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ABSTRACT

Two effects of free streajn turbulence on aerofoils at incidence 
were investigated;

(1) The mepji loading effect, A survey of the literature 
dealing with the effects of turbulence on aerofoil mean loading and 
stalling was undertaken. This survey was supplemented by the results of 
an experiment in which three symmetric aerofoils, of different thicknesses, 
were tested in various turbulent flows. The effects of turbulence 
intensity and turbulence length scale were examined separately. For 
aerofoils with ultimate leadingedge stall, it was confirmed that the 
effect of turbulence on the maximum lift is approximately equivalent to 
the effect of increased Reynolds Rumber, The variation of this maximum 
lift with length scale was found to be greater than the -1/5 power law, 
suggested by a theory of G, I. Taylor,

(2) The unsteady loading effect. The higher order unsteady 
loads arising from the incidence of the aerofoil were investigated from 
both the theoretical and experimental viewpoints.

The higher order theory, which includes the effect of gust 
distortion by the mean flow field, was initially developed for a 
sinusoidal gust. This result was employed in two ways;

(a) It was applied directly to the problem of the periodic 
loading of turbomachine blades,
(b) It was used in the formulation, via Fourier analysis, of

. a higher order loading theory for an isotropic turbulent gust.
This latter theory predicts that the higher order admittance of 
lift (lift spectrum -f- upwash spectrum) depends on the incidence, 
C K  , to the second power.

In the experiment, unsteady loads were measured on a rigid model at 

incidence CX,, and subjected to an approximately isotropic turbulent 
flow. The measured admittance of lift, due to incidence, was in reasonable

agreement with the theoretical prediction.
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CHAPTER 1o Introduction

In the flow of fluid about a body, an obvious effect of 
unsteadiness in the free stream is the production of unsteady aero

dynamic forces on the body. A larger part of the present investigation 
deals with the unsteady loading of aerofoils at high angles of 

incidence to the mean flow. Although much theoretical and experimental 
attention has been devoted to the case of the thiiv'i aerofoil at zero 
mean incidence to the unsteady stream, the higher order effects due to 
incidence have been largely ignored. Two types of flow unsteadiness 
are dealt with in this study; the sinusoidal gust and the random 
tmrbulent gust, the two being related in that the former can be 
thought of as a Fourier component of the latter.

A further mean loading effect is produced as a result of the 
free stream unsteadiness interacting with the boundary layer on the 
body surface. This effect is particularly important for aerofoils at 
high incidence when boundary layer separation dominates the mean flow 
behaviour. In the present mean flow study, the type of free stream 
unsteadiness is restricted to random turbulence.

In both the unsteady-load study and the mean-load study, only 
two-dimensional aerofoils are considered; viz, unswept aerofoils of 
infinite aspect ratio.

1.1 Effect of Turbulence on the Mean Loading of Aerofoils.

In the early 1930*s, some experiments were undertaken to 

determine the effects of free stream turbulence on the aerodynamic 
coefficients of aerofoils. Workers of that time were concerned with 
discrepancies between data from different wind tunnels, apparently 

attributable to differing levels of tunnel turbulence. The effects of 

turbulence were found to be significant, and all effort was made to
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miniiTiize this "background turbulence" level in later tunnels. Since 
this period, the specific problem of the effect of turbulence on the 
mean flow about aerofoils has been neglected. However there has been 
extensive work on the effects of free stream turbulence on boundary 
layers, directly, and on the flow about other body shapes (for example, 
Huffman, et. al. (1972), Bearman (19^9))» and this work of course has 
relevance to the present problem,

1.1,2 ..Areas of renewed interest. Renewed interest in the effects 
of free stream turbulence on aerofoils has arisen in two areas;

(l) The design of new wind tunnels. The present generation 

of transonic wind tunnels is severely limited in Reynolds' Number 
capability. Furthermore, the effects of Reynolds Number on the 
transonic flow about aerofoils can be very significant, with the result 
that wind tunnel data may differ considerably from the full scale 
flight test data. New transonic tunnels with higher Reynolds Number 
capability are on the drawing boards. Achievement of the desired 
Reynolds Number by scale or by pressurization will result in a very 
expensive facility, so there is interest in methods of artificially 
increasing the Reynolds Number at transonic speeds. The high Reynolds 
Number simulation method which has been widely used in transonic testing 
in the past has been that which employs transition-tripping devices 
attached to the body surface. Yet free stream turbulence has often 
been observed to have an effect approximately equiv^ent to an increase 
in Reynolds Number; and so the introduction of turbulence has come 
under consideration as a possible method. So far, any definite 
conclusions regarding the suitability of this method have been precluded 

by the dearth of experimental information.
Transonic tunnels with ventilated walls have a higher level 

of background turbulence than their low speed counterparts. Thus 

there is a secondary interest in free stream turbulence effects in
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relation to the design of new wind tunnels; viz, the effect of levels 

of turbulence normally encountered in transonic tunnels.
(2) The flow in turbomachinery cascades. Blades in turbo

machines operate at high angles of attack in flows with a significant 
turbulence intensity. The aerodynamic characteristics of single 
blades and of cascades as a whole can be altered appreciably from their 
values in smooth flow.

1.1 .3  The current investigation. It became apparent that the first 
requirement for a study of mean loading effects was a comprehensive 
literature review to identify the areas of inadequate knowledge.
This review is presented, on a subject by subject basis, as Chapter 2 
of the thesis. Subsequent to the review, an experiment was designed 
and undertaken with the aim of providing more conclusive information 
on the effect of turbulence on aerofoil mean loading. The details and 
results of the experiment comprise Chapter 3 of the thesis.

1.2 The Unsteady Loading of Aerofoils

Examples of situations to which an understanding of aerofoil 
gust loading can be usefully, applied are;

(1) the aeroplane wing in atmospheric turbulence ^
(2) the compressor or turbine blade in the typically unsteady 

turbomachinery flow.
It is noteworthy that both the aeroplane wing and the turbo-blade are 
often at high incidence to the mean flow, the configuration on which 
attention is being focussed in this study. Atmospheric turbulence is 
best represented by a random turbulent gust; while flow fluctuations 
in a turbomachine have a broad band component (approximated by a 

random turbulent gust) and a narrow band, periodic component (approx-
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iinated by a sinusoidal gust). In the theoretical analysis of gust 
loading, the cornerstone is the response to a general sinusoidal 
gusto This response can be used to determine the response to a known 
turbulent gust via the method of Fourier analysis.

1.2.1 Notation and definitions. V/’avenumbers and distances which carry 

dimensions are written with overbars; for example, k, and x • In this 
report the following forms of non-dimensional wave-numbers and distances 

are widely employed: k, = and x = ^  where c
is the aerofoil chord length. Also the angular frequency and time are 

written as W  = and t = respectively, where! u j and
t «carry the normal dimensions. (Note that Cü and t are not
dimensionless). Thus (<,x =  k»X , cut =U/t, etc.

Two reference frames (with origin at the aerofoil midpoint) 
are employed:

(1) stream-aligned co-ordinates : x, y, z .
(2) aerofoil-aligned co-ordinates: ̂  > "g  ̂ Z .

These co-ordinate systems are illustrated in the following sketch#

U

Components in the x, y and z directions are subscripted with 

L = 1 , 2 ,  and 3 respectively,
A two-dimensional gust is here defined as one whose properties 

do not vary in the z-direction. There can be no component of gust 
velocity in this direction, and, further, this is the orientation of
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the gust vorticity vector (although the gust may he irrotational).
The more general three-dimensional gust has three components of both 
velocity and vorticity,

A frozen gust is defined as one in which there is variation 
of velocity in space but not in time (with respect to axes fixed in the 
fluid). An aerofoil translating this gust field with velocity, U*-» >

• (or a stationary aerofoil onto which the gust is being convected at LL") 
"senses'" a variation of velocity in time. For a sinusiodal gust of 
wavenumber, k, » in the x-direction, the frequency of this variation 

is given by; uu = k| Uoo . Although a truly frozen gust is not 
a practical possibility, the variation with time of many gusts found 
ir̂  practice is sufficiently slow for the assumption to be applied 
with good accuracy. G.I. Taylor first invoked this assumption, and in 
the literature it usually carries his name: Taylor’s Hypothesis. If 
the gust is non-frozen, the aerofoil senses a different variation in 
time. An equivalent way of considering a non-frozen gust is as a 
frozen gust with a convection velocity which is not equal to the free- 
streaTi velocity, Uoo • For the non-frozen sinusoidal gust considered
in this way, the following two wavenumbers are introduced:

(1) ks , the spatial wavenumber in the x-direction .
(2) kf » defined by oo — k-f where W  is the 

frequency sensed by the aerofoil.
The corresponding relative velocity between the gust and the aerofoil 
is then given by: . (J^ , •

The following quantities are used to denote orders of 

magnitude:
(1) Ê  , the relative magnitude of the incident velocity 

fluctuations. For a sinusiedal gust, £  Uoo is defined to be equal 
to the amplitude; while, for a turbulent gust, it is equal to the r.m.s.

of the fluctuating velocity in the x-direction. In this study it is

. assumed, throughout, that £ < ^ 1 .
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(2) OC , the angle of incidence. Also, CX is assumed <^1.

(3) k » the modulus of the wavenumber of a sinusoidal gust; 
for example, for a three dimensional sinusoidal gust,

k = + ks .

1.2 .2  Order (€ ) theories for sinusoidal p v .s t loading. To formulate 
the response to this order, one need only consider a zero-thickness 
aerofoil at zero mean incidence, subjected to a gust whose velocity 
vector is in the y-direction; that is, an unwash gust (and then retain 
only first order terms in £  in the subsequent analysis). The unsteady 
theory retains the basic tenets of steady thin-aerofoil theory; for 
ex^iple, completely inviscid flow is ass’umed and the Hutta trailing- 
edge condition is satisfied at every instant.

The theory for the frozen two-dimensional gust was first 
developed by Sears (1941) using a conformai transformation method 
which was based on the earlier pioneering work of Y/agner, Kussner, 
Theordorsen, and von Karman. Sears' result is summarized below:

The two-dimensional upwash gust is of the form:

and Co = k, (Joo (the frozen gust property).
Sears' result for the unsteady coefficient of lift, C[_ ,is:

/\
C t C t )  =  2 tt. S(k,). _ (1,1)

where Sears' response function, S(k"r) =  H k  _|_ Lüy(k.)
n , ( k , )  4- L H o ( k )

and the J's are Bessel Functions of the first kind and the 
H's are Haeni:el Functions of the second kind.

In later years, the same result was obtained by directly 

solving the integral equation which arises from the boundary condition
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on the aerofoil (for example, the solution presented by hisplinghoff, 

et, al, (l955))o In Chapter 6 of the present dissertation, an analysis 
employing such a method is presented,

Jackson (1970) has measured the unsteady load on an aerofoil 
stationed near the wake of a cylindrical bluff body. The flow 

unsteadiness in this region approximated to a two-dimensional 
sinusoidal upwash gust; and Jackson found reasonable agreement between 
his measurement and the theoretical prediction of Sears,

Sears* theory can be simply extended for the case of a non- 
frozen two-dimensional gust. This extension was first reported by 
Kemp (1952) and the result is presented below:

• Tlie gust is of the form:

'b ô(k)t/ —kcx) ( I Iwhere Co = kf, U^o •

The load response is: -
c u j t  ■

C k #  = 2-rr.SYkf
(1-2)

where the generalized Sears* function,

Kemp and Sears (1953» 1955) have theoretically analyzed the 
unsteady loading of turbomachine blades, produced by the interference 
of other blade rows. They considered the effect produced by:

(1) relative motion between the mean flow fields of blades,
(2) interference with vortex wakes from upstream rows,
(3) interference with viscous wakes from upstream rows.

In each case it was possible to determine the effective unsteady
upwash as a Fourier series with terras of the form ^

and, thus, the blade loading could be calculated using Kemp's result. 

It should be stressed that the analysis of Kemp and Sears did not take
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into account any effects which arise from the effective incidence of 
blades to the mean flow,

Tlie order (0 ) response for a three-dimensional sinusoidal 
gust can be formulated by analyzing the case of a yawed gust, Tliis is 
an upwash gust with a two wavenumber dependence: k, in the chordwise 
direction and l<3 in the spanwise direction. Several workers have 
determined the response to a frozen yawed sinusoidal gust to various 
degrees of accuracy. Graham (19?0) has formulated the problem using 

an exact unsteady lifting surface theory, and, with this formulation, 
he was able to calculate, numerically, the response function:

The yawed upwash gust is of the form:

^  cCwt-kx-k^z)
D& G with CO Uco >

and the load response is :
-kjZ.)

C|_(t,z) = 2 T r . 6 ( k , , k j ) . ' ^  .0
>

where G  k̂ ) is the response function which Graham has calculated 
numerically.
Independently, Pilotas (19^9) derived an approximate closed form 
expression for G  (k, ̂ • His theory also yielded an exact 
formula for the asymptote of G  (̂ ki.ks') as kj — ^ CxD .
In the present notation this asymptote is given by

G A K h )  -  k j

Mugridge (1971) has derived an approximate analytical expression for 
G  which is the correct asymptotic result for k — 0,

His analysis is a simple adjustment to that of Sears: it considers the 
effect of an additional (streamwise) component of vorticity in the wake. 
Mugridge's formula is re-derived, using a somewhat different approach, 
in Appendix 1. The formula is presented below in a form which is
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useful for extension to other cases:

G n = L(k,,k3)[JL(k,)-u t L (k,) ^

where L  = [I + N(k,,k-3)] -  L_Y(k,)_____ _
[ I N  (k.kz)] +Yo(k,)-lYiCki) > • • (i'4 )

“ * (i - ! )k|>/k, +k;

The theory for a non-frozen yawed gust follows simply upon the frozen 
gust analysis. When Graham's analysis is repeated for this case, it 
is*found that, when the "boundary condition is applied, terms arising 
from the gust depend on wavenumber, kg » while those arising from the 

wake depend on kf . G  (kf, kg^kj) can be calculated numerically 
with one simple alteration to Graham's program for the determination 
of G  (ki^ks) . Similarly, the analysis of Mugridge can be general
ized for the non-frozen gust. This generalization is also presented 
in Appendix 1 and the result is as follows:

The non-frozen yawed gust is:

^ C(Lot-ksX-hrsz) u I I
w i t K  (jO =  k f  U oo  >

and the load response is (with Mugridge's approximation):

Ci_(t,z) = 2tC G m (k'f kj). ,
• • - (t-5)

where
G m  ks) —  L(kf,kï) ô3i(ks)J o (ks) ^

and the function, I—  , is defined above.
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1*2,3 Order ) theories for sinusoidal gust loading. To

formulate the response to this higher order in C K , one must consider 

a zero-thickness aerofoil at mean incidence, 0 (  * Further complications 
are:

(1) components of gust velocity other than the upwash 
component (if they exist) can contribute to the load response to 
order(cXG) .

(2) if the gust has a wave-number dependence, , in the 
upwash direction, this can affect the load response to order ((^6 ).
(This dependence is irrelevant in the formulation of the order (6 ) 
response because the aerofoil is at zero incidence to the mean stream)

(3) if the gust is rotational, it can be distorted by the 
mean flow field of the aerofoil. This effect is of order (CXG ).

Horlock (1968) first attempted to evaluate effect (I) for a 
two-dimensional gust. Later, Morfey (19?0) presented a much simpler 
derivation of Horlock's result. Basically there are two additional 
load response terms (of order (CXG )) which arise from the gust 
component, , parallel to the stream. The first is the obvious 
Sears-type response produced by the component of 1% which is perpend
icular to the aerofoil chord. The second is a cross-product term 
involving and the mean disturbance velocity field of the aerofoil 
(at incidence CX ). This term is not affected by a change in the 
relative velocity between the gust and the aerofoil; that is, it is 
the same for both frozen and non-frozen gusts. 'In the present notation, 

Morfey's result is:
Ihe frozen two-dimensional gust considered by Morfey has 

components;

The load response is:

C u C t )  =  C l s C lai + C l m  ,
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• j-

where C|_^ ~  Z t ^ S(k,)3(j^- C  , Sears' term, 0(ê)*
G|_^^=cX2TT' C^Yj^additional Sears term, 0(^6).

C L M  =  CK 2rr M ( k ) . %  e ‘'“ ^ , Ilorfey's terra,0((X£).
^oO

where
M  ( k i )  -  J q  ( k , )  4- Û ( k , )  .

For the response to the corresponding non-frozen gust, S  (kf jks*) 
replaces S  Ck|') ^ and M(ks) replaces M  (ki') in the above 
formulae.

Giesing (1968) has obtained a complete solution, numerically, 
for the case of an oscillating aerofoil in irrotational flow.

However this method, when applied to the problem of an aerofoil subjected 
to^a sinusoidal gust, will not take account of all of the above
listed complications.

Very recently, Goldstein and Atassi (1975) have published a 
complete order (0(6.) analysis for the case of a frozen two-dimensional 
sinusoidal gust. Working independently, the author, as part of the 
present investigation, has developed a similar theory and extended it 
to encompass the following two cases:

(1) the non-frozen two-dimensional gust ,
(2) the frozen three-dimensional gust .

Further details of Goldstein and Atassi's work and a comparison with 
the author's analysis are given in Chapter 6.

Holmes (1971) has made measurements of the unsteady lift of 
an aerofoil at incidence in a stream with non-frozen transverse ('^2 ) 
and streamwise ( ) periodic gusts. The gusts were irrotational
and two dimensional, and the variation in the y direction was small; 
that is, kg,—  0. As will be demonstrated in Chapter 6, when kg = 0 
the higher order lift response is comprised of only the two.terms 
derived by Morfey (equations (1.6)), Holmes found that the modulus of 
the higher order response due to incidence was reasonably well predicted 

by Morfey's theory.

( l -6 )
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1*2.4 Gust distortion by the mean field of the aerofoil. Consideration 
of this effect (denoted as "complication (s)" in the previous section) 
is necessary in any theory of gust loading which is complete to higher 
order in CK.

1.2.4*1. General principles. Vorticity in a free stream (for • 
example, a rotational gust) will be distorted by the mean flow field 
of a body placed in that stream. This is in addition to the 
"blocking effect" resulting from the satisfaction of the boundary 
condition on the body surface. The distortion effect can be readily 
visualized if vortex lines are used to represent the vorticity: the 
mean flow field of a body can stretch, skew, or convect (at different 
rates) the vortex lines*

Lighthill (1956) outlined a method for calculating the velocity 
field induced by a body placed in a stream containing "weak" vorticity. 
The vorticity is defined as being weak when the velocities associated 
with it are much less than the free strean velocity, LXo • In this 
case, the first order distortion effect is that produced by the 
irrotational flow field which satisfies the boundary condition for the 
free stream. This field is denoted by the vector, V  , Lighthill’s 
induced velocity field was comprised of fCur pabts:

(1) the flow field, V.
(2) the irrotational flow field which satisfies the boundary 
condition for the free stream vorticity field (the blocking 

effect).
(3) the Biot-Savart^ flow field resulting from the vorticity 
change due to distortion by (I),
(4) the irrotational flow field which satisfies the boundary 

condition for flow field (3)*
Clearly, the process can be carried on,"ad infinitum", the order of 

the approximation increasing at each stage.
The distortion effect can be evaluated mathematically using
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the vorticity transport equation, which, in tui*n is derived by taking 

the curl of the Navier-Stokes equation. For the calculation of the 
first order distortion effect (that is (3) above) for flows of high 
Reynolds Number theequation reduces to the following vector form:

M . " + ( V . V ) Y  =  ( Y v ) y  . . . (,.1 )

where ^  is the vorticity vector, and V  - .

1.2.4.2 ‘The rapid distortion of free stream turbulence. V/hen 
equation (l.?) is applied to a random turbulent gust, the resultant 
theory is termed the "rapid distortion theory" and effectively assumes 
that each Fourier component of the turbulence is affected by the mean 
flow before it has time to exchange energy with other Fourier components 

or decay due to viscous action.
Hunt (1973) has rigorously determined the conditions under 

v/hich equation (l.7) can be applied to turbulent flows external to a 

body;
(ReNo.)"^<^£ < ^ m i n  t l),and (ReNo.) ̂ max (^^l).

where £  , here, is the turbulent intensity, %
and L, is the longitudinal integral length scale (a length scale of
the energy-containing eddies).

If the Reynolds Ibumber is large enough, as it often is in 

practice, the conditions reduce to:

The practical usefullness of the theory is limited when 1 )
as the allowable turbulence intensity, • £  , is then very small.



20.
1.2.4 «3 Previous applications of the rardd distortion theory of 
turbulence. Ribncr and Tucker (l953) and Batchelor and Proudraan (1954) 
have analyzed the distortion of turbulence in its passage tlrcough a 
windtunnel contraction; and their results have since been corroborated 
by experiment. Considerable effort has also been devoted to the 
distortion of turbulence in simple shear flows.

Hunt (1973) has applied rapid distortion theory to the external 
flow about a circular cylinder. The complete general calculation was 

not computationally feasible, but certain asymptotes and other special 
cases were evaluated. Experiments by Bearman (1972) and Petty (1972) 
have supported certain of the m^in trends of the theory.

* Graham (l975) has considered the distortion of a turbulent 
flow by the mean flow field of a porous plate (held perpendicular to 
the stream). Because the mean flow disturbance produced by the porous 
plate is relatively small (of the order of the resistance coefficient^
K , of the plate), Graham was able to linearize the vorticity 
transport equation (equation (1.7)) and thus render the calculation 
tractable. He determined the theoretical effect of distortion on the 
spectrum of drag of the porous plate, and found this prediction to be 

in reasonable agreement with some experimental measurements.
1.2.4 .4 Previous aunlications of distortion theory to sinusoidal 
gusts. In the theories of both Hunt and Graham, described above, the 

distortion of a single Fourier component (viz, a sinusoidal gust) is 
considered initially. Then Fourier Analysis is employed to establish 

the distortion effect for a general turbulent gust.
Goldstein and Atassi (1975) and the author specifically 

consider the distortion of a sinusoidal gust in their respective order (^C) 
analyses of the sinusoidal gust loading of aerofoils. In a similar 
manner to Graham, a linearized version of the vorticity transport 
equation is employed; in this case linearized with respect to the 

small parameter, C< » the angle of incidence of the aerofoil.
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1.2.5 Forrrul-.ition of the turbulence loading of aerofoils. When 
considering the turbulent loading of any body, it is convenient to 
calculate the ratio of the load spectrum to a velocity spectrum of 
the incident turbulence. This ratio is termed the admittance of the 
loado If the body reacts to the turbulence as a linear system, the 
admittance, at a particular frequency, will depend only on the length 
scale parameter, . It is customary (for example, see Jackson
(1970)) to define the admittance of the lift of an aerofoil as:

|A(k:,)Y =  ■ 0-8)

where |A(k|)|^ is the admittance,
(k) Is the spectrum of lift coefficient,

is the spectrum of turbulent upwash, 

and Ljo the reduced frequency.

1.2.5.1 Derivation of the admittance from the response function for a 
sinusoidal gust. This was first achieved by Liepmann (1955) for the 
particular case of the aerofoil. He used Sears result for the 
sinusoidal gust response, and thus assumed that each spanwise strip of
the wing responds to the gust as if it were two-dimensional. This
type of approximate formulation is known as "strip theory". The 
exact formulation will be based on the response to a general frozen 

three-dimensional sinusoidal gust.
The most direct derivation, pioneered by Ribner (1956), 

involves Fourier integrals. Roberts (1971) has rigorously derived 
the formula which specifies the load spectrum in terms of the response 
function for a general three- dimensional sinusoidal gust. This 
formula, as it applies to the unsteady lift of an aerofoil in 

turbulence, is presented below in tensor notation.

^  <§tj(5)8kic(k3 , . . . ( / . q )
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where (l) XY^is the response function for the i th component 
of the frozen sinusoidal gust; that is, if 1)% is 
the amplitude of this component;

C(_ =  • • • 0  I o )
(2) is the three-dimensional wavenumber

spectrum of the turbulence. In isotropic 
turbulence, Is a real function and cjy — .

The corresponding formula for the admittance is then;

I A ( W |  (X) II-Glt/lj Tûj (k).d(Cidl<3 . . .(Ml)
—oO

where Tlj ([s') =  f̂') I^ the normalized three-
dimensional spectrum .

It should be noted that Taylor's Hypothesis has been invoked in the 
derivation of (I.9): the spectrum formula has been established from 
the response function for a frozen sinusoidal gust. Thus the 
turbulence is considered to be a frozen pattern in space which is 
convected past the body by the free strean, A simplified derivation of 

equation (I.9) Is provided in Appendix 2.
1.2.5.2 Admittance of lift to first order. This admittance can be 
formulated from the order ( £  ) three-dimensional sinusoidal gust 
response (and so the spectrum of lift is of order ( £  ̂  )).

The sinusoidal gust in question is the frozen yawed upwash 
gust, and, as discussed in 1.2.2, the corresponding local lift response 

-

C c  (t.z) =  2 m . G ( k W  .

•For a section of the wing of span, 2b :
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C y t )  = 2tt . G ( k , , y  3 ^  j  e
-k

=  . • • (1.12)

where a is the aspect ratio = 2b/c *

In the notation of equation (1.10):

n ,  = -0-3 = 0  ) f l z  = ^^•GCki.ks')- ■) and

-("l^is a function of k, and only.

Substituting into equation (1,11):
oo

| A W r  =  % i  |G(lc„k3)|k . Se^(hk3)dlf3 . .(1.13)(kja)

and ^ Z 2 .( ^ > )^ z ) Is a two-dimensional upwash spectrum
which is related to the three-dimensional spectrum by:

2.(̂ 1 ) W  “  XZ2. (is) .
^ —

T ) k s )  ) isotropic turbulence, is an even fiction of kj .

S 22. (kicks') Is the Courier transform of a quantity which' can be readily 
measured experimentally. This quantity is teraed the normalized 
upwash cross-spectrum and is denoted here by • It is a
frequency cross spectrum of the velocities at two points which are 
separated by a distance , z, in the spanwise direction. The relation

ship between and S 22. Is:
_ _  \ C
S 22,(k,jk-3) =  q )  ̂  S£ 2_(k,,z). Cos kjZ dz: . . . (1.14)
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Jackson, Graham, and. Haull (1973) have made a thorough 

comparison of this theoretical admittance with the admittance 
measured on an aerofoil mounted at zero incidence in a turbulent 
stream (The experiment v/as carried out iy; Jackson (l970))» To evaluate 
the theoretical admittance, G 22(k,z) was measured and empirical 
curves were made to fit the data points. Formulae for S 22 (K, kg) 
were then derived by talcing the Fourier transforms of the equations to 
these curves. Values of the theoretical admittance were obtained by a 
single numerical integration (equation (I.I3) above). Using Graliam’s 

computation of G (refer to section 1.2.2), Jackson, et.al.
found good agreement between theory and experiment for their particular 
cas® in which was O.42.

Tlie approximate strip theory, already mentioned, assumes 
that the local lift response for a Fourier component of the turbulence 
is given by Sears' two-dimensional theory. Thus, with this approximation, 
S(k,) replaces G  in equation (I.I3):

A(k)I' =%S(k,)i_[’̂ ĝ 2̂(k,k.)dk3 ' ' -O-'O
Hakkinen and Richardson (1957) have made measurements on a small aspect 
ratio aerofoil element to test strip theory, but their results were 
inconclusive. Jackson, et.al. have shov/n that strip theory overestimates 
the admittance when L ( is of order c . However, as they have 

indicated, the discrepancy will become less as increases; and
thus strip theory will be useful in many practical situations where L| C ,
1.2.5.3 Admittance of lift to higher order in CX .To the knowledge of 
the author there have been no previous measurements of the admittance 
of lift on an aerofoil at incidence (X . Nor has there been any 
attempt to extend the theory to higher orders in CX . Both of these 

aspects are dealt with in the present investigation.

1.2.6 The current investigation. Tlie unsteady-load investigation
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was undertaken with the aim of providing more information on the effect 

ofinoidenoe on the gust loading of two-dimensional aerofoils.
The approach used by Graham in his porous plate study was 

adopted for the theoretical analysis; that is,initially, the theory 
for sinusoidal gust loading was developed and, subsequently, it was 
extended to predict the loading induced by a random turbulent gust*
This approach is particularly worthwhile for the aerofoil, as the 
intermediate results for sinusoidal gusts are directly relevant to some 
practical situations*

The theory for the turbulent gust was tested by an experiment 
similar to that of Jackson, but modified to allow measurements on the 
aerofoil at various angles of incidence to the mean flow. Some effort 
was directed at the ratification of the conclusions of Jackson,
Graham and Maull for the aerofoil at zero incidence*

The chapter format for the unsteady load investigation is as
follows:
Chapter 4: The experimental equipment, methods of measurement and

analysis, and the experimental program are described.
Chapter 5: A comparison between the zero incidence experimental

results and the established first order theory is presented . 
Chapter 6: A second order theory for sinusoidal gust loading is

developed. The frozen two-dimensional gust is considered 
first, and then the theory is extended in two directions:

(1) to the case of the non-frozen two-dimensional gust.
This result is applied to the problem of turboblade loading .
(2) to the case of the frozen three-dimensional gust. 

Chapter h  With the three-dimensional gust result of Chapter 6, a
theory for turbulent loading to higher order in CX is 
established* Finally a comparison is made between the 

theoretical and the experimental admittances of lift for an 

aerofoil at mean incidence, C< ̂ in a turbuTent stream.
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CHAPTER 2. Literature Survey; Mean Loading

In thi.s survey, Reynolds Humber and turbulence effects on 

various flows are reviewed, with the hope of establishing as complete 
a picture as possible of the likely effects of free stream turbulence 
on the aerodynamic coefficients of aerofoils* Also, the areas of 
current interest are expanded upon*

Tlie following abbreviations are widely used;
Re Ho* ; Reynolds Humber*
FST ; free stream turbulence*

2*1 The Laminar Separation Bubble*

This bubble exists on various bodies in a particular broad 
Re Ho* range* For example, it is found on most round-nosed aerofoils 
at moderate incidence and at Re Hos. of practical interest* Aerofoil 
stall development can be critically dependent on the behaviour of a 
laminar separation bubble* Tani (1964) has compiled a comprehensive 
review of this subject*

2.1*1 General description* The bubble is formed as follows* The 
laminar boundary layer separates just downstream of the suction peak 
where the pressure gradient is strongly adverse* The separated laminar 
shear layer becomes quickly turbulent, and the subsequent expanding 
turbulent layer reattaches a short distance downstream* A typical 
bubble length, is 0.01c (c is the aerofoil chord length) on an

g
aerofoil at a Re Ho* of the order of 10 * However, a better parameter, 

wîiicîq covers a very wide range of Re Ho*, is where Szs is the
boundary layer momentum thickness at separation* For a laminar 

separation bubble, is of the order of 10^.
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2o1*2 Observed buloble properties» Expérimental investigation of the

bubble has been extensive (for example, Gault (1955))o Pertinent

properties of the bubble as observed on an aerofoil are:
(a) For a given incidence, the position of laminar separation 

is independent of Ee No*. This is in accordance with laminar boundary 
layer theory.

(b) For a given Re No®, the position of laminar separation 
moves upstream as the incidence increases® The bubble length decreases; 
and eventually the situation is reached where the turbulent shear layer 
fails to reattach® This phenomenon is known as "bubble bursting" or
"nose stall". '

(c) For a given incidence, the transition position is very 
dependent on Re No®. The length of separated laminar flow decreases 
with increase in Re Ro..

(d) Typically, the separated laminar flow length is 0.75 
to 0,80 of the total bubble length® The pressure in the bubble is 
fairly constant beneath the separated laminar layer, but"rises noticeably 
beneath the attaching turbulent layer®

2.1.3. Criterion for bubble bursting. The earlier attempts to establish 
such a semi-empirical criterion (for example Tani (1939), Owen and KLanfer 
(1955), and Crabtree (1957)) were based on the assumption that, at some 
critical boundary layer Re No®, there occurred a discontinuity in the 
movement of the transition position® Recent experimental evidence has 
been against the occurrence of any such discontinuity. Woodward, a
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colleague of Horton (I969), found that transition in the separated 
laroinar shear layer occun-ed in approximately the same position before 
and after bursting and he suggested that bursting occurs simply as a 
result of the sudden failure of the turbulent re-attachment. Horton 
has lent weight to Woodward's case with a semi-empirical analysis in 
which he assumed that the transition position varies smoothly with 
change in boundary-layer He No*

2.2 Types of Aerofoil Stall. Low speed, 2 Dimensional
The early identification of stall types was carried out by 

JoAes (1934) and in more detail, by McCullough and Gault (1951)® 
MCQullough (1955) later demonstrated the close relationship between 
the leading edge and thin-aerofoil stall*

2.2*1 Leading edge (LE) stall. In this stall the maximum lift 
occurs just prior to bubble bursting, after which the separated shear 
layer remains clear of the aerofoil surface* The upper surface 
pressure distribution is altered considerably by a complete collapse 
of the suction peak; and the aerofoil experiences a sudden loss of 

lift.

-3»>
cx
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2*2.2 Thin-aerofoil (TA) stall. After bubble bursting the separated 
shear layer re-attaches again further downstream* As was discussed in 

Section 2.1.3» the bubble bursts simply because the turbulent shear 
layer fails to reattach: the rate of turbulent layer expansion becomes
insufficient in the steepening pressure gradient* For the thin sections 
which exhibit TA stall, bubble bursting occurs at a relatively low angle 
of incidence; and this, in turn, means that the pressure gradient further 
downstream is conducive to reattacliment. The region so enclosed is termed 
a "long bubble"* There is significant re-circulation in the region, and 
its initial length for an aerofoil at a Re No* of about 10^ is typically 
0,1c. ^8 of the order of 10^^

The upper surface pressure distribution is altered: the suction
peak becomes flatter and broader* There is little or no loss of lift, 
although a kink may be evident in the vs. C< curve*

The bubble bursting occurs below max* As the incidence
is further increased the long bubble grows in extent, and at maxà,
it typically covers most of the aerofoil upper surface*

R

o4

2.2,3 Trailing edge (TE) stall* In this stall, significant separation 

of the turbulent boundary layer occurs before any bubble bursting* As 
the incidence is increased, the separation point moves progressively 

forward from the trailing edge. There is no sudden flow change*
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Certainly, in some cases, the transition point is ahead of the 
position where the laminar houndary layer would otherwise have separated; 
that is, natural transition without the existence of a laminar separation 

hubhleo But, in other cases, the bubble is present as normal, yet it . 
does not play an active role in the stall development.

Typically, at C^ max, the separation point has reached at least 
the mid-chord position.

S j i S

S.jr R

o C

2,2.4 Other stall types.
(a) A stall type found commonly in practice is one that has 

the features of both the leading edge and trailing edge types. As 
incidence increases, significant trailing edge separation occurs, but 
ultimately the laminar separation bubble bursts and there is a sudden loss 

of lift.
(b) ’’Reseparation" stall. This resembles the leading edge 

stall in many respects; but, instead of the laminar separation bubble 
bursting, the attached turbulent boundary layer separates suddenly a 
short distance downstream of the bubble. This stall type was first 
recognized by Y/allis (1954)> and analyzed in a semi-empirical way by 

Evans and Mort (l959)o

2.2,5 Stall of turbo-machine blades. A turbo-machine blade can stall 
in any of the ways already described. The Re No. associated with a
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turbo-blade flow is considerably less than that associated with an
aeroplane wing flow, with the result that the laminar separation bubble
tends to be much larger (0o2c is a typical length). Ss still

2of the order of 10 , as expected for a laminar separation bubble.
These larger laminar separation bubbles can have an appreciable effect 

on the mean flow through turbo-machinery cascades.

2.2.6 Three dimensional effects in nominally two dimensional wind 
tunnel tests, ^or many years, two dimensional stall development was 
assumed to occur on aerofoils which exhibited good two dimensional flow 
characteristics at lower incidences. Gregory, et. al. (I97l) demonstrated 
that this assumption was far from correct, and identified three major 
problem areas;

(1) Comer separations.
(2) Three dimensional stall cells in separated flow regions 

near the trailing edge.
(3) Three dimensional nose stall.
(1) The tunnel wall boundary layer causes a reduction in 

the circulation on the aerofoil near the wall, and this reduction can 
be sufficient to allow premature flow separation in the comer.
Corner separation can be avoided by normal methods of boundary layer 
control; for example, suction or blowing.

(2) Stall cells are regions of re-circulating flow in the 
plane of the aerofoil. They form, at incidences near that correspond
ing to maximum lift, in regions of separated flow which have developed 
from the trailing edge. The existence of such cells has been explained 
in terms of flow stability. Variation of lift in the spanwise 
direction leads to variation in upwash which can stabilize the variation 

in lift. .
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s e p a ra tio n  li

stall ce(aerofoil suction surface')

(3) When an aerofoil stalls via the bubble bursting 
mechanism, the initial stall tends to occur over only part of the span 
and generally in an asymmetric position. That the laminar bubble should 
break dovai initially at one particular spanwise location is not 
surprising, since the laminar bubble is very sensitive to local • 
cdîiditionso The explanation for the tendency of the breakdown to be 
confined to part-span follows that presented for the stall cells above* 
When part of the span stalls, lift is lost in that part and vorticity 
is shed into the wake. This vorticity induces a downwash on the still 
unstalled sections of the wing and this prevents the stalled region 
from spreading*

The stall cells and the three-dimensional nose stall have 
been observed on aerofoils with aspect ratios as high as 6* Obviously 
these effects will become more prominent when the aspect ratio is less. 
There appears to be no simple way of avoiding the development of such 
three dimensional effects in wind tunnel tests on aerofoils of moderate 
aspect ratio.

2*3 Reynolds Number Effects on the Boundary Layer
The Re No, can influence the position of transition and the 

development of the turbulent boundary layer, but it has no influence on 
the development of the laminar boundary layer.

In this discussion, three properties of the boundary layer 

will be considered; » the momentum thickness; H, the shape
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parameter; and Uf , the skin friction.

2.3.1 Effect on transitioHo Transition can occur either naturally
on the aerofoil surface (natural transition) or via a laminar
separation bubble (bubble transition). In either case, increasing the
Re No. has the effect of causing earlier transition; that is, the

transition position is moved upstream. This is in accordance with the
theory of stability of laminar shear layers, and it has been confirmed
experimentally. To first order, the effect can be thought of as a
movement of the virtual origin of the turbulent boundary layer upstream
(a more precise theory would have to include the altered pressure
gradient effects) Thus, at a pai'ticular position on the body surface 

»

downstream of transition, the first order effect will be an increase 
in of the turbulent boundary l&yer,

2.3.2 Effect on a wholly turbulent boundary layer. In zero pressure 
gradient, it is well-known that, at a particular position, , H, 
and C f  are all decreased by an increase in Re No,.

These trends remain approximately true in pressure gradients. 
Green (l973) has presented results of calculations for a turbulent 
boundary layer in a pressure gradient representative of the type which 
occurs on an aerofoil upper surface under high loading conditions, 
and ÏÏ were determined to be significantly reduced by an increase in 
Re No., particularly in the region of adverse pressure gradient,

2.3 .3 Effect on a, nartly laminar, partly turbulent boundary layer 

on an aerofoil.
(a) Aerofoil at low incidence, such that the boundary layer 

is fully attached. It is the skin friction drag which is of prime 
interest here. From the foregoing, no definite conclusion regarding
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the effect of Re No. can be made. The predominant contribution to the
skin friction comes from the turbulent boundary layer. An increase in

Re No. tends to decrease the C f of the turbulent boundary layer, but
the extent of the turbulent boundary layer is increased because of the
movement upstream of the transition position. The Cf can be estimated
quantitatively once a criterion for the position of transition has been
established. A number of workers have attempted this for the case of
a flat plate parallel to the stream. Prandtl (see Goldstein (1938))
developed a semi-empirical relationship between the Cf of a flat plate
and the Re No., based on the assumption that transition occurs at a

U xparticular value of the Re No., . Ee chose this particular value
to fit some experimental data obtained by Gebers. The Prandtl-Gebers 
relationship for the overall of a flat plate is presented in
figure 4» and compared wi^h the (Cp curves for wholly laminar and 
wholly turbulent boundary layers on a flat plate.

(b) Separation of the turbulent boundary layer on an aerofoil 
at incidence. Separation depends on 2% and H: in simple terms, the 
likelihood of separation increases with increasing values of and H. 
The precise dependence on and H is very complicated. Again the 
effects of Re No. on transition and on turbulent boundary layer 
development produce opposing trends: the former increases Sz t while 
the latter decreases Sz and H« There is surprisingly little experim
ental evidence, presented in the literature, of the Re No. dependence
of the separation of a partly laminar, partly turbulent boundary layer. 
Later, in section 2.4,3, some experimental load measurements are 
presented, from which it is possible to glean some information on the 
Re No. effects on turbulent boundary layer separation.

(c) Separation of the laminar boundary layer on an aerdfoil 
at incidence (where "separation” refers to large-scale separation as 
opposed to separation within a laminar separation bubble). Tliis
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separation is controlled by transition and is very dependent on Re No,, 
Ydien transition occurs naturally, laminar boundary layer separation is 
precluded v/hen transition occurs upstream of the calculated laminar 
boundary layer separation position. Similarly, for bubble transition, 
the likelihood of bubble bursting is decreased the further upstream 
transition occurs. Thus, for both types of transition, an increase in 
Re No. allows the aerofoil to achieve a higher angle of incidence 
before laminar boundary layer separation (if at all).

2 .4  Reynolds Number Effects on the C l  max and Cpmin of Aerofoils
Tlie stall type of a particular aerofoil can vary vmth Re No,. 

For example, at low Re No. the stall may be of the thin aerofoil type.
As Re No. is increased bubble bursting is delayed until higher incidence 
and it is conceivable that the shear layer which separates near the 
nose may remain clear of the aerofoil surface:: leading edge stall.
And, at still higher Re Nos., bubble bursting may be delayed to such an 
extent that the separation of the turbulent boundary layer can dominate 
the stall: trailing edge stall or reseparation stall.

2.4*1 Leading: edge stall (or the combined leading edge/trailing edge 

type). From the discussion in 2.3,3 it is clear that, for this stall 
type, Chmax will be very dependent on Re No., increasing with increas
ing Re No., Von Karman and Mllikan (1935) first attempted a theoret
ical prediction of the dependence'of Chmaxr on Re No,, They 
assumed natural transition and ignored any separation of the turbul

ent boundary layer. • The model was later improved by including the 
latter effect. Goldstein (1938) has presented the results of such 
calculations for an elliptic cylinder. The critical boundary layer 
Re No. for transition. R e  , was a parameter in these studies.
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The high sensitivity of CLmax to Re IToo, over a particular
Re Roo range, is noteworth;̂ '’» Some experimental results are presented
in the next section,
#

2,4*2 Thin aerofoil stall. It is expected that the dependence of 
Chmax on Re Ro. will be less for the thin aerofoil stall than for 

the leading edge stall. The angle of incidence corresponding to bubble 
bursting will still be highly Re Ro, dependent, but the maximum C(_ 
is attained at a higher incidence when the,long bubble extends over 
most of the aerofoil surface. It is expected that the angle of 
incidence corresponding to the latter condition will not be very 

sensitive to variation in Re Ro,, M^Cullou^ (1955) has experimentally 
confirmed these postulates. He has measured both the C l corresponding 
to bubble bursting gnd the C l max on a thin aerofoil over a wide 
range of Re Ro,, His results provide an excellent illustration of the 
relationship between the thin-aerofoil and leading edge stall typesS

C L

TA Stall

log (Re No.)

NACA 0 0 0 8

X Cu mux

'̂ buLble burstinc
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Further evidence of the small dependence of C l max on Re No. 

for the thin aerofoil stall is given in Figure 1. These are experi
mental results of Stack (1931 ) for the very thin section, ilACA 0006,
This section most certainly has a thin aerofoil stall over this Re No. 
range, althou^i Stack did not observe the stall types in his investig
ation.

2.4 .3  Trailing edge stall. It was shown in Section 2.3*3 that there 
are opposing influences of Re No. on the separation of the turbulent 
boundary layer. It is known that trailing edge stall is exhibited 
by very thick sections at Re Nos. of the order of 10^. Some experi
mental results for C  L max for very thick sections have been reproduced 
in figures 2,3,6. Stack (l93l) has made measurements on the NACA 0021, 
a very thick, symmetric section (figure 2) and on the TJSA 35A, a very 
thick, cambered section (figure 3). That the stall type for these 
sections is of the trailing edge type is confirmed by reference to the 
C(_vs. CX curves published by Stack. Relf (1935) has made 

measurements on the Gottingen 387, a very thick, cambered section 
(figure 6)0 At a Re No. of 10^, the Ckmax for the symmetric section 
is increasing slightly with Re No., while the Ckmax for the cambered 
sections is decreasing slightly. Clearly, in the former case, the 
effect of Re No. on the turbulent boundary layer development is 
predominating; while, in the latter case, the Re No. effect on transition 
has the predoniinating influence. It is speculated that the difference 
of behaviour could be attributable to differing types of transition, 
bubble transition in one case and natural transition in the other.

It should be noted at this stage that these early experiments 
were carried out in variable density wind-tunnels on wing models of 
aspect ratio 6. The data was corrected to yield the ’’equivalent two- 
dimensional” values for the coefficients. Although the absolute values



obtained in this way have since been found unreliable, they can be 
used quite validly to indicate relative trends; for example, variation 
with Re ÏÏ0.0

Resenaration stall» From the analysis of Evans and Mort, it 
is inferred that the C t  max of aerofoils exhibiting this stall type 
will not be very dependent on Re No*o

It is concluded that, for both trailing edge stall and 
reseparation stall, the maximum lift coefficient will have only a small 
dependence on Re Ro..

2 ,4 .4  Overall Reynolds Rumber effect on Cl max of aerofoils. 
Jacobs and Sherman (1937) have measured the Cumax on a number of 
aerofoils of moderate thickness over a wide range of Re Ro.. Some 
results are presented below»

Cu max

Re No.

a :  NACA 0 0 0 9  ( 9 % th ick) 

B ; NACA 001 a  ( 12%th ick ) 

C  :  N A C A  0015  (l5% .th lck )

The expected connection between the shape of a typical 
C l max vs Re Ro, curve and the stall type is summarized in the next 

sketch:

c,
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2.4»5 Reynolds Rujnber effects on Cpinin. For symmetric sections, the
mcir> IMminimum dtag is composed onti-rely of skin friction drag. Stack has 

measu.7:ed the C o m i n  for a thin symmetric section (RACA 0006) and a 
thick one (NACA 0021) over a wide range of Re No,. These results are 
reproduced in figures 4»5« It can be seen that, for both sections, 
the dependence of Cpmin on Re No. is small. For some Re Nos.,
C o m i n  is decreasing with increase in Re No., while, at other Re Nos, 

the effect is reversed. This is consistent with the reasoning in 
Section 2.3.3» Furthermore, the measured values for the thin section 
are in reasonable agreement with the theoretical curve for a double
sided flat plate (with Prandtl-Gebers transition law). The measured 
values for the NACA 0021 section are considerably higher»

2.5 Free Stream Turbulence Effects on the Boundary Layer,
In a similar way to Re No», F ST can influence transition 

and the turbulent boundary layer development; but the laminar boundary 
layer development is largely unaffected. (lighthill (1954) ha,s developed 
a theory of the laminar boundary layer in an unsteady stream. The 
velocities within the boundary layer and such properties as the local 
skin friction have time-dependent components in addition to the mean 
components which exist in a steady stream» The unsteadiness does not 
affect the mean development of the laminar boundary layer in this 

theory)

2 .5.1 Effect on transition. Free stream turbulence enhances earlier 

transition, whether this be natural transition or bubble transition»
The case of natural transition has been widely researched» Braslow 
(1966) has presented direct experimental evidence, showing that the 
critical boundary layer Re No. decreases smoothly for increasing
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levels of free stream turbulence. Gault (1955) has investigated the 
effect of free stream turbulence on bubble transition, and found that . 
the transition position is moved upstream by the introduction of FST.

At this stage an important general conclusion can be made. 
Y/henever a property depends primarily on boundary layer transition, 
the effect of FST on that property will be equivalent to the effect 
of an increase in Re No..

As before, the first order effect of earlier transition on 
the turbulent boundary layer will be an increase in S2, •

2 ,5 .2  Effect on a wholly turbulent boundary layer. The zero pressure 
gradient case has been the subject of several experimental investig
ations; for example, that of Huffman, et. al. (1972). The pertinent 
findings are that an increase in FST level increases Sz and Cf but 
decreases H, at a particular position on the surface. Green (1973) 
has determined that the effect on H of FST of 1^ intensity is equiv
alent to a Re. No. increase of some 60^.

Again it appears that the zero pressure gradient trends 
remain valid in flows in pressure gradient. Green has repeated the 
before-mentioned calculations for the aerofoil upper surface flow, 
using a boundary layer calculation method ’’speculatively modified to 
account for the effect of free stream turbulence". He determined that 
the FST effect was to significantly reduce H and to slightly increase

An important conclusion is that the effect of FST oh the 
turbulent boundary layer is not equivalent to an increase in Re No.. 
However, as Green "points out, other workers have argued that H is the 
parameter which controls separation on aerofoil rear surfaces; in 
which case the effect of FST on the separation of a wholly turbulent 
boundary layer will be similar to the effect of a Re No. increase.

Green emphasizes that the length scale of the FST in previous
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experiments has been of the order of the boundary layer thickness.
He suggest that "if the turbulence scale of the free stream were 
increased by an order of magnitude....... we might expect the boundary
layer in this situation to, respond to the predominant fluctuations as 
a large scale unsteadiness rather than as a source of turbulent 
energy."

2.5 .3  Effect on a partly laminar, partly turbulent boundary layer on 
an aerofoil.

(a) Aerofoil at low incidence From the foregoing it is 
certain that an increase in FST level will cause an increase in the 
skin friction drag.

(b) Separation of the turbulent boundary layer on an aerofoil 
at incidence The FST effects on transition and on turbulent boundary 
layer development will both increase , but the effect on turbulent 
boundary layer development will significantly decrease H. Thus there 
are opposing effects on the separation of the turbulent boundary layer.

(c) Separation of the laminar boundary layer on an aerofoil 
at incidence This separation is controlled by transition. Thus it is 
expected that the effect of FST will be equivalent to the effect of an 
increase in Re Ho..

2.6 Free Stream Turbulence Effects on the Chmax and CPmin of Aerofoils

2.6.1 Leading edae stall. The effect of FST will be equivalent to the 
effect of an increase in Re No,; namely, the Chmax will increase with 
increasing levels of FST, Mllikan (1934) has measured the Cumax of 
the NACA 2412 aerofoil in flows of varying turbulence level and over a 
range of Re No,, His results are reproduced in figure 7» From the
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dimensions of the turbulence-producing grid and the working distances 
from the grid, it is possible to estimate the intensities and the 
length scale of the FST, using data correlations for grids such as that 
due to Baines and Peterson (1951)* These estimated intensities and 
length scale are included in the figure, (Methods for directly 
measuring the turbulence parameters were not available at the time of 
these early experiments), Millikan did not monitor the stall type, 
but, from other investigations of this and similar sections, it is 
fairly certain that the 2412 section does have, ultimately, a leading 
edge stall over the range of Re No. considered by tTillikan,

Millikan's results indicate just how significant the effects 
of Re Noo and FST can be for an aerofoil experiencing leading edge 
stall. At a given Re No., C l  max increases smoothly and continuously 
with increasing FST intensity. The effect of FST is in the same 
direction as the effect of increased Re No, as expected,

Relf (1935) has measured the C^Lmax of an R.A.F. 28 section 
aerofoil, which is of similar thickness to the NACA 2412, in smooth 
and turbulent flows. His results are presented in figure 6, where 
again the estimated intensities and length scales of the FST have been 
listed. These results are similar to those of Millikan for the 2412 
section. Of particular interest is the extra information available 
as to the effect of different length scales of FST (Relf was not aware 
of this). The turbulent flows produced by Relf were of approximately 
the same intensity, but differed in length scale by a factor of 2, It 
is noteworthy that the effect of different length scales is significant, 
the effect of FST being greater for the smaller length scale,

2,6,2 Thin aerofoil stall. For the same reasons put forward in section 

2,4 .2, it is expected that the effects of FST on C l  max will be small. 
Stack has measured the C l  max of the very thin NACA 0006 section in a



43.

turbulent flow (figure 1). It can be seen that the effect of FST is 
indeed small and has negligible dependence on Re No., More precisely, 

the effect of FST is to decrease the C h  max slightly from its value 
in a nominally smooth stream. For a thin aerofoil, Cumax occurs 
when the long bubble extends over most of the aerofoil upper surface. 
Thus it is speculated that the FST effect is an example of the direct 
influence of stream turbulence on a separated turbulent shear layer; 
the FST produces a thicker lâ '̂ er at reattachment, hence a wider 
aerofoil wake and a lower Chmax,

2.6 .3  Trailing-edge stall It was shown in 2»5*3 that FST affects 
both the transition and the development of the turbulent boundary 
layer and that the two effects have opposing influences on turbulent 
boundary layer separation. Furthermore, these opposing influences are 
different from those produced by an increase in Re No. (although Green 
has suggested that the differences will be small).

Consider now the experiments with very thick aerofoils, 
already referred to in section 2.4*3 (See figures 2,3,6), The NACA 
0021 section, investigated by Stack, exhibits an increase in C l max 
for an increase in FST level, Kie effect on C L  max is in the same 
direction as the effect of an increase in Re No., yet the increase in 
C l max appears to be greater than would be expected by even a very 

large increase in Re No.. The U.S.A. 35A section exhibits a decrease 
in C l max for an increase in FST level, vrhich is also in the same 
direction as the effect of an increase in Re No.. However, Relf's 
results on a similar section, the Gottingen 387, are very different; 
FST increases the C l  max significantly while an increase in Re No. 
causes C l max to decrease. The author has not been able to establish 
an explanation for this latter phenomenon. Obviously it casts doubt 

on Green’s hypothesis that H is the boundary layer property which
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controls separation under these conditions,

2 .6 .4 Concept of Effective Reynolds ITurnber. When it became apparent
that, often, the effect of FST was similar to the effect of an increase
in Re No.,it was found convenient to measure FST levels in terms of an
effective increase in Re No,, This concept was widely applied as a
method of designating the background turbulence level in wind tunnels.
It was usual to define, for each wind tunnel, a turbulence factor,T.F ;

T.F. = Effective Re No. of the tunnel 
Actual Flow Re No.

Turbulence factors were commonly measured by determining the
"critical Re No," of a sphere placed in the tunnel, and comparing this
value with that for a sphere in smooth flow. (The flow about a sphere
will be considered in detail in 2.7.1)» The turbulence factor was
considered as a constant for a particular tunnel over a wide range of
Re No,. This method of correcting for FST effects was found to be of
limited accuracy (understandable in terms of the discussion in2.6.3),
and greater effort was directed towards the reduction of background
turbulence in wind tunnels.

2 .6 .5 FST effects on C p  min
From the discussion in 2.5.3 it follows that, for symmetric sections, 
C d  min will be increased by the introduction of free stream 

turbulence. This is confirmed by the experii.iental work of Stack on the 
NACA 0006 and NACA 0021 aerofoils (Figures 4,5). If anything, the 
effect of FST is equivalent to an effective decrease in Re No,. It 
is interesting to note that, for the very thin aerofoil, the measured 
values of C o  min are in good agreement with the semi-theoretical curve 
for a double sided flat plate with wholly turbulent boundary layers.
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2.6.6 F.S.T. effects on the flow in turbo-machine cascades. Large 
laminar separation bubbles can exist on turbo-blades at relevant Re Nos, 
and in smooth flow. (Refer 2.2.5)» ' Yet, in real turbo-machine flows 
with high levels of FST, the existence of the bubble is often pre
cluded by natural transition on the blade surface.

Evans (1971) has experimentally studied the transition on 
turbo-machine blades in various levels of free stream turbulence*
He has confirmed that natural transition is promoted by either an 
increase in Re No, or an increase in FST* For example, at a Re No* of

52.10 , a laminar separation bubble of length 0.2c exists with the 
FST intensity at 0.25^; but natural transition occurs when the 
turbulence intensity has been increased to 2.1^%

Large laminar separation bubbles can impair the aerodynamic 
efficiency of cascades* Kiock (l972) argues that cascade performance 
is optimum at some "critical level of free stream turbulence", a 
level which is sufficient to ensure natural transition of the boundary 
layers on individual blades.

2.7 Effect of Re;vTiolds Number and FST on the Flow about Bluff Bodies

2.7o1 Spheres The drag of a sphere falls abruptly at a certain 
critical Reynolds Number, The flow change that occurs in the
neighbourhood of is similar to that associated with an aerofoil

leading edge stall* At lower Re Nos. than B^Q^it* separation of the 
laminar boundary layer occurs. At higher Re Nos*, transition, via a 
laminar separation bubble, occurs, and the subsequent turbulent 
boundary layer separates at a position significantly further downstream; 
with the result that the wake is narrower and the drag is less*

The Re ., value was found to be very sensitive to the FST crit
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level. In fact, in the "pre-hot wire" days, it was used as a conven

ient measure of turbulence level. Dryden (1931) measured both Reprit 
and the turbulence intensity ( ^ U o o  ) in a number of tunnels
and found that they roughly correlated*

Taylor (1936) improved the correlation by including a length 
scale parameter ( L, /  D  ) * He determined the functional 
dependence of Re^^.^ on vGf/Uoo and L,/D by theoretical 
considerations which assumed natural transition of the boundary''layer* 
Because this analysis is relevant to the present study, it is 
summarized below;

1. From the theory of the laminar boundary layer, the velocity0
profile depends only on a parameter, :

2 , . U  ; local stream velocity.
A  = -4 ' ^   ----
' V 0  33 P U 9  o x  g ; boundary la y e r  th ic k n e s s .

2o Taylor assumes that, in unsteady flow, this dependence 
holds at every instant, and writes;

-  ̂ (S u p e rs c r ip te d  v a r ia b le s  a re

A + a '  = ------   -àkifel)~  pU'? èx the unsteady components)

The time varying part of the velocity profile should depend only on;

^  Ç U V  ÔX

3. Taylor considers the quantity, ~  ~  f UV *
For isotropic, grid-produced turbulence one can connect the P - m - S .  

of the fluctuating pressure gradient to the p . m .  S .  of the 
fluctuating velocity and a length scale of the energy-containing 

eddies (for example, L_, ) ;

A " '

Thus = - const* S ^ U  (2.l)



47.

4» At the critical Re No., transition of the laminar 
■boundary laj’-er will occur at a particular angular position on the 
sphere. At this position, U/U^o is a constant, and Re g is a fixed 
fraction of Re ( Re = U*»Cy\) ̂  Rej = UE/9 )• D  : sphere Jîame+en.

5» Finally; Taylor's basic transition assumption, namely, 
there exists a particular functional relationship between and
Re g which defines transition;

M  - f, (Hf)
Substitution of equation 2.1 and re-arrangement leads to the final 
result;

^®orit " h \ L

Later experiments by Dryden^et. al(1937)» have verified that 
and the parameter do correlate well over a wide range
of and . Dryden,et. al. investigated the following
ranges of the turbulence parameters;

: 0-007 to 0.045 : o-oiato 0 464

Fairly reliable values of Re^^^^.in "still air" O  )
are available. It appears that the data curve of Dryden,et. al. is 
approaching this value, smoothly and continuously, as tends
to zero. It is expected, then, that data for 0 ^0.007
will also correlate with ^  the manner suggested by Taylor.

However it is not so certain that Taylor's relationship 
will hold for smaller scales of turbulence. In fact, Dryden*s 
data in the range 0.018 ̂  ^ 0.046 did not correlate well with
other data. Dryden explained this by the fact that data for these 
lowest values of Lj/O ^̂ rS obtained at a distance of 1 foot from the 
screen, and "evidently 1 foot is too close a working distance for
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spheres of. this size". Examination of the details of Dryden*s 
experiment reveals that the 1 foot distance was equivalent to a minimum 
of 20 mesh lengths. Thus the only doubt that can arise concerns the 
variation of intensity of the turbulence over the body length; this 
variation will be greater for the turbulence of smaller scale. From 
data given by Dryden,et. al.and other workers it is possible to estimate 
the variation of intensity over the length of the sphere for these low 
^j/b flows: - 20 - 25^ o n A l t h o u g h  this variation is of the
order of the before-mentioned discrepancy in the correlation, a 
realistic correction would be much smaller in magnitude, because one 
Tzmuld expect the intensity at transition to be the important parameter. 
For a sphere, the transition position is very near to the vertical 
plane throu^' its centre, the plane at which the intensity was 
measured. Tims there is a suggestion from the experimental work of 
Dryden,et. al. that Taylor's correlation is limited to 0.05.

From an intuitive standpoint, this is not surprising. For 
( •7%̂  ̂ 0.05, L, is of order S , the boundary layer thickness. The 
interaction of turbulence of this scale with the laminar boundary layer 
could well be more complicated than that assumed by Taylor in his 
analysis. Also there is the question of distortion of the turbulence 
by the mean flow field of the sphere; this effect will become more 

significant as 44) decreases.
Since Taylor formulated his analysis, it has become known 

that transition on a sphere proceeds via a bubble rather than naturally. 
Nonetheless, Taylor's Analysis is valid provided his transition 
assumption can be applied to the separated laminar sliear lao'̂ er. This 
seems reasonable. At Re Nos. relevant to the critical range of spheres, 
the laminar bubble length is small in comparison with the sphere 
diameter. Beneath the separated laminar shear layer the pressure is 

constant and there is little recirculating flow. It is reasonable to
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suppose that, in this case, the separated shear layer resembles a 
normal attached laminar boundary layer*

2.7 .2 Cylinders. Circular cylinders exhibit a similar critical drag 

range. Bearman (1968) has collected data for the Be^rit circular 
cylinders in various turbulent flows and found that these values 

correlate well with ' Hie smallest value of 44) ^̂ .s 
approximately 0*12.

Goldstein (1938) presents pressure distributions which have 
been measured on circular cylinders in the critical range, for both 
smooth and turbulent free streams. These confirm that the effect of 
increased free stream turbulence is equivalent to the effect of increased 
Re No*, not surprising since the type of flow in the critical range is 
controlled by transition. Some pressure distribution data is also 
presented for lower Re Nos* where complete separation of the laminar 
boundary layer occurs* The Re No, effect is small; the base pressure 
coefficient decreases slightly with increase in Re No. due to the 
more forward transition in the separated shear layer* Free stream 

turbulence produces a similar effect, Surry (19&9) has recently 
confirmed that FST affects the subcritical flow of a circular cylinder 

in a way equivalent to an increase in Re No**
J

2 .7 .3 Flat plates perpendicular to the stream. Bearman (1968) 
has experimentally investigated the effect of FST on the mean flow 
about such plates* He found that FST lowers the base pressure apprec
iably, whereas an increase in Re No* has little effect. This contrasts 
with the observations of the flow about a circular cylinder at sub- 
critical Re No. (reported above) where the effects of FST and No* 
were found to be similar* Bearman concluded that the turbulence, as 
well as causing earlier transition, promoted "much greater mixing
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"between the waJke and the external flow,”

2,8 Application of Taylor*s Analysis to the ^Lmax of Aerofoils
The similarities between the flow change occurring on 

spheres in the critical range and "bubble bui-sting” stall of aerofoils 
are obvious.

Consider an aerofoil, with this type of stall, at fixed 
incidence and Re No, varying, For various levels of FST, the values 
of Re No, corresponding to bubble bursting can be measured. Then 
the incidence can be altered and the measurements repeated. In this 
way a graph similar to the following can be constructed:

Rebubblô
bursting

Increasing level 
o f tu rbu lence

(X

The analysis of Taylor can be applied directly to the flow 
about an aerofoil ai a. particular incidence;

Re,'bubble bursting

Of more practical interest is the variation of Cbmax 
with FST at a particular Re ITo,, The preceding graph can be used to 
interpret the variation of Cl max for aerofoils which ultimately 
stall by bubble bursting. The intersection of the dashed line with 

the curves gives the variation of bursting l^vel of
FST at a particular Re No,, Chmax is directly related to
CX bubble bursting, r . ^

Clearly a statement like: Chmax = f ‘ j
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obviouslyis nob KjeeeoDorily true. Nor does it seem possible to devise an 
exact functional relationship of this simplicity. The analysis is 
greatly complicated by the movement of the laminar separation bubble 
upstream as the incidence is increased. At best, one could hope that 
C l max correlated approximately with

For other stall types, the Chmax is not directly related 
to bubble bursting or transition, and no such approximate correlation 
is expected. For aerofoils with thin aerofoil stall, the C l 

corresponding to bubble bursting should have the same dependence on 
the turbulence parameters as the C  Lmax for the leading edge stall 
aerofoils.

2,9 Comparison of the Effects of Transition Wires and the Effects 
of FST (Low speed flow)

Transition wires are widely used to simulate higher Re No, 
in wind tunnel flows. Thus a comparison of the effects of such 
devices with FST effects is useful for the assessment of a method of 
simulation which is based on the introduction of FST,

A correctly-designed transition trip device, when placed 
upstream of the natural transition position, will cause transition to 
occur ai the device. In other words, the effect on transition will 
be in the direction of increasing Re No,. An increase in the level 
of FST can produce an equivalent effect on the transition.

However the effects of FST and transition wires on the 
subsequent turbulent boundary layer development are not exactly 
equivalent. In general, transition trip devices cause the turbulent 
boundary layer to be thicker than it would be if natural transition 
had occurred at the position of the device, KLebanoff and Diehl 

(1951) confirmed this for a flat plate, and also demonstrated that,
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after an initial "settling down" period, the mean velocity profile of 
the boundary layer closely resembles the profile of the "undistrurbed" 
boundary layer at the same thickness. On the other hand, FST 
decreases the value of the profile parameter, H, as well as increasing 
the boundary layer thickness, and thus the overall effect differs 
from that due to a transition device.

In general then, the chief limitation of both methods of 
high Re No. simulation is that the skin friction of the turbulent 
boundary layer is increased. The opposite trend is produced by a 
true increase in Re No,. However, Graham (1968) has shown that, over 
a wide range of Re No,, it ip possible to select a transition device 
which gives no effective increase in the momentum thickness of the 
turbulent boundary layer. Thus, ^  careful design, it may be possible 
to achieve, with transition devices, a better high Re No, simulation 
than is possible with FST,

Disadvantages of the transition trip device are;
(1) Prior knowledge of the transition position at the high 

Re No, of interest is required to effect an accurate simulation,
(2) The accuracy of the simulation must be reduced when

the true high Re No, transition occurs via a laminar separation bubble.
With FST, it may be possible to determine, in one test, the 

effective Re No, of a particular turbulent flow and then assume that 
this effective Re No, will remain approximately unchanged in other 
tests. Further, it should be possible to correctly simulate higher 

Re No, bubble transition with FST,

2,10 Separation on Aerofoils at High Speed. Effect of Re No,
As the free stream Maoh Number increases from zero,
(1) trailing edge separation occurs at lower angles of

incidence ,
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but (2) the behaviour of the laminar separation bubble is little

affected*
More dramatic changes occur when the critical Mach Number is

reached;

(1) the laminar separation bubble is suppressed, 

and (2) tĥ e supersonic region is terminated by a compression
(often a shock), and the interaction of this compression with the 
boundary layer may induce a separation just downstream ("shock induced 
separation")•

There are tv/o basic supercritical flows in which separation 
effects are important. The first is found on wings at high incidence, 
with the free stream velocity small compared with velocity of sound; 
while the second is found on wings at lower incidence and higher Mach 
Number, Taylor (1973)» for example, has described these two flows in 
detail, and emphasized that, for both, the effect of Reynolds Number 
on separation can be very significant. Some effort has been directed 
to the tank of artificially simulating high Re No,, transonic flows 
in low Re No. wind tunnel tests. An accurate simulation requires that 
the boundary layers at the shock and at the trailing edge should have 
profile shapes and thicknesses which match those at full scale*
As yet, only first order simulations (in which the boundary layer is 
made to be turbulent at the shock, and is made to match the full scale 
boundary layer at the trailing edge) have been attempted, A first 
order simulation will only model correctly the initial separation* It 
is further limited in the range of flows to which it can be successfully 
applied. The transition trip device has been used most widely in 

previous simulations.
Clearly, a method of simulation based on increased levels of 

FST cannot be expected to be better than a first order simulation,

A disadvajitage of the transition trip device in transonic flows is
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the local compression of the flow around the device itself. This 
problem would not arise for FST, but an FST method would have other 
difficulties, such as the problem of producing the turbulence in 
high speed flows*

2,11 Literature Review Summary*
The previous experimental studies of the FST effects on 

aerodynamic coefficients of aerofoils have been few in number and 
limited in their conclusions. In the literature review, these 

, experimental results were supplemented by the knowledge of the effects 
of FST in other flows* In this way, a reasonable picture of the 
expected trends for aerofoil flows was constructed*

Nonetheless, having completed the review, the author felt it 
would be useful to investigate four aspects more thoroughly:

1, The magnitude of possible FST effects, as a function of 
the turbulence intensity and length scale*

2, The influ^ence of FST on stall development and type,
3, The approximation of the effects of FST to an effective

increase in Re No, (The review had indicated that exact equivalence
could not be expected. Rut it was felt that a further evaluation of
the degree of approximation would be useful)*

4* Any fundamental differences between the FST effects for a 
turbulent flow with L., of order S and those for a flow with Lj 
of order C .

A relatively simple wind tunnel experiment was designed to 
provide further information on these four aspects* Only the FST 
effects on the overall mean loading and stall development of aerofoils 
were considered* Although the previous review emphasized the need for 
further, more fundamental investigation of FST effects on aerofoil 
boundary layers, this was considered to be outside the scope of the
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present study*
The details and results of the current experiment are 

presented in the next chapter*



56.

The Mean Load Experiment

Simply stated, the objective of the experiment was to 
ascertain how the stall type and the mean loads on an aerofoil are 
affected by free stream turbulence. Preliminary experiments on 
aerofoils which already existed in the Aeronautics Department indicated 
that a reasonable variation in the stall type could only be obtained 
by employing several aerofoils of different thicknesses, (The wind 
tunnel that was used in this experiment is limited in its range of 
Re No. for a given model).

It was decided to test several such aerofoils in various 
turbulent flows at a particular Re No., and to compare with tests in 
nominally smooth flow at the same Re No, and at a higher Re No,,

3*1 The Aerofoils.

3,1,1 Description A particular family of aerofoil sections was 

chosen; namely, the symmetric NACA 00 series. The preliminary 
investigations had shown that three stall types could be obtained 
with this aerofoil series for the range of thicknesses from 9 to 19^, 
This range of thicknesses also covers most of the aerofoil thicknesses 
found in current low speed applications* Thus the following three 
sections were chosen;

NACA 0009 )
NACA 0012 )

, NACA 0015 .
The Aeronautics Dept, 9 ft x 4 ft wind tunnel was used in

this experiment* Considerations of the desired values of the Re No,
I /and the turbulence length scale parameter / q led to a choice of
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1 foot for the chord length of the wings. The wings were constructed
in the workshop of the Aeronautics Department*

3*1*2 Measurements Tie existing three component load balance was 
utilized for the mean load measurements* Load balancing and variation 
of incidence of a wing mounted on the balance can be achieved remotely « 
The control panel provides a convenient digital read-out of the angle 
of incidence, the lift force, the drag force, and the pitching 
moment*

Although a certain amount of inforraation regarding stall 
type is provided by the mean load data, it was decided that a flow 
visualization teclinique should be employed for reliable determination 
of the stall type* Two methods were investigated in the preliminary 
experiments; the wool-tuft method and the oil/chalk method. The
latter method has the advantage of providing a clear picture of the
separated flow on the body surface* However it has the following 
disadvantages ;

• its application is restricted to higher wind speeds*
• it provides a picture of the time-averaged flow only. No

transient information,

• it is a time-consuming and tedious method.
The wool-tuft method was found to provide almost as much 

information about the separated flow regions without the above 
disadvantages. As a large number of visualization runs was planned 
for the main experimental program, the tuft method was felt to be 
the most efficient way of gathering the required information. The 
preliminary experiments, by allowing comparison with oil/chalk tests, 
did assist in the interpretation of tuft observations. Ten equi- 
spaced chordwise rows of tufts were employed in order to provide a 
flow picture of the whole wing span but without undue interference*



58.

(Refer to Plate 1).

A permanent record of the flow visualization was achieved 
by photographing the moving tufts with a 2 second exposure time* Tlie 
suction surface of the wing was the lower surface, as mounted in the 
tunnel. A photograph of the complete suction surface of the wing 
was achieved with the combination of a large mirror located on the 
tunnel floor and a camera located in the tunnel roof.

3o2 The Turbulent Flows

3*2.1 Description Two turbulence-producing grids, with very different 

mesh sizes, were designed and constructed for this experiment. The 
largest mesh size was limited by the distance between the beginning 
of the working section and the wing (as mounted on the balance)*
The large mesh size was fixed at 3 inches, which meemt that the wing 
was located an acceptable 13 mesh lengths downstream of the grid.
The grid of small mesh was designed to provide turbulence with length 
scale of the order of the boundary layer thickness* It was constructed 
from wire screening of mesh length ■§■ inch mounted on a wooden frame.
The dimensions of the frame matched the internal dimensions of the 
tunnel working section, thus allowing the grid to be placed at various 
distances upstream of the wing* For both grids, the ratio of mesh 
length to bar width was approximately 5*

With these two grids it was possible to investigate:
(1) the effect of varying the s6ale of the turbulence, by using 

both grids ,,
(2) the effect of varying the intensity of the turbulence by 

varying the position of the, Jinch grid relative to the wing,

3,2 ,2  Measurement A hot wire of the simple U  — type (which responds
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predominately to the longitudinal velocity fluctuations) was used. 
Analysis of the resultant signal for each flow yielded the 
"longitudinal" intensity, /5f"^  (Jo<? » and the longitudinal
length scale, [_, , Grid turbulence is knovm. to be approximately
isotropic at distances greater than about 10 mesh lengths do^Tnstream. 
Isotropy was not checked in this experiment but the minimum working 
distance from either grid was 13 mesh lengths.

The DISA anemometer system and auxiliar^r equipment were 
used in conjunction with the hot wire. Tie root mean square of the 
output signal was measured, and this value, when multiplied by a 
factor determined in the hot wire calibration, yielded the turbulence 
intensity. The length scale was determined from the normalized 
power spectrum, C|),| of the signal, cj)|, (n) was
calculated using the digital method which has become established in 
the Department (and which is described in detail in 4-4- ). An
example of Cp̂  ̂ (n) for one of the flows is presented in figure 8, 
The length scale can be calculated simply by:

L| = ^ - $ , , ( 0 )  .

This formula arises from the definitions of I— | and Cj^n ("n) with 
the assumption that the turbulence is a "frozen" pattern which is 

convected downstream (Taylor*s Hypothesis),
The hot wire was mounted on the tunnel centre line at the 

position corresponding to the position of the leading edge of the 

wing.

3.3 Experimental Details

3.3,1 Program, Two series of experiments were undertaken. In the
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first, 4 flows were investigated:
(1) Nominally smooth flow (free tunnel).

(2) Plow produced with the 3 inch grid 40 inches from the wing .
(3) Plow produced with the inch grid 40 inches from the wing ,
(4) Flow produced with the inch grid 4*5 inches from the wing.

The Re No. in each case wa,s 0.26,10^. In addition the 
smooth flow case was investigated at a Re No, of 0.76,10^, which was 
the highest value possible in this tunnel. Hot wire measurements 
were made* Then, for each flow and each aerofoil, mean load 
measurements were taken over a wide range of angle of incidence* 
^Concurrently with this, relevant flow visualization photographs were 
t alien*

In the second series, four more flows, produced by the -jinch 
grid in four intermediate positions, were considered, with the aim of 
providing more information on the effects of variation in intensity.
In this series^time did not permit hot wire or flow visualization 
investigations. The turbulence parameters, and
were determined by interpolation between the measured values for the 
^ inch grid obtained in series 1, This interpolation can be done 

with confidence. Various workers (for example, Dryden (1937),
Baines and Peterson (1950)) have demonstrated the power law decay of 
turbulence intensity behind grids; and, more specifically, Baines 
and Peterson have collapsed the data from a wide range of grids by 
plotting log against log (^b) » ^^ere x is the distance
downstream from the grid and b is the bar size. The measured values 
of intensity from series 1 are in reasonsble agreement with the 
curve of Baines and Peterson* Bryden (1937) and Bearman (19&9) have 
demonstrated the linear variation of length scale with distance 
downstream of grids. Thus, intensity values for the series 2 flows 
were determined by logarithmic interpolation, while the length scale
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values were estimated by simple linear interpolation.
Abbreviated notation will be used for the 9 flows, as 

outlined in the following table, '

ABBREVIATION DETAILS
GRID DIST, FROM WING Re, No, 10"^

Smooth LR - - 0,26
Smooth HR - - 0.76
Grid L 3 inch 40 ins 0.26
Grid S, 1 ■§■ inch 4*5 ins 0,26
Grid S, 2 % inch 6,5 ins 0,26
Grid S, 3 ^  inch 12 ins . 0,26
Grid S, 4 § inch 20 ins 0,26

Grid S, 5 •J- inch 30 ins 0 ,26

Grid S, 6 ■J: inch 40 ins 0,26

3,3o2 Endplates. In the main experimental program, the wing was 
set between endplates. The chief consideration that prompted the 
use of endplates was the flow interference caused by the wooden frame 
of the sma^l mesh grid, particularly when the grid was positioned 
near the wing. The interference of the tunnel wall boundary layer 
(with the frame absent) was determined to be insignificant. In the 

preliminary experiments, the aerofoils completely spanned the tunnel, 
yet there was no evidence of premature corner separations. With the 
aerofoil mounted on the balance, there existed a small gap between 
the ends of the wing and the walls. It is thought that "throughflovr" 
in this gap provided a form of boundary layer control, not 
dissimilar to "blowing". One of the aerofoils, the NACA 0015, was
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tested without endplates (aspect ratio = 5) and with endplates
the

(aspect ratio = 4)* The resultant C(_vs CK curves for^two flows 
are presented in figure 9* It is seen that the primary effect of the 
endplates is a reduction in the lift curve slope, and this is, in 
fact, a consequence of the reduced aspect ratio father than any changes 
in the wall boundary layer. A smaller wall boundary layer would tend 
to produce a higher C l  max and there is no indication of that in 
the figure*

Even in (ostensibly) very two dimensional flow conditions, 
the lift curve slope will be less than the theoretical value of 2TÎ 
 ̂The reason is that the vortex lines representing the aerofoil bound 
vorticity cannot terminate on the wall but must turn and lie in the 
plane of the wall. The effect of these vortex lines on the walls is 
less than the effect of trailing vorticrfcy for a finite wing because 
there exists an image system for the vorticity on the wall which has 
a definite cancelling effect. Nonetheless the effect is measureable 
and it increases with decreasing aspect ratio. The results in figure 
9 are an excellent illustration of the phenomenon.

The lift curve slopes (when corrected for blockage, etc) 
were (i) 5*8 for the wing with aspect ratio 5.0; and (ii) 5»4 for
for the wing with aspect ratio 4.0. According to Goldstein (1938), 
a typical value for the lift curve slope in a two dimensional wind 
tunnel test is 5.7* In spite of the lower lift curve slope, it was 
decided that the main program would be conducted with endplates in 
order to avoid the uncertain interference effects of the frame of the 

small mesh grid.
The endplates were rectangular: 3 feet long by 2 feet in

height. To allow the small grid to be positioned as close as 4°5 
inches from the wing, it was necessary to design the endplates so 

that 7 .5 inches of the leading section of the plates could be detached
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when required. Plate 11 provides an overall view of the equipment ; one 
of the wings mounted on the balance between the foreshortened endplates 
and the small mesh grid in position, 4*5 inches from the aerofoil 

leading edge* The disturbing effect on the flow of the grid frame can 
be appreciated from this photograph,

3.3*3 Dynamic head measurement* The dynamic head of the free stream 
must be monitored continuously during mean load measurements. The pitot 
tube should be positioned in such a location that the disturbance effect 
of the aerofoil is negligible. In the current experiment it was not 
always possible to satisfy this requirement and also ensure that the 
stream vfas not being disturbed by the proximity of a grid. However the 
latter problem was overcome by cross-calibrating the pitot near the grid 
with another pitot in the undisturbed stream (with the wing removed).

In the final reduction of data, another and, it is believed, 
more accurate method was used to correct for pitot errors due to the 
proximity of grids. The experiment demonstrated that the effect of 
FST on the lift curve slope is negligible: the pitot tube was well
removed from the grid for the flow which, in general, produced the 
greatest FST effects. For other flows in which the pitot reading was 
affected by proximity to a grid, the pitot error was corrected for by 
matching the measured lift curve slope to the value determined in the 
flows with no pitot interference. Corrections made in this way were in 
reasonable agreement with those obtained directly from the cross

calibrations.

3.3 .4 Tuft interference. Several mean load tests were conducted with 
and without tufts, and the effect of tuft interference was found to be 
very small. In fact, the effect was negligible prior to the stall.

Tufts were present in all the main experimental runs, even
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those in which no visualization studies were conducted. Thus a precise 
description of this experiment would stipulate that aerofoils with tufts 
were the subject of the investigation,

3«3o5 Variation of intensity over the chord* This problem necessarily
arises when turbulence of small length scale relative to the chord is 
being investigated. Tie variation can be readily accounted for v/hen 
the effects of the free stream turbulence are primarily local; for 
example, the effects on transition. It is a simple matter to estimate 
the intensity of turbulence in any local region on the aerofoil surface,
(This is considered further in section 3*5*1)« The intensity variation
is difficult to handle when the effects of FST are not confined to a 
local region; for example, when the effects both on transition and 
on turbulent boundary layer separation are important.

In this experiment, intensities were measured relative to 
the leading edge of the wing. Transition occurs near the leading 
edge at these Re Nos. Thus the measured intensities should approximate 
to the intensities of turbulence which affected the boundary layer 
transition,

3.3*6 Stall hysteresis. This phenomenon is associated with a stall 
in which there is a sudden loss of lift (that is, a flow change).
Only the upper arm of the hysteresis loop was considered in this 
experiment: this arm includes the true value of C l max. To ensure
that a flow situation corresponding to a point on the lower arm was 
avoided, the required flow Re No, was always established first, with 
the aerofoil at zero incidence. The angle of incidence was then 
increased with no further alteration in Re No,.

3 ,3 ,7  Support interference. The existing support system for the
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balance was used* Some tests proved that both the distnbing effect 
of the shrouded supports on the mean flow and the effect on the mean 
loading of the exposed parts were negligible,

3.3*8 Wall corrections. The corrections referred to here are those 
which account for the differences between the loading produced by an 
infinite flow field and that produced by a flow in a duct; that is, a 

wind tunnel. The corrections recommended by Allen & Vincenti (1944) 
were applied, (These include wake blockage corrections). Only for lift 
measurements in the vicinity of C l  max were the corrections significant: 
in the range -2^ to -4^,

The experimental results have been presented, for the most 
part, as uncorrected data. As the wall corrections are of the same 
order of magnitude and in the same direction for each aerofoil, the 
comparative study can be achieved without adjusting these raw mean 
load data. Hovfever the data for C l max (Table 2) has been corrected 
for the wall effects to enable an accurate comparison with the Chmax 
data of other workers.

3*4 Results. Stall Type
The basic low speed stall types have been described in 

Chapter 2, Three of them were encountered in this experiment;
• combined trailing edge/leading edge type ( COM stall)

• leading edge type (LE stall)
• thin aerofoil type(TA stall)

3,4.1  The COM Stall. Trailing edge ■ separation began at several degrees 
of incidence below that corresponding to Cbmax. The separation was 
initially two-dimensional in nature; but, nearer the Cl max condition,
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definite.three dimensional stall cells had developed (as discussed 
earlier in section 2*2.6). This flow is illustrated by Plate 2,

The extent of trailing edge separation prior to the nose 
stall (i.e., C  L m ax) was strongly dependent on the aerofoil 
thickness and less dependent on the Re No. and PST effects.

In the COM stall, it is the bursting of the laminar
separation bubble which limits the C l « The separation line is seen
to "jump" forward to a position near the aerofoil leading edge. 
Invariably, in this experiment, the nose stall initially occurred 
over only part of the span (Refer to plate 3). Nonetheless, the 
consequent loss of lift was always sufficient for the initial nose 
stall to be regarded as the flow phenomenon which determined the Cbmax 

condition. As incidence wa,s further increased, the nose stall became 
more extensive in the spanwise direction. This three dimensional 
development of the nose stall has been observed by other workers 
(refer 2.2.6).

For some experimental runs a slight unsteadiness in the 
flow near the leading edge (presumably in the region of the laminar 
bubble) was observed just prior to the nose stall*

A further feature of this nose stall was observed only in
the turbulent flows of higher intensity. The initial nose stall 
(although still defining the Ckmax) was unsteady in time as well as 
being localized in space. In other words, the nose stall occurred 
only intermittently. As the incidence was further increased, both the 
proportion of time in the stall and the spanwise extent of the stall 
increased. In some cases, the intermittent nose stall occurred at 
two positions; and the stall was observed to occasionally traverse 
the span between the two (refer to plates 4 and 5).

The period of the stall intermittency was of the order of a 

few seconds. Thus it is not clear whether the intermittency resulted
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directly from the unsteady incident upwash (dynamic stall) or whether 
it was an indirect result of the interaction of the FST with the 
boundary layers. No evidence of this intermittency occurred in the 
smooth flow tests; but the smooth flow tests were limited to a 
maximum Re No, of 0,76.10^ which was less than the effective Re No. 
of the higher intensity turbulent flows (refer to figure 26)*

3*4*2 The leading edge stall. This stall was only observed for the 
smooth LR flow test on the 0012 aerofoil. It is a nose stall with 
little or no trailing edge separation. The nose stall developed 
^asymmetrically in a similar way to that described above for the COM 
stall, (refer to plates 6 and 7)*

3*4*3 Ttie thin aerofoil stall. This was observed in all tests on the 
0009 aerofoil. At an incidence in the range 8° to 10°, the upper 
surface flow had become unsteady, with greatest unsteadiness near the 
leading edge. In fact, the tufts near the leading edge were observed 
to undergo large sidev/ays flicking movements (plate 8 ), This is 
thought to be indicative of the existence of the long separation bubble. 

Other workers (for example, McCullough and Gault (1951)) have reported 
that flow reversal occurs in these bubbles. In the present experiment, 
the tuft length was greater than the expected bubble height. It seems 
reasonable that tufts that are situated within a long bubble will be 
restricted to these sideways flicking movements.

The subsequent flow development was similar to that reported 
by other workers for the TA stall, with C l max occurring when the 
long bubble had grown to encompass most of the aerofoil chord.
However two types of initial bubble development were observed in this 
experiment. At lower Re Nos. and in FST flows of lower intensity, the 
stall development was remarkably two dimensional. The initial long



68.

bubble extended across the complete span, and was of limited 
chordwise extent (perhaps 1/I0c), As the incidence was increased the 
bubble lengthened uniformly, (refer to plates 8 and 9)«

At higher Re Nos. and in flows of higher turbulence intensity 
there was a tendency for the initial long bubble to consist of several 
spanwise sections, extending up to -g-c in the chordwise direction.
The bubble sections were generally asymmetrically located (refer to 
plate 10)o It is not clear what phenomena were responsible for this 
structure of the long bubble: the formation of long bubbles is kno’wn
to occur with little, if any, loss of lift and thus stabilizing 
^dov/nwash effects are not expected to be significant. As the incidence 
was increased the region of separation grew first in the spanwise 
direction, and then in the chordwise direction.

It should be noted that the final chordwise growth of the 
bubble was not well defined by the movement of tufts. The flow down
stream of the bubble was quite unsteady. After the long bubble had 
grown to a length of about -Jo it became difficult to distinguish 
between unsteady attached flow and genuine reversed flow in regions 
further aft.

3.4*4 Turbulent boundary layer separation. Tlie movement of the 
separation line appeared to be controlled, primarily, by incidence.

The effects of Re No, and FST were small. If anything, increase in 
either Re No. or FST slightly delayed the forward movement of the 
separation line. FST appeared to have a significant effect on the 
depth rather than the chordwise extent of the separation region. For 
a particular incidence, it was observed (from the tuft motion) that 
the depth was less for the higher levels of FST; and, in this way, the 
trailing edge separation development was effectively delayed. No 
appreciable effect on the depth of the separation region was apparent
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for an increase in Re No..
No explanation of this phenomenon has been found. An 

explanation in terms of the interaction of FST with the aerofoil wake 
would contradict Bearman's observations for the effect of FST on the 
wake of a flat plate perpendicular to the stream.

3*4*5 Summary^ of Stall Types.
The results of four flows are summarized in table 1.

,3*5 Results. Mean Loading

3.5*1 Lift Coefficient, The complete results for as a function 
of cX sre presented in figures 10 to 13.

The shape of the curves correlates well with the stall type 
as determined in the visualization tests, the exception being for 
aerofoils exhibiting the intermittent nose stall. In this case, the 
curve is rounded contrary to a curve with discontinuity normally 
associated with a leading edge type of stall. A noteworthy feature is 
the pronounced "kink" in the curve for the OOO9 aerofoil in smooth 
flow at the higher Re No. (figure IO). A kink is not evident in the 
other cases of thin-aerofoil stall (that is, for the OOO9 aerofoil in 
other flows). Examination of the flow visualization results reveals 

that the kink corresponds to the first appearance of the long bubble, 
as expected. No conclusion can be dram about a connection between 
the kink and a particular type of long bubble development (two- 
dimensional or three dimensional)l;‘ the OOO9 wing in the grid S, 1 

flow exhibited similar bubble development but there was no kink 

apparent in the C^vs CX curve.
The effect of Re No. is presented in figure 10. The lift
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curve slope is slightly higher for the aerofoils at the higher Re No.. 
The effect of Re No. is significant for the 0012 and 0015 sections.
This is consistent with the bubble bursting type of stall that both 
exhibit. The Re No. effect for the 0009 section is smaller as expected; 
but it greater than that for the thinner 0006 section as presented 
in figure 1.

The effects of the various turbulent flows are plotted in 
figures 11, 12, &, 13o No consistent effect of the turbulence on the 
lift curve slope is discernible. (This is true even when the data 
which has been corrected for pitot interference is ignored). The 
C l  max results are suramarfzed in table 2. In figure 14 they are 

plotted against the corresponding values of turbulence intensity* I*or 
each aerofoil in turbulence produced by the small grid, the measured 
values of C t  max increase smoothly and continuously with increase in 
turbulence intensity; in fact, for the 0009 and 0012 the relationship 
is approximately linear. Similar to the effect of Re No*, the effect 

of FST is less for the 0009 section than for the others. There is 
nothing particularly universal about the slopes of these curves. The 
slopes are related to the slopes of the C  Lmax vs Re No. curves for 
the sections at the particular experimental Re No* . At a different 
test Re No, the slopes will, in general, be different, (refer fig.26)
The data for the large mesh grid does not correlate with the data for 
the other grid: for a given intensity, the effect on C L  max is
greater for the smaller length scale. Also plotted in this figure is 
data obtained from the results of Millikan for two Re Nos. (Refer to 
figure 7 ) ,  It is seen that the measured values of C h m a x  for the 
2412 aerofoil also have an approximately linear dependence on intensity*

In figure 15» values of the C|_ corresponding to bubble 
bursting for the OOO9 aerofoil are plotted against intensity.
Bubble bursting was indicated by the flow visualization studies, and
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so data v/as only obtained for the four "series 1" flows. Nonetheless 
it does appear that CL̂ jjjdoes vary in a similar way to the Ctm ax for 
the 0012 section; viz, a greater dependence on FST than that for the 
C  L ma>sCor the 0009 section. This is consistent with the experimental 

observations of ifCullough (refer to section 2.4 .2).
In figure 16, the Cgmax data is plotted against the 

parameter of Taylor’s analysis, « Although the
values obtained with the large mesh grid are brought closer to the 
data curves for the~small mesh grid, the discrepancies are still 
significant, (in fact, Taylor’s analysis is not strictly applicable 
to the 0009 section which exliibits a thin aerofoil stall). These 
results suggest that there is a lower limit on the value of for 
applicability of Taylor’s theory, even though only an apnroximate 
correlation of C l  max with was anticipated.
There was a suggestion from the experimental results of Dryden, et,al. 
for spheres that a lower limit value was 0,05. This value would be 
consistent with the present trends. In these figures (14, 15» 16) 
the intensities are those measured at the "leading edge position". If 
the values are adjusted to yield the corresponding intensities at a 
position further downstream on the chord, the discrepancy between the 
small and large length scale data becomes larger.

It is relevant to consider how large the effect of distortion 

of the oncoming turbulence mi^t be. For the small scale turbulence 
( C / ^ ^ 0.03)» the effect of the aerofoil thickness on distortion will 
be of a similar magnitude to the effect of aerofoil incidence. 
Unfortunately, although the latter part of this thesis considers 
distortion produced by aerofoil incidence, it is restricted to an 
investigation of the effect on the unsteady loading: the distortion
of the velocity field is not considered in detail. Some indication 
of the possible distortion effect due to thickness is provided by
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theories for the distortion of turbulence along the stagnation stream
line of a two dimesional body. As 0, the uniform plane strain
theory (for example, Batchelor & Proudman (1954)) can be applied, and 
the results are that the components, and y/(Joo »
are amplified continuously as the stagnation point is approached, 
while the component, is attenuated, Bearman (1972) has
measured such intensities along the stagnation streamline of a bluff 
body with of the order of 1 * He found that, even with this 
relatively high value of was amplified considerably at a
position near the edge of the boundary layer. Thus, in general, it is 
expected that the r.m.s. of at least one of the velocity components 
will be higher in the stagnation region. For the aerofoil, transition 
occurs near the leading edge, and so the value of relevant to
transition may be higher due to the distortion effect caused by 
thickness. The intensity amplification would be greater for the 
smaller scale turbulence, and thus could explain some of the discrepancy 
between the data for differing length scales presented in figure 16,

3.5.2 Drag Coefficient. Selected Cp results are presented in figures 
17 to 20. In figure 17, the results for the three different sections 
in one particular flow are given. Increasing aerofoil thickness 
increases Comin and delays the abrupt drag rise. For these sections 
the abrupt rise in drag follows upon bubble bursting. The differences 
between the leading edge and the thin aerofoil stalls are emphasized 
by a comparison of the drags at maximum lift. For the leading edge 
stall, this drag occurs just prior to drag rise; whereas, for the thin 

aerofoil stall, it occurs after the rise.
The results of four flows have been plotted in figures 18,

19, efi-d 20 to highlight the effects of Re No. and FST. Increase of 
Re No. has, for each of the sections, lowered the value of Comin and
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delayed the drag rise; that is, the curves for the flow with FST 
cross over thé curves for the nominally smooth flow. These trends are 
in accorda;:ce with previous findings as outlined in Chapter 2.

In figure 2 1 , all the C o m in  data is plotted against 
turbulence intensity. For each section, curves have been drawn through 
the small length scale data. The scatter of data points about these 
curves is greater than that for the corresponding C L m a x  curves, due 
to larger measurement errors.

The result for a repeated run is compared with the original 
measurement in the figure. This gives an indication of the accuracy 
of the C o m in  determination in the present experiment. ( C o m in  was 
determined by plotting, in more detail, the data in the neighbourhood 
of zero incidence. Typical such curves are presented in figure 22).
It is seen that the effect of the length scale of the turbulence is 
just as significant for C p  min as it is for C l max (the data points 
for the large mesh grid are well removed from the curves for the small 
mesh grid), Comin has a more complicated dependence on intensity 
than C l max has: the rate of increase of Comin with increasing
intensity is less for the lower intensity values (less than about 2}j) 
than for higher values. Yihether this non-linearity arises from the 
turbulence effect on the transition or from the effect on the 
turbulent boundary layer development cannot be ascertained from the 

present results.

3.5 ,3  Pitching Moment Coefficient. For the sake of completeness, the 
results for the moment coefficient about the quarter-chord point are 
presented in figures 23, 24, 25. These results give little additional 
information: the trends for the abrupt decrease in nose-up moment
follow those for the abrupt drag rise considered in the previous 
section. The accuracy of the measured moments at small incidence was
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limited,

3o6 Effective Reynolds Number.

3.6.1 Maximum Lift Coefficient. Originally it had been hoped that 
it would be possible to test the universality of the effective Re No. 
concept by comparing the results for the different sections.
However a thorough comparison on this basis was precluded by the lack 
of experimental data on the variation of Cgmax with Re No. for these 
sections. In the 1930’s extensive measurements were made on these 
aerofoils in variable density wind tunnels (for example, by Jacobs 
and Sherman (1937))> but, as pointed out earlier, the data from this 
era has since been found unreliable. Abbott and von Doeinhoff (1945) 
have made reliable measurements but only for higher Re Nos. (greater - 
than 3.10^). The highest Re No. in the present experiment was 0.76.10^. 
Only for the 0012 section has it been possible to elicit, from the 
experiments of other workers, reliable two-dimensional data in the 
Re No. range 0.76.10^ to 3.0.10̂ .

The following evaluation method of the effective Re No. 
concept was devised. Effective Re Nos. were determined with the data 
for the 0012 section only: Cl max values in the various turbulent
flows were compared with the Cimax vs Re No. curve. For the other 
two sections, the measured Ci  max values were plotted against these 
effective Re Nos. A test of the. validity of the concept was whether 
these points lay on a smooth curve between the measured smooth flow 
values (Re No. ^  0.76.10^) and the reliable smooth flow values 
from other sources (Re No. ^  3.0.10^). This method has been applied 

in figure 26.
Two data points are significantly displaced from the curves
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which correlate the majority of data: (l) For the OOO9 section, the
r̂Lmax value obtained in smooth flow at the higher Re No. is below

the curve of the data obtained in FGT flows. Further evidence that
this difference is a very real one is the fact that a kink in the
C|_vs.o { curve is only apparent for the higher Re No. smooth flow.
Thus it is concluded that the effective Re No. concept is not accurately
applicable to an aerofoil which stalls in the "thin-aerofoil way".
This conclusion does not conflict with previous discussion: the
review indicated that the effects of Re No. and F ST on the Ckmax of
aerofoils with thin aerofoil stall would be small; but no indication
of equivalence of the effects was given. (2) More disappointing is 
«

the displacement of the ^Lmax value for the 0015 section in Grid L 
flow from the main data curve. Another way of viewing this discrepancy 
is that the effect of this turbulent flow on the 0015 section is 
relatively greater than its effect on the other two sections. No 
source of measurement error which could explain a discrepancy of this 
size has been found.

The previous discussion has indicated that the effects of 
Re No. and FST on the C l  max of aerofoils with ultimate leading edge 
stall should be equivalent. Two areas of doubt have arisen in this 
study. The first is the above-mentioned discrepancy (2). The second 
is the intermittent nose stall which was observed only in flows with 
high turbulence intensity (although it is not conclusively known that 
an intermittent nose stall will not occur in smooth flow at high 
enough Re No.). Nonetheless, figure 26 does certainly demonstrate an 
approximate equivalence of the effects of FST and Re No. for the 
C l max of the "LE stall" sections. When it is noted that the largest 
Re No. effects (at low speed) occur for this stall type, it is clear 
that the approximation should be useful for simulating many higher 

Re No, flows involving separation. Certainly an FST simulation method
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G en be applied to those flows in which transition trip devices have 
traditionally been used for the simulation,

3.6 .2 Turbulent boundary Layer Separation. In the current experiment, 
investigation of this separation was limited to flow visualisation 
(section 3.4 .4)* This visualization study high-lighted differences 
between the effects of Re No. and FST. Other workers have demonstrated 
that the effect of FST on the C l  max of aerofoils with trailing edge 
stall may or may not be in the same direction as the effect of Re No.,
It is concluded that, in general, the effects of Re No. and FST on 
turbulent boundary layer separation will not be equivalent.

3 .6 .3 Minimum drag coefficient. The concept of FST being equivalent 
to an effective increase in Re No. has no relevance to Comin. The 
effect of FST on C o  min is usually in the opposite direction to the 
effect of Re No.

3 .6 .4 Potential for effective Reynolds Number increase in wind- 
tunnels. Assuming that the concept can be applied validly, figure 26 
reveals that the effective Re No. can be increased by a factor 6.0 
with the small mesh grid in its nearest position to the wing. The 
maximum possible flow Re No. is reduced by a factor of approximately
2.0 due to the flow resistance of the grid. Nonetheless a useful factor 
of Re No. increase of about 3 is possible. No significant measurement 
problems are introduced by the existence of this sort of flow 
unsteadiness in the stream.

3 .7  Conclusions Regarding the Mean Load Study
(1) It is not universally true that the effect of FST is
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equivalent to an effective increase in Re No. The present experiment 
has shown that, for aerofoils, the equivalence is approximately true 
for the lift of aerofoils which exhibit an ultimate leading edge stall. 
For these aerofoils in a typical low speed wind tunnel, the effective 
Re No. could be readily increased by a factor of tliree. A FST 
simulation of higher Re No. should be of the same order of accuracy as 
a method using a transition trip device. Unfortunately, in transonic 
flow testing, the transition device has been of only limited usefullness 
in the simulation of higher Re No.,

(2) With the length scale of the turbulence fixed, the 
effect of FST on the aerodynaaic coefficients increases smoothly and 
continuously with increase in turbulence intensity. The FST effect 
varies with the length scale of the turbulence, being greater for 
smaller scales. For length scales of the order of the boundary layer 
thickness, the dependence on length scale appears to be greater than 
the —l/$th power" dependence ôf Taylor*s theory.

(3) High levels of FST can introduce unusual effects into 
the stall development; for example, the intermittent nose stall.
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CJIA?'Tj:S 4» The Unsteady Load Experiment

The basic requirements of the wind tunnel experiment were:
(1) a rigidly-mounted two-dimensional aerofoil with variable incidence 

■ capability.

(2) equipment for measuring the instantaneous load on the aerofoil.
(3) production of a turbulent stream.
(4) equipment for measuring the instantaneous velocity at several

locations.
(5) methods of eliciting the useful statistical properties of the 

fluctuating signals.
Thrfj 5’ X 4* wind tunnel, used in the mean load experiment, was also 
employed in this unsteady load experiment.

4.1 Two Fundamental Design Decisions

4 .1.1 The force transducers and their position relative to the aerofoil. 

This question was considered in detail by Jackson (1970)* Basically, 
two types of force transducer are suitable for this application: 
piezo-electric crystals and strain gauges. The former provide a better 
sensitivity and hence permit a more rigid system; and temperature drift, 
which is a serious problem for strain gauges, does not affect their 
performance. However, their greater size is a disadvantage. For the 
aerofoils of this application, the piezo-electric transducers must 
necessarily be mounted external to the wing. This,in turn, accentuates 
the problems of support interference with the flow and wing flexibility. 
Jackson decided in favour of piezo-electric crystals; and, by careful 
design, he was able to arrive at a sufficiently rigid aerofoil test 

element with minimal support interference.
Because Jackson's design had been proven in practice, a
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similar force transducer and support system was adopted for the current 
investigation.

4.1*2 Dimensions of the turbulence-producing grid and the aerofoil , 

Following previous experimenters, it was decided that, in order to 
ensure satisfactory two-dimensionality of the mean flow field, the 

unsteady load should be measured on a part-span element of a wing which 
completely spans the tunnel. The problem was to optimize the following 
variables : s, the span of the test element, c, the aerofoil chord
length, f the maximum aerofoil thickness, and M, the grid mesh
length, within the following constraints:

(a) To ensure a sufficient magnitude of unsteady load on the 
element,
(i) L^, the turbulence length scale, should not be much 
less than s or c • Otherwise there is lack of 
correlation of the turbulence over the test element and 
the nett force is small.
(ii) With satisfactory correlation of the turbulence 
over the element, s and c should still be large 
enough to provide a ;'measurable load. A preliminary 
calculation indicated that a turbulence intensity of 
the order of 5^ would ensure a measurable load.
Typically, ten mesh lengths downstream of a grid, the 
intensity is of this order, and is of the order of

0.4 M.
(b) To provide an adequate test of the theory,

(i) should not be much less than s or c , again for 
thé reason of lack of correlation of the turbulence.

It is expected that any discrepancy between theory and 
experiment will become smaller as the correlation over 

the element tends towards zero.
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(ii) should not be much greater than c : otherwise
the response to the gust is simply the quasi-steady response.
(iii) should be of the order of c to provide a 
turbulence distortion of reasonable magnitude and to which 
the rapid distortion theory can be applied, Y/hen c ,
the distortion is small. YThen L ^ C ^ c  , the rapid 
distortion assumptions in the theory break down (the 
levels of turbulence intensity are necessarily high).
(iv) the thickness to chord ratio, , should be much 
less than 1. Both the already-established theory and 
the theory developed in this study are restricted to 
aerofoils of thin section. It was felt thgt should 
not be larger than 0.15*

(c) To ensure adequate rigidity (that is, a high resonant 
frequency) of the test element, the ratio of span to 
thiokness, , should be made as small as possible.
Jackson determined that the main resonance of his model 
with = 17*8, was associated with spanwise flexing.
His resultant resonant frequency was 4^0 Hz, which was 
only just beyond the highest turbulence frequency of 
interest. The natural frequency of spanwise flexing 
increases with decreasing . (in fact, the theoretical 
natural frequency of the vibration of a simple beam
depends on » where É is the modulus of
elasticity and ^ is the material density. The test 
element was constructed with the aim of maximizing both

a n d , the latter is discussed further in the 
next section). Based on Jackson's experience, it was 
decided that should be less than 17.8.

(d) To minimize flow interference of the support system
(Jackson's tripod system was to be adopted ), s should
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be large.

(e) To ensure satisfactory two-dimensionality of the mean
flow, the total aspect ratio oftiie aerofoil should be
at least 4» The total span is fixed at 5 feet by the 
dimensions of the wind tunnel, so the equivalent 
condition is that c should be less than 1.25 feet.

(f) To minimize blockage effects, c should be small.
(g) To keep the chord Reynolds Number in the range of 

practical interest, it was calculated that c should 

be made as large as the other constraints allow.
(h) To be able to operate at least 10 mesh lengths down

stream of the grid, the maximum M is about 6 inches.
The working distance of 10 mesh lengths is the recommended 
minimum for rea.sonably' isotropic turbulence and the 
limiting condition on M arises from the maximum working 
length available in the tunnel.

The following solution to the problem was arrived at:

0 = 6 inches, M = 6 inches, s/c = 1.33, = 0.15.
Jackson employed the same value of , but his value for s/c was 
twice as large. It was felt that the above design would have two 
advantages over Jackson's;

(1) Tjie resonant frequency would be higher = 8 .9)
(2) The lower value of s/c would provide a more rigorous 

test of the theory. In Jackson's experiment the value 
of s/L^ was approximately 6 .4 and thus the turbulence
was not well correlated over a span-length.

/

In the present design, a further measure was taken to reduce 
support interference: part of the test element extended into the 
dummy wings on either side, and the forward support rods (of the tripod 

system) were connected to the extremity of these projections. The 
ultimate spanwise separation of these rods was 11 inches. The overall
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spect ratio of the aerofoil was 10, and the chord Reynolds TTmnber of
the experiment was 0.23.10  ̂ •

4*2 The Aerofoil

4.2.1 Further details of the wing* Because the theory of this study 
does not specifically include the effect of camber, a symmetric 
aerofoil section was chosen; namely the standard ITACA 0015 profile 
(also employed by Jackson).

Once the dimensions of the test element had been finalized, 
it, was constructed so as to be as stiff and as lightweight as possible 
(in order to maximize E/p, and,in turn, the resonant frequency). A 
basic frame was cut from an aluminium block, and filled out with balsa 
wood. The matching dummy wings were cut from heavier timber. ^11 
construction work was carried out in the workshop of the Aeronautics 
Department.

A photograph of the measuring element of the aerofoil is 

presented as plate 12.

4.2.2 The support and load measuring system. There were tvfo basic 
parts to the tripod support system;

(1) A massive "earthed" system resting on springs on the 
laboratory floor. This was comprised of (a) a weighted steel 
frame (the inertial mass) and (b) tapered pylons, bolted to 
the frame, passing tlirough the tunnel floor, and terminating 
some distance below the model.Piezo-electric force transducers 
were clamped firmly to the top of these pylons.
(2) Light-weight connecting rods between the transducers 

and the measuring element of the aerofoil.
Two of the pylons and the inertial mass used in the current
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experiment were a legacy of a previous experiment conducted, in the 
Department, by Edwards (1972). A feature of the inertial mass was 
that it rested on four large helical springs. These springs effectively 
isolated the support system from floor vibrations. The resultant 
resonant frequency of the inertial mass was negligibly small (about 

0.5 Hz).
Plate 13 provides a view of the measuring element mounted on 

the supporting rods and pylons.
Two original features of the support system of the present 

experiment are now described in more detail;
4.2.2.1 Facility for incidence variation. This was achieved with 
two alterations to Jackson's basic design;

(1) the rear pylon was provided with a capability for height 
and (to a lesser extent) longitudinal position adjustment.
(2) the connecting rods were provided with a capability for 
rotation about their points of attachment to the aerofoil.

Details of these design features are illustrated in figure 27. It 
should be noted that, again, resonance considerations dictated the 
limited length (6 inches) of the connecting rods.

This design allowed the aerofoil to be set up at any incidence 
between -5° and +20° , with facility for clamping all support 
connections for each set incidence. A basic intention of the design 
was that the connecting rods and the force transducers would be 
vertically orientated for all incidences of the aerofoil; that is, 
primary transducer response would always be to the load perpendicular 
to the stream; the lift force. 1

4 .2.2.2 Transducer orientation and mounting. The piezo-electric 
force transducer responds primarily to the component of the applied 
force normal to the crystal. Yet it is also sensitive, to a lesser 
extent, to any transverse components. In the present experimental 
set-up, the primary response was to the aerofoil lift force, and the
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secondary (undesirable) response was to the aerofoil drag force, A 
systematic effort v/as made to minimize the transducer sensitivity to 
this drag force.

This effort took the form of a preliminary experiment in 
which, by means of a specially constructed rig, normal and transverse 
loads could be applied to a transducer by the addition of weights.
Two aspects were investigated;

(1) The use of diaphragms. For his experiment, Jackson 
desired a transducer "load cell" with two shim-metal diaphragms 
placed perpendicular to the connecting rod; the aim being to relieve 
the transverse forces and moments on the rod without affecting the 
normal forces, Edwards employed a load cell with a single diaphragm 
located immediately above the transducer, Various diaphragm thicknesses 
and configurations were examined in the present test, and notable 
results were as follows;

(a) With no diaphragms present, the sensitivity to transverse 
loads is linear.
(b) With a single diaphragm located some distance above 
the transducer, the sensitivity remained linear and was 
reduced by the presence of the diaphragu. The optimum 
thickness of the diaphragm was 0.005 inches; a thickness 
which produced negligible effect on the normal force 
sensitivity. This load cell configuration was adopted in the 
present experiment and is illustrated in figure 27#
(c) With a single diapiiragm located immediately above the 
transducer (EdwardéL configuration) the transverse force 
sensitivity became non-linear and could, in fact, be increased.
(d) With the twin configuration of Jackson, the sensitivity 
became non-linear and was decreased. There was no apparent 
advantage of this configuration over that of (b) above.
(2) The neutral axis orientation. The piezo-electric
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transducer is insensitive to transverse loads applied along one 
particular direction. Each transducer, separately, was rotated in the 
experimental rig under transverse load, and the neutral axis was 
thereby determined and marked. The region of neutrality was found to 
be very narrow; significant transverse reponses were encountered a few • 
degrees either side of the neutral axis. The transducers were set up 
in the tunnel with their neutral axes aligned with the free stream 
direction. This v/as made possible by the design of the connecting 
rods; for any transducer orientation, all connections between the 
transducer and the aerofoil could be made firm, (refer to figure 27 

for details).
Despite these efforts, the overall drag sensitivity of the 

test element, as installed in the tunnel, was about 10/ of the normal 
force sensitivity. Jackson reported a similar figure for his equipment. 
This level of drag sensitivity is acceptable, as the unsteady drag 
forces on an aerofoil with attached flow will be an order of 
magnitude less than the unsteady lift forces. Further discussion of 
the possible error introduced by sensitivity to drag is given in 

sections 5*4-2 and 7*2.4»

4.2 ,3  Tunnel installation. Three aspects require further description; 
the installation of the dummy wings, the shrouding of the pylons, and 
the auxiliary electronics for the transducers.

Each dummy wing was supported by a single bolt at the tunnel 
wall and by four piano wires at the end adjacent to the test element.
The bolt axis corresponded with the forward 'support axis of the test 
element, thus allowing mutual incidence adjustment of the test element 
and the dummy wings.' The length of the piano wires was adjustable for 

this purpose. Near the test element, each dummy wing was specially 
cut out to accommodate the projection of the test element (for the 
forward connecting rods). A clearance of I/1 6 inch existed between
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all adjacent surfaces of the test element and the dummy wings. No 
attempt was made to seal the gap between thetest element and the 
dummy wings in the main experimental program. A preliminary test, 
with the aerofoil at 10° incidence, had compared the lift spectrum 
with the gap unsealed with the spectrum with the gap sealed by "slit 
cellotape", and no measurable difference had been detected.

Sheet metal fairings were employed to shroud the support 
pylons from the flow. The rear fairing, like its partner, the rear 
pylon, was adjustable in height. The connecting rods, each -J inch 
in diameter, were thus the only parts of the aerofoil support system 
which were exposed to the flow. The shrouded pylons produced a 
measurable perturbation to the mean flow in the vicinity of the 
aerofoil. With the aerofoil removed, tests were undertaken to determine 
the perturbations to the dynamic head and to the mean flow direction 
at the aerofoil station:

(a) Dynamic head. A pitot traverse over the test'element 
position determined an increase of +5»5/> fairly uniform 
over the span.
(b) Flow direction. A yawmeter traverse determined an 

incidence in the range +1° to +2.5° , the higher 
incidences being measured nearer the forward support pylons. 
However, the accuracy of this test was severely limited by 
the fact that only very small pressure differences were 
produced by a 1° rotation of the yammeter.
The piezo-electric force transducer is used in conjuction 

with a charge amplifier which supplies, as output, an electric signal 
proportional to the instantaneous force on the transducer. In the 
present experiment, the outputs of the three charge amplifiers were 
summed, and the resultant signal was thus proportional to the nett 
lift force on the test element. Calibration was achieved simply by 

setting the amplifiers on "long time constant" and placing knô vn
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weights on the test element. The output was determined to he linearly 
dependent on the load and independent of the position of the load on 
the element. Calibration factors thus derived were in good agreement 
with those obtained directly from the rated transducer sensitivities 
and the set amplifier gains.

4 *2 .4 Resonant frequency of the test element. This was convieniently 
measured by first exciting the element, as installed in the tunnel, to 
vibrate at its natural frequency, and then analyzing the output signa ], 
The excitation was achieved by a stream of tunnel air (no grid 
required) and the analysis by measuring the spectrum with an analogue 
"spectral analyzer". The resultant spectrum contained a well-defined 
peak at a frequency of 780 Hz: the resonant frequency of the test 
element as mounted on its supports. This result was regarded as 
quite satisfactory: the resonant frequency was well above the highest 
frequency of interest for the turbulent loading (about 300IIz).

4.2.5 Mean load characteristics. It was important to gain some 
knowledge of the mean lift characteristics of the model at the Reynolds 
Number and in the level of turbulence relevant to the unsteady load 
test. Direct mean load measurement with the test element was not 
possible, as the necessary length of time constant was not available 
on the charge amplifiers. Instead, during the mean load investigation 
described in Chapter 3 of the thesis, measurements were made on 
another ITACA P015 wing in approximately the same conditions of flow. 
Exact equivalence of the flows was precluded by the fact that the 
aerofoils were mounted at different locations in the tunnel working 
section. The following table compares the conditions of the two 

tests:
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UNSTEADY LOAD TEST MEAN LOAD TEST

Reynolds Number 
Turbulence Intensity

Aspect Ratio of 
the 2D Wing

0 .23.10^
0.065

10.0

0 .26.10^
0.060

5.0

The resultant mean C[_ vs. 0\ curve, corrected for wall interference 
effects, is given in figure 28. This curve provided the following 
useful information for the unsteady load study;

(1) Lift curve slope. Tlie value yielded by the mean load test 
was 5*8 por radian. The higher aspect ratio employed in the unsteady 
test meant that the lift curve slope in this test was nearer to the 
theoretical value of 2TT . (This dependence of the slope on aspect 
ratio has been explained in section 3.3*2). Thus the value of 5*8 
can be regarded as the lower bound of possible values.

The theoretical lift curve slope value of 2 IT is also used in 
unsteady thin aerofoil theory. A possible correction to the theory 
to allow for the discrepancy between the theoretical and experimental 
lift curve slopes is discussed further in section 5*4*2.

(2) Effective incidence . The bulky support system of the test
element induced an effective mean flow incidence to the aerofoil
(refer to 4*2.3)* A further estimate of this incidence was provided
by the mean load data by virtue of the fact that it had been possible
to determine the stalling angle of the test aerofoil by tuft
visualization: a geometric incidence of 14° was the result. The
mean test indicated a stalling angle of 16° (refer figure 28), though

this value will be somewhat less when account is taken of the difference

in aspect ratios. It was concluded that the average effective
o

incidence was in the range: 0 to +2 ^ ^ result which was consistent
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with the yawmeter measurement described in section 4*2.3. This range 
of effective incidence was included in the theoretical calculations 
presented in Chapter 7.

(3) Mean load conditions at high incidence. The highest 
geometric incidence employed in the unsteady load test was 10°, 
corresponding to an effective angle of incidence to the mean flow of, 
at most, 12°, Reference to figure 28 shows that the aerofoil at this 
incidence was at the upper end of the linear C l  vs. CK range.

Tn the unsteady load test, the intensity of turbulent upwash was
or.»n.s.equivalent to about 3*3 ^of incidence. Thus it was-expected that the 

local incidence would occasionally venture above the stalling angle, 
bW; that the planform, as a whole, would not stall dynamically. This 
reasoning was supported by tuft observations which indicated that the 
flow was completely attached at the geometric incidence of 10°, and 
by the findings of the current mean load study (Chapter 3) which 
suggested that any dynamic stall behaviour would occur only at set 
incidences very close to the stalling angle. Nonetheless it was 
clear that, at some instants, the aerofoil would be operating at an 

incidence above the linear range of the Clvs. CK. curve; and that, 
as a consequence, the effective lift curve slope at the highest set 

incidence may have been less than the slope of the linear range.

4 .3  The Turbulence

4.3.1 The grids. The definitive load measurements were made in 
turbulence generated by a grid of mesh length, 6 inches. This grid 
had been designed by a previous worker in the Department. Its members 

were of square section and the mesh length to bar width ratio was 
5.33. The full working section length of the wind tunnel was employed;



90,
the grid was located at the entrance and the aerofoil near the exit,
13 mesh lengths separating the two.

Several unsteady load measurements were also conducted with 
the 3 inch grid, which had been designed for the mean load investigation 
of Chapter 3* The aim was to provide some information on the effect 
of a smaller turbulence length scale. The locations of the grid and 
aerofoil were as above, the resultant working distance being 26 mesh 

lengths.

4.3*2 The turbulence measurements. The required turbulence properties 

were as follows;
(1) The one-dimensional upwash spectrum, ^Ei(ki') , was 
required for the experimental admittance calculation via 
equation (l.8).
(2) The normalized upwash cross-spectrum, S 22.(k,,Z.'), was 
required for the zero incidence theoretical■admittance 
calculation via equations (1.13) and (I.I4).
(3) The normalized three dimensional spectrum, Tlj (k) , 
was required for the higher order theoretical admittance 
calculation via the general equation, (I.II).

4^2z(kt) and S 22(k,,z) can be readily measured by experiment, whereas
T^j(k) cannot. However, a formula for T^^(k) can be determined from
a measurable spectrum with an assumption that the turbulence is isotropic.
Wind tunnel turbulence will generally exhibit a certain degree of
anisotropy; a degree which can be appreciated by a comparison of such

measurable spectra as cf),, (̂|<,) and 4^22 (^ 0 « In fact, a
more reliable formula for T. .(k) has values of the turbulenceij
parameters which are reasonably consistent with those of several 
different measured spectra. This latter policy was applied to the 

current study, the measured spectra being Ĉ ,,(ki') ,
Cj5,,(ki) can be determined from a signal proportional to the
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longitudinal velocity fluctuations, 19", ; (kj from a signal
proportional to the upwash fluctuations, ; and from
two simultaneous signals of the upwash at two stations separated, in 
the spanwise sense, by variable distance, z* In the first series 
of the present experiment, a U-type hot wire was employed to provide 
a "1% signal; while, in the more comprehensive second series, X-type 
wires provided signals proportional to »

4 .3 .3  Hot wire details. The wires were used in conjunction with 
DISA brand anemometers and auxiliary units. The standard method of 
U-wire calibration was used. For the X-wires, the setting-up and 

calibration v/as achieved with the "matched wires" technique in which 
the difference signal of the two wires is made proportional to the 
upwash, and the calibration is conducted by a yaw test on the probe 
in a steady stream. A typical X-wire calibration curve obtained in 
this experiment is reproduced in figure 29*

The hot wire measurements were made with the wing removed, 
and at the flow speed of the load test (namely, J6 ft/sec). The. 
wires were positioned on the spanwise line corresponding to the 
quarter-chord line of the aerofoil. Unsteady thin aerofoil theory 
predicts that the unsteady load will act through the quarter-chord 
point, and thus this position was most relevant for the turbulence 
measurements. With both grids, the variation of turbulence intensity 
over the wing chord was small; at most an 8/ reduction in intensity 

from the leading edge to the trailing edge*
U-wlre measurements were conducted with a single wire located

near the tunnel centre-line. The U-wire probe was mounted on a rod
fixed between the tunnel wall and one of the test element supports*

Xrwire measurements were conducted, simultaneously, with two

wires at different spanwise separations* A simple rig was designed 

to fulfil this task* It consisted of a suport rod, completely
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spanning the tunnel, and a traversing device. The two probes were 
mounted on the sup])ort rod; one at a fixed position near the tunnel 
centre, and the other free to traverse along it. The position of the 
latter probe was controlled, from outside the tunnel, by way of a 
traversing rod with a screw control. The whole assembly could be 
rotated about the support rod axis to facilitate the yaw calibration 
of the wires.

Drift of the tunnel temperature was a problem in the current 
experiment, the hot wire response being quite sensitive to changes in 
air temperature. With the grid installed and the velocity of the stream 
at 76 ft/sec the tunnel temperature did not stabilize, but continued 
to increase with running time. However, after about 25° C, the rate 
of increase became noticeably less. It was found that, by minimizing 
the run time, the temperature could be maintained in the range, 24.5°C 
to 26°C, (in fact, the run time could be made a short as 1 minute, 
a 40 second recording of the signal being sufficient for later analysis) 
Negligible change in the wire calibration occurred over this temperature 
range.

4 .4  Signal Analysis
This section deals with the methods employed to elicit the 

spectra, 4 >ĝ (k|) > cj)„(k,) , and c j:> ^ ^ (k ) , and the cross spectrum,

Sa 2.(ki)2̂ ) , from the respective signals.
The established digital analysis system of the Aeronautics 

Department (see Bradshaw (1975)) v/as utilized for the majority of the 
spectral analysis. The stages of this system are;

(1) Analogue recording of the signal. For a subsequent 
cross-spectral analysis, simultaneous recording of the two 

signals on two recorder channels is required.
(2) Digitizing of the signal(s) and recording of the digital
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data. These operations are controlled by a PDP 8 computer, 
different programs existing for different numbers of 
simultaneous inputs.

( 3 )  Analysis of the digital data on the Imperial College 
CDC 6400 computer. The spectral and cross-spectral analysis 
programs, currently in use in the Department, were written 

by Davies (1975)» These programs employ the "Fast Fourier 
Transform" teclmique. The spectral program gives, as 
output, the spectrum normalized by the total power of the 
signal; while the cross-spectral program yields the "coherence" 
as one of its outputs. The coherence is the square of the 

• modulus of the normalized cross spectrum.
In the present analysis, particular care was taken with the choice of 
Nyquist frequency and digitizing sampling rate, in order to minimize 
the aliasing error. The signals were "low-pass" filtered at the 
Nyquist frequency before digitizing.

Examples of output plots for a normalized load spectrum and 
an upwash coherence function are presented in figures 30 and 3 1. 
respectively. In the former, the model resonance peak at about 800Hz 
is clearly recognizable. Also in the same plot, another irregularity 
is discernible in the region of 50Hz. It is discussed further in 
section 5*1*2.

Normalized spectra were also obtained by analogue means using 

the Bruel and Kjaer brand "Wave Analyser". The spectra thus obtained 
provided a check of the digital analysis; and, in fact, very good 
agreement was found between spectra determined by both methods.

Absolute power spectra were ultimately required for the 
experimental admittance calculation. This necessitated accurate 
signal calibrations and a measurement of the absolute power of at 

least one signal at the ÿre-recording stage. The latter was



94.
necessary because of changes of signal amplitude that can occur in 
the aialogue recording and reproducing. This requirement for an 
absolute power measurement is a definite drawback of the Aeronautics 
Department system. In the current experiment a reliable estimate of 
power was obtained by the simple expediency of making the measurement 
with several of the more dependable ïl.Ii.S. meters (for example, DI3A, 
Solatron, and Bruel & Kjaer brands).

4*5 The Experimental Program
Tlie experiment was conducted in three series. The measurements 

of*each series are outlined below;
Series 1; (a) Load measurements in the 6 inch grid

turbulence at set incidences of the aerofoil of 

0° and 10°.
(b) A U-wire flow measurement of the 6 inch grid 
turbulence.

Series 2: Flow measurements with two X-wires with a range
of spanwise separation from 0 .5 cm to 35*0 cm 
(6 inch grid turbulence).

Series 3; (a) A repeat of the 6 inch grid load measurements
to determine reproducibility •
(b) Load measurements in the 3 inch grid 
turbulence at set incidences of 0° and 10°.
(c) Load measurements in the free tunnel (that is, 

in nominally smooth flow) over a wide range of . 

incidence.
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CHAPTER 5. First Order Turbulent Loading

This chapter compares the experimentally measured admittance of lift 
of an aerofoil at zero-incidence with the admittance predicted by the 
first order theory.

5.1 The Experimental Admittance

5.1.1 Data reduction. The absolute spectra of lift and upwash were 
determined from the measured normalized spectra as follows;
• At a particular reduced frequency, ,

the absolute spectral power = (normalized spectrum level) x

(r.m.s. of the signal)^ x 
(calibration factor)^.

The admittance calculation then proceeded simply via the equation;

| A ( W r  = feT- •

the only further complication being that the dynamic head (and so,LL) 
were corrected for the support interference error described in section

4 .2.3.

5 .1 .2 Results. The admittance results for the aerofoil mounted at 
zero incidence in the 6 inch grid turbulence (both series 1 and 3) 
are presented in figure 39» Considering that the data is plotted on 
log scale, the discrepancy between the results for series 1 and series 
3 is not insignificant. The data curves cross over at a reduced 

frequency, k^ , of the order of 1.0. For k^ greater than 1,0 ,
the series 1 estimate is greater than the series 3; while for k^ 
less than 1.0, the reverse trend is evident. Within each experimental 

series, Very good reproducibility of data was obtained.
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The experimental procedures of series 1 and 3 were identical 

with one exception: in series 1 the load signal was low-pass filtered
at the pre-analogue-recording stage with a "high roll-off" instrument
set at a frequency of 400 Hz. However, one would expect that a 
correction for any error introduced by this filtering would tend to 
increase the observed high frequency discrepancy. Further, one series 
1 load spectrum (an analogue measurement) was obtained without 
filtering, and this spectrum was in good agreement with the other series 
1 zero-incidence results*

There is some cause to suspect that a difference existed 
between the installations of the test element in series 1 and 3.
Some of the series 3 spectra exhibited a small irregularity (a 
"dip-pealc" combination) in the vicinity of 50 Hz. This has already 
been referred to in section 4*4 In connection with the example spectrum 
of figure 30> The irregularity became more prominent in the low 
incidence smooth flow tests (figure 50 presents the relevant spectra)
where the overall unsteady load was much less. The shape of the
irregularity suggested structural vibration as the origin rather than 
a 50 Hz electrical "hum"* The irregularity was not evident in the 
series 1 load spectra; yet there was no clue as to what changes in 
the aerofoil installation might have introduced the vibration into the 
series 3 tests. In turbulent loading spectra, the irregularity was 
invariably well imbedded; and thus it is difficult to understand how 
it could have been responsible for the discrepancies in admittance 
which were observed between the series 1 and series 3 results over a 
wide frequency range*

Nor does it seem possible that measurement errors could 
account for the discrepancy. The greatest uncertainty lay in the 
absolute spectral power, and the source of this uncertainty was the 

r.m.s. measurement (The calibrations of the hot wire and the load 

balance were found to reproduce accurately). The maximum r.m.s.
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error was estimated at - 5/ which could lead to an error of - 10/ in 
the absolute power* Even if this maximum error were assumed for each 
series, the discrepancy in admittance could not be completely accounted 
for* Further, reducing the discrepancy at one end of the frequency 
range (by an alteration in the spectral powers) would, of course, 
increase the discrepancy at the other end*

Thus, though there was some evidence that, the discrepancy 
could be due to some difference in aerofoil installation, it was felt 

that the evidence was insufficient for a complete dismissal of the 
results of either series*

A further relevant result is the zero-incidence load spectrum 
in tmooth flow, measured in series 3 and plotted in figure $0* This 
unsteady load has been induced by unsteadiness in the nominally smooth 
stream and in the aerofoil wake, and by resonant vibrations of the 
model* The general level of this spectrum is two orders of magnitude 
lower than that of a typical turbulent load spectrum. Thus unsteady 
loads induced by boundary layers, wakes, etc* could be confidently 
ignored in the determination of the turbulence admittance function#

5*2 Description of the 6 inch Grid Turbulence
It is convenient, for the theoretical admittance calculation, 

to be able to represent various spectra of the turbulence by analytical 

formulae*
^For the zero incidence calculation, such a representation is 

not necessary* One can measure the normalized cross spectrum of the 
turbulence and calculate a theoretical admittance directly from this 
data with a double numerical integration (via equations (I.I4) and 
(1.13) given previously)* However, if the data can be represented by 

a formula which is readily Fourier-transformable, the first integration 
can be achieved analytically, and the admittance can be determined with
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a sinnie numerical integration* This is the approach employed by
Jackson, et, al. (1973) and by the present author*

As explained in section 4*3«2, the higher order theoretical
calculation does require an analytical formula for the normalized
three dimensional spectrum T, .(k), which, in turn, necessitates an^ J
analytical representation of at least one measured spectrum.(in the 
present study, to improve the reliability of the Tbj(k) representation, 

all three of the measured spectra, cf),, (k,) , 4^22 (R) ^
and Sgg (k,, were involved).

5.2*1 The von Earman description* Von Karman derived a semi- 

emÿirical formula for the case of grid-produced wind
tunnel turbulence. (See, for example, Ilinze (1959))• In the present 
notation, the formula is :

In figure 32, the experimental data for cjS,,(k,) has been plotted, 
together with the von Karman curve for = 0*44» This curve is
clearly an acceptable representation of the data* The measured value 
of the intensity of the longitudinal fluctuations, \

was 0.065»
IRhen the turbulence is isotropic, the various spectra are 

related to each other by analytical formulae, Batchelor (1953)» for 
example, provides the derivation of several such useful formulae*
Using one such result, a formula for corresponding to the

above expression for 4^n(ki) can be derived;

In figure 33, the experimental data for cpz2. (k ) has been plotted, 
together with curves of the above formulae for two values of ;
0 .36 and 0*44. Generally, the fit of the formulae to the data is less
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satisfactory than that achieved with the corresponding cf>n(k,) spectrum. 

The curve for = 0.36 provides the best data fit over the frequency
range of interest for the subsequent admittance calculation. (This 
range is also indicated in figure 33)» The measured value of the 
upwash intensity, was 0.053.

A comparison of the and results revealed
several indications of anisotropy;

• (1) —  0.8 -e"I ?

(2) the shape of the curve through the *^22 data was noticeably 
different from that of equation (5.2), whereas, for the cĵ,, 
case, the shapes were quite similar,
( 3 ) the value of which provided the best curve fit to 
the data was greater than that for the data.

Nonetheless, the excursions from isotropy could not be regarded as 
large.

An analytical expression for the normalized upwash cross 

spectrum, (k, ̂ z) can similarly be derived from equation (5.I)
with an assumption of isotropy. (For example, refer to Harris's (1970) 
derivation of S,,(k,̂ 2.) .) ;

where Pft).T(4) (I + Z , and the K's. are Bessel
r(k) ~ r r

functions of the second kind.

Jackson, et. al, have presented such a formula in their 1973 paper. In 
this report, it is subsequently referred to as the "VK formala" for

S 22 (k)Z.) • Experimental data for S 22 (k,z) for three values of k, 
(covering the complete range of interest) has been plotted in figures 
34, 35 and 36. In the former two figures, the data has been compared 

with the VK formulae for two values of which yield a reasonable
data fit; namely O.4O and O.44. In each case, the largest discrepancies
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"between the formula, and the data occured with the middle value of 

k, (= O.8O4) at large z. This fit did improve as the value of 
increased, but discrepancies then appeared at smll z* /m value 
of 0 ,44 was considered the highest for which the overall fit was 
reasonable (figure 35); and, in fact, the value of 0 ,40 was considered • 
to provide the best VK fit (figure 34)o

Finally, the corresponding formula for the normalized three 

dimensional spectrum can be deduced (see, for example, Roberts (1971))® 
In tensor notation, it is:

TTj (b) - m  - W j  • ■

where k = k  anJ kf *= f _Cis)—  k-,

It was not possible to directly determine, by experiment, the value of 
which would give the best matching of this formula to the 6 inch grid 
turbulence. However, from the other spectral measurements, it was 
confidently assumed that this best fit value would lie in the range 

0 ,36 to 0,44; and the mean value of this range, namely 0 ,40, was 
selected for the higher order theoretical admittance calculation 

(described in Chapter 7)*

5,2 ,2  Alternative formula for S 22 (k, > , This general formula,
with five constants to be specified for each k, value, enabled an 

accurate curve fit for all the experimental data:

=z.'K(z') -  CaSin[C3(z-C4)] . . .(S.5)

where z'=CsZ, and C z =  0  except when ^  .

This best fit formula is subsequently referred to as the "BP formula" 

for Sa^(k,z) . The first two terms are a generalization of the
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Vickery (1965) cross spectrum formula. This latter formula, alone, 
was found to agree reasonably with the data at low and high values of 
2 , but to underestimate it at intermediate 2 values. The third 
term, a half cycle of a sine function, was added to achieve agreement 
in the latter region.Figure 3^ presents three such data fits for three • 
different values of k, .

Nonetheless, it was evident that some uncertainty existed in 
the $2^ formulae (both the VN and EP types) at low k, and
high z, where accurate experimental data was not available and yet 
where S 2 2(k,)Z) was appreciably non-zero. In the next section, it 
is demonstrated that this uncertainty leads, in turn, to some uncertainty 
in the first order theoretical values of admittance at low k|.

5 .3  The Theoretical Admittance to First Order.

5.3.1 Method of calculation. Equations (1.13) and (I.I4 ), derived in
section 1,2.5.2, were employed; namely:

oO

A(K,)| ' = ^  Î | G W r  0-13)
o

S jj(k .k c ) = 4 f  ^  S jj(k ,,z ) coskjZ d Z  • - • 0 -14)
o

The Szz^ki^ks) formulae corresponding to the VK and BP formulae for 
were deduced by way of standard Fourier transforms:

(1) VF result

•  ̂ A I L___) ... _ _____(k,k) - ̂
. . . ( 5 . 6 )where

e  = . _ L ,. r .
r(pr(f) 0+krpt
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■4- Q  1̂  C O S k Q  — C 0 5 ( k s Q •*• (C3-» ) C s )  c o s  k s  C4 “  COS ( - W Q  +  ( C j - k î ) 'C 3

C3 + kj' C3 - kâ'

where k^ = k̂  /Qg. •

Several solutions for the sinusoidal response function, G (K^k^) , 
were considered; namely, the numerical solution of Graham and the 
approximate analytical solutions of lûugridge. Pilotas, and Sears (as 
detailed in 1.2.2), The necessary integration over to evaluate 
the admittance was performed numerically. The computer program 
written to achieve this, with Graham’s program for G(k, 
as a subroutine, is presented in Appendix 11. Special care was taken 
to ensure that the step size and range of integration were suitable 
for an accurate estimate of the integral.

5.3 .2  Theoretical admittance with G (ki ,ks) evaluated exactly (that 
is, via the numerical method of Graham). These admittance values were 
calculated with both of the previously-detailed formulae.
For the YK formula, three values of were considered: O.36, O.4O,
and 0 .44* The results of the calculations are plotted in figure 37o 

At large values of k, , the admittances collapsed onto a 
single curve. This was expected because the higher frequency components 
of the unsteady load are independent of the large scale eddy structure. 
The admittance at lower frequency was more sensitive to the 
data fit. For the VF case, the level of the admittance curves at low 
frequency increased steadily with increase in as expected. The
VK curve with = 0.44 was nearest to the BP curve (though it
should be remembered that ^ 1 /q = O.4O yielded the best VK fit to the

S 22 (k,,z) data).
An important realization was that the low frequency theoretical

•(5.7)



103.
admittance calculation is sensitive to the Sz&(k^z) data fit over a 
wide z range; from z = 0 to a value of z where the spectrum is 
small and asymptoting to zero. This fact is explained as follows;

(a) The integrand in equation (l.13) falls rapidly to zero
from its value at = 0 .
(b) Thus the admittance is very dependent on the integrand 
values near = 0 .
(c) These values, in turn, depend on the values of
near = 0 ,   oo
(d) As 0, Sz2 Tf [ S 22(ki,z)dz .
So the admittance is sensitive to the area under the

* curve o
(e) And thus the admittance result is sensitive to the S 2i(̂ û ) 
data fit over the range of z in which is 
appreciably non-zero .

As indicated in section 5*2.2, it was precisely when k, was small that the 
experimental S 22( k , d a t a  was not available over a sufficiently 
wide z range. Thus, even when all the data was well represented by 
analytical formulae (the EP data fit), some doubt existed for the 
calculated admittance at the lowest frequencies.

The difficulty of obtaining acciurate S ^ ^ ( k , ^ z )  data for 
low k, and high z will be present in aiiy wind tunnel experiment.
The results of Jackson, Graham, and Maull (l973) were limited in the 
same way. In a private communication, Graham has indicated that his 
calculated admittances at the lowest frequencies depended significantly 
on the type of curve which he used to fit the data. For the low k, 
determinations, he employed an exponential fit to the data as well as 
the VK fit described in the Jackson, et. al. paper, and he found significant 
differences between the admittances determined with each type of fit,

5.3,3 . Theoretical admittance with G  (k, ,k%) approximations. These



. 104.
admittance values were calculated using the YK formula with

^ J /q  = 0.40. In figire 33, admittance values determined with the 
following approximate formulae for G (ki^kg)  are compared with 
those calculated with the "exact" response function of Graham:

(1) (k^ks) » I''-̂ ĝ idge’s formula, defined in equation (I.4)
( 2 )  G  p (k|  ̂k ;  )  t Pilotas* formula, defined in equation (l,3)
(3) S ( k , )  9 Sears' formula, defined in equation (I.I).
This is the two-dimensional sinusoidal response function and 
when employed in place of the three dimensional function, 
yields the "strip theory" admittance (see 1.2.5.2)

The resultant admittance trends were consistent with the nature of the 
approximations:

(1) Mugridge's formula led to an admittance in good 
agreement with the exact theory at the low frequency end, but 
one which approached the strip theory result at high frequency. 
These trends are understandable when it is reraeraebered that 
Kugridge*s approximation is an adjustment to Sear's formula 
and is the correct low frequency asymptote for G  C k^kï) •
(2) Pilotas* formula yielded an admittance which, though 
over estimating the exact theory over the entire frequency 
range, approached the high frequency cuirve of that theory at 
a faster rate than the strip theory admittance. The 
Pilotas formula is the correct high frequency asymptote for

G(k,,kî).
(3) Strip theory overestimated the exact theory over the 
complete frequency range of interest, Jackson, et. al. observed 

a similar trend with an , value of the same order.
Overall, considering that most power is at the lower

frequencies, the Mugridge formula provided a reasonably accurate and 

very convenient approximation to the first order theoretical admittance, 

•relevant to this experiment. In many practical situations, the j/g
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value will be greater than 0 ,40 and the approximation will be still 
better.

5 .4  Comparison of Theory and Experiment for the 6 inch Grid Turbulence •

5.4.1 The comparison. Figure 39 compares the zero incidence 
experimental admittances (series 1 and 3) with the theoretical values 
calculated with the exact theory for G  (k^ks) and with two (k,,z) 
data fits (the BF fit, and the VIC fit with = O.40).

Tlie agreement between theory and experiment was reasonable.
The theoretical admittance was close to the high frequency data of the 
series 1 experiment and to the low frequency data of the series 3.
Yet, for either of the individual experimental series, the agreement 
was not as good as that obtained by Jackson, et. al,. The current 
experiment, with equal to 3.3 , was a more rigorous test of the

theory than the experiment of Jackson ( ̂ /^L, = 6.4). Unfortunately, 
because of the scatter of experimetal results, it was not possible to 
deduce whether the theory predicts the admittance more or less 

satisfactorily for the lower /^L, value,

5.4 .2 Sources of discrepancy between theory and experiment,
(a) Turbulence description. The problem of obtaining a 
sufficiently accurate description for the theoretical 
admittance calculation at the lowest frequencies has been 
discussed in section 5.3.2.
(b ) Aerofoil thickness. The order (Ç) theory for G  

assumes an aerofoil of zero thickness, whereas a 15?̂ thickness 
section was employed in the experiment. Thickness will affect 

the admittance in two ways: (I) The turbulence at the 

positions of the aerofoil upper and lower surfaces will be
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less well correlated. (2) The turbulence will be distorted 
by the mean flow field of the thick aerofoil at zero incidence.
(c) Contribution of non-linear terms in £  . Terms in the

sinusoidal lift response of higher order in G can contribute
to theoretical admittance. In Appendix 10, it is argued that
a sinusoidal response term of order ( ) may contribute to
to to order ( ); in which case, its effect
on the admittance would be measurable.
(d) Lift-curve slope. Tlie mean lift curve slope at zero 
incidence was found to be in the range 5«8 to 2tY ,
compared with the theoretical value of 2TT (refer to section 

4 .2.5)o Assuming that the true lift curve slope should 
replace 2IT in the admittance calculation, the maximum 
possible correction to the admittance is -15/% If this 
correction is applied to the present results, the theoretical 
curve still lies within the range of scatter of the experimental 
data.
(e) Absolute spectral power. The uncertainty in this 
measurement has been discussed in 5.1*2, where the maximum 
experimental error was estimated at - 10$v.
(f) Variation of turbulence intensity over the chord. This 
variation was estimated at about maximum (already mentioned 
in 4 .3.3). Yet it was felt that the consequent error in the 
admittance was much less; the measured intensity at the 
quater-chord position being a good representation of the
effective intensity for load calculations.
(d) Brag. To a certain extent the load balance was sensitive 
to drag forces (refer to 4.2.2). An estimate of the likely 
.discrepancy due to unsteady drag forces can be made on a 

quasi-steady basis, using the mean load results for the 0015 

section. The local r.m.s. effective incidence of the turbulence
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was approximately 3.3°. Considering the changes in drag and 
lift produced by this sort of mean incidence change about 
C K  *= 0° yields = 0.006. The sensitivity of

the load ba.lance to drag force was about 10^ of the lift 
force sensitivity. Thus the quasi-steady error due to drag 
was a negligible - 0.1̂ !.
(h) Wall interference. This arises from the difference 
between the infinite flow field and the flow field constrained 
inside a duct (the wind tunnel in this case). Following the 
practice of the mean load experiment of Chapter 3, the 
corrections of Allen and Vincenti (1944) were applied. For 
the unsteady load experiment the wall corrections were found 
to be negligible even at the highest incidence,
(i) Effective incidence of the sunnorts. . In section 4*2.5, 
a value of, at most, +2° was arrived at. The higher order 
theory, which is described later in Chapter 7 and which 
corrects the zero incidence admittance for incidence effect, 
was applied for O C  = 2°. The admittance correction (which 

goes as O K  ) was found to be negligible,
(j) Unsteady Xutta condition. That the Kutta condition holds 

in unsteady flow has been assumed in this and previous studies 
with no experimental proof. The issue has been further 
confused by the results of recent acoustic experiments 
involving flow over a trailing edge: some results have thrown 
doubt on the validity of the unsteady Kutta condition, while 
others (for example, those of Bechert and Pfizenmaier (l97l)) 
have tended to confirm it. Unsteady thin aerofoil theory, 
derived with the Kutta assumption, has, in the past, been 
applied usefully to practical problems. It was thought that, 

at this time, the best approach was to assume the validity of 

the Kutta condition, and to admit the dependence on it of all
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the developed theory.

Particularly in view of (a), (b), (o), (d) and (e) above, it 
v/as felt that the zero incidence experimental results gave no 
cause to doubt the validity of the first order theory of aerofoil 
turbulent loading.

5o5 Results for the 3 inch Grid Turbulence
The admittance results of this series 3 test are plotted in 

figure 4 0, together with the theoretical admittance calculated with the 
VK formula for

Detailed measurements of the turbulence were not made for 
this case, (por the mean load investigation, described in Chapter 3, 
parameters of the 3 inch grid turbulence were measured, but at stations 
further upstream). Stapountzis, a colleague of the author, has recently 
made hot wire measurements in both the 6 inch and 3 inch grid turbulences 
at the station relevant to the unsteady load experiment. Some of his 
measurements were analysed in order to determine the ratio of the 
intensities and length scales for the two cases, and thus to estimate 
the parameters of the 3 inch grid turbulence. The results were;

“0*037 and “ 0*38 .
As indicated in figure 40, the theory with = 0.38 was 

in reasonable agreement with the experimental data. At the higher 
frequencies the theory has overestimated the admittance, the order of 
the discrepancy being similar to that of the corresponding series 3 
test for the 6 inch grid turbulence (refer to figure 39)«

Thus the results of the 3 inch grid test were consistent with 
the more reliable results of the experiment conducted with the 6 inch 

grid. Unfortunately, the actual value of the length scale of the 3 

inch grid turbulence was greater than the value which had been
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estimated during the planning of the experiment; with the result that 
this test provided no additional information for the study.

5*6 Conclusions Regarding the First Order Turbulent Loading.

The present experiment has tended to confirm the conclusions 
of Jackson, Graham, and Maull (1973); namely that the first order 
theory provides a reasonable prediction of the admittance of lift of 
an aerofoil at zero mean incidence. Two additional aspects have been
highlighted in this study;

(1) The Mugridge formula is a useful approximation for the
• response function G (k^kz) required in the admittance

calculation,
(2) The predicted value of the admittance will tend to be

less reliable at the lowest frequencies of interest for most
practical problems (as a result of the difficulty of 
accurately describing the turbulence at those same frequencies)
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ClLM'TîlR 60 Hi,cher Order Theory for Sinsuoidal Gust Hoadinfr

6.1 General Assunntion;

(1) The flow is assumed entirely inviscido The undisturhed flow (that 
is, with the aerofoil absent) consists of a free stream, Uoo , and 
a gust velocity field. The gust may be irrotational or rotational; 
in either case, the disturbance flow field produced by the presence 
of the aerofoil is necessarily irrotational, (For example, 
Batchelor (196?) demonstrates that a flow field resulting from 
the satisfaction of a boundary condition is alwa.ys irrotational),

* In the present case, the disturbance field is equivalent to that 
produced by a sheet of distributed vorticity on the aerofoil and 
in its wake. Thus the irrotational disturbance field is bounded 
by a "cut" which encloses the aerofoil» and its wake:

the  c u t

üûo aerofoil

Woke

(2) This higher order theory is concerned only with the effect of
mean incidence , 0( , The effect of thickness is ignored. In
other words, the aerofoil considered in the analysis is a zero
thickness two dimensional aerofoil at incidence CX .

(3) The incidence, (X , and the relative amplitude of the gust,
aie both assumed to be much less than 1,0, Further it is
assumed that G  is much less than CX . This latter assumption 

permits terms of order ( ) to be neglected in comparison with
those of order (0 ( 6  ): the order (<0 \£ ) terms are the higher 

order terms of interest.
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In practice this assumption that £  1 is meaningful

from tvro view-pointsî

(a) £  is often sufficiently small. In the current (high incidence) 

turbulent loading experiment (described in Chapter 4)» the 
intensity of turbulence was "high", but even then, with
£ — 0.06 and CX —  0.2, the above assumption was approximately 
adhered to. In Appendix 10, the possible contribution of the 
order ( £ ^  ) sinusoidal response term to the turbulent lift 
spectrum is considered further.
(b) The order ( £ ^  ) term is independent of incidence.
Thus, when attention is being focussed on the difference 
between the unsteady loading at zero incidence and at non-zero 
incidence (as is the case of the present study) the order (£ ^ ) 
contribution need not.be considered.

(4) The Kutta condition is assumed to hold at every instant; and 
this allows the wake to be modelled by a sheët of distributed
vorticity. In the order ( £  ) theories (for example, those of
Sears and Graham described in 1,2.2), this vortex sheet is located 
on the extended aerofoil chord plane, which is also parallel to 
the direction of the free stream for the aerofoil at zero
incidence. In the present order ( CX£ ) theory, the initial
assumption is that the wake vortex sheet lies along the extended 
chord plane. Later it is demonstrated that, to order ( CX£ ), 
the precise spatial location of the wak.e is not important; the 
derived lift response would be the same if the wake were chosen 
to lie in the direction of the free stream.

6.2 Method of Analysis

Without satisfying the boundary condition on the aerofoil 

surface, the i th component of the instantaneous velocity at any point
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can. be written as:

V g  +  +  %  4- o  ( p i ë ', ,

where \£ is the i, th component of the undisturbed steady velocity: 0(0 or ^
131 is the i th component of the undisturbed fluctuating velocity: 0(£%
^  'I3b ts the i th component of the additional fluctuating velocity

produced by distortion of by the mean flow field; 0(X6).
When the boundary condition is applied, the instantaneous velocity can 
be written:

Vc -  +  Vg 'Lkc -+ 'O'c -+■ 4 +  O  cX^G') . . .  (6 .  l)

wheiti Vc, satisfies the boundary condition for the field, V c  : 0(cX) j
satisfies the boundary condition for the field,lyg 0(6) ,

'ü 'c satisfies the boundary condition for the field,i3l ! 0(X6),
The instantaneous vorticity can be written:

= hop + k  + OCkixe^kc/'e) . . . (6,a)

where is the undisturbed vorticity: 0(k6) ,
is the additional vorticity produced by distortion: 0(kcX6^o(6) .

(see,later,6.3.3 .1)
There are no mean components of vorticity (in this problem) and no 
components in the disturbance flow fields. 13%, is the Biot-Savart 

velocity field of »
The basic method of the analysis is to substitute the above 

expressions for VJ" and into the inviscid equations of fluid
motion, and to solve with the aerofoil boundary conditions, retaining 

only terms of order ( G  ) and order ( 0(6 ).
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6 .3  T h e o ry  f o r  th e  F ro z e n  T v /o -F ire n s lo v ja l G ust

This two-dimensional gust theory, as well as serving as an 

introduction to the more general, and more complicated, three- 

dimensional theory, is directly releVcUit to some practical unsteady 

loading problems,

6.3.1 Probl em f orrnul at ion

6.3.1.1 Frames of reference. The stream-aligned co-ordinate system,

X , y , z , and the aerofoil-aligned system, ^  ̂Z. have been

introduced in section 1.2.1. Components in the x, y , and z 

directions are subscripted with L = 1 , 2 , amd 3 respectively, while, 

for the ^ aiid '?j directions, the subscripts remain aa. ^ and -

6.3.1.2 The gust.. A general two-dimensional gust, frozen in space, 

has velocity components:

— c(k,x. — kĝ y) A - 6 (kiX.— k%y)
I?*, = e  ) 1)1 =

Vdien such a frozen gust is convected onto the aerofoil at 

the free stream velocity, Uoo » the components become:

The corresponding gust components in the Ç  ̂ -tj  ̂ z. co-ordinate 
system are given by:

t{cüù —k/^— - A L(cot—k, ë -k^oi)^ 3 and %  = 1%, e  ̂ s

where =*^1 — a3iSiaC< ^

"Gy = cosO( +  G; Sin(X 

k| = k, CoS 0(. — k^S inX •> 

kj.= ki 0( 4- kg^cos^X ,
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'\y^ •and 'Cl are, in. general, complex, and, in order to satisfy the 

continuity condition ( “ O  j are related by:
A k ^

The vorticity associated with this gust is;

'e _  Y cCht-kx-k^y) _ ^
'̂ SoO b 3oO ̂  (A

where (from the definition,
%  = V x - ^ )

In this two-dimensional gust theory, only this one component of 
vorticity can exist. This is emphasized in the subsequent analysis by 
the deletion of the subscript, 3 , in the expressions for the gust 
vorticity; for example, kz.y)̂

6.3.1.3 The instantaneous velocity at any point. This has already 
been synthesized:
(equation (6.1))

correct to order ( p ( 6 )

6.3.1«4 Vorticity distribution on the aerofoil. The velocity fields ̂  
Vj   ̂'VFg  ̂and ijg , can be produced by replacing the aerofoil (as a 
boundary) by distributed vorticity on the chord line.

Aerofoil bound vorticity = KOf) ^ ( Ç  ̂

where k(̂ ') produces the field 0(cX)
produces the field ’ 6) (£')
produces the field *l>ô • 0(cX6)

Because and ^  vary with time, vorticity will necessarily be shed 
from the aerofoil, and the resultant wake will be a two-dimensional 

vortex sheet.
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6.3•1.5 Boundary condition on the aerofoil.

On the aerofoil: Vg -t = O.
More particularly, owing to the formulation of the problem;

■+ V-»̂ - o

= 0  )► on the aerofoil,

 ̂  ̂“0
6,3.1.6 Relationship between velocities and pressures. The relevant 
equation of motion, linlcing velocity and pressure is, in vector 
notation:

+  ( y T v ) y ^  . . .  (6.3)

where, for this two dimensional problem, V**" = and
Ü ̂  , and 1< are the Limit vectors in the ̂  , 'g ̂ and z. directions,
respectively.
This equation is the form of the ITavier-Stokes equation for a 
frictionless, incompressible fluid with body forces, such as gravity, 

ignored. ^
J- rZ /\/T\ P-'X _ A f'^r~r\ . ,T , ,T

pT „  . .T vpTA
Using the identity: 2. Y ) “ (Y*Ï')V + Y ^

where ^ = V x V  = k  ̂ in this case, equation (6,3) becomes:

IX- -  v b  3^ = ("k f>t) • • •(^•4)

Integrating this equation with respect to Ç from - to ^

 ̂Vç̂ .dç -  ̂ Xbç = -(ily^l+k) •••(6-5)
~oi> ~o£>

6.3,1.7 Equations for the aerofoil lift. These are formulated by 
substituting, in equation (6,5), the velocities at two corresponding 
points on the aerofoil upper and lower surfaces ^  ̂   ̂^ '
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L  r
o — j \

Qeroioil vorticiî  = K ( W  (̂̂ it)

On the aerofoil surface; V^ = 0 and Vç = 4  ̂ = T ^

with the minus signs applying to the aerofoil top surface, and the plus 
signs to the lower surface. These latter relationships between the 
aerofoil vorticity and the surface velocities, follow ; from the properties 
of a sheet of distributed vorticity.

Thus, on the upper surface; "" +  lAç ~  ^  4- ^
and on the lower surface: ~ 4- -i- 4- -h .

It follows that:
TVç^-Vç^ = K  + -I- y ' (6.6)

= Z V f K  + 2 V ^  ̂  + 2 V ^ f  ■+2K'6r^ + O(é)o& ,o(É")
• • • (6 .7)

Y/hen equation (6 .5) is applied at the two corresponding points 
on the upper and lower surfaces, and one equation is subtracted from 
the other, the result is:

It i [Hu~£]cir = - “Yg ] "+ . . . (6.8)—I '
(The contribution of the integral from — ciO to -1 is the same for the
upper and lower points).
Substituting from equations (6.6) and (6.7) and writing |b = P 4- 

yields:

= V f K + V a  ..(6.^)
-I

The time mean of equation (6.9) is:

O  = V^K - , ... (6.10)

Subtracting equation (6.IO) from equation (6.9) yields an expression for
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the'imsteady pressure difference across the aerofoil, correct to order (cXÊ.) ;

-t-Vf y+Vfî'+ Khi-, . . - (6.n)
C{j0tThe unsteady aerofoil vorticity will he of the form; ^ “ ^ ( 0 * ^

Therefore: =  Cuü y and ôooy .
The unsteady upwards force/span,

F = (ku*~ hu') c!f.
Therefore:

(  ̂ I %
Ç /p  = -  [ 6 u l j ^  ( y 4 ÿ ) o l ( ' d (  - ^ v £ y 4 y ) d ^  + ^ K tTçc( ^ ]  - . ( 6 . I2 )

- \  ~ |  — I - I

It is convenient to divide P as follows:

F = Fp 4- 4 M
where

F& = -  [i-w y ,
- 1-1 -V

^  = -  [cuj ÿcl>jc/^ 4 - V ç | V ' ^ ]  ■)

5̂' = - j K /ir̂ olÇ .
-I

Pp is of order ( G  ) and is the primary response of the 
aerofoil to the undistorted gust. Hot only does P^ contain the 
Sears*order ( 6  ) response for the aerofoil at zero incidence, but it 
also contains some order (o(G ) contributions arising out of the 
additional terns (1) and (2), described in section 1.2.3, This further 
subdivision of P^ is conducted in the next section, is of order '
(cXG ) and is the lift response to'the "additional" gust produced by 
distortion. P^ is of order ( 0 \ 6  ) and is the cross product term 
previously derived by Horlock and Morfey (refer to 1.2.3).

It is a general result for a zero-thickness aerofoil in 

inviscid flow that the overall force,- P , has a magnitude which can 

be calculated by the addition of pressures on the upper and lower
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surfaces, and a direction v/hich is alweys perpendicular to the 
instantaneous streaxn. The lift force, L , is defined as the force 
component perpendicular to the mean stream. The mazcioum error introd
uced by assuming L = P is clearly of order (1 - cos 6  ); that is, of 
order ( ). This error can be ignored within the assumptions of the

analysiso
The analysis for the higher order loading terms (P^ and P^ ) 

can be simplified as follows: The aerofoil can be considered to be at 

zero incidence, with mean vorticity ̂  K (x) ~ — Z  ’
distributed along the chord. This mean vorticity arises in the 
linearized theory for the steady flow about a flat plate at incidence, CK , 
The errors introduced by this simplification are necessarily order ( 0(^63 
at least.

The final formulation of the problem is summarized below, A 
mathematical equation for each of the three components of unsteady 
lift (Lp , ) is presented, together with an illustration of the
corresponding flow geometry:

(a) Primary lift,

, ' T I

r -I

where satisfies the boundary condition for (undistorted),

(b) Lift due to distortion,

" v  -1-1
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y .y
^  _̂_____________________________ 1___C-n,oJ

where ^ (x) satisfies the boundary condition for is the

additional upwash produced by distortion of by the mean flow

field. The mean flow field is that corresponding to the vorticity

distribution, K ( x ) = —  Z Uoo / i T x  ^

(c) The "Morfey lift’*,
I

=  —  j  K ( x y ' 0 | ( x , o ' ) , c f x  . . .  ( 6 . 1 4 e )

y

Uo -d-.CXtO)

where K(x) is os obove^and nl, is the x-component of the undistorted 
gust,

6 .3 .2  Analysis for L p  , This analysis is an adaption of the theory 
of Sears. Sears’ result can be derived in several ways: the current '
analysis employs the method of Bisplinghoff, et. al.(1955)•
6,3.2.1 Wake analysis. It is initially assumed that the shed vorticity 
is convected along the extended aerofoil chord line by the component 
of the free stream velocity in that direction; viz, — LLo COS cK .

The walie vorticity is denoted by Xuj(f) ~ Xco(f)' )
and, for simple convection at Vç , it must satisfy the equation:

-f Vç = 0  . . .  (6.15"')at
The total circulation in the flow must remain constant 

(Kelvin’s Circulation Theorem).
With the Kutta trailing edge condition, this necessitates that: •

h r  = -  Vf.y^(i) , . . .  (6.,6)
ot
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Lwthere P  is the unsteady circulation on.the aerofoil = P c

where P “ > and (l) is the v/alce vorticity at

the trailing edge.

The simultaneous solution of equations (6.15) and (6,16) enables the 

wai:e vorticity to be expressed in terms of the aerofoil circulation:

e"' r . . .(an)

6.3.2.2 Boundary condition. For the determination of Lp , the 

boundary condition must be satisfied for idy ; that is , ( ^ , 0 )  = 0  

on the aerofoil.

How, Ç, û) = C.̂  Ç) (refer to section 6.3.1.2).

Dy^(^,o) ̂  a component of the "disturbance" velocity field, 

can be determined by an application of the Biot-Savart law to the 

corresponding aerofoil vorticity, y , and wal:e vorticity, .

The result is:

The boundary condition becomes (with substitution for 

from equation (6.17)):

A
This integral equation can be solved for P  with the help of the 

Sohngen inversion formula.

V/hen applied to equations (6.18), this formula enables 'jj to be
A

explicitly expressed in terms of P  :

^

Ydien equation (6.19) is integrated with respect to Ç from -1 to +1,
A

an equation in one unknovm only ( P  ) results. (The mathematical 

details are very similar to those of the cX -  0 theory: refer to
A

Bisplinghoff, et.al). The solution for P  is:
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n  = _ . . .  (6,zo)
^ 'Ŝ os'X'̂  [H, Û

6.3.2.3 Determination of Lp » Equation (6.13), derived previously, 

is the relevant equation:

r  ^ '

- I - I  - I' f I »
Using the mathematical identity, ~ ,

H I - Ithis equation transforms to:

Lp^ = ~ [ c c o r - o u j ( f f c / ^ + V ( ; r ] c ‘̂ ^ . . . (6.&I)

The integral, ^ is evaluated by multiplying
j. ->

equation (6.19) by Ç and integrating. The result is in terms of the
A.

circulation, P  :

j f y d ^  = a v . - r r i ^  - U l± k . 'M is Ù r  (6 .2 2 )
-I K, k,yco50( ^

Finally, by substituting equations (6.22) and (6.20) into equation 

(6.21), an expression for Lp in terms of the knovm gust properties 

is derived. Further substitution of Vç = cos oi ,

^  008 (X 4- "1̂  sinOC , and k/= k, cos (A —  kg sino(

enables the load to be expressed in terms of the gust properties 

referred to the x , y , z frame (refer to 6.3.1.2), The result is:

6 lp ~ "  2.TT I Ô Ji k! j | f  1  + - Ü , ipixl c ' '4
 ̂ k: JLU^ J

. . . (b.iz)where k, - k, cosoi — k%^tn cK ,

For o(.= 0, this result reduces, as expected, to the Sears’ formula 

(refer to 1.2.2),
•Further simplifications to equation (6.23), correct to order 

are possible with the following substitutions:
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p

cos (X = COS '(X  = 1.0 ^

sin 0( Ç sin<X cosCK == OC .

The validity of these substitutions (to order ( Cxfd )) is evident when 

the trigometrical functions are expanded as power series in 0( . 

Further, it is clear that, with these simplifications, the expression 

for C l p is not critically dependent on the wal:e model; if the walce 

had I’cen assumed to be in the free stream direction, the final 

expression for (^Lpwould have been the same. Tliis final expression is;

u „  LLJHi(k,)-f-L Ho(ki') k-odc,. J

= 2 T r , S ' ( k . , k - c < h ) ( ^ - + c < % ] e ^ ‘̂ ^, . . . (6-2 4 )
k, bJ(jû vJoO J

where S  is the generalized Sears function, which arises 

also in the 0(G ) theory for a non-frozen gust, and which has been 

defined in equation (l.2).

It is clear that the generalized response function, o  , will arise 

whenever the spatial wavenumber along the aerofoil chord differs from 

the wavenumber defined by: • For the 0( 6. ) non-frozen gust

theory, these two wavenumbers are kg and kf respectively. In the 

above analysis they are ( K» —  cK kg. ) and k, respectively.

6.3.2.4 Subdivision of C l r  , It is convenient to separate C l r  

into its order (6 ) and order ( cXC ) components. As a first step:

C u p  = 2 ît 2 tt S ( k , ^ X j o . •

I'Tote that S^(k, ̂ k-ĉ kj.') has been replaced by S  (k,) in the second 

term: the magnitude of this alteration is necessarily of order ( 0(^6 ) 

at least.

3  (k,,k,-0(kj.') can be expanded as a power series in (X , 

the first two terms of which are:
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S  (k,)-h CX S/̂  (k^kg.) ^

where S h k „ k , U  k J H.(k;)[J,(k,VLTlKl 
I H,(k,VcHo(k?)

ana = []% (k,') -  Jo (k,)]/a •
. . . { b . z s )

Details of the expansion are given in Appendix 3* The expression,

S(ki') ~h o( Ŝ (k'i, kî.) is the correct asymptotic form of S (ki,ki— Xk'g') 
as OC tends toward 0,

And thus:

C l p  =  C u s + C L A l  +  C
where

LA2.

LUOt
. C l s  =  2 t t .  S  (k,). c '

.CLA,= cX2TT.S(k,) V u ^ . c ^ " ' X
(6.26)

C la j= ( X 2 tt 5^(2, kj

Q l.̂  is the first order (order ( 6  )) response, previously derived 

by Sears. is of order ( CXG ), and is effectively a Sears-

type response to the comnonent of which is perpendicular to the 

aerofoil chord (that is, it is a type (l) complication described in 

section 1.2.3)» also of order ( (X6. )» and is the extra

response term which arises because the spatial wavenumber of the gust 

along the aerofoil chord line differs from (a type (2)

complication).

6.3 .3  Analysis for L p

6.3.3.1 The vorticity transport equation. This is employed to determine 

the distortion of the gust vorticity. The exact, inviscid form of this 

equation can be derived by talcing the curl of the equation of motion 

given earlier (equation (6.3)):
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4 :  =  ( f m "  . . . (6 .2 1 )

where, for this problem, V ^ =  V, U + Vg j' and ^  .
Although, at the outset of this analysis, completely inviscid flow has 
been assumed, the assumption is more questionable when the transport 
of vorticity is being considered; ( the above equation, (6.27)) than 
when the relationship between velocities and pressures is being 
considered (equation (6,3)). For the latter, the predominate effects 
of viscosity are confined to the boundary layers where vorticity is 
generated due to the presence of the body surface. At Reynolds 
Numbers of practical interest for aerôfoils with attached flow, the 
boundary'' layer is so small that the effect of viscosity on the lift is 
negligible* On the other hand, free stream vorticity will be affected 
by viscous action tliroughout the flow field, some viscous dissipation 
of vorticity occurring simultaneously with the mean field distortion 
described by equation (6.27). Other workers (for exsumple Hunt (1973) 
and Graliam (1975)) have compared the orders of magnitude of the dissip
ation effect and the distortion effect; and have found that, in many 
practical situations, the Reynolds Number and the scale of the gust are 
sufficiently large to allow the dissipation to be ignored in comparison 
with the distortion. For the case of free stream turbulence, the

conditions are that (Re No.) min( »1) and
(Re No )6 ^ax(3j^ ,l) (refer to the previous discussion of the
rapid distortion theory, section 1*2.4.2),

Anyway, with the inviscid assumption, equation (6.27) is
completely correct. For the case of the two-dimensional gust, only
the z component of this equation is non-trivial:

v j = Q .  . . .  (6.28)3t ^  ay
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Nov7y as defined in sections 6.2 and 6.3: 3*^" ^ and 3^ = 3 ^ 'A

' « (6 .24')If the gnst distortion system is a linear one, the distorted velocity
will he of the form;

^   ̂ where 1)̂  is of order (o<£) . . . (6-3o)

is the Biot-Savart velocity field for 3 , so that 3 is of
the form:

Î . . .(6.3,)

f  , V . I ^  , A  , h'xx,where 3 [X, - ckid)^ -+- ^  •

Because uc will change hy. an order of magnitude over the order of an 
aerofoil chord length, the latter two terms of 3 are of order ((?(.& )
The former terms are of order ( k(X6 ).

Consequently, ^
à l  = ( - L k , S +

^ ^ (6 .3 ^ )

àt = i - ik j ,  * 
,̂ y

and

Using the above results and reasoning, the first term in each case
A

(for example, —  L j ) is of order (k^dK6.jkc(6 ) while the second 
term is of order ( ko(£  ̂cX.6. ),

Also, from section 6,2:

V d  = + V , + T r , +'iT,' + 'û',+Ô3;' , 'j
> ( 6 .3 3 )

V j  = Vî.+XTj. + 'üi+'Üî.+^i,' . _

Substituting from equations (6,29)» (6.32), and (6.33) into 
equation (6,28), and retaining terms of order ( k^CXE ), ( kcX6- ), 

and (0(6 ) yields:
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L L  ^  — u k |V ,  = 0  . . . (^ ■ 3 4 )

o(^e,koie) 0 (k^c<e) o ( k V e )

C o n s id e r  novr th e  th re e  c a se s :

( 1) k  o f  o rd e r  ( 1 ) . I n  t h i s  c a se , th e  th re e  te rm s  in  

e q u a t io n  (6 .3 4 )  a re  o f  s im i la r  o rd e r ,  and th e  e q u a t io n  i s  

c e r t a in l y  v a l i d .  ^

( 2) k  i s  much le s s  th a n  1 . The e q u a t io n  te n d s  to  U o o * ^  ~ ^ 

t h a t  i s ,  th e  d i s t o r t i o n  te n d s  to  z e ro , as e x p e c te d . The 

e q u a t io n  i s  c le a r l y  a p p l ic a b le  to  t h i s  case to o .

® ( 3) k  i s  much g r e a te r  th a n  1 . I n  t h i s  ca se , i s

n e c e s s a r i ly  o f  o rd e r  ( k * o ( 6  ) ,  th e  o rd e r  o f  th e  o th e r  

te rm s . T h is  means t h a t  some o f  th e  o rd e r -o f -m a g n itu d e  

a n a ly s is  le a d in g  to  e q u a t io n  ( 6 .3 4 )  needs re a sse ssm e n t 

when k  1 ,  Y/hen t h i s  i s  a tte m p te d , i t  i s  fo u n d  t h a t  

o th e r  n o n - l in e a r  te rm s , ig n o re d  i n  th e  o r i g i n a l  a n a ly s is ,  

need to  be in c lu d e d .  I n  o th e r  w o rd s , th e  l i n e a r i z a t i o n  

o f  th e  v o r t i c i t y  t r a n s p o r t  e q u a t io n ,  r e s u l t i n g  i n  e q u a t io n  

( 6. 34) ,  i s  n o t  v a l i d  when k ) ^ 1 *  Even i f  th e  e q u a t io n  

w ere v a l i d ,  i t s  a p p l ic a t io n  when k ^  1 w o u ld  be o f  

d o u b t fu l  a c c u ra c y  because , i n  a r e a l  f lo w ,  v is c o u s  

e f f e c t s  w o u ld  become im p o r ta n t  w i t h  th e  s c a le  o f  th e  g u s t 

much le s s  th a n  th e  a e r o f o i l  c h o rd .

The l in e a r i i^ e d  v o r t i c i t y  t r a n s p o r t  e q u a t io n ,  ( 6 .3 4 ) ,  can be r e a d i l y  

in te g r a te d :

‘~9Ù ^ —oO ^

6 ,3 . 3.2  O u t l in e  o f  th e  method o f  a n a ly s is . The d i s t o r t i o n  p ro d u ce d

I / \  _
b y  a  s in u s o id a l d i s t r i b u t i o n  o f  mean v o r t i c i t y ,  K  (^x) =  C,  ̂

i s  d e te rm in e d  f i r s t .  Y / i t h th is  in p u t ,  th e  r e s u l t a n t  d is t o r t e d  upwash
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g u s t ,  "19  ̂ , i s  o f  a s im p le  s in u s o id a l  fo rm ; and th e  l i f t  re sponse  to

t h i s ,  C l . q  , can be r e a d i l y  d e te rm in e d  v ia  e q u a t io n  ( 6 , 14) .

(V ibiereas, i f  one a tte m p ts  to  a n a ly z e  d i r e c t l y  f o r  K ( x ^ =  

th e  s o lu t io n  o f  e q u a t io n  ( 6. I 4) i s  d i f f i c u l t ) .  F o u r ie r  a n a ly s is  m ethods 

a re  used to  d e te rm in e  th e  re q u ir e d  l i f t  re s p o n s e , C l [ >  5 c o r re s p o n d in g  

to  K (x ')=  fro m  th e  e x p re s s io n  f o r  C l q  •

How ever, th e  F o u r ie r  in t e g r a t io n  i n  th e  f i n a l  s te p  i s  im p ro p e r 

u n le s s  p re c a u t io n s  a re  ta lce n . The s in g u la r i t y  i n  th e  in te g ra n d  has i t s

rv'o r ig in s  i n  th e  j  d x ' te rm  i n  e q u a t io n  ( 6 .3 5 ) *  A l i f t i n g

a e r o f o i l  p ro d u ce s  a v o r t e x - l i k e  d is tu rb a n c e  to  th e  mean f lo w ;  t h a t  i s .

V 2. as X  te n d s  to  -  c o  , Thus, f o r  any body w i th

s ig n i f i c a n t  mean l i f t ,  ^ dx' i s  im p ro p e r . Graliam (1975)
e n co u n te re d  a s im i la r  p ro b le m  i n  th e  ^  dx ' te rm  f o r  a body

w i t h  s i g n i f i c a n t  mean d ra g .

F o l lo w in g  Graham:
X , \ ' 0., I
f dx' is replaced by ( dx' 4- ( dx' .
‘<X> O UoO

• • • ( b . z Q )

From e q u a t io n  ( 6 .3 5 ) :  j

t = ( I d k , 3  dx'+ Lk^ dx') 5

= f  (kf 4pdx' ̂  k,
c o r r e c t  to  o rd e r  (k o C  6 ) ,

The l a t t e r  s te p  can  be p ro ve d  b y  e xp a n s io n  o f  th e  e x p o n e n t ia l as a

r V'pov/er s e r ie s .  Thus r e p la c in g  \  dx' as above , m e re ly  a l t e r sUcO ^
th e  o v e r a l l  phase o f  th e  s o lu t io n  f o r  th e  n e t t  v o r t i c i t y ,  S  , b y  a 

c o n s ta n t &  ^ ( t o  o rd e r  ( k o (6 . ) ) ,

where Y  = Ç dx' ,  an in d e te rm in a te  c o n s ta n t .~w5>
The phase o f  th e  f i n a l  l i f t  response  (  C u p  C l q *^ C l m *)

f -Lk.Y f
w i l l  th u s  be re fe re n c e d  to  a g u s t ,  4 ^  C  ) r a t h e r  th a n  th e  g u s t ,  j

o r i g i n a l l y  c o n s id e re d . W ith  a v o r te x - ty p e  mean d is tu rb a n c e  i n  an
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i n f i n i t e  f i e l d ,  th e  g u s t w h ich  a r r iv e s  a t  th e  a e r o f o i l  has o r ig in a te d  

a t  th e  p o in t ,  ( — c o  ) .  The in t r o d u c t io n  o f  th e  phase s h i f t   ̂ 6  ^

means th a t  th e  g u s t phase a t  th e  a e r o f o i l  i s  r e la t e d  to  the. g i s t  phase 

a t  th e  p o in t ,  (— o o  , some f i n i t e  y  v a lu e ) .  T h is  a d ju s tm e n t does 

have re le v a n c e  to  r e a l  p h y s ic a l f lo w s  c o n ta in e d  i n  f i n i t e  f i e l d s .  F o r  

exam p le , i n  a w ind  tu n n e l e x p e r im e n t,  m easurem ents o f  th e  g u s t can 

o b v io u s ly  n o t  be made a t  (—oo  ̂—o o ) .  One can  e f f e c t i v e l y  meanure th e  

g u s t a t  -  — cxO "  b y  re m o v in g  th e  a e r o f o i l  b u t  one has to  be 

c o n te n t w i t h  a m easurem ent a t  f i n i t e  y  , o r ,  i n  th e  case o f  a t u r b u le n t  

g u s t ,  to  assume homogeneous tu rb u le n c e .

I n  th e  n e x t s u b -s e c t io n ,  th e  p r in c ip le  s te p s  o f  th e  a n a ly s is  

and th e  g e n e ra l fo rm  o f  th e  r e s u l t s  a re  g iv e n .  The a n a ly s is  i s  

re p e a te d  7 / i th  f u l l  m a th e m a tic a l d e t a i l s  i n  A p p e n d ix  4»

6 o 3 .3 .3  The a n a ly s is

The mesn p e r tu r b a t io n  v e lo c i t i e s ,  V, and V 2. » p roduced  by
I, , V —

th e  v o r te x  d i s t r i b u t i o n ,  l \  ( x  ) = C   ̂ a re  e v a lu a te d  b y  an 

a p p l ic a t io n  o f  th e  B io t - S a v a r t  Law i n  i t s  o n e -d im e n s io n a l fo rm :

—OÛ — o£>
The in t e g r a ls  can be e v a lu a te d  a n a l y t i c a l l y .

A c o rre s p o n d in g  e x p re s s io n  f o r  i s  d e r iv e d  b y
X

s u b s t i t u t io n  o f  th e s e  r e s u l t s  in t o  e q u a t io n  ( 6 ,3 5 ) *  The in t e g r a ls ,  ^  

and T  \  d x '  T   ̂ can  a ls o  be d e te rm in e d
zL j '

a n a ly t i c a l l y .

The e x t r a  upwash, p roduced  by  d i s t o r t i o n  ( t h a t  i s

c o r re s p o n d in g  to  S  ) i s  d e te rm in e d  b y  an a p p l ic a t io n  o f  th e  B io t -  

S a v a r t Law i n  i t s  tw o -d im e n s io n a l fo rm :

The a n a ly t i c a l  e v a lu a t io n  o f  t h i s  d o u b le  in t e g r a l  i s  s t r a ig h t - f o r w a r d  

b u t  te d io u s .  The f i n a l '  r e s u l t  has a n a ly t ic a l  e x p re s s io n s  w h ic h  a re
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different in different parts of the complete X range from-cxo to + oo.

The lif t response, C l q  » to the upwash', (x  ̂

is derived by solving the folloiving equation (equation (6^14-) formulated 
previously);

L
"  -  j~0cO C( J ^ ( x ') c lx 'd x  4- • * .'(6.14-)

^ 4 - \

Terms in the derived 1-̂  (x,o) expression are of two basic forms; 
(1) ki c(cot~k,x)

e  ,

\7/here is a function of k,, kg^^and A  in this case.
The solution of equation (6.14) for an upwash of the form (1) 

is provided by the theory of Sears;

while the solution for an upwash of the form (2) is given by the 
generalized Sears result, first reported by Kemp;

C k  = 2tt .
The formulae for the response functions, S(ki')and S  (ki,k,-+X') 
have been detailed in section 1.2.2.

Thus, formulae for can be written dov/n directly from

the derived ^ 2.(x,o) formulae. For convenience, is divided
into its even and odd parts as a function of X , denoted by Cl^ 
and C l q  respectively:

C ld = C le +,C'lo
where C le = ■ B g  (k, ^
and
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The functions and Bq are listed in the appendix.

The final lift response, is determined from
using a Fourier integral te clinique. From the properties of Fourier 
transforms it can he shown that, if (^Ld the response to K(x) = 0 ^
then the response to a general K(x) is given by:

C ^ „ - ^ „  £ K ( A )  X U ( > , ' ) d X  ,  ̂ ^

. Vwhere T 7 / . \  U- T . . v laxtK(X) = ̂  [  K ( x ) c ‘' ^clx ,
—eO

This is the mathematical expression of the process (valid for a linear 
system) of building up the response to a general input by superposition 
of Vie responses to the sinusoidal components of that input.

For the particular case of K(x') - —  2  Uoo ̂ J TTlc  ̂

equation (6.38) becomes:

C l ^  = 0< j [jJo ( k )  + L  J, (X)] C|1|^(X) d X . . .  (6.31)
~oC A

Substituting from equation (6.37), and for - L k ^ ' l T ^  — Lk^'O' i^  

(refer 6.3):

where D  (K„l<2) = [c To (X) Be(X) +  P  (X) Bq(X)] d \ .

A complete analytical evaluation of D  (k,,kz) has not been
achieved, although there was some evidence that this may be possible 
(Analytical results were found for simpler integrals of the same type).
In this study, numerical integration was employed for the evaluation 

of D(ki)k2.)î some results are discussed in section 6 .4 .

6 .3 .4 Analysis for I— ^  . An analytical expression for L|^ can be
found directly from the formulation of section 6.3.1 ;
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k b  i K(xV"iîv(x,o')dx ,
-I

where 1/K b p - Z U o o C x O

Thus, = 2  UoO (K 'o; C ^ ] t ^  ^  ' d x  .
P -I

The integral can be determined analytically and the final result is:

C l^ =  c (.2tt . M(k,')'^ e'""" where M  (k.) = ToCk,) + 1 J( (k,) .
ĉO

( 6 .4 1 )

This response term has been previously derived by Horlock and Morfey 
(refer 1.2.3)

6.3 .5 Summary for the frozen, two-dimensional gust 
The total unsteady lift coefficient to order (C46 ) is:

C l = C l ^-^ +  C L ^ +  C u M  .

where C l j  = 2tT S ( k ) : order(E) X

Ct/jCXbTf S(k,)'kj„ ; order ((Xe)

C L A 2.~CX,2 TrSgk,,k0 9 K  e''^ : order
LJoO •

C u y  cX S tt D(k„k()|k,^k^^elarder(c/a)

(6 .4 2 )

A  . T w t  .... )C|_^- (X ZlX- [v1 (k,') >jj . C : order ̂ 6 )

with, from the continuity condition, ~ 'Uoo *
Examination of the formulae in detail shows that S/î (k,,0) - D(k,,0) = O.

A c(cot-kix) /,Thus for a simple upwash gust of the type,nJi = 'i9ie ,all the order ipic)
response terms disappear; that is, the Sears result is correct to
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order (o(6. ) for this particular gust.

6 ,4  Con-nsrison with the Theory of Goldstein and Atassi

6 ,4.1 Description of their theory. Goldstein and Atassi (l975) have 
recently developed a complete order (CX£. ) theory for the case of a 
frozen, two-dimensional gust. They employed a rigorous a.symptotic 
expansion method, and were able to present general equations (involving 
integrals) which could, in theory, be solved to yield the higher order 
unsteady lift of an aerofoil of arbit,ary section at incidence.
However they solved the equations in detail only for the particular case 
of the zero-1hi cime s s aerofoil. Their solution for this case was 

fully analytical.
In their analysis, the unsteady velocity, pressure etc, were 

expanded as asymptotic series in 0( . The expansions were shown to 
be not uniformly valid at large distances from the aerofoil; and, thus 
separate, matching inner and outer expansions were constructed. The 
inner expansion was substituted into the general inviscid vorticity 
transport equation, and, by retaining terms to only order ( CX6 ), a ' 
linearized equation resulted. This equation was solved with the 
boundary conditions on the aerofoil and at infinity. The latter was 
not the same condition as that applicable to the outer solution, but a 
modified condition which allowed matching of the inner and outer 

solutions. Goldstein and Atassi effectively solved for % ^  Dg 
(the present notation) together, A further complication was that their 
solution was not uniformly valid at the aerofoil leading edge and 

trailing edge; and this necessitated an application of the method of 
strained co-ordinates (v/hich in turn, introduced an extra terra into 
their solution). Finally an equation of motion was used to relate 

velocities to pressures and thus enable the determination of the
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unsteady lift on the aerofoil.

Three further aspects oftheir analysis are noteworthy:

(1) No mention was made of any limiting conditions (in 

respect of the gust wavenumher, k  ) for the validity of their 

linearized vorticity transport equation.

(2) Tiie inner solution, by itself, did not tend towards the 
correct quasi-steaHy solution as k, 0. This was
consistent with another statement of Goldstein and Atassi that their 
solution was "not uniformly valid in frequency space". The correct 
asymptote was recovered by reversing those adjustments to the inner 
solution vdiich had resulted from the matching of the inner and outer 
solutions. This contrasts with the present solution for C p  which
does tend to the correct quasi-steady asymptote ( )
as s-0; a result which implies that the present solution is
uniformly valid in frequency space.

(3) The outer solution for the unsteady velocity did not 
tend towards the correct undistorted gust as X  — > • —  0 0  , but to a  

gust which differed from this by a  constant phase difference.
Goldstein and Atassi stated that the latter "is frozen relative to an 
observer moving along the steady state potential flow stream-lines 
with a speed Uoo while the • former "is frozen w, r.t. an observer 
moving along the real axis with this speed," For a body with 
significant lift, the steady streamlines which arrive at the body 
originate at the point (—  eo,—  oo ); and, thus, this problem is 
equivalent to the singularity problem of the present analysis described 
in 6.3.3.2. In fact, in their analysis for the zero thiclness aerofoil, 
Goldstein and Atassi referenced the overall phase of their solution to
a datum which is exactly equivalent to the datum resulting from 

equation (6,36) of the current analysis.
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6 .4 .2  Comparison of results. Goldstein end Atassi calculated a 
higher order response function, "R, , of the form (in the current 
notation):

• • "(6.43)

where Cg_ is the complex conjugate of the order ( (X6- ) 
contribution to C g . The complex conjugate is required 

because Goldstein and. Atassi consider a gust which has the 
opposite sign for the frequency, U3,

Thus:

c f  - c 4  + + c i  - c i  .
32c- —  ̂ _ ~^ki6E,:pressine . apd

(derived from the definition of G. and the continuity condition), and
substituting froip equations (6.42) yields the following formula for 
in the notation of the present study;

fi ~ — ~ = -  S  (k,) 4- -fel—  4- Jk,^uk^. D*(k>ki) M  (k")
yki+kl /k^4k^

-  . • ( 6 . 4 4 )

A computer program was written to perform the necessary 
numerical integration for D  and to thereby calculate

via equation (6.44)* It is listed in Appendix 11. In figures 41 and 
4 2, two derived curves for (for two values of kg. ) are presented.
These curves were found to be indistinguishable from the corresponding 
curves presented by Goldstein 'and Atassi. This suggests that the 
present analysis is equivalent to the analysis of Goldstein and Atassi,

Also presented in figures 41 and 42 are the parts of “FL 
which arise only from the distortion effect. It can be seen that the 
distortion effect term becomes a greater part of "R as k, and kg 
increase. Goldstein and Atassi stated tjiat their "analysis shows that 
behaviour of the response function of a lifting aerofoil is determined 

to a large extent by the gust distortion effect", and implied that the
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Niorfey response term is less important. Figure 4I shows that, for 
■wavenumbers wnich are low but which are still of practical interest 
(e.go k, t= 0 .5, kz. = 0 ,6), the distortion term is smaller than the 
other higher order terms. It must also be remembered that the validity 
of the linearized distortion theory comes into question when k , o r 1.

Two noteworthy trends of the higher order response, Ft » are:
(1) As the frequency, k, , tends to oO , tends to zero.
From a physical viewpoint this is to be expected. On any 
body of finite size, the nett unsteady lift must be zero in 
the limit k, = c O .

(2) As k, tends to zero with kg. fixed, tends to a 
definite limit, which is different from the quasi-steady 
limit with both k, and 0. The latter limit for ft
is - 2.0. The difference is due to the distortion term: for k, 
andk-2̂ ->0 , it tends to zero (consistent with the reasoning of
6.3.3.1 and general physical reasoning); but for k , — 0 and k^ 
fixed, it tends to a definite non-zero limit (refer again to 
figures 4I and 42). This latter behaviour is also consistent 
with physical reasoning; one would expect the "steady" gust ̂ 6  ̂
to be distorted and thus yield an additional steady upwash on
the aerofoil. It has not been ascertained whether the solution 
of Goldstein and Atassi behaves similarly in this limit. They 
did not discuss this limit, and their response function curves 
were only plotted as far as k, ~  0,1 (in the decreasing k, 
sense).

6.5 Conclusions Regarding the Higher Order Theory for a Frozen, 

Two-Dimensional Gust.

The higher order response function, determined with the current
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theory is in good agreement with that derived hy Goldstein and Atassi 
via a different approach. This suggests that, wMithin the prescribed 

assumptions, the present theory is correct to order ( CKG )•
The current method of analysis has the advantage of enabling 

a ready comparison of the different types of higher order effect. The 
effect of distortion is less important thaii the other higher order 
effects when k is less than about 1.0; but its relative importance 
increases with increasing k .

6.6 Extension of Theory to the Non-frozen, Two-Dimensional Gust,

6.6.1 The gust. The gust has components:

A é — — k'2'3) — kgX —= ̂ 1 C  ; hjTg = ukz C

with CO = kp Uoo •
Y? ySimilarly, the gust vorticity is C

6.6.2 The non-distortion response terms.

The Lp response can be written d o m  immediately:

C l p  =  2 t t . _ _ . ( 6 . 4 5 )

This follows because ( k^ ) is the spatial wave-number
along the aerofoil chord line, and k-f = * Alternatively
this result can be derived by a full repeat of the analysis of 6.3.2 

with the altered gust input.
C-LpCan be sub-divided as before;

I  ( 6 . 4 Q

Ceâ = c<2tt S ; J
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L Hi (kf) 4- L H o ( W  J

The L m  response is not altered: ^ / i  u^T
C L H  = G(2Tr

6.6.3  The distortion response term. The analysis for L d  is more 
significantly altered. Full details are presented in Appendix 5*
The extra complications arise from the altered form of the linearized 
vorticity transport equation:

Ô Uoo(kf — kg') X ■" Ô ksVj — Ù ~0 " •(6-4'7')

An attempt was made to solve this equation in the manner of the previous
analysis. A general solution of the above differential equation was
determined, but, when the boundary condition, ^ = 0 at X =• —  o O  >
was applied, this solution became indeterminate. It was further noticed
that this indeterminacy would arise irrespective of the particular
mean flow field ( V/^V^ ). ' •

However, a deteimiinate solution was possible by applying the
upstream boundary condition (the gust undistorted) at a finite distance,

from the aerofoil; that is, at x = - B  * This solution for the
unsteady lift response due to distortion is outlined fully in the

appendix. The response function was calculated for various B> , and
it was clear that, as B  tends towards 0 0  , the response tends to a

definite finite limit.
For the purposes of comparison, the frozen gust analysis was

repeated for the adjusted upstream boundary condition at x = 4 g  ,

It was found that this solution approaches the original solution
(of section 6 .3.3) as B  tends towards cO , provided that an
additional term  ̂ , is included in the expression for j .

-a Uoo o \ \ 1 '
This term tends to the correct additional term, —  \  | CiX of- CO 'm.o
the original analysis (refer to 6.3.3.2) as B • A noteworthy 
feature of the solution for the non-frozen gust is that no such
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a d d i t io n a l  te rm  need be in c lu d e d :  f o r  th e  n o n - f ro z e n  g u s t ,  th e  f a c t  

t h a t  V2 SIS X — ip- — 00  does n o t  le a d  to  any phase

s in g u la r i t i e s  (a s  i t  does f o r  th e  f r o z e n  g u s t ) .

T im s , th e  s o lu t io n  f o r  th e  n o n - f ro z e n  g u s t w i t h  B  =  oO can 

be e s tim a te d  (b y  th e  c u r r e n t  m ethod) to  a g iv e n  a c c u ra c y  b y  c h o o s in g  a 

la r g e  enough f i n i t e  v a lu e  o f  B  , e .g .  ,B  = 100. However th e  r e q u ir e d  

c o m p u ta tio n  t im e ,  gove rned  b y  a n u m e r ic a l in t e g r a t io n  w i th  re s p e c t  to  X   ̂

a ls o  in c re a s e s  w i th  in c re a s e  i n  th e  vaJue o f  B  . F o r  p r a c t i c a l  

s i t u a t io n s  i n  w h ic h  th e  g u s t i s  "p ro d u c e d "  a t  a f i n i t e  d is ta n c e  u p s tre a m  

i t  i s  r e le v a n t  to  choose th e  v a lu e  o f  B  e q u a l to  t h i s  d is ta n c e .  H u t 

i t  m ust be s tre s s e d  t h a t  th e  subsequen t c a lc u la t io n  o f  th e  re sp o n se  

due to  d i s t o r t i o n  i s  th e n  a p p ro x im a te . A lth o u g h  th e  u p s tre a m  b o u n d a ry  

c o n d i t io n  w i l l  be e x a c t ly  c o r r e c t  f o r  th e  g iv e n  p r a c t i c a l  s i t u a t io n ,  

th e  H io t - S a v a r t  in t e g r a l  i s  a p p lie d  o v e r  th e  w ho le  f i e l d  when 

d e te rm in in g  th e  d is t o r t e d  upwash.

F ig u re  44 com pares th e  re sp o n se  fu n c t io n s  (due  to  d i s t o r t i o n )  

f o r  a f ro z e n  g i s t  and a n o n - f ro z e n  g u s t ( = 4oO ), f o r  *= 3 *0

and B  = 1 .4 *  T h is  v a lu e  o f  B  i s  r e le v a n t  to  th e  case o f  b la d e  

lo a d in g  in  a tu rb o m a ch in e  where th e  g u s t in c id e n t  on a  b la d e  row  i s ,  

to  a la r g e  e x te n t ,  p roduced  by  th e  rov/ o f  b la d e s  im m e d ia te ly  u p s tre a m . 

(The tu rb o m a ch in e  a p p l ic a t io n  i s  d e a l t  w i t h  i n  more d e t a i l  i n  s e c t io n  

6. 7) A ls o  in c lu d e d  i n  th e  f ig u r e  i s  th e  re sp o n se  f u n c t io n  f o r  a  f ro z e n  

g u s t w i t h  B  = oO ( t h a t  i s ,  th e  o r i g i n a l  th e o r y ) :  th e  f r o z e n

g i s t  fu n c t io n  f o r  g e n e ra l B  w i l l  app roach  t h i s  c u rv e  as B  i s  

in c re a s e d  fro m  I . 4 . I n  g e n e ra l,  th e  d i f f e r e n c e  be tw een th e  r e s u l t  f o r  

a f r o z e n  g u s t and th e  r e s u l t  f o r  a h o n - f ro z e n  g u s t i s  n o t  g r e a t .  T lie 

la r g e s t  d is c re p a n c y  o c c u rs  as kg Ô, where th e  " n o n - f ro z e n "  r e s u l t  

i s  n o t ic e a b ly  le s s  th a i l  th e  " f r o z e n "  one . T h is  i s  c o n s is te n t  w i t h  

p h y s ic a l  re a s o n in g : one e x p e c ts  th e  d i s t o r t i o n  to  be re d u ce d  as ^ t Y k j  

becomes la rg e  ( r e f e r  a ls o  to  th e  a p p e n d ix ) .  .
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The m a th e m a tic a l r e s u l t  f o r  th e  d i s t o r t i o n  re sp o n se  i s :

C l^ = cK 2 tt, D'(k-f,ks,U,B) fk,%  - kf-h-1 ,
 ̂ . . .(6.48)

w here 'D(k-4,ks.k,,B) = I +3)(X')BU>>')J dk.

and th e  fu n c t io n s  Bgr and B o  a re  l i s t e d  i n  A p p e n d ix  5'

6 .6 ,4  Summary f o r  th e  n o n - f ro z e n ,  t? ro -d im e n s io n a .l g u s t .

To o rd e r  (C X G  )> th e  com ponents o f  th e  re sp o n se  a re :

C,, = 2ir S'(kf,k.) itj^ e'"'

C l a i  ”  o k  2  Tr S  ( k f , k i )

C l a P  ^  2tt S k ( k f , k . , k b  (, (6.4C|)

C lû = Ok 2TT 2>'(yks,ki,B)|̂ ks'!̂ j-k2.̂ |̂ e 

C lî  = (XStt

C U jt

/
and c o n t in u i t y  demands t h a t  Y Y i *Uoo Kz UcO

6o7 Application of the Hiaher Order Theory to the Periodic Loading of 

Turhoraachine Blades.

6 .7 *1  Turhom achine unsteady f l o w . There  a re  f o u r  b a s ic  so u rce s  o f  

th e  u n s te a d y  v e lo c i t y  e n co u n te re d  b y  tu rb o b la d e s :

( 1) ae rodynam ic  in te r fe r e n c e  betw een m ov ing  b la d e  ro w s .

( 2) in te r fe r e n c e  o f  a m oving  b la d e  row  w i t h  th e  mean v is c o u s  

walee8 fro m  u ps tream  row s .

( 3) th e  u n s te a d y  v e lo c i t i e s  i n  th e  walres fro m  u p s tre a m  ro w s ,

(4) a c o u s t ic  s o u rc e s .
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ÎCiock (1972) has published measurements of the flow unstead

iness produced by a rotating blade row. This measured unsteadiness 
could clearly be divided into;

(a) a low frequency periodic component .
(b) general turbulence over a wide frequency range. 

Significant power was associated with both components. In the main, 
component (a) arises from effects (I) and (2) above, while (b) 

arises from (3) and (4) * It is the loading due to the periodic 
component which is being considered in the present application.

The question of interest is; v/hich components of the sinus
oidal gust response (to order ( CKG )) are important in the blade 
loading produced by the typical periodic unsteadiness in a turbo- 
machine? Clearly, knov/ledge of the typical wavenumbers of the periodic 
gust is required.

6.7*2 Periodic gust model. The blade rows are assumed to be two- 
dimensional aerofoil cascades (as usual). The geometry of the flow 
through a stator/rotor combination is illustrated in figure i45A. The

A - c k y  ,periodic gust is modelled by C  • (Refer to the figure for
the definition of notation). Betz (see Kiock), using a simplified 
cascade model, has shov/n that the "gust" produced by (l),j above, is 
of this form; and it is expected that the mean profiles of the stator 
wakes will also approximate to this form. In the co-ordinate system 

( X ' Y Y ' ), moving with the rotor blades, the gust is:

^  g-L K(Y'+lValt)
where Vg  is the rotor blade velocity.

In figure '.45̂ 3jthe flow incident on a single rotor blade is 
highlighted. In the (x , y) co-ordinate system aligned with the 
relative mean stream, the gust is of the. following non-frozen, 

two-dimensioned form;
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A _ L ((Ajt -ksx-k^y)

where U) ~ K  | Vg, | = kf | | ^that is , kf = ^
I— Ki

and - Ksin &A > ~ KcOsSa. •
Vfî is the average incident velocity relative to a rotor blade.
Sa is the angle between V r and the turbomachine axis.

6.7*3 T'vnical v/avenumherso From the text of Godsey and Young (1949) 
data for IVbI/|\/ĵ| - and S^ was elicited. A blade-spacing to
blade-chord ratio of 1.0 was employed (This is a typical machine value).
This led to a value of K  of TT , and enabled the wavenumbers, k.f.  ̂ks ̂ 

and kz f to be estimated for each pair of | a n d  Sa values. 
The data, which covered a wide range of compressor and turbine blade 
types, is summarized in table 3*

6.7*4 The calculation. The lift response function was calculated for
the following four wave-number combinations which cover the range of 
data of table 3*

ks ka kf
0.1 3*0 3*5
1.0 3*0 5*0
2.0 2.0 3*5
3*0 1*5 2.0

The non-frozen gust theory of section 6.6 was used, with B *= 1.4î 

that is, with the gust considered to be produced at the trailing edge 
of the upstream blade row, and the rows to be separated by a distance, 

0.2c (typical machine case). The first prder (order ( £ )) response

term was included in the calculation; and an angle of incidence of 10
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(between the blade and V r ) v/as assumed: turboblades generally 
operate at effective angles of attack of this order. In this way, it 
was possible to compare the order (G ) and the order ( CKG ) 

contributions. It was not expected that the order (0(G ) term arising 
from gust distortion would be estimated to greater than "order of 
magnitude" accuracy. Firstly, the distortion theory for a non-frozen 
gust with a finite value of B is not an exact theory (refer to 6.6,3). 
Secondly it is an over-simplification to consider the gust distortion 
by the mean field of a single blade: clearly the neighbouring blades 
in the same row will contribute significantly to the distortion of the 
oncoming gust.

• The response function which was determined in this calculation 

is defined by;

where C l is the complex conjugate of the .total unsteady
response.

That is: 'R, - R/g R o  ’
where T

=  ( C l «  J ( 6 . 5-0 )

R m = C L M / 2 T r 6 e ‘'“̂  ̂’

R o - C L o / a . T x e c " " ' ^  ■

The response function without distortion, lQ j  ~ R s  R a  5

was also determined.
All the calculations were repeated for the corresponding 

frozen gusts (with the same values of and k^ ) «
The computer program employed for the calculation is listed in 

Appendix 11. . •
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6*7*5 The results. The results for the four wavenumber combinations 
and for both non-frozen and frozen gusts are presented in table 4*

R g  , R a > R m and. R/£> are given as complex numbers, and | R  | is
compared with (| R  |-.

Features of the results were:
(1) For the non-frozen gusts (with typical turbomachine 
wavenumbers):

(a) the higher order terms, i of 
similar order in all cases.
(b) the combined higher order response ( + R^^)
was significant. In fact, v/hen was less than y

* this response was at least as great as the first order
response, R $ .
(c) for the four cases considered, neglect of the 
distortion resulted, respectively, in the following 
alterations to the modulus of total response; +15/'%
-2^% -7^% -32^%

(2) When the gusts were assumed to be frozen, the calculated 
total responses were markedly different from the above, due 
to the large effect of the Sears-type responses, and 1%^ '

6.8 Conclusions Regarding the Application of the The01?/" to Turboblade 

Loading.

The theory has been applied to a blade, operating at an 
effective angle of incidence of 10° , and subjected to a gust which is 
representative of the periodic unsteadiness in a turbomachine. The 
calculations have shown that the following two effects need to be 
included when estimating the unsteady load on such a turboblade;

(1) The effect of the "non-frozen" nature of the gust.
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(2) The effect of the higher order (order (CX6 )) response 

terms arising in the theory.
Of these latter terms, the distortion term, as formulated in 

the present theory, is the least accurate and the most difficult to 
calculate. When kf is greater than ks and v/hen ks and kz are of 
similar order (a common situation in a turbomachine), the distortion 
term is relatively small, and it is recommended that it be ignored in 
this case.

6 .9  Theory for the Frozen Three Dimensional Gust

This theory is developed, primarily, as a basis for the higher 
order turbulent loading theory of the next chapter. However the theory 
can be applied directly to some problems of practical interest; for 
example, to the problem of a tv/o-dimensional gust incident upon a 
swept wing. This latter application is considered further in section

6.9.8.

6.9.1 Additional complications which arise when the gust is three- 
dimensional .
6.9.1.1 Tie gust. The gust has tliree velocity components of the 

following form;

Continuity requires that k,'iT', + = O  .
Associated with this gust velocity, there are three components of 

vorticity;
Y  ̂\ L ( ü u t - k , x - K y - k 3  Z)

• • 3 COÔ 3 dcO ̂

where >̂ ico ~ — ü k 2_ ^  kg
I 10Û = -(-kï-ü-, + L k ,  vj

3 ; ^  = +  Lki.'O; .
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6.9.1.2 Aerofoil vortloiby. The unsteady bound vorticity lias, in 

general, another component in the chordwise direction, v/hich arises 
because of the upwash variation in the spanv/ise direction. The shed 
vorticity in the wake will also have two such components. These 
vorticity components are subscripted according to the convention 

described in 6.3.1.1.
3The boundary condition for the unsteady upwash is satisfied 

by the induced velocities of the unsteady vorticity (bound and shed) 
in two co-ordinate directions. Tie mean flow is unaltered; that is.
the steady bound vorticity is still satisfied by ~ ~  ^  D o o C kJ

6.9 .2  Problem formulation. The instantaneous velocity to order (0(6 ) 

is:

Vi, = Vî  +  u5q •+ uSq ^
as before.

Following the two-dimensional analysis:
(1) On the aerofoil upper surface:

=  V f  ~  ^  -h  4-

; the boundary condition 

-h ijg —
(2) On the aerofoil lower surface:

-  V f  +- '15'f -V-

(6.51)

- o
VR J

where and satisfy the boundary condition for the 

velocity field,
and and ^ 3 satisfy the boundary condition for the

velocity field, ulq.
The relationsliip between velocities and pressures is still governed by
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equation (6 .4):

_ —  \ / x A  = —  V/T'F'V
àt = -  v ( d y + i b )  . • -(6 .4 )

In this case, in the ( ^  o j z . )reference frame:

y " ^ =  v - ç î  +  +  v j f  ,

and ^ L +  3^ j" + .

and the equation, integrated with respect to Ç , becomes:

^  I  ̂ ^ I =-('h|y’' ] ® + . . .(6.52)
-oO

Equation (6,52) is applied to corresponding points on the 
upper and. lower surfaces (using the equations (6,51))• The equations 
are subtracted, and terms of higher than order (Ck6 ) are ignored. 
Integration of the pressure difference over the aerofoil chord and 
removal of the time mean part of the equation yields an expression for 
the unsteady lift force. The expression is sub-divided and further 
simplified in the manner of 6.3.1.7 * and the resultant components are:

I f '
(a) + V^fy3(Ç,pclG • •

' 6-1

where and satisfy the boundary condition for .

‘ X  '
(b )  ^ 3 ( x \ z ) c l x ' c / x  -t- LU^?3(>^>2l) c1x 2  , , . (fe.5'4)

where ' ^^ (x ^ ' z ) and ^^(XjZ) satisfy the boundary condition for , 
and is the additional upwash produced by the distortion of 

3ico  ̂ and Jacoby the mean field:

K (x ) = -  ^  U.0 G< J ]I — X1 -hX
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(c)

= -  ( K ( b . '«'.(x^O.z'jdx . . . (6.55)

6 .9 .3 Analysis for L p  . The order ( G ) result of Graliam (refer to
1.2 .2) is:

Cu. = 2TT. G ( k „ k b . % ^  ^ L ( w t - k , z q

V/hen Graliam* s analysis is repeated for the zero-thiclaiess 
aerofoil at incidence, CX » and equation (6.53) is thereby solved, the 
response is of the form:

C l p =  2 tt. G'(k,,k,-o(kj, . .(6 .5 6)

0  is the generalized Grahara function, already considered in section

1.2 .2  for the case of the order (G  ) response to a non-frozen three- 
dimensional gust. Just as for the tv/o-dimensional function, S  , G  

will arise whenever the spatial wave-number along the chord line differs
from » In the above analysis, these wavenumbers are ( k

, #and Ki respectively. At this point in time, the "exact" response
functions, G  and G  , can be evaluated only via a complicated 
numerical route.

6 .9 .4 Analysis for Lp . This is a linear analysis, paralleling the 
two-dimensional case: the distorted velocity field is determined first, 
and then the boundary condition on the aerofoil is satisfied for this 
field, ^^ppendix 6 gives the full details.

It is relevant to consider how a vortex element, which
initially straddles the mean stagnation streamline, is distorted by the 
mean field. (This component of gust vorticity was not present in the 
two-dimensional problem). Such a vortex element will be stretched 

tremendously as it approaches the stagnation point. Vfith the inviscid 

flow idealization it will be stretched an infinite amount when it reaches
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the body (although this will require an infinite time). Furthermore, 
there v/ill be a "pile-up”of these greatly stretched vortex elements on 
the body surface.

------- vorToc element 
ûT time. > "t •+■ A t .

sfagriatTon stream line
a t tm e .  j t .

This "stagnation streamline singularity" has been considered 
in detail in the theories of Lighthill (195^) and Hunt (1973) (both for 
the particular case of a circular cylinder), They have demonstrated 
that the "infinitely-stretched" vortex element induces an infinite 
velocity on the body surface in the z direction; but the induced 
velocity perpendicular to the surface (before the surface boundary 
condition is satisfied) remains finite*

In the present analysis, attention is focussed on the calculation 
of the upwash velocity perpendicular to the aerofoil surface. The 
distortion theory does not predict any singularities in this component 

of velocity*
As before, the exact inviscid vorticity transport equation is:

,r
y -r  ̂s y..T r-l \ . .T . . . (6.21)& +  (vTï)i’ - ( f î ) ï

Or, for the i th component:

In the determination of the distorted upwash, , only those 
components of vorticity that contribute to it, namely IS, and ^ 3 , 

need be considered.
If. the gust distortion system is linear, then, as demonstrated
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in 6.3.3.1î

—  = (-uk,3i + )e

v/here and aire of order ( CK&  ̂k ).
The derivatives, and , are of a similar form*

The expansions for 3(. and Vl are substituted into equation 
(6 .57)» and terms of order ( k^0(& ), ( kcX6 ) and ( (X& ) are 
retained. The resultant equations for i = 1 and i = 3 are: - 

/>

o('x!e,We') oCkcKe") o(k'-o{£') o M e )  o(ko(&) }(6.5"8)

u . #  - i k , v ; s ' -  ikiV; s . . . o

Follov/ing the reasoning of the two-dimensional analysis, these 
linearized vorticity transport equations will not be valid when k is 
much greater than 1*

Integrating equations (6.53) with respect to x and using the 
fact that = 0 (irrotationality of the mean disturbance
field) yields:

»
oo

(bsq)
 ̂ “OÜ —«0

The lift response, , for a sinusoidal distribution of mean
vorticity, K'(x^ = 5  , is determined first* Tlie integral,  ̂ )
is calculated as ( clx ■+ C [Vx " (j - )

' V'as before,* Analytical expressions for this integral and for j iX<f^ ’
and Vg. have been derived in the two-dimensional analysis* 3, and 
are determined by substitution of these expressions into equations

(6.59).
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The extra upvvash produced by distortion, (x . i

is evaluated by application of the Biot-Savart Law in its full three-
dimensional form:

do ■ oO
i ((( ^  [(( l lid d h z A d n h A ' • (6.60)

A g a in  the algebra involved in the evaluation of the integrals is 
complicated though the method is straightforwardo Terms in the resultant 

a>t(x^0,2.') expression are of two basic forms;

(1) ^

(2) 0
where i3̂z. is a function of k",, k̂,  ̂k-̂   ̂and X .

The «lift response, C lq » corresponding to is determined
with equation (6.54)0 The solution of this equation for an upwash of 
the, form (I) is provided by the theory of Graham;

d a  = 2tt G(k,,ki)

while the generalized theory for a non-frozen gust (refer to 1.2.2) 
provides the solution for the case of upwash (2);

C(.D = 2 tt . G'('k,,k,+x,kî)^y(j^e‘̂ ^^

Thus the expression corresponding to (X̂ Ô z.)
can be written-down , and finally:

CLb = UoC\ j [-3;(x)-fLP(x')]CÛyA)dA for K(x)=-2 UU 0< , / ^  -
—oO

The result is;

Cua = cx Zir {P:(k„K,k̂  ̂+ FUk„k.,k,')|f̂  +
y ' '(6 .61)

where the transfer functions, , can be evaluated numerically via 

formulae of the following form;

Fyk,p„kO = To(\). Ei(\) + P (X) OiiX) ] cix . . .  (6.62.)
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The-expressions for EL and O l involve the response functions G  and G  
They are derived in detail and listed in Appendix 6.

6.9.5 Ana lysis for
This is identical to the two-dimensional analysis for L|v̂  * The 
result is;

C l m - « , M C k . ' ) .

6o9o6 Summary for the frozen, three-dimensional gusto

C l C lp -t C lq C lj^ to order ,

where
C lp = Sir. G'(k,,k,-o<K,kP [ ^ +

CLo^oiZ-n [ f , + h u = o l  j

C L M - C X a r  gC(.C-k:Z)  ̂ J
UoO

and. continuity demands that ;
t -+ — O  •

Yihen ks= 0 , 0  =  S and G —  S , and the two-dimensional gust result, 
presented in 6.3*5» is recovered* (Appendix 6 should be referred to for 
details of the reduction of the distortion term, CL^^when =0).

6 .9 .7 Use of the l!ipp?idge approximation to G  and G  for the higher 
order terms* In the numerical computation of Clq» the response 
functions G  and G  .must be evaluated many times. As these functions 
themselves require numerical computation, the calculation of Clq, as 
above, is rather lengthy* The Ilugridge-type approximations to G  and G  

are fully analytic (refer to section 1.2.2 for the formulae derived in 

this study); and thus their use enables the computation t® be completed 

in a reasonable time*
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In many practical situations, the I.Iugridge approximation will 

provide a good estimate of the response function. An example is 
provided by the current first order turbulent loading study (Chapter 5) 
where the use of the Kugridge approximation yielded a reasonable theoretical 
prediction of the admittance. When the approximation is applied only 
to the higher order terms, the discrepancies so introduced will be 

relatively smaller*
When the hugridge formula, G ^ \ replaces G  » the primary 

response, Gpp-iCan be subdivided in the manner of the two-dimensional 

analysis (refer to 6.3.2.4):

C-Lp “ C l s  ^  0

Cus = 2tt. (k„k,). é  ,

CL,,=cXZiTGM(k,.k3) »

'oO

and
, GwA'^'.K.k,) = L(k,.k(){h(KPL Jlk,)] + .

(_For L(k,,k3), see eqn,(j-4) ; forT^Ck.) , see eqn(6.2.s)^

Thus, with the llugridge approximation for the higher order 

terms, the total response is:

C lj = 2 t t . ,

o<2 T r . , '̂̂ '̂ (6 .6 4 )

CTkETT. GMAk,.k^k3)'%gy^'^^"'^^^\

C L , =
(cont. over')

'Si- 1
1
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where the functions, F% j are evaluated with the hu&^iu^,o
approximation, anj

= CX 2 tt M  (kt _

Cpgis the order ( 6 ) response to the upwash, is of order
( (A& ), and is the response to the component of 1>, which is 
perpendicular to the chord. is of order ( (X& ), and arises
because the spatial wavenumber of the gust along the chord-line has a 

component of the wavenumber, » C l d  i^ the order ( o(€- )
response arising from the gust distortion effect^ and CLf̂ ^̂ is the 

order ( CXG_ ) "cross-term” between the mean velocity field and the 
gust velocity field.

These response formulae are employed, in the next chapter, for 
the theoretical calculation of the turbulence admittance to higher 
order.

6.9•8 Application to the swept wing/two-dimensional gust problem.
The geometry of the problem is indicated in the following plan view:

A- * angle of sweep

The two-dimensional sinusoidal gust has components:

u(cot-k,x-k^y')
with CO - k, Ueo

In the co-ordinate frame, 3c , y , z (see above), the gust component:
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are:
L ( c o t - k j C o s A x - k i . M  -  A x )

• cos yv £

%  e
L 0̂3^  — k,cos A .'X — k%.L| “ k,sir\ A.z )

n  sin Acc ^cot-^ kj COS A.X — kï.y — kisin A_z. )

The equivalent unswept problem is sketched below (three- 

dimensional view):

UcoStn A X ^

A

The analysis can be greatly simplified, at this stage, by 

ignoring the mean velocity component, Uoosin A.  ; that is, the 

gust, frozen in space, is considered to be convected onto the aerofoil 

by the component, UooCosA. , alone, (The frequency sensed by the 

aerofoil is still k,Uoo ). The validity of this simplification for 

the aerofoil at zero incidence has been rigorously demonstrated by 

Edwards (l9?2)o The author, by initially retaining the sinA in 

the analysis, has found that the simplification remains valid for non

zero cK o

With this simplification, the lift response can be written 
down directly from the result for the frozen three-dimensional gust 
(equations (6.63)). The swept wing lift coefficient is here defined 
in terms of the component of the mean stream perpendicular to the 

leading edge; namely, UooCos A. • fhus;

p(UooC05 Ay
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The r e s u l t  f o r  C l  » to  o rd e r  ( 0 ( 6 .  ) ,  i s ;

C l = C l p + Q q + C um s

where CLp = 2 lTG (k>co ',A ,l< ,cosA -iC <kj,lf,S inA ')|!^^J^ ‘̂ ^ | e ' ' '  ' ^

, C l , - = « 2 w ( f , L * F ,

where =  F i. (k-,coS A  ,k ,k > s ia  A ')  5 and

C, -CX2K M(k,cosA)'V, e"(̂ t-k,slnAz)
*“ M V 06

w ith  03 = k", Uoo a nd  + k?al? = O .
, . . equations (6.6s)

 ̂rx L, - ̂I '^1 ^  f'Z  ^2.
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CHAI-̂ TIhR 7* Higher Order Turbulent Loading

In this chapter, a higher order admittance theory is developed; 
and a comparison is then made between the theoretical admittance and 
the experimentally measured admittance of an aerofoil at incidence, c C .

7.1 Higher Order Theory

7o1o1 Basic formulaeo In section 1.2.5, a formula for the admittance 
of lift of an aerofoil subjected to an isotropic turbulent gust has 
been derived. In tensor notation it is:

cO
(A(ki)l^ = ( ^ ) ’d") . .0-*0

— oO
X ^ ^ i s  the response function for the i th component of the 

frozen sinusoidal gust. It is defined by;

where L v i s  the sinusoidal response, 
and 'u ' l is the amplitude of the i th

component.

The theoretical higher order response to a general, three-dimensional 
sinusoidal gust is required. In the previous chapter this response 

has been derived in the form:

The nett lift response for a section of span 2b is given by:

~  ^in k^g i-Lüt
where Q = Lz. , the aspect ratio.

C

In this theory, the sinusoidal response employed is that with the
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Mugridge approximation for the higher order terms (to enable a feasible 
computation of the theoretical admittance). This response has been 
detailed in section 6.9.To Comparing these equations with those above 
yields the following formulae for L î

where R, = CX +  Û< •+ C< M(k,^

R a  ~  G  ( I f , , k b  +  c X  G M A (F .K \,k > ’)  H - < X F v ( k , , F ,k ' i ’)

R 3 " A F 3 ( k „ R , k O  . ^

”Tgj (k^Kjkv) is the normalized three-dimensional spectrum of
the isotropic turbulence, defined in section 1.2.5. In this study,
the formula used for T,. is that which is derived from the Vonij
Karman semi-empirical formula for the one-dimensional spectrum,
(refer to section 5*2 for a fuller discussion). The T^^ formula is 
(in tensor notation):

; k% . frffiraPfek^ '

Substitution for XT.i, and T^^ in equation (I.II) yields:

f-Soi_CkM

7 ,1.2  Substitutiton for . The equations (7.1) express the functions, 
in terras of other known functions. The admittance becomes 

determinate when these expressions are substituted into equation (7 .2). 

It should be noted that the rapid distortion theory of turbulence is 

effectively being employed in the evaluation of those admittance terms
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which involve the response functions, ; and thus the validity of 
these terms is conditional upon:

(ReNo.) < ^ m i n ( ^   ̂I ) and (RelIo.)^y^ max(£j2^^ i ) .
(refer 1,2.4 .2)

The algebra involved in the substitution for is complicated 
and full details are left to Appendix 7* The resultant integrand in 
equation (7.2) has a term of order (1) (the term which arises in the 
first order theory) and terms of order (C>6 ) and order ( ). Some
of the terms in the integrand do not contribute to the integral because 
they are odd functions of the wavenumber, . In fact it is found 
that none of the order ( 0( ) terms contribute to the integral (being 
odd*in ); while all the order ( ) terms do contribute (being even

in both kg. and ).
From this finding follows the major theoretical conclusion of 

this study; namely that, in isotropic turbulence, the theoretical 
admittance of lift is not affected, by changes in incidence CK , to 
first order in CX . The results of the current experiment, in which 
the turbulence Was approximatély isotropic, were in accordance with 
this conclusion: the measured effect of incidence on the admittance
was only moderate (see 7.22, later). It should be stressed that, 
when the turbulence is non-isotropic, it is likely that the admittance 
will be affected to first order in CX .

It is not entirely surprising that in isotropic turbulence, 
the admittance does not depend on the first power of 0( . Isotropic 
turbulence has no preferred direction, and so the admittance of lift, 

a "mean squared" property, is clearly the same for + oC and for - o ( .
In other words, the higher order admittance would have to depend on|cA| 
rather than cX . Yet an examination of the present analysis reveals 

no mechanism by which the modulus sign on 0 ( could arise.

In contrast to the present results, Graham (1975) has found 

that the admittance of drag of a porous plate is affected by the mean
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flow field parameter K , to first order. Yet, in this case, the 

admittance will he different when K , the resistance coefficient, is 
negative (for example, with the porous plate replaced by some thrust- 
producing device). It is tentatively suggested that, when the mean 
field is asyiiTmetric with respect to a plane parallel to the stream 
(for example, the aerofoil at incidence) there will be no first order 
effect of the*mean field on the admittance (in isotropic turbulence); 
but that, when the mean field is plane-symmetric (for example, the 
two-dimensional pxjjorous plate) or axisyiTimetric, there will be a first 
order effect.

It should be noted, in the aerofoil case, that other statistical 
properties of the unsteady lift in isotropic turbulence, such as the 
probability of achieving a certain level of lift, may depend on oC 
to first order,

7 .1.3  Evaluation of the order ( cX^) contribution. It was felt that 
this contribution to the theoretical admittance could account for the 
moderate increase in the measured admittance, resulting from the 
increase in incidence, CX , (The experimental results are discussed 
in more detail in section 7.2.2),

It was realized that, to evaluate the order (CX^ ) contribution 
fully, the sinusoidal gust response must be determined correct to 
order (X^£). This is necessary because a crossterm between an order 
(cX^6 ) term and an order ( £  ) term is of the order of interest; viz 
(OC^£^) (which leads to an admittance of order ( cX^)), It is 
questionable whether the linear analysis can be extended to incorporate 
such non-linear terms: in fact, a detailed analysis of the convergence
of the series in 0 (  would be required to verify the validity.

The feasibility of determining the sinusoidal response to 

order (CX^£ ) was explored . It was found that some, but not all, of 

the extra terms could be evaluated; the difficult terms being those
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which involve a higher order (non-linear in O i ) distorted velocity. 
This velocity clearly cannot be determined with the linecurized 
vorticity transport equations (equations (6.53)) derived previously.
An attempt to derive a vorticity transport equation, correct to 
order ( o C  £. ), but more tractable than the complete equation 
(equation (6.27)), was not successful. The evaluation of the tractable 
(Ck^C ) terms was undertalien in part, the complete analysis being a 
tedious task. This paxt-evaluation was sufficient to show that some, 
at least, of these order ( ) terras would result in an integrand
even in both and ; that is, they would contribute to the 
theoretical admittance to order (cX^),

However it was considered that a full derivation of all 
possible (cX^E ) sinusoidal response terms was not worthwhile in view 
of the facts that;

(1) the theory would be still incomplete to order (CX^E ),
(2) the extension of the linear sinusoidal gust theory to 
incorporate non-linear terms was questionable from a 
fundamental mathematical viewpoint.

Nonetheless it was decided that those ( ) admittance terms arising
from the order (CXE ) sinusoidal gust theory should be computed, in 
the hope that they would provide some measure of the increment in 
admittance due to incidence. The sum of those order ( ) admittance

terms can be expressed mathematically as:

The function, I (k,^ki,k% Ayc) listed in Appendix 7« It consists 
of 21 terms and involves various combinations of all the response 
functions arising in the order (CXE ) sinusoidal gust theory.
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7.1*4 C omput ation do tails. The order (CX^) admittance, for each 
value, was determined via a double numerical integration of the integral 
contained in the right-hand-side of equation (7 *3). however, imbedded 
in the function I (k, jkj. ̂ a r e  the response functions, , 
which have, themselves, to be determined v/ith a numerical integration 
(refer to 6.9*4). Tlius the computation was effectively a triple 
numerical integration and was fairly lengthy; about 300 seconds of 
CjXJ 6400 time were required for each value of k, .

In the current experiment, detailed measurements were made of 
the turbulence generated by the 6 inch grid. For this turbulence, the 
value of ^>/c = O.4O was employed in the calculation of the order
(CX̂ «) theoretical admittance. This is the value recommended in section 
5 .2.1, following examination of the various measured turbulence 

spectra.
The admittance was calculated for a range of incidence,CX, 

from 10° to 12°. In the experiment, the set incidence of the aerofoil 
was 10°, but the aerofoil support system produced an additional mean 
flow incidence in the range 0° to +2° (as determined in section 4 *2.5)

The program written for the computation is described and 

listed in Appendix 11.

7 .1.5 Asymptotic admittance formulae for k, — 0, ^i/c—*"00 
Formulae, corresponding to the previous higher order theory, are derived 
in order to provide some information on the nature of the turbulent 

loading when the length scale of the gust is much larger than the 

aerofoil chord.
To transform equation (7*2) to a form suitable for the application 

of the limits, the following substitution (after Graham (l9?5)) is 

employed: . ^

where “ /à ■+ k| .
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V/ith this substitution, equation (7.2) becomes;

become;

Thus,

In the transformed variables, the limits O  and ' ^ y ^ ^ o O  ^

k,— ^ 1 and ^-*“0 .

The functions, 11̂  , have been given in equations (7.1)
(in fact, the llugridge approximation is not necessary: the same 
asymptotic formulae are derived if the exact response functions are 
retained). In the limit, ^ 0, the response functions behave as

follows, — 1

M  ( ̂K,') 1
Thus — >■ 2 cX ; Rg— > 1 , and R^ — 0 .
These limiting forms are substituted into equation (7.4)> and 

the resulting expression for |A(d)| can be divided into two terms;: 
one of order (1) and the other of order (CX^ ). (Another term, of order 
(CX), has an integrand which is odd in k^ and so it does not 
contribute to |A (O) | . Tliis is consistent with the full theory of 

section 7.1.2).
The order (I) term is:

 ̂_ 55 (T±±_Ë_ .ta%
— 04

This integral can be evaluated analy.tically (Appendix 8), 

and the result is:
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This is the expected quasi-sbeady admittance for an. aerofoil at zeho 
incidence, (refer to the admittance definition, equation (l.C)),

The order (cX^ ) terra is:

Again the integral can be evaluated analytically (Appendix 8), and the 
result is

|A(o )1̂ . - 3 c < h

This higher order asymptotic admittance contribution has its origins 
in two of the sinusoidal gust response terms:

(1) The response to the component of perpendicular to
the chord: *

(2) The Horfey-type response: .
For the same reasons discussed in 7.1.3, this higher order admittance 
is not completely correct to order (CX^). Nonetheless, it does 
indicate that, while the effect ofdistortion tends to zero as ki — >• 0 
and ^  o O  , other higher order effects remain significant
in this limit.

7.2 Corararison of Experiment and Theory

7,2.1 Method of comparison. Because of discrepancies existing between 
the theory and experiment at zero incidence (refer 5*1.2), it was 
decided to compare the measured increment of admittance with the 
theoretical admittance increment. Two.forms of graphical presentation 

are used:
(l) In figures 4 6, 47, and 49, the admittance increment is 

plotted on a linear scale against frequency on a log scale. This 

presentation emphasizes the absolute magnitude of the increment,
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knowledge of which is important in those practical situations in which 
the overal1 level of loading power is of interest.

(2) In figure 48, the results for the series 3, 6 inch grid 
case (which gave the best agreement between theory and experiment) are 
plotted as log of the total adrrdttance vs, log of the frequency. The 
total theoretical admittance v/as here derived by adding the theoretical 
increment to the zero incidence experimental admittance. This 
presentation emphasizes the magnitude of the admittance increment' 
relative to the first order admittance.

In each case, two different estimates of the theoretical 
increment are provided:

(1) The increment comprised of all of the order (cX^ ) 
admittance .terms which arise from the order ( OXG ) 
sinusoidal gust response.

(2) The increment, as in (I), but with the effect of 
distortion ignored,

7 .2 .2  The experimental increment. The experiment has been described 

in Chapter 4 , and the raetliod of data reduction in section 5.1*1.
Figure 46 plots the experimental results of the series 1 and 

the series 3 tests for the case of the 6 inch grid turbulence. There 
is a significant discrepancy between the results of the twq series; 
a discrepancy that clearly has the same ( as yet undiscovered) source 
as the difference between the zero-incidence experimental admittances 
for the tv/o series of tests, discussed in detail in section 5*1.2. The 
measured admittance increment due to incidence decreases with increasing 
frequency; and, even at the lowest frequency, as figure 48 indicates, 

it is only of moderate magnitude.
The less definitive data of the. 3 inch grid test is plotted 

in figure 49*
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7.2.3 The theoretical increment. This increment, detomnined both 
with end witliout distortion, is plotted in figures 46 to 49 for the 
band of values; CX = 10° to CX = 12° , The sensitivity of the result 
to the value of CX (expected because the increment depends on
is clearly demonstrated in the figures.

Comparison of the increments, with and without distortion, 
provides the following information on the theoretical role of distortion

(1) At lower frequencies, the distortion contribution is 
less than that of the other higher order effects, and leads
to a small reduction in the increment.
(2) At higher frequencies, the distortion effect dominates,
and causes the increment to be greater.

7 .2 .4 Sources of discrepancy between theory and experiment
(a) Incomplete theory. As discussed in 7.1*3, the higher 

order admittance theoẑ y is not exact to order (CX^). This is possibly 
the greatest so'urce of discrepancy between theory and experiment in the 
present investigation,

(b) Use of Mufpridge approximation. Inspection of the zero- 
incidence admittance prediction obtained with the Mugridge approximation 

(figure 38) suggests that the errors introduced into the increment 
estimate will, in the main, be restricted to a small overestimation at 

the higher frequencies.
(c) Viscosity. The present theory has been obveloped with an 

assumption of completely inviscid flow. As already indicated in 6.3 .3,1 
the assumption is most questionable when the transport of vorticity is 
being considered (that is, when the distortion effect is being 
determined). Bearman (1972), when investigating the distortion of 
turbulence approaching a bluff body, found, in some measured spectra 

near the body, that the power at the highest frequencies was less than
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the corresponding power in the undistorted turbulence. This he 
attributed to viscous decay.

(d) Limited validity of linearization. In 6.3.3*1 and 6.9*4, 
it was argued that the linearized distortion theory is not valid for

k 1. However, it is felt that the linearization should be
valid for the admittances considered in this investigation: = O.4O
and the maximum value of k, = 5*0*

(e) Effective incidence of the supports. This potentially 
significant error has been allowed for in the theoretical calculation.
The effective flow incidence should be contained in the range 6X  = 10° 

to C< = 12°.
• (f) Turbulence description. There are two sources of error:

(1) Anisotropy of the turbulence in the experiment, Ebccursions from 
isotropy were small but measureable (refer 5*2.1). (2) The value of •
Different measured spectra suggested different values of the
range O .36 to 0.44. In figure 46, some theoretical results for this 
wider range of have been plotted. It is evident that the theoretial
increment is only moderately sensitive to the value of *

(g) Aerofoil thickness/non-linear terms in €  . These two 
effects were deemed to be potentially large for the zero-incidence 
admittance (refer to 5*4*2). However, both effects will be approximately 
independent of incidence, and thus will have little influence on the 

admittance increment.
(h) Lift curve slope. As discussed in section 4*2*5, the 

effective mean lift curve at cX = 10° may have been less than the 
value at CX = 0° , which, in turn, was less than the theoretical value 
of 2TT used in the theory. For the zero-incidence admittance a 

maxim'om possible correction of -15a to the theoretical prediction was 
suggested (refer to 5 .4 ,2). For the increment in admittance, the 

required percentage correction will be somewhat greater.
(i) Absolute spectral power. The magnitude of the increment
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could bo measured accurately relative to the zero-incidence admittance. 
Thus the estimated relative error in the former is the same as that in 
the latter; namely - 10^ maximum(refer 5*4.2).

(j) Drag. This error arises from the seristivity of the load 
balance to some transverse load. Repeating the quasi-steady analysis 
of section 5.4 .2 , this time for 0\ = 10°, yields; ~  0 ,064,
a value ten times larger than that for O\=0°, Nonetheless, the 
resultant quasi-steady error on the admittance of lift is still 
negligible: - 1̂ .

(k) Buffet load. Although it was ascertained that there was 
no significant flow separation at the highest set incidence (refer 
4»2.*5), there was still a possibility that the thickened boundary layer 
and wake would contribute to the unsteady load, A load spectrum for 
the aerofoil at 10° incidence in smooth flow was measured, and is 
presented in figure 50. The level of this spectrum is higher than 
that of the corresponding zero incidence spectrum, particularly at 
higher frequencies; but it is still more than an order of magnitude 
less than the typical level of a turbulent load spectrum. An estimate 
of the possible error on the admittance was made although, strictly, • 
one cannot directly relate boundary layer effects in differing levels 
of free stream turbulence. A maximun error due to "buffet load" of 

^  5̂' for 3 .0 was estimated.
Although not directly related to the aims of the present study, 

buffet load measurements in smooth flow at higher incidences 
approaching the stall were made, and are also presented in figure 50»
As the angle of incidence increases from 10° to 13° , the level of 
buffet load increases significantly, indicating separation of flow on 

the aerofoil. At cX '= 14° , the aerofoil is completely stalled, and 
the level of buffet load at the low frequencies is of the order of the 

level of a typical turbulent load spectrum of the current experiment.

In turbulent flow at the same angles of incidence, the buffet loads
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will be less, as a result of the delay of flow separation (This effect 
has been considered in detail in the current mean load study:
Chapters 2 and 3). Further details of the buffet test are given in 
Appendix 9»

7 .2 ,5  Comparison of tlie theoretical and experimental increments.
For the 6 inch grid turbulence, the graphical comparison is presented 

in figures 4 6, 47, and 48» These graphs indicate that:
(1) the higher order theory, although not exact to order 

does predict the correct order of magnitude of the admittance increment,
(2) at the lower frequencies where the increment is greatest 

both the "theory with distortion" and the "theory without distortion" 
provide a reasonable prediction of the increment; the prediction of the 
former theory being marginally better. The agreement between theory 
and experiment would be further improved if a correction for the lift 
curve slope error (error source (h) above) were included.

(3) at the higher frequencies, the theory without distortion 
provides a reasonable estimate; while the theory with distortion tends 
to overestimate the admittance. This overestimation of the distortion 
effect at the higher frequencies could have its origins in one or more 
of the following error sources:

(a) incomplete theory,
(b) use of llugridge approximation,
(o) viscosity.

These have been outlined in the previous section. It should be noted 
that errors arising from (b) and (c) will lead to, specifically, an 
overestimation of the distortion effect.

An additional, but not rigorous, comparison of theory and 
experiment was afforded by the results for the 3 inch grid turbulence, 

with ~ 0.037 and / C = 0.38 (refer section 5*5 )"
As figure 49 shows, the agreement between theory and experiment is
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reasonable; the theory without distortion providing a better estimate. 
It should be noted that the measured increment for the 3 inch grid case 
is a little larger than the 6 inch grid increment, whereas the theory 
predicts the opposite trend.

7o3 C o n c lu s io n s  Regarding th e  I l i g l ie r  O rd e r T u rb u le n t  L o a d in g .

(1) I*or approximately isotropic turbulence, the increment, due to 
incidence, in the admittance of lift is only of moderate magnitude.
The higher order theory developed in this study predicts that, in 
isotropic turbulence, the admittance does not depend on the incidence, 
C X ,to first order; and so the theory is consistent with the 

experimental observation.
(2) The correct order of magnitude of the increment is predicted by 
the order (CX^) admittance terms which arise in the higher order theory 
(although the theory is not completely correct to this order),
(3) bhen the length scale of turbulence is of order ( c , the aero
foil chord) or much greater than c , it is recommended that the 
increment be determined by the order (CX^) theory which does not 
include the effect of distortion. The reasons are:

(a) There is no evidence that the theory with distortion 

gives a better overall prediction of the increment»
(b) The theory with distortion requires a much greater 
computation time.
(o) The increment is not large compared with the first order 
admittance;and discrepancies between the first ordei? theory 
and experiment can be of the same order as the increment.
(d) In many practical situations, the length scale of the 
gust, L| , is much greater than o . As ^'/c increases from
0.40 (its value in the current experiment), the distortion • 

contribution will become a still smaller part of the nett
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o rd e r  (c X ^ ) in c re m e n t. T h is  t re n d  has been v e r i f i e d  b y  an 

a s y m p to t ic  a n a ly s is  o f  th e  h ig h e r  o rd e r  th e o ry ,

( 4) b.'hen th e  le n g th  s c a le  o f  th e  tu rb u le n c e  i s  much le s s  th a n  c , 

th e  m easured d i s t o r t i o n  e f f e c t  w i l l  be g r e a te r ;  b u t ,  u n le s s  £  i s  

much le s s  th a n  ^ ' / c  » th e  c u r r e n t  d i s t o r t i o n  th e o ry  ca n n o t be a p p lie d  

v a l i d l y  to  p r e d ic t  i t  ( t l ie  " r a p id  d i s t o r t i o n "  a ssu m p tio n s  b re a kd o w n ).

The d i s t o r t i o n  e f f e c t  due to  th ic k n e s s  w i l l  a ls o  become s ig n i f i c a n t  when 

!—1^(2 i s  much le s s  th a n  1 , Thus i t  i s  n o t  e xp e c te d  th a t  th e  

p re s e n t o rd e r  (C X ^ ) th e o ry  ( w i t h  o r  w i th o u t  d i s t o r t i o n )  w i l l  p r e d ic t  

th e  in c re m e n t c o r r e c t l y  when L ,  i s  much le s s  th a n  c .
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CH.APTER 8, Concluding Commenta

This thesis has considered several different aspects of the 
loading of two-dimensional aerofoils in unsteady streams. Conclusions 
and recommendations relevant to each have been detailed in the foregoing 
text. The reader i s  invited to revise these with the aid of the 
following index.

Index to Conclusions

Effects of turbulence on mean loading; S e c t io n  3 *7  , P« 76 ,

Elfdier order sinusoidal gust loading theory.

( a )  th e  tw o d im e n s io n a l f r o z e n  g u s t ;  S e c t io n  6 ,5 ,  p . 135 .

( b )  a p p l ic a t io n  to  tu rb o -b la d e  lo a d in g ;  .S e c t io n  6 . 8, p ,  I 43 .

Turbulent gust loading; theory and experiment,

( a )  a e r o f o i l  a t  z e ro  in c id e n c e ;  S e c t io n  5 *6 ,  P* 109,

(b )  a e r o f o i l  a t  in c id e n c e ;  S e c t io n  7 * 3 ,  P* I 69.

Two o v e r a l l  comments re g a rd in g  th e  g u s t lo a d in g  o f  a e r o f o i l s  can  be made;

( 1) The f i r s t  p r i o r i t y  f o r  a s a t i s f a c t o r y  p r e d ic t io n  o f  th e  a d m itta n c e  

o f  l i f t  o f  an a e r o f o i l  i s  a  c o r r e c t  d e s c r ip t io n  o f  th e  tu rb u le n c e  o v e r  

m ost o f  th e  f re q u e n c y  ra n g e  o f  i n t e r e s t  ( T h is  s tu d y  has em phasized th e  

d i f f i c u l t y  o f  o b ta in in g  a  s u f f i c i e n t l y  a c c u ra te  d e s c r ip t io n  a t  th e  

lo w e s t  f re q u e n c ie s  o f  i n t e r e s t ) .  W ith  t h i s  r e a l iz e d ,  th e  f i r s t  o rd e r  

th e o r y  can p ro v id e  a  re a s o n a b le  e s t im a te  o f  th e  a d m itta n c e ; an e s t im a te  

w h ic h  can  f u r t h e r  be a d ju s te d  f o r  any  in c id e n c e  e f f e c t  w i t h  th e  h i ^ i e r  

o r d e r  th e o ry  d e ve lo p e d  i n  t h i s  s tu d y ,

( 2) F o r  a  t h i n  a e r o f o i l  a t  mean in c id e n c e ,  CX , and s u b je c te d  to  a 

g u s t ,  th e  le n g th  s c a le  o f  w h ic h  i s  n o t  m iich .s m a lle r  th a n  th e  a e r o f o i l  

c h o rd ,  th e  e f f e c t  o f  g u s t  d i s t o r t i o n  on th e  u n s te a d y  lo a d  i s  o f t e n  le s s

\
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th a n  th e  o th e r  e f f e c t s  w h ic h  depend on CX .

Two s u g g e s tio n s  f o r  f u t u r e  w o rk  i n  t h i s  a re a  a re :

(1 )  i n  e x te n s io n  o f  th e  h ig h e r  o rd e r  s in u s o id a l  g u s t  th e o r y  to  th e  

case o f  th e  tw o d im e n s io n a l cascade* T l i ia  th e o ry  w o u ld  be r e le v a n t  to  

th e  tu rb o b la d e  lo a d in g  p ro b le m *

( 2) An e x p e r im e n ta l s tu d y  o f  th e  e f f e c t  o f  d i s t o r t i o n  when th e  le n g th  

s c a le  o f  th e  g u s t i s  much s m a lle r  th a n  th e  a e r o f o i l  ch o rd *  T h is  s tu d y  

c o u ld  a s s is t  i n  th e  u n d e rs ta n d in g  o f  th e  e f f e c t  o f  s m a ll s c a le  tu rb u le n c e  

on a e r o f o i l  mean f lo w  b e h a v io u r ,  i n  p a r t i c u la r ,  th e  s t a l l *
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LIST OP NOTATION

lA(k,')l"’ admittance of lift, defined in 1.2.5*
|A(k,')li first order admittance.
|A(K)|^^ order (cX^) admittance.
B  upstream reference distance. See 6.6.3.
Bg  ̂ B o terms in integrand for . See Appendix 4*
.Be )Bo têimis in integrand for . See Appendix 5*
B F  "best fit" formulae, defined in 5*2
C l lift coefficient; locally *=/^puj-c 5 overall =r % T ir '% Y L/*d S O
Cl maximum lift coefficient.
CLt,L lift coefficient at "bubble bursting".

C f j - 1 M t e r m s  in , discussed in 6.3.1 and 6.3.2,
C[^ C ld sinusoidal mean flow input.
C le: >Clq even and odd parts of ,
C d  drag coefficient.

minimum drag coefficient .
C  moment coefficient about the quarter-chord point*
Cf coefficient of skin friction.
C,~^ Cj constants in the B F  formulae. See 5*2.
D  sphere diameter.
D(k,,k;) 2D distortion response function. See 6.3*3#
D  distortion response function; non-frozen gust. See 6.6.3

terms in integrand for * See Appendix 6.
F  upwards force/span.

,k;) 3D distortion response functions*
free stream turbulence.

GCkijkj') Graham’s response function. See 1.2.2.
G(kf;ks,kj') Graham’s response function; non-frozen gust. See 1.2.2.
G n M u g r i d g e ’ s response function. See 1.2.2.
GnCkf̂ k̂ k̂O Mugridge’s response function; non-frozen gust. See 1.2.2
GMft(k,ki,ki') "additional" Mugridge function. See 6.9*7*
G F Filotas’s asymptotic response function. See 1.2.2,
H  turbulent boundary layer shape parameter.

Haenkel functions of the second kind.
I(ki,K'k3,kc) integrand term for *

Bessel functions.
r  = [ J z - T o1 / e
K  (1) as parameters resistance coefficient of a

porous plate.
(ii) as wavenumber: that of turbomachine gust. See 

figure 45A,
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Kn modified Bessel functions of the second kind,

mean aerofoil bound vorticity.
: K(x) sinusoidal component of K(x) . K  = <£* .
K ( A  a Fourier transform of K(x) « See 6.3.3*
L_ lift force/span,

function within . See 1.2.2.
L_| longitudinal integral length scale « Uco ̂  ('Di(t') 6'1“C
Lp̂ L|v{ various parts of L  , discussed in 6.3.1.
M(k) • Morfey response function. See 1.2.2.
N(ki,kX) function within L(k,,k-̂ ’) . See 1.2.2.
0  order of magnitude symbol.
Oj. )0i, terms in integrand for F  ̂(k, * See Appendix 6.
P  mean pressure.
RL general sinusoidal response function for '^Srl^ See 7*1*1.
A  2D higher order sinusoidal response function.

See 6.4*2
1 ^  A  for non-frozen gust. See 6.7*4*

various parts of fc , as defined in 6.7*4*
Re No. Reynolds Number based on typical body dimension.
ReL H , i e R e * N o *  corresponding to "bubble bursting". See 2.8.
Reprit critical Re.No. for a sphere.

Reynolds Number based on boundary layer thickness, §• 
R^Scr.t critical R c s  for transition.
Sii(k..z) normalized nb, cross spectrum.
GzeCki.z) normalized cross spectrum. See 1.2.5*
Gzz (k.)k̂ ') a Fourier transform of •S?£(k,,z) . See 1.2,5*
S(k,) Sears* response function. See 1.2.2.
S'(kf,k^ Sears* response function; non-frozen gust. See 1,2.2.
Sf\(ki,k’i') "additional" Sears* function. See 6.3*2.
Ŝ (k'f>ks,K’̂') "additional" Sears* function; non-frozen gust. See 6.6.2. 
Tlj(k'nk̂ ,kx') normalized three dimensional spectrum = '
Uo4 mean free stream velocity.
U  mean velocity external to the boundary layer.

instantaneous velocity: vector.
\/J i th component of instantaneous velocity,
y velocity vector = Uoo "t V *
Vc i .th component of mean undisturbed velocity.

. y  mean disturbance velocity.
V l i th component of V •.
V g c o m p o n e n t s  in q] direction.

components in  ̂ direction,
^B.Vi ,Vr blade velocity, incident velocity, relative velocity

in turbomacMne calculation. See figure 45A.
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V K  ’’ vo n  Kaxman" fo rn m la e , d e f in e d  i n  5*2.

( X , Y ) ^ ( X c o - o r d i n a t e  system s i n  th e  t iirb o m a c h in e  c a lc u la t io n .

See f ig u r e  45A .

Y  phase change in t ro d u c e d  i n t o  d i s t o r t i o n  a n a ly s is .

See 6 .3 * 3 .

Y n B e s s e l f u n c t io n s  o f  th e  second k in d .

^ aspect ratio of test element,
b * half span ( V e ) of test element.
C aerofoil chord length.

unit vectors in the tliree co-ordinate directions© 
wave-numbers carrying normal dimensions, 

ki, dimensionless wavenumbers. /2.

particular, when the gust is frozen, k; = 
the reduced frequency© 

k = j\\l 4- 4- k-̂
kg spatial wavenumber in the x direction: non-frozen

g u s t .

k f  -  n o n - f ro z e n  g u s t .

-  k i /6__________

k i  " ko/p
R  "'jk,'' -+ 4.
kj ~ ks/( ^ 6 +  k Y )
kg ~ kg / Cs
k,% k î  g u s t wavenumbers i n  th e  Ç and d i r e c t io n s .

See 6. 3 . 1.

i. le n g th  o f  s e p a ra t io n  b u b b le ,

n  f re q u e n c y .

in s ta n ta n e o u s  pressure©  

h  u n s te a d y  com ponent o f  th e  p re s s u re .

S span o f  t e s t  e le m e n t,

t  t im e  w i t h  n o rm a l d im e n s io n s ,

t  = t  2 / c

'Û'i i  t h  com ponent o f  u n s te a d y  u n d is tu rb e d  v e lo c i t y .

"G: a m p litu d e  o f  'Ub (when i s  s in u s o id a l ) .

/ j j i  i  t h  com ponent o f  u n s te a d y  d is tu rb a n c e  v e lo c i t y .

( f o r  ) .  

a d d i t io n a l  due to  g u s t d i s t o r t i o n .

V'c d is tu rb a n c e  v e lo c i t y  f o r  *



XL amplitude of up?,'ash component of n j l  •
'15-0 3 etc. components in the -g direction.
'Tl'̂ ,'Ĵ ',edc. components in the Ç direction.
APXj- amplitude of gust in turhomachine calculation.

See figure 45A©
X distance in streamwise direction.
X = Chapters 2 & 3, ^  carries normal

dimensions). 
y ' distance in upvvash direction.
y = G^/c
Z distance in span.wise direction.
z. " ^ ^ /c

= z. 6 J \ 4  

%' = E . C s
oC angle of incidence.
c< buLLle Lurdÿ d  corresponding to "bubble bursting." See 2.8. 
cKset set up in experiment.
0 (e effective angle of incidence of a turboblade.
^  ' J d  4- k ?  .

à'i % ̂ 3 components of unsteady aerofoil bound vorticity,
corresponding to 2D a n a l y s i s o n l y )

^1,^5 unsteady bound vorticity corresponding to
(in 2D analysis, onfy )

components in the Ç direction,
vorticity shed into wake, 
vorticity amplitudes.

S boundary layer thickness.
Ez boundary layer momentum thickness.
âs Si at separation.
SlJ unit diagonal tensor.
&(x) Dirac delta function.
Sa angle defined in figure 45A.
Ç dimensionless distance along chord-line. See 1.2.1.
.'y dimensionless distance perpendicular to the chord

plane.
X  wavenumber of K (x).
yu. viscosity.
è = [ t r ( h n 0 / r ( P ] . c / 2 L j
Ç density.

instantaneous vorticity: vector.
S i i th component of
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L̂oo i th component of undistorted vorticity (in 2D

analysis, ).
Sboi> amplitude of Sioa (sinusoidal gust).
3 c, i  th component of additional vorticity due to
^ distortion (in 2D analysis, ^ - 3 3 ),
5b amplitude of 5 c. .

. com ponents i n  J d i r e c t io n *

com ponents i n  pj d i r e c t io n ,  

t  * ( i )  a e r o f o i l  s e c t io n  th ic k n e s s .

( i i )  i n  c o r r e la t io n  fu n c t io n s ,  th e  t im e  d e la y /  •

V - '
4> i,(k ,^ sp e c tru m  o f  .

<^22. (K i)  s p e c tru m  o f

cj>(n) a spectrum in terms of n \ .
a n o rm a liz e d  sp e c tru m ; e .g .  •

® tw o d im e n s io n a l upwash s p e c tru m .

th re e  d im e n s io n a l sp e c tru m  ( t e n s o r ) .

4 ^Cu(k,) sp e c tru m  o f  C f

LO angular frequency with normal dimensions.
00 = CO
r(nu tA te r) gamna f u n c t io n .

P unsteady aerofoil circulation.
P  amplitude of P.
&  ( i )  sinusoidal gust: amplitude *3 G  U<o .

( i i )  t u r b u le n t  g u s t :  =• G. Uoo ,

a n g le  o f  sw eep .

j\_  p re s s u re  g r a d ie n t  p a ra m e te r : la m in a r  b o u n d a ry  la y e r  .

See 2.7 .1.
n o n - l in e a r  g u s t re sp o n se  f u n c t io n s .  See A p p e n d ix  10 .

S~\.l g e n e ra l s in u s o id a l  re sp o n se  f u n c t io n  fo r"O b *S e e  1 .2 .5

Superscripts
  ( i )  for time-dependent properties: time mean.

( i i )  f o r  f u n c t io n s  o f  wavenumber: F o u r ie r  t r a n s fo rm  •

( i i i )  f o r  X, y ^ z , k û ,u j j t  Ï q u a n t i t ie s  c a r r y  n o rm a l

d im e n s io n s .

complex conjugate.
A  a m p litu d e .

Subscripts
1 -  1 ,2 ,3 .  com ponents i n  th e  x  , y  , and z d i r e c t io n s

r e s p e c t iv e ly .  I
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TABLE 1• PLserved Stall Types

FLOW :

SECTION

f
Smooth LR Smooth HR Grid S,1 Grid L

COM COM COM COM
0015

0 >4°
BTT/î^OV INT

0012 LE COM COM COM

DTT/M07 INT/MOV

0009 TA TA TA TA
7.85°,ES 8.75°,PS 11.25°, PS 9.5°, ES

________

LEGEND; COM ; combined leading edge/trailing edge stall#
LE ; leading edge stall.
TA : thin aerofoil stall 

For the COM stall, the approximate chordwise extent of trailing 
edge separation prior to the nose stall is indicated by the "fraction c" 
below the heading. "IÎTT" indicates intermittency of nose stall, while 
"INT/MOV" indicates the more complicated moving stall.

For the TA stall, some details of the long bubble formation 
are included, The "angle in degrees" is the angle of incidence associated 
with the initial formation of the bubble. "PS" and "PS" indicate, 
respectively, full span and part span initial bubbles.

Refer to table 2 for details of various flows.
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TABLE ■ 3* Typical Turbomachine Data
108

E'UUTLE
e Sa ' ks ka kf

COITRESSOR 

90^ Reaction 1.1 45^ 2.2 2.2 3 .5

1C^ Reactions Rotor 0 .9 60° 2.7 1.6 2 .8

Stator 1.6 25° 1.3 2.8 5 .0

Vortex-type s Rotor 0.7 65° 2.8 1.3 2 .2

Stator 1.6 25° 1.3 2.8 5.0

TORBIÎTE

50^ Reaction .(a) 1.7 35° 1.8 2.6 5 .3

Reaction.(b)Root 1.15 25° 1.3 2.8 3.6
Tip 1 .5 20° 1.1 3.0 4 .7

Impulse-type: ^tor 0 .7 55° 2.6 1.8 2.2
Stator 1.1 10° 0 .5 3.1 3 .5

NOTES: The data for S/î (refer figure 45) was elicited from
the text of Godsey and Young (1949)o A blade spacing to blade 
chord ratio of 1.0 was assumed’. With the model presented in 
figure 45» the wavenumbers,  ̂k^^and kf were then given by:

' = TT sin Sa ^
Kg » Tr cos i 
kf = TrlVtA
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gridL:

\  \ 
smooth LR:.

C refer table 21

-4 4
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FIGURE 9. COMPARISON OF DIFFERENT SPAN MODELS; 
NACA 0015.
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FIGURE 10. EFFECT OF REYNOLDS NUMBER ON LIFT ; 
SMOOTH FLOW.
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Cd e g r e e s ;

* snioothLR
" sniooîh HR
‘ gr/d s,i 
- g r i d L

BêURE 23 C,
«  ; m c A o o K .
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.04

—X

?-4

-08 smooth LR
smooth HR
* gridS.l 
— grid L

FIGURE 24 . C(v)^YS. C< ; NACA 0012
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corrected)

-1.1

* points not well 
correlated

•0.8
J L

2.10^

NACA 0015

NACA 0012

NACA 0009

10® 10̂ 
Re. No.— 5" .

Smooth flow data ‘ Turbulent flow data 
this expt. other workers

o e <3
A A I (the datum)
□

FIGURE 2 6 . vs. EFFECTIVE REYNOLDS NUMBER
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projection on 
aerofoil

load cell 
C cutaway )\U

o

o

o

rotatingcylinder

rear
connecting
rod

■diaphragm
o

'rr'II

I j.

]=:■transducer

•movable part 
of rear pylon

J

J

o

o

o

-fixed part-̂  
of rear pylon

3-- -[

LqJ

forwardconnecting
rod

HALF FULL SCALE

. FIGURE 27. REAR PYLON .LOAD CELL,AND
CONNECTING RODS.
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0.6

o( Cdegrees)
- 0.2

-0.4
Re. No. = 0-26.106

* 0.06
U

ASPECT RATIO = 5.0

FIGURE 28. MEAN LIFT CURVE ; NACA 0015
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MATCHED DIFFERENCE 
VOLTAGE .

0.9

0.8
- 5

IiANGLE OF YAW Cdegrees]

FIGURE 29. EXAMPLE OF X-WIRE CALIBRATION
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ExpTI. Dâta

k,=6.47 
k,=0.804 
k,=0.050

0.6

0.4-

0.2-

0.0 6.02.0 4.0

- 0.2

VK formula for S2 2  

Cequaîion 5.3 in main Text) 
with L-=0.40.

FIGURE 3 4 . CURVE FIT TO EXPERIMENTAL S2 2  DATA-.A,
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Exptl. Daîa

0.8-

0.6-

0.4-

0.2

0.0 6.02.0 4,0

-0.2

VK formula for S2 2  

Cequalion 5.3 in main text) 
with Ig-r 0.44 .

FIGURE 3 5 . CURVE FIT TO EXPERIMENTAL S2 2  DATA ; B
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Expt. Data

0.8“

0.6

0.4-

0.2-

0.0 6.02.0 4.0

0.2

BE formula for S2 2  

(equa1ion5.5inthe main text) 
with the following constant values

k. c. C, C3 Q Cr
6.47
0.804
0.050

10.0
2.50
1.07

0.0
0.16
0.12

% 0.5
1.0

25.5
6.43
5.56

FIGURE 3 6 .

CURVE FIT FOR EXPERIMENTAL S2 2  DATA ; C.
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= 0.40

1.0 1 00.1 .
k

with BF formula for S2 2 (k,.k,) 

with VK formula for S’2 2 (!<,,k3)

FIGURE 37. THEORETICAL ADMITTANCE ; CX^O 

EXACT G(k,.k3) ; 6 INCH GRID .
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A(k,)2

10'

1 0
-2

0.1

RESPONSE FUNCTIONS
— G(k„K3) : exact (Graham)
— Ĝ(k,.k;) : Mugridge
— Gp(k|,k3) : Pi lotas
— S(k,) : strip (Sears)

1.0
k,

1 0

FIGURE 38 . THEORETICAL ADMITTANCE ; CK=0 ;
VK S2 2 (k..ks) with Lû =0.40 ; 6 INCH GRID .



1 0

2A(k,)

0.1 1.0 1 0

ExpTl. data : o Series 1 ; a Series 3 . 
Theory with exact G(k,.l<3) and
 BF formula for S2 2 ,
 VK formula for S2 2  : W=0.40.

FIGURE 39. ADMITTANCE : THEORY AND EXPERIMENT ; . 
CX=0 ; 6 INCH GRID .
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a(k,)

1 0
-2

0.1 1.0

229.

k, 1 0

Expîl. data ; ° (Series 3)
, =0.037with VK formula for cpp, :

=0.38

Theory with exact G(k,.k:) and with
. VK formula for S2 2  : =0.38

FIGURE40. ADMITTANCE : THEORY AND EXPERIMENT ; 
<X=0 ; 3 INCH GRID.
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(00-0

‘20-0

0.4
20 2.0

0-0 \ s.o

10O'Oi 20

0.60.40.2i-0

values of B 
marked on curves-0.4

original frozen gust theory;
B = o o

lOOO
- 0.8

solution A 
solution B 
frozen gust
non frozen gusT ; kf=4.0

figure 43. RESPONSE DUE TO DISTORTION ;
kg =1.0 ; kg = 0 . 6  .



2x33,
XJ XT.

o
00 CD

CD

>

OJ

00

II
CMV

z  o 
1„—
Or:o (— m
Q
oI—
UJ
Z)o
UJCO
§
CL
COÜJcr

UJcr
zCD
LL



234.
■IKY

JLI

V,

I

V% : overage incident  velocity

V r t overage inc id en t velocity relative to  ro to r  blade 

Vq Z r o to r  blade velocity

(Xe I angle o f incidence o f ro to r  blade to  V r  

• angle, betw een and the m achine axis 

In  co -o rd ina te  system  (X ',y ')  moving w ith  the ro to r  blade ^the. instantaneous 

incident velocity re la tive  to  th e  ro to r is :

VR + ^

F IG U R E  4 5 A  . T U R B O M A C H IN E  M O D E L .

V,

A -ck(v'+|V&|t)

In  co-ord inate system ( ^ . y )  , the gust is : V i ^

where ̂ Co = K|V&| = kf | Vp | ,
kg = Ksin Sft j
kj = Kcos Sa .

FIGURE 4 5 8 . FLOW ON SINGLE BLADE
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10“1

10'
■2

0.1 1.0
k,

10

Exptl. data ; Series 3 ; ° cX̂ t̂ = 0" , & cXset =10°.

Theorelical admittance
= ExpTl. admitrance (o('=o’) + îheoreTical increment,

b^ = 0.40 ; band of values ; c>(=10°—*12° ;
A\\V\\ all Terms i

non-distortion terms only.

F IG U R E  4 8  . IN C R E M E N T  IN  A D M IT T A N C E . ; 5  IN C H  G R ID  

A L T E R N A T IV E  P R E S E N T A T IO N .
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spectrum of lift 
in 6 inch grid 

\ turbulence (cX-0“)

10"5

(sec.)
(direct.from digital 
output plots.) 0 < = 1 0

F IG U R E  5 0 . 

B U F F E T  T E S T  

(smooth stream')

1 00.1 1.0 k
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PLATES

DETAILS OF PLATES 1— 10 (tUFT VISUALIZATION) :
• Photograph exposure time : 2secs.
• Suction surface of aerofoil.
• Leading edge at top.
• Approximate regions of separation indicated by
• Refer to table 2 for details of the flows .
PLATE 1. Attached flow:

PLATE 1. NACA0015 ; SMOOTH LR ; CX=0.0' 
PLATES 2S3. Combined I.e./t.e. stall:

PLATE 2. NACA0015 ; SMOOTH LR ; CX=14.0'

PLATE 3. NACA0015 ; SMOOTH LR ; cK =14.5'
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PLATES 4S5. Moving stall ;

PLATE4. NACA0012 ;6RIDL ; cX=15%A

PLATE 5. NACA0012 ; GRID L ; CX=15° ; B. 
PLATES 6S7. Leading edge stall :

PLATE6. NACA0012 ; SMOOTH LR ; tX=11.0°

PLATE 7. NACA0012 ; SMOOTH LR ; (X=115°. 
PLATES8 8,9. Thin-aerofoil stall ; 2D;

PLATE 8 . NACA0009 ; SMOOTH LR ; CX = 8.0'
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PLATE 9. NACA0009 ; SMOOTH LR ; cX = 8.5°. 
PLATE 10. Thin-aerofoil stall •, 3D :

PLATE 10. NACA0009 ; GRID S.1 ; CX=11.75'

PLATE 11. Overall view of mean-load model in tunnel.
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%

ABOVE: PLATE 12.
The measuring element; 
unsteady lift balance.

AT LEFT: PLATE 13. 
The measuring element, 
mounted on supporting 
rods and pylons.



APPENDICES
jUPPErmix 1

The Ma,c:ricl:̂ e~typ9 Approximations to C ( G (kf ,ks

In this appendix, the formula of liugridga (1971 ) is rederived , 
and then extended to encompass the case of a non-frozen gust.
Mugridge*s theory effectively adjusts the theory of Sears (1941) for 
the effect of an additional streamwisQ component of wake vorticity; that 

is, it provides a ’’lifting-line theory” adjustment to Sears theory. The 
analysis follows the foim of that presented in section 6 .3 .2 of the 
main text*

\

(a ) Frozen gust
In this order (G  ) theory, the aerofoil is of zero-thickness 

and at zero incidence; and the gust is of the forms

(refer 1.2.2)

It is assumed that only one component of unsteady bound 
vorticity exists; viz, the component -̂3 in the a direction. 
However, the vortex sheet wake is assumed to have two components; '̂ 3 

and , the latter arising (as in lifting line theory) from the
spanwise variation of the upwash*

jj

u

^3 will be of the form:

. A L, (cot — 1̂ 3 Z.)
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The following tîiree équations are used to express the wal:e 

vorticity, and , in terms of the aerofoil circulation,
P  = ^ .

àn. t I , / \ (  arising from Kelvin’s
= - u . o y 3 ^ ( i , 4  . ^

Circulation Theorem and the 
Kutta condition )

4- Uoo " 0  •) C wolce convention at Û o')
^ X

_  p. (^continuity of wake vorticity^ * —r »à x  àz:

The solution is:

The upwash resulting from y3 , , and can be determined
from the Biot-Savart Law:

UT-V v  n A  ~ f ï  Y i(x;z.')(/-x ') -  X,(x\z')(zL-z') dx 'cU '

' ’ hx-xy+c^-z')']"^

Mugridge makes two further assumptions:

(1) The contribution from ^3 (and y^w ) is evaluated as if 
the gust were two-dimensional, that is, for this component, the
Biot-Savart Law becomes:

oo

(2) The contribution from is evaluated as if the aerofoil 
were a lifting line; that is, the wake is assumed to originate 
at X = 0 .
Thus, the induced upwash is determined as:
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I4 ( ^ ,0 / )  =-.h ( K3(x',z)'Jx' - - - L  (( y'w(x',z ')(z -z ') dx’d

Tlie first two terms arise in Sears*! theory; the third term is Mugridge*s 

adjustment*

Applying the boundary condition, (X;0>z) — O  ^

and substituting for and y,^ leads to:

L k A  ,\
u k , e " " T  C( e K Z i z % z l C 2  ctx 'dz ' .
ĝ -Lk,z 4-M )) r(x-x'p

-0O o L>

The double integral in the last term can be evaluated analytically as 

follows:

Let the integral be I. Substituting X «= x - x' and Z « s - z'

I = _  r f e y v i ! z ,  d z d  K

CO
ïïsing ( sinkiZ.Z rl7 — k 1/ f L v\ (K is the modified

. Bessel function)
I  -- -  K o (k ,x )d ^ '' 'd X  .

o
Using the results;

j^ K o ( M ) s m k , y d X  = kT ' 1
and ;
cpO
(koCk^y^coskXdX z= / f T ^  • ̂y  J Kl 4 K ^

the integral becomes:

r  = N ( k ,k , )  , -

The boundary condition equation becomes:



247.

-5, ( \ 4  r  - >  fY.clx' ck,t'^'P rey:"d/-'.
k ----4  ~Ttr U x - V )

The analysis no?/ parallels the normal two-dimensional Sears analysis 
(similar to that o f  section 6.3*2) with 'O2. replaced by nj (I 4 ' W (kk,')P ^

say.̂  ( I 4- I ) *
The above equation is inverted, and integrated w. r, t . x  to  

yield the following expression for P  ;

4 4(H-tj(k„yXi(i<,)4LTa(k)VYoyyuï,(k,ÿ]

«

The equation for the lift in the Sears theory is : 

'~'p = -  [uk, P  -  Lk, ^ y  .x.dix 4- r
-I

and the solution is: ^
C l = 2irS(k,')'^yj^e

Thus the present solution is:
C i . =  ^T T  4 - T ]

where
T =  ke^^'M(k„y r = Kl(k,kC[3;W-c?M] .

4-üi [(14 Kl W  4 i'ZL(k')) 4 Y 0&')- i-Y(k,'̂

Equivalently, the result can be written:

where Giv;(k',,k)̂  = L(k,,k-s) [To(k,)-lYYk,)! 4 uT,(k,) ;

L(k„kO = ('l4KYY,k,)')T,(k-.) -lY,(4 
(l 4 M (k„l<i))(T,(k,y I Jo(k,)) 4 Yo(k,y-LY,(k) 

and N  (k.̂ kg) has been defined above.
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(b ) Non-frozen gust.

Tile gust iss

3 where lo - kf Uoo .
The analysis follows that of the frozen gust case, except that 
functions arising from wal:e terms will depend ̂ on k-f , while those
arising from gust terras will depend on kj .

The wake vorticity is:

The boundary condition equation becomes:

, kfc'''N(k,4)re*^" = - > . ( k ^ d x '  ^  ,
-u-.e +  T  a If 1 (x4 k ) '

and the circulation expression:

= Toq<sVlJ(k.^
4  y  k [ ̂I -t- KiCh;. k y  ( J(I4 ) 4 L.]y (k4) 4 Yo(k4 -L Y E k q

Idle equation for the lift is:

k f  c. -  [ C w P  - L w  ( y x d x  4 U ^ r ]
" \

- -  (J^[ u k f P - L k f  J y^Kclx + P l e ^ ^
..

ifrvĈ  C0 =- kf .

In this case:

C ^ x d x  = 2 T T 4 - ^ N W J , #  4 y L 4 ) r  H / y r  .4_i i K-f 2-

The resultant lift response is: ,

Ci_ - Z n  Gr/^(kf,ksjO e   ̂ \  ̂̂

. where (hf ,ks,W = L( kf, (k) - L J, (kj)] ^

and where the function, L_ , has been defined in the frozen 
gust analysis.
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The response function  ̂ , k-j,') , reduces to

when kf = kg = k, , and to the generalized Sears function  ̂ 5'(kf, k̂ ) , 

(see 1.2.2) when -  0 .
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AP^OmiX 2

A Derivation of ~~ 4:̂ u'>(E.Wk}. ok-T.

Tensor notation is used in this analysis.
In this report, the lift response to a general sinusoidal guet is of 
the forms

G' wkerc. CaJ -e. |<y (Joo •

If the frequency, C o ' » is of opposite sign, the response is:

c u t )  -

Tliis form is used in the following analysis.
The turbulence is considered to be composed of Fourier 

components. Let be the amplitude (complex in general) of the

Fourier component of wavenumber, k # (The spatial components of 
and k are d ' ^ i  and kc , respectively). The lift response to this 

Fourier component is:

a c j t )  = •

The auto-correlation functionof this Fourier component is 

(by definition):

dCU)d = fit JTj . d C f  the overhar denotes
a time mean.

In homogeneous, stationary turbulence, the three dimensional 

spectrum, ^ gj ( k  ) \  is defined by (see for example, Batchelor (1953))

d S i d ^ f  = c ^ g j ( k )  dk, d k ^ d R ’̂ ,

Therefore: d Ct̂(t) d C(_ (£ h-'C) = ^ 0 (E) G dkidk^dkj •
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For the turbulence, as a whole, the auto-correlation function
will he:

C , ( t ) C U - r )  =  g ^ L d C a t ) b C : ( £ 4 ^ )
all R

o-O

The spectrum, ^CL.(ki) % is related to the auto-correlation 
function by: '

4 c J C , )  = %  f
—<0

^ 1 1  X l t n j . $ y ( k )  £
~cO

cO
b l l  A j  ^Lj(k)b(w-K>')di^>'dhdk-J , 

—

( C  =  S ( Ô 3 ) , ô ü h k ,
“"<yû

Finally, integrating with respect to CO yields:

4>cjk,') = j f l t i l j  ^ L j  (k) d k j d k ,  .
“0Ô
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' A?™n)IX 3

Expansion of S  ("K, to First Order in (X •

H ,(k , ')4 -C H o (k > ')  k , - o ( K  ( r e f e r  6 .3 .2 )

U s in g  T a y lo r 's  e x p a n s io n  a b o u t kj , and r e t a in in g  o n ly  th e  

f i r s t  tw o te rm s  o f  th e  s e r ie s  y ie ld s :  »

j; ( k r d K )  ̂  Jo(K) -  C< k, Jo (k,) superscript
in d ic a te s  ^

J ,  (k,-^k,')= J,(k,) -c^k^3) (k)

From  th e  p r o p e r t ie s  o f  B e s s e l F u n c t io n s :

X ' ( k )  - - x , ( k )

b ' ( k . )  =  b ' L T o C O - J h k ) ]  .

T hus , as CX — ^  0 - )

T o ( k - oikC)-^ T o  ( k , )  + c ( k , T ( k . )

j;(k,-o<K') — ^ 3T(k|)-VC<k^J''^(k,') where J''̂ (k>') = ̂  (Ti(k')-X(k,')) 
and

^ ^ T ( K - c < k ; )  T ( k )  -+ o< ! ^ T ( k , )  +  T ^ ( k )  .
S u b s t i t u t in g  th e s e  e q u a tio n s  in t o  th e  e q u a t io n  f o r  S (k\ > 

y ie ld s  th e  r e s u l t :

As o i —^ 0  J 5 (ki^k — cxi!kj.) i> S(ki') ~h cxSp̂ (k,,kî

where

S h k . k O  = k;k'('"'bT(0-lTi(k,)] +ù[jt(k,)+^;^]] .( H,(k,)+LHoW k J
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APPEIIDIX 4

The Detailed Analysis for L p  : Two Dimensional Gust Theory.

The integrated form of the linearized vorticity transport 
equation is used to evaluate the distortion effect:

f(x,w') = [  i. k ,(  dx ' +  i-kj, \ d / '  + dk j. ( h X h lE  d y ' l  U  ■I. J^Uoo J Uoo U «  J
, , / —i_XVi J

Initially, the mean flow field due to K (X; = 0  is considered.

the Biot-Savart Law:
The velocities in this field can he determined by an application of 

iw:

These integrals can he evaluated analytically by substituting 
X = X - x \  sjmd using the standard integral results;

[sinXx.x d x  _ T L , C COS\y  ■ d X  _ ^ s p,
4 x^ +  4'- ~ •> i x ^ 4 h ‘ “ ; É  A / O i p O -

Tlie results are:
' / ̂  -lXk tXLj

, X<0
where the top signs in the dual sign combinations refer to 

y <C 0 , and the bottom signs to y ̂  0 #

X I
The integrals \ clx' etc. are evaluated next. The

—CO
following mathematical result is employed:

{ - ttS(X) -+ ^  .
In the classical theory of integration, this integral is not determinate. 
The above assigned value was obtained from Lighthill's (1958) theory of 

generalized functions.

Thus:



254.

^ nrS\u*' ' 1 *ixu.e‘”c" ± fo,-SW , \>o

( ^ * . + ( ' 4 ^ V  .  (='■'■'T ’ - O  ' ̂ > “

ïk-u.(̂-‘̂ d'“-0 . ̂ <0
Substitution yields:

? i  XLk,TrS(XVkh£'̂ b'̂ ’̂'-*-LkL , \'>0
, I 4 k ±  Xuk,iTS(X) + ^ ^  X(o

The extra upwash due to distortion, 'bp2̂ (>̂ ;0') » is determined 
with the Biot-Savart Law:

A

=

-CÔ

upon substituting for , the terras in are
all of the form:

(( C(k) ,.
4'îrÜoo Jj (x-x’)̂ ■+y'2- '

K has the value k ;4- X or

The integral, ^  -LKxL ,v
\ e — i x - Y ' )  d x' 
b(y-X')^4 y"-

has already been considered in the evaluation of . Its values are

.  K > 0  

, K < o  .

The C(y') terms in the integrand are already different for XyO 
and X's^O • Thus, when K *= k, -f A , the number of different
solutions is further increased. For k, ^  O  (the casé of 
practical interest), the following three ranges of X  yield 
different analytical solutions:
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(1) —  oO to - k\

(2) - k , to 0

(3) 0 to + oO
integration w.r.t. X
» the form:

' Lvot -Lkx r ± Ey' I
 ̂~7Til  \ ' ^  ^ ^  y  ̂ where E /> 0 i n  each c a s e ,4 ” Uoo ' ■'

The f o l lo w in g  s ta n d a rd  in t e g r a l  r e s u l t s  a re  em ployed: i

- E V ............ k.
k  ^Sink^y'dy' = '■> Î C  ^^cosky'cly' = U + k l
o ^ o

W ith  th e s e  r e s u l t s ,  th e  above in t e g r a l  becom es:

s. |Dl. E
E^4kJ

i f  th e  s ig n  o f  D  i s  -

i f  th e  s ig n  o f  D i s  +

Thus a  c o m p le te , a n a ly t i c a l  e v a lu a t io n  o f  ^  (xyO ) i s  

o b ta in e d .  The f u l l  r e s u l t  i s  g iv e n  i n  th e  f o l lw ih g  ta b le :

X range

— c o  to  - k j

-k, t o  0

“x&Sfei "xlâbâ'
-L\vt-±..K,k,e _  c-n S(x) __i k,k, .- tV x

+  4-^kiK.  ̂
^ [KN K 3XCk^+k^l ' Ck'+k̂ l X [kvSkt]

, ikJSxibl _ L-rr S(X) + ' (k4Z\)k,e"̂ " _  x
xEk,+̂ X)̂ 4k̂ l [k,̂ 4-k2] [̂(kt+zxyukl] •• A

The te rm s  i n  ^z(x^O)  a re  o f  tw o b a s ic  fo rm s :

( p  %  _ (a ) 4  .
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The lift responses to the two upwashs are, respectively;

(1 )  (2 )  C l>  Z T r S K M X ) f t . e '% f e r  1 .2 .2 )L-Lo

Thus the complete C l ;̂̂ response can be written down directly from the 
above table, For convenience in later calculation, is divided
into its even and odd parts as a function of X , denoted by 
and C lq respectively. The result is;

A range B,(X) = tcotl

0 •tO'+kr,

+ k( to 4 00

-4. .L-Çk-̂ -X) 5 (k,' k>4 X) __L k,KS(K) _  UTT s m  
>' [k'-tk,’-] [kNk^]

I Ck'-vX)ki.S(ki'k-.X) 1 (ki-)')k'i.S(k,k~'X) L k,k;̂ S(k',) _  oTf SfxX k,kiS(k,'>
XpK,42k)Vk;] X [ (k , -z \) "  + k n  X Lk.'-vk,’-] & ,^ 4 k 2 ]

range Bq(X) - C
C(A)t

0 to + k

+ kj tO-4- cO

■ 1 (k,4X")k̂ S'(k,'k,-k>)

(k,,k,4-),) — L(ki-\)kx S (knk-X)
"^[(wxy-i-k^] ^[ikr^xy-tk^]

C lĵ Is the lift response for K(x^ = C.  ̂

to a general input, K ( x ) , is given by;

L\x

Xx The lift response, C i ^  \

where K M  = ^  ̂  K(x)C '"dx
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This is proved as follows;

Let -̂6 ( X q) be the response of a linear system to the
indicia! input, K(x') - ^ (X X o )  .
For a general input, K ( x ) :

««J (from the definition
KCx')^ ^ S(x4Xo) K(-x^')dXo

“oO

By linear superposition, the general response, R, to this input is; ,
^  I

R  = J •a(Xo') K(-Xo')dxo

From the properties of Fourier transforms (see Titchmarsh (l<̂ 3'l));
oO . tv3

R  =  ̂ K(-Xo')clXo = ^ ‘a ( x y  K(X') clX-CÔ -«-&
A/ (X ) = ^ ^ (x o )  e ''^^ °c lxo  ;  K(X') = (, K (X o ')e  d x ,

Consider, now, the sinusoidal»input,

Corresponding to this,
Cx3

' k'M = ̂  1 S(x-x„)
-  oO

Thus the sinusoidal response,
R'(X o' ) = / 2 tt  ̂ 5 ( > - X o)  â ( X ) d X  

= / ^ . J x ( X û ' )
That is,

4(X-) . ;[U . R ' W  .
Substituting for XL (X) in the equation for R gives the required 

result;

R  -  i  K ( x ) . R ' M  d X

Or, in this case;
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For the zero-thickness aerofoil at incidence, 0( :

K M  = - 2 U ^ c ( / l ^  = - 2  U c X / W i  for|x|<;i (0, otherwise)V 1-+X yi —

Using the following standard Fourier transforms:

OÛ ^

^3X(X)coi\xdX - J J i'or (O, otherwise)

 ̂-Ti (S ) XxdX /nTyl X ̂  1 (o/ otherwise),yT— X
it can be shown that:

K(X^ — /2rï . Uoo. (X yjia (\̂  —  L %T| ] ,

T im s;

Clj, = UoaC^f [- Jo{\) -+LJ, w] Cl'dO'WX .
-OÜ

Substituting for ^ ( X ^  +  Bo(X)|

yields the final result;

C l c  - o ^ 2 ît D ( k „ W
eO

D(k„k.) = { [CJlM B e M  +T,M Bo(X')]dX .where

ĵ An analytical solution to this integral has only been found for the 
term of B g ( X )  which contains the function, S ( \ )  (see previous table). 
The value of D(k»jkj_') for this term is;

% ■  SW ■
Bg(X') is used to denote the function which is Bg(X^ without 

the S(X̂ ) term ̂
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AFPHmiX 5

Analysis for L p  ; Ron-frozen Tto Dimensional Gust

For this case, the linearized vorticity transport equation is:
A A A.

LU^(kf-ks)! %

that is, a first order linear differential equation in Î.

(1) Analysis with the method of the frozen gu.st theory (Appendix 4)
By inspection, the complementary function of the solution to the above 

equation is:

^ ~ GiC Yfhexe G| is a constant.

A particular integral can be established when V/ and are known.
/  _

Following the previous analysis, K(x') -  C. is considered first. The 
corresponding expressions for V, and \4 have been derived in 
Appendix 4* These expressions suggest the following form for the 
particular integral:

i = r , X> 0

I ,X<o.
Substituting these into above differential equation leads to an 

evaluation of G  2. :

G? -
r L  1 ± k^ 4- u

'£U«X k-f - k^ — \

A
ks -Lkî_V  /X K-f “ k^ —-X

i )  , X > 0
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The overall solution is

= r , X>o
Q ĝ -c(kf-K)x , X<0.

As usual, G I is evaluated by applying a boundary condition 
to o . I n  the previous frozen gust theory, the boundary condition
was effectively X = 0 at % « - ĉ o. However the above general solution
for S is indeterminate when x *= - cO , and so G  ; can not be
evaluated. Note that, at x *= -cO , the complementary function will 
be indeterminate, irrespective of the particular integral. In other 
words, this problem will occur for a non-frozen gust in any flow field 
to whfch the above linearized vorticity transport equation can be 
applied.

(2) Analysis with altered upstream boundary condition
A

An explicit solution for S is readily obtained if the 
boundary condition is altered to: 1S*=0 at x * = - B  where B is
finite. Them

and the solution for S is;

V  ) . .
2 G “ki -vkOUo / _ ± ^ -k;')(kf-ks)X ^

The analysis now proceeds exactly along the lines of Appendix 4« The

final result is:

= CX 2 tt D'(k+,ks>k,, B) [ k , : g - I  ,



261

«here = $ [ u J . M  B^X') -+ J,(X) B'oW] dX .

B e(X) is given by:

A range

0 to + k.

+kjto +00

4-■  ̂ (ks -t-X) S (kf.kc+y) -  b e W

4. b ■■ Gs-̂ X) k]_S'(kf,K+% jy I .(ks-X)kt S(kf,ks-X) __ S(Kf) (X")
(X-kç-Ks)[((<^4.^XY4k^î C-X-kf.+ KÙ[(i<5-2XY+ ki'3 2.

where b e M  =
^ k,(k4k4\'i f  e^K-^-*^^'*^^\k(K4-ks4-x)

(>v-k4-vksVb(kf+X)Y k \ ]  (— X-kf+ kj [.(k-f+X'l̂ +k̂  ]

B q(X̂  differs from B e;(X') only in that the signs indicated by: *  

are changed to +•
A  .

This solution with !S « 0  at x «= - B is denoted as Solution A

I
(3) Solution B. In the frozen gust analysis (Appendix 4)> ^
was calculated as:

(refer also to
6.3 .3.2)

It was decided to repeat the above analysis with an equivalent change 

of time origin to 3(% * y)" ^  the original analysis, the effect of 
this adjustment was to add the following.extra term to the expression for I :

A ^
^52. f  VxC^J-o) dx' , 
2 X U «  ■
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/N

Thus, in the present analysis, an equivalent adjustment to ^ is:

—  • hih- r X'l ( j - Q) d X
^ ^ — U, Uoo

which approaches the former adjustment as B — ^ oo , The latter 
simplifies to: ^

'"fu.

~ 2 U J  ' '^<Q-

Tlie resultant additional terms to B g  (X^ and B q (X') are 
respectively:

s(q ; c linAs. S(M 
LX X J X [k.HkH

A
This adjusted solution with 3 = 0 at x = -B is denoted as Solution B

(4) Comparison of solutions. Solutions A and B were compared over
a wide range of the value, B , for both frozen and non-frozen gusts.
The following response function was computed:

r ̂~ y /  -Ltot where is the complex
conjugate of C i.k •

The computer program used in the calculation was similar to that employed 
for the turbomachine application (section 6.7.4), described in Appendix 
11.

In figure 43» Rt> values corresponding to k$ = 1.0 and 
l<2 = 0.6 are plotted. For the non-frozen gust case, a kf value of 

4 .0  was employed; while, for the frozen gust, kf = kg = 1.0.
(a) Frozen gUst. As B becomes large. Solution B tends to 

the correct frozen gust solution for B ■= o<o (that is, the original 

solution); while Solution A becomes singular (the imaginary part-^— oo) 

This is expected, as Solution B was derived with equivalence to the
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original theory in mind,
(h) Non-frozen gust. As 'B becomes large, Solution A 

tends to a definite non-zero limit; while solution B becomes singular 
in the opposite sense to the above case (the imaginary part — -!r ),

Thus it is clear that the time origin change required in the original
N  /  ' 1analysis to avoid the singularity arising from: X — 1>— oo

is not necessary for the non-frozen gust case (in fact, its use actually 
introduces a singularity into the solution). In other words, the gust 
phase change during convection from y = — co to the aerofoil is only 
infinite when kf = ks • There is a mathematical explanation of this 
trend, the frozen gust analysis, the singularity arose at X «= 0
because the inte^aid (for the integi’ation with respect to X  ) had a 
factor . In the present analysis, the equivalent factor is
and this will only lead to a singularity in the integral when X  *» 0 
and kf = kg . (No integral singularity occurs when \-kf-+k^ = O

but X =# 0 ).
It should be noted that the time required for a numerical 

computation of the non-frozen gust response,  ̂increases rapidly
with increasing B , as a result of the fact that the required integration

step size must be made smaller for larger B.
From figure 43» it is also evident that:
(1) for the frozen gust, the effect of distortion decreases

A
as R —^ 0 . This is expected as the 3 = 0  boundary condition is 
being applied nearer to the aerofoil,

(2) for the non-frozen gust (with / k^ = 4«0) the 
distortion effect is smaller than for the frozen gust, and it is less 
dependent on B • This can be explained by using the fact that a non-
frozen gust being convected at Uoa is analogous to a frozen gust being
convected at expected that the latter gust will be
distorted less by the mean streamlines when it is being convected at a 
higher velocity than the mean stream; that is, it is expected that the
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distortion will be reduced when kf increased from 1.0 to
4.0.
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APPEîIBDC 6

The Detailed Analysis for L  p, ; Three Dimensional Gust T h e o r y ,

'H i iB analysis closely follows the form of the two-dimensional 
analysis presented in Appendix 4> and employs a number of intermediate 
results derived therein.

The integrated linearized vorticity transport equations, in 
this case, are;

where C Vy dx'is again calculated as . f 4- f Vi~Vi,Cm=Q) dx' .
A, Uc.

The mean flow field, K  (x')= C , &s considered first.

Corresponding expressions for V, ,Vi , and ^ d/' have been

derived in Appendix 4* Thus, expressions for 3» and S t, are 
obtained by simple substitution.

The extra upwash due to distortion, qjp (x^ 0,Z^ , is
determined by the Biot-Savart Law in the following form;

= y  (([ :S;(x',Y,z.')(x-v')dxyH'c!z' __ U  r7( l(x',y',z'yz-z')dx'clv,'ot2.' .

Upon substituting for 3^ and 3, (x\y\z.') , the terms in u?i(x^O,z)
are of the form:

L LO"tje
* I  ̂ • IA ' * I I

((( dy'cJy'dr'))) Rx-v'y-4.8 - n U ^  ) ) ]

CLot

-oO
or:

i  d/dv'd.'
i» [(x-x'y + y'̂  + U-2')^]^‘S tt Uc
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The individual values for C,(y')  ̂ (y') and the corresponding K

are as follows:

K
C a fy ' )

X 'X  0 X < o \ > 0 x - c o

k t4  X ? V x e - ' y ' L ? V x e " ^ ^ ' L 4:

k , ± ukiTT S(>) î to ±  hk.Tf ±Lk,TrS(X^ 33̂ ± L k ,T iS (\ ')5 3 ^

k,4-X + l V x c ^ h j ^

k, 4  G y - 0 1 .^ + ̂  ^  3.*

k i 4-X

k,4- X

The double integrals: 
-LKx' -Lk)

I  -fTclYYYferil d x 'd z ' ; I  = ff ^ Y x - x ' \  dx'olz' ̂ ilC(x-x'y-+a'H(r-z'y>
can be evaluated analytically. In fact, as inspection of the above 
integrals indicates, I^ can be obtained directly from the result for 

by interchanging and K • Consider the evaluation of I^ ;
The substitutions X » x - x' and Z = z - z' are made as

usual:
«y — L- “L-WlZ
I . =  P P ^

Using the standard integral result:

T — -L-kjZ. G  c!' C Z  clZ-clX .

( Ko(kîA)

becomes:

Il =  ( K o [ k i y P y ] e ^ ' ^ d x for all k.

And using the further standard result:

^ Ko [ k ^ / x K y'4  Cos K X  d X  - % / k V R  ^  '  V Ü  )
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yields:

= o 2 tt e  5 “ ^ , for all k a.nd K ,
 ̂ A 3 4K .

and thus s

I ^ =  1 for all k^ and E .
v Kt, 4 K

Using these results, the terms in reduce to the form

( D  e ” "̂̂ ore E  >  O
ZL1 )„ J ^

—où4 U

This form was also obtained in the two-dimensional analysis (Appendix 4) 
where it was shown that the integral has the values:

i

2  L 1D 1 the sign of D  is -

2  I D 1 tf the sign of D  is +.

Thus an anlytical formula for Tr̂  (x^O^z) evolves. It is noteworthy
that only two different ranges of X need be considered: X')» 0  and X  ̂ 0  \ 
whereas the two dimensional case was more complicated* However, in this 
case, the extra complications are contained within the algebraic 
expressions by virtue of the involvement of square root terms* For 
example:

v / k ' " - K  = fo.îf K>0 or: K2L -  T 1 / f  K >0
’ 7 k '-
EK;f K < 0 ■i If K < 0  .

In fact, careful inspection of the present analysis reveals that, when 
kg = 0 , it is equivalent to the two-dimensional analysis of Appendix 4* 

The terms of u5̂ (>̂ 0̂,z) are given in the following tables in
the form:

-h L(uOt-k^/-k3Z) 4
Oco (over3
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Terms in 3,^
X>0 X<0
I I —1 k, 1 k,Wvk,ë‘‘̂'''

XQ.iiQ-xy4k^3

_^uk Kk^TT S(X) _l_tk,k,.ksiT £(X') 
kĵ  [k Y  k^ 4 k̂ ]

1 ki_k% Ĉ +X'iC ^
xci[(â,-xy+ki]X'alQH-xy+kM

kk.
X[k,kkt4-ki'']

_'! k p _____
 ̂ [ K O ^ N k i ]

aila+vxAki] Q  [(Q-Xy+ki"]

Term in 3̂ .6
X > 0 X < o

^  k5Ca-»-X)e"'’̂'’‘
q M + x y + k " ] QL(q -x )̂ + ky]

Terns in
\ > 0 X < o

^ \ K'kkitYkj.e 
^Q[(Q4X)'4.k2l

ik^ki'TT S(X)

i \v1 k, (k+YKe 
“X 0.[(Q,“Xy-vKt ]

i ki_ tT S (X)
Jki kj DrY kj"4 ka ]

1 1 (ki'4X)K(Q4-\)c 
>'QKQ4.\)\k2]

1 k,K

/k,\k,̂ [kNkuNk3'l 

_l (k,4>')k,(Q-X')ê''''"'
GiL(q->y+kM

4- 1 .

'X [k,̂ 4 kC4- k i l

The terms in are of two basic forms;

The lift responses to the two upwashes are, respectively;

(refer 1.2.2)

Thus the complete C l c response can be written down from the previous
tables for h9̂ (x,0,z.) . Tlie final lift response is given by;

= U« o!, ̂ [-X(x) + b 3;O')] ci^ M  dX
"eO (refer Appendix 4 )
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Again is split into its odd and even parts, and the final result is

A

Clc,= +F^(u„k,,k,)u ] é'̂ \
^ÔÛ Woo UaO

where each is of the form:
[  [lJo(X')EL(K,K,.k3,X') +U;(X')Oc(kJq,k,̂ X')]‘o!X
o

The terms containing the fujiction, S(X) » can he evaluated
analytically and the form of F^ becomes

where ;

 ̂̂  +Y,(>.yOc.(k„k„k:.>X')]dX "kdc(k,Yuk3') .
o

(kijk̂ kjiX) = " (X3 -b (X') 4-k). B(V')

O, (k,,ki.,k-i,X) = +  kzVJo(Y)

E 2 (kikv.,kj =" •+ U g(}) -  k, We (X) -t A(X') -kv B(X3

Oi  (kjk».;k3,X) - ~h Uo ex') ~ k̂  Wlo M

E 3 (kjki.̂ k̂ .X') = ““ kî_Ue(X) •+ K  Va (X̂  —  A  (X)

O A k w K . k ^ y )  = -  K U o ( X )  4- kjVo(XY,

and ;

(J (XX — —L  ki-k̂  (Q̂ 4-kA G J_ k^k^ (Gl'-l<X G (k,,k"X A-%̂
^ 2X Q [ ( Q 4 \ y 4 k n  2X Q'L(a'+X')"+K^’l

V/ /\̂ \ _ __ k-i (0,+VX E*(k,,k,+X,Ky _l_* k^ G (ki> k,-X A'i)
" 2 .Q [(Gi+xy 4 k n  2 Cl' [(a'4xy-Kk,"]

\A/ (xX_ I (kidX)kil̂ Q-t(ki-tXy]G(k,k(4X)kV ^j[_{k,-Xyk2_[Q-(kuG (k,k-X,k?')
^ ciBa-tXYkk^] QT(Q'4xy4.k,^]

where O  - Jkj -t(k, t X y  ; Q' - Jk̂  (k,-XY .

Uo(X) , Vo(X) , and Wo(X') are obtained by changing the signs 
marked in the above expressions for Ug (X)  ̂Vg (X\and W g  (X) 
respectively.



Also: /\(X\ = — _1_ G(k,
270.

and B  (x") “ -J— k, kt. G fkn k))
^ [k'-+kC4kY]

and <d I (X") = ki ki. G(k,|k%')  ̂ (X') = 4- XL- k Y yjk̂ -̂ k̂  G (kiYi)
^yk^^[K^+kJ-4kn ^ [kJ-4kZ'4kn ^

d_(X) = -Tt, k:i"k,k3 G(k,|k3')
^ / k ? ô ô [ k , O k g k d

This solution for G [_ ^ reduces to the two-dimensional result 
?ndix 4) when kg = 0 , although this reduction is not immediately 

obvious (Refer to earlier note in this appendix).
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APPnmix 7

Details of the Theoretical Adjaittance to Higher Order

The relevant admittance equation is (in tensor notation):

— et.
"here  ̂̂  rfe)Pfe')c-L,  ̂ky ■

P(i) 2

are the sinusoidal gust response functions; viz,
. Uh

Expanding' the right hand side, and using the facts that:

R T R i "̂ R ^ R i  - 2..E?e(RiRi ) ,etc. ; = iRil^^ctc.
yields :

Now, to order ( o(& ) and with the Kugridge approximation for 
the higher order terms, the response functions are;

R, = CX GmCE.v^^) 4- (X F, (k.ikvY^) ■+ o( M  (k,) 

R ^ =  G(ki,k-j) 4 cK 6 MA,(k,)K,k3) 4 cK
R ^  =

Tlius ;
I R , r  = O ' I G m  I ' -<■ M  F;!"-»• o!“|Ml' +  c<^2 ( 6 „ M ’) - » -Re.(6h -»-o("2 &  (f, M ' ) .
|Ril'= l6l' +  (X'lG„^l'-+c<qF^|'+c<2Re.CG.Gl) + c ( 2 % ( 6  Fj) 4-o<‘2Rt(6„«F;), 

I R Y = K ' 1 F j K .
% (R|R%) - o(Pss.(GmG*) +c<'f£(6M 4- o((F-G*) + 0̂

4- cO-%. (F,?*) +  o(-Ri.(M G') + ( % ' % (MGm^) +0('%.(MFj») .
■Re.(R,RP=o<f?e.(GFj') + o O%(C^,^Fi') +  <x‘ ( F , F / ) . 
'R£.(R,R])=o(^f?e.(6MF*) + o ( " f ^ ( E F M  4-oG'%.(MtV') .
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Substituting these expressions into the above equation for X 
and multiplying by Elf!— , yields the required integrand for the 
adjriittance calculation. It can be seen that the integrand contains a 

terrp of order (l) , six terras of order (cX) , and many others, all of 
order ( (X^ ). Clearly any terras that are odd functions of either kg 
or ICg will not contribute to the integral (and thus to lA(ki')B),

The syrnmetry properties cf the response functions are as follows; 
G(k,kj')and are independent of kg , even in kg.

is odd in kg , even in kg.
is even in kg , even in kg, 
is odd in kg , even in kg# 
is even in kg , odd in kg.

MCE') is independent of kg and kg.
Using these facts, the symmetry properties of the terms in the integrand, 

. y  can be determined. It is found that:
Ik.qy '

(1) the terms of order (l) and order ( o( ) are even in
both kg and kg and thus contribute to the admittance.
(2) the terms of order (o( ) are all odd in kg , and thus
do not contribute.

The order ( ) contribution to the admittance can be written;

o .

I consists of the following 21 terms;

+1F,1'+ I Mt' +  Z 4-2f^(Gy,F,*) +2'Re(F,M'‘) ^

+ IF, I'
(1

(continued over')
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2  f ù . (G^G*,) 4  2 %  (Gm f D  + 2 %  ( F, + 2 %  (F, F,*)

kT kl2  ̂3:- ( M G M a )  •+ 2 %  ( M F K )  ] .

+ [ 2 % ( G , , F £ ) 4 2 % . ( f,F£)]

+  [ 2 % . (G^ (F, F,") 4  2 %  ( M ^ )]
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APPJU'TDIX 8

Evaluation of the Integrals Arising in the Aoymptotlo Analysis

(1)  dki.clM, = I| Bay.

Substituting kg = T  sin 6 , kg = cos 0(i.e, changing to 
a polar co-ordinate system) gives;

I, = ( ( ( l ±3h2âliH d t d 0  .

Using the result that j -f'hcos’'0)d 0 = 4 "b̂ Tf , 1^ simplifies to

1.=- ■
Putting z  = gives:

The following indefinite integral result is employed:

where Z  — Q 4 b Z

With this result I^ can be fully evaluated. The result is

I, =  t r ^ .

— OÔ

The same method as above is employed. Thereby: 
<u5 2.TÎ  ̂ . oo

d z

=  TT 36 
S 5
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APITSITDIX 9

Details of Buffet Test

%.e unsteady load on the test element (of the aerofoil described, 
fully in Chapter 4) was measured with no grid present. The following 

set angles of incidence were employed: 0 (  = 0 ^ , 10° , 13° , 14° •
The resultant lift coefficient spectra ai?e presented in figure $0. The 
load measured was that perpendicular to the stream, but it must be noted 

that the load balance was, to a certain extent, sensitive to drag forces 
(refer to 4*2.2), and that these forces were significant at the two 

higher incidences.
The tests were conducted with a tunnel velocity of 7 6 , 0  ft/sec;

g
that is, at a Reynolds Number of 0,23,10 • The intensity of the back
ground turbulence in the free tunnel was measured at 0*1^

The extent of flow separation at each of the set incidences . 
was assessed by the tuft vigiialization technique . The stall type 
was determined to be of the combined leading edge-trailing edge type 
(refer to 2.E.4 )• At 0° and 10° there was no discernible flow 
separation. At 13° there was definite trailing edge separation.
However this separation was not uniform across the span of the test 
element, probably as a result of the variation of effective incidence 

over the span (refer to 4*2.3): J.
t e s t  e le m e n t  (s u c tio n  s u r fa c e )

R e g i o n  o f  s e p a r a t e d  f l o w  : o ( = 1 3 “

Thus, for the flow measurement at CK = 13° » the mean flow was not two 
dimensional. By o ( = 14° the flow had separated from the leading edge 

right across the span.
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The resonant loading peak, at about 780 IIz, has not been
included in figure 50. The power in this peak was found to increase
slightly from (X = 0° to 0( *= 13° , but to then decrease somewhat with

the complete stall ( o( = 14°).
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APPENDIX 10

Possible Contribution of Non Linear Terms to the Spectrum of Lift

In the sinusoidal gust theory of Chapter 6, higher order terms 
of order (CX£ ) are derived, but the second order non linear terms in 6 
(that is, those of order ( )) are ignored, V/hen the order (6^)
terms are retained in the analysis, it can be shown that the resultant 
lift response is of the form (in tensor notation):

r  ND -C A  L Z i ù L  .Cl, "= -+ A lj ircoTj e . . .  (A-i)
0(£,cX6'^ 0 ( e } )

(An attempt to evaluate the response function, , was not successful)
Because this is the response of a non-linear system, it is 

not possible to derive a simple relationship between the load spectrum 
and the velocity spectrumfor a random turbulence input to this system 
(Admittance functions are defined only for linear systems). One question 

raised by the above equation is:
Can a response term at twice the frequency of the input contribute to the 
output spectrum? This question can be investigated, to some extent, by 
examination of a system with the following form of sinusoidal response:

uLoC A ^ L ̂ Lotl ^ L (i/JÏL— — k-̂ z)
C l - C  j for input ij'z.C. . , .(A-2.)

Such a system is a particular example of a time-varying linear system.
The response (A-2) is rougl-ily equivalent to the general non-linear 
response (A-1) when is of order (l) and A . i s  of order ((£ ).

An input-output spectral relationship for this system has
been derived using theory presented by Bendat and Piersol (1966), With
their notation, the derivation is as follows:

The frequency response function, H(f,t), for a time-varying



273.
linear system is defined as follows:

^LZtrft oZ-n-ft
For input C  , the output is HCf-jt-JC. •

In general, v/hen the input to such a system is a stationary
random process, the output will be a non-stationary random process, ^or
non-stationary data, the double frequency spectrum is defined:

-*oO
where R x  is the correlation fuction which,

for a non-stationary process, depends on t.j and t^ , rather than the 
simple difference, t̂  - tg .

With this definition, Bendat and Piersol derive the following 
equation for the output, Sj (f; > ^f a time-varying linear
system when the input, SxCz.') is that due to a stationary process:

Sa fh,fO = f S . d . v  , T(f.,f.-f.Vdf. ,

J (f, ,fD = f H (̂,t) e" .

^or the particular time varying system which produces response 
(a  - 2), H(f,t) is of the form :

Substitution of this into the above input-output spectral equation yields:

Sy (A,A) = S.(fD S C V M  +  H'^A(fOS(aA-fh]

+|A(%')rS(Vĥ ] .

Prom the form of this expression, it is clear that, in this particular 
case, Sg is a function of one frequency only. In other words, for this 
particular time-varying linear system, the output is a stationary process*
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Integrating with respect to ^ 4 gives the final result:

Sg(f) " Sx(-f) J H(f)| ̂4- H A(f)̂ -+ Sx(̂ ')[*i|A@r '
Translating this result to the notation of this study and to the specific
lift response of equation (A-2) gives:

o(e‘) 0(1) 0(6) o(ep o(e') o(k)

As may be expected, depends on at k.j and at •
Thus a sinusoidal response term at twice the frequency of the 

input gust can contribute to the lift spectrura. In fact, the above 
equation suggests that a non-linear response term, of order ( 6  ̂), may
contribute to the spectrum to order ( 6 ^ ).
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APPENDIX 11

Computer Programs

Pour programs are listed in this appendix. The programs and 
their functions are:

(l) ADNITL. This computes the first order theoretical
admittance via the equation;

O
(2) TORT 2, This computes the higher order, two-dimensional 

sinusoidal gust response via;

R  = s (ki) + -k -SA (k.,k>) D (KX) -  .(6 .44)
/Kpki /k/+k}

(3) TORT 21. This computes the non-frozen, two-dimensional 
sinusoidal gust response to order ( oC€ ):

R' = RfD . . ,(bso)

where

yx-+ki.

and J , % B o (xS]dX $ 4 ^
O _

(4) TORTFG. . This computes the higher order theoretical

admittance via:

Where ^ , Pft) r(f ) c. J_ i k{T = -
rc-j) 2 L, 6
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The 21 individual terras of I are listed in Appendix 7* The 

response functions, , wliich are imbedded in the function, I , must 
be determined with an integration;

Fg - ^ L^3'o(X')El d X  4- db .
(refer to Appendix 6 for details) 

Further notes on the urograms, (refer to the subsequent listings)

(l) AD?jilTL« The main program performs the single integration of

equation (1.17). The subroutines (HrrEQJI2, COEFF, and CITAT) compute 

the response function, G(k,X5) .(These were written by Graham (19?0)^ 
Features of the numerical integration of the main program are;
(a) Simpson’s method is used.
(b) Two different ranges of integration are dealt with 
separately. The first range is for near zero: here SS 
is the step size and the number of steps iS IX (an odd 
number). Then the integration continues with step size, BS , 
until the change in the integral value is less than 1^.
As listed in this appendix, the program computes the admittance 

for 5 inputted values of • For each value of k^ .j G(k,,k^)is 
determined for the 5 values of k^ , simultaneously. This is significantly 
more efficient than evaluating G(ki,k-i) separately for each of

the five inputs.
Also as presented, the von Karman-type formula for (k%)k^

is employed (refer 5.3.1).
The inputs to the program are:
A R  =  %  ̂ XL = L, ^ C H  = C(L, and c in the same units)

and the five values of V/L = 2k^ .
The outputs are the corresponding values of WL and AD « | A ( k ^ ) R .
Further relationships between the program variables and 

variables of the present report are:
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S K  = k* , S U  = k r  , W M  = 2k: , PHI =  t T .  S?j(k,.k,')('Von Karrca n) 
and G  ~ G(k,,k-^
Reconimended values of the integration parameters are;

ix-n , ss = o-a ) BS = 1 0  .
(2) TORT 2. The program evaluates 'Pv ; in the Biain, by direct 
substitution into known analytical formulae. The exception is 
which is evaluated by numerical integration (via equation (6 ,40))•
Integrand values are provided by subroutine TORT 1 ; while library 
routines are called for the evaluation of the Bessel functions contained 
in the formulae.

The numerical integration employs Simpsons method. The step 
size, SL, and the number of steps, M , are inputs to the program. The 
other inputs are W1 = and "#2 = kg ; while the outputs are the real 
and imaginary parts of 1%, RR and RI respectively.

Also! W L - = X   ̂ S K  = S(k,) , B R  + 6 B I  = D(k„kC^ ^

E R  + Ù El = , CJO-^ C C T l  - ^

C . - t ' D A  - B e (X) , C —  D  - B o ( X )  •
( §*£ and B o  are presented in detail in Appendix 4)

The integration parameters, SL and M , must be selected

carefully to ensure an accurate estimate. In the present calculation, 
the values SL = 0.2 and M = 99 were found to be suitable (M must 
be odd)

(3) TORT 21, This is a straightforward extension of TORT 2, The inputs 
are W1 = kg , ??2 *= k^ , WF = k^ , BD = B , AP = 0<( (radians),
SL and M . The outputs are SEE , SEI , SSR , SSI ’, RÎ>TR , RI.H , DR
and DI , where ;

S E R  + o SEI = -R-s s S S R + u S S I  ^  ^

R M R  + L R M I  = ■Rm  \ DR.+ C DI = R d 

and HR and TR , where:

T R  = IR'l ; H R  = \ n " \  •
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Also;

C D ■+• A  + 0> = 3g (X') and C ~ D ~ r A ~ B  - 3o(X)

where Bj= and B g  are presented in Appendix 5*

(4) TORTFG , The integrand in equation (7»3) is A(I, J, K), and the 
double numerical integration of it with respect to and k^ is
done in the main program.

Subroutine TORT 5 evaluates the response functions, ,
by numerical integration with respect to X . It is essentially the
three dimensional version of program TORT 2 above. The outputs of the 
subroutine are FX *= P, , PY *= Fg , and FZ = F^. Also; S(l) A \
UA ij» TO = U e ex') , UA - TO *= ÏÏq (X'̂ , etc (refer to Appendix 6),
A à A , B » B , and D i  = d, (X̂  , etc.

The main program has been written to deal with three values
of XL  = simultaneously. (The lengthy part of the computation, the
F^ evaluation, does not depend on ). For kg , the integration
step size and number of steps are SK2 and M2 ; while, for k^ , they 
are SK3 and M3 . Again these must be chosen with care. In the present 
calculation it was found necessary to vary these parameters for different 
values of k , . Two exaAples are;

For k^ = 0.1 ; SK2 = 0.35 , M2 « 21 , SK3 = 0.2 , M3 = 13 .
For k^ = 5 .0 ; SK2 = 1.0 , M2 = 21 , SK3 = O .5 , M3 = 13 .
¥he integration parameters for the X integration (subroutine 

TORT 5)» SL and M , were optimized at 0.2 and 49 respectively. These 
values were written into the program.

Thus, the inputs to the program are WEI = k,j , the three 
values of XL = , SK2 , SK3 , M2 , and M3 . The outputs are the
admittances, AD , corresponding to the three XL values; A D  = |A(k,)|̂ iŷ 2 .

Also; W K 2  = k% W K 3  = kg,  ̂SP= G^(k,,k-^  ̂SE '
T M  ̂  M(k,')  ̂X F = F, , YF - Fj.  ̂Z F  = Fs •»
W W i  = k *  , W W Z  = kt , W W 3  = kj* ^

W 2 . U 8 2 . X Ü  =
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As the program is listed, the value for the aspect ratio,

AH *= 3. = 1*3333 f has been written in; but, with a small adjustment, AR
can be made an input variable* (Note that 112 and M3 are required to

be odd numbers)*

The listings
A D h / I T L

J , Ï  G 0)  , W _ ( 1 Ü ) , A 1 ( i  Ü ) , A b ( 1 D ) , A D { 1 0)  , Y A ( 1 0)  ,
p:\OcH. A i'i ,-v j ri X 1 L. { X A P U I > 0 G
U x , , c x S l  V 1 ( X 0 , j  1 ) , V 3 I ^

I S  I Dr  ) , u ( ) ; A ( 3 x ,  22  )
C 01 i r  i. h X A
b 0 . h - i C f / / A / 3  , C , A , O hA u lüj^AvjXLjCfijxXjbjojijii

l u  F 0 : V;i A 1 ( -5r u . 4- , X 2 , 2 r  A « 2 )
X 1 i\ L A J) J- 2 J ( > I L ( ij / , >J — i  , a J
12  P Ü 2 .1 a T i  K 6 • 3 )

W ‘i = ü . û O i  
X F = Ü0 u 3 J MS — ijÎA 
ÜXl .  = Q* ü jJ 2ü L 5 = l ,5
o k -  2 . b /  ? 0 'O  WL. ( L G ) XL /  { c r i -> 1 . /  X2 AD ^ 1 .  2 ^ 0 .  9A0 5 o )
S U - 2  . W.O X, . /  ( G n -  1 . 1 . 2->0.  9 h J Do- M ( 1  . f  2)  0 . 5 ) )
F'h:l = ü . » X L * 2 . ü / ^ D 4 * ' ^ 2 * ( o i \ ’^ » 2  + S U » » 2 f S K ^ ^ 2 * S U » » 2 j / ( 3 . » ( 1 . 2 * ü . 9 4 ] D ô ) » *  

( 1 . 4  Sa » ^ 2 )  »» j . D M i .  + cU» »2> »» ( 7 . G / 3 . 0 ) »  ( 3 . 4 6 . » c K » » 2 )  )
W L L -  VI L ( L 3 )
C A L L  i N T . i l N 2  ( WLi. , , G)

20 XI ( L ù ,  l i S;  = G » » 2 » H - l I  » (  S i N (  W, | * AR)  ) » » 2 /  ( L M» A P )
3 0 W2 = «■< M 4 ô S

Hk = WM- S S  
DO 3 5 L 3 = 1 , D  
0 J ü -  u . Q 
L V O O U . J  ki-xX-1
ÜJ 1 = 2 , Ni ,2

c i  L V L ,x - L. V z j 4 V 1 I i_ S , I )Nc = x X-2
J ü  3 2 1 = 3 , N 2 , 2

Z c  0ÜD = Ü0D4  VI  (_ S , x )
• A l ( x . S ) = c 3 / 3 .  » (  V I  ( L  S ,  1)  4 L . »  t X £ i / 4 2 .  ^ 0  0 04 X K L S ,  I X )  ) ^ 2 . /  ( 3 .  1 A Iz» 9^-CH)

3D Vr  l ^ S , 1 ) = v 1 ( l S , 1 X )
M3 S = 2 
HJ = i  

40  W-i = W24bS
C H L — u » G 
U3 Du LS = 1 , ! )
SK = 2 . b7 d » r. L ( L S ) » XL /  ( Cri » 1 , 7 7 2 4 5 » ! .  2 ^ 0 , 9 4  0 5 6 )
SU- 2  . o 7 o  j  + » W' 1»XL /  ( C r i » 1 . 7 7 r 4 D » 1 . 2 » ü . 9 4 G 5 o » ( ( . 1 . 4 S K » - » 2 ) » » 0 . 5 ) )
P H i  = d . 4 X L ^ 2 . u 7 d j . f » » 2 » ( c \ » » 2 4 S u » » 2 4 S 4 » » 2 » L U » » 2 ) / ( 3 . » ( 1 . 2 » U .  94 0 5 ü ) » »  

1 2» ( 1 . 4 S k »  » 2)  »» ü . 5  M  1 , 4SÜ» 2)  »»  ( 7 .  0 /  3 .  G ) » (o . 4 8  . » S K » » 2  ; )
W L L — n L ( L. o )
c A L L I i 'i r L O  2 ( w i_ L , H i , o )

5 ü V2 ( z o , MS S) = G * < 2» P h 1 » ( S I N ( W M» A k ) ) »  » 2 / ( WM»A U  » » 2
I r  ( ù J . u l . 1)  b ü  n  60  
ÜO 5 7  L S = 1 , d  
O j J = Ü . Ü  
t V L l J  = ü . Ü
ikl  =M - 1
DO 51  1 = 2 , N i , 2  .

D 1 L V t . H -  L V Z : I 4 V L l L S J I  )
Xr  l j ' h o  * L 4• 0 ) Gu l ü  53
,\'2 = : i S S - 2  
Du 5 r  1 = 3 , M 2 , 2  

5 2 b J 9 = u u n 4 V 2 ( L S , X )
3 3  A 2 ( . o > = x x / 3 . » ( v' 2 ( . 3 , x ) 4 h , » F V l M 4 2 . » 9 z G 4 V 2 ( ^ S , M S S ) ) » 2 . / ( 3 . 1 h 15 3»CP)

A U ( u 3 ) = A x ( L S ) 4 A 2 (_ 3)
I F  ( m S S . o T . o ) gu  TÜ b5
x r  ( A , ; c ( ( r t i J l L c ) ' ' A l ( L o ) ) / M O ( L S ) ) * L z » û . Ü l )  I P = l P 4 l
Gu T C Db

5 b X r ( A u b ( i k L l z u ) - f A  ( L S ) ) / A u  ( u u ) ) . L z .  G . 01)  x P = i P  41
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Du YA(L!;)=Aj(L3)
b y c J iki i NU •-

xF (xr. :0. D) bO 10 7 0
1P = Ü
bJ---l
bü 10 bi üG (;j = .ij4i 

01 =
b J I t M J 

7 u MF = .i Ou4 1 S - 1
F rv i , i 1 / 3 , ■ i F

7 3 Fu7F<^f(lX,I3)üO j X LO — ijb
r <xbT cO , (Lb) , Al: (LS)

6 ü r Ü f ; l'i M i ( 1À , r 5 . u J & X , z 11_ • 5 )
0 0 eu N ( 1 ! iUz

bfOr 
L ' 1J

SUüicuUTIMC iMTEuor (CL, CM, <L2)uxiizOuxO.l o( d 2) ,Ci 52) , A (ci, 22) , (27) , J5 (27 ) , AX( 2, 27) , AS ( 27) ,
i J (cl ,21) o M (  2, 3) , uL (2) ,xJ ( 1, u2) , A3 (27) ,0T (5 1J ,A1 (27) , n  ( 21, 3)
2,0(1)bu ,lPLc. A AI , S 0 , A 3 , 4 r , c r , 3N , Q , T r , I, SM , S J ,CL 1, CL u , KT , B 0 , A , B 5 , A3 , 2 , kF ,
1 ;< J
u 0 ii l 'i J 0 / A / 3 , L, , A , C M _
c o o r i o r ; / ù / j , : \ i i ,  r
Ax— (ü.ujx.G)
R c = J . b 9 31 f 7 
P=3.1413 3 3
04(1)=C»k_04 ( 2 ) = û . 3- k_
N=2G 
uc = 0 + 2 
NI = il 4.1
uü Ib K=3,N2 

lu 04(K)=-2* J/(&» (k-1)» (K-2))
INT=0

- NANE - INI SA Nz Au ST A Nu A RU FUNCTION AND \t.MO'JEu FUMCÎxON FROM USE

CN=CM/2 CR = cÀr ( uM)
uO=-ALUu(CN72)-0.57721b 
iF(CM.EN.CML) GO 10 12 Ca Lz c uLr-(3,u ,a ,c N ,h )

Cb GAl CJc AïL COEFFICIENTS Or j K/HQ ( = A5(J) ) AND DK/Hl ( = 05 (J) ) FOR rt 
C

00 l3 U— 1,N1 '
u5(J)=A (1,J)72
00 14 K=2,NI

14 B5(u)=u5(J)+A(K, J) 
l3u5(!'i+c)=(j.Û,0«0)

U"(0*Û,tJ»'l)
DO x5 0=2,NI
A3(J)=uN»t 3p (J-1)-B5(J + 1) ) /(2» (J-1))

1 5 b= u 4 A 5 ( J )A3(1)=2»(uO-B)
A5(N+2)=a 

12 bK=CL/c 
0T(1J=1 

22 2=CL/2
1 = 1

25 Q(I)=CuS(_)4AI»SIl(Z) ' .
CAci_ uc S J ( 2 , ü ; k c , , ü 0 1 ; X E R )
K J ( X , 5 2 ) = 0 
KO (I,51)=l«u c-lO 
■DO 4 1 0=1,50 
Jj=5i-J
rvJ (x , J J) =2»J J»r^o(i , JJ + 1) / Z -kJ (1 , JJ42) 
xF(ABS(RJ(I,JJ))-i*0 CIO)41,27,27 

27 02=042
DO 2ü L=1,J2 
J< = 53-L.26 RJ(x,OK)=kJ(x,Jn )»1.L E-15 

41 DT(J41j = 0
:\Y=k J ( X , 1 ) 
ü 0 2 b u = l , 5 2

2 3 RJ(I,J)=kj(I,J)» <Z/kY - -
CC CALCULATE COEFFiClnNlS OF SINH AND CObH OR SIM AND COS.
b

üj 61 K=1,NI 
A ( i\ , ; 14 X ) = 0
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i Ax C-"/Cw-l / ibl- »C\) ) »i-l) »»K/(4»N42)MA 12 ,;.)=!/ ( 2 » N 4 i ) -

N3=2» j4l
Uu u2 j = 2,::j
1:\= lK“iJ -M J“l) / (2» M+ L j
r:.S= (-x) ^*U( (fS~l> » (J-1) -l2::» (2»N4l) 4i)
J = LA4 ( U.'.!» ( 1- C ( J) ) )AA ( 1, rx) = m A (1 , K> 4 lu / Ch -1/ (:)»CM) ) » \ 3/ ( 2»N41)

u2 HA ̂  ̂  , rv) E h A (2 , K) 4 ( J4 1/.,.) »K 3 / I 2 R4 ii
O i b J 11 1 u : 1 J ZM>: ( 1 , 4 2 i û

A X ( 2 , I ; 4 2 ) = n
R1 = u z / i 2 » u f s ?
bl=,\l»»2 
U2=14 L 1 
Cu=ü2/Cl 
r.S = u OkT IC2)
JS = -1
S^ = JU» kl» Al Ou (rU-zS» J3) / kS4AI»Rl»P / { 2»RS) 
ü J Du J — X J î i 2 

D3 AT{ J i =lJ.u ,0.0)
AS ( i) = lu.0,0.0)

33 ZT=AS( 1)
SN=(U.0,0.0)
ÜJ 57 J=1,N257 MU (J)=Ai»JL/2» (AT(J)“S4(J) )4A5(J)424üT(J)»SCl 
xF (CA^S { AS(1))-1.Ül 25)5,ü ,6 
PRINT 52,CK,CN 
uü 10 18

5 ir (CAÜS ( AS ( 1 )-ZT ) - 0 . Q 02» ü AF3 ( ZT) ) 5 6 , 56, 30 
3 ü ü J o X J = 2 5 N1

AT( J)=(m S( J-1)-AS( J4 1))/ (2»(J-1))
31 ui =3N 4AT( J)
3 2 Al ( 1 ) =-2*SNXN i = X NI41

Go TU 33
56 Till, x) =?» ( J(l) ».RJ {1, 1) 4AI»a( 1) »RJ( 1,2) )

TT (2,1)=-P»u(l)*t-.J (l,l)4kJ(l,3))/21 y (1,2)=C-» t C3»(Au t ii 4AS( 2)) 724jb»(A 5 (1) 4A5(2))/(Gl»2) 414KL)» AI 
ÏTt2,c) = -CLMJu»(AS(l)-AS(3))/44jù»{A5(l)-A5(3))/lCl»4)-U.25 4RL/2) 

1*AI

00 35 J=1,N1T(x,J)=-üi»(A(J,1)4A(J,2))»S(J)724DT(J) 
o5 r (2 ,o) = u\'» ( A ( J, 1) - A lu , 3) ) » SI J ) /4 4jf { x4iAB3 (2-J) )

II 11,0 i =JS» ON»»2» ( t Ad 11) 4A5(2) ) / 2414P,L) ̂ 4 
ïT(2,o ) =u N»»2»(45(1)-A5(3)-14.<L»2) » (-JS)
ÜO 3o J = 3,til
TT(J ,0 )=JN» »2»(A5(u-l)-A5(j4l)44.n/((J-2i»j))»(-J3) 
Tl(J,i)=r»Al»»J»U(l)»(^J(l,J-l)4Kj(l,j4l))/2iT(o,2)=-0i.»(Go»(Hi(j-i)-AS(J4l))/44uS»(A5(J-l)-A5(j4l))/(Gl»4)4l. 

lu/ {(u-2)»J))» AI 
DO 3 7 I=x, NI 
A(X,N4 2)=0

37 T(J,i)=CiTMA(x,J-l)-A(x,J4l))»S(ï)/44üî(l4lA3SiJ-I))
3 d  c o n t i n u e

GAzL CHAT (TT,T,M4l,3)
00 39 1=1,2 
UJ 4U K—1,3
SM(x,k)=0.125»AX(I,1)»TT(1,K)
Do HD J=2,NI 

4 5 S.’i < I, K) =S-UI, K) 4AX II, J) »TT( J, K) 74 
4 j CONTINUE 
JD i\l=l-ôM(l,3) 

üO '+D J —1,2
40 S3lJ)=KT»Si-îl2,J) 4:iM(2,3)»of1(l,J) 4(i-J)»RT/2 

=-3o (1)/Sx (2)
KG= fSu(l,l)4kr»SM(l,2))/<T CL l = -AI»Cz»kG4r<F 

3 GLj = 0(l)»uu/,Jv(Czl)*2/P 
R u 2  =  G A ü S  ( J l O )52 ru ru', Ml (l.iJ, 2F12.2, ' ITLRATxùN FAILURE AT 5. ' )

1 8 D N L = C M .
tsETUk N 
[Nu

SUdküUTlNE GüLFF (S ,C ,A,C N ,P )
ui M.NSxON S(DL) ,C( 52) , T i 21, 2 1 ) , d  2'( 21, 21 ) , A ( 21, 2 2 ) , 3 ( 2 )CüMPzEX T, u2,A,Ax 
Cüi1NüiM/o/N , NI, T

C
C c a l c u l a t e  COEFFICIENTS OF 0OU ILE CHE5YCHEV SERIES FOR 0El TAK7H(2)1 .C

AI = (ü*L,1.0)



287.
L, ( 2 ) - ij
I \ Z — 1 • u
üu ii J = i , : u
S\J)=1
u c Ji =iJbS (p» ( J-1 j / ( 2»N+1) ) 
i) J 1 J = i , :‘j 1 
J, < = J 4 2 - J 
t'\ i l = J 4 ii + 1 û (kJ)=-C(JN)
S( k ,) =1s 11)=u.5[j l.l 2 4v — 1 J J X r ( o - iN ) u , J , 5 
) (o,r'\)“ (ü*ÜjÜ*ü)
. J 0 7

5 
2 0 2 2 
7 

2 o 
2 D
2
1

LJr\=(ü l J) - C( K) )
l i  A u - - z Sk  ( -  Li vif\ J 1 J u> ( 1 ) , 1 c.'< )ÏC J,K) = i-o (1) )»iz2“l/Cor;4Ax»(-J {2) )»?/2 CJrx= ( b (o ) + u (K) ) »Û\'
C A L L i t :3 K ( u J » 1 , u ( 1 ) » 1R k )
u2 ( o, K) =b ( 1) Üok4AI»J (2) »P/2
iù2 u2 (j,k)
T ( i\ , J) = - T (J f K)

Cj'J f iNL'E 
üÜ 6 1 K= 1 , NI

DO 9 xS=l,l<A ( i k , I S ) = ( 0 . 0 , 0 . ü )
IF (i'k + lS-2» ( (Ik 4I5) /2) ) 12 , 9,12
Lo lü j= i ;m 1 
Jiv= (Ik-i)» (J-1)
00 xl K=1,M1 
J j = l I S - 1 ) » ( K - 1 )
JRS = u\/(2» M41)4 J u/(2 » N41)42A(x.v, xS) = .'\ (xi;, x3) 45 i J) »S (<) » ( T ( J, K) - (-1) »»1S»32 ( J, K) ) » (-1) »» JRS 

1 » b ( J K 4 1 - (2» N 4 1 ) » ( j k / ( 2 » N 4 1 ) ) > 4 C ( J S 4  1 - ( 2 » N 4 1 ) 4  ( u S 7 ( 2 » N 4 l  ) n
lu Cj:irii;ÜZA( ik, 15)=d»A (I.v, 13) / ( 2»N41)4»2 
9 A(xS,^rx)--A(ikjxS) 
d bC H i IriUE

kriURN
cNO

12

11

SU Ji\G UT X k 

Tu ü L V c _) 
I i = iiAr

uc 
;1 A

: GhAT (TT;T,N,M)
ÜF GOMP.EX LINEAR EQUAIIQNS 

OF kH S. (N» M )
WITH ilANY KIG.HT HAND STDEi

T=MA I ,\1X uF GOzFFS. (N»N) kLAb r-AkT OF I MUST uL NJNSIn GULAR 
ANSric.,; X N 1 f ?NriiCH x S u Eù I.ROTl U 
uUxKuUl INE REkJIRLu uSr'BlN ROUTINESu u r u X U KU U I X k L u
Dx (h NSx O N ' K 21 ,21) ,TT(21,3),TTK(21,3),TTx(21,3),TK(21,21) ,TIC 21,21 

1 ) , W (21,21) ,X (21, 21) , y (21, 21) , Z (21, 3) , i< (21) , z ( 21) 
üOkPuLX AI,T,TT 
Âx— (ü.O.ltQ)
L u I I I <_ L_ /X X
Âx —  ( Ü « 0 , l t
0 J 1 X —  1,N 
00 ' ■00 2 J=l,I
ITk (I,u )=<EAL(TT(I,J)) 
TTI (x,J)=AlHAb()T tx,J)) 
Ou 1 J = 1 , N

■■ a  (x, J) )
.,J)— Ti\(I, k!)
. L. n X N V ( W , l'i, 10, K , u )
. L o F P i\L) ( T X , A , A , 14, N , N )
.L GIlPRJ ( X, TTI, Z,N,N,M)
3 I =1 .

N)

0 J 1 J — 1,T:vll,J)=RwAi_\j \ jL J ̂  I /
Tl(I,x)=AIMAG(TiI,J))
W ( X , J ) — T K ( IJ >.) )LA Lu 
LALL _. .
CAzL GllPR_
DO 3 1=1,N uu 3 0=1, 4
TTkd, j) =TTR (I , J) 4Z (x,J)
L A L L o('4'KJ (X, 1 1, y ,f4,»4,J 
00 4 1=1,NüÜ • • •
T.-
CAL,
CAl L
CA__ _. .U/MLL ui'iPfxJÛO -u 1 = 1,N 
ÜO 5 0=1,1il ( X , J ) = n  ,\ ( X , u ) 4 A X » ( Z ( X , J ) - TT i ( X , J ) )
RETURN 
LNU

JU H X - 1 , INJ Ü 4 J = 1 , 0 ,r.R( X, u) =TR (I , J) 4f (x,J>
0 A L L b t  L o ( T r R , T K , N , h' , 1 • 0 h -  7 , I  E S )
u A L L G ii P Ts 0 ( H , I T X , X , f i , N, f1 )
OA L L b i 'F '( J ( W , Tx , X , U , 'i, i )
uHbL u i'i P f X ü ( X , T I k J T T X , N, i'i, fi )
OO -u 1 = 1 ,  i



283.TORT 2
PROGRAM TOPTR ( TNF’üT,OUTPUT)
01 MENS TON T(20n)*U(200)
COMPLEX 0 0 , SK 
r e a d  l n , W l , W2,SL*M 

10 F O RM A T ( 3 F 6 . 4 f 13)
WL=,001 
W X = W 1
CALL B F S J ( R l , 0 » C J O * , 0 00 00  1,1ER)
CALL BFSJ ( w l , 1 , C J M  , OOOOOi , 1ER)
CALL B E S Y ( w l , 0 , C Y 0 f T E R )
CALL BESY(w1 , 1 , C Y 1 * Î E R )
no 20 j = i , M
CALL TORTl ( A / X , W? * W L » C J O # C j l * C Y O f C Y l f T { j )  , U ( J )  , 5K)

20 WL=WL»SL 
N = M " 1 
K = M « ?
000=0,0 
EVF\l = 0 , 0  
DO 30 J = 2 , M , 2  

30 EVEN=EVEN+t ( J) no 40 vJ = 3 f K f 2  
40 OOD = ODn + T ( I)

A R = 5 L / 3 , * ( T ( 1 ) + 4 . * E V E N * 2 , # 0 D D + T ( M ) )
000=0.0 
e v e n = o . o 
DO 50 J = 2 , M , 2  

50 EVEN=EVEN+m ( J)
DO 60 J=3»K*2  

60 0DD=0DD4ü (J )
Al  = - S L / 3 . *  (U ( 1 ) * 4 . * E VE N  + 2.<>0DD + U(M) )
DD = 5K<*3. 1 41 59*W1*W2/  ( 2 * *  ( w i * # 2  + W2*#2) )
DRrREAL(DD)
DI=AIMAG(On)
BR=AR+DR
8 1 =4 1 -0 1
p=SORT( Wi##24W?#*2)
0=.W2/SORT(W1*#24W2#*2)
T = W1/S0RT ( W1<^*2»W2**2)
SRsREAL(SK)
S I = û IMa G(Sk )
EE=CJ1+CY0
FE=CJ0-CY1
c a l l  B E S J ( W l , 2 , C J 2 # , 0 0 0 0 0 l , I E R )
C E = ( C J ? - C J e ) / 2 ,
GE=CJ1#CJ1-CE#CY1 
H E = C J l # C Y l + C E # r J l  
E R = W 2 * ( E E * G E - F E * H E ) / ( E E * # ? + F E * * 2 )
E I = W 2 » ( ( C E + C J l / W l ) ~ ( F E * G E * E E * H E ) / ( E E * * ? + F E * * 2 ) )
RR = P<>RR40*r J0 + 0#SR + T*ER 
RI  = P * B I - Q * C J l - Q < ^ S I - T * E I  
PRINT 7 0 , W i , W 2 , R R , R I  

70 F O R M A T ( 2 ( 2 X * F 1 0 . 6 ) )
STOP
end
SUBROUTINE TORTl ( Ri< 1 • RKa , PL ♦ B Jo * B J 11 B Yq » B Y1,  V ♦ W , S A ) 
d i m e n s i o n  S ( 3 ) , 8 0 ( 3 ) , R 1 ( 3 ) , R ( 3 )
COMPLEX S*y»C iD*A»SA
R(1)=RK1+RL
R(2)=RK1-.R|,

■R(3)=RK1
WLL=RL
R1=R(1)



R?=AR5(R(?))
c a l l  p f s j (Pi,o .r o (1)♦.oonnol» 1ER)
CALL BFSJ(p1,1,B1(1),.oonnol,IER) 
call BFSJ C^iLL*n*RLO, , 000001 , 1 ER)
CALL BFSJ(WLL»1*BL1*•OOOnoi,1ER)
B0(3)=«J0
B1(3)=PJ1
E=BJ14HY0
F=BJO-BYl
IF(RL.lE.RKrl) GO TO 20
CALL BFSJ(P2,o »BO(2),.000001,1ER)
CALL BESJ(p ?,1,r 1 (2),,000001,1ER)
IF(R(2),LT.0,0) Bl (2)=-Bl (2)
J=1
60 TO 30 

20 s (2)=(0.0,0.0)
J = 2

30 DO 40 T=1,3,J
G = BJl<mO ( I ) - B l  ( I ) <^BY1 
H = BO ( I ) *>BYi +B1 ( I ) * 8J1  

40 S ( I  ) = ( F * G - F * H ) / ( E * * 2  + F<>*2) + ( 0 . 0 , 1 .  0)<^(RK 1*81 ( I ) / R ( I ) - ( F * G  + E * H ) / ( E *
1*2+F**2))
C = S (1)* R (1)*RK?/(RL* ( (RK]+2.*RL)**2»RK2**2))
D=S(2)* R (2)*RK?/(RL*((P K l ,*RL)**2+RK2**2))
A = -€ (3) *RKi *Ri<2/(RL*(RKl**2 + RK2**2) )
X=(0.0,1.0)*8L0*(C+D*A)+BLl*(C-D)

' V=REAL ( X)
W=AIMA0(X)
SA=S(3)
RETURN
ENn

3. TORT 21
PROGRAM T0RT2Î(INPUT,OUTPUT)
DIMENSION 1(500),U(500),G0(3),G1(3),H(3),SA(3)
c o m p l e x  S A , SK
read 10,'̂ ’1,a'?,WF,BD,aP,SL,m 

10 f o r m a t ( 6 F 6 , 4 , 1 3 )
WL=.001 
W X = W 1
CALL BFSJ(>- l , 0 , CJOf . OOOOOi  , I E R )
CALL BESJ(Wl,1,CJ1»,0000O1,1ER)

“ ■ CALL BFSJ ('-1, 2,CJ2, .00000] , 1ER) '.......
CALL 8ESJ Cv'F, 0 , F J 0  , . 000 0 0 ]  , 1ER)
CALL BESJ(l F,1,FJ1,.00000],1ER)
CALL BFSY (u;F,0,FYO, 1ER)
CALL B F S Y( W F, 1 ,F Y 1 , IE R )
AE=FJ1+FY0
AF=FJ0-FY1
AD=AE**2+AF**2
G O (1)=FJO
G1(1)=FJ1
G O (2)=CJO ,
G1(2)=CJI
G0(3)=CJ1
G1(3)=(CJ?-CJ0)/2.
H(1)=FJ1 
H (2)=CJ1*WP/W1 
H (3)=(G1(3)♦CJl/Wl)*WF/W1 
DO 15 T = 1 0
AG = FJMGO ( I ) - 31  ( I ) *FY1 . -
ÂHsGO( I ) * F v ] + G 1 ( I ) *FJJ 

15 SA ( I )  = ( AE*a,3-AF*AH) /  ad-*- ( 0,  0-, 1 . 0) *  (H ( I )  -  ( AF*AG +AE*AH) / AD)



SKsSA(l) ^
no 20 j = n
CALL TORTl  ( « ' X , W ? , w F , W L , F J n , F J l , F Y O , F Y l  , T  ( J )  , U ( J )  , B ü * S K )

20 WL = 7jL4SL
M = ' - ' - l  
K = -  2 
000 = 0,0 
E V F M = O , 0
no 3  ̂ J = 2,\|,2

30 e;vFN=EVE'M+T ( J)  
no 40 J = 3 , K , 2  

40 00D = 0Df )4T ( , ) )
AR=SL/3.*(T(1)+4.*FVEH+2,ttODO+T(M))
000= 0,0 
E V F \ j = 0 . 0  
no 5 0 J = 2 f M » 2  

50 EVEN = EVEN + ' i (  J)
DO 6 0 J = 3f '<'»2 

60 Q D D = OD n + U ( j )
A I = - S L / 3 , * ( J ( l ) 4 4 , * F V E N 4 2 . « 0 D D + U ( M ) )
P = SQRT ( W1 +
0 = mW2/ SQRT f W l * * 2  + w 2 * * 2 )
T = w l / S O R T ( u l * * ? + w 2 * * 2 )
S R = R E A L ( S A ( 2 ) )
S)»=a IMAG(Sa (2))
ER = »jR* ( REAL (SA ( 3 )  ) )
E I  = i« 7 ?* ( A I Ma 3 ( 5 A  ( 3 )  ) )
s e r =t *sr
SE I = - T < ^ S I
S S R = ( Q * S R + T * E R ) * A P

S S I = - ( Q * S Ï 4 T * E I ) *AP 
RMP = Q<^CJ0*,AO 
RM I= -0 * CJ 1 * AP  
DR=P*AR*AP 
DI=P*AT*AP
e t r = s e p + s s r + rmr
ETI=:SET + SS14RMJ
r r =ETR40R
RI=ET1+DI
TR = SQRT (RR*«-*? + RT * * 2 )
H R = S QR T ( f T p * * 2 4 E T I * * 2 )
PRINT 7 0 , w1 , W 2 , S E R * S F I , S S P , S S I , R M R , R M I , D R , D I

70 FORMAT( 2 ( 2 % , F l o . 6 ) )  
p r i n t  ?1,HQ,TR

71 F0R MA T( 5X , F12 , 5 )  
s t o p
ENn
sun ROUT I NE TORTl ( R»< 1 , RK? , RKF , RL , 8 J 0 * 8 J i  * B Y 0 » B Y1 » V , W , OS , SF ) 
DIMENSION S ( 2 ) , R 0 ( 2 ) , H 1 ( 2 ) , R (2)
c o m p l e x  s » Y , c » n , a , b , e i , e ? , s f
RN=RL-RKF+p<l  
RM = - ( -PL-Rx'F + RK 1 )
R( 1 ) =RK1 + R|

• R ( 2 ) =RK1-RL  
WLL=RL 
R1=R(1)
R 2 = A B S ( R ( 2 ) )
CALL B E S J ( P l f O , P O ( l ) , . O O n o O l , I E R )

• CALL B E S J ( P i , 1 , B 1 ( 1 ) f . O O O n O l » 1ER) '
CALL BFSJ ( uLL » 0 , R L 0 ,  , OOO' iol  » 1ER)
CALL BE5J (- ' 'LL, 1 , B L l , , 000001 ,1ER)



E = (kj] + UYO 
F = Rjo-r<Yi
IF(RL.LE.PKl) AO TO 2 0
CALL 8ESJ(P?,0,90(2) , , 00000 1 ♦ 1ER)
CALL: BFSJ (P2, 1 ,P.) (2), . 00000 1 , 1ER)
IF(R(?) .LT.D.O) Bl (2)=-P.l (2)
J = ?
GO TO 3 0 

'20 S(2)=(0.0,0,0)
J=1

30 DO 40 1=1,,I
G=HJ1*R0(I)-Rl(T)*BY1 
H = P O ( I )*BYi+EU (I)

40 S ( I )  = (F*G-F*H)/(E**2 + F**2) + (0.0$1.0)*(RKF*81 ( I ) /R ( I ) - ( F*G4E*H ) /  ( 
]*2+F*o?))
C=S(I)*R(1)*R<2/(RN*((RKl+2,*RL)**2+RK2**2))
D = S (?)* R (?)*R<9/(RM*((RK1-2.*RL)**2+RKa**2))
Fi = CMPL.X (COS (RM*DS) ,SIN (RM*DS) )
E?=CMPl X (COS(Rm *HS),-SINKPM*DS))
A=-SF*P1* (RKF+RKi+RL)*RK2/(2,*RN*((RKF+Rl )**2»RK2**2)) 
A=-SF*F2*RK2/(2.*((RKF+RL)**2+RK2**2))
X=(n,0,1.0)*RLO*(C+D4A+B)4BL1*(C-O+A-B)
V=REAL(X)
W=AIMAG(X)
RETURN
END

4 .  T O R T  F G
-'-pkJGKAM TJRTFG(i;4PUT,UUTPJT) '....... .

DiHuDSION A(25 ,25, b) , lKZE, 3) , XL (7) , ADC3)
CÜOPLLX jP ,TH, 3PC,ToC, S£, XF jYE ,ZF,X-C, YFC, ZFC,Rli,L 
READ 10,W:<l,Xu (1) ,XL(.-),X- (3),SK2,3K3,M2,M3 

lii FORMAT (6Eb.4,2i2)
PRINT lijWKl FukNAKzX, Fb.4)
Ak=l.3333CALL o Eo J ( WK i , 1y EJO,..00 0El, I^R)CALL bESJ(WKl; 1,£Jl,.7 0. r3 1, 1ER)CALL EESJ(WKl, ,£J2,.COû i Cl, 1ER)CALL uESY(WKl, u,£YC ,x^R)CALL u EE Y (WKl, 1 y £Yl,iFR)Cc=(EJ2-EJÜ)/2 ,
TM=c J L 4 ( ' : , Ü , 1 *0 ) fTJi
TMC= CuNJG(TN)TMA = (CAdo(TM)) » »2
WK2=v,LGl
Où 5 0 1 = ^ , M2
W<3=u . Ü01
ÜÜ 2C J=l,M3
ÏY=SQkf(W<1»»24W<3»»2)
r<M= (WK3»^d/( WK1»Tt ) )» (1. - (G. 3, 1. L )»2./3. lk-159^ AzOG ( C WKI+ T Y ) / WK3 ) ) 
L= { (1. i-RN) »£Ji + (j..,-l.C)»EYi)/((i.4RN)»(EJi+(w.0,l.b)»zJ'?)+LYu+( 

L)»EY1)
S P  = L»lEJC + (j.V,-1,L)»EJ1) 4 (C.u ,1.:) d J 1
S£=HKE»(L» (£Jx 4 (..u,-^.:)»CE)4 ( 0 , 1..)» (CE + EJl/WKl))
S'^A= CzAOSC ) ) »»2 
SPG=C3NJG(u^)
SMA=k -Az(SP*TMC)

SEA=(GAGS(SE))»»2 
E4A = REAL(u5*T,,0)
zSA=r£A. (u E»SPC)CALL TORT)(WKi,WK2,WKo,zJJ,EJi,EVJ,EY1,L ,Xr,YF,ZF) 
XFC=CONJb(X-)
YFC=CuNJG(YF)
ZFC=CONJG(Z-)■
XFA=(CAGS(X-)i»»2 YFA=(CA?S(Y"))»»2 
ZFA=(CAbSC Z"))**2 
5XA = k EAL(3P»Xr G)
XMA = K-Al (XF*T 'C)
EYA=REAL(SE*YFG)
EXA=k EAL(SE*XFC)
YoA=Rl a L(YF»SPC)



M 2 .
YX A = r.rAL (Y F» xr C)
Y:,A = R[AL (YF» T'̂ Ü)
FZA = K.:AL(GF*ZFC)
YZA = F£Au (YF»ZFG)
SZA = r.-I A- (SP* ZFC)
XZA=KcAL(XF»ZFC)
Zi‘m  = r.zAL (TM»ZFC)
DO 14 K=l, d 
WWl=c.6/32»Xl (K)»WK1 
WW2 = l.. 6 7 8 2 » A L ( K ) » wKZ 
wW3 = 2.6/82»XLiK) *WK3
CN = C .f WW:»* ? 4 2 4 W W 3 »  #2)»» (17./3.) 
i r = (oiN ( WKd» Ak) / ( nK3̂ ' AX) ) »»2
Al = (S^A + XFA+T'lA + i.»b!!A + 2.*S\A4L.»XMA)*T-»(WW2»»2 + WW3»»2)/CN
42 = ( YFA43-A + 2.^LYd » rP*( W«'1»»2 + WW3**2) /CM 
A3=ZrA»TF» (WH1»»2+WW2»*2)/CN
Ak=(cSA + FXA+EMA+Y3A+ YXA + YMA)» TF* (-WW1*WW2) /CN AD = (l ZA + Y/A) »TF» ( - h Wl -'̂ HWZ) /CN 
AG=(32A4XZA4ZMA)»TF»(-WJ1 »WW3) /3N 

14 A d ,  J, K) =Al+A2fA5 + 2.»A442.»A542, »A6 
23 WK3=WKo+S<3 

DO 46 K=l,3 
N3=M3-1 
K3=M5-2 0 u J — b # 0 
cVcN=3.3 
00 3 0 J = 2,N3,2 

JÜ F\/EN = FV£N4A(I, J,K)
DÜ 41 J-o,K3,2 

40 üüD = ODD+A (I,J,K)
4 8 b(ï,K)=2dSK3/3.* (A (I,1,K> +4.»EVElf 2.»0DDf A (I,M3,K) )
50 WK2=WK2+S<2

U0.95 K=l,3 
Ne = M2-1 
K2=M2-2 
EVEN=ü.O OuU=u.G
Dü_bC 1=2,N2,2 

6 G EVtiY — tVcN4B(I,K)
00 7u 1=3,K2,2 

70 üJü=OJj+B(l,K)
RA = 2.»SK2/3.» (0(l,K)+b.-E\/EN + 2,*0JDfb (M2,K) )
WW1=2,6782»XL(K)»WK1F = ((1.+WW1»* 2)»*(11./6.) ) /(3.+8.*(WW1*»2))
AD(K)=20.929 7'(X_(K)» 2)»F»<A 
PRIn T 5w ,XL(k),A0(K)

30 F0RMAT(2X,F6.4,uX,cl2.5)95 CONTINUE '
STOP •
END

SUBROUTINE TOkT5(W1,W2,W5,CJO,CJl,CYü,CY1,AL,FX,FY,FZ) 
DIMENSION T(6,lü:),F(o)
COMPLzX S<,91,02,ü3,rX,-Y,FZ,SX,5Y,3Z,AL WL — O.uOl 
SL=ü.2 H= 4 9
Du 20 J=l,M
CALL 1ORTl(Wi,h2,W3,WL,CJu,CJ1,CYC,3Y1,T(x,J),T(2,J),T(3,J),T(4,J) 1 , T ( 5 , J ) , f (6,J),Z)K,AL)2G WL=WL+SL
DO ut 1=1,6N=H-1
K=M-2
GDj =G.D ,
EVcN=C.ü 
DO 3 0 J = 2,M,2 

30 E/EN = E\/£N + T (I, J)
DD 4 u J—o,K,2 40 ÜDD=0UD4T(I,J)

50 F(I) =uL/ô. »(T( 1,1) +4.^E\/EN + 2.»0J0BT (I ,H) )SX = CMP.X (- (1) , F (2) )
SY=CMPuX(-(3),F(4)) ■ •
SZ=CMPLX(F(5),'(5))
C7=ûuRTlW7»»2+Wl»»2)
C3=W1**2+W2*»2+W3**2
üi=-sK»lHi»»2)MW2»»2)*3.14l59/(2.»C7*C8)
D2 = SR»W1»W2*C7»3.14155/(2. »u8)
Dô =-Sk »W1»(W2»»2)»W3»o .14159/(2. *C7*C6)
|-X = SX + D1 
FY=uY+ü2 
FZ=oZ+D3
RF (URN 
END



M 3 .

SUbROUTIih TORTl (r.Ki,R'K2,RK‘K R L , ü JSBJi, 5YÜ ,d Y1,Xk ,X1, YR, Yi,ZK,ZI , 
1SA,';’L)
üliilNuxON S( 5) ,B: (3) , Rl( 3) ,k(’)
C Ü I h ’ L e X  S , U À j J c i j i / . A , \ / J j W A j W b j A j B j X , Y , Z j S A , 3 _
R(l)=kKl+<L 
k (2)=RK1-<L 
k(o)=RKl WLu=Ke 
k 1 = k ( 1 )
Re=ABS(R(2)i
CALL d ESJ( Ri,C , Bu V1) , . u-]GOi, 1ER)
CALL BLSJ(Rl,i,Ol(i),.uOCCCijxEK)CALu uEd J ( R2 , i.< ( ?) , . u; u u 01 , xE<)
CALL bLSJ(Ré,l,di(2),,C. uICx, 1ER) 
xr (klb).L r.O.u) 31(2)=-31(2)d" ( 3) = BJü 
ol(d)=3JiCALL BESJ(W_L,u;B_.,. 030 91,1ER)
CALL uESJiWl L,1,3L1,.:D”üDl,IFR)
DÜ 4 0 1 = 1,0S(I)=d L»(3U(î )4 ( G .0)»B1(i))+(0.u ,1.0)*RKl»ül(x)/R(i)
Cl = S QRT ( RK 3 » » 2 + ( < K1 + k . ) »» 2)GA=30kT(k<o»»2+ CRKi-RL)**2)
C3 = 2.»C1*((Cl+RL)**243K2** 2)
C4 = 2 h d 2 »  t (C2 + <_) . »2 + n.<2»^2)
C5=RK14RL G o - R K1 - R L
UA=3 (l)»rs,<2»Ki<3* (C1+£K1) / IRL^C3)
U3 = S(2)»N<2»RKd* (C2-RK1) /(Ru»C4)
V A = - S (1)»RK3»(Gl+kL)/C3
VR:»S(2) »RK3* (C24RL) /C4
WA = -S (1) »C5»RKeMCi + b5) / (RL*C 3)
W3 = - S  ( 2 ) - » C 6 » k K 2 »  ( U 2 - C 5 )  /  ( k L » C 4 )   „    _ .

■~A=-S(û )»RK2»k K3 7 { .u» (, 61^» 2 + RK2»»2f RK3»^2) )
B=S(u) »RKi»RK2/lRL»(kKl»*2 + KK2»»2 + R<3»*2) )
X=(L.uil.u)*d LG»(-RKo» IVA + VC)+RK2» ( WA + W3)+RK2»d)+BL1»(-RKÔ»(VA-V3) 

1+RK2»(WA-W3))Y= (u.a,1.3)*BLü»(RKo»(UA +j B)-RKi»(WA + WB) +kK3»A-RKl»D) + 3L1 » (RK3»(UA

i-UB) -RK1»( WA-WB) )Z=(0.u,l.v)*BLü*(-RK2»(JA+Uô)+RK1»(VA+V3)-RK2»A)+BL1»(-RK2»(UA-UB) 
14<K1»(VA-VB))
'XR=RbAL(X)XI=AIMAG(X)
VR=RLA.(Y)
Vl=AiMAG(Y)
ZR=RLAL(Z)
ZI=AIHAb(Z)■
SA=S(3)RETURN
END

r


