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ABSTRACT

Several calculations have been carried out using the transition 
operator technique.

The radiative decay in a two-level quantum system with excited 
state coupled by an external perturbation has been investigated and an 
expression obtained for P(t), the probability of finding the atom in 
its excited state at time t. This is seen to possess a steady value 
for yt »  1 and a third terra which decays at nearly half the rate of 
its second.

Next radiative decay of an atom with two close-lying excited states 
is considered and |b^|^, the spectral density for spontaneous emission 
from the uppermost level, calculated. This shows that the proximity of 
the upper two levels makes the line-shape non-Lorentzian.

Heisenberg equations of motion were then derived for the transitions 
operators of an t-level atom undergoing radiative decay, the possibility 
of overlapping pairs of levels being ignored. These master equations 
were then used to obtain the spectral profiles of certain atomic lines, 
employing the so-far avoided Markoff approximation.

First the spectral density of the scattered radiation was found for 
transitions between levels SPgyg and 4S (ground state), and 6S and SPg/g# 
in the potassium atom when driving fields of arbitrary strength coupled 
levels 6S and and SPgyg and 4S. Triple-peaked profiles
were obtained.

Spectral profiles for emission were then derived for transitions 
between levels 3P and IS^yg (ground state), and 3P and In the
hydrogen atom when a driving field of arbitrary strength coupled levels 
2S^y2 and 3P. The former profile was double the latter quadruple-peaked.

Lastly master equations were derived for an atom, with two excited 
levels undergoing radiative decay, when allowance was made for the
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possibility of their overlapping. A driving field of arbitrary 
magnitude coupled the uppermost and ground states. The spectrum for 
the scattered light resulting from transitions between the uppermost 
and ground state was found and graphs computed for various field 
strengths and separations of the excited states.
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CHAPTER I 

INTRODUCTION

A. Summary
Several calculations coocerrtuv̂  radiative decay have been carried 

out. They involve use of the transition operator technique described 
by Lehmberg in references [l] and [2].

In Section B of the present chapter a review is given of the 
background to the calculations. This review explains the terminology 
and the derivations of certain equations used in the following chapters 
and is given so that it may be referred back to in the subsequent 
chapters and detailed explanations need not be given in the body of the 
text. It is not an original part of the thesis.

Chapter VIII complements Chapter I Section B in giving a discussion 
of the various approximations used in the thesis and their validity. It 
also contains reasons for choosing our method of approach and points out 
the limitations of the Lehmberg method, on which the major part of the 
calculations is based.

The first two calculations described in Chapters II and III, are 
outlined in the attached papers published jointly with Dr. L« M, Bali

M .  In Chapter II, [3], radiative decay in a two-level system with 
excited state coupled by an external perturbation has been considered.
The quantum system is simultaneously coupled by a quantised radiation 
interaction, describing the decay, and by a classical external perturbation. 
As in Lehmberg's papers [Î], [2] the approximation used is that no 
appreciable secular change occurs in the atomic states during the times 
of the order of an atomic period. The solutions are valid for times very 
much greater than the reciprocal of the atomic resonance frequency and
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these times may or may not be very much greater than the atomic life-time. 
The problem is essentially the same as that of Keller and Robiscoe [sj 
but their theory has been worked out for a time scale very much greater 
than the atomic life-time, a restriction we have avoided. They also 
assume the classical external perturbation to be less than the atomic 
level separation. We do not necessarily assume this but we do assume 
v(* |l|*/w*) and 8(* 2y/«) «  1 and neglect powers higher than their first 
order, where X is a c-number coupling parameter, y is the decay constant 
and w * *0 - 0, where is the level separation and Ü the frequency 
shift* Our more complete solutions lead to entirely different 
conclusions from those of Keller and Robiscoe about the effect of the 
external perturbation on the radiative decay of the system, our most 
important conclusion being that the equations result in the non-appearance 
of the new type of modulation factor discovered by Keller and Robiscoe (Y]. 
Our solutions have the advantage of enabling evaluation of expressions for 
the state populations to be made in a very simple and direct way and they 
do lead to conclusions similar to those derived, for the three-level 
problem, by Fontana and Lynch [6].

In Chapter III, [4], the radiative decay of an atom with two close- 
lying excited states is considered and the effects on the line shape of 
spontaneous emission of the atom as a result of the presence of this 
second excited state is calculated on the assumption no direct transitions 
can occur between the two close-lying states. Hollow and M iller- {Y| have 
shown, in detail, how the effect of spontaneous emission of an atom can be 
described by considering coupling of the atom to a "bath" of harmonic 
oscillators representing modes of the electromagnetic field. They 
consider a two-level atom. Lehmberg's method [l], £2] is an improvement 
on this as it does not require the use of the Markoff approximation or
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that the coupling between the atom and the bath be sufficiently weak 
to consider its effect up to second order of the coupling constants.
The resulting equation is the same as that of Morozov and Shorygin [s] , 
derived using the Heitler-Ma method, when all decay rates are assumed to 
be equal# It shows that inclusion of the exchange of virtual photons 
between the excited levels causes a change in the emission line contours 
which becomes increasingly noticeable when their separation, A »  the 
decay constants y. This change involves a shifting of the peak intensity 
to left or right depending on whether the atom is initially in the 
uppermost or next to uppermost state respectively.

The spectral profile for the atomic decay (essentially the Fourier 
transform of a two-time correlation function) is obtained without use of 
the fluctuâtion-regression theorem. This method is therefore useful for 
describing situations where calculations based on perturbation theory 
become invalid; e.g. in the presence of a very intense radiation field 
such as that of a laser.

In Chapter IV we consider the problem of a multi-level atom 
undergoing radiative relaxation. Heisenberg equations of motion are 
derived for the transition operators using, as previously, a Hamiltonian 
obtained under both dipole and rotating wave approximations for an atom 
at the origin of co-ordinates. Contrary to Lehmberg [ J i ] ,  we do not 
restrict ourselves to specific regions of the spectrum, but rather 
consider the broad spectrum limit. The possibility of overlapping pairs 
of levels is Ignored in order to simplify the equations, although in 
Chapter VII this is allowed for in the relatively simple case of the 
three-level atom. The master equations so derived are used to obtain a
general expression for the 2-time atomic correlation function, employing 
the so-far-avoided Markoff approximation in the manner of Hollow's
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paper ]V|. This general expression is used in Chapters V and VI to 
calculate the spectral density of the scattered light for various 
transitions in potassLum and hydrogen atoms. The use of the Markoff 
approximation, instead of Lehmberg** approach is necessary at this stage 
since the equations otherwise require the introduction of various tedious 
complications for their solution. This is due to the fact that 
multiplying the transition operator equations, modified by the addition 
of driving terms, on the right by vacuum state 10 > for all q photons does 
not reduce the number of equations and lead to easy solution as in |2|.
Our calculations nevertheless still have the advantage over Hollow's of 
not being restricted to second order in the coupling constants.

In Chapter V the spectral density of the scattered radiation is 
found for transitions between (a) levels and 4S (ground state) and
between (b) levels 6S and SPgyg in the potassium atom, when strong driving 
fields couple levels 6S and ^Pgyg* **̂ 3/2 4S. In both cases (a) and
(b) triple-peaked spectral profiles are obtained. The model used 
consists of 10 of the levels between level 4S (ground state) and level 6S; 
i.e. ignoring the degeneracy of levels 4S, 5S, 4D and 6S. The initial 
time t' is kept arbitrary in both cases so that we can consider the 
overall effect of several multiphoton processes and not just single 
processes of emission or absorption.

Next, in Chapter VI, we apply the general equations to the specific 
case of emission spectra in the hydrogen atom when strong radiation 
couples levels and 3P. The two cases considered are the spectral
densities of the emitted light for transitions from (a) state 3P to IS^yg 
(ground state) and from (b) state 3P to state SS^yg when the atom is 
naturally initially In state 3P. Five of the levels between IS^yg 
(ground state) and 3P are considered, namely levels IS^yg, ^^1/2*
2Pgyg and 3P. In case (a) a double-peaked and in (b) a 4-peaked profile 
was obtained.
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The results of the calculations for the potassium atom are 
compared with numerous experimental papers on potassium^Jio] to [3Î], 
bearing in mind that our calculations refer to the overall effect of 
all the Individual types of transitions mentioned in these papers. In 
ref. fll]* the origin of the 3 lines obtained for transitions (b) is 
said to be a 2- or 3-photon processes. In %2^, it is stated that 
"the observed effects are connected with the splitting of the atomic 
levels in the external field" as described by the wave function In their 
expression (1) which shows the splitting of the non-degenerate states of 
the atom, namely states and GS^yg, due to the external field. In
£2^  also they stress "the field origin of absorption line splitting at 
the 4S^y2 - >5Pgy2 1/2 transition". They also point out in [2^  that 
when the emission intensity is high enough, distinction between processes 
involving different numbers of photons becomes groundless. In other 
words, the perturbation theory approach becomes Invalid, as stated earlier, 
In particular, they use the structure of the ^S^yg “ ^^3/2 * 4044 K)
absorption line, as an example, to show that 1 -, 2 - and 3-photon 
processes are "mixed-up" in an intense resonance field so that under these 
conditions it is more relevant to talk about "a SINGLE process of violet 
absorption in which the line structure is interpretated as a result of 
FIELD SPLITTING of atomic levels". They point out that "such an approach 
is in full accord with the spirit of non-linear spectroscopy" and they 
regard their data "as an experimental verification of one of its main 
theses". In reference [29j^equation (A.8.) for the atomic absorption 
spectrum also contains a set of equidistant TRIPLETS. In other papers 
the theoretical stress is on the calculation of cross-sections and 
population densities.

The results obtained for the hydrogen atom are compared with those 
of Zemik [szj and Rautian and Sobel'man £33]. In Zemik's paper, he
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neglects spontaneous decay from level 3P to 28 when using the strong 
signal theory whereas we haven't neglected it entirely. However our 
results cannot truly be compared with his, since he considers the 
2-photon transition to IS^yg through the intermediate level 3P,
whereas we consider only the SINGLE photon processes 3P to IS^yg and 3P 
to BS^yg. We could only consider such SINGLE photon processes since 
we restricted the initial time to t* « 0. It was necessary to consider 
the processes as starting at level 3P and that the atom had been excited 
to that level by the field long ago. Had we not done this but assumed 
instead the atom to be initially in level SS^yg, the spectral densities 
for emission would have been identically zero so that the only alternative 
would be to consider t* to be arbitrary as in the previous chapter. In 
the paper of Rautian and Sobel'man, a hypothetical atomic system is 
considered where Ygg «  Yj (1* their notation), but we do not assume this, 
though for weak fields, we assume Y53 to be small, i.e. in

*̂ 53 ^51 ~ 732

their notation Ygg small, i.e. Ygg < Yg^ Yg since Zemik
Y32 ^ Y31 - Yg

says that spontaneous decay from 3 + 2 is negligible, i.e. »  Yj*
We do not specifically assume y^^ «  y^. Our calculation Is an 
improvement on these two papers in that it removes these two restrictions 
but all the same it unfortunately only covers single photon emission 
processes. We point out how we could modify our calculations to take 
into account the 2-photon process at the end of the chapter.

In the following chapter. Chapter VII, we derive equations of 
motion for a general 3-level atom allowing for the possibility of over
lapping of the upper two levels and from these derive an expression for 
the power spectrum of the scattered light for transitions between the 
uppermost level, 3, and lowermost level, 1, when a strong driving field, 
of arbitrary magnitude, couples levels 3 and 1. Curves for the spectral
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profiles GX& ccfrpmted for various eeparatics'is of levels 3 and 2 and 
for various na^Kitudes of the driving fiĉ ld for tlie case of resonance 
\Aim all decay rates have equal ca^itude, as in Chapter III, i*e*
^31 ~ ^21 ~ ^31 ~  ^21 ^ clsilar model has been used l̂ y
Aper:aeeviüîi et al# [34] i^iere he considers levels 3 and 2 to bo always 
dccenerate# In eon tract to use, ho allows trar^sitions to occur between 
levels 3 0):d 2# II© also limits himself to consideraticgi of a week field 
so timt ho can uso a linear approxiimtim to obtain two equations, i#e# 
equation:s (2)# On tlio otiier hand, we have performed a more emct treatm^t 
involving 9 coupled equatiws, which is pot limited to wealc fields#

The cœspiited spectral profiles ^ow tliat the inclusion of **cross- 
type" decay constants, and F2 1» substantially effects the spectml 
profiles for tli© scattered radiation partieularly for values of lÔ  around 

1/2G, 1*0, wî-ien the separation of the excited levels is of the 
order of (®Qp# %l^^Cl/^ this region the profile no longer
corresponds to t!mt obtained by Hollow in ref# 9# i,o# a central peak 
with 2 siie-pesks of equal and lower irlmisity Byvmotrioslly spaced about 
it# For values > Y , when < 1/2G the III peak begins to doîdmt®
over the HH ore, until at 3/Zr tlier© are no mlsBicm p^is at all# Wk@o 

> 1/2S the IH peck doorcases and the HH one increases until the 
Hollow-type situation la again obtained# This phencmcmon requires 
exporimontal verification# Caloulatims taking into accoiSit the%ros@- 
t5*pe" decay i%tes do not appear to have boon carried out except for 
I'qrJ; fields, viz# ref# 34#

Finally we j^ould lil:e to further ^rphosiso tMt th® motîiods used 
here are preferable to existing motliods, particularly tit® perturbation 
approach, especially wlion dealing vitli problama involving ctrorr incident 
radiation#
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B. Background ̂ ^
The calculations set out In the following chapters involve the use 

of the non-relatlvistic Dirac formulation of quantum mechanics. Before 
we commence these calculations it would seem fit to explain certain terms 
which are frequently used.

l.B.l. Herritian operators
Firstly, most of the operators we shall use, with the notable 

exception of the boson operators, are hermitian. i.e. they are real linear 
operators representing dynamical variables which give real numbers when 
measured. They possess the property of self adjointneed so that if L 
is a hermitian operator

L = L+ (l.B.l)

also
<p|L|b> = <b|L|p>* (l.B.2)

for any state vectors lb> and lp>. There are two important theorems for
all hermitian operators. One being that the eigenvalues of linear

*hermitian operators are REAL (i » 1), and the other being that two 
eigenvectors of a linear hermitian operator L belonging to different
eigenvalues are orthogonal (<i'll"> a 6^, The latter theorem is an
expression of the orthonormality relation for eigenvectors and applies to 
the eigenvalue problem in which the norm of vectors, i.e. <&*li*> is 
finite, viz.

<&*!&"> a 6^ where 6^  ̂is the Kronecka. (l.B.3)
delta defined by 
6, . a yi if 1 a j 

[O if i f j

The completeness or closure relation for discrete, as opposed to 
continuous, eigenvalues of an observable is



“16—

Z lixjll * I where I is the identity operator. (1.B.4) 
i

These hermitian operators having such a complete set of eigenvectors 
{li>} are called observables. The symbol {li>} signifies that the set 
of vectors is complete and also that the set may be regarded as a 
particular set of orthogonal unit basis vectors in the sense of

<A'U"> a 6*, (l.B.5)

l.B.2, Matrices
Ket and bra vectors, viz. 1> and <1 respectively, and linear 

operators in a space have a matrix representation. The trace of a 
square finite matrix A is defined as the sum of the diagonal elements, 
viz.

Tr(A) « 2 A., (l.B.6)1 XI

where Tr is the abbreviation for trace and A^^ is the i tH. diagonal 
element. The trace of a product of finite square matrices is invariant 
under cyclic permutations, i.e.,

Tr(ABC) s Tr(BCA) * Tr(CAB) (1.B.7)

l.B.3. Representations
There are three pictures of quantum mechanics: the SchrSdinger

picture, the Heisenberg picture (which we shall use), and the interaction
picture.

In the Schrodinger picture
(1) observables (p, q and H), which are hermitian operators, are time 

independent
(2) eigenvectors of operators p^, q^ and H^ are stationary (time
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Independent) vectors lp*>a, lq*>s, lE>s and may be taken as basis 
vectors to represent operators and state vectors, i.e. basis 
vectors are stationary 

(3) the dynamical state vector 10g(t)>i moves.

In the Heisenberg picture 
Cl) operators are time-dependent A^(t)
(2) basis vectors move
(3) state vectors remain stationary l<>ĵ (tQ)>.

In the interaction picture
(1) operators are time-dependent A^Ct)
(2) basis vectors move
(3) state vectors move l^j(t)>, this marking its sole difference from

the Heisenberg picture.

All these descriptions of quantum mechanics are physically 
equivalent and so any one can be used depending on which is convenient 
for a particular situation.

The state vectors in the Schrodinger and Heisenberg pictures are 
related, by definition, by

l*g(t)> a U($ ̂ Q)l*H(to)> (l.B.8)

where subscript H designates Heisenberg picture and S, Schrodinger picture.
The average value of an operator Ag, when it is known with ceotainty 

that system is in state *, is

<A> a (t)lA_l*c(t)> in the Schrodinger
^ ^ ^ picture

* <*u(tm)lA-(t)l*»(tn)> which is the average 
^ ° ^ ° value of A at time t

in the Heisenberg 
picture J

(l.B.9a)
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since we define the operator in the Heisenberg picture by

A^(t) » U*(t,to)AgU(t,tq) (l.B.9b)

thus making the average the same in both pictures. The latter 
transformation is called a similarity transformation when U* a U 
i.e. when U is unitary, and is valid even if Ag has an explicit time 
dependence•

The form of U, the transformation operator, depends on whether 
the system is conservative or non-conservative, i.e. whether the 
Hamiltonian,H, is time independent H X H(t) (conservative system) or 
time dependent H « H(t) (non-conservative system). We shall be 
considering non-conservative systems.

For a conservative system

UCt.tg) a exp (I.B.IO)

and for a non-conservative system

U(t,t.) . 1 - ♦ ... (l.B.U)

since Ü is unitary

U*U * UU* * I. (1.B.12)

The équation of motion for an observable A in the Heisenberg picture 
can be obtained by differentiating both sides of the equation for the 
transformation law with respect lot. It is necessary to also use the 
equation

iH ̂  a HU (I.E.13)
dt
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and Its adjoint

-IH ̂  a U^H (1.B.14)
dt

and (1.B.12). 
Thus,

th » |a„,hJ1 + 115 (1.B.15)
dt LH Ty »t

and if Ag has no explicit time dependence

This is the formula we shall be using to derive Heisenberg equations of 
motion for non-conservative systems.

l.B.4. Boson operators
We shall now consider the properties and nature of boson operators. 

First we recall that particles in nature having the property that any 
number may occupy the same dynamical states are called BOSONS. Examples 
of such particles are light quanta (photons), elastic vibrations in 
crystals (phonons), a-particles, etc. We shall be interested in photons 
and phonons only. Boson creation and annihilation operators, a^ and a 
respectively, obey the commutation relation

[a.afl « 1 (1.B.17)

a* la also known as the raising operator since when It operates on 
oscillator state ln>, containing n quanta, it generates state In + 1>, 
containing n ♦ 1 quanta, i.e.



~4)r

a*ln> « /n ♦ 1 In ♦ 1>. (1.B.18)

Similarly a is known as the lowering operator since

aln> a Æ  In - 1> where n is an integer >0, (1.B.19)

and alO> a 0 (1.B.20)

N s a^a is known as the number operator since

Nln> = nln> where n a 0, 1, (1.B.21)

n being the number of quanta in the wave.
Other commutation relations can be derived from eq.

(a, a"*"©] s a (l.B.22a)

[a*, a'*‘a3 a -a’*' (l.B.22b)

Although operators a and a^ are non-heimitian the Heisenberg equations of 
motion still apply, viz.

» TS- (l.B.23a)

" " &  (X.B.23b)dt

For a single boson, of frequency no, we shall see later that the 
Hamiltonian is

H s W a ^ a  + V 2) (1.B.24)

where the zero point energy can be ignored.
Thus for H given in eq. (1.B.24)

da„
d T  ' (I.B.25)
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t
dt a Iwajj (1.B.26)

and the solutions are

ajj(t) « U*(t,0)agü(t,0) = age"^“* (l.B.27a)

a^(t) » ü*(t,0)agU(t,0) m a*.^^ (l.B.27b)

where U(t,0) = U*(t,0) = e^“®*“

The State ln> can be generated by using eq, (1.B.18) and applying the 
operator a to the ground or vacuum state 10> n times. Hence

ln> =  ---- 10) (1.B.28)
Æ!

From the general theory, the orthonormality relations are

<n*ln"> s (1.B.29)

i.e. boson eigenstates are orthogonal 

and the completeness relation is

2 Inxnl » I (1.D.30)
n»0

i.e. boson eigenstates are complete,

Since the norm of these vectors is finite, they form a complete set of 
basis vectors for a Hilbert space.

The energy eigenvalues are
■ Ku(n ♦ Vj) (1.E.31)

where n » 0, 1, 2, ...,«.



-22-

Classically any positive value of energy may be obtained when energy 
is measured but quantum mechanically only discrete values may be 
obtained. In the limit of large n (n is called a quantum number) the 
discrete character of eq. (1.B.31) is not noticeable and the quantum 
result becomes the classical result. Since 5 « 10 erg. sec., 
is small up to optical frequencies where quantum features become 
Important. Since we will be working in the optical region it is 
obvious that a quantum approach is vital.

l.B.5. Normal ordering (see also Chapter VIII, Section 7)
In order to enable solution of problems involving non-conservative 

systems, i.e. where K s H(t), without use of cumbersome iterated solution, 
a powerful operator technique is employed. This is known as normal 
ordering. In any simple product term of creation and annihilation 
operators, the product is a normal one if all annihilation operators 
appear to the right of all creation operators, e.g. if I and m are 
integers

a**a^ is a normal product (l.B.32a)

a®a^^ is not. (l.B.32b)

l.B.6. Quantisation of the radiation field (a brief discussion of the
 ......  ' remaining sections of this

chapter is given in ref. 36)
The quantisation of the electromagnetic (e.m.) field by Dirac 

enabled the synthesis of the two aspects of radiation and also explained
them in a unified way. The first aspect, the wave-like properties of
light radiation, is apparent in interference and diffraction experiments
and the second aspect, the particle-like properties, is apparent when
the radiation is absorbed or emitted by atoms. In Loulsell([3Sj
pp. 149-153) it is shown how the e.m. field is quantised In a cavity.
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Thls is done by showing that the classical radiation field in a vacuum 
is equivalent to an infinite set of harmonic oscillators suggesting that 
the radiation field should be quantised in the same way as a harmonic 
oscillator.

The radiation field in a source-free cavity, i.e. in a vacuum, may 
be described classically In n.k.s. units by the vector potential Mr»t) 
which obeys the wave equation

?2A(r,t) 5 (1.B.33)
c at

The Cc^lomb guage in which

= 0 (l.B.34a)

and the scalar potential

V s 0 (l.B.34b)

is assumed.
The electric and magnetic fields are

3AE(r,t) s ^  (1.B.35)

B(r,t) = V X A (1.B.36)

We may expand in the form

A(r,t) » q^(t)u^(r) (1.B.37)

where ♦ wjq, « 0 (1.B.38)
dt * *

* 0 (1.B.39)
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When we solve eq. (1.B.39) in a cavity with perfectly conducting walls, 
we obtain a set of normal modes. The resulting equations for the 
fields will then represent standing waves. But we still find it 
convenient to represent the fields in terms of plane travelling waves, 
and so we sKall write the vector potential as a linear superposition of 
plane waves in the form 

2  ____
Mr.t) = £ I /..H.,. «xpliCkj^.r - u^t)] ♦

1 0=1 r 2w^tQt L- -4 L. _j

(1.B.40)

In the above expression t is the volume of the cavity, which is assumed to 
be cubic, i.e. t = L ,  although its shape will be seen to have no effect 
on the derlsations. For radiation in FREE SPACE we will let x after 
the calculations are complete.

In the expression for Mr,t), and the numbers a^^ and a^^* 
are constants. e^^ will also be assumed to be real throughout our 
calculations. The vector ]ĉ  is the propogation constant and since each 
terra in the series (1.B.40) must satisfy the wave equation

2
k, = “t (l.B.m)?

From the Conlomb guage condition = 0, we obtain the transversatility 
condition

® (1.B.42)

 ̂T-.  ̂ ^showing that E, * • and A are transverse to the direction of 
propagation in absence of sources.

Vectors ê Ĵ and are UNIT vectors specifying the polarisation of

the plane wave• Each is INDEPENDENT of the other and thus the total
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field in (1.B.40) is eumed over BOTH polarisations. They are chosen 
to be perpendicular for convenience so that

° (1.B.U3)

We can also define a unit vector by

^  (l.B.H**)

Thus eqs. (1.B.43) and (I.E.44) become

* ^ao* ® (l.B.45a)

° (l.B.45b)

In order to make the modes DISCRETE it is convenient to require the 
vector potential to satisfy periodic boundary conditions on opposite

# A *faces of the cavity. Thus if i, j and k are 3 unit vectors along the 
cube edges,the position vector is r s xi + yj + zk and the propagation 
vector is k, » k. i t k. i + k.T< then as periodic boundary conditionsX *x *Z
require that

A(r + Li, t) « A(r + Lj, t) a A(r t Lk, t) (I.E.46)

they are satisfied if

-  “ F ’  ̂V  * V  * *3%) (1.B.47)

where and are integers from -• -► +*,
2vThus the propagation constants k^^ * ÏT* ^1 are restricted to a 

discrete set of infinite values, and

CO

I « I Z Z (1.B.48)
t t.n-m I a-m i s—
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The result of this is that the field can now be described by a 
COUNTABLY infinite set of variables whereas previously the electric 
and magnetic fields were determined by the values A , Â  , A^ at; each
point at time t and these values were UHCOUHTABLY infinite.

For every triplet there are 2 travelling modes - one
for each polarisation a according to eq. (1.B.4C) so that
signifies a mode of a given polarisation. There are also forward and 
backward modes, since if we let •*-

then k , » -k. (1.B.49)— X -A

and S (1.B.50)

It is obvious that A(r,t) is real since e. is real— - juy

and expjl(k^.r - w^^t^ » (a^^ + expjji(k^.r - Wjt)j}* (1.B.51)

If we now let

■ ' u  U.B.SÎ)

-la - -la -

where the latter 2 variables satisfy the orthonormality relations

caClty ' ' w ' L '  (I'B'S*)

then we may use the following expressions for variables a^^ and aj^ in 
terms of p ^  (momentum) and q ^  (co-ordinate) to describe the field

“to * ("t^to + iPto) (l.B.55a)
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/2Bw.
(l.B.55b)

9AThus A(r,t) and E » - are now expressible in terms of canonically 
conjugate variables* and the electric field is

E(r,t) » i E 
A,aVèf “10 (1.B.56)

and since the magnetic field H * 7 X A

<*to * U-B.57a)

where

(N.B. so far a, and a* commute classically though later we identifylo JUt
them as boson operators.)

At this point we will convert the formulas into the units we shall 
use in the rest of the thesis, namely those used also by Lehmberg except 
that fi will not be put equal to 1. For convenience we will show how 
conversions may be made between the units used in our main references 
with the help of ref. [3^, pp. 729-743.
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Thus, using the following plane-wave representation for IE and

E(r,t) . r îj, (1.B.58)
ta

We can derive the Hamiltonian for the field in the cavity, i.e.

“r “ iï /(lçl* ♦ |B|:)d*r (1.B.60)
cavity

and following the procedure outlined in Appendix A of Louisell [sQ we 
finally obtain

a i  I Hw (a. at + at_a,) (the order of a 1 (1.B.61)
^  * 1,0 *■ and a+ being kept (

since they will f
2 2 later be treated

**0  ̂(p,^ + w?q,^) as non-commuting2 jt,a ^  ^ ^  operators)

In order to quantise the radiation field herroitian operators are 
associated with variables p^^ and q^^. Since photons are bosons we may 
postulate that q^^ and p ^  satisfy boson commutation relations. 
Quantisation is necessary to show the particle nature of light. In 
terms of non-hermltian operators a^^ and these relations are

® *t,t' *0,0* (1.B.62)

i.e. they commute for different oscillators because they are independent, 

also « 0 tt (1.B.63)

Hence
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* 1H a j Kw.a._a._ ♦ T  Kw,
^  Ao la 2 A (1.B.64)

but the zero-point energy can be neglected since one can change the 
level from which the energy is measured. Even if it is left in it 
would not affect the Heisenberg equations of motion. Thus we use

”r ' /ApO (1.B.65)

Photons are bosons and so satisfy the earlier results given for 
bosons except that now instead of one oscillator there are an infinite 
number of Independent field oscillators.

Since each cavity mode is independent, a complete set of state 
vectors may b& written as a sly*le product of state vectors for each 
mode; i.e. a state vector for the radiation field may be written as

In^ > lUg > . . . In^ > « n, .... n. (1.B.66)

where each subscript 1, 2, ... stands for the quartet of integers 
(A^^A^iA^pC). Also the state vector for an assembly of non-interacting 
bosons must be symmetric under the interchange of any 2 of the bosons. 

The effect of and a^^ on the state vectors of eq. (I.E.66) is
given by

Ac' Ac
> (I.E.67)

Ao Ao' Ao’

and with this choice, these state vectors are normalised to unity. As 
in the case of the single oscillator, these operators are in the
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Schrodinger picture but may be generalised to the Heisenberg picture; 
e.g. Heisenberg equations of motion for â ^̂ Ĉt) are

(1.B.68)
idiation 

field in a vacuum
s -lwga^g(t) for the radiation

also a^^Ct) « U*(t,tQ)a^g UCt.tg) (1.B.69)

We shall consider what happens in the free space limit L ■» **.
In this limit when we sum over discrete values of I the
values *!/&, *2/^* became practically continuous and we may replace
sums by integrals so that

i- r ( ) _ ►  _ L _  ///"dk dk dk, ( ) <i.B.70)
t L—  (2,)S * y *

since k a V- etc.,

and if we transform (k^, k^, k^) from rectangular to spherical polar 
co-ordinates by means of

k̂ « k (sin 8 cos $, sin 0 sin if», cos 0) (1.B.71)

so that the element of volume in îc space is

dk^dkydkg a k^dk sin 0 d8d* 5 k^dkdOg (1.B.72)

where Qj is the element of solid angle about direction of propagation.
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Th«n

F ig . l . B . l

~ Z  ( )
L t L-M* (2ir) 0

I •  o IT 2ir/ k^dk / sin Ode / dî ( )

1 " 2
/  k^dk /  d% ( )

(2 , ) 3  0 o ^

2 * * 2
"  -  TT /  w dw /  d % ( )
( 2irc ) o o

( I . E . 73)

The summation over polarisation index a will be done as follows, 
®&1* ®Jt2 mutually perpendicular Fig. l.B.2

X-

If X. and X. are unit vectors along x. and x, axes respectively then

<«12^j = ( I . E . 74)



-33-

and by the properties of direction cosines

  ; r  ■

l.n.7. Interaction of radiation with matter
In the Dirac theory of radiation an atom (A) and the radiation 

field (R) with which it interacts are considered as a single system 
and the energy of this system is represented by:

(1) the energy of the atom alone,
(2) the energy of the radiation field alone, Kp
(3) a small term = the coupling energy between atom and field,

V^p, since atom and field affect one another.

The non-relativistic Hamiltonian for a 1-electron atom in the 
presence of a radiation field, is

H s (g - eA)2 + eV(r) + (1.B.76)

where electron spin is neglected sir»ce energies are not considered to be 
sufficiently large enough for relativistic effects to be important. In 
ref. 40 , p. 176 It is said that:

"Even for heavy atoms the energy of the X-shell 
is still <<mc2 and the relativistic correction, 
though appreciable for Ur and X-rays emitted in 
transitions to the K-shell, does not seriously 
affect the results."

We shall anyway not be considering heavy atoms here.
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Equation (1.B.76) also applies to single valency atoms such as
alkali metals, e.g. potassium, which we consider in Chapter V, as well
as to hydrogen which we consider in Chapter VI.

e is the charge on the electron
m is the mass of the electron
V(jr) is the potential in which the atom is situated at position j?

(i.e. Conlomb interaction between electron and nucleus)
2 is the electron momentum
A is the vector potential describing the radiation field.

In the CoBtlomb guage V.A s 0, hence

" = "A + "R + (1.B.77.)

“ «0 + (l.B.77b)

where H. * ST + eV(r) (l.B.78a)A 1ÆI —

Hg = / (|Ep + |B|^)d^r (l.B.78b)
^  cavity

&,a

when the radiation field is quantised and source-free.

Hq = (1.B.78C)

is the unperturbed Hamiltonian.

(1) -e •v y  = St - Z  (1.B.79)

represents interaction between electron 2  arid radiation field A and is 
«Hq* It is of first order In coupling constant e.
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represents mutual interaction between different radiation oscillators
of the radiation field through coupling of the electron to the field*

is the only term of importance in our applications. If
(2) 2we use mixed Gaussian units the denominator of is me and ao is

(2) (2) very large, making it obvious why is so small. is important
in dispersion and Compton scattering.

The Hamiltonian is in the Schrodinger picture and so^must use A
in the Schrodinger picture also and then solve the Schrodinger equation
of motion. This cannot be solved exactly and a perturbation approach
is used which results in an infinite set of coupled equations for the
probability amplitudes. Various approximation techniques can then be
used to solve these.

The techniques used depend on the size of the interaction times t
involved compared with the coupling constant, g, in V^^\ N.B. in
(1.B.73) g «• e.

(1) In the case of (a) absorption of radiation by atoms
and (b) spontaneous emission by excited atoms

-1the interaction times, t « g
and a solution involving perturbation expansion in powers of 
Yt «  1 is adequate.

(2) In the case of the theory of natural line width 
interaction times, t »
and development in powers of gt > 1 will converge too slowly to be 
useful. In this case Wigner-Weisskopf -* approximation 
(H-W approximation) can be used to obtain approximate results.

N.B. In the theory of emission and absorption of radiation by atoms
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their energy levels can be assumed infinitely sharp even though it is 
known from experiment that emission and absorption lines have finite 
width owing to the reaction of the radiation field on the atom. This 
reaction is caused since the emitting atom generates a radiation field 
which reacts back on the atom causing the emitted spectral line to have 
a natural line width. It is with this reaction which we shall be 
concerned and so this reason we shall not be using a perturbation 
approach.

Time-dependent perturbation theory (P.T.) is valid only for times 
t short enough that initial state does not change during the course of 
the interaction. An initially excited atom is bound to change its 
state and so in order to measure the energy-level separation a sufficient 
time must be allowed to allow its state to change significantly 
(according to Heisenl)erg*s uncertainty principle). Perturbation theory 
is therefore inadequate and one alternative is the W-W approximation.

As an alternative to the W-W method which involves solving the 
Schrodinger equations of motion, we use the method of Lehmberg which 
involves solving Heisenberg equations of motion using the Hamiltonian in 
the Heisenberg representation where and aj^ are time-dependent. We 
are particularly interested in radiation damping which results in atoms 
having a finite line width and so it is obvious that perturbation theory 
(P.T.) is invalid here as stated above. The initial state will change 
during the course of the interaction and this is another reason for not 
using P.T. In Mollow and Miller's paper they point out that 1st. order 
P.T. only holds good when the density operator for the atom corresponds 
to a PURE state throughout the interaction. This is just another way 
of saying that the Initial atomic state must not change. We shall 
explain why this is so later.



l.B.8. Phenomenological nodel for loss mechanism
When an atom (A) is coupled to a radiation field (R) it 

spontaneously decays with a finite lifetime which is responsible for 
the natural line width of the atom. This decay can be visualised as 
a single quantum system (the atom) coupled to a large number of harmonic 
oscillators (the radiation field) into which the energy of the atom goes 
and is thus dissipated. We know that this process involves a loss 
mechanism (L) and so in order to find the quantitative effect of 
spontaneous emission a phenomenological model for L must be found. It
will be equivalent to, though not the same as, the single atom (A) 
coupled to the radiation field (F) discussed in Section l.B.7.

Non-rigorous treatment
The model for L we shall use is based on the model used for the 

natural theory of line width and is that also used by Senitzky.
The Hamiltonian for a single mode,'frequency Wq , of the radiation 

field in a cavity is

s KwqA'̂’A (1.B.81)

(see eq. (1.B.61) where and a is not specified).

(This single mode will later be taken to represent the atom, hence 
subscript A.) The solution of the Heisenberg equation of motion for A(t)

—  = -i»gA (I.E.82)

Is A(t)> A « " % *  (I.E.83)

If we put in the cavity a phenomenological loss term by a n a l o g y a  

circuit resistance we then obtain damped solutions of the form



A(t) a Ae“ “̂0^ ~ (l.B.84a)

A^(t) a A^e^O^ ** Y/2t (l.B.84b)

by replacing by + iy/2. But the commutator of A and is then

]A(t),A‘*’(t)l = (1.B.85)

since (a ,A^J * 1 since A and A^ are boson operators. Thus for times 
t «  Y ^ all is well but when t »  y ^ the commutator in (1.B.8S) 
approaches zero, violating the uncertainty principle. Since we are 
interested in times t >> Y && ordinary damping term is not an
adequate phenomenological model for loss since the Heisenberg operator 
equations should be identical in form to the classical equations of 
motion. This model only accounts for the action of the cavity on the 
loss but we require one which also allows for reaction of the loss back 
on the cavity.
N.B. If the life-time of the excited atom is very large, i.e. y ^ »  t 
(the interaction time) we could account for emission and absorption by 
1st. order P.T. neglecting reaction of radiation field back on the atom 
but when the lifetime is short Y ^ << t we must take into account the 
reaction of the field on the atom which results in the natural line 
width.

In order to describe a loss cavity, we now let a single cavity 
mode represent the atom end let it be coupled to elastic vibrations in 
a dielectric material. These vibrations are expanded in normal modes 
and their energy is then equivalent to a large nunber of "elastic" 
oscillators which are then quantised as were the em oscillators earlier. 
The quanta are known as PHOMONS for the elastic waves and as they obey 
Box-Einstein statistics their Hamiltonian (cf. eq. (1.B.65) is
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* H I w. al_a
Jl/o

f 
I

S R r « a^a (1.B.86)^ q q q

23There are about 10 atoms in a solid and at the Initial time all 
are at the same frequency w z w • When the atoms are coupled in a 
solid spreads into a band of frequencies about the initial 
frequency w . Thus

io:3
2 « r (1.B.87)
q q=l

Because the frequencies are very closely spaced with density p(w^), we 
shall be able to replace sums over q by integrals when convenient, 
jcf. ref. 1, eq. (2.13) and ref. 2, eq. (11) where this Is done more 
rigorously after the manner of Section 3, eq. (l.B.73)Q

In Hollow and Miller's paper [t] the atom is said to be damped by 
its coupling to a (ZERO-temperature) "bath" of harmonic oscillators (L) 
which are taken to represent modes of the eiâ field (R). In this way 
the damping mechanism represents the effect of spontaneous emission.
According to Lehmberg's 1st. paper it is not necessary either for the

/
bath to be at zero temperature or to specify the initial state of the 
bath at all although we do find the latter to be necessary.

To summarise, the phonons are thus equivalent to an ensemble of 
harmonic oscillators in thermal equilibrium with a heat bath at 
temperature T. We also assume that the dielectric is in a cavity with 
a mode of frequency w ~ w ,,q

1. Wo shall see in Chapter VIII, Section 8 that, because of the BROAD 
nature of the spectrum of loss oscillators, we may use the Markoff 
approximation when desired. It Is also important in other 
respects also as we shall see.
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Phenomenological nodel for loss mechanism - schematically represented

Fig. 1.B.3

cavity with mode of frequency Z w representing the atom
In fact a radiation field is emitted by the atom and this field 
then reacts back on the atom. It is the mode of this field 
which represents the atom.

L - dielectric material containing elastic vibrations whose energy is 
quantised in PHONONS. This represents the radiation field. In 
fact the damping reservoir L is composed of phonons equivalent to 
e in thermal equilibrium with H.

c - ensemble of harmonic oscillators.

H - heat bath at temperature T.

L is referred to as R, the radiation field,^ in Lehmberg £lj, [2J, 
and also elsewhere in this thesis when we refer to it as the e.m. 
radiation field. At this point it is referred to as L only to make 
clear its significance as a loss mechanism. L is referred to as B, 
the bath, in Hollow's papers [s].

1. According to von Foerster [4a], normal modes of the e.m. radiation 
field in a macroscopic cavity are sufficiently numerous and have a 
sufficiently dense spectrum that they serve as a heat bath for the 
atom.
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A is referred to as S in Lehnû>erg [Ï], [2| and later on in this 
thesis when it is referred to as the atom cavity system.

Before the two systems L and A areccoupled, the Hamiltonian for 
the loss oscillators (phonons) and the cavity mode (photons) as

X Kw^A^A + H 2 w a*q q

(1.B.88)

where {A,A^ = 1,^ * [X^,At( = 0 and the A's and a^'s all commute
*with each other. Here and are PHONON annihilation^and creation 

operators respectively. We assume that describes the state of the 
whole system before t x 0 when the cavity mode (e.m. field), (A) is 
uncoupled from the lattice modes (elastic field, L).

1. In fact for an atom with two levels this would be an anti-commutator 
if, for levels li> and lj>, where j > Î, the operators A and A^ are 
identified as

A a lixjl X Pĵ j
A^ X Ijxil X Pji (see Lehmberg |l|

definition of P's)
for (I.E.89)

and then [Â,A^ x p^. - pj. ^1, whereas the anti-commutator 
£A.AÎ]t * Pii * Pjj ? 1.
If A and are defined by eq. (1.B.89) then they are pseudo-spin 
operators for the atom and have entirely different properties from 
boson operators (cf. pp. 81-84, ref. 1.35]) and it is because fermions 
obey the Pauli exclusion principle that they do not satisfy the 
relation [A,Ay x i.
Ferraion operators also satisfy

(1.B.90)
since A'< x Ijxiljxil « fi^^ljxil x o for i # j
and A^ x lixjlixjl a fi^^lixjl a 0 for i f j
Further properties of these operators are given on pages 131-134 of
ref. |3^•
In eq. (1.B.88) A and A^ are identified as boson operators for the 
atom since the atom is represented as a cavity mode of frequency 
«0 :
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Let p^*^(0) be the density operator describing the ensemble of 
radiation oscillators at t a 0, while describes the ensemble of
loss oscillators. p^^^(O) is specified in Louisell, p. 257 Jss] as a 
Boltzmann distribution, since L is assumed to be in thermal equilibrium 
at temperature T.

/T\ -8H,p' '(0) a (1.B.91)
Tr(e

where B a (KT) ^ and K is Boltzmann's constant. We shall specify 
p**^(0) later.

In order for the e.m. field (A) to interchange energy with the 
lattice vibrations (L) there must be a coupling between the two fields 
e.g. for an ionic lattice this would be accomplished by charges on the 
ions interacting with the e.m. field, whereas in a crystal there may be 
dipoles that Interact with the field. We shall, in fact, be considering 
atomic vapours in which the atomic dipoles interact with the field but, 
no matter what the mechanism for coupling, the simplest energy preserving 
Hamiltonian is

where the operators are normally ordered. (Compare eq. (1.B.91) with 
(1) of (1.B.79) which Is of the same order.) This is the interaction 

Hamiltonian in the resonant form. The coupling coefficients will 
later be assumed REAL. They are small compared with Wq or and will 
depend on the parameters involved in the actual coupling mechanism, such 
as charge, or dipole moments of crystal atom# (see rigorous treatment). 
Physically, the above phenomenological coupling terms couple significantly 
only those phonons for which w : w^, the cavity mode frequency.



Eq. (1.B.91) is hermitian, but a terra of the form

la also hermitIan and of the same order In the strength of coupling.
It is not included since its effect would be small. When there is no 
coupling, gq X 0 and, from eq. (1.6.88)

dA(t) . 1
^  « &  [A.Ho] = - H *

da (t) .
~ d t “  “ W

(1.B.93)

hence A(t) * Ae **0*
(1.B.94)

and a^(t) x a^e *q*

1
Since ZWg, we expect that when the coupling is turned on A and
a on the RHS of (1.B.94) will be only slowly varying functions of time, 
i.e. little altered by the small coupling terms. Thus,

aJ(t)A+(t) :

: e“ V

at(t)A(t) : «*^“q““0^^q

: .0 
: 1

I.E. terms in (1.B.91) are approximately d.c. whilst those in (I.E.92)
are rapidly varying and according to von Foersterf^^ only contribute to
physical processes as higher order terms and can therefor be neglected.
In fact the interaction will be in effect for many cycles of so that 

—  ......
Eq ~ Wq^^ (see eq. (1.B.99).
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terms in eq. (1.B.92) will almost average to zero compared with those 
of (1.B.91) and so the former are neglected in order to simplify the 
equations. This is known as the rotatlng-wave approximation, the 
importance of which will be discussed in Chapter VIII, Section 3. When 
the coupling becomes stronger, i.e. when is large,^ neglecting these 
extra terms would not be justified.

We assume that the interaction starts at t a 0 and that the 
Hamiltonian for a single cavity mode coupled to many oscillators is 
approximately given by

X Kw^A^A + H Z w_a^a ♦ K I (g ik +0 q q q q q ^ q q ' ^ q q (1.B.95)

Table l.B.2

Notation of main references;
Louisell [35] Lehmberg %l2,[2] Hollow [7],[9] Here

Atom Single cavity 
mode (photon) 
Density 
operator p.

Atomic system, 
S. Density 
operator p

Atom 
Density 
operator, p^

A, later S 
Density 
operator p •

Loss
Mechanism

Loss
oscillators 
(photons). 
Density 
operator p

Damping 
reservoir, R. 
Density (k') 
operator p

Eath
Density
operator

L, later R 
Density 
operator p

1. We shall see that
2#w 1/2 ^

X — ®q* (1*B'99), so that g_ " ,1/2hv
would be large, if p, Wq and e^.p are large and is small,
although the latter will not occur since we shall be considering 
free-space where V +



Rigorous treatment
According to Lehmberg M  . \ l * ***® Hamiltonian for the coupling 

between the e.m. field and the lattice vibrations, can be written, in
the dipole approximation (see Chapter VIII, Section 2 for a discussion
on this), as

^AL = “I<£.t).£(A + A*)

= -F^(r,t).^(t) in Hollow's n o t a t i o n ( 1 . B . 9 5 )

where jd(t) = £(A(t) t A^(t)) is the dipole moment operator for the atom 
and £ a <jl£li>, £.(£.»t) is given by (1.6.58), viz*

E(r,t) . “ > (I'B'*?)

for transverse plane wave modes.
Substituting we obtain

^ Vo*!-.,*-*•- *

+ e^~i*-Aa, t A‘*‘a^ } (1.B.98)to to

where a^ Sĵ .̂£ and therefore is real for £  real, since ]  ̂^
has already been assumed real. 1
For the atom at the origin of co-ordinates in the dipole and R.W. 

approximations

^AL = (1.B.100)i,a

which, but for the negative sign, which could be absorbed in the definition
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of by the introduction of a phase factor agrees with (1.B.95).
We shall see, in Chapter II, that phase factors in the Hamiltonian have 
no effect.

In Appendix I we shall show what happens when the Hamiltonian is 
used with

(i.B.ioi)

where S = A t A^.
It is shown there that this more rigorous treatment only results in 
negligible high frequency terms, and frequency shift modifications, 
which we can neglect, as they are not our main concern.

Hence the complete Hamiltonian for a 2-level atom, considering 
radiation damping, in the dipole approximation, is

H = HwqA^A + / (|e 1̂  + |B|^)d^r - E(r,t).£(A + A***) (1.B.102)

where H, A, A^, £  are all time-dependent in the Heisenberg picture.
This becomes, on using eqs. (1.B.58) and (1.B.59), for operators normally 
ordered,

H = + r  ̂ + aJ^Se“^-l*-) (1.B.103)
A,a A,a

when the zero point energy is discarded,

where l2irŵ  ^
^Ao ~ ®Aa*^

S = A + A^

V is the normalisation volume
is the unit polarisation vector

is the propagation vector
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®Aa*^A = 0, for the Coulomb guage, i.e. E_ and £  transverse 
to direction of propagation

and are the annihilation and creation operators of the 
mode of polarisation a, and - ^£g^A»o** ^Ince they are boson
operators•

According to von Foerster, in the simplest case, the internal 
structure of the atom is Irrelevant and its energy levels are 
sufficiently widely spaced that only 2 levels are important; a ground 
state and an excited state. If the atomic states are li>, the ground 
state, and lj>, the single excited state of energy then transitions 
between these states can be described mathematically by the operators.

A = lixjl = , the lowering operator for the atom

A^ = Ijxil 2 , the raising operator for the atom

a'**A = Ijxjl = Pjj

<1.B.104)

where P̂ ^̂  and P^^ are transition operators as defined in ref. fij.

Alj> = lixjlj> = li>

A‘̂li> = ljxili> s lj>

and this shows why A and are referred to as lowering and raising 
operators respectively.

   --

Crfo\)L*A.
' : ““ -—  ---------------

Fig. 1.B.4
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Since the atomic states form a complete set. I.e.: 

lixil + Ijxjl r I 

one can expand an arbitrary operator in terms of basis operators 

lixil = AA*̂  

and Ijxjl = A^A

We shall be considering the dipole matrix element for the atom,
£ = <jlerli>, to be real. Since the matrix is hermitian p = 
and so far £ to be real this means that £ = also so that in all 
further equations the ordering of the indices of p will be considered 
unimportant.

Finally, in this section, we shall give the form of the Hamiltonian 
to be used in out calculations. It includes the R.W.A, and assumes the 
atom to be at the origin of co-ordinates, since, when its interaction 
with other atoms is negligible, its position relative to them has no 
significance (see Chapter VIII, Section 2, where this is shown to be true 
in the long wavelength limit). The Hamiltonian is

H = + I I + a^A) (1.B.105)
A,cr A,0

l.B.9. Density matrix formation
According to Kollow and H i l l e r , t h e  coupling of the atom (S) 

to the bath (R) makes it necessary to describe the state of the atom 
by means of a density operator, since an initially pure state becomes 
mixed under the influence of the damping mechanism. (In Chapter VIII, 
Section 6 various papers for, and one against, considering the states 
becoming mixed are discussed.)
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As pointed out by Lehinberg,!^^ in most treatments, three 
assumptions are made:

(i) R has a BROAD continuum of modes coupled more or less 
uniformly to S

(ii) The initial full density operator can be written as

p(0) = p(S)(o)p(R)(o) (1.B.106)

(S)where p (0) describes the initial state of S, which is an
(R)arbitrary mixed state, and p (0) is the thermal equilibrium 

distribution for R which is in a £ure state.

Eq. (1.B.106) means that at t = 0, before the loss oscillators are 
coupled to the cavity, system S and reservoir R are independent and so 
the density operator factories into a direct product.

(ill) R is only slightly affected by its interaction with S.

The last assumption need not be used in Lehmberg*s method and is 
made only so that the approximation

p(t') = p(S)(t')p(*)(0), (1.B.X07)

namely the Markoff approximation, which will be discussed in Chapter VIII, 
Section 8, can be used to replace the actual density operator p(t*) by the 
factorised expression p^^\t*)p^^^(0) when it occurs in second order terms. 
According to Mollow and Miller, the criterion given for this 
approximation is that excitations induced in the bath R by its interaction 
with the atom S remain small throughout the experiment and so, as far as
its effect on the atom is concerned, the state of R at any time may be
approximated by its initial state, i.e. p^^^(t*) = p^^^(O). This is 
true when the reservoir, R, is very large, i.e. in other words, if the 
radiation field is very strong.



-so

if H and p(t) represent the complete Hamiltonian and density 
operator respectively and if S is described by basis states lm> and 
eigenstates {m} then the components of the reduced density operator can 
bo written in the Heisenberg picture as:

Pp^^(t) s <£lTr p(t)lm>X ̂rn tv

= Tr{p(0)Pr (t)}

where Tr^ denotes trace over reservoir co-ordinates only, and Tr denotes 
trace over both reservoir and system co-ordinates,

Eq, (1,B,106) can be explained more fully as follows:

pj^^(t) = <ilTrj^p(t)lm>, since Tr^p(t) = p^^^(t) and Tr^pCt) = p^^^(t)

= <JtlE<Rlp(t)lR>lm> from eq, (1,B,6)
R

= E<l,Rlp(t)lR,m>
R

s t <ilS><S,Rlp(t)lR,m>, since the eigenstates of S form a
S,R complete set, i,e, ElSxSl = I

S

= Z <S,Rlp(t)lR,mxJllS>
S,R

a Z <S,Rlp(t)lm><UR,S>
S,R

a I <S,Rlp(t)P^,(0)lR,S>
S,R

= Tr. -{Up(0)U^P_ ,(0)), since p(t) = Up(0)U^ as will be
shown in eq. (1.B.125)
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= Tr_ _{p(0)U^P_,(0)U}, since Tr(AB) = Tr(BA)S,R mi (see eq, (1,B,7))

= Tr {p(0)P ,(t)}, from eq, (1,B,96), i,e,o In ̂ X .

= <P^ g(t)> by definition

known as a generalised projection operator or transition 
operator and is defined in the Heisenberg picture as

P^ ^(t) a lm,t><l,tl a e ^ I m x U e  (l,B,109a)

and in Chapter II is put equal to A%(t)Ag(t), where the atomic operators

satisfy = 0. = 6*,̂ '

Also

P ,(0) a I m x U  (l,B,109b)m, Jt

where it is assumed that lm> a lm,taO> and <il = <l,ta01,
mIn the formalism presented in Lehmberg's 1st, paper^ -* the

dynamical properties of the damped system are calculated from P^ ĵ (t)
rather than p(t). Damped equations of motion can be derived for all
P_ .(t) if R consists of a BROAD-land distribution of harmonic oscillators m,*.
even if S is a multi-level system, (We sWll consider multi-level systems
in later chapters.) The initial states of R need not be specified and
the treatment need not be restricted to 2nd, order in the S-R coupling,
i.e. to 2nd, order in g ,9.

If R is a collection of harmonic oscillators, then one can derive 
damped equations of motion for the amplitude operators of S, without 
explicitly using assumptions (11) or (iii). Only unperturbed reservoir



co-ordinates appear in these equations, the perturbation due to S being 
entirely absorbed in the damping constant and frequency shift. Similar 
damped equations are derived in Chapters V onwards for the reduced 
density-matrix elements of multi-level atoms which provide a convenient 
and nearly exact starting point for studying their interaction with known 
radiation fields.

Although the initial state of the damping radiation need not be 
specified, when it is, the transition operator equations lead immediately 
to those for the reduced density matrix as we shall show using assumption
(ii) also.

(1) We find equations of motion for P _(t),

(2) we derive from them equations of motion for

(3) and, from these, equations of motion for
p(^2(t) = KS1X„ ,(t)p'*'(0)lS> where U >  is the initial £,in g m,£ R
state of R.

(S)

Now
(S), = <P. _(t)> from£,m eq. (1.B.108)

since Tr(AB) = Tr(BA) 
see (1.B.7)

s Z <R,S1P_ ,(t)p(0)lS,R>
R,S m,l

I <R.S1P_ ,(t)p(S)(0)p(*)(0)lS,R> from >  (I.E.110) 
R,S (I.E.106)'

I <R,S1P„ ,(t)p(S)(o)li><ilS.R>
R,S -RR“ - '

Since p(*)(0) ” reservoir is in a
pure state at t » OV
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B I !<iXlR><R,SlP_ ,{t)p*®\o)ll>lS>
R,S R ”•* R

s E <1KS1P ,(t)p^®^0)ll>lS>
S R "•* R
since ElRxRl » I, I.e. reservoir basis states 

Rform a complete set.

]
rrom this we conclude that we never need all the information contained 
in p(t) (see p. 184, ref. 34) but only need the reduced density operator 
defined by

p^^\t) S TTĵ p(t).

N.B. a li> « /i li-l> where i s no. of photons in reservoir

or If li> a 10> R R
a 10> 8 0 9 R

mode at t * 0 
vacuum state

We shall be considering the initial state of R to be a vacuum state when
we consider external fields classically. But when we consider driving
fields in Chapters V onwards we shall consider them both classically in
which case li> equals 10>, and also quantum mechanically using Glauber's R R
notation. Both methods will be seen to give the same result except that 
Glauber's approach is more consistent.

We might add that in the case of a WEAK field Hollow and Miller [V] 
say that one can assume the atom, remains in a pure state and add a 
phenomenological damping term [as in their eq. (S.isj] to the equation



for tho time derivatives of the amplitude of the excited state. They 
use a 1st. order P.T. approximation and assume the density operator 
for the atom corresponds to a pure state, i.e.

(S)*p (t) 8 Itxtl for an initially unexcited atomss ------- ----------

where lt>S = li> + a*(t)lj>S S

and a*(t) = <jlp^^^ (t)li>

= Tr[p(S) (t)Â]
(l.B.lll)

and p(S)'(t)^%A'p(S)'(t)io><01RR

But in the general case they point out that the Initially unexcited atom 
becomes MIXED as a result of coupling to its bath R.

We shall be considering in Chapters V onwards the effects of 
fields which are not necessarily weak and so even were the atom initially 
unexcited (which it probably won't be anyway) P.T. cannot be used in this 
way.

From the above explanations some meaning of density operators has 
emerged but we shall explain their properties and importance a little 
further before proceeding to use them in the following chapters.

Basically density operatorsfirst introduced by von Neumann,
\vv'oo'̂

I55] classical and quantum mechanics^though for different reasons, a lack 
of knowledge of the system under study requires a statistical approach.
In quantum mechanics this lack is due to the fundamental nature of the 
disturbance caused by the measure itself. There are 2 main situations^,

(1) in which the state of the systmm can be represented by a 
definite wave function or state vector 1^> and hence the 
system is said to be in a pure state. I.E. we have as much 
knowledge about the system as is allowed quantum mechanically.



(2) the state of the system is not completely known and it is 
said to be in a mixed state.

In case (1) each system in the ensemble, similar to the one under 
study, is the same, whereas in case (2), each system is in a different 
possible state weighted by a probability,according to some partial 
knowledge of the system.

For case (1) the ensemble average of an observable A, which is the 
same as the value of A for the system, is

for <*!*> .1 (I.E. 112)

whereas for case (2) if there is a probability that the system is in 
state l\lf> then

<A> = I P,<A>

s E p <*lAli&> 
*

(l.B.113a)

J

where <*1*> = 1 (I.E.113b)

is assumed.
N.B. different states lij;> are not necessarily orthogonal, i.e. <*1**> 
is not known.

E is over all possible states lT̂ > of the system.
*

Also p. > 0 and E p . * 1 (properties of probability) (I.E.113c)V -  ^

AThe density operator^was introduced in order to aid in calculating 
ensemble averages. It is defined by



p = £ 1^> p <4)1
^ y

(1.D.114)

for mixed states, and describes an ensemble of quantum systems.
Since p is an operator it can have a matrix representation, e.g. 

for an ensemble of harmonic oscillators with basis vectors represented 
by energy eigenvectors {ln>} we can write eq, (I.E.114) in this 
representation, as the density matrix

<nlpln*> = £<nl^>p,<#ln*>

The density operator lias various properties which are proved in 
ref. 35, pp. 222 onwards.

(i) Trp s 1 (1.B.116)

(ii) Trl#><Ql = <Qlip> (I.E.117)

N.B. A trace may be taken in any representation, viz.
TrltxQl = £<nl4>xQln> as long as the set {ln>} is complete, 

n

(iii) <A> = TrpA
Also <f(A)> = Trpf(A)

(I.E.118)

(iv) p = p i.e. p is hermitian (1.B.119)

(v) p is positive definite
since if lx> is any bet

= 2p. j<nx>rtfi  ̂I I

> 0 since p, > 0

(I.E.120)

an<jl feal since is real and l<#lx>l is real.



Therefore diagonal matrix elements of p are always real and positive.

Since Trp « 1
we also have I<nlpln> « 1 i.e. I p ^  » 1 

n n

so each diagonal element of p In any representation real value

between 0 and 1, i.e. 0 < p^^ < 1.—  nn —
We can now define a density operator as a positive definite 

hermitian operator of trace 1 which can represent an ensemble. It may 

be written in form (B.9.9).

(vl) Trp is invariant under a unitary transform.
If S is the unitary transformation matrix

s* » s*^

and It * p'

then p* Is diagonal.

TrSpsf a Trp* 
t fbut TrSpS 8 TrpS S since trace Is invariant under cyclic

permutation (see eq. (1.B.7)

s Trp since S^S % S » I (see eq. (1.B.12)

Trp « 1 * Trp* (1.B.121)

(vll) In diagonal representation the diagonal matrix elements of p*

are p* ; they are real and satisfy nn

: 'An " 1 0 1  P^n 1 1n

thus If p* Is hermitian, positive definite and possesses a trace 1, It can 
be written In Its diagonal representation (where ln> * Sl*>) as



i' » r p* ln><nl (1.B.122)
n

where are the non-degenerate eigenvalues.

The date vectors {ln>} form a complete orthogonal set

since Trp* « 1

and : 1

and also since eigenvalues of hermitian operators are real and poa itlve

0 1  'An 1 1

**nn therefore possesses the properties of statistical weights and 
therefore p* is a density operator of a mixture of states ln> each with 
v.lght P̂ JJ a pj.

(vili) Trp* < 1  (1.B.123)

.inc. Trp* B Trp'* « Ip** ̂  (Ip* )* b (Trp*)^ b 1
n " ” “  n " "

wher. Ip'* < <rp* )’n nn -  ^ nn

Is a general mathematical inequality.
It can be shown by means of a procedure similar to that used in 

deriving (1.B.17) that the equation of motion for p(t) Is

If « JS lH.p(tO (1.B.12H)

MN.B. p Is a function of time In the Schrodlnger picture although most other 

variables are not In this picture.
In deriving this, we use the fact that p(t), for a statistical mixture.



undergoes a unitary transformation as time progresses. I.e.

Ps<t) « I

(X.B.12S)

where p(tg) Is the initial density operator

Pjj(t̂ ) « 1  p^l*(to)><*(tQ)l (1.B.126)

In the Schrodlnger picture the expectation value of Ag(tg) at time

<Ag(tj,)> » Tp^<«g(t)lAg(tQ)l»g(t)> 8 Trpg(t)Ag(tg) (l.B.127a)
♦

On transforming to the Heisenberg picture by means of (I.E.125)

<A> » Tr(Upj,(tQ>Ü^Ag(to))

a Tr(p„(tQ)Ajj(t)) (l.B.127b)

.inc. U^Ag(tg)U * Ajj(t).

Thus we again see that, whether we evaluate ensemble averages in either 

picture, the result Is the same. In our applications the Heisenberg 
picture is easier.

In the case of the system being in a pure state 1*>, p^ = 1 and 

P^ * 0 for all ** X Every system of the ensemble Is In state 1#> and 
therefore

P « P* » 1*><*1 (1.B.128)



Hence

pÎ • p.

Trp* • 1

Trp? ■ Trp^ ■ 1
J

(1.B.129)

N.B. For a nixed state Trp^ £  1.

So the necessary and sufficient condition that a density operator 

represents a pure state Is that

TrpZ > 1,

assuming that It can be proved that p Is hermitian, positive definite 
and Trp » 1 also.

When the ensemble represents a pure state, then

<A> » TrpA

s Tr I p'l**><**lAAt T

* £ <nlp * 1* * X *  * lAln> 
D,*' ^

* £ * lAlnxnl* * >p *
n,*' r

« £ <*'lAl*'>p
♦ • '

s <*1A1*>

.inc. p,, . (l.B.130b)

as given also In (1.B.112), I.e. ensemble averages, for systems In a 
definite state 1^>, are ordinary quantum ensemble averages*



Therefore density operators are useful in calculating ensemble 
averages whether one has complete (see (L.B.130a)) or Incomplete 
knowledge (see (1.B.127)) of the state of the system.
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A TrK) I.TOX gv^TR! m a  r w i m .  r c m . n  n  a c i m ^x o m .

A. - reisQMhPTT envatlors cf Roiim

We ehall consider & 2-level quontisnj #ystem S to be elmultmieously 
coupled by a qu&ntlaed radiation interaction E, degcriblng the decay* 
and in addition* by a clacslcal time independent external perturbation* £* 
The bath of oscillator# H are asmeaed to be closely spaced in frequency 
mdi that their frequercle# overlap the atomic resonance frequency*

For eoî̂ pariecm of notation with that of later Cl̂ apters V* VI and 
VII* where method (i)* based m  Kollovs elaaaical treatment of tîie 
external field i# used* see Appcfidiic II*

We ©hall use tîi® following Kaailtonisa for the entire i^stm of 
atm* bath and external perturbation%—

n « I ! f  IL o I
Where + is the unpertur̂ ved Lamiltonian

is the interaction Hamiltonian

is the Hamiltonian for the atomic 
 ̂eystm

Ilr> » K £, u\. a la the IIamilt<mian for the bath of

«.a IÎJ -

H « îlco A^A 8 O

lose oaoill&tors

V 5̂- (Lr

is the namiltogiian for the Intoracticm 
between the atoiis and bath in resonant- 
form

'a: ' ê
V^n *» ît X* t ̂  A* e A is the Hamiltonian for tli©

interaction between atom S and e:ct©mal 
porturbatim Z in resonant fora*

(2*A*1)



and X* are c-nuDi>er coupling parametera. (It is shown elsewhere

that they are indentifiable as EV 6. . p, see eq. (1B99)» andM  ~
i® y —i®X* • -XCgp C and X " -Xe^^ e • see eq.(II.8), when the perturbation

is a time independent electric field, E « 2c-O OD OD

8^ and * denote arbitrary phases.

Wa now derive the Heisenberg equations of motion ofor A(t) " P^^(t),
tthe number operator Q(t) • A (t) A(t) <• P,,(t) and a. (t), using eq.Jj

(2.A.I.) and the relations

and

[a , A*]^ - I

[a . A^l - 1 - 2Q

[a '̂, A ^ ]  « -A^ " [E» o]

|a , A ^ A J  " A  »[^A, q J

" i/E. [h , «^1 from (1.B.68.) .inc. |̂ H,

(2.A.U.)

(2.A.lb.)

(2.A.1C.)

(2.A.ld.)

(2.A.U.)

fo

NB. H is time dependent in the Heisenberg picture.

with formal solution*^.

■ “*o<o> -1*1, J d f  ♦ q)
' A(t') Ca.A.2.)

.ad h.Tmitlan conjugate

“to ■ “to(°) •^“t* . Ig. /  dt" “ ®t>
la o

/ A (t"). (2.A.3.)

A(t) • i/E U, A(t) from (1.B.82) where H is now total Hamiltonian
id. . *“i'̂a,_(t) .  "1 *  i  2%' .  1 (Q(t)T i)

(2.A.4.)

- A(t) * 1 2  (Q(t)-} g^^ to



Q(t) • i/h H. Q(t)]
- - 1 A (:) h a   ̂! *to“ o (")1,0
- i Aht) X' .-1* * iX'' A * A(t) (2.A.S.)

Consider

V . . “ > ■ d A ,  V » >  - i
® (2.A.6.)

How put, for the quantised part of the field:- 

(0)
-(♦)

c -iw.t
<°*‘> ■ I ; / — ‘to V ° > “ '

- t!oi
2wEw, . .-A V V«" ‘

i.e. fields are in the Schrodinger representation since operators

(2.A.7.)
a,, and a^ are tin* independent lo lo

(0, t) - (0. t) ♦ (0. t)

(0)N.B. E'-' (0. t) - (0, t)

SO that we can rewrite (2.A.6.) as

t h  “to 't,(') ■ tioN O
A(t')

- U"’ <•> ? - Y.'j ; «'o
(2.A.fc.)

If we now consider the interaction to take place in free space V « and 

therefore, according to (1.B.73),

.3(2sc) o
r  2w dw J dâ  ( )



Naturally

Z " Z, always, 
Q 0-1

We kiave dropped the subscripts & on w and 8 since w is now the 

variable of integration. Thus (2.Â.Ô.) becomes

1 r 2 *f* 2 2

o O 0-1

J
m -i ^  3 t"rduu" r do. I (â.J J)' 

4**c^E J J o"l2 3, to

x j  df.
O

(2.A.9.)

To find I (« . p)
0=1 1* -

/ -  ^  . 2  («11 • P) ♦ («12 • P)

we choose rectangular coordinate axes x, y and , where is the 

direction of propogation of the photon, and x and y are any arbitrary

directions perpendicular to each other and in a plane perpendicular to

Since ê . k - 0  in the Coulomb gauge, i is in the (x, y) plane, p to z to —
is not in any fixed direction.

Fig .  2.A.1



39Using spherical polar coordinates as in the above diagram, we can write

8. " & cos if ♦ ÿ sin * 
ia e e

6 "St cos ^ sin 0 * y sin * * k cos 9P P e

. . ê. * cos if COS ÿ sin 9 * sin ÿ sin <|r sin 9Jta e p e p

m COS - ^ ) sin 9 ® P

(Ô • coa^ (if - ÿ ) sin^ 0£0 e p

Now for each mode 1 these are 2 polarisations, hence there are 2

polarisation vectors 8^^ and and since these are both in the

(x, y) plane and perpendicular to each other (see eq (l.B.4.3.) " 0)

they can be used as axes to replace & and ÿ«

Fig. 2.A.2

Then

P " 8., cos a sin 9 + 8.. sin o sin 9 ♦ k cos 0 tl 12 IL
2 2 2 2 
t * (a*;.*)
0*1

2 2 2 2 " cos a sin 9 ♦ sin a sin 9

• sin 9

• I - cos 9

1 “ (9.k ) (2.A.10.)



Substituting (2.A.10.) in (2.A.9.) we obtain

2 . 4' t
iio ^10 - 1  tîo (')'p ■ H i *  f4w c it

o o

At 2v
Now J dfl£ • J  sinO dO J' d^

/ &{[,) (2.A.U)

(2.A.12.)

Hence
4w / \ w _ 2w

J dfl- fI - (k.#) I - y  sin 6(l-cos @)d@ d^

■ 2s I (1-x ) dx where x ■ cos 0 
-1

8s/3 (2.A.13.)

Thus eq.(2.A.ll.) becomes
2 T

O
(2.A.14.)

Now according to Lehc^erg^» although the w integral extends to «• the dipole
10 “*8 18approximation begins to break down as w-»- Wg " c/aB « 10 /lO « 10 per sec, 

where a is the Bohr rddius i.e. the radius of the ground state of theD ^
hydrogen atom and so a is therefore related to the hydrogen atom and is ̂ B
»  e for any other atom with levels ly> and lz> where y > s • In 

a more exact treatment, p should be replaced by some function p(w) which

decreases exponentially for w > wB
Fig. 2.A.3 . . -am _p(w) " p^e for w > w

p(w) " p for 0 < w < w o



i.e. the integral effectively cuts off around w ^ i.e. we shouldrhave 1 dm and not I dm. For a given atom the most inq>ortaat values 
o o

of t* .*. lie within a region on the order of w_ ( • 10 sec) aroundB
—1t i.e. (t*-t) • ta • Since m, »  u (tin fact for the linemax. B B o

—5A « 10 cm.
,^15 -1. . vs- 10 sec.

“*1so that important values of t* lie within a region m_ «  t around t)B

we can replace

A(t') by A(t) t) (2.A.15&.)

and At(t’) by At(t) (2.A.15b.)
“1*"im (t*—t) » —im wIn fact A(t) e o has a maximum value A(t) e o B but since

—1Ô “3w /ta is very small (10 w i.e. 10 for the Na line) even when weO B  O

consider (t*-t) at its maximum for all t* it still only effects A(t) very 

slightly and this modification couMbe either added on so that

A(t') * A(t) ♦ A(t)

—iw (t*—t)or A(t*) A(t) e o and is substituted in and integrated

over t*.

Either method makes little difference.

With replacement (Z.A.lSa.), (2.A.14.) becomes:-

- i 1̂°’ <0-1 - h f3se G o o

Now t

(2.Â.16.)

I^ , -i(w9Wo)(t-t')dt'e
-i(w:p*o) (C-C') 

i(wq: W )O



/ « i n ( W ; . 4 W ^ ) t \  ^  “  C O S ( » r + W o ) t '

w w

(2.A.17.)

according to ref. 40 p.66-69, where p is the principal part.

The last approximation is made since we are only interested in times
-1 15 

t »  ta (i.e. 10 sec. for Na) o

Hence

d o  *lo \o(") E d o  4 %
-i2p* A(t) e

3sc^n
dw w V d(w - at ) o

- i dat at w- at

iZp*
3»c^E

vat - i dm at'
at-at o o

(2.A.18.)

6(at ~ Wg) " f(w) is not singular at * * and is truesince J dat 
o

since is positive end is included in the integral 0 + m.

In the second term p can be ignored as no singularity is involved.

Mow •
J  dat at' dx ( x  *  atr.) where x » at + atat+at

at

I 3. * .. 3 ,~  X t -y- T at̂  log e x (2.A.19.)

and this diverges unless we introduce a cut-off around at • c/a * 101 8

so that the upper limit is at̂ . Since we know that at̂  »  at̂  this is a



reasonable approximation and it makes the integral finite
oa
r 3N.B. j dm w has a singularity but the same reasoning applies.

w-w

Thus (2.A.Id.) becomes

d o  *io \o(') " 4  d o  4 %  • Z -  1
, 2 3  , , 2 /* 3ZP “o - i -i£_ A,-»—
35c^ 3.Sc^ J “'“oo

A(t)e-ie

- i 1 y - ia I A(t)."^® (2.A.20.)

where Y

and G

^ 2 ^ 3
■ -----p- is the decay constant,

3Hc

Y dw y
« -  I 2, “ *"o o J oo

dk
2v k + ko (2.A.21.)

is the frequency shift, where k » w/c, k » w /c.o o

The hermitian conjugate is:-

d o  *io ‘to - I  d o  4 - )  (2 A'22')

Substituting (2.A.20.) and (2.A.22.) in (2.A.4.) and (2.A.5.), we obtain 

A(t) - -i»^ A(t) * i g  ̂ Zge^**(Q(t)-|) (t) . P - - iG ) A(t)

+i2A'e~i* (Q(t)-I)
(2.A.23.)

1,0

since Q(t) A(t) « 0

(♦) (:) ' P ^ i  tîoQ(t) « - i  A^(t) (t) . p + ̂  (t) . P A(t)

- f Q(t) - iX* A^(t) e"^* ♦ iX**A(t) e^*
(2.A.24.)

A(t) - 1 2  (Q(t)-D(q» ♦ A'e"^*) - (| ♦ i w: ) A(t) (2.A.25.)

Q(t) - - iA^(t) (q‘ + X*e *̂) ♦ i(q' ♦ X* e^*) A(t) - ÏQ(t) (2.A.26.)



where q - 1/K e^®*  ̂ (t) . p - *te<°>

^-i(wit-8i) . J. ,(0) ^-i(»it-et)
i,o lo to

(2.A.27a)

and q*^ ■ 1/5 Z « E (t) . p « £ A,a —  A,a

. Z g . +(0)
la to lo

(2.Ae27b)
•j*(The only difference between the definitions or q* and q* here and those

. (Iof q and q in Chapters IV, V, VI, VII, is^phase factor. N.B. q*s mn mn
are always time dependent).

—îtB(t) ■ i(q* * X*e ) is the term quoted in ref. 3 , and w - w - d .o —

We âW.ll now calculate equations for

X(t)-<i, lA(t)Ii;> (2.A.23)
yi\

T(t) - <i' |Q(t)|i , > (2.A.29)

where the initial radiation state is assumed to be a vacuum photon state 

10 >^ .

N.B. q* 10 > • 0 and _<0|q*^ * 0

since a, lo > - 0  and _<0| a. 0.la * ^ a * to

Hence

X(t) - i 2 A' Y(t) - i A* -(I y * i«) X(t) (2.A.30.)

I(t) — i A' X(t)* ♦ I A'*«l* X(t) - ifY(t) (2.A.31.)

We 4a.ll now calculate equations for cT (t) and P(t) 

where o(t) - Tr p(t) A and ?(t) - Tr p(t) Q . (2.A.32.)

As explained in the introduction Sec.A.9 eq. (1.B.108).
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o(t) » and p(t) = and o*(t) a p^®’(t)„ (2.A.33)

since

a(t) * Z <S,Rlp(t)llxjlS,R> driA p(t) a Z <S,Rlp(t)lj><lll><jlR,S) 
S,R S,R

a Z <jlS><S,Rlp(t)ll,R> 
S,R

8 Z<j,Rlp(t)ll,R> 
R

a Z <S,RlpCtUj><jlR,S> 
S,R

a I <jlS><S,Rlp(t)lj,R> 
S.R

a Z<j,Rlp(t)lJ,R> 
R

JJ 7
(2.A.34)

Thus P(t) ia the probability of finding the atom in its excited state
lj> at time t. o(t) is the off-diagonal matrix element of the reduced

(S)density operator p (t) a Tr^pCt) and P(t) is the diagonal one.
According to (B.9.5)

p(®)(t),. a o(t) a I<SlX(t)p(®)(Q)lS> and p^®\t).. a p(t) a E<SlY(t)p^®\o)XS> 
J S 8

(2.A.3S)

From eqs. (2.24), (2.25) and the hermitian conjugate of (2.24) we 
obtain coupled linear diffei^ential equations

4(t) a p(^^(t)ji a m ' a ‘^*P(t) -U'."** -(| Y ♦ Iw)o(t)

4*(t) a a .12A'**l*P(t) -(| Y - I«)o*(t)

P(t) a p(S)(t) . -lX*."^V(t) -YP(t)

(2.A.36)

(2.A.37)

(2.A.38)

since
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H.B. If X* a 0:

,(t) a ,(0).-(7 Tf •

P(t) a P(0)*"^

i.e. where there is no external perturbation o(t) decays at half the 
rate of P(t). See Hollow and Miller , p. 469 where this is shown 
to be an essential feature of the damping process.

B. Time dependence of the occupation of the excited state
Equations (2.A.36) to (2.A.38) can be solved exactly by using the 

method of Laplace transforms. If we define the Laplace transform of 
A(t) as

-St,L(A(t)) * / dte •'̂ A(t) » ACS) 
t»

where the inverse is Y

then

L"l(A(t)) a .'*A(S)dS,

a + S / .’“^A(t)t* t*

a -A(t*)«■*'' ♦ S t(A(t))

a -A(t*)."•*’ ♦ S A(S)

r (2.B.2)

If A(t) 8 A, a constant independent of time.
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L(A) * A / dte 
t*

-8t

S A n (2.B.3)

8 A f
-at'

We sKdll consider the initial time to be t' * 0 (see Chapter VIII,
Section 9) since we skill assume the atom to be initially in the excited 
state lj> so that we may find the characteristics of the decay process from

ÿ ■level lj>* Thus we assume P(0) s 1, o(0) » c (0) s 0.
Thus if we let

than on taking Laplace tranaforma of eqa. (2.A.36) to (2.A.38) we obtain: 

(S t 1  Y * Im)L(e) aa 21d(p) - lé|' + o(0) (2.B.S)

(S + 1  T T l«,)L(o*) a -21,fL(p) ♦ la*i' + e*XO) (2.B.6)

(S + y ) L(p) a -lcW4^) ♦ le Uo) ♦ p(0) (2.B.7)

Solving for L(p) we obtain
(S+i y ) (S + 1  Y ♦ ImXS ♦ i  Y - la)

L(p) a 2|a|: — ^ ---+ ---------   g---------- p(0)

(S + 1  Y - ia) I S + ^ Y  + ia)
♦ la* 2 _ _ --- ,(0) . 1 ,  i—  o*(0)

y  (2.B.8)

where Z  = CS + J  Y ♦ la)((s ♦ y)(S f Y  Y - la) * 2|a|*)

+ 2|«|*(S ♦ 4  Y “ la)
(2.B.9)

a, (8 -8j)(S - Sj)(S - 8,)
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SlxKï« P(0) » 1 (I.e. we are only considering the emission
process) and 0(0 ) « o (0) = 0

, (8 ♦ I  T) (S ♦ I  T ♦ iw)(S t i  Y - 1»)
L(p) ■ S|«|* --  ♦ ----- 2------ g---- --------- (2.B.10)

Writing Z * < S - x£)(S - (x^ ♦ iXg))(S - (x^ - IXg))# where s^ * x^,

*2 * *2 * ^ 3* *3 " *2 ~ ^ 3* ’̂l* ^2 *3 ar# real, since we shall
see that , p and a are real (see eqs. (2.B.13) and (2.B.17), we can
separate (2.B.10) into partial fractions and obtain the Inverse Laplace
transform:

^R.B. If L(A(t)) » X^g- , then = A(t) s X«T''* when X / X(t) follows 

from (2.B.1), I.e. L(Xe"*»') * X / for t* * 0.

P(t) ■ Xj^Xj-lXgkXjtiXg)

2|e|*(x^+)Y) ♦ x^((x^+)Y) + 1«)((Xĵ +Jy ) - Iw)
x^(iXj^-Xg) ♦ ixglrtx^-x^y - Ixg e*ft

21 e I *(%4+2Y)~lXs )+(x2-lXg( (x2+Jy)-1(x -̂«) )( (x +̂Jy)"1(x +̂w))
-2iXg(x2-lXj ) ( (xj-x^y-ixg y

,(X2-Ix;)t

2|s|*((x +iY)+i%a)+(%2+i%3)((%9+iY)+l(%s+w))((x^+iY)+l(x*~w))
(xg+lxgy((xj-x^ itiXg)2lXg

^(X2+Ixg)t

(2.B.11)

It Is now necessary to solve the equation for Z using the method outlined 
in Appendix III. Using the same notation as there
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a a 2y

<2.B.12)

N.B. |g|* a |x#|* (this Is equivalent to ̂  of later chapters when 
the perturbation Is caused by aoconstant electric field E^)

Lettltig i|2 a #nd p a 2X

b a b2(~-02 t i e  4w*) 

c a *3 Jp(i^2 * 1 e 2j|2)

(2.B.13)

We also know from eqs. (III.9), (III.7) and (III.2), that

®1 “ *1 « Co ♦ B) - *j a

Sg a %2+lXg a J((a ♦ B)-l4^(o 1 p)} - ̂  a 

Sj a Xj-lXg a -&((# t P)fl^(a ♦ P)>- “  a

where

and

O a

B a

-G

-G -

1/3

1/3
a •Ho-1

G a "^a^ - ̂ eb+c

H a ♦ b)

(2.B.14)
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Hence 0 a ^  M*8(g* - 9 x 32X- + 27 x IGX.)

and H « m*(H8X^ - 8*) (2.B.15)

where * 1 t ny^

It Is necessary to introduce certain approximations in order to solve 
the cubic equation as cube roots cannot be found exactly. If we 
consider 0 «  1 (i.e. w »  2y or (w^ - fl) »  2y, which means the natural 
line width of the excited state Is small compared with the energy 
separation, when the small frequency shift Is Included), and Ignore then 
powers higher than 1st. order In 0 
then

(2.B.16)

and can also be written

o * ^  I. X^jT- ̂  8(1 - 2y*)x|j®^

8 » ̂  xjjT- ̂  6(1 - 211*)x"®^

(2.B.17)

^ « { 7 - f<(l-2v*)x"®^ ; ̂  X * ^ ( 1 - 2 m*)x‘® ^o * 8 » ^ X
-1/3

(2.B.13)

If this Is expanded by means of the Binomial theorem and terms In 0^ and 
higher are again neglected
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* + @ a 6u(l-2u*)X"^ 

a - 6
(2.B.19)

Hence on substituting In (3.44)

» ’I <“»[î ♦ )(1-2W*)X"^

X; = *1 .e{l - ̂ l-2w*)x"^ (2.E.20)

*3 '

Hence to 1st. order In 0 

P(t) a (Xĵ -l)X*̂

+ •xp(-XjX*V) (2.B.21)

+ [(Xj-Dx"^ co.(X*(*t+Gxÿ*Xgy2))]«xp(-)X^lXgYt)

If we now assume «  1 (i.e. |X*|* «  or H|X’| «  Ew, I.e. the 
perturbation energy,small in comparison to the energy of separation of 
the atomic levels)^ and Ignore po%mrs higher than 1st. order In y, we 
obtain

P(t) » y*

t (l-3y2)exp(-(l-2y*)rt) (2.B.22)

♦ 2y* cos(w*t t 0)exp(-)(l+2y*)Yt)
2

where to* = (l+2y*)w

1. Keller and Roblscoe* cannot derive an equation for P(t) at all 
without this approximation, whereas we can, viz. eq. (2.B.21).

2. The correction to (û, accidentally omitted In reference 1, indicates 
that there is oscillation at the Rabl frequency, since the 
population Is continuously oscillating between the two levels.
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Neither (2.B.21) nor (2.B.22) contain any dependence on the 
arbitrary phase» 0^ and

If X* -► 0, i.e. V* 0, then P(t) * e the exponential decay
solution. If Y + 0, i.e. 6 + 0, P(t) » (i-2y2) + 2y* cos((l+2y*)wt t 0) 
the quantum oscillator solution. This is true also for eq. (2.B.21). 
Both these results are consistent with the conclusions of Keller and 
Roblscoe*» paper^^ In which they treat essentially the same problem. 
They use the Wlgner-Weisskopf approximation and are limited to a time
scale »  the atomic lifetime, y*^» which we are not (our equations are
valid for times t »  Eq. (43) of their paper in our notation Is:

P(t) jl - 4yJ sin* Jto*^exp|^(lt2y*)Y^exp|^6^li* sin

t sin* ~ exp(-(l+2y*)Yt) exp(- 6^y*sin w^tTj

where y^ * B|x#|/RWg (2.B.23)

0 « i lo

and «* « (l+2y*)w I.e. the frequency shift
0 is neglected

I.n; P(t) 2  4y*8ln*}»*t
(2.B.24)

- 4y*sln*Jw*t exp(-(l+2y*)Yt)axp(-0^y%sln w*t)V W O V w

They point out that parameters y^ and 0^ respectively give the strength 
of the external perturbation, E(X*|, and the radiation Interaction, 2Ry » 
with respect to the unperturbed binding energy, w* and
Y* » (1+2v*)y are the perturbed counterparts of the j-1 state separation 

and the j-state decay rate y « From their equation they conclude that 
when 2Ry 0
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P(t) -►I - 4y*sln*iw»t (2.B.25)

while when R|X*| •♦'0

P(t) -► e ^  the W-W solution (2.B.26)

We have shown that our equation will also tend to (2.B.26) for X* + 0  
and that when y + 0 we get a quantum oscillation solution, although not 
of exactly the same form as that of Keller and RoblscoeM ̂

The main differences between eqs. (2.B.22) and (2.B.23) are

(i) for Yt »  1 (2.B.22) gives a steady state solution P(t) * y*
whereas (2.B.23) gives a quantum oscillation solution 
P(t) s y*|^Bin*Jw^^ described in fig. 3 of ref. ,

(11) the 3rd. terra in (2.B.22) decays at &(l+2y*), nearly half the
rate of the second, (l-2y*)Y, owing to the mixing of the
diagonal (P) and off-diagonal (c) matrix elements caused by 
coupling with the external perturbation. (When there Is no 
perturbation present we saw that a(t) decayed at half the 
rate of P(t). In (2.B.23) the decay terms all decay at the 
same rate, namely (l+2y*)lC This is noticeable also in 
eq. (2.B.21) where the rates are îX^^Xg and

Keller and Roblscoe^^^ expect the new type of modulation factor 
which remains for yt »  1 will also be found for a 3-level quantum 
system in which the same external perturbation couples both the upper 
2 levels and the lower 2 levels. In Fontana and Lynch*s® paper, 
they consider the radiative decay of an atom with 2 excited states 
coupled by an external perturbation but there is no coupling between 
the lower 2 levels but this could be considered on the basis of their
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theory to see whether Keller and Roblscoe*» hypothesis holds, but we 
doubt it, since Fontana and Lynch*s equations for the 2-level atom 
embody similar characteristic features of the decay process described 
by our eq. (2.B.22) and noted in (i) and (li), viz. their eq. (24):

ibf(t)|* « |a,(e)|*(l+e"(Xo+*j-S)t - 2e-)(VXj"Q)^cos|i(G-P)n)

+ |a2(0|^{lte-(V^j+Q)^ - 2e")(V^j^)^cosg(6tP)t])

♦ 2a(6){e"(*o**3*tco8(Pt+0)+cos9 (2.B.27)

- e ^^*cos[î(ê-p)t+e]

- e ^^^o^^j^^^^cos|i(6 +p)t-^

which is equivalent to (l-P(t)) when their Intermediate level is ignored. 
This expression contains pure exponential decay rates (X^tX^Q) and 
modulated decay rates of J(X̂ -t-X̂ +Q) I.e. half the pure one and, (X^+X^).
In our case we get a pure exponential decay rate of (l-2y*)Y and a 
modulated one of {(l+2y*)Y which is approximately half. For 
(X^+Xj?Q)t »  1, )(XQ+X^+q)t »  1 and (X^tX^)t »  1

|b^(t)|* ~  |a^(6)|* + + 2a(e)cose

I.e. It also reaches a steady state value and not an oscillating one,

N.B. Fontana and Lynch use the Heitler-Ma formal Ism but
Keller and Roblscoe do not treat the classical external perturbation 
exactly as we do.
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CKAPTER III

AN ATOM WITH TWO CLOSE-LYING EXCITED STATES COUPLED
ONLY BY THE RADIATION FROM ITS TRANSITIONS M

A. Heisenberg equations of motion
We ROW go on to consider an atom (lying at the prigin of 

co-ordinate# so that r = £) which has 2 excited states lj”> and lj*> 
coupled to a ground state li> by a quantised multi-mode e.m, field.
We shall not be introducing any external classical perturbation or 
considering the initial radiation state to be anything other than a 
vacuum state and so the problem we are treating is simply that of 
undriven spontaneous emission. We shall denote the energy separations 
between states lj"> and li> by ^ a n d  between states lj*>and 
and li> by 6^ 2 and between lj"> and lj*> by 

ĵ»t - 5 w* a

Fig. 3.A.1

OhctwvA i.Vcie.  i 1------1----------------------- L

We can write the Hamiltonian, in the dipole approximation, as

*" ) (3.A.1)
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If we now neglect direct transitions between lj*‘> and lj*>, by assuming 
the dipole moment ® 0 (i.e. if quantum numbers for levels j* and
j’* do not satisfy the condition for allowed transitions, namely 
t̂ , - 2 * 1) we obtain, on substituting for E and B from eqs. (1.B.58)
and (1.B.59) when r » 0

(3.A.2)

where ij

and SjCt) « Pjj.(t) + ? l y M )

Also g

and KV (3.A.3)

where — ^  and K.... »RV * Jtj” AJ RV

and 2j and £jiiĵ  are real dipole matrix elements

£j,^ = <j*lexli>, « <jnexli>.

[ N.B. Subscripts on indicate whether the frequencies are for photon
transitions between j* and i or between j” and i.J

The remaining terras have their usual meaning. If we omit high 
frequency terms Pjjia^g, th*n in the R.W.A.
the Hamiltonian becomes
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’ (3.A.4)

Using Hamiltonian (3 .A .4 )  we obtain the following Heisenberg 
equations of motion

®£o ’  *^i®£a **■ ^%aj»^ij* ^^iaj”^ij” ( 3 . A .5)

P i j„  s ~ iPj'j" Z ®JUTj»®la* ^£oj’»®£a (3«A.6)x>,C * *0

P j j t  = - l W j , P i j ,  -  ( 3 . A .7)

(3.A.8)

Equation (3.5) has formal solution

o ij*'t /

t
/ dt"e'l"t(t-t")

Consider

(i) I g,_4,a, (t) and (3.A.9a)
i,a **

(11) jZg%£aj"*£o(t)' (3.A.9b)

As in Chapter II when V -► «



-SS

CI) (0),

4*
osl

* ‘ . i _ %    / *«> / dn;; *
4* C E

4w 2
S

o a«l 2j •£j«

y

(3.A.9C)

N.B. In th« 2nd term on the R.H.S. we have integrated over frequencies 
comments photon transitions between levels j**..and i and i and j* and 
vice versa, i.e. g i« taken asooU^, for a certain 
range of frequencies common to both photon transitions between levels 

j" and i and j* and i.
Fig. 3.A.2

h"y
<)

L

"tj- “ “tj« • “t

For the shaded region where levels j** and j' overlap
The area of overlap is common to both levels j* and 

j” so that if a photon is absorbed to or emitted from that region it can 
be considered as going to or originating from either level and we can 
say that photon is (1) emitted by level j” and absorbed by j* or (2) a 
photon is emitted by level j* and absorbed by j*.
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“ij* * “ij” * “i A^equencles * = wy, + & Yj, to - ) Yj« 

But when has values - 1 Yji up to - J y^„

and when has values v i tjt up to ♦ J Yjw

“ij* ^ “ij” the photons Ew^j, and are NOT common to both
levels j* and j”.

In calculating P y  and we integrate only over the shaded 
region and let take values 0 to «• in the free space limit V -»• « 
when the spectrum of becomes continuous.

To find I ■ (« i-£ j

when and £  are in different directions.

(3.A.10)

Fig. 3.A.3

As in Chapter II we choose rectangular co-ordinate axes %, ÿ and k

Then we can write the vectors in terms of spherical polars as
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*la * ^ cosQ^ ♦ y slnQ̂

Pj#l * X #inej,oosQj, ♦ y *ln8j,*tnQj, ♦ k cosO^,

A * <* *
PjMl * X slnOjHCosQjM ♦ y aln8^„8lnQ^„ f k co80^„

(3.A.11)

*la'̂ j*l “ coaQ̂ 3ln0j,co6Qj, t 8lnQ̂ ein0̂ ,8inQ̂ ,

« 8ln0j,cos((^-Qj,)

, . (3.A,12)
® cosQ^slnSjnCosQjw ♦ sln0^8ina^„8lnQ^„

» 8ln0^„cos(Q^-Q^„)

” «ln0^,8ln0^„cos(Q^^-Q^,)co8(Oej^-Q^,.) 

(*12'Py'l)(*i2'Pj"l) * *ln0j,sln8jMCOs(Qe2-Qj,)co8(Pe2-Qjw) (3.A.X3)

a slnOj |8lna^„cos( (Qg^t270)-Q^, )cos( (Q̂  ĵ t270)-Q^„ )

because ♦ 270® since eg^ and e^^ are perpendicular.

Also Pji£*Pjft£ » sin0^,sin0^„cos(Q^,-Q^„) ♦ co8d^,cos0^„ (3.A.14)

♦ .in(Qj ,-Q̂

also. oos(270°- «) » - .ln(180° - a) a - 008(90°- .) a - a in a

(3.A.1S)
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j,) * sinO

« »lnej,sinej„coa{Q.„-Q.,) 

» »ln9j,»lnej„co8{Q.,-Q.„) 

* - coe9^,cos0.„

« CO80 - C088^,C0S6^„

(3.A.16)

Now in order to find 

 ̂ ^ ^ I j  I j t f  ̂ (3«A*17)

we need to consider the adjoint figure and define vectors with respect 
to the new axes m, n, p^„ (alternatively n, pj,) where m and n can
be e, and ê...

^  z

Fig. 3.A.4

* PjffCos®jft ♦ » 8in9^„cosC^ ♦ n 8in0^„sinQjCOS0 t«

Pji ® PjnCosO ♦ m slnBcosQp, + n sinGslnQp,
(3.A.18)
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* ^• . k^.pj, « cosBj, » cose^HOosd t sln@jM*ln6co*(Q%~Qp,) (3.A.19)

Hence

“ co8e-co«0j„|co8e^„co»9'f-8in0^„«in©cos(Qjç-Qp^

2* co80(l-eo8 0^„)-8ln0co8O^„8ln0^„cos(Qjç-Qp,) (3.A(3:A.20) 

2a co80sln 0j„-8in8,Î8ln20j„.cos(Qj^-Qp,)

I * / dngjc0888in*0jw-8in0&sln28jMCO8(Q^-Qp^)j
® (3.A.21)
2» ¥ p  — I

s / dQĵ  / dQ^„sln0j„ jcosealn 0^„-8ln0jsin20^„cos(QpQp j

The 2nd. term gives zero on integration over since 

/ dQĵ (cosQĵ cosQp, - sinQ^sinQ^,)

2w 2¥
a cosQp, / dQĵ cosQĵ  - sinQ^, / dQ^sinQ^ (3.A.22)

* cosQp,(0) - 8inQp,(0)

2¥ w 2
I a CO80 / dQĵ  / d0^„sin0^„(l-co8 0^„)

o o
(3.A.23)

8wa (pj I j ^ * P (2.A.13)

Hence (3.A.9) becomes# when we proceed as in Chapter II eqs. (2.A.15) 
etc., and teke f^j.(t') « Pj.,<t)e"^j'^*'’*^

and Wj,t »  1 and m^„t »  1
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^  * R -t Yji •

♦ i(& r^M *“ jff (l)
(3.A.24a)

2 3

(3,A.2*»b)

N.B. P y  S pj,^ and p̂ ,, * Dj«£* In deriving F̂ , and F^„ we have 
integrated over those frequencies which are common to photon 
transitions between levels j” to 1 and i to j* and vice versa. If 
levels j” and j’ are far apart these cross terms and hence T̂ , and T̂ ,, 
can be neglected. For them to be important »* roust be of the order of 
the natural line width of level j” or j *. Similarly

(3.A.25a)

(3.A.25b)

2 3 « 3Yji Pj# Wj# Ijf ®4#Therefore -J—  = and s --Hr (3.A.26)
Pj.. “j.. r  “j..®
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Substitutîng eqs. (3.A.24a) and (3.A.25a) in eqs. (3.A.6) and 
(3.A.7) we obtain

Similarly

(3.A.27)

These eqs. may also be written in terms of q^, and q̂ ,,» where 

“i j -  = I Xr̂CJ X^w

(3.A.28)

(3.A.29)

“j" ' ÏÏ /l#o ■* l#o #

N.B. q̂ , and q^„ are time dependent.

Also the frequency shifts # ilj,,# Dj, Oj&w be absorbed into theJ- J- j« *  J -  can
definitions of Ky,, Tj, andTj„ so that

“j; * “j. - «j:

“j" ' "j" • "j:

" I® j »
(3.A.30)
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In fact these frequency shifts can be neglected completely and can be 
reintroduced if required at a later stage,

B. The llne-ehape pf spontaneous emission
In order to calculate the line-shape of spontaneous emission of 

the atom# we use a method based on the approaches of Lehmberg^^' 
and G l a u b e r i n  order to avoid use of the Markoff 
approximation and the fluctuation regression theorem. The spectral 
profile of the atomic decay is essentially given by the Foiner-transform 
of a 2-time atomic correlation function. This is explained in ref. 48, 
where Glauber says that the energy spectrum can be derived from the 1st. 
order correlation function. We shall outline how this is done below# 
using Glauber's references.

If we substitute in the L.H.S. of eq. (10.11) of ref.-]4^ for 
^(r#t) and E^^^\r#t' ) expanded in plane-wave modes# using our 

notation#

i.e. E(r,t) a (E^^)(r#t) + E^~\r#t) from (11.11) (3.B.1)

where E^^^(r#t) * I ,
t,a

E<‘\r,t) , I 
i#o^

2¥Hm
V la %a

from (11.10) (3.B.2)

we obtain

1 * 2 /

* 2 / E
t,o t',0*

J

(3.B.3)
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MAccording to Louisell*— » p. 155# eq, (4.88)

^ _lk,.r e. e -i -
where U. (r) *   ' ■-la- ^

«“<1 £i,(£) = -----

(where t is the normalisation volume) (3.B.4)

since I# x LJS.— L!.?,L  / e“^^-t"-£»^’̂ r
 ̂ cavity

“ ("la *1'.') 4^^'

• "la-"la' *«■

= *oa'*ll« *lo-"la' = *aa'(B'6.13a)

Kenc. I « (4.) I Rw. at_(t)a._(t') for fre. fields (V->») O.B.S)
- ^  * xc ta "" ■"■■■i#a

f ^ is is 4ir X Glauber's expression (10.11) since Glauber is using the 
same units as Hollow viz. the unrationalised mixed Gaussien e.g.s. 
system (Chapter I# Section B6)TJ

Now taking a statistical average of both sides of this equation

J<I> S / <E(")(r,t).E(+)(r,t')>dr * E / G^^^r.tir.tOdr (3.B.6)

i.e. the 1st. order 2-time correlation function
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= Tr{p(0)E("\r,t).E(*^r,t')}

Rewriting#

1

f (3.A.7)

J

1,0
L O.B.S)

t twhere <n^^> s = Tr{p(0)a^(t)a^^(t)} îs the average number of
photons in the l#o mode and gives a measure of the intensity of its
excitation. Thus we see that the Fourier representation of the volume 

(l )integral of ZG identifies the energy spectrum Rw,<n, > quitey MM * *0
generally. But when the fields can be represented by stationary 
density operators it is simpler to extract the energy spectrum W(w) 
from the correlation function. This we will now do.

According to Glauber's eq. (14.9) ref.

) « <E„(r,t)E„^(r-f )>yv •v+

* r r { )<a^ (0)a,, ,(0)>e*“t V * “t»*' 1,0 I',o' ®

1,0 l'#0*

since for any stationary field represented by a density operator p
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there will exist some particular choice of mode functions such that 
the matrix reduces to diagonal form.

1,0

EG(J’{r.t;r'f) » (4*)} Z ^  <n 
y t»of

.Inc. » 1

a (4a) X (Glaubers' equation (10.14))

Now# if the field is inco?K:rent, and the volume V

G(J^(r,t}r't') * (4»)i E / dkk® TdOf <n
(2,)S o*lo 0 ^ “

RC I " , ,  ̂lck(t-t')a (4a)l ■■■■— E /dkk<n^g>e

where dk a k

(2a) 0=1 o
2dkdOjj

.(!),_ c I Z  .....3 V . ---
yy

(r#t;r't') * (4a)} H I / dmm^ / d̂ Zr<n. >e'
(2^)3 0=10

(3.B.11)

(3.B.12)

(3.B.13)
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or

where

rt') = L ;  dwi(w).

lU) * L  / dn- 2 ^  
° 0:1*-

(3.B.14)

N.B. In Hollow and Miller's p a p e r W  ©q. (4.3) an identical equation 
for G^^)(t',t) is given for stationary fields where G^^^(t'#t) 5 
<e*(t')c(t)>, but they do not identify the field intensity I(w). Also
in Hollow's paper^^ eq, (2.14) gives

Gjj)(rt',rt) 2 <E(~)(t')E(+)(t)>

Hollow goes on to consider the case where the atomic system is in
equilibrium with the driving field so that the atomic correlation
function (rather the quantum mechanical analogue of a correlation
function) is given by <A (t*)A(t)> * g(t-t') for the 2-level atom.

I(w) is W(«) of Glauber's paper where £ is ignored^sincey
r(ê^.ê^) s l^and is the energy density per unit frequency interval,

(3.B.15)

WAccording to Hollow J the power spectrum of the scattered field is

,Cl 
■jiI(r#v) 3 / dTe**^ £ G^^^CrO.rT)

j

i.e. t(r#v) 3 ̂  / dte^(* / dwl(rw) where I is ignored
I (3.B.16)

j again

so that eq. (2.18) of Hollow's paper^ J is identified.w



-97-

He also writes

I(r#v) » |q |̂  / dTe^**g(%) 3 |q |̂ e(v )2~ (3.B.17)

where he has approximated E^^^(t) as in eq. (2.11) and assumed the
atomic system to be in equilibrium with the driving field so that G 
only depends on (t-t*). If we let I(w) * 0 for w < 0 we can extend 
the Integral over wj-rem-» to +* so that

(1)

I(r#v) 3 ̂  / dTe*(* / dwl(r,w) (3.B.18)

Using our units we can identify |q 1 g(t) by the equation

/ dww^e 
o

2 4s
r /

osl O
(3.B.19)

N.B. There is a factor of difference between our notation and that 
of tfoUow.

Now

I G^j^rO.rr) = ̂  / dwlCw)."*** (3.B.20)

3 / dwW(w)6(v-w)

3 W(v)

So Krw) 3 / ZG(l)(rO,rT)el**dT
—«# JI

(3.B.21)

(3.B.22)

is the energy spectrum for the quanta present and is the Fourier
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transform of the 1st. order time-dependent correlation function*
Also

Z / <n^^>dOj (3.B.23)

is the energy of power spectrum of the scattered field.
Now we wish to find the spectral properties of the FAR field.

f2lSo following the reasoning of Lehinberg*' we let R be an observation 
point (referred to as arbitrary origin within the ensemble) and assume 
that |R-r| s R^ satisfies

w.,
- r  \  1

i.e.
J

(3.B.24)

R^ »  Rjw very large compared with the distance

traversed by photons of energy Ewy and in a second.)

— 0.
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The quantities of interest can be obtained from the correlation 
functions

and f(t,t*) s / dfi* f^ (t,t*)
0 *

(3.B.25)

(where = wy, or depending in which transitions we are interested in).

where the average is taken over initial states of the atomic system, and 
E^*^(R,t) is given by

.(+) f2*Rw

M

(3.B.26)

as in Lehmberg's appendix.
If we substitute our

t RE (R,t) evaluated at t = t* = t + %  we obtain
If we substitute our expression for a^^(t) for r X 0 into

/2sRw
E<^>(R,V= E I V

£,a

(3.B.27)

If we now assume the time for a light signal to cross the ensemble 
«  At, the time for appreciable (secular) changes to occur in the atomic 
levels
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(3.B.28)
and y

We now also need to know I where j * j* or j”,
0=1 ■*

Fig. 3.B.2

(

Using the above axes as before we can write

®lo * ^ cosQ^ ♦ y sinQg

Pj » X sinScosQp + y sinGsinQp + k cos0
(3.B.29)

e,_.p. = sinG.cosCQ -Q )*io*Pj e p

* 8ine.co8(Q^-Qp)|co8Q^ x + sinQ^ ^
(3.B.30)

(3.B.31)

Considering the adjoint figure» as before we can write

Pj » e sinGcosa ♦ ê  ̂ sinGsina ♦ k^cosG (3.B.32)
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Hence

Fig. 3.B.3

(e •P ) = i •p ) + e(î

> (3.B.33)

5*t%) + ̂  ^ dt*

y (3.B.3*»)

where

y
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Cons idering V + ", we obtain 

E( + )(R,tp) » ç(+)(°)(R,tp)

12»
(2»C)

%/c)k.(R-r)

t — ~ 3  / / dO-fj^ ,-k(k.p ,)] /*dt"el(*"*j")(t"-tR)p
(2*c) o 0 |_T J o

X ei*/c k.(R-r) where k a k k * —  k - c

(3.B.35)

I.E. E^(R.tp) . E(+)(°)(R,tp)

Z f dwM* / dn*|Êj-k(k.B^fj / dt',f

l“/c k.(R»r)

(3.B.36)

Thus we see that the field has several properties:

(i) The largest contributions to the field coma from w 2  which is 
physically reasonable.

(11) since %  R " :! R and -1 R >> 1 ’'•5 .1"/° "U1c c c A A *oscillate rapidly over a range of R^.k in which - k(k.p.) remains 
essentially constant. As cos (̂Ic.â) increases e^^^ 1 and
for k.R * cos 90® = 0 this is an identity.

(iii) Whatever the direction of k the relative change in Jg^-k(k.g^^ 
is very small indeed and so has little effect. Consider the maximum 
variation k « ^ R^, since the important contribution comes f%K>m these
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directions around k » Î where the phase - ̂  R^ is stationary. 
Substituting this in the slowly varying function

we see that for both directions of k

and this is almost constant, contributing mainly around k = - R, and so 
can be taken out of the integral over leaving only e^*^° to be
evaluated over

/ ^"-a s / dQ' 7 dg'alne'.l*/® *a®°**' where . .
o 0 COS©* s k.R

S (,Wa/c _ ,-I*jRa/C)
wR

(3.B.37)

J

Fig. 3.B.4
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Thus, substituting = t + ~ also, we obtainK L
"\

2irC'

l l £ V V B i [ l  - auw:(.iw/c(Ra-R)_,-im/c(RatR))

^ .+lwjP/C

(3.B.38)

There are two cases of interest

(a) when the initial radiation is absent entirely, or
(b) confined to a narrow beam.

In Càse (b), if R lies outside any such beam, and if R »  r (so that 
R -R & -R.r) then the ter«3 e^^^* ^̂ )/C & ^ and is a moderate terma -  ̂g->W(2fi.-r')/c
but e iw(Ra+R)/c 2 ^ iw2R/c i^g an extremely rapidly oscillating, since 

R is very large compared with r, and so is neglected.
Hence

^a ft

N.B. If r = 0, i.e. the atom is at the origin, then R * R^J

' (3.B.39)

Integrating over t* we obtain, on using R - R - r,SL

1 7 dww:.-i"jR_2vc< j=j»j”

i(w.Wj)(R-r)/t ^-i(«-«j)(Rtr/c)

Pij(t)

i(u-u.)

■ (3.B.B0)
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where the 2nd term in is a H.F, term and can be neglected and we 
can approximate [ ] by 2s6(w-Wj). Hence ^

t z [ E £ « a ^ ) J
a ,2 ‘ij where r * R-R^,

(3.B.41)

which is identical in foi*m to eq. (36) of LehmbergH when H * 1,
We have already assumed WjR^/c »  1 and since |R̂ -R| <.r max conditions 
Wjt »  1 and ct »  r max lead to j t - ( R - R g ) »  1.

[n .B. H.F. terms in the Hamiltonian result in expressions of the formw
/ dwf(w)6(wtw.) which are Identically zero since w » -w. does not lie 
o J J
within the range of the integral over w and so has no effect.]

Substituting in the expression for f* (t,t*) eq. (3.B.25) for
j a j* (i.e. transitions between j* and i) we obtain 9 terms, as follows:

(3.B.42)

(which is proportional to <a^p(t%)a%p(t%,)># we see from eq. (3.B.26).)

R^c
2vWj,R

+ t

♦ “j.2“j-2 i(w ,_u „)r/^
r2 c** 3a

(3.B.i*3)
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Now when R is sufficiently large the interference between the 
incident and scattered radiation is negligible, hence the last two 
terms in Z can be ignored, so that

j

(3.B.U4)

which can be shown to be the same as a factor of (R c/2*Rwj,) times the 
following expression:

J G;j>(R,t^;R,tj^.) « Z G;^)(^)(R,t^;R,t^,) |

(3.B.45)

where (+)(0 )(R,tR,)> (3.B.46)

R^c
Rj, R* R* 2?Wj,l Z

a

a

(3.B.47)

How lEj-Ra(Ra-Ej)l = 

= Pj:|i - (3.B.48)

and

I P j ^  ̂ )| ^ PjiPj« |Pj i t ) |
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80 that \

R^c
t py 

j=j'.j" ]

^ Pj iPjM
2,.. 2

[l-(R .p,„)*Ju 
+ pj» --- 5— ’-----^  <pT

+ Pj ,Pj„ . j i

8ir b '  .2

* 8ÎT Tj" ^

,2 »j„ »j,
r2 g3 Wj,,
a ^

where Yj#» Yjii» are defined by eq. (3.A.246)

r(3.B.49)

y
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Writing,

3y .
= if- (3.B.50)

we obtain

(3.B.51)

where
2 «.„3 (I)., N„(2) 1 r* * ^  R* "«î*»

and, if the atom is at the origin, R = R and

(3.B.52)

fRj,(tR'tR > = (2.tp).E'R'

,('). ni ♦ w(2) (3.B.53)

y
Now

fj'(*R'*R ' * ^ **“R^Rj/*»*V * “ ̂  d^RfR^j(*R'*R  ̂

+ ' a=tLRj,(tR.tR > = fjf(tR.t; > ♦ Lj.(tR.tl )R (3.B.54)



-109-

where

j' ' R* R (2ttc) Wj, a=l R

X  < a , a ( 0 ) a & o (0 ) >

and

+ f dÜA W(2)

(3.B.54)

since P dOj|l-(R.p,)^ | * for j * j*,j'* (see Chapter VII for
detailed explanation)

N.B. ^ajtg^G)a^^(0)> a n^(0) = no. of photons in mode la at t a 0 so 
that if initially there is no radiation n^^(O) a o and so this term is 
irrelevant.

We can see that it has nothing to do with the radiation damping since 
it exists even when g*s are zero. fj^^(tj^,t^ ) is simply the incident 
beam's characteristic and shows whether it is coherent, incoherent, 
chaotic, etc., i.e. it depends on the photon distribution of the incident 
beam. Solthat, for no radiation present initially, the energy spectrum
of the scattered field for transitions from level j is:

^y*(*R,tR ) * "̂ j* *^ijftR)^lj'(tR (3.B.55)

and this term arises from the interaction.

as
j”

shown in Chapter VII eq. (7.B.74) except that the factor outside the 
brackets is different since in the latter case the j” 1 transition is 
considered and not the j* -► 1 transition as here.
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In Chapters V, VI and VII we shall be evaluating 2-time atomic
correlation functions using the Markoff approximation as in Mollow’s 

r glpaper *— ' • Cere we shall avoid this by instead solving for states
SQch |(t*ĵ ) ]rad.>, P̂ „̂(tĵ , ) |rad,> as suggested by Lehmberg@ 
p. 887 at the end of Section III where he gives this method as an 
alternative to approximating terms <P^j(t^lP^j(tp^)> etc. by using the 
fluctuâtion-regression t h e o r e m . T h i s  we do in order to find 
<®Îa<tR)®io(tR»)>• which we see from eq. (3.6.32) is proportional to 
f^ (tĵ ,tR,), for retarded times t^ and t^, »  y We can compare 
its value from eq. (3.A.S) with eq. (3.B.43).

Since |rad.> « 10 initially we shall now derive equations for 
P^j,(t)lO> and P^^„(t)10> from (3.A.13) and (3.A.14) by multiplying 
those eqs. on the right of the vacuum state 1C> for all la photons.
Then,since

ç(°)(t)10> - a^p(0)10> % 0,

and there are no terms Involving E^^^^(t), 
we obtain two coupled linear differential equations:

Pjl^j,,10> s —(^ Y ^ r |t iW j|„ )P ^ j,|1 0 >  — & r j ,P ^ j , 1 0 >  (3 e B .5 6 )

Let A s P^j„(t)10> and B % P^^,(t)10> (3.B.58)

then
Â a -(&Yju+lw.H)A - Jr.,B (3.6.59)

J ^ 0 ^ 0

B = -()Yj,+iWj,)B - Jr^„A (3.B.60)
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Taking Laplace transforms for initial time t* = 0 we obtain 
simultaneous equations

(8+3Y.w+iw.M)L(A) 3 - }r-.L(B) + A(0) 

(s+iYj,+lWj,)L(B) = - }r^„L(A) + B(0)

(3.B.61)

(3.B.62)

Solving for L(A) and L(B) we obtain

(s+%Yj,+iWj,) , 1
L(A) 3 ---- 2----ÎÛ-. A(0) - ~  B(0) (3.B.63)

(s-fĴ Y ,
L(B) 3  J Jo_ B(0) - ir.„ ~  A(0)

Z Jo ^
(3.B.64)

where
Z 3 s + bs + c 3 (s-s^^Cs-Sg)

b = i(Tj.+Yj«) +J J Jo Jo (3.B.65)

If we now separate the terms in eqs. (3.B.53) and (3.B.54) into partial 
fractions and take the inverse transforms we obtain:

~ ^ ^ ’o 
(=1 »2)

(3.B.66)

< V ‘2>
8xt _ Sjt“3  "ir(0)10>

(3.B.67)
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We shall find values and later.
Now what we are Interested in calculating is the correlation 

function:

J

(3.B.68)

and this is determined by <a^g(tpla^^(tp^)>

where averaging is performed over initial atomic and radiation states. 
Assuming that there is no radiation present initially and the atom is in 
state [j”> this can be written:

<j"l < > \r> (3.B.69)
rad rad

If we put t^ 3 tĵ , then the expression

% , y R ‘̂ R> * ? y  “t <3"l <,°l»I,(tR)=&,(tR)|CL:,lj">j j" I,a rad rad

gives the average photon emission rate into solid angle dfl̂  for 
spontaneous emission. This is the actual intensity that would be 
measured by an ordinary photo detector at point R at time t^ or by a 
similar d e v i c e . (N.B. it contains a summation over all possible 
modes.)

We now calculate

<j"l < 0|«îa<^R>V"R->l°" ,I3">rad rad

from the equations for P^j„(t) |0 > |j”> and P^^,(t)|0> |j*> given
rad ij rad

below:
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rad rad
(3.B.71)

rad rad

- . - g  |i.o>

(3.B.72)

J

Applying operators |o> and |j”> to the RHS of eq. (3.A.8) we obtain:
rad

lj"> = A f e ‘H ‘V ^ ’>P (t')|0> |j">
rad o J rad

+ Igtgj,. / dt"."l*l(tR't")p n(t")|0> |j«>
o J rad

(3.B.73)

and substituting for P^^,(t*)|o> |j"> and P^^„(t”)|0> |j"> we obtain

alo(t_)'0* Ij"̂  * -iglo 
^ rad

rad ij’ rad

*i-=2

0>]7(siti»x)f . ,(82+iWt)tj

- li.O»

'*r®2^ o

At" |(8x4Yj.+iWj j ,.i«j

,(S2ti»x)tJ |i,o>

(3.B.74)
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Before integrating we shall find and

N.B. =1.2 '
-b -/b^-4c

* -îji(Yji+Y.„) ♦ i(Uj,|j+Uj„^^îj/p+iq 

where p a i (Yj,+Yj..)̂  * - (Y^.Y^n-r^.^Fj,,^)

<1 = (Yj,+Yj»)(»j,*+Wj»o) - 2(Yj,Wj»+Yj»Wj,g)

Now let
/ptiq 3 X + iy

. . on squaring both sides of the equation
2 2p + iq 3 (x -y ) + i2xy

and on equating real and imaginary parts

p = (xf-y2)
q 3 2xy

solving the last 2 equations we obtain
! r~^ 2̂  / T2 2a /£JLiL23_ and y a / lE-t i Z-ta

80 that

(3.B.75)

y

i

(3.B.76)

J

=1,2 "

t T4~Iand these roots are referred to as -s- in the paper. *- J

»1 ♦ »2 * -}(Yji+Yj„) - KWj.o+Wj"*) • -(=++*_)

S. - Sg 3 X + ly 3 -s + s_ 3 m where x and y are given
above

~®1 “

-Sj a S a &|)(Yj,tYjn)+%I t

(3.B.77)

(3.B.78)
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If we consider times t^ »  and then e -» 0

and thus e*l^& and e®2^R 4. 0

;(a^+i«pt„ - 1 «(«2+iw
‘sTtTür*i t

'2+l"&)tR -T| . T~ 1 1
j  ' ’ l i v ^  ’ "2+1*1

y

(3.B.79)

and / dt"j^^tirj,tl<Oj,y)e^*l+l“l^l ♦ (82+iYj,i+l«>j,,o)«̂ “2+l“l ^ ^
1

>(3.B.80)

TS^+ISp "2+l'‘'t
J

Thus eq. (3.B.64) becomes

»10<1r »  'rad "1+1*1 '2+1*1
|l.o>

I.»,..-*-*»
m

. "2+i^j»+i“j q .
“l+l“l *2+1*1  I

“ in(8^+i»j){Sj+i«j) |*loj'*rj"o((*2+l*l)"("2+l*l))

- Sxoj"((=i+)Yji+l"j'o)("2+l*l)"("2+*Yj'+l*j'o)("l+l*l)2j )l'°>

i*"i"ltR________  j—  ,
= m(s^tiuj)(8j+ii»j) L?toj'* j"o"

- |l,0>

!••• "l,(tR = (l"+lw,)(.2+i*,)
(3.B.81)
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Hence, multiplying the last equation by its hermitian conjugate

<0|<j"|aj^(t^ »  »  Y'l)|j">|0> = |b | =
rad rad

( > ( s21iw^(s*-iu)̂ )(8*-iw^) |^laj*^^j”o * 

^ ^®laj»^^j"o " 2loj"(&Tj,+l(Wj,o-Wa))}j

and since <i,o|o,i> = 1

|bla
2 _ (&laj**rjMo-giojM(iYj,+l(wg-Wj,Q)} f

2 21 (l/4[î(Yj,tYjn)-%] + + iÿ] M
H3.B.82)

2

Now, if we neglect all frequency shifts, then

***j*o ~ ***j”o * ^^j*o * ^^j*o* ^^j** * (3.B.83)

We now also assume g^^^, = ĝ ĵ,, (3.B.84)

i.e. for the region of overlap (e^^.p^,) = (e^g.pjw)» since p^, - p^„

We shall finally assume that all decay constants are practically equal.

i.e. Yj, = Yj„ = Fj, 3 Fjn = Y,

_ 4 Ej*^ ^j'3 Y _ 4 Pj” “j"^ since Yj,» g ^ ^3 • j" “ 3 R ^3 »

u w . ,3 ^ E j i 'E j n  “ -ÎH*
V  = 3 ^ V - y r

(3.B.85)
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and P j I ~ Pjii Pjf.Pjti small)

so that Yjii ^jii Yjii ĵiiwmifAmw M « w !»■■■ A ■■imjLh w
^3’ *4,3 ’’3' h '

W
and if - 1 then our assumption of equal decay constants is

w.w3
correct. (N.B. For Na, d̂  ̂and d^ — * ^58%0^ * 1.003 and even if

O ***Jit®the separation is around lA -'J— r “ 1.005.)U)j ,o
3 3(In Chapter VII we assume that Fj„ - Fj, « F, i.e. » «j, and point

out that we could leave the dipole matrix elements pj, and Pj„ arbitrary 
so that Yj, t Yjti # F.) With these approximations

|bla j^Y-x)^t(«^-J(«j ,*Hûj„ )+Jy)^ ̂ Y+x)^t(w^-J(«j, t«j„ )-Jy)^

where

and p * + ]y  ̂- (u»j,-«j„)^, q s 0. 

I.E. X a , y * 0.

(3.B.86)

Thus

|bla [^(Y^-x^)^t(Mj^-i(qij ) )^+i(wg-&(Wj,+Wjw ) )^(y^+x )̂

2 o 'where Y^ - x s y P » (Wj,-Wjn) (3.B.87)

and 2 m 2Y* + X 3 Y* + P * 2y  ̂- («j,-«j„) •
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Therefore

Ib, IZ =la 1^(1) j ,-Wj„ )'*+(Wĵ -J{« j, tu j„ ) )**+î (2y*-(u j ,-WjM )2) (»Ĵ -J(.j, +Wj„ ) )^

, tu»j„ ) )‘‘-}(«j )̂ ((i)̂ -J(Wj ,tWj„ ))S(Wj^-J(Wj,+« j„) ,-Wj„)

|bla (wj ,-Hrtj„ ) , )2(Wg-Wjw
(3.B.88)

This equation for the spectral profile of the atomic decay is the 
same as that derived by Morozov and S h o r y g i n ®  using the Heitler-Ma 
method with terms higher than quadratic in the coupling aonstant ignored. 
Comparing the above equation with their eq. (15) given below under the 
same approximations.

I'Ji'
where

T*(“„-i(Wj,+Wj»))+(Wg-Wj,) (Wg-.j,,)'

E a Em (s Em, in our notation) la o *
E j , * BM j y

Bjii * hMj„

2 ' 1we see that j
E

|V il2

i.e. 2#EM, 3,2- I V l

A

(3.B.89)

. (3.B.90)

where is the interaction Hamiltonian, which in the Heitler-Ma method 
is treated completely generally without regard to the interaction mechanism.
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Thua, as In Morozov and Shorygin*s paper, we see that the 
spontaneous emission line shape Is altered by the consideration of the 
exchange of virtual photons between overlapping levels E y  and E^„.
If this exchange Is Ignored and also the probability amplitude of level 
j* then we obtain a dispersion curve with maximum at and of
half-width

Fig. 3.B.5

In the language of Morozov and Shorygln’s paper when we allow for the 
possibility that the state |j’> can be reached by absorption of a photon 
emitted virtually during the transition of the molecule from the level 
Ej„ to the level we see that the line shape is no longer Lorentzlan 
given by the formula (3.6.78)• As In Morozov and Shorygin's paper the 
contours of the emission line for y s «* a 2A and y * 2u>* a HA, where 
CD* a , a as given earlier, can be obtained. We plot

along the ordinate and X = — along the a,bsissa so

that the equation in terms of these values is

(Xt2)2 ____

(3.B.92)
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Fig. 3.B.6.*

CK̂cu.fs ôÇ G,rfvviS\orv \'v<\C.S oS\'iWx)5f \wc£lŵ v̂orv 
^ VW, û̂cüfsx̂'ûe vi\V ^VA” \? è V Vc iiih
^ ■ ^ Z '
4- % — 4" — "3-1 - 2. -1

It would appear , from the following reasoning, that the ordinates of
Morozov and Shorygin's curves are not correct. The positions of the

ft
turning points are given bydy/dx * 0

i.e. (x+2)[x%5X^+12X^+(8+n^)X+n3 * 0 where n = ̂  (3.B.93)

X * -2 is the position of a minimum.
To solve the quartic equation (see ref. jsi] p. 42) we first reduce it

gto Standard form by substituting x « y - -j. The new equation is then

4 2y ♦Py ♦qy + r s Q
where p - -

q s (n?-l) (3.B.9U)

We may rewrite this by resolving it into 2 quadratic factors, which, 
since there is no y term, must be of the form

2 2 (y tay+bXy -ay+c) = 0

with solutions y_ _ i.,z ^3.9“
a

(3.B.95)
4c
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Comparing coefficients in these 2 expressions, we have
2p 3 c + b - a 

q a ac - ab 
r s be

The first 2 of these equations give
2b + c 3 p t a , b - c *  -q/a

so 2 2 b s }(pta -q/a) , c « )(p+a +q/a)

The product of these is r, so

4r s (pta^)^ - q*/a^
2this being a bicubic in a :

2 U 2 2a f 2pa + (p -4r)a 2q = 0

y (3.B.96)

(3.B.97)

(3.B.98)

(3.B.99)

One value, at least, of a from this equation must be positive, so 
a real value of a results. The values of b and c then follow, all being 
real.

The cubic equation is

(a2)3 t 2p(a^)^ ♦ (p^-4r)(a^) - q^ s 0 (3.B.100)

Let a s i

+ 2pl^ + (p -4r)i - q * 0 (3.B.101)

Reducing this to standard form by the substitution i a z -

- (| p® + 4r)z - |^2p® - 72pr ♦ 27qf) m 0

i.e. z® + 2n^z - D^(n* - <4) = 0

Solving this, as in Appendix III, we obtain

2p/3 we obtain
1

(3.B.102)

J
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a s 1/3

So, when n * 2,

(3.B.103)

a 3 2 and 0 = -2V| a ♦ 0 « 0 (3.B.104)

and when n s 4

o - 6.650 ; 0 s -1.603 .*. a ♦ 0 a 5.047 (3.B.105)

The real root of the cubic in I when n « 2 i s & 3 a f 0  -

■ (3.B.106)

and when n s 4 Jt s 5.047+1 3 6.047 a^ s /e.047 3 2.459 

K  * i(pta^-q/a«) 3 -7/4

Cj * i(p+a^+q/ag) 3 5/4

(3.B.107)

(3.B.108)

. . y 3 for n 3 2 are the real roots and x s y-3/2 3 -2 -/2 (3.B.109)

b^ 3 -1.653 

% « 6.2

.’. y 3 -3.0085, -5495 are the real roots and x s -0.9505, -4.5085 (3.B.110)

Thus for n 3 2 maxima occur at x 3 -2 -/2* 3 -0.59 and -3.4
and for n s 4 maxima occur at x s -0.95 and -4.5

When n 3 2 the maximumof values are y 3 15, 0.04
and when n s 4 the maximumcf values are y 3 1.1, 0.02

respectively.



-123-

By comparing the two figures the change in the line contours 
becomes increasingly apparent as J  increases and conversely for *y «  A 
can be neglected since then there is no overlapping of line widths.

The new lines intersect the Lorentzian ones at w, = w,„ and 
approach zero at - 2Â i.e. at x s €2 since (1) the photon
“l * <̂jt» cannot be virtual and does not participate in the exchange so 
that the intensity at coincides with the intensity due to
radiation from the single level Ê ,,; (2) the virtual photon td̂  *
is real with regard to absorption when a transition to level j* occurs.

When the molecule is initially in state the contour emission 
line is the mdrror reflection relative to the plane perpendicular to the 
axis X, and passing through X s ^  -1 of the contour obtained for E^„.

Our calculation has avoided both the Markoff approximation, use 
of the fluctuation regression theorem and approximation to any order in 
coupling constants, g, which is necessary in perturbation theory where 
coupling is considered to be weak, and so our methods can be used uohen 
perturbation theory becomes invalid as e.g. in the presence of very 
intense radiation fields. Our main approximation, as in Lehmberg*s 
p a p e r s  f g  that no appreciable changes occur in the atomic states
during times on the order of atomic periods.
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CHAPTER IV

A MULTI-LEVEL ATOM WITH NON-OVERLAPPING LEVELS

A.. Heisenberg equations of motion
We have previously considered the cases of (i) the 2-level atom 

in Chapter II, and (ii) the 3-lôvel atom with exdited levels closely 
spaced, in Chapter III. We shall now go on to consider a multi-level 
atom with a total of I levels. It has (1-1) excited states 
|2>, |3>, ...,|l>, with energies Ee^, Ec^, ..., Re^, coupled to the 
ground state, |l>, by a quantised multimode e.m. field. We shall allow 
for all possible transitions starting at a higher level y and ending in a 
lower one z.

Vv.f\. \
The Hamiltonian, in the dipole approximation is then

and substituting for jE and h from (1.B.58) and (1.B.59)
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H = R I txPxx + H E (i).a. a. 
x=l to *•

where S (t) = P (t) + P (t) zy zy zy

(4.A.2)

Also gAoyz =/ ;BV ®Jta'Byz where all other symbols have 
their usual meaning, N.B. 
Eyz " all g*s
are not necessarily in the 
same direction, as seen also 
in Chapter III.

4* «LOmitting HF terms P a. and a. P the Hamiltonian becomes, in thezy 10 la zy
RWA:

« = G Z ^  + E I V)lo“l<Tx=l la
(4.A.3)

N.B. Levelsy can decay to lower level z, emitting a photon into a 
broad band of closely spaced modes characterised by frequencies 

Similarly level y* can decay to level z* emitting photon 
band of frequencies etc. For simplicity we assume, as in
L e h m b e r g W  that all these bands do NOT overlap, i.e. ^ *̂ iy*z*
X etc. for all y*s and z*s. In Chapter VII we shall
reintroduce overlapping terms for the 3-level atom, as in Chapter III. 
Since no atom is likely to have all levels overlapping it is better 
to introduce specific overlapping as and when required.
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Assuialng the atom lies at the origin of co-ordinates so that
r s 0 in the Hamiltonian, we can obtain Heisenberg equations of 
motion for a^^(t), P^^(t), P^^(t) (where » < n) and Pggg(t) as given
below:

t 1-1
y:

' ‘ *y=m+l %,*a,ozf»:'lo (4.A.;)

’  ^*1 * ^y=D+l %,Gloyn“lofmy

where care has been taken to ensure that z remains <y and m remains

*"• fan =

# ̂N.B. The equation for P ^  is simply the herroitlan conjugate of (4.Â.S) 
according to the definition of P^(t) given in eq. (l.B.109a).

V=^ti ^ la'
= - 1 r Z g.-JP..*,. ♦ 1 * 1  gkmzP*z*t,
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Equation (4.A.4) has the formal solution

-iw.t I 1-1
a^(t) a a,^(0)e 1 + i Z E gla y=z+l z=l

/ (t') (4.A.zy 7)

(1)

(ii)

Now let us consider 
1

y^+l %,GA,ym“lo and

n-1 
r i g  

z=l la lanz*la

(4.A.8)

(4.A.9)

(1)

Substituting (4.A.7) in (4.A.8),

,L ■ ,L LW..""'""''
* ,L y.L.l .2 I

(4.A.10)

• * • when V as in Chapter II

y=m+l U o  to

X / , ,(t')
^ J

where E^^^(t) a r y — Sj^^a^(0)e ^*1* from (2.A.7) 
l,a

N.B. In the term on the R.H.S. we have integrated over frequencies 
common to photon transitions between levels y and m and y* and z* 

and vice versa. But, since we are ignoring overlapping of atomic



levels > levels y and y* and levels m and s* must b© the some so th&t 
I

nt

I l-l I ^ N 2

•5 n Si jSi S

Û' ,L r r ,

(Tel * 1 -► (p*k)^ from (2.A*10)

/-'
“ - y  « 4  «  -  ( W ) = )  . y  r». ,3^..^,

i

12 ’> f ° f ^
' Pyjj /  dwüf / /*i\vA isy 'Jïïc*̂

rroceedint”, as In Chapters II and III; to take I (t*) ■* P ,

or.d 1 for ail y# vo obtain

£  ' 2 ' . ™ V < * > - i 4 “’(‘> - f t . ) - » ^ , ( i ‘' 5 . - i W * >  <*•'■•'=)
y % H  g;<f ^  f ^



Cubstltutlnc (4#A#7) ill U*A*9); and proceeding: as in (l), w® obtain:#.

(11) l! &  G..., V ( l )  - I  4°^(l)-&a “ lW^zr.(^) (/"1.13)E«1 l;T-

vbere the tan eons decay rat© CH decay constant

K
uz Zn, I'lTii and tîi© frequency shift  ̂ P]r_ n /(W _ja3

6^nn

ci;ritirf^ eqs. (^#A.1Z) and (4*A.33) in terse cf and q̂ ,

t- £ V i.t(T
vSier©

\ s “ t 4 ° ’(l)-2r.2 “ £  Eprcz a,T(0)e-l4itH<r

va obtain
IÇ

^  f̂ iry.n Vs(l) “ ^ ^ V  “ V ^ )

n*-l ^  n -1  r ^ l

â  ̂  * ^%x. “ %a-)^En(l)

Similarly

i. & V ( ^ )  “ j à l % n

vhca-o 42'i4'^^*(l)'^a “£  %i*3 ^

1L«"

(4.A.14)

(4.A.15)

{A.A.16)

(4.A.17)

(A.A.1S)
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Substituting eqs* (4#A#16) mid (A.A.17) Into ©qs. (A*A*5) and 
(£.A,6) VO ol/Lalz.)- 

l i-l xŝ *l

" " 1:1 j!i %r,i_ +

— 1
r srrri'l 

t^l

+ q _
r.T Urs

f

IV- )

+ i .£  4,*1
dL<Wv)

ija

..y
k»rtl £̂il£

(4.A.19)

"tm “ - I'm - 9gj)j o - V  ]
(4.A.20)

toto tJ*e llndtatiais on cortain tenia to î ake H i m  non I W  

(eoo Appcsulix IV)# We cdiall J^^ior© these mrtra H%it&tiG&a in Chapter# 
V# VI and VII einoo we find tliqy are fulflUal autcmtically*

It is of interest to note tlmt Ilellow (53); In hi# paper; derive# 
eciua'tlone of tiotlon for diagonal mid ©rf-4ia£,er;.al m&tri% elwont# cf 
the atonic d m  city operator; i#s# mid for an atoa
with a rmi^ber of levels# In his ease he introduces a classical 
œctcmal field to couple state# ls> and In/̂  * If we also do tils w© 
cmx derive sizHtr oquatiai# for eaiparison witli those cf hollow 
©qs* (2#4a) ïtnd (2#4b)# In order to Incorporate classical driving term# 
in the ilmciltonian v© add on a t<rs

ZJ

A
Ae «I 1 e..^»%s OD*^.y

where /ly, ., A,gr "* Ti
(cf, Appendix II for 2-lovol atcsa case)
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or (/L.A.21)

whero t!io clai^slcal field Is glva); in U m m  of tho positive and 
nogatlvo froc'a'.mcj parts ^(t) emd ^ (t), co

F (t) » (£r(t) (t)) e01) (A,A.22)

m.iâ. ccnqies all j>aii''S of levels#
F- y., (t) introducoa mctra toms f' (t) and ? ^ (t) into the 
GKprooslosis for and §̂ (̂t) gives'i by:-mr

« #*

r—1 Û

(i.A.23)

J«=J?rf-l ̂  ' 
A

» - i J:  ̂C l ^ D  ̂ sa\
8—1

ma
(4#A«24)

Ronce (A#A* 19) ©nd (4#A#20) beccces-
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n-1 Bi-1

‘ ël ^ ^ -%.!_+^J>
(1 n-1 ^

** ^ ^ 2  D^t)) + ^ (4.A.25)

8-1
- 0 1  * b m  D (t))Pjn + 1 ^'^r/D

m-1
L  ' - - ̂ (b%(Su

(r«A#26)
+

Ve may now take the initial radiation state to be a vroinn state 
end multiply the above two equations frcm left end right by ^^01 end 
^ > W -  ‘'® ^ < C 1  P^\ 0 ^  - «Bd , ^ 0  IP^I - ï^

thm
n-1 la-l

t n-1
- : ( A ,  +^ 1  * r t i ' ' n f - E ' E l - n ^ T ) ' ( 4 . A . 2 7 )

E5—1 L

“ 0 i ^ J o S  (t)Zjn + ^ 

m-1
t(*) " -  ̂ il'^^Bj’̂n ** ” ^jaV(^)^jo)

r=%Ti

From these equatlms we can obtain

^  ^  - £  <G \Xa^Ct) ^'^(0) V« >

(4.A.2S)
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(C)j 0)1 s >  as followss-(s)

(s)
nm

n—1 E2—1

(̂ ) " - 0 1  1 1  \ + W  + - ^ 1 .

i
£ 

r«^dl
m-1

n-1

- “/ü’w *
(s)

(4.A.29)

(s)
mm (t)

Bi-1 (s) Xs),

i[!fr«K+ rarrr
(s)(t)

4.A.30)

Eeurltlng equations (2.4a) and (2.4&) of KoUow^®^) in our
notation by means oT the following transformations:-

:j(t)

o^j^(t)_^(£(t)B21 r
%2l* %D

cm %

(E_ .. 2L )
to •jk ^ mn

“ 4; B-kj---»%* “ 4 * ^ ®  > e r a n >  m.

Kj^ - i(Kj + Ejj) - ^(K j + K ^ ) — ? C  “ ̂ '(L + V  - -ê 4 4 ^

£(t)--->&g(t)
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Le obtainj- 
(s)

* > - ‘ ” Y-""
and

i  }/>-»>
(4.A.31)

(e)
- 4 , 0  “ " 4  “ > ’

+ 1 ( &%(t) + (t)) ( /iJt) -/>_(t))“ŷ sBTi

60 tliat

/6'|" ■ - 4 * V • ‘
- 4 . 0 T “ ’ 4 , 0 “ 4 “

(4.A.32)
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So tlmt the main dlffereioes ares-

1) The lack of epeclflc limits to sumaticms in Hollow* s cqmtions*

2) Indices mi )T*a are reversed*

3) Frequcîicy Wiifts Si ere Ignored in Hollows ease*

4) Ibrpresslon for (t) fcppeai's to contain ®n extra term

but by redefining the ^  *e ve can write equ&tim (4#A*32) as

(«)

(4.A.33)

vhlcti is equivalent to (4.A.29)»
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In Cliapter III v© vere able to calculate tli© spectral profile for 
spontaiieous m l  salon from

\ <  À'\

by flndirg equations for V^«> and ,

It is obvious that this EOtltod is of no use in Ui© present case since 
multiplying equations (4#A#19) and (4#A*2C) fr<xn the VjIS by \o>roA 

otin leaves tenss of the fora 4  \ o % ^  , 4  »
which cause difficulty# Similarly when classical driving terms are 
introduced; as in equations (4«A#25} and (4«A#26) we obtain expressions 
containing terms ( ^

The alternative is to solve the equations (4*A#29) and (4*A#30) for the 
reduced density op'orator exponents and tîien; as in Hollow* s paper^^^; 
resort to the Harkoff approximation in order to calculate the Ist-order 
field correlation function which; we have seen; is determined by the 
2-time atomic correlation function for tlie transition under consideration 

(sec eiqpresalon for giver* in Chapter III; equ&timi (3.3*45))#
If we keep tli© initial time t* arbitrary we will be able to calculate 
the overall effect of absorptions and emissions between tlie required 
levels since t h m  we will not be able to specify the initial atomic
state# The specific wcy in which we calculate the spectral profiles
in various cases will be outlined in the following three chapters for 
the specific cases of the K atw# and H atom and tiie 3-level atom; where
allowance is made for the possibility of overlapping upper levels in the

latter case*
In fact; following the arguments of the previous chapter,

—^ ) (L' -V ) =̂Ẑ V 2--\
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vJ:ere If r “ 0 (atom e.t orlglr.), H

E , (& ,4^ = g'^ (?>, te) + £  £  K,. 1V  - (4.B.2)eM J — ^ ^ ^

- < \ E %  1^,4), ^  1% >  (/"B'3)

and 80; IgroiJUîg interferer;ce tcaras;

vhore ^ | _  (4.B.5)

<l <l-\ L  1

àLWt^xz} ^  U,= Z2̂V\ 2̂ i=\ M-OZ,M Ji--

< \ ? ^  1 4 ?  l A > »  1
»'> L Al 9^ A

If ve coneider only traneiticms botvoen the %mir of leirols y* and a* 
end Ignore all others tlien (see ref. 124 eq# (3.5) where the ersission 
spectrum only Is omsldered)

K*B# The effect of other translti<riS is taken into accoxmt; since tlie 
equations of motion to be solved are coupled eqmtlor s* Only when there 
are overlapping levels is it necessary to take into account more tîian one 
2-time correlation functicr* since in such cases the additional 2-time 
correlation functions produce intmsity distributions for the same 
frequency range (see Chapters III and VII)#
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Hence tîi© intensity distribution la given by
PC

X <1 (X^^(d)\> (4.B.8)

The first terr?, as explained earlier; only gives the mergy epectruia 
for Uie Iî;CII IIT field. To find the energy or PCLER SFECTKlll for the 
scattered field vo muist calculate

ij... - 9^'. <  \ (tv) \ >  (a.e .9)

i.e. basically v© need to know the 2-tlme atomic correlation function

C'A. I'oIloK*,s_.rath.od. far.. ,cvalmtlon..,tho_î ovf?r far, the

Ke will now outline the general method for evaluating the 2-time 

atomic correlation function <C\?^, \ based on Hollow* a
method, e?q>lalned in ref# (9); %6ich avoids use of the fluctuation regressifm 
theorem# This fonction can be esqpressed In terms of the Schrodinger 
density operator at time i.e# /O and the time-independent
Sdirodincer operators and j (6^ as follows

A  It)  - 0  l t ,v )  n I t )  U 'l t  ,1 ')
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IjTorlng cuî ecrlpt R, vhich Ir.dicatea retarded time, ve can vrlte

(t\o)vX'(o)» 4 ) o " F ,o)X 
^ ' f J ( o ) u £ o ) \

- Tf  ̂  pCo) 4  , (o) # 4 ? ^ t u ' ( o ) x
' O k \ 0 ) \ ^

^  0-' IV) oi^P ( û) Q X
• k)

\ X ^  I H ? £  (Ô) 0 IV)V') (o) 4\b)|\VjF^\o)]

■AV 4  It) ^  (o) \) (t\£) ^

where U(t**;t* is th® time-
development operator

According to th© Karkoff apprœdzmtion; «oqplainsd in Chapter I, 
we can factorise /?lvA as

Hence

< y£  U ')?,,- ^ )> ^  (fc)^Tt)y:')^:^'4(4.,c.x)

I © can now coiapar© tJda with th© mean value of tlie atoisic operator Vzv'
at a given tine tf# how the expectation value of , ItM is

<  v,.̂ , tt')>

- .  T r [ü lt7 )y  It) üLt't'V' y^^LoiS\ 'y^ .̂c.2)

“ T v ( ^ V ) L 4 ' Y '
, , ’‘TrC&Pi)

-  T r kwv><v4 P It) Olt'.y)'' ?-' H 'X
' '   / M  tîarkoli

V)fc\b) \ eppimiffiatlcBa#j
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Comparing iC!C*o oî équations (4*C#1) and (4.C.2) ©hows that we 
con obtain tho foi'mer from the latter by making the substitution

so that then <  ?x> 1̂')')?--- > <
(Without the Markoff approximation the required substitution is for the 
full density operator, ^ ------------------ ^

TIeaS; in order to €r*.aluat© the S-titio corrolatic^ functicm 
< 9̂  \ ^  ; we must first evaluate the singe-time Boajj-value

\v") • <  ̂2.,̂ $ the only differ«r:ce being that the nors-hemsitian

operator / gmst be used In place of the dmisity
operator ^  .

Since ve may vrlte
U" -- *■'̂”4  -

a fimction of the tlm©-differ©r.ce only, tlien, from (4*C#1), v® have

. 4, \ (t“-t) \ijk^s)>

’ ? z v 4 P )

A 4 w V < U p 4 ) \ ^ > < ^ ' \

4  v=.^k)> > I  \^>\'f>(4.c.n
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ïut

A'
' ^  <  5)R\ ll'-V")|K,s>

= £  <-=.'£\ Pz'^£V-t'>R.s>

-- ^  < s , v f \ y ^ n p )  ?,.^',/cA C L ' j  T - t ' ' ) l . f V , S >

- W t  s 4  ) 2 ̂ . . . ̂
% <%^V\<W \<?<^'\ .Xv-v'^

<  '^v\<n IV) \ > ^ ' \  4  ̂  ir -i^ \ i >  ^ y

UA «►intt (4.C.5)

i.e. under th© Harkoff appr<%%lzmtlm t&iere Is no différence between the 
matrix elmmita of th© full deieity operator end the reduced atomic 
density operator. This Is convenient since it is easier to calculate 
th© reduced density operator matrix ©leemts lO) .

If; oa solving the equations of motion for th© reduced density 
mtrlx eletiGTits v© find that . ivA is of tho following forms—/O J, U)

t >
"ft' ' T  - £, A " ' A '  t  (A.C.6)

where t* *» t* + "L Gnd X  > o

( - X  i® t}i© tiso difference mid t* tho initial time); whldi is the ease 
when tli® reduced dmslty matrix equations are Interdependent (gmmr&lly 
or jy  a few are).



rou'dnc th© £rabstltutior=, given in eq* (̂ ,0*3)# in the E*H.S. 
of €*q» (î #C*6)

i.e. /"L. ■ <\'\ P'"''  > <M"\ V^”>  ^

= /" Sz.'z_" (A#C.7)

V© obtain Hie 2-tlJKe atoalo correlation functimit-

(f)r
CR /? vlth tlie eeae substitution (4*C*3)#

/  ̂ i n '

"z , Z" ;

C  It') P,,„, It") y  ^ ^  U
A A MA

(4.0.S)i#e#

©rd this is the (srpressim ve shall he isplmentlng in the following 
three chapters#
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In tMo CUtptcr we slmll calculate tlio jower spectra for ê artaln 
tranciticsie In tî̂ e potessiisa atoa# The nodel of the at(*a ve slmll us© 
Is as eko Idled tclovi

c?7lv̂D-lo______

a\oaio

âM-lSO'SLa k.lo \ • 1+

ai3n%.\
aisH'O

<5\-?SU •'7-S'

------------------- Ivv
— '/2 ^\a> p̂ iioVa -̂ tK Gno50r^ Veociis

------------------ h2>̂  \\> 4x0^ veÇ.
It is ccf'posed of 10 cf the mergy levels # l#e# levels up to end
including level CS, hut Ignoring the degezieraoy of levels AS (gromd
state) f 53| AD (iinresolved expwlm^ritally^and 65. Ve also Ignore
the fact that level A?^y^ has substates - V-a. aad \>̂\ - Mo. .

It Is Vno\m tîat the dipole mtriz eler.mt cceinectlrg levels 65]y  ̂

and AD3/2 Emch stronger than tMt ccmneetlng levels 4^3/2 and AP3/2* 
he cJiûH nudber the levels as indicated in the diagram end could 

consider' a gcnci’sl 10»lovcl atom but $4*̂ 00 there is a w^ilth o* litoravure 
(lO)-(ll) on transitions in this atom ve clioll particularise our equatiws 
for cof?|:#ri SOP vith eoq̂ arimental results. Frcfâ tii® literature ve see that 
level 55 docs not take part in any transitions but ve inclmle it all the
same.



From the equations (A#A#19) end (A*A«2G) derived in Chapter IV
for the traneltlcfn operators for the multilevol-levol atom we can
dciduco eqnaticr 8 for the 10»level atom;-1' - ̂

'Dy,
'      ̂ 4

' Zj \rvY\ \ f j ^wvA
\ - - X '

■ n \ \

" ' ^ V  V ù  '

to ,

k . L  - ' ^ C  Y -
<■■ mi I I

4
-  -  /

"Yvvx ̂'v\t J
(5.A.1)

(5.A.2)

where the Kasdltoriaii le clYsn by
lo

2-'\ M ’
1̂.3

Ve shall be interested in tra-nsitione between
a) state 5F3/ 2 (1^ ) and AS (H> )* grotmd state, and
b) state CS (110> ) and (1S> )

\Sicsn two driving fields of arbitrary strength are present* Cne field 
couples levels AS and AFy^» 1*## levels 1 02,1 3i and the other ̂  levels 
AI'3^2 65# i*e# levels 3 and 10# The fomer is supplied by SES
radiation and the latter by ruby laser radiation, since it is known that 
such radiations are In approsixas.te rcscsiance with the corresponding atocdc 
transitions# The tuning conditions are varled^egje^^entallj accor^g

euppl2eS^C|^|iSSI ^y^îalGr'radla&m tut its intensity is reduced

(5*A*3) 

{
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I y ICX In ordor to inhibit other cailtlphoton processes in which v©
or© not Field of frequency Ws. # is
supplied by stimulated Itoan rmD.atiaa (SES) of FIB \diieh Is 13A5 csT^
d o m  siiiftod vlth respect to Other molecular liquids can N
usod as level (13 ) is populated oven for incident radiation
30 a r ^  clT resonancetlnough latelu, liolmi and Earak cite 13 (nitrobenzene)
for enhanced S^plioton enissim end Lîlî, yS-nethyl naptlml^ie# for 3 fhoton
Fanan effect* According to refs* (10) and (11)
for a ruby rod at 3A«5^C i*e* exact rosannnco occurs at tîiis te^ipcraturo* 

According ref* (1C) resmont abeorpticm of uog (cceites *» |- 
substate cf and thus auxiliary Otokes radiation#

« ^aliens” eoccitod state since other substates of
populated and this results in 3 tjq>es of résolvant Ramon scattering of 
from tills initial state 13 >  of vhidi Ui© transition terminating in
5?^y2 (^ >  ) ie tliO on© v© consider* Acconlirig to ref* (1C) or«d (3) 
when tranaiti(m from 13 ̂  to 1$ >  is by resoifuit Reman scattering I*H* 
©mission at 3#66 jjl is observed# these trsnsitims then result in new 
atcrdc levels being filled tq> Wiich thm etart to participate in second 
gmeratim Gtlzmlated transitions of wîdch ve cmsider that frcm level 
5 ? ^  (13 > ) to A3 (H>)* The 6 5 ^  state servos as a near resonant 
interaodiate state in the above troneitlosis* In fact yhm th© oforesscsiticned 
tvo fields ore present four different neaâ -rescnant siiltipliotcsa processes 
have be^ observed in potassium vapcfio** They or©
i) stimulated Z^hoton Kaman effect
ii) A-fiioton parametric coupling 
ill) caitancod S-jiiotcai emissi^
(iv) 3-photon Eaiaon ecattering*

bMt VO will calculate is the overall effect of ell possible 
trmisitims between certain levels by esmstdng the initial state to be 
unhnovn*



The laaln 4 vlth vhld'i we are concerned are illiietmted
below althoŵ j'i vo nhall take Into account all 10 levels in our
calculations

We elmll define frequencies

f '4

LÜ

to

to.

tO
6 -

*̂̂10 ** ^ ,0 —

fiiice ve cire only considering dipole transitions it is necessary Hmt 
tho clian̂ e jLi the orbital xuemmtum quantum number 1 be euch that

AH  + 1

Tîius a dipole manmt only exists betvem levels
S and T

and
and KOT botvoon levels

and

P and D

S and S 
P end ?
D mid D
S end D » ±2| since for level ®» 0 ̂û ̂ " î

1̂ , 0=2 .
Hence tho dipole eatrtx aimants ere as follows

« « + o  

•-:̂-j, --:̂ ,3, * O

How since q’s, \̂ #s mid all depend on tiirouĝ  tho following
relations I-*



ii„  ■ V - f ,

' %-k

-1

4 : .... - D
V© know timt zero components of x are given by the following eqtiations, 
vîiere x • q, ,

OB *1,5 m
* 1 . 6  “ *1,9 "  *1,10

,̂3 # *^,7 «
* 2 , 8  " 0

*3,7 m *3,3 0

*/,5 as %C as % 1 0 m 0

b , 6
at m *5,10 “ 0

*6,9 e> *6,10 n 0

*7,3 « 0

*9,10 0

(5.A.A)

These equations are also true for reversed subscripts and in the 
case of q for the hcrrrdtlas emjugates, since a are red#

Press ©quatioî 8 (5*A*1) and ($#A#2) it is possible to derivo 100 
Heisenberg equations cf motim for tliC tra-.rltlon operators but, in order 
to calculate the power spectra or spectral densities of tîie scattered 
light for (a) tr&nsitims between states IS  >  and 11 '>  and (b) 
between states 110 >  and 13> , ve have seen that it is necessary 
to use only 3 of tîiese eqimticms# These are the equations for transition 
operators and F^CgS given below, substitutions ($$Ae4)
having already becsi perfonaed#



f

. 9 , ) ]  P,,

+i( p'0.1 tfl ■ ',0.,

\c -ç
+ p .  _ n  _  t  P'■̂.-r “̂ sr ■" ''ok '̂ •îw)

1̂ .0,

to,":) q" P \|/ le % 'D 10 J

(5*B.l)

3,G ^4") p  ’ ^^«3 ' ^ ^ 3) ]

- i Y P w  + 4 ,  + U  p,3 ^ Po,B ^,0,3)
^e, T P,^ + P f  Y '  ^ 4 u

~  ' ̂  'l/l,

^'^'j/18 ^ 'u, g 3̂,10")

h , 3 - [''zq ■* ; (l̂ g, ' 5 g ) J  Ps

"I^P.'S l u  P53 1/3| 3- C|̂ 7| + ?S3 “̂ Sl )
t

+ ( ’’,1 + yio, Pi, 10 ')

r i RIh )

'0,3 

(5.2.2)y

(55.2.3)

■■ L  + V,, + ^ 4 .

4  ' ÎCji ■* 4  7, ■' '̂0,7 "̂10,

? >0 — lOto
,̂0 ' 4g -C4O

4  = 4,2 + 4 ^ 4 - ' " * 4

= kjg
Levels 1 end 3, 3 and 10 are connected by monoclir orna tic radiation 

oT arbitrary iïitensity mâ this can be considered in two vay'st- 
cither (i) by con sl(!©ring driving fields as odd!tionàl classical terms
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in t]i0 HûTiHtoïiisr end tlaus cosr̂ slderlng the initial photon state to 
be a zero photon state as already mqplained. This has bem done in 
hollow* 9 paperŝ  ' and io reasonable for intense fields vMch
can be ti*eated classically or (11) by Including drivi.ng fields in the 
notation and having tlie Initial photon state as W  , using
Glauber*s notation (4-X49),(50)*

V;® Gliall see that both methods give equivalent results although 
the second io preferable as it is completel̂ " quantum mechsrdcal and does 
not require the addition of any extra terms*

Fetbod (i) (bnmod on Follow*s formalism; driving field Introduced daeslcally) 
In CMpter IV, Sectlcm A, the driving field was considmrW to couple 

all levels end en additional term (A«A*21) was added to the Hmlltcr.ian*
Ve ere row corcemcd vith only tvo classical fields b.(t) end £^(t) 
cmipling levels 1 end 3 and 3 end 10 respectively vîiore

(5#B*5)
'K-.\ fs 3 ?/

Eeaice the additional term, Inst^d of being

"j- ’ ■*</*■*> '’■a")]
'X' Z : % ^ .N  (5*B*6/\

t\

boocmes
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uhere 111 . e

ûîid A,
"K

(5.B.7)

j

l'#B# Order cO indices on ** la rot important as stated eleewhere 
sines tlie cario applies to ̂  a indices since 2 ' ® asoimW real and
honee Afg axe rcrd for reel and #

K© siiall asGiEîô each field oscillates hcrronically so that
£. u-̂ ' 6̂  ̂e -'i- 

ijy\ -d.e-'"-'
(5.B.S)

and that the froqiiwclcs of oscillation and nearly coincide
idth tîiô reaoîiort freqitencieç fer tJie corrosp'C%"dln̂  transitions

i*e#
(5.E.9)

lut neither are neer to tîie resonant frequency for transiticns betveen 
miy other pairs of levels#

The extra ter^s vhich \d\ introduces into end
are

l u L .

\(i„. î,„ -^„ J  . >  J *  ' \ y y . y ~ \ . s . : \  

'i - V j .„)> * A,,k'" ( 41,y... v\

i
-\

Henca cquatiore (f#Z.l), (5»B*2)> (5*B«3) become#



< ; f f . i - 9, ' 9 % , 9

'̂1

.fO

p'

-i ': I, . ,

4̂ t Ps? Sj t As
PI .p., Sj,8lf ■» ftr js.-  ̂Ac.
i )p*
k-

1 I

SI - J

■' P:5 A/ÎI ■' T 8/-' I ' ':5 ' /'S' "V ' ^e^7, ..6 y

■*'/ Ri <j,s/ -t Rif 1 P,<r ' j f - r  + /4
Q It, 8 luj

(5.B.12)

(5.E.13)

1C,S

 ̂ V  ^ ^ofc'^Sfei

"* /o <̂ t_/̂ i) 8^ p/0,-7 ^^"«^^^(5.B,U)

I fo,1 f ^/oj ^ 15/0 /

/ ̂  &  1

~ ' H U &g

+ 4 0̂,9

KulUplj-Jjig «ïuatiOTiB (5.B.12) ~ (5.B.14) fïxœ Ifft and risht by ,<'ol 
and lo>,̂ j respectively end colling

y ,.j^o\î,, \o>'^ 

t«jko \ V„.j No'?Y A& .

(5.E.15)
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we obtain tl;o fcllowing cquatJ-Ons

&(t) - -[ 'atk +51.

ï(t)»

Z(t) ■ —  ̂  ' ̂ A,io”-4.s ■*'4-

(S.B.lé)

(5.B.17)

\o

(5,3,13)

la order to obtain equati<mB for the ms.trix el.emmt8 of the reduced 
density operators v© recall tliat

'O ,,v ^ ................
;, ̂ 4 - k  AH')y  /6) |s>

P \ .5110 ̂ '%)  is>

p '  Z IO  A fO) ( s >

Hence miltipljlrg ©rpmtioriS (5,5,16) - (18) from the E,H,S, by '

(5,5,19)

and taking "Tr̂  v@ obtain
j) (6^

llV - j''2U,a^0 ^ %S
fS'l
9/ 10

(5.B.20)

V
KO lb (5.B.21)
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NÜ
bO
?, (O to

(5.B.22)

J

(nasod on Glauber*8 fo rn a llm ; driving field Introduced 
Xii a eoïï'ple-tely qimntim mWiimical taiy)

V© cî'*nll rr-!r t#e Into accoimt the nmodt:.y*̂ ymtio radiation, fields 
coirplliit̂ IfeTcdc 1 and 5# 3 mxî 10 by assiî̂ lrg that the drivlrg fields 
are ir.clmW ir Üio rotatlm so that oil ve *m?e to do is to
consider the iritial state =-
ii stead of a sero photon state as In iothod (i).

The reasorin.rt behind tliis r̂ ethod depends cr tho K,V,A# be will 
rocaH that in neglectir^ certain hersdtian tcr^s in the interaction 
KamiltOinlsr vc o.amm.e 6\._ ix lù.

(5.3.25)

BO that is not oœçletely cer.«aral. Ie fact vs teve teen
assigned eorfem stibocripts to it for tills reason, i#e#
in the R,W#A# hfsc-ce each pslr of tersis in the ir.toractd.cm Rsrlltonian

has only ai,E mrmel ever all i but bearing in mird the 
STkaH variation in each case, e*g*

2 (% .(5.3.25)

y

be could thus assign euhscrlpt# to the boson operators to indicate
tills so Hmt

V\,

Glarbcsr‘s vhidi says (see ©q# (2*21)) 'tliat

4- a, a Ost\ \"b

be sliall be using

(5,5,26)
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liîuiTldual cdicrcr.t etatea, ' -i. >  » of tîio field obey tlie relatifs

vtiOT© operators and states are evaluated et the eer̂ e time and is
coîsplox* Di faot vro ehall consider only a single mode of each of the 
two fields* la the number of photons In mod© - end so for
tho zero photon state or vacuum state » 0 and the corresponding
coherent ctate Is tîie unique ground state of the field, i*e* the state
I . for » 0#

- " V r

be sîiall assume that initially \ /£) whore \ x '̂> is
the state of the laser field initially end \ x .̂ > is the initial state 
of the CRu field* In oi’dor to find the value of tcarîa

ve expand , and
V’' "

>, X GO that

At' V .
vlicre n end \ ^ ^ ^  is tlie initial photon state end ©o is
I'.cacured at time t* » 0 as is ((̂ y

The value of
obvious tîiat for certain n,m it is zero, viz#  ̂ \ x / >  forN f \D ' 'Î.

«5-
i W  yV X  thus needs to be kirown and it is

n . m is zero for all values of n,a except whmX-

In fact
n«lC, b?*3 and ïv*3, m*l (5*B*2a)

V 4 r ' ^ “ £

hV

(5.B.29)

r ( c „ w . \

since
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Slœilarly

<
I V ' ^.0
'f'I p u  '

<ifi.ly,,l'p - e

In this method, we let

iP’ ' '-lij- B, 1^,1 '/iĜ  -

<  1, \Q ,„K',v> - hG'

(5.E.30)

oC'0,3 ID )

''k> - kc/ e

I#E. now

x c y .
(5.B.31)

VzGp =

'y> " . (5.3.32)
,k\ . ,1 Gj.l,/’ = k Gpfe'^l

J

"s

instead of
" V  k.- 1 =< « K  ( ^

I (5*B,33)
iX II IQ̂  
KV

01,i '-uG; - GA^KcsïkG,„‘ ' ^

Multiplying equatlaiS (5#B#l)-(5) A'om left and right by^ and  ̂̂ ^

~ »As 
t

(5.B.34)

respectively we obtain#-

O  ̂  -^8 ^,oA] \v^>

cy ,0,-S

<if\ U ' p  ’’ ~ 14 K x  v̂ ,')4-, - 5I3 + <>^v\ \ >^v>

'■^ '̂ 1 P|»,8 ‘̂it.,3.

\8 \ ' f >

y O  < y k ,  \’f >

‘ ^'t\ \>^ V >

(5.B.35)

, (5.3.36)

(5.B.37)



Let

hence

2

®<G V̂ vA P ̂ \ ’\̂ y> 

-I'GG' e''4b 2<- 6̂4.

6̂.

- I'KG ^ X

Kcüico, recalling tîiat
/A K  " £  < s  \ A ^ i y '̂ >01 \ s ->

ve obtain ©quations for tîi© reduced dmeity matrix operators

f̂ P-jy) - - i ' y \ ^ \ p  + 10

", 'GGJ'e'^yiV 0

I’.)

“ v,G^ lo

 ̂ (;.B.44)

Coïspfflrlns these equatlwis with equations (5.B.20-23) of œetîiod (1),

. (5.B.3S)

(5.E.3S)

, (5.B.40)

(5.B./1)

. (5.E.42)

, (5.E.X3)

-rtôV"when 2,1̂  and  ̂ are writtm as e 
respectively, v© see that the equations are equivalent if

f..
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\ G 0

V-

i G

i Q':

'3 os

>£

U

A
... c

T

/ — \̂~ . .. g
(5.B.45)

\C.3 y oC10 ^ = k &nhVcX'v'-̂ ® *-
1.8. xkk<<^ Ks/kxA i*®‘ ®"‘<2 »̂ .o
ar© REAL la net hod (!)♦

loorirg these tronEfcimticjtns In mind we crni use either method and
obtain resrultff in the sar.ie form*

Accordir-.g to equation (X#C#S) for transitlcr.s
a) betve<si levels € end 1, ve need to know

< ?,: GA y y v ) >  y  (t.toyro H') (5.E.46)

end for transitions
b) botwem levels 10 end 6, ve need to know

j'")> ' £

Co for cs.se (a) we need to solve equations (5#B*2C)-(22) for 
In order to find %1,21 • • • ♦ • %i,ic,l ^or case (b)

we need to solve for [\p) in order to find functions %o,SjlS*
HlCf;2C> • • • f̂lC,CflO,S olio’s depmid on ^nd t»* In fact
it is obvious tliat there will csily be tlirce Ü*s in each m m  since 
equations (5*R*20)-(22) are independent# They cm be solved by taking 
Laplace transforms, assuming the Initial time to be t*#

first, on substituting fmr ^ and ^ mqslicltly, we obtain

(5#B*X7)

(5.E.4S)



• V

p. lt>

'4

'k,A_e-'-y£
(5.E.A9)

X ) 
? , I U 14 '(S.B.f»)

and in order to liav© only tîiree dietinct fmctlœis of t so tümt vo m y  
solve the tliro© ©quatione easily w© miltiply ©qmtifm (5 *B ,49 )  by e 

ai-id {5.E.50) ty e .
ïlieffi

(4M  4M

(5.B.51)

(5.E.52)

W,. £,to t'4- / «“S
(5.3.53)

% 0(ilottjjRg tlio three distinct fimction© of tise be represents by 
x(t), y(t)| c(t)| vîi©r®

%(t)- '* ^ ' IÙ83P
y(t) ■ e‘k-*' pp\y :. ^-- \v3.^4 + e

*(t) “ e""''^y£4 2̂ 4) - + e ""‘̂ ’«,«'-'4

VO liare,on mibstltutim
£(t) - t + 5l,y

(5.B.5A)

. (5.B.55)
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ÿ(t)

m

[''̂ 4■*

+51,41^14

Toktng laplac© traasforîns of equatto,s (5*B.55-57) v© obtain

S 1 '*2 S' -3- 'liP) - - \ X  ̂ -y e ~x l\A

' (vùg -L0^\ ' y. OS

' ' '̂2̂" - ' J - Lü^l ̂  ' K  .ĵox- ̂  ̂

1 ' '*2 + c“'’'

+ e zLi4

(5.B.5Ê)

(5.B.57)

(5.B.53)

(5.E.59)

(5.E.6C)

where

r - k ' L
I

I
(5.B.61)

I.e. ve have absorbed the frcqucsicy slilfts into the definitions of *s.

■CcrrolotteLJ^iricti^
% / 2  (S) W  43 (1)

In order to solve equations (5.B.5S-60) for 
we substitute for z.£s7 frm (5.B.6C) in (5.B.5S) and substitute the 
resulting value for in (5.B.59). Hence we obtain:

y(s) - ^

+\k
Ttsi'

(5.B.62)
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xâïore i, « s 4 Vî ' t

K ''x\̂ — N ̂'-'j£ "

% > 'K X.g ^

(^10-
««A ^ A „ E_ ■ 2A„?,, - 2A,£,^

r.ow /. k ' “'̂ AUN'̂  m f  éi e ‘■''e ' F\i,4
X)

/ à  e h y

(5.B.Ê3)

(5.B.6i4)

ivX'• -  ^A,£ e A

- ^ -k+_4u
T â T U I J  I

t ( (s-v»uiyî (̂sVvu3,̂ y 3 Vu.&y )  ̂-fs-nL^V ̂ ^ /s)
I r c s 4\.̂ N,-------- i p ' y

(5.B.65)

Eer.oa « M81 € ' ,% )0A r
8 , lü( A / ) : : - \ i , , : ; ^ 4 . \x„y y >4

-  (S-Ai/lvJ -tDsü
F (s -3n

4 „  .-"'""XG
^ ( s ^ A

K . ... 41 -fi )Si ( Xxis-v\v̂ A IsTiû ) -t 1 e_c.V
Vïvdvx)

Hov the quantity ve ere Inttostod in is the 2-time atomic corrclatim 
function

(6«B«66)

~ ('c,A4yA vv4

,(T,t4 - ^ n v v 4 ?  lN?t4>
t« M t* t -Q

under Jlarboff apprmiisatiesi 

in the preset case since
y .

(5.3,67)



there will be only one ̂  of the form ,. ̂ 
let ^

ir,,

i,

when ^

r . ■

Y

<5.B.68a}

(5.B.68b)

(5.B.68C)

Bow i f  ve take the Inveroe iepXaoe tranefmm of (5«B.68a) ve <A>taln

lv.„J4
and if wo let t « t* + ̂

01 W \ -J

(A?  ̂ tS k

V,,
(5.B.69*)

S lw llarljr

— '»-0-t

- i( , vJ., +•-
(5.B,6gb)

( 5.B .690)

Hew ‘ 'Ag, elnce t*  «1̂  t  elvay# oeeur ee t*  +  't

(5»B*70)

Xhne the atorlo eemletien funot&om depend t* only the
tmm  ̂ end net t W n g h  m y  feeter in %  ̂ ( A

I f  ve eemne the atom is  In  e q td lib riw  v lt^  the fie ld  so that 

'  ̂ v\'X /}'''' A  are #vm  by th e ir aoM ptetlo eagmwaimer
p.,:: -'-^4 ■ pp..,p P 4  ---4 ’p
latter evelmted at time t*

I ?
h A /"4\ with the

i#e# 'vX ( 4

-- ̂  ■ ( f- \ (S.B,7D

w)
'4

y
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and similarly for all other initial values of the reduced denelty matrices.
The atomic correlatiai fimcticai in equation {5#B**K)) is then 

indepaident of the initial time t* and la glvm by the relation

0 ( 0  = Y  X '' (5.B.72)

Taking the Laplace tronafora of , ve obtain

(5.B.73)

Ve now visit to aval mte the spectral correlaticsi function R (v) $ 
definod by tli® Fourier trmisform of tlie atomic correlation function

{5.B.72)

xâmve Y) ts the scattered f^requmcy#
, when zmltipHed by a simple factor \ {Q , as in

/q \equati(3n (2.19) of îioUow'a pe.p@r , ond ©qmtl<a (3.B.17) of this thesis,
riTos tho er.cr.-r,- or m-cr fTOstaa of. .tho SÆtt.erod. ficM p.t. pæv Tgfet ia
gW.gfi.

i.e. . \ f ( v 4 V y 4  (5.E.75)

where in Mollov*s units \0(f\y « ^ 1
for the 3-l<r;ol atom of mergy separation tvvù (se# eq$ (3#12) of ref# 9 )#
viiere in üio previous chapter ve have shovn, using Glauber*# foirmlim, that

y->) • ‘p - ' U j  ( X(N,>dXf (5.B.76)a VA C - L  j H   ̂)e(T - V O
where / \ q ^  is tlz© function evaluated in the
previous chapter#

In Ecllov*» paper̂ ^̂  he cqplain# hov the cohermt and incoherent 
parts of the spectrum can be separated off# For the present, since ve 
dm*t yet knov the roots of ^ ^ v\CiJX # shall ignore this and just



calculai© tîie to^ol spectrol correlation function

V'Y k £  f At T,./ '' Xe

Y ' ^  (AA '4 t

K!i«re

6\ + jit

Binoe M,„, ,4-'vA , v|A+ n ''̂ 4

k 2  ̂At ( \\̂ "l 4

;-vT

(-4H 6

r (5.B.77)

^  \y (-\CX if is lŒAL as it should
be sin,CO it represents tli@ 
equll3,brim probability of finding 
tho atom in excited stato^ \̂'p> •

wiiero dt y„ , / T N  e'"' - I /, AsT,ig.') r I
 ̂ I F AfiwA -J

%(V^ - 2/;,, Æ  ( FAA/i j,i)"/'/y6i /b -09)) A  /v-w, )) (5«B#?Sa)

where ("-/v .:,)) - KX' -,6v' + ds„^
il ( '> X" - / /vK ^ ^
/j / ;/V -  I
F A; 62 (1)5)) - /j,/-Fv’-tĵ Y 1 /n/y-cjJ) j ̂ y ^ S )

\) = V - c jg , /. V - Fa , ' -T) g ')
4.-,= w,'-,js ^
4 , r  9,,̂ )-u.

(5.B#7£b)
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Thus
\ . y ,  V 4 'F ' -  ( v ' 3  Va. t^ \

^ ~T1~> ATT "FT^\FFXv 'K\ /V' I A_. ̂  A,̂  _A) + 'K 4 V\)' '
'\Ll\ +'K"̂ '\V VA_\A,, j

(5.B.79)
nl

OÎI Ê̂ ipandlng the numerator and taldjig the real part, 
how ve vlll coT-Blder th© cubic equation

F ■■ s  ^3 a s ’ -N b s3  c

vhero a - ^
b " |\h'P'4T/KS Y'7)

® ”  - F T " »  11' -• J -A,^, N ^'/tt,;], )!"y,,_fc/ -Ao'+8i,,’ys'A-^.,^^^V V'lj')]

+ F',̂ '-'a 4L\\ v -.j A - a ,, < )'U']

(5.E,80)

Fvj 'A,̂  -3 'X 'V G F J J

cind Lo’ «* loA c^
Th© solutions I as shown in âppondix III, are

'5, " ^ ' h Cl

Y ■ - {[b/'y-t/SV'Gcî̂
U - h y ^ ^  - I  ^ I T ,  A y S ) |  -  ' k (  y - i  V " i  - H

'//r4rs

Ĝ -fi I 's

 ̂'hi

= X TIT

vhoro cF

and

also

G » - 'yob Tc

H “ 7^Af'jo'+b£

* " T G ’-ni-rt'̂
V
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It c m  be Gj'iOim that

0 “ G F t ' c ,; ,

?ib\

and A

vhoro I
T 4

i-[ - ' / A , „ - , A 
e " IF, 

eiîd h-cj.cj, K F ,
Thus, using this notation, we can wzite

^ , -V = y -^4)- VpXg - 7(̂ ( r 4 V-5 k) Ljg

-J : - 'y ) (̂ 4/4 - b Ï. - V(o ( f4 - I -L^

X' + 'Tv ■- ' 21; -''kTlf-b -iTo,'-y
cuul

' F ̂ /Zĝ  \  z Y i I ̂ X " - y  +A,̂ Y)'* ^
" ' -I -'■GV'

' '/U-b.’['GlS“ 5 VuV V  + % ( y  û,o,5 A

(5.B.E2)

I  ̂ , (ni-('GTAFFT*aATAA>5tT
TÎ1US it is obvious tîmt the ©pectrsd profile contatns three peaks 
eituated at

X "  14.-:̂ ,
V̂ ®

where ŝ id x^ are detominod by the roots of the cubio equation F(̂ )*
The ’i-widtîxs of the peaks are ^3* ^3*

Since it is not possible to solve the cubic eqimtion emctly, mless 
numerical values are assigned to all tîie f^bols, we slialX consider 
various approximations x-



(.1) , m * 0

I.e. both fields, and î̂ , are In EXACT reaonanoe with tlx© 
Gorracpondlng atomic trancltions

i ̂ 31

(il)

i L
aj'id -̂1 t 

'> 'X u_, idler© X \ . y X  4
' / '3 ,

It is usaxoÛ '- true tlmt lower energy levels have larger time widths.j
k© will ignore 1st and higher order terms in #

(ill) > > 6 A wîiere .

V© will ignore 1st and higher order terms in i /&V.
i.e. both fields are strong in comparison with th© line width for level 3#
bltli appro3di;iatlon (i)

wFifiii*© G

- ri\, 6,' * 2\,S 24T i L \ \ :  \ I X ' F r T r t . + y y

Urn -y, G y  +t,’ tvUo vtFi

(5.B.S3)

-'/(,) vj+'N,’ -'5,Asv y G p

- i n . A X v O f W ’F G x j A

Kith approximation (11)

U - ~'h<^y \ ^ A l  ] to 1st order in 

to zaroeth order
Y,\

and It

- - I T A ' A - A
C • y  ; - y ,  |\ - y  - °l y ,  I to 1st order >(5.E.%)
- \- y  y  y] to scroeth order

to zcroeth order
y
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With approîd-k'ation (lü) 
n m
G «

, '. A •« ^
,' a i OB

arid Y « - ̂  ̂ /(oG 
i/4 A m 0
y  - Y  ® G

'< m ,̂4 rŷ  4 -v^ ÿ/2 ( 5"4 T I f̂ uj’ 4AN-,

y »  >5417.,. : “ V  ̂  ^X'4 r  4 i A(o|

s . m  4 . -'/(̂  ̂ ( XK^I'KXgl t i/2̂ 3Lj'-ho%,- A c Y  ) "  j

end henc© whm y O tho tlxrw peaks occur at

V|Bs HO--'?';= LC,̂ 4 V-̂ ytO'X ' 4 LO' = tOst ‘-Ag' — L.̂i*
V,a ~ No^ 4 7,̂ 1 9 / T io'X + ' 5 6 ^ =  Voc. 4 tO' 4 'K 6  - tC^T^g' — tC)'

< o/' .A —  ^  7 ■*■ A  'V6F+tT)J^
V m  LU.;T%Ar'-L.\'

(5.5.85)

I.e. at '/2

H " ŝ''-0,' 4 \ 4c% -3 G J 

v̂ *t LOç. - LO,' - '/2. Jy F 4- 6 ,y

but at r©s€»i£iüiCo lĉ « io£
,'. vy y -cAg' m o

(5.B.86)

J

V̂  ' • V, - i-ô' ** 'K ̂  C % 4 G.

y  - Vg ~ t-ûg » '/2 " j "4(r^

Th© Imlf width# ar©

\7,\ ' \^,\ -\Z;\" + l A
- 'Iu K A F ^ O

\o X 31 J

(5.B.S7)



£iA,.î the apectrsd correlation function isj-

A, ■ - -p y ,y  iJ:y^p]
(p' F  , ' ’T\t '/-..yx ■/, ,N \  ̂ (5.B.8S)

'''' , ' ' /\ 7  \ ( '-AF  ’A'A , "T,. ’ 'py.r 'h-Ft) i
' ' AV A  A

L I

- V \

i 1 A F- .

mid If ( '- / 'A.) ( ' A )  F / A  '\  I '■ N,.p

I.e. X a ; . A  F

then the nm;erator ia modified so tliat
V'/' I'AF'"A ) -(Ay)-]' + \{\ + '(/pT 
+ /.tF/x y  ) ('' A., ' ' /(.,VF-Av)‘ - I \ '

F 7 v ,F'a F"a f  '('/Iy] - I ' F A A y Y  - A F Y i F F ( F F

Y x F  h i P y III
vFTTTvyF:- \ \ '/ . j  sxpi)'  ̂P'^yAipyiziPïyrPfvP^bf

0..A for y, ( x./,,>, Z X y F

1.e. »  -ly y  . A , - f C F

Eg(v') - F F  + A ' - VP.= ) V'F + AA;\(A, AF'Vt-,; + ( V \ V ' £
, F F Z v F f Z T ^ F  'AjEA,\)- + (V-Vz6]'Yy/,J3YXY + A,66)T

We cm. WÏOW tlmt Ui© emtr&l peak at v' *• 0 is higher than the two 
side pesJcs at v' * ± '/% G * vhich are of equal height* The cmtr&l peak 
ia of height

As, ' \' ) = 4 G i  VL,.G2 4 ( 4 G ^
m ^ W G ^ ë W ^ F T F ÿ

arid the two side peaks are of height

^,(v'-Y). v g F ( 2 a ^ a ) a -a ; 4 ( 2 1 / X

(5.B.89)

(5.B.90»)

(5.B.90b)
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v'

We vlll now consider some difforent approximations.
(Iv) If VÔ had aesumed arrTrxlpiMlon...(l) and then

without assualris approxiaatlcn (11), I.e. -̂5. , then we would
have obtained a almllar remilt but the peak widths would be wider,

via.  ̂ Instead of /  ̂'

(v) » 4c X* 0
L=

(laser field STHDMGEIi than SRS field, which is usually the 
o^.^ .oxrorifiont&lly - in fact is gmorally ^ ■
end .for />-methyl najiiithalene)

Gil

then

£ (  ̂ ')

vlilch is the same as case (iv) except that now side peaks occur at
y m i '/2 C n o t  at m ± '6 ^ 6  ̂s G,*, , i.e. they are now nearer to 

the central peak.

(vi) ^ 0

K„ »

T.: (3^ 1



then

'' "L\ ■ : (5.B.92)

i.e. all three pesJts are coincident at « 0 and there is no level shift 
or epllttlng.

The height of tills peak is

(5.B.93)

Thus ve see that the splitting vip of the spectral profile occurs caily 
when one or both of the fields are STHOKO and so it must be a truly non*» 
linear effect*

We shall consider cr.e further ease#
(vii) A  , „ Aa « 0 

Y

i*e* SEG field WEAK oonpured to line width of level 3

t i#e* laser fl#Od STBOKG con^mred to line width of level 3

This is also close to the eagperimental sitmtiw. The spectral correlation 
function at  ̂" V' is now

vV,(; \ '5,̂  \ (5.B.9À)

 ̂ ■ " ' A

This is a similar situation to ease (v) except that different assumptions 
have been made about the sises of the line widths* Here the side peaks 
ooour in the same places v i C  ̂ but their widths are narrower 
being ( 2 ^ ^  not

We shall disouss these results after oaloulating the other spectral 
correlation funoticsi f w  transiticns between levels 10 and 8*



(b) ScBctjal CQTr.latlafi function fo r ta?axiflltler,s between levels
Cü (l'_) ai;d Si -:j/2 (8)

tiov .ï̂ Qcwi to find , 
oquatione of (5*B*51-53)•

l»e# '3 ' -,

+ ' 'A ■ A

by solving tiio honiltlm i cjosriJugate

' , : -K ;i , ) ' ,/9_, It )

r (5.B.95)

/) A w  mm
(5*5.96)+ . A

0
\ ; A '' A ; /3 . .

/
(5.B.97)

Multiplying (5*B*96) by ' and (5#D*97) by , we

obtain equati<ms which my be solved in a way analogous to the s^thod 

used in  See* (b)* Thus

' ' Y „ . Y
\ '4/ \ A  ) A / A ir\ (5.B.96)

idiere

U Y 'f.- > 'L,%(s) €

- -  c
f - . T  I  A  T

(5.B.99)

.3^) - A  a h a  ^
G (sAj

K)• (s A Vi'S' - \î A -w

- (s nvù
T''.

(s)" (s ̂ 'lA" "r

G ( H  3  ''vt;3a (>) ■'''lY'

(5.B.100}



The ''’elowmt 2-tJirie atomic correlation ftaictlmi, in this case, 
according to oqimtios-i (5.B.50) is

■\

' ' under ̂ tarkof f

3 ( l;

U

/ ' .4/.) .

4'
u

n

' ' 4 i>

lienee, since ^ , 3 ■’ M , we have

Y
Y A ''3': - riA

( 5 . B . 1 0 1 )

(5.B.102)

(5.B.103)
V

Aemming the atom to be in eg#libriim with the field, we write

) ) 

) i-)m ('// ' ) (5#B*104)

Since we shall find that the lattw two fmctima earn be writtm in the 
follewing forat-

3' . \ 0,3 i

c " "Y '/^''T'O-A
’10̂  T À ) independent of t* end can be written

( il „ / '' y ^ T  + K,, .. /  T/)/' r y

(5.B.105)

Cl A -TTT (5.B.106)
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where j ‘ 'H \ ^

As In ci\iiQ (a) eqimtlo;: (5*B#77) ve can deduce the f>otal spectral 
ccrrelr-tion fvi-ctlon to be:-

' 4 ^  '-I 4- A-'^V

+ ' .'“'■* )p. „ > (5.B.107)

+ - A  - /  " ' A '  ’ ' i

viero yH . , and vill be eooplex#

w  ' >'V i :1 ' J-'G, .oG- ' I ^ L : 1 . _ i _ --- _  3 ;  ,
^cT(oT;;:~v^ A ic,( 4vo,3- « l o i ,,1)\.j. 1 . , -

A  ̂'V)m - ; ( A.,::, A  A , | -- - 43^ .C '-̂3;-...;,.4 , (5.B*KiS)

A  ^Asc f ~ ̂ .- ' ,. -\ . •  ̂'- A  ̂ - H.,, ;C,._ Ç , (1 H-4v ...A 3-431 '-A I
! G i T Â i T A A a ? )  ^ j

vliere 3 3v-.o 3 = A V - 1 r)

^2 3-iA^ = '/ill ' - tv '

S3 '-''""3 = v.V (5.B.109)
C o A  = \ a. ( ,fw-oj)-, '/^_Giu3\^'-''A

y
Let 'j 3 4 " A  - (c\- A Y  s - A  -1 (A Y A  " A  -1 ( Y) 

then A  C A'
so that, ebnce thla will be the crly factor In tb.e denominator dependent 
on V , we rlioll have tîiree peeks at v, - b , \A ' c\ , \),; Wjf 
of half widths ft, c and e, Wiere ft, b, c, d, e, f are determined by the 
cube roots of #

We ohpll now endeavour to find values for the yaluos of yO,Y^ {[) yQ. ^ 
as t —  ̂<' esiid evaluate thm at t » t’ so that üie spectral correlation



'U -  I  4-1.^

ftvîcticn can t.-e detcô slnod more precisely# Tliis dœiands the solution 
of 16 equatiCtfiS for /'■ ■, ' for r» « 1 " 10, and f'' ■■

 ̂ y H, , I 3-^ » /' ' # în fact ye sdiall detarslne
/ /  /

the velues of these two off dlagxxtml matrix elcc%its in terms of tli©
^ '3diagonal W).trix eleaeits /, , / " andy'À. elnce otherwise

ve muet solve all 16 epustlme# Those diagonal elecents are real and 
so ©TÆhl© siîirllficatlopî of ©qixatic i (5.B.1C7).

LottingI-
a » y, A  b myY j ,̂ c * y  ’ , d ** , ' , o « yA - , f *yA,v  ̂ ,
3.'̂ , h «/3.'  ̂ , i a A,,' , j » A  ,c , k « A?/(-  ̂ ' IE » y ,  , n « , 1 » y  3 , ' , J « A  ^

I m . ,?;v c-‘-f , n - a : 3  ^ . /,,3^ >
p •» p  --. I   ̂ ^ •

* Y. ' Y . (5.B.H0)
4;.

« Al 3 Av- 3 At

Yj a* i-2 ' ^11 3 A -7 3 A-

and taking the Laplace transforms of the resulting 16 equations, ve obtain

rA3=  ̂ (5*E.lll)

( : (5*E,112)

< - 0 , V i n , . , . ÿ V , „ ù . , V c - " j V ' ,  ■ "

( S,\ d(3" 3,1, A t  G'.t'') (5.E.U6)

( 3'\1 3 3  3u,iA (5.B.117)



(- + ̂.')\ii X - ,/u-A .X, 'A , t''''\ Iv'') (5.B.U3)

(■'■a}) ) L ( X ^ ' vlV\ (5.2.119)

('\\x Y b 'X, .b - (5.P.120)

( '■''''- ̂  ̂b \ \ , J: ̂ ^'-'b - \ •,.c''i/*'̂’ - t -'■' kVl') (5.3.121)

' ' (5.B.122)

(‘ , Y. h>\( ) - - ' (si 1 f ’* .>■'11') (5.E.123)

( . '1̂ 4 J/,\; n O " , ' C--, " (5.3.124)

( t' ') - ' X A  . ._. -̂  \ X, A (̂- '̂cM (5.3.125)

/\,j) Y* ̂ 4- ; À . ,Ĉ ̂ 'X 1. _. b ' X , ,, C ̂ ̂ Y. 1  ̂̂ 'f'bs.E.iaû)

A
Vrm thoGO equations it Is obvious that it is possible to solve for \-(C\ *

olsN It . tonna of c(s") $ § cJsl

I.e. yO ia t«TES 0f_̂ '̂'Vs') »
/9 * /9 $ Us") end d i^ ') being the moat important to tia*
/ 'I,'I; / ''

Tho Uuroa eqmtloas v© need ere (5«B#12%), (12̂ ) §

(st - \ X -  V \  c(s"> -H- nX, -X -V- c' ■ (5.B.121)

(s-t o‘>V^ '  ̂ \ (5̂ B*3J2̂ )

We obtain UX) 1» terms of , a(ŝ  # c(ŝ  (5*B*12̂ )
fuid subatliut© for it in equation {5*B*1Ŝ ) to obtain c(s) ^  terms 
of Q(c,̂ t m d  tbm  ve mibstitute tJiia in equation (5#B#12p to 
obtain in terms of cd̂ 's/c (5,̂ /̂ iŝ  iMeh isi*
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/}
 ̂ — iv::; ! ' ' '  .( X )

+ ' '  ̂i — ilsli— 1' ''V̂ x ) LI

; X(A r 1 - 'A,/V,X'V t
4 . — 1_ ----------- ---------------A YV ̂

\ t--.W) .( xY X 'll''- ,, ; t V-\vX (5*B#X2T)

lAore h^f )

\̂('A

I ( .X _ 5 4 \

1 ■ \  ,x > X _ ?  \G! X , " \ _ ,\ . , ;-: , ( v. I.■ x 0^ 'ijt l-c,=)]
x.l. - - x r x c T T — X  ■' -I w — y - — - 1
I / / ' V?____ b

,X . ,Î , ( \,./s-.u,3v ,K-^^l) . y s k \ ,̂; X /^3 X ’ -" ^ .3
^ 1 t\ (3 -' so Y " /

^ (A0 .3 c x . j j  C-'
V\( s- \ c Y\(j-''^u)

X ( b - V l  - V: [L. \ A' u
I V\K-.L3 X J '

Miere vz hevo let i — ^ ̂  in ordmr to flM tho eqtxillbrlum value and 
aosiriod thft ŷ ,r̂  I  ̂ cro tdso Indopendont in
the Hrdt t ”"^ sinco t!%© level ppgrilatima becoce etmdy so that

etc#

If m  &6SUEI» also timt the real j’arla of tho aibo roots of are 
negative,

l#e« if v\(s-vvô  -- tdiere  ̂ ^
7̂  « Y ff and f n* end p* are magatlve, Him the last three
terns CO out on taking the iniwse laplaee tronsfom since



J"<-i-----
I  H f MO, ) - / "f /I J (T

; ' / ' < ■ / . .  1 ') X  p  c'.. ■* I r. ' ) r/1 ( f / J J
s-rpV, j')

y

arid If  ̂ - I u 1  ̂n* “ “ ' ' # P* “ all three twi@ — > 0
aa t — => x; ,

Eonc©

( y; ( ̂ — >-̂Î) " K ̂ . L. ̂ i VC-

Sln.C© Uto')  ̂~ CK

3 ■ I ■■ - [ \ . (O h X p  . A, /G ' - G 0  J X V
4 [ G , GOV, ̂ OX 4 'O (:l/Gc',L

V\V- - \î_- cC)
V\ / 1V; Vi , I cj \3 O  + Vto C- h \ '/u.V ’ \ | y

<5.%.1ZS)

iVosi ©qimtioa (5*2*122.) w© csn nou obtain //s') and honco h C

 ̂ 4 lV\Jcb4\.

Wier© h^( o) * ‘

\, (cA « '/. \ ̂ 

bXo").

+ Wg^- A ^ 3  ,V.Jx=,.o3

 ̂,3o-A,^3 --0^(,S’vaX

(5JÎ.130)

/

Thus the fcm ncEuccd is oumtlon (5.3.105) vae eorrcot and en fîuîjsti'tutlng 
In (5.E.107)

ê n(v) -  Z/ÔZZ -»
S 4 J

2 '/4 GV'/,^G^ R(L [G j) h '( s ̂
\C(-x(v -i3̂ y + ( J /uY 4 h/ô'

Yui ̂ G W'' (-x(n0'g3^
\ G (-lfv>'L>JLy)V \V\(S' VSOl̂\

h'w

+ (V,,(dxvjs3 o / ^ £ X V



1  r-iS;-.

ViiCT© yO

/
/

<Utd '.- ( V j '' I L G-/ \
- '/_ ( XJ " -t ,

' %,G: Y

—  v'V xj 0-GL]

'•-.x, — -s\' ■-

ij (v" 4 r}.̂  ̂+ Aj.,3 1 '0 '' X" -v'(v' 4 A,. 3  * Vtiol
i VX, t>'v" 4 X"/v"4 A„, J]
 ̂'kC: V"

“ vpY — I (\j"i

r (-)l'0-LoX) - — I A  , 4-

(5#B#X11)

V:© vlll now congldor various app̂ roxlsaatious*

(i) : A,, , _ 0

4-ioj,_

Vu(o)w -X ilo,_

î̂ cV 4 lU^

i:( o )  «  I 'VG,; -  ] ■*■ j
4 Vq.(G,SĜ ')
« A t 313

^2 ("1 / V - - V  ̂ ' - I J'"

Cj (pG-wA = V ̂ , -'J"

c'C.W-wj)- f '/, X, [o x3" -v “ - 1 -  'oV""3 '4x j  + 'gg; 'i-J']

+ ,[ [ v i ' V -̂ ’Lûîjjx)"

(5.n.l3za)

- C + 12 J
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Glo(- )

(f\
3 11^3, /rA-'Db?)

4 IÔ Y,; ( \  ̂~S _ 3 I ( C i-\ 413Y) ) Y '' '■■ V J - 0(4^ 3
: J.G.;: J.G j 
(c ■ - Y')(h i \y )

xX) - LO /Cis-'bRVf (5*B*lXb)

/ X

X\-'. Ŷ (. : j a  R ̂ 1) J ( 4 X _ ) . z c
4 A 1'/%%^ ( I — V" Cc 5-'Y)PY)]

V  C: - G 4/4 ]
i L. Vz(X 4X̂ ")[(CP\.1>̂ V̂"4 A

I'ow ve ïmve yet to soZvo G (s') - ^

s + '6 )r' - ''Ivj
X(ŝ 4* S 4 l5 * - , Vo'-

.(s') «  S  4 '/:̂  -  i(gO'

u'  ̂o3>ç' - lÔ'

TMa iG cii'x-ly the coqplmc cm jugate of , hmim the roots are
- V ;5 i y IX' '+) 4- x .') -1 ( J J +zs,,, s

s,= aOv, \ -  ̂ M- - _ •• ■
X 0-i4. = T; -I ■’’h. . -'of(j'y'jV' - vO) (ol y.-X' \- ''s| JY-* ( . \3 -|(X0 1 A. (5«B.13_^
= e - 4  - - '  ~r. A [ ( 4 tŷ Y 4 \ A? ( > - AT ] ~ 'vj Vp(X ' V XV X) ' I ( AY k A  ̂ ̂ ̂

Cq iX t'o use the acme Jüaatlems

(i) A.g o
X

thai s,' «(x-ib - Y%(XAX"4X̂ ')-\l JO' 4 A-..,

Y m C - -  -  V j (XVX-vX . V ' [ Y I  J (5#B#X3̂ )
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end hcnc® when A  -- o , th© three p^ihs occur at
V 0 ÂT'.-O* = 4 ~ 'A, "Ag. 4

V) „ w  4- uô' 4 y. R = Lô  - wY " '/? G = uù'_ - go '̂ -'/2.G

V. « 4- ux' -v^G = w,_ -LOj 4 Go;  ̂/%G - w/  -LüJ 4va;  ̂AC-

1#G. at V" *0

Y’ » -VG ' (5.E.136)

)G m

by half widths '/o / V-» V + •

Thus V© 66© that the shape of the spectral profil© is essentially the 
same as that for transitions between levels 8 and 1, though v© cannot tell 
the relative heights of the peaks unless we find specific values fory^ ,
J .  , andy%,^ .

C. Elsgjsslon
liî all the eppr<»dLaatiori8 v© have considered we have takei as cur 

first assimptim that both fields are in EXACT resonance with the 
corresponding atomic tivmsitions* In tîds case we should have absorption 
followed by ©siesion and EOT scattering since the latter depends on EEAH 
resonance ccaiditlons# Nevertheless* since values of ^  and ^  are4.1 10,3
goierolly very small* though usually $ v© can assume that
neglecting thm Is a reasonable assumption end so our theory could also 
account for scattering# The tjq>e of process that occurs will also depend 
on the spread of frequencies in tli© incidoat beam* as explained by Keitler^^^# 
If the spread of frequmciea is large* l#e# a c<mtinuous spectrum* then 
absorption and emission occur as two irdcpmdent processes# If* on the 
other hand* tho spread is <  the raturai lino width then scattering 
occurs (cf# P#201ff Keitler)# In fact we assume the quantised part of 
the ©m field whicli is responsible for tho radiative decay to have a



continuous epectrua and replace ^ by an Integral# This furtherc
supports tîiô idea that idmt v© are considering is absorption followed
by subsequsfit eKiieslon* On Üie otiior hand we consider the driving fields
either (i) to be classical ronoohromn̂ tio fields or (ii) to be single modes
of tJio quantised field# In either case each field 1ms a single frequ^cy
and so their spectral profilos are infinitely slmrp and hence very narrow
in eocparieon with tli© natural emission lines of the levels* notably
tlioee of levels 10 and 8 with %Aich we are concerned# In fact* such
high levels have fairly narrow line widths* as we have assumed under the
various approximations * but tiiey do have fir it© ernes# Furthermore* in
order for our theory to account for dispeî sion end Bmrmnaeffect* the
latter of which occurs in the K-atoia and results \âim tîie final state of
the atom ^ the initial state and incoherent scattering occurs* we

2filiould have included the term in tîi© Hasdltonian ^  A * as pointed out by 
Kcitler̂ ^®̂  (P. 190).

Tîier© are a variety of multiphoton processes lAich can occur In the 
K-mtaa depending on the tuning conditions for vô and # Ve shall
point out those involving levels* 1* 3* 10 end 8* namely processes (i) # 
(iv) mmtioned in Sec# A#

(1) rttr?.!]Ætat.2-rhaton effect (ref. 13)

u>, n£a<- 'f e*iona<vCû. ^ g ̂( S iiCG \_C BASoRPTno Jb ^
This is one of the methods by whicdi level (S) can becme

populated# Frequmcy* ^ * of laser mission Is Easan scattered after
absorption of ^̂ * level (3) being the initial state and Y
(S ' or 7) the final atomic state# According to ref# (13) this results



in an Intcsis© etixoiilated electi'orJLc Bamen mlselm line at 2720*6 csT^ 
or 3*6yU * l*e* I*R# for all four Itean liquids used* In ref* 11 they 
point out tlwt the atomic coefficient detenaining the strength of the 
coupling between levels 10 and 8 is LArcGFH for scattering of 2720 cmT^
tlmn for 10 to 8 emission but timt the 4-photon process with strong
2720 cmT^ radiation is csatlrely absent* This is givm as strong evidence 
in favour of meolaanlsra (iv) 3 photon liazaan scattering*
N*B* since level 10 itself does not become populated in this case* ve
can consider Æ  " 0 in equation (3*B*132b)*

(ii) A r̂ 'oton _rarraotpTiq_j; (ref* 17) (more correctly tcarsed A-
frequmcy imrametrlo coupling 
(ref. 10))

( sY ' ̂'-•‘YüV (ill YciA''<'iiv' vvjTi
r

K.VÙ. Vllxivvx. Ci\ OicY"! U ji” {K''JL'̂C.ar
Y cAx-v̂l  ̂ ^'aY ̂ Wu

nicii ■! o fi'Sona<\c c.'X
3,00 f (̂ viÔ ioA SVbVcS 'beA«W

in this case the frequency of oach.. nhoton. ls__clos&.. to_ 
fucc.os^ivcL.orcrrsf!.intervals o f potagsim i (resonance ̂ -photon  process). 
Lumpkin (in ref* 17) observé en intense coherent beam of violet light 
whm he irradiated K vapcmr at about 350^0 with simultaneous laser pulses 
and he attributed this to 4'*wave pormetrlo interaction* in idiieh two of 
the waves are the applied laser fields and the third an I*H* wave gmerated 
in the vapour by stimulated Eoman missim (ref* 13). The parametrically 
generated violet beam is a doublet centred m  *» 4 %  (8-1) K emissim
line and typically had about 20^ more intmslty in the high frequency 
component* The measured peak power in #ie doublet was about 1 kW* He 
says that as the doublet opponents usually split off by iToriml amounts 
from the doublet cmtre this suggests imvefunctim modulations by the 
Btrcmg applied laser fields* since the soparatim varies only lâim the



aiaount of roooi'iant Gtdkea power Incldrnt m  the îUcell le varied* îîls 
theory> based on v&vefunction modtilaiion̂  also predicts to lisve
a doublet structure though this vas rot observed by Eokrd & TatsiU (ref* 13)* 
The ctrengtli of tlie pdarisatiaa at depends m  the Roman material
used end Is strongest In RB and FÏÏB and relatively vcsalc In M  (ref* 12) ♦ 
I’aranetrlo at Is not observed for of Mî but apĵ ears
strongly vith of ns and voaiccr̂  but easily observable, for of
la*

(111) r%l.2~T)hotm (ref* 16)

Çct % - v>\\c\cv\ •Cl-xwv̂'Svcyv

C O

Gc<u»ô\ \«v<i scV\l.vy\(L

state \ XQ̂  Is excited by slrulfaremis sbsomtlon of 2 Photons*
cvio at the ruby laser frequency and the other at the Stokes shifted 
fre#ency of stimulated Raman mission In nltrobmsme (ref# 3̂ )*
(K*B* In ref* 13 Koknl ê latcl̂ i observed two additional strong mlsslm 
linos at Z73O0A and 2749*2 csT \ûim using nltrobensme owing to dmhle 
quantum absorption to state 10 as veil as atw^ * 2720*6 mT^*)
Under the conditions of (ref* 15) 2-î iotcsa oxdtatlm of state I l O  
and atomic Raman radiation in K take place at the same time*

Emission at the complmmtaiy frequency is 10 csT^ above the
8 *» 1 resonence line In K and enhanced BLUR mission at U5̂ » 24730 cmT^ 
satisfies the equation

•» •» 1*0* Tl •*

to vitllin one wave uuabor* Tho doublet structure observed by tusqkin (ref# 17)



in llnea for transltims S —> 1 (and 7~^ 1) vaa attributed hy him to 
waveTiuiction sodiilatlcaa tut ZataM, Rokni and Barak (ref« 16) did not 
observa tl'ila ©tructuro idiei tk@ E#vapour pressur® was g-̂ f̂rielmtly low# 
Hio condition for S-jiiotoa C2xitaticn of Icvd 1C i& not aatiafleld for 
X-brononapl-itliûl̂ e, l̂ Nshloroimplitlmlon® or ]m&etl%y]f4naphtlmlmt0 (ref# 13)#

(It) 3-^tstm r,fr?ji ..c.̂ tterirs: (r*f. U)

\

V * ATLf\L_

3*pîiôton B&man affect 
betwem etates \ 8> end 
\ 10> of potaesiisa#
13 requlrea near reeomnce 
coTiditicsns in two of the 
3 photon processes and these 
are satisJlM for #

A,4̂  \

One of the three wajs in whicli a 3-photon transition can take place 
between states of différait parities is when vo have tho cbsorptlm of two 
photons and tlie emission of a third by a process similar to
2-photon îkisan scattering# It îms hem observed in Hi® scattering of ruby
( v<> ) and a etisulated molecular Stokes radiatlm (uô ) in potassium 
atcms (see above schoae)# Tho SR3 radiatlm is due to /h -fâothyl- 
naplithalene with « 13C15 A blue line at

-1« 246SI cm * is mltted in potassium satisfying

Hiis can eitlior be cttplained by A-fhoton parametric cabling (11) or 
(iv) 3-photon Bmmw-type scattering in Wiich and are obsorbM, 
a pliotm of frequency is simultaneously emitted and a K-ato© already
in state \ is excited to M^^er state \10> # Yatsi## Kcdtni and 
Barak (ref# 11) put forward evidmco» givm at tho beginning of tMs sectim» 
for the lattacwtypo process m m  thou# both processes satisfy tlie ume 
equation and conform with the same parity requireaonte* Th^ finally 
mention, tîmt diverse :mltiphotm processes are observed in free atoms and
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more will be found xâmi nmt teduiiques for hig!wpower lasers yield 
a richer choice of frcqueaicies#

Before discussing our results it is neoessery also to rm^imbar that 
02çperli:mtally both xniby end Sff» radiations are linssrly polarised in the 
eama plane* Barak and Xatsii (ref# lo) point out t3mt parametrie 
couplings give rise to oiissims polsrised iii botli p and s directiceis
(l*e# // ai'ad -L directions)# We will recall that in our analyels we
have smmcd over possible polarslatims ( ^  ) of the Incidcgrt beam#

In ref# 12 it la pointed out that assigzmmit of m  observed ©aisslcsi 
line is often and m y  to due to multlphotm process#

b)im E-vapour la irradiated by the ruby freqiwcy fmd by the
CBS frequency of nitroberiacarie (!3) resonance ccmditions are satisfied
for S-pliotoi ebsorptioaif

- Eĵ

and in this eaae the froq,Tj«icy oo”\  for mlesion oloee to the
10 8 Violet resonance doublet in K$ assigned to an enhanced 2-#otm
missim fro© level 10 and piimed by electronic 8B3 infra-red mlssim 
at Z7Z) csT^ coincides with the fm^uoi^ of the
4th wave In a A^photm parametric cycle# But ̂ lis does not hold when
otîior values of '-'̂s t not mtlsfying the 2-photm resonance oonditim, 
are used# and ahdft by equal amounts# in opposite
directions m  altering by # Also# vhereas mdiatim
cîiould be cqllismt^ and collinmr with the incident i^dimtlons# since it 
satisfies the mooontum conservaticss rule ## o#
radiaticsi sliouM pet be colUmatod# since it is a smi—spwtmeous process 
dnd is therefore esqmcted to be mitted in all directions cscr-sistent with 
t2ie radiatim pattern of a classical dipole# In fact# is oftm 
collimted and coUinear with the Incident radiations at and #
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Z

1 _

tJii» cffileslcsTi mmt be STDiUUlTED and not enkancod 2 photon eolaglon 
although in certain circuEistances tho radiation la mcolliimted end truly 
aeiid-epontmieoufi or Wioncod# Another dlTfer̂ gie© between r&fllaitlona 
and la that tlio opectral vldth of Op » # is BTX)AD duo to
tîio broadneos of CRS radiation » idioroaa Is S-I/iîX (1 ciT̂ )
mtcMng tlio width of w *

Tho main expérimental reerults are that an inteaiso HI lino Is soon
at ua. 2720*6 ca“ duo to stimulated electrordo ramn milsslon from
level 10 — > 8 end an intense 1 kW coherent beam of blue or violet llî it
at LÙ& 2*681 <a”^ for uc. la S-K 

-1
13C15 C5s” )̂ due to >-photon 

1305* cra’hi'fL̂an scattering or " 2/J30 cm for ̂  in IB
'il'JLch has a doublet structure and is centred eround the 8 •• 1 K mission
lino (the hl(jh frequency coc^xnmt Is 20# more intense but the components 
are usually split by crual amounts from the doublet centre) and is caused 
by stlmslatod 2-fiicton mission following on frm 2#photon excitation of 
level 10#

In ref* 23 the autîîors find that for » 14399 end 
*» 130% csT^ (in ÎIB) the ID— > S line •* 4044 )̂ has a narrow "dip"

with centre coinciding with the transitiez froqumuy and that its total
width, Including both components increas^l with increasing laser power;-

for œvicxs vjkSjLcV \.v S.9
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VvO bovo a e entrai peCwC also ©înc© v© Includ© tho ooĥ ront paxt In our 
filial ccprcnsion and this corresponds to resonance mission froa 
state \ 8 > . In Chapter VII vo point cut that the central peak
results from tl:o fact that vo consider an open aystm, under stationary 
conditions. In both approximations (v) end (vil) ve find the outer 
peak eepcĵ ation in or oases for increasing laser field since it is given 
by where lo related to the laser power and is geierally larger 
thion Go (in the ratio 2013, i*e# 2 12» to 300 kW).

According to ref. 12 the 2-photm missions are stimulated and their 
IntariBities are strikingly ccsaparabl© with that of idie resonance émissiez 
fraa the state \ 8> * Our colculaticzs eîiow the ratio of the Intmsity 
of resonance mlssimi 2—photon missiczs £cŝ case (v) to be

.VG,oj

end for case (vii)

; Y ' S , ) U ( 5 , - . 5 „ V ï , - , 0 3 '  ^ ' 4 6 , : I

' 4 G ' i h ( 4 ^ ^  iisiY^g^0   ̂ K ] ''(,1 O U i o  j

[ iH ÿ E Z r T Z t j

Thus, in both cases, the ratio shows the intensities to be cosgparable. 
Furthermore in ref# 28 it la stated that observation shoved the
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renor.ar.t-«*traneitlQn lines to hr.T8 KO doublet struetiir® but to have 
an appreciable width (10*5 •* 1#0 <s?T̂ ) end to be shifted (by 0,7 1,7 ca**̂ )
to the KID side relative to the transition frequency.

F»q .̂ .c.7'4

V.'e Jmve foiuid also that tho resonan1>trEnsitl<»i lines have no doublet
structure and In the case of, 8 — > 1 and the 10 —^  8 trancitions the 
EÎ'dfts ore and 51̂  ̂ respeotivoly end reduce the frequency of the 
transitice-i lir:e, i,e. it is shifted to the IZD eld©, Tho width of tiiô 
poal: in eadi case for approxim&tiws (v) and (vii) is

or A respectively, the eozie as that for the side pWcs,

io

The authors In ref, 28 also investi^ted tlie absorptim band but that 
is no: interest here. In order to Interpret their findings, th<^ assum 
that the wav© function of the atom in tli© field of the ruby laser is givm
by

vhere

il w - A _
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, I-:' OUT caaos<

S.0 ** splitting Is %&ere 0 is ca*
or d.epmdl3._, or» #ieb

 ̂ ^ transitiOTiC are consMered mid vh&t 1
3 :....±_2i__A — li., iiî pprcncteati<m» are used# /

l.K# m e cm Interpret ^  ae tlie splitting cd* the nendegenerete states 
of vhe atmii (diag, below), due to the eacfcemal field (see ref & 33, 55*57) #

^  e, ^  ,o VS.V1 r . s c

Ez
g — --- L- 5 V V

IJiey also eay that the aymetrioal broadanJUig of the 4auS (1 — >8 or 
43̂  5Pyg line) line gm#eete a KEW œ  OF FWOKBiuiOK of the SPyg 
state (state \8 > )* Aĵ parently the easeade population 10 — =>8 of Uie 
1 evel S ocours vith the aid of two field# that differ in frequecoy by 
an amount ^  g ̂ and this should lead to m  effeot analogw# to p^mse 
modulation, lAloh Is oharaoterised by a broad and «yissetrlesl ^peotnm# 
Their general oonelusi# is time that the observed off eats are owmeeted 
vith the splitting of the atoalo levels in th» external field# (K»B# 
frequenoy shifts 5\ have nothing to do with the «xtesmal field and 
ooour in spontanems emission also)#

The authors of ref# 29 also investigate the fine structure th» 

potassium emission speetrum and >  *» * 4^ tranî tien (8 —%))<

We may note that similar oondusions om also be drawn about the
4047̂  (5Fj * tranaitim (7 — )̂)# They find, as do the authors

of ref# 28, a strong dependenee on the field intensity (aM also on the 
vapour prwsure in whidi v# are net interested here). They also asaign 
the case of the struoture to the field splitting of energy levels and this
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«P-“' " oi the ato laic level# iîî the e#m# field tliey point out is one
of the basic affecte of gjggjjgggg spectroscopy# (olubea^et si# oossider
tiio situatiw where the potassium atom is exposed to a y .'.old 6ose spectrum 
CO).-:talus several monochromatic lines splitting the line into many 
Gosapoïîejito, i*a'tlier Umi into TV/Q» as in a mœochrornatic field, wMch is 
Wmt we coj.ioi'or# Thay find that the structure of the S — ^1 line is fairly 
complex and sti^ongly dependent on the laser field power (and vapour 
pressure)# /‘t(lo%r pressures and )Wilü' powers the centre of earkedly 
assymetrlc lines has a single sharp dip but os the powers the laser and 
Shs radiation inwease, ttm dip widens and then i^^Htsmeeessively into 
2, 3 or more ooaponentsi

\ vaS c .\o

WvlfLAS

"W\̂\e. <î-Vc .

When the laser power is IOC KW the line strueWre beeoMt quite im#arp 
and inlioBogeneows along the line hei#it#

Oolubeap et al# attribute these changes to field splitting of 
level 5 P ^  (S) into " quasi«energy oublervels*# Apparently, both 
the loser ( ) and the inAw red ( ^ «©isslcns play a
ai#ifioant role in this eCfset#

q c u
"4us,



tZu'i.t tho lasoi* fie ld  ) siid in fre rW  H r ©3 ( )

arc the li;teree corr.poi-icsits o f tho m iscion cpoctrua In t^rso tlrg  v ith  

K atoKG# I f  only tlica© throe dleld® aro takm  in to  accmmt then^

{loçor'Jlîig to rrrti?r*:f.ticn the following three processes arc possible
t?;ct can loti/i to ah-ooîp'tion of in the viciriity of the
frequency ui = 6,̂  ̂ $
i) iMixm-itmn absorption of pîiotonb.v.o , -• *- S)|
11) 2-fTumite abeorptiw of pJioton̂ ô and ^ ^ 2  ** ̂ 4  (1-^ 1C)|
ill) 3-(iuantui,i ĵ rocoos (of the IWmn scattering typo) vith absorption of

photons and Vvu\̂ and erdsciori of a laseiW’Teq.uency photw^vb, #

Tlnm the pl:c.qrrtipi line for the -** ^ 3/2 transition io ThHtY degenerate 
in terrns of the " ><%trwgmfields model* )# If the
intcnsitlea ere bdgh cncnigh the above procesaes can no Xcsigo? be ccmeidored 
indep€Sid<rit| tliO degeneracy Is rwoved, end Lhe li::e split into three 
caaponea*ts*

Coluleyr et al# ealcalate» by ooticldering caily naasiltoaians V a W  VS g\
pertiirbatlvcly, that the freqamcies of the abaorptim mslsa are given 
by the foUcving fons«la®| in our notatim^ vith an accuracy to t^^s

SFyg - ÙS, - 4Ty2 (V3-Kw3),

Go:.tc.ining «scpô red fielx’

V:

- \ 4,0,3 
2.K



Ii; crdor to cxjiivert to oio* notation
Sî — > - A,, . , i ' l ,̂ A.\xft ^

il̂   --->" - -ji,o  ̂  ̂ \̂c' -"^3
<\ Ç

‘\  ”  ̂  ̂ ■̂'- owing to tho use of
;i\\ dlffermt units

G SS -» '̂, « gc^‘̂c3 R (t 1
^ -K

The frequmcy of the photon gcnoratod in fazmn scattering has a field 
SÎ'JLft» 1*@#

A field shift of line ia also €jq?ected so that

. . Lv!,
3

For sufflcl€5ntly WEAK fields only a single absorption line is absorbed
cqporlceatally viiereaa for field sufficleiitiy hitmm 3 (xmpxmmta
ehcuXi be visible# the central line coincided with the location of 6̂ ^

••1within an accuracy to 0#1 #» C#3 m  and the aide carponmts vors:. mostly 
syîsaotrio as required in tho last forssula for though there are
m m  deviatims from aymetry reaching 1#5 •* 2 c§T̂ #

Tho spectral density of the vork of field v̂  ̂ is pi'oportioml to 
tlxcir mpresaioTi

1 ^ b ' » "  ' A  ■*

vhioh GhovG tlmt the ̂ sorptim cpectrua represents a set of equidistant 
triplets (indecc m) separately by \ 1)̂ - 5\̂ \ # triplet m «* 0 determining



the etructiare of lino AOJjXm In fact, the structaro of tli© absorption 
coefficient in tho Gliort-wavo region eîiould ©imilate that of the 
^ • 4044^ line itself* Thle is true for (pressures sufficiently higli 

and) powers of laser er*d SH fields sufficiently high, \dien in fact the 
canponents are approximately equally separated*

oThe fact tlmt the number of obeervei cæponmts of the ^ « 4044 A 
absorption line becomes >3# under certain conditions, is explained by 
considering not cffily the three mission frequencies (laser and '̂ 1 end 
(resonating with 10 — >8 transition) but also their analogues for

63^ — transition (10 — >7) ( end )

and ©Emission due to transitions from level 51^2 louer levels 5%. 
and ̂ K̂/2f3/2 — ^4# 6, 5)# In fact if there ere five monochrcsnatic
fields t end the 4S| -• absorpticsi
line can be split off into eight components but analysis of this case 
would be Euch more (implicated*

H-

5-strong-flelds-«sodcl ( u ̂ w
( solid arrows » "strong fields" 
dashed arrows #» K mission lines in violet spectral range)

Cotub®V ha $ considered how tlie violet lines are generated and 
give three processes:#"
1) 2-"quontim absorption of laser mlssim end SES ( ) causing

pcpulatim of level 6S% and population inversion at transiticms 
68^ ”^ 3/2 hence mission and amplification at frequencies
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and
Hence term la populated and lines ^ = 4C44/47A at trsnsltlm 

generated#

2) I-evels populated by Iteaa Bcatterlnj { )  of laser
emission In vddch la the initial and ^ 3/2 tlm final

\i(_

3)

atonio state#

i r ̂  ̂̂ V Cï
(2. # -.c <̂fccî»sts.̂  L '

4^hotm scattering ("light-by-light scattering") ^ ŵ +ici

Y ' O—< ̂ » \. <  ̂̂ VÙ ̂

This explains the fact that violet ©nisslon (8 —»1 end 7—»1) is 
plmrply directed end orientate exclusively in the same direction as co, 
end # This process is particularly effective when the following 
condition for vavo vectors is satisfied (see [59] for emmple)

This explains the singular direction of the emission and so this 
process should be elgriiflcmit at least in the initial generatim 
stages of infra-red and violet misslms# On the other hand, the 
cascade mechanism probably aE^lifies tlie light resulting from the 
4̂ -photon scattering# In fact. Coluber et al# conclude that the role 
of this process is only reliable in relatlm to the broad "short-wave"
line 10, , whereas its role in tlie rmalning regions of the spectrum
requires further experimmtal rescardi#
Nevertheless the field origin of absorption line splitting at the
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■4% ■ 5̂ 3/2, A troDSltlon Is well establlsîied. Also they note that In
the perturbation theory approach rroeesces IrTolrln;: affermt ruahers of
rhotor,J8 are recarded as différent rrococses i*ereas this dlstlretlon
beooraes rroiydless for gumclen.tlT hlrh erlssler. l itenslty. E.g. la Wie

_ ocas© of the ^ » 4044 A absorption line 1-, 2- and 3-pIioton processes
are "adxed-^" in the intense resonance field# Thus it is better instead
to talk of a £H>GLE process of violet absorption In which tlie line structiir©
is interpreted as a result of field splitting of atomic levels and "this
approach is in full accord with the spirit of nonlinear spectroscopy #
Golubev ©t al regard their data es an experimental verification of on© of
ntmlinoar spectroscopy's main theses#

The other conclusion of our calculatim, regarding the structure of
the 63| - ̂ 3̂/2 (10 — 8 line), rmalns to be discussed with ref<^enc@
to experimental data# The doublet structure which we find (plus of course
the resonance peak at v « ) agrees with bumpkin's conclusion̂
that the infra-red Raman missim (3#63yi) should have doublet structure,

(15)thou^ he points out tlmt this 1ms not bem observed'*^'# Lisspkin's 
analysis is criticized by Golubev et el#̂ ^̂  ̂wlio claim that lumpîdLn's 
model is inadequate since it assumes tlm nitrobenzene CHS radiation to be 
BonochroEiatlo and CTKOKG and all rmaining fields to be WEAIC# Lxim^Mn 
concludes that tho splitting of tho resomnc® level is real if the SES 
spectral width is smaller than the splitting idiereas in reality the SES 
ipoctrm is BliCAD, as noted earlier# Golubev et al* therefor© say that 
luiqpkin's conclusions are Invalid thcu^ his theory does in fact account 
for tho doublet structure of the violet lines#

ihiey ore, in fact, two possible frequencies for the emission in the
ID — 8 transition, namely and , but which occurs depends on
the resonance cmditians for and to be omittM we
require:



1) 10 _ +
o ^  ^M- ocr

wî'iereas for to b© esiittod, vo r©quire

2) lo  ̂« vo| =
^ vaj =

In caoo (1)
" m 0

and in case (2)
/9 « 0/ 'o,to

Since v© ere coiisldcring the overall effect of both procosee© and A  ’ s 
are negligible ve can aecuse that ve chould obtain a spectral profilei

Ï U, 'S C \"3q

According to ref. 23 the value of is detm^dned by 6^ t i.e.

where a * w-LO,^

If has a spread of values of the order of tiie field splitting of
level 10 another eciseion line would be expected on the high frequ<m<^ 
eido of • Ihe criterion for this to occur would be

idtlch for moderate powers of laser and SR3 fields G \ jl\ means

which is very mall indeed. The origin of the two outer componmts of 
tJio epectrm can tims be assigned to the field splitting of level 10 end
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t]'i© control oompo2:ont to tlie rcsoxumt transition, between levels 10 and 
8 \Am\ til© 2-q\i-ant”u:a absorption condition is satisfied# Th© ©cparation 
between th© outer poaks la tha sazm oa for transiticms betwem levels 8 
find 1 and co should also b© obeervalil® imleaa üicir intensities are very 
low# W© can therefor© only conclud® that the laser field is for all 
practical purposes corq̂ lotely monochromatic# The spoctral profile for 
transitions between levels 8 and 1 must therefoi*® be governed by the 
spectral width of the CRS radiation wlildx is known to be BlvOAD and so 
the latter oGn result in > 1 component for the remitting 8 - 1  spectrum#
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•y h yvŷ -r̂ c y. ri A"' ^XVM-'n c:;briT:'G
23̂  ̂Al;D 3P

For the purpon© of cur caloulationu corccr'̂ inR the hydrogen atom 
vo ehftll tffik® if to account the followlng levels* IS? (ground level) #
2Pi> 23? (metaet&ble), 2TS/o ^nd 3î*t !•©• levels up to and Iroludlng'Ü' jà
excite*;! state 31. We slmll refer to these levels by rubbers 1 - 5  
as shown helcu"

V /, , \iv>

\g,. ,'.'>

A ri%%nttc-ns cf }:pttaa
The eciuutioLs cf motion for a general 5-lovsl atom ax'Cp according 

to equations (4#A#19), (4*A.20) of Chapter IV,

' . b
P/

"/

Y
A'\ - \

^  V -\ ' \V'

( 6 . A . 1 )
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F «îTins L  j ^  Y "  ~  V""
L  '

' ^ V  V  ' V "  ' b A<1 '"’
%
4"" M

(6.A.2)

where the hardi tor ian is given byi-

“icT " ^ A , v Q ( 6 . a.3)y , Ç r \ hr ^ —d

Since we are always concerned with dipolo tr%r:6ltior© ve find that in 
the pro^erd caoo

X,, - C

' *25 
=45 " 0

0 (6*A#A)

wliere x •* q* X $ fL and the ©qualltica are true for reserved 
eubecripts end, in the case of q, for the herrdtion conjugate also*

We sMll be intereoted in traneitiors botTrecn 
a) states 3? (15)> ) mià 13^ ( \1> ) 

and b) states 3b { \ 5y) and 23i ( \ 3>)
when a strong driving field £. couples levels 3F end 23?, i#e« levels 
5 and 3» the field being supplied by ruby laser radiation which is known 
to be in npprorJjiate reaonanc© vith the atomic transitim: 3? - 28* (5-3)#

vicni. of .yclrr̂ n.t.Aanei-s
W® sî'jall cory*are our results with those of end Fautian

/ #̂-5 \
and wobelbmn * Zemik* s omcem is the cr-t.5cnl crop chip ,? of metastable 
îydrogen by moans of a higb-fToquency e#m# wave and tlxe theories he uses 
ere the quantun electrodynamical perturbation theory end a strong sigzel 
theory# If tlie atom is isolated, and in the 2S^ state, then it is



m 2 0 0 m

mctaatable (mm.! lifetime ^ eeo#) «sine© it can decay only by 
3-photon enilaslon̂  ̂ « It is veil known that a transition to the 
f-yoi'nd state ca_. b® ew-slly Induced by a d*c. electric field ^  •

khen til© 23 ©tat© Ic quenchod by a WDIK d*c* field vîiat occi.tr8 can 
bo e;-cplalj:ioi a.c Iri Zcrrlk*© paper# In the p̂ enoî ce of the field there 
are two atatioraxy etatca ar̂ d the vav© functiore of each of these are a 
liiiOar 01 7̂ 0 1 7ositioTi of thooe for the 23 and 21'1 slates ( ) 3 >  and \2> )

l.e#
(É.A.5)

Til# decâ " pro'w*hiXlt/ oo&es frca tlie admixture of ti*e 21, state ( 2  )#
for flalJa ,<T: V/on. tlie ..2 states are 1131: 23 and 2?^*
Eut for fields yA7'j V/eic# a saturatl<Mi cor:Gilion is epproaohed viiero 
tliO 1:1X11:0 la CC: IllTZ and both ctatca decay at a rate {;iven by the
aveî ST,© of the do<*y rates of the pure states

1'*' .

since llc-'it fraa a ruby laser contains photons of CKerc? 0,Cc57 “ 
juat eHrhtly le»s thar: the moTQr difference - c-twem 3P and 2B states 
C#OC95 the r.ost likely process by which optical q̂ iomchlrg of the
23 state can occur la by means of a VIlTli'AL troj citlon via the 3? state

L.'u>s£R. Pie3



If clei;.or;t€iry perturbation theory la valid (coo ciltorlon 0 Îtoi later)
thlD %7::x)coos la a l.li:ear and net a riOn**llne?r cro# The encr;”y of the

\ oexit led pîiOtüu corroapccids to a  * 1G35 X» as dctei’nÛJiOd ly the
CQi.c ̂rvaiiei. cf c e #

At ilIGil Intenrltloa eattsration effects occur cxl Ecrrik gives as 
a x*cacoîi 11.e fact tCuit the 2Z erd 3? etatce become otrongly coupled 
ia-.'d v!xn this ccnv.'X. 'j Ir vory strong both otatea cro erq-ected to decay 
to the 3%'üunA ciato at the rate i( t Y.g) Irpl^^lng that vken the 
Ir-tenolty is enoug!) the cross section will start to decrease end will 
tend cvc&^tually to vury Imrersely with the incident intercity co as to 
iXLlntalii a cxxtr.,t rate

l#o* <3̂ <o -L (6*A,6)
b

-:„ua:tcZiln3 by other states> such as 4P  ̂Is possible and this modifies 
the effect jû :t dtaarihed*

herd'll; calculates the diffor^tial cross sections# using perturbation
U-'iccry# for two t;"pos of Zid order traz-slticns from state 2Sj to 13,

d M
via an ititcn: edlatc state cud two types of Intazucdlate states in each 
case# lilic: he goes on to use tho strong slj'.nl theory cad assurées 
tl-̂ t aa tho laser heaa Is very Intmiss the £3^31 irauoltlou car* be tr^tod 
by canlclassleal ra;liation theory and ©pantoiioous decay from ^  to 2$ 
ucy bo neglected (l*&$ ^53 ** ho ©lioll net neglect this entirely 
but will ahow tliat it enmll# ho neglects also the sutircsonant terns# 
as do VC* he notes fJh^ally that the strong-Glgnal tdïeory provides 
tlio dcnplng corrections to the perturbation theory* fSso h© deduces 
tliO criterion for the validity of perturbation theory to b©

W\  ̂ (6 .A .7)
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where V --<=5\ e t r \\y  ̂ —  E # is the Interaction

hur'ilL-.x-ilaii, a '3 XL “ 1. where is the frequency
of til© lacer field* Tills Is the condition also for vliich higher
order terre L: U:.o perturbation theory trcatr.o! >.t of the 23 to fP transition are
ecall* In îü.s c-q.criaont ^S\_ « 0#CC3C \'^/^) 4 C.l eV# thus
iXLklng tiic uitrratlon effect observable w-.en \V\ ̂  C*1 eV# I.e. wlion

7 ' 7X., ^  li L/c:.,* .or flolu ctraagtlis L <  10 V/cu. pcrtia‘bation
tlieorj" Is valid* Otro-ng signal üieory Is necessary for higher field
strengths*

In a--,d O-obeloan’s they treat the effect ©f a
GTlDhG r.onochro r ,1c c*s* field of requeaicy close to one of tlie 
cliaracterletic frcqncrcles of a ©ysten cit the spectral composition of 
the ruuietio:::* They consider an atom vitli 3 non*dog<s;©rfito levels 
wiilch could corrcDjrond to "Uio dcz.ii.ant energy levels under consideratlm,
1,0#

V — -----------------

A - ---------------------------------------- Fig. 6.A.2

15----— ------------------------------ ii>'i
They point out that lr.v©rted population of levels F5# E3 is possible 
if the probability of decay of level 3

<25, ■- >h>

(tliô proh-ability of the ©poataneoua trmaltlon 5 — and 
consider tlils situation# though , rot Bentrict tlie decay
prolmloillty of level $• V© do illicitly assme

(6.1,6)
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at oix. r.i-ugu- ÙÜ.U hi; X'aet  ̂̂  i« not Im-ye# and Sobelman'a
calca.'.;. itioïï en; ricd tnily be compared with that coficaming the ijydrog«sn 
at>x.* J-.‘ tlx-:.;- c:;uo# in contrast with Zcr̂  li<H, the atom is initially 
hi X level ; 7..'%'': rnr-'ondlTig to otir level 5 not Ir- level 3 as in 
hcT!li:*s i-ayn'iy :v.i lh.o radiation field coi'h. i n T>hotorx r 
vdlJ. fro'’;.,;- /  ̂ there being t\m fic.7..'..u: cs-e etrong ©#m*
flold or f7‘x-■.{;• ■“ w  T ^  6 and one weal: oil cl aortinuou©

Bpoctnr: I:; r'ccc-înaty for the calculp.ilc:- cf induced «œdesion and
absorption at .v, ̂ » ox * They ugc rertiur*?atlw theory to find 
out fôo cbrx'a ;iori.:tlce of the radiation .1: tlx trx' sl tlcr- of tho atm 
from 01: OKcited r tate* They discover t':al. for atre7g, fields# i#&# TL 
large# ü ie  dar.udi;g curve iTCComes com ply;

(the aperiodic case) (6#A#9)

i.ccauae states 1 and 3 become HÏXïD# owljig to in teractlcm with the 
field* I'or ctlll stronger fields

\ '\ (b̂ r,̂  g ' \ = (Àros“ L’b't  ̂ t ^

4-
(6.A,10)

i.e. the timo*d@pendmce of this fwnctiw (the mcxhxlus squared of the
probability a:-r'l?.tnde} r̂ a?ee€snts damped oecilHutlais* They go <%i to
calculate the ;:rol ability of induced oclsolon of a photon of fi'oquency
X, j the i;"tc::mt€jd probsMllty W of epcmt&meous mission 5  ^3*

Wa 'I"''

( I ' •Ai.lC'jcV e

ng» 60.3
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In the caee when oeoilX&tlone ere damped 
the line ahape beoosnes split into 3  components of equal vidthe» 
A * (  ̂eepexuied by distance» .Jg - ’

where
of frequency

^ V - ' - end ?Y the total number of photons
in unit volume

In the "eperiedlo caeH” there are no oMillatiem»# but the amplitude# 
of the different states fall off with different das^ping conatanta 
end I ̂  leading to a change in the shape» of the émission and 
absorption lines.

When & Fig# 6# A# 5
A  (ordinary line of diapendon 

^lape and width ^ 5 )

« 0,08)1 g
^ (minimum still remains,

thou# fast disappearing)

Probability af qxiotanamia mlaalen (In units /l\ S5 A  )

 ̂ When external field increased still further the mi»êiœ  line 
oonaiata of the 3  oomponent# spoken of earlier, the splitting being
dataetabl. for ^  % -
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is appreciable only for comparatively strong saturation 
i.e. for CA>> - _ _

blUi departure from resonance ( 4, O) the line becomes
ertremcly aoyimetrical, the maxlmmi of the side compancnts approaching 

ar.d its yiagrdtude rising steeply, wîillst the other two terms 
'>©cojrio 8;mll.ei' and tli© jx>5itlo2:is of the go furtlier from

l.e alioll in fact be cormldering the case %dien the atom is initially 
in level 5, as in ;%autian and bobeljEari*s paper̂ ^̂  ̂so that our 
calculations should rightly be compared wiili t?iejj:'8, thou# theirs ore 
. ot specifically for the hydrogen at(m# (1*.B. In ]Caution and Soboluian’s 
paper they consldei" tloat the material system is coupled to many modes 
of tiie radiation field, but that initially only one mode of the field 
is in a lilgh-eiergy $ :,ijcristate. fhey obtained a solvable set of equations 
for tlie atom field probability amplitudes by \  ̂ the infinite
set to correspond to a 3!AL1 number of multiphoton processes* 
l owstein (ref* 65) tliinks that this procedure is only valid for mmll 
initial field energies).

before proceeding furtîier we sîiall define frequencies

— \ L.
" Fig. 6.A.7
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:,i. lower timctra. (ïSdBB.lor; spectra or,ly)
ïr. order to calculate the spectral densities of the emitted light 

for case a) it proves necessary to consider only two of the tventy-five 
equations for the transition opeirtn?a* These are;

15

13

\ ' ' (6.Î3.2)

■ V' ' ■ ■ ‘

The moriociâ Gciatic didving field eoMpling levels 5 and 3 will now be 
considered in Hie two ways explain^ in the last chapter* 
llathod (1)

In t!iis case

k\ - A _ c
(6.2.3)

\̂ iere

■ * ”  y..'A  ̂ - r  ,

—  '' :

'  ' ■ >' ' ''m
end thus the new equations of motion are* J
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15 i ,(6

13 Y'zx, b,., - w A \ b  ,̂

4- \ A)\ L  A, S  Z_

r\ t - -V

A=

\ r  '
K . ? l A

r" (6.B.7)

where X< ' ^\s-)
Si;

I Multiplying these two equatlcme froa right and left by <c\ end \oA . 
respectively end letting

jio\ \\\A\o> ,j, , A Awe obtain (6.B.8)

#
X

}

Since

(6.B.9)

J

IS\\vN = £  <s\ :
/s\ (#.B,1D)

we obtain the following two equatlone for the reduced denalty smtrix d m m t e

^  - - y/ẑ g- \

 ̂ ^ X s A A V T A  '

1 (6JB.U)
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: - ■( .: ' b:' ., - V ,0) \jO,̂ b)
-* , A _ f\y' (lA

éÜÀpik,■iLrtiA)
In tills case tho irdtial photon state is

Wioroas

V ■ A\V
I tr' t

for all other m and n whore n

'iC:'

(6.E.12)

(6,8,03)

V '
v^cy

e V, '

(6,E.Ma)

(6,2.14b)

\

as opposed to

1

-- A .

'46^" (>s-^f..Y

s ̂ Cou
"k

of method (1)

(6,5.15)

Hence multiplying tli© two transition operator eqmticsis from ri#t end
left by <A.\ and \v, N  reispectively w© obtain\̂\ ' /

\'lAx. + \

■*'1 <ri^v\c^y Pf

(6,2,16)

(6.2.17)



and beice, 

we find t2mt

(tA \-

U '

y- I c

Tims on eomp&rizig th«M equatiois with those of method (!}, W i w  
asstaaing k ̂ v̂A, oscillatos hem&mloally at vy) ̂  »ac^ that

FJA Wiors Uj we find that

:C 2 --- > AssFo^

k K '  ---

i#e#   ■>

&

(6.B.18)

(6.B.19)

(6.B.20#

(6.B.ZI)

Being the notation of method (1 ) ue can rcurite the redneed densilgr 
satrtx equati«iB

; " A

idiaaps 6 ' - ̂  - S)_a\ 3 » S

y^a

**«• Y; -

AaJt 'A
A

(6j3#22a)

(6#B.22b)
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Aooording to P# 338 - 9, in hydrogw-llW &tm@,
for the P-levesl® Wildh all hare allowed tmnaltlma to tho ground 
state (o»g* level 3F l*e. level 5) the dlaplaeement Is very moh 
mailer than the level wldt&i,

1*0#

For the 2S-atat©, ^ich is motaetabl© (i#e, 28̂  or level 3) and has 
negligible widtli, the displaommt is mush larger î tm the width

1.#.

The same la t r m  for the ground state, of ooisree, which is quite 
flharp* For the hl#er M e v e l a  (#ioh we do net consider), 
althou# allowed transitions to Isarer P-etates occur, the transition 
probabilitli^ as veil as the level shift decrease rapidly witli the 
main qam tm  mmber n and the level # l f  • remains in general m e h  bigger 
than the width#

Th» reXatlv» valuee of the level shifts and widths of Urn 28 and 
2P levels of hydrogen are given by him in Table H  for the three 

with n « 2 #^

VaûXXplyixig the first equation by and letting

<o Hvat (tV -'/"si''Ay. " A n/ (6.B.23 .)
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&
y *» — ■̂ vA'Toi-T

If ve now asmnio tlio Initial time t’ to be zero end take Î siplace 
transforms of these two equation© we obtain

 ̂S-' ‘'2̂ 5- v̂ is\ 1 ~X

(6.3.24)

(6.2.25)

(6,2,26)

( 2 ^ - \APô _Y (6,3,27)

33(5) end 13̂, (1)

In tills case we need to solve for y  Aj'"’ /ŝ i*e, for

(S' Wildi we find is

/:??,/ul 1 / z A )  (6.3,^)
/ / r/s)

and dropping the superscript

A>
SI / S )  -

Af, ^  ̂ S-nUjP)

rpii‘̂iu') j F&Ï ŸwZl

\ /A ro/_ /o) -f si

where f A) = S -M

/s) " S '/2^30
F A)  ̂ -CA)/^/5) 4 7y j(G- Sz)

^ piihP)'- s f- n

AfilJL)' S tVzllgi -4

(6,2,29)
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Where A - ̂  - Lo,' - v:

'f-j I /2 f f — d\<=. C) ̂

: A ^  ' As-^ r  -

In other words

y,/^V' 'G' } (6.B.30)

Wiere tf,  ̂ ,^;r^
76:^2)

A) -- ?C Asnio^)
~̂p 7v 7 7 )

The qujantlty we new have to calculât© is tlie 2-tlK© atomic correlaticm 
function

A <9- R///') I-/m) >

-1

( / '

under FWcoff 
apprcoda&tlaD

f A/,j,

{S.B.31)

for initial tise 
t* » 0

Taking the laplaco transfom, vo obtain

; r % ) (6,B,32)

We can show, by a method analogous to that used in Chapter V t̂ iat the 
spectral correlation functicn
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v/'j) = / 4A e" Y('A

<1„0, (6.E.33)

J
W t  V0 now assixa® tlie atom to bo Initially in level 5, having bem excited 
to this state by the field long ago,

(6.B.34)
A

% (  v) - k . ,  i-^S)

F (̂-1 /V -
(6.B.35)

J

let
whore

S. =

c
-t V

and

c\where A
F i

.4>
2 A

(6.E.36)

Z %
Thue a - -V),

® “ - 1  V' A V \ ^ '̂ ''1

b “ - 1  ( w, -  A

In terms of these values the spectral correlation function is
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6«(V) k ̂ L  Y- 'k^ ~ C^ -'-o.'-v̂  F )C ̂  " k),' — 4-A  _
/ 1 I A) - AO , —  i,'J I -V- A  - / L   ̂- C Y  — KJ ̂ —  A  -r, 4- A  JT 2  V, '. / ■ '

' '0 —  4- 'A' \\ C ' ^ -''k) __ 4- ^
kj ~i ' A -  : '

(6.B.37)

\

■> - V  (  J

where ^ y - (^; -4-uj;Y
hmce the spectral profile has two peeks at

- F:\ 4 Ô: -vVk  ̂ ( A, ,,
.. -V, ( / \ _ - AV >o , ^ -xj (6*B,3e

of widths \a \ and c , ,
Thus we can see Jmt for resmmace. * 0, B * 0 and so there is 

<aily one peak at Y ‘ » 0 of width | ( < - ̂  this corresponds to
iioutian and Sol^elman*# ease of » 0 and G » 0 although they obtain a
splitting for larger G.
(ietvecd cukSm

fig. 6,B.1
\a\ = — F~\
V(l\ ̂  "t
•'• \q\ <Vc\
a.w(Y V.W. ■̂ eaV \s WDxT-r<n̂ '̂r 

GÛ.SAA Yo &o\(LrvY\\Y\[L

<i(A - '/i - 'h ( A(vOVvsLSotxfijrvte COJiQ. I

M

VI ̂ 0̂  \\4/Arr\oAlp̂ Z
^ ̂cp̂ç_S>

fig, 6,B,2
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V© ©hall ncrt consider <:<. \ A  I If ^ i / _ . ,
1.®. the lirlt. mentioned wller. In this case

* ‘"1,2

' : ' ̂
: - /j j kiY-

-'4 \
- ~ '̂i j b ( \ A ■< N -t- I ( ■̂"'̂sO — <6L1-G 2)̂

-kj \ Û.( Y->/aV' -t

'I-ŷ \\ y 1.0 A - -  AG"A;,„
■-]

* a, i - “ '̂ 2 Fk / 3̂2'̂  ̂ '/% (̂ ÿ-
I V  ̂ ^

Yq ' 1 2 ̂ L\i . ""xA - 7 — ‘ ^

*k A 3  ( -  Avg ^  -f  '/z(ô  %_____   i
L '4.( 6<"-632̂ ^  <k2 j

s,t« peaks occur at

- fo.'-rO^ ^  I -f
 ̂A,\

X. * —  Fo, -rÂ ' 4 S) — I — 'kV

and have widths

si
 ̂ 7^TÏv 7777^ vs2

Aj_ ’iq\ U s \  '-' '13b'-\ i \  ^

J

(6.B.29)

(6.5,40)

J
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H—
V,'

— I—

V ' -> v'

ri^ht hand peak nanwer 
(opposite to general case 
for field of erbitraiy 
magnitude)

 ̂field llMt. thm
VO have

Fig* 6.B.3

to Beroeth order In \ 4 \ Ag^\^
_ _

^1,2 ^ { '̂a  ̂ I ^3 - '/%' G

“ — 74. ( —  '/%' \ D (l̂  "S T ^

*“ C -t ' & =L — Vi(_lX _ X-̂ 2̂  —  V:̂ \ ( Q-(uo/-+-u}'v,''̂ — <£̂ ĉ ‘'^"3 

6*t# 2 peaks occur at

* —  ( wj 4 \^ “

XJ “ —  -rub » —  Vi %. “ G ^

and Wth Imve the eaiie vldth \a\ « \® \ * i( ^

(6.D*41)

(6*B*42)

-o'
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then the driving field vanishes identically, i*e* G _ « 0  then
V0

'O -J \ A  + \ f 3 I Lj

7V-*' \V) ■;. -  ̂— \  ̂V.0,-,/T^.--:

w  'C ^  \  '  — '^3 X r  —  \ j

0,t# 2 peaks occur at

"i; »  —  ̂\uo/ -r  ̂ — A ^

V, « —  ( w,' -no-j,'  ̂ - O

and have vidUis

V
i.e# tîioir sp̂ it&r̂ ecms decay widths as esĝ eoted

Fig* 6.B.5

-Ag’i tlAS'S
The heights of the tvo components, in each case, are not identical 

but their relative values will depmd on tîie relative magnitudes of the 
decay constants, field strength and the nearness to resonance*

M  . Srsctral .ecrrsIatt'Br. .&ïnetlgri .fcirlrs,îieAtlor.3. hetKewi.lgygla
3P (5) tod 2 %  (3)A.
Kar® ve need to solve for is) and tlnis ve need to

consider five cquatims as follows, idimre we have dropped t2ie superscript
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Irfloating the âarxity matrices to be reduced ones since In the Markoff 
apprcDdzation., which v© shall again be using, this distlnctim is not 
Isportfiî'11

—  > ui t b

- )(_/),. _  ̂ y.X? ^"" - Y,. 1̂-3 S

f̂ ss “  -  V ~V \ \ A s  —
/i.t "  -

vîiwe +
ihiltipljlng tJ’.e first ©quatim by e

cj-.d Icttlr.c

X \  X -V J C

y

f- " 2
£ . i -

P h 4- m

(6.B.65)

(6.E.46)

(6^.67)

(6.B.48)

(6.B.49)

-•'-i3, t and tho fourth by e -'1 g

— > LÙI Vr/
ÏI -- e

r -

(É.E.50)

ve obtain

z " -C >X2ow^

y - - -+

i " -V'aU,+'^^ •+'̂ ''cu.H

Ê ■» _  15̂»-y\.

Taking Xaplac© trsmsfonns end asmming the initial time t« * 0 v© 
obtain

(6.3.51)

(6.E.52)

(6.B.53)

(6,S,%)

(6.B.55)
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( lûls') = \ _ "\i'A + X

(s4)z('.\ - >X£̂  ̂!(■==.') -V

= _ \X£̂,̂Z.('--̂') + -'■ Ht>)

i Sa\ X  ̂'ox (o^

(6.8,56)

(6 .B .57)

(6,E,^)

(6.B.59)

(6.E.60)

These five cquattes can be solved for CCX^as follows. We first 
obtain an expression for trm (6#D,60), then one for % frm
(6.B.5o), Viddi ve mf stitute, together vitli A  (si in (6,3.57) to 
obtfiin ^ . Tiiai £v<m (6.B.56) we oVtain i (ŝ  in teiisa of H (s')
which ve substitute in (6.3,59) to find Wildi is given by the
foHoviiig equations-

C “" (s 4 Y%( p (ĉ

V\lĈ  /
+ (,aO ( s -̂ X̂ 'X j GkX - a '4G^(s4',2(%',^4^% y(^6.B.6W

+ 3 VG^ (s-^ W ^
V\(ŝ

+ -i V X C(^^ /3 (c)

vl'iore

- C('̂ {(';(sX O  -»-2Vy_G"( -7lVG'76<'ff„X-)b
G(s) » +2'4G^(s'Vi(Y^^X^ (6.B.60t)

S  f  - >

“ S  ■*'lz.(\^\ç') ' A,,



v\ ( 1̂ \-o= ,3 ■  ̂'--  ̂  ̂X) /

 ÂT?rz3—  ’

+ v.G '. " . '  X_xx;) . 'A.)( s (6.B.62)
VÜÂZI3

+ (s A , ,  t'W S)( 2x y9,_, ( ü)

A
+ U

A  (si /) roi + 6  „  ̂  (si (A  -+ û , Sy>„(o1
s 4-4- j 4-4-  ̂ j j

,,g (si I^JCI + U  , ̂ „- . ( A  A  . (C.'l

ïli© relevâ t 2-tiino ,; rrelatlm fmctlæ, Ir this cane, is

ts:d(y Karkoff 
approximation

d
^5 5 = X i . i  1\.̂  _rt̂ ,(c)for Initial tlae t**«0i.e.

Taking the laplac© transform

-(6.B.63)

15
! /

Mencc, es before, the spectral correlation function is givm by

__ X’ -S'S

end as the atom is initially in l«vd 5 
^ „ ( o i  - 1 -, yo^,(oi. o

(6.B.64

(6*B«65)
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DO

1 \\('\l'O'̂ Ô J

^~s4'o)~
n
\ W  - U J ^ \

R

At first si{̂ it It would appear that the cpectron has six peaks ©inc© K 
1© & 6;tli order equation but vo vill congider V\(s) more carefully*

n(^) » '(2 / '/zGYs-H/i,
— ( ’̂2.c^y (”s 4 V2_(

Mid can be facttzrised so t2mt,

-4 G  ̂ ^  '(2 ( s> t V^ C ^

= s 4 - Br(C)

(6.3.67)

(6.B.6S)

V

^ [ 4 ( Y , z x ï , y  ( "

" ïé x (7 3 3 F
4 G: C Xz(L . Q ^ ^ v - w V -

or

wher« V" - ^ V - (a ^^+ uaj)
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i.e. the epcctral profile has four peaks and to find this ve must 
dissever t’;© roots of th© quErtic eqimtior 3T(X) •

Jk') = ( s - , lsY\

In the case of roconancô  » 0, v© can time s«ae tliat ZTfs) is given 
by

3(0 . (s -.h (S^,^\YÎ (ŝ  GVs,

« ’‘2 y(s^

i#e* ve need only find tîi© cube roots of
First ve sîiall consider t!i© r..or>»ref?̂ zrce casoj- 

13(si -- s'* ->-ci.s.''4 \i■s‘' 4 c s  4 Y

vi'icre a » 5 I X,^4 
E * % \ l

(6.E.73)

X, J -  4 4 !
' " 'X ,4\_> A 4 (6*B*74)

51 s
d - ï,A-b'dV \ v

First ve Euet reduce to standard fora by substituting
y « s V  a then 

d(^)
where p * - 3/̂  a" 4 ̂

q * y — '/2 C'X) C

Then, proceeding as in Clmpter III v© write 

P “
^ ** 4 va - iw\ - j! fA-m')

^ “ v a (v

V

(6.E.75)

(6.2,76)

(6.B.77)
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(6,3,78)

hence
m

mn " T
,4r* I y  ̂  \  — y

\ (\'V 4 a^lVY +(^-u.r)(!>Y - Y  - o

and this can be solved for ilf and using the positive value, a real 
value of (I can be found and hence m and n which will also be real, 
The four roots of J(y) are tJjon

J

J

(Ê.B.79)

(6.B.80)

(6.2.SI)

y1.2

(real Eci* S'jivn) (real for S' ?-4a)

and thita the Soar roote of J(e) are

Y,i"'Ya
— $1 Î z-4 (l' -\LVYY — 7% CL

a
t: 1 -VvXA. — 7% g\ (6.E.S3)

let T('Y -- (s- Y  %Y)ls.-sYit'X. -
.'.3( ' ('ij 4\W-LaY('̂ z'x 'W-A3)(ŝ Z(\)-La Y|('X4_4-\(\)-LÔ (6.E.S4)

end esmmlng the four roots are conplex 

J
r /zR^ + - (6.B.S5) 

J (-,(vh^^^= 4- 4 4 Y .... .

GO that the foitr peaks are at 

of widths
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We ©hall not proceed eny further vltli this solution but 
concentrate on the Wien

where

mid

■= ( s  X J ) Y.i

-vV.-s.+c. = -s^s-^2)

a «

^ " )L

If V® let y m s 4- (X , then 
J ( y )  » t  G

 ̂ “ %'~l c
Finally, an proceeding as in Appendix III, ve obtain the Üiree roots

® u-v\v = ^

^V\ K = " { " ■  ' 

s," 34<z.= -{\!kUf^

(6#B,86)

(6.B.87)

(6.B.G3;

where
oC, - f - G _ L jlLih:^V^!
^ ■ {

__G - a[6^T\vV^ 1̂
V

(6.2.89)

G^+4iP ■ ('6g0^%Y - v CYg Y-7r-6fi^Y53,^%7[yî- v (v y } T

- YG," (6.2.91)
If G ^ « ' V U - - X , y "  » l.e. tha ggU.Z,9da%:MAm,.2Aâ&, then

VO can expand 

0̂  + -
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Uîîirs tîi© Blnojrilal theoren;-

i 'w\, - '6i 'V, 1 ^1 'ioiXl
to let oï'dw in C-..'-

vix-'t,y

- - (  \-'SX \ , -•' iî t",
"‘■3T l VivO] lL-1,

l3 Kiall mouf^ îîot to 
moke the 3rd term large

fi " ~ W%::'Cd

G" 5 / \ ^ A~Sij Y;; ^
z V V Ys--i

(6.E.92)

(C.E.93)

5Z

Ëtosll enough rot to m(d;e

lau'̂ e ü.w

o( 1 J—  llr-  ̂'i 5

i|«‘U'-
tshirig



—

Kow " oa.il b© mmlimted by do Mol][ro*c thoorea

J» (,CCb'‘'G -V \ ^
«: Cn()V̂ 4. :'/̂ru') 4- \ t^OTO T « C,l,2

L) ® '/j 41) T L 4c f r O
l''Y'“̂ 9 4 I 4- t/9 L 4c r Y' ‘ 1

 ̂ . :Z
Conoid cMr g tho ©liiiplciKt value {C\ - L

%  ' ‘•-■'"''I ' - ‘ <“ •«>

"'■c I' “ Y(w?ok\
(6*B*96)

s^.w.x.

 ̂ '"' ̂  (6'2'iso)

I.e. X  m  z (6.B.101)

^ (^') « (s + s + ( s V (vsj-v.x̂  ̂St (6.B.102)
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J + (6.B.103)

and henco 2 peaks are coincident at V ‘‘ ̂  ~ - X
at resonance and the other 2 occur at = and ï>‘* = - V
I#E. 2 peaks are at

V ^  l ÿ V Q  

end the 2 otiiero are at

(6.B.104.)

(6.B.105)

The 2 coincident poalis have widths M \  end \^\

i$e# X ■52. \ - X  QÈ
^  V  (%-rj

and / r  _  J_ G,i. (6.B.1D6)

and 60 the total width is

( (6#B#107)

The other 2 peaks have widths

end
<\esoiaaf\ce 
S>moU. ̂'rWfVoKorfv,
\g. ôeidc AeîA

* lu\  ̂X{

o 4ft
Fig» 6.B.6

Y / {6.B.1CS)

a ,.a ^-'4Y^C 
Â =- fŶ +ŷ ')
A  jj’ViCA ĵ +Ŷ a ")
vxiViarc. C “■ _Gg
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I#E# ©id® pmka er®mynKotrleally spaced, th® left-hand one being both 
further from the central pealc and narrower la width than the rlght^hand 
one* The control peak is the vldect#

then » 0 (eijosntaneoue csdseiorO all peaks coincide at 0 and

A
i

I
I
I

K-.V"')» ( ( y„-' Y.k -iv"V Y,^-'>>"VYc-'^4

{ v") m 2.  ̂Cï,j^Y_'"XJ" y. V( -Y»' "■) — 'v" I

(C.B.1CÇ)

■53

The width, of the central peak is  now

Fig* 6*B*7

(6*B*110)

Spontaneous ^ s s i m  
at resonance

O
According to Zerrik tills  «oiseion is  negligible. In fact

"is(A (6.B.1U)

tôiicb is  in rea lity  very Bm ll, as vas to be expected.
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I f  l#e. the thon to

acroo'th order in \ ( Y.-̂ \ ̂ Y / ^  have

c^ + 4iP i * %7(&:y

%4c;y;

(G®+Aî:^)^ V u ^  C,: 5 I ^ % :  ' % ] to 2nd order in X-^ (6#B.H2)

oY -  1 'U , ,  C :  .  ^ 4 4 ^  c ; (  1  ̂ % z

(6.B.U3)

/5 h))<h ̂  ~ 54>l'b G;"" ( I "* %̂2. %4SQ' z n V?
2 /

vhoro we hove taken . - \ i*o# tlio cdbe z^ot of (—1) to be real#
Acoordlng to Semll%for very intense fields epontanewe decay from 

5? to 23 may be neglected showing that Y  ̂ is very email in cœ^lecm 
with BO that m  shall consider (ï.^/g ^  to let order only.

G ~̂tj. cA U>j >/ kj

■■ J ■- '"/c.T = 1’ % % j

A ** ̂ 4^0-

ĵ If V® were to have kept j to 2nd order, then

/> ^ -X|9 Y  \ - ^

X6.B.W)

(6.E.Î05)
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'/3

Y-/S - 1 -
(6.B.116)

(6.E.U7)J

' , YV - -  V ' 2  ( 4
X  "> >

NaJ -- ^ 4- X'i)
X —  2 " G.- 

ÎIow J( ') ■*  ̂ Yf G)

V

jr(-)G'Uij4) » 5̂ 4-\(v-'.0

*“ ~ j -% N - L Ô 4
 ̂I " t x ( X ^ 2 ^X-') '̂ l(\) -Lü^-^ ^ ^ 4-6 5 ^ L x

(6,B#120)

Thus tîio 2 of tlio poal:a are coincident at Y)’' - -
widths (Y,̂  and and t2%e rmminlng are

of
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V '« -  » V"

A  «  j (  c  .A  ^ 

considering resonance

 ̂ «̂r ) each of vidth

vhere of course A__« o as we are

Fig* 6*B*8

Oie.

— O 
The expression for

Resonance
H„Y

G-,' »  '̂ss
1*0* strong fie ld  case

Z53( V >  % i B , - V ^ A l v ( X - V ' ^ 1  - V'[I X
\ \ 4M“- i ' \ ' i „ i \ Y T ( ^ v ' ^ "- I ■> <m"-’G^Y\

' I ̂'1. ("t-G ■* (v"-6,-') (6.B.121)

v-%\ u-V'--4Cî(\

H-
K*B* Kauticn and Sobelisan also obtain three peaks in the case 

but In their case a ll peaks have equal width* They are, however̂  

equally spaced about the central peak as ours are also* They say 

that for discernable splitting, comparatively strong saturation is  

required, i«e* »  Ï  *

■C*. ■._... Rts<y.?.ŝ j,on|

Tlie trip le t nature of the 5 —?3, i*e * 3P to 2S, decay for resonance 

and for strong, or even not so strong, fields is  owing to the fie ld  

splitting of level 5 (3P) explained in the previous cïiaptcr* The
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ccpai’ation of the sld© poaks is email for veak fields oo that the 
effect is not notlcmble and probably only the cmtral peak is seei#
In fact, this transition is €mly in̂ portmit for strong fields and the 
spontaneous decoy has been shown to be negligible# For non-resenance 
we Jiave bocsi that a 4-th peak is discernable tliough it may be possible 
that in tlio Unit of a strong field this may reduce to 3 peeks*

In the case of the 5 ~'̂ 1# i*e$ 3P — ^ 13 decay, idien resonance 
cor;ditioriO apply a cir̂ gle line is seen and the splitting is only 
noticeable for the nors-resonance case* In tiie latter case 2 peaks are
always sem, regardless of the field etroaigth, and these are always 
symnotrio about v' - — 'a , Both peaks are generally shifted
towards low frequency except in the case cf spontaneous decay %dicn no 
field is applied wiien, naturally, the peak of width , corresponding
to the resonant transition 5 — >1, occurs at * 0# The splitting 
is field dependent and is largest for strong fields* The absence of a 
3rd peak is owing to the fact that we consider the ncm-resonance 
situation eaid the 2 peaks owe their origin to the field splitting of 
level 5 (3P)*

The spectral profiles calculated in this chapter represait emisslm 
only since in both cases the atom was assumed to be in state I 5 > at 
time t* « 0 (the initial time)* Hence c©ly single transitions can be 
considered and in this method m e  cannot aesuBO the atom to be initially 
in level 3 without obtaining zero spectral profiles*

We have, in fact, not assumed any conditions with r&spoct to the 
magnitudes of tîi® relative decay rates, only their magnitudes with respect 
to the sis© of the field so that we have rmoved the restrictims of Zm^zdk's 
paper that * 0  and Hautian end Sobelsan*» paper, tîiat *
tîicugh in the case of large fields in Soctim (b) we asmmM C 
negligible end for %mk fields ( to be mall*
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ir t* = 0 cqmtions (6*B*26) end (6*B.27) become

f̂ (s) % ft.) . I>ĉ  ̂U (s) t-

fg(A ^ ^

where

Kfôïoe

X^) = yO.̂  /'.- ,\ô  )

y/s) . A/s)

7 f'))m lA&i_ f Li (f') A) y  /r) f
F^sl V

-  <;t

f /5)

iO*

Hcsnce

A l G L.  ̂ '"V/} Y) 1 /? Al 
/ 'FF) / ’■' - = -F/s)

 ̂F; j Y'" Vyf  ̂ W.-/,i,

“  ^  Æ r  ^  y4-;,s7 F 'v )  -2 f\i (r<-|̂ |̂

vhsre end le real
- «md is complex

(6.D.1)

(6*D*2)

of

/^s " B' ^

(|̂l /-!))» (tilh'LjS)

F/-Vv-iu.Ŝ
In order to find f̂ ) explicitly therefore vmluea of

mist be found end these ere also required for the calculation 
(\>) since

(C*D.3)



*234—

e53< )

««/I X  i\',,-̂ >̂-'̂ '̂ f’:j;') ^ ' (X

iv) 5<

 ̂F ■
(6*D*4{)

where y.F V.
\\( i!\ - s o ,  'A

end w_ ̂ f -1 J A "  ̂ sz ̂ Ay -v.o,.SV " \̂\̂ ~ «-oY)
VW 7soA )

Froa equation ((.B*56)

* ~ I Af'oo u Ig ') A&(_ 'z: fs) -Y :7 If')

where

■fsF'i ^ ' XVsT 

S,1 F ( V,, Ff') - V

fVsA

• 4 A,
r '  ' /

k) y;
(^/sA /

-si ' , s -?hFL_ ̂  (6*D.6)
(JsA

,'̂ s) * rjA&L__ /V5̂
^

•D.7)

- f \A&
Ys Y= '

Hfsnce

(6.D.8)

151 'VI - y

and

A-v-Gi i )  VYYYr-'te-

ss /'-ÎS' F 1,11
(6.B.9)

Fv) 
(6.6.10)
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give the spectral profiles for Hie scattered liglit for the relevant 
trazieiticns end vouM give the overall effect of all poaeible 
trancltione as in the previoua chapter#
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FxcirmfTATn3_
fz?T?R;i, pmj)

ccmr'g thf v rm ^ x ) ty r excitfi) rr^TE to r i.m m -  v i ^  ^ ats

We eJiall coneldor a 3-level atom with p ’ound level 1, end two excited 
levelG, 2 md 3# as Indicated below

\
\z> ŷr. \

Q

\'7 J
vdiore V© define the frequmcy reparations as follows:

‘-À 
A  “
^ ■* ^

Since we wish now to consider the case whm levels 3 end 2 may be 
overlapping it is necessary to re-derive the Hoieoiberg equations of motion 
since those of CJiaptcsp IV refer only to the case when there is no over
lapping# '

We recall that for a 3-level atom, the Hamiltonian in the dipole and 
rotating-wav© approximations for an atco at the origin of coordinates is, 
according to eqimtim (i#A#3)

» ^ ''A s % s  ' ^ 1 1  (7'*':̂ )r., 5̂ ^ 7-*v JL V  ̂ ' M

or, more fundamentally, before RltA is assumed, according to eqimticai (4̂ #A$1)
s i ^

“ A ,  P,x ^ x {  fe v  1 \%\'Y ^  A  A  \  (p . .   ̂ Y A  (7.A.2)
A  A Y v >  ^  ^

Q
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îlcaic®, froiïï equation (4-*A»4)

Y Y  ' A  A

'■\

vlth foi%al sclutlon, according to equation (A*A*7)

(7#A#3)

.1 lA (A Y) t
t' . ' “  V

V "
.Y 7"'2''-y, H')

(7#A#A)

Tho other ©quations of motion are, from equaticms (4«A*5)t (A*A#6),

for m"' n

VI n\V ( Si y Y
V I  n \Y . . .

and

<1
L ( t )  -  - '  £  £  5 1 y  y )

n.-i J (j ;,'
S

•Y" "1 I Jl

°'''''
a* iv) V> Iv)vwZ. C 5

Tlms the 9 transition operator equations of motim are*-

\ <uj I ̂  k <V - Vf N ) V

J
(7.A.6)

(7.A .7)

?22(t)

'3 3 “ > ■ i  i 2  J..,,̂  «t.tt] - a

if s ,1 ?s-i

(7.A.S)

(7.A .9)

(7.A.10)
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*s -  1 u) 9 uVF -  ' £  
4

S : -  ' r  F

l2^(t) m

l’3l(t) at

F32(t) m y ( t )

'£
r z'
2j & -, -' .-z t r ')

f.; sfI f -sv)
(7.A,12)

(7.A.13)

(7.A.U)

(7.A.15)

CcnBid«>ri«g eqtmtlon (7.A.7) said substltutlne for
~N

A

Let V —> X3

(7.A.X6)

y

- -1
(\ ^ V-

1 I

(7.A.17)

ÿ ' F ' Y '
 ̂ I- \) V-bX!  ̂̂

How L& 2
Y  V l £  '

A'

(7*A#lg)

Since w  wisli to include the possibility of levels 3 end 2 overlâ qjing 
m  shall include integration over frequmcles oomon to photon transitions 
between levels 3 end 1 and 2 and 1 and Tie# versa, as in Qmpter IH#
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\\

£' £
\  '

+
I.u

'V'.' -

2' ' '’ v-.- UN 9 nY

Ul c\‘
V  -

V \

l( U 7̂

A\ Yv.\9)v)
(7.A.19)

iVV' L W  V X
X ' ' X  

*/, Y ' '
V  —7 ^

* .; ' Ù  . .1 '

Xa-'N'"/*

u' UN V' V )

.  V'\

' -'" G" V M nAY-Y')

’ UNV VVN

vvN 9 > nN j

Since tl-ere ere nô  frequencies coiAon to traneltlcms betwocn levels
3 end 2 end 2 and 1 or 3 and 2 and 3 end 1, the tliird end sixth terms go out 
on taking the limit V

liîS «

A -  ^ X  vo' Y aa

£ "  V 'V ‘'^' F  p jv)

^  j fdY e l£o'-V.£lt t ) V.-VY

(7.A.20)

BlJRce p i V vY c 'G..Y v'N vhere n also, as shown In earllor diapters.

.  w s -  - ('-Y-.n'£v,,YX (7'^zi)

Hence using this and its h*c$ in (7*A#17), v© obtain
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A
+ (xx_- '£,)?, Y  (x L -̂1 ) ', ̂ Y V Y  i £ £' Y y ̂   ̂( '£\ r ' ( 7* A#22)

I
+ (VN„3, v X £ ) X ' ( ’t Â Y u ) ; V , Y  t ( N Y  . a ' J y . v ) ' F \  n .a - X Y  j

1.0. i’3j_(t) - - .£ ^
V 3 J

+ Ü ,9 Y  t v-,9>\ £73U,f \)-'(f y -;V,X\X-Y
V X'zU,N \)'£i 0,)^ ,Y

'(7.A.23)

(7.A.2A)

l-aing a similar procedure for the remaining mine equations end 
accusing that no dipole traneitions occur betuem levels 3 and 2 (o*g# as 
in thi© case when levels 3 end 2 have the eajiza value# This situation 
occults when they have resulted from the Zeman splitting of m  excited level 
into two corpjonents as the result of the application of a mgnetic field) 
so that

1 “ oy, = 51̂  ̂= O  , and thé game for reversed subscripts,
V® obtain*- 
fii(t) - - ,PYV)

, , ,  ' ' j
F j a W -  - 'cyXXvXX

» 1 ?_ k) - \ c£ yX v ,XX

flg(t) - i (,? - Ÿ_kX Y'Y - '

-  \ 'u\., ̂  'Uo^- :\X\ - \'G'I-„ - ' '^.-£ J

(7.A.25)

~i
r(7.A.2É)

£

f(7,A.27)

(7.A.2S)
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FjjCt) - IP Y  - ' Y

” V''<( s ,,,' Sl7 \  ■ V '^ X y ^ Y X -ï')  ~ V X , Y  J V

Lxt) - ... - v\£  ̂ -£ i
\ ' (7.A.30)

“ I'zN-, - p ,Y - Y'lX, I'-'., \ p.,,i>) '

p. o(t) - l( P >N - P \>X) r, .. k) - , P ,\v) q I
' ' ' I (7.A.31)

- i 'A*„  ̂1G9- S) p ̂ u) - \ '/lY, ''-X,\ J
~N

F^Z^t) = iFjn q , k) - '
(7*A#32)

where
Y,“ V-5t̂ i>; Ji,F '‘ " / X f Y '^Ytp '£-

I i

u)
PO' ̂

'VsR ^’' Y' '■Yĉ  . \/̂  ̂? / '*Ytt £ £ 3- (7.A.33)

I' ' JiL = I . A Y  Y i - U K) ' — lA
'/r

a>Ye 
4 ~ V ~  " '11A

X

K.B# P indicates principal part#
ĵ The transitions 2— > 1 and 3 — *■! are c" components of a Zeeman 

triplet when A m » +1 and R” components when A m = 0#]

Method (i)
Ve shall now consider the case when a driving field of arbitrary 

strength, , couples levels 3 and 1# Then

V\j 1 \ 1 EJ k)

ï^ere ‘ . A,^
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and hone®
A,)\na + > £ D

Thus tl'i© new equations of ciotlan are

1 1̂ V X̂x -v X £x_yY -^\x n  - i(xi £, -
i \ 9 ( \ , A X - ' l F , - Y X X a Y

P33(t) - i y,li).> / E y£  -  ̂ X 7 ; £  X £

A yX - )FA,n i -a;Y?,-£ - V'lXr '’Y,\AvA  

- 1 ( r,)pi - V, ̂vY) Y -. £  - ' Az^X i y  £  •' A % £

“ V'-A,,-r'î Nz'^'7 Y.2^ - r'YzN ' j' £ X X X  

F33_(t) “ ” X  y  ,A) + >,-6.,," v£ ( - ?zX'̂ X) p .yxXPziYi

- )  ̂H A z,i 'SlX̂

P23(t) . 1 p y  y ,  t A.,E y )  - '

“ i 7x19, - 5\̂ , 1 Y z X X ^ z X X z N  ' £

fzi(t) - -  ;y»)ivYY -v>zz£ ^ '(yxx + Aj;))YXX 

Pj^(t) - i ( - a y X)\ ^

^ P j X y y  - X  y', M t  A,Y;ix\ p,y x

|'4lY,’'X) ~'£i+  ̂ 2r-^££32^X ~  I Y s s ' X
- 1 7; Iî, i-\9y k)YX

.£'£AY
(7.A.34)

(7.A.35)

(7.A.36)

(7.A.37)

(7.A.3S)

(7.A.39)

y

(7.A-50)

(7.A.41)

(7.A.42)
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A.D. T fgg(t) f- (7.A.42a)

iWtlplylng equation» (7#A#34) to (7*A*42) from loft and rl#t 
by and  ̂ r#%q;wN^valy and them multlpling m  the right
by £ yX and taking T, we obtain the reduced d«ieity matrix equatima#

1, ) \+ \ t: , V. ,l" W) 9 i '/. - A ! z.
: ' -,UL, A £ ' (

\ N «  - y  p . \ Y  -  J/.'\ ^ -  ,Vi ) y )  Y k )  -  i N  \ Y ' k )

j) i\ V  i j') u) > yy ~ \ A ̂

- C ' J £ £ A z W A t )

n/kV - A, ,A«)

“  j N  "  1 .5 , . I ,  , ) y i  ) '  I t )  -  i V;

V 'tiV » iA,-EY9) Y . , - a £ A

'"A, itA'(0

- F Â , 4 . A : y , A t )

- I '9,) - )K + 'siX A Y Y  - A
/■■' -vYv,-.^;,(y:no

V)o-i a ,y y A a ''A

'I

-a A A ^ zA A

9 ̂ T Jw - A. iF\]V '-llz, 9/';.

IS, A X  -,L,'A. v a ,)\,a :'a  A  A ,  -iy:.\ ft, a
1 f ̂ r ) L •'') |A- \ U2\, ^  A, A

(7.A.43)

(7#A*44)

(7.A.45)

V

(7.A.^)

(7.A.47)

(7-A.4S)

(7.A.49)

(7-A.50)

(7.A.5D
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Tho iiJLtlal p2*otxa etat® la

N
M 3 ?  (Î
u

ot>

fujd y.r C for all other a and n vhere m > n

(7.A.52)

?C ' (
{7.A.53)

<'Ay\yv>- ^
(7.A.54)

yc;-' « "

in method (1))

(7#A,55)a *£■.? %,Y

(aa oppoaod to » (4^

TÎXUS on mnltip2yiîig the tranaitim operator equations (7*A#34)-(42) 
by / \ ̂vA and \ \ on left end ri^t respeotlvoly and thm miltipllng
m  the riĉ it by end taking the lA^ ve obtain reduced dmiaity
matrix equations, mimilor to those of method (i), i#e# equations (7$A#43) - 
(51), vii<m In the fomer equaticns ve assume oncillatos hsmordcally
At oudi t3-at ^F idiere u] # (2I#B# the
assiuiption of oscillation at on© frequency in method (i) is equivalent to 
tîî© asaurpticfi in method (11) that (Kiy cue mode of the e#m# field 
Interacts vith. tlie atm#) For coEq̂ lct© correspond one© v© require

1*©#
o'
s -— >

/\j c:b
r r z  g

(7.A.56)

i#e# Y , beocHses real for real dipole matrix elmmts#
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In equations (7#A#43) - (51) we elmll nm  let

'■'i z- - 5l2-\
w - A ^

VY', !■ (7.B.1)
y\;

" Y ? £ "  GY' 
y„-n,'» y\,;'

and, in order to simplify the equations still further, v© ê iall ignore 
fr^iucncy sliifts A ̂  m d  terms , A\ J, so timt instead
oF , u.'t 7 z \ ' Y ' g Y ' ,  ,'ftYI’ ve write ,

Lô^, 'zY, , # We do this since vo ar@ net int^estod in these
small fXToqumoy shifts but rather the effects of the driving field end e^- 
eratim of levels 3 end 2 on the resulting spectral profile for transitims 
between levels 3 end 1#

On ESking the above sisqsHficatims ve esn write equaticma (7#A#43)-(51) 
as follows, where ve neglect the sqpersoripte m  y *s, indicating their 
redu-cod mturc, for convmimce*-

- Y , £ zA  

- 1„a X A  -

5 (7.B.2)

(7.B.3)

(7.B.4)

(7.3,5)
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- ia£,zkr) -''zY J) YX

/ > £ - 1> ££«'"■

(7.B.6)

£ O L)

-'I'GlY/^A "'YvftX') "'£.^az^X

i x x „ £ e

-(ftl,-tiY a JY " ‘'̂ y a YX

V
(7.3.7)

(7.3.8)

(7,3.9)

V

“ ['6<Ya Y.Vi'ftl Az'X - ~'AuX^P)

a). î.ot.̂ 1 comClRtlgR. fteetlgi for trpraltlora .tgtNvai fee, rjssrgojjt
loval..J. -y.d m w r A  lgvea.-l
In ordo? to calculate the speetz^ correlation function for 

transitic4Ya betwow levels 3 and 1 w  need to solve equations (7#B#2)-(10) 
for # Thus, ia order to obtain nine distinct fimctime ot time,
and to avoid having to deduce 6) from /s4w )̂ eg# v® multiply 
«qintloca (7.3.2), (3), (4), (7), (ID) by { "S': find (7.3.6), (3) 
by < .  Kenee w« obtain ttie foUoirfng ®îu3.tlaTS vîicre 
and  ̂ f 8—

; (7.3.11)

(7.2.12)

(7.3.13)

J



%7-

-11 ' I

e Y j 'I "  !/£(«■

Â,X

'(GY+,.ciy)X -bY,

p..'Ill iA£

£iY,Y,£:G)£X(''-^£lAj k _

/■ À, = cd) Xc^aP)
-Itdt

' À-4r
71

Let a(t) "p k) e'“̂ ^
t(t) -I Âî £  ̂ =  !)(() -ML^

Piit'A = + (X
Â j S  '^Y = ol Itj+i

£ e ' ' £  =
£ e " ' ^ £  = f  (ijti

(7.3.U)

(7.B.15)

(7.2.16)

(7.E.17)

(7.B.1S)

(7.3.19)

]PJ)e
c(t) m lOe'"?  ̂

d(t)
c(t) |()e’'̂*’
F(t)
e(t) nji)e"x<r

Then, «Bins oqjiatlon (7.B.20), ve can rewrite eqaatlKis (7.B.H)«(1>) as 
follows*-

, (7.E.20)

\ >  1 t O e  ,\)il 51 2-1

(7.E.21)
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1 \L/1 -

Y,c - y £ t  -vz^c^

• (vX_̂  A - ' / z \

»  -  \ X£ (\ -vX \[\ c

* ( ‘£ X \ w£) \ — '/%\ ̂̂ 4

Civvy:" A X£,4

"£\,C

i Xî a

*  fe\,-'uy44

^ Xc£A V,\£,C
r̂ :

“ V'2Yn O-'"-\^ - ' £ £  ' £ X

Taking Laplace transforms, for Initial time t* « 0, we obtain*-

- AÊrlIs) + AY anX "T" Y,YU) + X XF) ‘'z_(YiY')X 

1 . £ ) £ «  “ 'A, eft) - 'ft? 'aft) i «  YlV)

(7.3.22)

(7.3.23)

j

' (7.3.24)

(7.B.25)

(7.B.26)

(7.B.27)

(7.E.2S)

(7.B.29)

(7.B.30)

(7.B.31)

iAt£'X (7.3.32)

-.AF££ -'/A

(e. ' A->U-A|)'IQ' “AEo âft) -'•\K£V'X - 7xV,, f 1 e c H v )  

in'2ftXX^I.sji|)ekV .XF̂ YY) -VAiXls') - '/z£ V: A  + G '■£lX

(7.B.33)

(7.B.34)

(7.3.35)
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(sAy.D (%")= !/\£. als') - lALciV)

P A ) p  - - '^G|yF) - N\, ÉA  ' A A ) X t >V /,

(7*B.36)

(7#B.37)

(7*B#38)

First ve shall solve equations (7*B*33), (37), (38) for 

and in terms of  ̂  ̂ # In this way we obtain*
,'0

££-.'_L r.*s)

\
- £\:, rr \A\

Vi I

— ( lAt c '/ 2 ) - )~ril£)
~1\)

+ Ik
Hi II

 ̂ S - i  G is ^

£\ A
t V2V-,̂ ( vAiol (i-i 4(s4

""'/zL c" w;—  /

Ac) - iAf)ft. aVs) 
I ft£

v y : ( a y X-i- £vsiVir\
G Y i i Yfttfb VlsX

VVA
*  fe '■'''ft''

- 'q\ \ ( StX-txL.z A\ X\L "'' x

\\ ' ''V"

(7.B.39)

(7.B.40)

(7.B,41)
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where
\\ i' ̂  ̂ ... -/ A ^  - v̂L-r u.^

« (/-. ':'1\ V '/2̂.̂ A-,Lù) -

V I O ( V >>, A \U - /Cl. ' A \ À 2̂  ''

(7.B.42)

AkO *
(7.B.43)

A /
j;ert VC eolv© ©qmtioKS (7.D,34), (35), (36) for iu'̂  ,tis> , in 
terms of • ciŝ  *•

e(̂  “ • ' Vz\ 1_ rJ'A

' v\.
ciA

\̂i
l^xO-L 6'*'M

H. I
+■ Vs. f 4> iV\

w.

** ̂'\ I ̂ S -t \Lci"i Cvlŝ

(\k'̂ . - ( V-

I

L> X ' ̂  6 1 ■' J, (<2)

IfbYür̂  ^ ^  (LV\,
-s\ (7.B̂ 4g)

— Vz\, ̂ ( Sî  4n(lA^^-Ai^ 6 fiv̂  

\Az V

~ tl(L^-2AL^
Wz

*• V o \ (\Wî \ is4VilŜv■'■ ' 2 Aiî -t- U^"5 ̂ c   ^ ^

** ̂I'v̂v (  ̂ -vUb3 -AvA^ Q_
^  L

■t Ist -V\(c.i - 2/N'-^ ( S-A ̂  T 'A x ^  C TiV;'')
W.

+ I' ( S4 ViX u Lù- lAx^
V\x

> (7.BU6)
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where V, is") • (. ' ̂ O i Vt̂G G S i '/I \ ' 2AiÀ)

M ,.') « ( • \' G ' ̂-.A A ,̂-v ''i').̂ ■'■ 'Lu - - 'a')

G.K'^ «  (  ’ 'X “Xn! i^o-xuo- -''-'■'X A y s -x  '/% 5 . \ - 'nv itO '^uU 's 'A  2z>^v)i") 4 '/i4_C ^

îiow V© can solve equations (7#B*3C), (7#B#31), (7#B*32) for o' ) , 
c ' ) by ffubotittitlrxg equations (7#B#39) - (̂ 6)# These three eqimtlcms car* 
then be reduced to two by eliminating b( y as follows 

Since, from equation (7*A*42a)

(7.B.47)

V© therefor© know that
.X • -.1 '

z

and on taking Laplac© transforms
-St' r

l . e .  clM ♦ É k )i r K") I  -- 2 "* '̂fa It') -t Wt) -' cit') j

.6 A -  sCa(<C) — I. iV) +-
S -tn^LÜ'Auj)

A ('■ (I') -A buy -t f (7.B.A8)

TÎ1© resulting two equations ̂  b© vrlttoa es folloves-

a , 0  tC ) n J ®  0  o

b./îiAttG'O-b»

where
-  yuS\, \V>Hv\^w\^ ̂ 'y \^{ç^w^ ̂  ̂  

aX) - - (ŝ S, ■».Io-A!)W,Vi2. ̂ (v\iA t\;~) 1 'iL̂ (b'-\\yKu,\rstb
ajx)" - e'̂’G w )  \_____ _{ ( -Vu.)̂  A-'c, w2)\

-e'"*-’ u G , .    ) IF, w^-vr, A )
b^Ü-Aiù)) ' G

(7.EU9)

(7.E.50)

, {7.B.51)
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e- ''

t 2»") 1 A.J'Xcb . J.j bl,

x  "' Av)V'A ,,FW,\

S".) 'i

(7.B.51)

J
b,l-A“ A'Vt‘ 'sK...' A.) ' '*

-v (X‘AS')'F V'fA")
\) k)" ix, 'Stsi -Ft

v f . x O
kk)" S ’’'-'nA ' 1 \\\^ ̂

+ f '■' btA \____  I ÜivVX̂ Ŵ  V a
(k^ I.a -aA) K (f, Vk-rFV\,y

G _ J  1 _______ 4 \G^
(ï.+.Iu ,-a -A  ̂ /(fz\FvSkw2)\

+ e' d K) [ - I. vK) ̂  v\ X  bi . \ . \ 1 (7.B.52)
t" g -Ç Iv) ̂ ( \X'rt.XV\̂

+ r'Gk)ki-'k6'vA

+ 4'v <VA')] h,]

+ P■ \  ir) f '4a ^ ^  V,( X,,.F)h"'zK„uall)
+ r ^ ' Y b l  F.VV^-VV.,

From eqmtlons (7«B*A9) and (50)

ai{\ - ft "Vi) - ' VkV  ~ftp̂s\
u, \  - c\ \)sj L ^  '

(7#E#53)
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\ u.b,
(7#B,5A)

mid, of course, from (7*B*4B), m  cmbotitiiting (7*B#53) and (54), we obtain

-'b ' I + e T(

wîicre Z.A - (1 J'F V>;,s ' H K)\\.'AT(s*.ko-AA)

(7.B.55)

(7.B.56)

and
T ( s 4- \ ( \.ks —AX*All) ) V, U ̂ t '-. 4 X .̂ 4- \( -..i s -V A) -£:̂ ')

+  ( 'A  ̂ - ' A x ^

’ .,, I 4 \  ̂LÙ - AAiT)̂
•f G I G >  , 4 ?> ^ls4 -Axd̂

~ (xkÂY

- '7u,s--(r,F̂ i

*" (g v̂-\ ̂ T (s -vX -v\(xo -ax^

— '/ \{ IX , K  -4 Vi.'X,, 4n ( x04Ub-̂ A lAC^
4 \\ls 4 V%1̂  i \

(5.B,57)

We have usM the fact that

= wjs).

and B [̂s) 4- = V \/A . (=̂ 4

On rabstltuting the values for a (0  # (>k) end c(  ̂ from equations
(7*B*53) - (55) In equatlm (7*B*41) for ^ (<,) , ve obtain*

(7$:#58a)

p , v -

* %,i V e '

h '

(7.B.59a)



—254^

/ -( ' A... A>.' ,  V+ /)/'!

p.

7 ill

+ Û,., /-A (l)F FI

' Â_, y  ,V

; -t u n)

whore *® 31# end

V̂ii  ̂ (i 4\( A
I A  A  ] L* ■ * ^jiAkx - A v j \ )  ft ft.  ̂ a \  '̂ \ V ' (  V\-,A W^ X

A k f t

'[!>.,• vF.-yp„^ W b , " ' A F V s ]
 ̂\ .j ' \ \ ft y 1 ' \\ ' c ft . w / ft\ r
•'*■ |_ Î 4a . A   ̂ ) ’ ' " M  y  \ p  ■* ( ft) V  ' '“ -  ^ ^  g\
- "j;, I \

ft
'■XX, I i,X,p\,\\, -* vfti' V ' F F

(7.B.59«)
OQnt*d

(s+.U-Aki\w, X  A F f v W f I

i ' ( ^ F V O k )

(7.B.59b)

yi« ft , \________.y. i IftftF,  ̂vft! V F )  -'vA’-XXfX'X'â
(̂ ■».la-.'A'b ^  x.ĵ ■'k.X/n.i'r'-'f';')') 0,  ̂( ii.T'kf,; V ^ l

''[F"' ’Xî à A-^A) AH,_ -7ia.\’"( 1-, HaA-(FH;Y|
i G rVF-ft))b,
-'ft;: 2

A ,5 /s) • '/a.6*' I [S, '\(\,V\fty (F, -I \(FApX»,



ft wc 2 . . S) + 7;n *\K.nj-i
' ft'x, „ (k ,AX',ft

'-') X  < -A. .,U.,: F  ' ,,̂l\ j b, f IF,-'A/ft;

ft ' ) » 'Aft I I '.'F/'F,)' ■■ V- \
/A-ftF-''ftX‘-\;XA, Ab,.Aftcft\ 

+ f t :  W A - V f t b f t l

p. -, ' ^ U,A I - 4' U„ j ft . ,

+ %'Z.
(7.B,59b)
Gont»d

ftlFk'vlF-VftV^ t (Fk V f t  aft 
'■ ''i\;i F ' "z),̂  fifty %, -* Vv( F À /ft b, ' ( 2,1

V%\, . X T\G-o, ft)

,'j!̂  I Hg \

f Vf t  - f t i l  ( 2 / 1 V I \ ' - \ f t f t  i t  f t : '  v f t  f t V  f t )  

+ Xfti

%  - u  \ ftft
"  . '  ' I  , 0  "  /  I t

V
X

A
+ y p x / , ( n

/ ■ ‘

ft/'") 4 ft.ftftft)

'k‘’| 1 f ( 7 « B « 6 0 a }

12 / '1 P '- / ■ 12

/ 32 I F7'/5 3Z yi^
/
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■

'ft/,/ y ,

+ G"' *'  ̂y.'ft y,
(7.B,60a)
<50nt*d

+ VF P' Ji • 1 t , /' vJ '£ l. ./'(I ( ' , ,.

./ft ’ y b ' / y f t ' V

w!iere «= 21
«nd

______     ̂ .  'l4_G'VL».\J;lVr\4w2)

 ̂V : '  ̂  ̂ . ft\ G4 v )   ̂ , J  5 4- Y 4 n I Uj  ̂-&Lj|(\O,

" '̂ 2lV v

 ̂ y''vUà-AAÎ̂ VVxyj_ - ^ ^ ^

, V%\ ,. ̂ /s 4 ÏAA I VX) -V S \^i\

A- ft
ikô-AiY» \X,V '

t \ ' .\ . , ('' 4 X 4-\ Go,, - A 4  4 '.ft \ \l :' A '2)̂ y"4"%w) \ '“' -'»j
/vA\, - iL\.\4G. \\4 Y,wy)^

4 j'ftXîA fsF X 4 Jo-Aft̂ iJxV 'k\z\
- 'G L  (s4V2Ŷ -̂+lv.̂

,(7#B.60b)

,P',r A  )lX4,F.A U F ‘'tv\;r<VGX
1 ■„ ,U-/z.FX V\,/..  ̂  ̂ '..I \ i / X f t b  " ''z),Atw)  ̂4 \  &, i z A f  t A - a . f t f t ,

A.X :\ G. t ft

ftj ( "'ft X̂X. -ViftV̂ (
]_ 'j V-y fsi à-ft|/o2'ziu)^|\?^

' ' : \  ̂ 4 X"* \ ku, -6cĴ) 4 '/; i, ̂ A 1 '/?̂s,'Gl ift
(s4 'kX,y , Lft)Z_ j

/ 2L ^  ̂ I'(iXkftsA tft) ̂ Q ç
^ 1 ' )x( 'v,ft\Â( S -« VX TîftAvft) ft 'bSov X 41 Gvx̂

ft  ̂Vi\a (ft X -ftiXi) '̂'Vi\t,\ (SftV%1^^ ,

A

si
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'fp.

■ \ V  ' '

I f  ̂'ft V

xWi'ft

) ’ I ' \ ,, — /A
\GA-/

Vft

XiAlAG'ft/'
4 ' i\ 1 ( ' '• X VI U.J. A' jX) 

1 -, ft. V , / ' ft X \ \ I I.J, oF. A)

^5, ('A

k\ ft \ V . \\ _ / - ......
j ft\ ,1 ( ft ft X ft \( -Z-.-JNX -t \ 1,.

A

'vlF,; /\,X^y'o(ftr'''u 2't''ftî/'i.X
ft ' ' lA \ ' ft' X ft 4 ( '-ft J- Auxx) \c< ̂

t 'j V 2.\ Zi • 44 i 4- \ A.ftX)
d ft A./', Aft b n

4 X ': (XiA\z\y('̂ ft \ -ft-,' ft '̂ As/Sft X^(w?
ft X ' - X \ ' ftft X ft-1 (cCi;̂ - Z\uAX " ft 2 %  ̂kb 1 '22 X -, -H Lj)̂ y 1 ̂

— ftfXt̂, ̂ ft, ft X 44 A.y %

] 'VC ' v\;_ [1,‘CAk,T XzÂ'-""' ft VV^ /sft XT-i(Lft̂ -AwQ
ĵjC kft\ -\'.\) Ax ft̂ A\-nvA) V vA,̂ (sF?Jr4koAû.A)

A'&\ Ac  Y ,1 Is t Kü)
V 'A\%,\ Ist t)4n (tFiA<AvC!))\>,

+ X ( Sft V  Aft:! -6L^

4 /sv/A-;Ot'ftftw A . U  
i_  (fZji Fzl'ft'F/SXF, -''0\,,v V C " î()'AXC'V a X)
A  A vA^IxT^nlu^^

'■ Vk^M/sft5-nl̂ O,'z5üt)

y, 7

(7#B,60b)
eont*d

. r -..v f l\ r \/ p'Cu kt'kT/fZYo
A Yc^s\ y 1\\_Y '2 'cAv'À^ 2 \ G \ ( 'A A V v—\ [ 2t A \ ( ̂  ft V ft—\ I >-A z af \V> 

V\"S\ (C-VX-Tl (Lj;̂ -6LJX)
ft Cz Aft-V D-̂ i

4-

y



Taking the Inverse Leplaoe trsnaCofms of eqmtiens (7»B«59e) and

ft'" /ft"'

and
ft ft -ft/ft V

- Y'tu '
ft'- ■

R' IG)
- ft' VzW XV 1 \

, / f t  \
i '

, G ' 4 ' e p,-ftft

^ Y v i :  y 'A (  ''

I'lt '

Cft '
/

'C )

—  1 /1 >i'V,. uÔ V ,
+ 'ft ( p - f  I f t

(T ) f ,
- - ■ - )V '

X . ' Y

-  ' f t z ,  ' f t p f t f t

ft \
/

- v V
y l A

/ - Y ' v

4 G 'A 'S A )  (

, Y y :  M R

'ft XV /
4  ftftft

VO /kv^V

/y ,  i v ) + llftî2lî)( ' "' '‘- G

ft'
X i f-

1
; -,n /X V '

i
/

(7.B.fcl)

(7.B.62)

v.e shall now prooMd to find on expression for the spectral pri 
after the Banner of Chapter III* We recall that equation (3«B*/1) glTee,
for X “

/y
ft"

i*«e b f U  % .
I.K.

The 1st order field correlation fmetlm 1st-

yyvftft.cftX = <  E ft R' ,GX. W f t

C  H  '"ft 4p_|fty F,, ivV^^pê)p,^(G]y 

4 LftC-

(7.B.65)

t y  ( G  i i) t v  F f t X

^,,ftR)f,Aft z E y ' " 7 g > A W ( ? 3 ( i )  
V  k ^'X '7‘G  i V  Vkfttft k^sp V )  7ft) 7 f ‘V7b)
y y  C') ')/ "') A ,, ^G/fti) i f ^ / ê )  ft/ft).
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The 1st term in this expression give® the eorrelation function for the
lnol4jBnt beam# The 4>th - 7th terms are cross terms end represent
Interfererioe between tïie inoident and scattered beams of radiation* They 
are negligible for R» the observation distance# sufficiently large*

Hence the correlation function for Uie scattered field ie^for « Ei-
G- A, Fft 7  ft ■//) 7  ftk )': 4(0 (fti) %  -lAll_,,Jkk-:ii)P,H)

/ |_2 iBut we recall that f " are all real, as shown in Lehmberg* s paper #
hence we can write
C. ' 'Aft. - <  z P-, '
' 1 I. I, ft'HOlV.ll) /'///') ft/()/• : (7»B.67)

2. »■ . ) 1
(K*B* This equation could have been obtained fxm the general esqpression 
in Chapter XV equation (4*B*6)# remembwing that in the present case 
^ 3  * % 2  » 0, so that instead of nine terms there are only four*)

Let us ROW define. .. . " ' "  ̂"
B.B.

'"G f  - ' ' " G  F r (7.E.68)

f  ̂ *1 ^  ' 6  ; '/ft .ft ) z 7 ,  /r. ft ) (7.B.69)
«md ftftft'.ft.) ' / /ft) ft) j

«taMra /;.. /ft ft.) «nd / /ft ft) «re defined by equation (3*B*25) 
end Gft/ft' /̂ ) — d (ft , G/,, )*»y eqeetiene (3.B.<(6) end (3#B„<.7). (K.E.
3 is replaeed by j* not j" since in this chapter we are Interwted in 
transitions between levels 3 and 1, not levels Z and 1 as in Chegpter III)#

h
G ' /iS  ̂R y) has the dimensions of idiereas /RA )

has t h J  dimensions of  ̂É ̂

since Î >Y\li
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C'l G -■ slTiC© t o  = 5l
L \viOi V:

> c einco  ̂ arA ^

ûüid when 1 ■ V  ̂A ,0 représenta the total radiation rate (see
equation (35) of ref. 2). 

how,
C " \ I V '  ) : y  f - f .  . g:, V .M V ^ V „ \0

" . ,r . / // l.\ n h\4 . in p.. (7.B.70)

vdier© c\Sl̂ » hvwb^ , as sîïown in Hie following diagram;-
1 % \

Pai * ( >aiji n\Yvb̂  Cco9 ̂ CiOl̂

^ * ( huV(j ̂ y)vV^

Î>3X - ( 0 ,\ ,0 ')
(7.B.7Ü

K.Bi

(r)*

C" ^

:.ip,.f, m wt ,̂\\_\ - V A  
^ T ? r  ' ■

VO YW F "
V̂vK-,,̂ 0 j W t A (se# definition of glvm by ©X* (3«A»24b))



.261—

HeariC®
V.O \  Ô

V vv r 'k‘
I / 1 / ■='̂r\ '"-vxŸrV R

IT
« ( s\

\
*t .'\, ̂

4i\ - be d,̂
^ '̂WvkO Y  -

( ( \ - (cO' b  /> \  'k.w \Yj a cV {j a,
J ’ A K

(7.B.72)

Also,

4-1 « _±1 V'-'b' c ̂

Y c I J  j  I  ^ &

\ ^\_^'^vvW a
(' \ \

(see definition of Î in (3#A.24b)
where

6'i ̂ ^4^ Y>vt\'6 (K ' svY\b /j \ - Col' 6 co-Wt̂ A R rL ^
-—  "^vvC t r  ccn‘ c,vY\ t  ^  ' I \iY C Col V A
—  Svvi^' ^  S v y a W ^  S v W  (j 'S vW  (j A

— ̂ 5\y\b CCl^ W) ̂  Coo6|̂  9u,̂ b
X Coo(f f̂

—  CcnSr -)VY\t- vv\ 4  W l & ^ S w i

how.
X Sv- v i4 _ ^

CO

s W(|. â â** ^

Ci0L|Â .̂A» 0

.. 0
_ ' T

■5 5vW ̂  ‘SU'vVj) ĈyOijy Dv.v\ ̂  A

' ■ / % &6 'I L&9 Cg - Sux Q si^ e W
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Kow
6"J  - wWa cW A « 2

f 6b A mt ^ 3J R R

/suVb) c^vvA.bA (6̂ a m ^3_y K
;û
d(/j.

F
[? 

J '<
, ' W  «IT U.'cti-i'b ■'̂ /j s,^ôj

%

y 9' B e jr 2:̂
ÎÛ LO 3

oîiURC) (7.B.73)

hext V© crust consider;-
Æ lf J l i _ Iv - (fx

f̂ WrvwO
R^C Û:̂' LÔ

(P n ' W  R W t ,f I - R / ê b V  lb W
= Lvi
<=̂ il\ c

W Î l C r ®  R  ■ b 9 w \ 4  Skv^br-S3/vn(|) A  ‘̂ v W ' B a  ■V CûOS-CjPO&^ -rCCOC!) ^ B  c ^ / ? ^  S 6 a

f » ■ « ct/)9
f w onb;

 ̂II II
[difî  |je„^wvR

an-

0

,ir

)A j ds*». 9v4\bi A  —  9cw(̂ ' S.UV\B-SjvvxÎ  A Su^5> CCO&A
- c^9 &A — c<so ̂  suA 6 ^ wvGA

■^ir J  de* fco’ 6 ,̂ 6
0 ^

«ilf c£o 6 W  -

«9iy^ coo%

"6 W; C^
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définitions of end given in equation (3#A*24bJ. 
Heice,

G..,b d s T Y - T,, <■ v>,; V, lA'  ̂:̂ik. t’ ' <r V.: p„i\A A)LO
+ \' A \ \ 'A

\ \

, v i ,  u. T'P .p;'.

(7.B.7JI)

(7.B.75a)

y

\ ; L" a'aY -  <T%%T\p,W,
A ,. ,

(7.B.75b)

^W<P:k'Y\',AV,Ap> , Vi-Yi <PYk'YT,\V'AY) 
V..,

Wiere t » t* + % #

K m ; ,  sinoo L  . w/ t,,
k> W-

and w_ V, . Y~' T"' —  --iiY Pj,- ,
-yp w'» w- p;,

V0 can write

% , 4 ” <  ?,^U'')P>^UkTY> -’jiii.Fi. <pv’,-ivYV,2p'+r\>
CO 1$̂,

+ ^ V ^ < V , x"'0P-1\aaY> x a l W  <PY0PYA-'TY>
(7.B.750)

Let Q IA,AY ■ <îMv')

n X O  - <  p̂ v'') f >

( | , IT ,0  - <  r  lA'Y P , a s î Y >

<j,(T,0-< r  HY pjnrY >

TVi V j_  lA, ( T A O a k ii tSz, a rcO  Y, Y « 6 a '^
Û F  i ; W  r  ’ j

Under the Karlcoff epproxlmatim, we know Hiat

Y

(7.B.76)

i-> '

(7.B.77)



—

«nd  ̂ I Ü ,(A ■' w\ (7.B.78)

(urn Chapter IV equatlcn (A#G*8))$
SlEllarij,

A A v p v  3} '^Ov;'Ov\'tA,A

CO Hmt the former equation can be obteined from the lattm* by the substitution

 >A4v6?\fu) (7.B.S1)

Let;—
ç.P^'''P ' &. c\.,, -'ivY (7.B.82)

how
p'"[[) — > <Wp''4lO?,Y (cl b > L (7.B.83)
’ ‘ Y f  ’ J

< e ; h Y ?  p m ^ >  :r,/ (7.s.u)
L = 1

Cn the other hand;-

^  p ;avY PTV^aY> p. ̂  \A \\>P'<'^vY’ A'Yp^YuC'î.tY (7.B.S5)

and

GO

ye

<  P.UMY) Tr \ (7.B.86)

for U' — > <  p; WY V,̂ IA't !;))>

yoqulre tJiat n' HC)— (C) (7.B.87)

Thus If W aS aY - <' 4  T\ (l.b/). CY (7.B.S3)

' ,r
tjim p''\vY — > 4v\p'"'toY v;.(xY\w> -

.  b n ,  iA a Y Y I
(7.E.S9)

;. < V,Y VY%b ' - A\̂  ̂ (7.E.50)
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I'lenc©
. <

•u ( C v O p b C
■XC i Y .,(iV'_"a‘) H u (r),o''̂ ip

> /V. si / ̂.K
rrit-6,

Y'Y - <  P.‘'v')P,̂ Uk'tY>

: TR,,ji,\yr^^'Y.y r , ,(T,vYp-ii'Y 

y, u C Y C ■'■-'"-^6C'Y ' h y,;/^Y,4c Y k

A

' C W . <  r,;ivYp,i\k'vY>

4 
A. L

CYe' AiWb
£ w y  'y> W Y ' Y 4  V̂/.- /'Y/;uY

1

{7.B.Ç1)

r (7.3.92)

J

/
AA a

<  4 * (IY i\iAîY>

Y t ''" ^ Y  '̂ 'Y'’”

j
Y

 ̂ (7.E.93)

(7.E.94)

4 " )  -}'VA ' %  V,„ ;,",r) - %  ,

- [ l f . , , M ( ' ‘'“ ' “’ 'p ; k | ' )  f  I J ^ ^ / T ^ « ( ' ) l ) ! i , / T l , ; ' J / | ^  f  " ' « . M l



■vl l\

10
(■■‘V

' ■ • i * - ' ' «). H}.,>y P"'' Y,.rK'"Y

/bt

Asjîunlng tl>6 atom to be in cqiiilibriisa with tli© field, ve write

Let
A

'I t

h V

' 'VI V / ̂ 3

^  v \  U
b P̂'2

idler® /), \ are Ind^midmit of t*, as ve are about to ©how*
I  <\

licTice
v Y  -W..,rY4  ̂ ' % ’4 ' W - i

4 SJxz/'Wz A Vxx/'b (̂2 L / '

4- CO liL^ 
Wi W\

Then the total spectral correlatim functim is

(n*B.

'2FvLU v
4 W L, '
lo ]_ til

+ htO 6 \i
n,

U32. 8.1
end Æ

'"/li A ILPnlVA;

l'bÂY

(7.E.95)
COTit*d

’ (7.B.96)

' (7.B.97)

(7,B.9Sa)

CT0 real elGoo they reprosont ctate jjopulatior.s)
Vo can rearrange tOTis so Hmt*-



I f. : -'Hâ  - W v â I

''■‘/oV,„ V'"' "''Y'
.r , "/A '-Xv

! ' b,.,i4vYb, ' v L t ' 4 / V  
.Â-J 4Y.,(v.YlY

4 V/.l 4- '~Xif
(7.B.9S’o)

Ke fisîmll now proceed to find • At oqidLlibrte,
the dlagœal density matrix elœant® are constant 

i*e* /)..6
it -9/0̂

35

but the following di%onal elommts are hamonleally varying
0- Aw\Fy~>),

x>Y,

Alt 6 “ ’ ■“ ),

X, t
h t 1 ( VY AxvjYt

— - ' ( to - A
4,

whereas

k) ).A

y.. iv -,-.A , p  

pix It— ^Y » p

—  -41 ( xo "  A_ t̂4YV

(7.B,99b)

(7.B.99C)
y

are conetaarit mince the levels 3 and 2 are not connected by a dipole 
moment (see ref 65 )•
Hmco at «juilibrim

(t ~^k)4 w C
|6;.i (t —5?X2>4 ** 0

As m 0

Â  (b ->x£) m 0

A
f

0
   ̂- i(u3̂-Ato6(:

9,3 4 m t I (u-Z5V)^ ^-n/w
(V' —> "  — I (LO^-i(to--dto6b

•+1̂ LO'VALsTyV"

J

(7*B*10C)



so that the equatlws of motion (7*A.43) - (51) at equilibrium reduce to; 

i#e* Q s - 4 .AxF.  ̂ " Y„p„ ^'kC\A\p^^ 
1 1 1 4*2/V0Â^

1 (7.E.1C1)

Â;
/

(7.3.102)

(7.B.1C3)

- Y (7.3,104)
/ '

(7.E.105)

(7.B.1D6)
/

i'Â 'Iki-AAU,  ̂ 'A7p7 -  ''-4, Y (7.E.107)
I /

- ' Axyï" -'Vp;, - V p T , (7,3.108)

(7.2.109)

As la the gmeral case, v© sliaH aolv© equations (7*B.1C4), (7*B,108), 
(7.B,10<>) for , OEd Lb *®rEa ef p  , aad
hmc@

4 x - - ' ' V ' V - L  Æ  - V , ,  ^7^ -'V, (F.-KCf)
' / H, j

Â, - -  /T t A V V ' xR  -I /  1\d y
+ p̂.

w. /

(7.B.11C)

(7.B.U1)

(7.3.112),33p.. “ - V oY v v ; p, p  Y

On eolTing ecpmtions (7*B*1C6), (107), (105) for , and
V© obtain the h*c**s of the above Hire© equatione, and, on substituting these 
&ÎX equations in (7*B*101) - (103) v® find Hmt;

o -  ,ô r - ' '^ '4 - '0 ' 'V \V X : , t ï v /Y  , (7 .E .U 3 )
/"L J '



Wv
,1

I L ' X -T --------\\y<A
4 A-( ( V-, Vv '■ '£

— XvT
4  H  \  V '  ( H ;  'V w  /  

Tv~6

Ü » V., \(:‘(V\„i 4  ̂V4_\" (TcÂ A \ r,j'V\
\ V\d\‘

0 « A'Vt 4 VuU(X'\V, a 'Ŝw Y’I
WvX \'X\4

+PL Ï (tkvyx r/\\Y -\L'k\x ( w„4
L \ Ai\̂  \w\̂  J

+ X 4  ' '*'1 ' ') (xw' 1 ü'v\,Y -'/vt'fftAîNi
I L IFl'

- %L' ( R'w,^ '5oVY
\W,\“-

-  7 u - G '

w5iero
Y\\i \̂

Wo “ LX'4v7.AXv, kG ('/:A_,̂  ̂vAxoY
fp « ( % .-, A ' ' Gù r- ~ '■ V\

Vo can 00© that
p?X ^

» ' \ " p
Tima VO e%i write equations for

(7*B*113)eont’d

\i'3v'4eA

end
J

, vis*

G,{, \

a\ j „  -

wiicre o,„ »-v'v7'ut'(v4.4R:Y-^.Y8v,v 4V\-(v.v ̂ r.'xA

0„ - +''v(V,A(RV-4f.'V„X

(7,B.U4)

(7.E,U5)

(7.B.U6)

(7.B.U7)

(7.B.11S)

(7.E.119)

(7.E.120)
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v\ \ • U'\' a y  'V.Y ''Xk'( F.,-\V ' 5,\\'Y

- V  'V'f'V

\  I  \  ^ Y , 4  ' , 1 ,  '  k _ v \  ' Y  4 I  !  ; V  Y \ W \ 4 - ( 7 . B . 1 2 C )X  - A- ',.t - - ' . o«Gt*d

\ Y \ ' 4 4 V ■ w "Y 

V, „  , "A . . Y : %: («  " \ ; Y  - v \ „  A X r 'V \,Y

Golvtô ; (7.E.U3) «id (7.2.119) ve ottain

f - ■ W
P ''” r (7.B.121)

Y i 6.

T;1icre I R ' f A ■r, -C k  ' X c  > L

Kow if V© subfâtitut© /W « 0, i.©* V O  aaæi30 that the driving field 
la in exact rosonance with the (xxnrespmding atordc trmaitim, thm

- 0  ̂ wvv (7.B .122)

where T ( x  o'J)
- [YY,Y\\V YYY„Y5-t-'(vA;Y

A Z'«̂ ;/4vOYpxNx̂ ,.'e, \vY
1 (rX-vr^V-'Y

(7.B .I23)

(îî*B* we Mva used Hie fact Hmt

ŶuV̂  VV^X' " i'>2X -\ic\£R.i\ 5

end 5" 7  A VY't^

Ileno® we hcve t.\>, oc '0

(7.B.12*{

(7.B.mb)

(7.3 . 125)
WV V Y,

WVVT - \(o..„-a,Y\, -(V, _\,3«,4| (7.3.126)
wvv Yc
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p., (7.B.127)

and Bubatltirulng in eqmtlms  (7*B*HC), {7*3,1U) and (7#B*H2) m  obtain;-

'"Y-X k ̂  ̂ v . Y A ( a ,-4„Y -4\,(r ,x -\«

I . L U Y V - ]

À  " r F V r l  ' 9^4 -x\:,kV, l K - C . y 4 jF"^.:,n.\\
' '’" ■':■'■( X t A' |(7,E.129)

-■'.V.XV

Â, - A A A  ' - 1 I
I It^rTo  ̂, I 0 r, , \ ,/ r\

 ̂̂  X  I-1 ?c -̂'.o ) ̂ VO,,: ( (7#B#130)
- AG, ivG\' T,

On mdYotitutlng for and w  obtain the following egmilaiof-

/£, «[[b'Ar-'/jAÀA(,N gaOJ^o U ^ ~ i ' '4(IrX6Y/^7 PoX'XL /PrL;)(rjL;vJ..];7*b*131)
I I ^

/" Lj j m x l _______________________________________________________________J,
I,LET.

=P[ 1-.,ife!■ -yj-tcRxr,'n)JL + kiH.1' 1 U;~II6VÆ ̂ dx)-A i 6.'r-Y/r'tfnî/A;)]X  .
/ " liiPFE

^  - -  I r[k,inI'-'AXRR-4c-iG]LiA,'vtxv2/L,Y-.,)y]\>„̂  1 iYlV'G"'4(,rYtA
/ He lifo I Vo

G  [ïl, 114,1' ■"/q.ï,;»u.t'(K,ii') -Vi*AA/FJ;VFG,)ll?4Xt*''4,iY>'K.(7.B.134) 
U W - ^  .AV«-..t„f.j.,.J
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z l P L L  f[{.,inj- -'/O'^OZHX < % ) j [ r ^ 4 x K x ^ i  ),),
' I t l  i 1  ' - r/ ' P  ic

’ I ''* ’ "G ' Y(, y/B/i ') -X r //,,,),_ yr „ Ç p "

g £, Ga /' / / J

'F 'Y: G 6 A ''4 , / r  iv ) ;6 „i j v  'AL;jy j
'< I. ; V  ( H. f (-1̂ ' ) - V/L Ij y  I ■. 1 7 L  V  R  H: T  6 'A ) 1

y  '/
' I - ' ^ ' l

: G/GY 4 I [ Ï
G ;  ! ' (  I T £ ' i ' " '' '- : Y  ( II  ̂i-L 0 - 'A *3 y  I; 17 ly )/ r, r c '/pj J

/I  ̂&  ̂%/-V

4':,
y

(7.B.X36)

Ve may now note that:-

À  - , f _ , h ‘X . 4 - £ , ^ . 4 ' - ' - ' F . » . " ) ,  " 7

— //■ I/ s + 7 , j ) j  * a7. j/'̂ -Tî y Ü  A, f I
5’4‘J— »o[ A J / Y" /

(7.E.137)

(7.B.133)

TA,).

Kow, ve recall that according to equation (7«B«98b)

- A  b y ]  Fa, a] ̂

+‘% V, j X  ^ A x  A  h f X  V' V' yyJ
that all the quantities on the PJÎS are now known. If we now evaluate 

all the ^ Y given in equations (7*B.59h) and (7#B.60b) at ( u), end
substitute J7 « V - t o  in the final esqî ressions, we obtain, for AlJ* Oi-

eo

6 (,̂.)m I Uf„ f[(s„-'n)n:F' '̂yC,%6YH,AH.'Y-yy.(fk|:YFXX;yŸ)
/ _  ; 0  U' 7' / A Y  ^ „ /r. r,\? , < „ , . r.i _ .1Al WT' P[| b;. v(t‘-Y;)K - ) b;,

A ' i V ^ A f F O i W  + G G V G A A  
- k U Y

(7.B.139a)
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b-y, b'F

y  I, I'lp)

H 7
tG I - \.7 ̂ -7 n A7\̂ A\;,y '7y

/LrAbvyVbPxr/ y\(̂

A- \ , ( Y P \, '\ I Ù y  Z

(7*B.139b)

X ‘h o  r \ [ F  4\ ( 4 p X i \ a; 4 v(A .tpV'Gi R>v'\̂GlAA'AVA7A:GeGGA "
y;, A

A Y'Z ( 7 . B . X 3 9 C )

kil

(5 a)
U, 7

V  LbfA I L ^ p . , - -*';,̂\,| Vu.Gr ( G o  A ( \ yipG; AAfpv\F|
' G. /- G.(\5p\z,y 7 'A b, F  J riTL̂ y

' “l À A, A- /.V..yY4 V; A. V ( A\ ,r ,Ti\ ̂ c. Y] (7.B.lA0a)
’\ ('u''5YWv^Y x A  - ( F,' MrJ-V
' [ 1 ‘';-(Vy'\,Y('''Y,.,-'''0 'A;,( S'Y ÎIaiaY''' '
Aj ' < : ' \ - J ' h jXT.iYY + 'xAti ( xk;i -, j 
- A G ' ^ v ÂYc ']

i , [ - U O M \ p \ _  ", ( \ , ,4\. ,YA';8-. , - ' )G ' ' x \ , , ! X - /

>]}^nlF-Z4'iA-. ..'A' L\,A',Ainj^Yx'
T \X^ J i .I nr,4A A À,f XYYr ',lYy 7  (7.E.X40b)
4 1 aa(ay„-,aîü ' ^ p ^ w W . - c P h ' 4 j h p h u m :

• (,«,-,â(,,»«»zG''''‘
L_ X c \ [hY\5; , A G  4k G b i A ,VxY,,-' A' xk,A.G-jYij<

 ̂ 8 -1Ahi -Zi) 4 ‘/2 V),
G'6 lY AX;, 'iî\Y 4'Aî,(T-,/Ar,i5)A /_ _ .

A  VA,(5 ,(AX4a-XY4V2T„(v,xY,-.AGÀ 
- vz\,,n-7G,A)Z']

Where
X  -  I \-, IA 44 A  G  x H A G ' x V A A  - W , (X' - A  

R'..('/? 11,,.,( G Y  - ' k G  = F,(s>

f,G ?>,(s-
l\) ■ lV-,lY-ixAG ‘ G(S" -a)

Y'Z"

- \
(7.E.ia)



—27A—

{ A J, I ' A , J'l A',- ',V ■ A>, I'.: "A

_ f \ , \A A\ V\ - ' ,  AlG' I VG,-A \\y 'G\ " I \ V ̂ \\]£ - ' ,'A
- ( \ , \ W Vvl 4 ' x k '(a v x x A a -- 'jAXxZYA-r 'XA^.^sAAY 6 7 .3.141 j

c m V à

( ' \ _\\ \\\ ' \l\ :4 '  ̂'GGY— Yu (  ̂\%y( V/ VL, \\ ' ŷJ■ , A
\ - \ , ̂ I W4 W, G.(\., \ 7\4'/<LL7 WA T\:'£ -  ̂ y  R/

- 'liy i\:\ - \~Xi G' Ha"' V,' V\A£ ' V-,.1 ■ \,y
Y. Y - 'A , V   ̂H \\' 'TM vb  ̂ V\, V\! "T ' - Z F  - -

l#e# primed quontitlea are evaluated et s « ^

and T '  - T i  ( H z :

yvj£(!^yV)£| '
 ̂7 I \ ' H, - H; \bFl I ; r Z\\bL̂ -- - \IÎ L V  Y b( ( 2 7, ; - Y Xj (7#E. 142a)

- ' / L I . C V 4 - F , ; y w ) t y

or
-vy-h,;\sy)iŸ;v\yF\\^y 
- % V  K G T  _ (7*B.142li)
_u, \k A, r Vv ) 1
- 7 v  A \  (''r .,,-'4a-uXY G  4 r'zX,r'(AK,AMH 
- u, A ,a\''A'y,vU Cw;-. w A  X {F r ' &YAG' - \ \ f A G  v,

b). .aectral eorrelgtlon fur.gtica?. crllt into, cohwre.t cr.d Incohcrcr.t .nMrt-a 
Ve are now interested In separating the expression for the total spectral 

correlation function, i a , into coherent end incoherent parte, as In Hollow*»
■ 9paper ^-#
In order to find the coherent part it is necessary to find the asymptotic 

form of q ( t)  in the limit % -> <a , #ilch originates from the poles ofr
transform of g(t ), so Hmt, since ) is given by equation (7*B$97) as
on the imaginary exi» of the s plane# Aiŝ  is, of course, Hie Laplace



'■ A,
f^\' '^^^'\f^-"'^-.'l.f '

\ ViJ

' / "A,

 ̂ ' 'À

' ' i "

(7.B.U3)

n - / -j V
v!h«r« the coqpreeelone for the ij, ! ) s are given by eqmtione i7*B*59b) and
(7.B.60b) idiere \v:̂ nov equals sero. If we smme that the real parts of
ta© roots of T are all negative then the only contribution to ̂  h oomes
from the pole at -uCi on the RHS of the empressions for and^^y^) #
The residue of the pole 3s, by virtue of equations (7$B#59b)# (7«B«éOb) and
(7,B.143),i-

J
Vuv.. \ jAL_\ - v a ; Y i \ L - 1 ^ \  ^-T11/)|
. -7 - ,vĈ L A / ' V ( \ ' . ̂ Y' s \|

-' ■ 7 ̂  M ; \ \  ̂A _v V\ ,W;_ \ '(vX- \ ^
\A\Z. I  \, r _

1*®* ̂'̂w\

'I v̂ ( \  '- ■»\%\  ̂t V, VV"' V, V\

" J '1A  % ÂL  ̂ ' \
y^ioj ̂ L t .A: w:  ̂vĉ\;, w (  jt-

[̂1̂ 2 A' VA%" (7#B#W)
xM \Y -» 'V"" \W']



'* ''7'.'A' , ' ,! ■ '> > ■' "-̂ 7 \
' , ';,'■ \A:  ̂ ' \
. \ w ' - \  ̂\ : A. '̂ \
' 'J\ , \ ,(̂ -y.v,A\V

/L \ J \ .'-'A"
- \\A. " '7>jA'A,,P'' V

(7.E.W4)

idicro
H," » 'A A" - ' "-A ■'■ I A ' \\̂

r j  ■ ' t - -'^-V aIA-

Çj'' * V (' '- - •-- aJ a 0^ l\ - \ A  Y. r 1 ' i ^ r ^ S>u

ly  *  V\. (s - - V\,( ̂1 (}) , ( \  V i ' ' - \\A

F/' ® A '- - V'oY À ( 1 L\: ( A V . ^ ■ '̂ <4 ̂  ̂  ̂ Fu'

A ' “  vPya o V - ( 's -h w y ) (v 7 , , 'n u P ) t '% 6 ^ =  Eb'

(7.E.U5a)

J

from equations (7«B*42) end (7.E.47) at Aio » 0# (7*B#141) and (7*B*116)»

mid /" ZX^'O) ^

'V  I y ' 7 ' a\*eroT" , xu---,.y) -1 ' (S\=dA -- '

- p ^ y y ' / 8 7 m > ; - 7 \  , _  , .- ' M b M r , " \ V i ; t / 2 - V  -7 )
-/r»^'rv“\\v'V2\'7^
- '%l%\'-77%GA

- T .  . ,-'Hi"(vi'5,,-i'̂ 0\from eqmticais (7#B»$6) at AO> • 0# (7#B#m2a) and (7#B#123)#

pil
A (7.E.U5b)

Also
a " # Q

o:' » c\

7(a oA= +iiu.y(F,'U“+f."̂ ,̂'0

,(s,-wV- «!lA-c) = -I, w;‘wA v;.,y,7,ü(WHu;')AV(y-yAlf/w:'iA,“<

y - I-aAV'V ̂ 'i4\;ApA’')AC;yv7'V'>
A v b M v ^ M v s ^ y A

b '“  \:>jls^-\ii)-- \\{\-̂'PP:'K' - V l ' Ï Â O v y P K
-'Kb’- l\y>y i 7  w'A -'k IV>\.?X 7"A:' -v-̂ 'W'')̂

l«e« doubly primed ipiantlàéâ are equal to the corresponding unprlned

, (7.B.U5C)



quantities at or the priced quantities at ̂  « C BUT are only
equal to tlïo oorreaponding quantities with B&ro subscripts uhm » 0,
so tliat

V V , \ , AlF''x.AA-,f'V
■A \ ■ " / A  A,. ypI I J (7*B.U6)

Ve can now cco that tlie contrlbutlcâ of this term to the correlation 
function g( I ) is the oc^ermt^ harmonically varying asqrreeslon ^

- ' - A t

( F -, \ ( 'A fr (7*B.U7)

E#B* VO can also write this as

(7.E.148)

The laplaoo transform of the remaining, incoherent part of the atomic 
correlation ftmctlcai Is \

kA  ̂!Â.„kA - A — , \ V A V - V ' . - V

A W /  ̂;. I
A'-i;

(7.B*U9)

' Mxc Fpf Y  the Fourier transform of the correlation^
- Ao A fimctlm g( t: )  I
- ;uk::k'\p;.v .■a v A = 7 m \ A V  - ri-ri A

X'FkV \Ai \’ A  ) ( Y Y, 7 Y  (/ ) ̂ / / / / ^
since g( t) ) » kl-i vy iFlsBown earlier#

Vo can write |,.,cA8 fros (7#B#1̂ 9) more wcpllcitly as
aF'A  ̂ ■* '“a F K m  p,zA, "

'W 

\



V® #i®ll now let
\ Yv'A

wîier© '4F 'F \ AF, . r L F""' \X\ '̂14-Fk ( k  '
kA_. L - V ? A z A ( A A \ ^ k \ A  

A l  A " k /7-\-AC', + À k ' A ;  A  A
' \ : ■ \ K  \ 7  W  K. - 'K k  ( V i. \N\ a  \
’ \_ , F.., ' ‘■4.1 V' -\: A \ \ \  t \6, ' 'ia\:; \V',y

"''ivV-v wx% \

(7.E*152)

. , _j   vu, FA
h  ' A-.u.o4"r f""'*
lA

where A {-bX?Y \ LF:7 AiAiik H, FF '4 F y 7A-k|),iH0
\t'..pA'i'Vktt7'’'f,H.)1 ̂ (7.B.153)

 ̂P ji 'A (k,'F, ï.;)ti A ) 1 '/iF/stinLA ) j P:

i [ Ai X;| Aü)ff)H2, HiTÂ Ki)_]

i I A F,| /k i l ■Ai'l A.') A Vzt A+ F )

A  ̂' -J
îlow let us sepamte YX, ̂ , given by equatlm (7*B*152) into two

terms, so tli&t

A u n A  - /'>-hcù)r%„̂ ) , p,-nw) A ' F  + A Æ "  (7.B,154a)

Similarly
<nN Y  " YtiVii) T  4 „  A) - Ait ) ̂  Ic^

A „  k) = ^ To

and
A ^ /s-nw) /
7/>" k) = A',iv A'ik) _j, —  7

(7.B.155a)

(7.B,154b)

(7.B.155b)

(N«B$ W« already know that

S—?»-
and y, r. V

L =^7A

vy.iivi T.(P, 0

(sea eq, (7.B.137)) 

(sea eq. (7.B.133))
S->-aj

so that equations (7#B#l%a) and (7*B.1$5&) are valid#
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SiallRrly, \ m  can also separate T, given by equation (7#B*57) with 
now equal to saro, 00 that

T W A  ' I \ ' ') V;,
Using these aubatitutiona in equation (7*B.150)

(7.B.156)

y.

Making tiiree further «ubetitutione

' t -  ' \r. ' ' : '" '4 ,P

' X  k A  - '■r ! V ■s
\ / 1' ~ I ■

/ : U ' -’7 k  k , U/'•/' fi '/T'k
/

v k ,  ■ 'k jti

y  itoi

(7.B.158)

/
we obtain$##

(1 I- A  Â-, ' Z
/ '

P

- ■) y." - - 'l/y ■ A  , A, i A, '7, ,7
' ' ' ' /V' // 7 . 'k,//

v;,kk(Æ7'Â.A'k,,/.çA
7 ,

i#e# / //■ '

-Z 1A>0 \ ,

y-yi.Ak - ’ y ^ A Æ ,  iY/MAÀ,
- . i l  ^ .1.

\

{7Jî,159)- Y ' ]  A  + 4 "  A"'

t ̂ Y,j'yy) -F Y'- V"' 'A'
i ~ v Z v  [v,„ i""k »\ s — A  - j(,.vT >.\k, -,8y-\k]t y . p - ' p + y k

7 y k U v , „  ('A 7  S - ,A -](v.k 7  V A A :

t li YF;i
4- w ' : I

VAk^sf 7s--,vp -J(<,xT 7 » Y ’'" ( A/ ar y

IA
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We can now see that cnce this mprcsslon is det€rsdn.ed the value of 
the total spectral correlation function ( vX , given by (7*B*98b), la 
known#

where

Wo m a y  now write down the result in tlie foi-mi*»

F

‘j v,jF" Xii 8 F V ^ Y j F  ! (7*B#16lb)

Y'.v / Xi\ è ( F') \

and T •* F Fvl Y. \ I
\  L\

\ \ (\X *« (\
1..  4

- . c v v Y Y ‘ 'Y' '
, r "‘7 A ‘A m F,.m v 7-,A + 7 - k ‘A,/a-o'-k-“

X  F -  k-V I. >A - : -r

1 ■'k'’'̂“ F ‘11 (<'tsV(-rf7 - '] [ tsst (-ivkyrj k ■+ 'A,7 ^

|...Ak^"[y '■‘Ai-'+A - J ( a v ^ '  ] + 'Y?â Y : 2 y y I

I  k ‘7 I-\y7 - I ( X  !

Before we proceed with any further evaluations, ve WiaH made certain 
a^codmations# We recall that (see eqmtim (7#A*33))t«»

(7*B#l61c)

j>

Hence»

V m - A s a , k„ . Y k  ?k

la - $■' ks'Ff’• I,- fzi A '   ̂4

î y > 4 À AI
end in the case of tlie Ha D linesi*
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Y

and

Also In the case of the K Hnesj-

770\fk

C$9972

1 .0 ( 2

A+/\ ■ ^ / FLIol'<0 )< V F 7c I

Did 1)

0 .9 S6 3

Tîîxifi, for sudi differences between lo and , i#e* for 
we can consider

A,

0
i d  we can also take end 1% the expression for to beand 

unity. 
Let

end ,

Then

where oco0 " a,\j ^

If we assume that ~  ^ z \  ~  » A.e.
in Chapter III, then <i \ (-K) • 1#®# ^
reasonable asamptlm, but we shall keep d ^  and dg unequal for the p:*es@r̂ t.

how, evaluating eqmticms (7.B.15S) at and using {7.B.154®)»
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V (kiC'-.vX) = 'ifFnN  ̂ A ( -  Vv,,iX'7v-4 —  \ p,-
\ '

y „ y " k  . (7 k ) T ' y j - , A

end this can 1& ehown to be the sum of two terms, one containing a factor 
of ( -, V ), as required, viz.

P j  - ( .-I T ’ Y,J'"k 1 -  7 7

A
but for tJio prooont ve shall us© the ecspresslĉ i for iX ,,w already
found (00e equation (7.B.152)}.

How tl'io Intmolty spectrum Is represented by T;, " 1 where

A ( Y  *  ̂A,,

" À (V ( Y

where

Y t A ) -  + A.

Av.ik ■ A  s(7)\yv" 

x ^ v ) -  i T \ i m p p  

2 is IA  \

k ' A

(7.B.162a)

(7.8.165))

%
and

hv4. [y„ + y y  Y "  ^  Y '

 ̂ Yi(«^kk))D - %n, Y

- [y„( M )  - 2 i '«+.41 y  -V Y ^ i F y '

(7,B,lÉ2o)

K.B* V ,  ̂ '<7 AvY) = 7v,,,4kfsf Avi) »
T' A n y



^ 'KvmYF (-vkX ■ Y A r-,y-\v'') - \, pp

Y (4 4 ! k\ F)

■ ( ' 4

I -k , XT '
/V

(7.B.162C)
ccr*t*d

X # y Y V ,   ̂' iFi

are obtained from oquatlcr;® (7.B.152) mid (7*B*I53) where s - y 

\ •
VJo can rewrite the equilibrium density matrices glvei in equaticfis 

(7*E.131)»(136), m  letting Fy-\.y \ , ast-*

+ AkvAA,, 7 VV.VkV- viK\ - (v\7 VV'8
- '>P\ ' ̂ TuW/  ̂y v\cY ̂

 ̂ \ \ Vyv-F ' 'k.\ '( \, A.' A VXVVY*'b̂ 'T-̂ ~̂  V V(.\' \T"( Ftd w  1

\

T - T k - k ' ' " - '

7\‘ U ; v\- A
'!' V x \

^ _ -.1 !, \_ Att,\’ - v\ ■ 1A V  + A ' T  V\A' F' + 'vk \  A4 Hk x X  f
/'-' W . V ' o  i - ' ' 7 k k K , ' + k ' T >
ÿ , - -'F T : A 7 V  -'K\= If.WA +
'■' W A W \ ' „  1

^FoWXVF,

' V ' -TV rtC'A

p y :

ii
-/kfk''V\X,:A\kV -TivVfF-KA-rfo'TT^'^'TXc'^VkyY ̂ 7
WWVVTo 7'/ayXt-fcX̂ iT T)-l'i7(fL4v'+fo‘'wX^

A ÿ(\'TjX Aiü T ('̂ + '^4 51 -Fl2 X Q -40̂
- 4LV l o |

(7.3,163)

Â 7 =

F HklLA'A V u ^ w v V  ,'kv\’'VklVv.AXX -T'/v+k^VV -ZvA

'  T '  4VV 'Y

A  " F

^ " 'a U,+o
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Vo shall n w  made tiio following eubctitutiœîgî-.

a Lk, - i ÀÂ- X - f V- r-̂5 •
Ay T V

b w _!L = (y lY) - ( v>- ^ Y

T  -r, = ( <2

liiero ̂ 2 1  “ BRd le real, eo 
that a l0 also real

{7.B.164)

and

I.
lCj/ a

L "  z. ,̂-y-.i =
A-.1 k, V-'

A A

eo tlmt

then

à. '- 0 F  w!iere 0   ̂ t
' ccXG-"

wiser® cos G = Y
(7.B.165)

^ *• Y Y  A  k a

Q * f' = (. T d  ̂ -\lV) vcF)l V - và;

R « K 7  K  (TCT(\2)-XI'd4£^Q_ a cC(Vx-\'Y
= (Va-XF)? - C'TC\viF)"^FT vS\
~ —v(\DTcY)('(:z<̂ T-"FVi-rĉ '/2-v\7 ~'/n-dX‘Y

4 a "(Yz-iVT)

L *“ Yy' = (jfoi\\̂ P -\( Vi-ĉ /v-i A,-\{\d-cF) -va

R • C  ̂ Y\' = (̂ h( tX-F) -\(V'c'X^ -vcx’-̂  V-Xi)

= ('a- iGY (_ - - ‘̂ G-ci)
" (jh.(- hcL^ ~ ‘ -c7'v ~ t Y-c1)72-iG') ~ 'pd^^ OiA

-+Y\ ̂ L Yi-iVF)

V® shall aleo let,

1' ** ^ ^ (CfT(-l\X) ==• Y  ̂ ' I  ̂  ̂̂  P \  z 3̂» X i

,(7.B.166)

(7.B.167)
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T  »* y V : ,  ' ' F 8 \ '

m T / 6 é sT
-t T

>+

\c " Y/̂ ' (

X - Y-, a v A t ' 

'"' ■ x „ N  (-'A

H - A - A 7  - T  k /

JL

. I A ivL

ï ; m G)u -

X‘ m 7  = -̂6,

Vs m G Cl = F

T ' m < T

"T, WB

a'1 Vt

«)' m

y. n

V' a» ii; %;

a
»0

M
^ . 7 A,, =

as X4 =
b
‘•'lo m =

F*%0 m
1̂ 37 =

A,\4V

4," Y ik-k

V  \  - T'? x

V  F  (v-X 

V, V ' ( F X

îsi Bi (Vi'X

- 1k k
: (7 .B .167) 

cmt'd

J

(7.B.16S)

(7.3,169)

(7.5,170)

(7,B.17l)
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'!, W,V-T,7,

F, \ iA T

A, Fkf ~  k. .- 7, V/k’- T,.| M.,(L-cX̂  , '/,\/,VM-jMC)

'/, \7aV T T )

'■(

F-

F 2 * ? ‘l

^ I ' »' ZGtr')') G.

P . m |,y-iVyLv\ A VÀ,'a’( Ft vA) -k KM-i'KûX

f> m j A^- \ \8  -  Vu. 8 ’  ̂LM  -Y F

‘'no - P,T y  ‘ ^  V ' " T X k o
?|.;C. - P^(b'o) ̂  7% &I0 A (k, A T X % 3 0

?,«0 m P|̂ (L 'O) -  { i x i  \+ ik )-v X  fko + ncX .

V c  " X ( L k ) =  (vi(\+àX-'cX%,o-» C'z(-AX

-P, .̂(L-o)= XVAV- -t v X(8 ^ V 7 T  ■'’feVXz7k^7A7Ay 

T  -PijL'o)- &Pk\+

Erne®

{7.B.172)

V

J

(7,3.173)

Xj_ ■ H, --çÆk c YL,-8A,1'o--7) , M,- P'Xk'kP . Llk>‘M,-P,
-\\y' -'V A\k-\*(-.\8

J

. (7.B,174)

X - -Tû/â/ . Yl\. - Mjk'Ck . - PT/, r/>.F/M7,VH,-?kF (7,B,175)
^  t â ; W u )*̂—  \T

w ^  'T,
— \G
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^  ' - -

Kd, V' T

h  “ V, y y A' \ ( T( kkA,

b  " 7\- ^ '

b o -
- \ \ fF [f'T

b i - V:AA
TN

T m A/&; - (\;^i
R VA

T -

b  - Oz( l-hA.k- icXk'l

b  - '/z_ ( K — 1 c8 - 1

b  -

A ' *  ̂ iXfvtk -

A' «
■9 —  ̂J,- «X F7A *1“

B' «*
1 /'Ij'iX R M  i-

B' *
3 l K - \ ) f A  -

b o  - 6 , \ - ^ V  -

b o ” - V k Y

®io-

®30 - I d . - X  V7 . P

"+\

-L’Pu|.i - (’'.7 '-vAS-iSk

(7.B.175)
cont*d

V

(7.5.176)

(7.E.177)

V

•s.

(7.3.173)

c\;’a’ -  7  ( U< A ? T

V
•s

(7.B.179)
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r «* - \<-'A‘i

-''A,lxX “‘X X  '''-xVkT y j o k k  s'AYT]

- 7 . y v ' - \ - 'T x 2

y i 4 , , x 4 . . A v , , v ^ - v k 7 X T ^

(7.B.1S0)

y

V© can rurÜLcr factorise the expressions for P̂ , fg, P̂ » 4̂» Rg# T, T ,
‘î.» b * b * b '  b * b» b * bo» ^  equauooB (7.3 ,177), (7.3 .178),
(7.B.1S2) so that ve obtain the folloulns OKpressiœist

S *  - ?/ -- 'ĉ I7.7 7 7 1 2 -vAXV'-vA‘(AA87'\k7' 1̂'''y|!»id-Xï3-
% ...............  ■ -.Aklt''"l

b  - 7  - *'/2.dTa I - L, tp (\ + 'k Al-'7 -'k4A(4b~7^-.87;”l
+X7;\1

b  “ J 4  " 7s'i AXr+T;-('kd-.Xr+7,"'ui^y
' '"k - KcV'̂  d,(yjk + 7,'7iï^ '/z d/a'Vj

P+ = - la'/zd] J *z4tA^-ic7 ~'/i(-d,‘a“b  — d;7k-4Vyd/ +̂dX'/z'V
7,\7d" ^

b ç,-
7;\7X

+ î'T,Xit<X + x v j  

+ 7/   ̂v47 w X  w  b ]

'l̂ dka- -t-'/id/Q-A-(Ykj'"'’/ ' a ) V kXiicV
-t ('/zd̂ -.Ĉ Y;

(7,3.101)

T *« mm

7 4 4 V- + V 7 q ‘( l 7 a 8 (  V V )  t  Z a d / Y j f  

-'TX4+ï)('IXk^\'7.)-'/?4''ak % V  + 7,'7z)
- 7 d,X'j ( ' / 2 4 + .c)V^ t (L

(7-\X('4W)PM t vX T  (-sd̂ -̂v̂ \ T  i ̂ a ^ d z T / L R T p A)

- ' T  ( M 7 c\X-\\X(RY<VQH) - l/ĝ Lat- - u T k b P M  + QL)
 ̂ ( v z d z - 'X W X Y ^

- (7.B,1S2)
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A '/

\ - 7/ • Vu-Ak'ii. 1 1 -  J j
-+ V ' A ̂ I Y r ; "  4 )  j

{
"i ! V F - 1 r \ 4 Vik.ciŷ/

4 ''2 0' ) ( Y  ' 'W) 1-' 7 7,

Tl-  \ (i T  c\^j (/ j| / 'h 4 T  ■ V Y  V, " ~ iGl.'^ ' ■’ '
-i'.,i;\: ( \-r-y.. -'\ I'h-rAY 7. " - TM 'Y  ̂ '  icY p J

-  y  '/ ./ + T T Y  r  z/ F ' ifk-nrY t-\G) + j%/x( W ;Y  'L )F

A K ĵ k J ri '7,.y7 - \ cŜ
 ̂ - ATM' I

k (1' T' 4 (cL - vV,)TA  ̂

k \\ (\[ a \ p  T  - A Y  "k ' '■ Vrr

(7*B,ia5b)

X,

— j ('T'RT k \7-̂\7c1j4i-.p')-GR'M'/pĴ 'PTiG')
4 'T d; q" [i R'4 \ ~ -a \d 1A

4 -t'TU ky.;^pYdr /r 73"̂  7, V^«

-72d=[(y^V4' t Wk'b'y,
— \GlR4\A'-tQ' H'Y 'bt 

■ M k 'i '/ ' iM ' f Y/a' +7iU T-y/pi _,t( p'k'-râ'Ly 
+ R' i ' lx i ,^ - \b o -c P j  ^  u'('i2 d i'iVsn'^ 4 7.̂ -1 72^1

H4X-4A)-X]F(X-XIi-,\8n T 74.4,’q (sd.A \-K.b) 12tt+(driXL“
- 'td,‘Vk( W b V i C ^ q  - \ A A ' iz6a F ]

4 '/ad;cF((x’ - C )

-  (lA^^ l - k T X
- 'kdX

(7.B.XS30)

(7.B.XS3d)



V b- A  \- IP)\\ - ( o:'k ZA,4 \ - i . V -1 2a" ̂ c\, -\V)L ’qf\, ( '(
- 'V\,'a^ ( '? 4^ <Y'

1 ^ 0  ** - 1 ! y? - M Gi X ‘ \ -: d A  - ' i / :• - ( \ - TF Va d Y  / Td  ̂ -x \ - T' b)
t 2 oUd, - A->) L, - 'T  d 2  ̂ 'T ̂ Ftd^

(7,B$ia3e]

'11

/ix/j; . i ; - - blo'Yj 
4 \\^P4 (A2- A'k)( Vz( Hd V)-,fV;VY  -'/2 d Y'/: b Y v  f bd,V'•

k Yad: a' ^ ( 'h ( ' ( bkrAbd —  ̂ -ib'̂  ^

\. - Ab)( \-\\j ;H'iiadd (!'■ ̂ "^d 2 4- \ -lv\b̂
 ̂Ja

y
(7.B.133f)

;'ab M  I
(A : X  I Vj X  - . (kr AV] r<7.B.lS3g)

\ V /(\z- 4 T j ,V'7
1

''Tbdn '’- - “ ‘’I

lAere
r ” Y,- ibp'

Q

? = T(\ \ 7 ̂ 2) A 2.(b-4r̂  

y _ (\\ = Vi i — \(iGk-cb

J

R * -  'lb G' " A]):X \. ( b T  + V'zA\4k-Vb4(i''4,-.(\)4)i

- V\^ ka^
C - 'A i T "] cGb T 2 ( G - cb 

-- Vj ( \kdid ' ( 2 .G- cb

fv̂’ ̂ y "j V̂ f 2cb) '» 2 (G-cbj -k̂ 'v( \kd2)-',/P-cV|'/7c!.-Arc")] 
- Vq-'b' TCp

îcsscô V® can write the Intmslty i^etnm &@f-

^ “ y;-\bL

M « 7/-ibH'

^ " y/-\bN'

(7q3.ia4)

v'OoA (Ù

5Tt S(\4AcA

£-'.\CdV (v8 m S - i L s T s j

(7,E,X35)
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! IX - L  A ,.cA.. ' F

] ;,„ IXi.'' or. \4-TZ

I . X X - 2.\ a4\

2 Fl5 w  y  T, ( w  + X,S, ^  x , s A  -  X, \ % P

P ^ [ T ' 8 T ( x.Ŝ -V X̂ S.- +rX^Ç)_

[ l 4 . T l s % +  x,,s-+ x„s;)- x^ Kh A j

r (7#3#IS$)
coast *d

r q q -  _ 2  x,,qT-x„Sj)- x^ v^.ll
\.Tr%£ L ' ->

Crapîi» for 1(b) against b « m  now be plotted for various values of &,
C| d^, ^ 2 and soco t;yplool computer generated cn.es are shown In section E 
for ^  ® If a * 3 m d  various values of c# These, and others for which 
data only are givm in section ere analysed in the following sectim C, 
part (c).

C# Znal;%is of grpectral profiles shorn in Section E for d^ « d^ «« 1

M  £zsaaj
We Wmll first of all (xmsidor %dmt effect tlie parameters a end e ©l^it

imve on tlxe spectria profile 1(b)*
la the case of a, v® & h m M  expect noticeable ncsEKlinear effects t o r  a

largo since a is related to the enplitudo of the driving field, 4  , by the
expression a •» and so Wim .a_4 -̂ Ifrqe the driving field Is strong#
Whm is of the mgnitude to be found in laser radiatim the field#
Ĵ 3Àîi2̂ JLSL~ f^W.̂ JkZSÜL2# & %im#linear effect, sliould be
V© deduce this t v m  the fact that sudi fieldmdcprndrnt splitting was found



in the caae® of potassim and hydrogen (see Chapters V and VI)* Our 
esîïuîiptlon timt the field has one mocle, or on® froquonĉ , is particularly 
valid for such strong fields*

On the other hand, in the cas© of c, ve should expect the ^STmetrv in
iF 4>j,

tho m.fT.lt,r.T.i8 of .the l.'̂ tcn.slty to be r.oticeable (see ref. 8). « la related 
to Hi® so%)ar&tim of the atomic levels-!2 end 3, , by tîie «ssprcssicm
c » end eo vîien o is small, w, is small ccgqpered with. 1^0 line-
width X # Vlicn is in the range of 0 to 1 the overlapping of the
lino-vidthe of levels 3 and 2 varies fma a sazimm of IF to C*-

c O  c ' 0 :5- c ̂ o ̂  C T
10, 0

} ] } } ) '  .->0

\ •  I   I  I

-7 c
In Cliapter III ve saw how tiie profiles for spwtaneoua edssim became

asymétrie % â i m  levels 3 m d  2 overlapped* Graplia for c « 1 m â  e « |* are
given in Figs* 3*B*6a and 6b respectively of Chapter III*

Since in the presmt case ve have profiles depmdmt on a c the
effects of ficH splitting and ass'œetry ̂ lould both be presmt* The field
{splitting sliould be large for a large and tlx© aayssmetry large for o small*
Splitting would only disappear for a « 0 but \ m  should expect it be
trresolvabl© for a sufflcicaitly mall# Similarly, when c is largo? than 1,
cr.e would expect th© ecynsctry duo to overlapping of line widths to be
negligible, althougîi, if c is not too large, then level 2 miglit still bo close
enough to level 3 to effect the profile in sm© way* The expected results
Rl^t bo furUier coE^licatod by tlio position or tîie ^lit levels of level 3
relative to level 2* Koww® should aspect the split levels to occur at 
b * +2a (see ref* 9) so that the magnitude of a relative to o is also important*
I*g* if fi « 1 then split levels should occur at b^^« +2 and if c » 1 also then



- 5'' ui t 2^

5 i 5 ¥ S W S -

--------    5»
,2 )y
"Il = U5-2.y

If a » è. ü:im ̂ 1^2 ” if c « ̂  also thm

/ Z

s'h Vpto+T 

■ i'j 1̂= w-y

R«,/7.c.5

If a -|i thcsn b2^2 *** i à  caid, if c * i also

a
g Lo-̂/i'îS'

F^.7.C.lf

la thia case tîia split Icry^s ooour at the cstr^ties of tlie half vidUi of 
level 3 and idll aot b© resolW)!©# tliough they might appeor as sJiouldars 
on the remmnoe j^file if Hiolr intensity is sufficimtly large, via#

Since 0 < 1 these shoultos ere shorn to be ai^metric in intonsity#
Suitable values fcr a and c y m û à  be a ^  0*25, o « 0 I , for the effects of 
overlapping end e » 1 t^Amrds for the effect of level 2  % â i m  not overlapping 
level I&m e » 1  them the atm would be effectively a 3-d.evel atm and 
the results would be only due to the field# Whm a <  i me would not cepect 
anyUüng different frm tîie norml Lcrmtsian profile# ■ IJhea a is vtay laz%:e 
m e  would csqpeot tlio profiles of tîie ̂ lit levels to be Indepmdmt of c#
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Kewsteln has cut tîmt the ©Is© of the driving field Is
critical# In ref# 65 where he considers the effect cf collislonal relaxatim 
be cays that if tlie driving field is not sufficiently large to alter the 
state of the atomic system in a relaxation time, thm the spectral distribution 
of tîie spontaneous mission will be maffacted (see also ref# 85)# In ref# 66 
he says that tlie effect wryild rot be eimiflc^rt in sudi a case# We can see, 
in the above analysis, that unless a > i the profile would be Lorontsian# 

Kewstein^^ considers the spectrum for spontaneous mission from an 
ensmbl© of &-lcvel atoms interacting with a relaxation medmnim end the 
effect of the application of a cl̂ nsclcal driving field# E© finds that the 
single Lorentsian llne-ahape characteristic of the power spectrum of 
spontaneous mission for the undriven case is split into components by the 
driving field and that their splitting is associated with the establishment 
of definite rhasc relations between the corresponding components of the 
field spectrum# The effects become significant Wien the strength of the 
field is sufficient to appreciably alter the state of the material system 
in a relaxation time# Ee says that# "The splitting of the power spectrum 
can be associated with tîie sinusoidal modulation of the population of the 
Upper level of the material system, betwcm relaxation collisions, due to 
Üie coupling to the driving field# The establishment of phase relations 
between the componcmta of the field spectrua can be associated wi^ response 
characteristics of the driven material system# Senltaiqr et al#^^^ have 
shewn that the linear respcmse to an additiwml mmll signal dqpmds m  the 
phase of the small signal relative to the driving field# The susceptibility 
of the medium to a m m H  signal phased for frequency modulation relative to 
a resonant driving field has a Lorcntslan line shape centred at the central 
atomic frequency# The susceptibility to a small signal j^sed for amplitude 
modulation consists of the sums of the two Lorentsians, symmetrically 
displaced relative to the omtral frequency# These three peaks in the
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Bueceptibillty and the essoclatedi phase relations corresjjcgid to tiio ease 
feature© of tlie epontancous emission spectrum"# The tliree peaks cf 
Kewetein*»^̂ '  ̂Fig# 1 resmhle those of Mollm^^ except that Kevstein»» 
curves are for SI. m  when the #mpe la similar to Follw^ a for il * 3 l i and 
5K eorcept that tlie side peaks occur at 44 instead of at and for il « ZC, 
when the aide peaks merge with tiie central me, as they do forJL * K in.
Follow*a case, and forî  * 0 wîien there is no driving field#

ApflnasovlcĴ '̂̂  ̂does rot obtain 3 pealns Iz: his susceptibility curves 
(Fig# 2), owing to the fact that they only repreemt linear susceptibility 
resulting from a >/c^ field, i#e# a field insufficimtly strong to alter 
the state of tlie atomic ̂ stem in a relaxation time# His an.<malies are due 
to the nearness of the tapper levels and the fact that the weak field can 
couple both upper levels to the ground level since it has a frequency spread# 

Me can however deduce some results from those of !k^llo%P^\ since, if 
we cmipare our equations (7«B#2), (7#B#4), (7#B#6), (7#B#9) for^„ ,

and A, , for the ease wkm K, ** , with those
of Follow for the drivm 2 level situ&tim, we c m  that the equations are 
equivalent, b«^ing in mind that

W\

K —  ̂̂
6%

In Follow*© case he finds that, for y c r ? . fields, Jl >> î ôl * 
the peaks of the power spectrum occur at \) and v = , i#e# if

# nK, then the eide-peaks are n m r  to v "w ± n x  # Therefore we 
should also expect peaks atu * w  ± 6- , i#o* at b « 42a, for very intense
fields*

(b) of. cth«!r TtlemrX  rtferw.cea (for th* purpos* of oanparlKg results)
TJi© first reference of interest is the paper by Morozov and f%erygin

(ref# S) wiiich has already been discussed, both In Chapter III and in part
(c) cf the present cecticn# They find that the central peak in profile for
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0jx»̂ itan©ou8 emifisicm from a 3*l©v©l atom Initially ia level 3 becomes
oliifted to tho left and increased in height owing to the influence of the
cxdiange of virtual photons between overlapping intemediate levels* This
ohaTige becomes increasingly apparent for decreasing c and is negligible for
o »  1# In our case ve diould expect the jeslitu Isvsld rfL l^el_3 to be
affected by the magnitude of e end not the cmtral remnence p^k since w©
are not considering tlie undrivm atom*

In ref# 63 a molecule with is considered when it
is coupled to a quantised radiaticai field crJLy and allovenc© is also made
for virti"irl.7±ot,oTi. .exchange between overlapping intermediate levels. Th^
calculate the intensity and shape of the absorbed and secondary radiation

f A7)lines using tlm î’eltlea**f>îa method'^^ as do the authors of ref# 8, and point 
out that it provides a more rigorous and complete solution than does that 
of Veisskf^r end Wlgner^^# In their figs# 2*5 they tôiow how eonsideration 
of the extra intermediate level results in clianges in Isitensity profile#
It is interesting to note that when considering ope intemedi&te level mly 
they find t!mt c<msidcration of the trensfonrntion of H ^ t  by the 
HeitloWa motiiod, which ve saw in Chapter III, gives tîie same results as 
our meüiod, for , is fully equivalmt methematically to the
consideration of the processes in the radiation fiel&^lecule
system suggested by Apan&sevich (refs# 69 & 70) wiio claims his model 
accurately reflects real experimental conditions#

In ref# 71# Korosov calculâtes the influmco cf lnoccq>leto intermixing 
cf degenerate states on the line*#iape of spontaneous misalon# The 
degcsaeracy of tliS 2 excited levels is eliminated by a perturbation cf energy# 
hi f̂ e#g. ft constasit electric field# having matrix eleienta + o
and Wn «• -o # In fact in his calculation he aosumes t2mt one of 
tîie excited levels cmaiot decay to the ground state by a dipole transition# 
but ve do not# He also omciders the initial state of the atom to be known# 
whereas ve do not assume this# Also the field in his case is ft constant
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electric field end the effect considered Is the Stark effect# In our 
caoe tîie field Is tlme-dcpeidmt# For tliese tiiree reasons his results 
cmnot tlirow cny llglit m  our calculations#

In ft later paper (ref# 75) Morozov cœ aiders the splitting of the 
resonance scattering line under STROMG mmiocTirosatlc radiation for 2*level 
particles# Ha points out that this Ims already hem investigated 
tîieorcïtioally by Apmmsevich^^^*^^ # idio# In ref# 76# solves the eguatlm 
for the desioity matrix of the transforaatltm under stationary emditlons 
(or-m or nan-closed system) end thm in ref# 77 studies the e!mp© of the 
scattering line of the 2-level particles as a functim of tliO irrsdiatim 
intensity on the basis of his solution# In contrast# Korosov̂ *̂ ^̂  examines 
this question by solvii g the Schrodinger equation in the energy rcpresmtation 
of a systm of radiation field and the S-lcvel particle and obtains
ft lino cliapo qualitatively difformt frcsa Hio shape of refs# 76 t m à  77# 

î<arozov considers the following Initial conditions; at t * 0 the 
particle is in the ground state with energy and the radiatlm field
cmtalna photons of each type >> ïdiose frequemqy distrlbutim is
defined by a symmetrical curve T cmtred at LO With

hftlfwidth Aoi .
( ----------

The mergy of the excited state is f. m d  t

uo ■̂1LO.
r^-T.c.L

Ho finds that the energy distribution density of scattered photms# the 
shape cf the scattering line# %Aich is expressed through the probability 
amplitude (symbolically as in ref# 68) in tlie following way
(see refs# 40 end 68):

u  V e  do not asGuce a specific initial state and we aseamio to be
of negligible width#



: I ( ̂ 0 -■ \ „ ri \ \'> ̂
! / 

i s  given by '
ï(vA » _______

where i s '  the Interaction energy cf tho particle with tho field and

and 6 , ' X is the usual radiation dcrping of the excited state
\:-

and \ ( To— 5: : ^- ^ £ 1/A
îh iiô  when tho lnteracti<m is \TM  F\' rW < ^  cr f\ X

and the radiation field km© a rarroif line distrilniti<si# this equation 
for reduces to equatim 23 of ref# 68 accept tdmt the factor
is mittad there#

For a laser field# where nmlor exceeds unity by many orders of 
magnitude# and therefore for AL.i«.v on# has and acoordingly
A > Y Wrq.'.-: interacticn.) the sliape cf the resonance scattering Une is:

L l(^ t7 £ £ £ £ £ £ £ £ 7 T ^ 'j-A  (LX-u^Y^l\7W j

The share. cf_the reacr^ce. lino, according to this formOa# for
different values of F\ (  ̂ and uo(l̂ = is
mliowu iii tiid figure below:

|l(w>û") üA.hs cÇ 1lû Xr(jV5|6-wT' pA IC.lci

f:n l.c.nE
\ E ^

\ z.
(Arrows indicate excitation frequ«mcica and slisultaneousiy the
ccrrospmding î iapes of the scattering line#)
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From t h e  figure it is clear that for interaction A > ̂  . the
resonance scattering Hue is :^llt into Z  oo-poients vlt!.i the eorrronont

..irtfMity. At
s t r i c t w  # the of the exponents and their

frocueieies become ̂ m i w O L  but as the field becomes
further from resonar.ce so the oompxmmts beccRO loss symmetrical# the intensity
cf tiio left hand corponont increasing and loth componmts being shifted
leftwards eo that the distance of tho left hand peak frm tl'io exciting
frequency is increased and tho left hand peak decreased* Tho distance
betwom tho raxima of the split omponents is roughly equal to 2A# as in
Mollcfw*» paper (ref* 9)i i*o* the froquency of particle transition betwom
levels# under t h e  influmco of a pcrturbaticsa that depends m  time as cos •
Autler and Townes (ref* 55) have predicted end expcrimmtally observed
analogous splitting of an absorption line corroj^pœding to a trmsitim
between states# one of which is exposed to strong resonance excitation*
Ve have seen also in ref. 33 a tîieccretlcal study of how the absorption line
in ft 2-level system is split tmder monoclircmtic resonance irradiatim*

In ref* 7 7  the splitting of the scattering line has a différât
character# e*g* for w  (resonance) and A ̂  zx the line has 3 weakly
defined coEqxmcnts (a oeitral one and two lateral mes) with rou(̂ ily equal
intensities at the raxim* Three ccGpments wore also found by Follow
though he found the lateral mes to p o m e m  lower intensities. Forcsov
points out the discrepancy to be due to the nmequivalmce of investigations
(with respect to line shape) of a f±^f^,a;aLAT%rff9r:atioq of radiatim and
a for A ? K . # altlicugh as idiom in ref. 69
these investigatims eqoivalmt for weak interacüms A v *

Ref# [751 thu^ predicts that# in our sitmtim# we should
find the side peaks to be equally spaced about O  and to be
separated by a distance of 2A (or 4A in our notatlm)# Also that# since our 
calculatim is carried out for an open or nmmclosed system# i*e. under
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stationary oandltlons# ve should çsqpoct a central peak also as i n  rafs# 77 
and 9* KoHficatla’tS will no doubt appear because v® consider m

ftIntcraodiato level#
In ref# 73 Morosov considers the Intensities and shapes ̂  the 

coriponents of the Stark splitting In e#m# resonance fields which are 
alternating# He treats the e#m# field quantum meohAnlcally and points cut 
tlmt such a study; idilch Ignares the widths of the lines due to colHslons;
Is relevant when the wldthj3__Gfjt.hg_l̂ @la.

.r̂ llatlon field as Is the situation for gases In a good vacum# 
particularly for the upper, optical transition levels# This Is the situation 
we also cmslder In all our calculatlms# Horosov is pcrtlcularly Interested 
in the situation ̂ icre "V\ A >> K l*e# the field Is straff end uses the 
approximation that takes into account transformtl<m of only î^oton of 
the strong field into eadi transformed photm of the v m k  field* In the 
omet |t?3.ôar!,ĉ eltuaticn the values obtained for the Intmslty and posltlms of 
the components agree well with the expérimental remtlis for A > K but not 
for A >> Ü becmïse, so ho su^cstf, vhm A >>v m e  mmt also consider 
those processes la which a single transferred photon of the weak field is 
accomrjanied by rore than, cno transformed photw of the strcmg field# This 
would be a higher order approxlmtioa, in qusntm language* Although in 
this p B p t s r  Korosov considers a A^level atosa his conclusions concerning the 
shape of the absorption line coincide with those of the previous pcpeŝ  ̂  # 
l#e* vâien Y, • ï and A ;> x the line has 2  cospcrents and for 
py?*ft * their intensities are ecpml., the separation
of their mmdRa being again Z h  etc* as shmm In his fig* 2  for A *» *
Morosov* s limitation to consideration of amplitudes of statcsdlffwrlng from 
the initial state by only m e  photm results frcn having to know the initial 
state of the atm and consider each traneltlon separately instead of

m  In fact our re^ts for the case of m  intcrmedl&te overlapping level are 
similar to those for the 2mlevel atm off resonance and as o decreases 
we get similar-remits to those .shorn In ref* 75 for tZie case idiere the 
atom goes inoreasln.gly cff#resomnoe*



cmsldcETlng overall effects, m  ve do, by considering the initial time to 
be arbitraux*

The last paper of Koros!<yv we e^mll look at, in connection with our 
remitc, is ref# 79 on tîio tlioory of the line aîmpe of resonance ecattoring 
of ̂ ;trcT\ç: radlaticfii, A 3- ̂  , by a 2mlmrcl particle# In rtf# 75, each 
pl:;otcai la conaidered to be ecatterod 1 .depoidoritly by tlie particle so that 
the line chape can be rej>rtemted as a atpmp^osltlm of the distrlbutlm® 
obtalTicl# Cut if one mippoeea that conversion of pl'iotona of a £tro!!,f? 
field is a cl%l@ proooes of the typo, e#g*

0 \ — >0 ,Cs-.\ r , — > \ ~  T- —  ̂ o  G, T,

Wiore / and are photon Indices and %\ f cr
Ws 3 ,

1 i, JWd
I ̂ ( ,Xv >Vi£ (/I . <

^ ^  o s.̂ cK o T I ( 5s AcW.
cf cL(iWV<<x̂‘̂rVc.J «; MyÇ/- ) P̂i.,'v5

Y . ~1 C , ̂  S- S L£-W

thm a dlff<^mt analysis is required to fli'id the line shape of the scattered 
radlfttlcsi# Korosov steUcs the frequency distributlcn of ̂ lotons 
scattered as a result of transitions of this type since ho consld^^ that 
such processes are of vital importance in the scattering of atrorg rcuüatlon.# 

He considers a single mode field with - cOo {strict resonance) and 
calculates the probability caxplitude # Wilch is the solution
of tîze Cdzrodlngcr equatloa (in the miergy rcpreswtatlon) at t •» x) 
assundng the aton is in the ground state at t » 0 and the radiation field 
conteii:s s pliotois of type A * He woes t2;e Heitlas>4^ method of ref# 40 
to find V , for u\ V end A. :> V  and concludes that for0 S ̂<3; 5 5, , .  ̂ u
couveroion of Z  photons of a strong field, Insteod of havlrg Z  <X3Eponmts - 
of equal Intonaltiee at distances A and #1 .fr̂r.'.. as in ref# 751-

Comrerslm of 1 photc© of a. 
strong field
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V® Jmv0 a dletriTmtim ccsatelrdr̂  broadened c œ p m m t &  twice
tîiat of ref# 40) mrwdm at « c, fA; fZA#

Gmvm'glm of 2 photma 
T^l C \0

For conversion of 3 photona tiicr© will be oomponenta at

Ccmrerclm of 3 photcais

/La tJie Kiisber of coiverted pbotcna Increaaea ao tlia eomponenta more# erd 
jjcncrat® a cor.tlxïaoüs cwve# The Intensity of the omtre of the line 
Increases m m  mpldly than In the tails# Thua after a large ntsnhor of 
comrerel<sn» by a single process* the frô t̂icficy dlstrlbntlm of scattered 
rescr^nce will W  a mrrew line at '-'j ' #

Comreralw of a large nmiber 
o^hotcna

^  Vv^l C \2L

(K#B# Althou^ our résulta shouM show the overall effects of emvorslm 
of a large number of photons since the Inltisl state la arbitrary our remits 
Indicate tisat our calculation effectively considers aüy the ccawersim 

of CKS pîioton of tfio strong field#)

As we have already mmtlmed calculates the powmr ̂ eetrm of
llĝ it scattered by 3-level systems# Wien the Incident field Is so that

S \  « K  tlim* Wimi the field la off-re&cnmw* the IntogmtM spectral
Intensity of the jincoWent-nart of the scattered field la cmly & v%33;_(rmll

_ y\l of theI (AU) /_|
and w!iw »  y;̂ the Incchcrmt |wt of the pmmr fpectoss is î iarply
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peaked at the Z  dlîîplaced frequencies and
Wim the field is Intenae mough eo that ^  »  E and the field Is off 

rcsorance then the functim may he apprcadaated la the domain in
vldch it io appreciable by a GuperpoGitloa of horeat&lBn fuxictims at each 
of Ita i;mir;:.a at

v»o
Vei ' 51*

V m w - Y) '

i l ic r o  hi  ̂[  VI " -f ^

hhen the fl,el,̂, Is so that ^  > > îĉi * K then aszlna
occur at «  0̂ Î 51 and v  « Tl and the 2 aide pcnkc have nextsm of
one-third of t3ae at v> »  -VI * i^e int̂ p̂rated spectral Intmsity being
(SiWuilf of that at the central frequmcy# The int<misity of the coherent 
clascically scattered light in this limit is inversely prcportiomal to the 
incident field Intmsity* and is mly a very mall fmctim of the total 
scattering intmslty# Ke mpect timt in our resonant case izio \ » 0, v© 
^ould find similar remits only modiflM by the existence of level 2#

2n ref# SO, KoHow calculates the power spectrum of the radiation mittod 
viiea the drlvsn 3-level cystm is p p X ^ Â ^  damped and the collisions are 
assumed to be stronĝ  i»o# to instsntmeously themslise the state of tlie 
atm# île considéra the cases of low and high e%citatim of the atonic ^stem 
In his calculatims he asmmes the incident field to oscillate at a fizod 
frequency vO , near to the atmic reswsnce frequency and to have 
erbitrarlly great intensity# Bo also assumes that the collislcm rate, K, 
(previously used to designate the spwtmeoua emission mte) is r m j  much 
greater than all other relm&ticn mtos, e#g# the radiative decay rate, the 
effect of idiich was s-tslysed in ref# %  . Be finds that for driving 
fields the re#Ats differ morhedly frm the case of radiative relaxation#
In the collision cos©, the piofile contains both a coherent mcnechrcimtie
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spectral component oscillating at ^  and incoherent cocponents oscillating
within an interval ^  of # The incoherent components are appreciable
evcsn at low temprnraturea and the intensity of the cohermt cmpon#it
in the zero-tmsp# limit# For etrwg driving fields, m  V x s  other hand,
the solutions for tîie radiative and colHsional cases reseable mch other
quite strongly* In both cases there are three compcments, one centred
at and one at each of the displaced frequencies where ^  is
the frequmcy of tlie field-induced atomic transitions* In his calculation
he considers that the atom is driven only by a classical electric field
and includes no coupling to an e*s* radiation field in the Hamiltonian as
we do idien considering radiative relaxation#

In ref* 53, KoUow considers the effect of a driving or insrsp field m

the emission and absorption line-shape functions B̂ >arat®ly, for collisicanal
and general relsxati/̂ n when the field is applied to the atm at a fregumcy
near resonance for atomic transitions between a particular pair of states#
He considers transitions between pairs of states, only one of which is a
member of the resonantly coupled pair, as we do in the chapters m  potassium
and hydrogen and eîiows that the driving field effects those transitions also#
The absorption llno-shape function is defined as the rate of absorption; ixm
a weak signal field applied in addition to the pusq> field# Ke finds that,
in the limit of hlr.h purp-field intensity, botli absorption end emission
spectra are doubly peaked at frequencies differing frm the usual resonance
froquesacy by (- 5b is the frequency of tlie puiap-fleld-lndueed
oscillations in t2ie populations of the two strongly coupled states}# For
high find vai^shing pump-field intensity, the absorption and emission spectra
are represmted by essentially the same function but for intermediate
Inteaisitles the two functions have quite different forms and there is no
sinple proportionality between them# The difference between the emission
and absorption spectra, which emerges directly from “Uio basic method of 
evaluating the associated correlation functions in the îtarkoff approxlmtien,
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is due to the presence of the off-diagorial states which are strongly
coupled by the pump field* Although ve do not calculate emission and
absorption llno-oîiape functions separately, it ia interesting to note the
effect of tlio field'a intmaity m  thm#

MoHow^^^^ also draws attention to the fact that lehm’brn'g has criticised
tîie use of the familiar form of atomic relaxation tJieory for the case of
coupling to soft' (low frequeeicy) jhiotcvi or p̂ ionon modes vhm relaxation
occurs in the presence of very strong driving fields end has proposed a more
complicated theory in ref# Cl# On the other hand, îk>How does claim that
the equations of motion for the elements of the Z  % Z  density sutmatrlx
elements referring to the pair of etrcmgly coupled states and
rcEiain valid wîien, e#g* the coupling bctwom the states and ,
but not betwem either of these states and the other weakly coupled states
of the atom, is described by means of more general forms of relaxation theory#

la ref# 82, an cstenalca of ref# BO, Bellow goes m  to consider the
absorption spectrum corresponding to transiti<Kis fr<m one of the rescaiantly
coupled states to the other# la this paper, the signal field also has a
frequency near to tîie at<mlo resonance frequency for the transition in
question, whereas in ref# the signal frequency is veH separated fnri the
pui:̂  frequency and so can Induce transitions between pairs of states of
iddch mly pr,c is a member of the pair resonantly coupled by the pm^ field#
In fact, in all, he considers both stimulated emission end absorption, near
resonancq for driven systms# He finds tîiat, evm though population
inversion does not occur, stimlated emission rather than absorption, is
indicated by tîie negative values of tlie signal-fleld absorption line-shope
function# This amplification of the signal is most prcmotmoed at high puap
intensities exactly on resonance and he shows it to occur primarily at the
expense of the pusp field, which suffers an increased rate of attentuation#
KoHov's results can be extmded to more general pishing medianisms#

la the present chapter, we are considering similar transitions to those
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of ref. 82 m û  eo for l e# K J æ i h i ^ .  \ m  B h m l â

expect the profilée to Irdlc&te although ve do not
explicitly consider cry extra elgpal field# In fact# at the end of his 
paper# Follow pointa out that the siooal field plays no direct role in his 
more genoi'Rl troatr.ent of the problem# vhlch gives the esr.e result so he 
assignes that the results should apply #orever the two û m p l e û  levels are
driven by a suitable pumping mechanism#

to

Clgnalmfleld absorption line-ehap© fmictlcn for an atom dzivm exactly 
on resmance by a pimp field for viilch *« Tîi© nosatlve valuoc of the 
absorption function (slmded area) represent stimulated OEisslcai# i.e. 
asqpllfication of the signal field#
V ^ elgi-al-fleld frequency# to •• pm:p»field froqumcy

• Eeaii eollislm rate cr spcmtmeous emission rate depending m  ̂ lother 
considerinĝ  the ease of the strong colHslcn model of atocdc relssatlcsl 
or (sero.*ve0j.) radiative relaxations^ %
J2.B. For # i.e. la the case above# for * the signal
field is attmumtod Instead of tlie pump field and the rate of attentuatlcm 
of tli© pump field Is corrospmdlngly reduced#

The ftbsorptim Hne-«hape fimctlon of raf# 82 is quite différât Ü r m  
tîsat for the ealsclcsi spectrum evaluated in refs# 9 and 80 and the difference 
is more pronotincod \ â i m  the pump field is intense since then the former line 
shape takes cn m^rcclable negative values# within a wide range of slgnalmflold 
frocpienoles#
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Tîio possibility of obtaining itlEiulat®! omlsolm without Invcaĉ lcm
has also boon pnggostod by Shazva In ref# 84# He ehows timt ia a 2 photon
csaiesim at froquendeo lo and w' # impliflcatlon at froqueaey (*m
be achicrved wlUiout ixjpulatlon imrerelm If (i) <̂û ' and h* # the
nmiibor of blad: body photons at frequency # is much mailer tîian unity#
He points out t’mt If the equaroa of the dipole matrix elmoits at'«
approodiatoly equal# • # thm stimulated Inversion Is possible#
In fact his situation does not correspond to ours as ve do not allow levels
3 and 2  to be raL%latlvely oannected nor do we forbid single photon transitions
between levels 1 and 2*

In ref# Ê7 the autîiora oonaldor cpontiuieous eidLsalm of &tma in an
external e#m# field which is considered to bo either r.cnechroriatic cr to
have a T/Orrlcr ̂ roadonln/r# The m^jeiposltlaa of the external field
leads to a deforaatloa of the line contour# wîîlch can be interpreted as the
consequence of (1) a in the velocity distribution of the atoms#
and (11) of t n t & c t o r m m  effects arising in the of statlmary states
of the isolate atom by the external field# Under obtain condltims# the
second factor completely counterbalances the effect of the first#

la ref# 33 Hautiaa end SobeAaa ccmsldcred the atom to be fixed m n  the
ostomal field to be monechrmatlc# idiorms in ref# 86 a number of spécifia
cases were snalysed in which account was takm of the motlm of the atms#

Kotkia# Eautlsn and Fooktlstov^^̂ ^ point cut that normally Doppler
broadening >> raHatlm broadming and almost coirpletoly it but
tliat when an external ©#m# field is eipplied# a relatively sharp structure
appears on the Dopjlcr-ibroadoned line# the width of iMch is detenslned by
the radiative decâ > The changes produced ia the spectrum of spontaneous
mission of a quantum system by the extcmsl field can be interpreted as the
result of of the stationary states of the Isolated atom in the
«acteraaX field* Since appear# discussions .
based on the picture of "splitting" of the levels of an isolated atom can



lead to a oerioualy wrong eonolusim* This appL1.es for Ixyth adjacent 
transltteifî oonsldered In ref* 87 as well as to the spontaneous w  Lsslon by 
the transition. -> n  (l$e# between levels coupled by the field considered 
in refs* 33 and S6*

r’irrillnr ii.'.tarferenoe effects occntr, n  extæt# I n  these cases
uheri# by selection of processes of excite.ticr. Hie states of the at<m at the 
initial ir start of time and "prepared" in the forr of e 3-ircar combination 
of otation.ary states* F# H.and F. are interested in the case dlsti guided 
by the fart th*t alSiJSe of states takes place a^lK the .«ceitRUcE. of the ayetaE 
^hile at the initial instant the atom is in cone stationary state* In ref* 87 
oollioional relaxation has bew î iored*

In ref. SB ï^utien and Feoktistov go m i  to take into account oolll8l<ms# 
in tlie ir âct sqiprosdLimtimi* \ & i m  considering nca linear effects in the 
spontaneous emission* Disy find that changes in the spontanecms ecdseicm 
(q)eotnm are due to (1) changes in the atom velocity distrîln; a# (2) t .e 
charecteristics of the oolHslm process# end (3) interference effects due to 
the preseioe of an mctemal field Hmt Intermixes the stationary states of 
the isolated atoms* They point out ti..,.- in refs* 33# 86, 67# where the 
etoK is at rest# the external mcoochrwatic field loads to line shutting 
if the enorgy of interaetim between the etoe and Hie field exceeds t W  
level widtli# i*e. in our case we must have A > 1 as pointed out in part (a), 
idso idm account ia taken of the atomâ motlm.,# and of the correepmdlug 
Doppler broedeniiag# a relatively sharp line structure also appears (with 
radiation width)# not masked by the th«mml motion: of tJie atoms#

The effects of refs 3: # 86# 87 liave beei C2q)erimmtally observed^^^*^^ 
in gas but# since the line structure due to Hie extwml field
depends appreciably on gas prieure also# it appears Hmt it is very sensitive 
to atom collisions and these must be tedcen into account in the theory as 
do the authors of ref* @6* This is not necessary for gases at low pressure*
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în ref* 91# Dodd m d  S«ri©a give # theory of the p i m m m m  of the
strong modialetlcn of fluorecoœt H # A  la & double reeoneziee eoqpwlment#
In fîucîi m  o'morj.'mmt free etoaa ere eubjeoted elsmltoieouely to optlo&l
m c  : mdlo.froquoK,oy rallatione# both of uMch ere mmr to resonant
frequencies of the atoms* Th^ consider tlie caae of meroury vmpour situated

oin a unli'om magrioLlo field* y l m i  c^tlcal xwll&iion at 2537 A Is used to 
excite the atoms frora tiio ground state* '% * to the state m « Ô ©f # e  
level 3fi* from vhlch trsmaltlan® to © » +1 \fore induced by a radio-fr©queney 
field at the taruor froq;uoncy* We do not consider the presence ©f m d h  
a r#f# field but rather asmme that in the 3-level atom in ̂ testlm the 
optical radiation excites tlie atom to the iqppermost level* vhlch could be 
the m # level of a Zemao doublet* and that It thm decays fms this level* 
Hence there Is no need for a r*f# field as In the ease idiere tîicre Is a 
fcenaa triplet*

r^-? c.\4-
H*B* There Is ft change in the polarisation of the ll#t remlting frosa r#f* 
tnsr.sitlcn® ^ s.,. o # - ̂ h \ • #scrvatlms mde in a direction 
perpwilcRJLar to the field* the lines vlth o polarised pu^llel 
to the field { IT- ecrponmts) and the lines vith ^ , are po3mised
perpendicular to the field ( cccqponmts)#

The treaisliima are detected by the changes vhlch they bring about in the
polarisation t m â  f^atlal dlstrlWtlm of tlio fluorescent llgtit#

Todd and Ceiies oarry out Cftlculatlms vlth particular rofermce to the
trm s ltlm ^  ( Ir )# A ^  ^  mercury* vhore tl'ie  radlomfroqumcy

mixing Is taking place between the Zeeman states of the v̂ îper levOl* In

this case the 3 excited states are equally spaced in mergy and are damped
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at the sane rate and there Is only one ground state# ̂  In ref. 92. Series 
proposes a type of mpeii&ent which would allow tlie location of crossing 
points between energy levels of parity* and thus provide an
altenmtlve method for measuring the Lasb sî'dft# In the previous paper 
the states concomcd were mmbers of a Zeman multiplet and so wore of the 
same parity and decayed at the same rate# I*i the present paper tîiey are 
of different parity and decay at different rates as e#g# the and Z ' ^ Ÿ ' / z  
states in hydrogen# Whether they are of different or tlie ease parity* the 
application of oscillating fields is capable of inducing trensitlms betwew 
the states of interest* tlius causing changes in the mitted radiation# When 
the states are of tlie oRme rarity the transltims are namietic dirole and 
the effect of these transitions is primarily to alter the srati,al 
distribution of t2i© radiation vheroas the spectral distribution is changed 
very little. When the states are of different, rarity the transltims are 

.diPOlQ end because of the change In parity t h e  atom must decay to 
an entirely differmt term and then the rroctrcl distribution changes 
profoundly#

Series^̂ ^) analyses the case of an eaooited pair of enargy levels 
tolcsriglng to states of orresite parity* having in mind any pair of interBecting 
a  and p levels In hydrogcsn-like atoms# In our case traneitims can occur 
from botft excited levels to the lover level and not only t v m  ( m &  of the 
excited levels. Hence the results of this paper .er@_.not..really.Telcv%̂  
to the rrcsont chanter nor are tlïcy relevant to 7 1  since the driving
field in that case cot^les different levels* l#e# levels 2S|_ and 3P end not 

or 2?^ end 1^ * as hm̂ e# Me are also not concerned with the possibility 
of level crossing#

In ref# 93 t t m  authors are concerned with the Interference phenomma 
that can occur in the resonance fluorescence of m  atom in which 2 of the 
excited Zeeman mAlevels cross# They consider the particular case of the 
helium atm in iddch 2 of t2ie 3P Zeeman sublevels cross# This leads to 
the idea of a new spectroscopic method lAioh premises to yield very precise
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measumsGîits of scxse atomic fine structure Intervals. If Hi© levels m e  
all distinct (l.e. reparations greater than their natural widths)* then 
©acli contributes ceparately to tlie resonance scattering* However, when 
tvo levels ere degenerate* their contributiceis to the ecatt©rin.g m y  interfere 
thus giving rise to a change in scattered li^t* In our case tMs wuld b@ 
\ â \ m  1#

Colegi'ove et ooaneidor a sj'stem having one ground state A end
2 excited states B and Ct

M 7 r is"C------------- I
I 2 of the 3P levels

B-------------

groimd state A m e  of the l^els

In order to calculate Hie resonance flnoroaccnc© of this systm* it is
necessary to first calculate Hie rat® at %&ich photms of polarisation t >

ere absorbed and photons of polarisation are re-@nitted# bhm levels
rr..A. <3 are well yeso^vod i.e. their separation '> their natural line

widths (in our case 1) then Hie rate is givm by
A I Gi% C \ I R l<ft \ez .r \CXC\  ̂  t

whereas liicn B, .rM. ,C have the i$e# are completely unresolved
or crossed (in our case » O)

\ A\e^_c \  \ ^ ' >  r \<r><c\e,

la order that these two equatlms should yield different results both terms 
in eadi ospressiosti mat be nmvard^iing* i*e# each of levels B end G mist be 
carobl© of sharing photms of polarisation t }  and ^  * as whm the line- 
widths of levels B end C overlap* I n  fact we must have

< X e v  r \ p \xa\ XL r\cx<ri e, r \a>^o

oHiorwise Hie interference effect vanishes* For tmpolsrlsed light one 
finds Hmt Hi® 2 degenerate levels must differ in a ly C or 2 ia order for 
Hier® to b® m  Interference tens* Mhen the inoidmt li#t is linearly
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polarised one can cbscr?® tlic crossover of levels diXfmlng in m by 1
provided the direction of polazisatlm is not parallel or pmpmdlcular to
the macnetio field# levels differing in m by 3 or do not Imtmfere#
In fact* if one sums over the directions of the polarisation of the
re-mitted li£lit* then it can be ehmm that Hie total rosmance scattering
rate Is not affected by Hie crossover of the Z  levels but the cnmümr
distribution is ĉ 'iangod#

In ref# 94- a detailed analysis of Hie effects briefly described in
rof# 93 ia glvoi#

We have not considered the possibility of sublevel crossing in the
present chapter but rather that of overlapping of lino^dths# At the
crossing point levels behave as though they are of the sane mmrgy as in
Hi® case Wim c. " G.

The 2 rate fomilas of refs# 93 end 94 are sufficlmt for calculaticai of
many ̂ qwimmtal parametors ©#g* magnitude of Hie interference effect* its
directional smisitivity* polar!satim ccsiditims for optlnm sensitivity etc#
(for a more general formula far the dependmee of the Interference
effects derived by a detailed analysis of the interference effects to be
expected in atonic hydrogm must see a puWicatim of K#E* Eose end
E# Caroviillano referred to in ref# 94)# The expressions for E in refs# 93
and 94 do not give any informtlm about the Interfermce oHicr than at
its extremes* i.e# at «ud at of the
ascitol states# A more detailed treatmmt of the resmmce fluorescence procem
that yields information About the line idiape as veil as the equations for E
in the appropriate limits is required for the ir>4^tveen reglcsi# Me have
endeavoured to study this region.* i#e# tdicre 0 < G< 1 for a driving field
of isrbitmry etrwgWi indicated by A#

In ref# 97 Irait has derived an aspressim for the resonance fluorescence
under pulse moit&tim fcr atoms Wiibiting partial cr i^m^lete degeneracy
(crossing i n  the excited states# ihe Breit formula is eppdicablo mly to

(94)fields# For omivmtimal sources Frsnken points out that the
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bem ccffiÊlÉts of mch loss Hian m e  photm per ©ode In the «pprcprlate 
frequency Interval and must be considered as &  field whereas In all 

beams of rtsoixanoe radiation Hie number of photms per mode In Hie
ap%%ropriate range Is ^  10̂ # Thus the rate of of resmsnce
radiation per ate© in such strmE booms is some 4 ord^s of magnitude less 
than the rate of spontaneous cmicsicsi# The derivation of Breit’s fomûa 
in Appendix II of ref# 94 does treat the radiation field classically but 
none the less gives the correct weah-field result#

In ref# 94 Hie rate at whidi photons of polarisation £ are abmibed m â  
those of polarisation ̂  are ro-esaitted in the resonance fXuoresccnse process 
is#

îrzSr/ p.;-' A;/
^ I - -n ' ( j / ^  ^

Hiero ^  \ f . c

T  is the moan lifetime of each cQCcited state ^

c is a parameter proporticnal to the intensity of the Imip*
geometrical factors etc#

ivîut' etc# are the ground state levels
etc# are Hie group of melted s U  
or ooEiplete degeneracy (crossings)

y W e t c #  are Hie group of pelted sts^ tMch may eodiiblt partial

then the excited, states are ooi^lotely remlved* Z T \  r  \ j i ^ u / 
or in our case >> 1 for all values of y  ^ ^  ' and the above general
equation reduces to

R ^ f  ' R. ' c ^  I i ° | h

tiiich is the resmmce fluorescence rate without interfermce terms as 
Ëiom in ref# 92# Mhm %- v j ^ I  i##* ia. our ease c ^  1 then 
2 of the excited states are close encW# together for intcrfmwce effects 
to occur#



If the eyrtm contains only g m m d  state a and 2 excited states 
b and 01 \

c

A
thm % â i m  b and o are

&  - I C J ’ ^

ond ïtfien they ar* "cl̂ se"
T ' f 

r
^  ;)7rl

A - 4 ,  -C.

£ 5’

" ' h Dend B  is also Givm by

n n  f i ' 1  n  ^ 4-

I-i-H-Tî T’t)’à,f) u ii’’ I  ̂ /4 f )
blim t!ie matrix %Todact ̂  is ypcl thm 5 is th# velMmom lormts lino-Wiape 
vith full half-iddth %&lch is tvlc© the Wdth of each
excited state,

V  ̂ b,c
V h m  A ia pure imclaary

^r .7.C .1%

If A is complcĉ  thm it is possible to îiave a mixture of these 2 pure 
foms# The cmditims for tMch A is real, im^iasry$ or complex depmde 
on t!ie diroctim and polarisatim of the incming end outgoing beam of li^t, 
In gmcrsl all three cases m i  be realised expcriamtelly#
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IZanganoBS alco considers a cituatlcsa elmllnr to our oosc* In 
&of# 95 ho investigates the effect of cscfcemal3y produced Stark splitting 
upon fine-structxTTo-level proWbilitios In order to describ© periodic 
inter,city variaticns previously found in hydrogen lines* Coupled 
differential cqmtims for the prohdbility «mplittdes of mixed levels are 
solved exactly in terns of initial amplitudes; effects due to spontaneous 
transition proW}ilities and larib Wiift are included* In general, the 
tlao-depcndent line intmsity is a ocfmbinatlcsi of exxonertiml deccrs and 
ĵ .lrgT.cldal._Ĝ aill̂ t,l?!r;a as in Chapter II* The frequoneles of oscillations 
are discussed in detail, and the effects of dlffermt initial conditims 
tqpoai the intensities are corteidered for sevorml j^pedal cases.

In this paper Vsngsnesa considers levels C, 1, 2 there levels 1 end 2  
m n  decay to lower level 0 with rpontaneous transitlon^olmhilities per 
tînit tim end A^* levels 1 and 2  have energies and « E, 4 
M  is asmmed to be so mall that the separate spectral lines cannot be 
resolved ( c 1 in our case) * the oba^rved intensity I of the line 
will then be prcportlcnal to the sum of the products of the A*s and t h o  
a verage probabilities of occupatims of the levels, i*e*

idiere and are the probability anplitMos of the 2  levels and the 
constant EUltdpllcativ© factor has been OBitted#—

tangmess also assumes that in the presmce of a mmll cxWmal 
electric field F, the perturbatim potential ?*»eFz (e >0) has e ncm- 
vanishing matrix elment «• V^x “ comiecting these Z  levels* The
resulting equatims for and C2 are given by his eqû tlcsia (9)-(13)# In
this dmpter the perturbing potential connects levels 0 s r A  2, not \ end 2* 

To ilhmtmte the effect of produced by the field (me can
consider the mtrme ĉ is® in x&ich <me of the initial c *s is sere, 
e#&# « 0 so that
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vhldi vanishes In the absence of the field so tîmt '4 « o# and are 
dcfioed by equations (11), (12), (13)* The oscillating term has an 
eaqjonentisi decay factor eqiml to the average of those associated with the 
2 states, vMl© t2ie v term gives rise to 3 terms with esqponcatial
decay factors of i(A^ + Â ) and i(A^ t Â ):* » althcfugh the last 2 terms
will not appear if » Ap so that vô  • 0*

T!:0 problem dlscimsod by Series i n  ref* 92 is similar although less 
general*

Stroud̂ ^^̂  coneicors the effect of an “applied field** on the line 
eliape of epontasicous csisalon by a “2-level atom** interacting vith a 
highly excited field mode* Despite tlie fact tlist he nees qmntum electro- 
dyimsies, wltJiout tlmo-d^endmt perturbation theozy, he obtains spectral 
profiles similar to those of ïîoHow^^̂  (see Fig* 3 where the fluorescent 
spectnm ia glvm. for various applied fields \ â i e n  the Iamb shift is neglected)* 
Ce© CîmptcKT VIII, Sec* 9 for a cocascnt on Stroud* s met̂ iod*

(c)
Ve shall now proceed to analyse tlie sliapes of tlie epecti’al profiles#

If we first of all tabulate the positions and heists of the peaks for
various values of A and C ve can see more clearly what is happening#
L z J L  xst L*H* peek 2nd L#H* peak ^H* peak 2nd R*H* peak
C Position Heigl. t PoGitim Height pmk Position Height Positim Kei^t
0 —1*4 .771 0.752 1*4 *771
0*01 —1*4 *769 0*752 1.4 *772
0*1 —1*6 *759 0.743 1.4 *761
0*5 —1*6 .501 *530 1*6 *573
0*75 -1*3 *162 0*222 1*8 *215
1*0
1*25 -2*0 .293 0*233 1*8 .0877
1*5 —2*0 .476 0*753 1.8 .230
2.0 -2*2 .455 1*11 1.6 *389
3*0 -1.6 .441 1*27 / 2*0 *496(5.2 *00580
5*0 -1.3 *456 1.33 1.8 *390
10.0 -1.3 *423 1.36 1.8 ♦400
100*0 -1.3 *414 1*36 1.8 *411
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AJ2^ 1st L.n<» pOSJi Zxd L.H<1 peak CC3;trsl 1st R.E,* poak » peak
C Poeitlon Height Fosltioa Height peak Position Height Position îlei^t
0 —3.6 .435 1,06 3.6 .435
0.01 -3.6 .435 1.06 3.6 .434
0.1 -3.6 .437 1.06 3.6 .433
0.5 —3.6 .456 1.04 3.6 .433
0.75 -3.( .477 1.00 3.6 .437
1.0 -3.6 .498 C.931 3.6 .439
1.25 —3.6 .476 c.eoi 3.6 .411
1.5 -3.8 .377 0.563 3.8 .320
2.0
3.0 —4.2 .437 0.967 4.0 .305
5.0 -4.0 .309 1.09 3.8 .344
10.0 -3.3 .367 1.11 3.8 .348
100.0 -3.3 .356 1.12 3.8 .354

0 -5.2 .371 1.C6 .371
Ü.Cl -5.3 .371 1.06 .371
0.1 -5.8 .372 1.06 .371
0.5 -5.8 .375 1.05 .370
0.75 -6.0 .370 1.C5 2.8 .C654 .370
1.0 -5.6 .388 1.04 2.6 .0700 .371
1.25 -5.6 .400 1.03 2.2 ♦0737 .374
1.5 -5.6 .416 1.01 .380
2.0 —5.6 .457 .912 .389
2.5 -5.8 .370 .556 .304
2.8 —6.0 .105 .143 .0856
2.9 -6.0 .0297 -0.4 .0131 .0408 .0225
3.0
3.1 —5.8 .0504 .0430 .0256
3.2 -6.0 .153 .169 .0851
3.3 -6.0 .256 .339 .149
3.5 -6.2 . *374 .642 .244
4.0 , —6.2 .432 .923 .313
4.5 —6.2 .384 .985 .321
5.0 -6.2

-> -6.0 .355 1.01 .327

6.0 -6*0 .340 1.03 .331
7.0 -6.0 .326 —3.4 .0851 1.04 .333
8.0 —6.0 .294 1.04 .336
10.0 -5.8 .338 1.05 .343
100.0 —6.0 .341 1.06 .340



Sid® peak-3 ere omalstmitly at B » +200 ar.-d are of height *333, the 
emtral pesdî beixg of heidhtl#00# it C « ICO t̂ iero li m  epeot-ral profils.

If ve first Q i ’ all Icxik at th® results for the eaa® vhmi A is l&i^, 
vim. A « ICC, VC SCO tlkit tlis split levels of level 3 so far from level 
2, for most values of C, tlmt tlio latter has no effect cn tîicsa csoept vhm 
C i.e. C l3 cleo large.

In tlio came of A « 3, ths cddo pcaJis are more or less symmetrically 
6%meed a!)out B « as predicted end this m s  also found for the caa®

A * IDO. Ilovevor, tlioir lnter*aitlea vary vitJi C, so that, although 
at C »» 0, 0.01 both are of the mim intensity, as C increases the t.K. 
pock dcdnatoc over the E.H. m e  taitil at C »* 7 tlie L.ÎI. m e  dminatea 
$ u \ A  coe’ilriuea to do so until at C « ICO they arc both practically equal 
ac;ain. The cer-tral peak daalnatos idircugWut cxo^^t at C « 3*1# Wxm the 
L.il. peck dc&îiimtes. At A » C « 3 ao spectral profile is visible, as was 
tii© ease \ à i m  A » C «» IfO. For C • .75, 1, 1.25 a e m m â  E.E. p m k  is 
visihls, of Ytry low intmmity m â  for C » 2.9, 7.0 a seocmd L.H.
peak is vlaihl'w., olt:o of low intensity. We m y  also note that L.H. and B.R. 
peaks do not eWuUly increase or decrease W t  rather %mver %q> end down, 
altliougli the overall dominmice of I.H. over H.B. becomes increasingly 
Gppai’or.t ÉU3 C Although both fall off near C » A and the change of 
dadmmco h e < x m & a  aj-parmt for 0 ;> A until both are again ecpml at C » 100. 
Tlie cmtral peak hei^it decreases as C — > A and incroasos m  C — > IDO.

Whm C»G, vo-jwO end we have tim 2-level or degmcrate situation 
mid for this reason we find that Üi© profiles recmble those of 
in that they have of egiml hel̂ 'it, sitrmted at ̂  +2A (ecsspar©
lk>lloŵ 8 curves for ^  « 3It, 51 with that for A - 3, C » O).

Uicn C ^>1 and »  A, i.e. and ' > ' >  $  ^ d  so axe
would net ecqpect level 2  to affect the pîxfilo fer trmisitiona botveoi 
I w d s  3 and 1. It mxly has cn effect x ù i m  A ̂  C. In fact, for C »  1,



t2io profile is, for this reason, elxdlar to that for C *» C.
îlad w@ coacidored the profile for transitions between levels 2 and 1

for the came A ve should have found tJmt tlie E#E, gradually beccaea
dominant as C —  >A.

How for tlie case vhm A «» 2 tîi© L#H# peak again boeomes increasingly
dominant as C — witîx tlie usual foil off around C » A end for C > A
tlie L*H* peal: regains dominant at C « 3,10 but the R#H.# dominates at C » 5
oily mid ct C « 100 both are practically oqud# Urns tl'icsr© is a mailer
region, i.e. around 0-5, vdiore tlio E#H. peak dominates. Tlie central
peak foHov® tlie carae pattam as before and is dkxiinont. Ho profile
is again obtained for A » C («2).

In the case of A » 1 'Uie B,|I# peak dminates as C — >A, thoud^ all
peaks fall off near C « A.

For C > A tlie peak become® increasinfgy dcadmnt as levd Z

appro&dies üie low frecpimcy split-level of level 3 and reinforces it,
except for C » 3 vhon ÎUÎI. peek dominates. Tîie rest of the features are
the m s e  as previously described.

The deviation from tlie aarves found by Hollow in ref* 9 is duo solely
to the Introductim of terms involving \ and V , , i*e* decay coexstants
o o  vliich m y  be termed “crcss-type“ decay constants. We can
see tide by putting - 0 in ©qimtlois (7.B.2)-(lf) and also
iQioring level 2, since it is now pot assumed to be close to level 3# We
tiien recover lbllow*s eqimticsis (ref. 9) and obtain his profiles*

For certain values of A and C there ia a substantial difference
between our curves and tiios® of Ikjllcŵ ^̂  * In those cases we aemme that
tlia oaitziMtim of tii© “cross-tjpo** decay ccnstanta is significant. It
does not appear as though anyme except îlorosov, and Apanasovlch^^^, who
h&ve botîi considered m3y HEAK fields, has yet evaluated the cmtrlbutim
of tiiose cross-typo terms in the case when the field can have arbitrary 

mgnitude. W© have fomd that their contributions are imrtimlarly
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sl£?iificairt v l h m  G ^  A, idim level 2 lies betwem level 3 and level 3*, 
tJie loiWYeqiimcy split level of level 3*%-

 ̂ 12̂
zA 1 c \c|

(A
1

\

TÎ10 iteioEcr-m of no emission vhcari C ® A reqttiros vertficatlm ty 
c?:perimnt as do tJie other foattirea of the profiles#

p. rg-p rÆtcfî gL..tho. Mm=nt?.on fef.t. rr.a Ita \ta3;51ty for the
Tvr.rs .of .cÆ .a .a-.a a  choaa for rlottlnr the Intercity '

/o\TÎ10 splittings dieecvorod by îlolloŵ '̂, i#e# Z In the diogren below* 
are not very bic* In fact* for the cas© of reoonence* i J t m  greatest value of 
I f  plotted tliere for il» 3% is at (v-o^ )A ® 5* i#e# in cur notation* 
1 ^ 5  for A » 5

r ^ 7 . >  \

H v m i If iC O.Cl I  X  -^,0$ % for JLm g:. If J1 > > K, I.e. la
our notatim* a Isrgc* tison* c#g# if il» 1*CC0 K thm X  ~1*CC0 Y m â  for 

0 0Y ^  C*C1 A* % » 10 A# Oo for such intense fields X  wold not be such 
as to nalce and very diffcrmt from each other*

Ii#I>* \-iy oO

and X)
thus* if level 3 is split* then

r̂ , ^  ( o+ t p

but ^  ) even for vary intense fields
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G#G# for eodlm and linos 

{ u± t p  (5C96 + i c p
”  % ÿ à  -  *9979

or"##  ̂1.008>oVv
It l0 thiuj valid to aesuri©  ̂ for a evm larger than the largest
value ve have used* namely a » ICC#

I'ie shall now Investigate vhotlior the epproadcatlm la true #im 
C Is large* since thm it would seem that bO are not so

close in value* altliough in fact it is not vhlch is large but •  
bhm C » ICC* bù̂  » 100 X* then* depending m  the size of Y * will 
either rm'iein ~  cr no longer be of this order# In general Y would 
h m j u X t ^  mail mough to render a not very sizeable quantity so that 

would still be ^  1* eras for 6 » 100# K*g* If V « O.Cl A end
0 « 100 100 % l(f̂  *» 10*̂ # Thus we see that cmsidering C large
‘does not in fact moan a large separatim of levels 2 m d  3  but
rather a large separ&tim compared with the overlaying case* vhm G 1* 
i#e# bo^~ r  # 11m * 10 Y or >10 V i#e# G » 10 or . >10 thm
iGTola 2 fnd
frm the spectral yofiles it can be eem that Igvel.,̂

Cur assinsption  ̂ ^ y') ^  thus valid for large values of a and
c# It follows that it would be valid for a mail sinee thm X  is mall* 
end for c ĉ aall since thm w  - #

IJhen c “ lovels 2 and 3 are completely degenerate* i#e# they m y  
Imve different magnetic quantum nWbers* jg * but the same principal 
quantum numbers* ^  ^ and the m m  energy# The field thm couples
levels 2 and 1 as well* as in Apanascvldh*s paper^^^ dut since in this 
case lovds 2 and 3 are indlstinguidiahle* introducing an esctm dipole 
mommt into the calcuXatims would be meaningless and in fact oir equations
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arc etill va3i.d for 0 « 0 although of c o u r s # =^^2.“ ® 

a r d » Q lEîo that vc need ordy oqmtlona for
as in tlio 2-lwcl atm# ' '
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Ii— Crf.rha cf .jReetra v r o t l l e - a  for - d. .«■ 1. A » 3 (i.e. field 
rr:%'TRt2..Ætrcirth) c RC'rhs.of

Ifkl .Tcr̂ a b. or GI Tcrciia B)
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8*1 Criterion for afssujnlng no coojjerativ® effects occmr
In all oTxr calculatloriS v» have consMorod single at<ms# so that \ m  

have lEplleltly asmtmed that the effects produced in such Isolated atoms 
tjplfy these effects produced on ell the atoms of the ensemble as a Wiole#
Our calculations are thus of particular relevance to atcmlc vapours (of* 
Chapters V and VI c m  potassium vapour @r;d hydrogen gas) %diere cooperative 
effects are unimportant since the coupling betveon atœis is negligible and 
so also la effective potential V̂ jCe) betwem the atcsae*

According to Landau and Llfsliita (ref# 99» p# 337) scattering vill take 
place inderendcrt?^ at each molecule (or atom) provided that v© cmslder the 
limiting case of a rarified gas idiere the mean free path of the molecules 
(or ators)# ̂  >> > , the v.<av©lon£th of the lifht radiation»
This is the restrlcticei used In ref*l, namely that the & t m  is restricted 
to a region email In corpmrieon to the average wavelength # In
this case Landau & Lifelilts point out that ve are justified In discussing 
the scattering microscopically» using quantua mechanics#

In ref# 2» fart H» the case where a pair of atcma A^ end Ag is 
separated by a distance r ̂ ̂  A is considered# The atoms then exhibit 
mmerrndlnr^t behaviour# Whm both the atoms ©re Initially Inverted Lahmb^g 
finds that the Intensity pattern (R(6,0 develops lobes in différent 
dlrectiws at different times» so tfiat the spatial distribution of the 
photma at time t—  ̂ is the same as in the irdepe^dert-&tom case#

The fact that ve have Ignored the line widths due to collieic»:© end so 
considered only situations idicre the widths of the levels is set primarily by 
the interaction with the radiation field moons that our calculations are» 
for this reason also» suited to a gas in a good vacuum» particularly for the



upper optical transition (see ref# 75) •

8.2 Dipole ap^oximatim
Throughout our calculations m  consider only ,%pql^^ tronsitims# This 

is obvious from our dioico of the intcraotlcm Hamiltonian idicr©fcAti.
“ £(D “̂)*1î classically, or + Â ) quantum mechanically

(so© oq# (1.B.9&)) instead of tli© multipole expansion for a classical field 
given in Fiutak^e paper (ref# 100 eq# (33))# Fiutak show that V^j can be 
written as the dipole interaction

fe.E, (3.1)
according to ©q# (1#B#96)» lAen the atomic operate*© arc rot considered, 
and this is equivalent to, but not identical with,

V,v - C  = - 7.VVÛ (8.2)
( s e a  ©ïuatiai# (1.E.79) and (1.E.Ë0)) as shown by FlntsJt ̂ \lnce, if th« 
original H£ud.ltonian la

H f  A (3-3)

thm the corresponding Lagrsngian is

L" '6 t 2 r . (8#4)

Since adding a total time derivative will not affect the eqimtions of
motion of the cystcQ, the systcsa is equally well describe by

U- All' - v(r') -ei. (0.5)

which is équivalait, but not identical with equation (8,4)#
If ve construct the Hamiltonim belonging to L&grangim (S#5) ve obtain
H' ' '4„, -t V ('ey-, ^ f . d

d r
which is therefore equivalent to the original Hasiltordaa (8#3), since

e r -
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imd -- E&
W

According to ref# 65, oven though the magnitude of the field is not 
roqulrcxi to b© jskgJI, the quadratic terr; 1 it) (idiich would ©thendeo appmr) 
r.ay l - i .to the <ii/role arrroĵ ri’-.tlon.j

'̂ '1 " - (8.6)

when the vaTelcngths of the e#m# waves, A >> the dlmcnBlons of the syrtem# 
Then ̂ (g;,t) can be replaced by ̂ (t) evaluated e#g# at the nucleus (see
also ref# 65, oq# (1)) and

clV-
where £(t) is tîie

external field at the nucleus#
For a system interacting with a clarnlcal field this t o m  of the 

Inter&ctim Basiltonian (oq# (S#6)) is equivalent to t he original fora, via#

t.- ' ‘Av,
vîiere the notation of equations (1#B#79) and (1*E*S0) is used, if the total 
Kecdltonian, H « W \l is given by equ&tim (1#B#77)#

llicn higîioi'ordor multipole inter&ctimm ere considered Fiutak diows 
that the total ïlasdltcnian for systcsss interacting with sa external e#m# 
field, whidi is classical end tlmo-dopmdmt, can be written, as in eq# (38), as

S-\ '

(8.7a)

ijier* tàie acK.er.ta T ara

f *• r- s -,
systems.

CM k 0 ^
are the positions of tlie n  charged particles or

) -  rv

(H % is the Eaniltonisîi of the ensemble in the absence of 
interaction with the external field
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is the centre of the croltipole expansion 
i s  are coordinates relative to this cmtre

I « £  §  =■ I - ti (8.8)

1! , are hinetio RWionta, vîiich are expreaeod entirely in terms of the 
magnetic field strmigth# 
e « C ̂  - »  total charge of the onsmble#
/(2#t) is the scalar potential*
h*B* dashes Indicate a canonical transformation from the original equation*

This equation for K shows that the interaction of the ensemble with the 
component of the field is independent of the dynamics of the 

systems# It has tlie familiar form of a sum of electric dipole, electric 
quadrupole, etc# interactions# In particular, in tlie 1er.? wavclenr^ llMt. 
specified earlier, end for total * * 0, the intor&otim
with the electric field is given by

-£#£(t)
where = is the total electric dipole moment of the
msmble# T3ie interaction with t2i@ magnetic oo^nponmt of the field, o n  the 
other hfUid, depends on the form of tlie system Hajsilt<miany|I# The non- 
rclativistlc Eaailltonian cf an atom contains, in 1st approximation from 
(33) tîie familiar r.n'̂ ctlc dipole interaction term# %e ignore this also 
since it ia only important for sîiell energies eiô #

Although he shows tJmt for a clnnsical field the multipole form of 
the Hamiltonian is exactly equivalent to the original EamHtmien, of 
eq# (7) K K £ e  jsfxsA") ^  ^  oa^e of a Quantised field he

5 - ,
shows that the imltipole form of the transformed hamiltcaiian is equivalent 
to the original liamiltonlan only for ̂ ;^rder radlatlrp.

Hence wo see that if we consider tlie e#m# field classically our 
calculations, using the dipole approximation, are valid for the long 
wavelength licit tdicn t3ie sum of all the charges of all the individual 
systems is negligible# In considering the e#m* field quantum mechanically
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v« are also limited to lat-order radiation proceeaec* Thus in assuming 
the form of given in (1#B#96) and considering the e,m# field quantum
meohanically ve have 4 limitations:
1) A of the e,Q# waves >> dimensions of the system, l,e# ve ignore the

dependence of £ on positon Xf
2) total charge of all the individual systems Is negligible,
3) only Ist-order radiation processes can be considered, i#e* ve cannot 

consider Compton effect and dispersion,
4) shell energies must not be ~  mo , i#e, ve cannot consider heavy atoms* 
K*B* In his quantum mechanical derivation Fiutak assumes that relatlvistic 
effects are negligible, i.e. characteristic frequencies of the system
i* L̂ ûencles of relevant virtual photons# In this case mtmenta of the 
ensemble are replaced by transformed m œ , m t a  In the multipole form (see ) 
and the following term representing the interaction of the system with the 
electric component of the field, is added

,0 “£  >£) 
o

Â discussion of quadrupole and magnetic dipole radiation is also givcai 
by lIeitleJ'̂ 5 he shows that even if an electric dipole is forbidden
there may be electric quadrupole or magnetic dipole transitions evm though 
the ratio cf tli® intensity for such transitions to the intensity for allowed 
electric dipole transitions is ond so is unimportant for mitted
vavelangtha Ion? in comparison with tlie dimensions of the atom#

8#3 R*V#A#
Ve have used the R#V#A# (which assumes that frequencies,^ , close

V
to the atomic resonance frequency, , are the momlnant ones) throughout, 
although ve have shown in Appcaidix I, for the 2-level atm, that if it is not 
assumed, ve obtain some extra high frequency terms, \Mch are negligible, 
and, wîiich ve can neglect as they
are not our main concern# In fact when the ccupUbj becomes stronger.
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l»e# % â i m  til© dipole mwenta are large, R#V*A* breaks down (cf* LouiselJt̂ )̂ 
but it would anyway only give rise to a very mall correction (see ref. 100). 
This is also pointed cut in the papers ve siiall be quoting where several 
approximations are compared.

Various i>apere, e.g# refe. 101, 102, 103, diamms the importance of 
the R.y.A. in epontar̂ eous cmlcsion tlieory# Kîiigîit and Alim sliow “Umt the 
yignei’tiV,'6isakopf tîîcory of spontaneous exponential decay of a single excited 
atom contdna an explicit form of the E.W.A# however, they say that R.W.A. 
should p,qt be used to describe cocrcrative supcrradiant lov.̂ 1 ,ghlft and 
tîiat cure dioull be taken over the dioice of tli© interaction Hamiltonian,

They point out that tlie E.k.A. lias a Bigniflcerit affect, both m  (a) 
tliO epoîitaneous omission fraa a single excited atosî., and m  (b) the 
cooperative spoutancoua etlasim level of radlatively courled atoms#

K# and A# s<ay tluit use of E.W.A# to neglect overlapping diagrams (b) 
for tli© single 2-Ir/el atom is HCT a serious limitatiŝ i, since there is HO 
anti-resonaiit vacuiU4 c m l r i t  j X i m  to tli© dominant 2nd-ordmr diagram# Cn 
the other hand, 2#\'̂ A#..%a:.t.T.ct. in calculating the chssnzra
mdi.atlvq.liTcl.Thift . to. .cAMral fields since there is m

vAidh altera the frequency 
dependence cf the shift, but ve shall not be conccrred with this#
They eay this alteration makes possible extensive cancellation of otherwis© 
misleading tcixs although ve did not find this (so® Appmdix I).

In the rest cf IC# iu;d A#*s paper they show the effects of not using the 
R#¥#A. on the simplest cooperative eyet^ of 2 atoms m e  being in the excited 
state, cooperation deriving ffom m  «rechange of a jhotoa between the atoms#
Ve Ignore this possibility of excluante#

For superradiant systms, i n  the fiche liMt, large frequency shifts 
are expected and it is poaslbl© that they may alter the essential dynamics 
of cooperative cciscion# It has been suggested by Friedber^^^^ that the 
strong dispersive effect of dipole interactions betwem spaced atoms
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might destroy cooperation respcensible for supm’raditoce* These di%)ole 
iateractims & e m  to some cxtait to bo equivalen.t to the frequency shifts#
In LOW density systems yhioh vo consider peither objecticm appllea since 
there will be no dipole interaction between widely spaced atoms and 
retardation and anti-roscmant terms should be included#

We consider atoms wîiich ere coupled O î î L Ï  by the radiation frcm their 
transitions end ignore all cooperative effects discussed by K# end A . ̂ 
including superradiance# The only point of relevance is thm that anti- 
résonant terms enable extensive cancellation of otherwise misleading terms 
but in our case we haven* t found this to be so and have thus neglected enti
re sonant terms#

Agarwal also questioned the validity of the R#W#A# in quantum
optics# Re considers spmtaneous emission from (1) H identical harmonic 
oscillators and (ii) K identical 2 level atoms and finds that Wien E.W.A# 
is rot used the radiation rat® depends on the initial dipole mom^t j^se* 

Agarwal is conCOTied with discovering vhotlier the assusqptlon that 
E#y#A# is a good approximation, provided tlis Interaction betwem the radiation 
field and matter is for case (i) if mch oscillator at t « 0 was
excited to a coherent state \ẑ > having FIblf E dirole rmcnt then the 
radUtim rate at t * 0 may be .cbtg.lji.in
j y M a  l"(o) _ ..y: - of the initial jcaherert
Rmr'litudo. But if üie syst^ is excited to a state vitli %m)_ dirole

then k o ) becomes Mer.;ticnl..’With ̂ , « In the limit of weak
coupling K Xg «  for the system Initially having a FIKIXL dipole moment#
lit") is the came as provMM that rrriav AomfLÆS
irrorod# Anyway it is reasonable to Ignore thm since they cannot be observed 
by available photodetectors and so an averarir? operation over a few ortieal 
ro.ricds. is perfc^.ed# Agarwal expects that this result will also
hold good for 2-level atoms emitting spontaneously as opposed to harmonic 
oscillators# On the oilier hand, the correlation function ^  lOi cv fc) >
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osûlllat«s at tho optical frequency uû # If the eystea*s initial state 
iias Z1EÜ dipol® rooDcmt then for voali-coupHng I -1 '' #

For cac® (ii) if the eystm la excited to a state vitJa ZERO dipole 
moncnt \(ĉ  ’ # V.licread if the eystcâ s initial etate has a FIHITE
dipole moneit thm M s  a strong dependmce on tlie dipole mment
phase j ) and ve see that for e the emission is not necessarily
superradiant unlUce the result for R#V*A* \ i h m  ve consider CEE 2-level 
atoja only î but the dipole moment differs froD that obtained by
making R#V*A*

Ve are not ©m corned with radiation rates but rather with spectral 
densities# The Initial state is not known at all in Chapters V end VII 
m \ d  in tl*e other chapters is not specified explicitly with regard to its 
dipole moment*

Finally ve diall consider Vails and Gardiner*» p a p e r i n  \diich he 
shows that the 3 approxiinaticsis used in «pontsmcoua emission theory are 
clearly related# They are

1) VigncivVeisskopf (V-W)
2) K.V.A.

end 3) ladder approxlmatim#
ïhoy consider a 2-level atom and use a Eamiltonian in the dipole approximation, 
like our eq# (B#8#21), which they «ay excludes the A t̂ ns, which makes a 
negligible oontrlbutlm to a simple rhmton emission .

They c(msider the V-W approximation is two ports#
(i) V-VI proMbility amplitudes don*t change elgrslficantly from their 
initial values for email va.lues ©ft#
(ii) V-VII introducing irreversible behaviour by replacing the dependent 
«uMû&tion in tlieir ©q# (6) by a complex constant# This is explained by von 
Foersterf^i %Ao also eJiows it to be equivalent to the assumptim of a 
Jtokoffian apfroxkiatlon# VWII yields the familiar result of exponential 
decay Wiich is veil validated by experiment#
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r 1They eliow tli&t is équivalait to the R*T*A* lüiight mid Allai
also point out tlmt approximation mid the loildor eppi‘oxlmation hear
close resmblanGe to the Eetho-Ralpeter equation or the * overlapping*' self 
energy terms discussed by Calm R'alls and Cardlner point out t̂ iat
one aspect of these papers is confus.irg* naaoly that they start vith in 
the R»¥.A* and then obtain tli.e emae probability equations miû «met solutim 
as do W# and G* using b-WI# The analogy to the ladd<^ approximation in 
fact comes in making the SÆsA* vîiich grIx ooutributic'r̂  .îrm

ulth a rhnton intprT.Mli?to e rro clidM. Since all 
these approximations
rrrccrnrs to they are superior to pcjturbative techniques#

VTicn E#¥,A# Is mado v\̂ and cccrmte and so a subset of total
eigenvalues of V\̂ psxy be taken as a basis for the ca:plet@ system and 
tlto uae of this subset corresponds to making tlio ladder approximation.

bien an atom a?lts spoi;tm\wusly into a CZ'GIE field mode balls 
has found that Fv.V#A. is equivalent to ignoring a frcqumcy ŝ iift Gw

feslend is therefore valid for as pointed out also by louisell #
Agsrwal derived a master equation for spontaneous emission ui'^out , 
making E.V.Â. mid found an identical expression for tlie radiation rate but 
tL %is difference is

poT V # Tliese t w  corrections are tlius very ̂ mll and
V. and C. point out that maybe the approximations made Is deriving the 
master equations are perhaps of same order of magnitude as those involved 
is making the k*V.A.

Is ref# 120 JPi#V.A# and exact aolutloï'js are comparai (for parametric 
arpllfler and frequ<3fiey converter etc#) and the validity of E.U.A# is 
establichcd# It is likely timt its validity could be established also for 
the multilevel atom of Chapter IT (see AppWiz IV for equations of motion, 
#im E*y#A# is not aosumod)*



8*4- Broad cpectzna limit
In BGBinnlng the oecHlatore to have a broad eî octraa of frequencies#

10̂ > V© gatlafy one of tli© crltorl^XL.necoGmry for the Markoff apprcrlmatioai I'
to be valid bo that It can be used then desired* Since the frequencies, ̂  ,V
are also closely epaccd, can be replaced by integrals uîiero desired*

fll ^Lehmboa'g ■'also assumes the emitted photons decay Into broad bands of
closely spaced ciodes* K© considers more tl-inr. one m i c h  bond, each on© being
associated with a different transition̂  whereas v© only over consider on©
such band charectcrised by a frequency or u) ,

V

8*5 Atom at origin
111© atom is asmmed to be at the origin of coordinates, e*g. at the 

nucleus of the atom* Fiutak ïias pointed that this is a Iceig tmvelmgth 
Efisusiption* h© uea it because the position of the atom is of no relevance 
when tii® miy coupling between atoms we consider is the radiation from 
tlieir transitions#
8.6 Mixing of states

In reference 7, the mixing of states, as a remit of the damping 
medianim, is assumed and tliia i# given as a reason for tli® necessity of 
using the dmslty operator tedmique.

Bê /stoin criticises Bergiaaim* s appr&adi to tJi® problm of 
spmtaneous emission from a S-̂ lovel system with incident t#am@ of radiation 
wîalch ar© initially olidier (a) la a coherent state or (b) in a n̂ -photon 
state. Ber̂ piSnn uses tvo apprcxlmationsf (l) he retains only diagonal 
elements of the field tlmOMlcvelopcient operator (la order to avoid P.Th.) 
and (il) he restricts his equations of motion to mterial 2»l©v@l eyeteos 
which eannot develop into jslxed states. Kewstcin ss^^ that it is necessary 
to consider the effect of mixed states and for large fields the main features 
of the spontaneously radiated power spectrum ar© simple related to the time 
development of these states.
[ ¥.B. Kewstein*© pap^ ̂ ^lis also of interest because it criticises two
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otbor ApproAohos to the problem of gpcntar;Ooua ealsslon In the proomoe of 
a driving field* Firetl̂ jv Boya that tli© technique of treating the
interaction ncrUtonlan as a perturbation of the fall HamiltcrJLan
K is not valid here since it relies on the fact that the frequency 
aeeociated with tho interaction er,ergy of the atc^ic curmits with the e.m* 
field is «  the resononoe frequency# Secondly, he pays tlmt tho 
procedure adopted by Eautimi end Sobelmn for the solution is mly 
valid for relatively small initial field energies* R* and £* consider 
that the material systom is coupled to KARf nodes of the radiation field 
It but that initially only OI?E mode of the field is in a higim^ergy eigon-* 
state* They obtain a solvable FDilTE set of equations for the atom field 
pivL)Abillty amplitudes by the infinite aystem to a small number
of multiphoton processes#]

S#7 Crdsring of Operators
.We pcintod out in tlie introchictiosi tli-at normal ordering mables the 

eolations of problems involving toâ -coRgorvative systms without cumbersme 
Iterated solution# In ref# 109 ,the airthors show tîmt tlie ordering of 
ccomuting ator.lc end field operators rtaults in attributing a different 
origin to the radiative line shifts and widths in spoantanaoua mission, 
i#e# in fact whether it sfiould be attributed to vacmm field Huctuationa 
or to qimnti.̂  ©lectrodynamio radiation reaction,#
They sJiow H  at \ à i m .  normal ordering is need the radiative correetim can be 
interpreted as mtdrely due to radiation reaction effect but whm ayametrlo 
ordering is rsed the radiative correction can be interpret®! as entirely 
the effect of vmcimm field fluctuations# If in obtaining the average of 
the atm m e r c y  operator we use noraal ordering then the decay would be 
considered entirely due to radiation reaction effect, but tSiore is mo 
ordering Wiich would attribute it aatircly to a vacuum fluctuation effect# 
They come to tli® conclusion at tlie end of tli® piaper that as there is some 
arbitrariness ever the interpretation of physical processes end as this
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is ©cpoivalent to tli© ordering of cosamuting operators it must iaipiy tliat 
üiô li:. ler%,retatlons are closely related, altliough not fully equivalmt, 
as tlie net pj ocesa carmot be exclusively destnribed in terms of vacuum 
fluctuations* On tiie otîier hand spontaneous emission can be mtirely 
attributed to radiation reaction* Hence if on® does not us® ordering
o n e  must re&iomber to attribute radiative corrections to field fluctuation® 
as veil as to radiation reaction*

8*8 Markoff approximation (M*A*)

In von Focster*® pape: he deal® with the equation® of motion for 
the dynamical operators of the system (written in the Heisenberg picture)*
He uses the R*W.A* and calculates equation of motion for A(t) and 
T(t) * A^A •* AA^ end points out that these cannot be solved exactly 

and that this is desirable since if they were then th^ would describe 
entirely reversible bWiavlour whereas damped bf^aviour is quite irreversible 
and can appear only as an approximate solution* Ee uses an approximation 
which makes the Interaction between the atom and the radiation field a 
îtarkoffian process | tJi® field at time t depmda on the values of parameters 
only at t and not at earlier times* Ke does this by using an appurcudmate 
expi'ossion wJiich results in the field becoming so ccmplex that it 
Immediately log.?s_ all,̂ giory_-Qf,.,lt.a ■rrgvioi.is.,,̂t;?te# i*e. instead of writing

1  
y

we write
X Iv-iO {-  ̂

vtfiere

where
'V

and is the Heaviside unit step funetim*
^ W s  <x W caA OLAd lu\ T ied" s ^cd < u .trv \- 
[nils is equivalent to o w  '&ssWiptim or closely spaced modes which
mables £ to b« r^laced by / d ^ i ; ) ^ ^  - . »a»ere

eViA -- ( » Tb* effectlTo b«ndvl<Jth of y)
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lo  ̂ I where  ̂t Is the eiitoeorrelation time. The most
Irrpor' TT,t cor.triHîtions to the integral are those for which t 2r r # 
^'^cy~^o , .* - # l#e* only a few cycles duration* We assume
onywcy that

St- <  ̂  tlie time for appreciable Bccular djanges in tho atomic states 
and so

F IV') a
\ 4

in t!ie l^GEt approximation, to a high degree of accuracy, so tîiat
y i t ' f\Ŵ  = -(w t

V  <J1
This is an equivalmit expression arrived at without the direct asmm^tlm 
of a Markoff process^

- ---JtA. -T" VC) does not vary rapidly
with q, so that \ VO) is quite dmrply peaked near t • 0 and very moall 
©Isewhore* If it varies Batch more rapidly than the slowly varying 
operator A(t), then

J&' ru-v") ftw') -k f\)0 fcU' Ui--v)

*" ( PlVĉ

where | cU’ I U -1'') «» K tv \)
0

\Mch thus rmovos dependence of the field on earlier times t* so that

A(t) » ̂  0 (0 q G,An(̂ -fvô t") — V (
V 01' r VoV I' 1̂

The epprcxlinatlon for the above integral is shown by v m  Foerster to be
equivalent to the W J  mp̂ aroximatlon and is discussed in detail* Ke argues 
that v) , the frequency shift, vanishes to a very good approodBation 
since he assumes g(o ) ^ / lS )  ^  nearly cmstant la the regimi nearuj «■ C*

According to KouisoH p* *lf we ascuae a cystm to bo
lîaâ offlan we mean that its future behaviour is determined by the present 
and not tJie past end this asmmption is valid since dajsping destroys
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knovledge of the post* Ketheaatloally, ve therefore replace

by its present value yO ' lO ,
The Markoff approximation has been done crudely and instead on© eîiould 

take a coarse grained average on a time scale t where
system damping time t ;>;> reservoir correlation time,

t should be long enough to contain many cycles of the undamped system motion. 
Then we may let the upper limit of the integration over t* go into infinity 
and derive the Roaster equation describing the statistical beîiaviour of 
the system when coupled to a reservoir under tli© M.A. after assuming
can b© written

-  /, r

Where are reservoir operators,
and Q - are system operators. Qn fact Louisell end iîarburger
eq# 34, p. 351 IvY is replaced by and in addition assume
that U) has the form

where ^ i s  at most of order Vg^ since if V̂ ,p » 0, yo- hi yc?

I indicates the interactlm picture

^  k') -e ^

They then go on to ignore all quantities of order higher than

second in V^. Their method contains only 2 basic assumptions
1) mmory of the system is destroyed by its interaction with the reservoir,
2) this interaction is sufficiently weak that its effects ne^ only be 
considered to 2nd order in F.T. This we don*t aseume.J
\ , % m  we use the Markoff approximation in Chapters V, VI, VII we use the 
former procedure not the latter.
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According to Kaoke p. 508̂ ^̂  ̂when tli© adlbatic of Markoff 
approximation is used with rofercnco to the laser there are three 
objection© to its uaei
(1) The "proper" laser system (active atoms + field) can be treated as 
î .̂dorrolnR,A rr.ocers BIT the as ..a caprot.
This is a familiar argianont in tlie Uieory of stochastic processes* We 
keep to tills limitation as we apply the M.A* to tlie TOTAL Cîl̂ SITÏ operator 
for the atorJLc system and reservoir (or field) though in our case this is 
not a laser cyotem*
(2) Since wo may intuitively reason that active atoms produce indirect 
interaction between fllCTOBS of the laslng field mod© he reasons that an 
fôcact elimination of atomic variables in laser theory isust lead to a 
retarded rboton Interaction in order for the results to be pliysical*

his paper!. Kaake poir̂ t© out that Pauli typo 1st order differmtial 
equations may be obtained under the following conditions:
(1) Initially there are no correlations betweei S and R# (We assume this)*
(2) Internal correlations in the bath R are cliaracterised by correlation 
tines the relaxation times of the system S arising from its Interactim 
with r* This amounts to essming that the energy levels of R are clomelv 
graced# which w© do, and that the properly defined "strength functi<m"- 
density of eigenfrequencies of the degrees of freedom of R, > is
a r r c ' - y y i r  vo,rvir̂  function of frequency, especially near eigenfrequencies 
of S*
(3) S is observed at times t »  internal bath correlaticm times and, if 
R is finite, < <  FOmCAEÊ recurrenc© times for K*
(4) Irtersrtion between S and Jl is sufficiently to allow for a 
simplification of the integral kemal leaving the latter correct tq) to 
2nd order in the interaction (Bom approximtion B*A*)# This derivation 
of the Pauli equations avoids 2nd order perturbation treatment end tho 
repeated random phase approximation#

Typical roz-W'orkofflan effects in S m y  be treated from an exact
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master equation if aaeumrtlon© (2) and (3) ere rot made.
W© 6©o therefor© that in fact tîiough in Chapters II and III a îîarkoffian 

process is not assumed tho assuiinptions made are equivalent to that assumption.
In his paper he goes on to discuss and justify the B*A. since 

it is the major approximation in this method for turning exact master 
equations into eventually solvable onos. Ke finds tlmt the B.A, is valid
(1) if tlio "strougtli function" does not degmerate to on© or more
©xtrmely diorp and higîi lines. Cue must po^ assume a white spectrum. (N.B. 

This is only assumed if on© uses the metliod wiiich Involves tli© Markoff 
approximation.)
(2) that température of R is not too low,
(3) contributions to the Dysm series stemming from "overlapping" 2né order 
and from all higher order tliermal equilibrium batli correlations ar© neglig i %  

small compared with those from non-overlapping 2id order correlations.
(N.B. This does not amount to suppressing internal bath correlations.^j 
W© consider an e.m. field in idilch there Is no retarded photon interaction 
and only consider interaction between the atom and the field.
(3) The essential conditl<m for the elimination of heat baths in the 
Markoff approximation is that the heat bath should have a klilTB or at least 
an e::tremelT brc%d band mtTrw Grectrum. Althougli this is just the opposite 
condition sought after in a laser it is the condition sought after in the 
e.m. field ve clioose to act as a damping reservoir# The damping reservoir 
in our case is considered as a heat bath K in thermal equilibrium with an 
ensemble of harmonic oscillators £ vhlcJi together are equivalent to 
the PKCNONS. These phonons spread into a bread band of frequencies oo about
the original frequency o vdien the atom is coupled in th© solid and

Z' ^ 23in £ q varies from 1 — > 10 over this band. In our case therefore
this objection to the us© of tho M.A. does not apply.

Finally wo would like to point out that the reservoir (namely tho 
quantised e.m. field) is thus assumed to stay in its initial pur© state
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by virtu© of using th© M#A* If tli© field is very strong, i#e# contains 
a Isrg© nunber of pilotons depletion is only very sliglit in oomparlsom 
to th© total nunber of photons and so this assumption ia valid fee? a 
strong field, R, such as vo choose (K ~ 10 the number of degrees of 
freedom of the bath).

Furtlier in baaada^s paper lAdch criticises Î etebcrg’s method 
and produces a better on© he considers only the tire evolution of th© 
intensity and rot its froquoncy dcpondencc, as v© do. Ko is also mainly 
cmccmod with the norWIsricoffian effect c: p.Tcrr:^innco from en essmbly 
of harmonic oscillators, whereas vo ignore superradiance entirely. He 
points out tlmt tli© noWhrkoffian effect retards a correlated moticm 
idiich is respoinsible for superradiance, of the atonic system induced by tli© 
pliotenmataa coupling, and it caisequently modifies a feature of super- 
radiance. In fact it nodiiles tlio dmpe of superradlant pulses and the 
pîioton statistics.

8.9 thy t* is diosen to be arbitrary in Obaptei'S V and VII.
In Cîmptors V and VII m  are caiccmed with averaged effects, i.e.

instead of considering a particular process of emissim or absorption v©
consider tho averaged effect of all possible multiplioton processes. For
tliis reason w© do not assign the value of cero to tlie Initial time t* sine©
tills would imply limt we know tlie Initial state of the atom, i.e. tli©
starting point of tîio process, whereas ̂In fact,since v© are considering
that Hier© are several photons la tJie vicinity of tli© atoa^we th^efor©
cu2ir*ot tell WioUicr a particular ÿhotcm is bcirg emitted or alisorbed at
a particular Instant in time, and also v© are not able to asomrtain th©
initial state of tîie atom. This imccartEinty is as a result of the fact
that there Is a ccaatlnuous series of processes. It has also h e m  given
earlier as a reason Wiy there is a need fcr th© statistical approach
implmonting density matrices. Th© resulting spectral profiles calculated 
xûim 0 do not represent just mi& process of omission (as in Chapter VI)
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or absorption birt the overall effect of all possible processes Wien 
several photons arc in tlie vicinity of the atom# The spectral profiles 
represent the power spectrum of the scattered field as in hollows paper 
In I'k)llow* 8 p a p e r h e  calculates ealsslon and absorption spectra 
separately by conriderirg the state of tJio atom is known at initial time 
t’ « C.

In ca'iti’aet to tliis approadi, if vo were to have attempted to use
tlie timo-depandait pertuiimtion theory to solve tlie problems, th<ri ve
would have had to have known in vîiich state the atom was at the Initial
time* Ve would, tlion have to liave considered ot'.ch nultiphoton process

Fc"\separately# In Mollcw'*s p a p e r o n  the other lisnd, vo consider tlie
initial atorio state to be arbitrary and then., in. order to find the initial
derisity matrices, vc first of all evaluate their equilibrium values attained
at t — > and then evaluate those at t » t* tho Initial time* In this

-îvot'way dc^endonco m  V  appears only as the hannonic factor ^ in certain 
teino where r.*» is tlie frequcaicy of the drivlrig field* These factors 
cancel out whm the spectrum is finally calculated so that tlie value of t* 
is never required* In this way the overall effect of several Eraltiphotoa 
processes is ccloulated*

It is owing to the fact that the state of the atom at cry time is 
uncertain Uiat the wave functions become mixed as a result of the interacti<xi# 
lew wave functions have to be defined whicîx are a mixture of the old ones* 
This mixing is considered botîx by lewstein^ ^ end by several Russian 
autliors t but is erroneously ignored by fergmonn who is criticized 
by h'ewstein W  tills point* This mixing as a result of damping has been 
pointed cFut several times as being mentioned by ICollow and M i l l e r T h e y  
make tlie point also m  p# 473 that in weak fields the atomic state remains 
pure and one can just add a plimmonological dorping term to iim equation 
of the tlEio derivative of th© excited state*
- - Stroud̂ "̂̂  ̂has developed m i  altcamative %.roadi whidi is quozitum 

electrod̂ S'nmrical (Q*E*D*) in nature but does not involve the use of time-
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dependent pertnrlmtlm theory* Its dlsodvar'tog© Is that it is a very 
large method since ho first of all considers tJio splitting of each level 
and then goes on to consider all possible transitions between th© resulting 
split levels, considering each multiphoton process separately* Kls method 
also has th© disadvantage of only being able to take into account the 
process of sponteincous mission end rot overall processes*

Chang < k ftcIilol-̂ J also use (Q,E*D*) tl-̂ coiy for tl:@ purpose of 
doii:̂  sen© calculations on multlplo-quontnm transitions in magnetic resonance* 
They find tlmt tiioir results agree hotter with ŵ e cuqiorimmtal working of 
Kusch than do those obtained by using smlclacslcal
theory# They therefor© conclude that ecmlclassical theory is Inferior to 
their own vork in Interpreting this and other cstperiments but Fogg &
Series cjicort that tlx© popca*s of Chang & Stekl© do rot corstitut© a 
proper coeporisoa with gemlclaesicol. theory becauso Balvea^s calculations 
end other recuits cited by C* & £# are admittedly only npfroirlrmte 
solutions to tho cmiclacsical oquatlcsis of motion, and have been mqpersodod 
by more roccait vork!-̂ '̂  in this field* Also fegg end Series draw 
attcnticm to the fact that C* & S# do not epecify their o*m* field In 
sufficient detail#

Fogg and Scries say that In two pmtlculor situations m  enact semi- 
classical solution can be obtained:
1) in tlio "rotc.ting-vavo" situation and (2) when tlie field consists of 
a linearly oscillating component and & parallel static cer.pcaient which may 
bo z o r o m  Chang end Ctehlo do not specify th© polarimtim of tho fields 
they discuss but it appears they deal with linearly oscillating fields 
(liiich ©xcluda caoo (1)) end that interactions Wving diagoaial imtrix 
©locients (can© (2) ere of no interest to them# For this reason their 
etriicturos against th© exact eomiclassical solutions ar© misplaced*

Another point mad© by Fogg and Cories is that s«ri-classical end 
Q*E*D# treatments do not only agree In the low-froqucsncy loi^fleld region,
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l.e* "in those cyctemo where tranoitiais linolve the ckdLoslm or 
abeoipticii of a eiiigle photoiî  as etated by Qiaag & ftdle but elso for 
strong fields whore tlie pliotoa nmiior n '>> 1 oooording to tlie cerrespondmee 
priaiciplo*

Ihe main difforonce (apart from virtual processes ignored by C# & £#) 
between eoilclasuicol and quantised field tl;eori,os lies in the treatment 
of opa.twiooiis omiosioa The interaction i«atrix elements idrlcli
doteruino tho evolutim of the atonic g'Lato vector under stiaulatod 
eLiiesioa mid absorption are identical in the two theories; hence tho 
predictions of tba theories must coincide for those situations in vhicli 
cpontaneou.® auission p;l%"@ no  significant role#

fcd'lr# P-* and F. '-*aIiOW tliat th® eztcmol field oZmngea tho spectrum 
cf sp>off.utaiifeous efi'issimi of a quantum system significantly and interprets 

as 'tho result of mlxln!-: of stationary states of "tli® Isolati^ atom 
la 'Uie oxter;-al field* He points out tliat any discusslcr on tlie
"splittirig" of levels of an isolated atom can lead to a seriously wrong 
concliislan since unusual interference plicnammia appear# They are interested 
in tli© case whm of states talces place after the excitation of the
systea, wliile at the initial instant the atom is In some stationary state*

In Stroud^ s case^^'^, if tlxere are say 15 photons in the vicinity of 
the atom, he considers vliat happens to one at a tiae but in Lehmborg's^*^ 
end Hollow* papers tliey consider tlie interference caused l â i m i  the
next photon anl'vos within 10̂''̂ sec* so that tlie states become mixed* The 
pertobatioa approach is valid only for tln.es between 10*^^ sec* and 
IG**̂  sec# and not > 10^ sec* Where IC*̂ ' see* is the approximate atmic 
llfetiu©* For longer tir.es other metlxods ar© necessary as pointed 
also in the introduction Sec* I#

8*10 limitations on lelmberg's method*
In Wm%Æpg*s 1st p a p e r & i m t B  are confined to a  region SI-IAIL in 

emparison to the trancitlcai wavelength
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l#e#
(2)but the formalism of the 2nd paper' ' ̂ idiich we use, removes this 

restriction* It also takes into account the frequency shifts due
to the e#m. coupling between the atoms and # These we ignore 
since we are only interested in rarlfied gases in which the e#m. coupling 
between atoms is négligeibly small. The only limitation on the size of 
the ensemble of systems in (2) is expressed by condition (13),

1* e#

or the time required for a signal to cross the system being
small in comparison with the time t required for appreciable (secular) 
changes in the atomic levels. Since we only consider a single atom in
our case is replaced by R the distance of the atom from the
observation point.

For a system driven by a sufficiently strong resonant pulse 
is determined by the field amplitude and pulsewidth and the problan can 
be adequately treated by semi-classical theory#

Lehmberg's analysis precludes application to macroscopic laslng 
materials but the formalism can still be applied to multi-atom syst^as 
extending over many wavelengths and still be capable to developing pomounced 
directional effects.

Von Foerster’s paper also uses a method of approach similar to 
Lehmberg*s and provides a backing for it.

8.11 The two ways of considering the driving field in Chapters V, VI, VII.
In Chapters V, VI, VII we show that whether we use Glauber's 

notation(̂ ) or introduce driving fields as additional classical 
terms makes no difference to the form of the resulting equations although 
Glauber's approach is more consistent as it is truly quantum mechanical#
In the latter the driving fields can be considered within the formalism 
by making initial photon states non-zero. According to von Foerster'^^
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strong fields, such as the laser fields wo consider, sliould be represented 
classically# klion we use the quantum medianical approach and consider 
CNE mode in each case the results take the same form as when we consider 
the field classically# This is because in the beginning the strength 
of the field is not stipulated and ia left as a variable parameter in 
the resulting formula#

According to Kewstein when a material system S interacts with a 
relaxation mechanism R and the e#m« field E, the interaction of S with E 
is describable as the sum of two terms;
1) tlie first term gives the effect of a prescribed classical field, and
2) the second gives the effect of a VTAK aucntum field that is rcgrponsible
for SDor,t̂ eau.s_je?ri_s Gion# This interaction is treated rertxirbativelv*
The driving field is treated classically in his paper# In fact whm the 
incident field is of arbitrary value it can be treated ncn-perturbatively#
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m n i m  i

/telsen̂ err: ewTatlons of Eotlon. derlvea froa the Hard.ltor.lan In 
vhlch n.K.jl.'la not eem'3iK!....for .the 2-lcvel atoa (cf. ref 2)

If ue use the interaction Hamiltonian aa given in equeticoi (l.B.IC3}«
i.e.

H h . I  t,u n ; - £  Ko ^ 0  (I'D
V r (i - D

Instead of eq# (1»B#105), obtained under R.W.A#, then ve can show that 
the equationsibr H") , A(t) and Q(t) will be modified by the underlined
terms so that ve have:-

m - , ..j (.<  ̂ (1,2)t (-T- A V \

A(t) . _ ^  '"k  1
" , (n.3)

5(t) - - > llu') 0 a,_̂ é - |£ -o,? k")( (II.4)
I-; " 0,5 ' "A3'')

where there is no external driving field, as opposed to equation® (2#2),
(2#4), (2#5) of Cliapter II when a ' « 0 and^W 0 and ,

"̂0̂ G — '>- a # The terms underlined are high frequency (HF) ones

since they originate from the high frequency terms in the Hamiltonian# 
(K.E. V , a’"—  c Q  » A*A—  e° « Ij »
a-t g /, 0+ and a/ %Aere u — wOf Of e <j
and hence are all HF terms#)

Vhen ve go throu^ the same procedure as in Chapter II, we finally 
obtain the following two ©quatlcans:-

">v
I(t) - -\2(aitV'1lcy(c) -

-^Ï2 -M fcĈ - SlY] i (^lï it)
y

(II.5)
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î(t) « - f\'vAN Y lAiAI fvççÇ)
(II.6)

j

where ̂  - ^ + (II*7)
replaces _
and underlined terms result from KF terms in the Hamiltonian,
VI*. 'Y''If-"I t , AlA p"'

(M.E. there is r.o corresponding to 1  since &lw-n3 '(j
and ^  does not lie within the limits of integration#)

If ve neglect the high frequency terms at this stage, since they 
will have only a very small effect, we obtain equations

i(t) Y (II.8)
which is the same as equation (23) of Lehmberg (ref# 2) when ̂  and

« Q, i#e# our A#

Q(t) \ Y  (11,9)

which is the earn© as equation (23) of lehmberg if is replacé by Q 
throughout#

Tlius, this more rigorous treatment only results in negligible HF 
terms and a frequency shift modification thich can be neglected as it is 
not our main concern# Ve are therefore justified, on this basis, in 
using the R#V#A#, froa the start, in Chapter II#
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KmKDJX 11

Cor'TrTlcrn of ti e rotation In Charter II T.lth that of rrthc-d (1)
m  .is treated o lm M m lll

In Chapters V, VI, VII ve consider the extemal perturbations to be 
time dependent and, in method (i), tmsed on Kollow's treatment̂ *̂̂  ̂of 
the perturbation, let signal generator* This feeds the
signal continuously into the cavity# In this case the Hamiltonian for 
the interaction between the systen end the signal is

v\ ’ AA'' ’ (II.1)

wiiere A is a o-cumber coupling parameter (according to ref# (35), p# 
272-3)# In Mellow end Filler's papcr^^\ the classical external 
perturbation E can be presumed to be a classical (oHnunber) electric field 

* with positive end negative frequeicy parts and ^
respectively and polarisation specified by unit vector where

(II.2)

Tlien the coupling between the atom, S, and field, E, is taken to be

(K#B# in our calculations v© 
take ̂  to be real)

. ^ I A"-'»̂  ̂  ^ ^

vdiere X » and is real

KowA(t)- (cf. (1.E.S3))
end a'*’(t) •> K’ltV ,
and also the driving field is assumed to be harmonically varying at 
frequency ^  , the resonant frequency, so that

(II.3)

(II.4)

a  - c %
-c, C "sr where F_ Is assumed to be realoO

■ (n.5)
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1. N̂x

or -
«10, V

whore R] « €a O  e

(II.6)

since term® end are rapidly oscillating at a frequency
^  (Uid 60 can be ignored in compariBoai with the terms
and A oscillating at O and Wilch are therefore
practically d,c# (cf# discussion of E.W.A# after eq# (1«B#92}# Thus the 
expression in ref# (35) l.e# eq# (II#1) acîTones the E#W*A# and is valid 
for weak coupling#

We shall consider Nl̂ _ for a classical time Indepmdent perturbation 
to be given by

'S.C ■kA'R' Y f (II.7)

where ve have introduced an arbitrary phase Ç )  which will be seen to have 
no effect on the results, so tliat comparing terms we see that

A'

When » 0, a© in Chapter II, we Imve

a '* -AA^e
\

'Ĉ
(II.8)

/
GO that we can identify o-number coupling parameter ^  ' as above, whm 
the perturMtion is on electric field#
E.E. )A'r . (II.9)
in the notatim used in Chapter» V, VI, VII and is related to the strength 
of the perturbation#
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In Hollow's papor^^) he expresses the total electric field as the 
Bum of the classical expression (2*2) and a quantuiri mediardcal field 
expanded in a region of volume V, as in hewetein's paper discussed in 
Ctiapter 
pait VO obtain

I*E* using eq* (l*B*97) for the quantum mechanical

(I

(i,t) - + 3
c><z V

(11*10)

where, in the resonant approximation, we may express the electric field 
as the sum of positive and negative frequency parts as in (11*2), viz#

I (c n  ;■ e'-'b- v v  V, -A. (11*11)

ïlien ti e interacting Hamiltmian is

- - ilA -E/o,0 (11*12)

% Hen the atom is at tlie origin of coordinates*
is the dipole mazmt operator for the atm expressed in terms 

of the dipole matrix elment

as £(t) » £A (t) + £ A(t)

K*B# we write ̂   ̂ \ and assume it to be real so that
£(t) • pi{A‘*'(t) + A(t))

Hj(t) * - f)Mt) j T
Pf- V

«r
+ n.c.

(11.13)

i.e.
(11.14)



—370—

K A 5 f \ ' f
p ? ^

■ 3

3 ^ (T (\^a

G as
I

- ''üR + ? æ

(11.14)
Gont'd

K#E* In Chapter II ve introduce a phase factor into tlie expression for 
Vo- aa veil ae into that for V^t? but these are Been to have no effect on8E
the résulta ve derive*
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/■IT.nm III (ref. 121)

solution of the ctftip .er.yatlon

Thle appendix will bo devoted to a derivation of the BOlutitms of the
general cubic equation

In order to reduce this equation to its standard form ve rmove the 
term by making tJie cîinngo of variable

S « y - V3a 
The reeulting equation is

y^ 1 (■ /50 V 3 jj 1/27 Y  - O

or y^ + "5\y ̂  (III.2)

vdi€sre H * ̂ (-V^a^ + b)
and G «  % 7 Ĝ -ŷ c\\i

In order to boIv  eq# (ZII#2), we assume that
y » u + AT (III.3)

so that
y^ m ( LV̂ - V " S u  lS ( U 1 ^

Substituting in this last equation for u + i)' , from (III#3), ve obtain 
the equation

- (a’̂’i'o'-V-O (III.4)

A comparison of (III.4) with (III.2) shows that

3 uiT* - 3H 
and - C
or «I
and ¥ » — G (ni.5)

If is eliminated by substituting froa the second of equations (III#5) 
into the first, then tlie quadratic equation in A appears,
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whose roots &r©

(m'V 1 GvJ -  V\ 0

The Bolutlon for yields precisely the saae values, however, in
order to satisfy eq. (111.5}, we choose ^

Ul̂ + A!’?

(III.6)

/
i.e. the positive square root term for and the negative for ^ .
The opposite clioice for the values of and simply interchanges
their roles in what follows.

If tho values of y and to be determined from eq, (III,6), it is
necessary to find Hi© cube roots of end • how we know that if 
3 3G - d « 0 then the solutions for s are given by d, ^  d end d, %^ere

~g + i end ^ a r e  the complex roots of unity.
Hence, if one cube root of \x̂  be denoted by c< and one cub© root 
of ^  ̂ by Y  , üiô cube roots of are

(À , Wo/ end u)V , i.e. the roots of 0,
whereas those of are

y9 , and , i.e. the roots of u -y& ̂  » 0.

It would appear that there are 9 choices for y, but values must be paired 
so that uiT " -H. The only pairs that satisfy this condition are o4 and
P  ^jV 6ïid ucp , and w  ckT end Oyi # Hence, the values of
y are \

«I .
(III.7)
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vhere «

and

- G 4 C '

- G - -fc ' 4 v'(\ ' 
2

(III.7) cont'd

The solutions of eq# (III.l) can be obtained from the values given 
in (III.7) by recalling that s « y - V^a. Thus

= ('ey v-^L^X) " 'Aa ^ ̂ '6 )  ̂̂ (III.8)

It is thus obvious tliat if .6 . find a are real "5̂ ig real and
and aro cocplex conjugates of each other so that the three roots
can be written ^

9 . 7 ,

K.3. c4

s, - -,Z, -- - 1 [/2

s . z ,  -̂ ŷ s —  ' ' ' A  ̂  7 6 ]

(III.9)

O

/>■  | - ^ ‘/6 7 “^ - % c ' b r c y  a Y i  û 4  t r y  / ;  f 'j  h)fl 7

L I d

’(III.IO)

in terms of the known quantities a, b, and c*
Exact values of ^  and cannot be found and in the text ve use 

various approsdbmtlons In order to find and /6 and hence 9 , Ŝ_ 
end 5. #
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IM. rÇ. JthQ m -jlt the,, efit#W_a

Assrmaiüg tlm iicjîdltcmian to b© glvm by eq# (4#A#2) vhesi K#F# term© 
ar© ircliuled l#e#

i-j ' > '"G C' (fW

vo obtain th© following oqmtlans of motion

a - ~ o \
i, -  t 0 (IV.2)

with fonaal ©olution

CL l\)  ̂a ( (ĵ eJ) T V --

p 11) - 1 f P’«fv VY\(\

t- > ÿ~\

-V \ C'

— \

H.J - r̂
(IV.3)

L ' - ' - [ s  P i

■Z-,( Z-i

'«r ( w u )

( « - 1

wJicro

(IV.5)

(IV.6)
^ iVi <

Ronce

Vv\ t\ m A I /  e'^'-
A.-( (?

\ ClJ A\Z ̂  A
\

tîT z \ 
Q

" Cj Vî'l'" V  l'"" '-"TCF
a t

Oc () hj - I
v-viT. z r\

0 Pt’(Ç- ïXZ- .. ,z
-z ̂  I

(T' /

(IV.7)
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r,B# ITndcrllRed tema result froia ÎIF terms in the n&mlltonlan# 
It is now necessary to derive new ©xpr'ssslons for

.... Ôte» using the new eo^reesiœi for

L-r,

X

and proceodlng, as in Chapter IV, to let V ^ ^  » ignore overlapping terms, 
£Uid to assume we obtain, >

/ /

where dv-o w
3lT ujx 6" as in (2*A«15)

iimilarly,

L 4

i ‘ ' ietc*
Substituting la eq# for 0̂ , we obtain*̂ »

X:

4-

4^^' ..

vM-\ I

■ (IV.8)

' {17,9)

> (17,10)

V
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Collecting tmrms, v© obtain

X  I - X  '

 ̂ \ •( , ,i \\

■''i *
\ V '  '''y

tVuY'i V,,Y\

(17.11)

A \ .zlcl  ̂\('?A. ,- 6 A ^

where underlined terms result from H,F# terms In tîi© ncaiiltonlan* This 
equation can also be writtcn est-
t,«X ' E j 'XX.X,, V'X XL X:1

t \

\ V : \A
I /% f) l\ \ - \

—  \ /
|V\- \

4 \
- \

Vl ■ \n -Y-\
IX ,V,

z : \

-V \ «.oit)

bbm we Ignore terms originating from K.F. terms in the liomiltmian 
we obtain

A"
f < 7\

< > w\ < rv
4-

— \
S \ >N CD V X 'TV̂ X iTV

. «a Ÿ N  v n v  N . - ,  ,>

»\-r\
vn > k

S<̂v<t k >'\>o(v
\ f v\ \ < < k
\Ac\ \\ V . <v

An\

(17.13)

tliough, in fact ^ k ' ̂ is also a H*F* term.
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In fact tv*o of the terms, the terms which ere doubly underllred, 
orlglratlrg from H*F# terms in the îiGmiltcs ten ere in fact not necessarily 
n.F., via*

C  V ,vn-'» y4 is only H.F. if y ^ n, where n ^ s, (IV#14) 
vheroao y can bo » n, ^ r. or n*

>

V \L 'V~ - \
is only II#F# if m ^ a, where m n, 
whereas m can be » 2, ^ z or ^  z* (IV.15)

60, in fact, we eîiould use tlie following equation:-

r ,  \

i \K

\ — \

and from tliis
X ,  V'A '

i. ■- \

, I'
k- X\A \

[17.16)

'>'A-\

$ . 1 . ?... 0
L <  WX y .

or..-;.
V

i  .
c1 Y Y-v\-̂
< 5

\
~  '  ̂b "

^ > . v v

XIV.17)

I.E. va have tva extra terms In each equation end also tvo restrictions 
on the existing sumzatlons.
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v

ror-c nofeo on r^rnr

In Apenas«?vich*s paper he considers a 3-level atomic systm with closely 
spaced (or coincident) excited levels, and the affect ca it on WEAK radiation* 
There are thus ro roî>*llnear effects and the susceptibility he calculates 
is the linear one# Since the field is vcak it can be considered to possess 
a spread of frequencies such that levels 2  m i d  3  are both covered by It 
since they are very close* He thus not only includes but also
\\'^V2. * Kow in our case vo wish to be able to consider the possibility

of the field bocotiinig very strong* îlathmatloally it would be impossible 
to coQSid^ any ejread in the frequency of tl;© incident field for this case*
In our method (ii) ve consider on© mode of Hie incident field and In 
ir.etliod (i), based on HoHov’s analysis, the incident field has just CHE 
frequency with no cpyresad* Stroud^also considers just OLX mod© to b© 
strongly excited and n o  more* But even Hiis sizigle frequency intense 
Incideiit field is not quantum medianically manageable and tli&t is vdiy 
HyoHow considers tli© incident single frequency field to be classical* In 
ftroud’s method he imposes tîï© restriction that in the process under 
consideration only on© piioton has h o r n  c o n m v m d  from tldLs slngk. froqucn<y 
field and so cei* (This is also assumed by MorozoT in his paper on Stark 
eplittinĝ '̂"*̂ )* In this way Stroud is able to treat Hie sînglè 
frequency strong incidmt field quantum mechanically* fhysically. It is 
reasonable to ccaieider just on© frequency in the intense incident field 
since all inteis© cohermt fields obtained frm lasers have a very small 
spread* Thus vhm we are dealing with siidi a single fr^um<^ Intense 
incident field it is obviously not possible for it to couple levels 1 end 2  
at the saa© time as levels 1 and 3$ In fact if we have a pĥ 'sleal 
situation where the spread of the incidmt field is mailer than the 
distance between the central frequencies of the closo-lylng levels 2 and 3
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tlien V© can approxlimte the incld©it field with a eingl© frequency field 
which couples only levels 1 and 3 and not 1 and 2, i#e# « 0
in tîiis case*

It is interesting to so© wîiat the exact equations corresponding to 
equations (2a) and (b) of Apanasevich would be* In fact, they ere

Ÿ, - l) U  -  ̂'>.■ r ~ ' Y A  (V.l)

in our notation, viier® the following transformations are necessary for 
conversion to Apmmsevich* @ notations-

> L

W -> X 9\
X  Xfe'

A„fXO = ITe-'"'t
4x

Vi ''L

1.  >E\\ ,
VO> —  ̂Lj

(V.3)

where and include frequency eîiifts*
Thus V© see that the two straight underlined terms îiav© been neglected 
in tl’i© linear approximatiaa* If these two terms were included it would 
then be necGssaiy to solve nine equations in all wiicre Hie remaining 
seven equations ares-

K - K ) Y ^ ^ ^ ^

"hi

Y m —

V «# i Y , J [ VjY , Jljl

Y
t" 7 "  f- ■ f'

(7.1)

(7.5)

(7.6)

(7.7)

(7.8)
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A- » - ^ \Ay -  '' I,
/

.9, ' \

/ f (V.9)

(V.IO)

where th© wavy underlined tcrna are those extra ones due to Hi© fact tîiat 
a vc£üi field ccnplos levels 2 and 1 also# This csrtra coupling modifies 
the Kandltorian by addition of Hio terns-

\

where A

tuid F-
F \

't'.
‘X

C ■ '■■sF

■ (V.u)

/
and spread of of Hie distance between the central frajuencies
of Hie clcsG-l̂ 'ing levels 2 and 3#

In Aptuaecvidi* » paper

/t, ' and ' A  %diere is complex
as opposed to and AV ,-' jL', tdiere and L, are

real in our case# y

(V.12)

Apanasevich considers Hi© two extreme cases: (i) Wim levels. 2 and
3 are far apart and (ii) whm they are near# He finds that in case 0. ) 
the effect of relaxation coupling on Hie position and width of differmt 
components becomec vealc and they cr© determirei by the parameters of the 
different transitions# In case (ii) on the oHier Iiand, Hi© relaxation 
coupling is found to cliargo the contours of differisit conpcnents end to 
displace them. It also loads to a significant redistribution of intensities# 

The effects of the vosk field in Chapter VII (i#e# A » #1, #01) 
carrot really be cæpared with Hi© effects found by Apaaasevich because 
as already pointed out, we have not considered the field to have a spread
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Buch tliat it con couple level© 2 end 1, as veil as levels 3 and 1* Also 
V© ueod th© ©021© equation© of motlm to describe th© situation idicn A is 
large or small, i#e. v® did not assura® the equation© of motion to be 
linearly appro3clna.ted as in Apanasevldi’e equations (2), ^ â ^ m  A was sciall, 
but Included the etraigbt-underlined terms of (V*l) and (II.2) for A 
snail also. I.E. we have used exact equations of motion, in this respect, 
throuÊ̂ iout.

The effects of strong radiation liavo been considered by Apenasevich 
et elsewhere and they underline Hi® vell-ioiowri fact that
strong radiation can load to establicfmont of a definite coupling between 
different levels.
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The radiative decay In a two level system with the excited state coupled by an external perturbation 
is investigated. The results obtained differ from those of Keller and Robiscoe who claim to have d is- 
coverd a new type of modulation factor.

K eller and Robiscoe [1] have in a recent paper 
carried  out W eisskopf-W igner type calculations 
for a system  of two quantum le v e ls  which are 
sim ultaneously coupled by a quantized radiation  
interaction, describing the radiative decay, and 
by a c la ss ic a l external perturbation. They claim  
to have d iscovered  a new type of modulation fac
tor. Further, on the b asis of their calculations, 
they speculate that th is type of modulation w ill be 
found as w ell for a three lev e l quantum system  * 
in which the sam e external perturbation which 
couples the upper two le v e ls  a lso  couples the 
lower two lev e ls . Their theory has been worked 
out for a tim e sca le  very much larger than the 
atom ic life  tim e.

* A detailed analysis of the radiative decay of an atom 
with two excited states coupled by an external pertur
bation has recently appeared [2]. The coupling of the 
lower two levels with the external perturbation is not 
considered here.

Here we treat essen tia lly  the sam e problem  
as K eller and Robiscoe by using the transition  
operator technique as described  by Lehmberg 
[3], But we obtain solutions for tim es very much 
larger than the in verse of the atomic resonance 
frequency; these tim es may or may not be very  
much larger than the atomic life  tim e. The m ore 
com plete solutions lead to entirely different con
clusions about the effect of the external perturba
tion on the radiative decay of the system . Be
sid es , the method followed enables us to eveluate 
the exp ression s for the state populations in a 
very sim ple and d irect way. Unlike the deriva
tions made by K eller and R obiscoe, c la ss ic a l  
external perturbation need not n ecessar ily  be 
sm all com pared to the atom ic level separation.

We treat a tw o-level atom coupled to a bath 
of osc illa tors . T hese are assum ed to be c lo se ly  
spaced in frequency such that their frequencies  
w* overlap the atom ic resonance frequency cüq»
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The atom is  coupled also to a tim e independent 
c la ss ic a l external perturbation. Their Hamil
tonian may be written as

// = A + ^ Z^f^exp (10

+ K\A exp{-i(f)) + h.c. (1)
where and \  are c-num ber coupling param eters, 
Of̂  and 0  denote arbitrary phases, and A"’', A  are 

the atom ic and a^,  are the radiation (raising  
and lowering) operators. . '

Deriving H eisenberg equations of motion for 
A(/). Q{t) =A'^{t)A{t) and a^it) using eq. (1) and
the relations [A,A+]+ = 1, we
follow a procedure identical to that which led 
from  equations (2.6 - 2.11) to equation (2.19) in 
ref. [3], and get .

A(/) = -(iw  + ky)A{t) + [2Q(/) -  1] B{t),  (2a)

Q{t) = -iyQ (f) - (05(f) + h.c. , (2b)

where 5 (f) =iZ/^j^o^(0) exp[i(0^-w^f)] + i \e x p  (-10), 
k

w = Wg - O, n  and y denote the fam iliar frequency 
shift and the decay constant, resp ectively . We 
may note that these resu lts are valid for f »

Let us now w rite 5(f) = Tr[p(f)Q], and o(f) = 
Tr[p(f)A], where p is  the full density operator for 
the joint system  of bath o sc illa to rs  and atom.
H ere, 5 (f) is  the probability of finding the atom 
in its  excited  state at tim e f. It is  easily  seen  
that for no radiation present in itia lly , eqs. (2) 
reduce to coupled linear differential equations 
for 5 (f) , a(f) and (r*(f). These equations can be 
solved  exactly. Their solutions for 5(0) = 1, or(0) = 0 yield

5 (f) = p + (1 -  3p) e x p [-y f( l-  2p)]

+ 2 p co s  (wf + /3) e x p [ - |y f ( l  + 2p)] , (3)

where p = Ul^/cu^ and /3 = 2y/w . Note that eq. (3) 
does not involve arbitrary phases and 0 . In 
writing the expression  for 5 ( f )  given above p and 
/3 have been treated as sm all compared to unity 
and their powers higher than the fir st have been  
neglected.

We may check that eq. (3) g ives for \  - ‘0 the 
exponential decay solution and for y 0 the quan
tum oscillation  solution as it should [1].

The expression  (3) d iffers from eq. (43) of 
ref. [1] in describing two important features of 
the decaying process: (i) For yf »>  1, eq. (3) 
g ives a steady state solution 5 (f) = p which is  
in contrast to the quantum oscillation  solution  
d escribed  in fig. 3 of ref. [1]. (ii) The third 
term  in eq. (3) decays at nearly half the rate for 
the second term . This is  due to the mixing of 
the diagonal (5) and the off-diagonal(cr) m atrix  
elem ents caused by coupling with the external 

.perturbation. It is  easily  seen  that cr(f) decays 
at half the rate for 5 (f) when there is  no external 
perturbation present. Sim ilar term s do not occur 
in eq. (43) [1].

F inally, it is  worth rem arking that the char
acter istic  features of the decaying p rocess  d es- 

. cribed by eq. (3) and noted in (i) and (ii) are 
sim ilar  to those derived for the three level 
problem  by Fontana and Lynch*.

We are very grateful to P ro fessor E. H. Hutten 
for help and encouragem ent, and to the Science 
R esearch  Council for financial support.

* eg. cf. the expression (1 -  5(f)) with eq. 24) of ref. [2].
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The line shape of spontaneous em ission  of an atom with c lo se ly  spaced energy’ lev e ls  is  determ ined  
using transition operator techniques.

MoIIow and M iller [1] have shown in detail how the effect of spontaneous em ission  of an atom can be 
described by considering the coupling of the atom to a "bath" of harmonic o sc illa to rs  representing the 
modes of the electrom agnetic field  *. They d iscu ss the case  of a tw o-level atom. Their method of s o 
lution is  based on a Markoff approximation. A ssum ing the coupling between the atom and the bath to be 
sufficiently weak they consider its  effect up to second order in perturbation theory. Lehmberg [3] has 
shown that these approximations are unnecessary for obtaining the required equations of motion. His 
derivations use an approximation which may be taken to mean that no appreciable secu lar change oc - 
curs in the atom ic sta tes during tim es of the order of an atom ic period. The equations of motion for 
transition operators derived by him pass in to the usual ones for reduced density m atrix operators 
when in itial sta tes are specified . In this paper we use Lehm berg's method to calculate the radiation 
from overlapping energy le v e ls  by considering the sim p lest case  of spontaneous em ission  from a threp 
level atom. ' . '

We take an atom (lying at the origin of coordinates) which has two excited  sta tes \ j ”) and |y ’) cou
pled to a ground state ji) by a quantized multim ode electrom agnetic field . We can w rite the H am ilto
nian, in the dipole approximation, when d irect transitions between |y") and l i ' )  are neglected , as [3]

where P a , (3 = l^X^l is  the atom ic transition operator (Pa^^ = and ag and a l  are the usual pho
ton (annihilation and creation) operators. We shall denote ’the energy separation b^w een sta tes 1 j" ) and 
|f), I j') and |f), |;"> and | j') by Cju - ê - = wy,,, c y  -  H = and c y  -  = w '=  i*)j« - wy,. r e sp e c 
tively. In writing (1) we have om itted high frequency term s like P i j d g  and a^Pj^i.  Inclusion of such 
term s resu lts m ainly in modifying the frequency sh ifts in which we are not interested here. The cou
pling constants g jg  are given by g jg  = K g i c g ' p j ) ,  Kg  = {2vu)g/HV)^^^, where p j  = (J \ ex \  i) are the dipole 
matrix elem en ts, eg  is  the unit polarization vector and V is  the norm alization volume.g

The Hamiltonian (1) g ives the following H eisenberg equations of motion

PiJ» = - i P j^ J^ '^K j ' qO g 'dPj<^J"-Pi , i ) '^g j^^gag-  (3a)

Equation (2a) has the form al solution

t
Ogit) = exp (-iŵf)0 (̂0) + I e x p {- iw ^ (^ -5 )}5 ^ j(5 ) . (2b)

I
♦ Radiation damping model described in ref. [1] has also been used by Mollow [2] to obtain power spectrum of light 

scattered by a two-level atom driven near resonance by a monochromatic classical electric field,

■
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Using eq. (2b) in (3a) and following the argum ents put forward by Lehmberg for carrying out the 
sum m ations and integrations, we obtain after neglecting frequency shifts:

5 /j" (/) = - P i / t ) }  g j „g] a^{0) exp{ - l u)gt ) , (3b)

where aj = ^yj  + iioj, y j  = (4pJ (t}J/3IîC^) and Tj  = (4 p j i  p j»  u)^/3Hch •

Equations of motion for Pi,ji{t)  corresponding to those given by eq. (3) can be obtained by in ter
changing the indices j" and j ' .  It may be em phasized that in deriving Tj  we have Integrated over those  
frequencies which are common to photon transitions between lev e ls  j" to i  and t to j '  or v ice versa . If 
lev e ls  j" and j' are far apart these cr o ss -te r m s , and hence Tj,  can be neglected.

' If equations of motion for P{ j  (eq. (3b)) are m ultiplied on the right by the vacuum state jo) for all 
q photons they reduce to two coupled linear differqntial equations. Their solution for the case when the 
atom is  Initially in the state |y") (with no radiation present) is  given by

-P/j.-lO. j"> = ( l/2 m )[(w +  (Tjtf-Oj»)exp (-S+0 + (w - oy., + ON.) exp (-S J )] l 0 , f ) , (4a)

O.j") = (I \„ /2 w )(ex p  (-s+f) -  exp (-s_f) |o, f) (4b)P j

where Sj. = i(o^„ + o ,̂ ±w) ,  m = [(a^.. -o^-') + Tj„ Ij,]
We can now evaluate bq = a (̂/>e> y l ) ]  0, j")  at the p lace of observation by using eq. (4) in (2b). If we 

put gj«q  = gj ,q  = gq,  y j  = Tj = y, the line shape of spontaneous em ission  of the atom in itially  in state 
I j " )  IS given by

Ki'.-— (5,q 4 (tOj.i -  u )q ) ^  {(jJji -  w ^ ) ^  + y^ { ( jO jn  +u>ji -  2 w ^ ) '

We see  that eq. (5) is  the sam e as that derived by M orozov and Shorygln [4] using the H eitler-M a  
method. The proxim ity of level j '  to that of j" cau ses the line shape of the atom which is  in itially in 
level j" to change, over from the Lorentzian to that given above. It may a lso  be noted that for the sim ple 
case considered here the spectral profile of the atom ic decay, which is  essen tia lly  the F ou rier-tran s-  
form of a two-tim e atom ic correlation function, has been obtained without the use of the fluctuation- 
regression  theorem . B esid es , the Markoff approximation has not been used and the calculations are not 
lim ited  to any sp ecific  order in coupling constants. The method of evaluation for the effect of overlap
ping given here should prove useful in describ ing situations where the calculations based on perturba
tion theory becom e invalid, for exam ple, in the p resen ce of a very intense external radiation field.

' We are very grateful to P ro fesso r  E. H. Hutten for help and encouragem ent, and to the Science R e
search Council for financial support.
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