d^{2}= \pm x_{2}^{2},
\end{aligned}
\]
where \(x_{1}\) is odd, \(x_{2}\) is even, \(x=x_{1} x_{2}\).
In both cases we cannot have \(R \equiv \pm 1(\bmod 8)\). Hence \(R \equiv 3\) or \(5(\bmod 8)\).

Case IIIa

Then we have
\[
\begin{array}{r}
\text { either } R c^{2}-4 p_{1}^{2} p_{2}^{2} d^{2}=-x_{1}^{2} \\
c^{2}-S d^{2}=-x_{2}^{2} \\
\text { or } \quad \begin{aligned}
R c^{2}-4 p_{2}^{2} d^{2} & =-x_{1}^{2} \\
p_{1}^{2} c^{2}-S d^{2}= & =-x_{2}^{2}
\end{aligned},
\end{array}
\]

Suppose \(R=4 p_{1}^{2} p_{2}^{2}-1\).
\[
\text { Then } S=1 \text { and }
\]
\((125) \rightarrow c^{2}+x_{2}^{2}=d^{2}\),
\((127) \rightarrow p_{1}^{2} c^{2}+x_{2}^{2}=d^{2}\).
Hence we should have either
\[
c=\lambda^{2}-\mu^{2}, x_{2}=2 \lambda \mu, d^{2}=\left(\lambda^{2}+\mu^{2}\right)^{2}
\]
or
\[
p_{1} c=\lambda^{2}-\mu^{2}, x_{2}=2 \lambda \mu, d^{2}=\left(\lambda^{2}+\mu^{2}\right)^{2}
\]

Now from (124) \& (126) we have
either \(x_{1}^{2}=\lambda^{4}+\left(16 p_{1}^{2} p_{2}^{2}-2\right) \lambda^{2} \mu^{2}+\mu^{4}\),
or \(p_{1}^{2} x_{1}^{2}=\lambda^{4}+\left(16 p_{1}^{2} p_{2}^{2}-2\right) \lambda^{2} \mu^{2}+\mu^{4}\).
Since \(x_{1}<x<z, p_{1} x_{1}<p_{1} x<z\), we cannot have \(R=4 p_{1}^{2} p_{2}^{2}\)
- 1 in (124) or (126).

So we only have to consider \(R=3^{t}\). In this case
(124) \(\rightarrow x_{1}^{2} \equiv-3 c^{2}\left(\bmod p_{1}\right)\), and
(127) \(\rightarrow x_{2}^{2} \equiv 3^{-t}\left(4 p_{1}^{2} p_{2}^{2}-1\right) d^{2}\left(\bmod p_{1}\right)\).

Since \(\left(-3^{t} c^{2} / p_{1}\right)=\left(3 / p_{1}\right)=-1\), and \(\left(3^{-t}\left(4 p_{1}^{2} p_{2}^{2}-1\right) d^{2} / p_{1}\right)\)
\(=\left(3^{t} / p_{1}\right)=\left(3 / p_{1}\right)=-1\), we cannot have (124) or (127).
Thus this case is impossible.

\section*{Case IIIa 2}

Then we have
\[
\begin{array}{r}
\text { either } \quad R c^{2}-4 p_{1}^{2} p_{2}^{2} d^{2}=x_{1}^{2}, \\
c^{2}-S d^{2}=x_{2}^{2}, \\
\text { or } \quad R c^{2}-4 p_{2}^{2} d^{2}=x_{1}^{2}  \tag{129}\\
p_{1}^{2} c^{2}-S d^{2}=x_{2}^{2}
\end{array}
\]

The only value that \(R\) can take in this case is \(2 p_{1} p_{2}-1\).
But then both (128) \& (129) would imply that
\[
\begin{aligned}
& \qquad x_{1}^{2} \equiv\left(2 p_{1} p_{2}-1\right) a^{2}\left(\bmod p_{2}\right) . \\
& \text { Since }\left(2 p_{1} p_{2}-1 / p_{2}\right)=\left(-1 / p_{2}\right)=-1,(128) \&(129) \text { are } \\
& \text { impossible. }
\end{aligned}
\]

Thus we cannot have this case.

Case IIIb
Suppose \((A, B)=2 p_{1}\).
Then we have
\[
\begin{aligned}
& x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \pm z=2 R p_{1} c^{4} \\
& x^{2}+\left(8 p_{1}^{2} p_{2}^{2}-1\right) y^{2} \mp z=8 S p_{2}^{2} a^{4}
\end{aligned}
\]

Thus \(x^{2}=\left(R c^{2}-4 p_{1} p_{2}^{2} d^{2}\right)\left(p_{1} c^{2}-S d^{2}\right)\).
Hence we must have
\[
\begin{aligned}
R c^{2}-4 p_{1} p_{2}^{2} d^{2} & = \pm x_{1}^{2} \\
p_{1} c^{2}-S d^{2} & = \pm x_{2}^{2}
\end{aligned}
\]

We notice that \(R\) cannot be congruent to \(\pm 1\) (mod 8):
Case IIIb \(_{1}\)
\[
\text { Suppose } R \equiv 3(\bmod 8)
\]

Then we have
\[
\begin{align*}
& R c^{2}-4 p_{1} p_{2}^{2} d^{2}=-x_{1}^{2}  \tag{130}\\
& p_{1} c^{2}-s d^{2}=-x_{2}^{2}
\end{align*}
\]

Since \(3 \mid R\), (130) is impossible modulo 3.

\section*{Case \(\mathrm{IIIb}_{2}\)}
\[
\text { Suppose } R \equiv 5(\bmod 8) .
\]

Then we have
\[
\begin{align*}
R c^{2}-4 p_{1} p_{2}^{2} d^{2} & =x_{1}^{2}  \tag{131}\\
p_{1} c^{2}-S d^{2} & =x_{2}^{2}
\end{align*}
\]

Since the only value that \(R\) can take in this case is \(2 p_{1} p_{2}-1\), (131) is impossible modulo \(p_{2}\).

Case IIIc
\[
\text { Suppose }(A, B)=2 p_{2}
\]

Then we have
\[
\begin{aligned}
R c^{2}-4 p_{2} p_{1}^{2} d^{2} & = \pm x_{1}^{2} \\
p_{2} c^{2}-s d^{2} & = \pm x_{2}^{2}
\end{aligned}
\]

From the fitst equation it follows that \(R \equiv 3\) or \(5(\bmod 8)\)
\({\text { Case } \text { IIIc }_{1}}\)
\[
\text { Suppose } R \equiv 3(\bmod 8)
\]

Then we have
\[
\begin{aligned}
R c^{2}-4 p_{2} p_{1}^{2} d^{2} & =-x_{1}^{2} \\
p_{2} c^{2}-s d^{2} & =-x_{2}^{2}
\end{aligned}
\]

Suppose \(R=4 p_{1}^{2} p_{2}^{2}-1\).
Then (132) would imply that
\(x_{1}^{2} \equiv 4 p_{1}^{2} p_{2} d^{2}\left(\bmod 2 p_{1} p_{2}+1\right)\)
Since \(\left(4 p_{2} p_{1}^{2} d^{2} / 2 p_{1} p_{2}+1\right)=\left(p_{2} / 2 p_{1} p_{2}+1\right)=-1\), (132) is
impossible. Thus we cannot have \(R=4 p_{1}^{2} p_{2}^{2}-1\).
Next suppose that \(R=3^{t}\).
Then (132) would imply that
\[
\begin{gathered}
x_{1}^{2} \equiv-3^{t} c^{2}\left(\bmod p_{1}\right) \\
\text { Since }\left(-3^{t} c^{2} / p_{1}\right)=\left(3 / p_{1}\right)=-1,(132) \text { is impossible. }
\end{gathered}
\]

Hence we cannot have this case.
\({\underline{C a s e ~} \text { IIIc }_{2}}\)

\section*{Suppose \(R \equiv 5(\bmod 8)\)}

Then we have
\[
\begin{gathered}
R c^{2}-4 p_{2} p_{1}^{2} d^{2}=x_{1}^{2} \\
p_{2} c^{2}-S d^{2}=x_{2}^{2} \\
\text { Since } R=2 p_{1} p_{2}-1,(133) \text { is impossible modulo } p_{2}
\end{gathered}
\]

Thus we cannot have this case.

\section*{Case IIId}
\[
\text { Suppose }(A, B)=2 p_{1} p_{2}
\]

Then we have
\[
\begin{aligned}
& R c^{2}-4 p_{1} p_{2} d^{2}= \pm x_{1}^{2} \\
& p_{1} p_{2} c^{2}-S d^{2}= \pm x_{2}^{2}
\end{aligned}
\]

Since \(p_{1} p_{2} \equiv-1\) or \(3(\bmod 8)\), we cannot have \(R \equiv \ddagger 1(\bmod 8)\).
Case IIId
\[
\text { Suppose } R \equiv .3(\bmod 8)
\]

Then
\[
\begin{array}{r}
R c^{2}-{ }^{4} p_{1} p_{2} d^{2}=-x_{1}^{2}  \tag{134}\\
p_{1} p_{2} c^{2}-S d^{2}=-x_{2}^{2}
\end{array}
\]

Since \(3 \mid R\), (134) is impossible modulo 3.
Thus we cannot have this case.

Case IIId \(_{2}\)
\[
\text { Suppose } R \equiv 5(\bmod 8)
\]

Then we have
\[
\begin{align*}
& R c^{2}-{ }^{4} p_{1} p_{2} d^{2}=x_{1}^{2}  \tag{135}\\
& p_{1} p_{2} c^{2}-s d^{2}=x_{2}^{2}
\end{align*}
\]

Since the only value that \(R\) can take in this case is \(2 p_{1} p_{2}-1\), (135) would imply that
\(x_{1}^{2} \equiv 2 p_{1} p_{2}-1\left(\bmod p_{2}\right)\), which is impossible
modulo \(p_{2}\).
Hence we cannot have this case.
Hence the theorem.

Corollary 1.1.1:
If the equation (1) has no non-trivial solutions, then the \(1^{\text {st }}, 3^{\text {rd }},(n+1)^{\text {th }},(n+3)^{\text {th }}\) terms of an arithmetical progression cannot each be square.

Proof:
Suppose the \(1^{\text {st }}, 3^{\text {rd }},(n+1)^{\text {th }},(n+3)^{\text {th }}\) terms of an arithmetical progression are all squares. Then there exist integers \(a, d\) \(p, q, r, s\), satisfying the following equations:
\[
\begin{aligned}
\because a & =p^{2}, \\
a+2 d & =q^{2}, \\
a+n d & =r^{2}, \\
a+(n+2) d & =s^{2} . \\
\text { Let } x^{2}=a(a+2 d) \text { and } y^{2} & =(a+n d)(a+(n+2) d) . \\
\text { Then } x^{4}+\left(n^{2}-2\right) x^{2} y^{2}+y^{4} & =\left\{n a^{2}+n(n+2) a d+n(n+2) d^{2}\right\}^{2} \\
& =z^{2}, \text { say. }
\end{aligned}
\]

Thus we see that if the equation (1) has no non-trivial solutions, then the \(1^{\text {st }}, 3^{\text {rd }},(n+1)\) th, \((n+3)\) th terms of an A.P cannot each be squares.

Note:
From Corollary l.l.1, it follows that the \(0^{\text {th }}, 2^{\text {nd }}, n^{\text {th }},(n+2)^{\text {th }}\)
terms of an A.P cannot be each square if (1) has no non-trivial solutions. So when \(n\) is even we can write \(n=2 N\), and we have the following result:

If the equation \(x^{4}+\left(4 N^{2}-2\right) x^{2} y^{2}+y^{4}=z^{2}\) has no non-trivial solutions, then the \(0^{\text {th }}, 1^{s t}, N^{\text {th }},(N+1)^{\text {th }}\left\{\rightarrow 1^{\text {st }}\right.\), \(\left.2^{\text {nd }},(N+1)^{\text {th }},(N+2)^{\text {th }}\right\}\) terms of an A.P cannot each be square. We notice that the corollary by Fermat \([6]\) is the case when \(N=2\).

\section*{Note:}

In Theorem 1.4, we notice that, when \(p \equiv 11\) or \(23(\bmod 24)\), condition (i) could be improved as follows:
(i) \(r \equiv 1(\bmod 8), r \neq \square,(r / p)=+1\).

We shall now discuss the existence of a non-trivial solution in positive integers, of the equation (1), for integer values of \(n<100\).

From Theorems 1.1 - 1.6 , it follows that (1) cannot have a non-trivial solution when \(n=3,6,7,10,11,12,13,15,17\), \(21,23,26,31,39,40,41,47,49,59,69,73,74,86,88,92,97\).

We find that non-trivial solutions exist when \(n=\) \(2,5,9,14,19,20,22,24,25,27,28,29,33,34,35,37,38,43\) \(44,46,53,54,55,56,58,60,61,63,65,66,67,71,75,76,77\), \(78,79,80,82,83,85,89,90,91,95,96,99\).

The following table gives one solution for each of the above values of \(n\).
\begin{tabular}{|c|c|c|c|}
\hline \(n\) & \(x\) & \(y\) & \(z\) \\
\hline 2 & 2 & 1 & 5 \\
\hline 5 & 3 & 1 & 17 \\
\hline 9 & 3 & 133 & 18041 \\
\hline 14 & 5 & 1 & 74 \\
\hline 19 & 11 & 1 & 241 \\
\hline 20 & 6 & 1 & 125 \\
\hline 22 & 21 & 1 & 638 \\
\hline 24 & 15 & 1 & 424 \\
\hline 25 & 21 & 1 & 685 \\
\hline 27 & 7 & 1 & 195 \\
\hline 28 & 4 & 1 & 113 \\
\hline 29 & 2967 & 517 & 45295769 \\
\hline 33 & 19 & 1 & 723 \\
\hline 34 & 88 & 3 & 11849 \\
\hline 35 & 8 & 1 & 287 \\
\hline 37 & 77 & 3 & 10397 \\
\hline 38 & 34 & 1 & 1733 \\
\hline 43 & 976 & 5365 & 226871801 \\
\hline 44 & 9 & 1 & 404 \\
\hline 46 & 35 & 17 & 27386 \\
\hline 53 & 8 & 13 & 5513 \\
\hline 54 & 10 & 1 & 549 \\
\hline 55 & 4 & 95 & 22759 \\
\hline 56 & 65 & 1 & 5576 \\
\hline 58 & 2 & 13 & 1517 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(n\) & \(x\) & \(y\) & \(z\) \\
\hline 60 & 55 & 1 & 4476 \\
\hline 61 & 23 & 3 & 4241 \\
\hline 63 & 55 & 1 & 4599 \\
\hline 65 & 11 & 1 & 725 \\
\hline 66 & 51 & 5 & 17026 \\
\hline 67 & 1306 & 22631 & 2124341489 \\
\hline 71 & 41 & 1 & 3361 \\
\hline 75 & 51 & 1 & 4625 \\
\hline 76 & 8 & 195 & 124489 \\
\hline 77 & 12 & 1 & 935 \\
\hline 78 & 40 & 77 & 240279 \\
\hline 79 & 267 & 133 & 2805881 \\
\hline 80 & 20 & 1 & 1649 \\
\hline 82 & 29 & 1 & 2522 \\
\hline 83 & 42304 & 91039 & 319725098177 \\
\hline 85 & 76 & 1 & 8665 \\
\hline 89 & 18040 & 26381 & 42357898889 \\
\hline 90 & 13 & 1 & 1182 \\
\hline 91 & 21 & 1 & 1961 \\
\hline 95 & 56 & 1 & 6175 \\
\hline 96 & 35 & 1 & 3576 \\
\hline 99 & 56 & 1 & 6369 \\
\hline
\end{tabular}

\author{
Pocklington [8] has proved that (1) cannot have a nontrivial solution when \(n=1,4\). So the cases still not considered are \(n=8,16,18,30,32,36,42,45,48,50,51,52,57,62,64\), \(68,70,72,81,84,87,93,94,98,100\). For some of these values of \(n\), we could prove that ( 1 ) cannot have a non-trivial solution; but, we could not generalize our method in these cases.
}

\section*{Chapter 2}

Introduction:
The four numbers \(1,3,8,120\) have the property that the product of any two increased by \(l\) is a perfect square. Baker and Davenport [1] proved that no other positive integer can replace 120 while preserving the property. In fact we can find infinite number of sets of four positive integers with the above mentioned property. A set of five positive integers with this property is not known.

However, if we consider the sets of positive integers with the property that the product of any two increased by 2 is a perfect square, then we can prove that those sets can have at most three elements. In this chapter we shall prove some results concerned. with the two properties mentioned.

\section*{Notation:}

A set \(S\) of positive integers is said to have property ( \(\stackrel{*}{*}\) ) if \(a, b \varepsilon S \rightarrow a b+M\) is a perfect square.

Lemma 2.1:
If \(\{a, b\}, a \neq b\) has property \((* M)\) with \(a b+M=c^{2}\), then \(\{a, b, a+b+2 c\}\) has property \((* M)\), where \(a, b, c, M\) are positive integers.

Proof:
We have,
\[
\begin{aligned}
a(a+b+2 c)+M & =a^{2}+2 a c+a b+M=a^{2}+2 a c+c^{2} \\
& =(a+c)^{2}
\end{aligned}
\]
and
\[
b(a+b+2 c)+M=(b+c)^{2} .
\]

Hence the lemma.

Note:
In the above lemma \(a+b+2 c\) can be replaced by \(a+b-2 c\). But it is not necessarily a positive integer distinct from \(a, b\).

Lemma 2.2:
Let \(S\) be a set of positive integers having property ( \(\% 2\) ). Then \(S\) can have atmost three elements.

Proof:
\(a \varepsilon S \rightarrow a \neq 0(\bmod 4)\), since then \(a b+2 \equiv 2(\bmod 4)\), which.. is impossible.
\(a, b \in S\) and \(a \equiv b \equiv 1,2\), or \(3(\bmod 4) \rightarrow a b+2 \pm 2\) or 3
(mod 4), which is also impossible.
Since any positive integer is congruent to \(0,1,2\), or 3
modulo 4, the set \(S\) can have atmost three elements. //

\section*{Note:}

The above lemma is true for any \(M \equiv 2(\bmod 4)\).

Corollary 2.2.1:
If \(S \equiv\{a, b, c\}\) is a set having property (*2), then without loss of generality we can assume that,
\[
a \equiv 1(\bmod 4), b \equiv 2(\bmod 4), c \equiv 3(\bmod 4)
\]

Theorem 2.1:
Given a positive integer \(a\), such that 2 is a quadratic
residue of \(a\) there exist a set of three elements having property (*2).

\section*{Proof:}

2 is a quadratic residue of \(a\) implies that there exist \(x\) such that. \(2 \mid x^{2}-2\). For one such value of \(x\) define \(b=\frac{x^{2}-2}{a}\). Then \(a b+2=x^{2}\).

Now, by lemma 2.l, we can find a third distinct element \(d\) (say), such that
\[
a d+2=a \text { perfect square, }
\]
and
\[
b d+2=\text { a perfect square. }
\]

Hence there exist a set \(\{a, b, d\}\), having property (*2). //
Note that by lemma 2.2 , a fourth element cannot be added to the above set.

\section*{Theorem 2.2:}

There exist infinite number of sets of four positive integers having property (*1).

Proof:
For any positive integer \(a\), consider the numbers \(a, a+2\),
\(4(a+1), 4(a+1)(2 a+1)(2 a+3)\).
We have,
\[
\begin{aligned}
& a(a+2)+1=(a+1)^{2}, \\
& a \cdot 4(a+1)+1=(2 a+1)^{2}, \\
& a \cdot 4(a+1) \cdot 4(a+1)(2 a+1)(2 a+3)+1=\left(4 a^{2}+6 a+1\right)^{2}, \\
& a+2 \cdot 4(a+1)+1=(2 a+3)^{2}, \\
& a+2 \cdot 4(a+1)(2 a+1)(2 a+3)=\left(4 a^{2}+10 a+5\right)^{2},
\end{aligned}
\]
\(4(a+1) \cdot 4(a+1)(2 a+1)(2 a+3)+1=\left(8 a^{2}+16 a+7\right)^{2}\).
Hence the set \(\{a, a+2,4(a+1), 4(a+1)(2 a+1)(2 a+3)\}\) has property (*1).

The theorem follows from the fact that \(a\) is an arbitary positive integer.

\section*{Note:}

For \(a=1\), we get the set \(\{1,3,8,120\}\)
\(a=2\), we get the set \(\{2,4,12,420\}\).

Theorem 2.3:
A fifth integer cannot be added to the set \(\{2,4,12,420\}\)

Proof:
Suppose there exist such an integer \(N\). Then we can replace 420 by that integer.
\[
\begin{aligned}
& \text { Now, } N \text { must satisfy the equations, } \\
& 2 N+1=x^{2} \\
& 4 N+1=y^{2} \\
& 12 N+1=z^{2}
\end{aligned}
\]

Eliminating \(N\) from the above equations we have,
\[
z^{2}-3 y^{2}=-2 \text { and } z^{2}-6 x^{2}=-5
\]

Now, the equation \(z^{2}-3 y^{2}\) can be written in the form
\[
\begin{equation*}
u^{2}-3 v^{2}=1 \tag{1}
\end{equation*}
\]

Where \(u=z^{2}+1, v=z y\).
Substituting for \(z^{2}\) in \(z^{2}-6 x^{2}=-5\), we have
\[
\begin{equation*}
x^{2}=6 u+24 \tag{2}
\end{equation*}
\]
where \(X=6 x\).

Hence to solve the equations,
\[
z^{2}-3 y^{2}=-2, \text { and } z^{2}-6 x^{2}=-5
\]
it is sufficient to solve (1), and (2) simultaneously.
Now all the positive integral solutions of (1) are given by the formula,
\[
\begin{equation*}
u_{n} \pm \sqrt{ } 3 v_{n}=(2 \pm \sqrt{3})^{n} \tag{3}
\end{equation*}
\]
(See e.g. [7]).
Hence we have
\[
u_{n}=\frac{\alpha^{n}+\beta^{n}}{2} \text { and } v_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{3}}
\]

Where \(\alpha=2+\sqrt{ } 3\) and \(\beta=2-\sqrt{ } 3\).
So, we have,
\[
\alpha+\beta=4 \text { and } \alpha \beta=1 .
\]

Now,
\[
u_{-n}=\frac{\alpha^{-n}+\beta^{-n}}{2}=\frac{\alpha^{n}+\beta^{n}}{2 \alpha^{n} \beta^{n}}=\frac{\alpha^{n}+\beta^{n}}{2} .
\]

Hence we have,
\[
\begin{equation*}
u_{-n}=u_{n} \tag{4}
\end{equation*}
\]

Now,
\[
v_{-n}=\frac{\alpha^{-n}-\beta^{-n}}{2 \sqrt{3}}=\frac{\beta^{n}-\alpha^{n}}{2 \sqrt{3} \alpha^{n} \beta^{n}}=-\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{3}} .
\]

Hence we have,
\[
\begin{equation*}
v_{-n}=-v_{n} \tag{5}
\end{equation*}
\]

Now,
\[
\begin{aligned}
u_{m+n} & =\frac{\alpha^{m+n}+\beta^{m+n}}{2} \\
& =\frac{\alpha^{m}+\beta^{m}}{2} \cdot \frac{\alpha^{n}+\beta^{n}}{2}+3 \cdot \frac{\alpha^{m}-\beta^{m}}{2 \sqrt{3}} \cdot \frac{\alpha^{n}-\beta^{n}}{2 \sqrt{3}}
\end{aligned}
\]

Hence we have,
\[
\begin{equation*}
u_{m+n}=u_{m} u_{n}+3 v_{m} v_{n} \tag{6}
\end{equation*}
\]

Now,
\[
\begin{aligned}
v_{m+n} & =\frac{\alpha^{m+n}-\beta^{m}+n}{2 \sqrt{3}} \\
& =\frac{\alpha^{m}+\beta^{m}}{2} \cdot \frac{\alpha^{n}-\beta^{n}}{2 \sqrt{3}}+\frac{\alpha^{n}+\beta^{n}}{2} \cdot \frac{\alpha^{m}-\beta^{m}}{2 \sqrt{3}}
\end{aligned}
\]

Hence,
\[
\begin{equation*}
v_{m+n}=u_{m} v_{n}+u_{n} v_{m} \tag{7}
\end{equation*}
\]

Now, using (6), wehave,
\[
u_{2 n}=u_{n} u_{n}+3 v_{n} v_{n}=u_{n}^{2}+3 v_{n}^{2}=2 u_{n}^{2}-1
\]

Hence,
\[
\begin{equation*}
u_{2 n}=2 u_{n}^{2}-1 \tag{8}
\end{equation*}
\]

Now, using (7), we have,
\[
v_{2 n}=u_{n} v_{n}+u_{n} v_{n}=2 u_{n} v_{n}
\]

Hence,
\[
\begin{equation*}
v_{2 n}=2 u_{n} v_{n} \tag{9}
\end{equation*}
\]

Now,
\[
\begin{aligned}
u_{3 n} & =u_{n} u_{2 n}+3 v_{n} v_{2 n},(\text { Using (6)) } \\
& =u_{n}\left(2 u_{n}^{2}-1\right)+3 v_{n} \cdot 2 u_{n} v_{n} \\
& =u_{n}\left(2 u_{n}^{2}-1\right)+2 u_{n}\left(\dot{u}_{n}^{2}-1\right)=u_{n}\left(4 u_{n}^{2}-3\right)
\end{aligned}
\]

Hence,
\[
\begin{equation*}
u_{3 n}=u_{n} \cdot f_{1}\left(u_{n}\right) \tag{10}
\end{equation*}
\]
where \(f_{1}\left(u_{n}\right)=.4 u_{n}^{2}-3\).
Now, using (7), we have,
\[
\begin{aligned}
v_{3 n} & =u_{n} v_{2 n}+v_{n} u_{2 n} \\
& =u_{n} \cdot 2 u_{n} v_{n}+v_{n}\left(2 u_{n}^{2}-1\right), \text { using (8) \& (9) } \\
& =v_{n}\left(4 u_{n}^{2}-1\right)
\end{aligned}
\]

Hence,
\[
\begin{equation*}
v_{3 n}=v_{n} \cdot f_{2}\left(u_{n}\right) \tag{11}
\end{equation*}
\]
where \(f_{2}\left(u_{n}\right)=4 u_{n}^{2}-1\).
Now, \(\quad u_{5 n}=u_{2 n} u_{3 n}+3 v_{2 n} v_{3 n}\)
\[
\begin{aligned}
& =2 u_{n}^{2}-1 \cdot u_{n} \cdot f_{1}\left(u_{n}\right)+3 \cdot 2 u_{n} v_{n} \cdot v_{n} \cdot f_{2}\left(u_{n}\right) \\
& =u_{n}\left(16 u_{n}^{4}-20 u_{n}^{2}+5\right)
\end{aligned}
\]

Hence,
\[
\begin{equation*}
u_{5 n}=u_{n} \cdot f_{3}\left(u_{n}\right) \tag{12}
\end{equation*}
\]
where \(f_{3}\left(u_{n}\right)=16 u_{n}^{4}-20 u_{n}^{2}+5\).
Now,
\[
\begin{aligned}
v_{5 n} & =u_{2 n} v_{3 n}+v_{2 n} u_{3 n} \\
& =2 u_{n}^{2}-1 \cdot v_{n} \cdot f_{2}\left(u_{n}\right)+2 u_{n} v_{n} \cdot u_{n} \cdot f_{1}\left(u_{n}\right) \\
& =v_{n}\left(16 u_{n}^{4}-12 u_{n}^{2}+1\right) .
\end{aligned}
\]

Hence,
\[
\begin{equation*}
v_{5 n}=v_{n} \cdot f_{4}\left(u_{n}\right) \tag{13}
\end{equation*}
\]
where \(f_{4}\left(u_{n}\right)=16 u_{n}^{4}-12 u_{n}^{2}+1\).
Now,
\[
\begin{aligned}
u_{7 n} & =u_{2 n} u_{5 n}+3 v_{2 n} v_{3 n} \\
& =2 u_{n}^{2}-1 \cdot u_{n} \cdot f_{3}\left(u_{n}\right)+3 \cdot 2 u_{n} v_{n} \cdot v_{n} \cdot f_{4}\left(u_{n}\right) \\
& =u_{n}\left(64 u_{n}^{6}-112 u_{n}^{4}+56 u_{n}^{2}-7\right) .
\end{aligned}
\]

Hence,
\[
\begin{equation*}
u_{7 n}=u_{n} \cdot f_{5}\left(u_{n}\right) \tag{14}
\end{equation*}
\]
where \(f_{5}\left(u_{n}\right)=64 u_{n}^{6}-112 u_{n}^{4}+56 u_{n}^{2}-7\).
Now, \(\quad v_{7 n}=u_{2 n} v_{5 n}+u_{5 n} v_{2 n}\)
\[
\begin{aligned}
& =2 u_{n}^{2}-1 \cdot v_{n} \cdot f_{4}\left(u_{n}\right)+2 u_{n} v_{n} \cdot u_{n} \cdot f_{3}\left(u_{n}\right) \\
& =v_{n}\left(64 u_{n}^{6}-80 u_{n}^{4}+24 u_{n}^{2}-1\right) .
\end{aligned}
\]

Hence,
\[
\begin{equation*}
v_{7 n}=v_{n} \cdot f_{6}\left(u_{n}\right) \tag{15}
\end{equation*}
\]
where \(f_{6}\left(u_{n}\right)=64 u_{n}^{6}-80 u_{n}^{4}+24 u_{n}^{2}-1\).
Now, \(u_{9 n}=u_{3.3 n}=u_{3 n} \cdot f_{1}\left(u_{3 n}\right)\)
\[
=u_{n} \cdot f_{1}\left(u_{n}\right) \cdot\left(64 u_{n}^{6}-96 u_{n}^{4}+36 u_{n}^{2}-3\right) .
\]

Hence,
\[
\begin{equation*}
u_{9 n}=u_{n} \cdot f_{1}\left(u_{n}\right) \cdot f_{7}\left(u_{n}\right) \tag{16}
\end{equation*}
\]
where \(f_{7}\left(u_{n}\right)=64 u_{n}{ }^{6}-96 u_{n}{ }^{4}+36 u_{n}{ }^{2}-3\).
Now, \(v_{9 n}=v_{3.3 n}=v_{3 n} \cdot f_{2}\left(u_{3 n}\right)\)
\[
=v_{n} \cdot f_{2}\left(u_{n}\right) \cdot\left(64 u_{n}^{6}-96 u_{n}^{4}+36 u_{n}^{2}-1\right) .
\]

Hence,
\[
\begin{equation*}
v_{9 n}=v_{n} \cdot f_{2}\left(u_{n}\right) \cdot f_{8}\left(u_{n}\right) \tag{17}
\end{equation*}
\]
where \(f_{8}\left(u_{n}\right)=64 u_{n}^{6}-96 u_{n}^{4}+36 u_{n}^{2}-1\).
Now, \(u_{15 n}=u_{3.5 n}=u_{5 n} \cdot f_{1}\left(u_{5 n}\right)\)
Also, \(u_{15 n}=u_{5.3 n}=u_{3 n} \cdot f_{3}\left(u_{n}\right)\).
Hence we have, \(u_{15 n}=u_{n} \cdot f_{1}\left(u_{n}\right) \cdot f_{3}\left(u_{n}\right) \cdot\left(256 u_{n}^{8}-448 u_{n}^{6}+224 u_{n}^{4}\right.\) \(\left.32 u_{n}^{2}+1\right)\). Let \(f_{9}\left(u_{n}\right)=256 u_{n}^{8}-448 u_{n}^{6}+224 u_{n}^{4}-32 u_{n}^{2}+1\).

Then we have,
\[
\begin{equation*}
u_{15 n}=u_{n} \cdot f_{1}\left(u_{n}\right) \cdot f_{3}\left(u_{n}\right) \cdot f_{9}\left(u_{n}\right) \tag{18}
\end{equation*}
\]

Now, \(v_{15 n}=v_{3.5 n}=v_{3 n} \cdot f_{2}\left(u_{n}\right)\)

We also have, \(v_{15 n}=v_{5.3 n}=v_{3 n} \cdot f_{4}\left(u_{3 n}\right)\).
Hence, \(\quad v_{15 n}=v_{n} \cdot f_{2}\left(u_{n}\right) \cdot f_{4}\left(u_{n}\right) \cdot\left(256 u_{n}^{8}-576 u_{n}^{6}+416 u_{n}^{4}-\right.\)
\(\left.96 u_{n}^{2}+1\right)\). So if we denote the last expression by \(f_{10}\left(u_{n}\right)\), then
\[
\begin{equation*}
v_{15 n}=v_{n} \cdot f_{2}\left(u_{n}\right) \cdot f_{4}\left(u_{n}\right) \cdot f_{10}\left(u_{n}\right) \tag{19}
\end{equation*}
\]

Using (6)-(9), we have,
\[
\begin{equation*}
u_{n+2 p} \equiv u_{n}\left(\bmod v_{r}\right) \tag{20}
\end{equation*}
\]
and
\[
\begin{equation*}
u_{n+2 r} \equiv-u_{n}\left(\bmod u_{r}\right) . \tag{21}
\end{equation*}
\]

We have also the following table of values;
\begin{tabular}{|c|c|c|}
\hline \(n\) & \(u_{n}\) & \(v_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 2 & 1. \\
\hline 2 & 7 & 4 \\
\hline 3 & 26 & 15 \\
\hline 4 & 97 & 56 \\
\hline 5 & 362 & 209 \\
\hline 6 & 1351 & 780 \\
\hline 7 & 5042 & 2911 \\
\hline 8 & 18817 & 10864 \\
\hline 9 & 70226 & 40545 \\
\hline 10 & 262087 & 151316 \\
\hline 11 & 978122 & 564719 \\
\hline 12 & 3650401 & 2107560 \\
\hline 13 & 13623482 & 7865521 \\
\hline
\end{tabular}

We note that both \(z\) and \(y\) are odd and hence \(u\) is even and \(v\) is odd. Hence we have to consider only the odd values of \(n\). The proof is now accomplished in eleven stages:
(i) (2) is impossible if \(n \equiv 3(\bmod 6)\) For, \(u_{n} \equiv 0(\bmod 13)\) and then \(X^{2} \equiv-2(\bmod 13)\) and since the Jacobi-Legendre symbol \((-2 / 13)=-1\), (2) is impossible
(ii) (2) is impossible if \(n \equiv 5(\bmod 10)\).
\[
\text { For, using } \begin{aligned}
(20), u_{n} & \equiv u_{5} & \left(\bmod v_{5}\right) \\
& \equiv 362 & (\bmod 209) \\
& \equiv-1 & (\bmod 11)
\end{aligned}
\]

But then \(X^{2} \equiv 7(\bmod 11)\) and \((7 / 11)=-1\), and hence
(2) is impossible.
(iii) (2) is impossible if \(n \equiv \pm 5(\bmod 14)\).

For, using (20), we have,
\[
\begin{aligned}
u_{n} & \equiv u_{ \pm 5}\left(\bmod v_{7}\right) \\
& \equiv u_{5}\left(\bmod v_{7}\right), \text { using }(4) .
\end{aligned}
\]

Now \(71 \mid v_{7}, u_{5} \equiv 7(\bmod 71)\) and then \(X^{2} \equiv-5(\bmod 71)\).
Since ( \(-5 / 71\) ) \(=-1\), (2) is impossible.
(iv) (2) is impossible if \(n \equiv \pm 3(\bmod 20)\). For, using (21), \(u_{n} \equiv \pm u_{ \pm 3} \equiv \pm u_{3}\left(\bmod u_{10}\right)\) and then \(X^{2} \equiv 180\) or \(-132(\bmod 7.37441)\). Now since \((180 / 7)=-1\) and \((-132 / 37441)=-1\), (2) is impossible.
(v) (2) is impossible if \(n \equiv \pm 3, \pm 11, \pm 13(\bmod 28)\). For, when \(n \equiv \pm 11(\bmod 28)\), using (4) and (20) we have, \(u_{n} \equiv u_{11}\left(\bmod v_{14}\right)\). Now, 2521|\(v_{14}\) and \(u_{11} \equiv-26\) \((\bmod 2521) . \quad\) But then \(X^{2} \equiv-132(\bmod 2521)\) and since \((-132 / 2521)=-1\), this is impossible. When \(n \equiv \pm 3, \pm 13(\bmod 28)\), using (4) and (21) we have \(u_{n} \equiv \pm u_{3}, \pm u_{13}\left(\bmod u_{14}\right)\). Now, 7, 337, 3079| \(u_{14}\) and \(u_{3}, u_{13} \equiv 5(\bmod 7), u_{3} \equiv 26(\bmod 337)\) and \(u_{13} \equiv\) \(1986(\bmod 3079)\). Hence \(X^{2} \equiv 24+6 u_{3}, X^{2} \equiv 24+6 u_{13}\) are impossible modulo \(7, X^{2}-6 u_{3}\) is impossible modulo 337 and \(X^{2} \equiv 24-6 u_{13}\) is impossible modulo 3079 .
(vi) (2) is impossible if \(n \equiv \pm 11, \pm 13(\bmod 30)\). For, \(u_{n} \equiv u_{11}, u_{13}\left(\bmod v_{15}\right)\). Now, \(29 \mid v_{15}\) and \(u_{11} \equiv\) \(10(\bmod 29)\) and \(u_{13} \equiv 7(\bmod 29)\). Hence \(X^{2} \equiv-3(\bmod\) 29) and \(X^{2} \equiv 8(\bmod 29)\) and since \((-3 / 29)=-1\), \((8 / 29)=-1\), both are impossible.
(vii) (2) is impossible if \(n \equiv \pm 13(\bmod 42)\). For, \(u_{n} \equiv u_{13}\left(\bmod v_{21}\right)\) and then \(X^{2} \equiv 24+6 u_{13}(\bmod\) \(\left.v_{21}\right)\). Now 2017| \(v_{21}\) and \(X^{2} \equiv 1991(\bmod 2017)\), and since (1991/2017) \(=-1\), (2) is impossible.
(viii) (2) is impossible if \(n \equiv \pm 21(\bmod 70)\).
\[
\text { For, } \begin{aligned}
u_{n} & \equiv u_{21}\left(\bmod v_{35}\right), \text { and } \\
v_{35} & =v_{7.5}=v_{5} \cdot f_{6}\left(u_{5}\right) \\
& =209 \cdot 2911 \cdot 9243361 \cdot 5352481
\end{aligned}
\]
\[
\begin{array}{rlr}
\text { Now, } u_{21} & =u_{7}\left(4 u_{7}^{2}-3\right) \cdot & \\
\text { Hence } X^{2} & \equiv 24+6 \cdot u_{7}\left(4 u_{7}{ }^{2}-3\right) & \\
(\bmod 5352481) \\
& \equiv 24-6 \cdot 5042 \cdot 10086 & (\bmod 5352481) \\
& \equiv-305121648 & \\
(\bmod 5352481)
\end{array}
\]

Since \((-305121648 / 5352481)=-1\), (2) is impossible.
(ix) (2) is impossible if \(n \equiv \pm 29, \pm 31(\bmod 90)\)

For, \(u_{n} \equiv u_{29}, u_{31}\left(\bmod v_{45}\right)\). Now, 83609| \(v_{45}\) and
\(u_{29}=2 u_{30}-3 v_{30}=2 u_{10}\left(4 u_{10}^{2}-3\right)-3 v_{10}\left(4 u_{10}^{2}-1\right)\) \(\equiv 9253(\bmod 83609)\).

Hence \(X^{2} \equiv 55542(\bmod 83609)\) and since (55542/83609) \(=-1\), (2) is impossible.

Also \(17 \mid v_{45}\) and \(u_{31}=2 u_{30}+3 v_{30} \equiv 5(\bmod 17)\). and hence \(X^{2} \equiv 3(\bmod 17) . \quad\) Since \((3 / 17)=-1,(2)\) is impossible.
(x) (2) is impossible if \(n \equiv \pm 1(\bmod 252), n \neq \pm 1\). For, we can write \(n= \pm 1+63 k(2 l+1)\) where \(Z\) is an integer, and \(k=2 t, t \geqslant 2\). Then,
\[
\begin{aligned}
u_{n} \equiv \pm u_{ \pm 1+}+63 k & \equiv \pm 3 v_{63 k}\left(\bmod u_{63 k}\right) \\
\text { Now, } v_{63 k}=v_{9} \cdot 7 k & \equiv v_{7 k}\left(\bmod u_{7 k}\right) \\
& \equiv v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right)(\bmod
\end{aligned}
\]
\(f_{5}\left(u_{k}\right)\).
Also, \(v_{63 k}=v_{7.9 k} \equiv-v_{9 k}\left(\bmod u_{9 k}\right)\) \(\equiv-2 v_{k}\left(4 u_{k}{ }^{2}-1\right) \quad\left(\bmod f_{7}\left(u_{k}\right)\right)\)
Hence \(X^{2} \equiv 24 \pm 18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right) \quad\left(\bmod f_{5}\left(u_{k}\right)\right)\)
\(\equiv 24 \mp 36 v_{k}\left(4 u_{k}^{2}-1\right) \quad\left(\bmod f_{7}\left(u_{k}\right)\right)\).
First consider \(X^{2} \equiv 24 \pm 18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right)(\bmod\) \(f_{5}\left(u_{k}\right)\) ).
\[
\left.\begin{array}{l}
\text { Now, }\left(\frac{24+18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right)}{f_{5}\left(u_{k}\right)}\right) \\
=\left(\frac{24+18 v_{k}\left(288 v_{k}^{4}+96 v_{k}^{2}+6\right)}{1728 v_{\ddot{k}}^{6}+720 v_{k}^{4}+72 v_{k}^{2}+1}\right) \\
=\left(\frac{144 v_{k}^{4}+36 v_{k}^{2}-8 v_{k}^{2}+1}{\frac{1}{2}\left(432 v_{k}^{5}+144 v_{k}^{3}+9 v_{k}+2\right)}\right) \\
=\left(\frac{36 v_{k}^{3}+24 v_{k}^{2}+6 v_{k}+2}{144 v_{k}^{4}+36 v_{k}^{2}-8 v_{k}+1}\right) \\
=\left(\frac{3}{\frac{1}{2}\left(36 v_{k}^{3}+24 v_{k}^{2}+6 v_{k}+22\right.}\right)\left(\frac{1}{\frac{1}{2}\left(36 v_{k}^{3}+24 v_{k}^{2}+6 v_{k}+2\right.}\right) \\
=(-)\left(\frac{36 v_{k}^{3}+24 v_{k}^{2}+6 v_{k}+2}{19}\right) \\
\text { Similarly, we have, }
\end{array}\right)
\]
\[
\left(\frac{24-18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right)}{f_{5}\left(u_{k}\right)}\right)=\left(\frac{36 v_{k}^{3}-24 v_{k}^{2}+6 v_{k}-2}{19}\right)
\]

Next consider \(X^{2} \equiv 24 \mp 36 v_{k}\left(4 u_{k}^{2}-1\right)\left(\bmod f_{7}\left(u_{k}\right)\right)\)
\[
\text { Now, } \begin{aligned}
\left(\frac{24-36 v_{k}\left(4 u_{k}^{2}-1\right)}{f_{j}^{\prime}\left(u_{k}\right)}\right) & =\left(\frac{24-36 v_{k}\left(12 v_{k}^{2}+3\right)}{1728 v_{k}^{6}+864 v_{k}^{4}+108 v_{k}^{2}+1}\right) \\
& =\left(\frac{1728 v_{k}^{6}+864 v_{k}^{4}+108 v_{k}^{2}+1}{\frac{1}{2}\left(36 v_{k}^{3}+9 v_{k}-2\right)}\right) \\
& =\left(\frac{96 v_{k}^{3}+24 v_{k}+1}{\frac{1}{2}\left(36 v_{k}^{3}+9 v_{k}-2\right)}\right)
\end{aligned}
\]
\[
=\left(\frac{36 v_{k}^{3}+9 v_{k}-2}{19}\right)
\]

Similarly, we have,
\[
\left(\frac{24+36 v_{k}\left(4 u_{k}^{2}-1\right)}{f_{7}\left(u_{k}\right)}\right)=(-)\left(\frac{36 v_{k}^{3}+9 v_{k}+2}{19}\right)
\]

The residues of \(v_{k}, 36 v_{k}^{3} \pm 24 v_{k}^{2} \pm 6 v_{k}+2\) and \(36 v_{k}^{3}+9 v_{k} \pm 2\) modulo 19 are periodic and the length of the period is 4 . The following table gives these residues and the signs of
\[
\begin{aligned}
& \left(24 \pm 18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right) / f_{5}\left(u_{k}\right)\right) \text { and } \\
& \left(24-36 v_{k}\left(4 u_{k}^{2}-1\right) / f_{7}\left(u_{k}\right)\right) .
\end{aligned}
\]
\(k=t \quad t=2 \quad 3 \quad 4 \quad 5\)
\[
\begin{array}{lrrrr}
v_{k}(\bmod 19) & -1 & -4 & 1 & 4 \\
36 v_{k}^{3}+24 v_{k}^{2}+6 v_{k}+2(\bmod 19) & 3 & -4 & -8 & -3 \\
36 v_{k}^{3}-24 v_{k}^{2}+6 v_{k}-2(\bmod 19) & 8 & 3 & -3 & 4 \\
36 v_{k}^{3}+9 v_{k}+2(\bmod 19) & -5 & -1 & 9 & 5 \\
36 v_{k}^{3}+9 v_{k}-2(\bmod 19) & -9 & -5 & 5 & 1 \\
\left.24+18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right) \mid f_{5}\left(u_{k}\right)\right) & +1 & +1 & -1 & -1 \\
\left(24-36 v_{k}\left(4 u_{k}^{2}-1\right) \mid f_{7}\left(u_{k}\right)\right) & -1 & -1 & +1 & +1 \\
\left(24-18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right) \mid f_{5}\left(u_{k}\right)\right) & -1 & -1 & +1 & +1 \\
\left(24+36 v_{k}\left(4 u_{k}^{2}-1\right) \mid f_{7}\left(u_{k}\right)\right) & +1 & +1 & -1 & -1
\end{array}
\]

From the above table, we see that the congruences
\[
\begin{aligned}
x^{2} & \equiv 24+18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right)\left(\bmod f_{5}\left(u_{k}\right)\right) \\
\text { and } \quad x^{2} & \equiv 24-36 v_{k}\left(4 u_{k}^{2}-1\right)\left(\bmod f_{7}\left(u_{k}\right)\right)
\end{aligned}
\]
cannot hold simultaneously and the congruences
\[
\begin{aligned}
& \qquad x^{2} \equiv 24 \div 18 v_{k}\left(32 u_{k}^{4}-32 u_{k}^{2}+6\right)\left(\bmod f_{5}\left(u_{k}\right)\right), \\
& \text { and. } \quad x^{2} \equiv 24+36 v_{k}\left(4 u_{k}^{2}-1\right)\left(\bmod f_{7}\left(u_{k}\right)\right) \\
& \text { cannot hold simultaneously. } \\
& \text { Hence }(2) \text { is impossible. }
\end{aligned}
\]
(xi)
(2) is impossible if \(n \equiv \pm 7(\bmod 60) ; n \neq \pm 7\). For, we can write \(n= \pm 7+2.15 k l\) where \(k=2^{t}, t \geqq 1\) and \(l\) is an odd integer.

Then by applying (21), \(l\) times we have,
\[
\begin{aligned}
u_{n} & \equiv-u_{7}\left(\bmod u_{15 k}\right) \\
& \equiv-5042\left(\bmod u_{k} \cdot f_{1}\left(u_{k}\right) \cdot f_{3}\left(u_{k}\right) \cdot f_{9}\left(u_{k}\right)\right)
\end{aligned}
\]

Hence \(X^{2} \equiv 24-6.5042 \equiv-30228\left(\bmod u_{k} \cdot f_{1}\left(u_{k}\right) \cdot f_{3}\left(u_{k}\right) \cdot f_{9}\left(u_{k}\right)\right)\). Note that when \(t=1, u_{n} \equiv-2(\bmod 7)\) and then \(X^{2} \equiv 5(\bmod 7)\) and \((5 / 7)=-1\).

When \(t \geqq 2\), we have,
\[
\begin{aligned}
&\left(-30228 / u_{k}\right)=\left(u_{k} / 11\right)\left(u_{k} / 229\right)=(-)\left(u_{k} / 229\right) \text { when } u_{k} \equiv-4 \\
&(\bmod 11), \\
&=\left(u_{k} / 229\right) \text { when } u_{k} \equiv-2(\bmod 11),
\end{aligned}
\]
\[
\left(-30228 / f_{1}\left(u_{k}\right)\right)=(-)\left(f_{1}\left(u_{k}\right) / 229\right),
\]
\[
\left(-30228 / f_{3}\left(u_{k}\right)\right)=(-)\left(f_{3}\left(u_{k}\right) / 229\right), \text { when } u_{k} \equiv-4(\bmod 11) \text {, }
\]
\[
=\left(f_{3}\left(u_{k}\right) / 229\right), \quad \text { when } u_{k} \equiv-2(\bmod 11),
\]
\(\left(-30228 / f_{9}\left(u_{k}\right)\right)=(-)\left(f_{9}\left(u_{k}\right) / 229\right)\).
The residues of \(u_{k}, f_{1}\left(u_{k}\right), f_{3}\left(u_{k}\right)\), and \(f_{9}\left(u_{k}\right)\) modulo 229 are periodic and the lenth of the period is 9 . The following table gives the values of these residues and the signs of \(\left(-30228 / u_{k}\right),\left(-30228 / f_{1}\left(u_{k}\right)\right),\left(-30228 / f_{3}\left(u_{k}\right)\right), \&\left(-30228 / f_{5}\left(u_{k}\right)\right)\).
\begin{tabular}{l|rrrrrrrrr}
\hline\(k=2^{t}\) & \(t=2\) & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(u_{k}(\bmod 229)\) & 97 & 39 & 64 & -53 & 121 & -31 & 89 & 40 & -7 \\
\(f_{1}\left(u_{k}\right)(\bmod 229)\) & 77 & 127 & 122 & 12 & -63 & 177 & 79 & -15 & 193 \\
\(f_{3}\left(u_{k}\right)(\bmod 229)\) & 51 & -4 & -109 & & 12 & 132 & -93 & \\
\(f_{9}\left(u_{k}\right)(\bmod 229)\) & 103 & & & 159 & & 58 & \\
\hline
\end{tabular}

Hence (2) is impossible.

Since, from (i), (ii) and (vi) we have (2) is impossible when \(n \equiv 3(\bmod 6), 5(\bmod 10), \pm 11, \pm 13(\bmod 30)\), it follows that (2) is impossible for all values of \(n\) except when \(n \not \pm 1, \pm 7(\bmod 30)\) From (iv); we have (2) is impossible when \(n \equiv \pm 3(\bmod 20)\). Hence we have (2) is impossible for all values of \(n\) except when \(n \geqq \pm 1, \pm 7\),
\(\pm 29(\bmod 60)\).
Now, from (xi) we have (2) is impossible when \(n \equiv \pm 7(\bmod 60), n \neq \pm 7\). Hence (2) is impossible for all values of \(n\) except when \(n=7\) and \(n \equiv \pm 1, \pm 29(\bmod 60)\).

Now, from (iii) and (v) it follows that (2) is impossible for all values of \(n\) except when \(n \equiv \pm 1, \pm 7(\bmod 28)\)

Combining the last two statements, we have (2) is impossible for all values of \(n\) except when \(n=7\) and \(n \equiv \pm 1, \pm 29, \pm 91, \pm 119(\bmod 420)\). From (vii) and (viii) we have, (2) is impossible when \(n \equiv \pm 13\) (mod 42), \(n \equiv \pm 21(\bmod 70)\).

So we cannot have \(n \equiv \pm 29, \pm 91, \pm 119(\bmod 420)\).
Hence (2) is impossible for all values of \(n\) except when \(n=7\) and \(n \equiv \pm 1(\bmod 420)\); That is when \(n=7, n \equiv \pm 1, \pm 421, \pm 419(\bmod .1260)\). Now, since from (ix) and (x) we have, (2) is impossible when \(n \equiv \pm 29\), \(\pm 31(\bmod 90), \pm 1(\bmod 252), n \neq \pm 1\), we can conclude that \((2)\) is impossible for all values of \(n\) except when \(n= \pm 1\), \(\pm 7\).

Summarising the results, we see that (1) and (2)
can hold for \(n\) odd, only for \(n= \pm 1\) and \(n= \pm 7\) and these values do indeed satisfy with \(u=2, v=1, x=1\) and \(u=5042, v=2911, x=29\).
\(x=1\) give the trivial solution \(N=0\) and \(x=29\)
give the solution \(N=420\).
Hence no other positive integer can replace 420
in the set \(\{2,4,12,420\}\). In other words a fifth integer cannot be added to the set \(\{2,4,12,420\}\). //

\section*{Theorem 2.4:}

Given a set \(S\) of three positive integers, having property (*1), there exist an algebraic formula which gives a fourth element of the set.

\section*{Proof:}

Suppose \(x_{1}, x_{2}, x_{3} \varepsilon S\).
If another positive integer \(x\) distinct from \(x_{1}, x_{2}, x_{3} \varepsilon S\), then \(x\) must satisfy the following equations:
\[
\begin{aligned}
& x x_{1}+1=a^{2} \\
& x x_{2}+1=b^{2} \\
& x x_{3}+1=c^{2}
\end{aligned}
\]

Eliminating \(x\) from the first two equations, we have,
\[
x_{2} a^{2}-x_{1} b^{2}=x_{2}-x_{1}
\]
i.e \(\quad\left(x_{2} a\right)^{2}-x_{1} x_{2} b^{2}=x_{2}{ }^{2}-x_{1} x_{2}\).

Now, one solution of this equation is \(x=x_{3}\),
\[
a=\left(x_{1} x_{3}+1\right)^{\frac{1}{2}}, b=\left(x_{2} x_{3}+1\right)^{\frac{1}{2}}
\]

Hence a class of solution is given by,
\[
x_{2} a+\left(x_{1} x_{2}\right)^{\frac{1}{2}} b=\left(x_{2}\left(x_{1} x_{3}+1\right)^{\frac{1}{2}}+\left(x_{1} x_{2}\right)^{\frac{1}{2}}\left(x_{2} x_{3}+1\right)^{\frac{1}{2}} \varepsilon\right.
\]
where \(\varepsilon\) is any unit in \(Q\left(x_{1} x_{2}\right)^{\frac{1}{2}}\).
The fundermental unit is \(\left(x_{1} x_{2}+1\right)^{\frac{1}{2}}+\left(x_{1} x_{2}\right)^{\frac{1}{2}}\).
Try the solution
\[
\begin{array}{r}
x_{2} a+\left(x_{1} x_{2}\right)^{\frac{1}{2}} b=\left(x_{2}\left(x_{1} x_{3}+1\right)^{\frac{1}{2}}+\left(x_{1} x_{2}\right)^{\frac{1}{2}}\left(x_{2} x_{3}+1\right)^{\frac{1}{2}}\right) \\
\left(\left(x_{1} x_{2}+1\right)^{\frac{1}{2}}+\left(x_{1} x_{2}\right)^{\frac{1}{2}}\right)
\end{array}
\]
i.e \(\quad x_{2} a=x_{2}\left(x_{1} x_{3}+1\right)^{\frac{1}{2}}\left(x_{1} x_{2}+1\right)^{\frac{1}{2}}+x_{1} x_{2}\left(x_{2} x_{3}+1\right)^{\frac{1}{2}}\)

Hence,
\(a=\left(x_{1} x_{3}+1\right)^{\frac{1}{2}}\left(x_{1} x_{2}+1\right)^{\frac{1}{2}}+x_{1}\left(x_{2} x_{3}+1\right)^{\frac{1}{2}}\)
So,
\(\left(x_{1} x_{3}+1\right)^{\frac{1}{2}}\left(x_{2} x_{3}+{ }^{x_{1}}\right)^{\frac{1}{2}}\).

This \(x\) satisfies the first two equations and by symmetry it will also satisfy the third equation. //

\section*{Chapter 3}

Introduction:
The only positive integer solutions of the equation \((X(X-1))^{2}=2 Y(Y-1)\)
are \((X, Y)=(1,1),(2,2),(4,9)\). A complicated proof was given by Ljunggren \([5]\) depending upon the p-adic methods applied to a quartic field and a simple method was given by Cassels [2] depending upon the properties of the quartic field \(Q(4 \sqrt{2})\). In this chapter we shall discuss the positive integer solutions of the equation
\[
(X(X-1))^{2}=3 Y(Y-1)
\]

Our method is based on the ideas used by Cohn [3].

\section*{Theorem:}

The only positive integer solutions of the equation
\[
(X(X-1))^{2}=3 Y(Y-1)
\]
are \((X, Y)=(1,1),(3,4)\).

\section*{Proof:}

Substituting \(x=2 X-1, y=2 Y-1\) in the above equation we have,
\[
\begin{aligned}
\left(\frac{x+1}{2} \cdot \frac{x-1}{2}\right)^{2} & =3 \cdot\left(\frac{y+1}{2}\right) \cdot\left(\frac{y-1}{2}\right) \\
\left(\frac{x^{2}-1}{4}\right)^{2} & =3\left(\frac{y^{2}-1}{4}\right)
\end{aligned}
\]
i.e
\[
y^{2}-\left(\frac{x^{2}-1}{6}\right)^{2}=1
\]
i.e

This is of the form \(u^{2}-3 v^{2}=1\), where \(u=y\) and \(v=\frac{x^{2}-1}{6}\).
Hence we must have,
\[
\begin{equation*}
x^{2}=1+6 v \tag{22}
\end{equation*}
\]

We have already discussed the integral solutions of the equation \(u^{2}-3 v^{2}=1\) in chapter 2 . In this chapter we shall assume the results that we have derived in chapter 2.

Using the equations (6) - (9), we have,
\[
\begin{align*}
& v_{n+2 r} \equiv v_{n}\left(\bmod v_{r}\right)  \tag{23}\\
& v_{n+2 r} \equiv-v_{n}\left(\bmod u_{r}\right) \tag{24}
\end{align*}
\]

We note that \(y\) is odd and hence \(u\) is odd. Thus we have to consider only the even values of \(n\). The proof is now accomplised in six stages:
(i) (22) is impossible if \(n \equiv \pm 4(\bmod 10)\)

For,
\[
\begin{aligned}
v_{n} & \equiv v_{ \pm 4}\left(\bmod v_{5}\right), \text { using }(23), \\
& \equiv \pm v_{4}\left(\bmod v_{5}\right), \text { using }(5), \\
& \equiv \pm 56(\bmod 209) ;
\end{aligned}
\]
whence \(v_{n} \equiv \pm 1(\bmod 11)\). Then \(x^{2}=1+6 v_{n} \equiv 7\) or \(-5(\bmod\) 11), and since the Jacobi-Legendre symbol (7/11) \(=-1\), \((-5 / 11)=-1,(22)\) is impossible.
(ii) (22) is impossible if \(n \equiv 8(\bmod 10)\) For,
\[
\begin{aligned}
v_{n} \equiv v_{8} & \equiv v_{-2}\left(\bmod v_{5}\right) \\
& \equiv-4(\bmod 209)
\end{aligned}
\]

However, then \(1+6 v_{n} \equiv-1(\bmod 11)\) and since \((-1 / 11)=-1\), (22) is impossible.
(iii) (22) is impossible if \(n \equiv 12(\bmod 20)\).

For,
\[
v_{n} \equiv v_{12} \equiv v_{-8}\left(\bmod v_{10}\right)
\]
i.e
\[
v_{n} \equiv-10864(\bmod 151316) .
\]

Now, \(181 \mid 151316\) and \(1+6 v_{n} \equiv-23(\bmod 181)\). Since \((-23 / 181)\)
\(=-1\), (22) is impossible.
(iv) (22) is impossible if \(n \equiv 10(\bmod 20)\).

For,
\[
\begin{aligned}
v_{n} & \equiv \pm v_{10}\left(\bmod u_{10}\right), \text { using }(24), \\
& \equiv \pm 151316(\bmod 262087)
\end{aligned}
\]

Hence, \(x^{2} \equiv 1 \pm 6.151316(\bmod 7.37441)\). That is either \(x^{2} \equiv 90\) 907897 or \(x^{2} \equiv-907895(\bmod 7.37441)\). Since \((907897 / 37441)\) and \((-907895 / 7)=-1,(22)\) is impossible.
(v) (22) is impossible if \(n \equiv 0(\bmod 20), n \neq 0\). For, if \(n \neq 0\), we may write,
\[
n=5.2^{t}(22+1)
\]
where \(l\) is an integer, odd or even, and \(t \geq 2\).
i.e \(\quad n=5 k+2.5 k . I\), where \(k=2^{t}\).

Then by using (24) \(l\) times, we obtain,
\[
\begin{aligned}
v_{n} & \equiv \pm v_{5 k}\left(\bmod u_{5 k}\right) \\
\text { i.e, } v_{n} & \equiv \pm v_{k}\left(16 u_{k}^{4}-12 u_{k}^{2}+1\right)\left(\bmod u_{k}\left(16 u_{k}^{4}-20 u_{k}^{2}+5\right)\right. \\
& \equiv \pm v_{k}\left(8 u_{k}^{2}-4\right)\left(\bmod 16 u_{k}^{4}-20 u_{k}^{2}+5\right) \\
& \equiv \pm v_{k}\left(24 v_{k}^{2}+4\right)\left(\bmod 144 v_{k}^{4}+36 v_{k}^{2}+1\right) \\
\text { Hence } x^{2} & \equiv 1 \pm 6 v_{k}\left(24 v_{k}^{2}+4\right)\left(\bmod 144 v_{k}^{4}+36 v_{k}^{2}+1\right)
\end{aligned}
\]

First consider
\[
x^{2} \equiv 1+6 v_{k}\left(24 v_{k}^{2}+4\right)\left(\bmod 144 v_{k}^{4}+36 v_{k}^{2}+1\right)
\]

Now,
\[
\left(\frac{1+6 v_{k}\left(24 v_{k}^{2}+4\right)}{144 v_{k}^{4}+36 v_{k}^{2}+1}\right)=\left(\frac{12 v_{k}^{2}-v_{k}+1}{144 v_{k}^{3}+24 v_{k}+1}\right)
\]
\[
\begin{aligned}
& =\left(\frac{12 v_{k}^{2}+12 v_{k}+1}{12 v_{k}^{2}-v_{k}+1}\right) \\
& =\left(\frac{13 v_{k}}{12 v_{k}^{2}-v_{k}+1}\right) \\
& =\left(\frac{12 v_{k}^{2}-v_{k}+1}{13}\right)
\end{aligned}
\]

Similarly, we have,
\[
\begin{aligned}
& \left(\frac{1-6 v_{k}\left(24 v_{k}^{2}+4\right)}{144 v_{k}^{4}+36 v_{k}^{2}+1}=\left(\frac{12 v_{k}^{2}+v_{k}+1}{13}\right)\right. \\
& \text { Hence, }\left(\frac{1 \pm 6 v_{k}\left(24 v_{k}^{2}+4\right)}{144 v_{k}^{4}+36 v_{k}^{2}+1}\right)=\left(\frac{12 v_{k}^{2} \mp v_{k}+1}{13}\right)
\end{aligned}
\]

Now, \(v_{k} \equiv \pm 4(\bmod 13)\) and hence,
\[
\left(\frac{12 v_{k}^{2} \mp v_{k}+1}{13}\right)=-1
\]

Hence (22)is impossible.
(vi) (22) is impossible if \(n \equiv 2(\bmod 20), n \neq 2\). For, we can write,
\[
n=2+2 k .5 z
\]
where \(k=2^{t}, t \geqslant 1\), and \(\tau\) is an integer.
Using (24) 2 times, we obtain,
\[
\begin{aligned}
v_{n} & \equiv-v_{2}\left(\bmod u_{5 k}\right) \\
& \equiv-4\left(\bmod u_{k}\left(16 u_{k}^{4}-20 u_{k}^{2}+5\right)\right.
\end{aligned}
\]

Hence, \(x^{2} \equiv-23\left(\bmod u_{k}\left(16 u_{k}^{4}-20 u_{k}^{2}+5\right)\right)\).
Now, \(\left(-23 / u_{k}\right)=\left(u_{k} / 23\right)\) and
\[
\left(-23 / 16 u_{k}^{4}-20 u_{k}^{2}+5\right)=\left(16 u_{k}^{4}-20 u_{k}^{2}+5 / 23\right)
\]

The residues of \(u_{k}, 16 u_{k}^{4}-20 u_{k}{ }^{2}+5\) modulo 23 are peridoic and the length of the period is 5 . The following table gives these residues and the signs of \(\left(u_{k} / 23\right)\) and \(\left(16 u_{k}^{4}-20 u_{k}{ }^{2}+5 / 23\right)\).
\begin{tabular}{rcccc}
\hline\(k\) & \(=2^{t}\) & \(u_{k}(\bmod 23)\) & \(\left(u_{k} / 23\right)\) & \(f_{3}\left(u_{k}\right)(\bmod 23)\) \\
\hline\(t\) & \(=1\) & 7 & -1 & \\
& \(=2\) & 5 & -1 & \\
& \(=3\) & 3 & +1 & -6 \\
& \(=4\) & -6 & -1 & \\
& \(=5\) & 2 & +1 & -3 \\
& \(=6\) & 7 & & -1
\end{tabular}

From the above table we see that the congruences \(x^{2} \equiv-23\) ( \(\bmod u_{k}\) ) and \(x^{2} \equiv-23\left(\bmod f_{3}\left(u_{k}\right)\right)\) cannot hold simultaneously and hence (22) is impossible.

Summarising the results, we see that (22) can hold for \(n\) even, only for \(n=0 \& n=2\) and these values do indeed satisfy with \(u=1, v=0, x=1, y=1\) and \(u=7, v=4, x=5, y=7 . x=1\), \(y=1\) give the solution \((X, Y)=(1,1)\) and \(x=5, y=7\) give the solution \((X, Y)=(3,4) . / /\)

\section*{Chapter 4}

\section*{Introduction:}

Cohn [3] has proved that the only solution in positive integers of the equation,
\[
Y(Y+1)(Y+2)(Y+3)=2 X(X+1)(X+2)(X+3)
\]
is \((X, Y)=(4,5)\).
Our aim in this chapter is to prove that the only solution in positive integers of the equation,
\[
3 Y(Y+1)=X(X+1)(X+2)(X+3)
\]
is \((X, Y)=(12,104)\).

\section*{Proof:}

To prove the result, we put \(y=2 Y+1\), and \(x=2 X+3\) which gives the equation,
\[
3\left(y^{2}-1\right)=\left(\frac{x^{2}-5}{2}\right)^{2}-4
\]

This is of the form
\[
u^{2}-3 v^{2}=1
\]
where \(u=\frac{x^{2}-5}{2}, v=y\).
Hence we must have,
\[
\begin{equation*}
x^{2}=5+2 u \tag{25}
\end{equation*}
\]

We have already discussed the positive integral solutions of the equation \(u^{2}-3 v^{2}=1\) in chapter 2 . In addition to the equations derived in chapter 2 , we also need the following equations:
\[
\begin{aligned}
& u_{11 n}=u_{n}+10 n \\
&=u_{n}\left(2 u_{5 n}^{2}-1\right)+3 u_{10 n}+3 v_{n} v_{10 n} \\
& u_{5 n} v_{5 n}
\end{aligned}
\]
\[
\begin{align*}
& =u_{n}\left(2 u_{5 n}^{2}-1\right)+3 v_{n} \cdot 2 u_{5 n} v_{5 n} \\
& =u_{n}\left(2 u_{5 n}^{2}-1\right)+3 v_{n}^{2} \cdot 2 u_{5 n} f_{4}\left(\dot{u}_{n}\right) \\
& =u_{n}\left(2 u_{5 n}^{2}-1\right)+u_{n}\left(u_{n}^{2}-1\right) \cdot 2 f_{3}\left(u_{n}\right) \cdot f_{4}\left(u_{n}\right) \\
& =u_{n} \cdot f_{11}\left(u_{n}\right) \tag{26}
\end{align*}
\]
where \(f_{11}\left(u_{n}\right)=1024 u_{n}^{10}-2816 u_{n}^{8}+2816 u_{n}^{6}-1232 u_{n}^{4}+220 u_{n}^{2}-11\).
\[
\begin{align*}
u_{33 n}=u_{3.11 n} & =u_{11 n}\left(4 u_{11 n}^{2}-3\right) \\
& =u_{11 n} \cdot f_{12}\left(u_{n}\right) \tag{27}
\end{align*}
\]
where \(f_{12}\left(u_{n}\right)=4 u_{11 n}^{2}-3\)

We note that both \(x\) and \(y\) are odd and hence \(v\) is odd. Hence we have to consider only the odd values of \(n\). The proof is now accomplished in ten stages:
(i) (25) is impossible if \(n \equiv 3(\bmod 6)\). For, using (20), we find that for such \(n\),
\[
\begin{aligned}
u_{n} & \equiv u_{3}\left(\bmod v_{3}\right) \\
& \equiv 26(\bmod 15)
\end{aligned}
\]

But then \(x^{2} \equiv 2(\bmod 5)\), and since the Jacobi-Legendre \((2 / 5)=-1\), (25) is impossible.
(ii) (25) is impossible if \(n \equiv \pm 3(\bmod 10)\). For,
\[
\begin{aligned}
u_{n} & \equiv u_{ \pm 3}\left(\bmod v_{5}\right) \\
& \equiv u_{3}\left(\bmod v_{5}\right), \text { using }(4), \\
& \equiv 26(\bmod 209),
\end{aligned}
\]
whence \(u_{n} \equiv 4(\bmod 11)\), and then \(x^{2} \equiv 2(\bmod 11)\), and since \((2 / 11)=-1,(25)\) is impossible.
(iii) (25) is impossible if \(n \equiv \pm 3, \pm 7, \pm 9,11(\bmod 22)\). For,
\[
\begin{aligned}
u_{n} & \equiv u_{ \pm 3}, u_{ \pm 7}, u_{ \pm 9}, u_{11}\left(\bmod v_{11}\right) \\
& \equiv u_{3}, u_{7}, u_{9}, u_{11}(\bmod 564719) \\
& \equiv 3,5,7,1(\bmod 23)
\end{aligned}
\]

But then \(x^{2} \equiv 11,15,19,7(\bmod 23)\), and since (11/23) \(=-1,(15 / 23)=-1,(19 / 23)=-1,(7 / 23)=-1,(25)\) is impossible.
(iv) (25) is impossible if \(n \equiv \pm 11(\bmod 30)\).

For,
\[
\begin{aligned}
u_{n} & \equiv u_{ \pm 11}\left(\bmod v_{15}\right) \\
& \equiv 978122\left(\bmod v_{15}\right) .
\end{aligned}
\]

Now, using (10), we have, \(v_{15}=v_{5}\left(2 u_{5}-1\right)\left(2 u_{5}+1\right)\) and since \(2 u_{5}-1=723,241 \mid v_{15}\). Then \(x^{2} \equiv 52(\bmod 241)\) and since, \((52 / 241)=-1,(25)\) is impossible.
(v) (25) is impossible if \(n \equiv \pm 17(\bmod 44)\).

For, using (2l), we have,
\[
\begin{aligned}
u_{n} & \equiv-u_{ \pm 5}\left(\bmod u_{11}\right) \\
& \equiv-362(\bmod 489061) .
\end{aligned}
\]

Then, \(x^{2} \equiv-719(\bmod 489061)\), and since \((-719 \mid 489061)\)
\(=-1\), (25) is impossible.
(vi) (25) is impossible if \(n \equiv \pm 29\) (mod 60).

For,
\[
u_{ \pm 29}=u_{29}=2 u_{30}-3 v_{30} \equiv-3 v_{30}\left(\bmod u_{30}\right),
\]
```

 un}\equiv\pm\pm\mp@subsup{u}{29}{}(\operatorname{mod}\mp@subsup{u}{30}{})
 \equiv\mp3\mp@subsup{v}{30}{}(\operatorname{mod}\mp@subsup{u}{30}{}),
 and hence }\mp@subsup{x}{}{2}\equiv5\mp6\mp@subsup{v}{30}{}(\operatorname{mod}\mp@subsup{u}{30}{})
 Now, }\mp@subsup{u}{30}{}=\mp@subsup{u}{10}{}(4\mp@subsup{u}{10}{2}-3)\mathrm{ and 4u}\mp@subsup{u}{10}{2}-3=27475838227
 = 193.1201.1185361, and
 v
 Hence ,
 either }\mp@subsup{x}{}{2}\equiv-115 (mod 1201
 or }\mp@subsup{x}{}{2}\equiv-630426(\operatorname{mod}1185361)
 Since (-115/1201) = -1, and (-630426/1185361) = -1,
 (25) is impossible.
 (vii) (25) is impossible if n \equiv\pm23(mod 66).
For,
un}\equiv\mp@subsup{u}{\pm23}{}\equiv\mp@subsup{u}{23}{}(\operatorname{mod}\mp@subsup{v}{33}{}
Now, since }\mp@subsup{v}{33}{}=\mp@subsup{v}{11}{}(2\mp@subsup{u}{11}{}-1)(2\mp@subsup{u}{11}{}+1)\mathrm{ and }2\mp@subsup{u}{11}{}+1
1956245, we have 391249/v v3.
Also,}\mp@subsup{u}{23}{}=2\mp@subsup{u}{24}{}-3\mp@subsup{v}{24}{
=2(2\mp@subsup{u}{12}{2}-1)-3.2\mp@subsup{u}{12}{}\mp@subsup{v}{12}{}
\equiv-129162(mod 391249).
Hence }\mp@subsup{x}{}{2}\equiv-258319(\operatorname{mod}391249) and since (-258319/
391249) = -l, (25) is impossible.
(viii) (25) is impossible if n \equiv\pm65(mod 132).
For,

$$
u_{n} \equiv \pm u_{ \pm 65} \equiv \pm u_{65}\left(\bmod u_{66}\right)
$$

```
\[
\begin{aligned}
\text { Now, } u_{65} & =u_{66} u_{-1}+3 v_{66} v_{-1} \\
\because & \equiv-3 v_{66}\left(\bmod u_{66}\right) \\
\text { Hence } u_{n} & \equiv \mp 3 v_{66}\left(\bmod u_{66}\right) \text { and } \\
x^{2} \equiv 5 & \mp 6 v_{66}\left(\bmod u_{66}\right) \\
\equiv 5 & \mp 6 v_{22}\left(4 u_{22}^{2}-1\right)\left(\bmod 4 u_{22}^{2}-3\right) \\
\equiv 5 & \mp 12 v_{22}\left(\bmod 4 u_{22}^{2}-3\right)
\end{aligned}
\]

Now,
\[
\begin{aligned}
\left(\frac{5 \mp 12 v_{22}}{4 u_{22}^{2}-3}\right) & =\left(\frac{5 \mp 12 v_{22}}{12 v_{22}^{2}+1}\right) \\
& =\left(\frac{12 v_{22}^{2}+1}{12 v_{22} \mp 5}\right) \\
& =\left(\frac{1 \pm 5 v_{22}}{12 v_{22} \mp 5}\right) \\
& =\left(\frac{12 v_{22} \mp 5}{5 v_{22} \pm 1}\right) \\
& =\left(\frac{5}{5 v_{22} \pm \pm 1}\right)\left(\frac{5 v_{22} \mp 25}{5 v_{22} \pm 1}\right) \\
& =\left(\frac{\mp 37}{5 v_{22} \pm 1}\right) \\
& =\left(\frac{5 v_{22} \pm 1}{37}\right)
\end{aligned}
\]

Now, \(v_{22}=2 u_{11} v_{11} \equiv 2.27 .25 \equiv 18(\bmod 37)\) and hence
\(\left(\frac{5 v_{22^{ \pm}}}{37}\right)=(91 / 37)\) or \((89 / 37)\).
Since (91/37) and (89/37) \(=-1\), (25) is impossible.
(ix) (25) is impossible if \(n \equiv \pm(\bmod 12), n \neq \pm 1\).

For, if \(n \neq \pm 1\), we may write,
\[
n= \pm 1+3 k+6 k l,
\]
where \(k=2^{t}, t \geqslant 2\) and \(Z\) is an integer. Then using (21) we have
\[
\begin{gathered}
u_{n} \equiv \pm u_{3 k}+1\left(\bmod u_{3 k}\right) \\
\text { i.e } u_{n} \equiv \pm 3 v_{3 k}\left(\bmod u_{k}\left(1+12 v_{k}^{2}\right)\right) \\
\equiv \pm 3 v_{k}\left(4 u_{k}^{2}-1\right) \quad\left(\bmod u_{k}\left(1+12 v_{k}^{2}\right)\right)
\end{gathered}
\]

Hence \(x^{2}=5+2 u_{n} \equiv 5 \pm 6 v_{k}\left(4 u_{k}^{2}-1\right) \quad\left(\bmod u_{k}\left(1+12 v_{k}^{2}\right)\right)\) which implies that
\[
x^{2}=5+2 u_{n} \equiv 5 \mp 6 v_{k}\left(\bmod u_{k}\right)
\]
and
\[
x^{2} \equiv 5 \pm 12 v_{k}\left(\bmod \left(1+12 v_{k}^{2}\right)\right)
\]

First consider \(x^{2}=5-6 v_{k}\left(\bmod u_{k}\right)\). Let \(k=2 s\).
\[
\begin{aligned}
\left(\frac{5-6 v_{k}}{u_{k}}\right)=\left(\frac{5-6 v_{2 s}}{u_{2 s}}\right) & =\left(\frac{5\left(u_{s}^{2}-3 v_{s}^{2}\right)-12 u_{s} v_{s}}{u_{s}^{2}+3 v_{s}^{2}}\right) \\
& =\left(\frac{10 u_{s}^{2}-12 u_{s} v_{s}}{u_{s}^{2}+3 v_{s}^{2}}\right) \\
& =\left(\frac{2}{u_{2 s}}\right)\left(\frac{u_{s}}{u_{s}^{2}+3 v_{s}^{2}}\right)\left(\frac{5 u_{s}-6 v_{s}}{u_{s}^{2}+3 v_{s}^{2}}\right)
\end{aligned}
\]
\[
\text { Now }\left(\frac{2}{u_{2 s}}\right)=\left(\frac{2}{2 u_{s}^{2}-1}\right)=+1
\]
\[
\left(\frac{u_{s}}{u_{s}^{2}+3 v_{s}^{2}}\right)=\left(\frac{u_{s}^{2}+3 v_{s}^{2}}{u_{s}}\right)=\left(\frac{3}{u_{s}}\right)=\left(\frac{1}{3}\right)=+1
\]
\[
\left(\frac{5 u_{s}-6 v_{s}}{u_{s}^{2}+3 v_{s}^{2}}\right)=\left(\frac{u_{s}^{2}+3 v_{s}^{2}}{5 u_{s}-6 v_{s}}\right)=\left(\frac{111 v_{s}^{2}}{5 u_{s}-6 v_{s}}\right)
\]
\[
=\left(\frac{3}{5 u_{s}-6 v_{s}}\right)^{\prime}\left(\frac{37}{5 u_{s}-6 v_{s}}\right)
\]
\[
\begin{aligned}
&=\left(\frac{5 u_{s}-6 v_{s}}{3}\right)\left(\frac{5 u_{s}-6 v_{s}}{37}\right) \\
&=\left(\frac{2}{3}\right)\left(\frac{5 u_{s}-6 v_{s}}{37}\right)=(-)\left(\frac{5 u_{s}-6 v_{s}}{37}\right) \\
& \text { Hence }\left(\frac{5-6 v_{k}}{u_{k}}\right)=(-)\left(\frac{5 u_{k / 2}-6 v_{k / 2}}{37}\right) \\
&\left(\frac{5-6 v_{k}}{u_{k}}\right)\left(\frac{5+6 v_{k}}{u_{k}}\right)=\left(\frac{25-36 v_{k}^{2}}{u_{k}}\right) \\
&=\left(\frac{25-12\left(u_{k}^{2}-1\right)}{u_{k}}\right) \\
&=\left(\frac{37}{u_{k}}\right)=\left(\frac{u_{k}}{37}\right) .
\end{aligned}
\]

Next consider \(x^{2} \equiv 5 \pm 12 v_{k}\left(\bmod \left(1+12 v_{k}^{2}\right)\right)\)
\[
\begin{aligned}
\left(\frac{5 \pm 12 v_{k}}{1+12 v_{k}^{2}}\right) & =\left(\frac{ \pm 5+12 v_{k}}{1+12 v_{k}^{2}}\right)=\left(\frac{12 v_{k}^{2}+1}{12 v_{k} \pm 5}\right) \\
& =\left(\frac{12}{12 v_{k} \pm 5}\right)\left(\frac{\left.12^{2} v_{k}^{2}-5^{2}\right)+37}{12 v_{k} \pm 5}\right) \\
& =\left(\frac{3}{12 v_{k} \pm 5}\right)\left(\frac{37}{12 v_{k} \pm 5}\right) \\
& =-\left(\frac{12 v_{k} \pm 5}{37}\right) .
\end{aligned}
\]

The residues of \(u_{k}, v_{k}, 5 u_{k}-6 v_{k}, 5 \pm 12 v_{k}\), modulo 37 are periodic and the length of the period is 6. The following table gives these residues and the signs of the Legendre symbols \(\left(5+6 v_{k} / u_{k}\right)\), \(\left(5-12 v_{k} / 1+12 v_{k}^{2}\right)\) \(\left(5-6 v_{k} / u_{k}\right)\) and \(\left(5+12 v_{k} / 1+12 v_{k}^{2}\right)\).
\begin{tabular}{lrrrrrrr}
\hline\(k=2^{t}\) & \(t=2\) & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\(u_{k}(\bmod 37)\) & -14 & 21 & -7 & -14 & 21 & -7 & -14 \\
\(v_{k}(\bmod 37)\) & -18 & -14 & 4 & 18 & 14 & -4 & -18 \\
\(5 u_{k}-6 v_{k}(\bmod 37)\) & 1 & 4 & -22 & 7 & 21 & -11 & 1 \\
\(12 v_{k}-5(\bmod 37)\) & 1 & 12 & 6 & -11 & 15 & -16 & 1 \\
\(5+12 v_{k}(\bmod 37)\) & 11 & -15 & 16 & -1 & -12 & -6 & 11 \\
\(\left(5+6 v_{k} / u_{k}\right)\) & +1 & -1 & -1 & +1 & -1 & -1 & +1 \\
\(\left(5-12 v_{k} / 1+12 v_{k}^{2}\right)\) & -1 & -1 & +1 & -1 & +1 & -1 & -1 \\
\(\left(5-6 v_{k} / u_{k}\right)\) & -1 & -1 & -1 & +1 & -1 & -1 & -1 \\
\(\left(5+12 v_{k} / 1+12 v_{k}^{2}\right)\) & -1 & +1 & -1 & -1 & -1 & +1 & -1 \\
\hline
\end{tabular}

From the above table we see that the congruences \(x^{2} \equiv\) \(5-6 v_{k}\left(\bmod u_{k}\right)\) and \(x^{2} \equiv 5+12 v_{k}\left(\bmod \left(1+12 v_{k}^{2}\right)\right)\) cannot hold simultanacusly and the congruences \(x^{2} \equiv 5+6 v_{k}\) (mod \(\left.u_{k}\right)\) and \(x^{2} \equiv 5-12 v_{k}\left(\bmod \left(1+12 v_{k}^{2}\right)\right)\) cannot hold simultaneously.

Hence (25) is impossible.
(x) (25) is impossible if \(n \equiv \pm 5(\bmod 60), n \neq \pm 5\).

For, we can write \(n= \pm 5+2 l .165 k\), where \(k=2^{t}, t \geqslant 1\)
Then \(u_{n} \equiv-u_{5}\left(\bmod u_{165 k}\right)\)
\[
\equiv-362\left(\bmod u_{165 k}\right)
\]
and hence we should have \(x^{2} \equiv-719\left(\bmod u_{165 k}\right)\).
Since \(u_{165 k}=u_{11.15 k}=u_{5.33 k}\), we have, \(u_{15 k} \mid u_{165 k}\) and \(u_{33 k} \mid u_{165 k}\).

Thus we have,
\[
\begin{align*}
x^{2} & \equiv-719\left(\bmod u_{k}\right)  \tag{28}\\
x^{2} & \equiv-719\left(\bmod f_{1}\left(u_{k}\right)\right)  \tag{29}\\
x^{2} & \equiv-719\left(\bmod f_{3}\left(u_{k}\right)\right)  \tag{30}\\
x^{2} & \equiv-719\left(\bmod f_{9}\left(u_{k}\right)\right)  \tag{31}\\
x^{2} & \equiv-719\left(\bmod f_{11}\left(u_{k}\right)\right)  \tag{32}\\
x^{2} & \equiv-719\left(\bmod f_{12}\left(u_{k}\right)\right) \tag{33}
\end{align*}
\]

Now, the quadractic non-residues of 719 are
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 11 & 17 & 19 & 22 & 23 & 33 & 34 & 38 & 41 & 43 \\
\hline 44 & 46 & 47 & 51 & 53 & 55 & 57 & 66 & 67 & 68 \\
\hline 69 & 71 & 73 & 76 & 77 & 79 & 82 & 85 & 86 & 88 \\
\hline 89 & 92 & 94 & 95 & 97 & 99 & 101 & 102 & 106 & 109 \\
\hline 110 & 114 & 115 & 119 & 123 & 127 & 129 & 131 & 132 & 133 \\
\hline 134 & 136 & 138 & 139 & 141 & 142 & 143 & 146 & 152 & 153 \\
\hline 154 & 157 & 158 & 159 & 161 & 164 & 165 & 170 & 171 & 172 \\
\hline 173 & 176 & 178 & 179 & 184 & 188 & 190 & 193 & 194 & 197 \\
\hline 198 & 199 & 201 & 202 & 204 & 205 & 207 & 212 & 213 & 215 \\
\hline 218 & 219 & 220 & 221 & 223 & 228 & 229 & 230 & 231 & 233 \\
\hline 235 & 237 & 238 & 239 & 246 & 247 & 251 & 254 & 255 & 258 \\
\hline 262 & 264 & 265 & 266 & 267 & 268 & 269 & 271 & 272 & 275 \\
\hline 276 & 278 & 282 & 284 & 285 & 286 & 287 & 291 & 292 & 297 \\
\hline 299 & 301 & 303 & 304 & 306 & 307 & 308 & 313 & 314 & 316 \\
\hline 318 & 319 & 322 & 327 & 328 & 329 & 330 & 335 & 337 & 340 \\
\hline 341 & 342 & 344 & 345 & 346 & 347 & 349 & 352 & 353 & 355 \\
\hline 356 & 357 & 358 & 359 & 365 & 368 & 369 & 371 & 376 & 380 \\
\hline 381 & 383 & 385 & 386 & 387 & 388 & 393 & 394 & 395 & 396 \\
\hline 398 & 399 & 402 & 404 & 407 & 408 & 409 & 410 & 414 & 417 \\
\hline
\end{tabular}
\begin{tabular}{llllllllll}
419 & 421 & 423 & 424 & 425 & 426 & 429 & 430 & 431 & 436 \\
438 & 439 & 440 & 442 & 445 & 446 & 449 & 456 & 458 & 459 \\
460 & 462 & 463 & 466 & 467 & 469 & 470 & 471 & 474 & 475 \\
476 & 477 & 478 & 479 & 483 & 485 & 487 & 492 & 493 & 494 \\
495 & 497 & 502 & 503 & 505 & 508 & 509 & 510 & 511 & 513 \\
516 & 519 & 523 & 524 & 527 & 528 & 530 & 532 & 533 & 534 \\
536 & 537 & 538 & 539 & 542 & 544 & 545 & 550 & 551 & 552 \\
553 & 556 & 557 & 559 & 563 & 564 & 568 & 569 & 570 & 571 \\
572 & 574 & 575 & 579 & 582 & 584 & 589 & 591 & 593 & 594 \\
595 & 597 & 598 & 599 & 601 & 602 & 603 & 606 & 607 & 608 \\
611 & 612 & 614 & 615 & 616 & 619 & 621 & 623 & 626 & 628 \\
629 & 632 & 635 & 636 & 638 & 639 & 641 & 644 & 645 & 647 \\
649 & 654 & 655 & 656 & 657 & 658 & 659 & 660 & 661 & 663 \\
665 & 667 & 669 & 670 & 671 & 674 & 677 & 679 & 680 & 682 \\
683 & 684 & 687 & 688 & 689 & 690 & 691 & 692 & 693 & 694 \\
695 & 698 & 699 & 701 & 703 & 704 & 705 & 706 & 707 & 709 \\
710 & 711 & 712 & 713 & 714 & 715 & 716 & 717 & 718 & \\
\hline 69
\end{tabular}

The residues of \(u_{k}, f_{1}\left(u_{k}\right), f_{3}\left(u_{k}\right), f_{9}\left(u_{k}\right), f_{11}\left(u_{k}\right)\)
\(f_{12}\left(u_{k}\right)\) are periodic and the length of the period is 179. Consequently we obtain the following results:
(a) The residues of \(u_{k}\), modulo 719 , for \(=1,2,--179\)
are
\begin{tabular}{rrrrrrrrrr}
7 & 97 & 123 & 59 & 490 & 626 & 41 & 485 & 223 & 235 \\
442 & 310 & 226 & 53 & 584 & 499 & 453 & 587 & 335 & 121 \\
521 & 36 & 434 & 674 & 454 & 244 & 436 & 559 & 150 & 421 \\
14 & 391 & 186 & 167 & 414 & 547 & 209 & 362 & 371 & 623 \\
\(456 \cdot\) & 289 & 233 & 8 & 127 & 621 & 513 & 29 & 243 & 181
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 92 & 390 & 62 & 497 & 64 & 282 & 148 & 667 & 374 & 60 \\
\hline 9 & 161 & 73 & 591 & 412 & 119 & 280 & 57 & 26 & 632 \\
\hline 38 & 11 & 241 & 402 & 376 & 184 & 125 & 332 & 433 & 378 \\
\hline 324 & 3 & 17 & 577 & 63 & 28 & 129 & 207 & 136 & 322 \\
\hline 295 & 51 & 168 & 365 & 419 & 249 & 333 & 325 & 582 & 149 \\
\hline 542 & 104 & 61 & 251 & 176 & 117 & 55 & 297 & 262 & 677 \\
\hline 651 & 619 & 586 & 146 & 210 & 481 & 404 & 5 & 49 & 487 \\
\hline 516 & 451 & 566 & 82 & 505 & 278 & 701 & 647 & 301 & 13 \\
\hline 337 & 652 & 349 & 579 & 373 & 4 & 31 & 483 & 665 & 79 \\
\hline 258 & 112 & 641 & 663 & 519 & 190 & 299 & 489 & 106 & 182 \\
\hline 99 & 188 & 225 & 589 & 6 & 71 & 15 & 449 & 561 & 316 \\
\hline 548 & 242 & 649 & 452 & 215 & 417 & 500 & 294 & 311 & 30 \\
\hline 361 & 363 & 25 & 530 & 260 & 27 & 19 & 2 & & \\
\hline \multicolumn{10}{|l|}{and therefore (28) is impossible for \(t=2,3,6,7,8,9\)} \\
\hline 10, & , 1 & 15, & , & 27, & , 3 & & , & 1, & , 45 \\
\hline \multicolumn{10}{|l|}{\(46,47,51,54,56,58,62,63,64,66,68,70,71,72,74\)} \\
\hline \multicolumn{10}{|l|}{\(75,76,83,87,88,89,90,92,94,95,99,101,104,105\),} \\
\hline \multicolumn{10}{|l|}{107, 108, 109, 110, 112, 114, 117, 120, 121, 124, 125, 126} \\
\hline \multicolumn{10}{|l|}{127, 128, 129, 131, 133, 134, 138, 139, 140, 141, 143, 144} \\
\hline \multicolumn{10}{|l|}{145, 146, 147, 149, 151, 152, 154, 156, 158, 160, 163, 165,} \\
\hline 166, & 73, & 75, & & & & & & & \\
\hline
\end{tabular}
(B) The residues of \(f_{1}\left(u_{k}\right)\) modulo 719 , for \(t=1,5,18\), \(20,21,23,25,26,32,36,38,48,52,55,57,59,60,65\), 69, 77, 78, 80, 82, 85, 91, 96, 97, 106, 113, 116, 118, 119, 137, 150, \(153,155,157,161,164,168,172,174,176\), are 193, 532,669, 322, 71, 628, 487, 152, 371, 417, 22, 485, 123

563, 614, 119, 17, 237, 544, 663, 146, 647, 33, 55, 101, 665, 649, 109, 291, 88, 97, 254, 246, 197, 458, 141, 178, \(483,429,621,46,340,53\), respectively and therefore (29) is impossible for the above values of \(t\).
(c) The residues of \(f_{3}\left(u_{k}\right)\) modulo 719 for \(t=13,16\), \(33,34,37,49,50,61,67,79,86,93,100,102,103,111\), 112, 122, 135, 148, 169, 171, 179, are 344, 269, 495, 267, 19, 542, 597, 544, 658, 612, 157, 109, 563, 381, 570, 654, 471, 55, 153, 663, 41, 57, respectively and therefore (30) is impossible for the above values of \(t\). (d) The residues of \(f_{9}\left(u_{k}\right)\) modulo 719 , for \(t=17,22\), \(31,42,44,53,81,115,123,130,136,142,159,162,167\), 177, are
\(44,141,635,306,344,701,626,299,497,346,701,127\), 213, 693, 86,89 , respectively and therefore (31) is impossible for the above values of \(t\).
(e) The residues of \(f_{11}\left(u_{k}\right)\) modulo 719, for \(t=12\), 73, 84, 98, 132, 170, are

86, 46, 683, 89, and therefore (32) is impossible for the above values of \(t\).
(f)) The residues of \(f_{12}\left(u_{k}\right)\) modulo 719 , for \(t=4\), 29, are 17,55 respectively and therefone (33) is impossible for these values of \(t\).

Thus we see that at least one of (28), (29),
(30), (31), (32), (33) is impossible for \(t=1,2,--719\). Thius (25) is impossible.

Summarizing the results we see that (25) can hold for \(n\) odd, only when \(n=1\) and \(n=5\) and these values do indeed satisfy with \(u=2, v=1, x=3, y=1\), and \(u=362, v=209, x=\) 19, \(y=209\). \(x=3, y=1\) give the solution \(X=0, Y=0\), and \(X=\) 19, \(Y=209\) give the solution \(X=12, Y=104\).

Hence the theorem.

\section*{BIBLIOGRAPHY}
1. Baker, A. \& Davenport, H., The equation \(3 x^{2}-2=y^{2}\) and \(8 x^{2}-7=z^{2}\), Quart. J. Math. Oxford (2), 20 (1969), 129-137. 2. Cassels, J.W.S., Integral points on certain elliptic curves, Proc. Lond. Math. Soc. (3), 14A (1965), 55-57.
3. Cohn, J.H.E., The diophantine equation \(Y(Y+1)(Y+2)(Y+3)\)
\(=2 X(X+1)(X+2)(X+3)\), Pac. Journ. Maths. 37 (1971), 331-335.

4 Dickson, L.E., History of Theory of Numbers, Volume II, New York (1952), 634-639.
5. Ljunggren, W., Solution complete de quelques equations du sixieme degre a deux indeterminees, Arch. Math. Naturv., 48 (1946), Nr. 7, 26-29.
6. Mordell, L.J., Diophantine Equations, London \& New York, (1969), 21.
7. Nagell, T., Introduction to Number Theory, New York, (1951), 158.
8. Pocklington, H.C., Some diophantine impossibilities, Proc.

Camb. Phil. Soc. 17 (1913) 108-121.```

