smonec enctus
 08
 cmatm amote IJTA
 Sept. 1975
 Thesis presented for the
 Decroe of Doctor of Thilosophy
 in the University of Ioncion

Posenary Deatrice Hicsins

1374

Departrent of Ihysica
Foyal holloway Colloce

ProQuest Number: 10097385

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10097385
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

CONTENTS

Page

ABSTRACT 6
CHAPTER I 8
INTRODUCTION
A. Summary ε
B. Background 15
1.B.1. Hermitian operators 15
1.B.2. Matrices 16
1.B.3. Representations 16
1.B.4. Boson operators 19
1.B.5. Normal ordering 22
1.B.6. Quan:tisation of the radiation field 32
1.B.7. Interaction of radiation with matter 33
1.B.8. Phenomenological model for loss mechanism 37
(a) non-rigorous 37
(b) rigorous 45
1.B.9. Density matrix formalism 42
CHAPTER II 2
A 2-LEVEL QUANTUM SYSTEM WITH EXCITED STATE COUPLED BY A CLASSICALEXTERNAL PERTURBATION
A. Heisenberg equations of motion12
B. Time dependence of the population of the excited state 72
CHAPTER III 3.
AN ATOM WITH TWO CLOSE-LYING EXCITED STATES COUPLED BY THERADIATION FROM ITS TRANSITIONS
A. Heisenberg equations of motion 82
B. Line-shape of spontaneous emission evaluated without 92 Markoff approximation
CuTMETIT 124
A MULI-LEVLA ATON WTH BC:-OVELAFPLG LRELS
A. Neisorberg equation of notion 124
E. Tower apectrum 136
C. Yollow's acthod for evaluating the power apectrum $13 ?$ of the scattered light besed on the larkoff emproximation
CNTMEX 143

A. lielsenbere equations of motion 144
E. Iovar spectra 147
lethod (1) (-based on Kollow' fomaliam, for treating driving flelas clasbically) 143
Nethod (1i) (- beaed on Clauber's formalism, for 153 treatine driving fieles in a completely quaritum mechanical way)
(a) Srectral correlation furction for tranoitions 199 between levels $5 P_{3 / 2}$ ard $4 S$ -
(b) Spectral correlation function for transitions vetween levels $6 S$ and $5 P_{3 / 2}$ 171
C. Liscussion 100
CMETRIII 19°

${ }^{25} 1 / 2$ A:D $3 P$
Ao(i) Peisenberg equationa of motion 198
(ii)Review of relevant references 199
E. Iowar apectra (Emission spectra oniy) or
Nethod (1) 206
Methed (11) 208
(a) Spectral correlation Aunction for trancitions 211 vetwicen levels 35 and $1 S_{1 / 2}$
(b) Spectral correlation function for trencitions 217 betwem levols 35 and $25_{1 / 2}$
-4-
C. Discussion 231
D. Addendum 233
CHAPTER VII 236
AN ATOM WITH TWO EXCITED STATES (- ALLOHANCE BEING MADE FOR
THE POSSIBILITY OF THEIR OVERLAPPING) DRIVEN BY AN EXTERNAL
FIELD COUPLING THE UPPERMOST EXCITED STATE TO THE GROUND STATE
A. Heisenberg equations of motion 336
Method (1) -14
Method (11) 214
B. Power spectrum 245
(a) Total spectral correlation function fortransitions between the uppermost level. 3 , andground level. 1
(b) Spectral correlation function split into ris coherent and incoherent parts
C. Analysis of spectral profiles shown in Section E 29
(a) Predictions 09
(b) Review of relevant references 25
(c) Analysis of profiles obtained 376
D. Some notes on the assumption that $r_{31} \sim r_{21}(=r)$ and 20
its validity for the range of values of a and chosen for plotting the intensity profiles $\tilde{I}(v)$
E. Graphs of spectral profiles 323
CHAPTER VIII 212
DISCUSSION
8.1. Criterion for assuming no co-operative effects occur 342
8.2. Dipole approximation 343
8.3. R.W.A. 316
8.4. Broad spectrum limit 351
8.5. Atom at origin 351
-5-
8.6. Mixing of states 351
8.7. Ordering of operators 352
8.8. Markoff approximation 353
8.9. Why t ' chosen to be arbitrary in Chapters V and VII 358
8.10. Limitations on Lehmberg's method 351
8.11. The two ways of considering the driving field in 362 Chapters V, VI and VII
APPENDICES 364
I. Heisenberg equations of motion, derived from the 365 Hamiltonian in which R.W.A. not assumed. for the 2-level atom
II. Comparison of the notation in Chapter II with that 367 of Method (i) in Chapters V, VI and VII where the external field is treated classically
III. Algebraic solution of the cubic equation 371
IV. The effect of H.F. terms on the equations of motion 374 for the multi-level atom
V. Some notes on Apanasevich's paper 378
ACKNOWLEDGEMENTS 382
REFERENCES 383
PUBLICATIONS

ABSTRACT

Several calculations have been carried out using the transition operator technique.

The radiative decay in a two-level quantum system with excited state coupled by an external perturbation has been investigated and an expression obtained for $P(t)$, the probability of finding the atom in Its excited state at time t. This is seen to possess a steady value for $\gamma t \gg 1$ and a third term which decays at nearly half the rate of its second.

Next radiative decay of an atom with two close-lying excited states is considered and $\left|b_{q}\right|^{2}$, the spectral density for spontaneous emission from the uppermost level, calculated. This shows that the proximity of the upper two levels nakes the line-shape non-Lorentzian.

Heisenberg equations of motion were then derived for the transitions operators of an l-level atom undergoing radiative decay, the possibility of overlapping pairs of levels being lgnored. These master equations were then used to obtain the spectral profiles of certain atomic ilnes, employing the so-far avoided Markoff approximation.

First the spectral density of the scattered radiation was found for transitions between levels $5 P_{3 / 2}$ and $4 S$ (ground state), and $6 S$ and $5 P_{3 / 2}{ }^{\circ}$ in the potassium atom when driving fields of arbitrary strength coupled levels 6 S and $4 \mathrm{P}_{3 / 2}{ }^{\circ}$ and $4 \mathrm{P}_{3 / 2}$ and 4 S . Triple-peaked profiles were obtained.

Spectral profiles for emission were then derived for transitions between levels $3 P$ and $1 S_{1 / 2}$ (ground state), and $3 P$ and $2 S_{1 / 2}$ in the hydrogen atom when a driving field of arbitrary strength coupled levels 2S $1 / 2$ and 3P. The former profile was double the latter quadruple-peaked. Lastly master equations were derived for an atom, with two excited levels undergoing radiative decay, when allowance was made for the
possibility of their overlapping. A driving field of arbitrary magnitude coupled the upperwost and ground states. The spectrum for the scattered light resulting from transitions between the uppermost and ground state was found and graphs computed for various field strengths and separations of the excited states.

CHAPTER I

INTRODUCTION

A. Summary

Several calculations concerning radiative decay have been carried out. They involve use of the transition operator technique described by Lehmberg in references [1] and [2].

In Section B of the present chapter a review is given of the background to the calculations. This review explains the terminology and the derivations of certain equations used in the following chapters and is given so that it may be referred back to in the subsequent chapters and detailed explanations need not be given in the body of the text. It is not an original part of the thesis.

Chapter VIII complements Chapter I Section B in giving a discussion of the various approximations used in the thesis and their validity. It also contains reasons for choosing our method of approach and points out the limitations of the Lehmberg method, on which the major part of the calculations is based.

The first two calculations described in Chapters II and III, are outlined in the attached papers published jointly with Dr. L. M. Bali [3], [4]. In Chapter II, [3], radiative decay in a two-level system with excited state coupled by an external perturbation has been considered. The quantum system is simultaneously coupled by a quantised radiation interaction, describing the decay, and by a classical external perturbation. As in Lehmberg's papers [1]. [2] the approximation used is that no appreciable secular change occurs in the atomic states during the times of the order of an atomic period. The solutions are valid for times very much greater than the reciprocal of the atomic resonance frequency and
these times may or may not be very much greater than the atomic life-time. The problem is essentially the same as that of Keller and Robiscoe [5] but their theory has been worked out for a time scale very much greater than the atomic ilfe-time, a restriction we have avoided. They also assume the classical external perturbation to be less than the atomic level separation. We do not necessarily assume this but we do assume $\mu\left(x|\lambda|^{2} / \omega^{2}\right)$ and $B(x 2 \gamma / \omega) \ll 1$ and neglect powers higher than their first order, where λ is a c-number coupling parameter, γ is the decay constant and $\omega=\omega_{0}-\Omega_{\text {, where }} \omega_{0}$ is the level separation and Ω the frequency shift. Our more complete solutions lead to entirely different conclusions from those of Keller and Robiscoe about the effect of the external perturbation on the radiative decay of the system, our most important conclusion being that the equations result in the non-appearance of the new type of modulation factor discovered by Keller and Robiscoe [5]. Our solutions have the advantage of enabling evaluation of expressions for the state populations to be made in a very simple and direct way and they do lead to conclusions similar to those derived, for the three-level problem, by Fontana and Lynch [6].

In Chapter III. [4], the radiztive decay of an atom with two closelying excited states is considered and the effects on the ine shape of spontaneous emission of the atom as a result of the presence of this second excited state is calculated on the assumption no direct transitions can occur between the two close-lying states. Mollow and Miller. [7] have shown, in detail, how the effect of spontaneous emission of an atom can be described by considering coupling of the atom to a "bath" of harmonic oscillators representing modes of the electromagnetic field. They consider a two-level atom. Lehmberg's method [1]. [2] is an improvement on this as it does not require the use of the Markoff approximation or
that the coupling between the atom and the bath be sufficiently weak to consider its effect up to second order of the coupling constants. The rasulting equation is the same as that of Morozov and Shorygin $[8]$, derived using the Heitler-Ma method, when all decay rates are assumed to be equal. It shows that inciusion of the exchange of virtual photons botween the excited levels causes a change in the exission line contours which becomes increasingly noticeable when their separation, $\Delta \gg$ the decay constants γ. This change involves a shifting of the peak intensity to left or right depending on whether the atom is initially in the uppermost or next to uppermost state respectively.

The spectral profile for the atomic decay (essentially the Fourier transform of a two-time correlation function) is obtained without use of the fluctuation-regression theorem. This method is therefore useful for describing situations where calculations based on perturbation theory become invalid; e.g. in the presence of a very intense radiation field such as that of a laser.

In Chapter IV we consider the probler of a multi-level atom undergoing radiative relaxation. Heisenberg equations of motion are derived for the transition operators using, as previousiy, a Hamiltonian obtained under both dipole and rotating wave approximations for an atom at the origin of comordinates. Contrary to Lehmberg [1]. we do not restrict ourselves to specific regions of the spectrum, but rather consider the broad spectrum limit. The possirility of overlapping pairs of levels is ignored in order to simplify the equations, although in Chapter VII this is allowed for in the relatively simple case of the three-level atom. The master equations so derived are used to obtain a general expression for the 2 -time atomic correlation function, employing the so-far-avoided Markoff approximation in the manner of Mollow's
peper [9]. This general expression is used in Chapters V and VI to calculate the spectral density of the scattered light for various transitions in potassium and hydrogen atoms. The use of the Markoff approximation, instead of Lehmberg's approach is necessary at this stage since the equations otherwise require the introduction of various tedious complications for their solution. This is due to the fact that multiplying the transition operator equations, modified by the addition of driving terms, on the right by vacuum state $10>$ for all q photons does not reduce the number of equations and lead to easy solution as in $|2|$. Our calculations nevertheless still have the advantage over follow's of not being restricted to second order in the coupling constants.

In Chapter V the spectral density of the scattered radiation is found for transitions between (a) levels $5 P_{3 / 2}$ and $4 S$ (ground state) and between (b) levels 65 and $5 P_{3 / 2}$ in the potassium atom, when strong driving fields couple levels $6 S$ and $4 P_{3 / 2} \cdot 4 P_{3 / 2}$ and 4S. In both cases (a) and (b) triple-peaked spectral profiles are obtained. The model used consists of 10 of the levels between level 45 (Eround state) and level 6S; 1.e. ignoring the degeneracy of levels 4S, 5S, 4D and 6S. The initial time t^{\prime} is kept arbitrary in both cases so that we can consider the overall effect of several multiphoton processes and not fust single processes of emission or absorption.

Next, in Chapter VI, we apply the general equations to the specific case of emission spectra in the hydrogen atom when strong radiation couples levels $2 S_{1 / 2}$ and 3P. The two cases considered are the spectral densities of the emitted ilght for transitions from (a) state $3 P$ to $1 S_{1 / 2}$ (ground state) and from (b) state $3 P$ to state $2 S_{1 / 2}$ when the atom is naturally initialiy in state $3 P$. Five of the levels between $1 S_{1 / 2}$ (ground state) and $3 P$ are considered, namely levels $2 S_{1 / 2} * 2 P_{1 / 2} \cdot 2 S_{1 / 2}$ * $2 P_{3 / 2}$ and 3P. In case (a) a double-peaked and in (b) a 4-peaked profile was obtained.

The results of the calculations for the potassium atom are compared with numerous experimental papers on potassium, $[10]$ to [31], bearing in mind that our calculations refer to the overall effect of all the individual types of transitions mentioned in these papers. In ref. [11], the origin of the 3 lines obtained for transitions (b) is said to be a 2-or 3 -photon processes. In $[28]$. it is stated that "the observed effects are connected with the splitting of the atomic levels in the external field" as described by the wave function in their expression (1) which shows the splitting of the non-degenerate states of the atom, namely states $4 P_{3 / 2}$ and $6 S_{2 / 2}$, due to the external field. In [29] also they stress "the field origin of absorption line splitting at the $4 S_{1 / 2}->5 P_{3 / 2,1 / 2}$ transition". They also point out in $[29]$ that when the emission intensity is high enough, distinction between processes involving different numbers of photons becomes groundless. In other words, the perturbation theory approach becomes invalid, as stated earlier. In particular, they use the structure of the $4 S_{1 / 2}=5 P_{3 / 2}(\lambda=4044 \mathrm{~A})$ absorption line, as an example, to show that 1 -, 2 - and 3-photon processes are "mixed-up" in an intense resonance field so that under these conditions it is more relevant to talk about "a SINGLE process of violet absorption in which the line structure is interpretated as a result of FIELD SPLITTING of atomic levels". They point out that "such an approach is In full accord with the spirit of non-linear spectroscopy" and they regard their data "as an experimental verification of one of its main theses". In raference [29], equation (A.8.) for the atomic absorption spectrum also contains a set of equidistant TRIPLETS. In other papers the theoretical stress is on the calculation of cross-sections and population densities.

The results obtained for the hydrogen atom are compared with those of Zernik [32] and Rautian and Sobel'man [33]. In Zernik's paper, he
neglects spontaneous decay from level $3 P$ to $2 S$ when using the strong signal theory whereas we haven't neglected it entirely. However our results cannot truly be compared with his, since he considers the 2-photon transition $2 S_{1 / 2}$ to $1 S_{1 / 2}$ through the intermediate level 3P, whereas we consider only the SINGLE photon processes $3 P$ to $1 S_{1 / 2}$ and $3 P$ to $25_{1 / 2}$. We could only consider such SINGLE photon processes since we restricted the initial time to $t^{\prime}=0$. It was necessary to consider the processes as starting at level 3P and that the atom had been excited to that level by the field long ago. had we not done this but assumed instead the atom to be initially in level $25_{1 / 2}$, the spectral densities for amision would have been identically zero so that the only alternative would be to consider t ' to be arbitrary as in the previous chapter. In the paper of Rautian and Sobel'man, a hypothetical atomic system is considered where $\gamma_{32} \ll \gamma_{2}$ (in their notation). but we do not assume this, though for weak fields, we assume $\quad \gamma_{53}$ to be small. i.e. in their notation $\frac{Y_{32}}{\gamma_{32}+Y_{31}-\gamma_{2}}$ small, i.e. $Y_{32} \ll \gamma_{31}-Y_{2}$ since Zernik
says that spontaneous decay from $3 \rightarrow 2$ is negligible, i.e. $\gamma_{31} \gg \gamma_{2}$. We do not specifically assume $\gamma_{32} \ll Y_{2}$. Our calculation is an improvement on these two papers in that it removes these two restrictions but all the same it unfortunately only covers single photon emission processes. We point out how we could modify our calculations to take Into account the 2-photon process at the end of the chapter.

In the following chapter, Chapter VII, we derive equations of motion for a general 3-level atom allowing for the possibility of overlapping of the upper two levels and from these derive an expression for the power spectrum of the scattered light for transitions between the uppermost level, 3, and lowermost level, 1 , when a strong driving field, of arbitrary magnitude, couples levels 3 and 1 . Curves for the spectral
profilea are computed for verious seraretione of levele 3 and 2 and for varlous tairitudes of the driving ficid for the cose of resonance when all ciecay rates have ouni Eagituce, as in Cimper III, i.e. $\gamma_{31} \wedge \gamma_{21} \wedge \Gamma_{32} \wedge \Gamma_{21}(=\gamma)$. A Eimilar model has been used by Aperacevioh et al. [34] were he consiacrs levela 3 and 2 to be always degenerate. In contrast to use, he allows transitions to occur between 2evels 3 and 2. He also linita himelf to conalacration of a your fieja so tiat ho con use a linear arproximation to otaln two equations, i.e. eruation (2). On the otior hand, we have performed a more axact treatment involving 9 comicd equations, which is pet limited to weak fielces.

The computed enectral profilea show that the incluaion of "crossm tyre" decay conatants, Γ_{31} and Γ_{21}, eubatantially affects the spectral profiles for the scattered radiation partieularly for values of ω_{3} around $\omega_{3} \hat{\sim} 1 / 2$, i. 0 , when the soparation of the expited levels is of the crder of $\lambda \varepsilon_{0}=\left(\hat{e}_{00} \cdot \varepsilon_{31}\right) \varepsilon_{02} /$. For this recion the rrofile no loncer corrempus to that obtained by kollow in ref. i, i.e. a contral peak with 2 ailomeaks of cgual ned lower intensty eymetricaly spaced about 1t. For values $\lambda \varepsilon_{0}>\gamma$, whan $\omega_{3}<1 / 20$ the IN pask becins to dominate over the RH ore, until at $1 / 2$ there are no exission peals at ell. When $\omega_{3}>1 / 2$ the $I H$ peak docresees and the Rf one increasen wintil the Nollou-trpe eituation is aequin obtained. This phanonenon requires experdmental verification. Calcuiations taking into accout the "crosem tyne" decsy ratea do not eppear to have been carriad out excent for Nat fielda, viz. ref. 34.

Finally we choild If: to further amasise that the methode used here are preferable to existing nethods, particulorly the perturbation eppronch, Gpecially when dealing with rroblens ixvolving etrone incident rediation.
B. Background [35]

The calculations get out in the following chapters involve the use of the non-relativistic Dirac formulation of quantum mechanics. Before we commence these calculations it would seem fit to explain certain terms which are frequently used.

1.B.1. Herritian operators

Eirstly, most of the operators we shall use, with the notable exception of the toson operators, are hermitian, i.e. they are real linear operators representing dynamical variables which give real numbers when measured. They possess the property of self adjointness so that if L is a hermitian operator

$$
\begin{equation*}
L=L^{+} \tag{1.B.1}
\end{equation*}
$$

also

$$
\begin{equation*}
\langle p| L|b\rangle=\langle b| L|\rho\rangle^{*} \tag{1.B.2}
\end{equation*}
$$

for any state vectors $1 b>$ and $1 p>$. There are two important theorems for all hermitian operators. One being that the eigenvalues of inear hermitian operators are REAL ($\ell=2^{i}$), and the other being that two -igenvectors of a linear hermitian operator L belonging to different efgenvalues are orthogonal $\left(\left\langle l^{\prime} l^{\prime \prime \prime}\right\rangle=\delta_{\ell^{\prime}, l^{\prime \prime}}\right)$. The latter theorem is an expression of the orthonomality relation for eigenvactors and applies to the eigenvalue problem in which the norm of vectors, i.e. <lili'> is finite, viz.

$$
\begin{align*}
\left\langle\ell \cdot \ell^{\prime \prime}\right\rangle=\delta_{\ell, \ell^{\prime \prime}} & \left.\begin{array}{l}
\text { where } \delta_{1, j} \text { is the Kronecka. } \\
\\
\\
\\
\delta_{1, j}=\left\{\begin{array}{lll}
1 & \text { if } 1=j \\
0 & \text { if } & i \neq j
\end{array}\right.
\end{array}\right\} \tag{1.8.3}
\end{align*}
$$

The completeness or closure relation for discrete, as opposed to continuous, eigenvalues of an observable is

```
Fll><ll = I where I is the identity operator. (1.B.4)
2
```

These hemitian operators having such a complete set of eigenvectors \{1l>\} are called observables. The symbol (1l>) signifies that the get of vectors is complete and also that the set may be regarded as a particular set of orthogonal unit basis vectors in the sense of

$$
\begin{equation*}
\langle\ell ' I \ell n\rangle=\delta_{\ell}, \ell^{n} \tag{1.8.5}
\end{equation*}
$$

1.B.2. Matrices

Ket and bra vectors, viz. $1>$ and <1 respectively, and inear operators in a space have a matrix representation. The trace of a square finite matrix A is defined as the sum of the diagonal elements, viz.

$$
\begin{equation*}
\operatorname{Tr}(A)=\sum_{1} A_{1 i} \tag{1,8.6}
\end{equation*}
$$

where Tr is the abbreviation for trace and $A_{i 1}$ is the i th. diagonal element. The trace of a product of finite square matrices is invariant under cyclic permutations, i.e.,

$$
\begin{equation*}
\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)=\operatorname{Tr}(C A B) \tag{1.3.7}
\end{equation*}
$$

1.B.3. Representations

There are thre pictures of quantum mechanics: the schrodinger picture, the Heisenberg picture (which we shall use), and the interaction picture.

In the Schrödinger pictura
(1) observables (p, q and H), which are hermitian operators, are time independent
(2) eigenvectors of operators p_{g}, q_{s} and H_{s} are stationary (time
independent) vectors $1 p^{\prime}>8,1 q^{\prime}>8,1 E>8$ and may be taken as basis vectors to represent operators and state vectors, i.e. basis
Vectors are stationary
(3) the dynamical state vector $1 \phi_{\mathrm{S}}(\mathrm{t})$) : moves.

In the Heisenberg picture
(1) operators are time-dependent $A_{H}(t)$
(2) basis vectors move
(3) state vectors remain stationary $1 \psi_{H}\left(t_{0}\right)>$.

In the interaction picture
(1) operators are time-dependent $A_{I}(t)$
(2) basis vectors move
(3) State vectors move $\|_{I}(t)$, this marking its sole difference from the Heisenberg picture.

All these descriptions of quantum mechanics are physically equivalent and so any one can be used depending on which is convenient for a particular situation.

The state vectors in the Schrödinger and Heisenberg pictures are related, by definition, by

$$
\begin{equation*}
\left.L \psi_{S}(t)\right\rangle=U\left(t, t_{0}\right) L \psi_{H}\left(t_{0}\right)> \tag{1.B.8}
\end{equation*}
$$

where subscript H designates Heisenberg picture and S, Schrödinger picture.
The average value of an operator A_{S}, when it is known with ceatainty that system is in state ψ_{0} is

$$
\begin{align*}
& \langle A\rangle=\left\langle\psi_{S}(t) L A_{S} \lambda \psi_{S}(t)\right\rangle \tag{1.B.9a}\\
& =\left\langle\phi_{H}\left(t_{0}\right) \mathcal{U} U^{+} A_{S} U \psi_{H}\left(t_{0}\right)\right\rangle \\
& z\left\langle\psi_{H}\left(t_{0}\right) L A_{H}(t) l_{H}\left(t_{0}\right)\right\rangle
\end{align*}
$$

since we define the operator in the Heisenberg picture by

$$
\begin{equation*}
A_{H}(t)=U^{+}\left(t, t_{0}\right) A_{S} U\left(t, t_{0}\right) \tag{1.B.9b}
\end{equation*}
$$

thus making the average the same in both pictures. The latter transformation is called a similarity transfomation when $U^{+}=U^{-1}$. i.e. when U is unitary, and is valid even if A_{S} has an explicit time dependence.

The form of U, the transformation operator, depends on whether the system is conservative or non-conservative, i.e. whether the Hamiltonian, H, is time independent $H \neq H(t)$ (conservative system) or time dependent $H z H(t)$ (non-conservative system). We shall be considering non-conservative syatems.

For a conservative system

$$
\begin{equation*}
U\left(t, t_{0}\right)=\exp \left[\frac{-i H\left(t_{\gamma} t_{0}\right)}{\hbar}\right] \tag{1.8.10}
\end{equation*}
$$

and for a non-conservative system

since U is unitary

$$
\begin{equation*}
U^{+} U=U U^{+}=I_{0} \tag{1.B.12}
\end{equation*}
$$

The equation of motion for an observable A in the Heisenberg picture can be obtained by differentiating both sides of the equation for the transformation law with respect lot. It is necessary to also use the equation

$$
\begin{equation*}
\sin \frac{d U}{d t}=H U \tag{1.B.13}
\end{equation*}
$$

and its adjoint

$$
\begin{equation*}
-1 \sqrt{\frac{d U}{d t}}=U^{+} H \tag{1.B.14}
\end{equation*}
$$

and (1.B.12).
Thus.

$$
\begin{equation*}
\sin \frac{d A_{H}}{d t}=\left[A_{H} \cdot H_{H}\right]+i n \frac{\partial A_{H}}{\partial t} \tag{1.B.15}
\end{equation*}
$$

and if A_{S} has no explicit time dependence

$$
\begin{equation*}
\frac{d A_{H}}{d t}=\frac{1}{i n}\left[A_{H}, H_{H}\right] . \tag{1.B.16}
\end{equation*}
$$

This is the formula we shall be using to derive Heisenberg equations of motion for non-conservative systems.

1.B.4. Boson operators

We shall now consider the properties and nature of boson operators. First we recall that particles in nature having the property that any number may occupy the same dynamical states are called BOSONS. Examples of such particles are light quanta (photons), elastic vibrations in crystals (phonons), α-particles, etc. Ne shall be interested in photons and phonons only. Boson creation and annihilation operators, a^{+}and a respectively, obey the conmutation relation

$$
\begin{equation*}
\left[a, a^{+}\right]=1 \tag{1.B.17}
\end{equation*}
$$

```
a+ is also known as the raising operator since when it operates on
oscillator state ln>, containing n quanta, it generates state ln + l>,
containing n + l quanta, i.e.
```

$$
\begin{equation*}
a^{+} \ln >=\sqrt{n+1} \ln +1>. \tag{1.B.18}
\end{equation*}
$$

Similarly a is known as the lowering operator since

$$
\begin{equation*}
\text { aln }>=\sqrt{n} \ln -1>\text { where } n \text { is an integer }>0 \text {, } \tag{1.8.19}
\end{equation*}
$$

and

$$
\begin{equation*}
a 10>=0 \tag{1.8.20}
\end{equation*}
$$

$N=a^{+} a$ is known as the number operator since

$$
\begin{equation*}
\text { Nln> }=n \ln >\quad \text { where } n=0,1, \ldots, \infty \tag{1.B.21}
\end{equation*}
$$

n being the number of quanta in the wave.
Other commutation relations can be derived fron eq. (1.B.17)

$$
\begin{align*}
& {\left[a, a^{+} a\right]=a} \tag{1.B.22a}\\
& {\left[a^{+}, a^{+}\right]=-a^{+}} \tag{1.B.22b}
\end{align*}
$$

Although operators a and a^{+}are non-hermitian the Heisenberg equations of motion still apply, viz.

$$
\begin{align*}
& \frac{d a_{H}}{d t}=\frac{1}{1 n}\left[a_{H}, H_{H}\right] \tag{1.B.23a}\\
& \frac{d a_{H}^{+}}{d t}=\frac{1}{i n}\left[a_{H}^{+}, H_{H}\right] \tag{1.B.23b}
\end{align*}
$$

For a single boson, of frequency $\omega_{\text {, }}$ we shall see later that the Hamiltonian is

$$
\begin{equation*}
H=\Gamma_{w}\left(a^{+} a+1 / 2\right) \tag{1.8.24}
\end{equation*}
$$

where the zero point energy $1 / 2$ โू can be ignored.
Thus for H given in eq. (1.B.24)

$$
\begin{equation*}
\frac{d a_{H}}{d t}=-1 \omega a_{H} \tag{1.B.25}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d a_{H}^{+}}{d t}=1 \omega a_{H}^{+} \tag{1.B.26}
\end{equation*}
$$

and the solutions are

$$
\begin{align*}
& a_{H}(t)=U^{+}(t, 0) a_{S} U(t, 0)=a_{S} e^{-i \omega t} \tag{1.B.27a}\\
& a_{H}^{+}(t)=U^{+}(t, 0) a_{S}^{+} U(t, 0)=a_{S}^{+} e^{i \omega t} \tag{1.8.27b}
\end{align*}
$$

where $U(t, 0)=e^{-i \omega a^{+} a} \quad U^{+}(t, 0)=e^{i \omega a^{+} a}$

The state $1 \mathrm{n}>$ can be generated by using eq. (1.B.18) and applying the operator a^{+}to the ground or vacuum state $10>\mathrm{n}$ times. Hence

$$
\begin{equation*}
\left.2 n>=\frac{a^{t^{n}}}{\sqrt{n!}} 10\right\rangle \tag{1.B.28}
\end{equation*}
$$

From the general theory, the orthonormality relations are

$$
\begin{equation*}
\left\langle n^{\prime} l n^{\prime \prime}\right\rangle=\delta_{n^{\prime} n^{\prime \prime}} \tag{1.B.29}
\end{equation*}
$$

i.e. boson efgenstates are orthogonal
and the completeness relation is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \ln ><n 1=1 \tag{1.B.30}
\end{equation*}
$$

1.e. boson eigenstates are complete.

Since the norm of these vectors is finite, they form a complete set of basis vectors for a Hilbert space.

The energy eigenvalues are

$$
\begin{equation*}
E_{n}=\hbar \omega(n+1 / 2) \tag{1.B.31}
\end{equation*}
$$

where $n=0,1,2, \ldots, \infty$.

Classically any positive value of energy may be obtained when energy is measured but quantum mechanically only discrete values may be obtained. In the limit of large n (n is called a quantum number) the discrete character of eq. (1.B.31) is not noticeable and the quantum result becomesthe classical result. Since $\bar{K} \hat{=} 10^{-27}$ erg. sec., H_{o} is small up to optical frequencies where guantum features become important. Since we will be working in the optical region it is obvious that a quantum approach is vital.
1.B.5. Normal ordering (see also Chapter VIII, Section 7)

In order to enable solution of problems involving non-conservative systeas, 1.e. where $H=H(t)$, without use of cumbersome iterated solution, a powerful operator technique is employed. This is known as normal ordering. In any simple product tern of creation and annihilation operators, the product is a normal one if all anninilation operators appear to the right of all creation operators, eg. if l and m are integers

$$
\begin{align*}
& a^{+\ell} a^{m} \text { is a normal product } \tag{1.3.32a}\\
& a^{m} a^{+l} \text { is not. } \tag{1.B.32b}
\end{align*}
$$

1.R.6. Quantisation of the radiation field (a brief discussion of the remaining sections of this chapter is given in ref. 36)
The quantisation of the electromagnetic (e.m.) field by Dirac $[37]$ enabled the synthesis of the two aspects of radiation and also explained them in a unified way. The first aspect, the wave-like properties of light radiation, is apparent in interference and diffraction experiments and the second aspect, the particle-like properties, is apparent when the radiation is absorbed or emitted by atoms. In Louisell ([35] PP. 149-153) it is shown how the em. field is quantised in avity.

This is done by showing that the classical radiation fleld in a vacuum is equivalent to an infinite set of harmonic oscillators suggesting that the radiation field should be quantised in the same way as a harmic oscillator.

The radiation field in a source-free cavity 2 i.e. in a vacuum, may be described classically in n.k.s, units by the vector potential $A(\underline{r}, t)$ which obeys the wave equation

$$
\begin{equation*}
\underline{\nabla}^{2} A(\underline{r}, t)=\frac{1}{c^{2}} \frac{\partial^{2} A(\underline{\underline{r}}, t)}{\partial t^{2}} \tag{1.B.33}
\end{equation*}
$$

The coulomb quage in which

$$
\begin{equation*}
\underline{\nabla} \cdot A=0 \tag{1.B.34a}
\end{equation*}
$$

and the scalar potential

$$
\begin{equation*}
v=0 \tag{1.B.34b}
\end{equation*}
$$

is assumed.
The electric and magnetic ffelds are

$$
\begin{align*}
& \underline{E}(\underline{r}, t)=\frac{\partial \underline{A}}{\partial t} \tag{1.B.35}\\
& \underline{B}(\underline{r}, t)=\underline{\nabla} \times \underline{A} \tag{1.B.36}
\end{align*}
$$

He may expand A in the form

$$
\begin{equation*}
A(\underline{r}, t)=\frac{1}{\sqrt{E_{0}}} \quad q_{\ell}(t)_{\underline{u}_{\ell}}(\underline{r}) \tag{1.8.37}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{d^{2} g}{d t^{2}}+\omega_{l}^{2} q_{l}=0 \tag{1.B.38}\\
& \nabla^{2} \underline{u}_{\ell}(\underline{r})=\left(\frac{\omega_{l}}{c}\right)^{2} \underline{u}_{\ell}(\underline{x})=0 \tag{1.B.39}
\end{align*}
$$

When we solve eq. (1.B.39) in a cavity with perfectly conducting walls. we obtain a set of normal nodes. The resulting equations for the fields will then represent standing waves. But we still find it convenient to represent the fields in terms of plane traveling waves. and so we slidl write the vector potential as a ifnear superposition of plane waves in the form
$A(\underline{r}, t)=\sum_{\ell} \sum_{\sigma=1}^{2} \sqrt{\frac{\bar{\hbar}}{2 \omega_{\ell}{ }^{t} \sigma^{t}}} \hat{e}_{\ell \sigma}\left\{a_{\ell \sigma} \exp \left[1\left(\underline{k}_{\ell} \cdot \underline{r}-\omega_{\ell} t\right)\right]+{ }_{\ell \sigma}^{+} \exp \left[-1\left(\underline{k}_{\ell} \cdot \underline{r}-\omega_{\ell} t\right)\right]\right.$

In the above expression t is the volume of the cavity, which is assumed to be cubic. 1.e. $\tau=L^{3}$, although its shape will be seen to have no effect on the derisations. For radiation in FREE SPACE we will let $t \rightarrow \infty$ after the calculations are complete.

In the expression for $\boldsymbol{A}(\underline{r}, t), \hat{e}_{\ell \sigma}$ and the numbers $a_{l \sigma}$ and $a_{l \sigma}{ }^{4}$ are constants. $\hat{e}_{\ell \sigma}$ will also be assumed to be real throughout our calculations. The vector \underline{k}_{2} is the propogation constant and since each term in the series (1.B.40) must satisfy the wave equation

$$
\begin{equation*}
\underline{k}_{l}^{2}=\frac{\omega_{l}^{2}}{c^{2}} \tag{1.8.41}
\end{equation*}
$$

From the Conlomb guage condition $\underline{\nabla} \cdot \underline{A}=0$, we obtain the transversatility condition

$$
\begin{equation*}
\hat{e}_{\ell \sigma^{\circ}} \underline{k}_{\ell}=0 \tag{1.B.42}
\end{equation*}
$$

showing that $E=-\frac{\partial A}{\partial t}$ and A are transverse to the direction of propagation in absence of sources.

Vectors $\hat{e}_{\ell f}$ and $\hat{e}_{\ell,}$ are UNIT vectors specifying the polarisation of the plane wave. Each is INDEPENDENT of the other and thus the total
field in (1.B.40) is summed over BOTH polarisations. They are chosen to be perpendicular for convenience so that

$$
\begin{equation*}
\hat{\dot{\theta}}_{\ell I} \cdot \hat{\theta}_{\ell 2}=0 \tag{1.B.43}
\end{equation*}
$$

We can also define a unit vector \hat{k}_{l} by

$$
\begin{equation*}
\hat{k}_{\ell}=\frac{k_{\ell}}{\frac{k_{\ell} \mid}{k^{\prime}}} \tag{1.B.44}
\end{equation*}
$$

Thus eqs. (1.B.43) and (1.B.44) become

$$
\begin{align*}
& \hat{e}_{\ell \sigma^{\prime}} \cdot \hat{e}_{\ell \sigma^{\prime}}=\delta_{\sigma \sigma^{\prime}} \quad \sigma, \sigma^{\prime}=1,2 \tag{1.B.45a}\\
& \hat{e}_{\ell \sigma^{\prime}} \hat{k}_{\ell}=0 \tag{1.B.45b}
\end{align*}
$$

In order to make the modes DISCRETE it is convenient to require the vector potential to satisfy periodic boundary conditions on opposite faces of the cavity. Thus if \hat{i}, \hat{j} and \hat{k} are 3 unit vectors along the cube edges, the position vector is $\underline{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and the propagation vector is $\underline{k}_{l}=k_{l_{x}} \hat{i}+k_{\ell_{y}} \hat{j}+k_{l_{z}} \hat{k}$ then as periodic boundary conditions require that

$$
\begin{equation*}
\underline{A}(\underline{r}+L \hat{i}, t)=A(\underline{r}+L \hat{j}, t)=A(\underline{r}+L \hat{k}, t) \tag{1.B.46}
\end{equation*}
$$

they are satisfied if

$$
\begin{equation*}
\underline{k}=\frac{2 \pi}{L}\left(l_{1} \hat{i}+\ell_{2} \hat{j}+l_{3} \hat{k}\right) \tag{1.B.47}
\end{equation*}
$$

where l_{1}, l_{2} and l_{3} are integers from $\rightarrow+\infty$.
Thus the propagation constants $k_{\ell x}=\frac{2 \pi}{L} \ell_{1}$ etc. are restricted to a discrete set of infinite values, and

$$
\begin{equation*}
\Sigma=\sum_{\ell}^{\infty} \sum_{1}^{\infty} \sum_{\ell_{2}}^{\infty} \sum_{\ell_{3}}^{\infty} \tag{1.B.48}
\end{equation*}
$$

The result of this is that the field can now be described by a COUNTABLY infinite set of variables whereas previously the electric and magnetic fields were determined by the values A_{x}, A_{y}, A_{z} at each point at tine t and these values were UNCOUNTABLY infinite.

For every triplet $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$ there are 2 travelling modes - one for each polarisation σ according to eq. ($1 . B .40$) so that ($i_{1}, \ell_{2}, \ell_{3}, \sigma$) signifies a mode of a given polarisation. There are also forward and backward modes, since if we let $\left(\ell_{1}, l_{2}, \ell_{3}\right) \rightarrow\left(-\ell_{1},-\ell_{2},-\ell_{3}\right)$
then

$$
\begin{equation*}
\underline{k}_{\rightarrow 2}=-\underline{k}_{\ell} \tag{1.B.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{\ell} \equiv \omega_{-\ell} \tag{1.8.50}
\end{equation*}
$$

It is obvious that $\hat{A}(\underline{r}, t)$ is real since $\hat{e}_{\ell 0}$ is real
and

$$
a_{\ell \sigma} \exp \left[1\left(\underline{k}_{\ell} \cdot \underline{r}-\omega_{\ell} t\right)\right]=\left\{a_{\ell \sigma}+\exp \left[-1\left(\underline{k}_{\ell} \cdot \underline{r}-\omega_{\ell} t\right)\right\}^{\prime \prime}(1.8 .51)\right.
$$

If we now let

$$
\begin{array}{ll}
a_{\ell \sigma}(t)=a_{\ell \sigma} e^{-i \omega_{l} t} & \hat{a}_{\ell \sigma}^{+}(t)=a_{l \sigma}^{+} e^{i \omega}{ }_{l}^{t} \\
\underline{u}_{\ell \sigma}(\underline{r})=\frac{\hat{e}_{\ell \sigma} \exp \left(i k_{\ell} \cdot r\right)}{\sqrt{\tau}} & u_{\ell \sigma}^{*}\left(\underline{\underline{u}}=\frac{\hat{e}_{\ell \sigma} \exp \left(-\underline{k}_{\ell} \cdot \underline{r}\right)}{\sqrt{\tau}}\right. \tag{1.B.53}
\end{array}
$$

where the latter 2 variables satisfy the orthonormality relations

$$
\begin{equation*}
\int_{\text {cavity }} u_{l \sigma}^{*}(\underline{r}) \cdot u_{\ell \cdot \sigma} d(\underline{r}) d t=s_{\ell \ell:} \delta_{\sigma \sigma^{\prime}} \tag{1.8.54}
\end{equation*}
$$

then we may use the following expressions for variables $a_{l 0}$ and $a_{l \sigma}{ }^{\boldsymbol{p}}$ in terms of $p_{l \sigma}$ (momentum) and $q_{l \sigma}$ (comordinate) to describe the field

$$
\begin{equation*}
a_{\ell \sigma}=\frac{1}{\sqrt{2 F \omega_{\ell}}} \quad\left(\omega_{\ell} q_{\ell \sigma}+i p_{\ell \sigma}\right) \tag{1.B.55a}
\end{equation*}
$$

$$
\begin{equation*}
a_{l \sigma}^{+}=\frac{1}{\sqrt{2 \hbar \omega_{l}}} \quad\left(\omega_{\ell} q_{\ell \sigma}-1 p_{\ell \sigma}\right) \tag{1.B.55b}
\end{equation*}
$$

Thus $A(\underline{E}, t)$ and $\underline{E}=-\frac{\partial A}{\partial t}$ are now expressible in terms of canonically confugate variables, and the electric field is
$\underline{E}(\underline{r}, t)=1 \quad \sum_{\ell, \sigma} \sqrt{\frac{\hbar \omega_{\ell}}{2 \epsilon} 0^{\tau}} \hat{e}_{\ell \sigma}\left(a_{\ell \sigma}(t) e^{i \underline{k}} \cdot \ell \underline{\underline{r}}-a_{l \sigma}^{+}(t) e^{-i \underline{k}}-\ell \cdot \underline{\underline{r}}\right\}$
and since the magnetic fiold $\underline{H}=\frac{\nabla \times A}{\mu_{0}}$

where

(N.B. so far ${ }_{l \sigma}$ and $a_{l \sigma}^{+}$commute classically though later we identify them as boson operators.)

At this point we will convert the formulas into the units we shall use in the rest of the thesis, namely those used also by Lehaberg except that fin will not be put equal to 1. For convenience we will show how conversions may be made between the units used in our main references with the help of ref. [38], pp. 729-743.

Table 1.3.1
COPran

Thus, using the following plane-wave representation for E and E:
$E(\underline{r}, t)=\sum_{\ell \sigma} \sqrt{\frac{2 \pi \hbar \omega_{\ell}}{V}} \hat{e}_{\ell \sigma} \quad\left\{a_{\ell \sigma} e^{i \underline{k}} \ell \cdot \underline{\underline{r}}+a_{\ell \sigma}^{+} e^{\left.-i \underline{k}_{\ell} \cdot \underline{\underline{r}}\right\}}\right.$
$\underline{B}(\underline{r}, t)=\sum_{\ell \sigma} \sqrt{\frac{2 \pi \hbar \omega_{\ell}}{V} \hat{k}_{\ell} \times \hat{e}_{\ell \sigma} \quad\left\{a_{\ell \sigma} e^{i k_{\ell}} \cdot \underline{\underline{r}}+a_{\ell \sigma}^{+} e_{\ell}^{-i \underline{k}} \cdot \underline{\underline{E}}\right\}, ~}$

He can derive the Hamiltonian for the field in the cavity, i.e.

$$
\begin{equation*}
\left.H_{R}=\frac{1}{8 \pi} \frac{f\left(|E|^{2}\right.}{\operatorname{cav} i t y}+|\underline{B}|^{2}\right) d^{3} r \tag{1.B.60}
\end{equation*}
$$

and following the procedure outlined in Appendix A of Louisell [35] we finally obtain

$$
\left.\begin{array}{rl}
H_{R} & =\frac{1}{2} \sum_{\ell, \sigma} \sum_{l \omega_{l}}\left(a_{l \sigma} a_{l \sigma}^{+}+a_{l \sigma}^{+} a_{l \sigma}\right) \tag{1.B.61}\\
& \begin{array}{l}
\text { (the order of a } \\
\text { and at being kept } \\
\text { since they will }
\end{array} \\
& =\frac{1}{2} \sum_{\ell, \sigma}\left(p_{l \sigma}^{2}+\omega_{l}^{2} q_{l \sigma}^{2}\right) \\
\begin{array}{l}
\text { later be treated } \\
\text { as non-commuting } \\
\text { operators) }
\end{array}
\end{array}\right\}
$$

In order to quantise the radiation field hermitian operators are associated with variables $p_{\ell \sigma}$ and $q_{\ell \sigma}$. Since photons are bosons we may postulate that $q_{\ell \sigma}$ and $P_{l \sigma}$ satisfy boson commutation relations. Quantisation is necessary to show the particle nature of light. In terms of non-hermitian operators $a_{\ell \sigma}$ and $a_{l \sigma}^{+}$these relations are

$$
\begin{equation*}
\left[a_{\ell \sigma^{\prime}} a_{\ell \prime \sigma}{ }_{l}\right]=\delta_{\ell, \ell}, \delta_{\sigma, \sigma^{\prime}} \tag{1.B.62}
\end{equation*}
$$

i.e. they commute for different oscillators because they are independent,
also

$$
\begin{equation*}
\left[a_{l \sigma^{\prime}} a_{l \sigma^{\prime}}\right]=0=\left[a_{l 0^{\prime}}^{+} a_{l \alpha^{\prime}}^{+}\right] \tag{1.B.63}
\end{equation*}
$$

Hence

$$
\begin{equation*}
H_{R}=\sum_{l \sigma} \hbar \omega_{l} a_{l \sigma}{ }^{+}{ }_{l \sigma}+\frac{1}{2} \hbar \omega_{l} \tag{1.8.64}
\end{equation*}
$$

but the zero-point energy can be neglected since one can change the level from which the energy is measured. Even if it is left in it would not affect the Heisenberg equations of motion. Thus we use

Photons are bosons and so satisfy the earlier results given for bosons except that now instead of one oscillator there are an infinite number of independent field oscillators.

Since each cavity mode is independent, a complete set of state vectors may be written as a sim le product of state vectors for ach mode; 1.e. a state vector for the radiation field may be written as

$$
\begin{equation*}
\left.\ln n_{1}>\ln 2>\ldots \ln >=l n_{1}, n_{1}, \ldots, n_{\infty}\right\rangle \tag{1.B.66}
\end{equation*}
$$

where each subscript 1,2,... stands for the quartet of integers $\left(\ell_{1}, \ell_{2}, \ell_{3}, \sigma\right)$. Also the state vector for an assembly of non-interacting bosons must be symmetric under the interchange of any 2 of the bosons.

The effect of $a_{l \sigma}$ and $a_{l \sigma}^{+}$on the state vectors of eq. (1.B.66) is given by

$$
\begin{align*}
& a_{\ell \sigma}^{+} 1 \ldots, n_{\ell \sigma}, \ldots .=\sqrt{n_{\ell \sigma}+1} 1 \ldots, n_{\ell \sigma}+1, \ldots, \\
& \left.a_{\ell \sigma} 1 \ldots n_{\ell \sigma} \ldots \ldots=\sqrt{n_{\ell \sigma}} \quad 1 \ldots . n_{\ell \sigma}-1, \ldots\right\rangle \tag{1.8.67}\\
& a_{l \sigma^{2}} \ldots, 0, \ldots,=0 \\
& N_{\ell \sigma} 1 \ldots, n_{\ell \sigma} \ldots \ldots=n_{\ell \sigma^{2}} \ldots . n_{\ell \sigma}, \ldots .
\end{align*}
$$

and with this choice, these state vectons are normalised to unity. As In the case of the single oscillator, these operators are in the

Schrödinger picture but may be generalised to the Keisenberg picture; e.g. Heisenberg equations of motion for $a_{i \gamma}(t)$ are

$$
\begin{align*}
\frac{i \hbar \frac{d a_{\ell \sigma}}{d t}(t)}{d} & =\left[a_{\ell \sigma}(t), H_{H}\right] \tag{1.B.68}\\
& =-i \omega_{\ell} a_{\ell \sigma}(t) \quad \begin{array}{l}
\text { for } H_{H}=H_{R} \text { the radiation } \\
\\
\text { field in a vacuum }
\end{array}
\end{align*}
$$

also

$$
\begin{equation*}
a_{\ell, \sigma}(t)=U^{+}\left(t, t_{0}\right) a_{l \sigma} u\left(t, t_{0}\right) \tag{1.B.69}
\end{equation*}
$$

He shall consider what happens in the free space 1 imit $L \rightarrow \infty$. In this limit when we sum over discrete values of $\ell\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$ the values ${ }^{\ell} / \frac{1}{}, \ell_{2} / L, l_{3} / \mathrm{L}$ became practically continuous and we may replace sums by integrals so that

$$
\begin{equation*}
\frac{1}{L^{3}} \sum_{\ell}(\quad) \underset{L \rightarrow+\infty}{(2 \pi)^{3}} \iiint_{-\infty}^{\infty} d k_{x} d k_{y} d k_{z}(\quad) \tag{1.B.70}
\end{equation*}
$$

since $k_{x}=2 \pi \ell_{1 / L}$ etc..
and if we transform (k_{x}, k_{y}, k_{z}) from rectangular to spherical polar co-ordinates by means of

$$
\begin{equation*}
\underline{k}=k\left(\sin \theta \cos \phi_{,} \sin \theta \sin \psi, \cos \theta\right) \tag{1.B.71}
\end{equation*}
$$

so that the element of volume in \underline{k} space is

$$
\begin{equation*}
d k_{x} d k_{y} d k_{z}=k^{2} d k \sin \theta d \theta d \psi=k^{2} d k d \Omega_{\hat{k}} \tag{1.8.72}
\end{equation*}
$$

where $\Omega_{\hat{k}}$ is the element of solid angle about direction of propagation.

Then

$$
\begin{align*}
& \frac{1}{L^{3}} \sum_{\ell}() \rightarrow \frac{1}{L \rightarrow \infty}(2 \pi)^{3} \\
& \int_{0}^{\infty} k^{2} d k \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \psi() \\
& \rightarrow \frac{1}{(2 \pi)^{3}} \int_{0}^{\infty} k^{2} d k \int_{0}^{4 \pi} d \Omega_{\hat{k}}(, \tag{1.B.73}\\
& \rightarrow \frac{1}{(2 \pi c)^{3}} \int_{0}^{\infty} \omega^{2} d \omega \int_{0}^{4 \pi} d \Omega_{\hat{k}}(,)
\end{align*}
$$

The summation over polarisation index σ will be done as follows, $\hat{k}_{\ell}, \hat{e}_{\ell 1}, \hat{e}_{\ell 2}$ are all mutually perpendicular Fig. L.B. 2

If \hat{x}_{i} and \hat{x}_{j} are unit vectors along x_{i} and x_{j} axes respectively then

$$
\begin{align*}
& \left(\hat{e}_{\ell l}\right)_{i}=\cos \left(\hat{e}_{\ell j} \cdot \hat{x}_{i}\right) \\
& \left(\hat{e}_{l 2}\right)_{j}=\cos \left(\hat{e}_{\ell l^{\prime}} \cdot \hat{x}_{j}\right) \tag{1.B.74}\\
& \left(\hat{k}^{\ell}\right)_{i}=\cos \left(\hat{k}_{\ell} \cdot \hat{x}_{i}\right)
\end{align*}
$$

and by the properties of direction cosines
or

$$
\begin{align*}
&\left(\hat{e}_{\ell, 1}\right)_{i}\left(\hat{e}_{\ell, 1}\right)_{j}+\left(\hat{e}_{\ell, 2}\right)_{i} \cdot\left(\hat{e}_{\ell, 2}\right)_{j}+\left(\hat{k}_{\ell}\right)_{i} \cdot\left(\hat{k}_{\ell}\right)_{j}=\delta_{i j} \\
& \sum_{\sigma=1}^{2}\left(\hat{e}_{\ell \sigma}\right)_{i} \cdot\left(\hat{e}_{\ell \sigma}\right)_{j}=\delta_{i j}-\left(\hat{k}_{\ell}\right)_{i} \cdot\left(\hat{k}_{\ell}\right)_{j} \tag{1.8.75}\\
&=\delta_{i j}-\frac{\left(\underline{k}_{\ell i}\right) \cdot\left(\underline{k}_{\ell j}\right)}{k_{l}^{2}}
\end{align*}
$$

1.B.7. Interaction of radiation with matter

In the Dirac theory of radiation an atom (A) and the radiation field (R) with which it interacts are considered as a single system and the energy of this system is represented by:
(1) the energy of the atom alone, H_{A}
(2) the energy of the radiation field alone, H_{R}
(3) a small term = the coupling energy between atom and field, $V_{A R}$, since atom and field affect one another.

The non-relativistic Kamiltonian for a l-electron atom in the presence of a radiation field, is

$$
\begin{equation*}
H=\frac{1}{2 m}(p-e A)^{2}+e V(\underline{r})+H_{R} \tag{1.B.76}
\end{equation*}
$$

where dection anin is neglecet gince efering are rot considered to be sufficiently large enough for relativistic effects to be important. In ref. 40 . p. 276 it is said that:

> "Even for heavy atoms the energy of the K-shell is still <mce ${ }^{2}$ and the relativistic correction, though appreciable for Ur and X-rays emitted in transitions to the K-shell, does not seriously affect the results."

We shall anyway not be considering heavy atoms here.

Equation (1.B.76) also applies to single valency atoms such as alkali metals, e.g. potassium, which we consider in Chapter V, as well as to hydrogen which we consider in Chapter VI.
e is the charge on the electron
m \quad is the mass of the electron
$V(\underline{r})$ is the potential in which the atom is situated at position \underline{r} (i.e. Coniomb interaction between electron and nucleus)
D. is the electron momentum

A is the vector potential describing the radiation field.

In the cosilomb guage $\nabla \cdot A=0$, hence

$$
\begin{align*}
H & =H_{A}+H_{R}+V_{A R}^{(1)}+V_{A R}^{(2)} \tag{1.8.77a}\\
& =H_{0}+V_{A R}^{(1)}+V_{A R}^{(2)} \tag{1.8.77b}
\end{align*}
$$

where $\quad H_{A}=\frac{p^{2}}{2 m}+e V(\underline{r})$

$$
\begin{equation*}
\mathrm{H}_{\mathrm{R}}=\frac{1}{8 \pi} \underset{\operatorname{cavity}}{\rho}\left(\left|\underline{\left.\right|^{2}}+|B|^{2}\right) d^{3} r\right. \tag{1.B.78b}
\end{equation*}
$$

$$
=\sum_{\ell, \sigma} \hbar_{\ell}\left(a_{\ell \sigma}^{\dagger} a_{\ell \sigma}+\frac{1}{2}\right)
$$

when the radiation field is quantised and source-free.

$$
\begin{equation*}
H_{0}=H_{A}+H_{R} \tag{1.3.78c}
\end{equation*}
$$

is the unperturbed Hamiltoniag.

$$
\begin{equation*}
v_{A R}^{(1)}=-\frac{e}{m} A \cdot \underline{D} \tag{1.8.79}
\end{equation*}
$$

represents interaction between electron p and radiation field A and is $\ll H_{0}$. It is of first order in coupling constant e.

$$
\begin{equation*}
v_{A R}^{(2)}=\frac{\Theta^{2}}{2 m} A^{2} \tag{1.E.80}
\end{equation*}
$$

represents mutual interaction between different radiation oscillators of the radiation field through coupling of the electron to the field. $V_{A R}^{(1)} \gg V_{A R}^{(2)}$ is the only term of importance in our applications. If we use mixed Gaussian units the denominator of $V_{A R}^{(2)}$ is mc^{2} and so is very large, making it obvious why $V_{A R}^{(2)}$ is so smail. $V_{A R}^{(2)}$ is important in dispersion and Compton scattering.

The Hamiltonian is in the Schrödinger picture and son wist use A In the Schrödinger picture also and then solve the Schrödinger equation of notion. This cannot be solved exactly and a perturbation approach is used which results in an infinite set of coupled equations for the probability amplitudes. Various approximation techniques can then be used to solve these.

The techniques used depend on the size of the interaction times t involved compared with the coupling constant, g, in $V_{A R}^{(1)}$. H.B. in (1.B.79) ε^{∞} e.
(1) In the case of (a) absorption of radiation by atoms and (b) spontaneous emission by excited atons the interaction times, $t \ll g^{-1}$ and a solution involving perturbation expansion in powers of $\gamma t \ll 1$ is adequate.
(2) In the case of the theory of natural line width interaction times, $t \gg g^{-1}$ and development in powers of gt >1 will converge too slowly to be useful. In this case Wignermeisskopf [41] approximation (H-W approximation) can be used to obtain approximate results. N.B. In the theory of emission and absorption of radiation by atoms
their energy levels can be assumed infinitely sharp even though it is known from experiment that emission and absorption lines have finite width owing to the reaction of the radiation field on the atom. This reaction is caused since the emitting atom generates a radiation field which reacts back on the atom causing the emitted spectral line to have a natural line width. It is with this reaction which we shall be concerned and 80 this reason we shall not be using perturbation approach.

Time-dependent perturbation theory (P.T.) is valid only for times t short enough that initial state does not change during the course of the interaction. An initially excited atom is bound to change its state and so in order to measure the energy-level separation a sufficient time must be allowed to allow its state to change significantly (according to Heisenberg's uncertainty principle). Perturbation theory is therefore inadequate and one alternative is the $\mathrm{H}-\mathrm{W}$ approximation.

As an alternative to the $W-W$ method which involves solving the Schrödinger equations of motion, we use the method of Lehmberg which involves soiving Heisenberg equations of motion using the Hamiltonian in the Heisenbere representation where $a_{\ell \sigma}$ and $a_{2 \sigma}^{\dagger}$ are time-dependent. We are particularly interested in radiation damping which results in atoms having a finite line width and so it is obvious that perturbation theory (P.T.) is invalid here as stated above. The inftial state will change during the course of the interaction and this is another reason for not using P.T. In Mollow and Miller's paper they point out that ist. order P.T. only holds good when the density operator for the atom corresponds to a PURE state throughout the interaction. This is fust another way of saying that the initial atomic state must not change. We shall explain why this is so later.

1.B.8. Phenomenological model for loss mechanism

When an atom (A) is coupled to a radiation field (R) it spontaneously decays with a finite lifetime which is responsible for the natural line width of the atom. This decay can be visualised as a single quantun system (the atom) coupled to a large number of hamonic oscillators (the radiation field) into which the energy of the atom goes and is thus dissipated. We know that this process involves a loss mechanism (L) and 80 in order to find the quantitative effect of spontaneous emission a phenomenological model for L must be found. It will be equivalent to, though not the same as, the single aton (A) coupled to the radiation field (R) discussed in Section 1.E.7.

Non-rigorous treatment

The model for L weshall use is based on the model used for the natural theory of line width and is that also used by Senitzky. [42]

The Hamiltonian for a single mode. frequency ${ }^{\omega_{0}}$. of the radiation field in a cavity is

$$
\begin{equation*}
H_{A}=\hbar \omega_{0} A^{\dagger} A \tag{1.8.81}
\end{equation*}
$$

(see eq. (1.B.61) where $\omega_{2}=\omega_{0}$ and σ is not specified).
(This single mode will later be taken to represent the atom, hence subscript $A_{\text {. }}$) The solution of the Heisenberg equation of motion for $A(t)$

$$
\begin{align*}
& \frac{d A}{d t} \tag{1.E.82}
\end{align*}=\frac{1}{i \hbar}\left[A_{0} H_{A}\right]=-i \omega_{0} A
$$

If we put in the cavity a phenomenological loss term by analogymith a circuit resistance we then obtain damped solutions of the form

$$
\begin{align*}
& A(t)=A e^{-i \omega_{0} t-\gamma / 2 t} \tag{1.8.84a}\\
& A^{+}(t)=A e^{+i \omega_{0} t-\gamma / 2 t} \tag{1.B.84b}
\end{align*}
$$

by replacing ω_{0} by $\omega_{0}+i \gamma / 2$. But the commutator of A and A^{\dagger} is then

$$
\begin{equation*}
\left[A(t), A^{t}(t)\right]=e^{-\gamma t} \tag{1.B.85}
\end{equation*}
$$

since $\left[A, A^{\dagger}\right]=1$ since A and A^{\dagger} are boson operators. Thus for times $t \ll \gamma^{-1}$ all is well but when $t \gg \gamma^{-1}$ the commutator in (1.B.85) approaches zero, violating the uncertainty principle. Since we are interested in times $t \gg \gamma^{-1}$. an ordinary damping term is not an adequate phenomenological model for loss since the Heisenberg operator equations should be identical in form to the classical equations of motion. This model only accounts for the action of the cavity on the loss but we require on which also allows for reaction of the loss back on the cavity.
N.E. If the life-time of the excited atom is very large, i.e. $\gamma^{-1} \gg t$ (the interaction time) we could account for emission and absorption by 1st. order P.T. neglecting reaction of radiation field back on the atom but when the lifetime is short $y^{-1} \ll t$ we must take into account the reaction of the field on the atom which results in the natural line width.

In order to describe a loss cavity, we now let a single cavity mode represent the atom and let it be coupled to elastic vibrations in a dielectric material. These vibrations are expanded in normal modes and their energy is then equivalent to a large number of "elastic" oscillators which are then quantised as were the em oscillators earlier. The quanta are known as PHONONS for the elastic waves and as they obey Box-Einstein statistics their Hamiltonian (cf.eq. (1.B.65) is

$$
\begin{align*}
H_{L} & =\hbar \underset{\ell, \sigma}{\Sigma} \omega_{l} a_{l \sigma}^{\dagger}{ }_{l}^{a}{ }_{l \sigma} \\
& =\hbar \sum_{q} \omega_{q} a_{q}^{\dagger} a_{q} \tag{1.B.86}
\end{align*}
$$

There are about 10^{23} atoms in a solid and at the initial time all are at the same frequency $\omega_{q}=\omega_{q_{0}}$. When the atoms are coupled in a solid ω_{g} spreads into a band of frequencies ${ }^{2} \omega_{q}$ about the initial frequency $\omega_{Q_{0}}$. Thus

$$
\Sigma=\sum_{q=1}^{10^{23}}
$$

Because the frequencies are very closely snaced with density $\rho\left(\omega_{q}\right)$, we shall be able to replace sums over q by integrals when convenient. [cf. ref. 1, eq. (2.13) and ref. 2, eq. (11) where this is done more rigorously after the manner of Section 3, eq. (1.B.73).]

In Mollow and Miller's paper [7] the atom is said to be damped by its coupling to a (ZERO-temperature) "bath" of harmonic oscillators (L) which are taken to represent modes of the emfield (R). In this way the damping mechanism represents the effect of spontaneous emission. According to Lehmberg's lst. paper it is not necessary either for the bath to be at zero temperature or to specify the initial state of the bath at all although we do find the latter to be necessary.

To summarise, the phonons are thus equivalent to an ensemble of harmonic oscillators in thermal equilibrium with a heat bath at temperature T. We also assume that the dielectric is in a cavity with a mode of frequency ω " ${ }^{*} q^{\prime \prime}$

1. We shall see in Chapter VIII, Section 8 that, because of the BROAD nature of the spectrum of loss oscillators, we may use the Markoff approximation when desired. It is also important in other respects also as we shall see.

Phenomenological model for loss mechanism - schematicaily represented

A - cavity with mode of frequency $\omega_{0}=\omega_{q}$ representing the atom. In fact a radiation field is emitted by the atom and this field then reacts back on the atom. It is the mode of this field which represents the atom.

L - dielectric material containing elastic vibrations whose energy is quantised in PHONONS. This represents the radiation field. In fact the damping reservoir L is composed of phonons equivalent to ε in thermal equilibrium with H.
ε - ensemble of harmonic oscillators.

H - heat bath at temperature T.

L is referred to as R, the radiation field, ${ }^{1}$ in Lehmberg [1]. [2]. and also elsewhere in this thesis when we refer to it as the em. radiation field. At this point it is referred to as L only to make clear its significance as loss mechanism. L is referred to as B, the bath, in Mollow's papers [7]. [9].

1. According to von Foerster [43]. nomal modes of the e.m. radiation field in a macroscopic cavity are sufficiently numerous and have a sufficiently denae spectrum that they serve as a heat bath for the atom.
A is referred to as S in Lehmberg [1], [2] and later on in this thesis when it is referred to as the atom cavity system.

Before the two systems L and A areccoupled, the hamiltonian for the loss oscillators (phonons) and the cavity mode (photons) as

$$
\left.\begin{array}{rl}
H_{0} & =H_{A}+H_{L} \tag{1.B.88}\\
& =\hbar_{0} A_{A}^{\dagger}+\hbar \sum_{q} \omega_{Q} a_{Q}^{+} \quad a_{q}
\end{array}\right\}
$$

where $\left[A, A^{\dagger}\right]=1,{ }^{1}[A, A]=\left[A^{\dagger}, A^{\dagger}\right]=0$ and the $A^{\prime} s$ and $a_{Q}^{\prime} s$ all commute with each other. Here a_{q} and a_{Q}^{\dagger} are PHONON anninilationpand creation operators respectively. He assume that H_{0} describes the state of the whole system before $t=0$ when the cavity mode (e.m. field), (A) is uncoupled from the lattice modes (elastic field, L).

1. In fact for an atom with two levels this would be an anti-comutator if, for levels $1 i>$ and $l j>$, where $j>i$, the operators A and A^{\dagger} are identified as

$$
\left.\begin{array}{ll}
A=1 i><j 1=P_{i j} & \tag{1.8.89}\\
A^{+}=1 j><i l=P_{j 1} & \begin{array}{l}
\text { (see Lehmberg }|1| \text { for } \\
\text { definition of } \left.P^{\prime} g\right)
\end{array}
\end{array}\right\}
$$

and then $\left[A_{,} A^{\dagger}\right]=P_{i j}-P_{j j} \neq 1$, whereas the anti-commutator $\left[A, A^{\dagger}\right]_{+}=P_{11}+P_{j j} \neq 1$.
If A and A^{\dagger} are defined by eq. (1.8.89) then they are pseudomspin operators for the atom and have entirely different properties from boson operators (cf. pp. 81-84, ref. [35]) and it is because fermions obey the pauli exclusion principle that they do not satisfy the selation $\left[A, A^{+}\right]=1$.

Fermion operators also satisfy

$$
\left.\begin{array}{ll}
& A^{+2}=A^{2}=0 \\
\text { since } \quad A^{+2} & =1 j><i l j><i l=\delta_{1 j} l j><i 1=0 \text { for } i \neq j \\
\text { and } \quad A^{2}=1 i><j l i><j 1=\delta_{j i l l}=11><j=0 \text { for } i \neq j \tag{1.8.90}
\end{array}\right\}
$$

Further properties of these operators are given on pages 131-134 of ref. [35].
In eq. (2.B.88) A and A^{\dagger} are identified as boson operators for the atom since the atom is represented as a cavity mode of frequency $\omega_{0}=\omega_{q}$

Let $p^{(A)}(0)$ be the density operator describing the ensemble of radiation oscillators at $t=0$, while $\rho^{(L)}(0)$ describes the ensemble of loss oscillators. $\rho^{(L)}(0)$ is specified in Louisell. p. 257 [35] as a Boltzmann distribution, since L is assumed to be in thermal equilibrium at temperature 7 .

$$
\begin{equation*}
\rho^{(L)}(0)=\frac{e^{-\beta H} L}{\operatorname{Tr}\left(e^{-\beta H} L\right)} \tag{1.B.91}
\end{equation*}
$$

where $\beta=(K T)^{-1}$ and K is Boltzmann's constant. We shall specify $\rho^{(A)}(0)$ later.

In order for the e.m. field (A) to interchange energy with the lattice vibrations (L) there must be a coupling between the two fields e.\&. for an ionic lattice this would be accomplished by charges on the ions interacting with the e.m. field, whereas in a crystal there may be dipoles that interact with the field. We shall, in fact, be considering atomic vapours in which the atomic dipoles interact with the field but, no matter what the mechanism for coupling, the simplest energy preserving Hamiltonian is

$$
\begin{equation*}
V_{A L}=\sum_{q} \hbar\left(g_{q} A_{q}^{\dagger}+g_{q}^{*} a_{q}^{\dagger} A\right) \tag{1.B.91}
\end{equation*}
$$

where the operators are nommaly ordered. (Compare eq. (1.B.91) with $V_{A R}^{(1)}$ of (1.8.79) which is of the same order.) This is the interaction Hamiltonian in the resonant form. The coupling coefficients g_{q} will later be assumed REAL. They are small compared with ω_{0} or ω_{q} and will depend on the parameters involved in the actual coupling mechanism, such as charge, or dipole moments of crystal atom (see rigorous treatment). Physically, the above phenomenological coupling terms couple significantly only those phonons for which $\omega_{0} \pm \infty_{0}$ the cavity mode frequency.

Eq. (1.B.91) is hermitian, but a term of the form

$$
\begin{equation*}
g_{q} a_{q}^{\dagger} A^{\dagger}+g_{q}^{*} A a_{q} \tag{1.B.92}
\end{equation*}
$$

is also hemitian and of the same order in the strength of coupling. It is not included since its effect would be small. When there is no coupling, $g_{q}=0$ and. from eq. (1.B.88)

$$
\begin{align*}
& \frac{d A(t)}{d t}=\frac{1}{i n}\left[A_{0} H_{0}\right]=-1 \omega_{0} A \\
& \frac{d a_{q}(t)}{d t}=\frac{1}{i n}\left[a_{q}, H_{0}\right]=-1 \omega_{q} a_{q} \tag{1.8.93}
\end{align*}
$$

hence

$$
A(t)=A e^{-1 \omega_{0} t}
$$

and

$$
\begin{equation*}
a_{q}(t)=a_{Q} e^{-\omega_{q} t} \tag{1.B.94}
\end{equation*}
$$

Since $g_{q} \ll \omega_{q}^{1} \omega_{0}$, we expect that when the coupling is turned on A and a_{Q} on the RHS of (1.B.94) will be only slowiy varying functions of time. i.e. little altered by the small coupling terms. Thus,

$$
\begin{aligned}
a_{Q}^{\dagger}(t) A^{\dagger}(t) & =e^{i\left(\omega_{0}^{+\omega_{Q}}\right) t} \\
& =e^{2 i \omega_{Q} t} \\
a_{Q}^{+}(t) A(t) & =e^{1\left(\omega_{Q}-\omega_{0}\right) t} \\
& =e^{0} \\
& =1
\end{aligned}
$$

I.E. terms in (1.B.91) are approximately d.c. whilst those in (1.B.92) are rapidly varying and according to von Foerster $[43]$ only contribute to physical processes as higher order terms and can therefor be neglected. In fact the interaction will be in effect for many cycles of ω_{Q} so that
terms in eq. (1.8.92) will almost average to zero compared with those of (1.B.91) and so the former are neglected in order to simplify the equations. This is known as the rotating-wave approximation, the importance of which will be discussed in Chapter VIII, Section 3. When the coupling becomes stronger, i.e. when g_{q} is large, ${ }^{1}$ neglecting these extra terms would not be justified.

We assume that the interaction starts at $t=0$ and that the Hamiltonian for a single cavity mode coupled to many oscillators is approximately given by

$$
\begin{align*}
H & =H_{0}+V_{A L} \\
& =\hbar \omega_{0} A^{\dagger} A+\hbar \sum_{q} \omega_{q} a_{q}^{\dagger} a_{q}+\hbar \sum_{q}\left(\varepsilon_{q}^{A a_{Q}^{+}}+\varepsilon_{q}^{\alpha} a_{q}^{\dagger} A\right) \tag{1.8.95}
\end{align*}
$$

Talile 1.B. 2

Notation of main references:				
	Louisell [35]	Lehmberg [1]. [2]	Mollow [7], [9]	Here
Atom	Single cavity mode (photon) Density operator ρ_{f}	Atomic system, S. Density, operator ρ	Atom Density operator, ρ_{a}	$\begin{aligned} & \text { A, later S } \\ & \text { Density } \\ & \text { operator } \boldsymbol{\rho}^{(s)} \end{aligned}$
Loss Mechanism	Loss oscillators (photons). Density operator ρ_{1}	Damping reservoir, R. Density (R) operator p	Eath Density operator $10\rangle_{\mathrm{BB}}<01$	L, later R Density (R) operator p

1. He shall see that $g_{q}=\frac{2 \pi{ }_{q}}{\overline{5}^{V}}{ }^{1 / 2}\left(\hat{e}_{q} \cdot p\right)$ eq. (1.B.99), so that g_{q} would be large, if $p, \omega_{q} 172$ and $\hat{e}_{q} \cdot \hat{p}$ are large and $v^{1 / 2}$ is small. although the latter will not occur since we shall be considering free-space where $v+\infty$.

Rigorous treatment
According to Lehnberg $[2], V_{A L}$, the Hamiltonian for the coupling between the e.m. field and the lattice vibrations, can be written, in the dipole approximation (see Chapter VIII, Section 2 for a discussion on this), as

$$
\begin{align*}
V_{A L} & =-\underline{E}(\underline{r}, t) \cdot \underline{p}\left(A+A^{t}\right) \\
& =-\underline{E}(\underline{r}, t) \cdot \underline{d}(t) \quad \text { in Mollow's notation }[9] \tag{1.B.96}
\end{align*}
$$

where $\underline{d}(t)=\underline{P}\left(A(t)+A^{\dagger}(t)\right)$ is the dipole noment operator for the atom and $p=\left\langle j \underline{l}{ }^{2} i>. \quad E(\underline{r}, t)\right.$ is given by (l.B.58), viz.

$$
\begin{equation*}
\underline{E}(\underline{r}, t)=\Sigma \sqrt{\ell, \sigma} \sqrt{\frac{2 \pi \Gamma \omega_{\ell}}{V}} \hat{e}_{\ell \sigma}\left\{a_{\ell \sigma} e^{i k_{\ell}} \cdot \underline{r}+a_{\ell \sigma}^{\dagger} e^{\left.-i k_{\ell} \cdot \underline{r}^{\prime}\right\}}\right. \tag{1.B.97}
\end{equation*}
$$

for transverse plane wave modes.
Substituting we obtain
$\left.\begin{array}{l}\text { where } g_{\ell \sigma}=\sqrt{\frac{2 \pi \omega}{\hbar V}} \hat{e}_{\ell \sigma} \cdot \mathrm{P} \text { and therefore } g_{\ell \sigma} \text { is real for } \mathrm{P} \text { real, since } \\ \hat{e}_{\ell \sigma} \text { has aiready been assumed real. }\end{array}\right\}$ (1.8.99)
For the atom at the origin of co-ordinates in the dipole and R.W. approximations

$$
\begin{equation*}
v_{A L}=-\Sigma \sum_{\ell, \sigma} g_{\ell \sigma}\left(A_{l \sigma}^{\dagger}+a_{l \sigma}^{\dagger} A\right) \tag{1.B.100}
\end{equation*}
$$

which, but for the negative sign, which could be absorbed in the definition
of $\varepsilon_{\ell \sigma}$ by the introduction of a phase factor $e^{i \pi}$, agrees with (1.B.95). Fe shall see, in Chapter II, that phase factors in the Haniltonian have no effect.

In Appendix I we shall show what happens when the Hamiltonian is used with

$$
\begin{equation*}
v_{A L}=-\sum_{\ell, \sigma} F_{\ell \sigma}\left(S a_{\ell \sigma} e^{i k_{\ell} \cdot \underline{r}}+e^{-i \underline{k}} \cdot \underline{r} a_{\ell \sigma}^{\dagger} s\right) \tag{1.B.101}
\end{equation*}
$$

where $S=A+A^{\dagger}$.
It is shown there that this more rigorous treatment only results in negligible high frequency terms, and frequency shift modifications, which we can neglect, as they are not our main concern.

Hence the complete Hamiltonian for a 2 -level atom, considering radiation damping, in the dipole approximation, is

$$
H=\hbar \omega_{0} A^{\dagger} A+\frac{1}{8 \pi} \rho\left(|\underline{E}|^{2}+|\underline{B}|^{2}\right) d^{3} r-\underline{E}(\underline{r}, t) \cdot \underline{p}\left(A+A^{\dagger}\right)(1 . B .102)
$$

where H, A, A^{\dagger}, E, B are all time-dependent in the Heisenberg picture. This becomes, on using eqs. (1.B.58) and (1.B.59), for operators normally ordered.

when the zero point energy is discarded,
where

$$
\begin{aligned}
& g_{\ell \sigma}=\sqrt{\frac{2 \pi \omega_{\ell}}{\kappa V}} \hat{e}_{\ell \sigma} \cdot \mathrm{D} \\
& S=A+A^{\dagger} \\
& V \text { is the normalisation volume } \\
& \hat{\mathbf{e}}_{\ell \sigma} \text { is the unit polarisation vector } \\
& \hat{\mathrm{k}}_{\ell} \text { is the propagation vector }
\end{aligned}
$$

```
\mp@subsup{\hat{e}}{2\sigma}{*}\cdot\mp@subsup{\hat{k}}{l}{}=0, for the Coulomb guage, i.e.E and E transverse
to direction of propagation }\mp@subsup{\hat{k}}{\ell}{}\mathrm{ .
```

$a_{\ell \sigma}$ and $a_{\ell \sigma}^{t}$ are the annihilation and creation operators of the $e^{\text {th }}$ mode of polarisation σ, and $\left[a_{\ell \sigma},{ }^{\dagger}{ }_{\ell \sigma}\right]=\delta_{\ell \sigma} \delta_{\ell \sigma^{\prime}}$, , since they are boson operators.

According to vol Foerster, [43] in the simplest case, the internal structure of the atom is irrelevant and its energy levels are sufficiently widely spaced that only 2 levels are important: a ground state and an excited state. If the atomic states are li>, the ground state, and 1 j, , the single excited state of energy $F \omega_{0}$ then transitions between these states can be described mathematically by the operators,

$$
\begin{aligned}
A & =1 i><j l=P_{i j}, \text { the lowering operator for the atom } \\
A^{\dagger} & =1 j><i l=P_{j i}, \text { the raising operator for the atom } \\
A^{+} A & =1 j><j l=P_{j j}
\end{aligned}
$$

where $P_{i j}$ and $P_{j i}$ are transition operators as defined in ref. [1].

$$
\begin{aligned}
A l j\rangle & =1 i\rangle\langle j l j\rangle=1 i\rangle \\
\left.A^{\dagger} l i\right\rangle & =1 j\rangle\langle i l i\rangle=1 j\rangle
\end{aligned}
$$

and this shows why A and A^{\dagger} are referred to as lowering and raising operators respectively.

Excited stare \square

Ground stake \qquad

Fig. 1.8 .4

Since the atomic states form a complete set, i.e.:

```
li><il+ lj><jl=I
```

one can expand an arbitrary operator in tems of basis operators

$$
\begin{aligned}
& 1 i><i 1=A A^{\dagger} \\
& 1 j><j 1=A^{\dagger} A
\end{aligned}
$$

We shall be considering the difole matrix element for the atom, $\mathrm{g}=\left\langle j \operatorname{lerli}\right.$, to be real. Since the matrix is hermitian $\mathrm{q}=\mathrm{P}_{\mathrm{ji}}=\mathrm{E}_{\mathrm{ij}}^{*}$ and so far p to be real this means that $E=p_{j i}^{*}$ also so that in all further equations the ordering of the indices of p will be considered unimportant.

Finally, in this section, we shall give the form of the Hamiltonian to be used in out calculations. It includes the R.H.A. and assumes the atom to be at the origin of comordinates, since, when its interaction with other atoms is negligible, its position relative to them has no significance (see Chapter VIII, Section 2, where this is shown to be true in the long wavelength limit). The Hamiltonian is

$$
\begin{equation*}
H=\hbar \omega_{0} A^{\dagger} A+\sum_{\ell, \sigma} \kappa_{\ell \omega_{\ell}} a_{\ell \sigma}^{\dagger} a_{\ell \sigma}^{-} \sum_{\ell, \sigma} \bar{R}_{\ell \sigma}\left(A_{l \sigma}^{\dagger} a_{\ell \sigma}+a_{\ell \sigma}^{\dagger} A\right) \tag{1.3.105}
\end{equation*}
$$

1.B.9. Density matrix formation

According to Nollow and Miller, [7] the coupling of the atom (S) to the bath (R) makes it necessary to describe the state of the atom by means of a density operator, since an initially pure state becomes mixed under the influence of the damping mechanism. (In Chapter VIII, Section 6 various papers for, and one against, considering the states becoming mixed are discussed.)

As pointed out by Lehmberg, $[1]$ in most treatments, three assumptions are made:
(i) R has a BROAD continuum of modes coupled more or less uniformly to S
(ii) The initial full density operator can be written as

$$
\begin{equation*}
\rho(0)=\rho^{(S)}(0)_{\rho}^{(R)}(0) \tag{1.B.106}
\end{equation*}
$$

where $\rho^{(S)}(0)$ describes the initial state of S, which is an arbitrary mixed state, and $\rho^{(R)}(0)$ is the thermal equilibrium distribution for R which is in a pure state.

Eq. (1.B.106) means that at $t=0$, before the loss oscillators are coupled to the cavity, system S and reservoir R are independent and so the density operator factories into a direct product.
(iii) R is only slightly affected by its interaction with S.

The last assumption need not be used in Lehmberg's method and is made only so that the approximation

$$
\begin{equation*}
\rho\left(t^{\prime}\right)=\rho^{(S)}\left(t^{\prime}\right)_{\rho}^{(R)}(0) \tag{1.B.107}
\end{equation*}
$$

namely the Markoff approximation, which will be discussed in Chapter VIII, Section 8 , can be used to replace the actual density operator $\rho\left(t^{\prime}\right)$ by the factorised expression $\rho^{(S)}\left(t^{\prime}\right)_{\rho}{ }^{(R)}(0)$ when it occurs in second order terms. According to Nollow and Miller, $[7]$ the criterion given for this approximation is that excitations induced in the bath R by its interaction with the atom S remain small throurhout the experiment and so, as far as its effect on the atom is concerned, the state of R at any time may be approximated by its initial state, i.e. $\rho^{(R)}\left(t^{\prime}\right)=\rho^{(R)}(0)$. This is true when the reservoir, R, is very large, i.e. in other words, if the radiation field is very strong.

If H and $\rho(t)$ represent the complete Hamiltonian and density operator respectively and if S is described by basis states $1 \mathrm{~m}>$ and eigenstates $\{m\}$ then the components of the reduced density operator can be written in the Heisenberg picture as:

$$
\left.\begin{array}{rl}
\rho_{\ell, m}^{(S)}(t) & =\left\langle\ell 1 \operatorname{Tr}_{R} \rho(t) I m\right\rangle \tag{1.8.108}\\
& =\operatorname{Tr}\left\{\rho(0) P_{m, \ell}(t)\right\} \\
& =\left\langle P_{m, \ell}(t)\right\rangle
\end{array}\right\}
$$

where $T r_{R}$ denotes trace over reservoir co-ordinates only, and Tr denotes trace over both reservoir and system co-ordinates.

Eq. (1.B.108) can be explained more fully as follows:

$$
\begin{aligned}
& \rho_{l, m}^{(S)}(t)=\left\langle l \operatorname{lir} R_{R} \rho(t) l m>, \text { since } \operatorname{Tr}_{R} \rho(t)=\rho^{(S)}(t) \text { and } \operatorname{Tr}_{S} \rho(t)=\rho^{(R)}(t)\right. \\
& \left.=\frac{\langle\ell 1 \Sigma}{R}\langle R 1 \rho(t) 1 R\rangle I m\right\rangle \quad \text { from eq. (1.B.6) } \\
& \text { R } \\
& =\sum_{R}\langle\ell, R I \rho(t) I R, m\rangle \\
& =\Sigma\langle\ell l S\rangle\langle S, R 1 p(t) I R, m\rangle \text {, since the eigenstates of } S \text { form } a \\
& S, R \\
& =\underset{S, R}{\Sigma}\langle S, R 1 \rho(t) I R, m><\ell I S\rangle \\
& =\underset{S, R}{E}\langle S, R 1 \rho(t) l m\rangle\left\langle\ell 1 R_{0} S\right\rangle \\
& =\underset{S, R}{\Sigma}\left\langle S_{s} R 1 \rho(t) P_{m \ell}(0) 1 R_{0} S\right\rangle \\
& =T r_{S, R}\left\{\rho(t) P_{m, \ell}(0)\right\} \\
& =\operatorname{Tr}_{S_{\imath} R}\left\{U_{p}(0) U^{\dagger} P_{m, l}(0)\right\}, \quad \begin{array}{l}
\text { since } \rho(t)=U_{p}(0) U^{\dagger} \text { as will be } \\
\text { shown in eq. }(1, B .125)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Tr}_{S_{2} R}\left\{\rho(0) U^{\dagger} P_{m \ell}(0) U\right\}, \quad \text { since } \operatorname{Tr}(A B)=\operatorname{Tr}(B A) \\
& \begin{array}{lll}
=\operatorname{Tr}_{S_{0} R}\left\{\rho(0) P_{m, l}(t)\right\}, & \text { from eq. (1.B.96), i.e. } \\
& P_{m, l}(t)_{H}=U^{\dagger} p_{m \ell}(0)_{S} U
\end{array} \\
& =\left\langle P_{m, \ell}(t)\right\rangle \quad \text { by definition }
\end{aligned}
$$

$P_{m, l}(t)$ is known as a generalised projection operator or transition operator and is defined in the Heisenberg picture as

$$
\begin{equation*}
P_{m, l}(t)=1 m, t><l, t l=e^{i / \hbar^{H t}} 1 m><l l e^{-i / \hbar^{H t}} \tag{1.B.109a}
\end{equation*}
$$

and in Chapter II is put equal to $A_{m}^{\dagger}(t) A_{2}(t)$, where the atomic operators satisfy $\left[A_{\ell}, A_{m}\right]_{+}=0,\left[A_{\ell}, A_{m}^{+}\right]=\delta_{\ell, m}$.

Also

$$
\begin{equation*}
P_{m, \ell}(0)=1 m><\ell 1 \tag{1.8.109b}
\end{equation*}
$$

where it is assumed that $1 m\rangle=1 m, t=0\rangle$ and $\langle l=\langle l, t=01$.
In the formalism presented in Lehmberg's lst. paper $[1]$ the dynamical properties of the damped system are calculated from $P_{m, l}(t)$ rather than $\rho(t)$. Damped equations of motion can be derived for all $P_{m_{2} q}(t)$ if R consists of a BROAD-land distribution of harmonic oscillators even if S is a multi-level system. (He shall consider multi-level systems in later chapters.) The initial states of R need not be specified and the treatment need not be restricted to $2 n d$. order in the $S-R$ coupling, i.e. to 2nd. order in g_{q}.

If R is a collection of harmonic oscillators, then one can derive damped equations of motion for the amplitude operators of S, without explicitly using assumptions (ii) or (iii). Only unperturbed reservoir
co-ordinates appear in these equations, the perturbation due to S being entirely absorbed in the damping constant and frequency shift. Similar damped equations are derived in Chapters V onwards for the reduced density-matrix elements of multi-level atoms which provide a convenient and nearly exact starting point for studying their interaction with known radiation fields.

Although the initial state of the damping radiation need not be specified, when it is, the transition operator equations lead immediately to those for the reduced density matrix as we shall show using assumption (ii) also.
(1) We find equations of motion for $P_{m, l}(t)$.
(2) we derive from them equations of motion for

$$
X_{m, \ell}(t)=\left\langle i l P_{R, \ell}(t) l i\right\rangle_{R}
$$

(3) and, from these, equations of motion for

$$
\begin{aligned}
& \rho_{\ell, m}^{(S)}(t)=\sum_{S}\left\langle S 1 X_{m, \ell}(t) \rho{ }^{(S)}(0) I S\right\rangle \text { where } \text { Iis }_{R} \text { is the initial } \\
& \text { state of } R \text {. }
\end{aligned}
$$

Now

$$
\begin{align*}
& \left.\rho_{\ell, m}^{(S)}(t)=\operatorname{Tr}_{R_{g} S}\left\{\rho(0) P_{m, l}(t)\right\}=\left\langle P_{\ell, m}(t)\right\rangle \quad \begin{array}{ll}
\text { from } \\
\text { eq. } & (1 . B .108)
\end{array}\right] \\
& =\operatorname{Tr}_{R_{g} S}\left\{P_{m_{g} \ell}(t) \rho(0)\right\} \text { since } \operatorname{Tr}(A B)=\operatorname{Tr}(B A) \\
& \text { see (1.B.7) } \\
& =\sum_{R, S}\left\langle R_{p} \operatorname{SIP}_{m_{p} \ell}(t) \rho(0) 1 S, R\right\rangle \\
& \left.=\sum_{R, S}^{\Sigma<R_{p} S 1 P_{m_{p}}(t) \rho}{ }^{(S)}(0)_{\rho}^{(R)}(0) 3 S, R\right\rangle \quad \begin{array}{l}
\text { from } \\
(1 . B .106)
\end{array} \tag{1.B.110}\\
& =\sum_{R, S}\left\langle R_{0} S 1 P_{m_{0} l}(t) \rho(S)(0) 1 i><i 1 S_{0} R\right\rangle \\
& \text { since } p^{(R)}(0)=\text { li>iil, i.e. reservoir is in a } \\
& \text { pure state at } t=\beta_{0} \text {. }
\end{align*}
$$

$$
\begin{aligned}
& \left.=\underset{S_{R}}{\sum_{R}\left\langle 1<S 1 P_{m_{g} l}(t) p\right.}{ }_{R}^{(S)}(0) 1 i>1 S\right\rangle \\
& \text { since } E 1 R><R I=1 \text {, i.e. reservoir basis states } \\
& \text { form a }{ }^{R} \text { complete set. } \\
& p_{\ell, m}^{(S)}(t)=\underset{R}{\Sigma<S 1<11 P_{m \ell}(t) 11>p_{0}(S)}(0) 1 S> \\
& \left.=\sum_{S}^{\Sigma<S l X_{m \ell}(t) \rho}{ }^{(S)}(0) 1 S\right\rangle
\end{aligned}
$$

From this we conclude that we never need all the information contained in $\rho(t)$ (see p. 184, ref. 34) but only need the reduced density operator defined by

$$
\rho^{(S)}(t)=\operatorname{Tr}_{R} \rho(t) .
$$

N.B.

$$
\begin{aligned}
& a_{q} \underset{R}{1 i>}=\sqrt{1} \text { ii-1> } \\
& \text { where } i=\text { no. of photons in reservoir } \\
& \text { mode at } t=0 \\
& \text { or if } \quad \underset{R}{1 i_{2}}=\underset{R}{10>} \quad \text { vacuum state } \\
& a_{Q} 10_{R}=0
\end{aligned}
$$

We shall be considering the initial state of R to be a vacuum state when we consider external fields classically. But when we consider driving fields in Chapters V onwards we shall consider them both classically in which case li> equals 10\rangle_{R}, and also quantum mechanically using Glauber's notation. Both methods will be seen to give the same result except that Glauber's approach is more consistent.

We might add that in the case of a HEAK field Mollow and Miller [7] say that one can assume the atom. remains in a pure state and add a phenomenological damping term [as in their eq. (3.13)] to the equation
for the tine derivatives of the amplitude of the excited state. They use 1st. order P.T. approximation and assume the density operator for the atom corresponds to a pure state, i.e.
where

$$
\rho^{(S)^{\prime}}(t)=1 t><t l \quad \text { for an initially unexcited atom }
$$

and
and

$$
\begin{align*}
& \left.1 t>S=1 i\rangle_{S}+a^{\prime}(t) l j\right\rangle_{S} \\
& a^{\prime}(t)=\left\langle j 1 \rho^{(S)^{\prime}}(t) 1 i\right\rangle \\
& =\operatorname{Tr}\left[\rho^{(S)^{\prime}}(t) A\right] \tag{1.B.111}\\
& \rho^{(S)^{\prime}}(t)^{M} A_{0} A_{\rho}(S)^{\prime}(t) 10><01
\end{align*}
$$

But in the general case they point out that the initially unexcited atom becomes MIXED as a result of coupling to its bath R.

We shall be considering in Chaptens v onwards the effects of fields which are not necessarily weak and so even were the atom initially unexcited (which it probably won't be anyway) P.T. cannot be used in this way.

From the above explanations some meaning of density operators has emerged but we shall explain their properties and importance a little further before proceeding to use them in the following chapters.

Basically density operators, first introduced by von Neumann. [44], are necessary, because, in both
[45]. classical and quantum mechanics, though for different reasons, a lack of knowledge of the system under study requires a statistical approach. In quantum mechanics this lack is due to the fundamental nature of the disturbance caused by the measure itself. There are 2 main situations:
(1) in which the state of the systm can be represented by a definite wave function or state vector $1 \psi>$ and hence the system is said to be in a pure state. I.E. we have as much knowledge about the system as is allowed quantum mechanically.
(2) the state of the system is not completely known and it is said to be in mixed state.

In case (1) each system in the ensemble, similar to the one under study, is the same, whereas in case (2), each system is in a different possible state weighted by a probability, P_{ψ}, according to some partial knowledge of the system.

For case (1) the ensemble average of an observable A, which is the same as the value of A. for the system, is

$$
\begin{equation*}
\langle A\rangle=\frac{\langle\psi I A I \psi\rangle}{\langle\psi I \psi\rangle}=\langle\psi I A I \psi\rangle \quad \text { for }\langle\psi I \psi\rangle=1 \tag{1.B.112}
\end{equation*}
$$

whereas for case (2) if there is a probability P_{ψ} that the system is in state $1 \psi>$ then

$$
\left.\begin{array}{rl}
\langle A\rangle & =\sum_{\psi}^{\sum P_{\psi}\langle A\rangle} \tag{1.E.113a}\\
& =\sum_{\psi} P_{\phi}\langle\phi I A I \psi\rangle
\end{array}\right\}
$$

where $\langle\psi I \psi\rangle=1$
is assumed.
N.B. different states $2 \psi\rangle$ are not necessarily orthogonal, i.e. 〈$\left.\psi^{\prime} \psi^{\prime}\right\rangle$ is not known.
Σ is over all possible states $1 \psi>$ of the system. ψ

Also $\quad p_{\psi} \geq 0$ and $\sum_{\psi} p_{\psi}=1$ (properties of probability) (1.B.113c)

The density operator $\rho_{\text {, }}^{\rho}$, introduced in order to aid in calculating ensenble averages. It is defined by

$$
\begin{equation*}
\rho=\sum_{\psi}^{\left.\sum 1 \psi\right\rangle} p_{\psi}\langle\psi 1 \tag{1.8.114}
\end{equation*}
$$

for mixed states, and describes an ensemble of quantum systems.
Since ρ is an operator it can have a matrix representation, e.E. for an ensemble of harmonic oscillators with basis vectors represented by energy eigenvectors $\{1 n>\}$ we can write eq. (1.8.114) in this representation, as the density ratrix

$$
\begin{equation*}
\left\langle n l \rho l n^{\prime}\right\rangle=\sum_{\psi}\langle n l \psi\rangle p_{\psi}\left\langle\psi l n^{\prime}\right\rangle \tag{1.3.115}
\end{equation*}
$$

The density operator has various properties which are proved in ref. 35, pp. 222 onwards.
(i) $\quad \operatorname{Tr} p=1$
(ii) $\quad \operatorname{Tr} \| \psi\langle Q I=\langle Q I \psi\rangle$
N.B. A trace may be taken in any representation, viz.
$\operatorname{Tr} 1 \psi><Q 1=\sum_{n}\langle n I \psi><Q 1 n>$ as long as the set $\{\ln >\}$ is complete.
(iii) $\quad\langle A\rangle=\operatorname{Tr} A$

Also $\langle f(A)\rangle=\operatorname{Trof}(A)$
(iv) $\rho=\rho^{\dagger} \quad$ i.e. ρ is hemmitian
(v) ρ is positive definite
since if $l^{\prime}>$ is any bet

$$
\left.\begin{array}{rl}
\langle x I \rho 1 x\rangle & =\sum_{\psi} p_{\psi}\langle x I \psi\rangle\langle\psi I x\rangle \tag{1.2.120}\\
& =\sum_{\psi} p_{\psi}|\langle\psi I x\rangle|^{2} \\
& \geq 0 \text { since } p_{\psi} \geq 0
\end{array}\right\}
$$

Therefore diagonal matrix elements of ρ are always real and positive. Since Trp $=1$
we also have $\sum_{n}\langle n 1 p l n\rangle=1$ i.e. $\sum_{n}=1$
so each diagonal element of p in any representation peceessisa real value between 0 and 1. i.e. $0 \leq p_{n n} \leq 1$.

We can now define a density operator as a positive definite
hermitian operator of trace 1 which can represent an ensemble. It may be written in form (8.9 .9).
(vi) Tro is invariant under a unitary transform.

If S is the unitary transfomation matrix

$$
s^{\dagger}=s^{-1}
$$

and if

$$
\text { Sos }{ }^{\dagger}=\rho^{\prime}
$$

then ρ ' is diagonal.
but

$$
\operatorname{TrSp} S^{4}=\operatorname{Tr} \rho^{1}
$$

$\operatorname{TrSpS}{ }^{\dagger}=\operatorname{Trp} S^{\dagger} \mathrm{S}$ since trace is invariant under cyclic permutation (see eq. (1.B.7)
$=\operatorname{Trp} \quad$ since $S^{\dagger} s=s^{-1} S=I$ (see eq. (1.B.12)
$\bullet \cdot$
$\operatorname{Trp}=1=$ Trpo $^{\prime}$
(1.B.121)
(vii) In diagonal representation the diagonal matrix elements of p^{\prime} are $p_{n n}^{\prime}$ they are real and satisfy

$$
\sum_{n} \rho_{n n}^{\prime}=1 \text { and } 0 \leq \rho_{n n}^{\prime} \leq 1
$$

thus if p^{\prime} is hermitian, positive definite and poseesses a trace 1 , it can be written in its diagonal representation (where in> z Slp>) as

$$
\begin{equation*}
\rho^{\prime \prime}=\sum_{n} p_{n n^{\prime}}^{\prime} I n><n l \tag{1.B.122}
\end{equation*}
$$

where $p_{n n}^{\prime}$ axe the non-degenerate eigenvalues.
The date vectors $\{1 n>\}$ form a complete orthogonal set
since $\quad \operatorname{Trp}{ }^{\prime}=1$
and $\quad \begin{aligned} & \mathrm{E}\end{aligned} \rho_{\mathrm{nn}}^{\prime}=1$
and also since eigenvalues of hermitian operators are real and pos itive

$$
0 \leq \rho_{n n}^{\prime} \leq 1
$$

$P_{n n}^{\prime}$ therefore possesses the properties of statistical weights and therefore ρ^{\prime} is a density operator of a mixture of states ins each with weight $\rho_{n n}^{\prime}=P^{\prime}$.
(viii) $\quad \operatorname{Tr} p^{2} \leq 1$
since

$$
\operatorname{Trp}^{2}=\operatorname{Trp}^{12}=\sum_{n} p_{n n}^{\prime 2} \leq\left(\sum_{n} \rho_{n n}^{\prime}\right)^{2}=\left(\operatorname{Trp}^{\prime}\right)^{2}=1
$$

where

$$
\sum_{n} p_{n n}^{\prime 2} \leq\left(\sum_{n} n_{n}^{\prime}\right)^{2}
$$

is a general mathematical inequality.
It can be shown by means of procedure similar to that used in deriving (1.B.17) that the equation of motion for $\rho(t)$ is

$$
\begin{equation*}
\frac{d \rho}{d t}=\frac{1}{I n}[H, p(t)] \tag{1.B.124}
\end{equation*}
$$

N.B. p is a function of time in the Schrödinger picture although most other variables are not in this picture.

In deriving this, we use the fact that $\rho(t)$. for atatistical mixture,
undergoes a unitary transformation as time progresses, i.e.

$$
p_{S}(t)=\sum_{\phi} p_{\psi} 1 \psi_{S}(t)><\phi_{S}(t) 1=\sum_{\psi} p_{\psi} U X \psi_{H}\left(t_{0}\right)><\phi_{H}\left(t_{0}\right) 1 U^{t}
$$

from (1.B.9)

$$
\begin{equation*}
P_{S}(t)=U\left(t, t_{0}\right) D_{H}\left(t_{0}\right) U^{\dagger}\left(t, t_{0}\right) \tag{1.B.125}
\end{equation*}
$$

where $p\left(t_{0}\right)$ is the initial density operator

$$
\begin{equation*}
\rho_{H}\left(t_{0}\right)=\sum p_{\psi} 1 \phi\left(t_{0}\right)><\psi\left(t_{0}\right) 1 \tag{1.B.126}
\end{equation*}
$$

In the Schrödinger picture the expectation value of $A_{S}\left(t_{0}\right)$ at time t_{0} is

$$
\begin{equation*}
\left.\left\langle A_{S}\left(t_{0}\right)\right\rangle \sum_{\phi} \sum_{\phi}<\phi_{S}(t) L A_{S}\left(t_{0}\right) L \phi_{S}(t)\right\rangle \equiv \operatorname{Tr}_{S}(t) A_{S}\left(t_{0}\right) \tag{1.B.127a}
\end{equation*}
$$

On transforming to the Heisenberg picture by means of (1.B.125)

$$
\begin{align*}
\langle A\rangle & =\operatorname{Tr}\left(U_{\rho_{H}}\left(t_{0}\right) U^{\dagger} A_{S}\left(t_{0}\right)\right) \\
& =\operatorname{Tr}\left(\rho_{H}\left(t_{0}\right) A_{H}(t)\right) \tag{1.B.127b}
\end{align*}
$$

since $U^{\dagger} A_{S}\left(t_{0}\right) U=A_{H}(t)$.

Thus we again see that, whether we evaluate ensemble averages in either picture, the result is the same. In our applications the Heisenberg picture is easier.

In the case of the system being in a pure state $1 \phi>, p_{\phi}=1$ and $p_{\phi}^{\prime}=0$ for all $\phi^{\prime} \neq \psi$. Every syster of the ensemble is in state $1 \phi>$ and therefore

$$
\begin{equation*}
\left.\rho=\rho_{\phi}=1 \psi\right\rangle\langle\psi 1 \tag{1.B.128}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \rho_{\psi}^{2}=\rho_{\psi} \\
& T r \rho_{\psi}=1 \tag{1.B.129}\\
& T r \rho_{\psi}^{2}=\operatorname{Tr} \rho_{\psi}=1
\end{align*}
$$

N．B．For a mixed state $\operatorname{Trp}^{2} \leq 1$ ．

So the necessary and sufficient condition that a density operator represents a pure state is that

$$
\operatorname{Tr}^{2}=1
$$

assuming that it can be proved that p is hermitian，positive definite and $\operatorname{Trp}=1$ also．

When the ensemble represents a pure state，then

$$
\langle A\rangle=\operatorname{TrpA}
$$

$\left.=\operatorname{Tr} \sum_{\psi^{\prime}} P^{\prime} \boldsymbol{p}^{\prime} \phi^{\prime}\right\rangle\left\langle\phi^{\prime} 1 A\right.$

$=\underset{\phi^{\prime}}{\sum}\left\langle\phi^{\prime} \operatorname{LAL申^{\prime }\rangle D_{\phi }^{\prime }}\right.$
：＜申LAL》＞
since $\sum_{\psi^{\prime}} P_{\psi^{\prime}}={ }^{\prime}{ }_{\phi \psi^{\prime}}$
as given also in（1．B．112），i．e．ensemble averages，for systems in a definite state $l \psi\rangle_{\text {，}}$ are ordinary quantum ensemble averages．

Therefore density operators are useful in calculating ensemble
averages whether one has complete (see 0.B.130a)) or incomplete knowledge (see (1.B.127)) of the state of the system.

GUTEXII

DTEME EMMETMTM ${ }^{3}$

A M Percren omationsor retion

We chall consider a 2 -level quantum eystem s to be cinultaneously coupled by a quartised radiation interaction n, describing the decay, and in auition, by a classical time inderendent extemal perturtation. F. The bath of oscillators it are ammed to be closely araced in frequancy ouch that their frequenciea overiap the atcele resonance frequency,

For comparison of notation with that of later Chapters V, VI and VII, wiere nethod (i), besed on Mollowe classical treatment of the oxtermal field is uced, neo Appacix. II.

We ahall we the followire Hamilonian for the ontire gyster of atom, bath end external perturbation:-

$$
\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{I}
$$

Whore $H_{0}=H_{n}+H_{i R} \quad$ is the wnerturtod Enditorinu
and $\quad H_{I}=V_{e n}+V_{c \pi} \quad$ is the enteraction inniltontan

$$
\begin{aligned}
& H_{n}=F \omega_{0} A^{+} A \quad \text { is the lianitonimen for the atomic } \\
& \text { crutea }
\end{aligned}
$$

$H_{n}=\Pi_{l, \sigma} \omega_{l} a_{l \sigma}^{+} a_{l \sigma} \quad$ la the Insiltorian for the lath of $V_{c l}=\sigma_{A}^{+} \sum_{l, \sigma} g_{l, \sigma} a_{l \sigma} e^{i \theta_{l}}+\hbar \sum_{l, \sigma} a_{l \sigma}^{+} e^{-i \theta_{l}} A$

Is the Hamiltorien for the internction between the otoras and bath in resonat form
$g_{\ell \sigma}$ and λ^{\prime} are c-number coupling parameters. (It is shown elsewhere that they are indentifiable as $g_{\ell \sigma} \sqrt{\frac{2 \pi}{\omega_{\ell}}} \frac{e_{\ell \sigma}}{} \cdot$ p, see eq. (1899), and $\lambda^{\prime}=-\lambda \varepsilon_{O D} C^{i \phi}$ and $\lambda^{0^{*}}=-\lambda \varepsilon_{O D} e^{-i \psi}$, see eq. (II.8), when the perturbation is a time independent electric field, ${\underset{\sim}{D}}^{E_{D}}=2 \varepsilon_{O D} \varepsilon_{O D}$)
θ_{ℓ} and ψ denote arbitrary phases.
We now derive the Heisenberg equations of motion ofor $A(t)=P_{i j}(t)$, the number operator $Q(t)=A^{\dagger}(t) A(t)=P_{j j}(t)$ and $a_{i \sigma}(t)$, using eq. (2.A.1.) and the relations

$$
\begin{align*}
& {\left[A, A^{+}\right]_{+}=1} \tag{2.A.1a.}\\
& {\left[a_{\ell \sigma^{\prime}} a_{\ell}^{+} \sigma^{\prime} \sigma^{\prime}\right]-\delta_{\ell \sigma^{\prime}} \ell^{\prime} \sigma^{\prime}} \tag{2.A.1b.}\\
& \text { and }\left[A, A^{\dagger}\right]=1-2 Q \tag{2.A.1c.}\\
& {\left[A^{\dagger}, A^{\dagger} A\right]=-A^{\dagger}=\left[A^{\dagger}, Q\right]} \tag{2.A.1d.}\\
& {\left[\mathbf{A}, \mathbf{A}^{\dagger} \mathbf{A}\right]=\mathbf{A}=[\mathbf{A}, \mathbf{Q}]} \tag{2.A.1e.}
\end{align*}
$$

$$
\begin{aligned}
\dot{a}_{\ell \sigma} & =i / \hbar\left[H, a_{\ell \sigma}\right] \text { from }(1 . B .68 .) \text { since }\left[H_{*} a_{\ell \sigma}\right]=-\left[a_{\ell \sigma}, H\right] \\
& =-i \omega_{\ell} a_{\ell \sigma}-i g_{\ell \sigma} A e^{-i \theta_{\ell}}
\end{aligned}
$$

NB. H is time dependent in the Heisenberg picture.
with formal solution ${ }^{46}$.

$$
a_{\ell \sigma}(t)=a_{l \sigma}(0) e^{-i \omega_{l} t}-i g_{\ell \sigma} \int_{0}^{t} d t^{\prime} e^{-i\left(\omega_{l}\left(t-t^{\prime}\right)+\theta_{\ell}\right)}
$$

and hermitian conjugate

$$
\begin{gather*}
a_{\ell \sigma}^{t}(t)=a_{\ell \sigma}(0) e^{i \omega_{2} t}+i g_{\ell \sigma} \int_{0}^{t} d t^{\prime \prime} e^{i\left(\omega_{\ell}\left(t-t^{\prime}\right)+\theta_{\ell}\right)} \\
\times A\left(t^{\prime \prime}\right) \tag{2.A.3.}
\end{gather*}
$$

$A(t)=i / \sqrt{n} H, A(t) \quad f r o m(1 . B .82)$ where H is now total Hamiltonian

$$
\begin{equation*}
=i \omega_{0} A(t)+i 2\left(Q(t)-\frac{1}{2} \sum_{l \sigma}^{g_{\ell \sigma} a_{\ell \sigma}(t) e^{i \theta_{\ell}}+i 2^{\lambda} e^{-i \phi}(Q(t)-1)}\right. \tag{2.A.4.}
\end{equation*}
$$

$$
\begin{align*}
\dot{Q}(t)= & i / \bar{h}[H, Q(t)] \\
= & -i A(t) e_{\rho, \sigma}^{\Sigma} g_{\ell \sigma} a_{\ell \sigma}(t) e^{i \theta_{\ell}}+i \sum_{\ell, \sigma} g_{\ell \sigma} e_{\sigma}^{\dagger}(t) e^{-i \theta_{\ell}(t)} \\
& -i A^{\dagger}(t) \lambda^{\prime} e^{-i \psi}+i \lambda^{\prime} e^{i \phi} A(t) \tag{2.A.5.}
\end{align*}
$$

Consider

Now put, for the quantised part of the field:-

$$
\begin{aligned}
& \underline{E}_{(t)}^{(0)}(0, t)=\sum_{l, \sigma} \sqrt{\frac{2 \pi \hbar \omega_{l}}{V}} \varepsilon_{\ell \sigma}{ }_{l}{ }_{l \sigma}(0) e^{-i \omega_{\ell} t} \\
& \underline{E}_{(-)}^{(0)}(0, t)=\sum_{l, \sigma}^{\sum_{0} \sqrt{\frac{2 \pi \hbar \omega_{l}}{V}} \varepsilon_{l \sigma}{ }^{2}{ }_{l \sigma}{ }^{\dagger}(0) e^{i \omega_{l} t}}
\end{aligned}
$$

i.e. fields are in the Schrodinger representation since operators

$$
\begin{equation*}
a_{\ell \sigma} \text { and } a_{\ell \sigma} \text { are time independent } \tag{2.A.7.}
\end{equation*}
$$

N.B. $\underline{E}_{+}^{(0)^{\dagger}}(0, t)={\underset{E}{(-)}}_{(0)}^{(0, t)}$

$$
\underline{E}^{(0)}(0, t)=\underline{E}_{(t)}^{(0)}(0, t)+\underline{E}_{(-)}^{(0)}(0, t)
$$

30 that we can rewrite (2.A.6.) as

If we now consider the interaction to take place in free space $V \rightarrow \infty$ and therefore, according to (1.B.73),

$$
\frac{1}{v} \sum()->\frac{1}{(2 \pi c)^{3}} \int_{0}^{\infty} \omega 2 d \omega \int_{0}^{4 \pi} d \Omega_{R}()
$$

$$
\begin{aligned}
& A\left(t^{\prime}\right) \\
& -\ell_{l, \sigma}^{\sum} \frac{1}{\hbar} \underline{E}_{+}^{(0)}(t) \cdot \underline{p}-i_{\ell, \sigma} \sum_{\ell \sigma} \int_{0}^{2} d t^{\prime} e^{-i\left(\omega_{\ell}\left(t-t^{\prime}\right)+\theta_{\ell}\right)} A^{\left(t^{\prime}\right)} \\
& \text { (2.A.E.) }
\end{aligned}
$$

Naturally

$$
\sum_{\sigma}=\sum_{\sigma=1}^{\sum_{1}} \text { always. }
$$

We have dropped the subscripts 2 on ω and θ since ω is now the variable of integration. Thus (2.A.S.) becomes

$$
\begin{align*}
& x \int_{0}^{t} d t^{\prime} e^{-i\left(\omega\left(t-t^{\prime}\right)+\theta\right) A\left(t^{\prime}\right)} \\
& -i \frac{p^{2}}{4 \pi^{2} c^{3} \pi} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{4 \pi} d \Omega_{\hat{k}}^{2} \sum_{\sigma=1}^{2}\left(e_{\left.\mu \sigma^{*}\right)^{2}}\right. \\
& x \int_{0}^{t} d t^{\prime} e^{-i\left(\omega\left(t-t^{\prime}\right)+\theta\right)} A\left(t^{\prime}\right) \tag{2.A.9.}
\end{align*}
$$

To find $\sum_{\sigma=1}^{2}\left(e_{l \sigma} \cdot \underline{p}\right)^{2}=\left(\hat{e}_{l 1} \cdot \underline{p}\right)^{2}+\left(\hat{e}_{l 2} \cdot \underline{p}\right)^{2}$
we choose rectangular coordinate axes \hat{x}, \hat{y} and \hat{k}_{i}, where \hat{k}_{i} is the direction of propogation of the photon, and \hat{x} and \hat{y} are any arbitrary directions perpendicular to each other and in a plane perpendicular to $\hat{\mathbf{k}}_{\boldsymbol{\ell}}$. Since $\hat{e}_{\ell \sigma} \cdot \hat{k}_{2}=0$ in the Coulomb gauge, $\hat{e}_{2 \sigma}$ is in the (x, y) plane, p is not in any fixed direction.

Using spherical polar coordinates ${ }^{39}$ as in the above diagram, we can write

$$
\begin{aligned}
\varepsilon_{\ell \sigma} & =\hat{\cos \psi_{e}+\rho \sin \psi_{e}} \\
\rho & =\varepsilon \cos \psi_{p} \sin \theta+y \sin \psi_{p} \sin \theta+\hat{k}_{e} \cos \theta \\
\therefore \quad{ }_{\ell \rho} \cdot \beta & =\cos \psi_{e} \cos \psi_{p} \sin \theta+\sin \psi_{e} \sin \psi_{p} \sin \theta \\
& =\cos \left(\psi_{e}-\psi_{p}\right) \sin \theta \\
\left(\varepsilon_{\ell \sigma} \cdot \beta\right)^{2} & =\cos ^{2}\left(\psi_{e}-\psi_{P}\right) \sin ^{2} \theta
\end{aligned}
$$

Now for each mode ℓ these are 2 polarisations, hence there are 2 polarisation vectors ${ }_{\ell 1}$ and $\boldsymbol{\varepsilon}_{\ell 2}$ and since these are both in the (x, y) plane and perpendicular to each other (see eq (1.B.4.3.) $\left.\varepsilon_{\ell 1} \cdot \varepsilon_{\ell 2}=0\right)$ they can be used as axes to replace $\&$ and $\%$.

Then

$$
\begin{align*}
& \beta=\varepsilon_{\ell 1} \cos \alpha \sin \theta+\varepsilon_{\ell 2} \sin \alpha \sin \theta+\hat{k} \cos \theta \\
& \therefore \quad \sum_{\sigma=1}^{2}\left(\varepsilon_{\ell \sigma} \cdot \beta\right)^{2}=\left(\varepsilon_{\ell 1} \cdot \beta\right)^{2}+\left(\varepsilon_{\ell 2} \cdot \beta\right)^{2} \\
&=\cos ^{2} \alpha \sin ^{2} \theta+\sin ^{2} \alpha \sin ^{2} \theta \\
&=\sin ^{2} \theta \\
&=1-\cos ^{2} \theta \\
&=1-(\hat{p} \hat{k})^{2} \tag{2.A.10.}
\end{align*}
$$

Substituting (2.A.10.) in (2.A.9.) we obtain

$$
\begin{align*}
& \ell_{\ell, \sigma}{ }^{g_{\ell \sigma}}{ }^{a}{ }_{\ell \sigma}(t)-\frac{1}{\pi} \ell_{, \sigma}^{\sum}{ }_{(}^{E}(t)(0)(t) \cdot p=\frac{-1}{4 \pi^{2} c^{3}{ }^{2}} \int_{0}^{\infty} d \omega \omega_{0}^{3} \int_{0}^{4 \pi} d \Omega_{\hat{k}}\left(1-(\hat{p, k})^{2}\right) \int_{0}^{t}- \\
& x d t^{\prime} e^{-i\left(\omega\left(t-t^{\prime}\right)+\theta\right)} A\left(t^{\prime}\right) \tag{2.A.11}\\
& \text { Now } \int_{0}^{4 \pi} d \Omega_{\hat{k}}=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi \tag{2.A.12.}\\
& \text { Hence } \int_{0}^{4 \pi} d \Omega_{\hat{k}}\left(1-(\hat{k} \cdot \hat{\varphi})^{2}\right)=\int_{0}^{\pi} \sin \theta\left(1-\cos ^{2} \theta\right) d \theta \theta_{0}^{2 \pi} d \psi \\
& =2 \pi \int_{-1}^{1}\left(1-x^{2}\right) d x \text { where } x=\cos \theta \\
& =8 \pi / 3 \tag{2.A.13.}
\end{align*}
$$

Thus eq.(2.A.11.) becomes
$\ell_{\rho, \sigma}^{\sum}{ }_{\ell \sigma}{ }_{\ell \sigma}(t)-\frac{1}{t r} \ell_{\rho, \sigma}^{\sum} \underline{E}_{(t)}^{(0)}(\underline{r}, t) \cdot p=-\frac{i 2 p^{2}}{3 \pi c^{3} \bar{h}} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{t} d t^{\prime} e^{-i\left(\omega\left(t-t^{\prime}\right)+\theta\right)} A\left(t^{\prime}\right)$

Now according to Lehmberg ${ }^{1}$, although the ω integral extends to a the dipole approximation begins to break down as $\omega+\omega_{B}=\mathrm{c} / \mathrm{aB}-10^{10} / 10^{-8}-10^{18}$ per sec. where a_{B} is the Bohr radius, i.e. the radius of the ground state of the hydrogen atom, and so ω_{B} is therefore related to the hydrogen atom and is $\gg \varepsilon_{j z}$ for any other atom with lavels $1 y>$ and $1 z>$ where $y>z$. In a more exact treatment, p should be replaced by some function $p(w)$ which decreases exponentially for $w>\omega_{B}$

$$
\begin{aligned}
& P(\omega)=P_{0} e^{-a \omega} \text { for } \omega>\omega \\
& P(\omega)=P_{0} \text { for } 0<\omega<\omega
\end{aligned}
$$

i.e. the integral effectively cuts off around ω o ω_{B}, i.e. we should have $\int_{0}^{\omega_{B}} d \omega$ and not $\int_{0}^{\infty} d \omega$. For a given aton the most important values of $\varepsilon^{\prime} \therefore$ 1ie within a region on the order of $\omega_{B}^{-1}\left(=10^{-18} \mathrm{sec}\right)$ around ti.e. $\left(t^{\prime}-r\right)_{\max }-\omega_{B}^{-1}$. Since $\omega_{B} \gg \omega_{0}$ (in fact for the $N a$ line $\lambda=10^{-5} \mathrm{~cm}$.
$\therefore \omega_{0}=10^{15} \mathrm{sec}^{-1}$
so that important values of t^{\prime} lie within a region $\omega_{B}^{-1} \ll \tau$ around t) we can replace

$$
\begin{equation*}
A\left(t^{\prime}\right) \text { by } A(t) e^{-i x_{0}\left(t^{\prime}-t\right)} \tag{2.A.15a.}
\end{equation*}
$$

and $A+\left(t^{\prime}\right)$ by $A t(t) e^{-i \omega_{0}\left(t^{\prime}-t\right)}$
(2.A.15b.)

In fact $A(t) e^{-i \omega_{0}\left(t^{\prime}-t\right)}$ has a maximum value $A(t) e^{-i \omega_{0} \omega_{B}^{-1}}$ but since ω_{0} / ω_{B} is very small ($10^{-18} \omega_{0}$ i.e. 10^{-3} for the Na line) even when we consider ($t^{\prime}-t$) at its maximum for all t^{\prime} it still only effects $A(t)$ very slightly and this modification coulibe either added on so that

$$
A\left(t^{\prime}\right) \rightarrow A(t)+A(t) e^{-i \omega_{0} / \omega_{B}}
$$

or $\quad A\left(t^{\prime}\right) \rightarrow A(t) e^{-i \omega_{0}\left(t^{\prime}-t\right)}$ and is abstituted in and integrated over t'.

Either method makes little difference.
With replacemant (2.A.15a.), (2.A.14.) becomes:-
$\ell_{, 0}^{\sum} g_{\ell \sigma}{ }_{2 \sigma \sigma}(t)-\frac{1}{\bar{L}} e_{, \sigma}^{\sum_{+}} \underline{E}_{+}^{(0)}(t) \cdot \underline{p}=\frac{-2 p^{2} A(t) e^{-i \theta}}{3 \pi c^{3} \hbar} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{t} d t^{\prime} e^{-i\left(\left(\omega-\omega_{0}\right)\left(t-t^{\prime}\right)\right)}$ (2.A.16.)

Now

$$
\int_{0}^{t} d t^{\prime} e^{-i\left(\omega \mp \omega_{0}\right)\left(t-t^{\prime}\right)}=\left[\frac{e^{-i\left(\omega_{\mp} \omega_{0}\right)\left(t-t^{\prime}\right)}}{i\left(\omega_{j} \omega_{0}\right)}\right]_{0}^{t}
$$

$$
\begin{array}{r}
=\left(\frac{\sin \left(\omega_{0} \mp \omega_{0}\right) t}{\omega \omega_{0}}\right)-1\left(\frac{1-\cos \left(\omega_{0} \mp \omega_{0}\right) t}{\omega_{\mp} \mp \omega_{0}}\right) \\
\frac{\text { (2.A.1 }}{\omega_{0}^{t} \gg 1} \pi \delta\left(\omega \mp \omega_{0}\right)-i \frac{p}{\omega^{\mp} \omega_{0}} \tag{2.A.17.}
\end{array}
$$

according to ref. $40 \mathrm{p} .66-69$, where p is the principal part. The last approximation is made since we are only interested in times $t \gg \omega_{0}^{-1}$ (i.e. 10^{15} sec. for Na)

$$
\begin{aligned}
& \text { Hence } \\
& \ell_{, \sigma}^{\Sigma} \varepsilon_{l \sigma}{ }_{\ell \sigma}(t)-\frac{1}{\hbar} \ell_{\rho \sigma}^{\Sigma} \underline{\varepsilon}_{(t)}^{(0)}(t) \cdot \underline{p}=\frac{-i 2 p^{2} A(t) e^{-i \theta}}{3 \pi c^{3} \bar{a}}\left[\int_{0}^{\infty} d \omega \omega^{3} \pi \delta\left(\omega-\omega_{0}\right)\right. \\
& \left.-i \int_{0}^{\infty} d \omega_{0}^{3} \frac{p}{\omega \omega_{0}}\right] \\
& =\frac{-i 2 p^{2} A(t) e^{-i \theta}}{3 \pi c^{3} \hbar}\left[\pi \omega_{0}^{3}-i \int_{0}^{\infty} d \omega \frac{\omega^{3}}{\omega-\omega_{0}}\right]
\end{aligned}
$$

since $\int_{0}^{\infty} d \omega f(\omega) \delta\left(\omega-\omega_{0}\right)=f(\omega)$ is not singular at $\omega=\omega_{0}^{2}$ and is true since ω_{0} is positive and is included in the integral $0 \rightarrow \infty$

In the second term p can be ignored as no singularity is involved.
$\int_{0}^{N o w} \frac{\omega^{3}}{\omega \mp \omega_{0}}=\int_{\mp \omega_{0}}^{\infty} d x \frac{\left(x+\omega_{0}\right)^{3}}{x} \quad$ where $x=\omega \mp \omega_{0}$

$$
\begin{equation*}
=\left[\frac{1}{3} x^{3} \mp \frac{3 \omega_{0}}{2} x^{2} \mp \omega_{0}^{3} \log e x\right]_{\mp \omega_{0}}^{\infty} \tag{2.A.19.}
\end{equation*}
$$

and this diverges unless we introduce a cut-off around $\omega_{B}=c / a_{B}-10^{18}$ so that the upper limit is ω_{B}. Since we know that $\omega_{B} \gg \omega_{0}$ this is a
reasonable approximation and it makes the integral finite
N.B. $\int_{0}^{\infty} d \omega \frac{\omega^{3}}{\omega-\omega_{0}}$ has a singularity but the same reasoning applies.

Thus (2.A.18.) becomes

$$
\begin{align*}
& x_{A}(t) e^{-i \theta} \\
& =+\frac{1}{\Sigma} \ell_{3,}^{\sum_{j}} \underline{E}_{(t)}^{(0)}(t) \cdot \underline{p}-i\left[\frac{1}{\gamma}-i \Omega\right] A(t) e^{-i \theta} \tag{2.A.20.}
\end{align*}
$$

where $\gamma=\frac{4 p^{2} \omega_{0}^{3}}{3 \pi c^{3}}$ is the decay constant,
and $\Omega_{ \pm}=\frac{\gamma}{\omega_{0}^{3}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \frac{\omega^{3}}{\omega \pm \omega_{0}}=\frac{\gamma}{k_{0}^{3}} \int_{0}^{\infty} \frac{d k}{2 \pi} \frac{k^{3}}{k \pm k_{0}}$
is the frequency shift, where $k=\omega / c, k_{0}=\omega_{0} / c$.

The hermitian conjugate is:-
$i_{, \sigma} g_{\ell \sigma} a_{l \sigma}(t)=\frac{1}{\square} \sum_{i, \sigma}^{E} E_{(-)}^{(0)}(t) \cdot \underline{p}+i\left(\frac{1}{\gamma}+i \Omega\right) A^{\dagger}(t) e^{i \theta}$

Substituting (2.A.20.) and (2.A.22.) in (2.A.4.) and (2.A.5.), we obtain

$$
\begin{align*}
& A(t)=-1 \omega_{0} A(t)+1 \frac{2}{\Gamma} l_{i, \sigma}^{\sum_{0}} e^{i \theta l}(Q(t)-1) E_{(t)}^{(0)} \\
& \text { (t) } \cdot \underline{p}-\left(\frac{1}{1} \gamma-i \underline{f}\right) A(t) \\
& +i 2 \lambda^{\prime} e^{-i \psi}\left(Q(t)-\frac{1}{2}\right) \tag{2.A.23.}\\
& Q(t)=-\frac{i}{\bar{L}} A^{\dagger}(t) \sum_{\ell, \sigma} e^{i \theta_{\ell}} \underset{(t)}{(0)}(t) \cdot \underline{p}+\frac{i}{\bar{D}} \ell_{\ell, \sigma}^{\sum_{(}{\underset{E}{t}}_{(0)}^{(0)}(t) \cdot \underline{p} A(t)} \\
& -\gamma Q(t)-i \lambda^{\prime} A^{\dagger}(t) e^{-i \phi}+i \lambda^{*} A(t) e^{i \phi} \tag{2.A.24.}
\end{align*}
$$

$A(t)=12\left(Q(t)-\frac{1}{2}\right)\left(q^{\prime}+\lambda^{\prime} e^{-i \mid}\right)-\left(1+i \omega^{\prime}\right) A(t)$
$Q(t)=-i A^{\dagger}(t)\left(q^{\prime}+\lambda^{\prime} e^{-i \psi}\right)+i\left(q^{\prime}+\lambda^{\prime *} e^{i \psi}\right) A(t)-\gamma Q(t)$

$$
\begin{align*}
& \text { where } q=1 / \bar{\hbar} \ell_{\rho, \sigma} e^{i \theta_{\ell}} \underline{E}_{*}^{(0)}(t) \cdot \underline{p}=\sum_{\rho, \sigma}^{\Sigma} \sqrt{\frac{2 \pi \omega_{\ell}}{\hbar V}} \varepsilon_{\ell \sigma} \cdot \underline{p} a_{\ell \sigma}(0) \\
& x e^{-i\left(\omega_{l} t-\theta_{l}\right)}=\sum_{l, \sigma}^{\varepsilon_{l \sigma}}{ }_{l \sigma}^{(0)} e^{-i\left(\omega_{l} t-\theta_{l}\right)} \tag{2.A.27a}
\end{align*}
$$

$$
\begin{align*}
& x e^{i\left(\omega_{l} t-\theta_{l}\right)}=\sum_{\ell \sigma} g_{\ell \sigma}{ }_{\ell}{ }_{\ell \sigma}{ }^{\dagger}(0) e^{i\left(w_{l} t-\theta_{l}\right)} \tag{2.A.27b}
\end{align*}
$$

(The only difference between the definitions or q^{\prime} and $q^{\prime{ }^{\dagger}}$ here and those of $q_{m n}$ and $q_{m i n}^{+}$in Chapters IV, V, VI, VII, is ${ }_{\text {A }}$ phase factor. N.B. q^{\prime} s are always time dependent).
$B(t)=i\left(q^{\prime}+\lambda^{\prime} e^{-i \psi}\right)$ is the term quoted in ref. 3 , and $\omega=\omega_{0}-\Omega_{0}$.

We sha. 11 now calculate equations for

$$
\begin{align*}
& X(t)=\left\langle i_{p h}\right| A(t)\left|i_{p h}\right\rangle \tag{2.A.23}\\
& I(t)=\left\langle i_{p h}\right| Q(t)\left|i_{\text {ph }}\right\rangle \tag{2.A.29}
\end{align*}
$$

where the initial radiation state is assumed to be a vacuum photon state $10>_{R}$.
N.S. $q^{\prime} 10>_{R}=0$ and $R^{<0 / q^{\prime \dagger}}=0$
siace $a_{l \sigma}|0\rangle_{R}=0$ and $R^{<0 \mid} a_{l \sigma}{ }^{\dagger}=0$.
Hence

$$
\begin{align*}
& X(t)-i 2 \lambda^{\prime} e^{-i \psi} Y(t)-i \lambda^{\prime} e^{-i \psi}-(i \gamma+i \omega) X(t) \tag{2.A.30.}\\
& Y(t)-i \lambda^{\prime} e^{-i \psi} X(t)^{\dagger}+i \lambda^{\prime} e^{i \psi} X(t) \quad-\gamma Y(t) \tag{2.A.31.}
\end{align*}
$$

We sha. 11 now calculate equations for $\sigma(t)$ and $\mathbf{P}(t)$
where $\sigma(t)=T r \rho(t) A \quad$ and $P(t)=\mathbf{T r} \rho(t) Q$.
As explained in the introduction Sec.A.9 eq. (1.B.108).
$\sigma(t)=\rho^{(S)}(t)_{j 1}$ and $\left.P(t)=\rho^{(S)^{(t)}}\right)_{j j}$ and $\sigma(t)=\rho^{(S)}(t)_{i j}$
since

$$
\begin{aligned}
& =\Sigma\langle j 1 S\rangle\left\langle S_{9} R I_{p}(t) 1 I_{p} R\right\rangle \\
& =E<S, R 1 \rho(t) l j><j 1 R_{p} S> \\
& \text { S, } R \\
& \text { S,R } \\
& =\sum_{R}\left\langle 1, R l_{\rho}(t) I I, R\right\rangle \\
& =\sum_{S_{0} R}\langle f 1 S\rangle\left\langle S_{0} R l_{p}(t) 1 j_{p} R\right\rangle \\
& =\operatorname{Tr}_{R}\langle j 1 \rho(t) 1 i\rangle \\
& =\underset{R}{\sum\langle j, R 1 p(t) l f, R\rangle} \\
& =p^{(s)}(t)_{j 1} \\
& =p^{(s)_{(t)}^{j f}}
\end{aligned}
$$

Thus $P(t)$ is the probability of finding the atom in its excited state lis at time t. $\sigma(t)$ is the off-diagonal matrix element of the reduced density operator $p^{(S)}(t)=\operatorname{Tr}_{R} p(t)$ and $P(t)$ is the diagonal one.

According to (B.9.5)

From eqs. (2.24), (2.25) and the hemitian conjugate of (2.24) we obtain coupled linear differential equations

$$
\begin{align*}
& \delta(t)=\rho^{(S)}(t)_{j 1}=12 \lambda^{\prime} e^{-1 \phi} P(t)-1 \lambda^{\prime} e^{-1 \phi} \quad-\left(\frac{1}{2} Y+1 \omega\right) \sigma(t) \tag{2.A.36}
\end{align*}
$$

$$
\begin{align*}
& \dot{P}(t)=p^{(S)}(t)_{j j}=-i \lambda^{\prime} e^{-i \phi_{\sigma}}(t)+i \lambda^{\prime} A_{\theta}^{i \phi_{\sigma}} \sigma(t)-\gamma P(t) \tag{2.A.38}\\
& \text { since } \quad \sum_{S}^{E<S 1 \rho^{(S)}(0) 1 S>}=\rho^{(S)}(0)_{1 i}+\rho^{(S)_{j j}=1}
\end{align*}
$$

N.B. If $\lambda^{\prime}=0$:

$$
\begin{aligned}
& \sigma(t)=\sigma(0) e^{-\left(\frac{1}{2} \gamma-i \omega\right) t} \\
& P(t)=P(0) e^{-\gamma t}
\end{aligned}
$$

i.e. where there is no external perturbation $\sigma(t)$ decays at half the rate of $P(t)$. Sec Mollow and Miller $[7]$, P. 469 where this is shown to be an essential feature of the damping process.

B. Time dependence of the occupation of the excited state

Equations (2.A.36) to (2.A.38) can be solved exactly by using the method of Laplace transforms. If we define the Laplace transform of $A(t) a s$

$$
\mathcal{L}(A(t))=\int_{t^{\prime}}^{\infty} d t e^{-s t} A(t)=\hat{A}(s)
$$

where the inverse is

$$
L^{-1}(A(t))=\frac{1}{2 \pi I} e^{a t \hat{A}(S) d S}
$$

then

$$
\begin{align*}
L(\dot{A}(t)) & =\int_{t^{\prime}}^{\infty} d t e^{-8 t} A(t) \\
& =\left[A(t) e^{-8 t}\right]_{t^{\prime}}^{\infty}+s \int_{t^{\prime}}^{\infty} e^{-s t} A(t) \\
& =-A\left(t^{\prime}\right) e^{-s t^{\prime}}+s L(A(t)) \tag{2.B.2}\\
& =-A\left(t^{\prime}\right) e^{-8 t^{\prime}}+s \dot{A}(S)
\end{align*}
$$

If $A(t)=A$, constant independent of time,

$$
\begin{align*}
L(A) & =A \int_{t^{\prime}}^{\infty} d t e^{-s t} \\
& =A\left[\frac{e^{-s t}}{-s}\right]_{t^{\prime},}^{\infty} \tag{2.B.3}\\
& =A \frac{e^{-s t}}{S}
\end{align*}
$$

We shall consider the initial time to be ${ }^{\prime}=0$ (see Chapter VIII, Section 9) since we shill assume the atom to be initially in the excited state $\mathrm{lj>}$ so that we may find the charactoristics of the decay process from Level 1 fl . Thus we assume $P(0)=2, \sigma(0)=\sigma^{*}(0)=0$.

Thus if we let

$$
\begin{equation*}
\varepsilon=\lambda^{\prime} e^{-1 \phi}, \varepsilon^{*}=\lambda^{\prime *} e^{1 \phi} \tag{2.8.4}
\end{equation*}
$$

then on taking Laplace transforms of eqs. (2.A.36) to (2.A.38) we obtain:

$$
\begin{align*}
& \left(S+\frac{1}{2} \gamma+i(\alpha) L(\sigma)=2 i \varepsilon L(p)-1 \varepsilon \frac{1}{S} \quad+\sigma(0)\right. \tag{2.8.5}\\
& \left(S+\frac{1}{2} \gamma-1(u) L\left(\sigma^{*}\right)=-2 i \varepsilon^{*} L(p)+i \varepsilon^{*} \frac{1}{S}, \quad+\sigma^{*}(0)\right. \tag{2.B.8}\\
& (S+\gamma) \quad L(p)=-i \varepsilon L\left(\sigma^{*}\right)+1 \varepsilon^{*} L(\sigma)+p(0) \tag{2.B.7}
\end{align*}
$$

Solving for $L(p)$ we obtain

Since $P(0)=1$ (i.e. we are only considering the emission process) and $\sigma(0)=\sigma^{*}(0)=0$

$$
L(p)=2|\varepsilon|^{2} \frac{\left(S+\frac{1}{2} \gamma\right)}{S Z}+\frac{\left(S+\frac{1}{2} \gamma+1 \omega\right)\left(s+\frac{1}{2} \gamma-1 \omega\right)}{2}(2 . B .10)
$$

Writing $Z=\left(s-x_{1}\right)\left(s-\left(x_{2}+i x_{3}\right)\right)\left(s-\left(x_{2}-i x_{3}\right)\right)$, whore $s_{1}=x_{1}$ 。 $s_{2}=x_{2}+i x_{3}, s_{3}=x_{2}-i x_{3}$, and x_{1}, x_{2} and x_{3} are real, since we shall see that , p and are real (see egs. (2.B.13) and (2.B.17), we can separate (2.B.10) into partial fractions and obtain the inverse Laplace transform:
[K.B. If $L(A(t))=\frac{1}{S+S_{1}}$, then $L^{-1}=A(t)=X e^{-8, t}$ when $X \neq X(t)$ follows from (2.B.1), i.e. $L\left(X e^{-s, t}\right)=X \int_{0}^{\infty} d t e^{-\left(S+S_{1}\right) t}=\frac{X}{S+S_{1}}$ for $\left.t^{\prime}=0.\right]$

$$
P(t)=\left[\frac{|\varepsilon|^{2} r}{-x_{1}\left(x_{2}-i x_{3}\right)\left(x_{2}+i x_{3}\right)}\right]
$$

$$
+\left[\frac{2|\varepsilon|^{2}\left(x_{1}+\frac{1}{2} \gamma\right)+x_{1}\left(\left(x_{1}+\frac{1}{2} \gamma\right)+i \omega\right)\left(\left(x_{1}+\frac{1}{2} \gamma\right)-i \omega\right)}{x_{1}\left(\left(x_{1}-x_{2}\right)+i x_{3}\right)\left(\left(x_{1}-x_{2}\right)-i x_{3}\right.}\right] e_{1} t
$$

$+\left[\frac{\left.2|\varepsilon|^{2}\left(x_{2}+\frac{1}{2} \gamma\right)-i x_{3}\right)+\left(x_{2}-i x_{3}\left(\left(x_{2}+\frac{1}{2} \gamma\right)-i\left(x_{3}-\infty\right)\right)\left(\left(x_{2}+\frac{1}{2} \gamma\right)-i\left(x_{3}+\omega\right)\right)\right.}{\left.-2 i x_{3}\left(x_{2}-i x_{3}\right)\left(x_{2}-x_{1}\right)-i x_{3}\right)}\right] e^{\left(x_{2}-i x_{3}\right) t}$
$+\left[\frac{2|c|^{2}\left(\left(x_{2}+\frac{1}{2} \gamma\right)+i x_{3}\right)+\left(x_{2}+i x_{3}\right)\left(\left(x_{2}+\frac{1}{2} \gamma\right)+i\left(x_{3}+\omega\right)\right)\left(\left(x_{2}+\frac{1}{2} \gamma\right)+i\left(x_{3}-\omega\right)\right)}{\left(x_{2}+i x_{3}\right)\left(\left(x_{2}-x_{1}\right)+i x_{3}\right) 2 i x_{3}}\right] e^{\left(x_{2}+i x_{3}\right) t}$

It is now necessary to solve the equation for z using the method outlined in Appendix III. Uaing the same notation as there
$a \mathbf{2 Y}$
$b=\frac{5}{4} \gamma^{2}+\omega^{2}+4|\lambda+|^{2}$
$c=\gamma\left(\frac{2}{4} \gamma^{2}+\omega^{2}+2|\lambda \cdot|^{2}\right)$

NoB. $|\varepsilon|^{2}=\left.|\lambda|\right|^{2}$ (this is equivalent to $\frac{1}{4} G^{2}$ of later chapters when the perturbation is caused by aconstant electric field E_{D})

Letting $\mu^{2}=\frac{\left|\lambda^{1}\right|^{2}}{\omega^{2}}$ and $B=\frac{2 y}{\omega}$

$$
\begin{align*}
& =\omega \beta \\
& b=\omega^{2}\left(\frac{5}{16} \beta^{2}+1+4 \mu^{2}\right) \tag{2.8.13}\\
& c=\omega^{3} \frac{1}{2} \beta\left(\frac{1}{16} \beta^{2}+1+2 \mu^{2}\right)
\end{align*}
$$

We also know fifrom eqs. (III.9), (III.7) and (III.2), that

$$
\begin{aligned}
& S_{1}=E_{1}=(a+B)-\frac{1}{3} a \\
& S_{2}=x_{2}+1 x_{3}=\frac{1}{2}((a+8)-1 \sqrt{3}(a \geq B)\}-\frac{1}{3} a \\
& S_{3}=x_{2}-1 x_{3}=-\frac{1}{2}((a+\beta)+1 \sqrt{3}(\alpha+\beta)\}-\frac{1}{3} a \\
& a=\left[\frac{-G+\sqrt{G^{2}+4 H^{3}}}{2}\right]^{1 / 3} \\
& B=\left[\frac{-G-\sqrt{G^{2}+4 H^{3}}}{2}\right]^{1 / 3}=-H Q^{-1}
\end{aligned}
$$

where
and

$$
\begin{aligned}
& G=\frac{2}{27} a^{3}-\frac{1}{3} a b+c \\
& H=\frac{1}{3}\left(\frac{-1}{3} a^{2}+b\right)
\end{aligned}
$$

Hence

$$
G=\frac{1}{27 \times 32} 0^{3} B\left(B^{2}-9 \times 32 X_{4} \because+27 \times 16 X_{2}\right)
$$

and

$$
\begin{equation*}
H=\frac{1}{144} \omega^{2}\left(48 X_{4}-B^{2}\right) \tag{2.B.15}
\end{equation*}
$$

where

$$
X_{n}=1+n \mu^{2}
$$

It is necesaary to introduce certain approximations in order to solve the cubic equation as cube roots cannot be found exactly. If we consider $B \ll 1$ (i.e. $\omega \gg 2 \gamma$ or $\left(\omega_{0}-\Omega\right) \gg 2 \gamma_{\text {, }}$ which means the natural line width of the excited state is small compared with the anergy separation, when the small frequency shift is included), and ignore then powers higher than 1st. order in 8
then

$$
\begin{align*}
& a=\frac{\omega}{6}\left[6\left\{-3 \beta\left(1-2 \mu^{2}\right)+4 \sqrt{3 x_{4}^{3}}\right]^{1 / 3}\right. \tag{2.B.16}\\
& \beta=\frac{-\omega^{2}}{3} x_{4} a^{-1}
\end{align*}
$$

and can also be written

$$
\begin{align*}
& \alpha=\frac{\sqrt{3}}{3} \Leftrightarrow x_{4}^{\frac{1}{2}}\left[1-\frac{\sqrt{3}}{4} B\left(1-2 \mu^{2}\right) x_{4}^{-3 / 2}\right]^{1 / 3} \\
& \left.B=\frac{-\sqrt{3}}{3} x_{4}^{\frac{1}{2}}\left[1-\frac{\sqrt{3}}{4} B\left(1-2 \mu^{2}\right) x_{4}^{-3 / 2}\right]\right]^{-1 / 3} \tag{2.8.17}
\end{align*}
$$

$$
\alpha \pm B=\frac{\sqrt{3}}{3} x_{4}^{\frac{1}{2}}\left[1-\frac{\sqrt{3}}{4} \beta\left(1-2 \mu^{2}\right) x_{4}^{-3 / 2}\right]^{1 / 3} \mp \frac{\sqrt{3}}{3} x_{4}^{\frac{1}{2}}\left[1-\frac{\sqrt{3}}{4} \beta\left(1-2 \mu^{2}\right) x_{4}^{-3 / 2}\right]^{-1 / 3}
$$

If this is expanded by means of the Binomial theorem and terms in B^{2} and higher are again neglected

$$
\begin{align*}
& \alpha+\beta=\frac{-1}{6} \beta \omega\left(1-2 \mu^{2}\right) x_{4}^{-1} \\
& \alpha-\beta=\frac{2 \sqrt{3}}{3} \omega X_{4}^{\frac{3}{2}} \tag{2.B.19}
\end{align*}
$$

Hence on substituting in (3.44)

$$
\begin{align*}
& x_{1}=-\frac{1}{3} \omega \beta\left[1+\frac{1}{2}\left(1-2 \mu^{2}\right) x_{4}^{-1}\right] \\
& x_{2}=-\frac{1}{3} \omega \beta\left[1-\frac{1}{4}\left(1-2 \mu^{2}\right) x_{4}^{-1}\right] \tag{2.5.20}\\
& x_{3}=\omega x_{4}^{\frac{1}{2}}
\end{align*}
$$

Hence to lst. order in β

$$
\begin{align*}
P(t)= & \left(x_{1}-1\right) x_{2}^{-1} \\
& +x_{2}^{-1} x_{3} x_{4}^{-1} \exp \left(-x_{2} x_{4}^{-1} r t\right) \tag{2.B.21}\\
& +\left[\left(x_{2}^{-1}\right) x_{4}^{-1} \cos \left(x_{4}^{\frac{1}{2}}\left(\omega t+6 x_{4}^{-2} x_{5 / 2}\right)\right)\right] \exp \left(-\frac{1}{2} x_{4}^{-1} x_{6} r t\right)
\end{align*}
$$

If we now assume $\mu^{2} \ll 1$ (i.e. $\left|\lambda^{\prime}\right|^{2} \ll \omega^{2}$ or $\bar{K}\left|\lambda^{\prime}\right| \ll \hbar \omega$, i.e. the perturbation energy, small in comparison to the energy of separation of the atomic levels $)^{1}$ and ignore powers higher than ist. order in μ_{0} we obtain

$$
P(t)=\mu^{2}
$$

$$
\begin{align*}
& +\left(1-3 \mu^{2}\right) \exp \left(-\left(1-2 \mu^{2}\right) \gamma t\right) \tag{2.B.22}\\
& +2 \mu^{2} \cos \left(\omega^{2} t+8\right) \exp \left(-\frac{1}{2}\left(1+2 \mu^{2}\right) \gamma t\right) \\
& \text { where } \omega^{\prime}=\left(1+2 \mu^{2}\right) \omega
\end{align*}
$$

1. Keller and Robiscoe ${ }^{5}$ cannot derive an equation for $P(t)$ at all without this approximation, whereas we can, viz. eq. (2.B.21).
2. The correction to $\omega_{\text {, }}$ accidentally onitted in reference 1 , indicates that there is osciliation at the Rabi frequency, since the population is continuousiy oscillating between the two levels.
[N.B. Neither (2.B.21) nor (2.B.22) contain any dependence on the arbitrary phases 0_{ℓ} and ψ_{0}]

If $\lambda^{\prime}+0$, 1.e. $\mu^{2} \rightarrow 0$, then $P(t)=e^{-\gamma t}$, the exponential decay solution. If $\gamma \rightarrow 0$, 1.e. $\beta \rightarrow 0, P(t)=\left(1-2 \mu^{2}\right)+2 \mu^{2} \cos \left(\left(1+2 \mu^{2}\right) \omega t+\beta\right)$ the quantum oscillator solution. This is true also for eq. (2.B.21). Both these results are consistent with the conclusions of Keller and Robiscoe's paper $[5]$ in which they treat essentially the same problem. They use the Wigner-Weisskopf approximation and are limited to a time scale >> the atomic lifetime. γ^{-1}, which we are not (our equations are valid for times $t \gg 0_{0}^{-1}$). Eq. (43) of their paper in our notation is:

$$
\begin{aligned}
P(t)= & {\left[1-4 \mu_{0}^{2} \sin ^{2} \frac{1}{2} \omega_{0}^{\prime} t\right] \exp \left[-\left(1+2 \mu^{2}\right) \gamma t\right] \exp \left[-\beta_{0} \mu^{2} \sin \omega_{0}^{\prime} t\right] } \\
& +\left[4 \mu_{0}^{2} \sin ^{2} \frac{1}{2} \omega_{0}^{\prime} t\right]\left[1-\exp \left(-\left(1+2 \mu^{2}\right) \gamma t\right) \exp \left(-\beta_{0} \mu^{2} \sin \omega_{0}^{\prime} t\right)\right]
\end{aligned}
$$

where

$$
\begin{align*}
& \mu_{0}=5|\lambda \cdot| / h_{0} \tag{2.B.23}\\
& B_{0}=\frac{2 Y}{\infty_{0}}
\end{align*}
$$

and $\quad \omega_{0}^{\prime}=\left(1+2 \mu^{2}\right) \omega_{0}$
1.e. the frequency shift
n_ is neglected

I:E: $\quad P(t) \simeq 4 \mu_{0}^{2} \sin ^{2} \frac{1}{2} \omega_{0}^{1} t$

$$
\begin{equation*}
-4 \mu_{0}^{2} \sin ^{2} \frac{1}{2} \omega_{0}^{1} t \exp \left(-\left(1+2 \mu^{2}\right) \gamma t\right) \exp \left(-\beta_{0} u^{2} \cdot \ln \omega_{0}^{\prime} t\right) \tag{2.B.24}
\end{equation*}
$$

They point out that parameters μ_{0} and β_{0} respectively give the atrength of the external perturbation, $\kappa|\lambda \cdot|$, and the radiation interaction, $2 \hbar y$, with respect to the unperturbed pinding energy, $h \omega_{0} \omega_{0}^{\prime}$ and $\gamma^{\prime}=\left(1+2 \mu^{2}\right) \gamma$ are the perturbed counterparts of the $j-1$ state separation w_{0} and the f-state decay rate γ. From their equation they conclude that when $2 \bar{\hbar} \boldsymbol{\gamma} \rightarrow 0$

$$
\begin{equation*}
P(t)+1-4 \mu_{0}^{2} \sin ^{2} \frac{1}{2} \omega \omega_{0}^{1} t \tag{2.B.25}
\end{equation*}
$$

while when $K|\lambda| \rightarrow 0$

$$
\begin{equation*}
P(t) \rightarrow e^{-\gamma t} \quad \text { the } W-W \text { solution } \tag{2.B.26}
\end{equation*}
$$

We have shown that our equation will also tend to (2.B.26) for $\lambda^{\prime} \rightarrow 0$ and that when $\gamma \rightarrow 0$ we get a quantum oscillation solution, although not of exactly the same form as that of Keller and Robiscoe [5].

The main differences between egs. (2.B.22) and (2.B.23) are
(i) for $\gamma t \gg 1$ (2.B.22) gives a steady state solution $P(t)=\mu^{2}$ whereas (2.B.23) gives a quantum oscillation solution $P(t)=\mu_{0}^{2}\left[4 \sin ^{2} \frac{1}{2} \omega_{0}^{\prime \prime t}\right]$ described in fig. 3 of ref. [5].
(ii) the 3rd. term in (2.B.22) decays at $\frac{1}{2}\left(1+2 \mu^{2}\right)$, nearly half the rate of the second, $\left(1-2 \mu^{2}\right) \gamma$, owing to the mixing of the diagonal (P) and off-diagonal (σ) matrix elements caused by couping with the external perturbation. (When there is no perturbation present we saw that $\sigma(t)$ decayed at half the rate of $P(t)$. In (2.B.23) the decay terms all decay at the same rate, namely $\left(1+2 \mu^{2}\right)$. This is noticeable also in eq. (2.B.21) where the rates are $\frac{1}{2} X_{4}^{-1} X_{6}$ and $X_{4}^{-1} X_{2}$.

Keller and Robiscoe [5] expect the new type of modulation factor which remains for $\gamma t \gg 1$ will also be found for a 3 -level quantum system in which the same external perturbation couples both the upper 2 levels and the lower 2 levels. In Fontana and Lynch's ${ }^{[6]}$ paper, they consider the radiative decay of an atom with 2 excited states coupled by an external perturbation but there is no coupling between the lower 2 levels but this could be considered on the basis of their
theory to see whether Keller and Robiscoe's hypothesis holds, but we doubt it, since Fontana and Lynch's equations for the 2-level atom embody similar characteristic features of the decay process described by our eq. (2.B.22) and noted in (1) and (ii), viz. their eq. (24):

$$
\begin{align*}
\left|b_{f}(t)\right|^{2} & =\left|a_{1}(t)\right|^{2}\left\{1+e^{-\left(x_{0}+X_{j}-Q\right) t}-2 e^{-\frac{1}{2}\left(X_{0}+X_{j}-Q\right) t} \cos \left[\frac{1}{2}(t-P) t\right]\right\} \\
& +\left|a_{2}(t)\right|^{2}\left\{1+e^{-\left(x_{0}+X_{j}+Q\right) t}-2 e^{-\frac{1}{2}\left(X_{0}+X_{j}+Q\right) t} \cos \left[\frac{1}{2}(\epsilon+P) t\right]\right\} \\
& +2 a(t)\left\{e^{-\left(X_{0}+X_{j}\right\} t^{2}} \cos (P t+\theta)+\cos \theta\right. \tag{2.8.27}\\
& -e^{-\frac{1}{2}\left(x_{0} x_{j}-Q\right) t} \cos \left[\frac{1}{2}(t-p) t+\theta\right] \\
& -e^{-\frac{1}{2}\left(X_{0}+X_{j}+Q\right) t \cos \left[\frac{1}{2}(t+p) t-\theta\right]}
\end{align*}
$$

which is equivalent to $(1-P(t))$ when their intermediate level is ignored. This expression contains pure exponential decay rates $\left(X_{0}+X_{j}+\overline{+} Q\right)$ and modulated decay rates of $\frac{1}{2}\left(X_{0}+X_{j} \mp Q\right)$ i.e. half the pure one and. $\left(X_{0}+X_{j}\right)$. In our case we get a pure expontential decay rate of $\left(1-2 \mu^{2}\right) \gamma$ and a modulated one of $\frac{1}{2}\left(1+2 \mu^{2}\right) y$ which is approximately half. For $\left(X_{0}+X_{j} \mp Q\right) t \gg 1, \frac{1}{2}\left(X_{0}+X_{j} \mp Q\right) t \gg 1$ and $\left(X_{0}+X_{j}\right) t \gg 1$

$$
\left|b_{F}(t)\right|^{2}=\left|a_{1}(\epsilon)\right|^{2}+\left|a_{2}(\epsilon)\right|^{2}+2 a(\epsilon) \cos \theta
$$

i.e. it also reaches a steady state value and not an oscillating one. N.B. Fontana and Lynch use the Heitler-Ma formalism [40], [41] but Keller and Robiscoe do not treat the classical external perturbation exactly as we do.

CHAPTER III

AN ATOM WITH TWO CLOSE-LYING EXCITED STATES COUPLED

ONLY BY THE RADIATION FROM ITS TRANSITIONS [4]

A. Heisenberg equations of motion

He now go on to consider an atom (lying at the prigin of co-ordinates so that $\underline{r}=\underline{0}$) which has 2 excited states $1 j^{\prime \prime}>$ and $\mathrm{lj}^{\prime}>$ couplad to a ground state li> by a quantised multi-mode e.m. field. We shall not be introducing any external classical perturbation or considering the inftial radiation state to be anything other than a vacuum state and so the problem we are treating is simply that of undriven spontaneous emission. We shall denote the energy separations between states $1 j^{\prime \prime}>$ and $l i>$ by $\epsilon_{j \prime \prime}-\epsilon_{i} \equiv \omega_{j \prime}$ and between states $l j^{\prime \prime}>$ and and $1 i>$ by $\epsilon_{j \prime}-\epsilon_{i} \equiv \omega_{j}^{\prime \prime}$ and between $1 j^{\prime \prime}>$ and $1 j^{\prime}>$ by $\epsilon_{j \prime \prime}-\epsilon_{j \prime} \equiv \omega^{\prime}=\omega_{j \prime}-\omega_{j}^{*}$,

We can write the Hamiltonian, in the dipole approximation, as

$$
\begin{align*}
& H=\underset{\alpha=1, j j^{\prime} \cdot j^{\prime \prime}}{ } \epsilon_{\alpha} P_{\alpha \alpha}+\frac{1}{8 \pi} \int\left(|\underline{E}|^{2}+|\underline{B}|^{2}\right) d^{3} r-\underline{E} \cdot \underline{P}_{j}{ }^{\prime}\left(P_{i j}{ }^{\prime}+P_{i j}{ }^{+}\right) \\
& -E \cdot E_{j " i}\left(P_{i j "}+P_{i j "}+\right) \tag{3.A.1}\\
& -\underline{E}_{-D_{j " j}}\left(P_{j \prime j "}+P_{i j "}+\right)
\end{align*}
$$

If we now neglect direct transitions between $1 j^{\prime \prime \prime}$ and $1 j^{\prime \prime}$, by assuming the dipole moment $\underline{p}_{j} j^{\prime \prime}=0$ (i.e. if quantum numbers for levels j^{\prime} and $f^{\prime \prime}$ do not satisfy the condition for allowed transitions, namely
$\ell_{j^{\prime}}-\ell_{j^{\prime \prime}}= \pm 1$) we obtain, on substituting for E and B fron eqs. (1.B.58) and (1.B.59) when $r=0$

$$
\begin{align*}
& -\sum_{\ell, \sigma} g_{\ell \sigma j}{ }^{\prime \prime}\left(S_{2} a_{\ell \sigma}+a_{\ell \sigma}^{\dagger} S_{2}\right) \tag{3.A.2}
\end{align*}
$$

where

$$
S_{1}(t)=P_{i j}(t)+P_{i j}^{\dagger}(t)
$$

and

$$
S_{2}(t)=P_{i j \prime \prime}(t)+P_{i j^{\prime \prime}}^{\neq}(t)
$$

Also $\quad g_{\ell \sigma j^{\prime}}=\sqrt{\frac{2 \pi \omega_{\ell j^{\prime}}}{\hbar V} \hat{e}_{\ell \sigma^{\prime}} \cdot{p_{j}{ }_{i}}=K_{\ell j}, \hat{e}_{\ell \sigma^{\prime}} \cdot \underline{p}_{j \prime i}}$
and

$$
\begin{equation*}
g_{l \sigma j "}=\sqrt{\frac{2 \pi \omega}{\ell j^{\prime \prime}}} \frac{\hat{e}_{l \sigma}}{} \cdot{\underline{L_{j " 1}}}=K_{\ell j^{\prime \prime}} \hat{e}_{\ell \sigma} \cdot p_{j " i} \tag{3.A.3}
\end{equation*}
$$

and $\mathcal{P}_{j}{ }^{\prime}$ and $\mathrm{P}_{\mathrm{j} \prime} 1$ are real dipole matrix elements

[N.B. Subscripts on ${ }_{l}{ }_{l}$ indicate whether the frequencies are for photon transitions between f^{\prime} and 1 or between $j^{\prime \prime}$ and 1 .]

The reaaining terms have thair usual meaning. If we omit high
 the Hamiltonian becomes

Using Hamiltonian (3.A.4) we obtain the following Meisenberg equations of motion

$$
\begin{align*}
& \dot{a}_{\ell \sigma}=-i \omega_{\ell}{ }^{a} \ell \sigma+i \varepsilon_{\ell \sigma j}, P_{i j} \quad+i \varepsilon_{\ell \sigma j}, P_{i j "} \tag{3.A.5}
\end{align*}
$$

$$
\begin{align*}
& \dot{P}_{i j \prime}=-i \omega_{j} P_{i j \prime}-i P_{j " j} \sum_{\ell, \sigma} \varepsilon_{\ell \sigma j \prime}{ }^{a} \ell \sigma-1\left(P_{j \prime j}-P_{i 1}\right) \sum_{\ell, \sigma} \varepsilon_{\ell \sigma j}{ }^{a}{ }_{\ell \sigma} \tag{3.A.7}
\end{align*}
$$

Equation (3.5) has formal solution

$$
\begin{align*}
a_{\ell \sigma}(t)=a_{\ell \sigma}(0) e^{-i \omega_{\ell} t} & +i g_{\ell \sigma j} \int_{0}^{t} d t^{\prime} e^{-i \omega_{l}\left(t-t^{\prime}\right)_{P_{i j}}\left(t^{\prime}\right)} \tag{3.A.8}\\
& +i \varepsilon_{\ell \sigma j^{\prime \prime}} \int_{0}^{t} d t^{n} e^{-i \omega_{l}\left(t-t^{n}\right)} P_{P_{i j \prime}}\left(t^{n}\right)
\end{align*}
$$

Consider
(i)

$$
\begin{equation*}
\sum_{\ell, \sigma}^{\sum} g_{\ell \sigma j} \cdot a_{\ell \sigma}(t) \quad \text { and } \tag{3.A.9a}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\sum_{\ell, \sigma}^{\varepsilon_{\ell \sigma j} \prime^{a}} \ell_{\ell \sigma}(t) \tag{3.A.9b}
\end{equation*}
$$

As in Chapter II when $V \rightarrow \infty$
(1)

$$
\begin{align*}
& =+1 \frac{p_{j \cdot 1}^{2}}{4 \pi^{2} c^{3} h} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{4 \pi} d \Omega_{k} \sum_{\sigma=1}^{2}\left(\hat{e}_{t 0} \cdot \hat{p}_{j \cdot i}\right)^{2} \\
& x \int_{0}^{t} d t^{\prime} e^{-i \omega\left(t-t^{\prime}\right)} P_{i f 1}\left(t^{i}\right) \tag{3.A.9C}
\end{align*}
$$

$$
\begin{aligned}
& x \int_{0}^{t} d t^{\prime \prime \prime} e^{-i \omega\left(t-t^{\prime \prime}\right)} P_{1 j^{\prime \prime}}\left(t^{\prime \prime}\right)
\end{aligned}
$$

N.B. In the 2nd tem on the R.H.S. we have integrated over frequencies comments photon transitions between levels $j^{\prime \prime}$ and f and 1 and j^{\prime} and vice versa, i.e. $g_{l \sigma_{j}} g_{l \sigma j^{n}} \infty \sqrt{\omega_{l j} \omega_{l j^{\prime}}}$ is taken as $\infty \omega_{l}$ for a cortain range of frequencies common to both photon tranaitions between levels $j^{\prime \prime}$ and 1 and j^{\prime} and 1 .

Fig. 3.A. 2

For the shaded region where levels $\mathrm{j}^{\prime \prime}$ and j^{\prime} overlap
$\infty_{l j}=\omega_{l j}=\infty_{l}$. The area of overlap is common to both levels f^{\prime} and $j^{\prime \prime}$ so that if a photon is absorbed to or emitted from that region it can be considered as going to or originating from either level and we can say that photon is (1) emitted by level $\mathrm{g}^{\prime \prime}$ and absorbed by f^{\prime} or (2) a photon is enitted by level f^{\prime} and absorbed by $\mathrm{f}^{\prime \prime}$.

$$
\omega_{\ell j}=\omega_{\ell j "}=\omega_{\ell} \text { for frequencies } \omega=\omega_{j \prime}+\frac{1}{2} \gamma_{j} \text { to } \omega_{j "}-\frac{1}{2} \gamma_{j "}
$$

But when $\omega_{\ell j}$, has values ω_{j}, $\frac{1}{2} \gamma_{j}$, up to $\omega_{j \prime}-\frac{1}{2} \gamma_{j "}$
and when $\omega_{\ell j "}$ has values ω_{j} " $+\frac{1}{2} \gamma_{j}$, up to $\omega_{j "}+\frac{1}{2} \gamma_{j "}$
 levels j^{\prime} and $\mathrm{j}^{\prime \prime}$.

In calculating r_{j}, and $r_{j "}$ we integrate only over the shaded region and let ω_{ℓ} take values 0 to ω in the free space limit $\dot{v}+\infty$ when the spectrum of ${ }_{\ell}$ becomes continuous.

$$
\begin{equation*}
\text { To find } \sum_{\sigma=1}^{2}\left(\hat{e}_{\ell \sigma} \cdot \hat{R}_{j \prime 1}\right)\left(\hat{e}_{\ell \sigma} \cdot \hat{R}_{j " 1}\right)=\left(e_{1} \cdot R_{j}\right. \tag{3.A.10}
\end{equation*}
$$

$=\underline{\left(\hat{e}_{\ell 1} \cdot \hat{L}_{j 11}\right)\left(\hat{e}_{\ell 1} \cdot \hat{\underline{L}}_{j+1}\right)+\left(\hat{e}_{\ell 2} \cdot \hat{\underline{L}}_{j 11}\right)\left(\hat{e}_{\ell 2} \cdot \hat{\underline{D}}_{j \prime 1}\right)}$

when $p_{j 1 i}$ and $p_{j n_{i}}$ are in different directions.

As in Chapter II we choose rectangular coordinate axes \hat{x}, \hat{y} and \hat{k}_{l}. Then we can write the vectors in terms of spherical polers [39] as

$$
\begin{align*}
& \hat{e}_{\ell \sigma}=\hat{x} \cos Q_{e}+\hat{y} \sin Q_{e} \\
& \hat{p}_{j \prime i}=\hat{x} \sin \theta_{j} \cos Q_{f \prime}+\hat{y} \sin \theta_{j} \sin Q_{j \prime}+\hat{k} \cos \theta_{j \prime} \tag{3.A.11}\\
& \hat{p}_{j^{\prime \prime} 1}=\hat{x} \sin \theta_{j^{\prime \prime}} \cos Q_{j^{\prime \prime}}+\hat{y} \sin \theta_{j^{\prime \prime}} \sin Q_{j^{\prime \prime}}+\hat{k} \cos \theta_{j^{\prime \prime}}
\end{align*}
$$

$\bullet \bullet$

$$
\begin{align*}
\hat{e}_{\ell \sigma^{\prime}} \cdot \hat{P}_{j^{\prime} 1} & =\cos Q_{e} \sin \theta_{j}, \cos Q_{j} \prime+\sin Q_{e} \sin \theta_{j}, \sin Q_{j} \\
& =\sin \theta_{j} \cos \left(Q_{e}-Q_{j \prime}\right) \\
\hat{e}_{\ell \sigma^{\prime}} \cdot \hat{P}_{j^{\prime \prime} 1} & =\cos Q_{e^{\prime \prime}} \ln \theta_{j \prime \prime} \cos Q_{j n}+\sin Q_{e} \sin \theta_{j^{\prime \prime}} \sin Q_{j^{\prime \prime}} \tag{3,A,12}\\
& =\sin \theta_{j^{\prime \prime}} \cos \left(Q_{e}-Q_{j n}\right)
\end{align*}
$$

$$
\left(\hat{e}_{\ell 1} \cdot \hat{\mathrm{P}}_{j} \cdot 1\right)\left(\hat{e}_{\ell 1} \cdot \hat{\mathrm{~F}}_{j \prime}\right)=\operatorname{in} \theta_{j} \sin \theta_{j "} \cos \left(Q_{e_{1}}-Q_{j}\right) \cos \left(Q_{e_{1}}-Q_{j "}\right)
$$

$$
\begin{equation*}
\left(\hat{e}_{22} \cdot \hat{P}_{j \prime 1}\right)\left(\hat{e}_{22} \cdot \dot{D}_{j^{\prime \prime} i}\right)=\sin \theta_{j}, \sin \theta_{j n} \cos \left(Q_{e_{2}}-Q_{j}\right) \cos \left(Q_{e}-Q_{j n}\right) \tag{3.A.13}
\end{equation*}
$$

$$
=\sin \theta_{j} \cdot \sin \theta_{j n} \cos \left(\left(Q_{e_{1}}+270\right)-Q_{j}\right) \cos \left(\left(Q_{e_{1}}+270\right)-Q_{j n}\right)
$$

because $Q_{e_{2}}=Q_{e_{1}}+270^{\circ}$ since ℓ_{1} and $e_{l_{2}}$ are perpendicular.

Also $\quad \hat{p}_{j} \mathcal{I}^{\prime} \cdot \hat{P}_{j^{\prime \prime} i}=\sin \theta_{j} \sin \theta_{j \prime \prime} \cos \left(Q_{j}-Q_{j \prime \prime}\right)+\cos \theta_{j} \cdot \cos \theta_{j " \prime}$

$$
\begin{align*}
\sum_{\sigma}\left(\hat{e}_{2 \sigma} \cdot \hat{P}_{j \prime 1}\right)\left(\hat{e}_{2 \sigma} \cdot \hat{P}_{j^{\prime \prime}}\right) & =\sin \theta_{j} \cdot \sin \theta_{j "}\left[\cos \left(Q_{e_{1}}-Q_{j \prime}\right) \cos \left(Q_{e_{1}}-Q_{j "}\right)\right. \\
& \left.+\sin \left(Q_{j \prime}-Q_{e_{i}}\right) \sin \left(Q_{j "}-Q_{e_{1}}\right)\right] \tag{3.A.15}
\end{align*}
$$

since $\cos \left(270^{\circ}-a\right)=-\sin \left(180^{\circ}-a\right)=-\cos \left(90^{\circ}-a\right)=-\sin a$
\therefore

$$
\begin{align*}
& =\sin \theta_{j^{\prime}} \sin \theta_{j "} \cos \left(Q_{j^{\prime \prime}}-Q_{j}\right) \\
& =\sin \theta_{j} \sin \theta_{j "} \cos \left(Q_{j}-Q_{j "}\right) \tag{3.A.16}\\
& =\hat{p}_{j} 1 \cdot \cdot \hat{p}_{j " 1}-\cos \theta_{j}, \cos \theta_{j "} \\
& =\cos \theta-\underline{c o s}_{j}{ }^{\cos \theta_{j}}
\end{align*}
$$

Now in order to find
$I=\int_{0}^{4 \pi} d \Omega_{k} \sum_{0}\left(\hat{e}_{l \sigma} \cdot \hat{p}_{j} \cdot i\right)\left(\hat{e}_{\ell \sigma} \cdot \hat{p}_{j " 1}\right)=\int_{0}^{4 \pi} d \Omega_{k}\left(\hat{p}_{j \prime i} \cdot \hat{p}_{j " 1}-\cos \theta_{j}, \cos \theta_{j "}\right\}$
we need to consider the adjoint figure and define vectors with respect to the new axes $\hat{m}, \hat{n}, \hat{p}_{j "}$ (alternatively $\hat{m}, \hat{n}, \hat{p}_{j}$) where \hat{m} and \hat{n} can be $\hat{e}_{\ell_{1}}$ and $\hat{e}_{l_{i}}$.

$\therefore \hat{k}_{i} \cdot \hat{p}_{j^{\prime}}=\cos \theta_{j^{\prime}}=\cos \theta_{j \prime \prime} \cos \theta+\sin \theta_{j^{\prime \prime}} \sin \theta \cos \left(Q_{k}-Q_{p^{\prime}}\right)$

Hence

$$
\begin{align*}
& \int_{\sigma}\left(\hat{e}_{l \sigma} \cdot \hat{\mathrm{p}}_{j}\right)\left(\hat{e}_{\ell \sigma} \cdot \dot{\mathrm{P}}_{j "}\right)=\cos \theta-\cos \theta_{j "}\left[\cos \theta_{j^{\prime \prime}} \cos \theta+\sin \theta_{j^{\prime \prime}} \sin \theta \cos \left(Q_{k}-Q_{p}\right)\right] \\
& =\cos \theta\left(1-\cos ^{2} \theta_{j^{\prime \prime}}\right)-8 i n \theta \cos \theta_{j^{\prime \prime}} \sin \theta_{j \prime \prime} \cos \left(Q_{k}-Q_{p^{\prime}}\right)(\cap . \therefore(3 . A .20) \\
& =\cos \theta \sin ^{2} \theta_{j \prime \prime}-\sin \theta^{\prime} \cdot \frac{1}{2} \sin 2 \theta_{j n} \cdot \cos \left(Q_{k}-Q_{p}\right) \\
& \therefore I=\int_{0}^{4 \pi} d \Omega_{k}\left[\cos \theta \sin ^{2} \theta_{j " 1}-\sin \theta \frac{1}{2} \sin 2 \theta_{j "} \cos \left(Q_{k}-Q_{P \prime}\right)\right] \tag{3.A.21}\\
& =\int_{0}^{2 \pi} d Q_{k} \int_{0}^{\pi} d Q_{j "} \sin \theta_{j "}\left[\cos \theta \sin ^{2} \theta_{j^{\prime \prime}}-\sin \theta \frac{1}{2} \sin 2 \theta_{j " \prime} \cos \left(Q_{k}-Q_{P^{\prime}}\right)\right]
\end{align*}
$$

The 2nd. term gives zero on integration over Q_{k} since

$$
\begin{align*}
& \int_{0}^{2 \pi} d Q_{k}\left(\cos Q_{k} \cos Q_{p^{\prime}}-\sin Q_{k} \sin Q_{p^{\prime}}\right) \\
& =\cos Q_{p^{\prime}} \int_{0}^{2 \pi} d Q_{k} \cos Q_{k}-\sin Q_{P^{\prime}} \int_{0}^{2 \pi} d Q_{k} \sin Q_{k} \\
& =\cos _{p^{\prime}}(0)-\sin Q_{p^{\prime}}(0) \tag{3.A.22}\\
\therefore \quad I & =\cos \theta \int_{0}^{2 \pi} d Q_{k} f_{0}^{\pi} d \theta_{j^{\prime \prime}} \sin \theta_{j^{\prime \prime}}\left(1-\cos ^{2} \theta_{j^{\prime \prime}}\right) \\
& =\left(\hat{p}_{\left.j^{\prime} I^{\prime} \cdot \dot{P}_{j^{\prime \prime}}\right)}\right) \frac{8 \pi}{3} \text { as in }(2 . A .13) \tag{3.A.23}
\end{align*}
$$

Hence (3.A.9) becomes, when we proceed as in Chapter II eqs. (2.A.15)
atc., and take $P_{i j}\left(t^{\prime}\right)=P_{i j}(t) e^{-i w_{j}}\left(t^{\prime}-t\right)$

$$
P_{i j n}\left(t^{\prime}\right)=P_{i j n}(t) e^{-i \omega_{j \prime}\left(t^{\prime}-t\right)}
$$

and $\omega_{j} t \gg 1$ and $\omega_{j \mu} t \gg 1$

$$
\begin{align*}
\sum_{\ell, \sigma}^{\varepsilon_{\ell \sigma j}{ }^{a}{ }_{\ell \sigma}(t)=\frac{1}{\hbar} \sum_{\ell, \sigma}^{\Sigma_{-}^{(0)}(t) \cdot p_{j} \prime}}+\begin{aligned}
& i\left(\frac{1}{2} r_{j \prime}-i \Omega_{j}\right) P_{i j}^{\prime}(t) \\
& +i\left(\frac{1}{2} r_{j \prime \prime}-1 \Omega_{j}^{\prime}\right) P_{i j \prime}(t)
\end{aligned} \tag{3.A.24a}
\end{align*}
$$

where $r_{j}=\frac{4 p_{j}{ }^{2} \omega_{j}{ }^{3}}{3 \pi c^{3}} \quad, \Omega_{j} T=\frac{r_{j}}{\omega j^{3}} \int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{\omega^{3}}{\omega-\omega_{j}{ }^{3}}$;
and $r_{j \prime}=\frac{4\left(\varepsilon_{j} \cdot R_{j \prime \prime}\right)_{\omega_{j \prime}}{ }^{3}}{3 \hbar c^{3}} \cdot \Omega_{j^{\prime \prime}}^{\prime}=\frac{r_{j " \prime}^{\prime \prime}}{\omega j^{\prime \prime}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \frac{\omega^{3}}{\omega-\omega_{j "}}$.
N.B. $R_{j \prime}=R_{j \prime i}$ and $p_{j "}=R_{j " 1}$. In deriving r_{j}, and $r_{j "}$ we have integrated over those frequencies which are common to photon transitions between levels $j^{\prime \prime}$ to i and i to j^{\prime} and vice versa. If levels $j^{\prime \prime}$ and j^{\prime} are far apart these cross terms and hence r_{j}, and $r_{j "}$ can be neglected. For them to be important ω^{\prime} must be of the order of the natural line width of level $j^{\prime \prime}$ or j^{\prime}. Similarly

$$
\begin{align*}
& \sum_{\ell, \sigma} g_{\ell \sigma j^{\prime \prime}}{ }_{\ell \sigma}(t)=\frac{1}{\bar{\hbar}} \sum_{\ell, \sigma}^{E_{t}^{(0)}}(t) \cdot R_{j \prime}+i\left(\frac{1}{2} \Gamma_{j \prime}-1 \Omega_{j,}^{\prime}\right) P_{i j}(t) \tag{3.A.25a}\\
& +i\left(\frac{1}{2} \gamma_{j "}-1 \Omega_{j \prime \prime}\right) P_{i j^{\prime \prime}}(t)
\end{align*}
$$

where $r_{j "}=\frac{4 p_{j \prime \prime}{ }^{2} \omega_{j \prime \prime}{ }^{3}}{3 \pi c^{3}} \quad, \Omega_{j_{-}^{\prime \prime}}=\frac{r_{j \prime \prime}}{\omega_{j \prime \prime}{ }^{3}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \frac{\omega^{3}}{\omega-\omega_{j "}}$
and $r_{j \prime}=\frac{4\left(R_{j} \cdot \cdot R_{j \prime}\right) \omega_{j}{ }^{3}}{3 n c^{3}}, \Omega_{j!}^{\prime}=\frac{r_{j}{ }^{\prime}}{\omega_{j} r^{3}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \frac{\omega^{3}}{\omega-\omega_{j}}$
Therefore $\frac{r_{j}}{r_{j \prime}}=\frac{p_{j}{ }^{2} \omega_{j^{\prime}}{ }^{3}}{P_{j \prime}{ }^{2} \omega_{j \prime \prime}{ }^{3}}$ and $\frac{r_{j}}{r_{j \prime}}=\frac{\omega_{j}{ }^{3}}{\omega_{j "}{ }^{3}}$

Substituting eqs. (3.A.24a) and (3.A.25a) in eqs. (3.A.6) and (3.A.7) we obtain

$$
\begin{align*}
& \dot{P}_{i j^{\prime \prime}}(t)=-\left(\frac{1}{2} \gamma_{j \prime \prime}+1\left(\omega_{j \prime \prime}-\Omega_{j \prime \prime}\right)\right) P_{i j \prime \prime}-\left(\frac{1}{2} \Gamma_{j}-1 \Omega_{j}^{\prime}\right) P_{i j} \\
& -\frac{1}{\hbar} \sum_{\ell, \sigma}\left[P_{j} j^{\prime \prime} E_{t}^{(0)}(t) \cdot R_{j \prime}+\left(P_{j " j " 1}-P_{i i}\right) E_{t}^{(0)}(t) \cdot{Q_{j " \prime}}\right] \tag{3.A.27}
\end{align*}
$$

Similarly

$$
\begin{align*}
& \dot{P}_{i j^{\prime}}(t)=-\left(\frac{1}{2} \gamma_{j \prime}+1\left(\omega_{j}-\Omega_{j!}\right)\right) P_{i j^{\prime}}-\left(\frac{1}{2} r_{j \prime \prime}-1 \Omega_{j \prime \prime}^{\prime}\right) P_{i j \prime \prime} \\
& -\frac{1}{\bar{n}} \sum_{, 0}\left[P_{j \prime \prime}, E_{t}^{(0)}(t) \cdot P_{j \prime \prime}+\left(P_{j \prime j},-P_{i 1}\right) E_{t}^{(0)}(t) \cdot R_{j \prime}\right] \tag{3.A.28}
\end{align*}
$$

These eqs. may also be written in terms of q_{f}, and q_{f} ", where

$$
\begin{align*}
& q_{j,}=\frac{1}{\bar{h}} \sum_{\ell, \sigma} E_{t}^{(0)}(t) \cdot R_{j},=\sum_{\ell, \sigma} g_{l \sigma_{j} j} i_{l \sigma}{ }^{(0)} e^{-i \omega_{\ell} t} \tag{3.A.29}\\
& q_{j \prime \prime}=\frac{1}{\bar{h}} \sum_{\ell, \sigma} \underline{E}^{(0)}(t) \cdot L_{j \prime \prime}=\sum_{\ell, \sigma} g_{l \sigma_{2} j^{\prime \prime}}{ }_{\ell 0}(0) e^{-i \omega_{\ell} t}
\end{align*}
$$

NoB. q_{j}, and $q_{j \prime}$ are time dependent.

Also the frequency shifts $\Omega_{j_{1}} \Omega_{j "} \cdot \Omega_{j_{0}} \Omega_{j \pm}$ can be absorbed into the definitions of ω_{j} " $\omega_{j "}$ " T_{j}, and $T_{j "}$ so that

$$
\begin{align*}
& \omega_{j^{\prime}}=\omega_{j^{\prime}}-\Omega_{j^{\prime}} \\
& \omega_{j^{\prime \prime}}=\omega_{f^{\prime \prime}}-\Omega_{j^{\prime \prime}} \tag{3.A.30}\\
& \frac{1}{2} r_{j^{\prime}}=\frac{1}{2} r_{j^{\prime}}-1 \Omega_{j^{\prime}}^{\prime} \\
& \frac{1}{2} r_{j^{\prime \prime}}=\frac{1}{2} r_{j^{\prime \prime}}-1 \Omega_{j^{\prime \prime}}^{\prime \prime}
\end{align*}
$$

In fact these frequency shifts can be neglected completely and can be reintroduced if required at a later stage.
B. The ilne-shape pf spontaneous emission

In order to calculate the line-shape of spontaneous emission of the atom, we use a method based on the approaches of Lehmberg $[1],[2]$ and Glauber $[48],[49],[50]$ in order to avoid use of the Markoff approximation and the fluctuation regression theorem. The spectral profile of the atomic decay is essentially given by the Foiner-transform of a 2-time atomic correlation function. This is explained in ref. 48, Where Glauber says that the energy spectrum can be derived from the $18 t$. order correlation function. We shall outline how this is done below. using Glauber's references.

If we substitute in the L.H.S. of eq. (10.11) of ref. -[49] for $\underline{E}^{(-)}(\underline{r}, t)$ and $\underline{E}^{(0)}\left(\underline{r}, t^{\prime}\right)$ expanded in plane-wave modes, using our notation,

$$
\begin{equation*}
\text { 1.e. } \underline{E}(\underline{r}, t)=\underline{E}^{(+)}(r, t)+\underline{E}^{(-)}(\underline{r}, t) \quad \text { from (II,11) } \tag{3.B.1}
\end{equation*}
$$

$$
\left.\left.\begin{array}{rl}
\text { where } \underline{E}^{(t)}(\underline{r}, t) & \left.=\sum_{\ell, \sigma} \sqrt{\frac{2 \pi \hbar w_{\ell}}{V} \hat{e}_{\ell \sigma} a_{\ell \sigma}(t) e^{i k_{\ell} \cdot \underline{r}}}\right\} \tag{3.B.2}\\
\underline{E}^{(-)}(\underline{r}, t) & =\sum_{\ell, \sigma} \sqrt{\frac{2 \pi \hbar \omega_{\ell}}{V}} \hat{e}_{\ell \sigma} a_{l \sigma}^{\dagger}(t) e^{-i k_{\ell} \cdot \underline{r}}
\end{array}\right\} \text { from (II.10) }\right\}
$$

we obtain
$I=2 \int \underline{E}^{(-)}(\underline{x}, t) \cdot \underline{E}^{(+)}\left(\underline{r}, t^{i}\right) d \underline{r}$

$$
\begin{align*}
& \left.=2 \int_{\ell, \sigma \ell^{\prime}, \sigma^{\prime}}^{\sum} \frac{2 \pi \hbar}{V}\left(\omega_{\ell} \omega_{\ell}\right)^{\frac{1}{2}}\left(\hat{e}_{\ell \sigma^{\prime}} \cdot \hat{e}_{\ell \prime \sigma^{\prime}}\right) e^{-i\left(k_{\ell}-k_{\ell},\right.}\right) \cdot \underline{r} \tag{3.B.3}\\
& \\
& \times a_{l \sigma}^{+}(t) a_{\ell, \sigma,}\left(t^{\prime}\right) d r
\end{align*}
$$

According to Louisell ${ }^{[35]}$ p. 155, eq. (4.88)

$$
I^{\prime}={\underset{c a v i t y}{\delta} \underline{U}_{\ell \sigma}^{*}(t) \cdot \underline{U}_{\ell} \sigma^{\prime}(\underline{r}) d \tau=\delta_{\ell \ell} \delta_{\sigma \sigma}, ~}^{\prime}
$$

where $\quad \underline{U}_{\ell \sigma}(\underline{r})=\frac{\hat{e}_{\ell \sigma} e^{i \underline{k}}-\boldsymbol{r} \underline{\underline{r}}}{\sqrt{\tau}}$
and $\quad \underline{U}_{\ell \sigma}^{*}(\underline{r})=\frac{\hat{e}_{\ell \sigma} e^{-i \underline{k} \cdot \underline{r}}}{\sqrt{\tau}}$
(where τ is the normalisation volume)

$=\left(\hat{e}_{\ell \sigma} \cdot \hat{e}_{\ell \sigma^{\prime}}\right)_{\delta_{\ell \ell}}$
$=\hat{e}_{\ell \sigma} \cdot \hat{e}_{\ell \sigma}{ }^{\prime} \delta_{\ell \ell}$
$=\delta_{\sigma \sigma}{ }^{\delta} \delta_{\ell \ell^{\prime}}$ (since $e_{l \sigma^{\circ}}{ }_{l \sigma^{\prime}}=\delta_{\sigma \sigma}$ (8.6.13a)

Hence $\quad I=(4 \pi) \sum_{l, \sigma} \hbar_{l} a_{l \sigma}^{\dagger}(t) a_{l \sigma}\left(t^{\prime}\right)$ for free fields (V $\rightarrow \infty$) (3.B.5)

This is $4 \pi \times$ Glauber's expression (10.11) aince Glauber is using the same units as Mollow viz. the unrationalised mixed Gaussien c.g.s. system (Chapter I, Section B6). 1

Now taking a statistical average of both sides of this equation $\left.\frac{1}{2}<I\right\rangle=\int\left\langle\underline{E}^{(-)}(\underline{r}, t) \cdot \underline{E}^{(t)}\left(\underline{r}, t^{\prime}\right)>d \underline{\underline{r}}=\sum_{\mu} \int G_{\mu \mu}^{(1)}\left(\underline{r}, t ; \underline{r}, t^{\prime}\right) \underline{r}\right.$
i.e. the lst. order 2-time correlation function

$$
\begin{align*}
G_{\mu \mu}^{(1)}\left(\underline{r}, t ; \underline{\underline{E}} t^{\prime}\right) & \left.=\underline{\underline{E}}^{(-)}(\underline{r}, t) \cdot \underline{E}^{(t)}\left(\underline{r}, t^{\prime}\right)\right\rangle \\
& =\operatorname{Tr}\left\{\rho(0) \underline{E}^{(-)}(\underline{r}, t) \cdot \underline{E}^{(t)}\left(\underline{r}, t^{\prime}\right)\right\} \tag{3.A.7}
\end{align*}
$$

Rewriting,

$$
\begin{aligned}
& \sum_{\mu} \int G_{\mu \mu}^{(1)}\left(\underline{r}, t i \underline{r}, t^{\prime}\right) d r=(4 \pi) \frac{1}{2} \sum_{\ell, \sigma} \hbar_{\ell}<_{l \sigma^{+}}^{\dagger}{ }_{l \sigma}>e^{i \omega_{\ell}\left(t-t^{\prime}\right)} \\
& =(4 \pi) \frac{1}{2} \sum_{l, \sigma} \sum_{l \omega_{l}<n_{\ell \sigma}>e^{i \omega_{l}}\left(t-t^{\prime}\right)}
\end{aligned}
$$

where $\left\langle n_{\ell \sigma}\right\rangle=\left\langle a_{\ell \sigma^{\prime}}^{\dagger} a_{\ell \sigma}\right\rangle=\operatorname{Tr}\left\{\rho(0) a_{l \sigma}^{\dagger}(t) a_{\ell \sigma}(t)\right\}$ is the average number of photons in the ℓ, σ mode and gives a measure of the intensity of its excitation. Thus we see that the Fourier representation of the volume
 generally. But when the fields can be represented by stationary density operators it is simpler to extract the energy spectrum $W(w)$ from the correlation function. This we will now do. According to Glauber's eq. (14.9) ref. [50]
$G_{\mu \nu}^{(1)}\left(\underline{r^{t}} \underline{s}^{\prime} t^{\prime}\right)=\left\langle E_{\mu \tau}(\underline{r}, t) E_{V+}\left(\underline{r}^{\prime} t^{\prime}\right)\right\rangle$

$=\sum_{\ell, \sigma \ell^{\prime}, \sigma^{\prime}}^{\sum}\{ \}<a_{\ell \sigma^{\prime}}^{\dagger}(0) a_{\ell \prime \sigma^{\prime}}(0)>e^{i \omega_{l} t_{e}-i \omega_{\ell,} t^{\prime}}$
$=\sum_{\ell, \sigma \ell^{\prime}, \sigma^{\prime}}^{\sum}\{ \}<n_{\ell \sigma}(0)>\delta_{\ell \ell}, \delta_{\sigma \sigma}, e^{i \omega_{\ell} t} e^{-i \omega_{\ell}, t^{\prime}}$
I.E. $\left\langle a_{\ell \sigma}^{\dagger}(0) a_{\ell \sigma^{\prime}}(0)\right\rangle=\operatorname{Tr}\left\{\rho(t) a_{\ell \sigma}^{\dagger}(0) a_{\ell \ell^{\prime} \sigma^{\prime}}(0)\right\}=\left\langle n_{\ell \sigma^{\prime}}>\delta_{\ell \ell^{\prime}} \delta_{\sigma \sigma^{\prime}}\right.$
since for any stationary field represented by a density operator p
there will exist some particular choice of mode functions such that the matrix reduces to diagonal form.

$$
\begin{align*}
& \therefore G_{\mu \nu}^{(1)}\left(\underline{r}, t ; \underline{r}^{\prime} t^{\prime}\right)=\frac{2 \pi \hbar}{V} \sum_{\ell, \sigma} \omega_{\ell}<n_{\ell \sigma}>\left(\hat{e}_{\ell \sigma \mu} \cdot \hat{e}_{\ell \sigma \nu}\right) e^{i \omega_{l}\left(t-t^{\prime}\right)} \tag{3.8.10}\\
& \therefore \sum_{\mu}^{(l)}\left(\underline{r}, t ; \underline{r}^{\prime} t^{\prime}\right)=(4 \pi) \frac{1}{2} \sum_{l, \sigma}^{h_{\nu}} \frac{h_{l}}{V}<n_{\ell \sigma}>e_{l}^{i()_{l}\left(t-t^{\prime}\right)} \\
& \text { since } \underset{\mu}{ }\left(\hat{e}_{\ell \sigma \mu} \cdot \hat{e}_{\ell \sigma \mu}\right)=1 \tag{3.B.11}\\
& \text { = (48) } \times \text { (Glaubers' equation (10.14)) }
\end{align*}
$$

Now, if the field is incomment, and the volume $V \rightarrow \infty$

$$
\begin{align*}
G_{\mu \mu}^{(1)}\left(\underline{r}, t ; \underline{r}^{\prime} t^{\prime}\right) & =(4 \pi) \frac{1}{2} \frac{\hbar c}{(2 \pi)^{3}} \sum_{\sigma=10}^{2} \int_{0}^{\infty} d k k^{3} \int_{0}^{4 \pi} d \Omega_{\hat{k}}<n_{2 \sigma^{\prime}}>e^{i c k\left(t-t^{\prime}\right)} \\
& =(4 \pi) \frac{1}{2} \frac{\hbar c}{(2 \pi)^{3}} \sum_{\sigma=1}^{2} \int_{0}^{\infty} d k k<n_{l \sigma^{\prime}}>e^{i c k\left(t-t^{\prime}\right)} \tag{3.B.12}
\end{align*}
$$

$$
\text { where } d \underline{k}=k^{2} d k d \Omega_{\hat{k}}
$$

$\bullet \bullet$

$$
\begin{align*}
& G_{\mu \mu}^{(1)}\left(\underline{r}, t ; \underline{\underline{r}}^{\prime} t^{\prime}\right)=(4 \pi) \frac{1}{2} \frac{\hbar}{(2 \pi \hat{\zeta})^{3}} \sum_{\sigma=1}^{2} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{4 \pi} d \Omega \hat{k}_{k} n_{l \sigma}>e^{i \omega\left(t-t^{\prime}\right)} \tag{3.B.13}\\
& =\frac{1}{2 \pi} \int_{0}^{\infty} d \omega \frac{\hbar}{(2 \pi)} \int_{0}^{4 \pi} d \Omega_{\hat{k}} \sum_{\sigma=1}^{2} \frac{\operatorname{da}^{3}}{c^{3}}<n_{l \sigma}>e^{i \omega\left(t-t^{\prime}\right)}
\end{align*}
$$

$\therefore \quad G_{\mu \mu}^{(1)}\left(\underline{r t}, \underline{r} t^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{\infty} d \omega I(\omega) e^{i \omega\left(t-t^{\prime}\right)}$
or

$$
\begin{equation*}
G_{\mu \mu}^{(1)}\left(\underline{r}^{\prime}, \underline{r} t\right)=\frac{1}{2 \pi} \int_{p}^{\infty} d \omega I(\omega) e^{-i \omega\left(t-t^{\prime}\right)} \tag{3.B.14}
\end{equation*}
$$

where

$$
I(\omega)=\frac{\hbar}{2 \pi} \int_{0}^{\pi} d \Omega_{k}^{N} \sum_{\sigma=1}^{2} \frac{\omega^{3}}{e^{3}}<n_{l \sigma}>
$$

N.B. In Mollow and Miller's paper [1] eq. (4.3) an identical equation for $G^{(1)}\left(t^{\prime}, t\right)$ is given for stationary fields where $G^{(1)}\left(t^{\prime}, t\right) \equiv$ $\left\langle\varepsilon^{*}\left(t^{\prime}\right) \varepsilon(t)\right\rangle$, but they do not identify the field intensity $I(\omega)$. Also in Hollow's paper $[9]$ eq. (2.14) gives

$$
G_{j j}^{(1)}\left(\underline{r} t^{\prime}, \underline{r} t\right) \equiv\left\langle E_{j}^{(-)}\left(t^{\prime}\right) E_{j}^{(t)}(t)\right\rangle
$$

Mollow goes on to consider the case where the atomic system is in equilibrium with the driving field so that the atomic correlation function (rather the quantum mechanical analogue of a correlation function) is given by $\left\langle A^{\dagger}\left(t^{\prime}\right) A(t)\right\rangle=g\left(t-t^{\prime}\right)$ fot the 2-level atom. $I(\omega)$ is $W(\omega)$ of Glauber's paper $[48]$ where \sum_{μ} is ignored, since $\sum_{\mu}\left(\hat{e}_{\mu} \cdot \hat{e}_{\mu}\right)^{2}=1$, and is the energy density per unit frequency interval. N.B. $G_{j j}^{(1)}(\underline{\underline{r}}, \underline{\underline{r} \tau})=\frac{1}{2 \pi} \int_{0}^{\infty} I(\omega) e^{-i \omega \tau} d \omega$

According to Mollow $[9]$ the power spectmum of the scattered field is

$$
\begin{align*}
I(\underline{r}, v) & =\int_{-\infty}^{\infty} d \tau e^{i v \tau} \sum_{j} G_{j j}^{(1)}(\underline{r} 0, \underline{\underline{r}}) \tag{3.B.16}\\
\text { i.e. } I(\underline{r}, v) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \tau e^{i(v-\omega) \tau} \int_{0}^{\infty} d \omega I(\underline{r} \omega) \text { where } \sum_{j}^{i} \text { is ignored } \text { again }
\end{align*}
$$

so that eq. (2.18) of Mollow's paper $[9]$ is identified.

He also writes

$$
\begin{equation*}
I(\underline{r}, v)=|Q|^{2} \int_{-\infty}^{\infty} d \tau e^{i v \tau} g(\tau)=|Q|^{2 \sim} g(v) \tag{3.B.17}
\end{equation*}
$$

where he has approximated $\underline{E}^{(+)}(t)$ as in eq. (2.11) and assumed the atomic system to be in equilibrium with the driving field 80 that $G^{(1)}$ only depends on ($t-t^{\prime}$). If we let $I(\omega)=0$ for $\omega<0$ we can extend the integral over ω from $-\infty$ to $+\infty$ so that

$$
\begin{equation*}
I(\underline{r}, v)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \tau e^{i(v-\omega)} \int_{-\infty}^{\infty} d \omega I(\underline{r}, \omega) \tag{3.B.18}
\end{equation*}
$$

Using our units we can identify $|Q|^{2} g(r)$ by the equation

$$
\begin{equation*}
\left.|Q|^{2} g(\tau)=\frac{1}{2 \pi} \frac{n}{c^{3}}\left[\frac{1}{2 \pi} \int_{0}^{\infty} d \omega \omega\right)^{3} e^{-i \omega \tau}\right] \sum_{\sigma=1}^{2} \int_{\ell \sigma}^{4 \pi}<n_{\ell \sigma}>d \Omega_{\hat{k}} \tag{3.B.19}
\end{equation*}
$$

N.B. There is a factor of $1 / 2 \pi$ difference between our notation and that of Mollow.

Now

$$
\begin{equation*}
\sum_{j} G_{j j}^{(1)}(\underline{r} 0, \underline{r} \tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega I(\omega) e^{-i \omega \tau} \tag{3.B.20}
\end{equation*}
$$

$$
\begin{align*}
\therefore \quad \int_{-\infty j}^{\infty} \mathcal{G}_{j j}^{(1)}(\underline{r} 0, \underline{\underline{r}}) e^{i v \tau} d \tau & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \tau e^{i(v-\omega) \tau} \int_{-\infty}^{\infty} d \omega I(\underline{r}, \omega) \\
& =\int_{-\infty}^{\infty} \operatorname{d\omega W}(\omega) \delta(v-\infty) \tag{3.B.21}\\
& =W(v)
\end{align*}
$$

So $I(\underline{r} \omega)=\int_{-\infty}^{\infty} \Sigma G_{\mu \mu}^{(1)}\left(\underline{r}^{0}, \underline{\underline{I} \tau)} e^{i \omega \tau} d \tau\right.$
is the energy spectrum for the quanta present and is the Fourier
transform of the lst. order timedependent correlation function. Also

$$
\begin{equation*}
I(\underline{r}, v)=\frac{\hbar}{2 \pi} \frac{v^{3}}{c^{3}} \sum_{=1}^{2} \int_{0}^{4 \pi}<n_{l \sigma}>d \Omega_{\hat{k}} \tag{3.B.23}
\end{equation*}
$$

is the energy of power spectrum of the scattered field.
Now we wish to find the spectral properties of the EAR field. So following the reasoning of Lehmberg $[2]$ we $l e t R$ be an observation point (referred to as arbitrary origin within the ensemble) and assume that $|\underline{R}-\underline{\underline{G}}| \equiv \mathrm{R}_{\mathrm{a}}$ satisfies

$$
\frac{\omega_{f^{\prime}}}{C} R_{a} \gg 1
$$

$$
\begin{equation*}
\frac{\omega_{j \prime \prime}}{C} R_{a} \gg 1 \tag{3.B.24}
\end{equation*}
$$

1.e. $\quad R_{a} \gg k_{j}$

$$
R_{a} \gg \mathbb{K}_{j n} \text { (} R_{a} \text { is very large compared with the distance }
$$

traversed by photons of energy $\hbar \omega_{j}$, and $\overline{\mathrm{n}} \mathrm{c}_{\mathrm{j}}$ " in a second.)

The quantities of interest can be obtained from the correlation functions

$$
\begin{align*}
& \left.f_{\hat{R}_{j}}\left(t, t^{\prime}\right)=\frac{R^{2} c}{2 \pi \omega_{j} \hbar}<\underline{E}^{(+) \dagger}(\underline{R}, t) \cdot \underline{E}^{(t)}\left(\underline{R}, t^{\prime}\right)\right\rangle \\
& =\frac{R^{2} c}{2 \pi \omega_{j}{ }_{j}} \sum_{j} G_{j j}^{(1)}\left(\underline{R}, t ; \mathbb{R}^{\prime}, t^{\prime}\right) \tag{3.B.25}\\
& f\left(t, t^{\prime}\right)=\int_{0}^{4 \pi} d \Omega_{\hat{R}} f_{\hat{R}_{j}}\left(t, t^{\prime}\right)
\end{align*}
$$

and
(where $\omega_{j}=\omega_{j}$, or $\omega_{j "}$ depending in which transitions we are interested in),
where the average is taken over initial states of the atomic system, and $\underline{E}^{(t)}(\underline{R}, t)$ is given by

$$
\begin{equation*}
\underline{E}^{(t)}(\underline{R}, t)=\sum_{\ell, \sigma} \sqrt{\frac{2 \pi \hbar \omega_{\ell}}{V}} \hat{e}_{\ell \sigma}{ }_{l}{ }_{l}(t) e^{i \underline{k}} \cdot \Omega \tag{3.B.26}
\end{equation*}
$$

as in Lehmberg's appendix. [2]
If we substitute our expression for ${ }^{a_{\sigma}}{ }^{(}(t)$ for $r \neq 0$ into $\underline{E}^{\dagger}(\underline{R}, t)$ evaluated at $t=t_{R}=t+\frac{R}{C}$ we obtain

$$
\begin{align*}
& \underline{E}^{(+)}\left(\underline{R}, t_{R}\right)=\sum_{\ell, \sigma} \sqrt{\frac{2 \pi \hbar \omega_{\ell}}{V}} \hat{e}_{\ell \sigma}{ }_{l \rho \sigma}(0) e^{-i \omega_{l} t_{R}} e^{i \underline{k_{\ell}}} \cdot(\underline{R}-\underline{\underline{Y}}) \\
& +i \Sigma \sqrt{\frac{2 \pi \omega_{l}}{V}} \sum_{\sigma}\left[\hat{e}_{l \sigma}\left(\hat{e}_{\ell \sigma} \cdot R_{j},\right)\right] \int_{0}^{t_{R}} d t^{\prime} e^{-i \omega_{l}\left(t_{R}-t^{\prime}\right)_{P_{i j}}\left(t^{\prime}\right) e^{i \underline{k}} \cdot(\underline{R}-\underline{r})} \tag{3.B.27}
\end{align*}
$$

If we now assume the time for a light signal to cross the ensemble $\ll \Delta t$, the time for appreciable (secular) changes to occur in the atomic Levels
then

$$
\begin{equation*}
P_{i j^{\prime}}\left(t^{\prime}\right)=P_{i j^{\prime}}\left(t_{R}\right) e^{-i \omega_{j}}\left(t^{\prime}-t_{R}\right) \tag{3.B.28}
\end{equation*}
$$

and

$$
P_{i j "}\left(t^{\prime \prime}\right)=P_{i j \prime}\left(t_{R}\right) e^{-i \omega_{j "}\left(t^{\prime \prime}-t_{R}\right)}
$$

Using the above axes as before we can write

$$
\begin{align*}
& \hat{e}_{\ell \sigma}=\hat{x} \cos Q_{e}+\hat{y} \sin Q_{e} \\
& \hat{R}_{f}=\hat{x} \sin \theta \cos Q_{p}+\hat{y} \sin \theta \sin Q_{p}+\hat{k} \cos \theta \tag{3.B.29}
\end{align*}
$$

$$
\begin{align*}
\therefore \quad \hat{e}_{\ell \sigma} \cdot \hat{P}_{j} & =\sin \theta \cdot \cos \left(Q_{e}-Q_{p}\right) \tag{3.B.30}\\
& \hat{e}_{\ell \sigma}\left(\hat{e}_{\ell \sigma} \cdot \hat{P}_{j}\right) \tag{3.B.31}
\end{align*}=\sin \theta \cdot \cos \left(Q_{e}-Q_{p}\right)\left[\cos Q_{e} \hat{x}+\sin Q_{e} \hat{y}\right] \quad, ~ \$
$$

Considering the adjoint figure, as before we can write

$$
\begin{equation*}
\hat{p}_{j}=\hat{e}_{l_{1}} \sin \theta \cos \alpha+\hat{e}_{l_{2}} \sin \theta \sin \alpha+\hat{k}_{\ell} \cos \theta \tag{3.B.32}
\end{equation*}
$$

$$
\begin{align*}
\sum_{\sigma=1}^{2} \hat{e}_{\ell \sigma}\left(\hat{e}_{\ell \sigma} \cdot \hat{\rho}_{j}\right) & =\hat{e}_{\ell}\left(\hat{e}_{\ell} \cdot \hat{p}_{j}\right)+\hat{e}_{\ell}\left(\hat{e}_{\ell} \cdot \hat{p}_{j}\right) \\
& =\hat{e}_{\ell_{1}}[\sin \theta \cos \alpha]+\hat{e}_{\ell}[\sin \theta \sin \alpha] \\
& =\hat{p}_{j}-\hat{k}_{\ell} \cos \theta \tag{3.8.33}
\end{align*}
$$

$\therefore \quad \sum_{\sigma=1}^{2} \hat{e}_{\ell \sigma}\left(\hat{e}_{\ell \sigma} \cdot \hat{p}_{j}\right)=\hat{p}_{j}-\hat{k}_{\ell}\left(\hat{k}_{\ell} \cdot \hat{p}_{j}\right)$

Hence

$$
\begin{align*}
& \underline{E}^{(+)}\left(\underline{R}, t_{R}\right)=\underline{E}^{(+)(0)}\left(\underline{R}, t_{R}\right)+\frac{12 \pi}{V} \sum_{l} \omega_{l}\left[\underline{E}_{j},-\hat{k}_{2}\left(\hat{k}_{2} \cdot \hat{\mathrm{P}}_{j}\right)\right] \int_{0}^{t_{R}} d t^{\prime} \\
& x e^{+i\left(\omega_{l}-\omega_{j}\right)\left(t^{\prime}-t_{R}\right)_{P_{i j}}(t) e^{i \underline{k}} \ell \cdot \underline{R}} \\
& +\frac{12 \pi}{V} \sum_{l} \omega_{l}\left[\mathbb{E}_{j \prime}-\hat{k}_{l}\left(\hat{k}_{l} \cdot Z_{j^{\prime \prime}}\right)\right] \int_{0}^{t_{R}} d t^{\prime \prime} \tag{3.B.34}\\
& x e^{i\left(\omega_{\ell}-\omega_{j n}\right)\left(t^{\prime \prime}-t_{R}\right)_{P_{i j "}}(t) e^{i k_{\ell}} \cdot \frac{R}{2}}
\end{align*}
$$

where
$E^{(+)(0)}\left(\underline{R}, t_{R}\right)=\sum_{\ell, \sigma} \sqrt{\frac{2 \pi \hbar_{\infty}}{V}} \hat{e}_{\ell \sigma} \hat{a}_{\ell \sigma}(0) e^{-i \omega_{\ell} t_{R_{e}} \hat{k}_{l} \cdot \underline{R}}$

Considering $\mathbf{V} \rightarrow \infty$, we obtain

$$
\begin{aligned}
& \underline{E}^{(t)}\left(\underline{R}, t_{R}\right)=\underline{E}^{(+)(0)}\left(\underline{R}, t_{R}\right) \\
& \left.+\frac{12 \pi}{(2 \pi C)^{3}} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{4 \pi} d \Omega_{\hat{k}}\left[\underline{D}_{j}-\hat{k}\left(\hat{k} \cdot{I_{j}},\right)\right] \int_{0}^{t_{R}} d t^{\prime} e^{f\left(\omega-\omega_{j}\right.}\right)\left(t^{\prime}-t_{R}\right) \\
& \times P_{i f}(t) e_{e}^{i(\omega / c)} \hat{k} \cdot(\underline{R-r})
\end{aligned}
$$

$$
\begin{aligned}
& x e^{i \omega / c} \hat{k} \cdot(\underline{R}-\underline{r}) \quad \text { where } \underline{k}=k \quad \hat{k}=\frac{\omega}{c} \hat{k}
\end{aligned}
$$

I.E. $\quad \underline{E}^{\dagger}\left(\underline{R}, t_{R}\right)=\underline{E}^{(+)(0)}\left(\underline{R}, t_{R}\right)$

$$
\begin{align*}
+\frac{1}{4 \pi^{2} c^{3}} \sum_{j=j \prime j "} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{4 \pi} d \Omega_{k}^{a}\left[R_{j}-\hat{k}\left(\hat{k} \cdot D_{j}\right)\right] & \int_{0}^{t_{R}} d t e^{i\left(\omega-\omega_{j}\right)\left(t^{\prime}-t_{R}\right)} \tag{3.B.36}\\
& \times P_{i j}(t) e^{i \omega / c \hat{k} \cdot(\underline{R} r \underline{r})}
\end{align*}
$$

Thus we see that the field has several properties:
(i) The largest contributions to the field come from $\omega=\omega_{j}$, which is physically reasonable.
(ii) Since $\frac{\omega}{c} R-\frac{\omega_{f}}{c} R$ and $\frac{\omega_{f}}{c} R \gg 1 e^{i \omega / c \hat{k} \cdot \underline{R} \quad e^{i \omega / c \hat{k} \cdot R} \text { will }}$ oscillate rapidly over a range of $\hat{R}_{a} \cdot \hat{k}$ in which $p_{j}-\hat{k}\left(\hat{k} \cdot p_{j}\right)$ remains essentially constant. As $\cos ^{-1}(\hat{K} . \hat{K})$ increases $e^{i \omega / c} \hat{R} \hat{k} . \hat{R}+1$ and for $\hat{k} \cdot \hat{R}=\cos 90^{\circ}=0$ this is an identity.
(iii) Whatever the direction of \hat{k} the relative change in $\left[\mathbb{R}_{j}-\hat{k}\left(\hat{k} \cdot \underline{g}_{j}\right)\right]$ is very small indeed and so has little effect. Consider the maximum variation $\hat{k}= \pm \hat{R}_{a}$, since the important contribution comes from these
directions around $\hat{k}= \pm \hat{R}_{a}$ where the phase $\pm \frac{\omega}{c} R_{a}$ is stationary. Substituting this in the slowly varying function

$$
\left[\underline{P}_{j}-\hat{k}\left(\hat{k} \cdot \mathrm{P}_{j}\right)\right]
$$

we see that for both directions of \hat{k}

$$
\left[p_{j}-\hat{k}\left(\hat{k} \cdot p_{j}\right)\right]+\left[p_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot p_{j}\right)\right]
$$

and this is almost constant, contributing mainly around $\hat{k}= \pm \hat{R}$, and so can be taken out of the integral over Ω_{k}^{n} leaving only $e^{i \omega / c} \hat{k} . \underline{R}$ to be evaluated over Ω_{k}^{n}
$\int d \Omega \hat{k} e^{i \omega / c} \hat{k} \cdot R_{a}=\int_{0}^{2 \pi} d Q^{\prime} \int_{0}^{\pi} d Q^{\prime} \sin \theta e^{i \omega / c} R_{a} \cos \theta \cdot$ $\left.\begin{array}{l}\text { where } \\ \cos \theta^{\prime}\end{array}=\hat{k} \cdot \hat{R}\right\}$ (3.B.37)

Thus, substituting $t_{R}=t+\frac{R}{C}$ also, we obtain
$\underline{E}^{(+)}\left(\underline{R}, t_{R}\right)=\underline{E}^{(+)}\left(\underline{R}, t_{R}\right)$

$$
\int_{0}^{t_{R}} d t^{\prime} e^{i\left(\omega-\omega_{j}\right)\left(t^{\prime}-t\right)_{P_{i j}}} \times e^{+i \omega_{j} F / C}
$$

There are two cases of interest
(a) when the initial radiation is absent entirely, or
(b) confined to a narrow beam.

In case: (b), if \underline{R} lies outside any such beam, and if $R \gg r$ (so that
 but $e^{-i \omega\left(R_{a}+R\right) / c_{1}=} e^{-i \omega 2 R / c} i_{i s}$ an extremely rapidiy oscillating, since R is very large compared with r, and so is neglected.

Hence

$\left[\right.$ N.B. If $\underline{r}=0$, i.e. the atom is at the origin, then $\left.R=R_{a}\right]$
Integrating over t^{\prime} we obtain, on using $R_{a}-R=r$,
$\underline{E}^{(+)}\left(\underline{R}, t_{R}\right)=\underline{E}^{(+)(0)}\left(\underline{R}, t_{R}\right)$
$+\frac{1}{2 \pi c^{2}} \underset{j=j j_{j}}{\sum} \frac{\left.\Gamma_{D_{j}-\hat{R}_{a}}\left(\hat{R}_{a} \cdot \mathbb{R}_{j}\right)\right]}{R_{a}} \int_{0}^{\infty} d \omega \omega^{2} e^{-i \omega_{j} r / c}{ }_{P_{i j}}(t)$
$x\left[\frac{e^{i\left(\omega-\omega_{j}\right)(R-r) / c}-e^{-i\left(\omega-\omega_{j}\right)(R+r / c)}}{i\left(\omega-\omega_{j}\right)}\right]$
where the 2 nd term in [] is a H.F. term and can be neglected and we can approximate [] by $2 \pi \delta\left(\omega-\omega_{j}\right)$. Hence

$$
\begin{align*}
& \underline{E}^{(+)}\left(\underline{R}, t_{R}\right)=\underline{E}^{(t)(0)}\left(R_{0} t_{R}\right) \tag{3.B.41}\\
& \quad+\underset{j=j^{\prime} j^{\prime \prime}}{ }\left[\frac{\left[R_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot R_{j}\right)\right.}{R_{a}}\right] \frac{\omega_{j}^{2}}{c^{2}} P_{i j}(t) e^{-i \omega_{j} / c^{r}} \text { where } r=R-R_{a} \text {, }
\end{align*}
$$

which is identical in form to eq. (36) of Lehmberg $[2]$ when $\kappa=1$. We have already assumed $\omega_{j} R_{a / c} \gg 1$ and since $\left|R_{a}-R\right| \leq r \max$ conditions $\omega_{j} t \gg 1$ and $c t \gg r \max$ lead to $\omega_{j}\left[t-\left(R-R_{a}\right) / c\right] \gg 1$.
[N.B. H.F. terms in the Hamiltonian result in expressions of the form $\int_{0} \operatorname{d} \omega f(\omega) \delta\left(\omega+\omega_{j}\right)$ which are identically zero since $\omega=-\omega_{j}$ does not lie within the range of the integral over ω and so has no effect.]

Substituting in the expression for $f_{\hat{R}_{j}}\left(t, t^{\prime}\right)$ eq. (3.B.25) for $j=j^{\prime}$ (i.e. transitions between j^{\prime} and i) we obtain 9 terms, as follows: $f_{R_{j}}\left(t_{R^{\prime}}, t_{R^{\prime}}\right)=\frac{R^{2} c}{2 \pi \omega_{j},^{K}}\left\langle\underline{E}^{(+)+}\left(\underline{R}, t_{R}\right) \cdot \underline{E}^{(+)}\left(\underline{R}, t_{R},\right)>\right.$
(which is proportional to $\left\langle a_{\ell \sigma}\left(t_{R}\right) a_{\ell \sigma}\left(t_{R}\right)^{\prime}\right)$, as we see from eq. (3.B.26).)

$$
\begin{align*}
& =\frac{R^{2} c}{2 \pi \omega_{j}, ~}\left[\left\langle E^{(+)(0)+}\left(\underline{R}, t_{R}\right) \cdot \underline{E}^{(+)(0)}\left(\underline{R}, t_{R},\right)\right\rangle\right. \\
& \left.+\underset{j=j ' j "}{\sum_{j}} \frac{\left[R_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot R_{j}\right)\right.}{R_{a}^{2}}\right]^{2}\left(\frac{\omega_{j}}{c}\right)^{4}\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R}\right)>\right. \\
& +\frac{\left.\left[\underline{g}_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot \underline{g}_{j}\right)\right] \bar{g}_{j "}-\hat{R}_{a}\left(\hat{R}_{a} \cdot g_{j}\right)\right] \frac{\omega_{j}, 2 \omega_{j " 2}}{c^{4}}}{R_{a}^{2}}\left\{e^{i\left(\omega_{j},-\omega_{j " \prime}\right) r / c}\right. \tag{3.B.43}\\
& x\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i j \prime}\left(t_{R}\right)\right\rangle+e^{\left.-i\left(\omega_{j} \prime^{-} \omega_{j \prime}\right) R / c_{\left\langle P_{i j \prime}\right.}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R}\right)>\right\}} \\
& \left.+\sum_{j=j^{\prime} j^{\prime \prime}} \frac{\left[\underline{R}_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot R_{j}\right)\right.}{R_{a}}\right] \frac{\omega_{j}}{c^{2}}\left\{e^{\left.-i \omega_{j} x / c<E^{E(t)(0) \dagger}\left(R_{0}, t_{R}\right) P_{i j}\left(t_{R^{\prime}}\right)\right\rangle}\right. \\
& +e^{\left.\left.i \omega_{j} r / c<P_{i j}^{\dagger}\left(t_{R}\right) \underline{E}^{(+)(0)}\left(\underline{R}, t_{R^{\prime \prime}}\right)>\right\}\right]}
\end{align*}
$$

Now when R is sufficiently large the interference between the incident and scattered radiation is negligible, hence the last two terms in Σ can be ignored, so that
j

$$
\begin{equation*}
f_{\hat{R}_{j^{\prime}}}\left(t_{R^{\prime}}, t_{R^{\prime}}\right)=f_{\hat{R}_{j}}^{(0)}\left(t_{R^{\prime}}, t_{R^{\prime}}\right)+L_{\hat{R}_{j}}\left(t_{R^{\prime}}, t_{R^{\prime}}\right) \tag{3.8.44}
\end{equation*}
$$

which can be shown to be the same as a factor of $\left(R^{2} c \lambda 2 \pi \hbar \omega_{j}\right.$) times the following expression:
where $f_{R_{j}}^{(0)}\left(t_{R}, t_{R^{\prime}}\right)=\frac{R^{2} c}{2 \pi \omega_{j} T^{F}}\left\langle\underline{E}^{(+)(0)+}\left(\underline{R}, t_{R}\right) \cdot \underline{E}^{(+)(0)}\left(\underline{R}^{\prime}, t_{R},\right)\right\rangle$
and $\quad L_{\hat{R}_{j}}\left(t_{R^{\prime}}, t_{R^{\prime}}\right)=\left.\frac{R^{2} c}{2 \pi \omega_{j}{ }^{5}}\right|_{j=j^{\prime}, j^{\prime \prime}} \frac{\left|p_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot g_{j}\right)\right|^{2}}{R_{a}^{2}}\left(\frac{\omega_{j}}{c}\right)^{4}$

$$
x\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R^{\prime}}\right)\right\rangle
$$

$$
\begin{equation*}
+\frac{\left.\left|\underline{R}_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot R_{j}\right)\right|\right|_{R_{j}}-\hat{R}_{a}\left(\hat{R}_{a} \cdot R_{j \prime}\right) \mid}{R_{a}^{2}} \frac{\omega_{j}{ }^{2} \omega_{j "}{ }^{2}}{c^{4}}\left\{e^{i\left(\omega_{j},-\omega_{j} \prime \prime\right.}\right) r / c \tag{3.B.47}
\end{equation*}
$$

$$
\left.x\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i j \prime}\left(t_{R}\right)\right\rangle+e^{-i\left(\omega_{j},^{-\omega_{j \prime}}\right) r / c}<P_{i j \prime \prime}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R}\right)>\right\}
$$

Now $\quad\left|P_{j}-\hat{R}_{a}\left(\hat{R}_{a} \cdot D_{j}\right)\right|^{2}=p_{j}{ }^{2}\left(\hat{R}_{a} \cdot P_{j}\right)^{2}-2\left(E_{j} \cdot \hat{R}_{a}\right)^{2}$

$$
\begin{equation*}
=B_{j}^{2\left|l-\left(\hat{R}_{a} \cdot \hat{D}_{j}\right)^{2}\right|} \tag{3.B.48}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{\mu} G_{\mu \mu}^{(1)}\left(\underline{R}, t_{R} ; \underline{R}^{\prime} t_{R^{\prime}}\right)=\sum_{\mu} G_{\mu \mu}^{(1)(0)}\left(\underline{R}, t_{R} ; \underline{R}, t_{R^{\prime}}\right) \\
& \left.+\underset{j=j^{\prime}, j "}{\sum} Q_{j}^{2}(\hat{R})<P_{i j}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R^{\prime}}\right)\right\rangle+Q_{j} \cdot Q_{j \prime \prime}<P_{i j}^{+}\left(t_{R}\right) P_{i j \prime}\left(t_{R}\right)> \tag{3.B.45}
\end{align*}
$$

$$
=\frac{3}{8 \pi} \gamma_{j}, \frac{R^{2}}{R_{a}^{2}}\left[1-\left(\hat{R}_{a} \cdot \hat{P}_{j}\right)^{2}\right]\left\langle P_{i j}^{\dagger},\left(t_{R}\right) P_{i j}\left(t_{R}\right)\right\rangle
$$

$$
+\frac{3}{8 \pi} \gamma_{j \prime} \frac{R^{2}}{R_{a}^{2}}\left[1-\left(\hat{R}_{a} \cdot \hat{P}_{j \prime}\right)^{2}\right]<P_{i j "}^{\dagger}\left(t_{R}\right) P_{i j "}\left(t_{R^{\prime}}\right)>\frac{\omega_{j "}}{\omega_{j} \prime}
$$

$$
+\frac{1}{2 \pi \hbar} p_{j} \cdot P_{j "}\left[\hat{p}_{j} \cdot \cdot \hat{p}_{j "}-\left(\hat{R}_{a} \cdot \hat{p}_{j}\right)\left(\hat{R}_{a} \cdot \hat{p}_{j \prime \prime}\right)\right] \frac{R^{2}}{R_{a}^{2}} \frac{\omega_{j \prime \prime}{ }^{3} \omega^{3}}{\omega_{j}} \omega_{j^{\prime \prime}}
$$

$$
\left.\left\langle P_{i j "}^{\dagger}\left(t_{R}\right) P_{i j},\left(t_{R^{\prime}}\right)\right\rangle\right\}
$$

where γ_{j}, $\gamma_{j \prime \prime}$, are defined by eq. (3.A.246).

$$
\begin{aligned}
& \text { so that } \\
& L_{R_{j}}\left(t_{R}, t_{R^{\prime}}\right)=\frac{R^{2} c}{2 \pi \omega_{j}, K} \prod_{j=j^{\prime}, j^{\prime \prime}}^{\Sigma} P_{j}{ }^{\left[1-\left(\hat{R}_{a} \cdot \hat{P}_{j}\right)^{2}\right]} R_{a}^{2}\left(\frac{\omega_{j}}{c}\right)^{4}\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R^{\prime}}\right)>\right. \\
& +p_{j} \cdot P_{j "}\left[\hat{\underline{R}}_{j} \cdot \cdot \hat{R}_{j "}-\left(\hat{R}_{a} \cdot \hat{\underline{R}}_{j},\right)\left(\hat{R}_{a} \cdot \hat{P}_{j "}\right)\right] \frac{\omega_{j} r^{2} \omega_{j "}{ }^{2}}{c^{4}}\left\{e^{i\left(\omega_{j},-\omega_{j} \prime\right) r / c}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{R^{2}}{2 \pi h}\left[P_{j}{ }^{2} \frac{\left[1-\left(\hat{R}_{a} \cdot \hat{P}_{j}\right)^{2}\right]}{R_{a}^{2}} \frac{\omega_{j}{ }^{3}}{c^{3}}\left\langle P_{i j}{ }^{\prime},\left(t_{R}\right) P_{i j},\left(t_{R},\right)\right\rangle\right. \\
& +p_{j \prime \prime}{ }^{2} \frac{\left[1-\left(\hat{R}_{a} \cdot \hat{p}_{j^{\prime \prime}}\right)^{2}\right]}{R_{a}^{2}} \frac{\omega_{j " \prime}}{c^{3}}<P_{i j^{\prime \prime}}^{+}\left(t_{R}\right) P_{i j^{\prime \prime}}\left(t_{R^{\prime}}\right)>\frac{\omega_{j \prime \prime}}{\omega_{j \prime}} \\
& +p_{j}, p_{j \prime}^{\prime \prime} \frac{\left[\left(\hat{p}_{j} \cdot \cdot \hat{p}_{j \prime}\right)-\left(\hat{R}_{a} \cdot \hat{p}_{j^{\prime}}\right)\left(\hat{R}_{a^{\prime}} \cdot \hat{p}_{j^{\prime \prime}}\right)\right]}{R_{a}^{2}} \frac{\omega_{j^{\prime \prime}}{ }^{3}}{c^{3}} \cdot \frac{\omega_{j^{\prime \prime}}}{\omega_{j^{\prime \prime}}} \mathrm{f}^{i\left(\omega_{j},-\omega_{j \prime}\right) r / c} \\
& \left\langle P_{i j}^{+}\left(t_{R}\right) P_{i j "}\left(t_{R^{\prime}}\right)\right\rangle+e^{\left.-i\left(\omega_{j} \prime^{-\omega_{j "}}\right) r / c_{\left\langle P_{i j "}\right.}^{\dagger}\left(t_{R}\right) P_{i j}\left(t_{R^{\prime}}\right)>\right\}}
\end{aligned}
$$

Writing,

$$
\begin{equation*}
W_{\hat{R}_{j}}^{(1)}=\frac{3 \gamma_{j}}{8 \pi}\left[1-\left(\hat{R}_{a} \cdot \hat{p}_{j},\right)^{2}\right] \tag{3.B.50}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& L_{R}^{\prime}\left(t_{R}, t_{R}^{\prime}\right)=W_{R_{j}}^{(1)} \frac{R^{2}}{R_{a}^{2}}\left\langle P_{i j}^{\dagger},\left(t_{R}\right) P_{i j \prime}\left(t_{R}^{\prime}\right)\right\rangle \tag{3.B.51}\\
& +W_{R_{j}}^{(1)} \frac{R^{2}}{R_{a}^{2}}<P_{i j \prime \prime}^{+}\left(t_{R}\right) P_{i j \prime}\left(t_{R}^{\prime}\right)>\frac{\omega_{j \prime}^{\prime \prime}}{\omega_{j \prime}}+W^{(2)}
\end{align*}
$$

where

$$
\begin{align*}
& w^{(2)}=\frac{1}{2 \pi \hbar} p_{j}, p_{j "}\left[\hat{p}_{j} \prime \cdot \hat{p}_{j \prime}^{\prime \prime}-\left(\hat{R}_{a} \cdot \hat{p}_{j},\right)\left(\hat{R}_{a} \cdot \hat{p}_{j \prime}\right)\right] \frac{R^{2}}{R_{a}^{2}} \frac{\omega_{j "}{ }^{3} \omega^{3}}{\omega_{j}} \omega_{j \prime \prime} \tag{3.B.52}
\end{align*}
$$

$$
\begin{aligned}
& \left.x<P_{i j \prime}\left(t_{R}\right) P_{i j}\left(t_{R}^{\prime}\right)>\right\}
\end{aligned}
$$

and, if the atom is at the origin, $R=R_{a}$ and

$$
\begin{aligned}
& f_{\hat{R}_{j}}\left(t_{R}, t_{R}^{\prime}\right)=\frac{R^{2} c}{2 j_{j}{ }^{K} \underline{E}^{(+)(0)}\left(\underline{R}, t_{R}\right) \cdot E^{(t)(0)}\left(\underline{R}, t_{R}^{\prime}\right), ~(, ~}
\end{aligned}
$$

Now
$f_{j},\left(t_{R}, t_{R}^{\prime}\right)=\delta d \Omega_{R}^{\hat{R}^{f}} \hat{R}_{j}\left(t_{R}, t_{z}^{\prime}\right)=d \Omega_{R}^{f_{R}}(0)\left(t_{R_{j}}, t_{R}^{\prime}\right)$

where

$$
\begin{array}{r}
f_{j^{\prime}}^{(0)}\left(t_{R}, t_{R}^{\prime}\right)=\frac{R^{2} c}{(2 \pi c)^{3} \omega_{j},} \sum_{\sigma=1}^{2} d \Omega_{\hat{R}} d d \Omega_{\hat{R}} \int_{0}^{\infty} d a \times \alpha_{0}^{3} e^{i \omega\left(t_{R}-t_{R}^{\prime}\right)} \\
x<a_{\ell \sigma}^{+}(0) a_{l \sigma}(0)>
\end{array}
$$

and

$$
\begin{equation*}
\left.L_{j}\left(t_{R}, t_{R}^{\prime}\right)=r_{j},\left\langle P_{i j}^{+}\left(t_{R}\right) P_{i j}\left(t_{R}^{\prime}\right)\right\rangle+\gamma_{j \prime \prime} \frac{\omega_{j n}}{\omega_{j \prime}^{\prime \prime}} ब_{i j^{\prime \prime}}^{4}\left(t_{R}\right) P_{i j "}\left(t_{R}^{\prime}\right)\right\rangle \tag{3.B.54}
\end{equation*}
$$

$$
+d \Omega_{\hat{R}} W^{(2)}
$$

since $d \Omega_{\hat{R}}\left|1-\left(\hat{R} \cdot \hat{p}_{j}\right)^{2}\right|=\frac{8 \pi}{3}$ for $j=j^{\prime}, j^{\prime \prime} \begin{aligned} & \text { (see Chapter VII for } \\ & \text { detailed explanation) }\end{aligned}$
N.B. $\left\langle a_{l \sigma}^{\dagger}(0) a_{\ell \sigma}(0)\right\rangle=n_{\ell \sigma}(0)=$ no. of photons in mode lo at $t=0$ so that if initially there is no radiation $n_{\ell \sigma}(0)=0$ and so this term is irrelevant.)

We can see that it has nothing to do with the radiation damping since it exists even when $g^{\prime} s$ are zero. $f_{j^{\prime}}^{(0)}\left(t_{R}, t_{R}^{\prime}\right)$ is simply the incident beam's characteristic and shows whether it is coherent, incoherent, chaotic, etc., i.e. it depends on the photon distribution of the incident beam. Soithat, for no radiation present initially, the energy spectrum of the scattered field for transitions from level j is:

$$
\begin{align*}
L_{j}\left(t_{R}, t_{R}^{\prime}\right)= & \gamma_{j},\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i j},\left(t_{R}^{\prime}\right)\right\rangle+\gamma_{j \prime} \frac{\omega_{j "}^{\prime \prime}}{\omega_{j \prime}}\left\langle P_{i j " \prime}^{\dagger}\left(t_{R}\right) P_{i j "}\left(t_{R}^{\prime},\right)\right\rangle \tag{3.B.55}\\
& +\oint d q_{\hat{R}} \omega^{(2)}
\end{align*}
$$

and this torm arises from the interaction.
N.B. $\left.d \Omega_{\hat{R}^{W}}(2)=\frac{\omega_{j} V_{i \prime}}{\omega_{j "}}\left\{\left\langle P_{i j}^{\dagger},\left(t_{R}\right) P_{i j "}\left(t_{R}^{\prime}\right)\right\rangle+\left\langle P_{i j "}^{\dagger}\right| t_{R}\right) P_{i j}\left(t_{R}^{\prime}\right)\right\rangle$ as
shown in Chapter VII eq. (7.B.74) except that the factor outside the brackets is different since in the latter case the $j^{\prime \prime} \rightarrow i$ transition is considered and not the $j^{\prime} \rightarrow 1$ transition as here.

In Chapters V, VI and VII we shall be evaluating 2-time atomic correlation functions using the Markoff approximation as in Mollow's paper ['9]. Here we shall avoid this by instead solving for states such $P_{i j}\left(t^{\prime}{ }_{R}\right)|r a d\rangle,. P_{i j n}\left(t_{R}{ }^{\prime}\right) \mid$ rad. $>$ as suggested by Lehmberg $[2]$ p. 887 at the end of Section III where he gives this method as an alternative to approximating terms $\left\langle P_{i j}^{\dagger}\left(t_{R}\right) P_{i f}\left(t_{R}\right)\right\rangle$ etc. by using the fluctuation-regression theorem. [51] This we do in order to find $\left.<_{\ell \sigma}^{\dagger}\left(t_{R}\right) a_{\ell \sigma}\left(t_{R}\right)\right\rangle$, which we see from eq. (3.B.32) is proportional to $f_{\hat{R}_{j}}\left(t_{R}, t_{R},\right)$, for retarded times t_{R} and $t_{R^{\prime}} \gg \gamma^{-1}$. We can compare its value from eq. (3.A.8) with eq. (3.B.43).

Since |rad.> = 10 initially we shall now derive equations for $P_{i j}(t) 10$ s and $P_{i j \prime}(t) 10>$ from (3.A.13) and (3.A.14) by multiplying those eqs. on the right of the vacuun state 10 for all 2σ photons.

Thens since

$$
\underline{E}_{+}^{(0)}(t) 10>-a_{\ell \sigma}(0) 10>=0
$$

and there are no terms involving $E_{t}^{(0) \dagger}(t)$, we obtain two coupled linear differential equations:

$$
\begin{align*}
& \left.\dot{P}_{i j^{\prime \prime}} 10\right\rangle=-\left(\frac{1}{2} \gamma_{j " 1}+i \omega_{j^{\prime \prime}}\right) P_{i j} 10>-\frac{1}{2} \Gamma_{j} P_{0} P_{j j} 10> \tag{3.B.56}\\
& \dot{P}_{i j}, 10>=-\left(\frac{1}{2} \gamma_{j},+i \omega_{j_{0}}\right) P_{i j}, 10>-\frac{1}{2} r_{j 11} P_{i j}{ }^{10>} \tag{3.B.57}
\end{align*}
$$

Let $A=P_{1 f^{\prime \prime}}(t) 10>$ and $B=P_{i f}(t) 10>$
then

$$
\begin{align*}
& \dot{A}=-\left(\frac{1}{2} \gamma_{j^{\prime \prime}}+1 \omega_{j^{\prime \prime}}\right) A-\frac{1}{2} r_{j}, B \tag{3.B.59}\\
& \dot{B}=-\left(\frac{1}{2} \gamma_{j},+1 \omega_{j,}\right) B-\frac{1}{2} r_{j} A \tag{3.B.60}
\end{align*}
$$

Taking Laplace transforms for initial time $t^{\prime}=0$ we obtain simultaneous equations

$$
\begin{align*}
& \left(s+\frac{1}{2} \gamma_{j^{\prime \prime}}+1 \omega_{j^{\prime \prime}}\right) L(A)=-\frac{1}{2} r_{j^{\prime}} L(B)+A(0) \tag{3.B.61}\\
& \left(s+\frac{1}{2} \gamma_{j},+1 \omega_{j^{\prime}}\right) L(B)=-\frac{1}{2} r_{j^{\prime \prime}} L(A)+B(0) \tag{3.B.62}
\end{align*}
$$

Solving for $L(A)$ and $L(B)$ we obtain

$$
\begin{align*}
& L(A)=\frac{\left(8+\frac{1}{2} \gamma_{j}+i \omega_{j}{ }_{0}^{\prime}\right)}{2} A(0)-\frac{1}{2} r_{j^{\prime}} \frac{1}{Z} B(0) \tag{3.B.63}\\
& L(B)=\frac{\left(s+\frac{1}{2} \gamma_{j \prime \prime}+i_{\omega_{j} \prime \prime}\right)}{Z} B(0)-\frac{1}{2} r_{j_{0}^{\prime \prime}} \frac{1}{Z} A(0) \tag{3.B.64}
\end{align*}
$$

where

$$
\begin{align*}
& Z=s^{2}+b s+c=\left(s-s_{1}\right)\left(s-s_{2}\right) \\
& b=\frac{1}{2}\left(\gamma_{j},+\gamma_{j \prime \prime}\right)+1\left(\omega_{j},+\omega_{j}\right) \tag{3.B.65}\\
& c=\left(\frac{1}{2} \gamma_{j}+i \omega_{j \prime}\right)\left(\frac{1}{2} r_{j \prime}+i \omega_{j \prime}^{\prime \prime}\right)-\frac{1}{4} r_{j} j_{0} r_{j \prime}
\end{align*}
$$

If we now separate the terms in eqs. (3.B.53) and (3.B.54) into partial fractions and take the inverse transforms we obtain:

$$
\begin{align*}
& \left.\frac{-\frac{1}{2} r_{1} 0}{\left(8_{1} y^{-8}\right)}\left[e^{8} t-e^{s_{2} t}\right] P_{i j}(0) 10\right\rangle \tag{3.B.66}\\
& \left.P_{i j}(t) 10\right\rangle=\frac{1}{\left(s_{1}-s_{2}\right)}\left[\left(s_{1}+\frac{1}{2} \gamma_{j " H}+i \omega_{j " 0}\right) e^{s_{1} t}-\left(s_{2}+\frac{1}{2} \gamma_{j "}+i \omega_{j H_{0}}\right) e^{s_{2} t}\right] \tag{3.B.67}\\
& \times P_{i j}\left(0 y_{10>} \frac{-1 / r_{1 "} 0}{\left.\left(8_{1}^{-8}\right)^{\prime}\right)}\left[e^{81^{t}}-e^{s_{2}}\right] P_{i j^{\prime \prime}}(0) 10>\right.
\end{align*}
$$

We shall find values s_{1} and s_{2} later.
Now what we are interested in calculating is the correlation

$$
\begin{align*}
& \text { function: } \\
& f_{\hat{R}_{j \prime \prime}}\left(t_{R^{\prime}}, t_{R^{\prime}}\right)=\frac{R^{2} c}{2 \pi \omega_{j \prime^{\prime \prime}}}\left\langle\underline{E}^{(t) t}\left(\underline{R}, t_{R}\right) \cdot \underline{E}^{(t)}\left(\underline{R}, t_{R}\right)\right\rangle \tag{3.B.68}\\
& =\frac{R^{2} c}{\omega_{j \prime}} \frac{1}{V} \sum_{l, \sigma} \omega_{l}<a_{l \sigma}^{\dagger}\left(t_{R}\right) a_{\ell \sigma}\left(t_{R}\right)>
\end{align*}
$$

and this is determined by $\left\langle a_{\ell \sigma}^{+}\left(t_{R}\right) a_{\ell \sigma}\left(t_{R}\right)>\right.$
where averaging is performed over initial atomic and radiation states.
assuming that there is no radiation present initially and the atom is in state $\mid j ">$ this can be written:

$$
\begin{equation*}
\left.\left\langle j^{\prime \prime}\right| \underset{\mathrm{rad}}{<} 0\left|a_{l \sigma}^{\dagger}\left(t_{R}\right) a_{\ell \sigma}\left(t_{R^{\prime}}\right) 10 \underset{\mathrm{rad}}{>}\right| j^{\prime \prime}\right\rangle \tag{3.B.69}
\end{equation*}
$$

If we put $t_{R}=t_{R}$, then the expression

gives the average photon emission rate into solid angle $d \Omega_{\hat{R}}$ for spontaneous emission. This is the actual intensity that would be measured by an ordinary photo detector at point R at time t_{R} or by a similar device. [44] (N.B. it contains a sumation over all possible modes.)

We now calculate

$$
\left\langle\left. j "\right|_{\text {rad }} ^{\left.\left.<0\left|a_{l \sigma}^{\dagger}\left(t_{R}\right) a_{l \sigma}\left(t_{R^{\prime}}\right)\right| 0\right\rangle\right\rangle_{\text {rad }}\left|j^{\prime \prime}\right\rangle}\right.
$$

from the equations for $P_{i j \prime}(t)|0\rangle|j "\rangle$ and $P_{i j}(t)|0\rangle|j '\rangle$ given below:

$$
\begin{aligned}
& P_{i j \prime \prime}(t)|0\rangle \underset{\mathrm{rad}}{ }\left|j^{\prime \prime}\right\rangle=|1, t\rangle\left\langle j^{\prime \prime}, t \mid j^{\prime \prime}, 0\right\rangle|0\rangle \operatorname{rad} \\
& =\frac{1}{\left(s_{1} s_{2}\right)}\left[\left(s_{1}+\frac{7}{2} \gamma_{j}+i \omega_{j}{ }^{\prime}\right) e^{s_{1} t}-\left(s_{2}+\frac{1}{2} \gamma_{j}+i \omega_{j}{ }^{\prime} 0\right) e^{s_{2} t}\right] \quad|i, 0\rangle \\
& P_{i j \prime}(t)|0\rangle \underset{\operatorname{rad}}{ }\left|j^{\prime \prime}\right\rangle=|i, t\rangle\left\langle j^{\prime}, t \mid j^{\prime \prime}, 0\right\rangle|0\rangle \underset{\mathrm{rad}}{ } \\
& =\frac{-\frac{1}{2} \Gamma_{j " 0}}{\left(s_{1}-s_{2}\right)}\left[e^{s_{1} t}-e^{s_{2} t}\right]|i, 0\rangle
\end{aligned}
$$

Applying operators $|0\rangle$ and $\left|j^{\prime \prime}\right\rangle$ to the RHS of eq. (3.A.8) we obtain:

$$
\begin{align*}
& a_{l \sigma}\left(t_{R}\right)|0\rangle{ }_{\operatorname{rad}}\left|j^{\prime \prime \prime}=i g_{\ell \sigma j}, \int_{0}^{t_{R}} d t^{\prime} e^{-i \omega_{l}\left(t_{R}-t^{\prime}\right)_{P_{i j}}\left(t^{\prime}\right)|0\rangle} \underset{r a d}{ }\right| j^{\prime \prime\rangle} \\
& +\left.i g_{l \sigma j^{\prime \prime}} \int_{0}^{t_{R} d t^{\prime \prime} e^{-i \omega_{l}\left(t_{R}-t^{\prime \prime}\right)} P_{i j \prime}\left(t^{\prime \prime}\right)|0\rangle}\right|_{\text {rad }} \mid j^{\prime \prime} \tag{3.B.73}
\end{align*}
$$

and substituting for $p_{i j}{ }^{\prime}\left(t^{\prime}\right)|0\rangle \underset{r a d}{ }\left|j^{\prime \prime}\right\rangle$ and $P_{i j^{\prime \prime}}\left(t^{\prime \prime}\right)|0\rangle \underset{\mathrm{rad}}{ }\left|j^{\prime \prime}\right\rangle$ we obtain

$$
\begin{aligned}
& \left.\left.\left.a l \sigma\left(t_{R}\right)\right|_{0}\right\rangle\left._{\mathrm{rad}}\right|_{j \prime \prime}\right\rangle=-\left.i g \ell \sigma_{j}\right|^{-j^{\omega} \ell t_{R}} \int_{0}^{t_{R}} d t^{\prime} \frac{\frac{1}{2} j^{\prime \prime} 0}{s_{1} s_{2}} x \\
& {\left[e^{\left(s_{1}+i \omega_{\ell}\right) t^{\prime}}-\left.e^{\left.\left(s_{2}+i^{\omega_{l}}\right) t^{\prime}\right]}\right|_{1,0^{\prime}}\right.} \\
& +i g_{l \sigma_{j \prime}} e^{-i \omega_{\ell} t_{R}} \int_{0}^{t_{R}} d t^{\prime \prime} \frac{1}{\left.l s_{2}^{-s_{2}}\right)}\left[\left(s_{1}+\frac{1}{2} \gamma_{j}+i \omega_{j}{ }_{0}\right) e^{\left(s_{2}+i \omega_{l}\right) t^{\prime \prime}}\right. \\
& \left.\left.-\left(s_{2}+\frac{1}{2} \gamma_{j}+i^{\omega} j^{\prime}\right)^{\left(s_{2}+i^{\omega}\right.}{ }_{l}\right) t^{\prime \prime}\right]\left.\quad\right|_{i, 0}{ }^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left.e^{\left(s_{2}+1 \omega_{l}\right) t^{\prime \prime}}\right]\left.\right|_{1,0\rangle}
\end{aligned}
$$

Before integrating we shall find s_{1} and s_{2}
N.B. $\quad s_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}$

$$
\begin{equation*}
=-\frac{1}{2}\left[\frac{1}{2}\left(\gamma_{j}+\gamma_{j \prime}\right)+i\left(\omega_{j} 0^{+\omega_{j \prime}}\right)\right] \pm \frac{1}{2} \sqrt{p+i q} \tag{3.B.75}
\end{equation*}
$$

where $p=\frac{1}{4}\left(\gamma_{j},+\gamma_{j "}\right)^{2}-\left(\omega_{j} o_{0}^{+\omega_{j " 0}}\right)^{2}-\left(\gamma_{j}, r_{j n}-r_{j} o_{j " 0} r_{j}\right)$
$q=\left(\gamma_{j}+\gamma_{j "}\right)\left(\omega_{j} 0^{+\omega_{j " 0}}\right)-2\left(\gamma_{j}, \omega_{j "}+\gamma_{j "} \omega_{j}{ }_{0}\right)$

Now let

$$
\sqrt{p+1 q}=x+i y
$$

\therefore on squaring both sides of the equation

$$
p+1 q=\left(x^{2}-y^{2}\right)+12 x y
$$

and on equating real and imaginary parts

$$
\begin{aligned}
& p=\left(x^{2}-y^{2}\right) \\
& q=2 x y
\end{aligned}
$$

solving the last 2 equations we obtain

$$
x=\sqrt{\frac{p+\sqrt{p^{2}+q^{2}}}{2}} \text { and } y=\sqrt{\frac{-p+\sqrt{p^{2}+q^{2}}}{2}}
$$

so that

$$
\begin{equation*}
s_{1,2}=-\frac{1}{2}\left[\frac{1}{2}\left(\gamma_{j}+\gamma_{j "}\right) \mp x\right]-1 \frac{1}{2}\left[\left(\omega_{j} 0^{+\omega_{j} \mu_{0}}\right) \mp y\right] \tag{3.B.77}
\end{equation*}
$$

and these roots are referred to as $-8^{ \pm}$in the paper. [4]

$$
\begin{align*}
& s_{1}+s_{2}=-\frac{1}{2}\left(\gamma_{j}+\gamma_{j "}\right)-i\left(\omega_{j 1} 0^{+\omega_{j " 0}}\right)=-\left(s_{+}+s_{-}\right) \\
& s_{1}-s_{2}=x+i y=-s_{+}+s_{-}=\begin{array}{c}
\text { where } x \\
\text { above }
\end{array} \\
& -s_{1}=s_{+}=\frac{1}{2}\left[\frac{1}{2}\left(\gamma_{j}+\gamma_{j \prime}\right)-x\right]+i \frac{1}{2}\left[\left(\omega_{j} 0^{+\omega_{j " O}}\right)-y\right] \tag{3.B.78}\\
& -s_{2}=s_{-}=\frac{1}{2}\left[\frac{1}{2}\left(\gamma_{j}+\gamma_{j \prime}\right)+x\right]+i \frac{1}{2}\left[\left(\omega_{j} 0^{\left.+\omega_{j " 0}\right)+y}\right]\right.
\end{align*}
$$

If we consider times $t_{R} \gg \gamma_{j \prime}^{-1}$ and $\gamma_{j \prime \prime}^{-1}$ then $e^{-1 / 4\left(\gamma_{j}+\gamma_{j "}\right)} t_{R} \rightarrow 0$ and thus $e^{s_{1} t^{t}}$ and $e^{s_{2} t_{R}}+0$
$\left.\begin{array}{l}\text { and } \int_{0}^{t_{R} d t^{\prime}}\left[e^{\left(s_{1}+i \omega_{l}\right) t^{\prime}}-e^{\left(s_{2}+i \omega_{l}\right) t^{\prime}}\right] \\ =\left[\frac{e^{\left(s_{1}+i \omega_{l}\right) t_{R}-1}}{s_{1}+i \omega_{l}}-\frac{e^{\left(s_{2}+i \omega_{l}\right) t_{R}-1}}{s_{2}+i \omega_{l}}\right]=-\left[\frac{1}{\left(s_{1}+i \omega_{l}\right)^{\prime}}-\frac{1}{s_{2}+i \omega_{l}}\right]\end{array}\right\}$
and $\int_{0}^{t_{R}} d t^{\prime \prime}\left[\left(s_{1}+\frac{1}{2} \gamma_{j}+i \omega_{j 0_{0}}\right) e^{\left(s_{1}+i \omega_{l}\right) t^{\prime \prime}}+\left(s_{2}+\frac{1}{2} \gamma_{j \prime}+i \omega_{j \prime \prime}\right) e^{\left.\left(s_{2}+i \omega_{l}\right) t \overline{\prime \prime}\right]}\right.$
$\wedge-\left[\frac{\left(s_{1}+\frac{1}{2} r_{j}{ }^{\prime}+1 \omega_{j}{ }^{\prime} 0\right)}{\left(s_{1}+1 \omega_{l}\right)}-\frac{\left(s_{2}+\frac{1}{2} r_{j}+i \omega_{j}{ }^{\prime}\right)}{s_{2}+i \omega_{l}}\right]$

Thus eq. (3.B.64) becomes

$$
\begin{equation*}
\text { i.e. } a_{2 \sigma}\left(t_{R} \gg r_{j}^{-1}\right)|0\rangle \mathrm{rad}\left|j^{\prime \prime}\right\rangle=\frac{-i e^{-i \omega_{l} t_{R}}}{\left(s_{1}+i \omega_{\ell}\right)\left(s_{2}+i \omega_{\ell}\right)} \tag{3.B.81}
\end{equation*}
$$

$$
\left[g_{\ell \sigma j}{ }^{\frac{1}{2} r_{j " 0}}-g_{\ell \sigma j "}\left(\frac{1}{2} \gamma_{j},+i\left(\omega_{j} i_{0}^{-\omega_{\ell}}\right)\right)\right]|1,0\rangle
$$

$$
\begin{aligned}
& =\frac{1 e^{-i \omega_{l} t_{R}}}{m\left(s_{1}+i \omega_{l}\right)\left(s_{2}+i \omega_{l}\right)}\left[\varepsilon_{\ell \sigma j}{ }^{\frac{1}{2} r_{j " 0}}\left(\left(s_{2}+i \omega_{l}\right)-\left(s_{2}+i \omega_{l}\right)\right)\right. \\
& \left.-g_{\ell \sigma j \prime}\left(\left(s_{1}+\frac{1}{2} \gamma_{j}+i \omega_{j \prime}\right)\left(s_{2}+i \omega_{\ell}\right)-\left(s_{2}+\frac{1}{2} \gamma_{j},+i \omega_{j}{ }^{\prime} 0\right)\left(s_{1}+i \omega_{\ell}\right)\right)\right]|i, 0\rangle \\
& =\frac{i e^{-i \omega_{l} t_{R}}}{m\left(s_{1}+i \omega_{l}\right)\left(s_{2}+i \omega_{l}\right)}\left[-g_{\ell \sigma j}{ }^{\frac{1}{2} r_{j "} 0^{m}}\right. \\
& \left.-\varepsilon_{l \text { Oj" }}\left(\left(\frac{1}{2} r_{j 1}+i \omega_{j \prime 0}\right)(-m)+i \omega_{l}(m)\right)\right]|i, 0\rangle
\end{aligned}
$$

Hence, multiplying the last equation by its hemitian conjugate

$$
\begin{aligned}
& \left.\underset{\operatorname{rad}}{<0 \mid\langle j "| a_{l \sigma}^{\dagger}}\left(t_{R} \gg \gamma^{-1}\right) a_{l \sigma}\left(t_{R}^{\prime} \gg \gamma^{-1}\right)|j ">| 0\right\rangle \underset{r a d}{ }=\left|b_{l \sigma}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.x\left\{g_{\ell \sigma j}{ }^{\frac{1}{2} r_{j " O}}-g_{\ell \sigma j "}\left(\frac{1}{2} \gamma_{j}, i\left(\omega_{j \prime O}{ }^{-\omega_{\ell}}\right)\right)\right\}\right]
\end{aligned}
$$

and since $\langle 1,0 \mid 0,1\rangle=1$

$$
\begin{aligned}
& \left|b_{\ell \sigma}\right|^{2}=\left\{\left.g_{\ell \sigma j}\right|^{\frac{1}{2}} r_{j " 0}^{m}-g_{\ell \sigma j "}\left(\frac{1}{2} \gamma_{j}{ }^{\prime}+i\left(\omega_{\ell}-\omega_{j \prime 0}\right)\right\} x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{1 / 4\left[\frac{1}{2}\left(\gamma_{j},+\gamma_{j \prime}\right)+x\right]^{2}+\left[\omega_{\ell}-\frac{1}{2}\left(\omega_{j} 0^{+\omega_{j "}} 0^{\prime-\frac{1}{2} y}\right]^{2}\right\}\right.
\end{aligned}
$$

Now, if we neglect all frequency shifts, then

$$
\begin{equation*}
\text { We now also assume } g_{\ell \sigma j^{\prime}}=g_{\ell \sigma j "} \tag{3.B.84}
\end{equation*}
$$

We shall finally assume that all decay constants are practically equal,
i.e. $\gamma_{j \prime}=\gamma_{j \prime}=r_{j}=r_{j \prime}=\gamma_{\boldsymbol{p}}$
since $r_{j \prime}=\frac{4}{3} \frac{g_{j}{ }^{2}}{n} \frac{\omega_{j}{ }^{3}}{c^{3}}, \gamma_{j "}=\frac{4}{3} \frac{p_{j \prime \prime}{ }^{2}}{\hbar} \frac{\omega_{j \prime^{\prime}}}{c^{3}}$,

$$
r_{j}=\frac{4}{3} \frac{p_{j} \cdot \cdot p_{j \prime \prime}}{\hbar} \frac{\omega_{j 1^{3}}}{c^{3}}, r_{j \prime \prime}=\frac{4}{3} \frac{p_{j} \cdot \cdot p_{j \prime \prime}}{\hbar} \frac{\omega_{j \prime \prime}}{c^{3}}
$$

and

$$
\mathrm{p}_{j}{ }^{2}=\mathrm{p}_{j^{\prime \prime}}{ }^{2}\left(=\mathrm{q}_{j} \cdot \cdot \mathrm{Q}_{j^{\prime \prime}} \text { for } \hat{p}_{j} \cdot \cdot \hat{\mathrm{p}}_{j} \prime \text { small }\right)
$$

so that $\quad \frac{r_{j^{\prime \prime}}}{r_{j^{\prime}}}=\frac{\omega_{j^{\prime \prime}}{ }^{\prime \prime}}{\omega_{j}{ }^{3}}=\frac{r_{f^{\prime \prime}}}{r_{f^{\prime}}}=\frac{r_{j^{\prime \prime}}}{r_{j \prime}}$
and if $\frac{\omega_{j "}{ }^{3}}{\omega_{j},^{3}}=1$ then our assumption of equal decay constants is correct. (N.B. For Na, d_{1} and $d_{2} \frac{\omega_{j \prime \prime}}{\omega_{j} n^{3}}=\left(\frac{5896}{5890}\right)^{3}=1.003$ and even if the separation is around $\frac{0}{1 A} \frac{\omega_{j n^{3}}}{\omega_{j}{ }^{3}}=1.005$.)
(In Chapter VII we assume that $r_{j \prime \prime}=r_{j \prime}=r_{0}$ i.e. $\omega_{j \prime}{ }^{3}=\omega_{j}{ }^{3}$ and point out that we could leave the dipole matrix elements P_{j}, and $\mathrm{g}_{j \text { " }}$ arbitrary so that $\left.\gamma_{f^{\prime}} \neq \gamma_{f \prime \prime} \neq \Gamma_{0}\right)$ With these approximations
where $x=\sqrt{\frac{p+\sqrt{p^{2}+q^{2}}}{2}}, y=\sqrt{\frac{-p+\sqrt{p^{2}+q^{2}}}{2}} ;$
and $p=+\left[r^{2}-\left(\omega_{j}-\omega_{j "}\right)^{2}\right], q=0$.
I.E. $x=\sqrt{p}, y=0$.

Thus

$$
\begin{aligned}
& \left.\left.\left.\right|_{l \sigma}\right|^{2}=\frac{g_{l \sigma}^{2}\left(\omega_{l}-\omega_{j} \prime\right.}{}\right)^{2} \\
& \left|\frac{1}{ \pm 6}\left(r^{2}-x^{2}\right)^{2}+\left(\omega_{l}-\frac{1}{2}\left(\omega_{j},+\omega_{j "}\right)\right)^{4}+\frac{1}{2}\left(\omega_{l}-\frac{1}{2}\left(\omega_{j},+\omega_{j \prime \prime}\right)\right)^{2}\left(r^{2}+x^{2}\right)\right| \\
& \text { where } \quad r^{2}-x^{2}=r^{2}-p=\left(\omega_{j,}-\omega_{j \prime \prime}\right)^{2} \\
& \text { and } \quad r^{2}+x^{2}=r^{2}+p=2 r^{2}-\left(\omega_{j},-\omega_{j " \prime}\right)^{2} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& =\frac{g_{l \sigma}^{2}\left(\omega_{l}-\omega_{j}\right)^{2}}{r^{2}\left(\omega_{l}-\frac{1}{2}\left(\omega_{j},+\omega_{j \prime}\right)\right)^{2}-\frac{1}{2}\left(\omega_{j},-\omega_{j \prime}\right)^{2}\left(\omega_{l}-\frac{1}{2}\left(\omega_{j}{ }^{+}+\omega_{j "}\right)\right)^{2}+\left(\omega_{l}-\frac{1}{2}\left(\omega_{j},+\omega_{j \prime}\right)\right)^{4}+\frac{1}{16}\left(\omega_{j}{ }^{-\omega_{j \prime}}\right)^{4}} \\
& \left|b_{\ell \sigma}\right|^{2}=\frac{g_{l \sigma}^{2}\left(\omega_{l}-\omega_{j}\right)^{2}}{\left[r^{2}\left(\omega_{l}-\frac{1}{2}\left(\omega_{j},+\omega_{j \prime}\right)\right)^{2}+\left(\omega_{l}-\omega_{j}\right)^{2}\left(\omega_{l}-\omega_{j \prime}\right)^{2}\right]} \tag{3.B.88}
\end{align*}
$$

This equation for the spectral profile of the atomic decay is the same as that derived by Morozov and Shorygin [8] using the Heitler-Ma method with terms higher than quadratic in the coupling sonstant ignored. Comparing the above equation with their eq. (15) given below under the same approximations,

$$
\left|b_{i \sigma}(\omega)\right|^{2}=\frac{\left|v_{i \sigma}^{j}\right|^{2}}{n^{2}}\left[\frac{\left(\omega_{\sigma}^{-\omega_{j},}\right)^{2}}{r^{2}\left(\omega_{\sigma}-\frac{1}{2}\left(\omega_{j,}+\omega_{j \prime \prime}\right)\right)+\left(\omega_{\sigma}-\omega_{j}\right)^{2}\left(\omega_{\sigma}-\omega_{j \prime \prime}\right)^{2}}\right]
$$

where

$$
\begin{aligned}
& E_{1_{\sigma}}=\hbar \omega_{\sigma}\left(=\hbar \omega_{\ell} \text { in our notation }\right) \\
& E_{j^{\prime}}=\hbar \omega_{j^{\prime}} \\
& E_{j^{\prime \prime}}=\hbar \omega_{j^{\prime \prime}}
\end{aligned}
$$

we see that $\quad g_{l \sigma}^{2} \rightarrow \frac{\left|v_{\ell}^{j}\right|^{2}}{\hbar^{2}}$
1.e. $\quad \frac{2 \pi \hbar \omega_{l}}{V}\left(\hat{e}_{\ell \sigma} \cdot \underline{g}_{j}\right)^{2}+\left|V_{\ell}^{j}\right|^{2}$
(3.B.89)
(3.B.90)
where $V_{\ell}{ }^{\boldsymbol{j}}$ is the interaction Hamiltonian, which in the Heitler-Ma method is treated completely generally without regard to the interaction mechanism.

Thus, as in Morozov and Shorygin's paper, we see that the spontaneous emission line shape is altered by the consideration of the exchange of virtual photons between overlapping levels E_{j}, and $E_{j "}$. If this exchange is ignored and also the probability amplitude of level j^{\prime} then we obtain a dispersion curve with maximum at $\omega_{l}=\omega_{j "}$ and of half-width $\gamma_{j "}$:

In the language of Morozov and Shorygin's paper when we allow for the possibility that the state $\left|j^{\prime}\right\rangle$ can be reached by absorption of a photon emitted virtually during the transition of the molecule from the level $E_{j n}$ to the level E_{i} we see that the line shape is no longer Lorentzian given by the formula (3.B.78). As in Morozov and Shorygin's paper the contours of the emission line for $\gamma=\omega^{\prime}=2 \Delta$ and $\gamma=2 \omega^{\prime}=4 \Delta$, where $\omega^{\prime}=\omega_{j "}-\omega_{j}{ }^{\prime}=\varepsilon_{j "}-\varepsilon_{j \prime}$, as given earlier, can be obtained. We plot $y=\frac{\left|b_{\ell \sigma}\right|^{2}}{\left(g_{\ell \sigma} / \Delta\right)^{2}}$ along the ordinate and $x=\frac{\omega_{\ell} \ell_{j "}}{\Delta}$ along the absissa so that the equation in terms of these values is

$$
\begin{equation*}
y=\left[\frac{(x+2)^{2}}{\left(\frac{y}{\Delta}\right)^{2}(x+1)^{2}+x^{2}(x+2)^{2}}\right] \tag{3.B.91}
\end{equation*}
$$

It would appear from the following reasoning, that the ordinates of Morozov and Shorygin's curves are not correct. The positions of the turning points are given bydy/dx $=0$
1.e. $(x+2)\left[x^{4}+6 x^{3}+12 x^{2}+\left(8+n^{2}\right) x+n^{2}\right]=0 \quad$ where $n=\frac{Y}{\Delta}$
$x=-2$ is the position of a minimum.
To solve the quartic equation (see ref. [52] p. 42) we first reduce it to standard form by substituting $x=y-\frac{3}{2}$. The new equation is then

$$
\begin{align*}
y^{4}+p y^{2}+q y+r & =0 \\
\text { where } p & =-\frac{3}{2} \\
q & =\left(n^{2}-1\right) \tag{3.B.94}\\
r & =-\frac{1}{16}\left(8 n^{2}+3\right)
\end{align*}
$$

We may rewrite this by resolving it into 2 quadratic factors, which, since there is no y^{3} term, must be of the form

$$
\begin{equation*}
\left(y^{2}+a y+b\right)\left(y^{2}-a y+c\right)=0 \tag{3.B.95}
\end{equation*}
$$

with colutions $y_{1,2}=\frac{-a \pm \sqrt{a^{2}-4 b}}{2} \quad y_{3,4}=\frac{a \pm \sqrt{a^{2}-4 c}}{2}$

Comparing coefficients in these 2 expressions, we have

$$
\begin{align*}
& p=c+b-a^{2} \tag{3.B.96}\\
& q=a c-a b \\
& r=b c
\end{align*}
$$

The first 2 of these equations give

$$
\begin{array}{ll}
b+c=p+a^{2}, \quad b-c=-q / a \\
\text { so } \quad b=\frac{1}{2}\left(p+a^{2}-q / a\right), \quad c=\frac{1}{2}\left(p+a^{2}+q / a\right) \tag{3.B.97}
\end{array}
$$

The product of these is r, so

$$
\begin{equation*}
4 r=\left(p+a^{2}\right)^{2}-q^{2} / a^{2} \tag{3.B.98}
\end{equation*}
$$

this being a bicubic in a^{2} :

$$
\begin{equation*}
a^{2}+2 p a^{4}+\left(p^{2}-4 r\right) a^{2}-q^{2}=0 \tag{3.B.99}
\end{equation*}
$$

One value, at least, of a^{2} from this equation must be positive, 80 a real value of a results. The values of b and c then follow, all being real.

The cubic equation is

$$
\begin{equation*}
\left(a^{2}\right)^{3}+2 p\left(a^{2}\right)^{2}+\left(p^{2}-4 r\right)\left(a^{2}\right)-q^{2}=0 \tag{3.8.100}
\end{equation*}
$$

Let $a^{2}=\ell$

$$
\begin{equation*}
\therefore \quad l^{3}+2 p l^{2}+\left(p^{2}-4 r\right) l-q^{2}=0 \tag{3.B.101}
\end{equation*}
$$

Reducing this to standard form by the substitution $2=2-2 \mathrm{p} / 3$ we obtain

$$
\begin{align*}
& z^{3}-\left(\frac{1}{3} p^{2}+4 r\right) z-\frac{1}{27}\left(2 p^{3}-72 p r+27 q^{2}\right)=0 \\
& \text { i.e. } z^{3}+2 n^{2} z-n^{2}\left(n^{2}-4\right)=0 \tag{3.8.102}
\end{align*}
$$

Solving this, in Appendix III, we obtain

$$
\begin{aligned}
& \alpha=\left[\frac{1}{2}\left[n^{2}\left(n^{2}-4\right)+n^{2} \sqrt{n^{4}-\frac{184}{27} n^{2}+16}\right]\right]^{1 / 3} \\
& \varepsilon=-\frac{2}{3} n^{2} \alpha^{-1}
\end{aligned}
$$

So, when $n=2$,

$$
\begin{equation*}
\alpha=2 \sqrt{\frac{2}{3}} \text { and } \beta=-2 \sqrt{\frac{2}{3}} \quad \therefore \alpha+\beta=0 \tag{3.3.104}
\end{equation*}
$$

and when $n=4$

$$
\begin{equation*}
\alpha=6.650 ; \beta=-1.603 \therefore \alpha+\beta=5.047 \tag{3.B.105}
\end{equation*}
$$

The real root of the cubic in ℓ when $n=2$ is $\ell=\alpha+\beta-\frac{2 p}{3}$

$$
\left.\begin{array}{l}
=\frac{-2 p}{3} \tag{3.B.106}\\
=1 . \therefore a_{2}=1
\end{array}\right\}
$$

and when $n=4 \quad \ell=5.047+1=6.047 \therefore a_{4}=\sqrt{6.047}=2.459$

$$
\begin{align*}
& b_{2}=\frac{1}{2}\left(p+a_{2}^{2}-q / a_{2}\right)=-7 / 4 \tag{3.B.107}\\
& c_{2}=\frac{1}{2}\left(p+a_{2}^{2}+q / a_{2}\right)=5 / 4 \tag{3.B.108}
\end{align*}
$$

$\therefore y=\frac{-1 \pm 2 \sqrt{2}}{2}$ for $n=2$ are the real roots and $x=y-3 / 2=-2 \pm \sqrt{2}$

$$
\begin{align*}
& b_{4}=-1.653 \tag{3.B.109}\\
& c_{4}=6.2
\end{align*}
$$

$\therefore y=-3.0085,-5495$ are the real roots and $x=-0.9505,-4.5085$

Thus for $n=2$ maxima occur at $x=-2 \pm \sqrt{2}=-0.59$ and -3.4
and for $n=4$ maxima occur at $x=-0.95$ and $\mathbf{- 4 . 5}$
When $\quad n=2$ the maximumof values are $y=15,0.04$
and when $n=4$ the maximum of values are $y=1.1,0.02$
respectively.

By comparing the two figures the change in the line contours becomes increasingly apparent as $\frac{\gamma}{\Delta}$ increases and conversely for $\gamma \ll \Delta$ can be neglected since then there is no overlapping of line widths.

The new lines intersect the Lorentzian ones at $\omega_{l}=\omega_{j}$ " and approach zero at $\omega_{l}=\omega_{j \prime}-2 \Delta$ i.e. at $x=\tilde{z} 2$ since (1) the photon $\omega_{l}=\omega_{j}$ " cannot be virtual and does not participate in the exchange so that the intensity at $\omega_{\ell}=\omega_{j}$ coincides with the intensity due to radiation from the single level $E_{j "} ;$ (2) the virtual photon $\omega_{l}=\omega_{j}$, is real with regard to absorption when a transition to level f^{\prime} occurs.

When the molecule is initially in state E_{f}, the contour emission line is the marror reflection relative to the plane perpendicular to the axis x_{0} and passing through $x=\frac{\omega_{0}}{\Delta}-1$ of the contour obtained for $E_{j \prime \prime}$. Our calculation has avoided both the Markoff approximation, use of the fluctuation regression theorem and approximation to any order in coupling constants, g, which is necessary in perturbation theory where coupling is considered to be weak, and so our methods can be used when perturbation theory becomes invalid as e.g. in the presence of very intense radiation fields. Our main approximation, as in Lehmberg's papers [1].[2] is that no appreciable changes occur in the atomic states during times on the order of atomic periods.

CHAPTER IV

A MULTI-LEVEL ATOM WITH NON-OVERLAPPING LEVELS

A.. Heisenberg equations of motion

We have previously considered the cases of (1) the 2-level atom in Chapter II, and (ii) the 3-lavel atom with exdited levels closely spaced, in Chapter III. We shall now go on to consider a multi-level atom with a total of ℓ levels. It has ($\ell-1$) excited states
 ground state, |ly, by a quantised multimode em. field. We shall allow for all possible transitions starting at a higher level y and ending in a lower one 2.

\qquad

Fig. 4.A. 1
The Hamiltonian, in the dipole approximation is then

and substituting for E and B from (1.B.58) and (1.B.59)
$H=\sum_{x=1}^{\ell} \sum_{\ell P P x}+\hbar \sum_{\ell \sigma} \omega_{\ell}{ }^{\mathrm{a}}{ }_{\ell \alpha}{ }^{\mathrm{a}} \ell \sigma$
$-\hbar \underset{y=z+1}{\ell} \sum_{z=1}^{\ell-1} \sum_{\ell \sigma} g_{\ell \sigma y z}\left(s_{z y}{ }_{\ell \sigma} e^{i \underline{k}-\underline{r}}+a_{\ell \sigma}^{\dagger} s_{z y} e^{-i \underline{k}} \underline{\ell}_{\ell} \cdot \underline{r}\right)$
where $S_{z y}(t)=P_{z y}(t)+P_{z y}^{\dagger}(t)$

Also $g_{\ell \sigma y z}=\sqrt{\frac{2 \pi \omega_{\ell y z}}{\hbar V}} \hat{e}_{\ell \sigma} \cdot \mathrm{p}_{\mathrm{yz}}$
where all other symbols have their usual meaning. N.B. $\mathrm{R}_{\mathrm{yz}}=\langle y| e \mathrm{x}|\mathrm{z}\rangle$ and all $\mathrm{p}^{\prime} \mathrm{s}$ are not necessarily in the same direction, as seen also in Chapter III.

Omitting HF terms $P_{z y}{ }^{\mathrm{a}} \ell \sigma$ and $\mathrm{a}_{\ell \sigma}^{\dagger}{ }^{\mathrm{P}}{ }_{z y}^{\dagger}$ the Hamiltonian becomes, in the RWA:
$H=\hbar \sum_{x=1}^{\ell} \epsilon_{x} P_{x x}+\hbar \sum_{\ell \sigma} \omega_{\ell} a_{l \sigma}^{\dagger}{ }^{\mathrm{a}} \ell \sigma$

N.B. Levelsy can decay to lower level z, emitting a photon into a broad band of closely spaced modes characterised by frequencies $\omega_{\ell y z} \cdot$ Similarly level y^{\prime} can decay to level z^{\prime} emitting photon band of frequencies $\omega_{\ell y z}$ etc. For simplicity we assume, as in Lehmberg $[1]$ that all these bands do NOT overlap, i.e. $\omega_{\ell y z} \neq \omega_{\ell y^{\prime} z '}$ $\neq \omega_{\ell y^{\prime \prime}} z^{\prime \prime}$ etc. for all $y^{\prime} s$ and $z^{\prime} s$. In Chapter VII we shall reintroduce overlapping terms for the 3 -level atom, as in Chapter III. Since no atom is likely to have all levels overlapping it is better to introduce specific overlapping as and when required.

Assuming the atom lies at the origin of co-ordinates so that $\underline{r}=0$ in the Hamiltonian, we can obtain Heisenberg equations of motion for $a_{\rho \sigma}(t), P_{m n}(t), P_{m n}^{\dagger}(t)$ (where $m<n$) and $P_{m m}(t)$ as given below:

$$
\begin{aligned}
& \dot{a}_{\ell \sigma}=\frac{1}{n}\left[\bar{H}_{,} a_{\ell \sigma}\right]=-i \omega_{\ell} a_{\ell \sigma}+i \sum_{y=\frac{2}{2}+1}^{\ell} \sum_{z=1}^{\ell-1} g_{\ell \sigma, y z} P_{z y} \\
& \dot{p}_{m n}=\frac{1}{n}\left[H_{0} P_{m n}\right] \\
& =1 f_{m n} P_{m n}-1 \sum_{y=m+1}^{\ell} \sum_{\ell \sigma} g_{\ell \sigma y m} P_{y n}{ }^{a} \ell \sigma+i \sum_{z=1}^{n-1} \sum_{\ell \sigma} \varepsilon_{2 \sigma n z^{\prime} P_{m}{ }^{a} \ell \sigma} \\
& -1 \sum_{z=1}^{m-1} \sum_{\ell \sigma} g_{\ell \sigma m z} a_{l \sigma}^{f} P_{z n}+1 \underset{y=n+1}{\ell} \sum_{\ell \sigma} g_{\ell \sigma y n} a_{\ell \sigma}^{\dagger} P_{m y} \\
& =\dot{\mathrm{p}}_{\mathrm{nm}}^{+}
\end{aligned}
$$

where care has been taken to ensure that z remains <y and memains <n. $\boldsymbol{\epsilon}_{\mathrm{mn}}=\boldsymbol{\epsilon}_{\mathrm{m}}-\boldsymbol{\epsilon}_{\mathrm{n}}$.
N.B. The equation for $\dot{P}_{\mathrm{mn}}^{\dagger}$ is simply the hermitian conjugate of (4.A.5) according to the definition of $P_{m n}(t)$ given in eq. (1.B.109a).

$$
\dot{P}_{\operatorname{ma}}=\frac{1}{n}\left[H_{0} P_{m m}\right]
$$

$$
\begin{align*}
= & -1 \sum_{y=m+1}^{\ell} \sum_{l \sigma} g_{\ell \sigma y m} P_{y m}{ }^{a} \ell \sigma \tag{4.A.6}\\
& i \sum_{x=1}^{m-1} \sum_{l \sigma} g_{l \sigma m z} P_{m z}{ }^{a} \ell \sigma \\
& -\sum_{z=1}^{m-1} \sum_{l \sigma} g_{l \sigma m z} a_{l \sigma}^{+} P_{z m}+1 \sum_{y=m+1}^{\ell} \sum_{\ell \sigma} g_{\ell \sigma y m} a_{l \sigma}^{+} P_{m y}
\end{align*}
$$

Equation (4.A.4) has the formal solution $a_{\ell \sigma}(t)=a_{\ell \sigma}(0) e^{-1 \omega_{\ell} t}+1 \sum_{y=z+1}^{\ell} \sum_{z=1}^{\ell-1} g_{l \sigma y z} \int_{0}^{t} d t^{\prime} e^{-1 \omega_{\ell}\left(t-t^{\prime}\right)_{P}}{ }_{z y}\left(t^{\prime}\right) \quad$ (4.A.7)

Now let us consider
(1)

$$
\begin{align*}
& 2 \\
& \underset{y=m+1}{\sum} \sum_{\ell \sigma} g_{\ell \sigma y m}{ }_{l} \quad \text { and } \\
& \text { n-1 } \tag{4.A.9}
\end{align*}
$$

Substituting (4.A.7) in (4.A.8),
(1) $\sum_{y=m+1}^{\ell} \sum_{\ell \sigma} g_{\ell \sigma y m} a_{\ell \sigma}(t)=\sum_{y=m+1}^{\ell} \sum_{\ell \sigma} \sum_{\ell \sigma y m}{ }_{\ell \sigma}(0) e^{-i \omega_{\ell} t}$
\therefore when $V \rightarrow \infty$, as in Chapter II
$\left.\sum_{y=m+1}^{\ell} \sum_{l \in \sigma} \varepsilon_{l \sigma y m} a_{l \sigma}(t)-\frac{1}{n} E^{(0)}(t) \cdot \sum_{y m}\right\}$
$=\sum_{y^{\prime}=z^{\prime}+1}^{i} \sum_{z^{\prime}=1}^{\ell-1} \sum_{y^{=}=m+1}^{\ell} \frac{i p_{y m} p_{y^{\prime} z^{\prime}}}{4 \pi^{2} c^{3} \hat{h}} \int_{0}^{\infty} d \omega w^{3} \int_{0}^{4 \pi} d \Omega_{k}^{n} \sum_{\sigma=1}^{2}\left(\hat{e}_{l \sigma^{\prime}} \cdot R_{y m}\right)\left(\hat{e}_{l \sigma^{\prime}} \cdot P_{y^{\prime} z^{\prime}}\right)$
$x \int_{0}^{t} d t^{\prime} e^{-i \omega\left(t-t^{\prime}\right)} P_{z^{\prime} y^{\prime}}\left(t^{\prime}\right)$
where $E_{t}^{(0)}(t)=\sum_{\ell, \sigma} \sqrt{\frac{2 \pi \hbar \omega_{l}}{V}} \hat{e}_{\ell \sigma} a_{\ell \sigma}(0) e^{-1 \omega_{\ell} t} \quad$ from (2.A.7)
N.B. In the term on the R.H.S. we have integrated over frequencies ω_{ℓ} common to photon transitions between levels y and m and y^{\prime} and z^{\prime} and vice versa. But, since we are ignoring overlapping of atomic

$\left(\hat{e}_{l \sigma} \circ p_{y J^{\prime}}\right)\left(\hat{e}_{l \sigma} \bullet p_{y^{\prime} z^{\prime}}\right) \int_{0}^{t} d t^{\prime} 0^{\left.-1 \omega\left(t-t^{\prime}\right)_{P^{\prime} Y^{\prime}}(t)^{\prime}\right)}$
$=1 \sum_{y=m+1}^{\ell} \frac{p^{2} y}{4 \pi^{2} c^{2}} \int_{0}^{\infty} d \omega \omega^{3} \int_{0}^{h \pi} d Q \hat{k} \sum_{\sigma=1}^{2}\left(\hat{e}_{\sigma \sigma} \cdot P_{y m}\right)^{2} \int_{0}^{t} d t^{\prime} \epsilon^{-i \omega(t-t))_{P^{2}}\left(t^{\prime}\right)}$
‥8. $\sum_{\sigma=1}^{2}\left(\hat{\theta}_{\sigma \sigma} \cdot \sum_{V=1}\right)^{2}=2-(\hat{r} * \hat{K})^{2}$ from (2.A.10)
and $\int_{0}^{4 \pi} a q \hat{x}\left(1-(\hat{y} \cdot \hat{k})^{2}\right)=\frac{e^{\pi}}{3}: \operatorname{from}(2 . \hat{A} \cdot 13)$
$\therefore \sum_{j=x+1}^{\ell}\left(\sum_{l \sigma} E_{l \sigma}^{l} y_{m}=a_{l \sigma}(t)-\frac{1}{h} \sum_{+}^{(0)}(t) \cdot p_{v i n}\right)=$

$$
\frac{12}{3 \pi c^{3}} \sum_{j+F_{2}+1} p_{y^{2} 11}^{2} \int_{0}^{\infty} d 0 \omega^{3} \int_{0}^{t} d t^{\prime} e^{-i \omega)\left(t-t^{\prime}\right)_{F_{m y}}(t \cdot)}
$$

 ard $\epsilon_{\text {ymat }}>1$ for all y, wo obtain

Where the apoitareous decay rate ca decay corstant

$$
\begin{align*}
& a_{r z}=\frac{1}{n} I_{t}^{(0)}(t) \cdot n_{n z}=\sum_{l \sigma} E_{l \sigma \Sigma z} a_{l \sigma}(0) 0^{-i w_{l} t} \tag{4.A.15}
\end{align*}
$$

ve ootain
(4.A.16)

Sinilarly
(4.A.17)

(4.A.18)

Suactitutine eq.a. (4.A.16) and (4.A.17) into ags. (4. R.5) and (4,A.G) wa ouras:-

$$
\begin{align*}
& -1 \sum_{\substack{r=1,(r>n)}}^{1}+1 \sum_{\substack{i=1 \\
(i<m)}}^{n-1} F_{1 m}^{+} q_{n+1} \tag{4,A,19}
\end{align*}
$$

(4.A.20)

 V, VI and VII sinco wo find they are Nuriliod untoratically.

It is of lintarest to rote that hollow (53), in his parer, darives

 with a mater co levels. In hia case he intronecs a clessical externiflold to corrle states la> and $\ln \rangle$. If ve also do this wo can derivo atrivar onsations for cotarison with thoas of yollow
 in the Buriltorinn we cudd on a tern

$$
\begin{aligned}
& n_{I D D}(t)=\sum_{i=1}^{1} \sum_{z=1}^{l} \sum_{z=1}^{l-1}\left\{F_{z j}^{+} \lambda_{y z} \varepsilon_{D}(t)+\lambda_{z y} \varepsilon_{D}^{k}(t) r_{z y}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (cf. Argengr II for z-icvel atcon case) }
\end{aligned}
$$

or $\quad-\sum_{j=z+1}^{l} \sum_{z=1}^{l-\lambda} \lambda_{j=1}\left\{F_{z y}^{+} \varepsilon_{D}(t)+\varepsilon_{D}^{\alpha}(t) \mathbb{D}_{z y}\right\}$
 noutive frocumog rarts $p(t)$ and $p(t), ~ c o$

$$
\begin{equation*}
\dot{L}_{j}(t)=\left(\varepsilon_{D}(t)+\varepsilon_{D}^{*}(t)\right) \hat{e}_{O D} \tag{4,A,22}
\end{equation*}
$$

and comien and pars of levels.

$\dot{H}_{\mathrm{im}}(t)=\frac{1}{h}\left[\mathrm{H}_{\mathrm{D}}, D_{0}, P_{\mathrm{ran}}\right]$

$$
\begin{align*}
& \lambda_{z y} \varepsilon_{j}^{\alpha}(t)\left(r_{z i n} \delta_{y m}-r_{\mathrm{zy}} \delta_{\mathrm{Em}}\right) \tag{4.A.23}
\end{align*}
$$

$$
\begin{aligned}
& -i \sum_{y=1}^{m=1} \varepsilon_{D}^{\alpha}(t) p_{m i n} \lambda_{m}+1 \sum_{j=1+1}^{f} \varepsilon_{D} p_{n j y} \lambda_{x}
\end{aligned}
$$

$$
\begin{align*}
& +\lambda_{y y} \varepsilon_{D}^{\alpha}(t)\left(P_{z M} \delta_{y m}-p_{\mathrm{yg}} \delta_{\mathrm{Em}}\right) \tag{4+1.24}
\end{align*}
$$

$$
\begin{aligned}
& +1 \sum_{y=1}^{l} \varepsilon_{D}^{\alpha} F_{\mathrm{Ey}} \lambda_{\mathrm{y}}
\end{aligned}
$$

Hence (4.A.2C) and (4.A.20) becose:-

$$
\begin{aligned}
& \dot{j}_{n m}=-\sum_{i=1}^{n-1} \sum_{j=1}^{m-1}\left\{t\left(\gamma_{n 1}+\gamma_{n j}\right)+i\left(\epsilon_{n \pi}-\Omega_{n i}+\lambda_{n j}\right) r_{m n}\right. \\
& -\sum_{r=1 r t 1}^{\ell} F_{r x}^{+}\left(q_{r n}+\lambda_{n=1} \varepsilon_{D}(t)\right)+i \sum_{i=1}^{r-1} p_{1 m}\left(q_{n i}+\lambda_{n i} \varepsilon_{D}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& (r, A .26)
\end{aligned}
$$

We nay row take the initial radiation state to be a yecmu state and multiply the above two equations from left and micht by rad and

then

$$
\begin{align*}
& \dot{N}(t)=-\sum_{i=1}^{n-1} \sum_{j=1}^{m m 1} t\left(\gamma_{n i}+\gamma_{n j}\right)+i\left(\epsilon_{n, n}-\Omega_{n j \ldots}+\Omega_{n j g}\right) x_{m n} \\
& -1 \sum_{i=10+1}^{\ell} x_{r n} \lambda_{r i x} \varepsilon_{D}(t)+1 \sum_{i=1}^{n-1} X_{m i} \lambda_{n i} \varepsilon_{D}(t) \tag{4,A,27}\\
& -\sum_{j=1}^{n-1} \lambda_{j \pi} \varepsilon_{D}(t) x_{j n}+1 \sum_{k=n+1}^{l} \lambda_{n k} \varepsilon_{D}^{\alpha}(t) X_{m i} \\
& I_{m}(t)=-\sum_{j=1}^{n=1}\left\{\gamma_{m j} I_{m}-i\left(X_{E j} \lambda_{D j} \varepsilon_{D}(t)-\lambda_{j{ }_{m i}} \varepsilon_{D}^{\alpha}(t) X_{j m}\right)\right. \\
& +\sum_{r=1}^{l}\left\{\gamma_{r w} Y_{r}-1\left(x_{r m} \lambda_{\operatorname{Lin}} \varepsilon_{D}(t)-\lambda_{\operatorname{Lr}} \varepsilon_{D}^{\alpha}(t) x_{m r}\right)\right.
\end{align*}
$$

(4.A.28)

From the ae equations we can obtain

$$
\rho_{n=1}^{(s)}(t)=\operatorname{Tr} \rho(t) P_{\operatorname{man}}(0)=\sum_{s}\langle s| X_{\operatorname{man}}(t)^{(s)}(0)|s\rangle
$$

Rewriting equations (2.4a) and (2.40) of vollow(53) in our notation by weans of the following trensfomationsi-

$$
\begin{aligned}
& \text { i. } j(t) \rightarrow \rho \rho_{\min }^{(s)}(t) \\
& \alpha_{j k}(t) \longrightarrow \rho_{\min }^{(s)}(t)=\rho_{\pi m}^{(s) t}(t) \\
& \sqrt{2} \lambda_{j k} \longrightarrow \lambda_{m i}=\frac{\sum_{\min } \cdot \theta_{0 D}}{h} \\
& \omega_{j x} \rightarrow \epsilon_{\mathrm{mn}}=\frac{\left(E_{m}-E_{n}\right)}{\bar{h}} \\
& x_{j}=\sum_{i k} X_{k j} \rightarrow \gamma_{n}=\sum_{n} \gamma_{n m} \text { where } n>m_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E}(t) \longrightarrow \mathcal{E}_{D}(t)
\end{aligned}
$$

lie obtains-

$$
\begin{aligned}
& +1 \sum_{n}\left\{\gamma_{\min } \rho_{\min }^{(s)}(t)-1\left(\rho_{\min }^{(s)}(t) \lambda_{\operatorname{rin}} \varepsilon_{D}(t)-\lambda_{\min } \varepsilon_{D}^{(t)} \rho_{\operatorname{man}}^{(s)}(t)\right)\right.
\end{aligned}
$$

and

$$
\begin{align*}
& \dot{\rho}_{\operatorname{mn}}^{(s)}(t)=-\sum_{1} \sum_{j}\left\{\frac{1}{i}\left(\gamma_{1 n}+\gamma_{j m}\right)+1 \epsilon_{\operatorname{man}}\right\} \rho_{\operatorname{zan}}^{(s)}(t) \\
& -1 \sum_{x(x=m, n)} \rho_{x i x}^{(s)}(t) \lambda_{x n} \varepsilon_{D}(t)+1 \sum_{x(x=m, n)} \rho_{x n}^{(s)}(t) \lambda_{z i x} \varepsilon_{D}(t) \\
& -\sum_{x(x=n, n)} \lambda_{x n} \varepsilon_{D}(t) \rho_{\operatorname{mx}}^{(s)}(\varepsilon)+i_{x(x=n, n)} \sum_{E x D} \varepsilon^{*}(t) \rho_{x n}^{s}(t) \\
& +1 \lambda_{\min }\left(\varepsilon_{D}(t)+\varepsilon_{D}^{\alpha}(t)\right)\left(\rho_{\operatorname{mn}}(t)-\rho_{\min }(t)\right)
\end{align*}
$$

so that

$$
\begin{aligned}
& \dot{\rho}_{n m}^{(s)}(t)=-\sum_{1} \sum_{j}\left(\frac{t}{}\left(\gamma_{2 n}+\gamma_{j n}\right)+1 \epsilon_{n m}\right) \rho_{n m}^{(s)}(t) \\
& -1 \sum_{x(x=x, n)} \lambda_{x=1} \varepsilon_{D}^{*}(t) p_{n x}^{(s)}(t)+1 \sum_{x(x=x, n)} \lambda_{n x D} \varepsilon^{\kappa}(t) \rho_{x=1}^{(s)}(t)
\end{aligned}
$$

$$
\begin{aligned}
& +1 \lambda_{n m}\left(\varepsilon_{D}(t)+\varepsilon_{D}^{\alpha}(t)\right)\left(\rho_{\operatorname{mm}}(t)-\rho_{n n}(t)\right)
\end{aligned}
$$

(4.A.32)

So that the nain differences are:-

1) The Lacis of opecific linita to sumations in Hollow's anutions.
2) Irdicea on fia are reversed.
3) Frequancy ehifts Ω are ignored in Hollous cace.
4) loprecoion for $\rho_{x}^{(5)}(t)$ erpeass to contain an extra term

$$
1 \lambda_{n m}\left(\varepsilon_{D}+\varepsilon_{D}^{*}\right)\left(\rho_{n m}(t)-\rho_{n n}(t)\right)
$$

but by reiefining the Σ 's we can write oquation (4.A.32) as

$$
\begin{align*}
& \dot{\rho}_{n=1}^{(s)}(t)=\sum_{i} \sum_{j}\left(1\left(\gamma_{i n}+\gamma_{j m}\right)+i \epsilon_{n m}\right) \rho_{n m}^{(s)}(t) \\
& -1 \sum_{x(x=1)} \lambda_{x=1} \varepsilon_{D}^{\alpha}(t) \rho_{n x}^{(s)}(t)+1 \sum_{x(x=1)} \lambda_{n x D_{D}}{ }^{\alpha}(t) \rho_{x=1}^{(s)}(t) \tag{4,A,33}
\end{align*}
$$

which is oquivalent to (4.A.29).

Ia mandicer smetram
In Chapter III we were ahle to calculate the epectral profile for grontaneous cmission froa

$$
\text { rad. } \left.\left.\langle 0|<j^{\prime \prime} \mid a_{l \sigma}^{+}\left(t_{R}\right\rangle>\gamma^{-1}\right) a_{l \sigma}\left(t_{R}\right\rangle>\gamma^{-1}\right)\left|j^{\prime \prime}\right\rangle|0\rangle_{\mathrm{rad} .}
$$

by findine oquationo for $\left.P_{i j}(t)|0\rangle_{\mathrm{rad}} . j^{\prime \prime}\right\rangle$ and $\left.P_{i j \prime}^{\prime \prime}(t)|0\rangle\right\rangle_{\mathrm{rad}} .\left|j^{\prime \prime}\right\rangle$. It is obvious that ins motiod 18 of no use in the prosent caso aince multiplying equations (4,A.19) and (4.A.2C) from the FilS by $10>\mathrm{rad}$. still Leaves tems of the form $q_{m j}^{+} p_{j n}|0\rangle_{\mathrm{rad}}$, $q_{k n}^{+} p_{m k} \mid 0>_{\mathrm{rad}}$. , which cause difficulty. Sirilarly when classical driving tems are introcucad, as in equations (4. A_{o} 25) and (4.A.2C) we obtain expresgiona containing terms $\left.\left(q_{m j}^{+}+\lambda_{j m} \varepsilon_{D}^{*}(t)\right) p_{j n}{ }_{00}\right\rangle_{\text {rad. }}$ and $\left(q_{k n}^{+}+\lambda_{n k} \varepsilon_{D}^{\kappa}(t)\right) P_{m k}|0\rangle_{\text {rad }}$, The altarnative 18 to solve the equations (4.0 . 2 F) and ($4, \mathrm{~A}_{\mathrm{A}} .30$) for the reduced dernity operator componenta and ther, as in voliow's paper (9). resort to the larkoff approxination in order to calculate the 1 stmorder field correlation function wich, we have seen, is determined by the 2-time atomic correlation function for the trangition under consideretion (aco examesion for $L_{j^{\prime}}\left(t_{R}, t_{R}^{\prime}\right)$ given in Chapter III, equation (3.3.45)). If we keep the initial tine ti arbitrary ve will be ale to calculate the overall cfect of absorptions and asiselons between the required Levele since then we will not be able to mpecify the initial atomic state. Whe recific wey in which we calculate the spectral profiloo In varicus cases will be outined in the following three chepters for the epecific cases of the K atom, and II atom and the 3 -level atom, were allowance is made for the possibility of overlapping upper levols in the Latter casc.

In fact, following the armants of the previous chapter,

$$
E_{+}\left(\underline{R}, t_{R}\right)=E_{+}^{(0)}\left(\underline{R}, t_{R}\right)+\sum_{y=z+1}^{\ell} \sum_{==1}^{l-1} k_{y z}^{2} \frac{\left\{f_{y z}-\left(\hat{R}_{a} \cdot f_{y z}\right) \hat{R}_{a}\right\} P_{z y}(t) e^{-i k_{y z} r}\left(4, B_{0} 1\right)}{R_{a}}
$$

where if $x=0$ (atom et origin), $R_{a}=R$ and so

$$
\begin{align*}
& \underline{E}_{+}\left(\underline{R}, t_{R}\right)=E_{+}^{(0)}\left(\underline{R}, t_{R}\right)+\sum_{y^{\prime z+1}}^{l} \sum_{z=1}^{l-1} k_{y z}^{2} \frac{\left\{p_{y z}-\left(\hat{R} \cdot p_{y z}\right) \hat{R}\right\}}{R} P_{z y}(t) \tag{4.E.2}\\
& \left.f_{\hat{R} y^{\prime} z 1}\left(t_{R}, t_{R}^{\prime}\right)=\frac{R^{2} c}{2 \pi \epsilon_{y^{\prime} z^{\prime}} \hbar}<\left|\underline{E}_{+}^{+}\left(R, t_{R}\right) \cdot E_{+}\left(\underline{R}, t_{R}^{\prime}\right)\right|\right\rangle \tag{1,B.3}
\end{align*}
$$

and 80 , ienoing interfararce teras,

$$
\begin{equation*}
f_{\hat{R}_{y \geq 1}^{\prime}}\left(t_{R}, t_{R}^{\prime}\right)=f_{\hat{R}_{y^{\prime} / 1}^{\prime}}^{(0)}\left(t_{R}, t_{R}^{\prime}\right)+L_{\hat{R}}\left(t_{R}, t_{R}^{\prime}\right) \tag{4.5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{R_{c} y^{\prime} z^{\prime}}^{(0)}\left(t_{R}, t_{R}^{\prime}\right)=\frac{R^{2} c}{2 \pi \epsilon_{y^{\prime} z^{\prime}} \hbar}<\left|E_{+}^{(0)+}\left(\underline{R}, t_{R}\right) \cdot \underline{E}_{+}\left(\underline{R}, t_{R}^{\prime}\right)\right|> \tag{4.D.5}
\end{equation*}
$$

ard

If we consider only trensitions between the pair of levela y^{\prime} and a' and ipnore all others then (see ref. 124 eq. (3.5) were the enisaion epectrum only is considered)

$$
\begin{equation*}
L_{k y^{\prime} z^{\prime}}\left(t_{R 1} t_{R}^{\prime}\right)=\gamma_{y^{\prime} z^{\prime}}\langle | P_{z^{\prime} y^{\prime}}\left(t_{R}\right) P_{z^{\prime} y^{\prime}}\left(H_{R}^{\prime}\right)| \rangle \tag{4.E.7}
\end{equation*}
$$

NoL. The effect of other transitions is taken into account, since the equations of motion to be colved are coupled equations. Only wien there are overlapping levels is it necessary to taike into account more then one 2mtine correlation function elince in auch cases the additional 2-time correlation functiona produce intensity distributions for the same frequancy range (see Chapters III and VII).

Hence the intensity distribution is given by

$$
\left.\begin{array}{rl}
f_{y^{\prime} z^{\prime}}\left(t_{R}, t_{R}^{\prime}\right)= & \frac{R_{R}^{2}}{(2 \pi c)^{3} \epsilon_{y^{\prime} z^{\prime}}} \sum_{\sigma=1}^{2} \oint d \Omega_{\hat{R}} \oint d \Omega_{\hat{k}} \int_{0}^{\infty} d \omega \omega^{3} e^{i \omega\left(t_{R}-t_{R^{\prime}}\right)} \\
\left.x<\left|a_{l \sigma}^{+}(0) a_{l \sigma}(0)\right|\right\rangle \\
& \left.+\gamma_{y^{\prime} z^{\prime}}<\left|P_{z^{\prime} y^{\prime}}\left(t_{R}\right) P_{z^{\prime} y^{\prime}}\left(t_{R}^{\prime}\right)\right|\right\rangle
\end{array}\right\}(4 \cdot \tilde{0} \cdot 8)
$$

The first term, as explained earle, only gives the encrey spectrum for the FiCLITT field. To find the energy or FChen cremate for the scattered field we must calculate

$$
\begin{equation*}
I_{y^{\prime} z^{\prime}}=\gamma_{y^{\prime}=1}\langle | P_{z^{\prime} y^{\prime}}^{+}\left(t_{R}\right) P_{z^{\prime} y^{\prime}}\left(t_{R}^{\prime}\right)| \rangle \tag{4.13.9}
\end{equation*}
$$

1.e. basically we reed to know the 2-tine atomic correlation function

$$
\begin{equation*}
\left\langle\backslash P_{z^{\prime} y^{\prime}}^{+}\left(t_{R}\right) P_{z^{\prime} y^{\prime}}\left(t_{R}^{\prime}\right) \backslash\right\rangle \tag{4.E.10}
\end{equation*}
$$

sentterea 112ht

Fe will now outline the general method for evaluating the 2 mine atomic correlation function $\left\langle P_{z^{\prime} y^{\prime}}^{+}\left(t_{R}\right) P_{z^{\prime}} y^{\prime}\left(t_{R}\right) \mid\right\rangle$, based on Hollow's method, explained in ref. (9), which avoids use of the fluctuation regression theorem. This function con be expressed in terms of the Schrodinger density operator at time t_{R} ie. $\rho\left(t_{R}^{\prime}\right)$ and the time-independent Schrodinger operators $P_{z^{\prime} y^{\prime}}^{+}(0)$ and $P_{z^{\prime} y^{\prime}}(0)$ as follows

$$
\langle | P_{z^{\prime} y^{\prime}}^{+}\left(t_{R}^{\prime}\right) P_{z^{\prime} y^{\prime}}\left(t_{R}^{\prime}\right)| \rangle=\operatorname{Tr}\left\{p(0) P_{z^{\prime} y^{\prime}}^{+}\left(t_{R}^{\prime}\right) P_{z^{\prime} y^{\prime}}\left(t_{R}^{\prime \prime}\right)\right\}
$$

NoE.

$$
\begin{aligned}
& \rho_{s}(t)=U\left(t, t^{-}\right) \rho_{H}(t) U^{-1}\left(t, t^{\prime}\right) \\
& A_{H}(t)=U^{-1}(t, t) A_{s}(t) \cup\left(t, t^{\prime}\right)
\end{aligned}
$$

Ignoring subscript R, which indicates retarded time, we can write

$$
\begin{aligned}
& =\operatorname{Tr}\left\{\rho(0) U^{-1}(t, 0) P_{z^{\prime}}^{+} y^{\prime}(0) \frac{U\left(t t^{\prime}, t^{\prime \prime}\right)}{U\left(t^{\prime}, 0\right)} P_{z^{\prime}} y^{\prime}(0) x\right. \\
& =\operatorname{Tr}\left\{U ^ { - 1 } (t ^ { \prime } , 0) \left[\rho\left(t^{\prime}\right) \cup\left(t_{0}, 0\right) U^{-1}\left(t^{\prime}, 0\right) P_{z^{\prime}}^{\prime} y^{\prime}(0) U\left(t^{\prime}, t^{\prime \prime}\right) x\right.\right. \\
& \left.=\operatorname{Tr}\left\{\left[\rho(t) P_{z^{\prime} y^{\prime}}^{+}(0) U(t)^{-1 \prime}\right) P_{z^{\prime}}^{\prime} y^{\prime}(0) O\left(t t^{\prime \prime}, 0\right)\right] U^{-1}\left(t^{\prime}, 0\right)\right\} \\
& =\operatorname{Tr}\left\{\rho\left(t^{\prime}\right) P_{z^{\prime}} y^{\prime}(0) \cup\left(t^{\prime}, t^{\prime}\right) P_{z^{\prime}} y^{\prime}(0) \cup\left(t^{\prime \prime}, t^{\prime}\right)\right\} \\
& \left.=\operatorname{Tr}\left\{\rho\left(t^{\prime}\right) P_{z^{\prime}} y^{\prime}(0) U^{-1}\left(t^{\prime \prime}, t^{\prime}\right) P_{z^{\prime}} y^{\prime}(0) U\left(t^{\prime \prime}\right)^{(-1}\right)\right\}
\end{aligned}
$$

According to the Narcoff approximation, explained in Chapter I,

we can factorise

$$
\rho(t)=|i p h\rangle\langle i p h\rangle \rho^{(s)}(t)
$$

Hence

$$
\begin{gathered}
\left\langle P_{z^{\prime} y^{\prime}}^{+}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}\left(t^{\prime}\right)\right\rangle \Lambda \operatorname{Tr}\left\{|i p h\rangle\langle i p h| \rho^{(s)}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}^{+}(0) U^{-1}\left(t^{4}\right), t^{\prime}\right) P_{z^{\prime} y^{\prime}(0) \times(4 . c .1)}^{\left.U\left(t^{\prime \prime}, t^{\prime}\right)\right\}}
\end{gathered}
$$

Ne can now compare this with the mean value of tie atonic operator
at a given time th. you the expectation value of $P_{z} y^{\prime}\left(t^{\prime \prime}\right)$ is

$$
\begin{aligned}
& \left\langle P_{z^{\prime}} y^{\prime}\left(t^{\prime \prime}\right)\right\rangle=\rho y_{y^{\prime} z^{\prime}}\left(t^{\prime \prime}\right)=\operatorname{Tr}\left\{\rho\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}(0)}\right\} \\
& =\operatorname{Tr}\left\{U\left(t^{n}, t^{\prime}\right)\left[\rho(t) U\left(t^{n}, t^{\prime}\right)^{-1} P_{z^{\prime} y^{\prime}}(0)\right]\right\} \\
& =\operatorname{Tr}\left\{\underline{\underline{\rho(t)})} \cup\left(t^{\prime \prime}, t^{-1}\right)^{-1} P_{z^{\prime} y^{\prime}}(0) \cup\left(t^{\prime}, t^{\prime}\right)\right\} \\
& \text { - } \operatorname{Tr}\left\{\text { lith }><\text { ph }\left|\rho^{(s)}\left(t^{\prime}\right) \cup\left(t^{\text {since }}, t^{\prime}\right)^{-1} \operatorname{Tr}_{z^{\prime} y}(0) \times \quad \operatorname{Tr}(B A)\right|\right.
\end{aligned}
$$

Comparing lusts of equations (4.C.1) and (4.C.2) showa that we con obtain the former from the latter by making the substitution

$$
\begin{equation*}
\rho^{(s)}\left(t^{\prime}\right) \longrightarrow \rho^{(s)}\left(t^{\prime}\right) P_{x^{\prime} y^{\prime}}^{+}(0) \tag{4,0.3}
\end{equation*}
$$

so that then $\left\langle P_{z^{\prime}} y^{\prime}\left(\left(^{\prime \prime}\right)\right\rangle \longrightarrow\left\langle P_{z^{\prime}}^{\prime} y^{\prime}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}\right)\right\rangle\right.$
(Without the Markoff approximation the required substitution is for the full density operator, $\left.\rho\left(t^{\prime}\right) \longrightarrow \rho\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}^{\top}(0)\right)$.

 $\rho_{y^{\prime} z^{\prime}}\left(l^{\prime \prime}\right) \cdot\left\langle P_{z^{\prime} y^{\prime}}\left({ }^{\prime \prime}\right)\right\rangle$, the on dy difference being that the nowmarmition operator $\rho^{(s)}(1) P_{2} y^{\prime}(0)$ must be used in place of the density operator $\rho^{(s)}(t)$.
sEance we may write

$$
U^{-1}\left(t^{\prime}, t^{\prime}\right) P_{z^{\prime} y^{\prime}}(0) U\left(t^{\prime \prime},,^{\prime}\right)=P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}-t^{\prime}\right)=P_{z^{\prime} y^{\prime}}(\tau)
$$

a function of the time difference only, then, frow (4.C.1), we have

$$
\begin{aligned}
& \left.<\Gamma_{z^{\prime} y^{\prime}}{ }^{+}\left(t^{\prime}\right) P_{z^{\prime}} y^{\prime}\left(t^{\prime \prime}\right)\right\rangle 1 \operatorname{Tr}\left\{|i p h\rangle<i p h \mid \rho^{(s)}\left(H^{\prime}\right) P_{z^{\prime} y^{\prime}}^{+}(0) P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}-t^{\prime}\right)\right\} \\
& =\sum_{s, n}\langle s, R \mid i p h\rangle\langle i p h| p^{(s)}\left(l^{\prime}\right) P_{z^{+}} y^{\prime}(0) P_{z^{\prime} y^{\prime}}\left(t^{(t-t}\right)|R, s\rangle \\
& =\sum_{s, R}\langle s, \operatorname{iph}| \delta_{R, \operatorname{iph}} \rho^{(s)}\left(t^{\prime}\right) P_{z^{\prime}} y^{\top}(0) P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}-t\right)|R, s\rangle \\
& \left.=\sum_{s}\langle s, \text { ip }| \rho^{(s)}(t) \quad P_{z^{\prime} y^{\prime}}^{+}(0) P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}-t^{\prime}\right) \text { lith, } s\right\rangle \\
& \left.=\langle\operatorname{iph}|\langle 1| \rho^{(s)}\left(t^{\prime}\right)\left|y^{\prime}\right\rangle\left\langle z^{\prime}\right| P_{z^{\prime} y^{\prime}\left(t^{\prime \prime}-t^{\prime}\right) \mid}|1\rangle \mid \text { ip }\right\rangle \\
& \left.\left.+\langle i p h|<2 \backslash \rho^{(s)}\left(t^{\prime}\right)\left|y^{\prime}\right\rangle\left\langle z^{\prime}\right| P_{z^{\prime} y^{\prime}} \mid t^{\prime}-t^{\prime}\right)|2\rangle \mid \text { ip }\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\langle P_{z^{\prime} y^{\prime}}{ }^{\prime}\left(t^{\prime}\right) P_{z^{\prime}} y^{\prime(\prime \prime}\right)\right\rangle \simeq \sum_{s=1}^{l} \int_{s y^{\prime}}^{(s)}\left(t^{\prime}\right)\langle i p h|\left\langle z^{\prime}\right| P_{z^{\prime} y} y^{\prime}\left(t^{\prime \prime}-\left(t^{\prime}\right)|s\rangle\left|1 p_{p}\right\rangle\left(400_{0} 4\right)\right.
\end{aligned}
$$

Iut

$$
\begin{aligned}
& \left.\rho y^{\prime z^{\prime}}(t)=\left\langle P_{z^{\prime}} y^{\prime}(t)\right\rangle=\operatorname{Tr}\left\{| | l_{1}\right\rangle\left\langle\operatorname{ph}^{h}\right| \rho^{(k)}\left(t^{\prime}\right\rangle P_{z^{\prime} y^{\prime}}(0) P_{z^{\prime}} y^{\prime}\left(t^{\prime \prime}-t^{\prime}\right)\right\} \\
& \left.=\sum_{S, R}\langle S, R \mid \quad, p h\rangle\langle | p h\left|\rho^{(3)}\left(I^{\prime}\right) P_{z^{\prime} y^{\prime}}{ }^{\prime}(0) P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}-t^{\prime}\right)\right| R, S\right\rangle \\
& \sum_{s, R}<s,|p h| \delta_{R, p h} \rho^{(s)}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}^{+}(0) P_{z^{\prime} y^{\prime}} \cdot\left(t^{\prime \prime}-t^{\prime}\right)|R, S\rangle \\
& \left.=\sum_{s}\langle s,| p h\left|\rho^{(s)}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}(c)}^{P^{\prime}}-^{\prime} y^{\prime}\left(t^{\prime \prime}-t^{\prime}\right)\right| 1, p, s\right\rangle \\
& \text { where } s-1,2,3, \ldots, l \\
& \left.=\left\langle\operatorname{ph} \mid\left\langle\| \rho^{\prime \prime}(t) \mid y\right\rangle\left\langle z^{\prime}\right\rangle \bar{r}_{z} y^{\prime}\left(t^{\prime \prime}-t^{\prime}\right) \|\right\rangle \mid \text { iph }\right\rangle \\
& +\left\langle\operatorname{inh}\left\langle 2 \backslash \rho^{k}\left(t^{\prime}\right) \mid y^{\prime}\right\rangle\left\langle z^{\prime} \backslash P_{z^{\prime}} y^{\prime} \mid k^{\prime \prime}-t^{\prime}\right\rangle \mid d\right\rangle|i p h\rangle
\end{aligned}
$$

1.e. macr the Narioff orproxtiation there is ro difference between the ratrix clewonts of the full denats operator and the reduced atomic demity operator. This is convenient cince it is easier to calculate the roducod dorsity operator vatrix elementa $\rho^{15} y^{\prime z^{\prime}}(t)$

If, on solvine the equations of notion for the reanced denaity ratrix clexionts wo fised that

$$
\rho_{y^{\prime} z^{\prime}}^{(5)}\left(t^{n}\right) \quad \text { is of tho following form:- }
$$

$$
\rho_{y^{\prime 2}}^{(s)}\left(t^{\prime \prime}\right)=\rho_{y^{\prime 2}}^{(s)}\left(t^{\prime}+\tau\right)=\sum_{y^{\prime \prime}=1}^{l} \sum_{z=1}^{l} u_{y^{\prime} z^{\prime \prime}, y^{\prime \prime \prime}}\left(\tau, t^{\prime}\right) \rho_{y^{\prime \prime 2}}^{(s)}\left(t^{\prime}\right)
$$

where $t^{\prime \prime}=t^{\prime}+\tau$ and $\tau>0$
(. τ is the tive difference and the initial tiae), which is the case when gil the raluced denaity matrix equations are interdepencent (generally or If a fow are).

Nosing the substitution, giver in eq. (4.0.3), in the no pos.
of eq. ($4.0 . \mathrm{C} . \mathrm{C}$)

$$
\begin{aligned}
& \text { 1.e. } \left.\left.\rho_{y^{\prime \prime} z^{\prime \prime}}^{(s)} \mid t^{\prime}\right)=\left\langle y^{\prime \prime}\right| \rho^{(s)}\left(t^{\prime}\right)\left|z^{\prime \prime}\right\rangle \longrightarrow\left\langle y^{\prime \prime}\right| \rho^{(s)}\left(t^{\prime}\right) P_{z^{\prime}}{ }^{\prime} y^{\prime}(0)\left|z^{\prime \prime}\right\rangle\right\rangle \\
& =\left\langle y^{\prime \prime}\right| \rho^{(s)}\left(t^{\prime}\right)\left|y^{\prime}\right\rangle\left\langle z^{\prime} \mid z^{\prime \prime}\right\rangle \\
& \left.=\left\langle y^{\prime \prime}\right| \rho^{(s)}\left(t^{\prime}\right)\left|y^{\prime}\right\rangle \delta_{z^{\prime} z^{\prime \prime}}\right]\left(4 . C_{0} 7\right)
\end{aligned}
$$

we obtain the 2 -tine atomic correlation function:-

$$
\begin{aligned}
& \left\langle P_{z^{\prime}} y^{\prime}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}\left(t^{\prime \prime}\right)\right\rangle \frac{-1}{m} A \cdot \rho_{y^{\prime} z^{\prime}}\left(t^{\prime \prime}\right) \\
& \quad\left(\text { when } \rho^{(s)}\left(t^{\prime}\right) \longrightarrow \rho^{\left(s^{\prime}\right.}\left(t^{\prime}\right) P_{z^{\prime} y^{\prime}}+(0)\right.
\end{aligned}
$$

$\operatorname{cR} \rho{ }^{(s)} y^{\prime 2 \prime^{\prime}}\left(t^{\prime \prime}\right)$
with the wame substitution (4.c.3),

ie.

ard this is the corrosion wo anal be implementing in the following three chapters.

CHETMTH VY

In this cister wo alull calculato two gown crocta rer cartain
 1s as aicitcied Eolons
$\xrightarrow{27450 \cdot 6} 6 S, 110\rangle$
Fig. 5.1
 Including level (is, sut ignoring the degeneracy of levela 4 (cround
 the fact thiat level $43 / 2$ hes substater $|m|=3 / 2$ and $|m|=1 / 2$.

It is krow tiat the dipole matrix elenant connectire levels 651/2 and $4 F_{3 / 2}$ is moch stronger than that connccting level $43 / 2$ and $41 / 2$.

Wo ahali nuber the lovels as indicatad in the diagrea end could corafder a concrel IO-Icvel eton hut fince tiere is a weaith of Ilterature (10)-(31) on trancitiona in this abor we quall priticularise our equations for comparison with cxperimental romite. From the It terature wo see that level 55 doca not tale part in any trandilons lut we inclucie it all the name.

Lemanazorecration

Frow the equations (4.A.19) and (4.h.20) derived in Chapter IV for the transition operators for the mutilevel-level atom wo can deduce equation: for the 10-level atom:-

$$
\left.\begin{array}{rl}
\dot{P}_{m r i}= & -i \sum_{i=1}^{101}\left\{1_{2}\left(\gamma_{n i}+\gamma_{n j j}\right)+i\left(\epsilon_{n m}-\Omega_{n i}+\Omega_{m j}\right)\right\} P_{m n} \\
& -i \sum_{r=1+1}^{10,} P_{n r}^{+} q_{r m}+i \sum_{i=1}^{n-1} P_{i m}+q_{n i} \\
& -i \sum_{j=1}^{m-1} q_{m j}^{+} P_{j n}+i \sum_{k=n+1}^{10} q_{k n}^{+} P_{m k} \\
\dot{P}_{m i m}= & -\sum_{j=1}^{m-1}\left\{\gamma_{m j} P_{m m}-i\left(P_{j m}^{+} q_{m j}-q_{m j}^{+} P_{j m}\right)\right\} \\
& +\sum_{r=m+1}^{10}\left\{\gamma_{r m} P_{r r}-i\left(P_{m r}^{+} q_{r m}-q_{r m}^{+} P_{m r}\right)\right\}
\end{array}\right\}
$$

where the Handitonian is even by

$$
H=\hbar \sum_{x=1}^{10} \epsilon_{x} p_{x \gamma}+\hbar \sum_{l \sigma} w_{l} a_{l \sigma}^{+} a_{l \sigma}-\hbar \sum_{y=z+1}^{10} \sum_{z=1}^{q} g_{l \sigma y z} g_{\left(P_{z y}^{+} a_{l \sigma}+a_{l \sigma}^{+} P_{z y}\right)}^{\left(5 \cdot A_{0}\right)}
$$

We shall be interested in transitions between
a) state $\left.5 P_{3 / 2}(13\rangle\right)$ and $45(11>)$, cround state, and
b) state $(3$ (110\rangle) and $53_{3 / 2}(18>)$
when two driving field of arbitrary strength are present. One fiche E_{5} couples levels is and $43 / 2$, ie. levels 1 an 3 , and the other E_{L} levels 4 In $3 / 2$ and 6, 1.0. levels 3 and 10. The former 13 supplied by as radiation and the latter by ruby laser radiation, since it is know that such radiations are in aproxizete resonance with the corresponding atomic transitions. The turing conditions are varied eropinentaly accordiys to the effect on g unto to observe radicle En mut its intensity is reduced
ly $10 \times$ in ordor to inikit other mitirhoton procenges in which we aro not interestai ${ }^{(10)}$, (21). Field E_{g}, of frequancy ω_{s}, is supplied by atimulated caman raciation (Sx) of Fis wich is $1345 \mathrm{~cm}^{-1}$ dom aidftal wich reapect to $w_{L}(10)$. Cther roleculer lipusas can be used as levci $43 / 2$ (13) is porulated cvesi for inciecnt radiation
 for onanced 2minoton enisaion and min, β-nethyl nep, thalene, for 3 photom Faran cifect. Aecording to refs. (10) and (11) $\omega_{s}=1 / h\left(E_{3}-E_{1}\right)$ for a ruiy rod at $31.5^{\circ} \mathrm{C}$ i. θ. oxact resorance cecurs at this terporatare. Accordire rat. (10) revonert aboorption of ω_{s} excites $|\mathrm{m}|=\frac{1}{2}$ rubstate of $113 / 2$ (13) crolusfrcis and then ausillary Stories raniation,
 populatod and this rewita in 3 types of rewonant raman ecattering of from this initial etate $13>$ of which the tramition terainating in $5 P_{3 / 2}(15>)$ io tho one we consider. Accoming to ros. (10) axd (3)
 caibation at 3.60μ is ovearvec, these trencitions then recult in rew atoric levols beine filled up wici then atart to perticipate in eecond coneration stimulated transitions of with ve concider that from level $5_{3 / 2}(13>)$ to $12(11>)$. The $\mathcal{E N}_{1 / 2}$ state surves as a rear reconont Irtermaisio etate in tho ebove tranoitiona. In fact when the aforemcitioned two fielus ere present four different near-reavant miliphotan procesees heve been oboerved in potesstim vapour. They are
i) etimulated 2moton Raman effect
11) 4-rhoton parasetric coupling

1ii) chnuces 2mpoton eninsion
(iv) 3-ghoton Leman acatteringe

What wo vill calculate is the overall cefect of all posible transitions between certain levels by assuing the initial state to be untnown.

The wain 4 levels with which we ore omeomed axe illustrated below although we thall take into account all 10 levels in our calculations.

We shall define frequencies

$$
\begin{aligned}
& \omega_{3}=\epsilon_{0}-\epsilon_{3} \\
& \omega_{1}=\epsilon_{3}-t_{1} \\
& \omega_{10}=\epsilon_{10}-\epsilon_{8} \\
& \omega_{8}=\epsilon_{8}-\epsilon_{1}
\end{aligned}
$$

Since wo de on y considering dipole transitions it is necessary that tie chance in time ont ital momentum quantum numbers l we such that

$$
\Delta l= \pm 1
$$

Thus a dipole wame only exioto between levels
S and P
ord P end D
and MOT betwora 1evcia

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
S \text { and } S \\
P \text { and } P \\
D \text { and } D
\end{array}\right\} \Delta l=0 \\
S \text { and } D
\end{array}\right\} \Delta l= \pm 2, \text { since for level } 8, l=0 ; P, l=1 \text {, }
$$

$D, l=2$.
Hence the dipole matrix elements are as follows

$$
f_{S P}=f_{P S}=F_{P D}=f_{D P} \text { are } \neq 0
$$

and

$$
f_{S S}=f_{T N}=f_{D D}=f_{S D}=0
$$

Low since $q^{\prime} \varepsilon, \quad \gamma^{\prime} s$ and λ^{\prime} s all depaici on $x^{\prime} s$ through the following . relations-

$$
\begin{aligned}
& q_{i j}=\sum_{l \sigma}\left(\frac{2 \pi \omega_{l}, j}{\hbar v}\right)^{1 / 2} \hat{e}_{l \sigma} \cdot f_{i j} a_{l \sigma}(0) e^{-i \omega_{2} t} \\
& \gamma_{l j}=4 / 3 \hbar \epsilon_{i j}^{3} / c^{3} p_{j j}^{2} \\
& \lambda_{y}=\gamma_{1 j} 1 / \epsilon_{j}^{3} p \int_{0}^{\infty} \frac{d_{\omega}}{2 \pi} \frac{\omega^{3}}{\omega-\epsilon_{i j}}
\end{aligned}
$$

wo know that zero components of x are given by the following equations, where $x=q$,

$$
\begin{align*}
& x_{1,4}=x_{1,5}=x_{1,6}=x_{1,9}=x_{1,10}=0 \\
& x_{2,3}=x_{2,7}=x_{2,9}=0 \\
& x_{3,7}=x_{3,9}=0 \\
& x_{4,5}=x_{6,6}=x_{4,9}=x_{4,10}=0 \tag{5,A,4}\\
& x_{5,6}=x_{6,9}=x_{5,10}=0 \\
& x_{6,9}=x_{6,10}=0 \\
& x_{7,6}=0 \\
& x_{2,10}=0
\end{align*}
$$

These equations are also true for reversed subscripts end in the case of q for tho hermitian conjugates, since g^{\prime} s are real.

Eencrax infanta

Pron equations (5.A.1) and (5.A.2) it is possible to derive 100 Fielsonbere equation a of motion for the tres station pretors but, in order to calculate the rower spectra or spectral densities of the scattered light for (e) transitions between states $15>$ and $11>$ and (b) between states $110>$ and $18>$, we have seen that it is necessary to use only 3 of these equations. These ore the equations for transition operators P_{30}, F_{13} and $P_{10,6}$ witch are given below, substitutions (5.A.4) having already been performed.

$$
\begin{align*}
& f_{10,3}=-\left[1_{2}\left(\gamma_{8}+\gamma_{10}\right)+i\left(\epsilon_{8,10}-\Omega_{8}+\ell_{10}\right)\right] P_{10,8} \\
& +i\left(p_{10,1} q_{81}+p_{10,4} q_{84}+p_{10,5} q_{8,5}+p_{10,6} q_{86}\right) \\
& -i\left(q_{10,2}^{+} p_{28}+q_{10,3}^{+} p_{38}+q_{10,7}^{+} p_{78}+q_{10,8}^{+} P_{88}\right) \\
& +1\left(q_{98}^{+} P_{10,9}+q_{10,8}^{+} P_{10,10}\right) \\
& \varepsilon_{30}=-\left[1 / 2\left(\gamma_{8}+\gamma_{31}\right)+i\left(\epsilon_{83}-\Omega_{8}+\Omega_{31}\right)\right] P_{38} \\
& -i\left(p_{48} q_{43}+P_{58} q_{53}+p_{68} q_{63}+P_{18} q_{53}+P_{10,8} q_{143}\right) \\
& +i\left(P_{31} q_{81}+P_{34} q_{84}+P_{35} q_{85}+P_{36} q_{86}\right) \quad \text { (5.2.2) } \\
& -i\left(q_{31}^{\dagger} P_{18}\right) \\
& +i\left(q_{98}^{+} P_{39}+q_{4,8}^{+} P_{3,10}\right) \\
& \dot{F}_{1,5}=-\left[1 / 2 \gamma_{8}+i\left(\epsilon_{81}-\Omega_{8}\right)\right] P_{18} \\
& -i\left(p_{28} q_{21}+p_{38} q_{31}+p_{78} q_{71}+p_{88} q_{81}\right) \\
& \left.\begin{array}{l}
+i\left(p_{11} q_{81}+p_{14} q_{84}+p_{15} q_{85}+p_{16} q_{88}\right) \\
+\left(q_{98}^{+} p_{17}+q_{10,8}^{+} p_{1,10}\right)
\end{array}\right\}(5 \cdot 3 \cdot 3)
\end{align*}
$$

where $\left.\begin{array}{rl}\gamma_{8}=\gamma_{81}+\gamma_{84}+\gamma_{85}+\gamma_{86} \quad \Omega_{8}=\Omega_{81}+\Omega_{84}+\rho_{85}+\Omega_{86} \\ \gamma_{10}=\gamma_{19,2}+\gamma_{10,3}+\gamma_{10,7}+\gamma_{10,8} \quad \Omega_{10}=\Omega_{10,2}+\rho_{19,3}+\Omega_{19,7}+\Omega_{10}\left\{_{5, \Omega .4)}\right. \\ \epsilon_{8,10}=-\omega_{10} \\ \epsilon_{8,3}=\omega_{8}-\omega_{1} \\ \epsilon_{8,1}=\omega_{8}\end{array}\right\}$
Levels 1 and 3,3 end 10 are connected is monochromatic radiation of arbitrary jitersity and this can be considered in two ways:cither (1) by constecring driving fields as additional classical terms

In the "aniloniar and thus considering the initial photon state to Le a zero photon state as already explained. This has bean done in follow's parers $(7) ;(0)$ and is reasonable for intense fields which can be treated classically or (ii) by including driving fields in the rotation and having the initial photon state as $\left|\alpha_{10}, \chi_{3}\right\rangle$ using Claver's rotation (4) (49) (50).

Vo shall neo that both method give equivalent results although the second 13 preferable es it is completely granter rechenical and does not require the aditition of any extra tomb.

Lethor (1) (based on Follow's fomallans driving field introduced classically)
In Chapter IV, Section A, the driving field was considered to couple
all levels and en additions l term ($4, \mathrm{~A}, \mathrm{al}$) wed add to the Imalliorian.
He are row corcemed with only two classical fielder $E_{5}(t)$ and $E_{2}(t)$
coupling levels 1 and 3 and 3 and 10 respectively were

$$
\begin{aligned}
& E_{s}(t)=\hat{e}_{o s}\left\{\varepsilon_{s}(t)+\varepsilon_{s}^{\prime \prime}(t)\right\} \\
& E_{L}(t)=\hat{e}_{o L}\left\{\varepsilon_{L}(t)+\varepsilon_{L}(t)\right\}
\end{aligned}
$$

Hence the additional tara instead of being

$$
\begin{aligned}
& H_{\text {(.D. }}(t)=-\hbar \sum_{y=z+1 z=1}^{10} \sum_{y z}^{9}\left\{P_{y z}(t) \lambda_{y z} \varepsilon_{D}(t)+\lambda_{z y} \varepsilon_{D}^{\prime}(t) P_{z y}(t)\right\} \\
& \text { whore } \lambda_{y z}=\frac{P_{y z} \cdot \hat{e}_{O D}}{\hbar}=\lambda_{z y} \\
& \text { and } E_{D}(t)=\hat{e}_{O D}\left\{\varepsilon_{D}(t)+\varepsilon_{D}(t)\right\}
\end{aligned}
$$

becomes

$$
\left.\begin{array}{rl}
H_{10}(t)= & -\hbar\left\{P_{31} \lambda_{31} \varepsilon_{5}(t)+\lambda_{13} \varepsilon_{s}^{\prime}(t) P_{13}(t)\right\} \\
& -\hbar\left\{P_{15,3} \lambda_{10,3} \varepsilon_{L}(t)+\lambda_{3,16} \varepsilon_{2}(t) P_{3,1}(t)\right\}
\end{array}\right\} \text { (5.B.7) }
$$

where $\lambda_{31}=\frac{f_{11} \cdot \hat{\epsilon}_{c s}}{\hbar}=\lambda_{13}$
and $\quad \lambda_{11,3}=\frac{f_{1,3} \cdot \hat{\epsilon}_{a_{1}}}{k}=\lambda_{5,10}$
3.j. Cricr oi linicos on is is not importisit as stated elsowere since the curo aphen to I^{\prime} a indices since E^{\prime} b are ammed rad and bence λ is are real for roal $\hat{e}_{u s}$ and $\hat{e}_{u L}$.

We shall assume each ficla oscillates hamonicolly eo thet

$$
\begin{align*}
& \varepsilon_{S}(t)=\varepsilon_{c s} e^{-i \omega_{s} t} \\
& \varepsilon_{L}(t)=\varepsilon_{L_{L}} e^{-\omega_{L} t} \tag{5.2.8}
\end{align*}
$$

and thet the fracurics of cacillation rearly coincies with the resoicht frequeder for the corremording traneitiong

$$
\begin{align*}
& \text { 1.0. } \omega_{1} \perp \epsilon_{3,1} \tag{5.E.9}\\
& \text { end } \omega_{h} \perp \epsilon_{10,3}
\end{align*}
$$

Lut nelther are nesr to the resonant froquency for tronsitions between any other pairs of levels.

The extra terrs wich H_{10} |l intresuces into $\left.\dot{P}_{m_{n}} \mid t\right)$ and f...... (t) are

$5 B 11)\left\{\operatorname{P}_{\ldots \ldots}|t|=-i\left\{\left(P_{3 m} \delta_{m 1}-P_{\ldots, 1} \delta_{m 3}\right) \lambda_{21} \varepsilon_{1}(t)+\lambda_{13} \varepsilon_{s}(t)\left(P_{\ldots \ldots} \delta_{\ldots m}-P_{m 3} \delta_{m 1}\right)\right\}\right.$ $-i\left\{\left(P_{10, m} \delta_{m 3}-P_{m 3} \delta_{m, 10}\right) \lambda_{10,3 L} \varepsilon_{L}(I)+\lambda_{5,10} \varepsilon_{L}(1)\left(P_{5 m} \delta_{10, m}-P_{m, 10} \delta_{m, 3} \cdots\right)\right\}$

Hoice equations ($5 . . .1$.), (5.E.2), (5.E.3) become:

$$
\begin{aligned}
& i_{2,0}=-\left\{1 / 2\left(x_{8}+r_{21}\right)+i\left(\epsilon_{63}-\rho_{8}+\lambda_{31}\right)\right\} P_{38}
\end{aligned}
$$

$$
\begin{align*}
& \dot{I}_{1,0}=-\left\{1 / 2 \gamma_{8}+i\left(t_{81}-D_{8}\right)\right\} P_{8} \\
& -1\left\{P_{28} q_{21}+P_{38}\left(q_{31}+\lambda_{31} \varepsilon_{5}(1)\right)+p_{78} q_{71}+p_{88} p_{81}\right\} \\
& -1\left\{P_{11} q_{81}+P_{14} q_{84}+P_{15} q_{85}+P_{14} q_{86}\right\} \tag{5,E,13}\\
& \left.+1\} 2_{08}^{+} P_{10}+q_{c, 8}^{+} P_{1,0}\right\} \\
& \dot{5}_{10,}=-\left\{1_{2}\left(\gamma_{8}+\gamma_{10}\right)+i\left(\epsilon_{8,10}-\Omega_{8}+\Omega_{10}\right)\right\} P_{10,8} \\
& +i\left\{P_{10,1} q_{81}+P_{104} q_{84}+P_{105} q_{85}+P_{10,6} q_{82}\right\} \\
& \begin{array}{l}
-i\left\{q_{10,2}^{+} p_{28}+\left(q_{10,3}^{+}+\lambda_{3,10} \varepsilon_{c} / 11\right) p_{38}+q_{10,7}^{+} p_{78}+q_{148}^{+} p_{88},\left(5 . B_{14}\right)\right. \\
+i\left\{q_{98}^{+} p_{10,9}+q_{10,8}^{+} p_{10,10}\right\}
\end{array}
\end{align*}
$$

 and $|0\rangle_{\text {rad }}$ respectively and calling

$$
\begin{aligned}
& x=\mathrm{rad}\langle 0| p_{58}|0\rangle_{\mathrm{rad}} \\
& \left.y={ }_{\mathrm{rad}}\langle 0| P_{18}|0\rangle\right\rangle_{\mathrm{rad}}^{\mathrm{ra}} \\
& Z={ }_{\mathrm{rad}}\langle 0| P_{10,8}|0\rangle_{\mathrm{rad}}
\end{aligned}
$$

we obtain the fclloting equations

$$
\begin{aligned}
& \dot{x}(r)=-\left\{1_{2}\left(\gamma_{8}+\gamma_{31}\right)+i\left(\epsilon_{83}-\Omega_{8}+\Omega_{31}\right)\right\} X(t) \\
&-i \lambda_{10,3} \varepsilon_{2}(t) Z(t) \\
&-i \lambda_{13} \varepsilon_{5}^{*}(t) Y(t) \\
& \dot{Y}(t)==\left\{1_{2} \gamma_{8}+i\left(t_{81}-\Omega_{8}\right)\right\} Y(t) \\
&-i \lambda_{51} \varepsilon_{5}(t) X(t)
\end{aligned}
$$

In order to outain guations for the matrix elenonts of the reavea density opcrators we recall that

$$
\begin{aligned}
& \rho_{8,3}^{(s)}(t)=\sum_{s}\langle s| X(t) \rho^{(s)}(0)|s\rangle \\
& \rho_{s, 1}^{(s)}(t)=\sum_{s}\langle s| y(t) \rho^{(s)}(0)|s\rangle \\
& \rho_{s, 10}^{(s)}(t)=\sum_{s}\langle s| z(t) \rho^{(s)}(0)|s\rangle
\end{aligned}
$$

Hexce mitiplying equations (5.E.16) - (10) from the Roino. by and tailnce $T_{r_{s}}$ wo obtain

$$
\begin{aligned}
\rho_{2,5}^{(5)}(t)= & -\left\{1 / 2\left(\gamma_{8}+\gamma_{31}\right)+i\left(t_{85}-\Omega_{8}+\Omega_{31}\right)\right\} \rho_{8,3}^{(s)}(t) \\
& -i \lambda_{10,3} \varepsilon_{2}(t) \rho_{8,10}^{(s)}(t) \\
& -i \lambda_{13} \varepsilon_{5}^{\prime}(t) \rho_{8,1}^{(s)}(t) \\
\dot{\rho}_{8,1}^{(s)}(t)= & -\left\{1 / 2 \gamma_{8}+i\left(t_{81}-\lambda_{8}\right)\right\} \rho_{81}^{(s)}(t) \\
& -i \lambda_{51} \varepsilon_{5}(t) \rho_{8,}^{(5)}(t)
\end{aligned}
$$

$$
\begin{align*}
\dot{\rho}_{8,10}^{(s)}(t)= & -\left\{1 / 2\left(\gamma_{8}+\gamma_{10}\right)+i\left(\epsilon_{8,10}-\Omega_{8}+\Omega_{10}\right)\right\} \rho_{8,10}^{(3)}(1) \\
& -i \lambda_{3,10} \varepsilon_{2}^{(1 t)} \rho_{8,3}^{(3)}(t) \tag{5.0.22}
\end{align*}
$$

 in a orpletely quatura mechaicel vey

Wo chill ruy the into account the nowodonmatic radistion fields couplint levola 1 and 3, 3 axd 10 ry essump that the arivirg ficles ane alrewiy incluigal in the notation go that all we have to do 16 to consicer the initinl photon etate $\left.\quad \operatorname{liph}_{h}\right\rangle=\left|\chi_{10}, \chi_{3}\right\rangle$ sratece of a zero protion state as in lethoc (1).

Tae reagoning behind this pethod derence or the R.vioh. be will rocall that in neslectire cortain hernitian teres in the interaction Nariltonian wo asme $\quad g_{l_{0, y z}} \ll \epsilon_{y z} \perp \omega_{l}$ co that ω_{l} is not completely eeneral. In fact wo have teen asoigned extro othocripts to it for this reasor, i.e. $\omega_{l} \rightarrow \omega_{l y z}$
 is ansed cres all l butbering in mind the ω_{l} has only a orall variation in each caso, enf.

$$
\begin{align*}
H_{I}= & -\hbar \sum_{l, 5} g_{l \sigma, 21}\left(P_{12}^{+} a_{l 5}+a_{85}^{+} P_{12}\right) \text { where } \omega_{l} \wedge \epsilon_{21} \tag{5.8.25}\\
& -\hbar \sum_{l, 5} g_{l 0,31}\left(P_{13}^{T} a_{15}+a_{l 0}^{+} P_{13}\right) \text { where } w_{l} \perp \epsilon_{31}
\end{align*}
$$

if conid thus exsien museripts to the bosen operators to fisticate this so tint

$$
\begin{align*}
H_{I}= & -t \sum_{l, 5} g_{l \sigma, 21}\left(p_{12}^{+} a_{l \sigma, 21}+a_{0,5,21}^{+} P_{12}\right) \\
& -\hbar \sum_{l, 5} g_{0 \sigma, 31}\left(P_{13}^{+} a_{l \sigma, 31}+a_{05,31}^{+} P_{13}\right) \tag{4}
\end{align*}
$$

individual coherent stated, $\mid x_{i-}>$ of tho field obey tie relations

$$
a_{4 r}\left|x_{6-5}\right\rangle_{5 r} \mid x_{6}>
$$

ware operators and states are cvaluntod at the see tine ard $\alpha_{\text {i- }}$ is complex. In fact we shall consider only a single mode of each of the two flolis. $\alpha_{\text {d, }}$ is the member of photons in node , ard so for the zero photon state of vacuum state $\alpha_{1}=0$ and the corresponding coherent state is the wilque ground state of the fiche, ide. the state for $\quad \alpha_{i, 5}=0$.
We shall assume that initially $\left|x_{i f}\right\rangle:\left|x_{11}, x_{5}\right\rangle$ where $\left|x_{n}\right\rangle$ is the state of the laser field initially and $\left|\alpha_{3}\right\rangle$ is tho initial state of the wifi field. In order to find the value of term as
we expend $\quad{ }^{n}$ and $\|_{p}>$ no that
wire n and $\mid x_{1}, x_{3}>$ is the initial photon state and so is venwoed at time t' $=0 \mathrm{es}$ is $a_{0 \%}(0)$.

The value of $\alpha_{8, \ldots m}(0)\left|\alpha_{w}, \alpha_{3}\right\rangle$ thus needs to be known and it is obvious that for certain n_{i} an it is zero, viz. $a_{8, \ldots}\left|\chi_{10}, x_{3}\right\rangle$ for $n>$ in is gro for all values of n, except then

$$
\begin{equation*}
n=10, n=3 \text { and } n=3, m=1 \tag{5.B.23}
\end{equation*}
$$

In. fact

$$
\begin{aligned}
& =g_{\omega_{n} w_{1},} e^{-\omega_{L} t} \alpha_{10}\left|\alpha_{\infty} \alpha_{5}\right\rangle \\
& =\sqrt{\frac{\alpha \pi \omega_{L}}{\hbar V}}\left(\hat{\varepsilon}_{0 n} \cdot f_{10,3}\right) e^{-10 L_{2}} \alpha_{10}\left|\alpha_{10}, \alpha_{3}\right\rangle
\end{aligned}
$$

Similarly

$$
\begin{align*}
& \left\langle i_{p} \mid q_{1}^{+}, i_{p}\right\rangle=g_{3,310,3} e^{m, n} \alpha_{10}^{*} \\
& \left\langle i_{p} \mid q_{3,1} i_{p}\right\rangle=g_{3,3,1} e^{-\omega_{3} t} \alpha_{3} \\
& \left\langle i_{p}\right| q_{3,1}^{+}\left|l_{p}\right\rangle=g_{u_{3}, 3,1} e^{i \omega_{3} t} \alpha_{3}^{*}
\end{align*}
$$

In this exthod: wo lot

$\psi_{i} G_{L}=g_{1,10,3}\left|\alpha_{10}\right|, \quad 1 / 2 G_{L}^{\prime}=g_{\omega_{L}, 0,3} \alpha_{10,} \quad 1 / 2 G_{L}^{1 \alpha}=g_{\omega, 10,3} \alpha_{10}^{*}$
起 $g_{0} g_{\omega_{5}, 3,1}\left|\alpha_{3}\right|, \quad 1 / 2 G_{s}^{\prime}=g \omega_{5}, 3,1 \alpha_{3}, \quad 1 / 2 G_{s}^{1 \alpha}=g \omega_{5}, 3,1 \alpha_{5}{ }^{\alpha}$

I.E. now

$$
\left.\begin{array}{rl}
i_{4} G_{L}{ }^{2} & =g_{\omega_{2}, 10,3}^{2}\left|\alpha_{10}\right|^{2} \text { and } \quad 1 / 4 G_{s}^{2}=g_{\omega_{s} ; 3,}^{2}\left|\alpha_{3}\right|^{2} \tag{5.5.33}\\
& =\left(\frac{2 \pi 10}{\hbar V}\right)\left(\hat{e}_{0 L} \cdot f_{10,}\right)^{2}\left|\alpha_{10}\right|^{2}=\left(\frac{2 \pi \omega_{5}}{\hbar V}\right)\left(\hat{e}_{0 S} \cdot f_{31}\right)^{2}\left|\alpha_{3}\right|^{2}
\end{array}\right\}
$$

hirstead of

$$
\left.\begin{array}{rlrl}
4 G_{10}^{2} & =\left(\lambda_{10, s} \varepsilon_{01}\right)^{2} & \text { and } & 4 G_{3}^{2}
\end{array}=\left(\lambda_{51} \varepsilon_{05}\right)^{2}\right)
$$

rultiplying cquatioxs (5.jo1)-(s) from left and right by $\left\langle i_{p h}\right|$ and $\left|\left.\right|_{\text {ph }}\right\rangle$ respectively we obtain:-

$$
\begin{align*}
& \left.\left.\langle i h| \dot{F}_{p, S}|1 i h\rangle=-\left\{1 / 2\left(\gamma_{8}+\gamma_{10}\right)+i\left(\epsilon_{8,10}-\Omega_{8}+\Omega_{10}\right)\right\}\langle | p h\left|P_{10,8}\right| 1, p h\right\rangle\right\} \tag{5.B.35}\\
& \rightarrow<i_{1} \mid q_{10,3}^{+} P_{38} \text { liph> }
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{l}
-i<i_{1,} \mid p_{10,8} \quad q_{10,3} l i p h> \\
-i<i_{i j} \mid q_{31}^{+} p_{18} \quad \text { liph}>
\end{array} \\
& \langle p| P_{p 1}\left|i_{p}\right\rangle=-\left\{1 / 2 \gamma_{8}+i\left(t_{81}-\Omega_{8}\right)\right\}\left\langle j_{j h}\right| P_{18}\left|i_{i h}\right\rangle \tag{0}\\
& { }^{-i<i_{p} \mid} p_{38} q_{31}\left|i_{p h}\right\rangle
\end{align*}
$$

(5.3.36)

Let

$$
\begin{aligned}
& x_{0}=\left\langle i_{i h}\right| p_{38}\left|i_{p h}\right\rangle \\
& \left.y_{a}=<i_{p h}\left|p_{18}\right| i_{p h}\right\rangle \\
& z_{Q}=\left\langle i_{p h}\right| p_{4,8}\left|i_{p h}\right\rangle
\end{aligned}
$$

hence

$$
\begin{align*}
& \dot{x}_{\alpha}=-\left\{y_{2}\left(\gamma_{8}+\gamma_{51}\right)+i\left(t_{45}-\Omega_{8}+\lambda_{31}\right)\right\} X_{6} \\
& -i V_{2}^{1} e^{-M_{2} t} Z_{\alpha} \\
& -1 / 2 c_{s}^{12} e^{\prime 20, t} y_{0} \\
& \dot{y_{a}}=\left\{1 / 2 \gamma_{8}+1\left(t_{81}-\Omega_{8}\right)\right\} y_{a} \tag{5.E.39}\\
& -1 / 2 G_{s}{ }^{\prime} e^{-i 0_{s} t} x_{a} \\
& \left.\sum_{Q}^{2}=\xi^{1 / 2}\left(\gamma_{8}+\gamma_{10}\right)+i\left(t_{8,10}-\Omega_{s}+\Omega_{\mu}\right)\right\} Z_{Q} \tag{5.8.40}\\
& -i \frac{1}{2} G_{L}^{10} e^{\pi \omega_{L} t} x_{a}
\end{align*}
$$

Eco, recalling that

$$
\begin{equation*}
\rho_{83}^{(s)}(1): \sum_{s}\langle s| x_{6}(1) \rho^{(s)}(0)|s\rangle \tag{5.B.41}
\end{equation*}
$$

we obtain equations for the reduced density matrix operators

$$
\begin{align*}
\rho_{85}^{\prime 3)}(t)= & -\left\{1 / 2\left(\gamma_{8}+\gamma_{51}\right)+i\left(t_{83}-\Omega_{8}+\Omega_{31}\right)\right\} \rho_{83}^{(s)}(t) \\
& -i 1_{2} G_{2}^{\prime} e^{-i \omega_{2} t} \rho_{8,10}^{(s)}(t) \tag{5.2.42}\\
& -i 1 / 2 G_{5}^{\prime \times} e^{i w_{5}(t)} \rho_{81}^{(s)}(t) \tag{5.B.43}\\
\rho_{81}^{(s)}(t)= & -\left\{1 / 2 \gamma_{8}+i\left(t_{81}-\Omega_{8}\right)\right\} \rho_{81}^{(s)}(t) \\
& -i \frac{1 / 2 G_{5}^{\prime} e^{-i v 5 t} \rho_{83}^{(s)}(t)}{} \\
\rho_{8,10}^{\prime \prime}(t)= & \left\{1 / 2\left(\gamma_{8}+\gamma_{10}\right)+i\left(t_{8,10}-\Omega_{8}+\Omega_{10}\right)\right\} \rho_{8,10}^{(s)}(t) \\
& -i / 2 G_{L}^{\prime \prime} e^{i \omega_{2} t} \rho_{83}^{(s)}(t)
\end{align*}
$$

Comparing these equations with equations (5.2.20-22) of metics (i), when $\varepsilon_{s}(t)$ and $\varepsilon_{L}(t)$ are written as $\varepsilon_{o s} e^{-i \omega_{s} t} \cdot \varepsilon_{0} e^{-i w_{2} t}$ respectively, wo see that the equations ere equivalent if

1.e. $\alpha_{11}, \alpha_{10}^{*} \infty\left(\varepsilon_{1} / / \omega_{L}\right)$ end $\alpha_{5} \alpha_{3} \alpha\left(\varepsilon_{13} / \omega_{3}\right)$ i.e. α_{3} and α_{10}
oro MiL in rethod (1)。
Learire these traneformations in wind we can vee elther wethod and ditain reculte in the same forso

Accorcire to quation (40c.3) fer trensitions
a) betwen levels 0 and 1 , we need to mow

$$
\begin{equation*}
\left\langle P_{18}^{+}\left(t^{\prime}\right) P_{v k}\left(t^{\prime}\right)\right\rangle=\sum_{y^{\prime \prime=}}^{n} u_{8,1}, y^{\prime \prime}\left(\tau, t^{\prime}\right) / \rho_{y^{\prime \prime}}^{(s)}\left(t^{\prime}\right) \tag{5,E,4C}
\end{equation*}
$$

and for tracitions
b) Letween levels 10 and ε, we need to know

$$
\begin{equation*}
\left\langle P_{8,0}^{+}\left(t^{\prime}\right) P_{8,10}\left(t^{\prime \prime}\right)\right\rangle=\sum_{y^{\prime}=1}^{10} u_{10, a, y^{\prime \prime}=}\left(\tau, t^{\prime}\right) \rho_{y^{(s)}, 10}^{\left(t^{\prime}\right)} \tag{5.2.47}
\end{equation*}
$$

So for case (a) we nerd to solve oquations ($5,5,20$) (22) for $\rho_{81}^{(3)}(t)$
 we need to solve for $\rho_{0,0}^{(s)}(t)$ in orter to find functions Hila, $_{20,18}$ Kice;20"•• HIC, Esic,s whe all H^{\prime} a derend on τ end t. In fact it ia obvicus tiat tiere will aily be tireo lis in cach cose nince equations (5.2.20)-(22) tre indepordent. They con be colved by taing Laplace transioms, asmming the initial time to be t'.

First, on substitutine for $\varepsilon_{s}(t)$ and $\varepsilon_{1}(t)$ orplicitiy, wo obtain

$$
\begin{align*}
\dot{\rho}_{83}^{(s)}(t)= & =\left\{1 / 2\left(\gamma_{8}+\gamma_{31}\right)+i\left(t_{83}-\Omega_{8}+\Omega_{31}\right)\right\} \rho_{83}^{15}(t) \\
& -i \lambda_{14,3} \varepsilon_{02} e^{-i \omega t} \rho_{8,10}^{(s)}(t) \tag{5.B.43}\\
& -i \lambda_{13} \varepsilon_{05} e^{i, t} \rho_{81}^{(s)}(t)
\end{align*}
$$

$$
\begin{aligned}
& \dot{\rho}_{81}^{(s)}(1)=-\left\{1 / 2 \gamma_{8}+i\left(t_{81}-\Omega_{8}\right)\right\} \rho_{81}^{(3)}(1) \\
& -1 \lambda_{5,1} \varepsilon_{0 s} \epsilon^{-i \omega_{2} t} \rho_{85}^{(s)}(t) \\
& \dot{\rho}_{n, 16}^{(s)}(t)=-\left\{1_{2}\left(x_{8}+\gamma_{i v}\right)+i\left(t_{,, 16}-\int_{8}+\Omega_{10}\right)\right\} \rho_{8,10}^{\prime \prime}(1) \\
& -i \lambda_{3,10} \varepsilon_{u 2} e^{1 \omega_{i} t} \rho_{+3}^{(3)}(1)
\end{aligned}
$$

and in orver to have cnly three distinct finctions of t so that wo way colve the thace equatione easily we multiply equation (5.0.49) by $e^{1 \omega_{s} t}$ and (5. N. 50) by $e^{-1, c_{5}}$.
mer

$$
\begin{align*}
& \dot{\rho}_{83}^{(i)}(1)==\left\{1 / 2\left(\gamma_{8}+\gamma_{31}\right)+i\left(\epsilon_{83}-\Omega_{8}+\Omega_{51}\right)\right\} \rho_{83}^{(9)}(t) \\
& -i \lambda_{103} \varepsilon_{C L} e^{-i \omega t} \rho_{8,10}^{(i)}(t) \tag{5}\\
& -i \lambda_{13} \varepsilon_{c s} e^{i \omega_{5} t} p_{81}^{(s)}(t) \\
& e^{\omega_{2} t} \dot{\rho}_{51}^{(k)}(t)=-\left\{1 / 2 \gamma_{8}+i\left(t_{81}-\Omega_{8}\right)\right\} \rho_{81}^{(k)}(t) \tag{5.B.52}\\
& -1 \lambda_{31} \varepsilon_{0 s} \rho_{83}^{(5)}(t) \\
& \epsilon^{-{ }^{-4} t \cdot(s)} \rho_{0,10}(t)=-\left\{1 / 2\left(\gamma_{8}+\gamma_{10}\right)+i\left(\epsilon_{8,10}-\Omega_{8}+\Omega_{10}\right)\right\} e^{-i \omega_{2} t} \rho_{8,10}^{(s)}(t) \tag{5.8.53}\\
& -i \lambda_{=, 16} \varepsilon_{0-} \rho_{83}^{(s)}(t)
\end{align*}
$$

gherlotting the tires diatinct functions of the be representad by $x(t), y(t), w(t)$, steren

$$
\begin{aligned}
& x(t)=\rho_{83}^{(s)}(t) \\
& \mathbf{y}(t)=e^{i(3)} \rho_{01}^{(2)}(t) \quad \therefore \dot{y}(t)=1 \omega_{s} y(t)+e^{(\omega, 5} \rho_{81}^{(s)}(t) \\
& \mathbf{z}(t)=e^{-\cdots, t} \rho_{8,10}^{(s)}(t) \quad z(t)=-i \omega_{1} z(t)+e^{-i \omega_{2} t} \rho_{8,10}^{(s)}(t)
\end{aligned}
$$

wo lave, on mabisituition

$$
\begin{align*}
\dot{x}(t)= & -\left\{1 / 2\left(\gamma_{8}+\gamma_{51}\right)+i\left(t_{85}-\Omega_{8}+\Omega_{31}\right)\right\} x(t) \\
& -i \lambda_{w, 3} \varepsilon_{02} z(t) \tag{5.5.55}\\
& -1 \lambda_{15} \varepsilon_{05} y(t)
\end{align*}
$$

$$
\begin{align*}
\dot{y}(t)= & -\left\{1_{2} \gamma_{8}+i\left(t_{81}-\omega_{5}-\Omega_{8}\right)\right\} y(t) \tag{5.8.56}\\
& -1 \lambda_{31} \varepsilon_{0,5} x(t) \\
\dot{z}(t)= & -\left\{1 / 2\left(\gamma_{8}+\gamma_{10}\right)+1\left(t_{0,10}+\omega_{5}-\Omega_{8}+\Omega_{10}\right)\right\} z(t) \tag{5.B.57}\\
& -i \lambda_{3,10} \varepsilon_{c L} x(t)
\end{align*}
$$

Taicing Laplace transfores of quations (5.1.55m57) we obtain

$$
\begin{array}{ll}
\left\{s+1 / 2 \gamma^{\prime}+1\left(\omega_{2}^{\prime}-\omega_{1}\right)\right\} \hat{x}(s)=-1 \lambda_{1,3} \varepsilon_{c i} \hat{z}(s)-1 \lambda_{13} \varepsilon_{0 s} \hat{y}(s) & +e^{-s t^{\prime}} x\left(t^{\prime}\right) \\
\left\{s 1^{\prime} / 2 \gamma_{8}+i\left(\omega_{8}^{\prime}-\omega_{s}\right)\right\} \hat{y}(s)=-1 \lambda_{51} \varepsilon_{c s} \hat{x}(s) & +e^{-s t^{\prime}} y\left(t^{\prime}\right) \\
\left\{s+1 / 2 \gamma^{\prime \prime}-1\left(\omega_{w^{\prime}}^{\prime}-\omega_{2}\right)\right\} \hat{z}(s)=-1 \lambda_{3,1} \varepsilon_{c L} \hat{x}(s) & +e^{-s t^{\prime}} z\left(t^{\prime}\right)
\end{array}
$$

where $\quad \gamma^{\prime}=\gamma_{8}+\gamma_{31}$

$$
\begin{align*}
\gamma^{\prime \prime} & =\gamma_{8}+\gamma_{10} \\
\epsilon_{81}-\Omega_{8} & =\omega_{8}-\Omega_{8}=\omega_{8}^{\prime} \tag{5.3.61}\\
\epsilon_{31}-\Omega_{31} & =\omega_{1}-\Omega_{31}=\omega_{1}^{\prime} \\
\epsilon_{10,0}-\left(\Omega_{10}-\Omega_{8}\right) & =\omega_{10}-\left(\Omega_{10}-\Omega_{8}\right)=\omega_{10}^{\prime} \\
\epsilon_{8,3}-\left(\Omega_{8}-\Omega_{51}\right) & =\left\{\left(\epsilon_{81}-\epsilon_{31}\right)-\left(\Omega_{8}-\Omega_{51}\right)\right\}=\left\{\left(\omega_{8}-\omega_{1}\right)-\left(\Omega_{8}-\Omega_{3,1}\right)\right\}=\omega_{8}^{\prime}-\omega_{1}^{\prime}
\end{align*}
$$

1.e. we have absorbed the froquency bhifts into the definitions of w's.

(a) Enoctral enxritition function for tronsitions ketween levels

$5 P_{3 / 2}(S)$ and $4 S(1)$

In orcier to solve equations $\left(5 . D_{0} 5 s^{5}(0)\right.$ for $\hat{y}(s)=\mathcal{L}\left(e^{i \omega_{s} t} \rho_{81}^{(s)}(t)\right)$ we aubstitute for $\hat{z}(s)$ fron (5.2. (C) in (5.8.50) and substitute the resulting value for $\hat{x}(\mathrm{~s})$ in ($5 . \mathrm{E}_{0} 59$). Fence we obtaint

$$
\begin{align*}
\hat{y}(s)= & -\left(\lambda_{31} \varepsilon_{0 s}\right)\left(\lambda_{193} \varepsilon_{02}\right) \frac{1}{F(s)} e^{-s t^{\prime}} z\left(t^{\prime}\right) \\
& -1 \lambda_{31} \varepsilon_{05} \frac{f_{2}(s)}{F(s)} e^{-s t^{\prime}} x\left(t^{\prime}\right) \tag{0}\\
& +\left\{\frac{f_{1}(s) f_{2}(s)+1 / 4 G_{10}^{2}}{F(s)}\right\} e^{-s t^{\prime}} y\left(t^{\prime}\right)
\end{align*}
$$

whare $f_{1}(s)=s+1 / 2 \gamma_{1}+i\left(\omega_{l}^{\prime}-\omega_{1}^{\prime}\right)$

$$
\begin{aligned}
f_{2}(s) & =s+1 / 2 \gamma^{\prime \prime}-i\left(w_{1}^{1}-\omega_{L}\right) \\
f_{3}(s) & =s+1 / 2 \gamma_{s}+1\left(\omega_{2}^{\prime}-\omega_{s}\right) \\
F(s) & =f_{3}(s)\left\{f_{1}(s) f_{2}(s)+1 / 4 c_{n}^{i}\right\}+1 / 4\left(\epsilon_{s}^{2} f_{2}(s)\right. \\
G_{10} & =2 \lambda_{1,3} \varepsilon_{12}=2 \lambda_{\varepsilon_{10}} \varepsilon_{c L}=2 \lambda_{10} \varepsilon_{0 L} \\
\text { and } \quad G_{3} & =2 \lambda_{s, 1} \varepsilon_{c, s}=2 \lambda_{15} \varepsilon_{c s}=2 \lambda_{5} \varepsilon_{c s}
\end{aligned}
$$

liow $L\left(t^{i x t} A(t)\right)=\int_{t^{\prime}} d t e^{-s t} e^{i x t} A(t)$

$$
\begin{aligned}
& =\int_{t}^{\infty} d t t^{-(s-i x) t} A(t) \\
& =\hat{A}(s-i x)
\end{aligned}
$$

$$
\cdot \hat{\rho}_{s, 1}^{(s)}(s)=-\left(\lambda_{3,} \varepsilon_{c, s}\right)\left(\lambda_{1 u, 3} \varepsilon_{0 L}\right) \frac{1}{F\left(s+i u_{s}\right)} e^{-\left(s+i \omega_{s}\right) t^{\prime}} e^{-i \omega_{2} t t^{\prime}} \rho_{\delta, c c}^{(s)}\left(t^{\prime}\right)
$$

$$
-i \lambda_{31} \varepsilon_{c s} \frac{f_{2}\left(s+i \omega_{s}\right)}{F\left(s+i \omega_{s}\right)} e^{-\left(s+i w_{s}\right)(1)} \rho_{8 s}^{(s)}\left(t^{\prime}\right)
$$

$$
\left.+\left\{\frac{f_{1}\left(s+1 \omega_{5}\right) f_{2}\left(s+i \omega_{5}\right)+1 / 4 G_{10}^{2}}{F\left(s+11 s_{5}\right)}\right\} e^{-\left(s+\left(w_{5}\right) t^{\prime}\right.} e^{\left(\omega_{5} t^{\prime}\right.} \rho_{81}^{(s)}\left(t^{\prime}\right)\right]
$$

Henco $\left.\hat{\rho}_{81}^{(s)}(s)=\hat{U}_{81,8,0}(s) \rho_{8,10}^{(s)}(H)+\hat{U}_{81,83}^{(s)} \rho_{83}^{(s)}(1)+\hat{U}_{81,81}(s) \rho_{81}^{(s)}(1)\right)$ where $\hat{\mu}_{\delta 1,8,10}(s)=-\left(\lambda_{s} \varepsilon_{0 s}\right)\left(\lambda_{10} \varepsilon_{0 L}\right) \frac{1}{F\left(s+1 \omega_{s}\right)} e^{-\left(s+1\left(\omega_{s}+\omega_{L}\right)\right) t^{1}}$

$$
\begin{aligned}
& \hat{U}_{81,33}(s)=-i \lambda_{51} \varepsilon_{o s} \frac{f_{2}\left(s+i \omega_{5}\right)}{F\left(s+i \omega_{s}\right)} e^{-\left(s+i \omega_{s}\right) t^{\prime}} \\
& \hat{U}_{81,81}(s)=\left\{\frac{f_{1}\left(s+i \omega_{s}\right) f_{2}\left(s+i \omega_{s}\right)+1 / 4 G_{10}^{2}}{F\left(s+i \omega_{s}\right)}\right\} e^{-s t^{\prime}}
\end{aligned}
$$

hou the quanity wo are intorestod in is the 2-tine atovic correiation function

$$
\begin{aligned}
& \varepsilon_{8}\left(t^{\prime}, t^{\prime \prime}\right)=\left\langle P_{18}^{+}\left(t^{\prime}\right) P_{18}\left(t^{\prime \prime}\right)\right\rangle \quad 0 R \quad \begin{array}{r}
\left.g_{8}\left(\tau, t^{\prime}\right)=<P_{18}^{+}\left(t^{\prime}\right) P_{18}\left(t^{\prime}+\tau\right)\right\rangle \\
\text { whero } t^{\prime \prime}=t^{\prime}+\tau
\end{array} \\
& \bumpeq \sum_{y^{\prime \prime}=1}^{10} \hat{U}_{81, y^{\prime \prime}}\left(\tau,\left.\right|^{\prime}\right) \rho_{y^{\prime 8}}^{(5)}(t) \quad \text { under Narioof amproximation } \\
& =U_{81,81}\left(\tau, t^{\prime}\right) \rho_{88}^{(s)}\left(t^{\prime}\right) \quad \text { in the present case since } \text {. }
\end{aligned}
$$

there will be only one of the form $u_{51, y^{\prime \prime}}$ when $y^{\prime \prime}=8$ Let \hat{t}

$$
\begin{align*}
& \hat{v}_{i,} \\
& \hat{u}_{1, \ldots} \\
& \hat{v}_{1} \tag{5,B,68c}\\
& \hat{u}_{1,}(1)=\hat{\psi}
\end{align*}
$$

$$
(5, B, 68 a)
$$

$$
(5.8 .68 b)
$$

How if wo take the invare Laplace transform of (5.B. 6 Ba) wo obtain

$$
\left.(1,1) \quad \frac{1}{1 i}, \oint t \ldots t u_{, 1,1}\right)
$$

and if: we lat $t=t+\tau$

$$
\begin{align*}
U_{i, n 1}\left(U^{\prime}+\hat{}\right) & \left.=\frac{1}{2 \pi i} \oint d \hat{\psi}_{0,01}\right) \epsilon^{\prime \prime} \epsilon^{-(t \cdot \lambda)} \\
& =\frac{1}{2 \pi i} \oint d, \hat{\psi}_{1, \ldots}(\gamma) t^{s t} \tag{5,B.69a}\\
& =\psi_{-1,1}(\tau)
\end{align*}
$$

SLusiarly

$$
\begin{equation*}
U_{x, 8,5}\left(t^{\prime}+\imath\right)=\psi_{81,5,3}(\tau) e^{-1 \omega, t^{\prime}} \tag{0}
\end{equation*}
$$

and $U_{8,0,16}\left(U^{\prime}, \uparrow\right)=\Psi_{81,8,0}(\tau) t^{-i\left(\cdots+j_{2}\right) t^{\prime}}$

$$
\begin{align*}
& \therefore U_{\left.81, s_{1}, 1\right)}=\psi_{81},{ }_{8}(\tau) \tag{5,1,70}\\
& \therefore g_{6}\left(\tau, 1^{\prime}\right)=\psi_{61, s}(\tau) \rho^{\prime s}(1)
\end{align*}
$$

 trim $\rho_{i r}^{\prime}\left(t^{\prime}\right)$ and not through any factor in $\Psi_{51,5}(\tau)$

If we acme the atom is in equilibrium with the field so that

 Matter painted at time ti

$$
\begin{align*}
& \text { 2.0. } \quad \rho_{8, \infty}^{(a)}\left(t^{\prime}\right)=\left\{\rho^{n} \sum_{x}\right\}_{t t^{\prime}} \\
& \rho=3(t)=\left\{\begin{array}{l}
(s) \\
\therefore y_{+}
\end{array}\right\}_{1} \tag{4}\\
& \rho^{\prime \prime}\left(\ln ^{\prime \prime}\right)=
\end{align*}
$$

and siminxiy for all other initial values of the reacod dencity matrices. The atonas comelation function in equation (5. D. 70) is then Indepandent of the initial tiae to and is elven by the relation

$$
\begin{equation*}
g(t)=\psi \ldots, n, t)\left\{p, p_{1}\right. \tag{5.8.72}
\end{equation*}
$$

Toking the Laplace treneform of $y_{*}(\tau)$, we obtain

$$
\begin{align*}
\hat{y}_{(}(s)=\int_{0}^{i} d \tau g(T) t^{-s \tau} & =\hat{\psi}\left(i, s, 1(s)\left\{\rho_{-8}^{(s)}\right\}_{t} t^{\prime}\right. \tag{5.E.73}\\
& =\left\{\frac{\left(,\left(s+1 \omega_{s}\right) f_{i}\left(s+1 \omega_{s}\right)+1 / 4 G_{10}^{2}\right.}{F(s+1,-s)}\right\}\left\{\rho_{88}^{(s)}\right\}_{t+1}
\end{align*}
$$

Fe now wiak to eval uate the spectrel comelation forction $\hat{g}_{8}(\nu)$, defined by the Founter transform of the atome correlation function

$$
\begin{equation*}
\hat{g}_{8}(\nu)=\int_{-\infty}^{\alpha} d \tau g_{8}(\tau) e^{\cdot \nu \tau} \tag{5.E.74}
\end{equation*}
$$

where ν is the scatterod frecuency.

equation (2.27) of Kollow's peper (9) and equation (3.2.17) of this theais,
 runcs.

$$
\begin{equation*}
\text { 1.e. } I(\nu, r)=|\varphi(v)|^{2} \bar{g}(\nu) \tag{5.B.75}
\end{equation*}
$$

where in yollowis units

$$
|\varphi(r)|^{2}=\frac{1}{8 \pi^{2} r^{\frac{1}{2}}} \frac{w^{4}}{c^{4}}\left\{\left(f^{\times r} \underline{r}\right) \times \underline{r}\right\}^{2}
$$

for the $2-1$ riol stam of enercy weparation $\hbar \omega_{0}$ (000 eq. (2.12) af ref. 9). where in the previous chapter we have show, using Glauber's formallsm, that

$$
\begin{equation*}
I(v, r)=\frac{\hbar}{2 \pi} \frac{v^{=}}{c} \sum_{\sigma=1}^{i} \int_{0}^{1+\pi}\left\langle n_{e \sigma}\right\rangle d l_{\hat{k}} \tag{5.5.76}
\end{equation*}
$$

where $\left\langle n_{9 \sigma}\right\rangle=\left\langle a_{96}^{+} a_{95}\right\rangle \quad$ is the function evaluated in the previous chapter.

In Mollow's paper ${ }^{(9)}$ he explatns how the coherent and incoherent parts of the eppectrun can be acpareted off. For the preseert, since we don't yet know the roots of $F\left(s+i \omega_{s}\right)$, wo bhall ignore this and just
colenate the tetal mectral corralation function $\hat{g}_{8}(\nu)$ -
where $\left.\rho_{s i}^{\prime \prime}-\left(f_{=8}^{\prime \prime}\right)\right)_{t}$

$$
=\lambda \rho_{i=1}^{\prime \prime} R \hat{\psi}_{5,5}(-i)
$$

if fis is is Mell as it thonda bo since it represerts the Cumilbin moboblity of finding the ator in excited stateg 18\rangle.
where $\left.\hat{\psi}_{\varepsilon_{1}, 1}\left(c_{s}\right)=\int_{0}^{x} d \tau \psi_{s_{1}, 0,1}(\tau) \epsilon^{-s i}=\left\{\frac{f_{1}\left(s+i \omega_{5}\right) f_{2}\left(s+i v_{5}\right)+1 / 4 G_{10}^{2}}{F\left(s+i v_{s}\right)}\right\}\right]$

$$
\therefore \varepsilon_{e}(\nu)=\frac{2 p_{9}^{\prime \prime}}{\mid F\left(-\left.1\left(\nu\left(\omega_{s}\right)\right)\right|^{2}\right.} R_{4}\left(F\left(7\left(\nu-v_{x}\right)\right)^{x}\left[f_{1}\left(\imath\left(\nu-\omega_{s}\right)\right) f_{2}\left(\neg\left(\nu-\omega_{s}\right)\right)+{ }^{\prime \prime} / 4 G_{x}^{2}\right]\right\}
$$

(5.5.78a)

Where $f_{1}\left(-1\left(v v_{i s}\right)\right)-12 \gamma^{\prime}-1\left(v^{\prime}+\Delta_{z_{1}}\right)$

$$
\begin{aligned}
& f_{2}(-1(\nu-u s))=1 / 2 \gamma^{\prime \prime}-1\left(\nu^{\prime}+\Delta_{31}+\Delta_{1,5}\right) \\
& \left.f_{j}\left(i / v \cdot \omega_{s}\right)\right)=1 / 2 \gamma_{s}-1 \nu^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \nu^{\prime}=\nu-\omega_{6}^{\prime}=\nu-\left(t_{8},-\lambda_{8}\right) \tag{5.0.78~b}\\
& \Delta_{31}=\omega_{1}^{\prime}-\omega_{5}=\left(\epsilon_{31}-j_{31}\right)-\omega_{5} \\
& \Delta_{l i ; 3}=\omega_{3}^{\prime}-\left(v_{L}=\left(t_{1,3}-\Lambda_{U_{1}}-D_{5,}\right)\right)-\omega_{L}
\end{align*}
$$

$$
\begin{aligned}
& \text { since } \psi_{=1,51}(-\uparrow)=\psi_{n, 8, s,}^{*}(\imath) \\
& =\rho_{0}^{\prime \prime} 2 R_{k} \int_{0}^{n} d \tau \epsilon^{i 2} \psi_{s)}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}_{x}(v)=\int_{-x}^{x} d \tau g_{e}(\tau) t^{w \tau}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\rho_{0}^{(\cdots)}\right\}_{t},\left\{\int d \tau \psi_{n, i,}(\tau) e^{\cdots \tau}+\int_{0}^{i} d \tau \psi_{x, i, 1}(-T) e^{i \tau}\right\} \\
& =\int_{02}^{10}\left\{\int_{0}^{\infty} d \tau \psi_{81,51}(\tau) t^{\cdots \tau}-\int_{2}^{0} d \tau \psi_{8,8,}(-\tau) c^{-i \nu T}\right\}
\end{aligned}
$$

Thus
on expanding the numerator and thing the rend rect.
low we will consider the cubic equation

$$
F(s)=s^{3}+a s^{2}+b s+c
$$

where a $\left.=1, \gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{8}\right)+1\left(3 \omega^{\prime}+\Delta_{51}-\Delta_{10,5}\right)$

$$
\begin{align*}
\boldsymbol{b}= & \left\{\prime_{4}\left(\gamma^{\prime} \gamma^{\prime \prime}+\gamma_{\gamma}\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)\right\rangle-\omega^{\prime} / \omega^{\prime}-\Delta_{10,3}\right)-\left(\omega^{\prime}+\Delta_{51}\right)\left(2 \omega^{\prime}-\Delta_{12}, \gamma+1_{4}\left(c_{12}{ }^{2}+c_{33}{ }^{2}\right)\right\} \\
& +\left(1 / 2\left(\gamma^{\prime} / \omega^{\prime}-\Delta_{1,3}\right)+\gamma^{\prime \prime} \omega^{\prime}+\gamma_{8}\left(2 \omega^{\prime}-\Delta_{12,5}\right)+\left(\gamma^{\prime}+\gamma^{\prime}\right)\left(\omega^{\prime}+\Delta_{51}\right)\right\} \tag{5.8.80}
\end{align*}
$$

$$
\left.+i\left\{\left(\omega^{\prime}+\Delta_{31}\right)[4 / 4\rangle^{\prime} \gamma^{\prime \prime}-\omega^{\prime} / \omega^{\prime}-\Delta_{1,3}\right)+1 / 2 G_{7}^{2}\right]+1 / 4 \gamma_{3}\left[\gamma^{\prime}\left(\omega^{\prime}-\Delta_{1,3}\right)+\gamma^{\prime \prime} \omega^{\prime}\right]
$$

$$
\left.+\left(w^{1}-\Delta_{143}\right) 1 / 4 \epsilon_{3}^{2}\right\}
$$

and $\omega^{\prime}=\left(\omega_{s}{ }^{\prime}-\omega^{\prime}\right.$
Tho colutions, as shown in Appendix III, are
where $\alpha=\left\{\begin{array}{c}-C+\sqrt{ } G^{\prime}+4 H^{3} \\ 2\end{array}\right\}^{1 / 3}=\left\{\begin{array}{c}-G+A \\ 2\end{array}\right\}^{1 / 3}$

$$
\beta=\left\{\begin{array}{c}
-C-\sqrt{ } C^{2}+L H^{3} \\
2
\end{array}\right\}^{1 / 3}=-\left\{\begin{array}{c}
C+A \\
2
\end{array}\right\}^{1 / 3}
$$

and

$$
\begin{aligned}
& \text { G }=2 / 2>^{3}-1 / 3 a b+c \\
& \text { II }=1 / 3\left(-1 / 3 a^{2}+b\right)
\end{aligned}
$$

also $A=\sqrt{ } G^{2}+4 H^{3}$

$$
\begin{aligned}
& S_{1}=x_{1}+1 x_{2}:(x+\beta)-1 / 3 a \\
& S_{2}: x_{3}+i x_{4}=-\{[1 / 2(\alpha+\beta)+1 / 3 a]-1 \sqrt{3 / 2}(\alpha-\beta)\} \\
& =-1 / 2\{(x+s)+\sqrt{51}(\alpha-\beta)\}-1 / 3\left\{1 / 2\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{s}\right)+i\left(3 \omega^{\prime}+\Delta_{51}-\Delta_{145}\right)\right\} \\
& S_{j}=x_{5}+1 x_{6}-\left\{[1 / 2(\alpha+\beta)+1 / 3 a]+\sqrt{z_{2}}(x-\beta)\right\} \\
& =-1 / 2\{(x+\beta)-\sqrt{3} i(x-\beta)\}-1 / 3\left\{1 / 2\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{\delta}\right)+i\left(3 j^{\prime}+0_{51}-\gamma_{03}\right)\right\}(5.8 .81)
\end{aligned}
$$

$$
\begin{align*}
& +1 / 4\left(\vdots\left[Y^{\prime \prime}\left\{1 / 4 Y^{\prime} Y^{\prime \prime}+1 / 4 C_{12}^{2}\right\}+1 / 2 \gamma^{\prime \prime} \nu V^{\prime}+\ldots A_{n} \vdots j\right]\right\} \tag{5.2.79}
\end{align*}
$$

It can we whom that

$$
\begin{aligned}
& G=1 / 26\left\{27100_{3}^{2}+2 g^{3} 9 g h\right\} \\
& 11=-1 / 36\{g-3 h\}
\end{aligned}
$$

and $\left.A=\sqrt{5} / 72\}^{2} 1 T^{\circ} C^{4}+41 G^{2} ; g^{2}-189^{\prime} ; g h-g^{2} h^{2}+4 h^{3}\right\}^{1 / 2}$
where $\frac{1}{31}=1 / 2 \gamma_{31}-1 \Delta_{31}$

$$
\begin{align*}
& f=1 / 2 \gamma_{10}-1\left(\Delta_{k, 3}+\Delta_{3,1}\right) \tag{5.2.82}\\
g & =\Gamma_{1}+\Gamma_{31} \\
\text { and } & h
\end{align*}
$$

Thus, ueing this notation, we can write

$$
\begin{aligned}
& S_{1}=x_{1}+1 x_{2}=(\alpha+\beta)-1 / 2 \gamma_{8}-1 / 6\left(\Gamma+\Gamma_{31}\right)-i\left(\omega_{8}^{\prime}-\omega_{5}\right) \\
& S_{2} \quad x_{3}+i x_{4}=-1 / 2\{(\alpha+\beta)+i \sqrt{3}(\alpha-\beta)\}-1 / 2 \gamma_{8}-1 / 6\left(\Gamma+\Gamma_{31}\right)-i\left(\omega_{8}^{\prime}-\omega_{5}\right) \\
& S_{5} \\
& x_{5}+i x_{6}=-1 / 2\{(\alpha+\beta)-i \sqrt{ }(\alpha-\beta)\}-1 / 2 \gamma_{8}-1 / 6\left(\Gamma+\Gamma_{31}\right)-i\left(\omega_{8}^{\prime}-\omega_{5}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{y}_{0}(\nu)=2\left(p_{88}^{\prime 3}\right)_{t=t^{\prime}}\left\{1 / 2 \gamma_{\gamma}\left[\left\{1 / 4 \gamma^{\prime} \gamma^{\prime \prime}-\left(\nu^{\prime}+\Delta_{3,}\right)\left(\nu^{\prime}+\Delta_{31}+\Delta_{10,3}\right)+1 / 4 G_{6}^{2}\right\}^{2}\right.\right. \\
& \left.+\left\{1 / 2 \gamma^{\prime}\left(\nu^{\prime}+\Delta_{i 1}+\Delta_{11,3}\right)+1 / 2 \gamma^{\prime \prime}\left(\nu^{\prime}+\Delta_{31}\right)\right\}^{\prime}\right] \\
& \frac{\left.+1 / 46_{5}^{2}\left[{ }^{\prime} \gamma^{\prime \prime}\left\{1 / 4 \gamma^{\prime} x^{\prime \prime}+1 / 4 \epsilon_{w_{e}^{2}}\right\}+1 / 2 \gamma^{\prime}\left\{v^{\prime}+\Delta_{31}+\Delta_{10,3}\right\}^{2}\right]\right\}}{\left\{x_{1}^{2}+\left(\nu-\left(\omega_{5}-x_{2}\right)\right)^{2}\right\}\left\{x_{3}^{2}+\left(\nu-\left(\omega_{5}-x_{4}\right)\right)^{2}\right\}\left\{x_{5}^{2}+\left(\nu-\left(\omega_{5}-x_{0}\right)\right)^{2}\right\}}
\end{aligned}
$$

Thus it is obvioum that the apectral profile contains three peaks asturated at

$$
\begin{aligned}
& \nu_{1}=\omega_{5}-x_{2} \\
& \nu_{2}=\omega_{5}-x_{4} \\
& \nu_{5}=\omega_{5}-x_{6}
\end{aligned}
$$

wiero x_{2}, x_{4} end x_{6} are detomined by the roots of the cubic equation $F\left({ }_{5}\right)$. The h midathe of the peaks are x_{1}, x_{3}, x_{5} "
since it is not possible to solve the cubic oquation exactiy, unless numerical values are absignod to all the gmbole, we shall constaer various approximationss-
(1) $\Delta_{3,1}=\Delta_{1,3}=0$
1.0. both fields, E_{G} and E, are in What resonance with the corresponding atomic transitions
(ii) $\gamma_{1,} \gg \gamma_{10}$ where $\gamma_{10} \gamma_{n=}+\gamma_{x_{0} 3}+\gamma_{n, 1}+\gamma_{n, *}$
[.W. It is usually true that lower energy hovels have larger time widths.] we will ignore lat and higher order term in $\left(\gamma_{1 c} / \gamma_{31}\right)$.
(iii) $G^{2} \gg \gamma_{3 i} \quad$ where $G^{2}=G_{3}^{2}+G_{10}^{2}$.

Ne will ignore lat and kicker order terms in $\left(\gamma_{31} / \epsilon\right)^{2}$.
1.0. both fields are strong in comparison with the line width for level 3. With eyproxilation (1)
wien $G=1 / 216\left\{27 \gamma_{16} C_{3}^{2}+2\left(\gamma_{46}+\gamma_{51}\right)^{3}-9\left(\gamma_{10}+\gamma_{51}\right)\left(C_{5}^{2}+C_{11}^{2}+\gamma_{10} \gamma_{51}\right)\right\}$ and is recd

$$
\begin{align*}
&=1 / 216\left\{27 \gamma_{10} \sigma_{3}^{2}+2 \gamma_{12}^{3}+2 \gamma_{51}^{3}+6 \gamma_{12} \gamma_{31}^{2}+6 \gamma_{16}^{1} \gamma_{31}-9\left(\gamma_{10}+\gamma_{31}\right) 6^{2}\right. \tag{5.12.83}\\
&\left.-9\left(\gamma_{10}+\gamma_{31}\right) \gamma_{11} \gamma_{31}\right\} \\
& 11=-\gamma_{36}\left\{\left(\gamma_{10}+\gamma_{31}\right)-3\left(\left(_{3}^{2}+\left(c_{12}^{2}+\gamma_{10} \gamma_{31}\right)\right\}\right. \text { and is also real }\right. \\
&=-1 / 36\left\{\gamma_{10}^{2}+\gamma_{31}^{2}-\gamma_{10} \gamma_{31}-30^{2}\right\}
\end{align*}
$$

$$
A=\sqrt{3} / 72\left\{27 \gamma_{10}^{2} G_{3}^{4}+4 \gamma_{10} G_{3}^{2}\left(\gamma_{10}+\gamma_{31}\right)^{\}}-18 \gamma_{10} G_{3}^{2}\left(\gamma_{10}+\gamma_{31}\right)\left(G_{3}^{2}+G_{10}^{2}+\gamma_{12} \gamma_{31}\right)\right.
$$

$$
\left.\left.-\left(\gamma_{10}+\gamma_{31}\right)^{2}\left(G_{3}^{2}+G_{10}^{2}+\gamma_{31} \gamma_{10}\right)^{2}+4\left(G_{3}^{2}+\sigma_{12}^{2}+\gamma_{10} \gamma_{31}\right)^{3}\right\}^{1 / 2}\right]
$$

With approximation (ii)

$$
\begin{aligned}
& I 1=-1 / 36 \gamma_{31}\left\{1-\gamma_{10} / \gamma_{31}-3 \sigma^{2} \gamma_{31}=\right\} \\
& =-1 / 36 \gamma_{31}^{2}\left\{1-36^{2} / \gamma_{21}^{2}\right\} \quad \text { to eeroeth order }
\end{aligned}
$$

$$
\begin{aligned}
& =1 / 108 \gamma_{i 1}^{3}\left\{1-7 / 26^{2} / \gamma_{s 1}^{2}\right\} \quad \text { to zeroth order } \\
& \text { and } A=1 / 72 \gamma_{3 i}^{3} 6^{2} / \gamma_{31}^{2} \sqrt{126 / \gamma_{31}^{2}-3} \\
& \text { to dst order in } \gamma_{1 c} / \gamma_{31} \\
& \text { to earoeth order } \\
& \text { to zeroth order } \\
& \text { to zeroth order }
\end{aligned}
$$

$$
\begin{aligned}
& \left.+1 / 4 C_{3}^{2}\left[1 / 2 \gamma^{\prime}\left\{1 / 4 \gamma^{\prime} \gamma^{\prime \prime}+1 / 4 G_{x}^{2}\right\}+1 / 2 \gamma^{\prime} \nu^{\prime 2}\right]\right\} \\
& |F(-1(\nu-2 v))|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} I_{51}=\frac{1}{2} x_{5,1} \\
& \text { and } \frac{1}{2} \text {) } x_{1}
\end{aligned}
$$

With erracotration (iii)

$$
\begin{align*}
& \text { II }=1 / 126^{2} \\
& G=-1_{x 4} G^{2} \gamma_{31} \\
& A=\sqrt{3} / x_{c} c^{3} \\
& \alpha=13 / 60 \\
& \text { and } \beta=-\sqrt{3} / 6 G \tag{5.B.E5}\\
& \alpha+\beta=0 \\
& \alpha-\beta=\sqrt{3 / 3} G \\
& \therefore S_{1}=r_{1} 71 r_{2}=-1 / 3\left\{1 / 2\left(y^{\prime}+y^{\prime \prime}+y_{2}\right)+i\left(3 \omega^{\prime}+\Delta_{51}-\Delta_{1,3}\right)\right\} \\
& S_{2}=x_{3}+1 \gamma_{4}=-1 / 4\left\{\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{3}\right)+i\left(2\left(3 \omega^{\prime}+\Delta_{31}-\Delta_{12,3}\right)+36\right\}\right. \\
& S_{s}=\gamma_{5}+i \gamma_{6}=-1 / 6\left\{\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{8}\right)+i\left(2\left(31 j^{\prime}+\Delta_{31}-\Delta_{6,3}\right)-36\right\}\right.
\end{align*}
$$

and here when $\Delta_{31}=\Delta_{1,5}=0$ the three pats occur at

$$
\begin{aligned}
& \nu_{1}=\omega_{2}-x_{2}=\omega_{s}+1_{3}\left(3 \omega^{\prime}\right) \quad=\omega_{5}+\omega^{\prime}=\omega_{5}+\omega_{8}^{\prime}-\omega_{1}^{\prime} \\
& \nu_{2}=\omega_{5}-x_{4}=\omega_{5}+1 / 6\left\{2\left(3 \omega^{\prime}\right)+36\right\}=\omega_{5}+\omega^{\prime}+1 / 2 G=\omega_{5} T \omega_{8}^{\prime}-\omega_{1}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& v_{s}=\omega_{s}-x_{t}=\omega_{s}+1 / k\left\{2\left(B j^{\prime}\right)-3 G\right\}=\omega_{s}+\omega^{1}-1 / 2 G=\omega_{s} T \omega_{s}^{\prime}-\omega_{1}^{\prime} \\
& -1 / 2 \sqrt{C_{3}^{2}+E_{12}^{2}} \\
& \nu_{1}^{\prime}=\omega_{s}-\omega_{1}^{\prime} \\
& \nu_{2}^{\prime}=\omega_{5}-\omega_{1}^{\prime}+1 / 2 \sqrt{c_{3}^{2}+G_{10}^{2}} \\
& v_{3}^{\prime}=\omega_{s}-\omega_{1}^{\prime}-1 / 2 \sqrt{G_{3}^{2}+\epsilon_{10}^{2}} \\
& \text { but at resonsice } \omega_{s}=\omega_{1}{ }^{1}
\end{align*}
$$

$$
\begin{aligned}
& \therefore \nu_{1}^{\prime}=\nu_{1}-\omega_{8}^{\prime} \\
&=0 \\
& \nu_{2}^{\prime}=\nu_{2}-\omega_{8}^{\prime} \\
&=1 / 2 \sqrt{C_{3}^{\prime}+C_{10}^{2}} \\
& \nu_{3}^{\prime}=\nu_{3}-\omega_{8}^{\prime}=1 / 2 \sqrt{c_{3}^{2}+C_{10}^{2}}
\end{aligned}
$$

The hale whats are

$$
\begin{align*}
\left|x_{1}\right|=\left|x_{3}\right|=\left|x_{5}\right| & =1 / 6\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{8}\right) \\
& =1 / 6\left(3 \gamma_{8}+\gamma_{31}+\gamma_{10}\right) \tag{5.5.E7}\\
& =1 / 6\left(3 \gamma_{8}+\gamma_{31}\right) \text { since } \gamma_{10} \ll \gamma_{31}
\end{align*}
$$

and the spectral correlation function is:-

$$
\begin{aligned}
& \text { (5.B.88) }
\end{aligned}
$$

and if $(6, \pi), y(6, y)(\%)(\% / 4)(\%) / 4)$
1.e. $E_{1} \gg, \sqrt{x, 3} \sqrt{x+1} \sqrt{\lambda, X_{1}}$
then the numerator is modified so that

$$
\begin{aligned}
& \left.\left\{\gamma_{56}\left(3 x_{2}+\gamma_{n}\right)+\nu\right\}_{i} /=6\left(3 x_{0}+\gamma_{2}\right)^{2}+(\nu-1 / 26)\right\}\left(1 / 56\left(3 \gamma_{8}+\gamma_{5}\right)^{2}+\left(\nu^{1}+\frac{1 / 2}{} 6\right)\right\}
\end{aligned}
$$

and for $1 / 2\left(e_{16} / r_{51}\right)>1 / 4,1 / 4\left(x_{1} / x_{21}\right), 1 / 2\left(x_{5} / x_{31}\right)$
2.e. $\epsilon_{11} \gg \sqrt{2} / 2 \gamma_{51}, \lambda / 2 \gamma_{8}, \sqrt{\gamma_{4} \gamma_{31}}$

We cur wive that the central peat at $\nu^{\prime}=0$ is higher than the two
side peals at $\nu^{\prime} \pm 1 / 2 G$, which are of equal height. The central peak is of height
$\tilde{g}_{9}\left(\nu^{\prime}=\nu_{1}^{\prime}\right)=\frac{x_{1} \epsilon_{-\infty}^{2}\left\{\gamma_{8} 1 / 4 G_{0}^{2}+\left(\gamma_{8}+\gamma_{10}\right) 1 / 4 \epsilon_{5}^{2}\right\}}{\left(\frac{3 x_{1}+\gamma_{5}}{6}\right)^{2}\left\{\left(\frac{\left.x_{0}+\right)_{1}}{6}\right)+1 / 4 \epsilon^{2}\right\}^{2}}$.
and the two side peaks are of height

$$
\left.\tilde{g}_{8}\left(\nu^{\prime}=\nu_{2}^{\prime}\right)=\frac{1 / 4 G_{5}^{2}\left\{\left(2 \gamma_{2}+\gamma_{z}\right) 1 / 4 G_{3}^{2}+\left(2 \gamma_{8}+\gamma_{31}+\gamma_{10}\right) 1 / 4 G_{10}^{2}\right\}}{\left(\frac{3 x_{5}+\gamma_{31}}{6}\right)^{2}\left\{\left(\frac{3 \gamma_{5}+\gamma_{31}}{6}\right)+1 / 4\left(C^{2}\right\}\left\{\left(\frac{3 \gamma_{8}+\gamma_{31}}{6}\right)+\sigma^{2}\right\}\right.} \oint_{0 x_{2}}^{6}\right)_{t \cdot t^{\prime}}
$$

We will now consider sore different approximations.
(iv) If wo had assumed arrroximotion (i) and then

$$
G_{3}^{2} G_{2}^{2} \gg X_{8} ; Y_{8} X_{31}, X_{k} X_{31}, X_{8} Y_{10}
$$

without assuming approximation (ii), 1.e. $\gamma_{31} \gg \gamma_{10}$, then we would have obtained a similar result but the peak widths would be wider, viz. $\left(\frac{3 x_{i}+\gamma_{1 w}+\gamma_{21}}{6}\right)$ instead of $\left(\frac{3 x_{i}+\gamma_{31}}{6}\right)$
(v) $\Delta_{31}=\Delta_{i c, 3}=0$
$\mathrm{G}_{2}{ }^{2}>\mathrm{CG}^{2}$ (laser field STRONGER than SRS field, which is Manelay the case oxncrimentally - in fact E_{-}is centrally $\sim 2 \mathrm{MW}$. and $E_{S} \sim 3 c o k \omega$.for β - methyl naphthalene)
$G_{10}{ }^{2} \gg \gamma_{8}^{2}, \gamma_{8} \gamma_{31}, \gamma_{10} \gamma_{51}, \gamma_{8} \gamma_{10}$
then
which is the same es case (iv) except that row side peaks occur at
$\nu^{\prime}= \pm 1 / 2 G_{10}$ not at $\nu^{\prime}= \pm 1 / 2 \sqrt{G_{3}^{2}+G_{10}^{2}}$, 1.e. they are now nearer to the central peak.
(vi)

$$
\begin{aligned}
& \frac{\Delta x_{1}=}{\gamma_{10,3}>\gamma_{10}}=0 \\
& \frac{\gamma_{21}^{2}>G^{2}}{1 . e_{0} \text { both fields WEAK }}
\end{aligned}
$$

then
i.e. all throe peatcs are coincident at $\quad=0$ and there is no level mhift or splitting.

The ineight of this peak is

Thus we see that the aplitting up of the spectral profilo occurs only unta ane or both of the fields axe STHONG and so it must be truly nonm Innear affect.

We shall consider one further case:
(vi1)

$x \gg x$
$\cdots G_{3}^{2}$ i.e. SRS field WEAK compared to line width of level 3
$Y \ll G_{10}{ }^{2}$ i.e. Iaser fiald STRONG compared to line width of lovel 3
This is alse alose to the experimental aituation. The epectral correlation function at $\nu=y^{\prime}$ is now

This is a sivilar situation to case (V) exopt that different asamptions have boen made about the sizea of the line sidths. Here the side peaks oconur in the amme placea $v^{\prime} \pm\left(F_{"}\right.$ but their widhs are narrouer being $\left(\frac{5 x_{5}+x_{5}}{6}\right) \quad \operatorname{not}\left(\frac{5 x_{1}+1,-1 y_{1}}{6}\right)$

We brail alscuss these memity after calculating the othar apeotral oncralation funotion for trancitions betwem 1 ovela 10 and 8.
(b) Soncrul correlation function for trangitions betwoen 1 evele
(1) as (153/2 (8)

Le now reed to find (1) by solving the hemptian conjugate oquatione of (3.23.51-53).
1.0. $\dot{p}^{\prime \prime}(1)=1, \ldots,+\cdots, y^{\prime}(t)$

Sultipiging (5.B.96) by
and (5.5.07) by
we
obtain equations wich may be soived in a wey aralocous to the method used in Sec. (b). Thus

where

$\boldsymbol{a}_{10,8, \cdots, \%}(s)=\frac{\left(1 \lambda_{\left.i u^{2} s_{5}\right)}^{(-(s+1 \omega)} g^{(s)}\right.}{} e^{-(s m \omega))^{\prime}}$
$=\hat{\psi}_{(0,3,5,3}(s) e^{\left.-1 s+i \omega_{2}\right) t^{\prime}}$
$\left.g(s)=\left(5+1 / 2 \gamma-i / \omega_{5}^{\prime}-\omega_{i}\right\rangle\right)$
$g_{2}(s)=\left(s+1 / 2 \gamma^{\prime \prime}+1\left(\omega_{1}^{\prime}-\omega_{L}\right)\right)$
$\left.g_{3}(s)=\left(s+1 / 2 \gamma_{8}-1 / \omega_{k}^{\prime}-\omega_{s}\right)\right)$
$G()=\left\{g_{1}(s) g_{2}(s)+1 / 4 G_{11}^{1}\right\} g(s)+1 / 14 \epsilon^{2} g_{2}(s)$

The elovant antive atomic correiation function, in this case, accorture to aquation (5.5.50) is

$$
\begin{align*}
& \left.\begin{array}{ll}
=11 & (1) \quad(1,1) \quad(1) \\
+11
\end{array}\right) \tag{5,B,101}
\end{align*}
$$

AB $\ln (5 . E \cdot c)$

Hence, since $1, \ldots, j, i(t)$, we have

Absuming the atom to be in equilibrium with the fiald, we write

$$
\begin{align*}
& \rho=(\rho) \rho_{1} \\
& \rho_{1}=(\rho)_{1} \tag{5.8.104}\\
& \rho_{1}=(\rho)_{1}
\end{align*}
$$

Since we ahall find that the lattar two functions can be written in the followine form:-

$$
\begin{align*}
& \rho_{\cdots}^{\prime \prime}(1)=\overline{\rho_{1, n}^{\prime \prime}} e^{\left(\cdots, \omega_{s}\right) t} \tag{5.8.105}\\
& \rho^{\prime \prime}(t)=\overline{\rho_{: n}^{\pi}} e^{n, t^{\prime}}
\end{align*}
$$

$6_{10}\left(\tau, t^{\prime}\right)$ is independent of t and sen be uritten

$$
\begin{equation*}
2(i) \psi_{n}(i) \bar{p}+\psi_{n},(i) \overline{p_{i}^{n}}+\psi_{n}(\tau) \rho^{\pi} \tag{5,B,106}
\end{equation*}
$$

where

in in ceso (s) equation (5.3 .77) we can dexuce the totad epectral correlation furction to De:-

ware \bar{A} and $\bar{\cdots}$ will be conplex.
where

$$
\begin{aligned}
& \left.\varepsilon_{1}\left(1,1-\omega_{n}\right)=1 / 2 \gamma^{\prime}-1 \nu^{\prime \prime} \cup \Delta_{n}-\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.g_{3}\left(-1 \nu-\omega_{1}\right)\right)=1 / 2 x-1\left(v^{\prime \prime}+\omega_{10}+\Delta_{2}\right) \tag{5.8.109}\\
& \left.a\left(\neg\left(\nu-\omega_{1}\right)\right)=\left\{g_{1}\left(\neg\left(\nu-\omega_{1}\right)\right) g\left(-(1)-\omega_{1}\right)\right)+1 / 4\left(-i_{i v}^{2}\right\} g\left(\neg / \nu-\omega_{1}\right)\right)+1 / 4\left(c_{5}^{2}\right. \\
& \nu^{\prime \prime}=\nu-\omega_{i}^{\prime} \quad \times g=\left(v\left(\nu-\omega_{i}\right)\right) \text {; }
\end{align*}
$$

Let $c(s)=(s-(a-i b))(s-(c-i t))(s-(t-1 f))$
 so that, since this will be the orly fecter in the denominator dependent on ν, we diall hove tire peaks at $\nu_{1}=\omega_{L}+b, \nu_{2}=\omega_{L}+d, \nu_{-} \omega_{L}+f$ of half wictins a, c and e, where $a, b, c, d, 0, f$ are determinod by the cube roots of $G(S)$.

We ehnil now cndeavour to find values for the winos of $\rho_{1,1}^{(s)}(1)$? $\rho_{i, k}^{\prime \prime}(1)$ as $t \rightarrow \infty$ and evaluate thea at $t=t$ so that the apectral correlation
frection cin le detominod wore procisoly. Thes denents the wolutiom

- In fect wo plall uetamano the velues of these two off diectal retxix elecnate in terne of tho

 *) orato simpirication of exuaticn (5.0.107).

Letting:-

$$
\begin{align*}
& \gamma_{11}=r_{1}, \quad 1, \\
& x_{5}=\partial_{2,2}+\partial_{33} \\
& \gamma_{6}=\gamma_{62}+\gamma_{63} \\
& \gamma_{7}=\gamma_{71}+\gamma_{74}+x_{25}+\gamma_{76} \\
& \gamma_{9}=\gamma_{92}+\gamma_{93}+\partial_{97}+\gamma_{7 x}
\end{align*}
$$

and taling the laplace trungform of the roaultug 16 equatoms, we obtain

$$
\begin{aligned}
& \begin{aligned}
s \hat{u}(s)= & \gamma_{-1} \hat{b}(s)+\gamma_{3} \hat{c}(s)+\gamma_{71} \hat{g}(s)+\gamma_{0} \hat{h}(s)-1 \lambda_{2} \hat{f}_{c s} \hat{o}(s)+\lambda_{1} \hat{s} c s \hat{p}(s)\left(5 . E_{0} .111\right) \\
& +\hat{a}(1))
\end{aligned} \\
& \gamma_{4,2} \hat{d}(5)+\gamma_{5,2} \hat{f}(5)+x_{62} \hat{f}(5)+\gamma_{52}(1 s)+\gamma_{10,2} \hat{f}(s)+e^{-5 t^{\prime}} b(t)(5.2 .112)
\end{aligned}
$$

$$
\begin{align*}
& \left(s+\gamma_{0}\right) \hat{\imath}(s)=\gamma_{7}-\hat{g}(s)+\gamma_{x-5} \hat{h}(s)+c^{-x^{\prime}}\left(t t^{\prime}\right) \tag{5.5.115}\\
& \left(s+y_{1}\right) \hat{f}(s): \gamma_{76} \hat{g}(s)+\gamma_{i, 6} \hat{h}(s)+e^{-\cdot t^{\prime} f(t)} \tag{5.0.116}\\
& \left(=+\gamma_{7}\right) \hat{g}(s)=\gamma_{i, 7}\left(j_{0}\right)+\gamma_{w, i j}\left(s^{\prime}\right)+e^{-s x^{\prime}} g(t)
\end{align*}
$$

$$
\begin{align*}
& (+x) \text { in }) \cdot x_{a}\left(1+x+x \cdot j(0)+e^{-+1}(11)\right. \tag{5.2.213}\\
& (a+3) \hat{\imath}(0) \quad \hat{y} \tag{5.2.229}
\end{align*}
$$

$$
\begin{aligned}
& (5.5 .121) \\
& \text { (5.E.122) }
\end{aligned}
$$

Proa theco equationg it is owious that it in poositile to colve for $\hat{k}(s)$. $\hat{l}(0), \hat{o}(s)$ in terns of $\hat{c}(s), \hat{j}(s)$, $\hat{a}(s)$.
 $\hat{\rho}_{1, N}^{\prime s}(s), \hat{\rho}_{11}^{(1)}(s), \hat{h}(s)$ and $\hat{l}(s)$ being the most important to us.

The throe equatione we need are (5.1.127), (122), (125):-

$$
\begin{align*}
& \left(s+1 / 2 \gamma_{31}-i \Delta_{s,}\right) \hat{0}(s)=-1 \lambda_{10} \varepsilon_{0 n} \hat{\gamma}(s)-1 \lambda_{1,} \varepsilon_{0 s} \hat{c}(s)+1 \lambda_{1} \varepsilon_{0 s} \hat{c}(s)+\epsilon^{-+} d(l) \tag{5.2.122}
\end{align*}
$$

Wo obtain $\hat{o}(s)$ in terms of $\hat{l}(s) \quad \hat{a}(s), \hat{c}(s)$ frors (5.E. 125) and subotitute for it in quation (5.5.1*2) to obtain $\hat{\ell}(s)$ in tems of $\hat{h_{k}}(s), \hat{a}(s), \hat{c}(s)$ and then wovetituto this in equation ($5.2 .12 \mu$) to obtain $\hat{k}(s)$ in terus of $\hat{a}(s), \hat{c}(s), \hat{j}(s)$ which 1as-
$0.1=\rho$

$f\left(\frac{111(1 \%)+14^{\prime}}{11(\%)} 6^{\prime \prime}+11\right)$

Where we have let $t \rightarrow \infty$ in orcer to find the equilibriwn value and cswand that $\rho_{11}^{\prime \prime}(t)$, $\rho_{35}^{(k)}(t)$, $\rho_{10, i}^{\prime \prime}(1)$ crotime inderencont in the liult $t \rightarrow \infty$ ainco the level popightions bocke steady the then $\hat{\rho}_{11}^{(s)}\left(s-\omega_{L}\right)=\frac{1}{s-1 \omega_{L}} \rho_{11}^{(s)}(x)$ etc.

If se asenso aloo tivat the real rarts of the ewhe rocte of $H(s)$ are regotive,
1.e. is $H\left(s-1 \omega_{L}\right)=(s-y)\left(s-y, s_{s}-y_{)}\right)$, where $y_{1}=l^{\prime}+\cdots n^{\prime}, y_{2}=n^{\prime}+i 0^{\prime}$, $J_{3}=p^{\prime}+1 q^{\prime}$, ond l^{\prime}, n' and p^{\prime} aro negutive, wak tho last throe
tems co out on thking the inverse Laptace tronsfont aince

$$
\begin{aligned}
& \text { there } h_{1}(t)=+M_{2}\left(y_{n}, 1_{n}\right)-1 \mu_{n} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! (1) }=3+\% x_{5}-1 \Delta \text {. }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
X^{-1}\left\{\frac{1}{H\left(s-w_{L}\right)}\right\} & =X^{-1}\left\{\frac{A}{s-\left(f^{\prime}+, n^{\prime}\right)}+B+\left(H^{\prime}+\prime^{\prime}\right)+\left(p^{\prime}+\eta^{\prime}\right)\right.
\end{array}\right\}
$$

and if $l^{\prime}=|x|, x^{\prime} x-|y|, p^{\prime}=-|z|$ an threceterms $->0$
ata $t \rightarrow x$ 。

Herce

 and followirg the arcunent fwet eiven

$$
\begin{align*}
& \text { where } \left.\left.h_{1}(0)=y_{2}\left(X_{, 1}+\right)_{10}\right)+1\left(\omega_{L}-\Delta_{0,5}\right) \quad=h_{1}, \omega_{i}=\omega_{L}\right) \tag{5.5.130}\\
& \begin{array}{ll}
h_{i}(0)=1 / \gamma_{10} & =h_{1}\left(s_{1} \omega_{L_{L}}\right) \\
\left.h_{3}(0)=1 / \omega_{2}-\Delta_{10,3}-\Delta_{31}\right) & =h_{2}\left(s=\omega_{0}\right) \\
& +i\left(\omega_{2}-\Delta_{31}\right)
\end{array}
\end{align*}
$$

Thus tho form acmuced in arnation (5.3.155) una comect and on cuistituting in (5.5.107)
$E_{10}(\nu)=\frac{2}{\frac{\rho_{10} 0}{\left|G\left(\left(\nu-\omega_{1}\right)\right)\right|^{2}}} F_{e}\left\{G^{*}\left(-i\left(\nu-\omega_{1}\right)\right)\left[g_{1}\left(\neg\left(\nu-\omega_{2}\right)\right) g_{3}\left(\cdots\left(\nu-\omega_{\nu}\right)\right)+1 / 4 G_{5}^{2}\right]\right\}$
 $\left.+(h, 10)+h_{1}(0)\right) \overline{\rho_{33}}$
$\left.\left.-h_{3}(0) \bar{\rho}_{0,0}\right]\right\}$
$-\frac{21 / 4 G_{k}^{2}}{\left|C\left(\neg\left(v-\omega_{L}\right)\right)\right|^{2}\left|H\left(s=1 \omega_{L}\right)\right|^{2}}$ Fe $\left\{G^{*}\left(-7\left(v-\omega_{2}\right)\right) g_{5}\left(\neg\left(v-\omega_{L}\right)\right) H^{\prime}\left(\neg\left(v-\omega_{L}\right)\right)\right.$
$\times\left[1 / 4 G_{5}^{2} \overline{\rho_{11}}\right.$

$$
\begin{aligned}
x & {\left[1 / 4 G_{5}^{2} \overline{\rho_{11}}\right.} \\
& -\left(h_{2}(0) h_{3}(0)+1 / 4\left(G_{10}^{2}-G_{5}^{2}\right)\right) \bar{\rho}_{33} \\
& \left.+\left(h_{2}(0) h_{7}(0)+1 / 4\left(C_{10}^{2}\right) \bar{\rho}_{10}\right]\right\}
\end{aligned}
$$

where

$$
-\gamma_{2}\left(\nu^{\prime \prime}+\alpha_{1,5}+\Delta_{-1}\right)\left[\gamma^{\prime} \nu^{\prime \prime}+y^{\prime \prime}\left(\nu^{\prime \prime}+\Delta_{10}\right)\right]
$$

$$
\left.+1 / 4 \in: 1 / 2 Y^{\prime \prime}\right\}
$$

$$
\left.\left.+i j\left(\nu^{\prime}+\Delta_{n, 5}+\omega_{\infty, 5}\right)[1 / 4)\right\rangle^{\prime \prime}-\nu^{\prime \prime}\left(\nu^{\prime \prime}+\Delta_{v, 5}\right)+1 / 4 \epsilon_{10}^{2}\right]
$$

$$
+1_{4} Y_{x}\left[\gamma^{\prime} \nu^{\prime \prime}+\gamma^{\prime \prime}\left(\nu^{\prime \prime}+\Delta_{1, z}\right)\right]
$$

$$
+1 / 4 C \div 2 \cdots
$$

$$
E_{1}\left(7\left(v-u_{1}\right)\right)=1 / 2 x^{\prime}-1\left(v^{\prime \prime}+\Delta_{1,3}\right)
$$

$$
\ddot{c}_{3}\left(\neg\left(\nu-w_{2}\right)\right)=1 / 2 y_{x}-1\left(2^{\prime \prime}+\Delta_{n, 5}+\Delta_{31}\right)
$$

Ve will now consider various aproxinations:

$$
\begin{aligned}
& \text { (1) } \Delta \Delta_{1}=0 \\
& \left.h_{1}(1)=h_{2}()_{4}+X_{n}\right)+i w_{2} \\
& r_{1}(0)=1 / 2 x_{10}+\omega_{L} \\
& h_{3}(c)=1 / 2 X_{31} \quad+i \omega_{L} \\
& 1 i(0)=\left\{1 / 2\left(\gamma_{31}+\gamma_{10}\right)\left[1 / 4 Y_{51} Y_{10}+1 / 4 G_{10}^{2}-2 \omega_{2}^{2}\right]+1 / 2 \gamma_{31} 1 / 4 G_{5}^{2}\right\} \\
& \begin{aligned}
&+i \omega_{L}\left\{1 / 4\left(\gamma_{21}+\gamma_{10}\right)^{2}+1 / 4 \gamma_{10} \gamma_{31}+1 / 4\left(G_{12}^{2}+G_{3}^{2}\right)-\omega_{2}^{2}\right\} \\
&=A+10
\end{aligned} \\
& E_{1}\left(7\left(\nu-\omega_{2}\right)\right)=1 / 2 \gamma^{\prime}-1 \nu^{\prime \prime} \\
& e_{3}\left(\gamma\left(v-\omega_{1}\right)=v_{1} \gamma,-1 \nu^{\prime \prime}\right. \\
& \left.G^{*}\left(G^{(v-0}\right)\right)=\left\{1 / 2 X_{2}\left[1 / 4 \gamma^{\prime} \gamma^{\prime \prime}-\nu^{\prime \prime}+1 / 4 G_{16}^{2}\right]-1 / 2 \nu^{\prime \prime}\left(\gamma^{\prime}+Y^{\prime \prime}\right)+1 / 4 G_{3}^{i} / 2 x^{\prime \prime}\right] \\
& +i\left\{\left[1 / 4 \gamma^{\prime \prime}-\nu^{\prime \prime 2}+1 / 4 G_{0}^{2}\right]+\left[i / 4 \gamma_{8}\left(\gamma^{\prime}+\gamma^{\prime \prime}\right)+1 / 4 \theta_{5}^{\frac{1}{3}}\right]\right\} \nu^{\prime \prime} \\
& =c+10
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\rho}_{n}=\left(\rho^{\prime}(t->\infty)\right) \ldots \\
& \left.\bar{\rho}=\left(\rho^{\prime}\right)(t-\infty)\right) \\
& \bar{\rho}_{n}=\left(\eta,(1-)^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{11}{(A+B)},\left(C,\left(A+D F_{i}\right), \ldots, \cdots(C B-D A)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\infty \hbar^{2}\left(Y_{1}+Y_{=1}\right)!\left((A+D F) L^{\prime \prime} \cdot(C B-D A)=X\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\ln _{2} 1 / 2\left(x_{C}+x_{31}\right)\left[(C A+D B) \nu^{\prime \prime}+(i S-D A)^{1 / 2} \gamma_{8}\right]\right]\right]
\end{aligned}
$$

Sow we have yet to solve $\left.G(s)=\left[g_{1}(s) g_{2}(s)+1 / 1 C_{10}^{2}\right] g_{3}(s)+1 / 4 G_{3}^{2} g_{2} s\right)$
wine $g_{1}(s)=s+1 / 2 \gamma^{\prime}-w^{\prime}$

$$
\begin{align*}
& g_{2}(s)=s+1 / 2 \gamma^{\prime}-i\left(\omega^{\prime}-\Delta_{10,5}\right) \tag{5.5.133}\\
& g_{3}(s)=s+1 / 2 \gamma_{8}-i\left(\omega^{\prime}+\Delta_{31}\right) \\
& \omega^{\prime}=\omega_{8}^{\prime}-\omega_{1}^{\prime}
\end{align*}
$$

This is stilly the complex conjugate of $F(S)$ ，hence the roots are

Co 告 wa neo tiv some eyra Liationa

（1）$\Delta_{a}=\Delta_{w, j}: 0$
（ii）$x_{2} \gg x_{10}$
$(114) \epsilon^{2} \gg \gamma_{21}^{2}$
then $S_{!}^{\prime}=a-i b=-1 / 3\left\{1 / 2\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{8}\right)-i\left(3 \omega^{\prime}+\Delta_{-1}-\Delta_{w, s}\right)\right\}$

$$
\begin{aligned}
& s_{1}^{\prime}=c-1 d=-1 / k\left\{\left(X^{\prime}+\gamma^{\prime \prime}+X_{0}\right)-\left[2\left(3 \omega^{\prime}+\Delta_{2,1}-\Delta_{0,3}\right)+3 E\right]\right\} \\
& s_{2}^{\prime}=e-i f=-1 / 6\left\{\left(\gamma^{\prime}+\gamma^{\prime}+\gamma_{0}\right)-i\left[\left(3 \omega^{\prime}+\Delta_{=1}-\Delta_{1,5}\right)-3 E\right]\right\}
\end{aligned}
$$

and hence when $\Delta_{N_{1}}=\Lambda_{11}=0$, the three peak occur at

$$
\begin{aligned}
& \nu_{1}=w_{L}+w^{\prime}=w_{L}-w_{k}^{\prime}+w_{1}^{\prime}=w_{5}^{\prime}-w_{5}^{\prime}+w_{1}^{\prime} \\
& \nu_{0}=w_{L}+w^{\prime}+1 / 2 G=w_{L}-w_{8}^{\prime}+w_{1}^{\prime}-1 / 2 G=w_{5}^{\prime}-w_{k}^{\prime}+w_{1}^{\prime}-1 / 2 G . \\
& \nu_{5}=w_{L}+w^{\prime}-1 / 2 G=w_{L}-w_{1}^{\prime}+w_{1}^{\prime}+1 / 2 G=\omega_{3}^{\prime}-w_{6}^{\prime}+w_{1}^{\prime}+1 / 2 G
\end{aligned}
$$

$$
\text { 1.e. at } \nu^{\prime \prime}=0
$$

$$
\begin{align*}
& y=-1 / 2 G \tag{5.B.136}\\
& y=1 / 2 G
\end{align*}
$$

by half widthe $1 / 6\left(\gamma^{\prime}+\gamma^{\prime \prime}+\gamma_{k}\right)$.
Thus we see that the shape of the apectral profile is essentisily the same as that for transitions between levels 8 and 1 , thouch we cannot tell the relstive helfhts of the peaks unless ve find specific values for $\overline{\rho_{11}}$. $\bar{\rho}_{x 3}, \bar{\rho}_{w, 0}$ and $\bar{\rho}_{E 3}$.

Ce Equmeston
I: all the aproximations we have considered we have taken as cur first ascumption that both fields are in Ehici resonance with the corresponding atomic transitions. In this case ve ahould have absorption followed by ewicsion and nCT scattering since the latter depends on NEAR resonance conditions. levertheless, since values of $\Delta_{3,1}$ and $\Delta_{10,3}$ are generally very gwall, though usually $\Delta_{10,3}>\Delta_{31}$, we can assume that neglecting then is a reasonable assumption and so our theory conld also account for scattering. The type of process that occurs will also deperd on the srreat of frequencies in the incident beari, as explained by Heitier ${ }^{(40)}$. If the spread of frequencies is large, 1.e, a continuous spectrum, then absorption and emission occur as two independent processes. If, on the other hand, the spread is < the ratural inn width then scattering occurs (cf. F.201ff Heitler). In fact we assume the quantised part of the ca fleld wisch is reaponsible for the radiative decay to have a
continuous orectrum and repiace \sum_{l} by an intorral. This further Eupports the lioa that wiat wo ere considerine is absorption colloued Ey gubecquent emieaion. On the othar haw wo coneider the driving fielas oither (1) to be classical monohromtie fielda or (i1) to ve gingle modea of the quatized field. In ofther case csch field has a eingle frequency and so their gyectrel profilos are infinitely sharp and hence very narrow In comparicon with the naturel miasion linea of the levels, notably those of levels 10 and 3 with which we are concerned. In fact, such hich levels have fairly rarrow line withs, as we have asauned under the varicus approximations, but they do have fingto ones. Furthermore, in orcier for our theory to account for ispersion and Romanaefect, the lattor of which occurs in the k-atom ard regulta whon tha final stata of the aton \neq the initial state and incoherent scatterine occurs, we shovid have incluced the term in the Haniltonian $\sim A^{2}$, as cointed cut by Ho1tier ${ }^{(40)}$ (5.190).

There are a variety of multiphotion processes which cas ccour in the K-atom dependine on the turing conditions for w. and w_{s}. We ghall point out those involving levels, 1, 3, 10 end 8 , naselj processea (1) (iv) mentioned in Sece A.
(1) Etimiatist 2 mhoton Fimen effect (ref, 13)

This is one of the nethoda by which level $5 P_{3 / 2}$ (8) can becone populated. Erecuency, ω_{L}, of laser emiasion is Daman scattered after abcorptian of ω_{s}. Level $4 F_{3 / 2}(3)$ baing the iritial state and $5 P_{3 / 2}$ rr $5 P_{1 / 2}$ (8 : or 7) the final atomic state. According to ref. (13) this results

In an intense stimiated electronic iaman caiseion line at $2720.6 \mathrm{~cm}^{-1}$
 point out that the atomic coefficient deteraining the strencth of the coupline botween levels 10 and 8 is Lancer for acatterine of $2720 \mathrm{~cm}^{-1}$ than for 10 to 8 calssion but that the 4-photon proceas with strong $2720 \mathrm{~cm}^{-1}$ radiation is entirely absent. This is eiven as strone evidence in favour of wechanism (iv) 3 rhotom Laman scatteringe
N.R. since level 10 itecif does not become pomilated in this case, we can conslicer $\bar{\rho}_{k, 10}=0$ in equation ($5.3 .132 b$)。
(11) Lnotom nampetris counging (ref. 17) (wore correctly tormod Lfrequency parametric coupling (ref. 10))

In this case the frequency of prah rhotom is cloge to resomese with
 Lumikin (in rof. 17) observed an interse coherent beax of Fiolet light when he irredisted \mathbb{I} vapour at about $350^{\circ} \mathrm{C}$ with sinultencous laser prises and he attributed this to 4mave purametric interaction, in wich two of the wavea are the arpliod laser fields and the third an I.R. wave generated in the vapour by atimulated gaman emission (ref. 13). The parametrically eenereted violet beam is a coustet contred on $5 P_{3 / 2}-4 S_{2}(8-1)$ K enission ine and typically had about 20% more intensity in the high frequency component. The moasured peatr power in the doublet was about 1 kk . He says that as the doublet components usually dqilit off by yomal amounts from the coublet contre this succeats wevefunction modulations by the strone applid laser fields, aince the separation varies only when the
anount of rosonant Stokes power incident on the Kocell is varied. His theory, based on wavefunction nodulation, also predicts ω_{R} to have a doublet structure though this was not observed by Roksia \& 7atasia (ref. 13). The etrcugth of the polariartion at ω_{v} deperds on the Raman eaterial umed and is etroncest in HB and Fin and relatively weak in m (rof. 12). Ioronctric emission at ω_{p} is not observed for ω_{s} of Nill but appears strongly with ω_{s} of FHB and weaker, but easily observable, for ω_{s} of 1B.
(1i1) Tharent 2-nhotin ecieston (ref. It)

Gercral level sctume
for 2 -plitan emission
 one at the ruby lasor frequency ω_{h} and the other at the Stokes shifted froquency of stinuated raman eaisaion in nitroberame ω_{s} (ref. 24). (N.E. in ref. 13 nomi $\begin{aligned} & \text { Z Yatela observed two additionel strong enission }\end{aligned}$ Lines at 2730.4 and $2749.2 \mathrm{~cm}^{-1}$ when uoing nitrobensene owing to double quantur ebsorption to state 10 es well as at $\omega_{R}=2720.6 \mathrm{~cm}^{-1}$.) Under the conditions of (ref. 25) 2-photon excitation of state 110\rangle and atomic Roman radiation in K take place at the sase time.

Exission th the complesientary frequency ω_{2} is $10 \mathrm{~cm}^{-1}$ abovo the 8-I resonance Line in K and conhenced ELUE erission at $\omega_{2}=24730 \mathrm{~cm}^{-1}$ eatisfies the equation

$$
\hbar\left(\omega_{1}+\omega_{2}\right)=\Sigma_{10}-\Sigma_{1} \quad \text { i. } 0_{0} \hbar\left(\omega_{R}+\omega_{2}\right)=\Sigma_{10}-\Sigma_{1}
$$

in Lines for tronsitions $8 \rightarrow 1$ (and $7 \rightarrow 1$) was attributed by hia to
 observe this btructure when the s-vapour rresare was afficiontiy low The condition for 2-jinotion acitation of leval 20 is not aticficia for

(iv) 3 mboton Iempenttering (raf. 11)

3-nhoton Iarien effect between states $18>$ and |10> of potassium.
in requires near mesonance conditions in two of the 3 photon rrocessen and these ere cetisfited for ω_{L} \& ω_{S} 。

Ono of the three ways in which a 3-photon transition con taie place betwen states of different parities is wen wo have the absorption of two photons and the cizilitrecon arission of a thira by a process similar to 2-moton foman scattering. It has seen obeaved in the scattering of ruby (w_{1}) and a atimulated nolocular stokes radiation (ω_{s}) in potassiun atows (cee above schowe). The sis raifation is cue to β wethylnarhtialeno with $\omega_{s}=13015 \mathrm{~cm}^{-1}$. A kive line at

$$
\begin{aligned}
& \omega_{R}^{(3)}=246 \Omega 1 \mathrm{ca}^{-1} \text { is enitted in potaesium catiafyine } \\
& \omega_{R}^{(5)}=\omega_{L}+\omega_{S}-1 / \hbar\left(E_{10}-E_{8}\right)
\end{aligned}
$$

This can either be axplained by 4 -photon parametric coupling (ii) or (iv) 3-photon Raman-type ecattecing in which and are absorbed, a photon of frequency $\omega_{R}^{(3)}$ is aimultanoousiy exitted and a k-aton already In state $\left.\left.\right|^{8\rangle}\right\rangle$ is excitad to higher state $|10\rangle$. Fatsik, nolmi and Earair (ref. 11) put forward evicence, given at the beginaine of this gection, for the latton-type process even though both groceases astisfy the mane equation and conform with the same parity requircaents. They finally nention that diverse mitiphoton processes are obeerved in free atome and
wisy nore will be found wen new techiquea for hifimpower lasert yield a richer chcice of frequencies.

Deicre discuesing our resulta it is necestery also is requber that Eqeaincntally both ruly and SRE rodiation are linearly polarised in the cima plane. Earak and Yateit (ref. 10) point out that paramotric couplings givo rise to criesions polarised in woth p and a directions (1.e. // aid 1 directions). Le will recall that in our malysis we have surned over enf possible polargiations (\sum_{5}) of the inctismt beam.

In ref. 12 it la pointed out that assimmant of an observed eaisaion Ine is ofton eunbocil and way be due to were than ove miliphoton process.
hen स-vapour is irrediated by the ruby frequency w_{L} end by the \cos frequency ω_{s} of nitrobenzene (m) reonance conditions are betiafied for 2 mioton absorpticio.

$$
F\left(\omega_{L}+w_{S}\right) \wedge \varepsilon_{10}-E_{1}
$$

ard in this case the frequency $\omega_{2}=24730 \mathrm{cos}^{-1}$. for entesion cloce to the $10 \rightarrow \varepsilon$ violet resoname coublet in E , assignai to on enbenced 2 -pioton onicsion from level 10 and primed by electronic $n \in$ infremed enission at $\omega_{R}=2720 \mathrm{cma}^{-1}$, coincides with $\omega_{P}=\omega_{L}+\omega_{S}-\omega_{R}$ the fregrency of the 4th wave in a 4 -photon raranetric cyelo. Dut this does not hold then other values of ω_{s}, not satisfying tho 2 -photon reaonance condition, ore uiged. ω_{2} and ω_{p} ehift by equal asoments, $\Delta \omega$ in opposite Cirections on alterine ω_{L} by $\Delta \omega$. Also, wiereas raciation chould be collitated and collinear with the incicant radiations, since it satisfics the moseritur conservation ruid $k_{L}+k_{5}-k_{R}-k_{p}=o_{2} w_{2}$ radiation biould pet be collimatod, oince it is a scaj-spontrneors procoss dua is therefore erpected to be suitiod in all directions consistent with the raciation pattern of a classicol dipole. In fact, ω_{2} is often collinatad and collinear with the incicant radationa at ω_{h} and ω_{s}.

Since $\quad \omega_{2}=\frac{E_{10}-E_{2}}{I}-\omega_{R}$
this enission nust bo criminaid and not enkanced 2 photon eaission although in certein circumstances the radiation is uncollinnted and truly seni-spontaneous or exhances. Another difference betveen reviations and ω_{p} is that the opectral wiath of $\omega_{p}, \Delta \omega_{p}$ is ErOND due to the broances of cins radiation ω_{3}, wherocs $\Delta \omega_{2}$ is GutL $\left(1 \mathrm{~cm}^{-1}\right)$ ratching the width of w_{L}.

The main coperinental remults are that an intanse In line is scen et $\omega_{R}=2720.6 \mathrm{~cm}^{-2}$ due to stimulated electronic thasen enission from level $10 \rightarrow 8$ and an intembe 1 kW coherent bean of blue or violet light at $\omega_{B}=24001 \mathrm{cma}^{-1}$ for ω_{S} in $\min \left(\omega_{\mathrm{s}}=23015 \mathrm{~cm}^{-1}\right)$ due to 2photon
 wich has a coublet structure and 1 s contred cround the $6-1 \mathrm{~K}$ enission Line (the bich frequency compont is 20% more intenoe tut the eomponents aro umally enlit by mench amomts fron the doublet contre) and is causod
 1ovel 10.

In ref. 20 the authors find that for $\omega_{L}=14399 \mathrm{as}^{-1}$ and $\omega_{s}=13054 \mathrm{ca}^{-1}(\mathrm{In} \mathrm{ID})$ the $10 \longrightarrow 8$ Line $(\lambda=204 \mathrm{M}$) has a narrow "dip" with centre coinciaing with the transition frequency ond that its total width, inclucing both conponenta incroased with increasine laver pover:-

Fg 5.c.5

Wo havo a central peak also oince we inclure the cokenent part in our E1ini errension and this correoponds to resonarce entestion from state $1 \varepsilon>$. In Chapter VII wo point out that the coutre? peak reaula fron tho fact that wo consider an oren systea, under etationary conditions. In both aryroximations (v) and ($v 11$) we find the outer peais serciation incronses for increasing lawer field eince it is efven by σ_{10} mere G_{10} is related to the lazer yower and is Eencraily larger than G_{3} (in the ratio 20:3, 1.0. 2 nit to 300 kW).

Accordine to ref. 12 the 2 -photon culusions are atimulated and their intensitios are etricingly comparable with that of the resonance mission from the state |8>. Cur calculations show the ratio of the intensity of resonance exission: 2 -photon cuissions for cess (v) to be

$$
\frac{\left\{\gamma_{x} / 4 / G_{10}^{2}+\gamma_{11} 1 / 4 G_{3}^{2}\right\}}{\left\{\frac{\left.\left(\frac{3 \gamma_{8}+\gamma_{31}+\gamma_{10}}{6}\right)^{2}+1 / 4 \epsilon_{10}^{2}\right\}}{6}\right.}: \frac{1 / 4 C_{5}^{2}\left(\gamma_{1}^{1}+\gamma_{1}\right)}{\left\{\left(\frac{5 \gamma_{8}+\gamma_{31}+\gamma_{0}}{6}\right)^{2}+G_{10}^{2}\right\}}
$$

end for case (V 11)

$$
\begin{aligned}
& \frac{1 / 2 \gamma_{1}\left\{\left[1 / 4\left(\gamma_{8}+\gamma_{51}\right)\left(\gamma_{8}+\gamma_{10}\right)+1 / 4 G_{10}^{2}\right]^{2}\right\}+1 / 8 G_{5}^{2}\left\{1_{4}\left(\gamma_{8}+\gamma_{10}\right)\left[\left(\gamma_{8}+\gamma_{31}\right)\left(\gamma_{8}+\gamma_{10}\right)+G_{10}^{2}\right]\right\}}{\left\{\left(\frac{3 \gamma_{3}+\gamma_{51}}{6}\right)^{2}+1 / 1+\epsilon_{70}^{2}\right\}} \\
& : 1 / 2 \gamma_{8}\left\{\left[1 / 4\left(\gamma_{8}+\gamma_{31}\right)\left(\gamma_{5}+\gamma_{10}\right)\right]^{2}+\left[1 / 2\left(2 \gamma_{8}+\gamma_{31}+\gamma_{10}\right)\right]^{2}+1 / 4 G_{10}^{2}\right\} \\
& \frac{\left.1 / 4 \mathcal{C}_{5}^{2}\left\{1 / 4\left(\gamma_{8}+\gamma_{10}\right)\left(\gamma_{8}+\gamma_{51}\right)\left(\gamma_{8}+\gamma_{10}\right)+G_{10}^{2}\right]+\left(\gamma_{8}+\gamma_{51}\right) / 4 C_{10}^{2}\right\}}{\left\{\left(\frac{3 \gamma_{8}+\gamma_{31}}{6}\right)^{2}+\left(G_{70}^{2}\right\}\right.}
\end{aligned}
$$

Thus, in both cases, the ratio mhow the intenaities to be comparable. Furtherrore in raf. 23 it ia stated tiat obsorvation ahowed the
resonent-trancition lines to have yo doublet atructure but to have an aprectatio wiath ($10.5-1.0 \mathrm{~cm}^{-1}$) and to be mifted (by $0.7-1.7 \mathrm{~cm}^{-1}$) to the Lit side relative to the transition frequency.

We have fown also that the resonant-trensition linea have no doublet the
structure and in the case of $3 \rightarrow 1$ and the $10 \longrightarrow 8$ trancitions the chifts are Ω_{8} and $\Omega_{8}-\Omega_{10}$ respectively and reduce the frequency of the
 poak in cach case for aproximations (v) and (vii) ia $\Delta_{5}=\left(\frac{3 \gamma_{8}+\gamma_{31}+\gamma_{10}}{6}\right)$ or $\Delta_{7}=\left(\frac{3 \gamma_{8}+\gamma_{31}}{6}\right)$ respectively, the ane as that for the aide penkse

The authors in ref. 25 also investigated the absorption land but that is is rointerest here. In order to interfret their findinge, they essume that the weve function of the atom in the fisla of the ruby laser is civen 1.854

$$
\begin{aligned}
\psi & =\psi_{m}\left\{A_{1} e^{-i\left(\omega_{m}+\epsilon_{1}\right) t}+A_{2} e^{-i\left(\omega_{n} t t_{2}\right) t}\right\} \\
& +\psi_{n}\left\{B_{1} e^{-i\left(\omega_{n}+\epsilon_{1}\right) t}+B_{2} e^{-i\left(\omega_{n}+t_{2}\right) t}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
\epsilon_{1,2} & =\frac{\Omega}{2} \pm \sqrt{\left(\frac{\Omega}{2}\right)^{2}+G^{2}} \\
\Omega & =\omega-\omega_{m n} \\
G & =\left|\frac{p_{m n} E}{2 \hbar}\right|
\end{aligned}
$$

The splitting is $\pm \mathrm{f}$ where G is G_{3} or G_{10} or $\sqrt{c_{3}{ }^{2}+G_{10}{ }^{2}}$ dependis on which transitions are considered and what approximations are used.
I.E. one cas interpret ψ an the mitting of the nondegenerate atates of the ator: (diage below), due to the external field (see refi. 33, 55-57).

$$
\begin{gathered}
m \varepsilon_{1}=\ldots \ldots \\
\varepsilon_{2} \ldots \ldots \\
\varepsilon_{2} \ldots \ldots
\end{gathered} 14 S_{1 / 2}
$$

$$
F_{y g} 5 c 9
$$

0

$$
\ldots 14 S_{1 / 2}
$$

They alco asy that the eymetrical broadening of the 4044 ($1 \rightarrow 8$ or
 state (atate $13>$). Apparentiy the cancade population $10 \rightarrow 8$ of the 1 eval 6 occure with the aid of two field that differ in frequency by an anount $\sim \varepsilon$, and this ahould lead to an effect anelogove to phese moculation, which is characterised by a broed and syzmetrice? spectrum. Thair general comelusio: is thus that the observed offecta are connected with the eplitting of the atosio levals in the extemal field. (N.B. frequency zhifts $\Omega_{\text {mil }}$ have nothing to do with the external field and oocur in mpontaneous emiesion aluo).

The authora of ref. 292100 investigate the flne atructare of the potasainemieaion apectavin and $\lambda=4044^{\circ}\left(5 P_{3 / 2}-4 S_{\frac{1}{2}}\right.$ trunaition $\left.(8-i)\right)$. We may note that aimilar conclualons cen almo be dravn about the $\lambda=4047^{\circ}\left(5 F_{\frac{1}{2}}-4 S_{j}\right.$ tranadtion $\left.(7-7)\right)$. They find, as do the authors of ref. 28 , atrong dependence on the field intensity (and aiso on the vapour presaure in which we are not interested hare). They aive amsign the case of the atructure to the fiold aplitting of energy levels and this
sp "inning of the nato mic levels in the eam. field they point out is one of the baric erects of nominear spectroscopy. Colubed et al. consider the aituration whore the potassium atom is exposed to a a . ald hose spectrum contains geverill norochronatic lines mplitime the line into may conporenta, antiar than into pho, as in a monochromatic field, winch is wat we conciser. They find that the structure of the $\beta \rightarrow 1$ lIne is fairly complex and strongly dependent on the laser field power (and vapour pressure). It (low pressures and) Whit powers the centre of markedly asbyetric Ines has a angie sharp dip but as the powers the laser and SIS radiation increase, the dip widens and then splits arceemadvely into 2,3 or more cosiponenter

When the laser power is 100 MW the 1 ne etirueture becomes quite unary and inhoxogencove along the line height.

Coluber et al. attribute these changes to field aplitting of laval $5_{3 / 2}$ (8) into "quasimenargy aublevalw". Apparently, beth the laser (ω_{L}) and the infra red ($\omega_{2} \& \omega_{5}$) missions play a aientifoent role in this effect.

Ther show thet tho laser ficla (ω_{L}) end fintaratiros (ω_{2}, ω_{3}) fre the nect istense corponerts of tho cateston ceectura interactine with ratome. If oniy these three alelds aro twion into accurt then, neconlue to metyetion thent, the folleving three processen ere posible tint can lean to aromption of enseion in the vicirity of the frenueney $\omega=\epsilon_{10,1}:$

111) 3-xuartun procens (of the laman scattering type) with absorption of Plotons hw and $h \omega_{2}$ and exsision of a jaser-irequency photon $h \omega_{L}$, $4_{3}-5_{3 / 2}-\epsilon_{3}-4 T_{3 / 2}(1-3-3)$.

Thus the nimomition line for the $43-P_{3 / 2}$ trangition is mulu decencrate in terys of the "3-0tronc-ifoles nodel" ($\omega_{\mathrm{L}}, \omega_{3}, \omega_{2}$). If the intencities ere high exough the above procesces can no longer be concilened indopendent, the deguoracy is ramoved, end he Ine split into three conponerts.

Goluiev ot al. calculate, by considering ony Lamiltoniaib V_{S} and V_{8} perturbativcis, that the frogucicies of the abombtion ration are given by the following formias, in orr notation, with ar accuracy to terms cotriving puared fielu weytudea,

$$
\left.\begin{array}{l}
\omega^{(1)} \approx \epsilon_{0,1}+\Omega_{L}-\Omega_{2} \\
\Omega_{L}=\omega_{L}-\epsilon_{10,3} \\
\Omega_{2}=\omega_{2}-\epsilon_{10,8}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\omega^{(2,3)} \approx \epsilon_{8,1}-1 / 2 \Omega_{3} \pm G_{3}-G_{n}^{2} / 2 \Omega_{L} \\
\Omega_{3}=\omega_{3}-\epsilon_{10,3} \\
\epsilon_{3}=\frac{\left|d_{10,3} E_{3}\right|}{2 \hbar} \\
G_{L}=\frac{\left|d_{10,3} E_{L}\right|}{2 \hbar}
\end{array}\right\}
$$

$[\because \therefore$. In crice to ourvert to arx notation

$$
\begin{aligned}
& \Omega_{2} \longrightarrow-\Delta_{1,6}-9+\Omega_{5} \quad \Delta_{1,8}=\omega_{10}^{1}-\omega_{2} \\
& \Omega_{3} \longrightarrow-\Delta_{10, x}-\Omega_{10}+j_{8} \quad \Delta_{10,8}=\omega_{10}^{1}-\omega_{5} \\
& c_{L}=\frac{\left|d_{n, ~} E_{L}\right|}{a_{1}} \rightarrow \frac{f_{10} \cdot \hat{e}_{O_{L}} \varepsilon_{2 L}}{\hbar} \\
& G_{3}=\frac{\left|d_{\text {nik }} E_{5}\right|}{2 \hbar} \rightarrow \frac{f_{1} \cdot \hat{e}_{03} \varepsilon_{03}}{\hbar} \\
& \text { owing to tho nes of } \\
& \text { different unit: }
\end{aligned}
$$

The sequancy of the ghoton gencrater in revian ecattering has a field ohift, i.e.

$$
\Omega_{2}=\Omega_{1}+\sigma_{1}^{2} / \Omega_{2}^{(50)}
$$

A field ahift of ine ω_{3} is aloo expected so thet

$$
\begin{aligned}
& S_{3}=-G_{n}^{2} / \Omega_{2} \\
& w^{(1)} \approx \epsilon_{81} \\
& \omega^{(2,3)} \approx \epsilon_{81} \pm G_{3}
\end{aligned}
$$

For oufficientiy wirk fielas only a aricle aborftion line is cboorbed erperimentoly vereas for ω_{3} flola sufficientiy intense 3 comonents chouli be visible. The central $14 n$ coincliad with the location of ϵ_{81} within an accuracy to $0.1-0.3 \mathrm{~cm}^{-1}$ and the sice cormanats were mondy symetric as required in the last formila for $\omega^{(2,3)}$ theugh there are some doviations fros eymiotiry roaching $1.5-2 \mathrm{~cm}^{-1}$.

Tho efectral dendity of the woris of field $V_{0,}$ is propertional to their expression

$$
\left|V_{s 1}(\omega)\right|^{2} F_{l}\left\{\sum_{m 1} \sum_{l=1} \frac{C_{s l}^{(m)} D_{l 3}^{(m)}}{\left[\mu_{l}^{\prime \prime}+i\left(\omega-\epsilon_{s 1}+\mu_{l}^{\prime}+m \eta\right)\right]}\right\}
$$

wich wow tivat the obsorption opectan regresents a cet of equicistant triplets (indec m) meparataly by $\left|\Omega_{2}-\lambda_{3}\right|$, triplet $m=0$ cotarining
the structure of line 40,4it. In fact, the structure of the absorption coefficient in the chortmave region ahoild simulate that of the $\lambda=4044^{6}$ ine itself. This is true for (preacuren cuificientiy hich and) powers of laser and SZ ficlda aufficientiy hish, when in fact the components are approximately quaily serarated.

The frect that the number of oiverved couponenta of the $\lambda=4044 \AA$ absorption line becomes >3, under certain conditions, is explained by considaring not ondy the three cidecion frequencies ω_{L} (laser and ω_{2} and ω_{3} (resonating with $10 \rightarrow 8$ transition) but also their anslogues for

$$
\epsilon_{2} \rightarrow 5 P_{\frac{1}{2}} \text { transition }(20 \rightarrow 7)\left(\omega_{+} \text {and } \omega_{5}\right)
$$

and enission cue to transitions from level $5 P_{3 / 2, \frac{1}{2}}$ to lower levela $5 S_{3}$ and $30_{5 / 2,3 / 2}(0,7 \rightarrow 4,6,5)$. In fact if there are Ifve monochromatie fielda $\omega_{2}, \omega_{2}, \omega_{3}, \omega_{4}$ and ω_{5} the $L_{4} \sum_{2}-5 F_{3 / 2}(1-\varepsilon)$ absorption line can be split off into eicht components but analysis of this case would be wuch rorecomplicated.

(solld arrows - "ctrong flelds"
dashed arrows - \mathbb{K} enission lines in viclet spectral rance)
Golubevhas concidered how the violet lines are emerated and

Eque throo processes:-

1) 2mquantua absorption of Laser exission and SiS (ω_{L}, ω_{S}) causing population of lovel G_{1} and population inversion at trancitions $6 s_{\frac{1}{2}}-5 P_{3 / 2, \frac{1}{2}}$ and hence enission and amplification at frequencies
ω_{5} and ω_{5} -
Hence term 55 is populated and Inces $\lambda=404 / \sqrt{47} \%^{\circ}$ ot trancition $5 P_{3 / 2}$ 考 $\quad 43_{2}$ is generated.
2) Levels $5 \mathrm{P}_{3 / 2,4}$ are populated by laman acattering $\left(\omega_{2}, \omega_{4}\right)$ of lacer ouiscion ω_{L} in wisch $4 P_{3 / 2}$ ia the initial and $5 P_{3 / 2, \frac{1}{2}}$ the final atonio atate. Fig.S.C. 14

3) L-photon acattering ("lightiby-light scattering") $\omega_{5}+\omega_{L} \longrightarrow \omega_{3}+\omega$ This explains the fact that violet cnission ($\varepsilon \rightarrow 1$ and $7 \rightarrow 1$) is charply directed and orientated exclusively in the camodrection as ω_{s} and ω_{L}. This process is particularly effective when the following condition for uavo vectora is atisfied (see [59] for ocample)

$$
k_{6}+k_{2}=k_{5}+\frac{k}{\underline{n}}
$$

This explaing the singular direction of the casaion and so this process bhould be significant at least in the initial ceneration otaces of infremed and violet omisaions. On the other hand, the cancaie mechorism probably emplifies the light resulting frora the 4-photon acattering. In fact, Goluber et al. conclude that the role of thia process is only reliable in relation to the broad "short-wave" In $\omega_{g_{5}}$, hereas its role in the remining regions of the apectrum requirea further crperimental research.

Nevertheless the ficld orizin of aboorption line aplitting at the
$43_{2}-5_{3 / 2, t}$ transition is well cotsblished. A1so they note that in
 rhoton are recarded as differert roceneses wheress this ifetinetion
 case of the $\lambda=4044 \AA$ A absorvition line 1-, 2 - and 3-photon processes are "mixedmp" in the intense resonance fiele. Thus it is betior instead to talk of a SIIGLE process of violet abscrpticm in wich the line giructure is interpreted as a recult of field spitting of atomic levels and "this approach is in full accord with the spirit of nonlinear epectroscopy ${ }^{(60)}$. Goluber of al regard their datasa on experimental verification of one of nonllnoar spectroscopy's main theses.

The other conclusion of our calculation, recarding the structure of the $63_{\frac{1}{2}}-5 F_{3 / 2}$ line ($10-8$ line), ramains to be discussed with reference to experimental data. The doublet structure which we find (plus of course the resonance peais at $\nu=\omega_{10}^{\prime}$) acrees with Lumplin's conclusion (17) that the inframred lianan emission (3.63μ) chould have doublet structure, thouch he points out that this has not veen observed (13). Inmpinin's analysia is criticized by coluber et al. ${ }^{(23)}$ who clain that Lumplein's model is inaciequate since it assumes the nitrobenzene wis radiation to be monochromatio and STHONG end all remaining fields to be kFAin. Iumpkin concludes that the splitting of the resonance level is real if the SnS epoctral width is mailar than the aglitidng wereas in reality the sis epectrum is EBCAD, as noted earlier. Golubev et al. therefore soy that Lunpin's conclusions are invalid though his theory doea in fact account for the doublet atructure of the Violet lines.

They are, in fact, two possible frequencies for the enission in the 10-8 tranaition, namely ω_{3} and ω_{2}. but which occurs depends on the resonance condition for ω_{s} and ω_{L}. For ω_{3} to be amittod wo roguire:
1)

$$
\begin{aligned}
\omega_{5}+\omega_{s}=\omega_{5}^{\prime}+\omega_{10}^{\prime}=\epsilon_{1,1}-\Omega_{10} & \ddots \Delta_{1-3} \neq 0 \& \Delta_{5,} \neq 0 \\
& \text { or } \Delta_{1 w, 3}=0 \& \Delta_{31}=0
\end{aligned}
$$

whereas for ω_{2} to be mittod, we reguire
2)

$$
\begin{array}{ll}
\omega_{s}=\omega_{1}^{\prime}=\omega_{1}-\pi_{31} & \therefore \Delta_{5,1}=0 \\
\omega_{1} \wedge \omega_{5}^{\prime}=\epsilon_{11,3}-\left(\Omega_{10}-\Omega_{31}\right) & \therefore \Delta_{1, s}=0
\end{array}
$$

In caso (1)

$$
\bar{\rho}_{3,}=0
$$

and in case (2)

$$
\bar{\rho}_{10,0}=0
$$

Since we are conslicring the overall effect of both processee and \triangle 's are nocilcible we can absume that we chould obtain a apectral profile:

iccording to ref. 23 the value of ω_{2} is determined by ε_{2}, i.e.

$$
\begin{aligned}
\omega_{2} & =\omega_{10}-\varepsilon_{2} \\
& =\omega_{10}-\left\{\Omega / 2-\sqrt{(\pi / 2)^{2}+\sigma^{2}}\right\}
\end{aligned}
$$

where $\Omega=\omega-\omega_{10}$
and $\quad G=\left|\frac{P_{K .8} E}{2 \hbar}\right|$
If ω_{L} has a cpread of values of the order of the field aplitting of level 10 another exasion 1 ine would be expected on the high frequency side of ω_{2}. The criterion for this to occur would be

$$
\Delta_{10,3} \sim \varepsilon_{1}-\varepsilon_{2}
$$

which for modarate powers of laser and \sin fielde $G \ll|\Omega|$ means

$$
\Delta_{10.3} \sim 2 G^{2} / 1 \Omega 1
$$

which is very acell indeat. The origin of the twe outer components of the epectrun can thus be assigned to the Ifeld eplitiong of level 10 and
the contral componat to the resonant tronaltion between levels 10 and $\$$ when the 2 muantwa absorption condition is eatiefied. The eoveration between the outer poaks is tha sane as for tranoitions vetweon levels 8 and 1 and to chould also be observable uriless thoir intensities are very low. Vo can therafore only conclude that the laber field is for all practical purposes competely monochromatic. The epectral profile for tranaitions between levels 8 and 1 must therefore be coverned by the spectral width of the GRS radiation wion is know to be BROAD and 60 the latter can result in >1 component for the resultirg $8-1$ epectrum.
$23+143$

For the promene of our celoulations corccring the hydrocen abota We ghall the into monount the following levels: lis? (Erome level), $2 \mathrm{~F}_{2}, 2 \mathrm{~S}$ (metantable), $23 / 2$ and 3 P , 1.e. lequs up to and including excited state 3r. Wo whall refer to these levels by numbers 1 - 5 as thom belot

Tho quations of notion for a aneral y-lovel aton are, accoring to quations (4.A.1\%), (Loh. 20) of Chayter IV,

$$
\begin{aligned}
& \dot{P}_{\min }=-\sum_{j}\left\{\eta_{j}\left(\gamma_{\ldots}+\gamma_{\ldots,}\right)+1\left(t_{\ldots \ldots}-\lambda_{n}+\lambda_{\ldots}\right)\right\} P_{m, n} \\
& -\xi_{1} P_{\ldots} \eta_{\ldots}+\sum_{i} P_{\ldots .} q_{\ldots}
\end{aligned}
$$

$$
\begin{align*}
& \dot{\boldsymbol{r}}_{\operatorname{mam}}=-\sum^{n, 1}\left\{\gamma_{\ldots} P_{\ldots \ldots}-1\left(P_{m 1} \gamma_{\ldots}-q^{+\cdots} P_{m m}\right)\right\} \\
& +\sum_{j=1}^{5}\left\{\gamma_{j^{m}} \dot{R}_{d y}-1\left(p_{j m} q_{\gamma^{m}}-q_{j m}^{+} P_{j j}\right)\right\} \tag{6.A,2}
\end{align*}
$$

where the liamiltorian is given bys-
$H \cdot \hbar \sum_{x=1}^{5} \epsilon_{x} P_{x x}+\hbar \sum_{P_{T}} w_{8} a_{k 5}^{+} a_{15}-\hbar \sum_{y=1}^{5} \sum_{i=1}^{4} \sum_{l, 5} g_{15} y_{z}\left(p_{z y}^{+} a_{15}+a_{i 5}^{+} p_{z y}\right)\left(\epsilon_{0} A_{0} 3\right)$
Since we are alwar concemed with dipole tracitions we find that in the presert case

$$
\begin{align*}
& x_{13}=0 \\
& x_{2}=x_{25}=0 \tag{c.0.4}\\
& x_{4,5}=0
\end{align*}
$$

wiere $x=q, \gamma, \Omega$ and the equalitics are tre for remerved qubecripts eri, in the csse of g , for the hemitian conjucate also. We ghall bo intereoted in trancitions betroct
a) etates $37(15\rangle)$ and $1 \sum_{\frac{1}{2}}(|1\rangle)$
and b) states $31(15\rangle)$ and $\left.23_{3}(13\rangle\right)$
 5 and 3, the ficla boice supplied by ruby lanem raniation which ia known to te in arrout ate reanance with the atomic trensition $35-22,(5-3)$. A(ii) Eveviou of riclequat mencos

Wo shall convere our reculte with thone of cenvis (32) end Dautian and Sololvan (33). zemik's concern is the cnital puerching of metartable bydrocen by nows of a high-frequency e.m. have and the thories he unes are the quatur clectrodyomical perturbation theory end a strone sional tieory. If tie aton is isolated, and in the $2 \sum_{\frac{1}{2}}$ gitate, then it is
metastable (nera 2 feine $\frac{1}{\text { a }}$ sec.) anco it ran decay only by

bhen tie 20 stite is quenchod by a vilk d.c. ficill wat ocours can So explandeat in acmik'a paper in the permoe of the fleld there are two atitionary etates ard the wave function of cach of thees are a

$$
\text { i.e. } \begin{aligned}
& \psi_{1}=A_{3} \psi_{3}+A_{2} \psi_{2} \\
& \psi_{5}=B_{3} \psi_{3}+B_{2} \psi_{2}
\end{aligned}
$$

The decay prominilty cones from the aduxture of the an atato (2).

 cumate of the decen rates of the pure atotes
1.0. $1 / 2\left(x_{21}+x_{52}\right)$.

Since Licht from a ruby lacor contains photens of enercy $0.0657 \mathrm{mo} / \mathrm{n}^{2}$, Juet althely less that the encruy diferenco stween 38 and $2 s$ etates
 25 state can occur is by means of a VLicival traveition via tre $3 P$ state

Fig. G.A. 1

If clewtary rexturtation theory is volid (wo exiterion civen later) this moceas 13 a inear and not a rom-lncm ces. The encrg of the cintted poton omromana to $\lambda=1035^{\circ}$, ac actemired ty the

$$
\begin{equation*}
\text { 1.c. } \sigma \infty \frac{1}{I_{0}} \tag{6,A,6}
\end{equation*}
$$

 the cficct juth acursiome

 by comichestoal midation thoory and epartanoons decay from 3 to $2 S$ may be noclectici (i.c. $\gamma 53=0$). We pinll rot neciect this antirely

 tio critciton for the valicity of perturbation theory to to

$$
|V|^{2} \ll \hbar^{2}\left|1 / 2\left\{\left(\gamma_{53}+\gamma_{51}\right)-\gamma_{32}\right\}+i \Omega\right|^{2}
$$

where $V=\langle 5| e E_{L} \underline{r}|3\rangle=-E_{L}, \sum_{33}$ is the irterection
 of the lancr ilcid. This is the condtion also for wich hoger oric. term 1: the portirbation theory ticatwet of the 23 to $3 P$ tranation are

 theory io valid. Etrong aiznal thecry is necosexy for herher field strongtis.

In inutini wa Boblimn's faper ${ }^{(33)}$ they treat the efrect of a Thion monochoaice come field of recuescy clowe to one of the chamoteritive frouenciee of a sjeten a the mectral composition of the raiption. they consider on atom with 3 nownegcierate levels which could correaron to the duatant eary lovels water conelaeration, 1.c.

FIE. G.A. 2

Fincy poirt out thet 2 rvarted ropuletion of levels FS, E3 is poesible if the probaility of decay of level 3

$$
\begin{equation*}
2 \gamma_{3}: 2 \gamma_{32} \gg 2 \gamma_{53} \tag{6.A.E}
\end{equation*}
$$

(the probiaility of tho apontanoous tramation $5 \rightarrow$) and sothey concicer this eiturtion, thouch heydo ; not pastrict the docay prodaility $\quad 2 \gamma_{5}$ of levol 5. We do implicitly assure $\gamma_{51} \gg \gamma_{32}$

 arsarptan at ω_{1}, ω_{μ}. They use rertarinetion theory to find
 from or anita? state. They discover that hor now fields, inc. " Janice, the inn jug curve Becomes complex:

$$
\left.\left|a\left(-, n_{1}, n_{\mu}\right)\right|^{2}=\left|A_{1} e^{-\Gamma_{1} t}+A_{2} e^{-\Gamma_{2} t}\right|^{-} \text {(the aperialic case) (} \epsilon_{0} A_{0} g\right)
$$

accuse stater: 2×3 become MIXID, owns to irtaraction with the field. For chill stronger fields

$$
\begin{array}{r}
\left|\|_{1}\left(5, n_{2}, n_{\mu}\right)\right|^{2}=A \cos ^{2}(\delta t+\psi) e^{-\left(\gamma_{2}, \gamma_{5}\right) t} \\
\text { Ne } \delta^{2}=\left(\sigma^{2}-\frac{\left(\gamma_{3}-\gamma_{5}\right)^{2}}{4}\right. \tag{6.A,10}
\end{array}
$$

2. $0^{\text {. the timomiependence of this function (the modulus squared of the }}$ probability any Lithe) represents damped aciluationg. They fo on to calculate the woidility y_{2} of induced arinsion of a photon of frequency

In the case whon ocoillation are damped $G^{2}>\left(x_{2}-x_{5}\right) / 4$
the line ahape becomes aplit into 3 componente of equal wiatha, $\Delta=\left(x_{3}+x_{5}\right) \quad$, separated by distancea $<0_{1}=\sqrt{6^{2}-\left(x_{3}-x_{8}\right)^{2}}$ whore $\sigma^{2} \cdot\left(\pi,-y, N_{1}\right) / N_{i}$ and i_{L} is the total number of photons of frequency

Pig. 6.A.A

In the "aperiodic case" there are no omoillations, but the amplitudes of the different states fall off with different damping constants $\Gamma_{\text {, }}$ and Γ_{2} leading to a change in the ahapes of the emisaion and abeorption lines.

Probability of epontaneous aisaion (in unite $\gamma_{53} / \pi \gamma_{5}\left(\gamma_{3}+\gamma_{5}\right)$) ij ir $\mathrm{S}_{\mathrm{y}} / \mathrm{O}_{3}$

When external field increased atill further the emisaion line conalats of the 3 componente apoken of earlier, the aplitting being detectable for $G^{2} \gtrsim \gamma_{3} \gamma_{5}\left\{\frac{3 \gamma_{3}}{4 \gamma_{5}}+\frac{1}{2}+\frac{3 \gamma_{5}}{4 \gamma_{3}}\right\}$

Fige 6.A. 6
plitting is appreciable only for comparatively atrove saturation i.e. 叔 $c^{2} \ggg=$
win departure from resonance ($\quad \neq 0$) the $13 n$ vecones catremely asymuctrical, the maximai of the side components approsching ${ }^{\prime} 3^{\text {ard }}$ ats :malude risire stoerly, whist the other two terme Decome maller and the pobitions of the maxima go further from 53°
he shall in fact bo considering the care when the ator is initially in level 5, as in iaution and Solelman's paper (33) so that our calculations should richtiy be compared with theirs, though theirs are sot specifically for the kydrogen atom. (a.t. In Mautian and Sobelman's paper they consider that the material syeter ie coupler to maty modes of the radiation field, but that instially ondy one siode of the field is in a highenergy gerstate. hey obtained a solvable set of equations for the atom field probability amplitudes by $+\ldots .$. ig the infinite set to correspond to a Whil rumber of multiphoton processes. i.ewstein (ref. 6) thinks that this procedure is only valid for smald initial field onergies).

Lefore proceoding further we shall define frequencies

Le lowar Soctipa (miasion byectra oniy)
In order to culculate the spectral zensitiee of the enittex jught for case a) it proves nocescary to conaluer onily two of the twenty-five equations for the tranaition oparntora. These are:
$\dot{r}_{13}=-$

The monochronatic deiving field coupling levels 5 ance 3 will now be conaldered in the two waye explained in the last chayter.

Hothod (1)

In this case

$$
\begin{align*}
& \dot{p}_{15}=-\left\{L_{25}+t_{51}\left(t_{5}\right)\right\} p_{15} \\
& -\left(P_{25} \eta_{10} r_{45} q_{41}+P_{55} q_{51}\right) \tag{6.B.6}\\
& +_{1}\left(p_{11} p_{5}+p_{1}=\left(q_{53}+\lambda_{-3} \mathcal{\varepsilon}_{2}(t)\right)\right. \\
& \dot{F}_{13}=-\left\{\operatorname{lo}_{2}+1\left(t_{3 i}-1 l_{2,2}\right)\right\} P_{i s} \\
& -1\left(1_{23} q_{21}+p_{4}=q_{1+1}+p_{53} q_{5}\right) \\
& +p_{12} q_{32} \\
& +1\left(q_{4}^{+} P_{11}+\left(q_{5}^{+}+\lambda_{35} \varepsilon_{2}^{2}(1)\right) P_{15}\right.
\end{align*}
$$

where $x_{5}=x_{51}+\gamma_{53}$

$$
S_{5} \cdot I_{51}+I_{53}
$$

Nultiplying these two equations from right and left by $\vee 0 \mid$ and 10\rangle rd reapectively and letting
we obtain

$$
\begin{align*}
& \left.\langle 0| P_{15}|t||0\rangle\right\rangle_{\mathrm{rad}}=x(t) \tag{6.B.8}\\
& \langle 0| P_{3}(t)|0\rangle_{\mathrm{red}}=J(t)
\end{align*}
$$

$\dot{X}=-\left\{1_{2} x_{5}+1\left(t_{51}-\lambda_{5}\right)\right\} X(t)$
$+1 \lambda_{53}\left(\mathcal{L}_{2}\right) y(t)$
$\boldsymbol{I}=-\left\{1 x_{2} x_{52}+i\left(t_{31}-\rho_{32}\right)\right\} y(t)$

$$
+i \lambda_{-5} \varepsilon_{2}(t) \times(t)
$$

Since

$$
\begin{align*}
& \rho_{s}^{(s)}(t)=\sum_{s}\langle s| X(t) \rho^{(s)}(0)|s\rangle \\
& \rho_{5}^{(s)}|t|=\sum_{s}^{c}\langle s| y(t) \rho^{(s)}|0\rangle|s\rangle \tag{6}
\end{align*}
$$

we obtain the following two equations for the reached density matrix elements

$$
\begin{align*}
\dot{\rho}^{(5)}(t)= & -\left\{11_{2} X_{5}+1\left(t_{5}-\lambda_{5}\right)\right\} \rho_{5}^{1}(t) \tag{6.B.11}\\
& +\left(\lambda_{55} \varepsilon(t) \rho_{15}^{\prime \prime}(t)\right.
\end{align*}
$$

$$
\begin{align*}
& \rho(1)=-i, \ldots+(1,-1, \ldots)(t) \tag{,}\\
& \left.+1 \lambda_{5},(11) / \int_{i 1}^{1} \|\right)
\end{align*}
$$

Lethe (iv)
In this case the initial photon state is $\left|x_{5}\right\rangle$
whereas

$$
|=n| n\rangle=0 \quad \text { for } 011 \text { other } n \text { and } n \text { where } m>n
$$

$$
\begin{align*}
& \left.\left.\left\langle p_{p}\right| \eta_{i s}\right|_{1} p_{1}\right\rangle=y_{w_{n}, 5} e^{-\omega_{2} t} \alpha_{5} \tag{6.E.14,n}\\
& =H_{2} C_{2}^{1} e^{-i w_{1} t} \\
& \left\langle p_{1}\right| q^{+}{ }_{3}{ }^{1}\left|p_{1}\right\rangle=g_{\omega_{n}, 53} e^{i \omega_{2} t} x_{5}{ }^{*} \tag{6.8.140}\\
& =1 / 2 G_{2}^{10} e^{i \omega_{2} t}
\end{align*}
$$

$$
\begin{align*}
1 / 4 e_{L}^{2} & =g_{\omega_{L}, 53}^{2}\left|\alpha_{5}\right|^{2} \\
& =\left(\frac{2 \pi \omega_{L}}{\hbar V}\right)\left(\hat{e}_{0_{L}} \cdot f_{53}\right)^{2}\left|\alpha_{5}\right|^{2} \tag{6.5.15}
\end{align*}
$$

as orpood to $\quad 1 / 46 \frac{2}{5}=\left(\lambda_{53} C_{0 L}\right)^{2}$

$$
=\left(\frac{f_{53} \cdot \hat{\varepsilon}_{01} \varepsilon_{02}}{\hbar}\right)^{2} \quad \text { or method (i) }
$$

Hance multiplying the two transition operator equations from right and left by $\left\langle i_{p l}\right|$ and $\left.\left.\right|_{p_{1}}\right\rangle$ respectively wo obtain

$$
\begin{align*}
& \left.\left.\left\langle p_{p}\right|\left|\dot{p}_{15}\right|, p h\right\rangle=-\left\{1 / 2 \gamma_{5}+\left(t_{51}-\lambda_{5}\right)\right\}\langle\text { iph|p.stiph }\rangle\right\} \text { (6.E.16) } \\
& \left.+1\left\langle p_{1},\right| P_{13} q_{53} \text { lith }\right\rangle \\
& \langle\text { ph }| \dot{P}_{13}\left|p_{1}\right\rangle=-\left\{1 / 2 \gamma_{32}+i\left(t_{31}-\rho_{32}\right)\right\}\langle 1 p h| p_{13}|i p h\rangle \tag{6,2,17}\\
& \left.+1\langle p h| q_{53}^{+} P_{5}|n| p h\right\rangle
\end{align*}
$$

we find that
(6.B.200)

Thus on comparing these equations with those of method (i), alter assuming $r_{1}(r)$ oscillates harmonically at w_{L} such that
we find that

Using the notation of method (1) we can rewrite the reduced density matrix equations

$$
\begin{aligned}
& \dot{\rho}_{51}^{\prime \prime}(t)=-\left(1 / 2 \gamma_{5}+1\left(\epsilon_{0}^{\prime}\right) \rho_{51}^{(s)}(t)+1 \lambda_{53} \varepsilon_{02} e^{-i \omega_{2} t} \rho_{31}^{(s)}(t)\right. \\
& \text { where } \epsilon_{51}^{\prime}-\epsilon_{51}-g_{5} \\
& =\omega_{1}+\omega_{3}^{\prime} \\
& \dot{\rho}_{31}^{\prime(s)}(t)=-\left(1 / 2 \gamma_{32}+\left(-{ }_{31}^{\prime}\right) \rho_{31}^{(s)}(t)+1 \lambda_{35} \varepsilon_{02} e^{i \Delta L t} \rho_{5}^{\prime \prime 3}(t)\right. \\
& \text { where } \epsilon_{31}{ }^{\prime}=\epsilon_{31}-\rho_{32} \\
& =\omega
\end{aligned}
$$

$$
\begin{align*}
& \left.\varepsilon_{2} t\right)=\varepsilon_{c t} e^{-i, j t} \\
& \text { where } w_{1} \hat{-} \epsilon_{53} \\
& C_{L}^{\prime} \longrightarrow \lambda_{55} \delta_{0 L} \quad \text { ide. } \alpha_{5} \longrightarrow \sqrt{\frac{V}{\text { NiNWL }}} \varepsilon_{0 L} \\
& r_{2} G_{L}{ }^{\prime \prime} \longrightarrow \lambda_{35} C_{0 L} \tag{6,B.21}
\end{align*}
$$

$$
\begin{align*}
& \dot{\rho}^{\prime} \prime(t)=-\dot{\prime}\left(x_{-}+\left(t_{s}-n_{s}\right)\right\} \rho^{\prime \prime}(t) \tag{6.B.19}
\end{align*}
$$

 for the F-levals which all have allowad trensitione to the ground state (0.E. level 3F 1.e. lovel 5) the displacenent is very much amaler than the level widti,

$$
\text { 1.e. } \quad(i, \quad) \ll=x_{-}\left(=x_{2}\left(x_{51}+x_{-3}\right)\right)
$$

For the 2 imatate, which is metambiale (1.0. 25 , or level 3) and has necligible width, the dieplacement is much larger than the width

$$
\text { i.e. } \quad y_{2} \gg 1 / 2 \gamma_{2}
$$

The wame is true for the gromnd state, of couree, which is quite sharp. For the higher 8-levals (which we do not conaider), although allowed tranaitions to lover Fmataten occur, the transition probabilities as vall as the leval shift docreane rapidy with the main quantum number in and the level shif" remains in general much bigeer tham the wiath.

The relative values of the lovel shiftes and widthe of the 25 and 25 levels of hydrogen are given by hix in Table \bar{x} for the three hyiturgwimole with $n=2$.
loultiplying the clirgt equation by $e^{\text {wint }}$ anci letting

$$
\begin{aligned}
& x(t): \rho_{0}^{(s)}(t) \\
& y(t)=\int_{31}^{(s)}(t)
\end{aligned}
$$

$$
\begin{align*}
\dot{x}-w_{1} x & =-\left(1_{2} x_{E}+i \epsilon_{31}^{\prime}\right) x+i \lambda \hat{c}_{\text {on }} y \tag{6,2.24}\\
\dot{y} & =-\left(1 / 2 x_{32}+i \epsilon_{31}^{\prime}\right) y+i \lambda \hat{y}_{\operatorname{cin}} x \tag{6.2.25}
\end{align*}
$$

If we now amuse the initial time to to be zero end take In glace transforms of these two equations we obtain

$$
\begin{align*}
& \left(s+1 / 2 \gamma_{5}+i\left(\omega_{1}+\omega_{3}^{\prime}-\omega_{2}\right)\right) S(s)=\lambda \hat{\gamma}_{0} \hat{y}(s)+x(c) \\
& \left(s+1 / 2 \gamma_{32}+i j_{1}\right) \hat{y}(s)=\lambda \varepsilon_{o n} \hat{\gamma}(s)+y(0)
\end{align*}
$$

$35(5)$ and $15_{1}(1)$
In this case we need to solve for $\hat{\rho}_{51}^{\prime \prime}(5)$ fine. for \hat{x} / s)

$$
\begin{aligned}
& \int_{5}^{15}(5-1202) \\
& \hat{x}(s)-\hat{\rho}_{s i}^{(s)}\left(s-1 u_{L}\right)=\frac{i \lambda S_{0 L}}{F(s)} \rho_{31}(0)+\frac{f_{2}(s)}{F(s)} \rho_{51}(0)(6.8 .25)
\end{aligned}
$$

and dropping the superscript

$$
\therefore \hat{\rho}_{51}^{(s)}(s)=\frac{1 \lambda \varepsilon_{0 L}}{F\left(s+\omega_{L}\right)} \rho_{31}(0)+\frac{f_{2}\left(s+i \omega_{L}\right)}{F\left(s+i \omega_{L}\right)} \quad \rho_{51}(0)
$$

$$
\begin{aligned}
& f_{2}(s)=s+1 / 2 \gamma_{32}+i \omega_{1}^{\prime} \\
& F(s)=f_{1}(s) f_{2}(s)+1 / 4 s^{2}=(s-s)\left(s-s_{2}\right) \\
& f_{1}\left(s+i \omega_{L}\right)=s+1 / 2 \partial_{5}+i\left(\omega_{1}^{\prime}+J_{3}^{\prime}\right) \\
& f_{2}\left(s+i J_{L}\right)=s+1 / 2 \gamma_{32}+i\left(\omega_{1}^{\prime}+1 J_{3}^{\prime}-\Delta_{53}\right)
\end{aligned}
$$

where $\Delta_{53} \omega_{8}^{\prime}-\omega_{1}$

$$
\begin{aligned}
& 146 \text { "-146 } x^{2} \\
& S_{1},-1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)+i\left(2\left(m_{1}+2 \omega_{3}\right)-\Delta_{53}\right)\right\} \\
& \pm 1 / \sqrt{\left.1 / 2\left(\lambda_{5}-1\right)_{32}\right)+1 \Delta_{53} j^{2}-C^{2}}
\end{aligned}
$$

In other worms

$$
\begin{equation*}
\hat{\rho}_{31}(s)=\hat{u}_{5,31}(s) \rho_{31}(0)-\hat{u}_{5,51}(s) \rho_{37} /() \tag{6.3.30}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{U}_{51,31}(s)=\frac{1 \lambda \hat{i}_{c L}}{F\left(s+i u_{k}\right)} \\
& \hat{U}_{51, s 7}(s)=\frac{f_{2}\left(s+i u_{k}\right)}{F\left(s+i u_{2}\right)}
\end{aligned}
$$

The quantity we now have to calculate is the 2-the atomic correlation function

$$
\begin{aligned}
& g_{77} / r_{1}(1)=\left\langle P_{15}+(t 1) P_{15}\left(t^{\prime}+\tau\right)\right\rangle \\
& \left.1 \sum_{y^{\prime \prime}=1}^{5} u_{51}, y^{\prime \prime},\left(\tau, t^{\prime}\right) \rho^{\prime s}\right)_{1+1} y_{y^{\prime \prime}} \quad \begin{array}{l}
\text { under varicose } \\
\text { anproxination }
\end{array} \\
& =\bar{U}_{57,51}\left(\tau, t^{\prime}\right) \rho_{35}^{(3)}\left(t^{\prime}\right)+\hat{U}_{51,31}\left(\hat{t}, t^{\prime}\right) \rho_{35^{(3)}}\left(t^{\prime}\right) \\
& \left.=U_{57,57}(t) \beta_{55}(s)(0)+V_{5,31}(t) h_{35} s / c\right) \text { for initial time }
\end{aligned}
$$

Tousice the Laplace transform, we obtain

$$
\begin{equation*}
\hat{g}(s)=\hat{u}_{51,51}(s) \rho_{55}^{(s)}(0)+\tilde{u}_{51,31}(s) \rho_{35}(s)(0) \tag{6.E.32}
\end{equation*}
$$

Fe can chow, by a method analogous to that used in chapter V that the spectral correlation function

$$
\begin{aligned}
& \eta_{1}(\nu)=\int_{-\infty}^{\infty} d \tau \epsilon^{1 \nu \tau} j_{-1}(\tau) \\
& =2 \operatorname{Fe}_{\mathrm{e}}\left\{\hat{U}_{5,51}(-10) \rho_{55}^{(9)}(0)+\hat{U}_{51,31}(-10) \rho_{55}^{(0)}(0)\right\}_{1}^{\prime}\left(\epsilon_{0} E_{0} 33\right)
\end{aligned}
$$

but wo now assur the aton to be initially in level 5 , having been excite to this state by the field long acc,

$$
\left.\begin{array}{rl}
\therefore \rho_{55}^{\prime \prime}(0) & =1 \quad, \rho_{5}^{\prime}(0) \cdot 0 \\
\therefore E_{51}(v) & =2 R_{e} \hat{u}_{51,5}(\neg \nu) \\
& =2 R_{e}\left\{\frac{f_{2}\left(\neg\left(\nu-\omega_{L}\right)\right)}{F\left(\neg\left(\nu-\omega_{L}\right)\right)}\right\} \quad\left(\epsilon_{0} B_{0} 34\right) \\
& =\frac{2}{\left|F\left(\neg\left(v-\omega_{L}\right)\right)\right|^{2}} R_{e}\left\{F \wedge\left(-\left(\nu-\omega_{L}\right)\right) f_{2}\left(\neg\left(\nu-\omega_{L}\right)\right)\right\}
\end{array}\right\}\left(\epsilon_{0} E_{0} 35\right)
$$

Let $\quad S_{1}=a+i b, \quad S_{2}=c+i d$
where $S_{1,2}=-1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)+1\left(Q\left(\omega_{1}+\omega_{3}^{1}\right)-\Delta=3\right)\right\} \pm 1 / 2 \sqrt{x+7 y}$

$$
=-1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right) \mp A\right\}-1 / 2 i\left\{2\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}\right)-\Delta_{53} \mp B\right\}
$$

and $x=1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}-\left(\Delta_{53}^{2}+G_{5}^{2}\right)$

$$
\begin{align*}
y & =\left(\gamma_{5}-\gamma_{32}\right) \Delta_{53} \\
\sqrt{x+1 y} & =A+B \\
A & =\sqrt{\frac{x+\sqrt{y+y^{2}}}{2}} \tag{6.8.36}\\
B & =\sqrt{\frac{-x+\sqrt{x^{2}+y^{2}}}{2}}
\end{align*}
$$

where

That $a=-1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)-A\right\} \quad, b=-1 / 2\left\{2\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}\right)-\Delta_{53}-B\right\}$

$$
c=-1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)+A\right\} \quad d=-1 / 2\left\{2\left(\omega_{1}^{1}+\omega_{3}^{1}\right)-\Delta_{53}+B\right\}
$$

In terms of these values the spectral correlation function is

$$
\begin{aligned}
& \tilde{E}_{52}(\nu)=\alpha_{2}\left\{1_{2} \gamma_{2,}\left[4 \gamma_{5} \gamma_{32}+1 / 4 G^{2}-\left(v-\omega^{\prime}-\omega_{5}^{\prime}\right)\left(v-w_{1}^{\prime}-\omega_{3}^{\prime}+\Delta_{53}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\gamma_{32} \nu^{i}\right] \\
& \left\{y^{\prime}+\left(y^{\prime}-\left(w_{1}+w^{2}+b\right) ; v^{2}+\left(v^{\prime}+\left(w_{1}+\omega_{3}+d\right)\right)\right\}\right. \\
& \text { where } \nu^{\prime}=\nu-\left(\omega_{1}^{\prime}+\omega_{5}^{\prime}\right)
\end{aligned}
$$

Hence the spectral profile has two peeks at
of widths is and c;
Thus we can see whit for romance, $, \quad=0, b=0$ and so there is only one peak at $y^{\prime}=0$ of width $x_{5}\left(\gamma_{5}\right)$ and this corresponds to isuutian and Sobelman': case of $J_{L} m 0$ and $G=0$ although they obtain a splitting for larger G

We shall noxt consider $G^{2} \ll 11 / 2\left(\gamma_{5}-\gamma_{32}\right)+1 / \ldots$.
1.0. the 2011 mexturtation lieft, mentioned ouriler. In this case

$$
\begin{aligned}
& \left. \pm \frac{1}{x}\left\{1-\frac{1}{2}\left(x_{0}\right)+1 \Delta-5\right\}\right\}^{2}
\end{aligned}
$$

n. 1 • U Mer

$$
\begin{aligned}
& \left. \pm 1,21-\frac{1}{2}\left[\frac{c^{2}}{4\left(1_{5}-x_{32}\right)^{2}+\Delta_{53}^{2}}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -1 / 2 i\left[2\left(\omega^{2}+\omega_{3}^{\prime}\right)-\Delta_{53} \mp \frac{1,26^{2} \Delta_{53}}{\left(4-x_{32}\right)+\Delta_{53}^{2}}\right]
\end{aligned}
$$

$$
\begin{align*}
s_{1}=a+1 b= & -1 / 2\left\{1 / 2\left(\gamma_{5}+x_{32}\right)-1+\frac{1 / 2 c_{2} 1 / 2\left(x_{-}-x_{32}\right)}{1_{4}\left(\gamma_{5}-\gamma_{32}\right)^{\frac{1}{2}+\Delta_{53}^{2}}}\right\} \\
& -1 / 2 i\left\{2\left(\omega_{1}+\omega_{3}^{\prime}\right)-\Delta_{53}-\frac{1 / 2 C^{2} \Delta_{53}}{1 / 4\left(\gamma_{5}-x_{32}\right)^{2}+\Delta_{53}^{2}}\right\}
\end{align*}
$$

$$
\begin{aligned}
S_{2}=c+1 d= & -1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)-1-\frac{1 / 2 G^{21 / 2}\left(\gamma_{5}-\gamma_{32}\right)}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}+\Delta_{53}^{2}}\right\} \\
& -1 / 21\left\{2\left(\omega_{1}^{\prime}+J_{3}^{\prime}\right)-\Delta_{33}+\frac{1 / 2 G^{2} \Delta_{53}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}+\Delta_{53}^{2}}\right\}
\end{aligned}
$$

s.t. peaks occur at

$$
\begin{aligned}
& \nu_{1}^{\prime}=-\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}+b\right)=-1 / 2 \Delta_{53}\left(1+\frac{1 / 26^{2}}{1 / 4\left(x_{5}-x_{122}\right)^{2}+\Delta_{53}^{2}}\right) \\
& \nu_{2}^{\prime}=-\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}+d\right)=-1 / 2 \Delta_{53}\left(1-\frac{1 / 26^{2}}{1 / 4\left(x_{5}-x_{32}\right)^{2}+\Delta_{53}^{2}}\right)
\end{aligned}
$$

and have widtrs

$$
\begin{aligned}
& \Delta_{1}=1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)-1+\frac{1 / 26^{2} 1 / 2\left(\gamma_{5}-\gamma_{32}\right)}{14\left(\gamma_{5}-\gamma_{32}\right)+\Delta 55}\right\} \\
& \Delta_{2}=1 / 2\left\{12\left(\gamma_{5}+\gamma_{32}\right)-1-\frac{126^{1} / 2\left(\gamma_{5}-\gamma_{32}\right)}{1 / 4\left(\gamma_{5}-\gamma_{12}\right)^{2}+\Delta \Delta_{3} 3^{2}}\right\}
\end{aligned}
$$

Fig. E.B. 3
right hand peak narrower (opposite to general cere for field of arbitrary magnitude)
 to zeroth order in $\frac{\left.\mid 12\left(x_{5}-x_{32}\right)+i \Delta_{53}\right)^{2}}{\sqrt{3}^{2}}$ we have

$$
\begin{aligned}
s_{1,2} & \wedge-1 / 2\left\{1 / 2\left(\gamma_{5}+\gamma_{32}\right)+i\left(2\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}\right)-\Delta_{53}\right)\right\} \pm 1 / 2 i G \\
& =-1 / 4\left(\gamma_{5}+\gamma_{32}\right)-1 / 2 i\left\{2\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}\right)-\Delta_{53} \mp G\right\} \\
\therefore s_{1} & =a+1 b=-1 / 4\left(\gamma_{5}+\gamma_{32}\right)-1 / 2 i\left(2\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}\right)-\Delta_{53}-6\right) \\
s_{2} & \left.=c+1 d=-1 / 4\left(\gamma_{5}+\gamma_{32}\right)-1 / 21\left(2\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}\right)-\Delta_{53}+0\right)\right\}(6.0 .41)
\end{aligned}
$$

set. 2 yeuiks occur at

$$
\begin{align*}
& \nu_{1}^{\prime}=-\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}+b\right)=-1 / 2\left(\Delta_{53}+G\right) \\
& \nu_{2}^{\prime}=-\left(\omega_{1}^{\prime}+\omega_{3}^{\prime}+d\right)=-1 / 2\left(\Delta_{53}-G\right) \tag{0}
\end{align*}
$$

and both have the eave width $|a|=|c|=\frac{1}{\mid c}\left(\gamma_{5}+\gamma_{32}\right)$

When the crevice field variehee identically, 1.e. $6_{5}=0$ then
wa

$$
\begin{align*}
& s_{1}=a+b=-1 / 2 x_{32}-1\left(0+\omega-A_{5}\right) \tag{6.2,+3}\\
& S_{2}=-1 . d=-1 / 2 x_{5}-1\left(0 .+255_{5}\right)
\end{align*}
$$

Bot. 2 peaks occur at

$$
\begin{aligned}
& \nu_{1}^{\prime}=-\left(w_{1}^{\prime}+w_{3}^{\prime}+b\right)=-\Delta_{53} \\
& \nu_{3}^{\prime}=-\left(w_{1}^{\prime}+\nu_{3}^{\prime}+d\right)=0
\end{aligned}
$$

and have widths

$$
\begin{aligned}
& \Delta_{1}=|a|=1 / 2 x_{32} \\
& \Delta_{2}=|h|=1 / 2 \gamma_{5}
\end{aligned}
$$

1.e. their sporitheous decay width as expected

The heictats of the two comports, in each ease, are not identical but their relative values will depend on the relative magnitudes of the local constants, field strength and the nearness to renonance.

$3 P(5)$ and $25_{2}(3)$
Here we need to solve for $\hat{\rho}_{53}^{(s)}(\mathrm{s})$ and this we need to consider five equations as follows, where we have dropped the mperseript
incheating the derativ catricec to be remeed ones since in the Marioff arroci-ailon, which wo chall agein be veines this dietinction is not importints

$$
\begin{align*}
& \dot{p}_{35}=-\left\{y_{2}\left(x_{32}+x_{5}\right)-i \omega_{3}^{\prime}\right\} \rho_{35}-i \lambda \varepsilon_{00} \rho_{33} e^{1 \omega_{12} t}+i \dot{c_{01}} \rho_{35} e^{1 \omega_{2} t} \tag{6.2.45}\\
& \dot{\rho}_{35}=-\gamma_{32} \rho_{33}+\gamma_{43} \rho_{44}+\gamma_{32} \rho_{55}-i \lambda \varepsilon_{11} \rho_{35} e^{-1 \omega_{2} t}+\lambda \varepsilon_{1, \rho_{33}} e^{i \omega_{2} t} \tag{6,E,46}\\
& \dot{\rho}_{55}=-x_{50} \rho_{55}+i \lambda \varepsilon_{0.2} e^{-\omega \omega_{L} t} \rho_{35}-i \lambda \varepsilon_{02} e^{i \omega_{L} t} \rho_{53} \tag{6.8.47}\\
& \dot{\rho}_{53}=-\left\{1 / 2\left(\gamma_{52}+\gamma_{5}\right)+i \omega_{5}^{\prime}\right\} \rho_{53}-i \lambda \varepsilon_{02} e^{-i \omega_{2} t} \rho_{55}+i \lambda \varepsilon_{02} e^{-i \omega_{5} t} \rho_{33} \tag{6,E,48}\\
& \dot{\rho}_{4+4}=-x_{+1} \rho_{44} \tag{6.8.49}
\end{align*}
$$

ware $\gamma_{4}=\gamma_{41}+\gamma_{43}$
bultiplyting the inget equation by $e^{-1 . L_{1} t}$ and the fourth by $e^{\text {w. } t}$ and Ictitng

$$
\begin{align*}
& \rho_{85} e^{-\cdots t} \mathbf{x} \\
& \rho_{35}=\mathbf{y} \\
& \rho_{55}=\mathbf{z} \tag{6.8.50}\\
& \rho_{53} e^{i \omega_{1} t}=l \\
& \rho_{44}=\boldsymbol{x}
\end{align*}
$$

we obtain

$$
\begin{align*}
& \dot{x}=-\left\{i_{2}\left(\gamma_{22}+\gamma_{5}\right)-i\left(\omega_{5}^{\prime}-\omega_{L}\right)\right\} x-i \lambda \varepsilon_{o L} y+i \lambda \varepsilon_{o L} z \tag{6.3.51}\\
& \dot{y}=-\gamma_{32} y+\gamma_{43} m+\gamma_{53} z-i \lambda \varepsilon_{o L} x+i \lambda \varepsilon_{0 L} l \tag{6.B.52}\\
& \dot{z}=-\gamma_{5} z+i \lambda \varepsilon_{0 L} x-i \lambda \varepsilon_{o n} l \tag{6.8.53}\\
& \dot{l}=-\left\{1 / 2\left(\gamma_{32}+\gamma_{5}\right)+i\left(\omega_{5}^{\prime}-\omega_{L}\right)\right\} l-i \lambda \varepsilon_{o L} z+i \lambda \varepsilon_{0 L} y \tag{6.8.54}\\
& \dot{y}=-\gamma_{4} m \tag{6.E.55}
\end{align*}
$$

 abtain

$$
\begin{align*}
& \left.\left\{s_{1}+\eta_{2}\left(x+x_{0}\right)-1 \omega_{0}^{\prime}-\omega_{1}\right)\right\} \hat{x}(s)=-1 \lambda \varepsilon_{u} \hat{y}(s)+1 \lambda \varepsilon_{u} \hat{z}_{0}\left(s_{0}\right)+\gamma(0) \tag{6.2.56}\\
& \left(s_{2} x_{0,2} \hat{y}^{\lambda}(s)=\gamma_{+3} \hat{m}(s)+\gamma_{5 s} \hat{z}(s)-1 \lambda \varepsilon_{0-2} \hat{x}\left(c_{5}\right)\right. \\
& +i \lambda \varepsilon_{c_{2}} \hat{l}(s)+y(0) \\
& \left(s+X_{s} \hat{z}(s)=1 \lambda \varepsilon_{a} \hat{x}(s)-i \lambda \varepsilon_{a} \hat{l}(s)+\hat{z}(0)\right. \\
& \left.\left\{s+1 / 2\left(X_{; 2}+\gamma_{5}\right)+1 \omega_{j}^{\prime}-\omega_{2}\right)\right\} \hat{l}(s)=-1 \lambda \varepsilon_{c} \hat{z}(s)+1 \lambda \varepsilon_{c L} \hat{y}\left(s_{3}\right)+l(0) \tag{6.8.59}\\
& \left(s+\gamma_{11}\right) \hat{m}(c)=n(0) \tag{6.2.60}
\end{align*}
$$

Thee five equations can be colved for $\hat{l}(S)$ an followe ve first chtoin an expression for $\hat{m}(\mathrm{~s}$) fron ($6.0 .(0$), then one for $\hat{z}(\mathrm{~s}$) fron
 obtin $\hat{y}(s)$. Thering ($C=50$) wo outain $\hat{x}(s)$ in tama of $\hat{l}(s)$ mich we misititute in $(6.5 y)$ to find $\hat{l}(s)$ wich is eivar by the fallowise equations-

$$
\begin{aligned}
\hat{l}(s)=\hat{\rho}_{53}\left(s-1 \operatorname{Lid}_{2}\right. & \frac{\left(i \lambda \varepsilon_{0_{L}}\right) \gamma_{43}\left(s+\gamma_{5}\right)}{H(s)\left(s+\gamma_{4}\right)}\left\{G(s)-21 / 4 G^{2}\left(s+42\left(\gamma_{32}+\gamma_{5}\right)\right)\right\} \rho_{44}(0) \\
& \left.-\frac{\left(1 \lambda \varepsilon_{02}\right)\left(s+\gamma_{52}+\gamma_{53}\right)\{G(s)}{H(s)}-21 / 4 G^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{57}\right)\right)\right\} \rho_{55}(0) \\
& +\frac{\left(1 \lambda \varepsilon_{02}\right)\left(s+\gamma_{5}\right)}{H(s)}\left\{G(s)-21 / 4 G^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{57}\right)\right) \rho_{33}(0) \gamma_{0} B_{0} 62 a\right) \\
& +\frac{21 / 4 G^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)\right)\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right) \rho_{35}(0)}{H(s)} \\
& +\frac{\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right) G(s)}{H(s)} \rho_{53}(0)
\end{aligned}
$$

whera

$$
\begin{aligned}
I(s) & =f_{3}^{\prime}(s)\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right) G(s)+21 / 4 G^{2}\left(s+1 / 2\left(\gamma_{52}+\gamma_{51}\right)\right) G(s)-\left(21 / 40^{2}\right)^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right)^{2} \\
& =G(s)\left\{f_{3}^{\prime}(s)\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right)+21 / 4 G^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right)\right\}-\left(21 / 46^{\prime}\right)^{2}\left(s+1 / 2\left(\gamma_{52}+\gamma_{57}\right)\right)^{2} \\
G(s) & =f_{5}(s)\left(s+\gamma_{5}\right)\left(s+\gamma_{32}\right)+21 / 4 G^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right) \\
f_{3}(s) & =s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)-1 \Delta_{53} \\
f_{3}^{\prime}(s) & =s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)+1 \Delta_{53}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\rho}_{5 s}(s)_{\text {ate }} \frac{\left(i \lambda c_{c}\right) x_{4}\left(s+\gamma_{5}+i \omega_{2}\right)}{H\left(s+i \omega_{1}\right)\left(s+\gamma_{4}+i J_{2}\right)}\left\{\sigma_{2}\left(s+i \omega_{1}\right)-1 / 2 G^{2}\left(s+1 / 2\left(X_{32}+\gamma_{5}\right)+i \omega_{2}\right)\right\} \rho_{44}(0)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\left(\lambda \varepsilon_{c h}\right)\left(s_{5}+\gamma_{5}+1 \omega_{2}\right)}{H\left(s_{5}+1 \omega_{1}\right)}\left\{\left(.\left(5+7 \omega_{2}\right)-1 / 2 G^{2}\left(5+1 / 2\left(\gamma_{52}+\gamma_{51}\right)+i \omega^{2}\right)\right\} \rho_{33}(0)\right. \\
& +\frac{1 / 2 c^{2-}\left(s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)+\omega_{1}\right)\left(s+\gamma_{2,2}+w_{2}\right)\left(s+\gamma_{5}+i \omega_{2}\right)}{+H\left(s+w_{2}\right)} \rho_{35}(0) \quad\left(\sigma_{0} B_{0} 62\right) \\
& +\frac{\left(s+\gamma_{32}+i \omega_{2}\right)\left(s+\gamma_{5}+1 \omega_{2}\right)}{H\left(s+i \omega_{2}\right)} p_{55}(0) \\
& =\hat{u}_{53,44}(5) \rho_{44}(0)+\hat{u}_{53,55}(5) \rho_{55}(0)+\hat{u}_{53,35}(5) \rho_{33}(0) \\
& +\hat{U}_{53,35}(s) \rho_{35}(c)+\hat{u}_{53,53}(s) / 53(0)
\end{aligned}
$$

The relevat a-ino emplation Emetion, in this case, is

$$
\begin{aligned}
& \lambda_{53}^{\left(\tau, t^{\prime}\right)=}<{ }_{5} F_{35}^{+}\left(t^{\prime}\right) P_{35}\left(t^{\prime}+\tau\right)> \\
& \pm \sum_{y^{\prime \prime}=1}^{5} U_{53 ; y^{\prime \prime} 3}\left(\tau, t^{\prime}\right) \rho_{y^{\prime \prime}}\left(t^{\prime}\right) \quad \text { arder Marizoff } \\
& \text { 1.e. } g_{53}(\tau)=u_{53,33}(\tau) \rho_{55}(0)+U_{53,53}(\tau) \rho_{55}(c) \text { rov inition twe tim0 }
\end{aligned}
$$

Tabing the Inglece trensform

$$
\hat{g}_{53}(s)=\hat{U}_{53,53}(5) \rho_{35}(0)+\hat{U}_{53,53}(s) \rho_{55}(0)
$$

Ience, as berore, the moctral correlation furction is eiven by

$$
\left.\begin{array}{rl}
\hat{g}_{53}(\nu) & =\int_{-\infty}^{\lambda} d \tau e^{i \nu \tau} g_{53}(\tau) \\
& =2 R_{e}\left\{\hat{u}_{53,33}(\neg \nu) \rho_{35}(0)+\hat{U}_{53,53}(-1 \nu) \rho_{55}(0)\right\}
\end{array}\right\}\left(\sigma_{2} s_{0}\left(4_{4}\right)\right.
$$

and as the cton is Initially in Ievel 5

$$
\begin{equation*}
\rho_{55}(0)=1 ; \rho_{35}(0)=0 \tag{6.5.65}
\end{equation*}
$$

so

$$
\begin{aligned}
0 \tilde{g}_{35}(\nu) & =2 R_{c}\left\{\hat{u}_{53,53}(-i \nu)\right\} \\
& =2 R_{6}\left\{\begin{array}{c}
\left(\gamma_{32}-1\left(\nu-\omega_{1}\right)\right)\left(\gamma_{5}-1\left(\nu-\omega_{l}\right)\right) \\
\left.H 1-1\left(\nu-\omega_{2}\right)\right)
\end{array}\right\} \\
\therefore \tilde{g}_{53}(\nu) & =\frac{2}{\mid H\left(-\left.\left(\nu-\omega_{L}\right)\right|^{2}\right.} R\left\{H\left(-1\left(\nu-\omega_{2}\right)\right)^{*}\left(\gamma_{32}-\left(\nu-\omega_{L}\right)\right)\left(\gamma_{5}-1 \nu \omega_{L}\right)\right\}\left(6 . B_{0} 66\right)
\end{aligned}
$$

It first eight it would appear that the opectrus has six peaks since H is a (th order equation but we will consider $H(S)$ more carefully.

$$
\begin{aligned}
H(s)= & G(s)\left\{\left(s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)+i \Delta_{s 3}\right)\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right)+1 / 2 G^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right)\right\} \\
& -\left(1 / 2 G^{2}\right)^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right)^{2}
\end{aligned}
$$

and can be factorised so that,

$$
\left.\begin{array}{rl}
H(s)= & \left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right)\left\{\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right)\left[\left(s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)\right)^{2}+\Delta_{53}^{2}\right]\right. \\
& \left.+G^{2}\left(s+1 / 2\left(\gamma_{52}+\gamma_{5}\right)\right)\left(s+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right)\right\} \\
= & \left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right) J(s)
\end{array}\right\}(6.3 .67)
$$

$$
\left.\begin{array}{rl}
J\left(\neg\left(\nu-\omega_{k}\right)=\right. & \left\{\left[\gamma_{32} \gamma_{5}-\left(\nu-\omega_{2}\right)^{2}\right]\left[1 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}-\left(\nu-\omega_{2}\right)^{2}+\Delta_{53}^{2}\right]\right. \\
& -\left(\nu-\omega_{2}\right)^{2}\left(\gamma_{32}+\gamma_{5}\right)^{2}+\sigma^{2}\left[1 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}-\left(\nu-\omega^{2}\right]\right\} \quad\left(\sigma_{0} B_{0}(9)\right\} \\
& -i\left(\nu-\omega_{2}\right)\left(\gamma_{32}+\gamma_{5}\right)\left\{\gamma_{32} \gamma_{5}+1 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}-2\left(\nu-\omega_{2}\right)^{2}+\partial_{53}^{2}+\sigma^{2}\right\}
\end{array}\right\}
$$

$$
\begin{aligned}
\varepsilon_{53}\left(\nu^{\prime \prime}\right)=\frac{2}{\left|J\left(-1\left(\nu^{\prime \prime}+\Delta_{53}\right)\right)\right|^{2}}\left\{\begin{aligned}
&\{ {\left[\gamma_{32} \gamma_{5}-\left(\nu^{\prime \prime} 1 \Delta_{53}\right)\right]\left[1 / 4\left(\gamma_{52}+\gamma_{5}\right)^{2}-\left(\nu^{\prime \prime}+\Delta_{53}\right)^{2}+\Delta_{53}^{2}\right] } \\
&-\left(\nu^{\prime \prime}+\Delta_{53}\right)^{2}\left(\gamma_{32}+\gamma_{5}\right)^{2}+\sigma^{2}\left[1 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}\left(\sigma_{2}\right.\right. \\
&\left.\left.-\left(\nu^{\prime \prime} 1 \Delta_{53}\right)^{2}\right]\right\}
\end{aligned}\right\}
\end{aligned}
$$

where $\nu^{\prime \prime}=\nu-\omega_{3}^{\prime}=\nu-\left(\Delta_{53}+\omega_{L}\right)$
1.e. the spectral profile has four peans and to find this we must alssover the roots of the quartic equation $J(s)$.

$$
J(s)=\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right)\left\{\left(s+1 / 2\left(\gamma_{32}+\gamma_{s}\right)\right)^{2}+\Delta_{53}^{2}\right\}+\sigma^{2}\left(s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)\right)\left(s+1 /\left(\gamma_{32}+\frac{\gamma}{s}\right)\right)^{2}\left(6 . B_{0} 72\right)
$$

In the cave of roscharice, $\Delta_{i s}=0$, we can thus are that J / s) is cavan by

$$
\begin{align*}
J\left(\varepsilon_{5}\right) & =\left(s+1 / 2\left(\gamma_{32}+\gamma_{5}\right)\right) j\left(s_{5}+1_{2}\left(X_{32}+\gamma_{5}\right)\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right)+C^{2}\left(s_{5}+1 / 2\left(\gamma_{32}+\gamma_{51}\right)\right)\right\} \\
& =\left(s+1_{2}\left(\gamma_{32}+\gamma_{5}\right)\right) K(s) \tag{0.2.73}
\end{align*}
$$

1.e. we need only find the cube roots of $K(S)$

First vo shall consitior tho mor-menomene cess:-
$J(s)=s^{4}+a s^{2}+b s^{2}+c s+d$
where $a=2\left(x_{22}+\gamma_{5}\right)$

$$
\left.\begin{array}{l}
v=5 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}+\gamma_{32} \gamma_{5}+G^{2}+\Delta^{2} \\
\mathrm{c}=\left(\gamma_{32}+\gamma_{5}\right)\left\{1 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}+\Delta^{2}+\gamma_{32} \gamma_{5}\right\}+1_{2}\left(2 \gamma_{32}+\gamma_{5}+\gamma_{5}\right) C^{2} \tag{6.B.74}\\
d=\gamma_{32} \gamma_{5}\left\{1 / 4\left(\gamma_{32}+\gamma_{5}\right)^{2}+\Delta^{2}\right\}+G^{2} 1 / 4\left(\gamma_{32}+\gamma_{5}\right)\left(\gamma_{32}+\gamma_{57}\right)
\end{array}\right\}
$$

First wo must reduce $J(S)$ to standard form by substituting
$y=5+1 / 4 a$ then

$$
J(y)=y^{4}+p y^{2}+q y+r
$$

where $p=-3 / 8 a^{2}+b$

$$
\begin{align*}
& q=1 / 8 a^{3}-1 / 2 a b+c \\
& x=-3 / 46 a^{4}+1 / 16 a^{2} b-1 / 4 a c+d
\end{align*}
$$

Then, proceeding as in Chapter III we write

$$
\begin{align*}
& J(y)=\left(y^{2}+l y+m\right)\left(y^{2}-l y+n\right) \tag{6,2.76}\\
& p=n+m-l^{2} \\
& q=\ln -l m=l(n-m) \tag{0}\\
& x=m n
\end{align*}
$$

$$
\begin{align*}
& m+n=p+l \\
& n-n=-q / l \tag{6.8.78}
\end{align*}
$$

hence

$$
\begin{aligned}
& m=1 / 2(p+l-q / l) \\
& n=1 / 2\left(p+l^{2}+q / l\right) \\
& \pi n=r \\
& 4=\left(p+l^{2}\right)-q^{2} / l^{2} \\
& (l)+2 p(l)^{2}+\left(p^{2}-4 r\right)(l)-q^{2}=0
\end{aligned}
$$

and this can bo colved for l^{2} and using tine positive value, a rad value of l can te ford and hence a and n with will salvo be real. the four root of $J(y)$ ere then

$$
\begin{array}{ll}
y_{2,2}=\frac{-l \pm \sqrt{l^{2}-4 m}}{2} & y_{3,4}=\frac{\ell \pm \sqrt{l^{2}-1+n}}{2} \tag{6.8.82}\\
(\text { real } \operatorname{sor} \ell \geqslant m) & \text { (real for } \left.l^{2} \geqslant 4 n\right)
\end{array}
$$

and thurs the four roots of $J(B)$ are

$$
\begin{align*}
s_{1,2} & =y_{1,2}-1 / 4 a & s_{3,4} & =y_{3,4}-1 / 4 a \\
& =\left\{\frac{-l \pm \sqrt{l^{2}-1 / m}-1 / 2 a}{2}\right\} & & =\left\{\frac{l \pm \sqrt{l:-1+n}-1 / 2 a}{2}\right\}
\end{align*}
$$

Let $J(s)=\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{5}\right)\left(s-s_{4}\right)$

$$
\left.\therefore J\left(\cdot\left(\nu-\omega_{2}\right)\right)=\left(s_{1}+i v-\omega_{2}\right)\right)\left(s_{2}+i\left(\nu-\omega_{2}\right)\right)\left(s_{3}+i\left(\nu-\omega_{2}\right)\right)\left(s_{4}+i\left(\nu-\omega_{2}\right)\right)
$$

and assuming the four roots are complex
 so that the far croaks are at

$$
\nu^{\prime \prime}=-\left(\Delta_{53}+z_{I_{1}}\right),-\left(\Delta_{53}+Z_{I_{2}}\right),-\left(\Delta_{53}+Z_{I_{3}}\right),-\left(\Delta_{53}+Z_{I_{4}}\right)
$$

of nvidia

$$
\left|z_{R_{1}}\right|,\left|z_{R_{2}}\right|,\left|z_{R_{3}}\right|,\left|z_{R_{4}}\right|
$$

lie shall not procood ony further with this nolution but

 concentrate on tin resougeo ense wh$$
\begin{equation*}
J(s)=\left(s+\left(\gamma_{32}+\gamma_{5}\right)\right) K(s) \tag{6.8.86}
\end{equation*}
$$

whicre $k(s)=s^{3}+a s^{2}+b s+c=\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{s}\right)$
and

$$
\begin{aligned}
& a=3 / 2\left(\gamma_{52}+\gamma_{5}\right) \\
& b=y_{2}\left(\gamma_{32}+\gamma_{5}\right)^{2}+\gamma_{2} \gamma_{5}+G^{2} \\
& c=\gamma_{2}\left(\gamma_{32}+\gamma_{5}\right) \gamma_{32} \gamma_{5}+1 / 2\left(\gamma_{32}+\gamma_{51}\right) G^{2}
\end{aligned}
$$

If we let $y=5+1 / 3 a$, then

$$
\begin{aligned}
J(y) & =y^{3}+3 H y+G \\
& =1 / 3\left(-1 / 3 a^{2}+b\right) \\
a & =2 / 27 a^{5}-1 / 3 a b+c
\end{aligned}
$$

Firally, a rroceeding as in Aprendix III, we obtain the three roots

$$
\begin{align*}
& s_{1}=u+i v=(\alpha+\beta)-1 / 3 a \\
& s_{2}=w+i x=-\{[1 / 2(\alpha+\beta)+1 / 3 a]-13 / 2(\alpha-\beta)\} \\
& s_{3}=y+i z=-\left\{[1 / 2(\alpha+\beta)+1 / 3 a]+i N^{2} / 2(\alpha-\beta)\right\} \tag{6,E,89}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha=\left\{\frac{-G+\sqrt{G^{2}+1+H^{3}}}{2}\right\}^{1 / 3} \\
& \beta=\left\{\frac{-G-\sqrt{G^{2}+4 H^{3}}}{2}\right\}^{1 / 3}
\end{aligned}
$$

$G^{2}+4 i^{3}=\left(1 / 2 G_{5}^{2}\right)^{2} \gamma_{55}^{2}+4 / 27\left\{G_{5}^{2}-1 / 4\left(\gamma_{32}-\gamma_{5}\right)^{2}\right\}^{3}=\left(1 / 20 G_{5}^{2}\right)^{2} \gamma_{53}^{2}+4 / 27\left\{G_{5}^{2}-1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}\right\}^{3}\left(G_{0} Q_{0} 90\right)$

$$
\begin{equation*}
\mathbf{G}=-1 / 2 G_{5}^{2} \gamma_{53} \tag{6.8.91}
\end{equation*}
$$

If $G^{2} \ll 1 / 4\left(\gamma_{5}-X_{S_{2}}\right)^{2}$, 1.e. the sman rexturition Ufint, then wo can erpaind
$\left.a^{2}+4 x^{3}=\left(6_{5}^{2}\right)^{2} 14 \gamma_{53}^{2}+4 / 27\left\{-1 / 4\left(\gamma_{5}-\gamma_{52}\right)^{2}\left[1-\frac{G^{2}}{1 / 4+\gamma_{5}-\gamma_{32}}\right)^{5}\right]\right\}^{3}$
valag the Einowal theorer:-

$$
\begin{aligned}
& G^{2}+4 H^{3}=\left(G_{5}\right)^{2} 1 / 4 \gamma_{53}^{2}-1 / 271 / 6\left(\gamma_{5}-\gamma_{32}\right)^{6}\left\{1-3 \frac{G_{5}^{2}}{44\left(\gamma_{5}-\gamma_{32}\right)}\right\} \\
& \text { to lat oiden in } \frac{\sigma_{5}}{h_{+}\left(x_{5}-y_{32}\right)^{2}} \\
& \underline{-}-\frac{\left(\gamma_{-}-\gamma_{22}\right)^{6}}{16.27}\left\{1-3 \frac{\epsilon_{5}^{2}}{\lambda_{14}\left(x_{2}-\gamma_{2}\right)}\right\} . \Rightarrow \text { if } \frac{\gamma_{53}^{2}}{\left(\gamma_{5}-\gamma_{32}\right)^{2}} \\
& 13 \text { mall mouch not to } \\
& \text { mite the 3rd tera large } \\
& \left(G^{2}+4 H^{3}\right)^{1 / 2} \simeq \frac{1}{12 \sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right)^{3}\left\{1-\frac{3}{2} \frac{c_{35}^{2}}{4\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right\} \\
& \therefore \alpha=\left\{\frac{42 G_{5}^{2} \gamma_{53}+1 / 12 \sqrt{3}\left(\gamma_{5}-\gamma_{32}\right)^{3}\left[1-3 / 2 \frac{G_{5}^{2}}{4} 4\left(\gamma_{5}-\gamma_{5,2}\right)^{2}\right.}{2}\right]^{1 / 3} \\
& \beta=\left\{\frac{\left.12 G_{5}^{2} \gamma_{53}-1 / 1213\left(\gamma_{5}-\gamma_{52}\right)^{3}\left[1-3 / 2 \frac{C_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{52}\right.}\right)^{2}\right]}{2}\right] \\
& \therefore \alpha^{2}=\left\{\frac{\left.1 / 12 \sqrt{3} \cdot 0_{5}-0_{32}\right)^{3}\left\{1-\frac{3}{2} \frac{G_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{52}\right)^{2}}+\frac{6 \sqrt{3}}{i\left(\gamma_{5}-\gamma_{32}\right)^{3}} G_{5}^{2} \gamma_{53}\right.}{2}\right\}^{1 / 3} \\
& \alpha={ }_{2 \sqrt{3}}^{1}\left(\gamma_{5}-\gamma_{32}\right)(i)^{1 / 3}\left\{1-\frac{c_{5}^{2}}{4\left(\gamma_{5}^{-} \gamma_{32}\right)^{2}}{ }_{2}^{3}\left(1+\sqrt{3} i\left(\frac{\gamma_{53}}{\gamma_{5}-\gamma_{32}}\right)\right)\right]^{1 / 3}
\end{aligned}
$$

Ascurine $\left\{1+\sqrt{3} i\left(\frac{\gamma_{53}}{\gamma_{5}-\gamma_{52}}\right)\right\}^{2}$ mail enowch rot to nade $\left\{\frac{G_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{52}\right)^{2}}\right\}^{2}$

$$
\begin{aligned}
& \alpha \pm \frac{1}{2 \sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right)(i)^{1 / 5}\left\{1-\frac{c_{5}^{2}}{1 / 14\left(\gamma_{5}-\gamma_{32}\right)^{2}} \frac{1}{2}\left(1+\sqrt{3 i} \frac{\gamma_{53}}{\gamma_{5}-\gamma_{32}}\right)\right\} \\
& \beta \propto-\frac{1}{2 \sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right)(i)^{1 / 3}\left\{1-\frac{C_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}} 1\left(1-\sqrt{3} i \frac{\gamma_{53}}{\gamma_{5}-\gamma_{32}}\right)\right\}
\end{aligned}
$$

tating $\quad(-i)^{1 / 3 m}-1$

Low $(1)^{1 / 3}$ an bo evaluated by do Notye' a thearem

$$
\begin{aligned}
& \text { (i) } \begin{array}{l}
1 / 3 \\
=(\cos \pi / 2+i \sin \pi / 2)^{1 / 3} \\
=\cos (\pi / 6+1 / 5 r \pi)+i \sin (\pi / 6+2 / 5 r \pi) \quad \text { whexe } 2=0,2,2 \\
\begin{array}{ll}
(i)^{1 / 3}=1 / 2 \sqrt{3}+1 / 2 i & f c r ~ r
\end{array} \\
\begin{array}{ll}
i)^{1 / 3}=-1 / 2 \sqrt{3}+1 / 2 & \text { fer } r=1 \\
\text { (i) } & =-i
\end{array} \quad \text { fer }=2
\end{array}
\end{aligned}
$$

Conacerine tho olmplest walue $(i)^{1 / 5}=-i$

$$
\begin{aligned}
& \alpha=\frac{-i}{\partial \sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right)\left\{1-\frac{G_{5}^{2}}{\sqrt{4}\left(\gamma_{5}-\gamma_{32}\right)^{2}}\left(1+\sqrt{3 i} \frac{\gamma_{52}}{\gamma_{5}-\gamma_{32}}\right)\right] \\
& \text { (6.2.34) } \\
& \beta=\frac{i}{2 \sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right)\left\{1-\frac{6^{2}}{4\left(\gamma_{5}-\gamma_{32}\right)^{2}}\left(1-\sqrt{31} \frac{\gamma_{53}}{\gamma_{5}-\gamma_{32}}\right)\right\} \\
& \text { (} \mathrm{C}, \mathrm{~B}, 95 \text {) } \\
& \alpha+\beta=-\frac{6}{2}\left\{\gamma_{5}-i \frac{1}{\sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right)\right\} \\
& (6,5.56)
\end{aligned}
$$

$$
\begin{align*}
& S_{2}=w+i x=-\left\{1-\frac{1}{4}\left(\frac{G_{5}^{2}}{14\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right)\right\} \gamma_{32}-i\left\{\frac{1}{4 \sqrt{3}}\left(\frac{6_{5}^{2}}{1 /\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right)\left(\gamma_{5}-\gamma_{32}\right)\right\} \quad(6, \infty, \infty) \\
& \left.S_{3}=y+12=-\left\{\gamma_{5}-\frac{1}{4}\left(\frac{C_{5}^{2}}{44-\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right)\left(2 \gamma_{5}-\gamma_{52}\right)\right\}-i\left\{\frac{1}{4 \sqrt{3}}\left(\frac{G_{5}^{2}}{14\left(\gamma_{5}-\gamma_{32}\right.}\right)\right)\left(\gamma_{5} \gamma_{32}\right)\right\}\left(6 . X_{0} 100\right) \\
& \text { 1.e. } X=2 \tag{6.8.101}\\
& J(s)=\left(s+\left(\gamma_{32}+\gamma_{s}\right)\right)(s+(u+i v))(s+(w+i x))(s+(y+i z)) \tag{6.8.102}
\end{align*}
$$

$$
\begin{align*}
J\left(-i\left(\nu^{\prime \prime}+\Delta_{53}\right)\right)= & \left(\left(\gamma_{32}+\gamma_{5}\right)-i\left(\nu^{\prime \prime}+\Delta_{53}\right)\right)\left(u+i\left(\nu^{\prime \prime}+\Delta_{53}+v\right)\right) \tag{6.B.103}\\
& x\left(w+i\left(\nu^{\prime \prime}+\Delta_{53}+x\right)\right)\left(y+i\left(\nu^{\prime \prime}+\Delta_{53}+x\right)\right)
\end{align*}
$$

and hence 2 peaks are coincident at $\nu^{\prime \prime}=-\left(\Delta_{53}+x\right)=-x$
at resonance and the other 2 occur at $\nu^{\prime \prime}=-\Delta_{53}=O$ and $\nu^{\prime \prime}=-\left(\Delta_{53}+V\right)=-V$
I. I. 2 peaks are at

$$
\begin{equation*}
\nu_{1}^{\prime \prime}=\frac{1}{4 \sqrt{3}} \frac{O_{5}^{2}}{14\left(Y_{5}-\gamma_{32}\right)^{2}}\left(Y_{5}-Y_{32}\right) \tag{.}
\end{equation*}
$$

and the 2 others are at

$$
\begin{align*}
& \nu_{2}^{\prime \prime}=0 \\
& \nu_{3}^{\prime \prime}=\frac{-1}{2 \sqrt{3}}\left(\gamma_{5}-\gamma_{32}\right) \frac{G_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}} \tag{6.B.105}
\end{align*}
$$

The 2 coincident peaks have widths $|W|$ and $|y|$
1.e. $\gamma_{52}\left(1-\frac{1}{4} \frac{G_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right)$ and $\left(\gamma_{5}-\frac{1}{4} \frac{C_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}}\left(2 \gamma_{5}-\gamma_{52}\right)\right.$ (6.B.106)
and so the total width is

$$
\begin{equation*}
\Delta_{1}=\left(\gamma_{32}+\gamma_{5}\right)-\left(\frac{G_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right) \frac{\gamma_{5}}{2} \tag{6.B.107}
\end{equation*}
$$

The other 2 peaks have widths

$$
\begin{equation*}
\Delta_{2}=\gamma_{52}+\gamma_{5} \text { and } \Delta_{3}=|u|=\frac{1}{2}\left\{\left(\gamma_{32}+\gamma_{5}\right)+\gamma_{5}\left(\frac{C_{5}^{2}}{\frac{\pi}{4}\left(\gamma_{5}-\gamma_{32}\right)^{2}}\right)\right\} \tag{6,B.108}
\end{equation*}
$$

Resonance
Small perturbation limit ie. weak field

$\Delta_{1}=\Delta_{2}-1 / 2 \gamma_{5} C$
$\Delta_{2}=\left(\gamma_{32}+\gamma_{5}\right)$
$\Delta_{3}=1 / 2\left(\Delta_{2}+\gamma_{5} C\right)$
where $C=\frac{G_{5}^{2}}{1 / 4\left(\gamma_{5}-\gamma_{32}\right)^{2}}$
and $A=\frac{1}{1+\sqrt{3}}\left(\gamma_{5}=\gamma_{52}\right) \frac{G_{5}^{2}}{44\left(\gamma_{5}=\gamma_{32}\right)^{2}}$

Fig. 6.B. 6
 further from the centrol peal axd narrower in width than the rightmand one. The centrul poxik is the fidest.
han $G_{5}=0$ (apontancous emimelon) all peaka coincide at $\nu^{\prime \prime}=0$ and

$$
\begin{aligned}
& S_{1}=-1 / 2\left(\gamma_{s 2}+\gamma_{5}\right) \\
& S_{2}=-\gamma_{32} \\
& s_{5}=-\gamma_{5} \\
& \therefore J(s)=\left(s+\left(\gamma_{32}+\gamma_{5}\right)\right)\left(s+1 / 2\left(\gamma_{32}+\gamma_{s}\right)\right)\left(s+\gamma_{32}\right)\left(s+\gamma_{5}\right) \\
& J\left(-i \nu^{\prime \prime}\right)=\left(\left(\gamma_{52}+\gamma_{5}\right)-1 \nu^{\prime \prime}\right)\left(X_{2}\left(Y_{52}+\gamma_{5}\right)-i \nu^{\prime \prime}\right)\left(\gamma_{52}-1 \nu^{\prime \prime}\right)\left(Y_{5}-1 \nu^{\prime \prime}\right) \\
& \left.\tilde{\varepsilon}_{53}\left(\nu^{\prime \prime}\right)=\frac{2\left\{\left(\gamma_{32} \gamma_{5}-\nu^{\prime \prime 2}\right)\left(1 / 4\left(\gamma_{32} \gamma_{5}\right)^{2}-\nu^{112}\right)-\nu^{112}\left(\gamma_{32}+\gamma_{5}\right)^{2}\right\}}{\left\{\left(\gamma_{32}+\gamma_{5}\right)^{2}+\nu^{112}\right\}\left\{\left\{_{4}^{1 / 4}\left(\gamma_{32}+\gamma_{5}\right)^{2}+\nu^{112}\right\}\left\{\gamma_{32}^{2}+\nu^{\prime 2}\right\}\left\{\gamma_{5}^{2}+\nu^{12}\right\}\right.}\right\}
\end{aligned}
$$

The wiath of the central peak is now

$$
\begin{aligned}
& \left(\gamma_{32}+\gamma_{5}\right)+1 / 2\left(\gamma_{32}+\gamma_{5}\right)+\left(\gamma_{32}+\gamma_{5}\right) \\
= & 5 / 2\left(\gamma_{52}+\gamma_{5}\right)=5 / 2 \Delta_{2}
\end{aligned}
$$

Accorinc to Zemik this enission is neglieible. In fact

$$
\begin{equation*}
\tilde{g}_{33}(0)=\frac{2}{\gamma_{32} \gamma_{5}\left(\gamma_{32}+\gamma_{5}\right)^{2}} \tag{6.0.111}
\end{equation*}
$$

which is in reallty very maill, an was to be expected.
 zerooth onder in $1 / 4\left(Y_{5}-\gamma_{82}\right)^{2} /$ Fis $_{5}^{2}$ we heve

$$
\begin{aligned}
& G^{2}+4 H^{3} \geq\left(G_{5}^{2}\right)^{2} / 4 \gamma_{53}+4 / 27\left(G_{5}^{2}\right)^{3} \\
& =4 / 27\left(G_{5}^{2}\right)^{3}\left\{1+7 / 16 \gamma_{53}^{2} / C_{5}^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\left\{\frac{1 / 2 \gamma_{53} C_{5}^{2}+2 / 3 \sqrt{3} C_{5}^{3}\left(1+27 / 32 \gamma_{5}^{2} / C_{5}^{2}\right)}{2}\right\}^{1 / 3}=\left\{\frac{2 / 33 C_{5}^{3}\left(1+5 \sqrt{3} \gamma_{53} / 6_{5}+27 / 32 x_{5}^{2} / \sigma_{3}^{2}\right)}{2}\right\}_{\left(C_{0} 3.113\right)}^{1 / 3}{ }^{2}
\end{aligned}
$$

where we have taiken $(-1)^{1 / 3}=-1 \quad$ 1.e. the cuibe root of (-1) to be reol. Accordinc to $2 e m i n$ for vory intense fielas mpoitaneous decsy from IF to 25 midy be nemleoted wowing that γ_{53} is very enall in comperiaon with G_{5} wo that we ahall consider $\left(\gamma_{53} / G_{5}\right)$ to lst oxier andye

$$
\begin{align*}
& \left.\therefore \alpha \pm\left\{1 / 5 \sqrt{3} C_{5}^{5}\left(1+3 \sqrt{3} / 4 \gamma_{53} / C_{5}\right)\right\}^{1 / 3}=1 / \sqrt{3} C_{5}\left\{1+\sqrt{3} / 4 \gamma_{53} / C_{5}\right\}\right\}\left(G_{03} .114\right) \\
& \left.\beta \simeq-\left\{1 / 3 \sqrt{3} G_{5}^{3}\left(1-3 \sqrt{3} / 4 \quad \gamma_{53} / G_{5}\right)\right]^{1 / 3} 1-1 / \sqrt{3} C_{5}\left\{1-\sqrt{3} / 4 \gamma_{53} / 6_{5}\right\}\right\} \\
& \alpha+\beta=2 \gamma_{53} \tag{6.E.115}\\
& \alpha-\beta=2 / \sqrt{3} C_{5}
\end{align*}
$$

[If we were to have lept $\left(\gamma_{53} / G_{5}\right)$ to and orier, then

$$
\begin{aligned}
& \alpha \simeq 1 / 43 C_{5}\left\{1+\sqrt{3} / 4 \gamma_{53} / G_{5}+3 / 32 \gamma_{53}^{2} / G_{5}^{2}\right\} \\
& \beta \simeq-1 / 43 C_{5}\left\{1-\sqrt{3} / 4 \gamma_{53} / G_{5}+3 / 32 \gamma_{53}^{2} / G_{5}^{2}\right\}
\end{aligned}
$$

$$
\begin{align*}
& \alpha+\beta=1 / 2 \gamma_{53} \\
& \alpha-\beta=2 / 43 C_{5}\left\{1+3 / 32 \quad \gamma_{53}^{2} / 6_{5}^{2}\right\} \\
& S_{1}=u+i v=1 / 2 \gamma_{53}-1 / 2\left(\gamma_{52}-\gamma_{5}\right)=-1 / 2\left(\gamma_{22}+\gamma_{51}\right) \\
& S_{2}=W+1 x=-\left\{\left[1 / 4 \gamma_{53}+1 / 2\left(\gamma_{52}+\gamma_{5}\right)\right]-i C_{5}\right\}=-\left\{1 / 4\left(\gamma_{53}+2\left(\gamma_{32}+\gamma_{5}\right)\right)-i C_{5}\right\} \\
& S_{5}=y+i z=-\left\{\left[1 / 4 \gamma_{53}+1 / 2\left(\gamma_{52}+\gamma_{5}\right)\right]+i C_{5}\right\}=-\left\{1 / 4\left(\gamma_{53}+2\left(\gamma_{32}+\gamma_{5}\right)\right)+i C_{5}\right\} \\
& u=-1 / 2\left(\gamma_{0_{2}}+\gamma_{51}\right) \\
& w=y=-11_{4}\left(X_{53}+2\left(Y_{32}+Y_{5}\right)\right) \\
& x:-z=G_{0} \\
& \text { Now } J\left(\Rightarrow=\left(5+\left(\gamma_{32}+\gamma_{5}\right)\right) K(s)\right. \\
& =\left(s+\left(\gamma_{3}+x_{5}\right)\right)\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right) \\
& \left.\left.\left.J\left(-1 \nu-\omega_{L}\right)\right)=-\left\{\left(\gamma_{s 2}+\gamma_{s}\right)-i\left(v-\omega_{L}\right)\right\}\left\{s_{1}+i\left(v-v_{1}\right)\right\}_{i} s_{2}+i\left(v-\omega_{L}\right)\right\}\left\{s_{3}+1 v \omega_{L}\right)\right\} \\
& =-\left\{\left(\gamma_{32}+\gamma_{5}\right)-i\left(\nu-\omega_{6}\right)\right\}\left\{-y_{2}\left(\gamma_{32}+\gamma_{51}\right)+1\left(\nu-\omega_{n}\right)\right\} \\
& x_{1}-1_{4}\left(\gamma_{33}+2\left(\gamma_{32}+\gamma_{5}\right)+i\left(\nu-\omega_{2}+G_{5}\right)\right\}\left\{-1 / 4\left(\gamma_{53}+2\left(\gamma_{32}+\gamma_{5}\right)+1\left(\nu-\omega_{2}-G_{5}\right)\right\}\right. \\
& J\left(-i\left(\nu^{\prime \prime}+\Delta_{33}\right)\right)=-\left\{\left(\gamma_{52}+\gamma_{5}\right)-1\left(\nu^{\prime \prime}+\Delta_{53}\right)\right\}\left\{-1 / 2\left(\gamma_{32}+\gamma_{51}\right)+i\left(\nu^{\prime \prime}+\Delta_{53}\right)\right\} \\
& x\left\{-1 / 4\left(\gamma_{53}+2\left(\gamma_{52}+\gamma_{5}\right)\right)+i\left(\nu^{\prime \prime}+\Delta_{53}+C_{5}\right)\right\} \tag{6.B.120}\\
& x\left\{-1 / 4\left(Y_{53}+2\left(\gamma_{22}+X_{5}\right)\right)+1\left(\nu^{\prime \prime}+\Delta_{53}-C_{5}\right)\right\}
\end{align*}
$$

Thas the 2 of the poaks are coincioent at $\nu^{\prime \prime}=-\Delta_{53} \quad$ of widtha $\left(\gamma_{32}+\gamma_{5}\right)$ and $y_{2}\left(\gamma_{32}+\gamma_{51}\right)$ and the rexoining are at

$$
\begin{aligned}
& \nu^{\prime \prime}=-\left(\Delta_{53}-C_{5}\right), \nu^{\prime \prime}=-\left(\Delta_{53}+G_{5}\right) \text { each of with } \\
& \Delta=1\left(x_{5}+2\left(x_{2}+x_{5}\right) \quad \text { where of course } \Delta_{53}=0\right. \text { as wo are }
\end{aligned}
$$

considering resonance

$$
\left|J\left(-, v^{\prime}\right)\right|^{2}
$$

N.E. Reutien and Sobelwan also obtain three pears in the case $\mathrm{c}^{2}>\frac{\left(\gamma_{-}-\gamma_{-}\right)^{2}}{4}$ but in their case all peaks have equal width. They are, however, equally spaced about the central peak as ours are also. They say that for discurnable splitting, comparatively strong saturation is required, ie. $G^{2} \gg \gamma_{5} \gamma_{5}$.

Ce Itsonation

The triplet nature of the $5 \rightarrow 3$, ie. $3 P$ to $2 S$, decay for resonance and for estrone, or even not so strong: fields is owing to the fisid splitting of level 5 (3P) explained in the previous chapter. The
deraration of the sice peaks is emall for weak fields so that the offect is not noticenile and probably only the contral peak is seen. In fact, tils tronaition is only important for etrong fields and the epontencous decay has boen shown to be reclicible. For non-resonsnce we have seen that a fth peak is discernable though it may be posaible that in tho linit of a strong field this may reduce to 3 poaks.

In the case of the $5 \rightarrow 1$, 1.e. $33 \rightarrow 13$ decay, when resonance corditiona apply a sirele line is seen and the splitting is only noticeable for the normresonance case. In the latter case 2 peak are alway sean, regerless of the fleld etragth, and these are always symetric about $\nu^{\prime}=-1 / 2 \Delta_{S 3}$. Eoth peaks ero gencrally shifted tovards low frequency except in the cace of apontencous decsy when no field is applied when, naturally, the peas of width $1 / 2 \gamma_{5}$, corregponife to the resorant transition $5 \longrightarrow 1$, occurs at $\nu^{\prime}=0$. The eplitilig is field corcident and is largest for strong fields. the absence of a Ird peak is owint to the fact that we consider the non-resonance situation and the 2 peaka owe their origin to the ficla aplitting of level 5 (3R).

Tho apectral profiles calculated in this chapter repreacnt emission onily since in both cases the atom was ascumed to be in state $\mid 5>$ at time $t^{\prime}=0$ (the initial time). Hence only eincle transitions can be considered and in this method one cannot asoume the atom to be initially in level 3 without obtaining eero epectral profiles.

We have, in fact, not assumed any conditions with reapect to the magnitucies of the relative decay rates, only their magnitudes with respect to the size of the field so that we have renoved the restrictions of Zemik's Faper that $Y_{53}=0$ and Rautian and Sobeluan's payer, that $\gamma_{32} \gg \gamma_{53}$. thouch in the case of large ficida in Soction (b) ve assumed $\left(\gamma_{53} / G_{5}\right)^{2}$ neglitible and for weak fields $\left(\gamma_{53} /\left(\gamma_{5}-\gamma_{32}\right)^{2}\right.$ to be swall.

De dramnom

If $t^{\prime}=0$ equations $(6.8 .26)$ and $(6.2 .27)$ become

$$
\begin{align*}
& \mathbf{f}_{1}(s) \hat{x}(s)=i \lambda \varepsilon_{0-} \hat{y}(s)+x\left(t^{\prime}\right) e^{-s t^{\prime}} \\
& \mathbf{f}_{2}\left(\varepsilon_{0}\right) \hat{y}(s)=i \lambda \varepsilon_{0 n} \hat{x}(s)+y\left(t^{\prime}\right) e^{-s / 1} \tag{C.D.1}
\end{align*}
$$

where $\hat{\mathbf{x}}(s)=\hat{\rho}_{s 1}\left(r, i u_{1}\right)$

$$
\hat{\mathbf{y}}(s)=\hat{\rho}_{3_{1}}(s)
$$

Hence

$$
\begin{equation*}
\hat{x}(s)=\frac{\mid \lambda \varepsilon_{0}}{F(s)} e^{-s t^{\prime}} y\left(t^{\prime}\right)+\frac{f_{2}(s)}{F(s)} x\left(t^{\prime}\right) e^{-s t^{\prime}} \tag{0}
\end{equation*}
$$

10. $\quad \hat{\rho}_{37}\left(s-i \omega_{0}\right)=\frac{1 \lambda \varepsilon_{02}}{F(s)}+\rho_{s i}^{-s t^{\prime}}(t)+\frac{f_{2}(s)}{F(s)} \hat{a}^{-\left(s-i \omega_{2}\right) t^{\prime}} \rho_{57}\left(t t^{\prime}\right)$

Hance

$$
\begin{aligned}
\tilde{g}_{51}(\nu) & =2 R_{6}\left\{\ddot{\psi}_{57,57}(-\nu), \overline{5}_{55}+\hat{\psi}_{51,31}\left(-i, \prime, \bar{\rho}_{55}\right\}\right. \\
& =2 \bar{\rho}_{55} R_{e} \hat{\psi}_{57,57}(-i v)+2 R_{l}\left(\begin{array}{c}
1 \\
4,31
\end{array}(7 \nu) \bar{\rho}_{35}\right)
\end{aligned}
$$

where $\bar{\rho}_{55}=\left(/_{55}\right)_{t=t}$
and is real

$$
\begin{align*}
& \bar{\beta}_{35}=\left(\rho_{55}\right)_{t=11} e^{-i N_{2} t} \quad \text { and is complex } \\
& \hat{\psi}_{5},(\eta)=\frac{\left.\left.f(l)(1)-w_{1}\right)\right)}{F\left(-1\left(v-v_{1}\right)\right)} \\
& \hat{\psi}_{S_{1}, 1}(-\lambda)=\frac{1 \lambda \varepsilon_{o_{L}}}{F\left(-I\left(v-\omega_{L}\right)\right)}
\end{align*}
$$

In order to find $\hat{g}_{7 \rightarrow}(\nu)$ explicitly therefore values of $\overline{\beta_{5}}$ and $\bar{\rho}_{35}$ mast be found and these are also required for the calculation of $\tilde{g}_{53}(\nu)$ since

$$
\begin{aligned}
& \tilde{E}_{53}()=\operatorname{Re}_{6}\left\{\hat{\psi}_{5=55}(-1 \nu) \bar{\rho}_{=5}+\hat{\psi}_{55,55}(\neg \nu) \bar{\rho}_{55}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} 6.0 .4 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \hat{\psi}_{5,5,3}(-\nu)=\frac{\left.\left(\gamma_{32}-i\left(\nu-\omega_{L}\right)\right)\left(\gamma_{5}-1 \nu-\omega_{L}\right)\right)}{1 i \cdot\left(\nu-\omega_{1}\right)}
\end{aligned}
$$

Frow equation ($6 . \mathrm{B} .50$)
where $f_{5}(s)=s_{-1 / 2}\left(\gamma_{22}+\gamma_{5}\right)-i A_{5}$

$$
\begin{aligned}
& \therefore \hat{\beta}_{3,5}\left(s+i l_{2}\right)=-\frac{i \lambda \varepsilon_{0}}{f_{3}^{\prime}(s)} \hat{\rho}_{55}(s)+\frac{i \lambda \varepsilon_{2 c}}{f_{3}(s)} \hat{\rho}_{55}(s)+\frac{1}{f_{3}(s)} e^{-s t^{\prime}} \rho_{35}\left(t^{\prime}\right) e^{-i t^{\prime} t^{\prime}}\left(\sigma_{0} D_{4} 6\right)
\end{aligned}
$$

Hence

$$
\tilde{g}_{57}(\nu)=2 \bar{\rho}_{55} \operatorname{Re} \hat{\psi}_{51,51}(-i \nu)+2 R_{e}\left\{\frac{1 \lambda \varepsilon_{a L}}{1 / 2\left(\gamma_{52}+\frac{\lambda_{5}}{}\right)-i\left(2 \Delta-\omega_{3}^{\prime}\right)}\left(\bar{\rho}_{55}-\bar{\rho}_{33}\right) \hat{\psi}_{51,31}(n 1)\right\}
$$

and

$$
\hat{g}_{53}(\nu)=2 \bar{\rho}_{55} \operatorname{Re} \hat{\psi}_{53,53}(-i \nu)+2 \operatorname{Re}\left\{\frac{i \lambda \varepsilon_{02}}{\left.\frac{12}{1\left(\gamma_{32}+\gamma_{5}\right)-1(2 \Delta-\omega i}\right)}\left(\bar{p}_{55}-\Gamma_{33}\right) \hat{\psi}_{5333}(i 1)\right\}
$$

-235

Eive the epectral proflles for the scattered light for the relevant tronsitions and would giva the overall cifect of all possible transitions as in the previoua chapter.

CHITTE VTI

Ho aholl conolder a 3-level ator with eround level 1, and two excited levels, 2 end 3, as incilested below

where we define the freguency aeparations as follows:

$$
\begin{aligned}
& \omega_{3}=\epsilon_{3}-\epsilon_{2}=\epsilon_{22} \\
& \omega=\epsilon_{2}-\epsilon_{1}=\epsilon_{21} \\
& \omega=\epsilon_{3}-\epsilon_{1}=\epsilon_{31}
\end{aligned}
$$

An Fructions of rotica

Since we wish now to consicar the case when levels 3 and 2 nigy be overlapping it is necosexy to romerive the Heisenberg equations of motion eince those of Chapter IV refer only to the case when there is no overm larpine.
N. recall that for 3-level etom, the liamiltonian in the dipole and rotatingwave approximations for on atca at the origin of cocrdinates is, accoscing to equation $(4, A, 3)$
$H=\hbar \sum_{x=1}^{5} \epsilon_{x} P_{x x}+\hbar \sum_{i s} \omega_{i} a_{i s}^{+} a_{i s}-\hbar \sum_{y^{2+1}}^{3} \sum_{i=1}^{2} g_{i s, y z}\left(\psi_{z y}^{*} a_{s s}+a_{s s_{s}} p_{z y}\right)$
or, more fundamentaliy, before FhA is essmea, according to equation (4.A.1)
$B=\hbar \sum_{x=1}^{3} \epsilon_{x} P_{x x}+\frac{1}{8 \pi} \int\left(\left.E\right|^{2}+|\underline{B}|^{2}\right) d^{3} r-E \cdot \sum_{y=2+1}^{3} \sum_{x=1}^{2} f\left(P_{z y}+P_{z y}^{+}\right)$

Hose, from equation (4.A.L)
with formal eclution, according to equation (4.A.7)

The other equations of motion are, from equations (4.A.5), (4.A.6),

$$
\begin{aligned}
& \text { for } m<n
\end{aligned}
$$

$$
\begin{aligned}
& =F_{n=4}^{+}(t)
\end{aligned}
$$

and

$$
\begin{align*}
& +i \sum_{y=n+1}^{5} \sum_{6 T} f_{p-y^{m}} a_{f,}^{+}(t) P_{m y}(t)-i \sum_{z=1}^{m-1} \sum_{T T} g_{\left(5, \ldots z a_{0,}\right.} a_{z i n}^{+}(t)
\end{align*}
$$

Thus the 9 transition operator equations of motion are:-

$$
\begin{align*}
& \dot{P}_{11}(t)=i \sum_{y=2} P_{y}^{+}(1)\left\{\sum_{i T} g_{k i, y_{1}} a_{(5)}^{(t)}\right\}+i \sum_{y=2}^{3}\left\{\sum_{R=} g_{\left(5, y_{1}\right.} a_{\ell 0}^{+}(t)\right\} P_{(y}(t) \\
& \dot{\dot{r}}_{22}(t)=\dot{-} p_{23}^{+}(t)\left\{\sum_{i=1} g_{05,32} a_{15}^{(t)}\right\}+i p_{12}^{+}(t)\left\{\hat{\sum}_{\tilde{F}_{5}} g_{65,21} a_{k j}(t)\right\} \tag{0}\\
& \left.*\left\{\sum_{l 5} g_{10,32} a_{8,}^{+} t\right)\right\} P_{23}(t) \quad-i\left\{\sum_{S_{5}} g_{(5,21} a_{85}^{+}(t)\right\} P_{12}(t)
\end{align*}
$$

$$
\begin{align*}
& \dot{F}_{21}(t)=\dot{F}_{12}{ }^{+}(t) \tag{0}\\
& \dot{F}_{31}(\mathrm{t})=\mathcal{F}_{13}{ }^{+}(\mathrm{t}) \tag{0}\\
& \dot{F}_{32}(t)=\dot{E}_{23}{ }^{+}(t) \tag{7.A.15}
\end{align*}
$$

Considering equation (7,A.7) and substituting for $a_{(3)}^{(1)}, a_{(s}^{+}(1)$

Let $V \rightarrow \infty$

$$
\begin{align*}
& \times \int^{T} d^{\prime} c^{-i w_{1}} 11(1) \overrightarrow{P_{x^{\prime}} y^{\prime}}(t) \tag{7.A.17}
\end{align*}
$$

$$
\begin{align*}
& \text { Now } \sum_{y=1}^{\sum} \sum_{z^{\prime}}^{i} \sum_{i=2} g_{(5, y)} g_{66, y^{\prime} z^{\prime}} \int_{0}^{t} d t^{\prime} e^{\left.-i w_{s}(t-1)^{v-\infty}\right) P_{z^{\prime} y^{\prime}}\left(t^{\prime}\right)} \\
& =\sum_{i=1}^{i=1} g_{1 \sigma}, y_{1} g_{0,21} \int_{0}^{t} d t^{\prime} e^{-i \omega_{p}\left(t+t^{\prime}\right)} P_{12}\left(t^{\prime}\right) \tag{7,A,18}\\
& +\sum_{i=1}^{i=1} g_{(10, y} g_{(5,31} \int_{0 t}^{t} d t^{\prime} e^{-i \omega_{p}\left(t-t^{\prime}\right)} P_{13}(11) \\
& +\sum_{v=\infty}^{\infty \rightarrow \infty} g_{b}, y^{\prime} \quad g_{e 0,32} \int_{0}^{0} d t^{\prime} e^{-i \omega_{e}\left(t-t^{\prime}\right)} P_{23}\left(t^{\prime}\right)
\end{align*}
$$

Since we wish to include the possibility of levels 3 and 2 overlapping

wo shall include integration over frequencies conan to photon transitions

 between levels 3 and 1 and 2 and 1 and vice versa, as in Chapter III.Sow
$\therefore \Gamma_{11} \quad \therefore \hat{y}$

Since tire are no frequencies conan to photon transitions between levels 3 and 2 and 2 and 1 or 3 and 2 and 3 and 1, the third and sixth tam go out on tabbing the limit V
since $P_{m, n}(t) \perp P_{m, n}(t) e^{\left(t \ldots, t^{\prime}\right.}(t)$ where $n>{ }^{n}$ also, as sham in earlier chapters.

$$
\begin{aligned}
\therefore W= & \left(1 / 2 x_{21}-i \Omega_{21}\right) P_{22}(t)+\left(1 / 2 \Gamma_{21}-1 \Omega_{21}^{\prime}\right) P_{23}(t)+\left(1 / \Gamma_{21}-1 \lambda_{21}^{\prime}\right) P_{22}(t) \\
+ & \left(1 / 2 x_{21}-1 \eta_{31}\right) P_{33}(1)
\end{aligned}
$$

$$
\text { (7.R. } 21 \text {) }
$$

$$
\begin{align*}
& \text { LeSS }=\frac{2}{3 \pi c^{2} \hbar} P_{=1}^{2} \int_{0}^{\infty} d \omega \omega^{5} \int_{0}^{t} d t^{\prime} \epsilon^{-\left(\omega-\omega_{2}\right)(t-())} p_{22}(t) \\
& +\frac{2}{3 \pi c^{3} \hbar}\left(f_{31} \cdot f_{21}\right)^{0} \int_{0}^{\infty} d \omega^{\prime} \omega^{13} \int_{0}^{t} d t^{\prime} c^{-\left(\cdots \omega^{\prime}-\omega\right)\left(t-t^{\prime}\right)} p_{25}(t) \\
& +\frac{2}{3 \pi c^{3} F^{2}}(f=1 \quad f=1) \int_{0}^{\infty} d w^{\prime} w^{j} \int_{0}^{t} d t^{\prime} e^{\left.-(\omega-\omega) x t+t^{\prime}\right)} P_{c 2}(t) \tag{0}\\
& +\frac{2}{3 \pi c^{3} \hbar} P^{2} \int_{0}^{\pi} d \omega^{\prime} w^{13} \int_{0}^{t} d t^{\prime} e^{-i\left(\omega^{\prime}-\omega\right)\left(t-t^{\prime}\right)} P_{53}(t)
\end{align*}
$$

$$
\begin{aligned}
& \text { + } \int_{i=0}^{1} \eta_{1}^{2} \int_{0}^{t} d t^{\prime} e^{-\cdots, 4(i)} P_{1}^{+}(1) P_{1,}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1.0. } \dot{F}_{11}(t)=-i \sum_{j^{-2}}\left\{P_{y}(t) q(1)+f_{j}^{(1)} P_{y}(t)\right\} \\
& +\gamma_{-1} P_{2}(1)+Y_{1} P_{1}(1)+\left\{y_{2}\left(\Gamma_{21}+1\right)-1\left(g_{21}^{1}-y_{21}^{\prime}\right)\right\} P_{2}(1) \\
& +\left\{y_{2}\left(I_{21}+I_{21}\right)-1\left(1,-i_{21}^{\prime}\right)\right\} P_{2}(1)
\end{aligned}
$$

Using a similar procedure for the rewinding nine countione and accusing that no dipole transitions occur between levels 3 and 2 (out. as in the cane wen levels 3 and 2 have the came (value. This situation occurs when they hove resulted from the pecan milting of an excited level Into two components as the result of the application of a memetic field) so that

$$
\gamma_{32}=q_{122}=q_{32}^{+}=\Omega_{32}=0
$$

- and the case for revered subscripts,
we obtain:-

$$
\begin{align*}
& P_{12}(t)=-i P_{21}(t) q_{21}(t)+i q_{21}^{+}(t) P_{12}(t)-i P_{51}(t) q_{51}^{(}(t)+i q_{21}^{+}(t) P_{1}(t) \tag{7.A.24}\\
& +\gamma_{21} P_{22}(1)+\gamma_{-1} P_{55}(1)+\left\{Y_{2}\left(\Gamma_{51}+\Gamma_{21}\right)-i\left(\lambda_{51}^{\prime}-\Omega_{21}^{\prime}\right)\right\} P_{23}(t) \\
& +\left\{\frac{1}{2}\left(T_{41}+\Gamma_{21}\right)+\left(\rho_{31}^{\prime}-\eta_{21}^{\prime}\right\} P_{32}(t)\right. \\
& F_{22}(t)=i P_{21}(t) q_{2}(t)-i q_{2}^{+}(t) P_{12}(t) \\
& -\gamma_{21} P_{22}(1)-\left\{1 / 2 \Gamma_{31}-i \Omega_{31}^{1}\right\} P_{23}(t)-\left\{1 / 2 \Gamma_{31}+i \int_{31}^{\prime}\right\} P_{32}(t) \tag{7.A.25}\\
& \dot{p}_{33}(t)=1 p_{z_{1}}(t) q_{31}(t)-i q_{51}^{+}(t) p_{13}(t) \\
& -\gamma_{31} P_{33}(t)-\left\{1 / 2 \Gamma_{21}+i \Omega_{21}^{1}\right\} P_{23}(t)-\left\{1 / 2 S_{21}-i \Omega_{21}^{1}\right\} \Gamma_{32}(t) \\
& \left.\dot{P}_{12}(t)=1\left(P_{11}(1)-P_{-2}(11)\right) q_{21}(1)\right)-i P_{52}(1) q_{11}^{(1)} \\
& \text { - }\left\{1_{1} \lambda_{21}+i\left(\omega_{2}-\lambda_{21}\right)\right\} P_{12}(t)-\left\{1 / 2 \Gamma_{-1}-i \Omega_{51}^{\prime}\right\} P_{13}(t) \\
& \dot{P}_{31}(t)=-1 q^{+}(1)\left(P_{11}(1)-P_{33}(t)\right)+i q_{1}^{+}(1) p_{22}(1) \\
& \text { - } \left.\left\{\eta_{2} x_{21}-i\left(10-\Omega_{21}\right)\right\} P_{P_{1}}(1)-i \frac{1}{2} \Gamma_{2}+1-1 l_{21}\right\} P_{21}(1)
\end{align*}
$$ $7(7 \cdot A \cdot 26)$ $\int\left(7 \cdot A_{0} 27\right)$ $(7 . A .23)$

$$
\begin{aligned}
& \dot{F}_{23}(t)=i p_{21}(t) q_{i,}^{(1)}-1 y_{i}^{\prime}(1) P_{i 3}(t)
\end{aligned}
$$

$$
\begin{align*}
& \dot{P}_{21}(t)=-\left(q_{21}^{+}(1)\left(P_{11}(t)-P_{22}(t i)+1 q_{3,}^{+}(1) P_{2}(1)\right)\right. \tag{7.A.30}\\
& \left.-\left\{1_{2}\right\rangle_{21}-\left(\omega_{2}-V_{21}\right)\right\} P_{21}(1)-\left\{\frac{1}{2} \Gamma_{01}+1 \lambda_{51}^{\prime}\right\} P_{2,1}(1) \\
& \dot{P}_{13}(t)=1\left(P_{11}(1)-P_{3}, 11\right) \eta_{1}(1)-1 P_{2}(1) q_{21}(1) \\
& -\left\{1 / 2 \gamma_{11}+1\left(10-S_{51}\right)\right\} P_{12}(1)-\left\{1 / 2 \Gamma_{21}-1 I_{21}^{1}\right\} P_{12}(1) \\
& \dot{p}_{32}(t)=1 P_{3,1}(1) q_{21}(t)-\left(q_{31}^{t}(t) P_{12}(t)\right. \\
& \left.-\left\{1 / 2\left(\gamma_{21}+\gamma_{31}\right)-i \omega_{\omega_{3}}+\Omega_{21}-\Omega_{31}\right)\right\} P_{23}(t)-\left\{1 / 2 \Gamma_{31}-i j_{31}^{1}\right\} P_{33}(t)-\left\{1 / 2 \Gamma_{21}+\pi j_{21} \cap \rho_{22}\right\}\left({ }^{2}\right)(7 \tag{7.A.32}
\end{align*}
$$

where

$$
\begin{aligned}
& r_{31}=4 / 3 \hbar \quad p_{51}^{2} w^{3} / c^{3} \\
& \Omega_{31}=\gamma_{3 / 1} 3 P \int_{0}^{\infty} d \omega^{1} / 2 \pi \cdot \frac{\omega^{13}}{\omega^{1}-\omega} \\
& r_{21}=4 / 3 \pi \quad P_{21}^{2} \omega_{i}^{3} / c^{3} \\
& \Omega_{21}=\gamma_{21 / \omega_{2}^{3}} P_{0}^{\infty} \int^{\infty} \omega^{1} / 2 \pi \frac{\omega^{\prime 5}}{\omega^{\prime}-\omega_{2}} \\
& \Gamma_{31}=4 / 3 \hbar \quad f_{11} \cdot f_{31} \omega^{3} / c^{3} \\
& \Omega_{31}^{\prime}=\Gamma / \omega^{3} P \int_{0}^{x} d \omega^{1} / 2 \pi \frac{\omega^{13}}{\omega^{1}-\omega} \\
& \Gamma_{21}=4 / 3 \hbar \quad f_{21} \cdot f_{31} \cdot w_{2}^{3} / c^{3} \\
& \lambda_{21}^{1}=\Gamma_{21} / \omega_{2}^{3} P \int_{0}^{\pi} \frac{w^{1} / 2 \pi}{} \frac{w^{13}}{w^{\prime}-\omega_{2}} \\
& \eta_{m n}=1 / \hbar E^{(0)}(t) \cdot f_{m n} \\
& \therefore E_{i}^{\prime \prime}=\sum_{l, \sigma} \sqrt{\frac{2 \pi \hbar \omega_{l}}{V}} \hat{e}_{l \sigma} a_{l \sigma}(0) t^{-i \omega_{l} t}
\end{aligned}
$$

N.B. P indicates principal part.

[The transitions $2 \longrightarrow 1$ and $3 \longrightarrow 1$ are σ components of a Zeeman triplet when $\Delta m= \pm 1$ and π components when $\Delta m=0$.]

Method (1)

We shall now consider the case when a driving field of arbitrary strength, $E_{D}{ }^{(1)}$, couples levels 3 and 1. Then

$$
\begin{gathered}
H_{1}(1)=-\hbar\left\{P_{21}(t) \lambda_{51} \varepsilon_{D}(1)+\lambda_{13} \varepsilon_{D}(t) P_{i 3}(t)\right\} \\
\text { where } \lambda_{31}=\frac{f_{11} \cdot \hat{\epsilon}_{c D}}{\hbar}=\frac{P_{13} \cdot \hat{\epsilon}_{0 D}}{\hbar}=\lambda_{13} \\
E_{D}(1)=\hat{\epsilon}_{c D}\left\{\varepsilon_{D}(1)+\varepsilon_{D}(11\}\right.
\end{gathered}
$$

and hence

$$
\begin{aligned}
& \beta_{m a 2}(t)=-i\left(P_{2 m} \tilde{\delta}_{1 m}-P_{m 1} \delta_{m 3}\right) \lambda_{x, 1} \varepsilon_{D}(t)+\lambda_{13} \varepsilon_{D}(t)\left(P_{1 m} \delta_{e m}-P_{m,} \delta_{m 1}\right)
\end{aligned}
$$

Thus the new equations of motion are

$$
\begin{align*}
& +r_{1} P_{2}(t)+x_{1} P_{3}(t)+\left\{y_{2}\left(r_{2}+\Gamma_{21}\right)-i\left(\Omega_{5_{1}}-\Omega_{2_{1}}\right)\right\} P_{23}(t) \\
& +\left\{V_{2}\left(P_{3,1}+P_{21}\right)+i\left(S_{2}-D_{21}^{\prime}\right)\right\} P_{32}(t) \\
& \dot{p}_{22}(t)=4 P_{41}^{(1)} q_{2}(t)-i q_{-1}^{+}(1) P_{6}(1) \tag{7,A.35}
\end{align*}
$$

$$
\begin{aligned}
& -\left\{1 / 2 \gamma_{31}-i\left(\omega-\Omega_{31}\right\} P_{31}(t)-\left\{1 / 2 \Gamma_{21}+i \Omega_{21}^{\prime}\right\} P_{21}(t)\right. \\
& \dot{p}_{23}(t)=1 P_{21}(1)\left\{q_{31}+\lambda_{51} \varepsilon_{D}(t)\right\}-i q_{1}^{+}(t) P_{13}(t) \\
& \begin{aligned}
-\left\{1 / 2\left(r_{21}+\gamma_{31}\right)+\left(\omega_{3}-\Omega_{31}+\Omega_{21}\right)\right\} P_{23}(t)-\left\{1_{2} T_{32}+i \Omega_{31}\right\} P_{33}(t) \\
-\left\{1 / 2 T_{21}-1 \Omega_{21}\right\} P_{22}(t)
\end{aligned} \\
& \dot{P}_{21}(t)=-i q_{i 1}^{*}(t)\left(P_{11}(t)-P_{22}(t)\right)+i\left(q_{31}^{*}(t)+\lambda_{13} \varepsilon_{D}^{*}(t)\right) P_{23}(t) \\
& \text { - }\left\{\frac{1}{2} \gamma_{21}-i\left(\omega_{2}-\Omega_{21}\right)\right\} P_{21}(t)-\left\{\frac{1}{2} I_{31}+i \Omega_{31}^{1}\right\} P_{31}(t) \\
& \dot{P}_{13}(t)=1\left(P_{11}(t)-P_{23}(1)\right)\left\{q_{31}(t)+\lambda_{51} \varepsilon_{0}(1)\right\}-i P_{23}(t) q_{21}(t) \\
& \text { - }\left\{1 / 2 X_{31}+i\left(w-\Omega_{31}\right\} P_{13}(t)-\left\{1 / 2 \Gamma_{21}-i \Omega_{21}\right\} P_{12}(t)\right. \\
& \dot{r}_{32}(t)=1 P_{31}(t) q_{21}(t)-i\left\{q_{31}^{+}(t)+\lambda_{13} \varepsilon_{0}^{-}(t)\right\} P_{12}(t) \\
& \text { - }\left\{1 / 2\left(Y_{21}+X_{31}\right)-i\left(\omega_{3}+\Omega_{21}-\Omega_{31}\right)\right\} P_{32}(t)-\left\{1 / 2 \Gamma_{31}-i \Omega_{31}^{-1}\right\} P_{33}(t) \\
& -\left\{1 / 2 P_{21}+i D_{21}\right\} P_{22}(t)
\end{aligned}
$$

Said. $\dot{E}_{11}(t)+i_{22}(t)+i_{33}(t)=0$
Multiplying equations (7.A.34) to (7.A.42) from lect and right
by and , respectively and thea wultipling on the right
by (i) and taking $T_{\text {. }}$, we obtain the reduced density matrix equations

$$
\begin{align*}
& +1,(11)+x, n^{\prime 2}(u)+\left(11_{1}+1_{2}\right)-\left(1 n_{1}-t_{2}\right)\left(\int^{\prime \prime}(t)\right. \tag{7,A,43}\\
& \left.+i^{4}\left(S_{21}+1_{21}\right)+\left(0_{i}-0_{i 1}\right)\right\} \rho_{i}^{\prime}(t) \\
& \rho \prime \|=x_{i 1} \rho^{\prime}(t)-\left\{1_{1}-11,1 \rho_{2}^{\prime \prime}(t)-i / 21_{2}+\eta_{31}\left(\rho_{i}^{\prime}(1)\right.\right. \tag{7,A.44}\\
& \int(11)=1 \rho(1) \lambda_{i}(t)-1 \lambda_{\Delta} \varepsilon_{D}(t) \rho_{0}^{(\lambda)}(t) \tag{7,A.45}
\end{align*}
$$

$$
\begin{align*}
& \int_{1}^{\prime \prime}(1)=-(\therefore 11) \lambda_{=},(11) \tag{7,A,46}\\
& \text { - }\left\{1 / 2 \gamma_{-1}+11_{2} \cdot 1_{21}\right)\left(\rho_{21}^{\prime}(t)-1 / 2 \Gamma_{31} \cdot 1 D_{31}+\sum_{3}^{\prime \prime}(t)\right. \\
& \dot{\rho}(t)=-\left(\lambda_{1}=\sum_{0}(t) i \rho_{11}^{(5)}(t)-\rho_{33}^{(3)}(t)\right) \\
& \text { - }\left\{1 / 2 \gamma_{31}-i\left(00-\Omega_{31}\right)\right\} \rho_{13}^{\prime \prime \prime}(t)-\left\{/ 2 \Gamma_{21}+1 \Omega_{21}^{\prime \prime}\right\} \rho_{12}^{\prime \prime}(t) \\
& \int^{(i)}(1)=1 \rho_{12}(t) \lambda_{3,} \varepsilon_{0}(t) \tag{7,A.48}
\end{align*}
$$

$$
\begin{align*}
& \dot{\rho}^{\prime}(t)=1 \lambda_{13} \varepsilon_{D}^{\prime}(t) \rho_{\because}^{\prime \prime}(t) \tag{7,A,49}\\
& \text { - } \left.\left\{1 \gamma_{1}-1 \omega_{2}-n_{21}\right)\right\} \rho_{12}^{(3)}(t)-\left\{1 / 2 \Gamma_{1}+i n_{4}^{1}\right\} \int_{3}^{(1)}(t) \\
& \dot{\rho}_{31}^{(3)}(t)=1\left(\rho_{11}^{(0)}(t)-\rho_{3}^{\prime}(t)\right) \lambda_{i=1} \varepsilon_{D}(t) \tag{*}\\
& \text { - } \left.\left\{1 / 2 \delta_{1}+1\left(w-\eta_{21}\right)\right\} \rho_{31}^{\prime \prime \prime}(t)-i \frac{1}{2} \zeta_{21}-1 j_{21}\right\} \rho(t) \\
& \dot{\rho}_{i 3}^{(1)}(t)=-1 \lambda_{13}^{3} 0^{(1)} \rho_{i=}^{(1)}(t)
\end{align*}
$$

$$
\begin{aligned}
& \text { (7.A.51) }
\end{aligned}
$$

Yeqm:(1e)

The initial photon ctate is $\left|\alpha_{3}\right\rangle$
$\left.\left.\therefore q_{s_{1}}\right|_{p p}\right\rangle=\sqrt{\frac{\partial \pi \omega_{D}}{\hbar \gamma}}\left(\hat{e}_{O D} \cdot f_{s_{1}}\right) e^{-\omega_{0} t} \alpha_{3}\left|\alpha_{3}\right\rangle$
and $\left.\eta_{m n}| |_{p h}\right\rangle=0$ for all other mand n where $m>n$

$$
\begin{align*}
\left.\left.\left\langle\left.\right|_{1},\right| q_{n i}\right|_{j_{h}}\right\rangle & =\eta_{\omega_{0}, i} e^{-\omega_{0} t} x_{3} \tag{7,A,53}\\
& =1_{2} c_{0}^{\prime} t^{-\omega_{0} t}
\end{align*}
$$

$$
\begin{align*}
1 / 4 G_{0}^{2} & =g_{30,1}\left|\alpha_{3}\right|^{2} \\
& =\left(\frac{\hat{2 \pi} \omega_{0}}{\hbar}\right)\left(\hat{p}_{00} f_{3 i}\right)\left(\alpha_{2}\right)^{2} \tag{7.A.55}
\end{align*}
$$

(as opposod to $1 / 4 G_{3}^{2}=\left(\lambda_{1} \varepsilon_{0 D}\right)^{2}$

$$
=\left(\frac{f_{31} \cdot \hat{e}_{O D} \varepsilon_{O L}}{\hbar}\right)^{2}
$$

in wethod (1))

Thus on maltiplying the tronsition operator oquations (7.A.34)-(42) by <iph and liph on lart and ritat reapectivoiy and then multipline on tho rictit by $\rho^{\prime \prime \prime}(0)$ and tajeing the. Tr wo obtain reduced density matrix equations, givilar to those of mothod (i), 1.e. equations (7,A,43) (51), when in the former equations we asmue ovcillatos hamonically at ω_{D} sicin that $\varepsilon_{D}(t)=\varepsilon_{o D} e^{-\omega_{s} t}$ were $\omega_{D} 1 \omega$. (M. t_{0} the asmuption on cscilitation at one frequency in method (i) is equivalent to the esourption in mothod (11) that orif ene node of the eam. Eleld interects with the ataro) For caricte corremondence we require

$$
\begin{align*}
& 1_{2}{C_{0}}^{\prime} \rightarrow \lambda_{51} \varepsilon_{0 D} \quad \text { 1.e. } \alpha_{3} \rightarrow \sqrt{\frac{V}{2 \pi \pi \omega_{0}}} \varepsilon_{O D} \tag{7.A.56}\\
& 1_{2} C_{D}^{\prime \times} \longrightarrow \lambda_{13} \varepsilon_{0 D} \quad \text { i.e. } \alpha_{3}^{0} \rightarrow \sqrt{\frac{V}{2 \pi \hbar \omega_{3}}} \varepsilon_{0 D}
\end{align*}
$$

1.e. α_{3} becoses real for real dipole matrix clements.

2: cruaticas (7.4.43) - (51) we ciall now let

$$
\begin{align*}
w_{2}-\Omega_{21} & =w_{2}^{\prime} \\
w-\Omega_{31} & =w^{\prime} \\
w_{3}-\Omega_{31}+\Omega_{21} & =w_{3}^{\prime} \\
1_{2} \Gamma_{51}+I_{31}^{\prime} & =v_{2} \Gamma_{31}^{\prime} \tag{7.3.1}\\
1_{2} I_{1}-I_{21}^{\prime} & =v_{2} \Gamma_{41} \\
v_{1} \Gamma_{1}+\Omega_{1}^{\prime} & =I_{2} \Gamma_{21}^{\prime} \\
1 / 2 \Gamma_{21}-i I_{21}^{\prime} & =y_{2} \Gamma_{21}^{\prime a}
\end{align*}
$$

and, in oxier to atrplify the equations still further, wo whall igncre frequency enifta Ω_{1}, Ω_{21} and terns $\Omega_{21}^{\prime}, \Omega_{31}^{\prime}$ so that instead of ω_{2}^{\prime}, ω^{\prime}, $\omega_{2}^{\prime}, 1_{2} \Gamma_{31}^{\prime}, 1 / 2 \Gamma_{31}^{\prime \prime}, 1 / 2 \Gamma_{21}^{\prime}, 1_{2} \Gamma_{21}^{1 x}$ we ahall urite ω_{2}, (w) $\omega_{5},{ }_{2} \Gamma_{31}$, $y_{2} \Gamma_{21}$. We do thisa aince ve are not interested in these mall frequency ohstre but rather the effects of the driving ficid and neparation of levels 3 and 2 on the reailtins apoctral profile for transitions tetween levela 3 and 1.

On entug the above simplicications we cen urite equations (7.A.43)-(51) as follows, where we neclect the arperamipts on ρ ' ε, indicating their reduced noture, for cosventencos-

$$
\begin{align*}
& \dot{\rho}_{11}(t)=-i \lambda_{51} \varepsilon_{O D}\left(e^{-i \omega_{D} t} \rho_{13}(t)\right)+i \lambda_{13} \varepsilon_{O D}\left(e^{i \omega_{0} t} \rho_{31}(t)\right) \tag{7.5.2}\\
& +\gamma_{21} \rho_{22}(t)+\gamma_{31} \rho_{33}(t)+y_{2}\left(\Gamma_{31}+\Gamma_{21}\right) \rho_{32}(t)+y_{2}\left(\Gamma_{31}+\Gamma_{21}\right) \rho_{23}(t) \\
& \dot{\rho}_{22}(t)=-\gamma_{21} \rho_{22}(t)-1 / \Gamma_{31} \rho_{32}(t)-1 / 2 \Gamma_{31} \rho_{23}(t) \tag{7.8.3}\\
& \dot{\rho}_{33}(1)=1 \lambda_{31} \varepsilon_{0 D}\left(e^{-i j_{3} t} \rho_{13}(t)\right)-i \lambda_{13} \varepsilon_{01}\left(e^{n j s t} \rho_{31}(t)\right) \tag{7,B,4}\\
& \text { - } Y_{31}, \rho_{33}(t)-1 / 2 \Gamma_{21} \rho_{32}(t)-1 / 2 \Gamma_{21} \rho_{23}(t) \\
& \dot{\rho}_{21}(1)=-{ }_{13} \lambda_{31} \varepsilon_{03}\left(e^{-i, 3}, \rho_{23}(t)\right) \tag{7.8.5}\\
& \text { - }\left(1 / 2 \gamma_{21}+i \omega_{2}\right) \rho_{21}(t)-1 / 2 \Gamma_{31} \rho_{31}(t)
\end{align*}
$$

$$
\begin{align*}
& \left.\left.\dot{\rho}_{15}{ }^{11}\right)=-1 \lambda_{13} \varepsilon_{0 D}\left(\varepsilon^{\left(m_{5} t\right.} \rho_{11} 11\right)\right)-\lambda_{13} \xi_{O D}\left(e^{i \omega_{0} t} \rho_{33}(t)\right) \tag{7.5.6}\\
& -\left(1 / 2 x_{31}-\ldots s\right) \rho_{13}(t)-1 / 2 \Gamma_{21} p_{12}(t) \\
& \dot{\rho}_{32}(1)=1 \lambda_{31} \hat{S}_{00}\left(e^{-i u_{3}(t} \rho_{12}(t)\right) \tag{.7}\\
& -\left\{1 / 2\left(\gamma_{21}+\gamma_{31}\right)+1 \omega_{3}\right\} \rho_{32}(1)-1 / 2 \Gamma_{31} \rho_{33}(t)-1 / 2 \Gamma_{21} \rho_{22}(t) \\
& \dot{\rho}_{12}(t)=1 \lambda_{13} \varepsilon_{0 D}\left(\varepsilon^{i i_{0} t} \rho_{32}(t)\right) \tag{7.2.3}\\
& -\left(1 / 2 \gamma_{21}-1 \omega_{2}\right) \rho_{12}(t)-1 / 2 \Gamma_{31} \rho_{13}(t) \\
& \dot{\rho}_{31}(t)=2 \lambda_{31} \varepsilon_{0 D} e^{-i \nu_{5} t} \rho_{11}(t)-i \lambda_{31} \varepsilon_{0 D} e^{-i \omega \nu} \rho_{33}(t) \tag{7.3.9}\\
& -\left(1 / 2 \gamma_{31}+i \omega\right) \rho_{31}(t)-1 / 2 \Gamma_{21} \rho_{21}(t) \\
& \dot{\rho}_{25} 1\left(t=-\lambda_{13} \varepsilon_{c 5} e^{i \omega_{0} t} \rho_{21}(t)\right. \tag{7.3.10}\\
& -\left\{1 / 2\left(\gamma_{21}+\gamma_{51}\right)-i \omega_{3}\right\} \rho_{23}(t)-1 / 2 \Gamma_{31} \rho_{33}(t)-1 / 2 \Gamma_{21} \rho_{22}(t)
\end{align*}
$$

In cricer to caloulate the erectral corrciatiou function for trisesitiona betwean levels 3 and 1 we need to solve equations (7.B.2)-(10) for $\rho_{31}(t)$. Thus, in order to oftain nino distinct functions of time, and to avoid hoving to detuce $\hat{\rho}_{31}(s)$ from $\hat{\rho}_{31}\left(s-i n_{p}\right)$ ace we mitipis curations (7.2.2), (3), (4), (7), (10) by $e^{-i n g t}$ and (7.E.6), (3) by $e^{-i 2 n g t}$ - Nonce wo obtain the folloning equations wice $\lambda_{3 i}=\lambda_{13}=\lambda$ $\operatorname{and} \varepsilon_{O D} \cdot \varepsilon_{0}:-$

$$
\begin{align*}
& e^{-i 0_{0} t} \dot{\rho}_{11}(t)=-i \lambda \varepsilon_{0}\left(e^{-i 2 \omega_{0} t} \rho_{13}(t)\right)+i \lambda \varepsilon_{0} \rho_{31}(t) \\
& \left.\begin{array}{rl}
+\gamma_{21}\left(e^{-i \omega_{0} t} \rho_{22}(t)\right)+\gamma_{31}\left(e^{-i \omega_{0} t} \rho_{33}(t)\right) & +1 / 2\left(\Gamma_{31}+\Gamma_{21}\right)\left(e^{-i 0_{0} t} \rho_{23}(t)\right) \\
& +1 / 2\left(\Gamma_{31}+\Gamma_{21}\right)\left(e^{-i \omega_{0} t} \rho_{23}(t)\right)
\end{array}\right) \tag{7,3.11}\\
& e^{-i_{0} t} \dot{\rho}_{22}(t)=-\gamma_{21}\left(e^{-i \omega_{0} t} \rho_{22}(t)\right)-1 / 2 \Gamma_{31}\left(e^{-i \omega_{0} t} \rho_{32}(t)\right)-1 / 2 \Gamma_{31}\left(e^{-i \omega_{0} t} \rho_{23}(t)\right) \tag{7,2.12}\\
& i \\
& e^{-i v t} \dot{\rho}_{33}(t)=1 \lambda \varepsilon_{0}\left(e^{-220,} t \rho_{13}(t)\right)-i \lambda \varepsilon_{\beta_{31}}(t) \\
& \left.-r_{31}\left(e^{-i \omega_{D} t} \rho_{33}(t)\right)-1 / 2 \Gamma_{21}\left(e^{-N_{D} t} \rho_{32}(t)\right)-1 / 2 \Gamma_{21}\left(e^{-i \operatorname{sos}_{0} t} / \rho_{3}(t)\right)\right\}
\end{align*}
$$

$$
\begin{align*}
\dot{\rho}_{21}(t)= & -i \lambda \varepsilon_{0}\left(e^{-1 \omega_{5} t} \rho_{23}(t)\right) \tag{7.3.14}\\
& -\left(y_{2} \gamma_{21}+1 \omega_{2}\right) \rho_{-1}(t)-1 / 2 \Gamma_{31} \rho_{21}(t) \\
e^{-121_{0} t} \dot{\rho}_{13}(t)= & -1 \lambda \varepsilon_{0}\left(t^{7 \omega_{3} t} \rho_{11}(t)\right)+i \lambda \varepsilon_{0}\left(t^{-i \omega_{3} t} \rho_{53}(t)\right) \tag{7.E.15}\\
& -\left(1 / 2 \gamma_{31}-1 \omega\right)\left(e^{-2 \omega_{0} t} \rho_{13}(t)\right)-1 / 2 \Gamma_{21}\left(e^{-12 \omega_{3} t} \rho_{12}(t)\right)
\end{align*}
$$

$$
e^{\sin t} \dot{\rho}_{s 2}(t)=1 \lambda \varepsilon_{0}\left(e^{-i 2 \omega_{0} t} \rho_{12}(t)\right)
$$

$$
-\left\{\frac{1 / 2}{}\left(\gamma_{21}, \gamma_{31}\right)+i \omega_{3}\right\}\left(e^{-i s_{3} t} \rho_{22}(t)\right)-1 / 2 \Gamma_{31}\left(e^{-i \omega_{0} t} \rho_{33}(t)\right)
$$

$$
\left.e^{-124} \rho_{12}(t)=i \lambda c_{0}\left(e^{i \omega_{0} t} \rho_{3,2} t\right)\right)
$$

$$
-\left(1 / 2 \gamma_{21}-13_{2}\right)\left(t^{-.2 \omega_{3} t} \rho_{12}(t)\right)-1 / 2 \Gamma_{31}\left(t^{-12 \omega_{5} t} \rho_{13}(t)\right)
$$

$$
\begin{aligned}
\dot{\rho}_{31}(t)= & i \lambda \varepsilon_{0}\left(\epsilon^{7 \lambda-1} \rho(t)\right)-1 \lambda \delta_{c}\left(e^{-i \omega_{0} t}\right. \\
& -\left(y_{2} \gamma_{31}+1 \omega\right) \rho_{31}(t)-1 / 2 \Gamma_{21} \rho_{21}(t)
\end{aligned}
$$

$$
\begin{align*}
e^{-i \operatorname{sit}} \dot{\rho}_{23}(t) & =-i \lambda \varepsilon_{0} \rho_{21}(t) \tag{7.2.19}\\
& =\left\{1 / 2\left(\gamma_{21}+\gamma_{31}\right)-i \omega_{3}\right\}\left(\varepsilon-i u_{0} t \rho_{23}(t)\right)-
\end{align*}
$$

$$
c(t)=p_{33}(t) e^{-i u_{3} t}
$$

$$
c(t) p_{32}(t) e^{-i \omega_{0} t}
$$

$$
\left.\varepsilon(t)=p_{23} / 1\right)^{-i \omega_{r} t}
$$

$$
\left.\begin{array}{l}
\therefore \dot{\rho}_{11} c^{-i \omega_{\nu} t}=\dot{a}(t)+i \omega_{D} a(t) \\
\dot{\rho}_{22} e^{-i \omega_{j} t}=\dot{b}(t)+i \omega_{3} b(t) \\
\dot{\rho}_{33} e^{-i \omega_{p} t}=\dot{c}(t)+i \omega_{3} c(t) \\
\int_{13} e^{-i 2 \omega_{3} t}=\dot{d}(t)+i 2 \omega_{3} d(t) \\
\rho_{32} e^{-i \omega_{p} t}=\dot{e}(t)+i \omega_{3} c(t) \\
\rho_{12} e^{-i \omega_{3} t}=\dot{f}(t)+i 2 \omega_{3} f(t) \\
\dot{\rho}_{23} e^{-i \omega_{j} t}=\dot{g}(t)+i w_{3} g(t)
\end{array}\right\} \quad\left(7,2_{0} 20\right)
$$

$$
-1 / 2 \Gamma_{31} l e^{-i, n t}
$$

Let $a(t)=\rho_{4}(t) e^{-i n_{3} t}$

$$
\begin{aligned}
& -1 / 2 \Gamma_{31}\left(e^{-i, 3 t}\right. \\
& -1 / 2 \Gamma_{21}\left(e^{-i n} t(t)\left(\rho_{23}(t)\right)\right.
\end{aligned}
$$

$$
D(t)=\rho_{22}(H) e^{-i \omega_{3} t}
$$

$$
d(t)=p_{13}(t) e^{-i 2 \omega_{2} t}
$$

$$
\boldsymbol{f}(t)=\bar{p}_{12}(t) e^{-i 2 u_{3} t}
$$

Then, using equation (7.B.20), we can remite equations (7.5.11)-(19) a.s followat-

$$
\begin{align*}
\text { atiwa }= & -\lambda \varepsilon_{0} d+i \lambda \varepsilon_{0} \rho_{31} \tag{7.D.21}\\
& +\gamma_{21} b+\gamma_{31} c+1 / 2\left(\Gamma_{31}+\Gamma_{21}\right) e+1 / 2\left(\Gamma_{31}+\Gamma_{21}\right) g
\end{align*}
$$

$$
-\left\{1 / 2\left(\gamma_{21}+\gamma_{31}\right)-i \omega_{3}\right\} g-1 / 2 \Gamma_{31} c-1 / 2 \Gamma_{21} b
$$

Taking Laplace trarcforms, for initial tiae t' 0 , we obtain:-

$$
\begin{align*}
& \left.\begin{array}{rl}
\left(s_{1} i_{s}\right) \hat{a}(s)= & -\lambda \varepsilon_{0} \hat{d}(s)+\lambda \varepsilon_{c} \hat{p}_{31}(s)+\gamma_{21} \hat{b}(s)+\gamma_{31} \hat{c}(s)+1 / 2\left(\Gamma_{31}+\Gamma_{21}\right) \hat{e}(s) \\
& +1 / 2\left(\Gamma_{31}+\Gamma_{21}\right) \hat{g}(s)+e^{-s(1} a\left(t^{\prime}\right) \\
\gamma+110) \hat{d}(s)= & -1 / 2\left[\hat{e}(s)-1 / 2 \Gamma \hat{g}(s)+e^{-s t^{\prime}} b\left(l^{\prime}\right)\right.
\end{array}\right\} \tag{7.E.30}\\
& \left(s+x_{21}+\cdots y_{0}\right)(b s)=-1 / 2 \Gamma_{31} \hat{e}(s)-1 / 2 \Gamma_{31} \hat{g}(s)+e^{-s t^{\prime}} b\left({ }^{\prime}\right) \tag{7.3.31}\\
& \left(s+\gamma_{31}+\cdots \omega_{0} \hat{c}(s)=i \lambda \varepsilon_{,} \hat{d}(s)-i \lambda \varepsilon_{0} \hat{\rho}_{31}(s)-1 / 2 \Gamma_{21} \hat{e}(s)-1 / 2 \Gamma_{21} \hat{g}(s)+e^{-s t^{\prime}} c\left(t^{\prime}\right)\right. \tag{7.1.32}\\
& \left(s+1 / 2 \gamma_{21}+i \omega_{2}\right) \hat{p_{2}}(s)=-i \lambda \gamma_{0} \hat{g}(s)-1 / 2 \int_{3} \hat{\rho}_{31}(s)+\epsilon^{-s s^{\prime}} \rho_{21}(11) \tag{7.B.33}\\
& \left(s \cdot 1 / 2 x_{2},-1(s-2, j)\right) \hat{d}(s)=-i \lambda \varepsilon_{0} \hat{a}(s)+i \lambda \varepsilon_{0} \hat{c}(s)-1 / 2 \Gamma_{2}, \hat{f}(s)+e^{-s t^{\prime}} d\left(t^{\prime}\right) \\
& \left(s+1 / 2\left(\gamma_{21}+\gamma_{1}\right)+l_{i, i} n_{j}\right) \hat{j} \hat{e}(s)=i \lambda \varepsilon_{0} \hat{f}(s)-1 / 2 \Gamma_{31} \hat{f}(s)-1 / 2 \Gamma_{21} \hat{f}^{n}(s)+e^{-s t^{\prime}} e(t) \tag{7.B.35}
\end{align*}
$$

(7.5.34)

First we ahall solve equations (7.E.33), (37), (38) for $\hat{\rho}_{2},(s), \hat{\rho}_{31}(s)$ and $\hat{g}(s)$ in tormes of $\hat{a}(s)$, $\hat{h}(s), \hat{c}(s)$. In this way we obtain:

$$
\hat{p}_{21}(s)=-1 / 2 \Gamma_{31}\left(\lambda \varepsilon_{0}\right)\left(\frac{s+\gamma+1\left(\omega_{2}-\Delta \omega\right.}{}\right) \quad \hat{a}(s)
$$

$$
+1 / 2 r_{i 1}\left(i \lambda \varepsilon_{0}\right) \frac{\left(s+1 / 2 \gamma_{31}+i \omega\right)}{4} \hat{b}(s)
$$

$$
+1 / 2 \Gamma_{31}\left(, \lambda \varepsilon_{0}\right)\left\{\frac{\left\{\left(s+\gamma_{2} \gamma_{i j}+r i \omega\right)+\left(s+\gamma+1\left(\omega_{2}-\Delta \omega\right)\right)\right\}}{H_{1}} \hat{c}(s)\right.
$$

$$
-1 / 2 \Gamma_{31} \frac{\left(s+\gamma+1\left(s_{2}-\Delta \Delta\right)\right)}{h} e^{-t} p_{31}(t)
$$

$$
+\frac{(s+\gamma,-\tau \omega)\left(s+\gamma+i\left(\omega_{2}-\Delta \omega\right)\right)}{H} e^{-s+1} \rho_{1}(t)
$$

$$
-\left(\lambda \varepsilon_{0}\right) \frac{\left(x^{\prime} / 2 x_{31}+i \omega\right)}{H} e^{-s t^{\prime}}(t)
$$

$$
\hat{p}_{i 1}(s)=\left(\lambda \varepsilon_{0}\right) \frac{B_{1}}{H_{1}} \hat{a}(s)
$$

$$
\left.-1 / 4 \Gamma_{2 i}^{2}\left(1 \lambda \lambda_{0}\right) \frac{1}{H_{1}} \hat{b}\right)
$$

$$
-\left(\lambda \varepsilon_{0}\right)\left(\frac{\left.B+y_{4} r_{2}\right)}{H} \hat{c}(s)\right.
$$

$$
\left.+\frac{B_{1}}{H_{1}} e^{-s t} \rho_{31}(1)^{\prime}\right)
$$

$$
\text { - } 1 / 2 \Gamma_{21} \frac{\left(s+\gamma+\left(i_{0} s_{2} s_{1}\right)\right)_{0}}{h_{1}} p_{i}^{\prime}(1)
$$

$$
+1 / 2>,\left(1 x_{1}\right) \frac{1}{H_{1}} \quad x^{\prime}, g(1)
$$

$$
\begin{aligned}
& \hat{y}\left(l^{\prime}\right)=-1 / 2 i_{31} 1 / 4\left(-\frac{1}{H_{2}} \hat{a}(s)\right. \\
& \text { - } \left.y_{21} \frac{\bar{T}_{1}}{\prod_{1}} \quad \hat{b}_{1}\right) \\
& \text { - } \left.1 / 2 i_{31} \frac{\left(F_{1}, \cdots_{4}(=2)\right.}{H_{1}}\right)\left(i_{0}\right) \\
& +1 / 2 r_{51}\left(\omega_{c}\right) \frac{1}{H_{1}} c^{-x} \rho_{0}^{-1}(t) \\
& \text { - } \left.\left(\boldsymbol{N}_{i_{c}}\right) \frac{\left(s+1 / 2 \gamma_{i}+i_{i}\right.}{H_{1}}\right) e^{-\pi_{1}} \rho_{i_{1}}(H) \\
& +\frac{F_{1}}{H_{1}} t^{-s t^{\prime}} \text { g(t) }
\end{aligned}
$$

where

Neart we soive equationa (7.0 .34), (35), (36) for $\hat{d}(s), \hat{t}(5), \hat{f}(s)$ in terns of $\hat{a}(s)$ o $\hat{b}(s)$. $\hat{c}(s)$:-

$$
-1 / \Gamma_{2}, \frac{\left(s_{1} x+1\left(\omega+\omega_{3}-\Delta \omega^{\prime}\right)\right)}{H_{2}} e^{\left.-s t^{\prime} f(1)^{\prime}\right)}
$$

$$
-1 / 2 \Gamma_{21}\left(\lambda \varepsilon_{0}\right) \frac{1}{H_{2}} e^{-s t^{\prime}} e\left(t^{\prime}\right)
$$

$$
\begin{align*}
& -V_{2} \Gamma_{2}, \frac{F_{7}}{H_{2}} \hat{H}(6) \\
& -1_{2} \Gamma_{31} \frac{\left(F_{2}-1 / 6^{2}\right)}{H_{2}} \hat{(H)} \tag{7.1,4}
\end{align*}
$$

$$
\begin{aligned}
& +\left(\lambda \varepsilon_{0}\right) \frac{\left(s+1 / 2 X_{31}+\lambda(\omega-2 \Delta u)\right)}{H_{2}} e^{-s t} f(t) \\
& +\frac{F_{2}}{H_{2}} e^{-s t^{\prime}} \text { ell } \\
& \hat{f}(s)=\hat{8} \sum_{81}\left(i \lambda \varepsilon_{c}\right)\left(\frac{\left(s+\gamma+1\left(\nu+\omega_{3}-\Delta \omega\right)\right.}{H_{2}} \hat{a}(s)\right. \\
& -y_{2} \sum_{21}\left(i \lambda \delta_{0}\right) \frac{\left(s+1 / 2 \gamma_{31}+i(\omega-2 \Delta \omega)\right)^{\prime} b(i s)}{H_{2}} \\
& -y_{2} \Gamma_{31}\left(\lambda \varepsilon_{0}\right) \frac{\left.\left\{\left(s+1 / 2 \gamma_{31}+i(\omega-2 \Delta s)\right)+\left(s+\gamma+(\omega+)_{3}-\Delta \omega\right)\right)\right\}}{1 T_{2}} \hat{c}(s) \\
& -y_{2} \Gamma_{31} \frac{\left.\left(s+r+i(1)+w_{3}-\Delta \omega\right)\right)}{H_{2}} e^{-s t^{\prime} d\left(t^{\prime}\right)} \\
& +\frac{\left.\left.\left(s+1 / 2 \gamma_{31}+i(\omega-2 \Delta, \omega)\right)(s+\gamma+i(1)+2)_{2}-\Delta, \Delta\right)\right)}{H_{2}} e^{-s t} f(t) \\
& +\left(. \lambda \lambda_{0}\right) \frac{\left(s+r_{2} \gamma_{31}+(1)-2 \Delta \Delta i\right)}{H_{2}} e^{-s s^{\prime}} e(t)
\end{aligned}
$$

$$
\begin{align*}
& \left.F_{(1)}=\left(\cdots x_{2} x_{11}+1 w_{2}\right)\left(+1 / 2 Y_{11}+\cdots\right)-1 / 4\right)^{2} \tag{7.E.L2}\\
& \left.r_{1}\right)=\left(+x_{1}+w_{2}-x_{2} x_{1}\left(s_{2}+n_{1} x_{1}+\omega_{2}\right)+m_{4}\left(e^{2}\right.\right. \\
& \gamma=1 / 2\left(\gamma_{1}, x_{n}\right) \\
& i=\left\lceil_{4}\right\rceil_{1} \\
& \Delta \omega=\omega-\omega_{0} \\
& (\lambda i)^{2}=1 / 4 \sigma^{2}
\end{align*}
$$

where

$$
\begin{align*}
& \Gamma(1)\left(y_{1}+1\left(1+\omega_{2}+2 \Delta \omega\right)(5+12)+1(\omega-2 \Delta \omega)\right)-1 / 45^{2} \tag{7.2.47}\\
& f, 1)=\left(1++1\left(\omega+\omega_{3}-\infty(1)\right) / s+1 / 2 \delta_{21}+\left(\omega+\omega_{3}+2001\right)+1 / 4 C=\right.
\end{align*}
$$

Now we can solve equations (7.E.30), (7.B.31), (7.B.32) for at: , f(s) (i) by gabotituting equations (7.B.39) - (46). These three equations can than be ratuced to two by elimirating \hat{b}) as followes-
since, from equation (7.A. 123)

$$
\dot{P}_{11}+\dot{P}_{22}+\dot{P}_{23}=0
$$

we therefore know that

$$
\dot{p}_{11}^{(1)}+\dot{p}_{2}^{\prime \prime}+\dot{p}_{33}^{\prime \prime}=0
$$

and on taking Laplace trancforms

$$
s\left\{\hat{\rho}_{1}^{\prime \prime}(s)+\hat{\rho}_{i 2}^{(s)}(s)+\hat{\rho}_{33}^{(s)}(s)\right\}-e^{-s t^{\prime}}\left\{\rho_{11}^{\prime \prime}(1)+\rho_{22}^{(s)}\left(t^{\prime}\right)+\rho_{s 3}^{(s)}\left(t^{\prime}\right)\right\}
$$

1.0. $\left(s+1(w-\Delta v \mid)\left\{\hat{c}^{\prime}(s)+b^{\prime}(s)+\hat{c}^{\prime}(s)\right\}=e^{-s t^{\prime}}\{a(t)+b(t)+c(1)\}\right.$

$$
\begin{aligned}
\therefore \hat{H}(s)= & -\hat{a}(s)-\hat{c}(s)+\frac{e^{-s t}}{s+i(w-\Delta w)} \\
& \times\left(\hat{f}(t)+b(t)+c\left(t^{\prime}\right)\right)
\end{aligned}
$$

The remulting two equations by be written as follows:-

$$
\begin{align*}
& a_{1} \hat{a}(s)+a_{3} \hat{c}(s)=a_{0} \tag{7.E,49}\\
& b_{1} \hat{a}(s)+b_{3}(s)=b_{0} \tag{.}
\end{align*}
$$

where

$$
\begin{align*}
a_{1}(s)= & -\left(s+\gamma_{2,}+i(\omega-\Delta \omega)\right) H_{1} H_{2}-1 / 4 \Gamma_{31}^{2} 1 / 4 G^{2}\left(H_{1}+H_{2}\right)+11 \Gamma^{2}\left(F_{2} H_{1}+F_{1} H_{2}\right) \\
a_{3}(s)= & -\left(s+\delta_{-1}+i(\omega-\Delta \omega)\right) H_{1} H_{2}+1 / 4 \Gamma_{31}^{21 / 4} \sigma^{2}\left(H_{1}+H_{2}\right)+1 / 4\left(\Gamma^{2}-\Gamma_{31}^{2}\right)\left(F_{2} H_{1}+\Gamma_{1} H_{2}\right) \\
a_{0}(s)= & -e^{-s s^{\prime}\left(t^{\prime}\right)} \frac{1}{(s+1(\omega-\Delta \omega))}\left\{\left(s+\gamma_{21}+(\omega-\Delta \omega)\right) H_{1} H_{2}-1 / 4 \Gamma^{2}\left(F_{2} H_{1}+F_{1} H_{2}\right)\right\} \tag{7.B.51}\\
& -e^{-s t^{\prime}} b\left(l^{\prime}\right) \frac{1}{(s+i(\omega-\Delta \omega))}\left\{\quad \gamma_{2,} H_{1} H_{2}-1 / 4 \Gamma^{2}\left(F_{i} H_{1}+F_{1} H_{2}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
& -e^{-\lambda^{\prime}}(H) \frac{1}{(G+(\omega \cdot \Delta \omega i n))}\left\{\left(+\gamma_{-1}+(\omega-\Delta \omega)\right) H_{1} H_{2}-H_{4}\left[\because\left(F_{2} H_{1}+F_{1} H_{2}\right)\right\}\right. \\
& \left.-c^{-x^{\prime}} d y^{\prime}\left\{-1 / 45_{3}^{2}(1) \varepsilon_{0}\right) 4,\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -e^{-t^{\prime}}\left(\begin{array}{ll}
(H) \\
1 / 2 T \\
, & \left.r_{2} H_{1}\right\}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -e^{-x^{\prime}} g\left(M^{\prime}\right)\left\{n_{i} \Gamma_{31} F_{1} H_{2}\right\} \\
& \left.\left.h_{1} l_{s}\right)=\left(s+Y_{21}+1 / w-\Delta w\right) H_{1} H_{2}+1 / 4 C^{2} / 4 / S_{21}^{2}+S_{21}^{2}, S^{2}\right)\left(H_{1}+H_{2}\right)+1 / 4 G^{2}\left(B_{2} H+B_{1} H_{2}\right) \\
& -1 / h_{4}\left(S^{2}+\Gamma_{21}^{2}\right)\left(F_{2} H_{1}-1 F_{1} H_{2}\right) \\
& \left.b_{3} k\right)=\left(x_{21}-r_{31}\right) H_{1} H_{2}+1 / 4 \sigma^{2} 1 / 4\left(T_{4}^{2}-T_{21}^{2}-2 T^{2}\right)\left(H_{1}+H_{2}\right)-1 / 4 G^{2}\left(B_{2} H_{1}+B_{1} H_{2}\right) \\
& -4\left(S_{21}^{2}-\Gamma_{1}^{\prime}\right)\left(F_{2} H_{1}+F_{1} H_{2}\right) \\
& \left.\left.h_{i}(s)=e^{-s t^{\prime}} a\left(t^{\prime}\right) \frac{1}{(s+n(\omega-\Delta \omega j))}\left\{\left(s+\gamma_{21}+1 / \omega-\Delta \omega\right)\right) H_{1} H_{2}+1 / 4 G^{21 / 4} \int_{21}^{2}\left(H_{1}+H_{2}\right)-1 / 4\left(\Gamma^{2}+F_{21}^{2}\right)\right\}\left(F_{1} H_{1}+F_{1} H_{2}\right)\right\} \\
& +e^{-s H^{\prime}} b\left(H^{\prime}\right) \frac{1}{(5-1(\omega-\Delta \omega))} \quad \begin{array}{r}
\gamma_{21}, H_{1} H_{2}+1 / 46^{2} / 4 S_{21}^{2}\left(H_{1}+H_{2}\right)-1 / 4\left(S^{2}+F_{21}^{2}\right) \\
\left.\times\left(F_{2} H+H_{1} H_{2}\right)\right\}
\end{array} \\
& +e^{-s t^{\prime}} c\left(I^{\prime}\right) \frac{1}{(\xi+i(\omega-<, \omega))}\left\{\quad \gamma_{21} H_{1} H_{2}+1 / 4 \sigma^{2} / 4 \Gamma_{21}^{2}\left(H_{1}+H_{2}\right)-1 / 4\left(\Gamma^{1}+\Gamma_{21}^{2}\right)\right. \\
& \left.x\left(F_{2} H_{1}+F_{1} H_{2}\right)\right\} \\
& +e^{-5 t^{\prime}} d\left({ }^{\prime}\right)\left\{-\left(1 \lambda \xi_{0}\right) H_{1}\left[E_{2}+1 / 4\left(\bar{X}_{31}^{2}+12\right)\right]\right\} \\
& \text { (7. } \mathrm{E}, 52 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& +e^{-S l^{\prime}} e(I)\left\{H\left[-11_{4} G^{2} 1_{2} \Gamma_{21}+1 / 2\left(\Gamma_{21}+\Gamma_{24}\right) F_{2}\right]\right\} \\
& +e^{-5 t^{\prime}} \rho_{31}(1)\left\{\left(i \lambda \varepsilon_{0}\right)\left[B_{1}+1 / 4\left(\Gamma_{34}^{2}+\Gamma^{2}\right)\right] H_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +e^{-5 t^{\prime}} g\left(t^{\prime}\right)\left\{H_{2}\left[-1 / 4 G^{2} 1 / 2 \Gamma_{21}+1 / 2\left(\Gamma_{31}+\Gamma_{21}\right) F_{1}\right]\right\}
\end{aligned}
$$

From equations (7.R.49) and (50)

$$
\hat{a}(s)=\left[\frac{a_{2} b_{0}-a_{0} b_{3}}{a_{1} b_{1}-a_{1} b_{3}}\right]=\left|\frac{a_{3} b_{2}-a_{2} b_{3}}{2}\right|
$$

$$
\begin{equation*}
\hat{i}(s)=\left[\frac{a b_{0}-a b_{0}}{a b_{0}-b_{s}}\right]=\left[\frac{a b_{1}-a b_{0}}{2}\right] \tag{0}
\end{equation*}
$$

and, of course, from (7.2.43), on substituting (7.R.53) and (54), we obtain
where

$$
\begin{equation*}
Z(s)-a(s)(t, n)-(, 1 s) h(1)=H(s) H 2(s) T(s+1(w-\Delta w)) \tag{7.5.56}
\end{equation*}
$$

and

$$
\begin{aligned}
& T(s+1(\omega-\Delta \omega))=-\left\{H_{1} H_{2}\left(s+X_{31}+1(\omega-\Delta \omega)\right)\left(s+X_{21}+(\omega-\Delta \omega)\right)\right. \\
& +\left(\Delta+n_{2}\right) 1_{4}\left(=^{2}\left[\gamma_{4} \Gamma^{2}\left(s+\gamma_{21}+(\omega-\Delta \omega)\right)\right.\right. \\
& -V_{1}\left[l_{i 1}\left(s+\gamma_{31}+i(\omega-\Delta \omega)\right)\right] \\
& +2\left(P_{2} H_{1}+\bar{B}_{1} H_{2}\right)\left(s+K_{21}+i(\omega-\Delta \omega)\right) / 1+G^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -1 / 4 G^{2}\left(F_{1} B_{2}+F_{2} B_{1}\right) / 4\left(2 V^{2}-S_{31}^{2}\right) \\
& \text { - }\left(F_{2} H_{1}+F_{1} H_{2}\right) \frac{1}{2} T^{2}(s+\gamma+1(\omega-\Delta \omega i) \\
& \text { - } 1 / 4 \sigma^{21 / 4}\left(2 T^{2}-\Gamma_{31}^{2}\right)\left[H _ { 1 } \left(s+1 / 2 \gamma_{21}+1\left(\omega+\omega_{3}+2 \Delta \omega\right)\right.\right. \\
& \left.+H_{2}\left(s+1 / 2 \gamma_{21}+\cdots \omega_{2}\right)\right]
\end{aligned}
$$

We have used the fact that

$$
\begin{equation*}
B_{1}(s)+1 / 6 C^{2} G^{2}=H_{1}(s) \cdot\left(s+1 / 2 \gamma_{21}+1 w_{2}\right) \tag{7.B.58a}
\end{equation*}
$$

and

$$
B_{2}(s)+1 / k \int^{2}\left(E^{2}=H_{2}(k) \cdot\left(s+1 / 2 \gamma_{21}+i\left(\omega+\omega_{3}+2 \omega\right)\right)\right.
$$

On substituting the values for $\hat{a}(s)$, $\hat{b}(s)$ and $\hat{c}(s)$ from equations (7.E.53) - (55) in equation (7. B. 41) for $\hat{\rho}_{51}(s)$, we obtain:

$$
\begin{aligned}
\hat{\rho}_{31}(s) & =\hat{\psi}_{x 11}(s) e^{-(s+i(\omega-\Delta \omega)) t} \rho_{11}\left(t^{\prime}\right) \\
& \left.+\hat{\psi}_{\alpha 22}(s) e^{-(s+i l(\omega)} 1\right) \rho_{22}\left(l^{\prime}\right) \\
& +\hat{\psi}_{\times 33}(s) e^{-(s+i(\omega-\Delta \omega)) t} \rho_{<3}\left(l^{\prime}\right) \\
& +\hat{\psi}_{\times 13}(s) e^{-(s+i 2(\omega-\alpha)) t} \rho_{13}\left(t^{\prime}\right) \\
& +\hat{\psi}_{\times 12}(s) e^{-(s+i 2(\omega-\Delta \omega)) t} \rho_{12}(l)
\end{aligned}
$$

$$
\begin{aligned}
& +\hat{4}_{2-1}(0)(-3 \\
& \text { P- }{ }^{11}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{p} 11)+\hat{u}_{x-3}\left(p_{23}(11)\right. \\
& +\hat{u}_{\lambda 21} u_{p_{11}}\left(t^{\prime}\right)
\end{aligned}
$$

where $\alpha=31$, and

$$
\begin{aligned}
& \times\left[\left(B_{1}+1 / 4\left(Y-Y_{21}^{2}\right)\right) a_{1}+\left(B_{1}+1 / 4 \Gamma_{21}^{2}\right) a_{3}\right] \\
& +\left\lceil\left(y_{1} x_{21}+\left(H_{2}-x_{1}\right)\right) H_{1} H_{2}-H_{4} \mid \prime\left(F_{0} H_{0}+F_{1} H_{2}\right)\right] \\
& \times\left[b_{2}+n_{2}\left(x^{\prime}, i\right) b_{1}-\left(B_{1}+m_{2}\right) b_{5}\right] \\
& \left.-1 / 4 \Gamma_{i}^{2}, Z\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\left(B_{1}+1 / 4\left(\Gamma^{2}-F_{21}^{2}\right)\right) a_{1}+\left(B_{1}+1 / 4 \Gamma_{2}^{2}\right) a_{5}\right] \\
& +\left[\gamma_{21} H_{1} H_{2}-1 / 4 \Gamma 2\left(F_{2} H_{1}+F_{1} H_{2}\right)\right] \\
& \times\left[\left(B_{1}+1 / 4\left(\Gamma^{2}-\Gamma_{21}^{2}\right)\right) b_{1}+\left(B_{1}+1 / 4 \Gamma_{21}^{2}\right) b_{3}\right] \\
& -1 / 4[212\}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\psi}_{\alpha 33}(s)=\frac{1}{(s+1 \omega \cdots \omega) H} \frac{1 \lambda \varepsilon_{0}}{2}\left\{\left[\gamma_{2}, H_{1} H_{2}+1 / 4 \Gamma_{21}^{2} 4 / 4 \sigma^{2}\left(H_{1}+H_{2}\right)-1 / 4\left(\Gamma+\Gamma_{21}^{2}\right)\left(F_{2} H T T H H\right)\right]\right\} \\
& x\left[\left(B_{1}+1 / 4\left(\Gamma-\Gamma_{21}^{2}\right)\right) a_{1}+\left(B_{1}+1 / 4 \Gamma_{21}\right) a_{5}\right] \\
& 7\left[\left(S+r_{2}+i(\omega<i \omega)\right) H_{1} H_{2}-1 / 4\left[2\left(F_{2} H_{1}+F_{1} H_{2}\right)\right]\right. \\
& \left.\times\left[\left(B_{1}+1 / 4 / \Gamma^{2}-\Gamma_{2 i}^{2}\right)\right) b_{1}+\left(B_{1}+1 / 4 \Gamma_{21}^{2}\right) b_{3}\right] \\
& -1 / 4[2,2\}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\psi}_{\alpha 13}(s)=\frac{1 / 46^{2}}{2}\left\{[B _ { 2 } + 4 / 4 (\Gamma _ { 3 1 } ^ { 2 } + \Gamma ^ { 2 })] \left[\left(B_{1}+1 / 4\left(\left(^{2}-\Gamma_{21}^{2}\right)\right) a_{1}+\left(B_{1}+1 /\left(S_{21}^{2}\right) d_{3}\right]\right.\right.\right. \\
&\left.+1 / 4 \int_{31}^{2}\left[\left(B_{1}+1 / 4\left(\Gamma^{2}-\Gamma_{21}^{2}\right)\right) D_{1}+\left(B_{1}+1 / 4 S_{21}^{2}\right) b_{3}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\left(R_{1}+Y_{4}\left(1, Y_{1}\right)\right)=+\left(B_{1}+r_{4} l_{1}\right) a_{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+1 F^{2}\left[\left(B_{1} \cdot 1 / 4\left(i-S_{1}\right)\right) b_{1}+\left(B_{1}+1 / 4 \Gamma_{21}^{2}\right) b_{3}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+4 \operatorname{Lin}^{2}+4\left(\left\{\left(r_{2}^{2}\right)\right) b_{1}+\left(r_{1}+1 / 4 T_{2}\right) b_{5}\right]\right\} \\
& +B, Z\} \\
& \hat{\psi}_{x-1}()=\frac{1}{H_{1} Z}\left\{\begin{array}{c}
\frac{3}{3} H_{2}^{2}\left\{\left[1: Y_{1}(x+\}+1\left(د_{2}-\Delta j\right)+1_{2}\left(S_{5}+Y_{2}\right)\left(v+i / 2 Y_{31}+\cdots j\right)\right]\right.
\end{array}\right. \\
& \times\left[\left(B_{1}+1 / 4\left(\Gamma^{2}-\left.\right|_{i 1} ^{i}\right)\right) a_{1}+\left(B_{1}+1 / 4 T_{21}^{2}\right) a_{5}\right] \\
& \left.+1 / 2\rangle_{31}\left(5+1 / 2 \gamma_{31}+i \omega\right)\left[\left(B_{1}+1 / 4\left(j^{2}-l_{21}^{2}\right)\right) b_{1}+\left(B_{1}+1 / 4 l_{21}^{2}\right) b_{3}\right]\right\} \\
& \left.-1 / \sum_{21}(s+x)+\left(1\left(v_{2}-s+s\right)\right) Z\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+1 / 2 S_{31} F_{1}\left[\left(B_{1} \cdot 1 / 4\left(S_{-1}^{2}\right)\right) b_{1}+\left(B_{1}+1 / 4 i_{21}^{2}\right) b_{3}\right]\right\} \\
& +1 / 2\{17\}
\end{aligned}
$$

$$
\begin{aligned}
& +\hat{\psi}_{822} 0 e^{-\left(6+(w)+t^{\prime}(t)\right.}+\hat{U}_{B 2}\left(t^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\hat{\psi}_{\beta 13} 1 e^{-(s+i)^{\prime}}(t i)+\hat{U}_{\beta 13} 1\right)_{p}\left(t^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\hat{\psi}_{\beta 52}(s) e^{-\left(s+i(w-\Delta \omega) t t_{n}(t)\right.}+\hat{u}_{\beta=2}(s) p_{52}(t)
\end{aligned}
$$

$$
\begin{aligned}
& +\hat{\psi}_{b \times 1}+\cdots \quad p \quad+\hat{l}_{1,1}^{1)} p_{1}^{(1)} \\
& +\hat{\psi}_{\beta=1}()=\rho_{21} \| \\
& +\hat{u}_{\beta_{2 i}}{ }^{(s)} \rho_{1}{ }^{(11)}
\end{aligned}
$$

$$
\begin{aligned}
& +\hat{u}_{\beta 23}(;) \rho_{25}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[1 r_{0}-\lambda_{2}\left(\left(s+1 / 2 \gamma_{31}+i \omega\right)+1 / 2 \eta_{1,1}\left(s+\gamma+1\left(\omega_{2} \Delta(\omega)\right)\right\} a_{1}\right.\right.} \\
& \left.-\left\{1 / 2 T_{i 1}\left(s+\gamma_{+1}\left(\omega_{2}-\Delta \omega\right)\right)+1 / 2 \Gamma_{21}\left(s+1 / 2 \gamma_{31}+\omega\right)\right\} a_{3}\right] \\
& +\left[\left(v+\gamma_{21}+(\omega-\Delta \omega)\right) H_{1} H_{2}-1 / 4 T^{2}\left(F_{2} H-1 F_{1} H_{2}\right)\right] \\
& \text {, }\left[\eta_{-}\left(i_{31}-\lambda_{21}\right)\left(s+1 / 2 \gamma_{31}+i \omega\right)+1_{2} \Gamma_{31}\left(s+\gamma+1\left(\omega_{2}-\Delta \omega\right) j b_{1}\right.\right. \\
& \left.-1 / 2 \lambda_{31}\left(s+\gamma+\left(\omega_{2}-\Delta(j)\right)+1 / 2 \Gamma_{21}\left(s+1 / 2 \gamma_{31}, i \omega\right)\right\} b_{3}\right] \\
& -\left\{\left\{\left(1+1_{2} \gamma_{=1}+i \omega\right) Z\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left[x_{1}, H_{2}-4\right)\left(F, H_{1}+F, H_{2}\right)\right] \\
& \times\left[\left\{2\left(S_{1-1}-\right)_{1}\right)(s+1 / 2)_{31}+i(s)+v_{2} \Gamma_{31}\left(s+x_{1}+7\left(\omega_{2}-\Delta v i\right)\right)\right] b_{1} \\
& +\left\{1 / 2 \rho_{31}\left(s+\gamma_{+1}\left(\omega \omega_{2} 2 \omega\right)\right)+1 / 2 \Gamma_{21}\left(s+1 / 2 \gamma_{31}+7(\nu)\right\} b_{3}\right] \\
& \left.-1 / 2 Y_{21}\left(i+1 / 2 Y_{31}+1, \omega\right) Z\right\} \\
& \hat{\psi}_{\beta 35}(s)=\frac{1}{(s+1(\omega-\alpha \omega) \mid} \frac{\left(-\lambda_{1}\right)}{\left.H_{1}\right)}\left\{\left[\gamma_{21} H_{1} H_{2}+y_{4}\left(=1 / 4 S_{21}^{2}\left(H_{1}+H_{2}\right)-1 / 4\left(\Gamma^{2}+\zeta_{21}^{2}\right)\left(F_{2} H_{1}+F_{1} H_{2}\right)\right]\right.\right. \\
& +\left\{\delta_{1,}\left(s+\gamma+i\left(\omega_{2}-\Delta \omega\right)\right)+1 / 2\left[_{21}\left(s+1 / 2 \gamma_{31}+i \omega\right)\right\} a_{3}\right] \\
& +\left[\left(s+\gamma_{21}+1(\omega-\Delta \omega)\right) H_{1} H_{2}-1 / 4\left[2\left(F_{2} H_{1}+F_{1} H_{2}\right)\right]\right. \\
& \times\left[\left\{1 / 2 M_{31}-\Gamma_{21}\right)\left(s+1 / 2 \gamma_{31}+i \omega\right)+1 / 2 \int_{31}\left(s+\gamma_{+1}\left(\omega_{2}-\Delta \omega\right)\right)\right\} b_{1} \\
& \left.\left.+, j_{1}(\alpha+\gamma+i(\omega, z \omega))+1 / 2 \sum_{21}\left(s+1 / \gamma_{3}+1 \omega\right)\right\} b_{5}\right] \\
& \left.-1 / 2 \gamma_{21}\left(s+1 / 2 \gamma_{21}+\omega\right) 乙\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{1 / 2\left[i_{1}\left(1, \nu^{\prime}+1\left(x_{2}-s_{2}\right)\right)+1 / 2\left[21\left(s+1 / 2 \gamma_{3}+i v\right)\right) b_{5}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +1=\sum_{51}\left(x+x+1\left(\omega_{z}-(s .0)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
+\left\{\left(-\left\{-s_{1}+x_{1}\left(\omega_{2}-\Delta \omega\right)\right)-"_{2}\left[n_{1}\left(s_{1} 1_{2} x_{31}+(\omega)\right\} b_{3}\right]\right]\right.
\end{array} \\
& -1 /=\left\{_{31}(v+1)+\left(w_{2}-(\Delta v)\right) \geq H_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{1 / 2 \Gamma_{i s}(s+1)+1\left(\omega \omega_{2}-\Delta \omega\right)\right)+1 / 2\left[\left[_{21}\left(s+1 / 2 \gamma_{31}+1 \omega\right)\right\} a_{3}\right] \\
& +\left[1 / 2 \int_{31}\left(1,+1 / 2 \gamma_{i 1}+i \omega\right)\right]\left[1 / 2\left(T_{i 1}-T_{21}\right)\left(s+1 / 2 \gamma_{51}+i \omega\right)\right. \\
& +1 / 2 i_{3 i}\left(s+\gamma+2\left(1 v_{2}-\Delta \omega\right)\right)\left(b_{1}\right. \\
& +\left\{1 / 2 T_{1}(s+\gamma+i(\omega i=-\alpha \omega))\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+1 / 2\left[2_{2} k+1 / 2 \gamma_{13}+1, \omega\right) i_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.+1 / 2 r_{21}\left(s+1 / 2 x_{31}+i, \omega\right)\right] b_{3}\right]^{2}\right\} \\
& \left.+\left(s+1 / 2 \gamma_{31}+i \omega\right) z\right\}
\end{aligned}
$$

Taking the inverse Laplace transforms of equation (7.B.59a) and (7.E .COR), we obtain:-

$$
\begin{aligned}
& \text { - } \psi_{k=1}(5) \rho_{1}+\psi_{\alpha 21}(\uparrow) \rho_{21}(1)
\end{aligned}
$$

and
he shall now proceed to find an expression for the spectral profile after the manner of Chapter III. We recall that equation (3.B.41) gives, for $\boldsymbol{x}=0$,

$$
\begin{equation*}
E^{(H)}\left(\underline{R}, t_{R}\right)=\underline{E}^{(t+1)}\left(\underline{R}, t_{2}\right)+\sum_{i=2,3} \frac{\left[p_{i 1}-\hat{R}\left(\hat{R} \cdot P_{i}\right)\right]}{R} \frac{\omega_{i 1}^{2}}{c^{2}} P_{1 i}(t) \tag{7,B.63}
\end{equation*}
$$

where $t_{n}=t+R / C$ -

IdE.

$$
\begin{equation*}
\underline{E}^{(A)}\left(\underline{R}, t_{2}\right)=E^{()^{\prime \prime)}}\left(\underline{R}, t_{R}\right)+\psi_{2} P_{12}\left(t_{R}-R / C\right)+\psi_{3} P_{15}\left(t_{12}-R / C\right) \tag{7,B,64}
\end{equation*}
$$

where $\Psi_{2}(\hat{R}) \frac{\omega_{2}^{2}}{c^{2}} \frac{\left.f_{21}-\hat{R}\left(\hat{R} \cdot f_{21}\right)\right]}{R} ; \psi_{5}(\hat{R})=\frac{\omega^{2}}{c^{2}}\left[\frac{f_{31}-\hat{R}\left(\hat{R} \cdot f_{31}\right)}{R}\right.$

The lat order field correlation function list-

$$
\begin{aligned}
& G_{j k}^{\prime \prime \prime}\left(\underline{R^{\prime}}, t_{R}^{\prime} ; \underline{R}, t_{R}\right)=\left\langle\underline{E}_{j}\left(\underline{R}^{\prime}, t_{R}^{\prime}\right), \underline{E}_{k}\left(\underline{R}, t_{j}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{E_{k}^{(i) k}\left(\underline{R}, t_{R}\right)+\psi_{2 k}(\hat{R}) P_{12}(t)+\varphi_{3 k}(\hat{R}) P_{15}(1)\right\}> \\
& =\left\langle E_{-7}^{(t) i v i t}\left(\underline{R}^{\prime}, t_{R}^{\prime}\right) \cdot E_{R}^{(t)(0)}\left(\underline{R}, t_{R}\right)\right. \\
& +\Psi_{2 j} \times(\hat{R}) \cdot \psi_{2 R}(\hat{R}) P_{12}^{+}\left(t^{\prime}\right) P_{12}(t) \\
& +\psi_{3} \times(\hat{R}) \quad Y_{3 k}(\hat{R}) P_{13}^{+}(t) P_{13}(t) \\
& \left.+E_{\gamma}^{(H) k}\right)^{+}\left(R_{-}^{\prime}, R_{R}^{\prime}\right) \cdot \Phi_{2 k}(\hat{R}) P_{12}(t)+E_{j}^{(t)(0)+}\left(\underline{R}^{\prime}, t_{R}^{\prime}\right) \cdot \Psi_{3 K}(\hat{R}) P_{(J}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\psi_{2}+(\hat{k}) P_{12}+\left(t^{\prime}\right) \psi_{3 k}(\hat{k}) P_{13}(t)+\psi_{j}(\hat{k}) P_{13}^{+}\left(t^{\prime}\right) \psi_{2 k}(\hat{R}) P_{12}(t)\right\rangle
\end{aligned}
$$

The lst toxm in this expression gives the correlation function for the incident beam. The ith - 7th tomas are crose texns and represent Interference botween the inoident and seattered boans of rediation. Thoy are negligible for i, the observation distance, auficientiy large.

Hence the corralation function for the ocatterex pield in, for ${ }^{\prime \prime}=5$.

Dut we recall that ϕ 's are all rea1, ae show in Lehmberg's papere ${ }^{[2]}$. hence ve can write

$$
\begin{align*}
& \left.\left.+L_{2} L_{5} P_{i 2}^{+}\left(H^{\prime}\right) P_{1}, l\right)+\underline{L}_{3} \cdot\left(L_{2} P_{5}^{+}\left(t^{\prime}\right) P_{12} \|\right)\right\rangle \tag{7.0.67}\\
& L_{i j}\left(t_{k}{ }^{\prime}\right)
\end{align*}
$$

(Nob. This equation could have bean obtained from the generel expression In Chapter IV equation $(4, B, 6)$, remeabering that in the present case $D_{23}=I_{32}=0$, that instand of nine terme there are only four.)

Let us now darine

and $G^{\prime \prime}\left(t_{N}^{\prime}, l_{R}\right)=f\left(t_{n^{\prime},}^{\prime} t_{R}\right)$
whore $\left.f_{i}, t_{f} t_{1}\right)$ and $f\left(t_{,} t_{N}\right)$ are defined by equation (3. $B, 25$) and $f_{\hat{R} 3}\left(t_{k}^{\prime}, t_{R}\right)$ and $\left.L_{\hat{R} ;} t_{R}^{\prime}, t_{R}\right)$ by equation (3.B.46) and (3.E.47). (N. B. 3 is replaced by j^{\prime} not $j^{\prime \prime}$ aince in this chapter we are interested in tranaitiong between levels 3 and 1, net levels 2 and 1 as in Chapter III).
 hat the dimenaions of $R^{2} c / K i J E^{2} \longrightarrow\left(\frac{R^{n} c}{\hbar 心}\right)\left(\frac{m^{2} R^{2}}{f^{2} t^{4}}\right)$

$$
\text { ance }[t E] \cdot \frac{m R}{t^{2}}
$$

$$
\begin{aligned}
& \longrightarrow\left(m c^{\prime \prime}\right) \frac{c}{(h \omega} \text { since }[c]=\frac{\hbar}{t} \\
& \longrightarrow(\hbar \omega) \frac{c}{(\hbar,((h \omega)} \text { since }\left[m c^{2}\right]=\text { how and }\left[t^{-}\right]=\hbar c \\
& \longrightarrow t^{\prime}
\end{aligned}
$$

 equation (35) of ref. 2).

How,

$$
\begin{aligned}
& \left(C^{\prime \prime \prime} \ldots\left(U_{n}^{\prime}, t_{n}\right)=\left\{1 _ { \hat { k } } \frac { h ^ { \prime } c } { 2 \pi T \omega } \left\{\left\langle\varphi_{5} \cdot \varphi_{5} P_{13}^{+}(1) P_{15}(1)+\varphi_{2} \cdot \varphi_{3} P_{12}+(1) P_{13}(1)\right.\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\int d_{\hat{R}} L_{R S}\left(t_{R}, t_{R}\right)
\end{aligned}
$$

where $d \Omega_{\hat{R}}=\min \hat{\hat{R}}_{\hat{R}} d \hat{\theta}_{\hat{R}} d \psi_{\hat{k}}$, as show in the following diagrams.
 Fig 7 BI

Xis.

$$
\begin{aligned}
\varphi_{2}(\hat{R}) & =\frac{\omega_{2}^{2}}{c^{2}} \frac{\left[p_{11}-\hat{R}\left(\hat{R} \cdot p_{21}\right)\right]}{R} \\
\varphi_{3}(\hat{R}) & =\frac{\omega^{2}}{c^{2}} \frac{\left[p_{31}-\hat{R}\left(\hat{R} \cdot p_{51}\right)\right]}{R} \\
\therefore \varphi_{3} \cdot \varphi_{3} & =\frac{\omega^{4}}{R^{2} c^{4}} p_{51}^{2}\left[1-\left(\hat{R} \cdot \hat{p_{31}}\right)^{2}\right] \\
& =\frac{\omega^{4}}{R^{2} c^{4}} p_{31}^{2} \sin ^{2} \mathbb{E}_{\hat{R}} \\
& =\frac{3 \hbar K_{-1}, 1}{4 c R^{2}} \sin ^{2} E_{\hat{R}}
\end{aligned}
$$

(see definition of γ_{3} given by
of. $(3 \cdot A \cdot 2\langle b)$)

$$
\begin{aligned}
& \text { Hance }
\end{aligned}
$$

$$
\begin{align*}
& =\left(\frac{5 r_{n}}{\pi}\right) 8 \pi \int_{i}^{\pi}\left(1-\cos t_{k}\right) \sin t_{\hat{k}} d t_{\hat{k}} \\
& =\frac{x+1}{4} \int\left(1 \cdot x^{2}\right) d x \tag{7.E.72}
\end{align*}
$$

Also,

$$
\begin{aligned}
& 4.4=\frac{\omega^{*}}{h_{i}^{+}} p_{i}=\left[1-(\hat{p}, \hat{k})^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8 \gamma_{1}}{2 \pi} \omega_{2} 2 \pi \int_{0}^{\pi} d \theta_{\hat{k}}[1-(\hat{\beta}=\hat{R})] \sin \theta \hat{R}
\end{aligned}
$$

 $-\sin ^{2} \theta \cos ^{2} \psi \sin ^{2} \hat{\hat{R}} \cos ^{2} \psi_{\hat{k}}$ $-\sin ^{2} \theta \sin ^{2} \theta_{\hat{k}} \sin ^{2} \psi \sin ^{2} \varphi_{\hat{k}}$
$-2 \sin \theta \cos \theta \cos 4 \cos \theta \hat{k} \sin \theta \hat{\alpha}$
$-2 \cos \theta \sin t \sin 4 \cos 4 \hat{\theta} \hat{\theta} \hat{\operatorname{con}} \theta$
$-2 \sin ^{2} \theta \sin \varphi \cos \psi \frac{\sin 4 \hat{2} \hat{\theta} \hat{\theta} \hat{\theta}}{\cos ^{2} \hat{k}}$
Now,

$$
\begin{aligned}
& \int^{2 \pi} \cos \psi_{\hat{R}} d \psi_{R}=\pi \\
& \left.x \sin \varphi_{\hat{R}} \cos \varphi_{\hat{R}}\right] \\
& \int_{0}^{2 \pi} \cos q_{\hat{R}} d \psi_{\hat{R}}=\pi \\
& \int_{0}^{2} \sin ^{2} \psi_{\hat{k}} d \psi_{k}=\pi \\
& \int_{0}^{\pi} \cos \psi_{k} d \psi_{\hat{k}}=0 \\
& \int_{0}^{2 \pi} \sin \psi_{\hat{k}} d \psi_{\hat{k}}=0 \\
& \int_{0}^{\sin } \sin \varphi_{R} \cos \varphi_{R} d q_{R}=0 \\
& \therefore \int_{0}^{2 \pi} d \psi_{\hat{R}} \int_{0}^{\pi} d \theta_{\hat{R}}\left[1-\left(\hat{p_{2}}, \hat{k}\right)^{2}\right]=\pi \int_{0}^{\pi} d \theta_{R} \sin \theta_{R}\left[2-2 \cos ^{2} \theta \cos ^{2} \theta_{R}-\sin ^{2} \theta \sin ^{2} \theta_{\hat{R}}\right]
\end{aligned}
$$

Now

$$
\begin{align*}
& \int_{0}^{\pi}=\operatorname{crit} \hat{\hat{k}} \text { vt } \hat{k}=2 \\
& \int_{0}^{\pi} \cos \theta \hat{k} \sin \theta_{\hat{R}} d \theta \hat{k}=2 / 3 \\
& \int_{i \pi}^{\pi} \sin t \operatorname{cin} \theta_{\hat{R}} d \theta_{\hat{R}}=4 / 3 \\
& \left.\therefore \int_{0}^{2 \pi} d \psi_{n} \int_{0}^{0} d v_{k}^{\pi}\left[1-1_{i}^{1}, i\right)\right] \quad v_{k}=\pi\left[4-4 / 3 \cos ^{2} \theta-4 / 3 \sin ^{2} \theta\right] \\
& =8 \pi / 3 \\
& \therefore \int d j=\frac{R c}{2 \pi u J} f: q=\frac{3 \gamma_{21}}{8 \pi} \frac{\omega_{2}}{\omega} \frac{8 \pi}{3} \\
& f\left(9 \hat{R} \frac{R^{i} c}{2 \pi R \omega}=f_{2}=\frac{\omega_{2}}{\omega} \gamma_{21}\right. \tag{7.E.73}
\end{align*}
$$

Next we must considers-

$$
\begin{aligned}
& \oint d l_{\hat{R}} \frac{R^{2} c}{2 \pi \hbar \omega} \varphi_{2} \cdot \varphi_{3}=\frac{R^{2} c}{2 \pi \hbar \omega} \frac{\omega_{2} \omega^{2}}{R^{2} c^{4}} \quad p_{i 1} p_{31} \int_{0}^{2 \pi} d \varphi_{\hat{R}} \int_{0}^{\pi} d \theta_{\hat{R}}^{\pi}\left[\hat{p}_{21}-\hat{R}\left(\hat{R} \cdot \hat{p}_{21}\right)\right]\left[\hat{p}_{3_{1}}-\hat{R}\left(\hat{R} \cdot \hat{p}_{2_{1}}\right)\right] \\
& =\frac{\omega_{2}^{2} \omega}{2 \pi \hbar c^{3}} \quad p_{21} p_{51} \int_{0}^{2 \pi} d \varphi_{\hat{R}} \int_{0}^{\pi} d \theta_{\hat{R}}\left[\hat{p}_{21} \hat{p}_{31}-\left(\hat{p}_{21}, \hat{R}\right)\left(\hat{p}_{31} \hat{R}\right)\right] \\
& \text { where } \hat{F}_{=1} \hat{R}=\sin \varphi \sin \theta \sin \varphi_{\hat{R}} \sin \theta_{\hat{R}}+\cos \theta \cos \theta_{\hat{R}}+\cos \varphi \sin \theta \cos \varphi_{\hat{R}} \sin \theta_{\hat{R}} \\
& \hat{p}_{21} \cdot \hat{p}_{31}=\cos \theta \\
& \hat{p}_{51} \cdot \hat{R}=\cos \hat{R}_{\hat{R}}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi \cos \theta \int_{0}^{\pi} d \theta_{\hat{R}}\left[\sin \theta_{\hat{R}}-\sin \theta_{\hat{R}} \cos ^{2} \theta_{\hat{R}}\right] \\
& =2 \pi \cos \theta[2.2 / 3] \\
& =8 \pi / 3 \cos \theta \\
& =\frac{\omega_{2}{ }^{2} \omega}{2 \pi \hbar^{3}} p_{21} p_{31} \frac{8 \pi}{3} \cos \theta \\
& =\frac{\omega_{2}{ }^{2}}{\omega^{2}} \frac{4}{3} \frac{\omega^{3}}{\hbar c^{3}} \Gamma_{21} p_{21}=\frac{\omega^{2}}{\omega_{2}} \frac{4}{3} \frac{\omega_{2}^{3}}{c^{3}} f=1 \cdot f_{31}
\end{aligned}
$$

$$
\begin{equation*}
\oint w_{i} \frac{k^{\prime} c}{2 \pi w_{1} \omega} q_{2} \cdot q_{3}=\frac{\omega^{\vdots}}{\omega^{2}} I_{1}=\frac{\omega}{\omega_{2}} \Gamma_{21} \tag{7.8.74}
\end{equation*}
$$

(sea definitions of Γ_{1} and Γ_{-1} Eiven in oquation (3.A.24b). Hence,

$$
\begin{aligned}
& \text { G....H. }\left(t_{R} t_{4}\right)=\gamma_{-11}\left\langle P_{12}+\left(t_{1}\right) P_{13}(t+7)\right\rangle+\frac{\omega_{2}}{\omega} X_{21}\left\langle P_{12}(t) P_{12}(t+1)\right\rangle \\
& +\quad \text { 「 } \\
& =\int 11,2 H_{n} \because
\end{aligned}
$$

where $t=t 1+T$.

Now, since $\frac{\omega^{2}}{\omega^{2}} \frac{\Gamma_{31}}{\gamma_{51}}=\frac{\omega_{5}^{2}}{\omega^{2}} \quad \frac{f_{1}}{P_{31}}$
and $\frac{\omega}{\omega_{2}} \frac{\Gamma_{21}}{\gamma_{31}}=\frac{\omega}{\omega_{2}} \frac{f_{1} f_{3}}{p_{51}^{2}} \frac{w_{2}^{3}}{w^{3}}=\frac{\omega_{2}^{2}}{\omega^{2}} \frac{f_{11} \cdot f_{51}}{p_{31}^{2}}$,
we can write

$$
\begin{align*}
g\left(T, t^{\prime}\right)= & \left\langle P_{13}^{+}\left(t^{\prime}\right) P_{13}\left(t^{\prime}+\uparrow\right)\right\rangle+\frac{\omega_{2}}{\omega} \frac{\gamma_{21}}{\gamma_{31}}\left\langle P_{12}{ }^{+}(t) P_{12}\left(t^{\prime}+T\right)\right\rangle \tag{7.8.75c}\\
& +\frac{\omega}{\omega_{2}} \frac{\Gamma_{21}}{\gamma_{31}}\left\langle P_{12}^{+}\left(t^{\prime}\right) P_{13}\left(t^{\prime}+\uparrow\right)\right\rangle+\frac{\omega}{\omega_{2}} \frac{\Gamma_{21}}{\gamma_{51}}\left\langle P_{13}^{+}\left(t^{\prime}\right) P_{12}\left(t^{\prime}+T\right)\right\rangle
\end{align*}
$$

Let $\quad g_{1}\left(T, t^{\prime}\right)=\left\langle P_{15}^{+}\left(N^{\prime}\right) P_{15}\left({ }^{\prime \prime}+T\right)\right\rangle$
$\gamma_{2}\left(T, L^{\prime}\right)=\left\langle P_{12}^{+}\left(l^{\prime}\right) P_{13}\left(l^{\prime}+\tau\right)\right\rangle$
$\left.g_{5} T, t^{\prime}\right)=\left\langle P_{12}^{+}\left(t^{\prime}\right) P_{12}\left(t^{\prime}+\tau\right)\right\rangle$
$g_{4}\left(T, t^{\prime}\right)=\left\langle P_{15}^{+}(t) P_{12}\left(t^{\prime}+T\right)\right\rangle$
$g\left(\tau, \prime^{\prime}\right)=g_{1}\left(\tau, H^{\prime}\right) \frac{\omega}{\omega_{2}} \frac{\Gamma_{21}}{\gamma_{21}} g_{2}\left(T, t^{\prime}\right)+\frac{\omega_{2}}{\omega} \frac{\gamma_{21}}{\gamma_{31}} g_{3}\left(\tau, H^{\prime}\right)+\frac{\omega}{\omega_{2}} \frac{\Gamma_{21}}{\gamma_{31}} g_{4}\left(T, t^{\prime}\right)$
(7.75)
tnder the hartoff arroximation, we krow tiat
$\left\langle P_{15}{ }^{+}\left(t^{\prime}\right) P_{13}\left(t^{\prime}+\tau\right)\right\rangle \triangleq \sum_{i=1}^{3} U_{i, i,}\left(T, t^{\prime}\right) \rho_{i 3}^{(1)}\left(l^{\prime}\right)$

(weo Craptar IV equaticn (4, C.8)).
Cimilarly,
$\operatorname{anc}{ }^{\circ}$
no that the former equation can be obtained from the lattor by the substitution

$$
\begin{equation*}
\rho^{\prime \prime}\left(t^{\prime}\right)->\rho^{(\cdots)}(t) p_{1}^{+}(0) \tag{7.E.81}
\end{equation*}
$$

Let:-

$$
\Gamma_{=1}\left(t^{\prime}+\uparrow\right)=\sum U_{1, i}(T, N) \rho_{j}(1)
$$

Now

$$
\begin{align*}
& \left\langle P_{n=1}^{+}\left(t^{\prime}\right) P_{15}\left(t^{\prime}+\uparrow\right)\right\rangle=-\frac{1}{i n} \sum_{i=1}^{\infty} U_{=1,4}\left(T,\left(_{1}\right) \rho_{i=}^{(N}\left(t^{\prime}\right)\right. \tag{7.3.84}
\end{align*}
$$

On the other hard:-
and
sofor $\rho_{21}\left(t^{\prime}+T\right) \longrightarrow\left\langle P_{13}^{+}(t) P_{12}(t+T)\right\rangle$
we require tiat $\rho^{\prime \prime}(t) \rightarrow \rho^{(s)}(t) P_{15}^{\top}(0)$
Thas if $\rho_{21}(N+\tau)=\sum_{i=1}^{\sum} \sum_{j=1}^{\sum} u_{2 i, j}\left(\uparrow, N^{\prime}\right) \rho_{j}^{(i)}\left(l^{\prime}\right)$

-205

Hence

$$
\begin{aligned}
& g^{(T, 1)}=\left\langle M_{0}^{\prime}(t) P_{13}(t, T)\right\rangle \\
& \hat{m-1} \sum_{1=1}^{n} U_{31,4}\left(T,(1) p_{12}^{(1)}(1)\right.
\end{aligned}
$$

$$
\begin{aligned}
& g_{3}\left(T, N_{1}\right)=\left\langle P_{12}^{*}(t) P_{12}\left(H^{\prime}+i\right)\right\rangle \\
& \hat{m}-\sum_{i=1}^{n} \|_{21, M}\left(T, M^{\prime}\right) \rho_{12}^{(M)}(\mathbb{U}) \\
& =u_{21,11}\left(T,(1) \rho_{12}^{(1)}\left(l^{\prime}\right)+U_{21,21}\left(T,(1) \rho_{22}^{(N)}(t)+U_{21}, 3\left(T, H_{1}\right) \rho_{=2}^{(1)}(t)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& g\left(T,(1)=\left\langle P_{13}^{+}(1) P_{12}\left(t^{\prime}+T\right)\right\rangle\right. \\
& \hat{m}-\sum_{i 1}^{0} U_{21, \ldots}\left(T, t^{\prime}\right) \rho_{1=}^{(1)}\left(t^{\prime}\right) \\
& =U_{21,11}\left(T, H^{\prime}\right) \rho_{13}^{(1)}\left(1^{\prime}\right)+U_{21,21}\left(T, 1_{1}\right) \rho_{23}^{\prime \prime}\left(1^{\prime}\right)+U_{21,31}(T, 1) \rho_{23}^{\prime \prime}\left(1^{\prime}\right) \\
& =\psi_{\beta 11}(\tau) e^{-i(1, \Delta \omega)(1} \rho_{13}^{(1)}\left(1^{\prime}\right)+\psi_{\beta 21}(\tau) \rho_{=3}^{()}(1)+\psi_{\lambda s}(\tau) \rho_{<3}^{(\lambda)}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left[\psi_{\alpha 11}(T) e^{-((t)-\Delta w) t} \rho_{13}^{(s)}(t)+\psi_{221}(T) \rho_{23}^{(1)}\left(t^{\prime}\right)+\psi_{\times 21}(T) \rho_{33}^{(1)}(1)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{1}\left[\psi \ldots(T)\left(^{(1)} \rho^{(N)}+\psi_{n}^{(T)} \rho^{\prime \prime}(n)+\psi(T) \rho^{\prime \prime}(t)\right]\right. \\
& +\frac{1}{i=1}\left[\psi_{i=1}^{(T)} e^{-(1, s-n) k^{\prime}} \rho_{i=}^{(t)}+\psi_{\beta=1}^{(T)} \dot{\rho}_{i=}^{\prime}(t)+\psi_{\beta=1}^{(T)} p_{i=}^{(N)}(t)\right]
\end{aligned}
$$

Assuming the atom to be in oquilimorive with the field, we wite

$$
\rho_{j}^{(11)}=\left(\rho_{j}(1-\infty)\right)_{t+1}
$$

Let

$$
\begin{align*}
& \left(\rho_{15}\right)_{1 i}=e^{\text {larast) }} \overline{\rho_{x}} \\
& \left(\rho_{12}\right)_{1}=e^{(\omega-0.1))(1-} \int_{12} \\
& \left(\rho_{1}\right)_{1}^{\prime}=\bar{\rho}_{23} \quad, \quad\left(\rho_{N}\right)_{+1}=\bar{\rho}_{22} \tag{7.B.C6}\\
& \left(\rho_{5 N}\right)_{11}=\bar{\rho}_{23} \quad, \quad\left(\rho_{3 N_{2}}\right)_{t}+=\bar{\rho}_{32}
\end{align*}
$$

where $\bar{\rho}_{j}$'s are independent of t ', as we are about to show. Hence

$$
\begin{align*}
& g(T)=\left[\psi_{x 11}^{(T)} \bar{p}_{15}+\psi_{x 21}{ }^{(T)} \bar{p}_{23}+\psi_{x, 5}(T) \bar{\rho}_{55}\right] \\
& +\frac{W_{1}}{W_{2}} \frac{\Gamma_{1}}{\gamma_{i 1}}\left[\psi_{x 11}(T) \bar{\rho}_{12}+\psi_{x 21}(T) \bar{\rho}_{22}+\psi_{x+1}(T) \bar{\rho}_{=2}\right] \\
& +\frac{111}{\omega} \frac{\gamma_{12}}{\gamma_{31}}\left[\psi_{\beta 11}(T) \bar{\rho}_{12}+\psi_{\beta_{21}}(T) \bar{\rho}_{22}+\psi_{\beta 31}(T) \overline{\beta_{32}}\right] \tag{7.8.c7}\\
& +\frac{w}{w_{2}} \frac{\Gamma_{21}}{\gamma_{31}}\left[\psi_{\beta 11}(T) \bar{\rho}_{13}+\psi_{\beta 21}(T) \bar{\rho}_{23}+\psi_{\beta 31}(T) \overline{\rho_{53}}\right]
\end{align*}
$$

Then the total opectral correlation function is

$$
\begin{align*}
& \tilde{g}(\nu)=2 p_{k}\left\{\left[\hat{\psi}_{x 11}(\neg \nu) \overline{p_{13}}+\hat{\psi}_{x 21}(-\nu) \bar{p}_{23}+\hat{\psi}_{x=1}(-i \nu) \bar{p}_{33}\right]\right. \\
& +\frac{\omega}{\omega_{2}} \Gamma_{-11}\left[\hat{\psi}_{x 11}(-v) \bar{p}_{12}+\hat{\psi}_{x 21}(-1) \bar{p}_{22}+\hat{\psi}_{x 31}(-1 \nu) \bar{p}_{32}\right] \tag{7.E.gsa}\\
& +\frac{\omega_{2}}{\omega} \frac{\gamma_{-1}}{\delta_{11}}\left[\hat{\psi}_{\beta 11}(-\nu) \bar{\rho}_{12}+\hat{\psi}_{\beta 21}{ }^{(1 \nu)} \bar{\rho}_{22}+\hat{\psi}_{\beta 31}(-12) \bar{\rho}_{22}\right] \\
& \left.+\frac{\omega}{\omega_{2}} \frac{\Gamma_{21}}{\gamma_{31}}\left[\hat{\psi}_{\beta 11}(-v) \bar{\rho}_{13}+\hat{\psi}_{\beta 21}(-,)\right) \bar{\rho}_{23}+\hat{\psi}_{\beta 31}(-v) \bar{\rho}_{33}\right]
\end{align*}
$$

(i, D. $\bar{\rho}_{33}$ and $\bar{\rho}_{22}$ are real since they represent state populations). We can rearrange terns co that:-

We shall now procood to find $\bar{\rho}_{15}, \bar{\rho}_{23}, \bar{\rho}_{33}$. it equilibrist,
$\int(70.0 \cdot 98 a)$
bet the follow ing diagonal clements are harmonically varying

$$
\begin{aligned}
& \rho_{3}(t \rightarrow \infty)=\bar{\rho}_{31} e^{-1(\omega-\Delta \omega) t} \\
& \rho_{13}(t \rightarrow \omega)=\bar{\rho}_{13} e^{\cdot(1(-\Delta \omega) t} \\
& \rho_{21}(t-\omega)=\bar{\beta}_{21} t^{-(\omega-\Delta \omega) t} \\
& \rho_{12}(t \rightarrow \infty)=\bar{\rho}_{12} e^{+(\omega-\Delta \omega) t}
\end{aligned}
$$

whereas

$$
\rho_{32}(t \rightarrow \infty)=\overline{\rho_{32}}
$$

and

$$
\begin{equation*}
\rho_{23}(t-\infty)=\bar{\rho}_{23} \tag{7.8.0,c}
\end{equation*}
$$

are coristart are the levels 3 and 2 are rot connected ky a dipole moment (see ref 65).

Hence at equilisriva

$$
\begin{aligned}
& \dot{\rho}_{11}(t \rightarrow \infty)=0 \\
& \dot{\rho}_{22}(t \rightarrow \infty)=0 \\
& \dot{\rho}_{33}(t \rightarrow \infty)=0 \\
& \dot{\rho}_{32}(t \rightarrow \infty)=0 \\
& \dot{\rho}_{23}(t \rightarrow \infty)=0 \\
& \dot{\rho}_{31}(t \rightarrow \infty)=-i(\omega-\Delta \omega) \overline{\rho_{31}} e^{-i(\omega-\Delta \omega) t} \\
& \dot{\rho}_{13}(t \rightarrow \infty)=+i(\omega-\Delta \omega) \overline{\rho_{13}} e^{+i(\omega-\Delta \omega) t} \\
& \dot{\rho}_{21}(t \rightarrow \infty)=-i(\omega-\Delta \omega) \overline{\rho_{21}} e^{-i(\omega-\Delta \omega) t} \\
& \dot{p}_{12}(t \rightarrow \infty)=+i(\omega-\Delta \omega) \bar{p}_{12} e^{+i(\omega-\Delta \omega) t}
\end{aligned}
$$

so that the equations of motion (7.A.43) - (51) at equilibxiut retuce to: 1.0.

$$
\begin{align*}
& x_{1} \bar{\Gamma}_{3}=-y_{2} \Gamma_{31} \bar{\rho}_{23}-1 / 2 \Gamma_{31} \bar{\rho}_{2}, \tag{7.E.102}\\
& \gamma_{1} \bar{\rho}_{3}=\lambda \hat{c}_{0} \bar{\rho}_{13}-\lambda \varepsilon_{0} \bar{\rho}_{11}-1 / 2 \Gamma_{21} \bar{\rho}_{52}-1 / 2 \Gamma_{21} \bar{\rho}_{25} \tag{7.8.103}
\end{align*}
$$

$$
\begin{align*}
& \left(v_{2} \gamma_{31}-1 \Delta \omega\right) \bar{p}_{15}=-\lambda \varepsilon_{0} \bar{\rho}_{11}+\lambda \bar{\varepsilon}_{0} \bar{\rho}_{33}-1 / 2 \Gamma_{21} \bar{\beta}_{2} \tag{7.E.105}\\
& \left\{\eta_{2}\left(\gamma_{1} \gamma_{51}\right)+1 \omega_{5}\right\} \bar{\rho}_{32}=\mid \lambda \hat{c}_{6} \bar{\rho}_{12}-1 / 2 \Gamma_{31} \bar{\rho}_{33}-1 / 2 \Gamma_{21} \bar{\rho}_{22} \tag{0}\\
& \left.\left\{n_{1} \rho_{12}+(\omega)_{5}-\Delta \omega\right)\right\} \bar{\rho}_{12}=\mid \lambda \hat{c}_{0} \bar{\rho}_{32}-1 / 2 \Gamma_{31} \bar{\rho}_{13} \tag{7.E.107}\\
& \left(\eta \lambda_{31}+1 \omega_{0}\right) \bar{\rho}_{31}=1 \lambda \bar{c}_{0} \overline{\rho_{11}}-1 \lambda \varepsilon_{0} \bar{\rho}_{33}-1 / 2 \Gamma_{21} \bar{र}_{21} \tag{7,E.108}\\
& \left\{\left(x_{2}\left(\gamma_{21}+\gamma_{51}\right)-\omega_{5}\right) \bar{p}_{25}=-1 \lambda \gamma_{0} \bar{\rho}_{21}-1 / 2 \Gamma_{31} \overline{\beta_{33}}-1 / 2 \Gamma_{21} \bar{\rho}_{i 2}\right.
\end{align*}
$$

As in the emeral case, wo bhall solvo equations (7. B. 104), (7.D.10s), (7.B.105) for $\bar{\rho}_{21}, \bar{\rho}_{31}$, and $\bar{\rho}_{23}$ in terma of $\bar{\rho}_{11}, \bar{\rho}_{22}$ and $\bar{\rho}_{55}$. Yence

$$
\begin{align*}
\bar{\rho}_{23}= & -1 / 2 \Gamma_{31} 1 / 4 \sigma^{2} \frac{1}{H_{0}} \overline{\rho_{11}}-1 / 2 \Gamma_{21} \frac{F_{4}}{H_{0}} \overline{\rho_{22}}-1 / 2 \Gamma_{31} \frac{\left(F_{0}-1 / 46^{2}\right)}{H_{0}} \overline{\rho_{33}} \tag{7.8.110}\\
\bar{\rho}_{21}= & -\left(i \lambda \varepsilon_{0}\right) 1 / 2 \Gamma_{33} \frac{\left(\gamma_{-1, \lambda 3}\right)}{H_{0}} \overline{\rho_{1}}+\left(i \lambda \varepsilon_{0}\right) 1 / 2 \Gamma_{21} \frac{\left(1 / 2 \gamma_{31}+\Delta \Delta\right)}{H_{0}} \overline{\rho_{22}} \tag{7.B.111}\\
& +\left(1 \lambda \varepsilon_{0}\right) / 2 \Gamma_{31} \frac{\left(\gamma+1 / 2 \gamma_{31}-1 /(\omega 3-\Delta \omega)\right)}{H_{0}} \overline{\rho_{33}} \\
\overline{\rho_{31}}= & \left.\left(i \lambda \varepsilon_{0}\right) \frac{B_{0}}{H_{0}} \overline{\rho_{11}}-\left(\lambda \varepsilon_{0}\right) 1 / 4 \Gamma_{2}^{2} \frac{1}{\pi} \bar{\rho}_{22}-\left(i \lambda \varepsilon_{0}\right) \frac{B_{0}+4 / L^{2}}{H_{0}}\right) \overline{\rho_{33}} \tag{7.2.112}
\end{align*}
$$

On polvine equations (7.5.106), (107), (105) for , and wo obtain the hoc.'s or the above three equations, and, on aubstituting these cix equationa in (7.7.102) - (103) wo find that:
$0=\bar{\rho}_{11}\left[\frac{-1 / 2\left(\Gamma_{21}, T \Gamma_{31}\right) 1 / 2 \Gamma_{31} 1_{4} G^{2}\left(H_{0}+H_{0}^{0}\right)}{\left|H_{0}\right|^{2}} \frac{-1 / 4 G^{2}\left(B_{0}^{a} H_{0}+B_{0} H_{0}^{0}\right)}{\left|H_{0}\right|^{2}}\right]$
$0=\bar{\rho}_{11}\left[\frac{1_{4} i^{2} y_{4}\left(H_{c}\left(H_{c}+H^{\prime}\right)\right.}{\left|H_{c}\right|^{2}}+\frac{Y_{4}\left({ }^{2}\left(R_{0}{ }^{\prime} H_{t}+B_{c} H_{i}^{\prime}\right)\right.}{\left|H_{c}\right|^{2}}\right]$

$$
+\bar{\rho}_{22}\left[\frac{1 / 4 I_{2 i}^{\prime}\left(F_{2} H_{u}^{\prime}+F_{c}^{*} H_{2}\right)}{\left|H_{i}\right|^{2}} \frac{-1 / 4\left(1 / 4 \Gamma_{2 i}^{\prime}\left(H_{0}+H_{i}^{*}\right)\right.}{\left(\left.H_{2}\right|^{2}\right.}\right]
$$

$$
+\bar{\rho}_{33}\left[-\gamma_{31}+\frac{1 / 4 \Gamma^{2}}{\left.1 H_{2}\right|^{2}} ;\left(\bar{H}_{1} H^{\prime}+\Gamma_{2} H_{2}\right)-1 / 4 C\left(H_{2}+H_{2}\right)\right]
$$

$$
\frac{-14 C^{2}\left(B_{x}^{\prime} H_{0}+B_{u} H_{c}^{\prime}\right)}{\left|H_{t}\right|^{2}}
$$

Where $\quad H_{0}=\left(X-1 \omega_{5}\right) F_{0}+1 / 4 C\left(1 / 2 Y_{-1}+i \Delta \omega\right)$

$$
\left.-\frac{-140^{\prime} 1 / 4 \Gamma^{\prime}\left(H_{c}+H_{0}\right)}{1 H_{2} 1^{2}}\right]
$$

No can see thet

$$
\begin{aligned}
\bar{\rho}_{11}+\bar{\rho}_{22}+\bar{\rho}_{23} & =1 \\
\therefore \bar{\rho}_{22} & =1-\bar{\rho}_{11}-\bar{\rho}_{33}
\end{aligned}
$$

and

- vis.

$$
\begin{aligned}
& a_{11} \bar{\rho}_{11}+a_{20} \bar{\rho}_{33}=a_{10} \\
& b_{10} \bar{p}_{11}+b_{20} \bar{\rho}_{33}=b_{10}
\end{aligned}
$$

(7.3.218)
(7.2.119)

Whate $\left.a_{10}=-1 / 4 S_{51}^{2} / 4 C^{2}\left(H_{0}+H_{0}^{0}\right)-\gamma_{21} \mid H_{2}\right)^{2}+1 / 4 I^{2}\left(F_{0} H_{0}^{0}+F_{0}^{0} H_{0}\right)$

$$
\begin{aligned}
& a_{30}=Y_{4} \Gamma_{31}^{2} 1 / 4 G^{2}\left(H_{0}+H_{0}^{0}\right)-Y_{21}\left|H_{0}\right|^{2}+1 / 4\left(\left[\left[^{2}-Y_{31}^{2}\right)\left(F_{0} H_{0}^{2}+F_{0} H_{0}\right)\right.\right. \\
& a_{00}=-\gamma_{21}\left|H_{2}\right|^{2}+1 / 4 \Gamma^{2}\left(F_{0} H_{0}^{2}+F_{0} \cdot H_{0}\right)
\end{aligned}
$$

$(7.18 .120)$

$$
\begin{aligned}
& B_{0}=\left(X_{-1, i}\right)\left(1 / 2 X_{2}-1 / 15_{5}-(0, j)\right)+1 / 1+6^{2}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{4\left(1 F_{2} \cdot H_{2}, r_{3} H^{-}\right)}{\|\left. t!\right|^{\prime}} \tag{7.2.113}\\
& \left.+\frac{1 / 4 \int^{\prime 1} / 4!2\left(H_{i}+H^{\prime}\right)}{111.1^{2}}\right]
\end{align*}
$$

$$
\begin{aligned}
& -U_{+}\left(\Gamma, \Gamma, 1 F \cdot H_{1}+F, H^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\quad \therefore \because,-1111+5 \cdot M)
\end{aligned}
$$

solving (7. 5.1120) and (7.5.210) we obtain

$$
\begin{aligned}
& \bar{\rho}=\frac{A}{x} \\
& \bar{\rho}=\frac{G}{x} \\
& \bar{\rho}=1-\left(\frac{1+B}{x}\right)
\end{aligned}
$$

Is in cuuct rosoname with the carremonting atoric trancition, then

$$
\begin{equation*}
X=a_{0} b_{10}-a_{.4} b_{50}=\left|H_{6}\right|^{\prime} T_{0} \tag{7.2.322}
\end{equation*}
$$

wiere

$$
\begin{align*}
& T_{0}=(T / s+1(w-\Delta x=0))_{\Delta \omega}=0 \\
& =-\left[X_{0}, Y_{21}\left|H_{0}\right|^{2}+1 / 4 T_{21}\left(3 X_{2,1} T_{24}+Y_{5,1} Y_{51}\right) / 4 C^{2}\left(H_{0}+H_{0}\right)\right. \\
& +2 \gamma_{21} / 4 C^{2}\left(F_{x}^{*} H_{5}+B_{2} H_{0}^{*}\right)-1 / r^{2}\left(\gamma_{21}+\gamma_{51}\right)\left(F_{0}^{*} H_{t}+F_{c} H_{0}^{*}\right) \tag{7.2.233}\\
& -1 / 4 \Gamma_{51}\left(2 \Gamma_{-1}-\Gamma_{5,}\right) 1 / 4 G^{2}\left\{1 / 2 \Gamma^{2}+\left(F_{0}^{\alpha} H_{0}+F_{0} H_{0}\right)\right. \\
& \left.\left.+\left(1 / 2 \gamma_{i 1}+\omega_{5}\right) H_{2}+\left(1 / 2 \gamma_{i 1}-\omega_{5}\right) H_{2}^{x}\right\}\right]
\end{align*}
$$

(H.D. wo liva usod the fact that

$$
B_{0} F_{0}+1 / 1 T^{2} G^{2}=\left(1 / 2 \gamma_{2}-i \omega_{3}\right) H_{0}
$$

(7.8.124
and

$$
\begin{equation*}
B_{1}^{*} F_{0}^{2}+1 / 16 \Gamma^{2}-\left(1 / 2 X_{1}+11 w_{5}\right) H_{0}^{*} \tag{7.2.12db}
\end{equation*}
$$

Nence wo heve $\bar{\rho}_{11}=\left[\frac{a_{26} b_{1}-a_{1 c} b_{20}}{\|\left. t_{1}\right|^{2} T_{0}}\right]$

$$
\begin{equation*}
\bar{\rho}_{22}=\left[\frac{1 H_{0} \mid T-\left\{\left(a_{a_{c}-a_{1}}\right) b_{0}-\left(b-b_{n}\right) a_{c}\right\}}{1 M T_{i}}\right] \tag{7.5.126}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\rho}_{n}=\left[\frac{a_{\infty} b_{n}-a_{n} t_{2}}{\|_{0} 1 T_{1}}\right] \tag{7.3.127}
\end{equation*}
$$

and substitucing in oquations (7.2.110), (7.2.111) and (7.1.212) wo obtan:-

$$
\begin{align*}
& +1, T,|H|=T] \tag{7.5.123}
\end{align*}
$$

$$
\begin{align*}
& \left.\left.-M_{1} \%\right\rangle_{2}, 1+1 \cdot T\right] \tag{7.2.220}
\end{align*}
$$

$$
\begin{aligned}
& \left.-M_{4} T_{:},\left|H_{2}\right| T_{0}\right]
\end{aligned}
$$

(7.8.130)

On mubtituting for $a_{c c}$ and $b_{c o}$ wo obtain the followine equations:-

 He. ${ }^{2} T_{0}$

$\left.+{ }^{\prime} / 2 \Gamma_{21} F_{0}\left|H_{2}\right|^{2} T_{y}\right]$
$+\left\{{ }^{1} \int_{51} 1^{\prime} 4 b^{2}-1 / 2\left[_{21} f_{01}\right\} a_{50}\right]$

$$
\begin{aligned}
& \left.-1 /\left.4 T_{i 1}{ }^{2}| | t\right|^{\prime} T_{6}\right]
\end{aligned}
$$

Ko may now note that:-

$$
\begin{align*}
& \hat{\rho}_{i=1}=\underset{s+i \omega \rightarrow 0}{ }[t . \tag{7.E.137}
\end{align*}
$$

Now, we recall that according to equation (7. B. 96b)
so that all the quantities on the NIS are now known. If we now evaluate all the $\hat{\psi}$'s given in equations (7.E.59b) and (7.B .COb) at (-1ν), and aubstitute $\Omega=\nu-\omega$ in the final expressions, we obtain, for $\Delta \omega=0$ i-

$$
\begin{aligned}
& \hat{\psi}_{\times 11}(\lambda V)=\frac{1}{-i \Omega} \quad \frac{i \lambda \varepsilon_{0}}{H_{1}^{\prime} Z^{\prime}}\left[\begin{array}{l}
{\left[\left(\gamma_{21}-1 \Omega\right) H_{1}^{\prime} H_{2}^{\prime}+1 / 4 \Gamma_{21}^{2} / 4 / \sigma^{2}\left(H_{1}^{\prime}+H_{2}^{\prime}\right)-1 / 4\left(\Gamma^{2}+\Gamma_{1}^{\prime}\right)\left(F_{2}^{\prime} H_{1}^{\prime}+H_{1}^{\prime}+F_{1}^{\prime} H_{2}^{\prime}\right)\right]}
\end{array}\right. \\
& +\left[\left(X_{21}-B\right) H_{1}^{\prime} H_{2}^{\prime}-1 / 4 \Gamma^{2}\left(F_{2}^{\prime} H_{1}^{\prime}+F^{\prime} H_{2}^{\prime}\right)\right] \\
& \times\left[\left\{B_{1}^{1}+1 / 4\left(\Gamma^{2}-\Gamma_{24}^{2}\right)\right\} b_{1}^{1}+\left\{B_{1}^{1}+1 / 4 \Gamma_{21}^{2}\right\} b_{5}^{1}\right] \\
& -1 / 4\left[\begin{array}{ll}
2 \\
2 \\
Z^{\prime}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \because(1(16+20)) \geq \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& +1 / 4 S_{2}^{\prime}:\left\{F^{\prime}+1 / 4\left(\Gamma_{1}^{\prime} F_{2}^{2}\right)\right\} b_{1}^{\prime}+\left\{B_{1}^{\prime}+y_{4}\left[l_{2}^{\prime} j b_{3}^{\prime}\right]\right\} \\
& \left.+R^{\prime} Z^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left[\left(x_{2},-n\right) H_{1} H_{2}^{\prime}-\int_{4}\right)-\left(F_{2}^{\prime} H_{1}^{\prime}+F_{1}^{\prime} H_{2}^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\{y_{2} \Gamma_{i 1}\left(\gamma,\left(0 i_{1} j_{1}\right)\right)+y_{2} \Gamma_{4}\left(1 / 2 \gamma_{31}-, \eta\right)\right\} b_{3}^{1}\right] \\
& -1 / 2 L_{1}\left(1 / 2 x_{-1}-10 K^{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\left\{n_{1}\left(a_{12}\right)(1 / 2), . .1\right)+4(1(x-11 \pi n)] i_{1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(1 / 2 \gamma_{i-1}-\Omega\right)\left(\gamma-\left(\Omega+\omega_{3}\right)\right) Z^{1}\right]^{\left.\left.\left.+i / 2\left[4(\gamma-1(n+3))+1 / 2 \Gamma_{1}^{1}(1 / 2)_{1},-\Omega\right)\right] 1_{3}^{1}\right]\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left[1 / 4 \Gamma_{31}^{2} H_{2}^{1}\right]\left[i 1 / 2\left(\Gamma_{24}-\Gamma_{21}\right)\left(1 / 2 \gamma_{31}-i \Omega\right)+1 / 2 \Gamma_{2}\left(\gamma_{-1}(\Omega \pi i s)\right)\right\}\left(b_{1}^{1}\right. \\
& \left\{\left\{\sum_{2} \Gamma_{31}\left(s_{-1}\left(\Omega+2 \omega_{3}\right)\right)+1 / 2 \Gamma_{21}\left(v_{2} x_{31}-\Omega\right)\right\} b_{3}^{1}\right] \\
& \left.-1 / 22_{3,1}\left(\gamma-1\left(\rho_{1+3}\right)\right) Z^{1}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{1}^{\prime}=\left(\gamma-1\left(\Omega+\omega_{3}\right)\right) F_{1}^{\prime}+1 / 46^{2}\left(1 / 2 \gamma_{31}-1\right)=H_{1}(s=-1 v) \\
& \left.F_{1}^{\prime}=\left(1 / 2 \gamma_{21}-1(1+2)_{3}\right)\right)\left(1 / 2 \gamma_{31}-i \Omega\right)-1 / 4 \Omega^{2}=F_{1}(s=-1 \omega) \\
& \left.B_{1}^{\prime}=\left(\gamma-1\left(\Omega+\omega_{3}\right)\right)\left(1 / 2 \gamma_{21}-1(\Omega) \pi j_{3}\right)\right)+1 / 4 \sigma^{2}=B_{1}(s=-1 \nu) \\
& H_{2}^{\prime}=(\gamma-1(\Omega-\cdots 3)) F_{2}^{\prime}+1 / 4\left(c^{2}\left(1 / 2 \gamma_{31}-1 \Omega\right)=H_{2}(s=-1 \nu)\right.
\end{aligned}
$$

i.c. primod quantities are ovaluated at $s=-N$.

$$
\begin{aligned}
& \text { - } \left.+1 / 4 \Gamma_{3,}^{2}\left(x_{3,-}, \lambda\right)\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& -\mu_{4}\left({ }^{2} \mid F_{1} B_{2}^{\prime}+F_{2}^{\prime} B_{1}^{\prime}\right) \mu_{4}\left(2 F^{\prime}-\Gamma_{3 i}^{\prime}\right) \\
& \text { - (Fíh+Fi } \left.H_{2}^{\prime}\right)^{\prime \prime}=F^{\prime}(0-\Omega)
\end{aligned}
$$

or

$$
\begin{align*}
& \left.=-\left[\left(X_{2}-1\right)-H_{1}^{\prime} H_{2}^{\prime}+X 1 / 4 C\left(\gamma_{21}-S_{1}\right)\left(H_{1}^{\prime}+H_{1}^{\prime}\right)+2^{1} / 4 C / X_{1}-1\right)\left(B_{2}^{\prime} H_{1}^{\prime}+B_{1}^{\prime} H_{2}^{\prime}\right)\right] \\
& -1 / 2 \Gamma-\left(X_{2},-\Omega\right)\left(F_{2}^{\prime} H_{1}^{\prime}+\bar{F}_{1}^{\prime} H_{2}^{\prime}\right) \\
& -1 / 8\left[4\left(1 / 46^{5}\right)^{2}\right. \tag{7.8.1420}\\
& -1 / 4 \Gamma^{21 / 4} G^{-}\left(B_{1}^{\prime} F_{2}{ }^{\prime}+B_{2}^{\prime} F_{1}^{\prime}\right) \\
& \left.-1 / 4\left\lceil 1 / 4 L^{\prime}\right\}\left(1 / 2 \gamma_{2}-i\left(S-\omega_{3}\right)\right) H^{\prime}+\left(1 / 2 X_{21}-i\left(\Omega+1 J_{3}\right)\right) H_{2}^{\prime}\right\} \\
& -\left(X_{2}-\gamma_{31}\right)\left\{1 / 4\left[1 / 1+C^{2}\left(H_{1}^{\prime}-H_{2}^{\prime}\right)+\left(\delta_{21}-i \Omega\right) H_{1}^{\prime} H_{2}^{\prime}-K_{4} \Gamma^{2}\left(H_{1} F_{2}^{\prime}+H_{2}^{\prime} F_{1}^{\prime}\right)\right\}\right]
\end{align*}
$$

We are now interested in separeting the exprespion for the total spectral correlation function, $\}$, into coherent and incoherent parte, 28 in Nollow'a paper ${ }^{\prime}$.

In order to find the coherent part it is necessary to find the asymptotic form of $g(x)$ in the linit $i \rightarrow \infty$, which oricinates from the poles of on the imatinary axis of the a plane. $\hat{g}(s) 18$, of course, the Laplace transform of $\in(\})$, so that, since $E(\tau)$ is eiven by equation (7.B.97) as

$$
\begin{aligned}
& \left.f(s)=\int 1 x^{\prime} f^{\prime}\right)
\end{aligned}
$$

where the expressions for the ψ ')'s are given by equations (7.B.59b) and (7.B.60b) where $\Delta \omega$ now equals zero. If we suras that the real paste of the roots of I are all negative then the only contribution to $y(T \cdots \infty)$ cones from the pole at $s--i \omega$ on the HuS of the expressions for $\hat{\psi}_{41}(s)$ and $\hat{\psi}_{n 11}(5)$. The residue of the pole is, by virtue of equations (7.E.59b), (7.B.60b) and (7.B.143):8-

$+\left[1+\gamma_{21}+10\right) H_{1} H_{2}-1 / 4\left[\left(F_{2} H_{1}+F_{1} H_{2}\right)\right]$
$x\left[\left\{B_{1}+1 / 4 T=-(-1)\left(b_{1}+\left\{B_{1}+1 / 4[2 i\} D_{-}\right]\right.\right.\right.$

$\left.\approx h_{0} \gamma_{1 / 1 / x_{1}} \frac{\left(7 \lambda \hat{c}_{0}\right)}{H_{i} Z}\right\}\left[\left(i, x_{1}+\omega_{\omega}\right) H_{1} H_{2}+1 / 4=1 / 4 b^{2}\left(H_{1}+H_{2}\right)\right.$

$$
\left.-1 / 4\left(1+F_{21}{ }^{-}\right)\left(F_{2} H_{1}+F_{1} H_{3}\right)\right]
$$

$$
\begin{aligned}
& +\left\{\left(T_{51}\left(1+1 \omega_{2}\right)+1 / 2 S_{21}\left(s+1 / 2 X_{51}+i \omega\right)\right\} a_{5}\right] \\
& +\left[\left(. N_{1}+\ldots 0\right) H_{1} H_{2}-49\left(F_{1} H_{1}+\bar{F}, H_{2}\right)\right] \\
& x\left[1-\left(1-T_{1}\right)\left(x+1_{2} x_{21}+1 \omega\right)+1_{2} r_{1}\left(i+\gamma+i \omega_{i}\right) ; b_{1}\right. \\
& \left.+\left\{1 / 21_{11}\left(+s+1 w_{2}\right) 1^{1 / 2} \Gamma_{21}\left(s+1 / 2 \gamma_{31}+i 1 j\right)\right\} b_{5}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\gamma_{21} H_{1}^{\prime \prime} H_{2}^{\prime \prime}-1 / 4\left[2\left(F_{2}^{\prime \prime} H^{\prime \prime}+F_{1}^{\prime \prime} H_{2}^{\prime \prime}\right)\right]\right. \\
& \times\left[\left\{R^{\prime \prime}+1 / 4\left(l^{2} \cdot \Gamma_{21}^{2}\right)\right\} B_{1}^{\prime \prime}+\left\{R^{\prime} 41 / 4 S_{2}^{2}\right\} b_{3}^{\prime \prime}\right] \\
& \left.\left.-1 / 4 I_{21}^{2}\right]^{\prime \prime}\right\}\left\{\int_{1}+10 / 121_{21} / x_{01} / \int_{12}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{1}^{\prime \prime}=1_{1}(s \cdots \cdot)=M_{1}\left({ }^{(}\right)(0) \cdot\left(\gamma-\omega_{5}\right) F_{1}^{\prime \prime}+1 / 4 \sigma^{21 / 2} \gamma_{31}=H_{0} \\
& \left.\Gamma_{1}^{\prime \prime}=(--N)=F_{1}(0.0) \cdot\left(y_{2}\right)_{2}-\omega_{3}\right)_{2} y_{3,1}-1 / 4 \Gamma^{2}=F_{0} \\
& B_{1}^{\prime \prime}=\left(1,\left(=-\omega_{0}\right)=F_{1}^{\prime}(\lambda) 0\right)=\left(\gamma-1 \omega_{3}\right)\left(1_{2} \partial_{21}-n_{j_{3}}\right)+1 / 4 C^{2}=B_{0} \\
& H_{2}^{\prime \prime}=H_{1}(s=-\cdots)=H_{2}^{\prime}(0 c)=\left(\gamma+1 \omega_{3}\right) F_{2}^{\prime \prime}+1 / 4 \sigma^{2} 1 / 2 \gamma_{31}=H_{2}^{3} \\
& \left.F_{2}^{\prime \prime}=F_{2}(5=-\cdots): F_{2}^{\prime}(T c)=\left(1 / 2 \gamma_{21}+1,1\right)\right)^{1 / 2} \gamma_{31}-1 / 4 \Gamma^{2}=F_{0} \\
& B_{2}^{\prime \prime}=B_{1}(5=-\cdots v)=B_{2}^{\prime}(50)=\left(5+i w_{3}\right)\left(1 / 2 x_{21}+i w_{3}\right)+1 / 4\left(c^{2}=B_{0}^{*}\right.
\end{aligned}
$$

Also

$$
\begin{align*}
& \left.a_{1}^{\prime \prime} a_{1}(s=-1 \omega)=a_{1}^{\prime}(51 \cdot 0)=-\gamma_{21} H_{1}^{\prime \prime} H_{2}^{\prime \prime}-1 / 4 \Gamma_{31}^{2} 1 / 4 G^{2}\left(H_{1}^{\prime \prime}+H_{2}^{\prime \prime}\right)+1 / 4 \Gamma^{2}\left(F_{2}^{\prime \prime} H_{1}^{\prime \prime}+F_{1}^{\prime \prime} H_{2}^{\prime \prime}\right)\right] \\
& a_{1}^{\prime \prime}=a_{5}(S=-i \omega)=a_{5}^{\prime}(\Omega=0)=-\gamma_{21} \quad H^{\prime \prime} H_{2}^{\prime \prime}+1 / 4 \int_{31}^{2} / 4 b^{2}\left(H^{\prime \prime}+H_{2}^{\prime \prime}\right)+1 / 4\left(\Gamma^{2} \cdot \int_{21}^{2}\right)\left(F_{2}^{\prime \prime} H^{\prime \prime}+F_{1}^{\prime \prime} H^{\prime \prime}\right) \\
& =a_{30} \tag{7.3.145c}\\
& b_{1}^{\prime \prime}=b_{1}(s=-i \omega)=b_{1}^{\prime}(\Omega=0)=\gamma_{21}+H_{1}^{\prime \prime}+H_{2}^{\prime \prime}+1 / 4\left(X_{21}^{2}+\Gamma_{21}^{2}+\Gamma^{\prime}\right) 4_{+}\left(c^{2}\left(H^{\prime \prime}+H_{2}^{\prime \prime}\right)\right. \\
& +1 / 4 B^{2}\left(B_{2}^{\prime \prime} H^{\prime \prime}+B_{1}^{4} H_{2}^{\prime \prime}\right)-1 / 4\left(\Gamma^{2}+S_{21}^{2}\right)\left(F_{2}^{\prime \prime} H_{1}^{\prime \prime}+\text { Fi'H }^{\prime \prime}\right) \\
& \left.b_{3}^{\prime \prime}=b_{3}(S=-i \omega)=b_{3}^{\prime}(\Omega 0)=b_{10}=Y_{21}-\gamma_{31}\right) H_{1}^{\prime \prime} H_{2}^{\prime \prime}+41\left(\Gamma_{21}^{2}-\Gamma_{31}^{2}-2 \Omega^{2}\right) \prime 40^{2}\left(H_{1}^{\prime \prime}+H_{2}^{\prime \prime}\right) \\
& \left.-44 U^{2}\left(B_{2}^{\prime \prime} H^{\prime \prime}+R_{1}^{\prime \prime} H_{2}^{\prime \prime}\right)-1 / 4\left(\Gamma_{1}^{2}-T_{31}^{2}\right)\left(F_{2}^{\prime \prime} H_{1}^{\prime \prime}+F_{1}^{\prime \prime} H_{1}^{\prime \prime}\right)\right]
\end{align*}
$$

1.e. coubly primed quantities are equal to the correspondine unprimed
quantities at $5-i \omega$ or the primed quantities at $\eta=0$ ET are only equal to the corresponding quantities with nero subscripts when $\Delta \omega=C_{0}$ so that

$$
\begin{equation*}
\bar{p}!\cdot w / w) / 1 x_{1}\left|\bar{p}_{1}\right|=+w / \omega_{2} 1: / x_{31}\left(\bar{p}_{1} \bar{p}_{12}+\bar{j}_{2} \bar{\rho}_{n}\right) \tag{7,2.14,6}
\end{equation*}
$$

We can now see that tie contributica of this tom to the correlation
function $\mathbb{C}(\tau)$ is tho coherent, harmonically varying expression

$$
\begin{align*}
& \text { if } n(0) \frac{1}{x_{i}} \int t a n(0)
\end{align*}
$$

N.B. we can also write this as

The Laplace tranciorm of the remaining, incoherent part of the atomic correlation function is

Vo can wite $\hat{y}_{1 \times(h}$ h) from (7.0.149) morempicitiy as

He anal now let
where

$$
\hat{\psi}_{x=1}(s)=\frac{1}{(s+1 . \omega) T} \hat{\psi}_{x+N}(\alpha)
$$

$$
\left[1+11_{1}+w_{1}\right) H_{1} H_{2}-1 / 4\left[\because\left(F_{2} H_{1}+F_{1} H_{2}\right)\right]
$$

$$
\left[\sigma_{1}, 4(1+-i) ; b_{1}+i B_{1}+1 / 4\right)\left(b_{2}\right]
$$

$$
\left.-1 / 41, i+H_{2}-T\right]
$$

and

$$
\hat{\psi}_{\text {s, }}(k)=\frac{1}{(s+1,0) T} \hat{\psi}_{\text {pins }}(s)
$$

where

Now let us separate $\hat{\psi}_{x, N}\left(s_{s}\right)$, given by equation (7.2.152) into two

terms, so that

$$
\begin{equation*}
\hat{\psi}_{\times 11 N}(s)=(s+i \omega) T \hat{\psi}_{\alpha=1}(s)=(s+i \omega) \hat{\psi}_{\alpha 11 N}(\text { res } i)+T_{0} \bar{p}_{13} \times \tag{7.B.154A}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\hat{\psi}_{\text {piN }}(s)=\left(\langle+i w) T \hat{\psi}_{s 11}(s)=(s+w) \hat{\psi}_{\text {sin }}(\text { rest })+T_{0}{\overline{\lambda_{2}}}^{\alpha}\right. \tag{7.B.155a}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{\psi}_{x, 1 \prime}(s)=\frac{\hat{\psi}_{x, 1, \gamma}(r u s t)}{T}+\frac{T_{0}}{(s+i \omega) T} \bar{P}_{13}^{\alpha} \tag{7.B.154b}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\psi}_{\sin }(s)=\frac{\hat{\psi}_{\sin }(\cos t .)}{T}+\frac{T_{0}}{(s+i \omega) T} \bar{\rho}_{12}^{\alpha} \tag{7.8.155b}
\end{equation*}
$$

(N.E. We already know that

$$
\lim _{s \rightarrow-i \omega} \hat{\psi}_{x, 1 N}(s)=\bar{\beta}_{31} T_{0}=\bar{\rho}_{13} \times T_{0}
$$

(see eq. (7.E.237))

$$
\lim _{s \rightarrow-2 J} \hat{\psi}_{\sin }(s)=\overline{2}_{21} T_{0}=\overline{\rho_{2}} T_{0}
$$

(see eq. (7. 5.233))
so that equations (7.1.154a) and (7.1.155a) are valid.

$$
\begin{align*}
& +\left\{y_{2} \Gamma_{31}\left(s+\gamma_{+2 i_{2}}\right)+1 / 2 \sum_{21}\left(s+1 / 2 \gamma_{31}+i \omega\right)\right\}\left(1 s_{5}\right] \tag{7.B.153}\\
& +\left[\left(s+b_{21}+(j)\right) H_{1} H_{2}-h_{4}\left[2\left(F_{2} H_{1} T F_{1} H_{2}\right)\right]\right. \\
& \text {, }\left[\eta_{2}\left(\Gamma_{31}-\Gamma_{21}\right)\left(i+1 / 2 \gamma_{31}+i \omega\right)+1 / 2 \Gamma_{31}\left(s+\gamma_{1}+i \omega_{2}\right)\right\} D_{1} \\
& +\left\{1 / 2 i_{1}\left(s+\gamma+i \nu_{2}\right)+1 / 2\left[21\left(s+1 / 2 \gamma_{31}+2 i\right)\right) s b_{3}\right] \\
& -1 / 2\left[-1,\left(s+y_{2} \gamma_{3}, T i \omega\right) H_{1} H_{2} T\right]
\end{align*}
$$

Similariy, we can also eeparate T, piven by equation (7.B.57) with now equal to mero, so that

$$
\begin{equation*}
T=(+\cdots)+T_{0} \tag{7.3.156}
\end{equation*}
$$

Vaing these subatitutions in equation (7.1.150)

$+\frac{1}{1}, \dagger \ldots$
-1". 1 1p.
Making tiree further substitutions

$V_{p, n}, \frac{\dot{\psi}_{j}, \infty(r, t)}{T}$

$$
\begin{equation*}
(1,+t)=\frac{T(1, t)}{1} \tag{7.B.158}
\end{equation*}
$$

ve obtaint-

$$
\left.\left.-\frac{\alpha}{\omega} \frac{x_{1}}{x_{1}}\left[V_{f=1} \text { (rest) }-\right](\text { rest }) \bar{\rho}_{1}^{\prime}\right]_{\rho_{12}}^{\rho_{p}}+\hat{\psi}_{p=1}(s) \bar{\rho}_{22}+\hat{\psi}_{1}(s) \bar{\rho}_{12}\right\} \text { (7. B. 159) }
$$

$$
\left.+\frac{\ldots}{w, 1} \frac{1}{n_{1}}\left\{V_{11} \text { (rest) }-3(\text { rest }) \bar{p}_{13}^{*}\right] \bar{\rho}_{12}+\hat{\psi}_{x 21}^{(s)} \bar{p}_{22}+\hat{\psi}_{2}, t \bar{p}_{s}\right\}
$$

$$
\left.+-\frac{1}{x_{1}}\left\{v_{\beta 11}(\cdots, t)-\right](r 0 s) \bar{\rho}_{12}^{*}\right] \bar{\rho}_{1 s}+\hat{\psi}_{\beta 21}(s) \bar{\rho}_{23}+\hat{\psi}_{\beta 31}(s) \bar{p}_{1}
$$

$$
\left(7_{B}, 160\right)
$$

$$
\begin{aligned}
& \text { 1.e. }
\end{aligned}
$$

Wo can now see that once this expression is determined the value of the total spectral correlation function $\tilde{g}_{1}(\nu)$ even by (7. $8.88 b$. 20 known.

Wo may now write dow the result in the format

$$
\begin{equation*}
\tilde{g}(v) \cdot \tilde{g}_{i n}(\nu)+\tilde{g}_{\operatorname{marh}}(\nu) \tag{7.2.161a}
\end{equation*}
$$

where
and

$$
\begin{aligned}
& \tilde{j} 10=x \pi \delta(\Omega) \mid \rho_{12} 1^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\tilde{\jmath}_{1,}(2)=\hat{O}_{4} \hat{j}_{\ldots}, \cdots\right)
\end{aligned}
$$

Before wo proceed with any further evaluations, we shall mede certain

 approximations. We recall that (nee equation (7,A.33)):-$$
\begin{array}{ll}
\gamma_{31}=4 / 3 \pi F_{31}^{2} \omega^{3} / c^{3} & \gamma_{21}=4 / 3 t P_{21}^{2} \omega_{2}^{3} / c^{3} \\
\Gamma_{31}=4 / 3 t+F_{31} \omega^{3} / c^{3} & \Gamma_{21}=4 / 3 \pi P_{21} \cdot P_{31} \omega_{2}^{2} / c^{3}
\end{array}
$$

Hance,

$$
\Gamma_{21} / \Gamma_{31}=\left(\omega_{2} /\right)^{2}
$$

and in the cage of tho Na D lines:-
and

Also in the case of the K lines:-

Thus, for such differences between ω and ω_{2}, 1.e. for $\lambda_{s 2} \sim$ 4-6 \mathbb{R}^{2} wo con consider

$$
\Gamma_{31} \wedge \Gamma_{21}(=\Gamma)
$$

and we can also tale $\left(\omega / \omega_{2}\right)$ and $\left(\omega_{2} / \omega\right)$ in the expression for $\tilde{g}(\nu)$ to be unity.

Let

$$
\gamma_{1 / 1}=d_{31} \wedge P_{21}^{2} / P_{31}^{2}
$$

and

$$
\begin{aligned}
{\left[/ r_{31}=d_{1}\right.} & \approx p_{2} \cdot p_{31} / p_{31}^{2}=p_{21} / p_{31} \cos \theta \\
& \text { where } \cos \theta=p_{21} \cdot p_{31} \text { and } \omega_{2}^{3} \wedge \omega^{3}
\end{aligned}
$$

Then

$$
d_{2}=\phi d_{1}^{2} \text { where } \phi=1 / \cos ^{2} \theta \pm \gamma_{21} \gamma_{31} / \Gamma^{2}
$$

If wo asmane that $p_{31}^{2}=1 p_{21}^{2} \simeq p_{31} \cdot p_{21}$, ie. $\hat{p}_{31} \cdot \hat{p}_{21} \wedge$, as 1. Chapter III, then $\gamma_{31}=\gamma_{21} \simeq \gamma(=\gamma)$, ie. $d_{1}=a_{2}=$ I. This is a reasonable assumption, but we shall keep d_{2} and d_{2} unequal for the present.

Now valuating equations (7.E.158) at $s{ }_{-i v}$ and using (7.E.154a).
and

$$
\hat{\psi}_{x, n \alpha}(-\nu)=(-\lambda) T^{\prime} \hat{\psi}_{x_{11}}(\neg \nu)
$$

and this con Le show to be the sum of two terms, one containing a factor of ($-\boldsymbol{\pi}$) , as required, viz.

$$
\hat{\psi}^{\prime}=n_{1}(w) \quad\left(\ldots \quad T^{\prime} V_{11}(m+(\cdots)), T \cdot \bar{P}_{15}^{x}\right.
$$

but for the present we anal use the expression for

already form (500 equation (7.5.152)).

$$
\begin{aligned}
& =\gamma_{21} j_{1}(\nu)+\gamma_{31} 2 F_{v}\left[\hat{g}_{\ldots c i n}(7 \nu)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{g}_{a 1}(\nu)=2 \pi \delta(\Omega)\left|\bar{p}_{3}\right|^{2} \\
& \widetilde{g}_{c \Omega}(\nu)=2 \pi \delta(\Omega) \bar{\rho}_{13}^{*} \bar{\rho}_{12} \\
& \tilde{g}_{(t, 1}(\nu)=\left.2 \pi \delta(\Omega) \backslash \bar{p}_{12}\right|^{2} \\
& \tilde{g}_{\left(1 n_{4}\right.}(\nu)=2 \pi \delta(D) \bar{\rho}_{12} \bar{\rho}_{15}
\end{aligned}
$$

and

$\hat{E}_{\ldots c h}(-\nu)=\left[V_{\alpha 11}(\operatorname{rest}(-\lambda \nu))-J(\operatorname{rest}(-\lambda \nu)) \bar{p}_{15}^{\nu}\right] \bar{p}_{15}+\hat{\psi}_{\alpha 21}(-\nu) \bar{p}_{23}+\hat{\psi}_{x 31}(-\nu) \bar{p}_{35}$
$\left.\hat{\boldsymbol{E}}_{\text {...an } 2}(\sim \nu)=\left[V_{\alpha 11}(\operatorname{rest}(-\lambda \nu))-\right](\operatorname{rcst}(-i \nu)) \bar{\rho}_{15}^{\alpha}\right] \bar{\rho}_{12}+\hat{\varphi}_{\alpha 21}(-i \nu) \bar{\rho}_{22}+\hat{\psi}_{x=1}(-\lambda \nu) \bar{\rho}_{12}$
$\left.\hat{E}_{\text {natch }}^{3}(\sim \nu)=\left[V_{\beta 11}(\operatorname{rest}(\sim \nu))-J(\operatorname{vest}(-i \nu)) \overline{\rho_{12}}=\right] \overline{\rho_{12}}+\hat{\psi}_{\beta 21}(-\nu) \bar{\rho}_{22}+\hat{\psi}_{\beta 31}(\nu)\right) \overline{\rho_{32}}$
(7.13.162c)
$\left.\hat{\sigma}_{\text {....ch }}(i \nu)=\left[V_{\beta 11}(\operatorname{rest}(-\nu \nu))-\right](\operatorname{rest}(-i v)) \bar{\rho}_{12}^{\alpha}\right] \bar{\rho}_{13}+\hat{\psi}_{\beta 21}(-\nu) \bar{\rho}_{23}+\hat{\psi}_{\beta 51}(-\nu) \bar{\rho}_{33}$.
NeB. $\nabla_{x_{1}}(\operatorname{rest}(i \nu))=\frac{\hat{\psi}_{x i n}(\text { rest (iv) })}{T^{\prime}}=\frac{\hat{\psi}_{x i n}(\tau \nu)-T_{0} \bar{n}_{13}=}{(i \Omega) T^{\prime}}$
are obtained Iron equation e (7. 1.15%) and (7.E.253) where $5=-12$ and $i_{1}-Y_{21} \mid \quad 0$

We can rewrite the equilibrium density matrices given in equation e (7.E.131)-(136), on letting $\left.\left.\right|_{21}\right|_{2}=\mid$, ass-

$$
\left.+F_{0} \mid H_{0}: T_{0}\right\}
$$

$\bar{\rho}_{32}=\bar{\rho}_{25}^{*}$
 $H_{0}\left|H_{0}\right|^{2} T_{0}+\left[\gamma_{1}\left|H_{2}\right|^{2}+1 / 4 \Gamma^{2} / 4 \mathcal{E}^{2}\left(H_{0}+H_{2}^{\circ}\right)-1 / 2\left[2\left(F_{c} H_{0}^{\circ}+F_{0}{ }^{\circ} H_{0}\right)\right]\right.$ $\times\left[(\gamma-105) a_{10}+\left(\gamma+1 / 2 \gamma_{31}-i s_{5}\right) a_{30}\right]$ $\left.-1 / 2 \partial_{31}\left|H_{2}\right|^{2} T_{0}\right\}$
$\bar{\rho}_{12}=\bar{\beta}_{21}{ }^{\alpha}$
 $\times\left[B_{0} a_{10}+\left(B_{0}+k_{4} \Gamma^{2}\right) a_{50}\right]$
$\bar{\rho}_{13}=\bar{\rho}_{31}^{\infty}=\nu-\omega$
and

$$
\gamma=1 / 2\left(\gamma_{2,1}+\gamma_{31}\right)
$$

$$
\begin{aligned}
& 1.141 T\}
\end{aligned}
$$

$$
\begin{aligned}
& j(r, 1!-N)=\frac{1(n+1-n)}{-1} \cdot \frac{T-T}{1-1 T}
\end{aligned}
$$

Vi shall rom made the following cubetitutions:-

where $I_{31}=\Sigma_{13}$ and 1 s real , so that a is also real
(7. $\mathrm{B}_{6} .764$)
$B=\frac{9}{\gamma_{11}}=\frac{(\nu \omega)}{x_{21}}=\frac{\left(\nu-\epsilon_{21}\right)}{x_{51}}$
$c=\frac{\omega_{5}}{\gamma_{51}}=\frac{t_{22}}{\gamma_{51}}$
and

$$
\begin{align*}
& \frac{\gamma_{1}}{\gamma_{i 1}}=d_{2} \pm \frac{\rho_{1}^{2}}{\Gamma_{31}^{2}} \quad \text { ene } \quad \omega_{i}^{5} \wedge \omega^{3} \tag{7.0.165}\\
& \frac{\Gamma}{\gamma_{31}}=d_{1} \perp \frac{f_{1} \cdot f_{11}}{\Gamma_{i=1}^{2}}=f_{=1}^{F_{31}} \cos \theta \quad \text { where } \cos \theta=\hat{p}_{=1} \cdot \hat{p}_{31}
\end{align*}
$$

co that $d_{2}=\phi d_{1}^{2}$ where $\phi=\frac{1}{\cos \theta} \pm \frac{Y_{21} X_{51}}{\Gamma^{2}}$

then

$$
\begin{align*}
& P=\gamma_{31}^{-2} B_{1}^{\prime}=\left(1 / 2\left(1+d_{2}\right)-\left(b_{1}+c\right)\right)\left(y_{2} d_{2}-i\left(1-+c^{\prime}\right)+a^{2}\right. \\
& Q=\gamma_{51}^{-2} F_{1}^{\prime}=\left(1 / 2 d_{2}-i(b+c)(1 / 2-i b)-1 / 4 d_{1}\right. \\
& R=\gamma_{31}^{-3} H_{1}^{\prime}=\left(1 / 2\left(1+d_{2}\right)-i(b+c)\right) Q+a^{2}(1 / 2-i b) \\
& =(1 / 2-i b) P-1 / 4 d_{1}=\left(1 / 2\left(1+d_{2}\right)-i(b+c)\right) \\
& =\left(1 / 2\left(1+d_{2}\right)-i(b+c)\right)\left(1 / 2 d_{2}-i(b+r)\right)(1 / 2-i b)-1 / 4 d_{1}^{2}\left(1 / 2\left(1+d_{2}\right)-i(b+r)\right) \\
& +a^{2}\left(y_{z}-b\right) \tag{7.8.166}\\
& L=\gamma_{1,}^{\prime} B_{2}^{\prime}=\left(1 / 2\left(1+d_{2}\right)-i(h-c)\right)\left(1 / 2 d_{2}-i(b-c)\right)+a^{2} \\
& M=\gamma_{i 1}^{2} F_{2}^{\prime}=\left(1 / 2 d_{2}-i(b-c)\right)(1 / 2-i b)-1 / 4 d_{1}^{2} \\
& N=r_{1}^{-3} H_{2}^{\prime}=\left(1 / 2\left(1+d_{2}\right)-i(b-c) M+a^{2}(1 / 2-1 b)\right. \\
& =(1 / 2-i b) L-1 / 4 d d_{1}^{2}\left(1 / 2\left(1+d_{2}\right)-1(b-c)\right) \\
& =\left(1 / 2\left(1-d_{2}\right)-i(b-c)\left(1 / 2 d_{2}-i(b-c)\right)(1 / 2-i h)-1 / 4 d_{1}^{2}\left(1 / 2\left(1+d_{2}\right)-i(b-c)\right)\right. \\
& +a^{2}(1 / 2-i b)
\end{align*}
$$

We mall also let,

$$
X_{1}=\hat{\psi}_{\alpha_{1, N}}(r \operatorname{cst}(\neg \nu))=\frac{\hat{\psi}_{x, 1 N}(\neg \nu)-T_{0} \bar{\rho}_{15}^{\alpha}}{(-1 \Omega)}=\gamma_{51}^{7} X_{1}
$$

$$
\begin{aligned}
& x_{2}^{\prime}=\hat{\psi}_{x=1}(-i j) T^{\prime} \quad=\gamma_{1,}^{7} x_{2} \\
& x_{s}^{\prime}=\hat{\psi}_{x, 1}(, \nu) T^{\prime}=\gamma_{i, 1}^{\prime} x_{s} \\
& x_{4}^{\prime}=T(r+s t(-i j))=\frac{T-T}{-151}=X_{i=1}^{?} x_{4} \\
& x_{i}^{\prime}=\hat{\psi}_{\text {sinn }}(\text { ": }(7 \nu))=\frac{\hat{\psi}_{\sin N}(7 \nu)-T_{0} \bar{\rho}_{12}{ }^{\prime}}{-\dot{S i}}=\gamma_{51}{ }^{\top} x_{9} \\
& x_{k}=\hat{\psi}_{\beta=}(i n) T=X_{n} x_{k} \\
& x_{11}^{\prime}=\hat{\psi}_{\beta, n}(7 \nu) T^{\prime}=\gamma_{51}^{\top} x_{11} \\
& M_{1}^{\prime}=\hat{\psi}_{1, N}(\neg \nu) \quad=\gamma_{3,} M_{1} \\
& H_{2}^{\prime}=\hat{\psi}_{\sin }(-i \nu) \quad=\gamma_{31}^{8} M_{2} \\
& I_{1}=\beta_{0}=\gamma_{31}^{2} Y_{1}=\gamma_{31}^{2} p\left(b_{0}^{0}\right) \\
& y_{2}^{\prime}=F_{0}=\gamma_{31}^{\prime} y_{2}=\gamma_{-1}^{-2} Q(b=0) \\
& y_{3}^{1}=H_{0}=\gamma_{3 i}^{3} y_{3}=\gamma_{3 i}^{-3} R(b=0) \\
& T^{1}=\gamma_{31}^{8} T \\
& T_{0}=\gamma_{31}^{8} T_{0} \\
& a_{1}=\gamma_{31}^{\top} A_{1}^{\prime} \\
& a_{3}^{\prime}=\gamma_{31}^{7} A_{5}^{\prime} \\
& b_{1}^{\prime}=\gamma_{31}^{7} B_{1}^{\prime} \\
& b_{5}^{\prime}=Y_{31}^{7} B_{3}^{1} \\
& a_{10}-\gamma_{31}^{7} A_{10}=\gamma_{31}^{7} A_{1}^{\prime}(b=0) \\
& a_{30}=\gamma_{31}^{7} A_{30}=\gamma_{51}^{7} A_{3}^{\prime}(b=0) \\
& \stackrel{b}{\because 10}=\gamma_{31}{ }^{7} B_{10}=\gamma_{31}{ }^{7} B_{1}^{\prime}(b=0) \\
& b_{30}=\gamma_{31}^{7} B_{30}=\gamma_{31}^{\prime} B_{3}^{\prime}(b=0)
\end{aligned}
$$

$$
\begin{aligned}
& P_{11}=P A_{1}^{\prime}+\left(P+1 / 4 d_{1}^{\prime}\right) A_{5}^{\prime} \\
& P_{12}=P B_{1}^{\prime}+\left(P+1 / 4 d_{1}^{\prime}\right) B_{5}^{\prime} \\
& P_{15}=\left(1 / 2\left(1+d_{2}\right)-1(16 r)\right) A_{1}^{\prime}+\left(1 / 2\left(2+d_{2}\right)-i(2 b+c)\right) A_{5}^{\prime} \\
& P_{14}=\left(2\left(1+d_{2}\right)-i(b+r)\right) B_{1}^{\prime}+\left(12\left(2+d_{2}\right)-1(2 b+c)\right) B_{5}^{\prime} \\
& P_{15}=\left(d_{2}-h\right) R N+1 / 4 d_{1}^{\prime} a^{2}(R+N)-1 / 2 d^{\prime}(R M+N Q) \\
& P_{11}=\left(d_{2}-i b\right) R N-1 / 4 d_{1}^{2}(R M+\Gamma Q Q)
\end{aligned}
$$

$$
F_{210}=P_{11}(b=0)=y_{1} A_{11}+\left(y_{1}+y_{4} d_{1}^{2}\right) A_{30}
$$

$$
P_{120}=P_{12}(b=0)=y_{1} B_{10}+\left(y_{1}+y_{4} d_{1}\right) B_{30}
$$

$$
P_{130}=P_{15}(b=0)=\left(12\left(1+d_{2}\right)-i c\right) A_{10}+\left(y_{2}\left(2+d_{2}\right)-i c\right) A .
$$

$$
P_{140}=P_{14}(b=0)=\left(1 / 2\left(1+d_{2}\right)-7 c\right) B_{10}+\left(1 / 2\left(2+d_{2}\right)-i c\right) B_{30}
$$

$$
P_{50}=P_{15}(b=0)=d_{2} Y_{3} 1^{2}+1 / 4 d_{1}^{2} a^{2}\left(y_{3}+y_{3}^{n}\right)-1 / 2 d_{1}{ }^{2}\left(y_{2} y_{3}{ }^{2}+y_{2}{ }^{\circ} y_{3}\right)
$$

$$
P_{160}=P_{16}(b=0)=\left.d_{2} Y Y_{3}\right|^{2}-y_{1} d_{1}^{2}\left(y_{2} y_{3}^{*}+y_{2}^{*} y_{3}\right)
$$

Hence

$$
(7.8 .175)
$$

$$
\begin{aligned}
& x_{1}=\frac{M_{1}-T_{0} \bar{\rho}_{15}{ }^{\alpha}}{-i b}=\frac{M_{1}-m_{1}(b=0)}{-i b}=\frac{M_{1}-P_{1} /_{y_{3}} Y_{3} 1^{2}}{-b}=\frac{y_{1} \mid T_{3} 1 P M_{1}-P_{1}^{*}}{y_{3} 1 T_{1} 1^{2}(-b)} \\
& \left.x_{9}=\frac{M_{2}-T_{0} \bar{\rho}_{12}^{*}}{-i b}=\frac{M_{2}-M_{2}(b=0)}{-b}=\frac{M_{2}-P_{4}{ }^{*} / /_{3} T_{3} \mid Y_{3}}{-i b}=\frac{Y_{3}\left|Y_{2}\right| H_{2} \cdot P_{4}}{Y_{3}\left(T_{3}\right)^{2} \cdot(7 b)}\right\} \\
& x_{4}=\frac{T-T_{0}}{-1 b}
\end{aligned}
$$

$$
\begin{aligned}
& 8=110 T_{0} \overline{0} \\
& \Gamma_{5}=V_{2} V_{2} T_{0} \bar{p}_{3} \\
& P_{4}{ }^{*}=y_{3} \quad\left|y_{3}\right| T_{1} \bar{\beta}_{21}=y_{3}\left|T_{3}\right|^{2} T_{0}\left(\frac{\mu_{2}(b-c)}{T_{0}}\right)=y_{3}|/ 3|^{2} M_{2}(b=C) \\
& P_{5}=Y,\left|Y_{3}\right| T_{0} \bar{\beta}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& n_{2}=\frac{i_{n}}{n}\left[r-F_{n}+B_{n} P_{2}-n_{n} A^{2} F N T\right]
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=\frac{y_{2} d}{R_{1}}\left\{\left(1 ;\left\{\left(v_{2}\left(3+d_{2}\right)-i(3 b+c)\right) P_{11}+\left(v_{2}-i b\right) P_{2}\right\}+\left(1+d_{2}\right)-\left(y_{0}+i_{1} R T\right]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7.E.E.175) } \\
& x_{20}=-\frac{1}{R^{N}}\left\{\sim / 14 d_{2}\left[\left(1 / 2\left(3+d_{2}\right) \cdot(5 b+c)\right) P_{13}+\left(y_{2}-h\right) P_{44}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{A_{j}^{\prime} B_{1}^{\prime}-A_{i}^{\prime} R_{3}^{\prime}}{R M} \\
& T=\frac{A_{30} B_{10}-A_{00} B_{30}}{|1 / 3|^{2}} \\
& \boldsymbol{X}_{1}=\left(12\left(1+d_{2}\right)-i c\right)\left(1 / 2 d_{2}-i c\right)+a^{2} \\
& \boldsymbol{r}_{2}=1 / 2\left(1 / 2 d_{2}-i c\right)-1 / 4 d_{1}^{2} \\
& Y_{3}=1 / 2 \\
& A_{1}^{\prime}=-\left(d_{2}-b\right) R N-1 / 4 d_{1}^{2} a^{2}(R+N)+1 / 4 d_{1}^{2}(R M+Q N) \\
& A_{5}^{\prime}=-\left(d_{2}-(b) R i N+1 / 4 d_{1}^{2} d^{2}(R+N)\right. \\
& 3_{1}=\left(d_{2}-h\right) R N+3 / 4 d_{1} \cdot a^{2}(R+N)+a^{2}(L R+P N)-1 / 2 d_{1}^{2}(R M+B N N) \\
& B_{5}=\left(d_{2}-1\right) R N-y_{2} d_{1} n^{2}(R+N)-o_{2}^{2}(L R+P N) \\
& A_{10}=-d_{2}\left|Y_{3}\right|^{2}-Y_{4} d_{1}^{2} a^{2}\left(Y_{5}+Y_{3}^{*}\right)+1 / 4 d_{1}^{2}\left(Y_{2} Y_{3}^{*}+Y_{2}-Y_{3}\right) \\
& A_{30}=-d_{2}\left(Y_{3}\right)^{2}+1 / 4 d_{1}^{2} a^{2}\left(Y_{3}+Y_{3}\right) \\
& E_{10}=\quad d_{2}\left|y_{3}\right|^{2}+3 / 4 d_{1}^{2} a^{2}\left(y_{3}+y_{3}^{n}\right)+a^{2}\left(y_{1} y_{3}+y_{1} \cdot y_{3}\right) \\
& B_{30}=\left(d_{2}-1\right)\left|Y_{3}\right|^{2} \quad-1 / 2 d_{1}^{2} a^{2}\left(Y_{3}+Y_{3}^{2}\right)-a^{2}\left(Y_{1} Y_{3}{ }^{2}+Y_{1} Y_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& F_{1}^{*}=1 a\left[P_{100} P_{100}+P_{120} P_{110}-1 / 4 d_{1}^{*}\left|y_{5}\right|<T_{0}\right] \\
& \left.P_{2}=-y d\left|P_{10}\left\{a^{2} B_{10}+\left(a^{2}-y_{2}\right) B_{30}\right\}+P_{150}\left\{a^{2} A_{10}+\left(a^{2}-y_{2}\right) A_{30}\right\}+y_{-}\right| y_{3} \mid T_{0}\right] \\
& F_{3}=-y_{5}\left[P_{160} B_{10}+P_{150} A_{10}\right] \tag{7.8.120}
\end{align*}
$$

$$
\begin{aligned}
& P_{5}=Y_{3}\left[P_{100}\left(P_{10}-P_{3 x}\right)+P_{100}\left(A_{10}-A_{30}\right)+\left|Y_{35}\right| T_{0}\right]
\end{aligned}
$$

He can furtior factorise the oxpressions for $F_{1}, P_{2}, P_{3}, P_{4}, P_{5}, T, T$, $x_{1}, r_{2}, x_{1}, x_{0}, x_{4}, x_{2}, x_{3}, x_{10}, x_{11}$ eiven in equations (7.0.177), (7. 1.178), (7.D.102) ao that we obtain the follounce ecgremsions:

$$
\begin{aligned}
& s_{1}^{*}=\frac{p_{1}{ }^{*}}{\left.y_{5} 1 y_{3}\right)^{2}}=i a\left[y_{1}\left\{-d_{2}\left(y_{3}^{*}+1 / 4 d_{1}^{2} a^{2}\right)+1 / 4 d_{1}^{2}\left(d_{2}+1\right) y_{2}^{*}\right\}+1 / 4 d_{1}\left\{(d _ { 2 } + 1) \left[\left(y_{2} d_{2} i x\right) y_{3}{ }_{3}^{*}\right.\right.\right. \\
& s_{2}=\frac{p_{2}}{\left.y_{5} \mid y_{3}\right)^{2}}=-1 / 2 d_{1}\left[a^{2}\left\{-d_{2} y_{3}\left(1+1 / 2 d_{2}-i c\right)-1 / 4 d_{1}^{2}\left(a^{2} d_{2}-\left(d_{2}+1\right) y_{2} a^{2}\right\} d_{2} y_{1}+\right\} y_{4}+d^{2} a^{2}\right] \\
& \left.-y_{2} 0\left\{11_{4} d_{1}^{\prime}\left(d_{2}+1\right)+d_{2} y_{1}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& s_{4}^{*}=\frac{P_{+}^{*}}{y_{3}\left|y_{3}\right|^{2}}=-1 a^{1 / 2} d_{1}\left[\left\{1 / 2\left(1+d_{2}\right)-i c\right\}\left\{-1 / 4 d_{1}^{2} a^{2} d_{2}-d_{2} y_{3}^{*}+y_{4} d_{1}\left(1+d_{2}\right) y_{2}^{*}\right\}\right. \\
& +1 / 2 a^{2}\left\{1 / 4 d_{1}^{2}\left(1+d_{2}\right)+d_{2} y_{1}\right\} \\
& \left.+y_{5}^{*}\left\{y_{4} d_{1}^{2}\left(1+d_{2}\right)+a^{2} d_{2}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& \begin{aligned}
\boldsymbol{T}=- & {\left[d_{2} y_{5}\right)^{*}+1 / 4 d_{1}^{2} a^{2}\left(3 d_{2}+1\right)\left(y_{5}+y_{3}^{*}\right)+2 a^{2} d_{2}\left(y_{1} y_{3}^{*}+y_{1} \cdot y_{3}\right) } \\
& -1 / 4 d_{1}^{2}\left(d_{2}+1\right)\left(y_{2} y_{3}^{*}+y_{2}^{*} y_{3}\right)-1 / 8 d_{1}^{4} a^{4}-1 / 4 d_{1}^{2} a^{2}\left(y_{1} y_{2}^{*}+y_{1}-y_{2}\right)
\end{aligned} \\
& \left.-1 / 4 d_{1}^{2} a^{2}\left\{\left(1 / 2 d_{2}+i c\right) y_{3}+\left(1 / 2 d_{2}-i c\right) y_{5}^{*}\right\}\right] \\
& T=-\left[\left(d_{2}-i b\right)(1-i b) R N+1 / 4 d_{1}^{2} a^{2}\left(3 d_{2}+1-4 i b\right)(R+N)+2 a^{2}\left(d_{2}-i b\right)(L R+P N)\right. \tag{7.B.182}\\
& -1 / 2 d_{1}^{2}\left(1 / 2\left(1+d_{2}\right)-i b\right)(R M+Q N)-1 / 8 d_{1} 4 a^{4}-1 / 4 d_{1}^{2} a^{2}(P M+Q L) \\
& \left.-1 / 4 d_{1}^{2} a^{2}\left\{\left(1 / 2 d_{2}-i(b-c)\right) R+\left(1 / 2 d_{2}-i(b+z)\right) N\right\}\right]
\end{align*}
$$

$$
\begin{aligned}
& +1 / 4 d_{1} a^{2}\left(a^{2}-L\right) \\
& -\left(2 d_{2}+1-3 i b\right) a^{2} \\
& \left.-1 / 2 d_{1}^{2}\left(1+d_{2}-i\right)^{3}\right\}
\end{aligned}
$$

$$
x_{2}=1 / 2 d_{1}\left\{[y _ { 2 } (1 + d _ { 2 }) - i (b + c)] \left[\left(d_{2}-i b\right)(1-1 b) N+1 / 4 d_{1}^{2} a^{2}\left(3 d_{2}+1-4 i b\right)+2 a^{2}\left(d_{2}-i b\right)[\}\right.\right.
$$

$$
\left.-1 / 2 d_{1}^{2}\left\{1 / 2\left(1+d_{2}\right)-i c\right\} M-1 / 4 d_{1}^{2} a^{2}\left(1 / 2 d_{2}-i(b-c)\right)\right]
$$

$$
\begin{aligned}
& +y^{\prime} d=\left(y_{y} y^{x}+y_{4} y^{\prime}\left(a^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+1 n_{2}(1+d,-b)^{(n} d_{2}-(1,+c)\right) N^{\prime}+y_{3}^{*}\right\} \\
& \text { a } \left.\left(\%_{2} d_{3} \therefore r\right) y_{\varepsilon}{ }^{x}+1 / 4 d_{1} a^{2} a^{2}\right] \\
& \left.+\operatorname{s}_{2} a \mid\left(1 t_{2}-(h)!^{\prime}+y_{1} \times\right]\right\} \\
& x_{2}=-a 1_{2} d_{1}\left\{a\left[\left(1 / 2+d_{2} \cdot b\right)\left(y_{1}-1 b L\right)+i, d_{2} L^{\prime}\right]\right. \\
& \left.-1_{1} d[(1+d,-i b+c))\left(Y_{2}{ }^{*}-1 b M^{\prime}\right)+\left(1+d_{2}\right)\left(y_{2}\left(1+d_{2}\right)-i c\right) M^{1}\right] \\
& \left.-\left[(1 \cdot+i n M) i\left(=\left(1+z_{2}\right)-i(t+)\right)(1-1 b)+d_{2}\left(\%\left(1+d_{2}\right)-i c\right)\right]\right] \\
& +\mathbb{N}^{2}[1,(=(15,1,-1,)] \\
& t^{\prime \prime}=d^{\prime}\left[Y=y^{\prime}+\left(1,4--b^{\prime}\right) M^{\prime}\right] \\
& +a^{:}\left[y_{3}^{3}+\left(d_{2}-b_{3}\right) \omega\right] \\
& \left.+11 d_{i} a^{i}\left[i_{2}\left(3-d_{2}\right)+(b o r)\right]\right\} \\
& x_{4}=-\left\{\left(y_{3} \cdot R^{\prime}+y_{3} N^{\prime}\right)\left[d_{2}-i b\left(d_{2}+1-, b\right)\right]+\left.\left|y_{3}\right|\right|^{\prime}\left(d_{2}+1-, b\right)-i b R^{\prime} N^{\prime}\left(2 d_{2}+1-i b\right)\right. \\
& +1 / 4 d_{1} a^{2}\left[\left(R^{\prime}+N^{\prime}\right)\left(s_{3} d_{2}+1-4 i b\right)+14\left(Y_{5}+Y_{5}{ }^{5}\right)\right] \\
& +2 a^{2}\left[\left(y_{1}{ }^{*} R^{\prime}+y_{1} N^{\prime}+y_{5} L^{\prime}+y_{3}{ }^{*} P^{\prime}\right)\left(d_{2}-b^{\prime} b\right)+y_{1}{ }^{*} y_{3}+y_{1} y_{3}{ }^{*}\right. \\
& \left.-1 b\left(L^{\prime} R^{\prime}+P^{\prime} N^{\prime}\right)\left(d_{2}-i b\right)\right] \\
& -1 / 2 d_{1}^{\prime}\left[\left(y_{3} M^{\prime}+y_{3}^{\prime \prime} Q^{\prime}+y_{2} N^{\prime}+y_{2}^{*} R^{\prime}\right)\left(1_{2}\left(1+d_{2}\right)-i b\right) 7 y_{3} y_{2}{ }^{2}+y_{3}{ }^{0} y_{2}\right. \\
& \left.-b\left(F^{\prime} M^{\prime}+Q^{\prime} N^{\prime}\right)\left(1 / 2\left(1+d_{2}\right)-i b\right)\right] \\
& -y_{1} d_{1} a^{2}\left[Y_{1} M^{\prime}+Y_{1}{ }^{\alpha} Q^{\prime}+Y_{2} L^{\prime}+Y_{2}^{*} P^{\prime}-1 b\left(P^{\prime} M^{\prime}+Q^{\prime} L^{\prime}\right)\right. \\
& \left.\left.+R^{\prime}\left(1 / 2 d_{2}-i(b-c)\right)+N^{\prime}\left(1 / 2 d_{2}-i(b+i)\right)+y_{3}+y_{5} 7\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\ln , d_{1}-\left(b r r^{2}\right)\right\} 4 d_{1}^{2} a^{2} L+2\left(1 / 2\left(1+d_{2}\right)-b b\right)\right\} \\
& x_{10}=-\left\{\left(x_{2}-\cdots\right)\left(a_{2}\left(1+d_{1}\right)-(h+1)\right\}\left[d_{2}-1,()(1-1)\right) N+1 / 4 d_{1}^{2} a^{2}\left(3 d_{2}+1-4 \cdot b\right)\right. \\
& +2 a^{2}\left(d_{2}-b^{\prime}\right) L-1 / 2 d_{1}\left(1 / 2\left(1+d_{2}\right)-i b\right) M \\
& -1 / 12 d a^{3}\left(1 / 2 d_{2}-i(b-c)\right] \\
& \left.\left.+1 N\left[2 a\left(d_{2}-1\right)\left(1 / 2\left(1+d_{2}\right)-1(t+c)\right)-1 / 2 d_{1}(1 / 2-1,)\right)_{12}\left(1+d_{2}\right)-b\right)-4 d_{1} a\right] \\
& +1 / 4 d n^{2}\left[\left(1 / 2\left(1+d_{2}\right)-i(h+r) m-(1 / 2-b) L\right]\right\} \\
& \left.\left.x_{11}=v_{2} d_{1}\right\}\left[\frac{1}{2}\left(1+d_{3}\right)-(h+2)\right]\left[1 l_{2}-i b\right)\left(1-i b^{\prime}\right) N+1 / 4 d_{1}^{2} a^{2} / 3 d_{2}+1-4+b\right)< \\
& \text { - } 2 a^{i}\left(d_{z}-i\right) L-1 / 2 d_{1}\left(1 / 2\left(1+d_{2}\right)-i b\right) M \\
& \left.1_{1}+d_{1}-a^{2}\left(1 / 2 d_{2}-(b-c)\right)\right] \\
& -\left[\left(d_{2}-h\right)+" 2 d^{2}\left(1 / 2\left(1+d_{2}\right)-h\right)\right] \\
& \text { T/4d } \left.\operatorname{lan}^{2}\left(L-a^{i}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& P=y_{1}-i b P^{\prime}, \quad P^{\prime}=1 / 2\left(1+2 d_{2}\right)-i 2(b+c) \\
& Q=y_{2}-i b b^{\prime}, \quad Q^{\prime}=1 / 2\left(1+d_{2}\right)-i(2 b+c) \\
& R=y_{3}-i b R^{\prime}, \quad R^{\prime}=1 / 2\left\{12\left(1+2 d_{2}\right)-i 2(b+c)\right\}+\left\{\frac{1}{2}\left(1+d_{2}\right)-(b+r) y_{1}^{\prime} 1 d_{2}-(b+c)\right\} \\
& -x_{1} s_{1}^{2}+a^{2} \\
& L=y_{1}^{\alpha}-i b L^{\prime}, \quad L^{\prime}=y_{2}\left(1+2 d_{2}\right)-i 2(b-c) \\
& M=y_{2}-i b M^{\prime}, \quad M^{\prime}=y\left(1+d_{2}\right)-i(2 h-c) \\
& \left.\left.\mathbb{Z}=y_{3}^{*}-i b N^{\prime}, \quad N^{\prime}=1 / 2 i^{\prime} / 2\left(1+2 d_{2}\right)-i 2(b-c)\right\}+\left\{12\left(1+d_{2}\right)-i(b-c)\right\}^{\prime} \eta_{j}^{\prime}-(b c c)\right\} \\
& -1 / 4 d_{1}^{2}+a^{2}
\end{aligned}
$$

Ecice wo can urite the interadty apectruas as:-

$$
I(b)=\tilde{I}_{\infty 0 l}(b)+\tilde{I}_{\text {iman }}(b)
$$

where $\tilde{I}_{\text {ch }}(b)=\sum_{i=1}^{4} \hat{I}_{\text {chin }}(b)$
and $\hat{I}_{\text {inch }}(b)=\frac{2 \pi \delta(b)\left|s_{1}\right|^{2}}{T_{0}{ }^{2}}$

$$
\widetilde{I}_{\text {inech, }}(b)=\frac{2 \pi S(t) S_{5}^{0} S_{4}}{T_{0}^{2}}
$$

$$
(7.3 .255)
$$

Craphis for $\tilde{I}(3)$ actinct b can now be plotion for various velues of a, c, d_{1}, d_{2} and axo topical corputer enematen ones are ahown in sectica E far $d_{1}=d_{2}=1, a=3$ and varions vaiues of c. These, and others for which cata coly are civen in aection C, are andyed in the following section C_{8} part (c).
C. Analysis of rectral proifles ahom in Section E for $a_{1}=d_{2}=1$

(a) [eclectisme

Wo mhall first of all consider that effoct the parameters a and a might have on tie postria profile I(b).

In the case of a, wo chould expect noticeable nom-1inear effects for a large eince a is relatad to the amplitude of the driving field, ε_{0}, by the axpreasion $a=\varepsilon_{0} \lambda / \gamma$. and so when $\frac{1 s}{} 1$ jerese the driving field is atronge When ε_{0} is of the napritude to be found in Ieser radiation the fieide
 We coluce this from the fact that auch fislid-dependent eriltting wno found

$$
\begin{aligned}
& T_{n}\left(t_{1}\right)=\frac{2 T_{1}\left(h_{h}\right)\left(c_{4} l^{2}\right.}{T_{n}-} \\
& \tilde{I}_{, a_{4}}(b)=\frac{2 \pi \delta(b) S_{4}{ }^{2} s_{1}}{T_{0}{ }^{2}} \\
& \tilde{I}_{\text {inad }}(b)=\sum_{\substack{4}}^{\tilde{I}_{\text {incoon: }}(b)} \\
& \tilde{I} \ldots(h)=\frac{2}{|T|_{-1} T_{0}^{2}} F_{4}\left[T^{*}\left\{T_{0}\left(x_{1} s_{1}+x_{2} S_{2}+x_{3} S_{3}\right)-x_{4}\left|s_{1}\right|^{2}\right\}\right] \\
& \tilde{I}_{\ldots c h}(h)=\frac{2}{T i T \cdot T_{0}{ }^{2}} P_{4}\left[T \cdot d_{1}\left\{T_{4}\left(x_{1} S_{4}+x_{2} S_{5}+x_{3} S_{2}^{\alpha}\right)-x_{4} S_{1} S_{4}\right\}\right] \\
& \tilde{I}_{\text {mosh }}^{3}(h)=\frac{2}{|T|^{2} T_{6}{ }^{2}} R_{6}\left[T^{*} d_{2}\left\{T_{0}\left(x_{a^{4}} S_{4}+x_{10} S_{5}+x_{11} S_{2}^{x}\right)-\left.x_{4}\left|s_{4}\right|\right|^{\prime}\right\}\right] \\
& \tilde{I}_{\ldots c h}(b)=\frac{2}{\mid T T^{2} T_{6}{ }^{2}} F_{46}\left[T^{\nu} d_{1}\left\{T_{0}\left(x_{4} S_{1}+x_{10} S_{2}+x_{11} S_{3}\right)-X_{4} S_{4}{ }^{*} S_{1}\right\}\right]
\end{aligned}
$$

In the cases of potamaiun and hyrrogen (see Chapters V and VI). Cur csmaption that the ficid has one mode, or one frequency, is perticulariy valld for auch strong ficlas.

On the other hand, in the case of c, ve chould oxpect the $x=0$ the monitwin of the interafty to be noticeable (seo ref. 8). e is related to the mequation of the atomic levels 2 and $3, w_{3}$, by the expression $c=1 \omega / \gamma$ and so wien c is mail, ω_{5} is salll compred with tho linem width γ. khen ω_{3} is in the rance of 0 to 1 the overlapping of the

\qquad
Fig 7C. 1
In Chapter III wo saw how the profiles for montaneous enisaion became asymetric when levels 3 and 2 overlapped. Graph for $c=1$ and $c=\frac{1}{3}$ are given in Fies. 3.E. 4 a and 60 respectively of Chapter III.

Since in the present case we have profiles dependent on a gid a the effocts of field mplitting and asymotry should both be present. The field splititig should be larce for a larce and the asymetry large for o small. splitting would oniy disappear for a $=0$ but ve thould expect it be unresolvable for a arficiently mall. Sivilariy, when e is lareer than 1, one would expect the aeymotry due to overlapping of line widths to be neclicible, althouch, if o is not too large, them lovol 2 nicht atill be close enouch to level 3 to cffect the profile in cow way. The conectod resuits micht be further corplicated by the position or the oplit levels of level 3 relative to level 2. Nowne hould expect the oplit levels to occur at $b= \pm 2 a$ (eee ref. g) wo that the magituie of a rolative to a is also important. Eoc 12 gma then arit levela should occur at $b_{1,2} \pm 2$ and if $c=1$ also then

\qquad
If $\mathrm{g}=\mathrm{L}$, then $\mathrm{b}_{1}, 2= \pm 1$ and $1 f \mathrm{c}=\frac{1}{2}$ also then

\qquad
If $a=\frac{1}{4}$, then $b_{1,2}= \pm \operatorname{and}$, if $c=\frac{3}{4}$ aleo

$$
\text { 年, }\}_{v_{2}=\omega-1 / 2 \gamma}^{3 \prime \omega_{1}=\omega+1 / 2 \gamma}
$$

$$
F_{i g} .7 . C .4
$$

1
In this case the split levela occur at the catronities of the half width of leval 3 and will not be resolveble, thouch they micht appear as shoulders on the resorance profile if their intensity is aufficientiy large, viz.

Since e < 1 these choulcers are shown to be ammetric in intensity. Suttable values for a and 0 woula bo $a \geqslant 0.25,0=0 \rightarrow 1$, for the effects of
 loval 3. When $a \gg 1$ then the atom would bo effoctively $2 m$ ievel aton and the results would be only cue to the fielt. khen a< $\frac{4}{4}$ one world not crpect onythine different from the nomal Lorentizion profile. When a is very larce one would capect the profiles of the oplit levels to bo indenendent of ce

Newstein has pointed out that the size of the criving field is critical. In ref. 65 where he considers the effect of collisional relasstion he bays that if the driving field is not bufficiently laree to aiter the state of the atoric eystem in a relaxation time, then the apectral distribution of the sponteneous emiesion will be unaffected (see also ref. 85). In ref. 66 he says that the affect ymidrot he eforipfont in such a case. ke can see, in the above analysis, that unless a $>\frac{4}{4}$ the profile would be Lorentzian. Newsteln $[66]$ considers the spectrum for arontancous eraission from en onsemble of 2-Ievel atome interacting with a relaxation mechanien and the effect of the application of a slessical drivine field. He finds that the single Lorentzian linewhape characteristic of the power apectrua of epontaneous exission for the undriven case is eplit into components by the driving field and that their eplitting is associated with the establishment of definite rhace retationg betwen the correaponding components of the field epectrom. The effects becone oignificant when the strength of the field is mifficient to appreciably alter the state of the material aybear in a relaxation time. Ho caye that: "The splitting of the power spectrus can be associated with the ainusoidal eodulation of the population of the upper leval of the material gystea, between relacation collisions, due to the coupling to the driving field. The establiahment of phase relations between the components of the field spectrum can be associated with response characteristics of the driven material aystom. Senitaky et al. ${ }^{[67]}$ have show that the linear response to an additional mall signal depends on the phase of the small eignal relative to the driving field. The susceptibility of the medium to a sinall signal phased for frequency modulation relative to a resonant driving fiedd has a Lorentzian line shape centred at the central atomic frequancy, The susceptibility to a exall sigral phased for amplitude codulation consists of the sums of tho two Lorentsians, symetrically displaced relative to the central frequency. These three peaics in the * ef. nore on ostillation at the Rabi frequency it Chapter II.
gusceptibility and the asmoclated phase relations correapond to the mane

 curvas are for $\Omega * 4$, when the ohape 15 sixilar to lollowis for $\Omega=3 K$ and
 when the cile proks morce with the central one, os ther do for Ω In Nollow's case, and fors own there is no triving fiela.

Apanasevich ${ }^{[(3 \pi)}$ does not obtain 3 peal: in bis susceptibility curves (F1: 2), owing to the fact that they oniy reprecent lisear musceptibility resulting from a yesk fiald, i.e. a field insufficientiy strong to aiter the state of the stomio syatern in relaxation tive His anositiles are due to the nearness of the ryper levels and tho fact that the wesk ficla can couple both upper levels to the fround level airce it has frecuency epread.

We can however couce bome resulta from those of Kollof(g) sinee, if
 $\dot{\rho}_{13}$ and $\dot{\rho}_{31}$, for the case whem $\gamma_{21}=\gamma_{31}=\Gamma_{21}=\Gamma_{31}=\gamma$ with thoge of liolloy far the driven 2 Level eltwatso:, we gee that the equations are oruivalort, kaming in wind that

$$
\begin{aligned}
& \overline{r_{1}} \longrightarrow \rho_{55} \\
& m \longrightarrow \rho_{11} \\
& x \rightarrow \rho_{21} \\
& x^{*} \rightarrow \rho_{13} \\
& k \rightarrow \gamma \\
& 1 / 4 n^{2} \rightarrow 1 / 4 c^{2}
\end{aligned}
$$

 the peak of the power spectrum occur at ν mo and $\nu=\omega_{0} \pm n$ i.e. if $\Omega=n E$ then the siampeaka are near to ν mo $^{\prime}+n k$. Therefore we
 rielas.
(b) Levient of cher melevnt reforenen (for the purpose of oomparing remulte)

The first reference of interest is the paper by Norozov and aferyein (ref. 8) which has aiready been discussed, both in Chepter III and in rart (e) of the prescnt oection. They Mind that the contrel poai in profile for
spontancous cmission from a 3-level aton initially in level 3 becones ohifted to the left and increased in height owing to the friflumce of the exclunge of virtual photans between overlaping intermediste levels. This change beconea increasingly aperent for decreasing c and is neglieible for
 affectod by the macritude of a and not the central resonence peak eince we are net concidering the wiriven etom.

In ref. 63 a molecule with 2 2rtemenigte levels is considered wien it is coupled to a quartised radiation field orily end allowance is also made for yifus? motom erohsige between overlarping intermediate levela. They calculate the intensity and shape of the absorbed and econdary rediation Lines using the reitlex-va method ${ }^{(47)}$ as do the oxthors of ref. 8 , and point out that it proviaes a more rigorous ard complete colution than doee that of Woivarops and Higer (41) In their ficg. 2-5 they thow how conbideration of the extra irtermedinte ievel reanits in civences in intensity profile. It is interesting to note that when considering ome intermediate lovel only they find that conoidcration of the trancformation of Lifit by the Hoiticrela mothod, which we saw in Chapter III, gives the sane reanits as our method, for $\tau_{j} \ll t \ll \tau_{i}$, is fully equivalent nethenatically to the
 eysten succested by Apansovich (refs. 69 \& 70) who claims his model accurately reilecta real experimantal concitions.

In ref. 72, Varozov calmiates the influmeo of incorpleto internixing of ceccnorato atatea on the 2 nemshape of spentancous acisaion. The cegcueracy of the 2 excited levels is elininatod by perturtation af anerey, \bar{h}_{ω} : cofe a conctant electric ficil, having matix oleneata $W_{12}=\omega_{21} \neq 0$ end $W_{11}=W_{22}=0$ - In rect in his oalculation he assumes that one of the excited leveis camot deasy to the ground state by a dipole transition, but we do not. He aiso conidera tho initial stato of the atom to be know, whoreas we do not acgum this. Also tho ficid in hie case is a constant

Qectric ficid and the effect considered is the Stark offect. In our cace the field is tinemopentont. For thene tiree ressons his resuits cannot throw ony licht on our calculations.

In a later paper (ref. 75) Morozov consilers the aplitting of the resonance ecattering 21 ne under SThom monociromatic radiation for 2-1evel particles. Ho polnts out that this has already beon investigated theorctically by hpariasevich $(76,77)$, wo, in ref. 7, , wolves the equation for the dwaity matrix of the transformation under atailonary conditions (onm or nonmalosed systan) and then in ref. 77 atudies the biape of the ceattoring line of the 2-level particlea a fonction of the irradiation intensity on the basis of his colution. In contrest, yorozov (75) examines this question by aolvis g_{i} the Schrodinger equation in the onerey represertation of a ciosen egstas of radiation fieli and the 2wlevel particle and obtains a lino mapo gualitatively difforent fros the ehape of refs. 76 and 77.

Karozov ${ }^{(75)}$ conitiders the rolloung initial conditiong; at t w 0 the farticle is in the cround stato with cierg E_{0} and the radiation fiela contoins s_{λ} protons of cach type λ whose frequency aistribution is defined by a eymotrical exrve $I_{0}\left(\omega_{\lambda}\right)$ centred at $\omega_{\lambda}=\omega$ with halfoiath $\Delta \omega$. The enerey of the excited atate is E_{1} and $E_{1}-E_{0}=\hbar \omega_{0}$ $\operatorname{Lus}_{0}\left\{\begin{array}{l}E_{1} \ldots \\ E_{0}-\frac{|0,5 \lambda\rangle}{}\end{array}\right.$

Fig. 7.C. 6
Hie finds that the energ distribution deneity of seattored photons, the shape of the scattoring line, which is expressed through the probability amplitude $b_{0 \sigma}(\infty)$ (symbolically as in ref. (8) in the following way (see refs. 40 and 63):

* Ke do not ascue a epecifio initial stato and we ascume $I_{0}\left(\omega_{\lambda}\right)$ to be of nerifible wiath.

$$
I\left(\omega_{n}\right)=\left|\omega_{-} n \cdots\right| b_{,}\left(\left.\infty\right|^{2}\right.
$$

is Eivan by
whare Th in the interaction enercy of the particle with the ficla and $(h A)^{2}=\left.\sum_{\lambda}\left|V_{N}^{\prime} I^{2} \cdot 2 \pi\right|\left(M_{\lambda}\right)_{N}\right|^{2} \int_{-\infty} I\left(\omega_{\lambda}\right) d \omega_{N}=2 \pi\left|\left(M_{\lambda}\right)_{N}\right|^{2} I_{D}$
and $\hat{i} X_{\text {a }} Y$ is the usual rodintion deraing of the orcited state and $\left[\left(E_{05}\right): \frac{2 i}{\hbar} \hat{C}_{\lambda} \frac{\left\lvert\, V_{0}^{\prime} \frac{1}{E_{00}-E_{-1}+i V_{2} \mid}\right.}{}=\frac{2 \cdot f^{2}}{\omega_{\sigma}-\omega_{0}+1 / 2}\right.$

Thus when the interaction is $\mathrm{HE}, f^{-1} \gamma^{-1} \ll \Delta \omega \ll \gamma$ or $A \lll \gamma$ and the raitation field haf a remory line aistribution, this oquation for $I\left(\omega_{5}\right)$ ratuces to equation 23 of ref. 6 except that the factor $\gamma_{5} \gamma^{-1}$ is onitted there.

For a inser field, where nuber S_{λ} excecte unity by many ordors of inimiture, and twarciore for $\Delta \omega \ll \gamma$ an has $I_{0}>\gamma \hbar$ and aceondingy
 $I\left(\omega_{5}\right)=\hbar \omega_{5} \frac{\gamma_{5}}{2 \pi} A^{2}\left[\frac{\left(\omega_{5}-\omega_{0}\right)^{2}+(\gamma / 2)^{2}}{\left\{\left(\omega_{5}-\omega_{0}\right)\left[\left(\omega_{5}-\omega_{0}\right)^{2}+(1 / 2)^{1}\right]^{-A^{2}\left(\omega_{5}-\left(\omega_{0}\right)\right\}^{2}+A^{4}(\gamma / 2)^{2}}\right]}\right.$
 aifferent valuea of $A(A=\gamma, 2 \gamma)$ and $\omega\left(\omega=\omega_{0}, \omega_{c}-\gamma / 2, \omega_{0}-\gamma\right)$ is atom hi the fiture belowt

(Arrows indicate excitation frequencies ω and eimultaneousiy the corresponding bhapes of the acattering Ine.)

Fran the figure it is clear that for etares Interaction $A>x$ the resomance acottering line is aplit into 2 comononta with the egmerecat

 Sintrine fronithernitini froumeien becone omal but as the field becones further from resormce mo the conronents beccos less eymetrical, the intenbity of the left hard exponent Increaing and koth componente beine dhifted leftuards ao that the distance of the left hand peal from the excitine frocucmey 1a incrased and the left hand prok decreased. The distance between the maxina of the split conponents is rouchly equal to 24 , as in Hollow' papar (ref. 9), i, e. the frequency of particle tranation betwean 1evela, uncer the influace of a perturtation that depends on time as cos $\omega_{0} t$. Autler and Tow:es (ref. 55) have grodicted and exertmentally observed analocous eplittine of an absorption lin corrospording to a tranaition botween atstes, one of wich is axposed to atrone reamance excitation. We heve seen also in ref. 33 a theoretical stub of how the absorption line In a 2 -levol byten is split under womochrontic resononce irradiation.

In ref. 77 the mpliting of the weattering line has a diferent character, ene for $\omega \omega_{0}$ (reconence) wat $A \xlongequal{ }=2 \gamma$ the line has 3 veakly definal componts (a contral ons and two lateral ones) with rouchly equal intensities at the narien. Three component vere also fomd by vollow $[9]$ though he fom the lateral ones to poasess lower intensities. Verozor pointa out the aiscrepency to be due to the nenoyurvience of investisations

 thon investigationa - equivalent for veat interactions A $\lll \gamma$.

Nec. [75] thus predicts that, in our peromence situation, we shoula find the side peaks to be equaliy epaced abcut $\omega_{\sigma}-\omega_{0}=0$ and to be separated by a distance of $2 A$ (or $4 A$ in our notation). Also that, since our calculation is carriel out for an opon or ran-closed aystem, 1.e. under
stationary conditions, we bhould expect a contral peak also as in refs. 77 and g. Modificetions will no doubt appar becaise we consiaer an intemadiato Level.

In ref. 7 Horozor considerg the intensitien and ahapes of the
 alternatinc. He treats the eosis fiel quantrun mechenically and points out that auch a study, wich igiores the widh of the lines cue to collisiongs
 qith the restation fied as is the aituation for cases in a good vacum, particularly for the upper, optical transition lovela. This is the eituation we also consider in all our calculations. Forozov is partiouleriy interested In the situation wiere $\hbar A \gg \gamma$ 1.0. the field is etsong and uses the armoxination that takes into account trensformation of only ong goton of the etrong field into each transformed photon of the weak field. In the exact resonayen aituation the vaiues obtained for the intensity and positions of the components agree woll with the experimental reanits for $A>\gamma$ but not for $A \gg \gamma$ because, so he surgeste when $A \gg \gamma$ ene aust also consider those processest in which a sincle transformed photon of the weak field is accomanied by more then coe transfomed photon of the strong ficla. This would be a higher order arrroxination, in quentur language. Although in this paper Morozov considers a 4 level atom hid conclusions concerning the whane the ebnorption line coinctie with those of the previous paper ${ }^{77}$. 1.e. when $\gamma_{2}: \gamma_{3 \rightarrow 1}=\gamma$ and $A \geqslant \gamma$. the line has 2 componenta and for penct reanmene, $\omega_{1}=\omega_{s 2}$, their intersities are equal, tho separation of their mudra being agrin 2A ctc, as chom in his fig. 2 for $A=$ of * Morozov' Hinftation to consideration of emplades of etatesaffering fros the Initial etato by only one photon remilts from having to know the initial state of the eton and consider each trensition eeperately instead of

[^0]conaidering ovarail affects, we we by considering the initial time to be arbitraxy.

The last prpar of Korozov wa whall look at, in comection with our recults, is ref. 77 on the theory of the line abepe of resonsnce ecatterinc of thorf radation, $A \geqslant \gamma$, by a 2 mevel particle. In ref. 75, ach photcon is corsiforod to le scaticrad I Aescacontiy by the particle so that the lino atiape con le renresentod as empermisicas of the distributione obtained. Lut if one surposes thet convergion of rhotora of a cismes ficia is a enicio grocees of the type, ece

$$
0 s_{\lambda} \rightarrow 1,(s-1)_{A} \rightarrow 0,(s-1)_{1} 5_{1} \rightarrow 1(s-2)_{A} J_{1} \rightarrow 0(s-2)_{\lambda} T_{1} J_{2} \rightarrow \rightarrow 0 J_{1} J_{2} J_{s}
$$

wiere λ end σ are photon incices and $\lambda \neq \sigma$

thon a differat urafraia ia required to fint the line diape of the ecattered routaticn. Tarosor stailes the frequancy distribution of photons scattered as a robut of trancitions of this type alnce he considers that Eucin rocesecs are of vital ingortance la the seattering of ftuon reciation.

Ee cousinera sincle wode ficid wits $\omega_{n}=w_{0}$ (etrfict resonance) and calculates tio provaility emplitude bos, $\sigma_{5}(\infty)$, whaliz is the colution of the forcotingor equation (in the aieray repreantation) at $t=\infty$ assuring tie twa is in the ground state at $t=0$ and the rasiation field contans a plotona of type λ. He uses the Heitientia zethod of ref. 40 to find $b_{0 J_{1} \sigma_{2} \sigma_{s}(N)}$ for $\omega \gg \gamma$ and $A_{S} \geqslant \gamma$ and concludes thet for couveraton or 2 photons of a firom field, inetoad of having 2 components. of equal intanailion at distances a ayda frey ω_{0} as in raf. 75:-

we have a diotrinution conteining browened componts (aproximately twice

Conversicn of 2 photons

For corverision of 3 pinotons thero will be composents th . ..: $3 A$

Convereion of 3 photone

 cencrate a contimous curve. Tha intersity of the centre of the Iine increases core mridiy thin in the talls. Tha after a large numer of conversions by a single process, the frogucncy diatribution of acattercd resconnce will be a narrow 112e at $\omega=\omega$ 。

(Nid. Altiongh our rosalts choula mow the overall effects of corveraion of a larce nuber of photoeg pince tho initiol ptate is arifitray our remits \therefore Indicate tunt our calculation effectively considars onily the conversion of CRE pintion of the atrong fleld.)

As we have already mentioned Yollov ${ }^{(9)}$ calenjetes the pover prectrua of
 $\cap \ll K$ then, when the field is offmcesoxince, the intogratal proctral Intensity of tho encoherent part of the coatered field is onis a yexpman
 end thon $|\Delta \omega| \gg K$ the frecuerent pert of the power epectrum is sharply
peaked at the 2 dimpleced frequencies $\omega-\Delta \omega=\omega_{0}$ and $\omega+\Delta \omega \cdot \omega_{0}+2 \Delta \omega$
When the ficid is intonae mouch so that $\Omega \gg E$ the field is off resorance them the function $\bar{g}(\nu)$ nas be criroximated in the doman in widen it is anreciable by a superpocition of Lorcitaion fuctions at ench of sto maxia a屯
wicre

$$
\begin{aligned}
& \nu=\omega \\
& \nu=\omega+\Omega^{\prime} \\
& \nu=\omega-\Omega I^{\prime} \\
& \Omega^{\prime}=\left[\Pi^{2}+(\Delta \omega)^{2}\right]^{1 / 2}
\end{aligned}
$$

 occur at $\nu=\omega: \Omega$ ond $\nu=\Omega$ end the 2 inforentr havo martara of onemthind of the macimarat $\nu=\Omega$; the integrated epectral intensity being enemall of that th the central fremency. The intensity of the cokerent clacsically seattored lieht in this limit is invervely froportional to the Inciamt ficid intenaity, and is centy a very mall fraction of the total sarttering intensity: Ve expect that in cur reacmant case $|\Delta \omega|=0$, we chould fint ofrilar remuls only modifled ky the existance of level 2,

In ref. 80 , Vollow calculatea the power arectrua of the radiation enitted whon the driven r-level bysten is solvinion daped and the collisiona are assumed to be etrong; 1.ce to Anatortareotsly themelise the ptate of the atom. Ha considera the cases of Iow and hish eraitation of the atonle eystem In his calcuiations he asames the incident ficia to oscillato at a firod froquency ω, near to the atocic resmance frequency ω_{0} and to have arbitrarily great intensity. Ho elso assuas that the collision rete, F , (previously used to desicrate the epontancons caisaton rate) is very much procter then the other relaxation ratos, e.e. the radiative decay rate, the effect of wich wa maifoed in ref. Se Mo finde that for yeek driving fields the resilita differ maricaly trea the case of radiative relaration. In the collisicn case, the profile contains both a colierent nonochronatio
spectral component oscillating at ω
and incoherent components oscillating within an interval K of ω_{0}. The incoherent components are appreciable oven at low temperatured and envel the intensity of the coherent componint In the zerotemp. 11mit. For etrong eriving fields, on the other hand, the colutions for the rediative and collisional cases resemble each other quite strongly. In both cases there are three componente, one centred at ω and one at each of the diaploced frequencios $\omega=\Omega$ where Ω is the frequency of the field-incuced atome trensitions. In his calculation ho considers that the atom is difiven ony by a classical electric field and includes no courline to an e.f. raciation fisle in the Hamilonian as wo do whem considering railative relexation.

In r3i. 53, Mollow considers the effect of a driving or purp field on the eaission and abcorption linemehare functions ecrarately, for collisional and emeral relaxation won the ficld is sprlied to the atoa at a frecuency near roanance for atomic transitions betwoen a particular poir of statea. He considers transitions botween pairs of states, oniy one of wich is a menber of the resonantiy coupled pair, as we do in the chapters on petassium and hydrogen and ohows that the driving field affects these transitions also. The absorgtion Ilromanape function is defined as the rate of absorption zion a yone bignal field applied in addition to the prup ficid. He finds that, In the limit of ifich purp-field intensity, both absorption and eniesion epectra are doully peaked at Irequencies affering from the ubual resonance srequency by $+\frac{i}{3} \Omega(-\Omega$ is the frequency of the punp-ifeld-induced oscijlations in the populations of the two strongly coupled states). For hich and vaniahing purmefield intenality, the absorption and emission apoctra are represented by essentially the came function but for intermediate interaities the two functions have quite different forms and there is no simple proportionality betwoon them. The difference between the exission and absorption spectra, which energes directily from the besic method of evaluating the associated correlation functions in the Maricoff approximation,

I* due to the prescme of the offadiagonal statea which are strongly coupled by the prin fleld. Althouch we do not calculate enission and absorption line-shape functions ecparately, it is interestine to note the offect of the ficia's intensity on then.

Nollow (53) also drawis attention to the fact that Lehmberg hes criticized the use of the furiliar form of atomic relaxation theory for the case of compling to "sort" (Iow frequescy) photon or phonon modes when relaretion occurs in the prepence of very etrong driving fields and has proposed a more complicated theory in ref. El. On the other hand, Hollow doen clafin that the equations of motion for the olementa of the 2×2 denalty aumatrix elements referring to the pais of atrongly compled atates 10\rangle and 11\rangle reasin Falld even when, e.E. the coupling botween the atates $|0\rangle$ and $|1\rangle$, but not betwean ofther of these states and the other weakly coupled states of the atom, is described by mean of mare ceneral forms of relaxation theory.

In ref. E2, an extension of ref. © , Hollow goes an to consicer the absorption cpectrum correaponding to transitions from one of the resonantly coupled states to the other. In this peper, the signal field also has a frequency near to the atomic resonance frequency for the transition in question, $u k e r e a s$ in ref. 60 the alenal frequency is well agarated fro: the punp frequency and oo can induce tranaitions botwean poirs of statea of which ondy ere is a member of the pair resonantiy coupled by the purp field. In fact, in all, he considers both ailmulated misaion and absorgtion, near resonance for driven systens. He finds that, even though population inversion does not occur, stisulated eraicsion rather than absorption, is Indicated by tie negative values of the sicnal-field absorption linemape function. This amplification of the eigal is most pronounced at high puap intenaities cadetiy on resonance and he bhows it to occur primarily at the expense of the gump fleld, wich suffers an increased rate of attentuation. Nollow's results can be extended to more ceneral puraping erechanisus.

In the present chapter, wo aro concisicrinc ainilar transitiona to those
of ref. 82 and so for hich munfiegi intenctites, 1.e. A lerces ve ghould expect the rrofiles to indicate atimpinted eniecim although ve do not explicitly conaier eny extra eicral field. In fact, at the end of his parer, Vollow pointa out that the aleral field pias no direct role in his more cencral trentrant of the problem, wifh cives the ame realt so he assunes that the results ahould arply wherever the two coupled levals are eriven by a autahle moning nechorism.

cigal-ficia obsorption invomape function for an atom criven cractiy on resonance by a purp ficia for which $=5 K$. The negative valnea of the aboorption function (ivicula erea) reqresent atimiated enission; 1.e. ampification of the aignal ficli.
ν - dickl-field froquacy; ω - put-field froqucy
K - sean collibion rate or apontanoous axisoion mate depending on wother considerint the case of the strong collision zociel of atocic relsation [33] or (zeromena) radiativo relaration $[9]$
N.D. For $|\Delta v|>Q$, 1.e. in the case abovo, for $(\nu-\omega) / K\rangle$, the efenal Field is attomated insteal of tho puap fiela and the rato of attentuation of the prap field is corretponingiy reduced.

The absorption linemape function of ref. $\delta 2$ is quite differert from that for the cuiscion epectrum evaiuated in refs. 9 and 80 and the difference If wor pronounced wen the furp field is intense aince then the formor line Rhape taics on eprccicble negative valuen, within a wide rance of signal-field reanemoies.

The posaibility of oltaining etinulated enisaion without inversion has ciso bom arccested by sharma in ref. ©4* He ahows that in a 2 photon erinsion at fremenciea ω and ω^{\prime}, Explification at froquency can Le achieved without poralation invaraion if (1) $\omega<\omega$ and n^{\prime}, tho nutiver of blac: vody photons at frequency ω^{\prime}. is nuch gallor than unity. He points out tiat if the aquares of the cipole natrix elementa are appracinatuly equal, $d_{15}{ }^{2} \approx d_{23}{ }^{2}$. thon etimiatal inversion is possible. In fact his situation does not correspond to ours as we do not allow levels 3 and 2 to be raidatively connected nor do we fexbid aingle photon transitions betwean levels 1 and 2.

In xCf. E7 the outhors conaider epontaneous cutsoion of atoms in an catemal e.zie ficil which is considored to be elther monempomitic or to
 Leads to a ceformation of the $11 n e$ contour, wich can be interpreted es the conequence of (i) a charce in the velocity dietritution of the atosas, and (ii) of interfarence effects arising in the fiming of atationery states of the isolated atom by the extamal field. Under certain conditions, the secord factor exarletely connterbelmees tie effoct of the first.

In ref. 33 Rautian and Sobsirean considered the ator to be fixed arri the catamal ficid to to mencohromatic, wereas in ref. 86 a nuber of epecific casca wero eralyseal in which account was taken of the motion of the atome.

Notikin, Iaution and Feoktistor (87) paint out that nomally Doppler broaconfrg >> reilation broadoning and ainost completely maks it but that wea en catcrial enin ficli is applied, a relatively eharp atructure erpars on tho Dorficr-iroadenod line, the width of which is deterninad by the radiative decas. The chances rroduced in the epectrum of epontaneous cuission of a quartum eystca by the extersal ficld can be interpreted as the regult of antin of the atationery statea of the isolated atom in the
 basod on the ficture of "priltting" of the levels of en isolated atom can

Ioud to a servourly wrong concluntoin This anplien for both adjacent tranaitions comalleacd in rer. I7 as woll as to the apontancous asion by the tranaition $\rightarrow n(1.0$ botween levela complen oy the fiald congidared In refs. 33 and A .
 Wher, by solection of processen of excitation the states of the aton at the initial ingtant of time and "rrencod in the fox of a jincar combination of atationny states. N. Nand Fare interecter in the case cist maned by the fact trit fixing of statem tales place gitar the excitation of the aysters while at the initial ingtant the aton is in core atationary state. In nef. 87 oollisiorsal relaxation has been ignored.

In ref. 88 Zaxtian and Feoktistov so on to trice into account colliaions, In the immet apmoximatice, wer consicicemer norinear offects in the spontancous mipaton. They find that changes in the oromtaneous exiabion spectrum are due to (1) changes in the atora velocity distrinu..... (2) t (e characteriatics of the collision proceas, Ean (3) interference offects due to the presence of ex extemal field that futervireg the stationary states of the isoleted atous. Ther point out ti. In refs. 33. S6, e7, where the
 If the encrgy of interection between the aiow and tio field exceecis the lovel width, i.e. in our cage wo must hava $A>\lambda$ as pointed out in part (a) . Also wher accomit la taken of the atans anotion arce of the correepondine Dopplar broacie:iru; a ralativaly aharp line structure also appeara (with rediatien width), not maked by the therral motion of the atons.

The afocts of rais 3. 56, gr have bean oxperimantally observal $(5,50)$
In cas Bysteas but, stnce the line structure we to the axternal field depends eppreciably on gres pressure also, it appeara that it is very nensitive to atom collisions and thepe mut be tricem into account in the theory as do the anthors of ref. B6. This is not nocessary for gases at low pressure.

In raf. DI, Dodd and Eerion Eive a theory of the phomomon of the otrone modulation of fluoreacent light in a dovilo resonance experiment. In such an ermoriment freo atom are mbjected simultaneously to opticel anc radio-frequeney radiations, both of which are near to resonant frequencies of the atcras. They consider the cate of Ecroury vaposs entuated In a uniform macrelio field, when optical racialion at 2537 is vsed to cxcite the atems fron the around etate, 'So, to the state $m=0$ os the level 3 In from which tranalitions to m. ± 1 vere induced by a radiomfrequency ficil at the Lamor froquancy. We do not conester the presence of such a rof. ficld but rather ascume that in the 3-level atom in question the optical radiation excites the ator to the uppormos level, which could be the $m m$ leval of a Zecuan doublet, and that it then decega from this 2eval. Hence there ia no neel for e ruf. ficla an in the caso ware there is a zecren tripzet.

N. D. There in a chane in tho polariaation of the light roeruting fron fof. traretions $\triangle m=0 \geqslant-1,+1$ For obeorvitions made in a drection
 to the fichi (π-ccronente) and the linec with $\Delta m= \pm$, are yolanisod

The trondilices tre detectan by two cisnges wida they bring dbout in the polarieciaion ad matial distritution of the fluorescent lisit.
 tranaition ($6^{3} P_{1}-6^{\prime} S_{0}$) / $\lambda 2537$ in wercery, ware tho redtomireguency mixine is taifice placo betwou the Zeem states of tio urper leval. In this case the 3 excited states ere equally epacod in onergy and are damped
at the cane rate and there is onily one crown atate. ? In refe 22, Seriea proposes a type of experinent which wotale allow the location of crosaing points betwean arergy levele of differemt parity; and thus provice an
 the states concomed wero nembers of a zocuan multiplet and so were of the same parity and decayed at the enae rate. In the present paper they aro of different parity and decay at cifferent wates as e. E. the $2^{2} S_{1 / 2}$ and $2^{2} P_{1 / 2}$ etates in hyiroces. hiether thoy are of difforent or the eame parity, the application of obcillating fielis is capable of inducing trensitions between the states of interest, thus causing changes in the cantted rediation. When the statea are of the simerretty the tranbitions are ancietie dinole and the offect of theso transitions is prinarily to alter the gntisi distribution of the radiation wereas the ppectrol dimtribution is chanced very little. When the states are of affemen perfty the transitions are sactifif tisple and because of tho chance in parity the aton must decay to an entirely differcat term and then the moctrma astribution chances profoundy.

Sarles ${ }^{(22)}$ malyees the case of en cxcltod pelr of energy levels belomigig to ctates of armosten parity, having in wind any pair of intervecting s and p levela in hyirogen-like atoms. In our caso transitions can occur from both axcited levels to the lower level and not only from me of the excitod levels. Hence the results of this paper pre not revile relerant to the ramont charter nor are they relevant to Chneter VI ance the driving field in that case couples different levels, 1.0. levels 25_{1} and $3 P$ and not $2 S_{\frac{1}{2}}$ or $2 \sum_{2}$ and $2 S_{1}$, as here. We are also not concerned with the possibility of lovel crossinc.

In ref. 93 the authors are concerned with the interforence fhenowena that can occur in the resonance finarescence of an atom in which 2 of the excitod zceman sublevels crose. They consider the particular case of the helius atom in wich 2 of the 30 zearan eublevels crose. This Iceds to the idea of a new epoctroscopie mothod wich promises to fleld very precise
meapurements of scme atomio ingo structure intervals. If the levels are 011 distinct (1.0. coparations ereater than thoir naturel vidths), them ench contributes cequrately to the rescrance scattering. Novever, men two levels are cesenorate, their contributicus to the scattering may intarero thus eivine rive to a change in ecottered light. In our case the noula be wien $c \leqslant 1$.

Colegrove of a1 ${ }^{(93)}$ conezar a system having cone ground atate A and 2 excited atatea B and $C:$

crousd atate A cre of the $3 x_{1}$ Ievels

In order to colculate the resonance fluorescence of this aystem, it is necessary to first calculate the rate at which photons of polerieation e_{1} are abocribed and photons of polarisation \underline{e}_{2} are remiltted. When levels Ence. exe whil remolred i.e. their separation $>$ their natural line wiaths (in our case 1) then the rate is eiven by

$$
\left.\left.R \sim\left|\langle A| \underline{e}_{2} r\right| B\right\rangle\left.\langle B| \underline{e}_{1} \cdot r|A\rangle\right|^{2}+\left|\langle A| e_{2} r\right| C\right\rangle\left.\langle C| e_{1} r|A\rangle\right|^{2}
$$

 or crossed (in our caso $=0$)

$$
R \sim\left|\left\{\langle A| \underline{E}_{2} . \underline{S}|B\rangle\langle B| \underline{E}_{1} r|A\rangle+\langle A| \underline{E}_{2} r|C\rangle\langle C| \underline{E}_{1} r|A\rangle\right\}\right|^{2}
$$

In order that thes two equations bhould yiend cerforent resuits both terns In each eqricession must bo nonvanishine, 1. © each of levels B and C must be cangite of alaring photons of polarisation e_{1} and e_{2}, as when tho line widthe of lovela B and C overlap. In fact we nust hive

$$
\left.\langle A| \underline{E}_{2} \underline{r}|B\rangle<B\left|\underline{E}_{1} \underline{r}\right| A\right\rangle\langle A| \underline{E}_{2} r|C\rangle\langle C| \underline{e}_{1} r|A\rangle \neq 0
$$

Otherwife the interference effect vanishes. For umplarised licht one finds that the 2 decencrate $2 e v e l e$ zuat differ in a by 0 or 2 in order for there to be en interforece term. When the incicent lient is linoariy
polarised one can cbserve the crossover of levels differing in m by 1 provided the direction of polarication is not parellel or perpendicular to the manetio flela. Levals difforine in by 3 or nore do not interiere. In fact, if one auss over tine cirectiona of e_{2} the polarisation of the romastted 21 cht, then it can be ehown that the total resomonce scatterine rate 1s not affected by the crossover of the 2 levels but the pyoner aistribution is ciangod.

In ref. 94 a detailad analysie of the effects briafly described in rof. 93 is givai.
le have not considered the poasibility of exblevel crossing in the preacnt chapter but rather that of overlapping of Inowidthe. At the crossing point levels behave as though they are of the same energ as in the case when $C=C$.

The 2 rato formasa of refs. 93 and 94 aro oufficiont for calculation of many experimental paranetors eot. magnitude of the interference offect, its directional acnsitivity, polarisation conditions for optifum mensitivity etc. (for a mor gencral formia for the enmien depencence of the interference effects corival by a dotatied maivels of the interfermea effecta to be errected in atomic hyirogon one mut see a publication of Mo. noce and In Carouillano referred to in ref. 9i). The expressione for R in rofs. 93 and $\$ 4$ do not give any informition about the interference other than at its extremen, 1.0. at convisto cropeine and at comilete emmention of the excital atates. A nore detallad treatument of the resonance fluarescence procers that gields information about the lino siape as well es the equations for R in the epropristo 1 inits is required for the inmetween recion. We have couleavoured to atudy this region, i.e. whare $0<0<1$ for a driving field of arbitrary atrengh incicatod by A.

In rof. 77 Ereit has derivod en expressian for the remonance fluorescence under pulse excitation for atoms exhibiting partial or complete degoneracy (crosbing) in tho excited states. The Ereit formia is arplicable onity to (94)
yons fielas. For conventional sources Frarken points out that the light
bean conclats of much loss than one photon per mode in the mproriste frequancy intarvol and must be conaldered as a yest fiold wereas in all strone bows of resonance rediation the nuber of photons per mode in the appropriate rance is $\sim 10^{4}$. Thus the rate of jovemtion of resonance radiation per ators in auch etrons bears is some 4 oxders of macnitude lems than the rate of eporitoncons ceitenion. The derivation of Erelt's formula in Appendix II of ref. 54 does treat the radiation ricla clatsically but none the less civos the correct veabmficid reant.

In ref. S4 the rate at which photons of polarisation f are absorbed and those of polarisation g are remsitted in the resomance fluoreserneo process 1st

$$
A(f, g)=c \sum_{\mu \mu^{\prime} m m^{\prime}} \frac{f_{\mu m n^{\prime}} f_{\ldots \mu^{\prime}} g \mu^{\prime} n^{\prime} g_{n}^{\prime} \mu}{1-2 \pi i \frac{\tau}{\nu}\left(\mu^{\prime}\right)^{\prime}}
$$

thase
$\mathbf{E}_{\mu, n}=\langle\mu| f . \leq|m\rangle$ e etc.;
τ is the noan Hfetime of each excited tate,

$$
\left.\nu\left(\mu, \mu^{\prime}\right)=\left(E_{\mu}-E_{\mu^{\prime}}\right) / \hbar\right)
$$

c is a perameter proporticnal to the sutensity of the lawp, cconetrical factors etc.
in, …' cto. are the crowis state levels
$\gamma^{\prime \prime} \mu^{\prime}$ etc. are the croup of excitod states wifich med caitht partial or compioto degeneracy (eroesincs)

Then the excitod siated are omplotely romolved, $2 \pi \tau \nu\left(\mu, \mu^{\prime}\right) \gg 1$ or in our case $\gg \quad 1$ for all velues of $\mu^{\prime} \neq \mu^{\prime}$ and the above eneral equation recuces to

$$
R(f, g)=R_{0}=c \sum_{\mu n \cdots 1}\left|f_{\mu}\right|^{2}\left|g j^{n},\left.\right|^{1}\right|^{2}
$$

when is the resonance fluoresconce rate withont interference termas chown in ref. SV_{e} When $2 \pi \tau \nu\left(\mu, \mu^{\prime}\right) \leq 1$ i.e. in our caso $c \leq 1$ then 2 of the excited states are close monch together for interformee affects to occur.

If the eyeten contain a only ane rome state and 2 excited states b and c

then wien b and o are wool reatrea

$$
R(f, g)=R_{c}=\left|f_{c b}\right|^{2}\left|f_{b a}\right|^{2}+\left|g_{a c}\right|^{2}\left|g_{a}\right|^{2}
$$

and wien they are "chosen

$$
R(f, g)=R_{0}+\frac{A}{1-2 \pi i T \nu(b c)}+\frac{A^{\alpha}}{1+2 \pi i T \nu(b, c)} \equiv R+S
$$

where $A=f_{b c} f_{1} \subset g_{n} g_{c} b$
ara S is also cavan by

$$
s=\frac{A+n^{\alpha}}{1+4 \pi^{2} \tau^{2} v^{2}(b, c)}+\frac{\left(A-A^{x}\right) 2 \pi i \tau \gamma(b, c)}{1+4 \pi^{2} \tau^{2} \nu^{2}(b, c)}
$$

When the matrix product A is men thea S is the wellmanon Lorentz linomenepe with full hali-wiath wish is twice the width of each
kier A is pure inacinary

$$
\text { Fig 7C. } 17
$$

If A ia comer, than it is possible to have a mixture of these 2 pure fortis. The conditions for which is is real, imaginary, or complex depends on the direction and polarisation of the incouing and outgoing beans of li fit. In general ail three cases can be realised experimentally.

Namaness also contiars a atturtion efmiar to our casc. In Paf. 95 ho investigates the effect of atemally producet stark spliting upon finemstructuremlevel prowabiltios in orior to desaribe periodie internity variations proviously found in hyirogen itres. Coupiod afferential equations for the prowaility arplitudes of firat levels are solved exactly in terns of initial ampituder; effects due to epontancous
 timondependent line intonsity is a combination of semorentity docevg and
 are discuased in detall. and the cfecta of differsent initial conditions upon the intencities are coneldered for everal epecial casos.

In this paper Kancenesa considera Ievels $0,1,2$ where levels 1 and 2 can decay to lower leval 0 with montaneous transitionerrobebilities per unit tima A_{1} and A_{2}. Levels 1 and 2 haverergies E_{2} and $E_{2}=E_{1}+\hbar \delta$ Fif is ansuad to be oo anall that the cerarate erectral lines connot be resolved (cs in in cur case). The obeerved intenstity I of the Line vill then be rroportional to the mua of the provecte of the A's and the a veraze probabilities of occupations of the 2avele, 1.e.

$$
\left.\left.I=\left.A_{1}\langle | C_{1}\right|^{2}\right\rangle_{a v}+\left.A_{2}\langle | C_{2}\right|^{2}\right\rangle_{a v} .
$$

were C_{1} and C_{2} are the probability explitudes of the 2 levels and the constant multipilcative factor has been onittei.-
hangeness also assumes that in the presence of a manll extermal alectric fiela F, the perturbation potertial $V=\omega z(e>0)$ bas a nonvaniahing matrix clement $\nabla_{12}=V_{21}=\hbar v$ connecting these 2 levels. The resulting quations for C_{1} and C_{2} ere eiven by his quations (9)-(13). In this chapter the perturbine potential connecte levels 0 and 2 , not 1 and 2.

To illustrate the effect of of-tife produced by the fiald one con consider the extreme case in wich one of the initial c'a is zero, enc. $\mathrm{C}_{20}=0$ 00 that

$$
\left|c_{2}(t)\right|^{2}=\left|c_{10}\right|^{2}\left[v^{2} / \omega_{r}^{2}+\cdots \omega_{i}^{2}\right]\left(\sinh ^{2} \omega_{i} t+\sin ^{2} \omega_{r} t \exp \left[-1 / 2\left(A_{T} T A_{2}\right) t\right]\right.
$$

Which varishes in the absence of the ficid ao that $v=0 . \omega_{r}$ and w are aefined by ogntions (11), (12). (13). The ouciliating term has an crponentiol decay factor oqual to the averate of those associated with the 2 statee, wille the aitiwt term cives rise to 3 torss with cmonential decay fectom of $\frac{1}{i}\left(A_{1}+A_{2}\right)$ and $\frac{1}{6}\left(A_{2}+A_{2}\right) \pm 2$, although the last 2 termes will not myeas if $A_{1}-A_{2}$ so that $心$, 0_{4}

T:e problen discused by Seriea in ref. 92 is ainilar although less gencral.

Stroud ${ }^{(88)}$ conaliars the effeat of an "egriled fielan on the Ilne shape of ghontascous exisaion by a "2mevel atom interacting with a highly cxcited ficid node. Despite the fuct that he uces quantum electrom Gyamics, without firsomeyendent reaturbation theory, he obteins apectral profiles sinilin to those of Hollow ${ }^{(9)}$ (see lis. 3 where the fluorencent spectrus is civen for various agplied fialis wom the lab nift is neclected). Seo Chapter VIII, Soc, 9 for a coment on stroud's nethod.

(a) Anivis of rrefiles ohtetred

We chall now moceal to snalyse the chapes of the gpectral profiles. If we first of all tainiate the positions end helchts of the peaks for various values of A and C wo can wee more clearly whet is happeninge

4=2	1st L.IT. penk		20 L.	- peak	cerirs	Ist R.I. reas		and R.H. reak	
c	Pocition	noteht	Fonitio	Height	peas	Fositi	Hestht	Pocition	Helght
0	-3.6	.135			1.06			3.6	. 435
0.01	-3.6	. 435			2.6			3.6	. 434
0.1	-3.6	. 137			2.06			3.6	. 433
0.5	-3.6	. 4 E			1.04			3.6	. 433
0.75	-3. 6	.177			1.0			3.6	. 437
1.0	-3.6	. 408			c. 832			3.6	. 439
1.25	-3.6	. 476			0.001			3.6	. 411
1.5	-3.	. 377			0.503			3.8	. 320
2.0									
3.0	-4.2	. 437			0.067			4.0	. 305
5.0	-4.0	- 309			1.69			3.8	. 34.4
10.0	-3.9	. 367			2.11			3.8	. 348
100.0	-3.8	-356			2.12			3.5	- 354
$A=3$									
0	-50	. 371			1.06				. 371
0.01	-5.3	. 371			1.06				. 371
0.1	-5.8	- 372			1.06				. 371
0.5	-5.0	. 375			1.05				. 370
0.75	-6.0	. 37			1.05	2.8	.0624		. 370
1.0	-5.6	. 388			1.04	2.6	.0700		. 371
1.25	-5.6	. 10			2.03	2.2	.0727		. 374
1.5	-5.6	. 426			1.01				. 350
2.0	-5.6	. 457			.012				. 339
2.5	-5.5	. 370			.556				. 304
2.8	-6.0	. 205			.143				.0056
2.9	-6.0	.0 .97	0.4	.0131	.04,03				. 0225
3.0									
3.1	-5.3	. 0504			.0430				. 0256
3.2	-6.0	. 153			. 169				. 0851
3.3	-6.0	. 256			. 339				-149
3.5	-6.2	.274			. 642				. 214
4.0	-6.2	. 432			. 923				- 313
4.5	-6.2	. 304			.25				. 321
5.0	$\begin{array}{r} -6.2 \\ \rightarrow-0.0 \end{array}$. 355			1.01				. 327
6.0	-6.0	. 340			2.03				. 331
7.0	-6.0	. 320	-2.4	. 0251	1.04				. 333
8. 0	-6.0	. 224			1.04				. 336
10.0	-5.6	- 333			2.05				- 343
100.0	-6.0	. 341			1.06				.340

$A=100$
Slae perirs ere coasistently at $B=4200$ and are of heicht .333 , the

 $\mathrm{C} \sim \mathrm{A}$ 1.e. C is alzo larce.

In tho cave of $A=3$, the ando peaka are more or less pymetrically

 End costinuen to co to untill at $C=100$ they 5 wo both practically equal acain. The cortral pear cosinates tharoubhout crocpt at $C=201$, when the Lon. peak doninetes. $A t A=C=3$ no mectral prosilo is visible, as was

 peaks co not sternizy increase or decrese tut rather waver up and cown,
 arparant as $C \quad A^{\text {(thewh }}$ both fall off nenz C A and the chome over of dosinance Deconea erparent for $C>A$ witil both are agein equal at $C=100$. The caitral rek heigyt cocreases as $C \rightarrow A$ and incroance as $C \rightarrow 100$.
hagi $C=0, \omega_{3}=0$ and we have the 2 -level or cogrerate aituation and for this rowsicn we find that the proftlon racable those of rollow (9) In that they bive shempers of ecual heigit, sithated at $\sim \pm 24$ (compare hollow'a curve for $\Omega=3 \pi, x$ with that for $A=3, C=0$).

When $C \gg 1$ and $\gg h_{1}$ 1.e. $\omega_{3} \gg \gamma$ and $\gg \lambda \varepsilon_{0}$ and so one would net excet lerel 2 to affect the prosile for tranditiona setwem 2evela 3 ard 2. It only has an offect won $A \sim C$. In fact, for $c>1$,
the protilo is, for this reason, arntur to that for $C=0$.
Nad we consilercal the pronile for transitions between levole 2 and 1 for the gave A we whould havo fowd tiat the Rom. predualy becomes coramiant as $\mathrm{C} \rightarrow \mathrm{A}$.

How for the case whan $A=2$ the L. H . poak again bocones increanindy

 oniy and at $C=100$ beit aro macticolly equin. Thus there ia a craller

 is again obtained for $A=C(=2)$.

In the case of $A=1$ the Ent pook comirates as $C \rightarrow A$, though all peats fall off noar $C=A$.

For C $>$ A the Lita peak becomes increacinely cominent as level 2 aproaches tho low frogucncy eplit-level of lovel 3 and reinforcea it, ereent for $C=3$ whan Roll. pas cocinates. The rant of the foatures are the paze an proviousty deccribed.

The deriation from the curves found briollow in ref. 9 is duo aolely to tho introhuction of terms involving Γ_{4} and Γ_{21}, 1.e. decay congtanta $\infty \mathrm{I}_{31} \mathrm{~K}_{21}$, which ray be temed "crosemben decay constants. le can soo trise by puttine $T_{5}=\Gamma_{21}=0$ in oruations (7.E.2)-(10) and also 10noring lovel 2, since it is now mot assmad to bo close to lovel 3. Ve then recover lollow's oquations (ref. 9) and obtain his rrofiles.

For certain values of A and C there is a substantial ifiference between our curves and thoso of Mollow (9). In these caros we espme that the contribution of the "crosomure" decas corstents is eforificant. It does not appean as thouch enyone excopt horozov, end Apmasevich (34), who have both comaldered only Wha fiekis, has yet evaluated the contribution of these crosintye terss in the case when the ficla can have arbitrary macrituxic. We havo found that their contilintiona are particularly
aleniricent when $C \sim A$, when Level 2 Lies between Level 3 and Level 3', the losmirequancy split level of level 31:-

\qquad 1
The fheroncenon of no excision when $C=A$ requires verification by erperinent on co the other features of the growing.

meting IT $\cup 1$

The splitting discovered by 10110 (9), 1.e. I In the diacura below, are not very bic. In fact, for the case of resonance, the greatest value of Z. plotted there for $\Omega=5$ is at $\left(\nu-\omega_{0}\right) / \pi=5$, ie. in our notation. $x \sim 5 \quad \operatorname{sor} A=5$.

Fig 7.D 1
 our notation, a large, then, co se if $\Omega=1,000 \mathrm{E}$ then $\mathrm{X} \sim 1,000 \gamma \mathrm{end}$ for
 as to male $\Gamma_{3,}$ and Γ_{21} very differmit from each other.

Now. $\quad \Gamma_{2}, \infty \omega_{2}^{3}$
and $\Gamma_{3, \infty} \omega^{3}$
thus, if level 3 is spilt, then

$$
\Gamma_{31} \infty(\omega \pm x)^{3}
$$

tut $\quad \frac{\Gamma_{31}}{\Gamma_{21}}=\frac{(\omega \pm x)^{3}}{\omega_{2}{ }^{3}} \sim 1$ even for very intense fila
c. C. for socifma a_{2} wad a_{2} liness

$$
\begin{array}{r}
\frac{(\omega \pm x)^{3}}{13_{2}^{3}}=\frac{(500 \pm 10)^{3}}{500}=\frac{500}{500}=.907 \\
\\
\text { or } \frac{500}{500} \simeq 1.00
\end{array}
$$

 vulue we havo umed, nomely a $=100$.

Ho ahall nou invecticote wether the emmoxination 1 is true when
 close in value, althongh in fact it is not ω_{s} vich in lame but wif

 berfulto arisil enong to rencier ω_{s} a not very aizoable quentity so that

 rather a large seraration compared nitir the ovarlapplne case; wen 0 I. 1.0. $\omega_{3} \sim \gamma=1 \ln \omega_{3}=10 \gamma 010 \gamma 100 . c=100 x>10$ then

timatot eprent.

Cur ascuption $r_{31} \wedge r_{21}(=\Gamma) 1 s$ thum vilid for large values of a and c. It follows that it would bevelia fox a wall since them is majl. and for c mall since them $\omega=\omega_{2}$.

When $c=0,2 c v e l s 2$ and 3 wro comictely cecorerate, 1.e. thoy may

 Levela 2 ara 1 as veli, an in Aranascrion's paper (34) But eince in this caso lavels 2 end 3 are indetinguinable, introcucire mextra dipole monent into the calculations vorid be neaninctess ant in fact orr ecuations
(7. 1.43)-(51) are etill valld for $0=0$ anthoreh of courso $\rho_{23}=\rho_{32}=0$

-341-

CDITR VIIS

ExGuseros

E. 1 Criterion for essuming no cooverstive effectis occur

In all our calculations we have consinered single stons, so that we hove inplicitiy anmmed that the effects mroduced in cuch isolated atomb typify these effocta promicod on all the atome of the ensemble as a wole. Our calculations are thus of particular relevarice to atoric vapoura (ci. Chapters V and VI on potansiun vapour ard hyirogen gas) where cooperative effects aro urimportant since the couping betveen atomis negligible and so aleo is effective potential $V_{A A}(x)$ between the atoms.

According to Landau and Lifehitz (ref. 99, p. 387) scattering will take place inderenientiy at each molecule (or atom) provided that we consider the liniling case of a rarified cas where the rean free path of the molecules (or atars), $l \gg \lambda$, the wavelencth of the lisht redietion. This is the restriction usod in ref.i, ramely that the atom is restricted to 2 reation cacill in comparison to the averace ravelength $2 \pi c / \epsilon$. In this case Lancau \& Lifehitz point out that we are justified in discussing the acattering nicroscopicuily, usine quantum nechanics.

In ref. 2 , fart II, the case where a rair of atoms A_{1} and A_{2} is separated by a distance $r_{12} \sim \lambda$ is considered. The atoms then exhibit gucrmeisut beheviour. When both the ators ore initially inverted Lehmbere finds that the intensity pattern $R(\theta, t)$ develops lobes in different directions at difforent tises, so that the spatial distribution of the photons at time $t \rightarrow \infty$ is the wame as in the incenfacert-stom case.

The fact that we have ignored the line widths due to collisions and so considered onjy eituations where the wietha of the levels is set primarily by the interaction with the radiation field means that our calculations are, for this reason also, suited to a gas in a good vacum, particulariy for the
upper optical transition (see ref. 75).

S. 2 Dipole approximation

Throuphout our calculations we conaider only dingla trensitions. This 1a obvions from our choico of the interaction lamiltonian $V_{\text {gin }}$, where
 (sec oq. ($1 . \mathbb{B} \cdot 96$) inotoad of the multipole expansion for a classical field siven in Fiutais' p paper (ref. 100 q. (30)). Flutak ehowe that $V_{\text {an }}$ can be writtion as the dipole interaction

$$
\begin{equation*}
V_{s k}^{\prime}=-f \cdot E(r, t) \tag{E.1}
\end{equation*}
$$

[F.E. $V_{A L}:-E(r, t) \cdot f$
according to on. (1.E. ©6), when the atomic operatore are not considered, and this is cquiralent to, but not icentical with,

$$
\begin{equation*}
V_{i n}=V_{A R}^{\prime \prime}+V_{n R}^{(2)}=-e / m \underline{A} \cdot f+62 / 2 m \underline{A}^{2} \tag{8.2}
\end{equation*}
$$

(see equatious (1, 5.77) and ($1.2,50$) as show by Fiutak 100$]_{\text {aince, }}$ if the oricinal lamiltonian 1 a

$$
\begin{equation*}
H=1 / 2 m f^{2}+V(r)-e / m P \cdot \underline{A}(\underline{r}, t)+e^{2} / 2 m \underline{A}(\underline{r}, t)^{2} \tag{8.3}
\end{equation*}
$$

then the correaronding Lacrangian is

$$
L=1 / 2 m \dot{\underline{r}}^{2}-V(\underline{r})+e \dot{\underline{r}} \cdot \hat{A}(\underline{r}, t)
$$

Since adding a total tine dorivative will not affect the equations of motion of the systea, the byetca is equally well cescribed by

$$
\begin{equation*}
L^{\prime}=1 / 2 m \dot{\underline{r}}^{2}-V(\underline{r})-e \dot{\underline{r}} \cdot \frac{d A(r, t)}{d t} \tag{8.5}
\end{equation*}
$$

which is equivalent, but not idenitical with equation (8,4).
If we conctruct the Faniltonian beloncirg to Lacrancian (E.5) wo obtain

$$
H^{\prime}=1 / 2 m f^{2}+V(r)+e \dot{r} \cdot \frac{d A(r, t)}{d t}
$$

wish is therefore equivalent to the oriatnal hamiltonian (c.3), since

$$
e \dot{i}=f
$$

and

$$
\begin{aligned}
\frac{d, 1,1)}{d t} & =-E(r, t) \\
\therefore H & =y_{2} \ldots f^{2}+V(r)-f \cdot E\left(r_{1}, t\right)
\end{aligned}
$$

sccorimet to res. 65, even though the magitude of the field is not rogurad to le axall, the nunhmeto tom $A(t)^{2}$ (wilich woula otherwise appoar) [ay lo dronet in the rinole amparimetion.]

$$
\begin{equation*}
V_{C R}^{\prime}=-f \cdot E(t) \tag{8,6}
\end{equation*}
$$

when the wavelengths of the e.fie waves, $\lambda \gg$ the dimensions of the syoteme Then $\mathbb{A}(\underline{L}, t)$ can be replacod by $\mathcal{A}(t)$ ovaluated eoge at the nucleus (see also ref. 65, oq. (2) and $\frac{d A(r, t)}{d t}=\frac{\partial(A(1))}{\partial t}=-E(t)$ where $E(t)$ is the exterval fiela at the nuciens.

For a aysten irteractive with a sidmest field this form of the

$$
V_{S R}=-e / m \quad f \quad A(r, t)+t / 2 m \quad A(r, t)^{2}
$$

 Heailitorian, $H=H_{c .}+V_{S R}$ is eiven by oquetion (1. D.77).

Then hichoworder multipolo interactions are consilered Fiutak ghows that the total Mamiltonian for gyetan intoracting vith an external e.m. fielä, wish is chassical and timodepadent, can be writion, es in eq. (38), as

$$
\begin{equation*}
H^{\prime}=f\left(\underline{I}_{s}^{\prime}, \underline{r}_{s}\right)+e \phi(\underline{R}, t)-\sum_{s-1}^{n} e_{s} \sum_{k=0}^{\infty} \frac{1}{(k+1))^{\prime}}\left(\xi_{s} \cdot \underline{\nabla}\right)^{k} E(\underline{R}, t) \xi_{s} \tag{8.7a}
\end{equation*}
$$

where the monerta π_{s} are

$$
\begin{align*}
& \pi_{s}^{m} f_{s}+e_{s} \sum_{n}^{\infty} \frac{(k+1)}{(k+2)!}\left(\xi \cdot \underline{)^{k}} \xi_{s} \times \underline{B}(\underline{R}, t)-a_{s} e \underline{A}(\underline{R}, t)\right. \tag{5.7b}\\
& +a_{s} \sum_{r=1}^{n} e_{r} \sum_{k=0}^{n} \frac{1}{(k+2)!}(\xi r \times \underline{\nabla})^{k} \xi_{r} \times \underline{B}(\underline{R}, t)
\end{align*}
$$

r s. r. ***, r_{n} are the positione of the n charced particlea or
eystene,
$H\left(\Pi_{s}, r_{s}\right)$ is the Lanilitonian of the ensentio in the absence of
interan with the extemel field

E is the centre of the multipole cxpansion Fs are coordinatea relative to this centre

$$
\begin{equation*}
\underline{R}=\hat{\mathcal{E}} a_{1} x_{s} \quad \xi=\underline{x}-\underline{t} \tag{8,8}
\end{equation*}
$$

II are kinetio monanta, which are expressed entirely in terme of the monetio field atrength.

- $=\stackrel{S}{=}=$ total chary of the anserble.
$\theta(E, t)$ is the coalar potentisl.
N. D. Cames indicato a carmical tranaiomation from the original equetion.

This equetion for H ehows that the interection of the onacuble with the elentrif comprent of the fiell is inderentert of the dynamics of the systens. It has the fasilier form of anm of electric dipole, eloctric
 spocified earlier, and for youchimutatil chomes, an the interaction with the electric field is given ky
where $p=\sum p_{s}=\sum_{s} e_{s} x_{s} \quad$ is the total electric cipole mosent of the ensertio. Me intoraction with the maretic componont of the field, on the other hard depends on the form of the ojatem framiltonianjie The nonm
 (33) the fomilim ramotis dipolo interaction term Vo ignore this also cince it is oniy inportant for shell arergies $\sim n^{2}$.

Alhough lio ahows tian for a cinencri ficid the multipole form of the Mailtoniem ia exnotiy equivalont to tho original Manitonian. of Q. (7) $H-H\left(\underline{I}_{s}, \underline{x}_{s}\right)+\sum_{s=1} \in \dot{\phi}\left(\underline{x}_{s}, t\right)$ in the cace of a gurtifes fiela he Ghows that tho mulipole form of the transiomed Nimationian ia oguivalemt

Senco wo cou that if wo conaider the our. ficid classicaly our calculatione; ustige the dipole arproximation, aro valid for the long wavelencth 11 m it uten the sus of all the charees of all the individual oystems is neeliefile. In consitering the e.t. ficia quantum mechanicaliy
we are alno limited to ist-order radiation processes. Thus in assumeg the form of $V_{s i n}$ eiven in (1. 1.96) and considering the e.m. Field quantum mechanically we have 4 limitations:

1) λ of the e.m. waves \gg dimensiona of the aystemi, i.e. we ignore the dependence of E on poation I,
2) total chare of all the indivicual cystems is neglicible,
3) only lst-order railation processes can be considered, 1.e. we cannot consider Compton effect and dispersion,
4) shell onergies must not be $\sim m^{2}$, 1.e. we cannot consider heavy atoms. N. B. In his quantura mechanical derivation Fivtak assumes that relativistic effects are negligible, i.e. characteristic frequencies of the syoten incuuencies of relevant virtual photons. In this case momenta of the msemble are renlaced by transformed momenta in the multipole form (see Π_{s}^{\prime}) and the following ters representing the interaction of the systen with the olectric component of the field, is addad

$$
e \phi(\varepsilon, 1)-\sum_{s} e_{s} \int_{0}^{1} d u \xi_{s} . E\left(\underline{R}+u \xi_{s}, t\right)
$$

A discussion of quadrupele and aspretic dipole radiation is also given by ficitler ${ }^{[4]}$ where he shows that even if an clectric dipole is fortidden there may be slectrio quadrupole or macnetic aipole transitions even though the ratio of tie intensity for such transitions to the intensity for aliowed clectric dipole travaition is $\sim(9 / \lambda)^{2}$ and so is minmontent for eaitted wavelangtha lowis in comparison with the dimencions of the atore.

8.3 R.W.A.

We have used the R.W.A. (which assumes that frequencies, w_{q}, close to the atomic resorance frequency, w_{0}, are the mominant ones) throughout, althouch we have mown in Appencix I, for the z-level atom, that if it is not essumed, we obtain some extra hieh frequency terms, which are negligible, and, erif-rronant frowenct sifift toonficntiocs which we can neglect as they are not our main concerm. In fact when the coupling becomes stronger,
1.e. when the dipole nomerta are larce, novoA. breake down (cf. Louisell ${ }^{\left[3 h^{\prime}\right.}$) but it would anyway only give rise to a very axall correction (nee ref. 100). This is elsc prointed out in the papers we mall be quoting were several approximations are comerea.

Various rapars, eat. refs. 101, 102, 103, discmas the importance of the Rok.A. In crortarcous enicaion tieory. ruicht and Alion show that the Hicneriticiasiopif theory of apontrasous exponertial decxy of a single excited aton contesis an expRicit form of the R. Fof . liowever, they way that R.W.A. chould not be noed to describe cocrerative superrasiart lepel shaft and tiat care wiculd bo taikon over tine dioice of the interaction Mamitondang

 cooperativa sycntencuas gicicion level of rablatively courled atous.

$$
\text { Ko and } A_{0} \text { ag whit use of tokoie to reciect overiepping dagrans (b) }
$$ For the single 2-level atom is not a serioua lintation, fince there is 10 witi-reconait vecuak contritition to the dostianit 2ndmorder diagreat on

 satribution to the art-aricr encturtotion tem, wich aters the frequency dependoncs of the ercery chift, but we shall not bo corcomed with this. They eay this alterotion mates poesibla extensive cancellation of othervise Eisloading terms althoush we dis not find this (soo Arpendix I).

In the rest of for aid A. ${ }^{\text {a }}$ paper they how the effects of not using the R.K.A. on the simpleat cooperative system of 2 atoms one being in the excited state, cooperation cariving from an exchance of a photon between the atoms. Wo ignore this fossibility of exchance.

For superrabiant syeteas, in the Diche Lixit, Lerce frequency ahifts are expected and it is posolbls that they may alter the essential dynandes of cooperative cuiscion. It has been ougcested ig FriedwergloA that the atrong dispersive effect of dipole interactions betwean closely spaced ators
wisht destroy cooperation rosponsible for ouyerradiance. These dipole interactions seen to amae cxtent to bo equivolent to the frequency chifto. In ICW density aystem, which wo consider freithex objection appliea since there will be no dipole interaction between widely apaced atoms and returdation and anti-resonant tems chould bo included.

We consider atoms wilch are coupled cilly by the radiation from their transitions and ignor all cooperative effects aiscussed by k and A, including euperradiance. The only point of relevance is then that antireanant terme enable extenaive canoullation of otherwise misleading terms but in our case we havon't found this to be and have thus neriected antiresonant terms.

Acarwal $[1 C 2]_{\text {has }}$ also quectioned the validity of the RoN.A. in quartuas opties. He considers enontancons ewsion from (i) Nidentical harmonic oscillators and (11) N identical 2 level atomand finds that when RoH.A. Is not used the restation rate depends on the initial dipole monent phase.

Agarwal is concerned with discovering whother the asamption that ת. W.A. is a good approximation, providad the interaction betveen the radiation field and matter is yent. For case (1) if each oscillator at $t=0$ was excited to a coherent atate $\left|z_{0}\right\rangle$ having EJGTE dinole mement then the ratiation rate at $t=0 \quad$ way be yexy cifferent fron thet ortain in RekeAe $I^{\prime}(0)$ ciocentines the rane of of the initisl conerent emiltudg. Eut if the systen is excited to a state with 2 FRO dinote pomert then $I(0)$ becones ientient with ${ }^{-r}(c)$. In the lisit of weak couring $\mathbb{N} \gamma_{0} \ll \omega_{0}$ for the systern initielly having FINITE dipole monent.
 1moras. Arywey it is reasonable to ignore thea since they cannot be observed by avalable photodetectors and wo an aversing operation cyer a feu ortical rexicis is elvars rerfomed. Agarwal erpects that this realt will also hold good for z-level atoms enting opontenecusly es opposed to hamonic oactllators. On the other hand, the correlation function $\left.<a_{f}^{+}(1) a_{k}(0)\right\rangle$
oscillates at the optical froquency ω. If the systan's initial state has ZEEiO difole mozont then for woakcoupling $I(t)=I \times(t)$ -

For cane (11) if the syatea is excited to a state with zEnO cipole monent $I(0) \cdot I^{\prime}(0)$ - Whereas if the cyptcm's initial ctato has a FIMTME dipole monent then $I(0)$ has a strong dependence on the dipole moment phase φ and wo see that for $\theta=\pi / 2$ the exission is not necessarily auperradiant unilie the result for Rohod. Wen we consider OkE 2-level aton only $S_{,}(t) \cdot I_{N}(0)$ but the dipole noment differs from that obtained by Eaiking RoW.A.

We are not encerned with radation rates but rather with epectral Coraitios. The initiel state is not known at all in chapters V and VII and in the other chapters is not epecified explicitiy with regard to its cirole monent.

Finally we chell consider Wells and Cardiner's papor ${ }^{[103]}$ in which he shows that the 3 approximations used in montarcous amseion theary are clearly related. They ere

1) Hignermeisskopf ($\mathrm{H}-\mathrm{H}$)
2) $\mathrm{K}_{0} \mathrm{M}_{0} \mathrm{~A}_{\mathrm{L}}$
and 3) ladder aprroximation.
swoy consider a 2 -level atom and use a hamitonian in the eipole arproximation. 11ke our og. ($\mathrm{D} .2,21$), wifh they eay excluces the A^{2} terw, which nakes a neglicible cortribution to a single rhation enission moness.

They constider the Vi-W approximation is two rerts.
(1) NWI prohability amplitudos con"t chonce eigificentiy frow theix initial values for small values of t.
(i1) WiWII introducing irreversibla behaviour by replacing the iependent cuiziation in thoir og. (6) by a complex constant. this is cxplainoi by ton Foerster ${ }^{[43]}$ who also nowa it to be equivalont to the assunption of a Markorfian eprofication. W-inII gields the faniliar reoult of exponential decas which is well valiciated by experiment.

They dow that V-WI is equivalant to the Fiva. Whight end silen [305] also poirt ont that WWI approximation and the lader erfroximation bear close reamblase to the Dethemalpeter equation or the "overiarpinc" self energy terns discused by calam [206]. Walls and carciner point ont that one acpect of these papara is confueine namely that they start with $V_{S R}$ in the N.W.A. sed then obtain the sane probalility equations and exmet solution
 fact coues in miking the DoHen which en ormen tint on It contrimitiong from

 -1cenvalues of H_{0} may be tiken as a hasis for the complete oysten and the we of this what corresponds to mancer the lader arproximation.
 has found that roino is equivale to ignoring a frequency shift $\delta \mathrm{w} \cdot \mathrm{k} / 2 \omega$ and is therefore vaild for $y \ll \omega$ as fointed out elso ky Louisell B5]. Acerval 102 derived a paster equation for epontencous enission without waking R.N.A. ard found an identical expreanion for the radietion rate but 4 Alferert erneonion for the atomic cincie maret. This difference is
 W. and G_{0} point out that mayte the aproxixationa made in deriving the mater equation are periape of ssme ocier of macritude as those involved in making the Fiw. A.

In ref. 120 h. $\mathrm{H}_{\mathrm{H}} \mathrm{A}$, and cast aolutions are comeril (for persiotric

 the multilevel atoa of chapter IV (see Appendix If for equations of cotion when I.W.A. Ia net aspumad.
E. 4 Erood erectrun 11ust
 w_{p}, we satiefy on of the criteric - necesmary for the larcoff aprczimation to be vaild so thist it can be used wen ecairei. Einco the frequencien, w, tre alio closely cpaced, \sum_{v} con to rempeed by intecmals whe desirad. Lehmbery $[1]_{\text {also }}$ nsmunes the enfted photons decey into brood bands of closoly ernced motes. He consider more than one such band, each one beine escociated with a different trancition, merens wo only over consider one ouch bend characterised by a frequency w_{p} or ω_{i}.

8. 5 Atom at orien

The atom is assumed to be at the origin of coondinates, e.ze at the nucleus of the aton. Fiutac $[200$] ham pointed that this is a lone wavelength casumptione we urs it bocause the position ci the atcin is of no relevance when the only couriling between atoas we consider is the rediation from their tranaitions. E. 6 Mxing of states

In referance 7, the uixing of states, as a result of the damping nechanien, is ammod and this is eiven as a reason for the necesoity of usine the ceadty coerator tocinique.

Tewstein $[65]$ criticizea Derguan's appracis $[103]$ to the problem of prontancous ciustion froa a 2 iovel systen witi incident beads of radiation wich are inftialiy oitice (a) in a colerent stato or (b) in a nophoton state. Dercuarn nses two apraximations; (i) he retains only diaconal elenents of tio ficil tizomeraloment operator (in order to avoid F.Th.) and (ii) he restricts his ciluationa of motion to raterisi 2-level eysteas wich cannot aevelon into mixed states. Vewstein eays that it is necosary to consider the effect of mixed states and for larce ficids the main features of the epontancouciy radiated power epoctmain are aingle related to the time cerviopment of tiese states.
[N.B. Newgtein's peper $[5]_{\text {is }}$ also of interest because it criticizes two
other arranches to the problen of apontarena cisission in the prevence of a crivine fleld. Firotity, he ado that the tochnicue of treatige the interaction llerilitorian $V_{S R}$ as a perturiation of the full Mamiltonian H is not valic bere bince it relles on the fact that the freguency aspociated with tho interaction enercy of the atomic murrents with the e.me field is << the resononce frequency. Secondy, he onys that the procedure enorted by Rautian and sobelman [33] for the solution is on 2 y valid for relatively gmall initial field energies. R. and s. consider that the materisl byeton is couplod to WMT moden of the refiation field IR but that initially only OnE wolo of the ficla ia in a hiphenercy eicerm state. They obtain a colvaile FINITE ect of enuntions for the atom field [uw willty emplitwes by thanating the inflysto gybter to a emall numer of multiphoton rrocesses.]
E. 7 Criarine of Orerators

Ne reintal out in tia introbuction that normal ordming onables the colutima of rrolars involving vommanervetive systena without cuabersome itorated eclution. In ref. 109 , the arthors chow that the ordering of comuting atocio erif fiela oresetors remitg in ettributing a different origin to the raciative line ohifts end kiaths in eportaneous eariasiong 1.e. In fact wiener it ghould be attrituted to vachur fisid fluctuations cr to quariva electrodsrajic radiation resetion.

They ahow that when nomel ordering is used the radiative correction can be interpreted en entirely due to raciation reaction effoct but when ametric orderinc is nsed the radiative correction can te interyreted as antirely the effect of pacmum fiold fluctuations. If in obtining the everege of the atom enores perator we uso nomal amcering then tho decay yould be conaidered eatiraly due to radiation reacion cifoct, tut there is no orderirg which woild attributo it extirely to a vacum fluctuation cifect. They corce to the conclusion at the erd of the preper that as there is some aribitrainess over the interpretetion of physical procecses and as this
is equivalent to the ordering of counting operators it mast imply that the in icipretations are closely related, although not fully equivalent, as the net panes cannot bo exclusively described in tam of vacuum fluctuations. Ca the other hand spontaneous emission can be entirely attributed to rallabion reaction. Hence if one coos not use normal ordering one must rewomer to attribute radiative corrections to field fluctuations as veil as to radiation reaction.

A. 8 Farkaff approximation (N.A.)

In won Fester's pope; he deals with the equations of motion for the dynamical operators of the system (written in the Heisenberg picture). He uses the R. H_{0}. . and calculates equation of motion for $\mathrm{A}(\mathrm{t})$ and $T(t)=A^{+} A=A A^{+}$and points out that those cannot be solved exactly and that this is desirable since if they were then they would describe entirely reversible behaviour whereas camped behaviour is quite irreversible and can appear only as an approximate solution. He uses an approximation which wales the interaction between the atom and the radiation field a Varkoffian process; the field at time t depends on the values of parameters only at t and not at earlier times. He does this by using an approximate expression which reacts in the field becoming so complex that it

$$
\sum_{r} g_{j}^{2} \exp \left[-i \omega_{r}\left(t-t^{\prime}\right)\right]
$$

we write
where

$$
\left.A_{i} \|\right)=\sum_{v} g_{v} a_{q}(0) \exp \left(-i i_{q}()\right.
$$

and $\eta(t)$ is the Heaviside unit step function.
[11) has a bread and frilly flat spectrum:
[Dis ia equivalent to our acosimption of closely spaced modes mich enables $\sum_{q} g_{q}^{2}$ to be replaced by $\int_{0}^{x} d \omega_{V} \rho\left(\omega_{q}\right) g^{2}\left(\omega_{q}\right)$, where $\varepsilon^{2}(\omega)=\left(\overrightarrow{g^{2}}\right)_{\omega: t_{q}} \quad$. The effective beandidath of $\rho\left(\omega_{q}\right) g^{2}\left(\omega_{V}\right)$
$13 \Delta \omega_{q}$ ail/st, where it 13 the antecorralation tise. The most impor nut cortrimetions to the intenal are thone for mich $t-t \leqslant 2 \pi / \Delta u V_{r}$ $\Delta 1 J_{\gamma} \sim \omega_{0} \quad \therefore \delta t \sim 2 \pi / \omega_{0}$. 1.0. only a rew cycles curation. He assure anywey that

St \ll the tino for anncelatie seculas cianges in tho stomic atatea and 80

$$
F_{j}(\prime) \bumpeq P_{1} e^{-i j_{c}(t(1)}
$$

In tio Iowert mproximaticn, to a high derree of accuredg co that

$$
\int_{v}^{t} d t^{\prime} \sum_{q} g_{\gamma}^{2} e^{-i t_{v}\left(t-t^{\prime}\right)} A\left(t^{\prime}\right)=(1 / 2 \gamma-1 \Omega) A(t) \text { fir thres } t \gg \omega_{0}^{-1}
$$

Thi 1 an en equivalont coxpesion arrived at without the airect asmmption of a Markoif rrocese]

ω_{q} coos not vary raplely
with g, so that $\Gamma(t)$ is cuite masply peaked near $t=0$ and very anall elschore. If it varies much more rapidy than the elowly varyine operator $A(t)$, then

$$
\begin{aligned}
\int_{0}^{t} d t^{\prime} \Gamma\left(t-t^{\prime}\right) A\left(t^{\prime}\right) & =A(t) \int_{0}^{t} d t^{\prime} \Gamma\left(t-t^{\prime}\right) \\
& =(\gamma+\nu) A(t)
\end{aligned}
$$

where

$$
\int_{j}^{t} d t^{\prime} \Gamma\left(t-t^{\prime}\right)=\gamma r i v
$$

which this renoves aependerice of the fiela on osrlier times ti so that

$$
\boldsymbol{f}(t)=\sum_{q} g_{v} a_{q}(t)=\sum_{q} g_{v} a_{q}(0) \exp \left(-i \omega_{q} t\right)-i(\gamma+i \nu) A(t)
$$

The arproxination for the above intecrel is chown by von Foerster to be cquivalent to the W-W approximation and is discussed in detail. He argues that ν, the frequency ahift, vaniches to a very good aproorimation since he asames $E(\omega)^{2} \rho(\omega)$ is nearly constant in the region near $\omega=0$. According to Loutsell p. 134 ref 36 : 1f wo ascume a cystem to to Vartoffian wo moan that 1ta future behaviour is cetamened by the present and not the past and this assumption is valid since damping destrojs
knowledce of the past. Nathematically, we therefore replace

$$
\rho^{\prime \prime}\left(t^{\prime}\right)=\operatorname{Tr}_{R}\{\rho(t)\}
$$

by its present value $\rho^{(3)}(i)$.
The Markoff approximation haa been done crudaly and inatead one chould troke a coarse grained avcrage on a time scale t where
syotem darping time $\gg t \gg$ reservoir correlation tine.
t should be lone enouch to contain many cycles of the undampa system motione Then we may let the upper limit of the integration over t' co into infinity and derive the naster equation deacribing the statistical behaviour of the cysten when coupled to a rescrvoir under the $M_{0} h_{\text {o after assuming }} V_{S R}$ can be written

$$
v_{G i}=\hat{L} r_{1} Q_{L}
$$

where F_{i} are reservoir operators,
and Q_{i} are oystem operators. [In fact Loussell and Narburcer [10] eq. 34, p. $351 \quad \rho_{I}(t)$ is replaced by $\rho_{I}(t)$ and in addition assume that ρ_{I} (I) has the form

$$
\rho_{I}(t)=T_{r_{R}}\{\rho(t)\} \rho^{(R)}(0)+\Delta \rho_{I}
$$

where $\Delta \rho_{I}$ is at most of order $v_{S R}$ since if $v_{S R}=0, \rho_{I}(t)=\rho^{(s)}(t) \rho^{(n)}(0)$.
I indicates the interaction picture

$$
\begin{aligned}
\rho_{I}^{(s)}(t) & =e^{1 / 2 \mu_{5} t} \rho^{(s)}(t) e^{-i / 2 H_{s} t} \\
& =\operatorname{Tr}_{R} \rho_{3}(t) \\
\rho_{3}(t) & =e^{i / h H_{5} t} \rho(t) e^{-i / 2 H_{0} t}
\end{aligned}
$$

They then go on to fenore all quantities of order higher than
second in $V_{S R}$. Their method contains only 2 basic assumptions

1) memory of the systen is destroyed by its interaction with the reservoir,
2) this interaction is sufficientiy weak that its effects need only be considered to 2nd order in P.T. This we don't assume.]
Whan we use the larkoff arproximation in Chapters V, VI, VII we use the former procedure not the latter.

According to Hake p. $50 e^{(36)}$ when the adibatic of Marioff approximation is used with reference to the isser there are three objections to its uses
(1) The "proper" Labor gystom (active atoma + field) can be treated as undercoive a Yarioff rrocess BUT the field alme en e anguetem cranot. This is a famillar arguarit in the theory of otochastic proceases. he keep to this limitation as we apply the $\mathrm{M}_{*} \mathrm{~A}_{\mathrm{o}}$ to the TCTAL DENSITY operator for the atomic byster and reservoir (or ficid) though in our case this is not a laser sybtem.
(2) Eince we may intuitively reason that active atoms produce indirect interaction tetween FICTOLS of the lasine ifeld mode he reasons that an exnct elirination of atomic variables in laser theory must lead to a retaniet motom irtaraction in order for the results to be physical. [In his paper [112] laake points out that Pauli type ist order differential equations may be obtained under the following conditions:
(1) Initially there are no correlations between S and R. (We assume this).
(2) Intemal correlations in the bath R are characterised by correlation times the relaxation times of the system S ariaing from its interaction with r. This amounta to assuming thet the nergy levels of IN are ciosely graces, wifich we do, and that the groperis defined "strength function"density of eicenfrequencies of the degrees of freedon of $R,-\rho\left(\omega_{q}\right)$, is
 of 5.
(3) S is observed at times $t \gg$ interral bath correlation times and, if R is finite, \ll FOMCNRE recurrence tines for R.
(4) Internction between S and Ω is sufficiently yoar to allow for a simplification of the intecral kernal leaving the latter correct up to 2nd order in the interaction (Born amproximation B.A.). This derivation of the fauli equations avoids 2nd order perturbation treataent and the repeated random phase arproximation.

Typical rev-lariofian effects in S way be treated from an exact
master equation if aspuntions (2) ard (3) ere not made.
We see therefore that in fact though in Chapters II and III a Narkoffian procesa is not asmed the assumptions made are equivalent to that assumption.

In his paper ${ }^{[112]}$ he coes on to discuss and justify the B.A. since it is the sajor arproximation in this method for tuming exact naster equations into cremtualiy solvable ores. He finds that the D.A. Is valid (1) if the "stroneth function" $\rho\left(\omega_{q}\right)$ does not decenerate to one or more extremely chorp and high lines. Cne must rot assume a nite prectmon. (N.B. This is orly assumed if one uses the eethod wifch involves the larkof approximation.)
(2) that temperature of R is not too low,
(3) contributions to the Dyson eeries stemming from "overlapping" 2nd order and from all higher order themal equilibrium bath correlations are neglig ing Ewall compared with those from nonowerlapping 2nd order correlations. (ix.D. This does not amount to suppressing intemal bath correlations.)] Ve consider an ear. field in wich there is no retarded photon interaction and only consicer interaction betweon the aton and the field.
(3) The essential cordition for the elimination of heat baths in the Narkoff approxination is that the heat beth should have a WIITT or at least on entrenely hroed hond encory enectmon. Although this is just the opposite condition soucht ofter in a laser it is the conilition sought after in the eatie field we choose to act as a camping reservoir. The damping reservoir in our case is considered as a heat bath H in thermal equilibrium with an enscable of harmonic oscillators ε which together are equivelent to the PHCNOLS. These phonons spread into a kroad band of frequencles w_{q} about the original frequency ω_{q} wen the atomis coupled in the solid and in $\sum_{q} q$ varies from $I^{\prime} \rightarrow 10^{23}$ over this band. In our case therefore this objection to the use of the M.A. coes not apply.

Finally wo would lite to point out that the reservoir (namely the quantisod eoine field) is thus assumed to stay in its initial pure state
by virtue of uaince the lioA. If the fleld is very otrones i. o. contains a larce rumer of photons depletion is only very alicht in comperison to the total numer of photons and eo this assumtion $1 s$ valld for a ctrong field, n, such as we choose ($1: 20^{23}$ the numer of derces of iroedor of the beth).

Furthen in sumals papor $[111]$ wioh criticizes Inchmorets mothod and rroluces a botter ono he considers only tio then evolution of the

 points out thint tho nondiastoffian offect returds eorrelated rotion wich is remanatio for aperrailance, of the atoric aytem induead by the photonmaton coupling, and it consconentiy nodifiog a foature of guperm radiance. In fact it nodites tho chare of apomaniant pilses and the choton ctatisilce.
Q. 9 hiy ti 10 chozen to be arbitrary in Chapocy V and VII.

In Cheptira V and VII we are concomed with everacod offecta, i.e. instoul of considerifg a particular process at cuscton of aborption ve consider the avoraced affoct of all posefole mintinhotom rrocecoen. For this ramson wo co not asaing the value of mero to tine initial time t' eince
 wtarting point of tho process, wherom, in fact, ance wo aro considering that Hicre are ecveral photons in the vicinity of the atom, we therefore
 a particulis inctant in tine, and also we are not ale to asocrtain tho initial stato of the atom This mocrtainty 18 as a renult of the fact that thero is a continuous series of grocessee. It haa also boen given oarlicr as a xoason wh there is a need for the gtatistical argroach japlenonitic ionsity rairices. The remiting apoctral profiles calculated want 0 do not regrecent just oxe process of cmisuion (as in Chapter VI)
or absorption tut the overall effect of all possible processes when several piotons are in the vicirity of the atom. The spectral profiles represeat the power mpection of the scatiored ficla as in rollows paper (6). In Vollow' s paper $[53]$ he colculates eniscion and aboorption prectra ecparately $r y$ concicexinc tho etete of the atom is knom at initial time $t^{\prime}=0$.

In contract to this empoch, if we were to have attcapted to use the tino-depordent perturiation theory to solve the problems, then we would have hod to rave known in wich state the aton wes at the initial time. ho would tion have to have concidered ech multiphoton process
 Iritial etoric etate to be arbitrary and then, in oricr to find the initial dersity matrices, we first of all cvalusto their equilltrium values attained at $t \rightarrow \infty$ and then evaluate these at $t=$ th the initisil tine. In this way cerencence on to aprears onis as the hermonic factor $e^{-i \omega t}$ in certain temp were of is the fremercy of the drivire ficla. Thece factors cancel out when the erectrun is innolly calculated so that the value of th is never required. In this way the overall cifect of severnl mitiphoton processes is calculated.

It is owing to the fact that the state of the atom at ary time is uncertoin that the wave functions becone mired as a result of the interaction. Fow wave functions have to to defined wifch are a mixture of the old ones. This mixing is conasecred boti by lewstein ${ }^{[67]}$ and by eeveral nuseion authora ${ }^{[\beta 6]}$, but is erroncouly iphored by Eercmenn [103] who is criticized Ly lewatein da this point. This oixing as a result of darpine bas keen rointed out ecveral times as being mantioned by lollow and riller ${ }^{[7]}$. They make the point also on p. 473 thet in weak ficlas the atomic state reasins pure and one con just add a phenomonolocical derpine tern to the equation of the thie corivative of the excited state.

Stroud $[g]$ has devcioped an clternative aproach wici is quantum clectrodyamical (G.E.D.) in nature but doea rot irvolve the use of timem
depencent porturiation theory. Its disutvartace 10 that it is a very larice method since he first of all considers the apllting of each level and then coes on to considar all poosible traseitions between the resuitine crilt levele, considerinc eacin mulifhoton proces separately. Mis method also has the dieadrantage of only veing able to taise into account the frocesa of eportacous cmisbion and not overall processes.

Chate is ctcile $[115]$ also uco (R.E.E. $)$ thecry for the purpose of
 They find that their realles agre baticr witi the caperinestel worifie of Kuech $[110]$ then wo those obtaned by calwen $[11,117]$ veine eesiclascical theory. They thercifore conclude that acilclaseleal thoory is friferior to their oun work in intorpretine this and other exerimorts but feef \& carice $[118]$ asecrt that the papers of cheng $\%$ Stenle co rot corstituta a proper comarison with senicinesical, thoory becuse calwan's calculations
 colutions to the cospelesicil ecuntiona of motion, erd have been superseded ty nore recort werit [110] in this ficla. Also Jece wed Seriea craw aftarition to the fect that C. \& So not epecify their ce. field in sufficiert ectail.

Foce and series eof that in two particular situations an asact newiclassicul aolution can be ottrinext:

1) In tho "rotctinc-wave" situation and (2) wion the fiola consists of a 2 nearly oscillating component and a peraliol static comonont wich may bo zero. Chang and stchle no rot epocify the poinatation of the fields they discuse but it erpears they deal with linearly occilating fields (witich excluia case (1)) ond that interactiona having diaconal matrix elomente (case (2) exe of no interest to thee. For this reason their etrinetures agarst the exact semiclasaical colutions are eisplaced.

Another point made by Feas end Cerica is that ecti-clasoicol and GoE.D. treationts do not oriy acree in the lowifrequmey lotiofield rection,
1.e. "In thone ayctens where transitions incotve the aisaion or aborption of a cincle photork as stated by have \& Etcile dut ala for
 rinciple.

23:0 main cifference (aport from virtual procosses ienored by C. \& So) Letheor semplesicol and gunitised field treories lien in the treatient
 doteriso tho evoluticia of the atouic suate vector water stimatod cission and aisortion dro lomtical in the two theories herce tho predictions of we theorion mast colicide for thoze situations in wich epontarcons chission plays no elgaificant raze.
N. N. and $E\left[{ }^{[G]}\right]_{\text {riow }}$ that the extormal fleld charces tho prectivin

 conclusion since umand interforence phenowan eppear. They ore interested in the cain anon firim of states tares place fition the excitation of the gystex, wile at the initial instant the atom is in some ftationary state.

In Etroud's case $[\mathrm{Se}]$, if there are soy 15 photons in the vicinity of the atom, he conethors wat happens to ace at a time but in Lehrberc's $[1,2]$ and lo110w's $[7, c]$ pepers they conaider the Lotericrence cansed when the ncxt fhoton arrites wition 1^{-3} sec. so that the states becone mixed. The Ifrturation arreach is volita oniy for thes between 10^{-15} gece and 10^{-3} sec. and not $>10^{-3}$ coc. Where $10^{-\infty}$ ece. is the ampoximate atomic 11retize. For longor thes other methede aro necessary as pointel also in the introcuction Soc. I. $^{\text {. }}$
8. 10 Limitationa on Lehmberi's metion.

In Lominerg's lat paper [1] atons are confinen to a resion SMLL in cowrarison to the transition waveleneth
i.e.
but the formalism of the 2nd paper ${ }^{(2)}$, which we use, removes this restriction. It also takes into account the frequency shifts due to the e.m. coupling between the atoms and . These we ignore since we are only interested in rarified gases in which the e.m. coupling between atoms is negligi;bly small. The only limitation on the size of the ensemble of systems in (2) is expressed by condition (13),

1.e.

or
the time required for a signal to cross the system being smell in comparison with the time t required for appreciable (secular) changes in the atomic levels. Since we only consider a single atom in our case is replaced by R the distance of the atom from the observation point.

For a system driven by a sufficiently strong resonant pulse is determined by the field amplitude and pulsewidth and the problem can be adequately treated by semi-classical theory.

Lehmberg's analysis precludes application to macroscopic lasing materials but the formallsm can still be applied to multi-atom systems extending over many wavelengths and still be capable to developing pornounced directional effects.

Von Foerster's paper also uses a method of approach similar to Lehmberg's and provides a backing for it.
8.11 The two ways of considering the driving field in Chapters V, VI, VII.

In Chapters V, VI, VII we show that whether we use Glauber's notation ${ }^{(48,49,50)}$ or introduce driving fields as additional classical terms makes no difference to the form of the resulting equations although Glauber's approach is more consistent as it is truly quantum mechanical. In the latter the driving fields can be considered within the formalism by making initial photon states non-zero. According to von Foerster ${ }^{\text {(43) }}$
strong fields, auch as the laser fields we consider, should be represented classically. When we use the quantua mechanical approach and consider CHE mode in each case the results take the eame form as when wo consider the fiold classically. This is because in the beginning the strength of the fleld is not stipulated and is left as a variable parameter in the resuiting formula.

Accordine to liewstein ${ }^{(68)}$ when a matorial system S interacts with a relaxation mechanism R and the eom. field E, the interaction of S with E is describable as the sum of two terms;

1) the first tern gives the effect of a prescribed classical field, and 2) the second gives the effect of a LEAK nuantum field that is remonothle for enontsnems enission. This intaraction is treated perturiatively. The driving field is treated classically in his paper. In fact when the incident field is of arbitrary value it can be treated non-perturbatively.
$-364-$

AFPLDTX I

Heisenkerf equations of rotion, derived from the flamitionion in which tebetelis not anmed, for the 2-level gtom (cf. ref 2)

If we use the interaction hamiltonian aa given in equation (1.N.103), 1.e.

instead of eq. (1.E.105), obtained under Fi. W.A., then we can show that the equationsfor $a, 1), A(t)$ and $Q(t)$ will be modified by the urderlined terms so that we have:-

$\left.\dot{A}(t)=-i נ_{0} A(t)-i 2(Q(t)-1 / 2) \hat{C}_{1,1} g_{k 5} \epsilon^{1 k_{0} r} a_{65}(1)-i \sum_{0_{, 5}} g_{05} c^{-1 k_{s} r} a_{6,5}\right]$

$$
\begin{equation*}
-i \sum_{l, 5} g_{l \pi} t^{-1 k_{l} r} \underline{a_{05}^{+} 2\left(0(l) \cdot v_{2}\right)} \tag{II.3}
\end{equation*}
$$

where there is no oxtemal driving field, es opposed to equations (2.2), (2.4), (2.5) of chapter II when $\lambda^{\prime}=0$ and $x+0$ and $a_{6 \sigma} \epsilon^{-1 \varepsilon_{l}} \rightarrow-a_{95}$, $a_{0 \sigma}^{+} e^{\prime \theta_{6}} \rightarrow-a_{e F}$. The terms underined are high frequency (HF) ones since they originate from the hich frecuency terms in the Mamilonian. (i.. D. $A \sim e^{-i \omega_{c} t}: \quad, A^{+} \sim e^{1 \omega_{i} t} \therefore Q=A^{+} A \sim e^{\circ}=1 ; a_{0 \sigma} \sim e^{-i i_{k} t}$ $a_{0 \sigma}^{+} \sim e^{i \omega_{g} t} \therefore a_{0}^{+}+Q \sim e^{i \omega_{c} t}$ and $a_{0 \sigma}+A+(t) \sim e^{i\left(\omega_{g} t_{i}\right) t}$ whare $\omega_{e} \sim \omega_{j}$ and hence $A^{+}, a_{95} Q, 0_{95}{ }^{+} A^{+}$are a.11 HF terms.)

When we go throuch the same procedure as in Chapter II, we finally obtain the following two equations:-

$$
\begin{align*}
\dot{A}(t)= & -i 2(Q(1)-1 / 2) q(r)-i 2 q^{+}(r)(Q(t)-1 / 2) \\
& -(1 / 2 \gamma+i(q-\Omega)) f(t)+(4 / 2 \gamma+i \Omega) A^{+}(t) \tag{II.5}
\end{align*}
$$

$$
\begin{align*}
\dot{Q}(t)= & \left.-1\left(A(t)-A^{\prime}(t)\right) \underline{\gamma^{(v}}\right)-1 q^{+}(\underline{r})\left(n(t)+A^{-}(t)\right) \\
& -\gamma Q(t) \tag{II.6}
\end{align*}
$$

where ? ?. - ?
replaces 7_{7}
and underlined terms result from $H F$ terms in the Haniltonion,

$\mathbf{q}^{+}(\underline{r}) A^{+}(t) \sim t^{\prime\left(\omega_{s}+\omega_{2}\right) t}$
(N.E. there ia no γ_{+}corresponding to γ_{+}since \int_{0}^{∞} div $\omega^{-} \delta(w+w)=C$ and w : $-w_{0}$ does not lie within the limita of intecratione)

If we neglect the high frequency terms at this stage, since they will have only a very mall effect, we obtain equations

$$
\begin{equation*}
\dot{A}(t)=-i 2(Q(t)-1 / 2) g(r)-\left(1 / 2 \gamma+i\left(u_{c}-\Omega()\right) f(t)\right. \tag{II.8}
\end{equation*}
$$

which is the seme as equation (23) of Lohmberg (ref. 2) when $\alpha=\beta$ and $\sigma=$ Q, 1.e. our A.

$$
\begin{equation*}
\dot{Q}(t)=n^{+}(t) q(v)-i q^{+}(r) A(t)-\gamma Q(t) \tag{II.9}
\end{equation*}
$$

which is the case as equation (23) of Lehmberg if is replaced by Q throuchout.

Thus, this wore rigorous treatment oniy results in negligible HF terms and a frequency shift modification which can be neglected as it is not our main concern. We are therefore justified, on this basis, in using the R.k.A., from the start, in Chapter II.

4PPMDIX II

Comenizen of tie retation in Chator IT Wh thet of rether (1)

In Chapters V, VI, VII we consider the external perturbations to be time dependent and, in method (1), based on Mollow's treatment $(7,9)$ of the perturbation, let E, 11) by the signal generator. This feeds the signal continuously into the cavity. In this case the llamiltonian for the interaction between the eystem and the signal is

$$
\begin{equation*}
H_{j D}(t)=V_{S E}(t)=\hbar \lambda\left\{A^{+}(t) \varepsilon_{D}(t)+\varepsilon_{D}^{\alpha}(t) A(t)\right\} \tag{II.1}
\end{equation*}
$$

where λ is a corumber coupling parameter (according to ref. (35), p. 272-3). In Mollow and Niller's paper ${ }^{(9)}$, the classical external perturbation E can be presumed to be a clasaical (omunber) electric field $E_{D}(1)$, with positive and negative frequency parts $\varepsilon_{D}(t)$ and $\varepsilon_{D}(t)$ respectively and polarisation specified by unit vector $\hat{e}_{o n}$ where

$$
\begin{equation*}
E_{D}(t)=\left\{\varepsilon_{D}(t)+\varepsilon_{D}(t)\right\} \hat{e}_{0} \tag{II.2}
\end{equation*}
$$

Then the coupling between the ator, S, and field, F, is taken to be
where $\lambda=\frac{\hat{E}_{\text {ch }} \cdot p}{\hbar} \quad$ and is real
Now $A(t)=A(0) e^{-i n, t} \quad$ (cf. (1, E. ©3))
and $A^{+}(t)=A^{+}(c) e^{i \omega_{0} t} \quad$,
and also the driving field is assumed to be harmonically varying at
frequency $w_{p} \sim \omega_{0}$, the resonant frequency, so that

$$
\begin{equation*}
\hat{C}_{n}(t)=\hat{C}_{c D} e^{-i n_{p} t} \tag{II.5}
\end{equation*}
$$

$$
\hat{g}_{0}(i)=\varepsilon_{D} f^{n, t} \quad \text { where } \varepsilon_{0 D} \text { is assumed to be real }
$$

$$
\begin{align*}
& V_{S E}=-E(t) \cdot\left\{f^{A^{+}(1)} \Psi f^{*} A(t)\right\} \\
& \begin{array}{l}
\text { (N.B. in our calculations we } \\
\text { take } \mathrm{i} \text { to be real) }
\end{array} \\
& \left.=-\hat{e}_{C D} \cdot f\left\{\varepsilon_{D}(t)+\varepsilon_{D}(t)\right]_{j} A+(t)+A(t)\right\} \text { fir } p \text { real } \tag{II.3}\\
& =-+\lambda\left\{A^{+}(1) \varepsilon_{D}(t)+\varepsilon_{D}^{2}(t) A(t)+\varepsilon_{D} H\left(A(t)+A^{+}(t) \varepsilon_{D}(t)\right\}\right.
\end{align*}
$$

$$
\begin{aligned}
& \therefore V_{S E}=-\hbar \lambda\left\{A^{\prime}(0) \varepsilon_{C D} e^{\left..1 \omega_{i} \omega_{D}\right) t}+\sum_{0 D} H(0) e^{-,\left(\omega_{0} \omega_{D}\right) t}\right. \\
& \left.+\varepsilon_{m D} A(0) t^{-.\left(\omega_{0}+\omega_{-}\right) t}+A^{\top}(0) \varepsilon_{O D}^{*} t^{\left..1 \omega_{0}+w_{D}\right) t}\right\} \\
& -\hbar \lambda\left\{A^{+} \varepsilon_{3}+\varepsilon_{D}^{\prime} A\right\} \\
& \text { or - }-\hbar \lambda\left\{A^{+}(0) \varepsilon_{D}^{\prime}(t)+E_{D}^{\prime *}(1) A(c)\right\}, \\
& \text { where } \varepsilon_{D}^{\prime}(t)=\varepsilon_{D}(t) e^{\text {init }}
\end{aligned}
$$

since texme $\varepsilon_{D} A$ and $A^{+} \varepsilon_{D}^{\alpha}$ are rapidiy oscillating at a frequency $\sim 2 \omega_{0}$ ard so can be ignored in comparison with the terms $A+\varepsilon_{5}$ and $\varepsilon_{D} A$ oscillatine at $\omega_{C}-\omega_{D} \sim 0$ and which are therefore practically d.c. (cf. discussion of Rohohe after eq. (1.B.92). Thus the expression in ref. (35) 1.e. eq. (II.1) assumes the R.W.A. and is valld for wail coupline.

We shall consider $V_{S E}$ for a classical tine independent perturbation to be efven by

$$
\begin{equation*}
V_{S E}=\hbar \lambda^{\prime} A^{-} e^{-1 \varphi}+\hbar \lambda^{\prime x} A e^{1 \varphi} \tag{II.7}
\end{equation*}
$$

where we have initrociuced on aribitrary phase \varnothing which will be seen to have no effect on the results, co that comparing terms we see that

$$
\begin{aligned}
& -\lambda \varepsilon_{D}(t) \longrightarrow \lambda^{\prime} e^{-14} \\
& -\lambda \varepsilon_{D}(t) \longrightarrow \lambda^{\prime 2} e^{i 4}
\end{aligned}
$$

When $w_{D}=0$, as in Chapter II, we have

$$
\begin{align*}
& \lambda^{\prime}=-\lambda \varepsilon_{L D} e^{i \varphi}=-\left\{\frac{\hat{e}_{M D} F \varepsilon_{C D}}{\hbar}\right\} e^{i \varphi} \tag{II.8}\\
& \lambda^{\prime \prime}=-\lambda \varepsilon_{C D} e^{-i \varphi}=-\left\{\frac{\hat{e}_{C D} f \varepsilon_{C D}}{\hbar}\right\} e^{-\varphi}
\end{align*}
$$

so that we can identify onumber coupline perameter λ ' as above, when the perturbation is an electric field.
r.D. $\quad\left|\lambda^{\prime}\right|^{2}=\left(\lambda \varepsilon_{c D}\right)^{2}$ or $\frac{1}{4} 3^{2}$
in the notation used in Chapters V, VI, VII and is related to the strength of the perturbetion.

In follow's paper ${ }^{(9)}$ he expresses the total electric field as the sum of the classical caprecsion (2.2) and a quantum mechanical field expanded in a region of volume V, as in lewatein's paper discussed in Chapter VIII ${ }^{(6)}$. I.E. using eq. (1.2.97) for the quanta mechanical part we obtain
where, in the resonant approximation, we may express the electric field as the run of positive and negative frequency parts as in (II,2), viz.

$$
\begin{equation*}
\left.E(c t): Y E^{\prime}+\gamma_{c} t\right) \tag{II.II}
\end{equation*}
$$

Then the interactive Hamiltonian is

$$
\begin{equation*}
H_{j}(t) \cdots d(t) \cdot E(0, t) \tag{II.12}
\end{equation*}
$$

Then the aton is at the origin of coordinates.
is the dipole moment operator for the atom expressed in terms of the dipole matrix element
2.3

$$
\dot{q}(t)=\sum^{+}(t)+\sum A(t)
$$

N.E. we write $2=\left\langle_{1}\right| \in \geq|i\rangle$ and assume it to be real so that $\left.\Sigma(t)=L^{\left(A^{+}\right.}(t)+A(t)\right)$
1.0. $H_{I}(t)=-A^{+}\left\{\left(\varepsilon_{D}(1)+\varepsilon_{D}^{*}(t)\right) t \lambda+\sum_{e \sigma} \hbar g_{e \sigma}\left(a_{\rho \sigma}+a_{e \sigma}^{+}\right)+H C\right.$.

$$
+\mathrm{H}_{0} \mathrm{C}_{0}
$$

$$
\begin{equation*}
=-A^{+}\left\{\varepsilon_{D}(1) \hbar \lambda+\sum_{l \sigma} \operatorname{Fg}_{0 \sigma} a_{l \sigma}\right\}+H . C . \quad \text { in the resonant } \tag{II,14}
\end{equation*}
$$

$$
\begin{align*}
& H_{I}(t)=A^{+}(t)\left\{\varepsilon_{D} H\right) P \cdot \hat{\epsilon}_{C D}+\sum_{e_{\sigma}} \sqrt{\frac{2 \pi+\ldots C_{C}}{V}} p \cdot \hat{e}_{95} a_{85} \tag{II.13}\\
& +\varepsilon_{D}(1) p \hat{e}_{C D}+\left\{\begin{array}{l}
Q_{5} \\
\frac{2 \pi \hbar D_{0}}{V}
\end{array} f \cdot \hat{e}_{C_{5}} \hat{a}_{9 \sigma}\right\}
\end{align*}
$$

$$
\begin{align*}
& \Sigma^{+}(\boldsymbol{r}, t)=\varepsilon_{D}(r, t) \hat{\epsilon}_{C D}+\sum_{l} \sqrt{\frac{2 \pi+\omega}{V}} \hat{e}_{6} a_{C T} \epsilon^{1 k_{i} r} \tag{II.10}
\end{align*}
$$

$$
\begin{aligned}
& =-K \lambda\left\{A+\varepsilon_{D}(t)+\varepsilon_{D} \cdot(1) A\right\}-\sum_{Q_{5}} \operatorname{tig}_{e_{5}}\left(A^{+} a_{6_{5}}+a_{65}-A\right) \\
& \text { (nose } \quad g_{e s}=\sqrt{\frac{2 \pi_{\omega_{2}}}{\hbar r}} \hat{i n}_{1} f \\
& =V_{S B R}+V_{S E}
\end{aligned}
$$

N.E. In Chapter II we introduce a phase factor into the expression for $V_{S i}$ as well as into that for $V_{S E}$ but these are seen to have no effect on the results we derive.

STMDTX III (ref. 121)

Amernis colution of the cutse emation

This apperdix will be devoted to a derivation of the solutions of the coneral cubic quation

$$
\begin{equation*}
s^{2}+a s^{2}+b s+c=0 \tag{III.1}
\end{equation*}
$$

In order to reduce this equation to its standard form we remove the term by making the change of variable

$$
s=y-1 / 3 a
$$

The resulting equation is

$$
\begin{array}{ll}
& \left.y^{3}+(-151 b) y+1 / 27 a^{3}-1 / 3 a b+c\right)=0 \\
\text { or } & y^{3}+3 H y+6 \\
\text { where } \quad H=1 / 3\left(-1 / 3 a^{2}+b\right) \\
\text { and } & a=1 / 27 a^{3}-1 / 3 a b+C
\end{array}
$$

In order to solv eq. (III.2), we assume that

$$
\begin{equation*}
y=u+v \tag{III.3}
\end{equation*}
$$

so that

$$
y^{3}=\left(u^{3}+v^{3}\right)+3 u v(u+v)
$$

Substituting in this last equation for $u+v$, from (III.3), we obtain tie equation

$$
\begin{equation*}
y^{3}-3 u v y-\left(u^{3}+v^{3}\right)=0 \tag{III.4}
\end{equation*}
$$

A comparison of (III.4) with (III.2) shows that
and

$$
3 u v=-3 \mathrm{H}
$$

or $\quad u^{3} v^{2}=-H^{3}$
and

$$
u^{3}+v=-c
$$

If τ^{5} is eliminated by substituting from the second of equations (III.5)
into the first, then the quadratic equation in A^{3} appears,

$$
\left(u^{3}\right)^{4}+6 u^{3}-H^{3}=0
$$

whose roots are

$$
u^{3}=\frac{-0 \pm \sqrt{c^{2}+4 i^{3}}}{2}
$$

The solution for V^{3} yields precisely the same values. However, in order to satisfy eq. (III.5), we choose

$$
\begin{align*}
& u^{3}=\frac{-c+\sqrt{c^{2}+4 u^{3}}}{2} \tag{III.6}\\
& v^{3}=\frac{-c-\sqrt{c^{2}+4 u^{3}}}{2}
\end{align*}
$$

1.e. the positive square root term for u^{3} and the negative for v^{3}. The opposite choice for the values of u^{3} and v^{3} simply interchanges their roles in what follows.

If the values of g and to be determined from eq. (II I.6), it is necessary to find tiv cube roots of u^{3} and v^{3}. Now we mow that if $B^{3}-d^{3}=0$ then the solutions for s are given by $d, \omega d$ and $\omega^{2} d$, where $\omega=\frac{-1}{2}+\sqrt{3} / 2 \quad$ and $\omega=-\frac{1}{2}-\sqrt{3} / 2 L$ are the complex roots of unity. nonce, if one cube root of u^{3} be denoted by α and one cube root of v^{3} by β, tide cher roots of u^{3} are

$$
\alpha, \omega \alpha \text { and } \omega^{2} \alpha \text {, i.e. the roots of } u^{3}-\alpha^{3}=0 \text {, }
$$

whereas those of are

$$
\beta \text {, wi and } \omega^{2}, s \text {, 1.0. the roots of } v^{3}-\beta^{3}=0 \text {. }
$$

It would appear that there are 9 choices for y, but values must be paired Bo that $u v=-i l$. The only pairs that catiafy this condition are α and $\beta \mu^{2} \alpha$ and $\omega \beta$, and $\omega \alpha$ and $\omega^{2} \beta$. Hence, the values of y are

$$
\begin{aligned}
& y_{1}=\alpha+\beta \\
& y_{2}=\omega^{2} \alpha+\omega \beta \\
& y_{5}=\omega \alpha+\omega^{2} \beta
\end{aligned}
$$

where $\alpha=\left[\frac{-c+\sqrt{c^{2}+4+13}}{2}\right]^{1 / 3}$
and $\beta=\left[\frac{-6-\sqrt{C^{3}+x H^{2}}}{2}\right]^{13}$

The colutions of eq. (III.1) can be citained from the values eiven in (III.7) by recallinc that $s=y-1 / 3^{a}$. Thus

$$
\left.\begin{array}{l}
s_{1}=y_{1}-1 / 3 a=(x+\beta)-1 / 3 a \\
s_{2}=y_{2}-1 / 3 a=\left(s^{2} x+2 y\right)-1 / 3 a=-1 / 2\{(x+\beta)+13(x-\beta)\}-1 / 3 a \tag{III.5}\\
s_{3}=y_{3}-1 / 3 a=\left(0 x+13^{2}, s\right)-1 / 3 a=-1 / 2\{(x+\beta)-1 \sqrt{3}(x-\beta)\}-1 / 3 a
\end{array}\right\}
$$

It is thus obvious that if $\alpha_{\text {and }} S_{\text {end ane rend }} S_{1}$ is real and S_{2} and S_{3} are complex conjugates of each other so that the three roots can be uritten

$$
\begin{align*}
& S_{1}=x_{1}=(\alpha+\beta)-1 / 3 a \\
& S_{2}=x_{2}-1 x_{3}=-\{[1 / 2(\alpha+\beta)+1 / 3 a]-1 \sqrt{3} / 2(\alpha-\beta)\} \tag{III.9}\\
& S_{3}=x_{2}+1 x_{3}=-\{[1 / 2(\alpha+\beta)+1 / 3 a]+13 / 2(\alpha-\beta)\} \\
& \text { N.D. } \quad \alpha=\left[\frac{-\left(3 / 27 a^{3}-1 / 5 a b+c\right)+\sqrt{\left(2 / 27^{\left.a^{3}-1 / 5 a b \pi\right)}+4\left(13\left(1 / 3 a^{2}+b\right)\right)\right.}}{2}\right]^{1 / 2} \tag{III.10}\\
& \beta=\left[\frac{-\left(2677^{3}-1 / 3 a b+c\right)-\sqrt{\left(2 / 27^{\left.a^{3} 1 / 3 a b+c\right)^{2}+14\left(1 / 3\left(-1 / 3 a^{2}+b\right)\right)^{3}}\right.}}{2}\right]^{1 / 3}
\end{align*}
$$

In terms of the known quantities a, b, and c.
Fxact values of α and S cannot be found and in the text we use various arproximations in order to find α and β and hence S_{1}, S_{2} and S_{z}

APPMTIX IV
Ine mepet of Pe tomasinthe Moniltantar on the onntison
of rotion for the mitilevel-1evel ator

Asmaing timenamilonian to be given by ec. (4.A.2) whan E.i. taras ere incluied 1.e.
wo obtain the following equations of motion
with formal solution

$$
\begin{align*}
& \left.-e^{-i k_{i} r_{1}} a_{i 5}^{+}\left[P, \ldots, s_{7} y\right]_{t}\right\} \tag{IV,G}
\end{align*}
$$

where $\left[S_{z y}, P_{n i}\right]_{t}=\left[S_{z y}(t), P_{m, n}(t)\right]$
(IV, 6)

$$
[N B . m<n]
$$

Hence

$$
\begin{aligned}
& \mathcal{F}_{m, 1}(t)=i \epsilon_{m n} P_{m n}-i \sum_{i \sigma}^{1} \epsilon^{1 k_{i} r}\left\{\sum_{z=1}^{m-1} g_{i s, m z} P_{z n}-\sum_{y_{n+1}}^{\ell} g_{i s, y n} P_{m y}\right. \\
& \left.+\sum_{y_{0}^{\prime}}^{0} g_{1,1}, y_{m} P_{y_{n}}-\sum_{=-1}^{\sum_{n-1}^{n}} g_{n, 1}=P_{\ldots z}\right\} a_{00} \\
& +i \sum_{l \sigma} e^{-i i_{l} r} a_{j \sigma}^{+}\left\{\sum_{y=n T 1}^{\ell} g_{l \sigma} y_{n} P_{n y}-\sum_{i=1}^{m-1} g_{0 \sigma m z} P_{z n}\right. \\
& \left.+\sum_{z=1}^{n=1} g_{e_{\sigma, n},} P_{i, z}-\sum_{y=m+1}^{\infty} g_{i_{\sigma}, y_{m} p_{y n}}\right\}
\end{aligned}
$$

F.B. Underlined terms result from FF terms in the Hamiltonian.

It is now necessary to derive new expmaseions for
 $\sum_{i}^{2} \sum_{y=0} f_{0} \ldots .$.
and proceeding, as in Chapter IV, to let $V \rightarrow \infty$, Lore overlapping terms, and to assume $\epsilon_{n z} \not \geqslant \mid$, we obtain,

$$
\begin{align*}
& \sum \sum_{i=} g f_{r, m z} n_{f s}^{(t)}=\sum_{z=1}\left\{q_{m z}(r)+i\left(1 / 2 \gamma_{m z}-i \lambda_{m z}\right) p_{z m}(t)\right. \\
& \left.\left.-1, ?_{\ldots z}\right) P_{z-r}^{+}(t)\right\} \tag{IV.8}
\end{align*}
$$

where $\Omega_{\ldots z+}=\frac{\delta_{\ldots z}}{\epsilon_{n=z}^{j}} \int_{0}^{\alpha} \frac{d \omega}{\partial \pi} \frac{\omega^{3}}{\omega+\epsilon_{\ldots z}}$ as $\operatorname{sn}(2, A, 15)$

$\dot{P}_{m n}(t)=i \epsilon_{m n} P_{m n}-i\left\{\sum_{\underset{i}{-1}}^{m-1} P_{=n} q_{m z}(r)\right.$

$$
\begin{align*}
& -\sum_{y_{i=1}^{k+1}}^{k}\left(P_{m y} q_{g_{n}}(r)-\Omega_{y_{n}} \frac{p_{m i}}{}\right) \\
& +\sum_{y_{n i+1}}^{1} P_{y_{n}} q_{y_{m}}(\underline{v})-\Omega_{1 \ldots \ldots+} P_{1 m m} \\
& \left.-\sum_{j=1}^{j_{i=1}, i+1}\left(P_{m z} q_{n z}(\underline{r})+i\left(1 / 2 \gamma_{m z}-i \int l_{n z}\right) P_{m n}\right)\right\} \tag{IV,10}\\
& +i\left\{\sum_{y \ldots \ldots 1}^{\infty} q_{y_{n}}(\underline{r}) P_{\ldots} y\right. \\
& -\sum_{z=1}^{\infty}\left(q^{+}+\left(r z^{1}\right) P_{z n}-i\left(1 / 2 \gamma_{\ldots z}+i \rho_{m z}\right) P_{\ldots n}\right. \\
& +\sum_{i=1}^{n-1} q_{n z}^{+}(\underline{n}) P_{m z}-i\left(1 / 2 \gamma_{\ldots \ldots+i}+i \Omega_{n \ldots-1}\right) P_{\ldots \ldots} \\
& \left.\left.-\sum_{y=n+1}^{l}\left(q_{y m}^{+}(r) P_{y m}+1, \Omega_{y^{m} m_{T}}\right) P_{m n}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
& \text { Collecting terms, we obtain }
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}+\left(n_{1}\left(m_{1}+p_{1-n}\right)\right.
\end{aligned}
$$

where underfeed terms result from H.F. terms in the Hamiltonian. This
equation can also be written abs-

$$
\begin{aligned}
& +\left(\frac{129}{h} \ldots \ldots, T_{m i n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -i \sum_{i=1}^{m-1} q_{j}^{+}(\underline{r}) p_{j n} \\
& -i \sum_{==1}^{\sum_{1}^{-1}} r_{z n} q_{m z}(r)+i \sum_{y=n+n}^{l} \frac{p_{m y} q_{y}(\underline{r})}{}
\end{aligned}
$$

When we ignore terms originating from H.F. terms in the hamiltonian
we obtain

$$
\begin{aligned}
& \dot{P}_{m, n}(1)=-\sum_{i=1}^{n-1} \sum_{j=1}^{m-1}\left\{1_{2}\left(\gamma_{n i}+\gamma_{m j}\right)+i\left(\epsilon_{n m}-\lambda_{n i_{-}}+\Omega_{n-1}\right)\right\} P_{m i n} \\
& -i \sum_{r=n+11}^{n}\left(P_{n r}^{+} q_{r m}(\underline{r})\right)_{\substack{H F, i f r<n \\
N B, r>m<n}}+i \sum_{i=1}^{n-1}\left(P_{i n}^{+} q_{n i n}^{(r)}\right)_{N F, i f i m<i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (IV.13) }
\end{aligned}
$$

In fact two of the terms, the terms which ere doubly underlined, originating from H.F. terms in the Lamilowien are in fact not necessarily N.F., Viz.
$\sum_{y=m+1}^{k} q_{y=1+}^{+}(6) P_{y^{\prime}}$
 whereas y con $10=n,>n$ or $<$ n.
$\sum_{-=1}^{\prime \prime} p_{n}^{+}\left(r_{-}\right) P_{m z}$

> is only H.F. if $\mathrm{m}>\mathrm{z}$, where $\mathrm{m}<\mathrm{n}$, whereas m con te $=\mathrm{z},>_{\mathrm{z} \text { or }<}<\mathrm{z}$.
co, in fact, we should use the following equation:-

$$
\begin{aligned}
& \dot{P}_{m n}(I)=-\sum_{i=1}^{n-1} \sum_{0}\left\{1 / 2\left(x_{1}+\gamma_{n}\right)+i\left(t_{n m}-\Omega_{n i}+\delta_{m i}\right)\right\} P_{m n}
\end{aligned}
$$

$$
\begin{align*}
& \left.+i \sum_{\substack{l=1 \\
l<1}}^{n-1}\left(\eta_{n}+\ldots\right) P_{\ldots 0}\right) \tag{IV.16}\\
& -i \sum_{j=1}^{m-1} q^{+}{ }_{j}(r) p_{j n} \\
& +i \sum_{k-n+1}^{k} q^{+}(\underline{r}) p_{m i n}
\end{align*}
$$

and from this

$$
\begin{align*}
& \left.\dot{p}_{\ldots . . n}(1)=-\sum_{i=1}^{m-1}\left\{\gamma_{\ldots \ldots}-i\left(p_{m i} q_{i<m}(\underline{r})-q_{i n i}^{+}(\underline{r}) p_{1 . n}+q_{i, 1}^{+}(\underline{r}) p_{n, n}\right)\right\}\right\} \tag{IV.17}
\end{align*}
$$

I.. . we have tho contra terms in each equation and also two restrictions on the costing summations.

APEMTITV
 mo roter on Anomeryion's rame
 (34)

In Apenasovich's paper he considers a-level atomic syaten with closely epaced (or coincient) excited levela, and the affect or it on KIAR radiation. There are thus ro ror-linear effects and the arsceptivility he calculates is the linenr cne. Since the field is weak it cnn be conbidered to possess a orread of froquercies such that levels 2 and 3 are both covered by it cinco they are very close. He thus not oriy incluics $\lambda_{31}=\lambda_{13}$ but also
$\lambda_{21}{ }^{2} \lambda_{12}$. Jow in our case we wich to be able to concicer the possibility of the field becoming very atrone. Kathenatically it would be papossivie to ccasicier any arread in the frequency of two incident field for this case. In our nethod (i1) we conaider one node of the incident field and in rethod (1), based on Mollow's analysie, the incidert field has just ont frequency with no apread. stroud ${ }^{(\rho)}$ also considers just OIE mode to be stroncly eacited and no wore. Lut evan iblis sincle frequency intense incicent ficid is not quantum mechanically manaceable and that is why Vollow considers the inciaent single frequency fiela to te classical. In Strond's nothou be inposes the restriction that in the process uncr consideration ouly one photon has beon consued frois this ainele. fronuency ficlis and so on. (This is also assuned by horozov in his paper on stark aplittine ${ }^{(122)}$). In this way Stroud is able to treat the aingle frequency etrong incicent field quantum mechanically. Thysically, it is reasonable to consider just one frequency in the intence incicent field since all Intense coherent flelds obtained from lasers have a very mall opread. Thus won wo are dealing with such a single frequency intense inciant field it is obriously not yossible for it to couple levels 1 and 2 at the anno tine as levels 1 ard 3. In fact is we heve a phycical eituation were the spread of the incident field is gravier than the distance between the central frequenciea of the closomifing levels 2 and 3
then we can arproximate tho incident field with a cincle frequency field which couples only levels 1 and 3 and not 1 and 2, 1.e. $\lambda_{12}=\lambda_{21}=0$ in this casc.

It is intereating to see what the gract equations correaponding to oquations (2a) and (b) of Apanasevich would te. In fact, they are
in our notation, where the following transionations are necessary for conversion to Apanasevich's notation:-

$$
\begin{align*}
& \lambda_{21} \varepsilon_{D}(1)=\frac{f=1}{\hbar} \hat{e}_{D D} \varepsilon_{O D} t^{-n_{D} t} \longrightarrow \frac{d_{21}}{t} E e^{-n \omega t} \quad \text { i\& } f_{=1} \hat{c}_{0 D} \cdots d_{21} i_{\omega D} \cdots E, \tag{V.3}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } w_{21} \text { and } w_{31} \text { include frequency chifis. }
\end{aligned}
$$

Thus we see that the two strafot underlincd tcrms have been neglected In the lingar aprapimation. If these two teme were incluaded it would than be necossamy to solve rine equitions in all ware tho readning seven equations cire:-

$$
\begin{align*}
& \left.\dot{\rho}_{11}=\left\{1 / 2\left(\Gamma_{31}+\Gamma_{21}\right)-i\left(\Omega_{31}^{\prime}-\Omega_{21}^{\prime}\right)\right\}_{\rho_{32}}+\left\{1 / 2\left(\Gamma_{31}+\Gamma_{21}\right)+1\left(\Omega_{51}^{\prime}-\Omega_{21}^{\prime}\right)\right\}_{23}+\gamma_{21} \rho_{22}+\gamma_{3 \rho} \rho_{33}\right\} \text { (V.4) } \\
& -2 \lambda_{21} \varepsilon_{D}(t) \rho_{12}+i \lambda_{12} \varepsilon_{D}(t) \rho_{21}-i \lambda_{31} \varepsilon_{D}(t) \rho_{13}+i \lambda_{13} \varepsilon_{D}^{\sim}(t) \rho_{51} \\
& \dot{\rho}_{12}=-\left\{1 / 2 \Gamma_{31}-1 \Omega_{31}^{\prime}\right\} \rho_{32}-\left\{1 / 2 \Gamma_{31}+\lambda_{31}^{\prime}\right\} \rho_{23}+i \lambda_{21} \varepsilon_{D}(1) \rho_{12}-i \lambda_{12} \varepsilon_{0}{ }^{0}(1) \rho_{21} \text { (V.5) } \\
& \dot{\rho}_{25}=-\left\{1 / 2 \Gamma_{21}+i \Omega_{21}^{\prime}\right\} \rho_{32}-\left\{1 / 2 \Gamma_{21}-i \Omega_{21}^{\prime}\right\} \rho_{25}-\gamma_{31} \rho_{33} \tag{V,G}\\
& +1 \lambda_{31} \varepsilon_{0}(t) \rho_{13}-i \lambda_{15} \varepsilon_{D}(t) \rho_{51} \\
& \dot{\rho}_{12}=\dot{\rho}_{21}^{+} \tag{V.7}\\
& \dot{\rho}_{13}=\dot{\rho}_{31}^{+} \tag{V,8}
\end{align*}
$$

$$
\begin{align*}
& +i \lambda_{-1} \hat{i}_{D}(1) \rho_{12}-i \lambda_{12} \varepsilon_{D}{ }^{\sim}(1) \rho_{11} \tag{V,S}\\
& \dot{\rho}_{2}=\dot{\rho}_{1}^{+} \tag{V,10}
\end{align*}
$$

whoro tho wivy macerlined terms are those catre oncs cue to the fact thet a weak ficla couplos levels 2 and 1 also. fhis aira couplure modifies the Variltorian by eddition of the term:-

$$
\begin{aligned}
& H_{I D}(t)=-\hbar\left\{P_{2}(1) \lambda_{21}\left(1(1)+G_{2}(1) \lambda_{12} P_{12}(t)\right\}\right. \\
& \text { where } \lambda_{n}=\hat{f}_{+1} \hat{e}_{i}
\end{aligned}
$$ and $8-(11)$

$$
\varepsilon_{i} \cdot(t) ; \epsilon \epsilon^{\prime 3 t}
$$

and arread of $w_{b} \sim$ of the distence between the central frequencies of the closeminine levels 2 and 3.

In Aparascvich's yapar

Apanasevich considers the two extrease cesest (1) whon levels. 2 and 3 are far epert and (ii) when they are near. Fe fincs that in case (i) the effect of relocation coupling on the position and wictin of different componenta beconen weak and they are determined ty pamaters of the different transitions. In case (1i) an the other hend, the relaxation courlinc is fown to clance the contours of different components and to displace then. It also loais to a sienificent reitietribution of intensities.

The offecta of the weak field in Chanter VII (1.e. A $=.1, .01$)
carnot really te compared with the effects found by Aranasevich because as already pointed out, we have not considicred the field to have a epread
such that it can couple levels 2 and 1, as well as levels 3 and 1. Also wo usod the same equabions of motion to describe the cituation when A is larce or mall, i.e. we did not essume the equations of notion to be Linearly approximated as in Apanosevich's equations (2), when A was amall, but included the strof ghtmancerlined terma of (V.1) and (II.2) for A mall also. I.F. we have used exact equations of motion, in this reppect. throughout.

The effects of etrone radiation have been concideral by Apenasevich et al. (123,124) elscwhere and they underline tie well-known fact that atronc radiation con lead to eotabliament of a definite coupline between differert levele.

ACHOLPMOTMTS

I should like to acknowledge the encouracerent and mupport of ay ourervisor, Erofessor E.H. Hutten. I an also gaterul to Dr. L. H. Eall of Incluow luivorsity for nuch helpmil advice on tho nethois usod in this thects and also for wany voluailo discuccions. iv tharks are also
 allowing me to conduct part of my reacarch work there. The worl wat surforted by the Ecience Ecsearci Council.

REFERENCES

1. R.H. Lehmberge Phye. Rev. 181, 32 (1969)
2. R.H. Lehaberg, Phys. Rev. 2A, 883 (1970)
3. L.M. Bali and Miss X.B. Eiggins, Fhys. Latt. 34A, 191 (1971)
4. LoH. Bali and Mise RoB. Kiggins, Phys. Lett. 35A, 95 (1971)
S. O.A. Keller and R.T. Robiscoe, Phys. Rev. 188, $82(1969)$
5. P.R. Fontana and D.J. Lynch, Fhys. Rev. 52. 347 (1970)
6. B.E. Mollow and M.M. Miller, Ann. Phye. (N.Y) 52, 464 (1969)
7. V.A. Morozov and P.P. Shorygin, Opt. Spectry. 19. 164 (1965)
8. B.R. Mollow, Phys. Lev. 188, 1969 (1969)
9. S. Barak and S. Yatsiv, Phye. Kev. 3A, 382 (1971)
10. 8. Yatsiv, M. Rokai and S. Barak, IEEE JQE 4, 900 (1968)
1. S. Barak, M. Rokni and S. Yataiv, IEEL JQE 5, 448(1969)
2. M. Rokni and s. Yatsiv, Phys. Latt. 24A, 277 (1967)
3. S. Yatsiv, W.G. Wagner, G.S. Picus and F.J. KcClung, Phys. Rev. Lett. 15, 614 (1965)
4. M. Rakni and S. Yateiv. IEEE JQR 3: 329 (1967)
5. S. Yatsív, M. Rokni and s. Barak, Phya, Rev. Lett. 20, 1282(1968)
6. O.J. Luapkín Jr., IEEE JQE 4, 226(1968)
7. P.P. Sorokin, N.S. Shiran J.R. Lankard, E.C. Hamsond and T.G. Kasake, App. Phys. Lett. 10, 44 (1967)
8. M.E. Koveasyan, N.N. Hadalyan and V.A. Iradyan, JETP Lett. 6. 127 (1967)
9. W. M. Badalyan, V.A. Iradyan and M. X. Moveryan, JETP Lett. 8. 316 (1968)
10. V.A. Aruturyan, H.N. Badalyan, V.A. Iradyan and M.E. Hoveenyan, JKTP 31, 22 (1970)
11. E.E. Aleksandrov, A.M. Bonch-Bruevich, N.N. Kostin and V.A. Khodovoi, JZTP Lett. 3, $53(1966)$
12. A.M. Bonch-Bruevich, N.N. Kostin and V.A. Khodovoi, JETP Lett. 3, 279 (1966)
13. Yu.M. Kiria, 8.G. Rautian, A.E. Semenov and B.M. Chernobrod, JETP Lett. 11, 226(1970)
14. R.I. Sokolovakil, Op. and Spectry. 28, 445(1970)
15. R.I. Sokolovsikif, JETP 32, 438 (1971)
16. E.L. Lewis, MoM. Retbeck and J.M. Vaughen, Phys. Lett. 30A, 50(1969)
17. Yu.M. Rirín, D.P. Kovalev, S.G. Rautian and R.I. Sokolovakif, JETP Lett. 9, 3(1969)
18. V.A. Colubev, Yu.M. Kirin, D.P. Kovalev, S.G. Kautian and E.M. Chernobrod JETP 32.3, 360(1971)
19. A.H. Borch-Bruevict, N.N. Kostin, V.A. Khodovoi and U.V. Xhromov, JETP 29, 82(1969)
20. N. Tan-no, K. Kan-no, K. Yokoto and E. Inaba, IEEE JQE 9. 432 (1973)
21. U. Zernik, Phys. Rev. 132, 320(1963)
22. S.G. Rautian and I.I. Sobel'man, JETP 14, 328 (1962)
23. P.A. Apanasevich, B.D. Fainberg and BoA. Kiselev, Op. Spectry. 罵, 117(1973)
24. W.H. Louisell, "Radiation and Noise in Quantur Electronicy" McGraw Mlll (1964)
25. S.M. Kay and A. Maitland, "Quantum Opticss Proceedings of the 10th. Session of the Scoteish Universities Sumper School in Fhysics, 1969. A mato Advanced Study Institute" Academic Prese (1970). pages 177-200 (-W.H.Louisell)
26. P.A.M. Dirac, Proc. Roy. Soc. (London) Ser. A. 114: 243(1927)
27. B.I. Bleaney, B. Bleaney, "Electricity \& Magnetism Oxford Clarendon Press 2nd. Edition (1965)
28. G. Stephenson, "Mathematical Ifethods for Science Studants" puhlishad by Longmans (1965) pp.332-333
29. H. Reitler, "The Quantur Theory of Exdiation" Oxford Clarendon Press (1970) 3rd. Edition
30. V.Y. Weisskopf \& E. Wigaer, Z. Physik 63, 54(1930); 65, 18(2930)
31. I. 1. Senitaky, Phys. Kev. 115, 227 (1959): 111, 3(1953)
32. T.von Foerster, Ami.J. Phys. 40, 834 (1972)
33. J.von Neumann. "Cesallschaft der Wissenschaften eu Cótinger Math. Phys. Nachtichen" pp. 245-272(1927). Also P.A.M. Dirac, Proc. Canb. Phil. Soc. 25, 62(1929): 26, 376(1930); 27, 240(1930)
34. J.von Neumana, "Mathematical Youndations of Ouantum Mechanice". Princeton Daiversity Press, Princeton, N.J., (1955)
35. E.A. Coddingcon e N. Levinson, MThery of Ordinary Differential Equationa". (Russ.Trans.) LI L (1958) p.78
36. W. Heitler \&.T. Ma, Proc. Roy. Irish Acad. A52, 109 (1949)
37. R.J. Clauber, Fhys. Rev. 131, 2766(1963)
38. R.J. Glauber, Phys. Rav. 130, 2529(1963)
39. CoDe Witt, A. Blandin \& Cohen-Tannoudj (editors). "Quantun Optics 8 zlectronics Lectures delivered at Lea Houches Lecturas during the 1954 session of the Summer School of Theoretical Phyaics, Untrexaity of Grenoble", publishad by Gordon \& Breach, Science Publishers (1965), pp. 63-185 (-R.J.Glaubar "Optical Coherence a Photon Statistica")
40. H. Lax Phys. Rev. 129, 234 (1963)
M. Lax E.H. Louiscll, IEEE JQE 3: 47 (1967)
J. Fiading, "Mathomatical Hethods of Science Engineeriog" Edward Arnold (Publishers) Ltd. (1963)
41. B.A. Hollow, Phyy. Rev. A5, 1522 (1972)

42. Soli. Autler C. Ci. Townes, Fhys. Rev. 100, 73 (1955)
43. V.M. Kontorovich A.M. Prokhorov, Sov. Phy. JETR 6. 1100(1959)
44. A.\%. Bonch-bruevich \& V.A. Khodovoi, Sov, Piys. - Uap. 10, 637 (1968)
45. T.Ya.Popova, A.K. Yopov, S.G. Kautian \& A.A. Feoktistov, Sov. Phys. JETE 30, 243 (1970)
46. D.E. Klyshko, Sov. Phys. JkTP 28, S22(1963)
47. S. C. Kautian, Feport to all All-Union Symposium on the Physics Of Cas Lasers, Novosibirsk (1969)
48. K. Goappert Mayer, Ann. Pnysik 9. 273 (1931)
49. C.Breit \& Teller, Astrophys. J. 91. 215 (1940)
50. J.Shapiro C. Greit, Phym. Zev. 113, 179 (1959)
51. H.A. Eethe E.E. Ealpeter, "Quantum hechanics of One-s Two-Electron Atoms" (Acadaic Press, Inc., New York, 1957), Sac. 67
52. HoX. Jewstain, Playe. Kev. 167.1 89 (1968)
53. Noz. Niewatein, IEEE J《E (1E-8, 38(1972)
54. 3. Senitzky, G.Gould \& S.Cutlex, Phys. Eev. 130, 1460(1963)
1. V.A.Morozov \& P.P.Shorygin, Opt. Spectry. 20, 115(1966)
2. PoA. Apanasuvich, Tr.Inst.Yiz. i Mat. Aked. Nauk. Belorussk. SER 2. 55 (1957)
3. P.A. Apanasevich, Opt. i Spectroskopiya 5. 99 (1958)
4. V.A. Morozov, Opt. \& Spectry. 22. 526(1967)
5. V.A. Horozov, Opt. \& spectry. 22, 173 (1967)
6. J.von Neumann E. E. Wigner, Phys. 2. 30. 667 (1929)
7. W.E. Lamb. Phys. Rev. 85, 259(1952)
8. V.A. Horozov, Opt. Epactry. 24, 239 (1968)
9. P.A. Apanasevich, Opt. Spectry. 14. 324 (1563)
10. P.A. Apanasevich, Opt. Spectry. 16, 387 (1964)
11. VoA. Borozov, Opt. Spectry. 26. 4 (1969)
```
79. V.d. :orozov, Opt. Spectry. 26, 62(1969)
80. B.R. Yollow, Phys. Rev. A.2, 76(1970)
81. R.f. Lehmberg, Phys. Lett. 33A, 501(1970)
82. B.E. Nollow, Phys. Rev. A.S, 2217 (1972)
83. K. Xarplua & J. Schwinger, Pbys. Rev. 73, }2020\mathrm{ (1948)
84. Z.D. Sharma, Phys. Lect. 43A, 153(1973)
85. 1.R. Senitzky, Phys. Rev. 119, 1807(1960)
80. S.G. Rautian & 1.I. Sobel'man, IEIP 17, 635(1963)
87. C.E. Aotkin, S.G. Rautian & A.A. Feoktistov, J&TP 25, 1112(1967)
88. S.C. Rautien 4 A.A. Feoiktistov, JETP 29.1. 126(1969)
89. W.R. Bennett, Jr., V.P. Chebotsev, I.W.Knutsen, Paper et the 5th.
    International Conference on Electronic & Atomic Collisions,
    Leningrad, July, }196
90. K.H. Cordover, P.A.Zonczyk, & A. Javsn, Phys. Rev, Lett. 18,
    730(1967)
91. J.a. Dodd a.W. Series, Proc. Roy. Soc. (London) t253, 353(1961)
92. C.w. Series, Fiys. Rev. 136,A, 6044(1964)
93. F.D. Colegrove, P.A. Franken, F.R. Lewl: & R.R. Sands, Fhys.
    Rev. Lett. 3.9, 420(1959)
94. P.A. Frauken, Phys. Rev. 121.2, 508(1961)
95. R.K. Wangsness, Phys, Kev. 149.1, 60(1966)
96. W.E. Lamb, Fhys. Rev. 85, 259(1952)
97. C. Breit, Leva. Mod. Pays. 5, S1(1933) particularly pp. 117-125
98. C.R. Stroud Jr., Phys. Rev. A. 3, 1044(1971)
99. L.D. Landau a E.M. Liftshitz, "Electrodynamics of Continuous
    Media" Fergamon Press (1960)
100. J. Flutak, Canad. J. Phys. 41, 12(1963)
101. F.L. Knight L.Allen, Phys. Rov. 7A, 368(1973)
102. G.S. Agarwal, Phys. Rev. 4A, 1778 (1971)
103. D.F. Walls 4 C.W. Cardiner, Phys, Letts. 41A, 121(1972)
```

104. R.Iriedterg, Third Kochester Conference on Coherence 8 Quantum Optics, 1972 (ucpublifhed)
105. P.L. Knight \& L. Allen. Ptys. Lett. 38A. 99(1972)
106. A. Salam, Rhy*. Rev. E2, 217 (1951)
107. D.F. Kalls, to be published
108. S.M.Bergmann, Math. Journ. of Phys. B, 159(1967)
109. H.W.Milonni J.R.Akcrhalt W.A.Smith. Phys. Rev. Lett. 31,958(1973)
110. W.H. Louisell J.H.Marburger, IEEE JQE 3, 348 (1969)
111. T.Sasada, J.Phys.Soc. Japan 35,33(1973)
112. Iritz Haake, 2. Physik (1973)
113. C.S. Chang \& P.Stehla, Fhys. Rev. SA, 1087(1972)
114. P.Rusch. Phys. Rev. 101. 627 (1956)
115. H.Salven, Phys. Rev. 99, 1274 (1955)
116. N. Salwen, Phys. Rev. 101. 621 (1956)
117. D.T. Fegg \& G.W. Scrics, Phys. Rev. YA, 371 (1973)
118. Jon'H. Shirley, Phys. Rev. 138. 979 (1965)
119. C.H.Series, "Proceedings of the International Conference on Optical Puming \& Atomic Line Shape" (Fhysical Institute of the Polish Academy of Sclences, Warsaw, 1968 pp.25-41
120. Lee E. astas, Phys. Rev. 175, 286 (1969)
121. I.S. E.S.SokolnikofE. "higher Mathomatics for Engineers \& Physicfsts" HcGraw Hill (1941)
122. V.A. Morozov, Opt. Spectry. 26.4 (1969)
123. P.A. Apanasavich D.N. Ordobaev, Zh. Priki. Spektrosk. 4. 134 (1966)
124. P.A. Apanasevich A. A. Daniovsiki, Th. Prikl. Spektrosk 11,1004(2969)
125. B.R. Nollow, Phys. Rev. AS. 1522 (1972)

ON MODULATED DECAY IN A TWO-LEVEL QUANTUMSYSTEM

L. M. BALI and Miss R. B. HIGGINS

Department of Physics, Royal Holloway College (University of London)
Englefield Green, Surrey, England
Received 7 December 1971

The radiative decay in a two level system with the excited state coupled by an external perturbation is investigated. The results obtained differ from those of Keller and Robiscoe who claim to have discoverd a new type of modulation factor.

Keller and Robiscoe [1] have in a recent paper carried out Weisskopf-Wigner type calculations for a system of two quantum levels which are simultaneously coupled by a quantized radiation interaction, describing the radiative decay, and by a classical external perturbation. They claim to have discovered a new type of modulation factor. Further, on the basis of their calculations, they speculate that this type of modulation will be found as well for a three level quantum system* in which the same external perturbation which couples the upper two levels also couples the lower two levels. Their theory has been worked out for a time scale very much larger than the atomic life time.

* A detalled analysis of the radiative decay of an atom with two excited states coupled by an external perturbation has recently appeared [2]. The coupling of the lower two levels with the external perturbation is not considered here.

Here we treat essentially the same problem as Keller and Robiscoe by using the transition operator technique as described by Lehmberg [3]. But we obtain solutions for times very much larger than the inverse of the atomic resonance frequency; these times may or may not be very much larger than the atomic life time. The more complete solutions lead to entirely different conclusions about the effect of the external perturbation on the radiative decay of the system. Besides, the method followed enables us to eveluate the expressions for the state populations in a very simple and direct way. Unlike the derivations made by Keller and Robiscoe, classical external perturbation need not necessarily be small compared to the atomic level separation.

We treat a two-level atom coupled to a bath of oscillators. These are assumed to be closely spaced in frequency such that their frequencies ω_{k} overlap the atomic resonance frequency ω_{0}.

The atom is coupled also to a time independent classical external perturbation. Their Hamiltonian may be written as

$$
\begin{align*}
H & =\frac{1}{2} \hbar \omega_{0} A^{+} A+\frac{1}{2} \hbar \sum_{k} \omega_{k} a_{k}^{+} a_{k}+\hbar A^{+} \sum_{k} g_{k} a_{k} \exp \left(\mathrm{i} \theta_{k}\right) \\
& +\hbar \lambda A^{+} \exp (-1 \phi)+\text { h.c. } \tag{1}
\end{align*}
$$

where g_{k} and λ are c-number coupling parameters, θ_{k} and ϕ denote arbítrary phases, and A^{+}, A are the atomic and a_{k}^{+}, a_{k} are the radiation (raising and lowering) operators.

Deriving Heisenberg equations of motion for $A(t), Q(t)=A^{+}(t) A(t)$ and $a_{k}(t)$ using eq. (1) and the relations $\left[A, A^{+}\right]_{+}=1,\left[a_{k}, a_{m}^{+}\right]=\delta_{k m}$, we follow a procedure identical to that which led from equations (2.6-2.11) to equation (2.19) in ref. [3], and get
$\dot{A}(t)=-\left(\mathrm{i} \omega+\frac{1}{2} \gamma\right) A(t)+[2 Q(t)-1] B(t)$,
$\dot{Q}(t)=-\frac{1}{2} \gamma Q(t)-A^{+}(t) B(t)+$ h.c.,
where $B(t)=\mathrm{i} \sum_{k} g_{k} a_{k}(0) \exp \left[\mathrm{i}\left(\theta_{k}-\omega_{k} t\right)\right]+\mathrm{i} \lambda \exp (-\mathrm{i} \phi)$, $\omega=\omega_{\mathrm{o}}-\Omega, \Omega$ and γ denote the familiar frequency shift and the decay constant, respectively. We may note that these resilts are valid for $t \gg \omega_{0}^{-1}$.

Let us now write $P(t)=\operatorname{Tr}[\rho(t) Q]$, and $\sigma(t)=$ $\operatorname{Tr}[\rho(t) A]$, where ρ is the full density operator for the joint system of bath oscillators and atom. Here, $P(t)$ is the probability of finding the atom in its excited state at time t. It is easily seen that for no radiation present initially, eqs. (2) reduce to coupled linear differential equations for $P(t), \sigma(t)$ and $\sigma^{*}(t)$. These equations can be solved exactly. Their solutions for $P(0)=1$, $\sigma(0)=0$ yield

$$
\begin{align*}
P(t) & =\mu+(1-3 \mu) \exp [-\gamma t(1-2 \mu)] \\
+ & 2 \mu \cos (\omega t+\beta) \exp \left[-\frac{1}{2} \gamma t(1+2 \mu)\right], \tag{3}
\end{align*}
$$

where $\mu=|\lambda|^{2} / \omega^{2}$ and $\beta=2 \gamma / \omega$. Note that eq. (3) does not involve arbitrary phases θ_{k} and ϕ. In writing the expression for $P(t)$ given above μ and β have been treated as small compared to unity and their powers higher than the first have been neglected.

We may check that eq. (3) gives for $\lambda \rightarrow 0$ the exponential decay solution and for $\gamma \rightarrow 0$ the quantum oscillation solution as it should [1].

The expression (3) differs from eq. (43) of ref. [1] in describing two important features of the decaying process: (i) For $\gamma t \gg 1$, eq. (3) gives a steady state solution $P(t)=\mu$ which is in contrast to the quantum oscillation solution described in fig. 3 of ref. [1]. (ii) The third term in eq. (3) decays at nearly half the rate for the second term. This is due to the mixing of the diagonal (P) and the off-diagonal (σ) matrix elements caused by coupling with the external .perturbation. It is easily seen that $\sigma(t)$ decays at half the rate for $P(l)$ when there is no external perturbation present. Similar terms do not occur in eq. (43) [1].

Finally, it is worth remarking that the characteristic features of the decaying process described by eq. (3) and noted in (i) and (ii) are similar to those derived for the three level. problem by Fontana and Lynch *. . .

We are very grateful to Professor E. H. Hutten for help and encouragement, and to the Science Research Council for financial support.

* eg. cf. the expression ($1-P(t)$) with eq. 24) of ref. [2].

References

[1] O. A. Keller and R. T. Robiscoe, Phys. Rev. 188 (1969) 82.
[2] P. R. Fontana and D. J. Lynch, Phys. Rev. A2 (1970) 347.
[3] R. H. Lehmberg, Phys. Rev. 181 (1969) 32.

ON RADIATIVE DECAY OF AN ATOM WITH TWO CLOSE-LYING EXCITED STATES
L. M. BALI and Miss R. B. HIGGINS
Department of Physics, Royal Hollow'ay College University of London, Englefield Green, Surrey, UK

The line shape of spontaneous emission of an atom with closely spaced energy levels is determined using transition operator techniques.

Mollow and Miller [1] have shown in detail how the effect of spontaneous emission of an atom can be described by considering the coupling of the atom to a "bath" of harmonic oscillators representing the modes of the electromagnetic field *. They discuss the case of a two-level atom. Their method of solution is based on a Markoff approximation. Assuming the coupling between the atom and the bath to be sufficiently weak they consider its effect up to second order in perturbation theory. Lehmberg [3] has shown that these approximations are unnecessary for obtaining the required equations of motion. His derivations use an approximation which may be taken to mean that no appreciable secular change oc curs in the atomic states during times of the order of an atomic period. The equations of motion for transition operators derived by him pass in to the usual ones for reduced density matrix operators when initial states are specified. In this paper we use Lehmberg's method to calculate the radiation from overlapping energy levels by considering the simplest case of spontaneous emission from a three level atom.

We take an atom (iying at the origin of coordinates) which has two excited states $\left|j^{\prime \prime}\right\rangle$ and $\left.\left.\right|^{\prime}\right\rangle$) coupled to a ground state $|i\rangle$ by a quantized multimode electromagnetic field. We can write the Hamiltonian, in the dipole approximation, when direct transitions between $|j "\rangle$ and $|j\rangle$ are neglected, as [3]
$H=\hbar \sum_{\alpha=i, j} \epsilon_{\alpha} P_{\alpha, \alpha}+\hbar \sum_{q} \omega_{q} a_{q}^{\dagger} a_{q}-\hbar \sum_{q, j} g_{j q}\left(P_{j, i} a_{q}+a_{q}^{\dagger} P_{i, j}\right)$
where $P_{\alpha, \beta}=\left|\alpha X_{\beta}\right|$ is the atomic transition operator ($P_{\alpha, \beta}^{\dagger}=P_{\beta, \alpha}$), and a_{q} and a_{q}^{\dagger} are the usual photon (annihilation and creation) operators. We shall denote the energy separation between states $|j "\rangle$ and $|i\rangle,\left|j^{\prime}\right\rangle$ and $|i\rangle,\left|j^{\prime \prime}\right\rangle$ and $\left|j^{\prime}\right\rangle$ by $\epsilon_{j "}-\epsilon_{i} \equiv \omega_{j "}, \epsilon_{j^{\prime}}-\epsilon_{i} \equiv \omega_{j}$, , and $\epsilon_{j "}-\epsilon_{j^{\prime}} \equiv \omega^{\prime}=\omega_{j "}-\omega_{j^{\prime}}$, respectively. In writing (1) we have omitted high frequency terms like $P_{i, j} a_{q}$ and $a_{q}^{\dagger} P_{j, i}$. Inclusion of such terms results mainly in modifying the frequency shifts in which we are not interested here. The coupling constants $g_{j q}$ are given by $g_{j q}=K_{q}\left(\boldsymbol{e}_{q} \cdot \boldsymbol{p}_{j}\right), K_{q}=\left(2 \pi \omega_{q} / \hbar V\right)^{1 / 2}$, where $\left.\boldsymbol{p}_{j}=\langle j| \boldsymbol{e x} \mid i\right)$ are the dipole matrix elements, e_{q} is the unit polarization vector and V is the normalization volume.

The Hamiltonian (1) gives the following Heisenberg equations of motion
$\dot{a}_{q}=-1 \omega_{q} a_{q}+1 \sum_{j} g_{j q} P_{i, j}$,
$\dot{P}_{i, j^{\prime \prime}}=-\mathrm{i} \dot{\omega}_{j^{\prime \prime}} P_{i, j^{\prime \prime}}-1 P_{j^{\prime}, j "} \sum_{q} g_{j^{\prime} q} a_{q}-\mathrm{i}\left(P_{j^{\prime \prime}, j^{\prime \prime}}-P_{i, i}\right) \sum_{q} g_{j " q} a_{q}$.
Equation (2a) has the formal solution
$a_{q}(t)=\exp \left(-\mathrm{i} \omega_{q} t\right) a_{q}(0)+1 \sum_{j} g_{j q} \int_{0}^{t} \mathrm{~d} t^{i} \exp \left\{-\mathrm{i} \omega_{q}\left(t-t^{\prime}\right)\right\} P_{i, j}\left(t^{\prime}\right)$.

* Radiation damping model described in ref. [1] has also been used by Mollow [2] to obtain power spectrum of light scattered by a two-level atom driven near resonance by a monochromatic classical electric field.

Using eq. (2b) in (3a) and following the arguments put forward by Lehmberg for carrying out the summations and integrations, we obtain after neglecting frequency shifts:
$P_{i, j "}(t)=-\sigma_{j^{\prime \prime}} P_{i, j^{\prime \prime}}(t)-\frac{1}{2} \Gamma_{j^{\prime}} P_{i, j^{\prime}}(t)-1 \sum_{q}\left[P_{j^{\prime}, j^{\prime \prime}}(t) g_{j^{\prime} q^{\prime}}+\left\{P_{j^{\prime \prime}, j^{\prime \prime}}(t)-P_{i, i}(t)\right\} g_{j " q}\right] a_{q^{\prime}}(0) \exp \left(-\mathrm{i} \omega_{q} t\right)$,
where $\sigma_{j}=\frac{1}{2} \gamma_{j}+i \omega_{j}, \quad \gamma_{j}=\left(4 p_{j}^{2} \omega_{j}^{3} / 3 \hbar C^{3}\right)$ and $\Gamma_{j}=\left(4 \boldsymbol{p}_{j} \boldsymbol{p}_{j} \omega_{j}^{3} / 3 \hbar C^{3}\right)$.
Equations of motion for $P_{i, j}(t)$ corresponding to those given by eq. (3) can be obtained by interchanging the indices $j^{\prime \prime}$ and j^{\prime}. It may be emphasized that in deriving Γ_{j} we have integrated over those frequencies which are common to photon transitions between levels $j^{\prime \prime}$ to i and i to j ' or vice versa. If levels $j^{\prime \prime}$ and j^{\prime} are far apart these cross-terms, and hence Γ_{j}, can be neglected.

If equations of motion for $P_{i, j}$ (eq. (3b)) are multiplied on the right by the vacuum state $|0\rangle$ for all q photons they reduce to two coupled linear differential equations. Their solution for the case when the atom is initially in the state $\left|j^{\prime \prime}\right\rangle$ (with no radiation present) is given by
$\left.P_{i, j}{ }^{\prime \prime} \mid 0, j^{\prime \prime}\right)=(1 / 2 m)\left[\left(m+\sigma_{j^{\prime \prime}}-\sigma_{j^{\prime}}\right) \exp \left(-s_{+} t\right)+\left(m-\sigma_{j^{\prime \prime}}+\sigma_{j^{\prime}}\right) \exp \left(-s_{-} t\right)\right]|0, i\rangle$,
$\left.P_{i, j} \mid 0 . j^{\prime \prime}\right)=\left(\Gamma_{j^{\prime \prime}} / 2 m\right)\left(\exp \left(-s_{+} t\right)-\exp \left(-s_{-} t\right)|0, i\rangle\right.$
where $s_{ \pm}=\frac{1}{2}\left(\sigma_{j^{n}}+\sigma_{j} \pm m\right), \quad m=\left[\left(\sigma_{j "}-\sigma_{j^{\prime}}\right)^{2}+\Gamma_{j "} \Gamma_{j^{\prime}}\right]^{1 / 2}$.
We can now evaluate $b_{q} \equiv a_{q}\left(t \gg \gamma^{-1}\right)\left|0, j^{\prime \prime}\right\rangle$ at the place of observation by using eq. (4) in (2b). If we put $g_{j " q}=g_{j} q=g_{q}, \quad \gamma_{j}=\Gamma_{j}=\gamma$, the line shape of spontaneous emission of the atom initially in state $|j "\rangle$ is given by
$\left|b_{q}\right|^{2}=\frac{4\left|g_{q}\right|^{2}\left(\omega_{j^{\prime}}-\omega_{q}\right)^{2}}{4\left(\omega_{j^{\prime \prime}}-\omega_{q}\right)^{2}\left(\omega_{j},-\omega_{q}\right)^{2}+\gamma^{2}\left(\omega_{j^{\prime \prime}}+\omega_{j^{\prime}}-2 \omega_{q}\right)^{2}}$
We see that eq. (5) is the same as that derived by Morozov and Shorygin [4] using the Heitler-Ma method. The proximity of level j^{\prime} to that of $j^{\prime \prime}$ causes the line shape of the atom which is initially in level $j "$ to change over from the Lorentzian to that given above. It may also be noted that for the simple case considered here the spectral profile of the atomic decay, which is essentially the Fourier-transform of a two-time atomic correlation function, has been obtained without the use of the fluctuationregression theorem. Besides, the Markoff approximation has not been used and the calculations are not limited to any specific order in coupling constants. The method of evaluation for the effect of overlapping given here should prove useful in describing situations where the calculations based on perturbation theory become invalid, for example, in the presence of a very intense external radiation field.
' We are very grateful to Professor E. H. Hutten for help and encouragement, and to the Science Research Council for financial support.

References

[1] B. R. Mollow and M. M. Miller, Ann. Phys. (N.Y.) 52 (1969) 464.
[2] B. R. Mollow, Phys. Rev. 188 (1969) 1969.
[3] R, H. Lehmberg, Phys. Rev. 181 (1969) 32; 2 A (1970) 883.
[4] V.A. Morozov and P.P. Shorygin, Opt. Spectry. 19 (1965) 164.

[^0]: WIn fact our results for the caso of an inderiedinte overlarping level are cimilar to those for the 2 -leval atcas off resomance and es a decreases ve cet efmilar resulta to thoms mhon in ref. 75 for tha case were the atom foem increasingly off-rebonance.

