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ABSTRACT

The aim of the research reported here was to investigate in 

detail the fluorodechlorination of some polychloroarenes in aprotic 

solvents. The particular interest of this work has been directed 

towards :

1) The identification of minor components in the reaction products, 

and

2) The isolation of intermediates by competitive and consecutive 

reactions and the use of such sequences preparatively. Attempts have also 

been made to bring about the displacement of other groups (Meo-, 

_£-Me-C^H^-S0 2 ~0 -) by fluoride ion in sulpholan (tetramethylene sulphone) 

as methods of preparing aryl fluorides. Detailed studies have been made 

of the reaction of potassium fluoride with hexachlorobenzene, 

pentachlorobenzene,fluoropentachlorobenzene, pentachlorotoluene, 

pentachloroanisole, pentachlorophenyl p-toluenesulphonate, fluoro-2 ,3,5,6 - 

tetrachlorobenzene, 1,2,3,4-, 1,2,3,5- and 1,2,4,5-tetrachlorobenzenes, 

tetrachlorophthaloyl chloride,.1,3,5-trichloro-2-nitrosobenzene, 1,3-dichloro- 

2-nitrosobenzene and octachloronaphthalene.
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CHAPTER 1 
INTRODUCTION

1. Theoretical Considerations

A. Bond-breaking Mechanisms 

• Covalent bonds may be formed and broken in two different ways. If 

a covalent bond forms from combination of two radicals, (species with an 

unpaired electron in the outer shell) the process is called a colligative 

process. Such a bond breaks by the reverse process, called homolysis.

colligation
A* . + B* ___________  A : B

homolysis

Secondly, covalent bonds may be formed by combination of ions. Such a 

process is called a heterolytic process and its reverse is called heterolysis.

co-ordinatipn
A: + B _______ A : B

heterolysis

Species A: is called a nucleophile and species B is called an electrophile.

Two kinds of reaction are distinguished in heterolytic process, those 

involving attack of a nucleophile at a site of low electron density 

(nucleophilic reaction) and those involving attack of an electrophile at 

a site of high density (electrophilic reaction).

Heterolytic processes are much more sensitive to substituent effects 

than a-e homolytic processes. Substituents may extend their electronic effect 

through space, or by transmission through a-bonds or tt-bonds.

B. Inductive and Mesomeric Effects

Inductive and mesomeric effects are time independent effects of 

electron displacement; that is, factors controlling the permanent distribution 

of electrons in the ground states of molecules.



The inductive effect describes the tendency for a substituent to attract 

or repel electrons according to its electronegativity without changing the 

arrangement of the electron pairs in the molecule markedly. The mesomeric 

effect only occurs in unsaturated molecules and describes the tendency of 

the substituent to extend the configuration path by rearranging the electron 

pairs in the unsaturated molecules. This involves either donation of 

electrons to the unsaturated carbon system, or acceptance of electrons from 

the unsaturated carbon system^. These effects may be transmitted through 

the system:

^  r \  r \X C -^  C  C (+1) X - C  = C -  C = C (+M)

X <<< C ^ ----  C -<- C (-1) • X C C (-M)

Inductive effect Mesomeric effect

C. Electronic Effects of the Halogens in Aromatic Systems

From the physical and chemical properties of the halogenated 

molecules it has been suggested that the halogens have a (-1 ) effect 

(electron-attracting) and a (+M) effect (electron-donating) and that 

these effects are greatest for fluorine and least for iodine^.

F > Cl > Br > I (-1) F > Cl > Br > I (+M)

It has also been recognised^ that the inductive effect could be 

subdivided to two effects:

1. Polarisation effects on the a-bond framework (I^).

2. Polarisation effects on the ir electrons (I )
TT

The classical inductive effects only involved transmission through

the a-bond framework. Transmission through a Tr_orbital interaction was
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reported^ in the spectroscopic behaviour of the halogenobenzenes, and

named . This name was also given to a mechanism by which the mesomeric
4effect may be transmitted, by chemists who felt that electron-deficient 

halogen atoms were energetically unlikely. In the case of halogens which 

are substituted in an aromatic ring, it has been suggested^ that they are

o-electron-attracting by virtue of their greater electronegativity- than 

carbon, which arises from their tendency to complete an inert-gas 

structure, but are ir-electron repelling(I^ repulsion) in the order:

F > Cl > Br > I

3This repulsion of halogens in tt systems has been explained as arising 

from the coulombic repulsion between the p-electrons of the halogens 

and the it-electrons of the neighbouring carbon in the ring, which could 

be, in fact, an alternative to the mesomeric effect, differing only in the 

way in which the effect is described. If we compare canonical structures (I) 

with structures (II) in the Figure 1, both the mesomeric structures and 

the structures which show the I repulsion, lead to similar results:

©
©

IX ,

(I) Mesomeric Effect

/
(II) Î  Repulsion

Figure 1
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In fact, the positive charge upon halogen in the canonical structures is 

only needed for describing the electron-donating effect of the halogen; as 

the mesomeric effect (+M effect) only partly reverses the inductive effect 

(-1 effect), the total state of the halogen substituent, attached to an 

aromatic system, is always electron-rich compared with hydrogen.

In this thesis, the term(M)effect will be used for describing the 

^-electronic effect of halogens in the following sections.

2. General Properties of Fluorine

A. Fluorine Substituent Effects

Fluorine is the most electronegative element. When bonded to other 

atoms, fluorine polarises the bond, drawing electrons to it. The electron- 

attracting inductive effect of fluorine is clearly shown in acetic acid when 

substituted by fluorine. All fluorinated acetic acids are stronger than 

the corresponding chlorinated acetic acids.

(F^CCOOH = 5.9 x lO”^, Cl^CCOOH = 0.20 x

What is surprising is the ability of fluorine to donate electrons to the 

benzene ring by a mesomeric effect. In fact fluorine appears significantly 

better than the other halogens in its ability to donate electrons through 

resonance (perhaps because carbon and fluorine are similar in size). The 

electron-donating mesomeric effects of fluorine are shown in the acidity 

of halogenated aroic acids and phenols in Figure 2.

Table 2 shows that all the fluorinated phenols and benzoic acids are 

weaker acids than the corresponding chlorinated compounds.

C-OH

Figure 2
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Table 1

Dissociation constants of some selected halogenated 
benzoic acids and phenols in aqueous solutions

Compound Ka25 Reference

Benzoic acid 6.45 X 10-5 Handbook of Chemistry and 
Physics, 51st Ed. (1970-1971) 
The Chemical Rubber Co.

p-Chlorobenzoic acid 10.4 x 10-5

p-Fluorobenzoic acid -7.2 x 10

Phenol 1.3 x 10

p-Chlorophenol 4.2 x 10

p^Fluorophenol 

Pentachlorophenol 5.5 x 10

Pentafluorophenol 3.0 x 10

-5

-10

-1 0

1.1 X 10

-6

Handbook of Chemistry and 
Physics, 51st Ed. (1970-1971) 
The Chemical Rubber Co.
Dippy, Williams and Lewis,
J. Chem. Soc., (1935) 343
Dippy, Williams and Lewis 
J. Chem. Soc., (1934) 1888
Judson and Kilpatrick,
J. Amer. Chem. Soc., 71, (1949) 
3110
Bennett, Brooks and Glasstone, 
J. Chem. Soc., (1935), 1821
Birchall and Haszeldine,
J. Chem. Soc., (1959), 3653

-6

B . Electrophilic Substitution of Fluoroaromatic Compounds

Fluorine, when it is substituted in an aromatic ring, has ortho­

para-directing power toward electrophilic substitution. The mesomeric 

effect of fluorine in the aromatic compounds is high compared to that of 

other halogens, and this may be due to poorer overlap of the 3p,4p and 5p- 

orbitals of the other halogens with the it-orbital of the ring. The 

mesomeric effect of fluorine can be represented either by overlap of the 

p-orbitals (Figure 3) or by resonance contributing forms (Figure 4):



X F

Figure 3
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■<— VF=

0Figure 4

However, use of the resonance pictures shown above is not 

sufficient to explain the preference of para directivity shown by 

fluorobenzene over ortho attack. Table 2 shows the striking preference 

for para directivity of fluorobenzene relative to chloro- and bromo- 

benzenes. The reason could be explained^^ by comparing the C-F with 

other C-Hal bonds. The shortness cf the C-F bond and the similar size 

of the 2p orbitals of fluorine and the tt orbitals of the ring lead to 

a maximum p— tt interaction, but because of the short C-F bonds the powerful 

inductive effect of fluorine is felt most strongly at the ortho-position 

and becomes much smaller in the para-position. As the result, the 

increase of electron density by resonance can effectively cancel the small 

inductive effect at the para-position, but is not large enough to overcome 

the larger inductive effect at the ortho-position. Figure 5 shows the 

patterns of electron flow in the a and tt framework in fluorobenzene.

Figure 5

So the positive charge never remains on fluorine (as represented 

in Figure 4); the great electronegativity of fluorine permits it to 

withdraw electrons from the a framework but, by interaction with the tt- 

electrons of the ring this.charge is partly fed back to the ring and provides
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a "high" electron density at the para-position suitable for attack 

of an electrophile (Figure 6) :

+ E ©
E H

+ H ©

F

Figure 6

The corresponding effects in nucleophilic substitution will be 

considered later (page 27ff).

C. Bond Strength •

As fluorine replaces hydrogen the C-X bond shortens and simultaneously 

the bond strength increases. It has been found that the bonds formed by 

fluorine are among the strongest known, especially to carbon (ionic 

attraction in C-F bond). Table 3 shows a comparison of the bond strength 

of fluorine and some other elements when bonded to carbon or hydrogen.

Table 3

Bond strengths of some single bonds (a).

Bond E . Kcal

C-F
C-Cl
C-Br
C-I
C-H
C-0
C-N
c-s
HF
HCl
HBr

106
81
68
57
98.7
85.5
72.8 
65
135
103.1
86.5

(a) T.L. Cottrell,
The Strengths of 
Chemical Bonds, 2nd Ed., 
Butterworths Scientific 

Publications, London(1958)
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D. Hydrogen Bonding of Fluoride Ion

Because of its small size, fluoride ion has a volume charge 

density (charge per unit volume) larger than other halide ions and 

therefore, fluoride ion will more strongly affect dipolar centres of 

positive charge. As a result it forms stronger hydrogen bonds than other 

ions do. The strong' ability of fluoride ion to form hydrogen bonds is 

clearly shown in hydrofluoric acid which exists as a polymer (HF)^. This 

strong tendency to hydrogen bonding is also found where fluorine is 

covalently bonded to carbon but still has a high electrodensity. Thus 

on comparing the boiling points of methane and mono-, di-, tri- and tetra- 

fluoromethanes, the maximum boiling point for the fluorinated methanes 

occurs for difluoromethane (Table 4), while the chlorinated and the 

brominated series have the expected continuous rise in boiling points with 

increasing number of halogen substituents.

Tciblo 4

Boiling points of methane and halogenated methanes

Compounds b.p. °C (760 mmHg)
X = Hydrogen Fluorine Chlorine Bromine

-164

CH X -78.4 -24.2 3.56

(=2=2 -51.6 40 97

CHX 3̂ -82.2 61.70 149.5

^ 4 -129 76.54 189 - 190

(a) b.p. at 754 mmHg

This increased boiling point in difluoromethane could be due to

intermolecular hydrogen bonding in this compound^^.
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E . Heat of Hydration of Fluoride Ion

Fluoride ion is tightly bonded by water molecules, when it dissolves 

in aqueous solvents; as a result the heat of hydration of fluorinated 

compounds,compared to other correspondingly halogenated compounds, is high. 

When fluoride ion is dissolved in water five molecules of water are tightly 

bonded to it while in solvation of chloride three, and bromide two molecules 

of water are bonded to halogen ions^. So fluoride ion compared to other 

halide ions is a poor nucleophile in a solvent system containing water.

(The order of nucleophilic strength of halide ions in aqueous solution is 

Ï Br > CÎ > f )^.

3. Nucleophilic Aromatic Substitutions 

A. Mechanism

Active research on the nucleophilic aromatic substitition was

started about 1950 and three satisfactory mechanisms for these reactions

have been found:

Unimolecular (SN^), bimolecular (SN^) and élimination-addition 
(benzyne) mechanisms.

(a) Unimolecular Mechanism

Although the SN^ mechanism occurs in aliphatic nucleophilic 

substitutions, it is rare in aromatic systems and is only well established 

for thermal decomposition of diazonium cations in aqueous solutions.

C H -NEN — ^ C H ®  + NEN 5 5 5 5

C H ®  + X > • ChH X5 5 6 5

The aryl cation formed in this reaction combines with water, halide ions,

alcohols and other nucleophilic reagents which might be present, to form
9phenols, aryl halides, ethers etc. It has been found that diazonium



18.

ion decomposition is a first order reaction, and the effects of 

substituents on the rate of reaction also support the SN^ mechanism 

of these re ac ti onsEle ct ron-rel ea sing  groups in the meta-positions 

accelerate the reaction and electron-attracting groups in all the 

positions hinder the reaction (Table 5)^^^.

Table 5

Rates of decomposition of aryldiazonium salts in 
aqueous solution at 28.8°C

Substituent
ortho-

1 0  ̂k (sec S  for position shown 
meta- para-

OH 6 . 8 (0.0092) 9100 (12) 0.93 (0.0013)

OMe - 3400 (4.6) 0.11 (0.00015)

Ph 1100 (1.5) 1700 (2.3) 37 (0.050)

Me 3700 (5.0) 3400 (4.6) 91 (0.12)

H 740 (1) 740 (1) 740 (1)

COOH 140 (0.19) 410 (0.55) 91 (0.12)
2-S03 91 (0.12) 150 (0.21) 41 (0.057)

Cl 0.14 (0.00019) 31 (0.042) 1.4 (0.0019)

NOg 0.37 (0.00050) 0.69 (0.00093) 3.1 (0.0042)

(a) Values in parentheses are relative to H = 1

What is surprising in aryldiazonium ion reactions is that 

electron-releasing groups in para-positions inhibit the decomposition 

of the diazonium cations (Table 5). It has been s u g g e s t e d ^ t h a t  these 

groups (-0H, -OMe, -Me and -Ph) increase the double bond character 

of the C-N bond by their(+M)effect and therefore strengthen the bond 

which must be broken in decomposition (Figure 7).
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Me — O — N E N W
Figure 7. Canonical structures representing para-methoxy- 

benzenediazonium ions. '

(b) Bimolecular Mechanism

The great majority of aromatic nucleophilic substitutions occur 

by a bimolecular mechanism. The following equation represents this 

reaction :

Y X
k:

+ Y
-1

+ X

(III)

It has been found that either the first or the second step of

the equation might be rate-determining, depending on the relative

magnitudes of k_ and k .. So if k . >> k ,, which means X is expelled 2 - 1  2 . - 1
from the intermediate complex(III) much faster than Y, the rate of the

first step would be the rate of overall reaction (the same statement is

true when k >> k ), but, if k >> k the rate would depend on the 1 2 — 1 2
equilibrium concentration of the intermediate complex (III) and on k^ .

t w oThe step SN^-like mechanism has been observed in the reaction of

l-halogeno-2,4-dinitrobenzenes with N-methylaniline. It has also been

supported by Bunnett and co-workers^^'^^, who found that in the reaction

of l-substituted-2 ,4 -dinitrobenzenes with piperidine in methanol,
0 0
u hthe rate of displacement of Cl, Br, I, Ph-S, Ph-S-S and p-NO^-C^H^-O-

O
are nearly t±ie same, although bonds like C-S, C-I and C-0 usually undergo

heterolysis at quite different rates, so the rate determining step in



20.

each reaction seems to be the rate of formation of the intermediate

complex. In the reaction of l-halogeno-2,4-dinitrobenzenes with a

number of nucleophiles in methanol or ethanol, the order of reactivity

being F >> Cl > Br > is again another support that the bond-breaking is

not the rate determining step and the rate determining step is the 

formation of intermediate complex (III) .

(i) ■ Primary and Secondary Steric Effect in Bimolecular Nucleophilic 
Substitutions

The presence of bulky ortho-substituents like alkyl groups near 

the seat of reaction retards the reaction by primary steric effects, 

e.g. replacement of chlorine in a compound like (IV) with aniline or 

piperidine has been found to be much slower than the reaction of the 

same nucleophiles with 2 ,4-dinitrochlorobenzene (V):

2
(IV)

It is clear that the effect is much more marked with bulkier reagents.
15Secondary steric effects have been shown in compounds like (VI) where 

the bulky methyl or ethyl groups are meta to the seat of substitution 

but ortho to the activating nitro groups.

NO,

(VI)

rNO,

(VII)
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In a transition state where the activation by nitro groups involves the 

coplanarity of the benzene ring with these groups (VII) , the presence 

of a bulky group ortho to the nitro grdups disturb this coplanarity of 

the ring and the activating groups and so affects the degree of mesomeric 

interaction between them. Primary and secondary steric effects have been 

observed in nucleophilic subsitution of halogenonaphthalenes. Because 

of the steric hindrance at a-position, the -position is generally more 

reactive towards nucleophilic substitutions^^, but in some cases such 

as when there is an activating group like a nitro-group in the ortho 

position, the reactivity of the halogen at a-position is more than that 

at the ^-position^^. A possible explanation for this has been suggested 

to be differences in the reaction mechanism of the processes. The 

reaction of the halogenonaphthalenes has been said to occur in one step 

(SN^-like displaceiiRMit) whcio.i;: tJu' reacLion of the halogeno-nitronaphthalenes. 

occur in two steps with formation of an intermediate such as(Villa) :

'N ©

(Vlllb)

+ / 0
N

(Villa)

Formation of this intermediate needs coplanarity of the nitro-group 

and the ring,which is not possible for nitro-groups at the jo-position 

(Vlllb) .

(ii) Charge-Transfer Complexes

Charge-transfer complexes or n-complexes have been believed to 

be present in certain activated reactions, such as nitro-activated substitution.
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By definition a charge-transfer complex is the result of an electrostatic 

interaction between the reagent and substrate (IX).

(IX)

The energy profile of the complete reaction could be represented as in 

Figure 8 if breaking the C-X bond is kinetically important.

TS.2
TS. 1

acomplex

TT complex

Reaction co-ordinate ----- >-

Figure 8

So, for a substitution reaction, activated by a p-nitro substituent, the 

intermediate a-complex could be represented as structure (Xi) with the 

two associated possible transition states (X) and (XII):

.0 Y X0

N+
O 0

N+
_ /  \ .O O . _

o o

(X) (XI) (XII)
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Whether general formation of charge-transfer complexes necessarily

precedes the formation of covalent intermediate complexes is not

clearly known. The presence of charge-transfer complexes has been shown

in a number of reactions such as the reaction of l-chloro-2,4-dinitro-

benzene^^ with aniline, of 2,4,6-trinitroanisole with ethoxide ion^^,
19and of N-methylpyridinium ion with iodide ion

(iii) Isolable Intermediate Complexes

When there is sufficient activation, the intermediate complex like 

(XI) can actually be isolated. For the first time in 1902 Meisenheimer^^ 

showed that in the reaction of 2,4,6-trinitroanisole with potassium ethoxide 

and 2 ,4,5-trinitrophenetole with potassium methoxide, the adduct for the 

two processes is the same and on treatment with acid gave the same mixture 

of 2,4,6-trinitroanisole (XIII) and 2,4,6-trinitrophenetole (XIV).

OCH,

(XIII)

CH^O -OC^H
KOC„H

N +

KOCH. 
--- :

OC^H
NO

NO,2
\ o -
k '*' -
acid

Mixture of (XIII) and (XIV)

(XIV)

The presence of stable addition products from poly-nitroaromatic

compounds such as 1,3,5-trinitrobenzene and 2,4,6-trinitroanisole, when

reacted with potassium methoxide, has been established by n.m.r.
21spectra . Many other stable intermediates (Meisenheimer-type complexes) 

have been isolated during the reaction of polynitroaromatic compounds
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22 23 24with numbers of nucleophiles ' ' . One example of the kind of stable
25complexes which has recently been isolated is (XV), which has been 

reported to be stable at room temperature in the absence of water or 

hydroxylie solvent.

NO,

NO.

K

(XV)

(iv) Reactivity in Bimolecular Displacements

The displacement reaction is facilitated by electron-attracting 

and retarded by electron-releasing substituents. Diazo groups are known 

to be the most activating groups ̂ since during the diazotation of ortho 

or para-nitro, methoxy, or halogeno anilines, the groups at ortho or para 

positions may undergo displacement by hydroxyl groups (owing to reaction with 

water) or by chlorine (if hydrochloric acid is used).

NH^ .+ HNOg + HCl

NH

■ Cl
NO.

Cl + HNO^ + HCl

OgN

OCH.

NH,
acid or 
acetic acid

N_ Cl

N2^C1 (Ref.26)

0„N NO,

N, + — I

(Ref.27)

(Ref.28)
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The nitro group is another strong activating group which is stable under

the basic conditions of most common nucleophilic substitution reactions.

The nitro group strongly activates sites ortho and para to it in such

reactions. The meta-position is also activated but less than ortho and
n t t r o

para so that reaction of meta-fluoro^enzene with sodium methoxide requires 

more vigorous conditions than those of ortho and para-fluoronitrobenzene.

F luoroni trobe nze ne -1 -1 o 29 k 1 sec mole ■ at 49.5

ortho­ 1.6 X lO"^

para- 2.37 X lO"^
' -7met a- 1.59 X 10

The relative extents of ortho and para activation by the nitro

group in 2,4-dihalogeno-nitrobenzenes have been studied^^ with many

nucleophilic reagents and ortho-halogen has been reported to be

preferentially displaced,although in the reactions of ortho- and para-

fluoro- and chloro-nitrobenzenes with piperidine the relative rates

(— ^ ° / para) have been reported to be close to unity^^. The nitro

group itself is displaced by many nucleophiles, one of the examples

being the reaction of 1 ,3,5-trinitrobenzehe with sodium methoxide
32to give 3,5-dinitroanisole which is a preparative method . In

2 ,3,5,6 -tetrachloro- and pentachloro-nitrobenzenes, displacement of

the nitro group occurs along with that of chlorine in methoxide ion 
3 8attack , and in the reaction with potassium fluoride in dimethyl- 

formamide^^ or in sulpholan?^, displacement of the nitro group have 

been observed.
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Halogens are another set of groups which activate all sites, but

chiefly the meta- positions. Thus, the rate constants for the reaction of

meta-, ortho- and para-di ch1orobe nze ne s with sodium methoxide in methanol

at 175 - 176°C are 8 . 4 x 1 0  , 6.4 x 10 and 1.9 x 10 ^ 1 mole  ̂ min ^

respectively^^^. The activating effect of chlorine groups ortho-, meta-

and para- to the site of substitution in many chloronitrobenzenes has 
34bbeen examined by comparing the rates of the reaction of these compounds 

with sodium methoxide (Table 6 ).

Table 6

The activation effect of chlorine A) ortho-, B) meta- and 
C) para- to the site of reaction

Reaction with sodium 
methoxide in methanol 
at 85°C.

NO,

(Cl)
R

(Cl)

R

(Cl)

R

NO,
(Cl)

0.231 X 10  ̂ 0.062 X 10  ̂ 0.062 x 10  ̂ 0.062 x 10 ^"h (R=H)

kci(R=Cl) ■1 -1 -1  2.9 X 10 0.30 X 10 . 3.3 X 10 0.65 x 10

“Cl/kH
12.5 A 4.8 53 10.48

(a) Steric hindrance between the site of reaction and two bulky groups 
affected on the rate of reaction.

k = rate coefficient when R=H 
. H
k^^ = rate coefficient-when R=C1

35aMiller has predicted the same order of reactivity, for the 

other halogens; some of his results are listed in Table 7.
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Table 7

Reaction of l-chloro-2-N0?-4-and-5-X-benzenes with 
piperidine in benzene at 45°C

-1 -1 fSubstituent k (1 mole sec ) p /

4- and 5-H 3.63 x 10

4-Cl 2.29 X 10 ^

5-Cl 1.17 X 10 ^

4-Br 3.49 X 10 ^

5-Br ■ 1.25 X 10 ^

4-1 4.41 X 10

5-1 9.07 X 10 ^

0.192

0.278

0.485

The activation power of the fluorine para to the site of reaction 

in nucleophilic substitution compared to the other halogens, is 

unexpectedly low (Table 8 ). In fact fluorine, when it is substituted para 

to the site of reaction, is deactivating compared to hydrogen (Table 9).

Table 8 ^^^

Reaction of 4-substituted-2-nitrobromobenzenes with an 
excess of piperidine as reagent and solvent

- 1 oGroup in 4-position k (min . , 25 C)

Br . 2.27 X lo“ '̂

Cl 1.62 X lO"^

I 1.57 X 10“^
-4F 7.55 X .10
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Many other activating groups, such as :

^N-R, J i ,  CH^SO^, CH^  N ", CF^, RCO, CN, COOH, SO -,
C H ^

Cl • Br, I, COO Ph , activate aromatic nucleophilic substitution

In contrast, electron-releasing groups like.NH , OH, N , OCH ,
 ̂ ''cH ' 2 .

OC^Hj., and CH^ have been shown generally to deactivate the sites of

substitution, especially when para to them. The deactivation power of

these groups can be shown by the comparison of the rates of reactions of

l-bromo-2-nitro-4-X-benzenes with that of o-nitrobromobenzene (X = H)

(Table 9).

Table 9^^^

Rates of reaction of -l-bromo-2-nitro-4-X-benzenes with an
excess of piperidine (as reagent and solvent) at 25 ° C.

Substituent (4-X) k (1 mole sec"^

H 4.83 X 10-5

NH2 6.0 :X 10-9

N(CH3>2 5.87 X 10-®

o h ‘®> 2.82 X 10'®

OCH 3 8.70 X 10-7

7.30 X IQ-7

F 1.26 X 10-®

Cl 2.70 X 10-4

, Br 3.79 X 10-4

I 2.62 X 10-4

(a) Because of partial neutralisation -OH group appears to be more 
deactivating than it really is.
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Q, The Elimination-Addition (Benzyne) Mechanism

In 1940 VJittig et. al. showed irliat the reaction of phenyl-lithium 

with fluorobenzene, to form diphenyl, proceeds via an unusual intermediate

" , f ^ r  '" ii"  , r h '
U.. d  h  j'-'

Later on, in the reaction of chlorobenzene with potassium amide in

liquid ammonia, Roberts et.al. s h o w e d  that chlorobenzene gives
14 14equal amounts of ( 1-C ). aniline and ( 2 -C  ) aniline when treated with

potassium amide in liquid ammonia, and so they suggested the formation

of a benzyne intermediate (XVI) in this reaction:

Cl KNH,
H

KNH,
NH.

i r a .

+
RH.

(XVI)

This type of intermediate has been supported by further work on this

type of reaction. For example, the formation of an aryne (naphthalyne)

intermediate has been observed in the isolation of the two products,

_o_- and _6-naphthyl piperidine, from treating o-chloro-,-bromo-, or iodo-
37napthalene with piperidine and sodium amide 

X
NaNH

and
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Since benzyne mechanisms require the removal of HX from

halogenobenzenes, such processes can only occur in the presence of

strong base, and where there is at least one ortho-hydrogen atom, but the

presence of strong base and an ortho-hydrogen atom in the molecule does

not ensure the benzyne mechanism. For-example, in the above process •
37where X is fluorine it has been shown that the process involves two 

mechanisms, both direct SN^ displacement reaction and a napthalyne mechanism.

C. Solvation

Solvation, which is the specific interaction between solvent molecules

and ions, can affect nucleophilic reactivity. As has been mentioned before
I

(page 17), the order of reactivity of halide ions in water is

I Br > Cl > F . This order seems to be the same in most hydrogen-

bonding solvents, but in dipolar aprotic solvents^^ (which may contain

hydrogen but cannot donate suitably'labile hydrogen atoms to form strong

hydrogen bonds with halide ions) the order of reactivity follows the

order of increasing bond strength of halogens with carbon atom and is 
- ,  - 39F > Cl > Br /-xJ I . The effect of solvation in aromatic nucleophilic

39substitutions has been shown by Miller and Parker . They reported that
4 5such, reactions are much faster (10 - 1 0 ) in dipolar aprotic solvents e.g. 

N-methylformamide , N,N-dimethylformamide (DMF) , N.,N-dimethylacetamide 

(DMAp), tetramethylenesulphone (sulpholan), acetonitrile; benzonitrile, 

nitromethane, nitrobenzene, acetone and dimethyl sulphoxide (DM50) than 

in protic solvents.
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4. Aromatic Bimolecular Nucleophilic Substitution in Polyhalogeno Systems

A. Polyfluoroaromatic Systems

Polyhalogenoaromatic compounds undergo nucleophilic substitutions 

whereas the hydrocarbon analogues undergo mostly electrophilic substitutions. 

Comparing polyfluoro compounds with other analogous halogeno compounds, the 

highly electronegative fluorine atom strongly withdraws electrons from the 

a framework, but the six unshared electrons in the 2p-orbitals of every 

fluorine atom interact with the tt electrons of aromatic ring more effectively 

than other halogens, because of the C-F short bond distance and the 

similar sizes of the overlapping p-orbitals. As a result, the r system 

appears to have a higher than normal density of electrons so it could 

interact with an electron-deficient substituent which might be present 

in the ring:

Nucleophilic replacement of a large number of polyfluoroaromatic compounds

of the type C^F^X are known^^^'^^'^^. In most cases where X=H, CH^,

SCH^, CF^, N : ^ ^ 3  and SO^CH^, the fluorine para to X is the main one

replaced but in a few cases (X = NH^, 0 and S ) meta replacement

predominates^^^'^^. It has been suggested that^^'^^ activation by four

fluorine atoms direct the nucleophile to the para position to X, and X

itself may either enhance the effect or oppose it. For example, in the

reaction of pentafluoronitrobenzene with amines such as NH^, NH^CH^ and

NHCCH.,)^ a high percentage of ortho-replacement has been observed for 3 2 •
reaction of NH^ and NH^-CH^ but not NHCCH^)^- The reasons have been
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40suggested to be:

(i) Hydrogen bonding between amine and nitro-group of the ring which 

facilitates the replacement at ortho position;

(ii) Steric hindrance between large groups such as NHCCH^)^ and -NO^

resists the formation of a suitably hydrogen-bonded intermediate (XVII): 
^

(R = H or CH^)

(XVII)

This hydrogen-bonding between amine and nitro-group has also been observed
44in the reaction of ortho- and para-chloronitrobenzene with piperidine 

(ortho-chloronitrobenzene reacts faster than its para isomer) , and also 

in the 2,4-dihalogenonitrobenzenes^^ (XVIII). when reacted with different 

nucleophiles, e.g. 2 ,4-dichloronitrobenzene reacts with methoxide or ethoxide 

ion mostly at the para-position relative to nitro-group, but with 

or NH^-R reacts mainly at the ortho-position relative to nitro-group.
O

Cl

Cl
(XVIII)

The nucleophilic attack in C^F^X compounds like pentafluorobenzene and
■ 46chloropentafluorobenzene has been explained by referring to the (-1 )

and (+M) effects of the fluorine, as mentioned before (page 13 ) for 
>
electrophilic substitution, the (-1 ) effect of the fluorine atom is 

partly neutralised by (+M) effect, acting especially at positions ortho- 

and para to fluorine, so positions meta- to fluorine have the lowest 

electron density and are therefore most active in nucleophilic attack.
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If we show the- relative activations of ortho- meta- and para- sites as 

a, zero and ma in the electrophilic attack in fluorobenzene (Figure 9 )

(XIX) , the relative activation in ortho- and meta-difluorobenzene may

(XIX)

tr
y a

F

ma
(XX)

Figure 9

(m+1)a 
(XXI)

2a
F

be represented as in (XX) and (XXI) where m > 1 (preferential attack 

at para.position). This allows thg application of these terms in 

predicting the orientation of such reactions in nucleophilic attack. 

Comparing pentachlorobenzene with pentafluorobenzene and using a parameter, 

6 , for chlorine the displacement of each halogen in the C^Hal^-H system 

is aided by the (-1 ) effect of four other halogens or by (-41), but 

deactivated by the (+M) effect of the halogens ortho- and para- to it. 

Therefore an orientation of attack at positions para > ortho > meta relative 

to hydrogen could be predicted for both pentafluoro and pentachlorobenzenes 

(Figure 10).

F (m+2) a 
F (m+1) a

Cl(m+2) 6 
Cl(m+1)g

Figure 10
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a is greater than B because the (+m ) effect of fluorine is more

than that of chlorine. The reactions of pentahalogenobenzenes with a

variety of reagents also show that hydrogen in C^Hal^-H system is more
47than 90%.para directing relative to the hydrogen substituent. Steric

effects are of considerably more significance in the chlpro-compounds than
48in the fluoro-corresponding systems. Russian workers have shown that 

pentachlorobenzene reacts mainly at the position para to the hydrogen 

with ammonia, but mainly at the position ortho with the larger groups 

like dimethylamine. In contrast, pentafluorobenzene gives > 90% para 

isomer with both the nucleophiles.

B . Polyfluoronaphthalenes

In general naphthyl halides are more susceptable to nucleophilic

substitutions than phenyl halides with the similar activating groups

(This could be explained as arising from the second ring). The reaction

of octafluoronaphthalene with a number of nucleophiles has been reported^^

to take place at the _B-position, with a second nuclephile attack C-6 .

This orientation of attack has been explained by reference to the
51transmission of an I.̂ effect across the naphthalene system . Recent 

52work on 2-X-heptafluoronaphthalenes (X = H, F, Cl, OCH^ and C^H^) 

involving displacement mainly at C- 6 gives support for the previous results, 

although it offers an alternative mechanism for the transmission of 

electronic effects across the system.

5. General Survey of Replacement of Chlorine by Fluorine in 
Polychloroaromatic Compounds

53The replacement of chlorine by fluorine in aryl halides began with 

the reaction of 2 ,4-dinitrochlorobenzene with potassium fluoride in 

nitrobenzene at 200°C. Fluoro-2,4-dinitrobenzene has been obtained from
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this reaction (30% yield); by changing the solvent to dimethylformamide

(DMF) or dimethyl sulphoxide (DMSO) better yields (70-80%) were obtained
54at somewhat lower temperatures . Replacement of chlorine by fluorine

in other activated chlorobenzenes, such as 2 ,4,6 -trichloronitrobenzene,

2 ,3,4-trichloronitrobenzene and 2,4-dichloronitrobenzene, and also

the replacement of a nitro group by fluorine in pentachloro- and

2,3,5,6-tetracriloronitrobenzene and in 2,3,5,6 -tetrachloro-l,4-dinitrobenzene 
54has been reported using potassium fluoride in DMF or DMSO. As a result

many fluoroaromatic compounds have been prepared by this route. In 1957
55Finger et.al. prepared sym-trichlorotrifluorobenzene from hexachlorobenzene

56with potassium fluoride in DMF and DMSO. Maynard reported the preparation 

of sym-trichlorotrifluorobenzene by the same method, but changed the 

solvent to N-methyl-2-pyrollidone.

In 1960, by using the less reactive fluorinating reagents, sodium 

fluoride, in sulpholan some reactive aryl chlorides, such as cyanuric 

chloride, were converted to the fluorides^^. Reaction of polychloropyridines 

with potassium fluoride in dimethyl sulphone (DMS) has been used for the 

preparation of 3,5-dichloro-2-fluoropyridine from 2,3,5-trichloropyridine, 

and 3,5-dichloro-2,6 -difluoropyridine from 2,3,5,6 -tetrachloropyridine^^. 

Russian workers have prepared a number of polyfluoroaromatic compounds by

the reaction of the corresponding chlorides with potassium fluoride in
59 94an autoclave. They treated hexachlorobenzene and octachloronaphthalene

with potassium fluoride at 450 - 500° and 300 - 330° respectively, under

such conditions and obtained hexafluorobenzene (2 1 % yield), together with

pentafluorochlorobenzene (20%) , tetrafluorodichlorobenzene (14%), and

sym-trifluorotrichlorobenzene (12%) from hexachlorobenzene. The latter

reaction gave octafluoronaphthalene(24%) and a mixture of heptafluoro- •

naphthalenes (8 % yield) which, after reduction with hydrogen over palladium,

gave a mixture of 1-H-heptafluoronaphthalene (30%) and 2-H-isomer (70%).



Tetrachlorophthalic anhydride has been treated^^ with potassium 

fluoride in DMF and gave octafluoroanthraquinone (2% yield) after five 

hours boiling. A similar reaction at 300°C in the absence of solvent 

has been reported to give octafluoroanthraquinone (40% yield) after two 

hours reaction. Tetrachloroterephthaloyl chloride and also tetrachloro- 

phthaloyl chloride have been c o n v e r t e d ^ ^ t o  the corresponding 

polyfluorophthaloyl fluorides, by using cesium or potassium fluoride 

without solvent. The reaction of potassium fluoride in tetramethylene 

sulphone (sulpholan) has been used^^ for the preparation of some polyfluoro­

aromatic compounds. Polyfluoropolychlorobenzenes were obtained from 

hexachlorobenzene; octafluorotoluene (2 %), 3-chloro-heptafluorotoluene 

(41%), and 3 ,5-dichlorohexafluorotoluene (4%), from octachlorotoluene;

and octafluoronaphthalene from octachloronaphthalene. Many reactions of
64hexachlorobenzene have been reported in the patent literature . The

preparation of 2 ,4,5-trifluorodichloropyridine^^ from p e n t a c h l o r o p y r i d ine

by using potassium fluoride in sulpholan at 190 - 210°C, and also the

preparation of many other highly fluorinated compounds such as

perfluoroquinoline^^, and perfluoroquinoxaline^^ from the corresponding

polychloro-heterocyclic compounds by potassium fluoride in the absence

of solvent have been reported by Chambers et.al. Potassium fluoride alone

has been reported^^ to react with pentachlorobenzonitrile at 300 -

480°c to give three main products.3,5-dichloro-2,4,6-trifluoro-,

3-chloro-2,4,5,6-tetrafluoro-, and pentafluorobenzonitriles. Recent
69work on pentachlorobenzene has been reported by Finger et. al .' In the 

presence of potassium fluoride in DMSO at 180°C for 24 hours, pentachlorobenzene 

was reported to give a mixture of mono-, di-, and tri-fluoro-isomers.
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Another study of this system in sulpholan has been reported by 
70Bechtold and Tullock . They obtained a mixture of isomers of 

difluorotrichlorobenzene, mostly containing 1,3-difluoro-2,4,5-trichloro­

benzene. Reaction of tri- and tetra-chlorobenzenes with potassium 

fluoride, or with a mixture of cesium and potassium fluoride in dimethyl

sulphoxide and dimethyl sulphone has been reported to give a mixture
71of mono-,di- and tri-fluoro compounds

Dimethyl sulphone has been reported to be a better solvent than

dimethyl sulphoxide for these reactions; mono- di-, tri- and tetra-
19fluoro compounds of these reactions have been identified by F n.m.r. 

and gas chromatography spectroscopy. Recently hexachlorobenzene and 

pentachloropyridine have been treated with a molten KF-KCl mixture at 

530 - 740°C by French workers who obtained a mixture of the di-, tri, 

tetra-, and penta-fluoro compounds, with a trace of hexafluorobenzene 

in the case of the former substrate.

5 . Reaction of Fluoride Ion with Halogeno-Compounds.

Potassium fluoride, compared to other alkali metal fluorides is
54the most suitable fluorinating agent . Cesium and rubidium fluorides

appear to be more reactive than potassium fluoride, but they are expensive;

sodium and lithium fluoride are not very reactive, probably because of

their low solubility. Reactions of potassium fluoride in dipolar aprotic
54 63 *71 72solvents has been studied ’ ' ' . These solvents are able to dissolve
“h —sufficient KF ion pairs (K F ) to permit reaction in solution rather than 

at the surface of solid potassium fluoride which is easily covered with 

potassium chloride or other halide. Aprotic solvents that have high 

dielectric constants can also dissolve and stabilise the highly polarised 

transition state ions. Aqueous or protic solvent may do a better job in 

the solvation and stabilisation of transition states but as discussed
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before (page 17) , the high heat of hydration of fluoride ion overcomes

all other factors. The replacement reaction of potassium fluoride with

perchloroaromatic compounds in aprotic solvents have been shown^^'^^

to continue until three fluorine atoms have been introduced, but then

further reaction gave significant amounts of hydrogen-containing species.
73Molten potassium fluoride together with potassium chloride at high 

temperature 600 - 700°C has been used as fluorinating agent for 

fluorination of hexachlorobenzene and pentachloropyridine, and a mixture 

of di-, tri-p and tetra-fluoro isomers have been obtained. Potassium 

fluoride without solvent at 300 - 500°C has been used in the preparation 

of highly fluorinated aromatic compounds:

KF 480 
autoclave

.0 1%.

KF 450-500 
-̂ 'ciave ' "=6̂ 6 + + '=Ĝ 4':̂ 2 +

2V 20% 14% 1 2!

(Ref.65)

(Ref.59)

KF
470°

KF
380'

KF
420'

KF
310^

92.5%

(Ref.94)

(Ref.6 6 )

(Ref.67)

(Ref.6 6 )

(Ref.75)

40-60%
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Cl 
"N -

;N '
Cl'

Cl

ClCl

310-320

L y

2900

rapidly with 
moisture

(ref.76) (ref.77)

(Ref.78)

(Ref.79)

(Ref.79)

p (Ref.80)

7. Effect of Solvents on Replacement Reactions of Potassium Fluoride

■ Anhydrous potassium fluoride in polar solvents such as diethylene 

glycol has been used for replacement of halogens in primary alkyl .

mono-halides 81 Secondary and tertiary alkyl halides in non-aqueous

solvents usually eliminate hydrogen halide under these conditions, because
82of the powerful basicity of potassium fluoride toward hydrogen halides

-CH„-CH-CH-CH_- + KF aqueous  ̂ -CH^-CH=CH-CH -+ KF • HX
2 I I 2 solvent 2 2 •

X H

In the replacement of oxygen-bonded groups such as methyl sulphonate, and 

para-toluene sulphonate, dry potassium fluoride in a polar solvent such 

as diethylene-clycol or dimethyl formamide have been used^^'^^.

R-OSO
KF, 180 - 210 , 
5 hours

3 diethylene glycol' R-F (Ref.83)

R = CH^, C^H^ and C^H^
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ÇH^^OSO^CH^
c=o

HO OH

DMF

f 2^
0=0
.OHHO

O

(Ref.84)

In the replacement reactions of polyhalogeno aromatic compounds

potassium fluoride has been used in aprotic solvents and sulpholan has

been claimed to be the best solvent, especially for the preparation of

highly fluorinated aromatic compounds because of its high boiling point

(b.p. = 285 - 288°/743 mmHg) and good thermal stability causing low by-product

formation from reaction of such solvent fragments with the substrate or

the reaction products. Side reactions have been noticed in other aprotic
54 74media, like the presence of some thio-ethers which has been reported ' 

in the replacement of chlorine or the nitro-group by potassium fluoride 

in DMSO. Some of the problems and limitations of exchange reactions of 

perchlorinated compounds with potassium fluoride in a solvent have been 

solved by using a non-solvent method and high temperature. The non­

solvent method has the advantage of forming fewer side products, but obtaining 

the unusually high temperatures and pressures in autoclaves in ordinary 

preparative laboratories is often difficult.

Recent work^^ on the reaction of potassium fluoride with a number of 

substrates in the presence of crown ether (18-crown-6) in benzene or 

acetonitrile showed that potassium fluoride in the presence of crown 

ethers .produces fluoride ion which was called "naked" fluoride, reflecting
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the ability of crown ethers to complex cations and dissolve them in 

polar and non-polar aprotic solvents^^. Reaction of this "naked" fluoride 

with a variety of substrates showed tliat it could react both as a 

nucleophile and base:

+ F CH^-CN
CH.

69! 3b
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CHAPTER 2

RESULTS AND DISCUSSION

8 . Reaction of Hexachlorobenzene with Potassium Fluoride in Sulpholan

A. Products of Fluorodechlorination of Hexachlorobenzene

Tdijple 10

Molar ratios of fluorine-containing products from reaction 
of hexachlorobenzene (0.1 mole) with KF (1.0 mole) in 
sulpholan (100 ml) at _ca. 250°C

Are ne
Molar % 

t = 10 20

of Fluoro- 
30

•arene
40

at time 
50

(t)
60 min

Fluoropentachlorobenzene 85.3 45.9 28.5 - - -

1,3-Difluoro-2,4,5,6-tetra- 
chlorobenzene 12.1 39.8 41.4 19.0 7.8 -

1,2 -Difluoro-3,4,5,6 -tetra- 
chlorobenzene 2 .6 12.0 2 2 . 6 9.4 5.7 -

1,4-Difluoro-2,3,5,6 -tetra- 
chlorobenzene 0 . 2 0 2.3 - - -

1,3,5-Trifluoro-2,4,6 -tri- 
chlorobenzene 2.1 5.2 48.0 72.2 100

1,2,3-Trifluoro-4,5,6-tri-
chlorobenzene — — - 14.6 10.7 —

1,2,4-Trifluoro-3,5,6-tri- 
chlorobenzenè — — 1.0 9.0 3.6

Table 10 shows that hexachlorobenzene mainly forms 1 ,3-difluoro-2,4,5,6-

tetrachlorobenzene, this undergoing further rapid exchange to give 1,3,5-

trifluoro-2,4,6-trichlorobenzene. Earlier work on the hexachlorobenzene-

potassium fluoride system in sulpholan has been reported by Fuller^^ and 
64also by Nyman . When hexachlorobenzene (0.1 mole) was treated with 

potassium fluoride (1.0 mole) in sulpholan at 230 - 240° for 18 hours the
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following molar yields of products were obtained^^ CbF (0.4%) ;6 5
C ClF (25%) ; CtCl F (24%) ; C Cl F (30%) . The dichlorotetrafluoro-6 5  6 2 4 6 3 3
benzene fraction was mostly 1,3-dichlorotetrafluorobenzene (74%) , and the

trichloro-trifluorobenzene fraction was largely the symmetrical isomer (72%).
64In the latter work , the dichlorotetrafluorobenzene and trichlorotrifluoro-t

benzenes were identified by n.m.r. spectroscopy. The dichlorotetrafluorobenzene 

product consisted of a mixture of the 1 ,3-dichloro- (81%); 1 ,2-dichloro- (18%): 

and 1,4-dichlorotetrafluorobenzenes (1.5%), and the trichlorotrifluorobenzene 

fraction was a mixture of the 1,3,5-trichloro- (95%) and 1,2,3-trichloro- 

trif luorobenzenes (5%). The present results in Table 10 are in good agreement 

with these reports.

B . Orientation of Attack upon Hexachlorobenzene

The orientation of attack upon hexachlorobenzene could be predicted 

by referring to the (-1) and (+M) effects of the halogens. Introducing 

the first fluorine to the ring directs the second fluorine meta to the 

existing fluorine because, as'shown in (XXII) in Figure 11, the deactivation 

at positions in the order para > ortho > meta to halogen makes the preferential 

attack of fluoride at the meta-position relative to fluorine. The orientation 

of attack in the difluorotetrachlorobenzenes is shown in Figure 11, so the

Cl a+(m+1) 
Cl (m+2) 6

Cl

2 3 +ma 
(XXII)
F

Cl! a+(m+1 )3
Cl
23+ma
(XXIV)

Cl 2a+m3
(m+2)3 Cl

Cl,
C

Figure 11

3+ (m+1 )a 
(XXIII)

,C1
Cl a+(m+l)

F

(XXV)
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ease of'formation of the trifluoro-isomers is in the order:

1,3,5- >> 1,2,3- > 1,2,4-trifluorotrichlorobenzene

This prediction of orientation is in agreement with the results

in Table 10, and the more ready attack of positions meta to existing

fluorine substitutents allows this ion exchange to be used in the preparation

of both 1,3,5-trifluorotrichlorobenzene^^ and also 1,3-difluoro-2,4,5,6- 
46tetrachlorobenzene

9. Reaction of Pentachlorobenzene with Potassium Fluoride in Sulpholan

A. Products of Fluorodechlorination of Pentachlorobenzene

Table 11

Molar ratios of fluorine-containing products from the reaction 
’of pentachlorobenzene (0.05 mole) with KF (0.5 mole) in 
sulpholan (50 ml) at ca. 245°C

Arene
t = 10 20

Molar % 
30

of fluoro-arene at 
40 50 60

time (t) 
70

(b)
80 90 lOOmin

(A) 30.2 24.1 22 . 0 15.6 11.2 7.7, 6 . 8 5.9 2.4 -

(B) 32.0 24.1 22.3 15.0 13.3 10.9 5.0 4.0 3.0 -

(C) 37.8 31.6 27.5 20.4 14.3 , 12.1 7.5 5.9 2.5 -

(D) - - - - 2.4 5.5 4.9 7.9 5.0 3.0

(E) - 13.5 20 . 0 27.2 31.4 34.0 35.0 35.6 38.8 43.5

(F) - - - 7.5 8.3 11.0 13.0 11.9 12.5 14.7

(G) - 2.4 3.7 5.5 6.0 6 . 6 9.3 ' 10.9 11 . 8 12.6

(H) - 4.3 4.5 5.1 6.1 4.4 "6 . 8 4.0 4.9 3.6

(I) - - - 3.7 7.0 7.7 11 . 8 13.9 19.0 22 . 6

(a) Appendix I
19(b) Measured from F N.M.R. signal integrals
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Table 12

Molar ratios of the components from the reaction 
of pentachlorobenzene (0.05 mole) with KF (0.5 mole) 
in sulpholan (50 ml) at ca. 245°C

Arene Molar %
t = 25

of arene 
50

at time 
75

(t)

100 min

(A) (NMR) 16.4 17.6 14.0 5.5

(B) (NMR) 14.8 15.6 15.0 8.6

(C) (NMR) 18.1 20.7 17.5 7.3

A, B , and C (GLC) 48.5 55.5 44.0 17.0

(D) (NMR) 0 2.2 3.2 6.0

(E) (NMR) 3.3 14.6 23.9 34.8

(F) (NMR) 0.5 4.3 7.1 12.8

(G). (NMR) 0.5 3.0 4.8 9.3

(H) (NMR) 0.5 2.5 4.2 5.0

D, E, F, G and H (GLC) 5.9 25.0 45.1 65.0

(I) (NMR) 0.5 1.5 4.1 10.7

(GLC) 0 . 2 2.3 4.7 15.0

Pentachlorobenzene (GLC) 45.5 17.2 6 . 2 0.0

(a) Appendix I

Table 12 shows the relative yields of fluorinated organic products

together with that of recovered pentachlorobenzene at four reaction times.

Gas chromatography was unable to differentiate between isomeric compounds

in most cases, but the relative amounts of tetra-, tri-, and di-

chloropolyfluorobenzenes found by g.l.c. were in good agreement with
19measurements made using F n.m.r. spectroscopy. Also gas chromatography
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was the only way in which the amounts of unreacted pentachlorobenzene
70could be measured. Earlier work reported in the patent literature 

showed that pentachlorobenzene with potassium fluoride in sulpholan at 

the reflux temperature (255°C, slowly dropping to 233°C) for four hours 

gives a mixture of di-, and tri-fluoro isomers. Analysis of the 

difluorotrichlorobenzenes showed that tlie mixture contained:

Table 13

Arene % Yield

(D) 6.3

(E) 58.2

(F) 15.6

(G) 1 2 . 2

(H) 6 . 8

(J) 0.9

(a) Appendix I

An exchange reaction of pentachlorobenzene with potassium fluoride 

in DMSO at 180°C for 24 hours has been reported^^ to give three fractions

upon distillation:

Table 14

Fraction a Fraction b Fraction c

Arene (I) (E) (G) . (H) (A) (B) (C)

% of fraction 7.3 30.3 17.1

approximate ratio ' 2 : 1 : 1 1 : 1 : 1

(a) Appendix I
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The results in Tables 11 and 12 are in agreement with the earlier 

patent reports^^. The reaction of pentachlorobenzene with potassium 

fluoride in sulpholan (Tables 11 and 12) gives considerable quantities 

of (F) . This isomer was not found when the reaction was carried out in 

dimethyl sulphoxide (Table 14). The disparity may be due to a 

preferential removal of some isomers by nucleophilic attack of products 

of decomposition of the solvent e.g. Me^S (page 40). In contrast to 

the analogous reaction of hexachlorobenzene, ion-exchange of pentachloro­

benzene does not afford pure polychlorofluorobenzene isomers readily.

B . Orientation of Attack in Pentachlorobenzene

As shown in Figure 12, the orientation of attack in pentachloro­

benzene is para > ortho > meta, relative to the hydrogen substituent, 

because the deactivation terms are in the order (m+2 )3> (m+l)3 >2 3 :

Cl (m+1)3
Cl(m+2)3
Cl 23

Figure 12

The directive effect of an existing fluorine being preferentially meta 

is shown in Figure 13.

(m+l)6 Cl

a+m3Cl
la+(m+1 )3 

Cl 23
r r ^ Cl a+3 

Cl (m+2)
Cl
3+ma 

Figure 13

Cl a+(m+l) 
Cl (m+1)3
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Therefore the ease of formation of the difluorotrichlorobenzenes refer 

to the deactivating parameters, is in the order (E) > (H) > (G) > (F) > (D) . 

Introduction of the third fluorine to the ring will give preferentially (I):

(n+l)B Cl:
^ I  Cl 2a+m8
.^>>F 8+ma Cl

\  I F
Cl' a+3

a+m$ Cl

Cl
3+ (m+1)a 
(XXVI)

2aCl

Cl

Cl
23+mct

(XXVII)
F

Cl a+(m+1)3
:i

3+mOt
(XXVIII)

F
I Cl 3+(m+1)a 
Cl 23

(m+1)a 
(XXIX)

Cl
(XXX)

Figure 14

Comparing the deactivating parameters in Figure 14, the ease of formation 

of the trifluorodichlorobenzenes is in the order:

(I) »  (K) > (L) r\J (M)

So here again the directive effect of fluorine is meta > ortho ^  para. 

The results in the Table 11 and 12 are in agreement with this prediction 

of orientation.

C. Observed Rates of Formation of Fluorotetrachloro- and Difluoro- 
trichloro-benzenes from Pentachlorobenzene

The pseudo first-order rate constants are distinguished by superscripts

which, reading from left to right, indicate the order in which fluorine
2 4substituents are introduced into pentachlorobenzene (H=l). Thus K '

is associated with the attack upon (A) to give (E) (2 ,4-F2 (Appendix I))*
4,2and K is associated with the attack upon (C) wi-fh the formation of the



40

1same difluoro-isomer; a is the rate constant for consumption of the

pentachlorobenzene i.e.

d[C^Cl H]/dt = a^.[C^Cl H]

Table 15

Arene 10^ (sec ^) at 250°C

(A) = 10

(B) K^. = 9

(C) = 22

(D) = 1 = 6

(E) = 18 = 9

(F) = M- K^'3 = 1.5

(G) = 8.5

(H) = 7

Pentachlorobenzene 1a = -59

Table 15 shows that the rate of formation of the monofluorotetrachloro­

benzenes is in the order para > ortho > meta (relative to the hydrogen) and 

the most preferentially formed difluorotrichlorobenzene is (E). A similar 

order has been deduced in the prediction of the orientation (page 47), 

where the rate of formation of (F) is higher than those of (G) and (H), but 

in the prediction of orientation the ease of formation of difluoro-trichloro­

benzenes was in the order meta- difluoro (i.e.(G) and (H)) > ortho-difluoro-tri- 

chlorobenzene (F). The reason could be a ready removal of the 2,5- 

difluoro-isomer (H) in the formation of tri fluoro-di chloro-isomers (e.g. (I))

shown in Table 11. The second fluorine may go preferentially to the meta
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positions relative to the existing fluorine, but once (F) and (G) are formed they can­

not easily give trLf luorodichlorobenzene isomers because the deactivating 

energies for conversion of these isomers to trifluoro-isomers are, high (XXVII 

and XXIX in Figure 14) .

10. Reaction of 2,3,4,5,6 -Pentachlorotoluene with Potassium Fluoride, 
in Sulpholan

A. Results of Fluorodechlorination of 2,3,4,5,6-Pentachloro- 
toluene with Potassium Fluoride

Table 16

Molar ratios of components from the reaction of 2,3,4,5,6-
pentachlorotoluene (0.05 mole) 
(50 ml) at ca. 276°C.

with KF (0.5 mole) in sulpholan

(a)Are ne
t=

Molar
25

% of arene 
50

at time 
75

(t)
100

4-Fluoro-2,3,5,6-tetrachlorotoluene (C) 6.30, 1 0 . 1 0 10,70 ’ 10.25

2-Fluoro-3,4,5,6-tetrachlorotoluene (A) 5.95 7.80 8.74 8.90

3-Fluoro-2,4,5,6 -tetrachlorotoluene (B) 4.08 4.50 6.90 5.77

2 ,4-Difluoro-3,5,6 -trichlorotoluene (E) - 4.20 5.90 8.98

3,5-Difluoro-2,4,6-trichlorotoluene (G) - - 1.80 3.20

2,6-Difluoro-3,4,5-trichlorotoluene (H) - - 0.46 1.30

2,3,4,5,6 -Pentachlorotoluene ^ 83.60 73.40 65.50 61 .50

Measured from ^^F n.m.r. signal integrals.

Measured from g.l.c.

As is seen by comparing Tables 12 and 16, fluorodechlorination occurs 

much less readily in pentachlorotoluene than the corresponding reaction in 

pentachlorobenzene. Attempts were made to continue the exchange reaction
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by using longer periods of time, but after 100 minutes, the product of 

fluorination was an insoluble tar which did not appear to contain any 

fluorine. This may be some product from nucleophilic attack by fragments 

from the decomposed solvent at high temperature ^^ or, perhaps products 

of polymerisation of highly chlorinated compounds in the presence of 

potassium fluoride.

B . Orientation of Attack in 2,3,4,5,6-Pentachlorotoluene

The orientation of attack of pentachlorotoluene is similar 

to that of pentachlorobenzene and is in the order para > ortho > meta relative 

to the methyl group;

Cl(m+1)3
Cl(m+2)3

Cl(m+1)3 
^ ^ C l  (m+2) 3

Figure 15

Further fluorination of these mono-fluorotetrachlorotoluenes occur 

preferentially meta to the existing fluorine:

(m+1) 3 Cl 
a+(m+l)3 Cl

(m+1) 3 Cl] 
23+ma Cl

(C)
(See Appendix I, page 110)

Figure 15

Cl a+(m+l)3

CH
3+ma Cl 

(m+2)3 Cl
Cl a+m3 
F

Cl
a+3
(B)
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and the ease of formation of the difluorotrichlorotoluenes is apparently

in the order 2,4-difluoro-(E) > 2,5-difluoro-(H) > 3,5-difluorotrichloro-‘

toluene (G) . Table 16 shows that the most preferred isomer among the

three difluorotrichlorotoluenes is 2,4-difluoro-3,5,6 -trichlorotoluene (E) ,

but the relative amounts of the two other difluorotrichlorotoluenes are

not in agreement with the order of reactivity predicted in page 51 . The

ease of formation of difluorotrichlorotoluenes is 2 ,4-difluoro-(E) > 3,5-

difluoro-(G) > 2 ,6 -difluoro-(H) trichlorotoluene. This disparity in the

order of formation of these isomers, could be due to ready attack at

the meta-position relative to fluorine, in the 2 ,6 -difluoro isomer to

form 2,4,6-trifluoro-3,5-dichlorotoluene, although this was not observed 
19in the F n.m.r. spectra of the reaction mixtures (perhaps because of the 

low, concentration). A methyl group, compared to the hydrogen group in the 

^6 ^^5^ system, seems to deactivate the system towards nucleophilic attack 

by potassium fluoride. Here, despite the use of a higher temperature 

(276°C) and after 100 minutes reaction, still about 60% of unreacted 

starting material, is left (Table 16), whereas in the corresponding reaction 

of pentachlorobenzene at a lower temperature (245°C) all the starting 

material was consumed after this time (page 45 ) .

C. Observed Rates of Attack in the Reaction of 2,3,4,5,6-Pentachloro­
toluene

Table 17

Arene

2,3,4,5,6 -Pentachlorotoluene

4-Fluoro-2,3,5,6 -tetrachlorotoluene (C)

2-Fluoro-3,4,5,6 -tetrachlorotoluene (A)

3-Fluoro-2,4,5,6 -tetrachlorotoluene (B)

a = - 11.1
4 4a = -40 K = 7
2 2a = -27 K = 2.3
3 3a = -25 K = 2
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Table 17 (continued)

Arene (sec )

2 ,4-Difluoro-3,5,6 -trichlorotoluene (E) 4 28 K ' = 4

3,5-Difluro-2,4,6 -trichlorotoluene (G) = 8

2 ,6 -Difluoro-3,4,5-trichlorotoluene (H) 2.4

a \  , a^ and a^ are the rate constants for removal of the indicated

arenas and K are the rates of formation of the arenes. Where there is

more than one route for formation of the isomers, the superscripts indicate

the source from which the indicated arene has been formed, so is

associated with the attack upon 2-fluoro-3,4,5,6 -tetrachlorotoluene to
4,2form 2,4-difluoro-3,5,6 -trichlorotoluene and K is associated with the 

attack upon 4-fluoro-2,3.,5,6-tetrachlorotoluene to form the same 

difluoro isomer.

Here again the apparent rate of the formation of 3 ,5-difluoro-

2,4,6 -trichlorotoluene (G) is more than that of 2,6-difluoro-3,4,5- 

trichlorotoluene (H) , either which as mentioned before

(page52) may be because of the ready removal of the latter isomer.

11. Reaction of Pentachloroanisole with Potassium Fluoride in 
Sulpholan

The methoxy-group is known as one of the deactivating group when it

is para to the site of reaction in the aromatic nucleophilic substitutions

(page 28). The electronic effect of the -OMe group in such reactions
1 1 chas been shown to vary markedly with the position. Miller has compared
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the rate of the methoxydechlorination of the 4 -, 5 -, and 6 -methoxy- 

2,4t- or -2 ,5-dinitrochlorobenzene and has obtained the deactivating 

power of the -OMe group to be in the order para > ortho > meta (Table 18)

Table 18

Rates of methoxydechlorination of some chlorodinitro- 
methoxybenzenes with methoxide ion in methanol at 50°C

Position relative to -Cl (l.mole ^sec ^) f0Me(S'*'F.)

2,6-dinitro-4-methoxy- 1.85 X lO"^ fp = 0.025

2 ,4-dinitro-6-methoxy- 4.67 X 10“^ = 0.16

2,4-dinitro-5-methoxy 1.09 X lO"^ f m = 0.38

2 ,4-dinitro- 2.88 X lO”^ 1

2 ,6 -dinitro- 7.4 X lO"^ 1

The deactivation power of the -OMe group in the C^F^X system could be

shown by comparison of the rate of reaction of pentafluoroanisole

(X = OMe) with that of pentafluorobenzene (X = H), in the reaction with

methoxide ion in methanol at 50°C, x 10 and 8. 6 6 x 10

respectively^ ̂ ^) although only 52%. attack occurs at the £-position of

pentafluoroanisole (see below). The directive effect of the -OMe group
87in pentafluoroanisole has been reported to be para > meta > ortho in the

reaction with sodium methoxide in methanol:
F F  F F  F F

NaOCH.

64 hrs
'7 \\,\>ocH.

" V
+ F

F reflux temp, f F

52%

CH_ +

CH_0

32%

OCH,

OCH.

while the methoxydechlorination of the pentachloroanisole occurred at 

position meta > ortho > para relative to the me thoxy group :
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Cl Cl
NaOCH

OCH^ +CH.0

OCH Cl Cl OCH^ Cl Cl3 3
+ chlorophenols

70 : 25 : 3

This is because the directive effects of fluorine and chlorine are different.

As shown in Table 19, the activating effect of para-fluorine is much less

than in any other site, or for chlorine in any position, so that substitution

occurs preferentially not at positions p- to fluorine.

_ 9 3 bTaole 19

Partial rate factors for.ortho-, meta- and para-X-groups in 
the methoxy-dehalogenation of polyhalogeno compounds in 
methanol at 50°C

Groups 4 ' 4 f"P

Cl 65 123 26

F 42 . 180 0.75

OCH 3 0 . 6 6 5.5 0.08

88Replacement of the methoxyl group by amine group has been reported

in the reaction of pentachloroanisole with sodium amide in liquid ammonia. 
OCH_ NH,

Cl
Cl NH3 cii

Cl Cl
Cl

64%

In this work attempts upon the displacement reaction of pentachloroanisole 

by potassium fluoride in sulpholan failed. Under vigorous conditions, 

potassium fluoride and pentachloroanisole gave some products, but no 

displacement by fluoride ion took place. It seemed that déméthylation
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to give potassium pentachlorophenate was the main process under the 

forcing conditions:

^ C l  Cl
< Ç ^ 0 C H 3  + KP -Sulpholan ^

Cl Cl ' Cl Cl

12. Reaction of Fluoropentachlorobenzene with Potassium Fluoride in Sulpholan

A. Products of Fluorodechlorination of Fluoropentachlorobenzene

Table 20
Molar ratios of fluorine-containing components from the reaction 
of fluoropentachlorobenzene (0.025 mole) with KF (0,25 mole) in 
sulpholan (25 ml) at ca. 260°C

Fluoro-arene Molar % 
t= 15

of Fluoro- 
30

arene at 
45

time (t)
60 (min)

Fluoropentachlorobenzene
(NMR) 15.37
(GLC) 14.25 - —

1,3-Difluoro-2,4,5,6-tetrachlorobenzene
(NMR) 44.57 19.84 6.82 2.69

1, 2-Difluoro-3,4,5,6 -tetrachlorobenzene
(NMR) 16.9 11.3 3.41 1.34

1,4-Difluoro-2,3,5,6 -tetrachlorobenzene
(NMR) 1.53 0.70 —

Total difluoro-tètrachlorobenzenes
(GLC) 60.1 33.60 12.17 4.80

1,3,5-Trifluoro-2,4,6-trichlorobenzene .
(NMR) 19.45 46.20 64.80 67.40

1 ,2 ,3-Trifluoro-4,5,6-trichlorobenzene
(NMR) 2.15 14.1 17.0 17.88

1,2,4-Trifluoro-3,5,5-trichlorobenzene
(NMR) - 7.65 7.87 5.39

Total trifluoro-trichlorobenzenes
(GLC) 25.65 64.89 84.13 86.30

1,2,3,5-Tetrafluoro-4,6 -dichlorobenzene
(NMR) - - — 5.39
(GLC) 1.5 3.7 8.70 i
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Table 20 shows that after 15 minutes, all the starting material 

has reacted and the results are in agreement with those obtained 

from the reaction of hexachlorobenzene with the same reagent and solvent 

(page 42 ) . The only tetrafluoro-isomer observed after 60 minutes 

reaction was 1 ,2 ,3,5-tetrafluoro-4,6-dichlorobenzene which has been 

observed ' to be the main isomer among the tetrafluorodichloroisomers 

product in the fluorodechlorination of hexachlorobenzene. Table 20 also 

shows the rapid conversion of 1,3-difluoro-2,4,5,6-tetrachlorobenzene 

to the kinetically most stable isomer 1 ,3,5-trifluoro-2,4,6-trichloro- 

benzene.'

B . Orientation of Attack in Fluoropentachlorobenzene

As predicted for the sequence of reaction of hexachlorobenzene, 

the orientation of attack in fluoropentachlorobenzene is meta > ortho > 

para relative to fluorine. As can be seen in Table 21 from comparing 

the free energy parameters for formation of each isomer, the 

preferentially formed species are 1,3-difluoro—2,4,5,6-tetrachloro— 

and 1,3,5-trifluoro-2,4,6-trichlorobenzenes. Table 21 also shows 

that by using the inductive effect, we can put the free energy parameters 

into an order of reactivity, thus because Ip > Î j_ 1 ,2-difluoro-3,4,5,6- 

tetrachlorobenzene reacts less readily than 1 ,2 ,4-trifluorotrichloro- 

benzene, when the mesomeric contribution is the same (e.g. a+(m+l)3) 

for each site:

Cl
Cl

F a+ (m+1 ) 3--- ^
C1+---a+(m+l)3 C



Table 21

Free Energy Parameter Orientation of Fluorine in Polyfluorochlorobenzene

4Ici + 2Ip

2 1p + « C l

3 (m+2 ) i f 3,5-trifluoro-2 ,4,6 -trichlorobenzene

3 (m+2 ) 1 /3-difluoro-2 ,4,5,5-tetrachlorobenzene

a+(m+1)3 1,2,3,5-tetrafluoro-4,6 -dichlorobenzene

a+(m+l)3 1 ,2 ,3-trifluoro-4,5,6 -trichlorobenzene;
1/2,4-trifluoro-3,5,6 -trichlorobenzene

Ip + - a+(m+l)3 1,2-diflucro-3,4,5,6 -tetrachlorobenzene

Ip + 51^2 ” (2 3+ma) 1,4-difluoro-2,3,5,6-tetrachlorobenzene

This prediction of orientation is in agreement with the results in 

Table 20.

13. Reaction of 1,2,3,5-Tetrachlorqbenzene with Potassium Fluoride> 
in Sulpholan

A. Products of Fluorodechlorination of 1,2,3,5-Tetrachlorobenzene

Composition (moles) 
tetrachlorobenzene 

. (50 cc) at ca. 250

Table 22
of components from the 
(0.05 mole) with KF (0.5 
°C

reaction of 1,2,3,5- 
mole) in sulpholan

(a) 10^ moles of components at time (t)
Arene t = 2 4 6 8 hours

(0 ) (NMR ) 8.02 10.02 1 0 . 0 2 9.6
(GLC ) 9.37 9.62 10.05 11.1

(P) (NMR)^^^ 0 1.35 1.50 1.85

(Q) (NMR) 1.35 1.35 2.25 2.55

(R) (NMR) 0 0.054 1.47 2.67
(GLC ) 0.038 0.D69 1.53 2.13

1,2,3,5-Tetrachlorobenzene 
(GLC) 14.00 8.20 4.40 1.99

Appendix II
GLC was not able to differentiate between (P) and (Q)
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Table 23

Composition (moles) of components from the reaction of 
1 ,2,3,5-tetrachlorobenzene (0.05 mole) with KF (0.5 mole) 
with KF (0.5 mole) in sulpholan (50 cc) at ca. 250°C

Arene t =
1 0^

3
moles
6

of components at t (t) 
9 12 15 18(hrs) ;

(0 )
(NMR) ^
(GLch>

1 0 .ni 
10.47

10.02
10.52

9.20
9.50

6.0
6.01

5.8
6 . 0

... ^
5.2

(P)
(NMR) 0 1.80 2.40 2.0 1.90

(Q)
(NMR) 2.45 2.55 2.70 2.15

(P) and
,=LC(« 7.30 8.5 10.0 8.5 6.5 5.8 1

(R)
(NMR) 0 1.47 2.45 2.73 2.73 2.51

(S)
(NMR) 0 0.81 1.47 1.74 2.01 1.36

(R) and (S)
(GLC) 0.04 1.95 2.73 3.66 2.95 3.0

(T)
(NMR) - - - 0.09 1.09 -

1,2,3,5-Tetrachlorobenzene 
(GLC) 9.44 4.76 3.51 1.94 1.52 0.046

1,2,3-Trichlorobenzene 
(GLC ) - - - - - i.e/G)

(a)
See Appendix II ,

(b)
The reaction mixtures were left for 15 hours (overnight) and reheated .

(c)
(N) together with products of reduction probably 1 ,2,3-trichlorobenzene.

Both the m o n o f  l u o r o - tri chlorobenzenes (Appendix II) together with small 
quantity of sulpholan and also, products of reduction.

Measured from GLC analysis of the steam volatile species of the reaction 
mixture.
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Tables 22 and 23 show that fluorodechlorination of 1,2,3,5— 

tetrachlorobenzene occurs mainly at positions ortho and para to 

hydrogen and meta to chlorine witli the preferential formation of (O) 

and (R) (see Appendix II). Similar exchange .reactions of 1,2,3,5- 

tetrachlorobenzene with potassium fluoride in DMSO has been reported 

by Finger to give (O) 7.2% (mole %) as the only mono-

fluorinated product, after 72 hours heating at 183^C. They also 

reported the presence of two dif luoro-isomers, (R) , 0.4% and 1,2-dif luoro-

3.5-dichlorobenzene (U) , 0.4% with this mono-fluorinated product (0).

1,2-Difluoro-3,5-dichlorobenzene was not observed after heating the

1.2.3.5-tetrachlorobenzene with potassium fluoride in sulpholan for

18 hours. The reason could be the preferential attack at meta position 

relative to chlorine rather than ortho (Figure 18) . As shown in Table 23.

the presence of some products of reduction (T) has been deduced from the
19F n.m.r. spectra of the reaction mixture, and also in the g.l.c. analysis 

of the steam-volatile substances of the reaction mixture. Compared to 

the similar reaction with pentachlorobenzene, considerable amounts of 

non-volatile species (tar) which contained no fluorine were obtained in 

this reaction. Extraction of these tars by petroleum ether did not 

give any pure compound, but the presence of 1 ,2 ,3-trichlorobenzene was 

shown by g.l.c. analysis of the volatile species of the reaction mixture 

formed after 18 hours (Table 23^ . Presence of other products of reduction, 

(e.g. 1 ,3 ,5- and 1 ,2 ,4-trichlorobenzenes) was not observed in the 

g.l.c. analysis of the reaction mixtures because they coincide with the 

monofluorotrichlorobenzenes (Table 23). The formation of trichloro— 

benzenes may be represented by the equation:
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CH.

CH,

CII.

CH.

CH.

CH.

CH. ̂ 2

CHCl

\ ? /

and the resultant chlorosulphone can be regarded as a source of the

tarry materials. Protiodechlorination has been observed in the

exchange reactions of some polychloroaromatic compounds in sulpholan,

e.g. presence of 2 ,4-dichloro-l,3,5-trifluorobenzene among the products
46of reaction of hexachlorobenzene with potassium fluoride in sulpholan

B. Orientation of Attack in 1,2,3,5-Tetrachlorobenzene

mg
(m+2 ) 3

Figure 17

Figure 17 shows that chlorine atoms at C-1 (EC-3) and C-5 'are 

more readily attacked than chlorine at C-2, (deactivating parameters 

are g < m3 < (m+2)3 respectively). The extent of formation of mono-fluoro- 

derivatiyes-is therefore predicted to be:

2,3,5-(0) > 3,4,5-(P) > 2,4,6 -trichlorofluorobenzene (O).

Attack by the second fluoride ion is expected to take place at the less 

deactivated positions shown in Figure 18:

m3 Cl'

Cla+(m+l)3 .Cl 
Cl 3

Cl a

Cl ma

(XXXI) (XXXII) 
Figure 18

2g+ma
(XXXIII)

ci3
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which gives the ease of formation of the difluoro-isomers in the order:

(R) (S) >> (U). The order of formation of these difluoro-isomers

shown in Tables 17 and 18 is (R) > (S). Figure 18 shows that (R) can 

only be formed from attack on (XXXI), but (S) may be formed from the 

attack on both (XXXI) and (XXXIII) [mostly from (XXXIII) because the 

deactivating parameters at the sites of attack are mg and 3 for (XXXl) 

and (XXXIII) respectively]. As the ratio of the concentrations of 

(XXXI) to (XXXIII) is about 5:1 ((0)/(Q) in Table 23) the amount of isomers

formed from (XXXI) is therefore more than that formed from (XXXIII). These 

differences in the amount of difluoro-compounds formed from the different 

mono-fluoro derivatives are seen in Table 24, which shows that the rate 

of formation of (R) from the only mono-fluoro isomer formed (O) , is more 

(K^'^ = 0.8 X 10 sec ^) than that of (S) from (O) and (Q) (K^'^= 0.5 x 10 ^

and = 0 . 2 2 x 10 ^ sec  ̂respectively).

C. Observed Rates of Attack in the Reaction of 1,2,3,5-Tetrachloro-
benzene (0.05 mole) with Potassium Fluoride (0.5 mole) in Sulpholan
(50 ml) at ca. 250°C.

Table 24

Arene 10^ (sec ^)

1,2,3,5-Tetrachlorobenzene 1a = - 11.8

(0 ) = 1.75

(P) = 0.45

(Q) = 0 . 6

(R) = 0.80

(S) ^ 2,6 = 0.5, =0.22

a^ is the rate of consumption of starting material, other superscripts 
are the same as that stated for pentachlorobenzene, and pentachloro­
toluene ,
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As was mentioned before (page 60 ) the amount of non-volatile

species (tar) obtained in this reaction was more than tliose obtained 

in the similar reaction of pentachlorobenzene. In Table 24 a^ should 

be equal to the rates of formation of the daughter products, i.e.

a^ = 2K“ + K'" +

But the total sum of the rate constants for the formation of mono-fluoro- 

isomers is:

2K^ + = 4.55 x lo”^

which is not equal to a^ = 1 1 . 8 x 10 '̂ â  = — = 0.38^ .

Although much of the starting material in this reaction is consumed

to give volatile species (including trichlorobenzenes and 3,5-

dichlorofluorobenzene ), some non-volatile species which contain no
19fluorine and cannot be detected by F n.m.r. or g.l.c. are evidently 

also formed. They might be biaryl ethers^^ formed from the reaction 

of starting material or trichlorobenzenes with the atmospheric 

moisture, e.g.
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14 . Reaction of 1,2, 3,4- and 1 , 2 , 4 , 5-To l:rr,ich lorobenzene with 
Potassium Fluoride in Sn]phnIan

A. Products of Fluorodechlorination of 1,2,3,4-Tetrachloro- 
benzene

Table 25
Composition of compounds from reaction of 1,2 ,3,4-tetrachloro- 
benzene (0.035 mole) with potassium fluoride (0.35 mole) in 
sulpholan (35 ml) at ca 250°C

Arene 1 0  ̂moles of components 
t = 2

at time(t) 
4 hours

(V)
(NMR) 4.55 7.50

(w)
(NMR) 1.96 3.36

(V) and (W)
(GLC) 6.60 1 1 .20

1.2.3.4-Tetrachlorobenzene
1 (b) H (NMR) 28.20 23.80

(GLC) 26.00 2 0 . 0 0

Appendix II.

(b) 6 = 7.3 p.p.m. downfield of T.M.S. using tetrachloromethane 
as solvent.

Table 25 shows that after four hours heating at 250°C, 1,2,3,4- 

tetrachlorobenzene gives only two mono-fluorotrichloro isomers, with 

about 60% of the starting material still unreacted. Similar results 

have been reported by Finger e^.ad. Tetrachlorobenzene (0.2 mole) 

with potassium fluoride (1.8 mole) at 200°C in dimethyl sulphone gave (V) 

46.7% mole %, (W) 8.3%, and three difluorodichloro-isomers; 1,3-difluoro-

2,4-dichloro- (X) 10.7%; 2 ,3-difluoro-1,4-dichloro- (Y) 7.5%; and 

1,2,-difluoro-3,4,-dichlorobenzene (Z) 1.4 %.

The results in Table 25 are in general agreement with these results 

so far as m o n o - f luorodechlorination is concerned.
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( rn+1 ) 3 
Cl 23 
Cl

Cl
mg

H
Cl

Cl

Cl (m+2)3 Cl
Cl d

Cl (m+1)3 
Cl

(XXXIV) (XXXV) (XXXVI)

As shown in (XXXIV), the orientation of attack in 1,2,3,4-tetrachloro- 

benzene is expected to be para > ortho relative to hydrogen. So the order 

of formation of monofluorotrichloro-compound is(V)>(W). Comparing the 

three tetrachlorobenzenes together, the reactivity of 1,2,3,5-tetrachloro­

benzene (XXXV) towards the exchange reaction is more than those of

1,2,3,4- and 1,2,4,5-tetrachlorobenzenes. [(XXXIV) and (XXXVI) respectively],

C. Observed Rates of Attack in the Reaction of 1,2,3,4-Tetrachlorobenzene 
(0.05 mole). Potassium Fluoride (0.5 mole) and Sulpholan (50 ml)
at ca. 250 C

Table 26

Arene lO^K / "1 \(sec )

1,2,3,4-Tetrachlorobenzene 1a = -2.7

(V) = 0.95

(W) = 0.4

Table 26 shows that the reaction of 1,2,3,4-tetrachlorobenzene is
1 -5 -1slower (a = -2.7 x 10 sec )than that of 1,2,3,5-tetrachlorobenzene*
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1 - 5  - 1(a = -11.8 X 10 sec ) which is in agreement with that predicted

in page 65. The rate constants for formation of monofluorotrichloro- 
2 1compounds (K and K ) are also in agreement with the order of reactivity 

predicted in page 65. In contrast 1,2,4,5-tetrachlorobenzene gave no

2 ,4,5-trichlorofluorobenzene with potassium fluoride in sulpholan at 

250°c even after 12 hours (So a^ / 5 x 10 ^ sec S -

15. Reaction of 2,3,5,6-Tetrachlorofluorobenzene with Potassium 
Fluoride in Sulpholan

A. Products of Fluorodechlorination of 2,3,5,6-Tetrachloro- 
fluorobenzene

Table 27

Molar ratios of fluorine containing compounds from the 
reaction of 2 ,3 ,5 ,6-tetrachlorofluorobenzene (0.1 iilole)
with potassium 
at ca. 260°C

fluoride (1.0 mole) in sulpholan (100 ml)

Fluoro-arene ̂ Molar % 
■ t = 15

of fluoro- 
30

-arene at 
45

time
60

(t)
75 (min)

2,3,5,6 -Tetrachlorobenzene
(C)

(NMR)
(GLC)

58.90
63.40

35.60
32.20

18.20
6.90

1 0 .10
6.70

8.00
5.20

(E)
(NMR) 32.30 48.0 . 56.70 59.40 64.0

(F)
(NMR) 7.80 10.90 13.70 14.80 10.70

(E) and (F)
(GLC) 35.20 61.40 80.60 78.80 73.90

(I)
(NMR)
(GLC)

1.00 
1.40 .

5.40
6.40

11.40
12.40

14.80
17.30

16.10
19.40

(GLC)
(NMR)

0
0

<0.09
0

0.1
0

0.7
0.3

1.5
1.3

(a)

(b)‘
Appendix I. 

Reduction product.
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The results in Table 27 are in agreement with the results obtained 

from the corresponding reaction of pentachlorobenzene with potassium 

fluoride. An earlier report^^ was made of the reaction of 2,3,5,6- 

tetrachlorofluorobenzene which gave the two posssible difluorotrichloro­

benzenes:

Cl
Cl

H
Cl Sulpholan

236-248-C
4.5 hours

(39% overall conversion)

The results in Table 27 confirm this report.

B . Orientation of Attack in 2,3,5,6 -Tetrachlorofluorobenzene

As was predicted in the attack of pentachlorobenzene (page 48) , further 

fluorination of 2,3,5,6 -tetrachlorofluorobenzene (C) gave (E) more readily 

than (F) . The trifluorodichloro-isomers. formed from -these difluoro- 

compounds were in the order: (I) >> (K); this orientation of attack 

has been observed (Table 27) in this reaction.

C. Observed Rates of Attack in the Reaction of 2,3,5,6 -Tetrachlorofluoro­
benzene (0.1 mole). Potassium Fluoride (2.0 mole) and Sulpholan'
(100 ml) at ca. 260 C

Table 28

Arene 1 0^ -1K(sec )

2.3.5.6 -Tetrachlorofluorobenzene 
(C) 1a = -60

(E) = 24.5

(F) = 5
2,4 ,6(I) K ' ' = 10
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The main difluorotrichloro-compound in this reaction was predicted 

to be (E) and the main trifluorotrichlorobenzene to be (I). The rate 

constants in Table 28 are in agreement with this prediction of orientation.

16. Reaction of Pentachloropheny1 p-toluenosulphonate with Potassium 
Fluoride in Sulpholan

Replacement of the p-toluenesulphonate group by fluorine has been 

reported^^ in the preparation of the alkyl halides such as fluoroethane, 

fluoroethylene, and 1-fluoroheptane from the corresponding alkyl p-toluene­

sulphonate with dry potassium fluoride either in diethylene glycol or
83without a solvent (preparation of fluoroethane ). Similar replacement 

84has been reported in the synthesis of some fluoro-steroids (page 40 );
89 90diethylene glycol and dimethyl sulphoxide have been used as solvents'

in these ion exchange reactions. In the present work attempts to replace 

the p-toluenesulphonate group from pe nta ch1orophe ny1 p-toluenesulphonate 

failed. Anhydrous potassium fluoride in sulpholan at different temperatures 

(240, 250, 270 and 280°C) was used, but no such replacement by fluorine took 

place. This may be due to a primary steric effect from the p-toluene­

sulphonate group, or because p-toluenesulphonyl fluoride may be formed 

by the preferential displacement of pentachlorophenoxide ion:

Cl Cl

Cl Cl

3
• cTci

17. Attempted Replacement Reaction of Tetrachlorophthaloyl Chloride 
with Potassium Fluoride in Sulpholan

The reaction of tetrachloroterephthaloyl chloride with anhydrous 

potassium fluoride at 230°C for 30 hours, or with cesium fluoride at 190°C



69.

for two hours in the absence of solvent, has been reported to give 

72 - 87% tetrachloroterephthaloyl fluoride^^^. A similar reaction of 

tetrachloroterephthaloyl fluoride with cesium fluoride at .2 2 0° for 

26 hours has been r e p o r t e d t o  give 52% tetrafluoroterephthaloyl fluoride 

Reaction of tetrachlorophthaloylchloride has also been reported^^ to - 

give tetrafluorophthaloyl fluoride, using potassium fluoride in the 

absence of solvent. In the present work, tetrachlorophthaloyl chloride 

was treated with anhydrous potassium fluoride in sulpholane at 260°, 

but no ion-exchange reaction observed over 2 hours, although the method 

of analysis would not detect acid fluoride formation. The potassium 

fluoride-sulpholan systems seems not to be effective for this ion- 

exchange reaction.

18. Replacement Reactions of 1,3,5-Trichloro- and 1,3-Dichloro-2- 
nitrosobenzenes with potassium fluoride in DMSO and Sulpholan

Comparing the relative rates of the reaction of 2 ,4-dinitrochloro­

benzene and 2-nitroso-4-nitrochlorobenzene with sodium methoxide at

0° shows that the latter is more reactive [rate constants relative
5 6to 4-nitrochlorobenzene (K=l) are 6.73 x 10 and 5.22 x 10 respectively].

2 ,4,6-Trichloronitrobenzene and also 2 ,4-dichloronitrobenzene with
54potassium fluoride in DI4S0 has been reported to give the corresponding 

fluoro-compounds after 2 and 8 hours heating at 180°. The similar 

reaction with the di-, and tri- nitroso-benzenes was therefore expected 

to give the aromatic polyfluoro-nitroso-compounds, but the reaction 

failed to give any detectable ion-exchange products. The reaction of
92p-chloronitrosobenzene with methoxide ion in methanol has been reported 

to give 4 ,4 '-dichloroazoxybenzene instead of normal exchange reaction.
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The result has been explained by the reactivity of the nitroso-group being 

greater towards reduction than substitution reactions. As the products 

of t.lir ri‘.ioLi(jn of I , ( 1 ri oli I, n ', .nid 1 , ' - d i cli I m  ( )-•! "i i i I ro.':ol)i •ii/,'mi<;s

with potassium fluoride after 2 and 6 hours reflux in dimethyl sulphoxide 

and also in sulpholan did not contain any fluorine, similar reduction 

processes may have taken place. The reaction mixtures were insoluble 

tars and attempts for the isolation of any pure substance from the tars 

failed.

19. The reaction of Octachloronaphthalene with Potassium Fluoride 
in Sulpholan and DMSO

A. Products of Fluorodechlorination of Octachloronaphthalene

In contrast to the corresponding reactions of polychlorobenzenes, 

reaction of octachloronaphthalene with potassium fluoride did not permit 

a full investigation of the exchange reaction because of the following 

reasons:

(i) The presence of many possible similar isomers of fluoro-

chloronaphthalenes in every sample did not permit a clear identification
19of the individual isomer by F n.m.r. spectroscopy, because of the 

lower signal-to-noise ratios.

(ii) The similarity of the chemical shifts of many isomers of 

the polyfluorochloronaphthalenes and the complex interaction of their 

fluoripe absorption signals.

(iii) The lower solubility of octachloronaphthalene than those of 

fluorochloronaphthalene products, in the organic solvent caused difficulties 

in the analysis of the reaction mixtures.

The results of the fluorodechlorination of octachloronaphthalene 

using different conditions are listed in Tables 29, 30, 31 and 32.
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• Table 29

Molar % of the components of reaction of octachloronaphthalene
(0 . 0 1 2 mole) with potassium 
(20 ml) at ca. 140 C

fluoride (0 . 1 2 mole) in DMSO

Arene Molar % o f the 
t = 15

components at time 
30 45

(t)
60 min

2-Fluoroheptachloronaphthalene
(GLC)
(NMR)

42.3
45

10
1 2 .00

- -

1-Fluoroheptachloronaphthalene
(g l c )
(NMR)

38.8^^^ 
28

2,7-Difluorohexachloronaphthalene
(GLC)
(NMR)

8.9
8.3 12.0 14.8 11 . 8

1 ,3-Difluorohexachloronaphthalene
(NMR) - 12.1 27 36

1,6 -Difluorohexachloronaphthalene
(NMR) - 12.0 14.6 12.0

1,8-Difluorohexachloronaphthalene
(GLC)
(NMR)

- - 19.5
14

17.8(°)
11.2

Total 1,3-, 1,6- and 2,7- 
Difluorohexachloronaphthalenes

(GLC) 33.6 52.0 53.0

1,3,6 -Trifluoropentachloronaphthale
(NMR)

ne
- 3.8 8.1 12.0

1,3,8-Trifluoropentachloronaphthalene
(NMR) - • - 18.5(4) 17(4)

Total Trifluoropentachloronaphthalenes
( GLC) - 7.3 25.5 29.2

Octachloronaphthalenes
( GLC) 10 4.6 3.0 -

1-Fluoroheptachloronaphthalene together with products of reduction.
1-Fluoroheptachloronaphthalene together with 1,8-difluorohexachloro- 
naphthalene.

(c)
(d)

1,8-Difluorohexachloronaphthalene together with products of reduction.
Together with tetrafluorotetrachloro-isomers or perhaps products from 
the reduction processes.
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Molar % of the components from tiie reaction of octachloro­
naphthalene (0 , 0 1 2 mole) with potassium fluoride (0 . 1 2 mole) 
in sulpholan (25 ml) at 142-145°C

Arene Molar % of the c o m p o n e n t s ^ a t  time (t) 
t = 1 2 3 4 5hrs

2-Fluoroheptachloronaphthalene 32.3 41.7 41.5 41.4 31.8

1-Fluoroheptachloronaphthalene 5.7 14.8 25.0 36.5 46

2,7-Difluorohexachloronaphthalene - 1.8 5.5 9.8 • 15.4

Octachloronaphthalene 62.0 41.7 • 28.0 12.3 6 . 8

(a)

(b)
Results from GLC analysis

Together with monofluorohexachloronanhthalene, a product of reduction, 
this isomer has been identified in n.m.r. spectroscopy of the reaction
mixture.

Table 31

Yields (moles) of some major components from the reaction of 
octachloronaphthalene (0.025 mole), potassium fluoride (0.25 mole) 
in DMSO (30 ml) at ca. 150-160°C. (0.017 M 4-fluorobipheny1 has
been used as a marker)..

Arene Moles of a r e n e s a t  time (t) 
t = 30 60 1 2 0 (mins)

2-Fluoroheptachloronaphthalene 0.0014 —

1-Fluoroheptachloronaphthalene

1,3-Difluorohexachloronaphthalene

0.0019 (b)

0.01 0.0079

From ^^F n.m.r. signal integrals.

(b) Together with 1,8-difluorohexachloronaphthalene.

Table 31 shows the molar yields of some components of the reaction 

of octachloronaphthalene with potassium fluoride in DMSO. These compounds 

were formed together with some other polyfluorochloropaphthalenes during this 

reaction, but the amount of none of the identified compounds exceed 0.01 M
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during 2 hours reaction. The identification and determination of 

structure of all the products formed during this reaction was not 

possible, because of the difficulties mentioned before. G.l.c. analysis 

also failed to differentiate between isomeric compounds, but it 

showed that all the octachloronapthalene was consumed after one hour.

Table 32

Steam distilled products of the reaction of octachloro-
naphthalene (0.025 mole), and potas 
sulpholan (25 ml) at ca. 220-225°C

slum fluoride 
for 5 hours

(0.25 mole)

Arene Molar % of the fluoro-arene
GLC Mass spec.

Tetrachlorotetrafluoronaphthalenes 4.9 1 - 2

Trichloropentafluoronaphthalenes 31.8 36

Dichlorohexafluoronaphthalenes 50 50

Monochloroheptafluoronaphthalenes 12.3 1 2 »)

Octafluoronaphthalene 1.0 1 - 2

Mixture of three isomers with ratios of 1 : 14 : 1 

Mixture of 60% a and 40% ̂ -Chloroheptafluoronaphthalene

As seen in Tables 29 and 30 nucleophilic attack occurs more at 

6 than a positions. The same preference has been reported for the 

reaction of octafluoronaphthalene by a number of nucleophiles^*^and 

some 2-X-heptafluoronaphthalenes have been prepared by this route. 

Reaction of 2-methoxy-heptafluoronaphthalene with methoxide ion in
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93methanol has been reported to give mainly the 2 ,6 -disubstituted isomer,

but some attack at C-7 has also been observed. In the present work 
19F n.m.r. spectroscopy showed a singlet at 102.8 p.p.m. for the fluorine 

signal of the first difluorohexachloronaphthalene was formed in the 

fluorodechlorination of the octachloronaphthalene (Table "42) . This 

could be either 2 »7-difluoro- or 2 ,6 -difluorohexachloronaphthalene (both 

have two equivalent fluorine in the 3 -position), but because 2 )7-difluoro­

hexachloronaphthalene is the more preferred compound (page 73 ) the 

fluorine signal at 10 2.8 p.p.m. was assigned to this isomer.

Another investigation of the system is shown in Table 32. After 

5 hours reaction in sulpholan the isomers of dichlorohexafluoronaphthalenes 

are the major products, while at higher temperatures (255-260°) after the 

same period, ocatchloronaphthalene (0.025 mole) with potassium fluoride 

(0.25 mole) in sulpholan (30 ml) gave octafluoronaphthalene as the main 

product (57 % yield). Octachloronaphthalene has been reported^^ to give 

octafluoronaphthalene (50-60% yield) after 14 hours heating with potassium

fluoride at 230-240°C in sulpholan. Without added solvent, octachloronaphthalene 
94gave octafluoronaphthalene (28 %) and 1-chloroheptafluoronaphthalene

(8 %) after 25 hours at 300-330°C. The results in Table 32 are in

agreement with the earlier work. Table 31 shows that considerable amounts

of 1,3-difluorohexachloronaphthalene (0.01 M) are obtained after one

hour reaction. In the reaction of 2-methoxyheptafluoronaphthalene, however,
9 3 3 .displacement at C-1, C-3 and C-4 has not been observed , because the 

methoxy substituent has only a weak activating effect upon positions meta 

to it compared to that of fluorine (Table 19, page 55 ), and deactivates sites 

ortho- and para- to it (Table 18, page 54 ).
In this work again the presence of the other isomers in each sample 

makes the preparation of the pure samples of the 1,3-difluorohexachloro­

naphthalene of little-value.



75.

B . Orientation of Attack in Octachloronaphthalene

If we show the mesomeric effect of a -  and ^-chlorine transmitted

across the ring in octachloronaphthalene (Figure 19, page 7<5) / it

could be predicted that ot-position is deactivated by (+m) effect of one

ortho- and one para-chlorine to it and also by (+m)effect of two

chlorine from the second ring. Similarly 3-position is deactivated by

(+m) effect of two ortho-chlorine to it and also by effect of two chlorine

from the second ring. The deactivating effects arising from the second

ring has been found to be half of the effects if they arise from the 
93asame ring . Therefore the deactivating parameters at o_- and 3-positions 

is predicted to be [(m+l)3 + 0 .5 (m+l)3]/ and [23 + 0.5 (m+l)3 ] respectively:

.m(m+1)3+0.5(m+1)3 or subtracting ( /2+l)3 - (m+0.5) 
23+0.5(m+l)3 - 1 53

and the ease of formation of monofluoro-isomers is in the order > ot_.

Orientation of attack for the second fluorine is expected to be:

(m+1)3+0 .5(3+ma)

23+0.5(m+1)3 
2 3 +0 .5(3 +ma)

a+m3+0 .5(m+1)3

a+3+0 .5(m+1 )3

(m+1)3+0 ■5(m+1)3

or: subtracting 3/2:

(m+l)3+™/2a a+(1.5)m3

(2+̂ V2)3
2 3+0 .5ma a+(l+*/2 )

(1.5m+l)3



76,

u

u

rH

I—I

Piji•H



77 .

Therefore the order of attack is: C-7 > C-4 - C-5 > C- 8 > C-6 > C-3 >C-1

(m+1)6+0.5(m+1)3 F
2 6 + 0 . 5 ( a + m 6 !  

2 6 + 0 . 5 ( m + 1 ) i

Y . + P + 0  . 5  ( m + 1  ) 3 

2 6 + Ü . 5 ( m + 1 ) 6

(m+1)6+0 .5(a+m6 ) ■ ma+6+0 .5(m+1 )6

mor: subtracting ( /2 + 1)6

(m+0.5) 6
6+ /2 a+0 .56

ma+C.1.56
1.5 6

m 6 + * / 2

and order of attack is: C-3 = C -6 > C - 8 > C-7 > C-5 > C -2 > C-4

Orientation of attack for the third fluorine is predicted as below:

(m+1 ) 6+0.5 (m+1 lot (m+1 ) a+0. 5 (m+1 ) 6
26+0.5 (m+1) 6 
26+0.5 (m+1) a

6 (m+1 ) +0 .5 (m+1 ) 6

2a+0 .5(m+1 )6

or attack C-7 > C-5 > C-6 > C-8 > C-3 > C-1

a+m6+0.5(6+ma)

ClCl
a+p+0 .5 (6+ma)

(m+1)6+0 .5(m+1)
order of attack:

C-4 = C-5 > C-3 = C- 6 > C- 8 = C-1 ,

a+6+0 .5(a+m6 ) 
26+0.5(m+1)6 

6+ma+O.5(a+m6)

C-3 = C- 6 > C-2 = C-7 > C-4 = C-5
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6 + m a + O . 5  { 6 + m a )  a + m 6 + 0 . 5 ( a + m P -  )

2 6 + 0 .  5  ( m + 1  )r 

a + 6 + 0 . 5 ( 6 + m a ) ^^^^^^_^^^^^a+B+0. 5  ( a + m 6 )  

( m + 1 ) 6 + 0 . 5 ( m + 1 ) 6

The order of attack is: C-7 > C-4 > C-3 > C-1 > C-6 > C-8 . So from this 

prediction of orientation the ease of formation of difluorohexachloronaphthalenes 

is in the order: 1 ,3-difluoro- ”= 1 ,6 -difluoro- = 2 ,7-difluoro- > 1 ,8 - 

difluorohexachloronaphthalene, and the ease of formation of trifluoropenta- 

chloron aphtha le ne s is in the order: 1,3,6 -trif luoro->l ,3,8-trif luoropenta- 

chloronaphthalene.

Orientation of attack for the fourth fluorine expected to be:

(1+m)6+0.5(1+m) 6 
a+6+0 .5 (m+1) arC

a+m6+0. 5 (m+1) a

F F

2a-+05(6+ma) a+6+0 .5 (m+1) a
F 26+0.5(m+l)6

(m+1 )a+0 .5 (6 +ma) 6+ma+O. 5 (m+1 ) a

2a+0 .5(a+m6) 
F

(m+1) a+0 .5 (a+m6 )

Therefore the order of attack is : ,

C- 8 > C-7 > C-5 > C-2 > C-4 and C-6 > C-7 > C-2 > C-5 > C-4

and the ease of formation of tetrafluorotetrachloronaphthalene is in the order:

1,3,6,8-tetrafluoro- > 1,3,6,7-tetrafluoro- > 1,3,7,8-tetrafluorotetrachloro-

naphthalene.

The similar prediction of orientation for formation of penta-, 

hexa- and hepta-fluoro isomers shows that the ease of formation of the
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pentaf luorotrichloronaphüialenes is in the order: 1 , 2 ,3 ,6 ,8 -pentaf luoro- '•

1 .2 .3.5.7-pentafluorotrichloronaphthalene, that of hexafluorodichloro- 

naphthalenes is 1 ,2 ,3,5,7,8-hexafluoro- >> 1 ,2 ,3,5,5,7-hexafluoro- >

1 .2 .3.4.5.7-hexafluorodichloronaphthalene and formation of heptafluoromono- 

chloronaphthalenes is in the order: a-chloroheptafluoro- > g-chlorohepta-

fluoronaphthalene. Results in the Tables 29 and 30 are in agreement with 

this prediction of orientation. Table 32 shows that the hexafluoro isomers 

are a mixture of three isomers in the ratios 1:14:1 (50% yield). The 

major components in this mixture could be 1,2,3,6,7,8-hexafluorodichloro- 

naphthalene, which was predicted to be the most preferential isomer among 

the hexafluoro- isomers. Table 32 also shows that heptafluoromonochloro- 

naphthalenes are a mixture of cx-chloroheptafluoronaphthalene (60%) and 

6 -chloroheptafluoronaphthalene (40%) which again is in agreement with the 

prediction of orientation. The formation of some isomers preferentially

in fluorodechlorination of octachloronaphthalene could be shown in 

Scheme (I).
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Scheme (I)

Sequential attack of octachloronaphthalene by fluoride ion

Cl Cl I Cl

F
Cl Cl Cl cr

Cl 1 Cl
F

Cl
F

- 1 .
F II F »
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20, Investigation of tlie Mechanism of the Reaction of Polychloroaromatic 
Compounds with Potassium Fluoride in Sulpholan in the Presence of 
tlie Crown Etliers

Aromatic nucleophilic substitution mechanisms was discussed before 

(page 17 ). Halogen displacement reaction could be represented as below:

slow+ Y ------- I

(XXXVII)

+ X

The first step is usually rate-determining in this reaction, since

fluorine has been known to be by far the best leaving group among the

halogens in the displacement reactions of activated halogeno-aromatic

compounds and so, the second step of the above mechanism cannot be involved

in the slow process. The effect of solvents on the displacement reactions

was discussed earlier in pages 39-40 . Fluoride ion in dipolar aprotic

solvents is a powerful nucleophile so that, SNAr fluoride-halogen exchange

are at least 1 0  ̂ times faster in dipolar aprotic solvents than in alcohols^^
95and dipolar aprotic solvents have been known to increase the rates of many

aromatic nucleophilic substitutions. These solvents facilitate the reactions

by solvation of the charged intermediate complex (XXXVII), but the original
97charged nucleophile is less solvated in these solvents , because it is 

easier for the large anions to be solvated by the aprotic solvents since 

aprotic solvents have much looser structures to hold the small ions than the 

protic solvents which have structures held together by hydrogen bonds, whether 

the intermediate complex (XXXVII) exists in all the reactions of polyhalogeno- 

aromatic compounds and is stable enough to permit its direct spectroscopic
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)

observations is not known. The presence of stable intermediates have been

observed in the activated nitrohalogenobenzenes (page 23). Liotta e^. al.

have shpwn that the displacement reaction of 2,4-dinitrochlorobenzene with

"naked" fluoride in acetonitrile occurs smoothly at room temperature

and at reflux temperature rapid exchange reaction occurs to give 1 0 0%

conversion to tire corresponding fluoride, while the same reaction of the

2,4-dinitrochlorobenzene with potassium fluoride in aprotic solvents without
54presence of crown ethers has been reported to give 77% yield after 50 minutes 

reaction at 140-150°C. Recent reaction of potassium fluoride with picryl 

fluoride in acetonitrile in the presence of 1B-crown-6 -ether has been reported 

to give a Meisenheimer-type intermediate complex (XXXVIII) which was 

sufficiently stable for direct n.m.r. observation;

F F

O^N NO

NO,

KF
crown ether

O^N \N0,
K

19.
(XXXVIII)

The ""̂ F n.m.r. spectroscopy on (XXXVIII) showed that the fluorine 

signal was shifted downfield (A6 = 54 p.p.m.) compared with that of picryl 

fluoride. In the present work, sym-trifluorotrichlorobenzene was reacted 

with potassium fluoride in sulpholan, in the presence of crown-ether. If 

a similar'intermediate complex existed there, the presence of structures 

such as (XXXIX) could have been observed by direct n.m.r. spectroscopy 

of the reaction mixture :

Cl
F

F

Cl

Cl
F

+ KF crown ethep 
sulpholan

XXXIX

K.
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Mo intermediate complex could be observed in this case and in fact the

reaction of fluoropentachlorobenzene, 2 ,3,5,6 -tetrachlorofluorobenzene,

or pentachlorotoluene with equal amount of crown-ethers (dicyclohexyl-18-

crown-6 -, and 18-crown-6-ethers) in the presence of an excess of potassium

fluoride showed that, the reaction of polychlorofluoro arenes with "naked"
85fluoride does not lead to the rapid displacement reaction reported for

the reaction of 2,4-dinitrochlorobenzene. "Naked" fluoride here may mainly

act as a base in aiding the polymerisation of the polychlorofluoro arenes

or starring materials, and only traces of fluorodechlorination products 
19were observed in F n.m.r. spectroscopy of the reaction mixtures.
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CHAPTER 3 
EXPERIMENTAL

21. Purification and Preparation of Reagents and Solvents

A. Purification

Anhydrous potassium fluoride used in all the reactions was commercial 

anhydrous material, dried at 140°C for three hours and ground in a hot 

mortar before use. Sulpholan, was commercial material, solid at room 

temperature and was redistilled when necessary (b.p. 140/15 mm). DMF and DMSO 

were commercial materials. Hexa-, penta- and the tetrachlorobenzenes were 

commercial materials, purified by recrystallisation from ethanol before use. 

All other starting materials.were prepared by literature methods (Section b )^

B . Preparation

(a) Fluoropentachlorobenzene and 2 ,3,5,6 -tetrachlorofluorobenzene

Fluoropentachlorobenzene (m.p. 138-9°) and 2,3,5,5-tetrachlorofluoro-
o 54 'benzene (m.p. 71.5-72.5 ) were prepared from pentachloro-, and 2,3,5,6-

tetrachloronitrobenzene respectively. The m.p. for both the products were
1 19in good agreement with the literature values. H and F n.m.r. 

spectroscopy were used for identification of the products:

Product 6
p.p.m.

6
p.p.m.

Coupling constant (Hz)

Fluoropentachloro­
benzene 105 singlet

2 ,3 ,5,6 -tetrachloro- 
fluorobenzene 7.5 103.7 F-H,2.5

(a) Downfield of T.M.S. as an internal reference.

(b) Upfield of CFClg as an internal reference
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(b) 2,3,4,5,6 -Pentachlorotoluene

2,3,4,5,6 -Pentachlorotoluene was prepared by the catalysed
98(AlCl^, S^Cl^) chlorination (SO^Cl^) of toluene Presence of some

condensation products of pentachlorotoluene (C.C1_-CH_-C^C1.-CH_) was5 5 2 6 4 3
identified in the proton n.m.r. spectra of the products:

Product 6
p.p.m.

group

2,3,4,5,6 -Pentachlorotoluene 2 .2 ^̂ ) -OÎ3

Pentachlorophenyl-tetrachloro-
tolyl methane 2.6 - ™ 2

(a)

(b)

Downfield of T.M.S. using CDCl^ as solvent.

Together with the -CH^ proton signals of the pentachlorophenyl-

tetrachlorotolyl methane.

Therefore many recrystallisations from benzene were needed to 

obtain pure material (m.p. 218-219°). The presence of five chlorine 

atoms in each molecule of the product was also identified by mass 

spectroscopy, which showed a molecular ion containing six peaks at: 

M/e = 262, 264, 266, 268, 270 and 272, in the relative amounts found 

(16:27:18:6:1:0.06).

99

(c) 2,3,4,5,6 -Pentachloroanisole

Pentachloroanisole was prepared by the reaction of sodium 

pentachlorophenoxide and dimethyl sulphate, using the method described 

for preparation of anisole (m.p. = 105°, lit. m.p. 108°).

n.m.r. spectroscopy showed a sharp singlet downfield of T.M.S 

at 3.93 p.p.m. referring to the presence of methoxy1-group.
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(d) Pentachlorophenyl p-toluenesulphonate was prepared by the

reaction of pentachlorophenol witli p-toluenesulphonyl chloride in pyridine,

the general method^^^ described for preparation of the esters of phenols.

The crude product was recrystallised from mixtures of ethanol and acetone 

and gave white needles melted at 150-152°.

Anal. calc- found

%C 37.09 37.00

%H 1 .66 1.60

(e) Tetrachlorophthaloyl chloride (unsym-)

Tetrachlorophthalic anhydride was treated with phosphorus

pentachloride at about 150° for 12 hours^^^'^^^^. After many recrystallisations 

from petroleum ether, white needles (m.p. 127-130°) were obtained (lit^^^m.p. 

sym-tetrachlorophthaloyl chloride 48°, unsym-tetrachlorophthaloyl chloride 

137°).

Anal- calc. found

%C 28.15 28.50

(f) 1,3-Dichloro-, and 1,3,5-trichloro-2-nitrosobenzenes 

Nitroso-compounds were prepared^^^ from oxidation of the

corresponding amines with mixtures of glacial .acetic acid and aqueous 

hydrogen peroxide in concentrated sulphuric acid.

1,3,5-Trichloro-2-nitrosobenzene (m.p. 140°, lit.^^^m.p. 145-146°)

Anal. calc. found

%C 34.20 35.0

%H 0.95 0.95

%N 6.65 6.67
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1,3-Dichloro-2-nitrosobenzene (m.p. = 170-172°, m.p. = 173-175°)

Anal. calc. found

%C 40.90 43.1

%H 1.70 1.70

%N 7.95 8.0

(g) Octachloronaphthalene

Naphthalene was reacted with chlorine in sulphury1 chloride, with 

powdered iron as the catalyst. G.l.c. analysis was used to estimate the 

purity of the sample. The purest compound obtained after several 

-recrystallisations from mixture of bezene and petroleum ether contained 

1% heptachloronaphthalene (m.p. 200°, lit^^^ m.p. 208, lit.^^^ m.p. 190-196°)

(h) 2-Chlorohepta.f luoronaphthalene

Octafluoronaphthalene gave heptafluoro-2-naphthylhydrazine on 

treatment with hydrazine hydrate in ethanol^^. This reacted with cupric

chloride in concentrated hydrochloric acid to give the corresponding
o 19chloride (m.p. 59-60 ). G.l.c. and F n.m.r. were used for the

52identification of the product (Table 33).

(i) Fluoroheptachloronaphthalenes

An attempt was made to prepare ô -, and _g-fluoroheptachloro-

n aphtha le ne from ô - and £-f luoronaphthalenes but neither prolonged

chlorination with chlorine in the presence of a catalyst (FeCl^) at

50-60°, nor chlorination with sulphury1 chloride in the presence of

S^Cl^ and AlCl^ gave satis factory results., In all cases presence of
1aromatic protons in the H n.m.r. spectra of the products showed that 

hydrogen had not been completely replaced by chlorine.
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22. Instrumentât!on

• 19A. F N.M.R.

The n.m.r. machine (Perkin-Elmer R12b ) was operated at 50 MHz for
1 19 1H nuclei and 56.4 I/IHz for F nuclei. H chemical shifts are to low

field of te trame thyIs ilane (TMS) the internal standard and reference, and

19F chemical shifts to upfield of trichlorofluoromethane, the internal or

in some cases, external reference. All the cliemical shifts are in p.p.m.
19from the named reference signal, and for F the shifts occurred within 

the range 6 = 99 to c^. 160 p.p.m. .

Analysis of the system was assisted by:

1. The splitting of the fluorine signals arising from the coupling 

of the fluorine atoms to both fluorine and hydrogen atoms.

2. Synthesis of authentic samples for comparison in some cases.

3. Comparing the chemical shifts with those calculated from the 

additivity calculus method^^.

4. The agreement between the relative ease of nucleophilic 

displacement and the derived values found from these fluorodechlorination 

studies.

B . Gas Chromatography (G.L.C.)

G.l.c. (Pye 104) analysis was the only method for measuring the 

amount of the unreacted polychloroarenes (starting materials). Methyl 

silicone (OV-1) and Apiezon L were used as liquid phase, but methyl 

silicone gum has been found to be more effective than the other phases.

Although differentiation between isomeric compounds in most cases was not 

possible by this analytical method, the relative amounts of total isomers of

mono-, di-, tri-, tetra-,..... . fIporochloroarenes found by n.m.r. and

g.l.c. were in good agreement. G.l.c. analysis of the components in each 

reaction was assisted by;

1. Comparison with other spectroscopic methods (n.m.r., mass spectroscopy).

2. Comparison with authentic samples in some cases.
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C. Tables

Table 33

19F N.m.r. and g.l.c. properties of 2-chloroheptafluoronapthalene

10F N.m.r.

Position of F 6 p.p.m. Coupling constant (Hz)

119.5

135.5

143.3

144.5

F i - P g  , 6 4

o, F-F ; 20 
m, F-F , 2.5

F 4 -F5 ' 56.5

Fi-Fg , 64

145.6 F4-F5 , 56.5

153 o, F-F ; 30

154 o, F-F y 33

G.l.c. analysis. Column OV-1. Temp. 150 C

Are ne retention time (min)

2-Chloroheptafluoronaphthalene 1.4
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Table 34

19F n.m.r. chemical shifts and coupling constants of fluorine 
containing products from the reaction of hexachlorobenzene with 
potassium fluoride in sulpholan at ca. 250°

Arene F atom Exp. Ô lit. 6 Coupling constants(Hz)

Fluoropentachlorobenzene 1 105.0 106<’=>

1,3-Difluoro-2,4,5,6- 1,3 109.0 109.1
tetrachlorobenzene

1,2-Difluoro-3,4,5,6- 1.2 130.5 130.9
tetrachlorobenzene

1,4-Difluoro-2,3,5,6- 1,4 110.8 1 1 1 ^1 (a)
tetrachlorobenzene

1,3,5-Trifluoro-2,4,6- 1,3,5 112.6 1 1 2 .5/^)
tri chlorobenzene

1,2,3-Trifluoro-4,5,6- 1,3 130.0 130.1 F.-Fg , 18.6
trichlorob enz e ne 2 155.5 155.3

1,2,4-Trifluoro-3,5,6- 1 136.0 135.8^*) F1-P2
^r*'4

, 18.6
trichlorobenzene 2

4
134.5
114.4

1 3 4 .2 (3^
114.3^^)

, 10

1,2,3,5-TetrafluorO|^^ 
4 ,6-dichlorobenzene

5 118.3 1 1 8 .4 (b) F,-F , 10
1,3 134.5 134.5(b) z 0

F1-F2 = F 2-F3 ' 18.5

• 2 160.5 160.60(b)
P3-F5
F2 -F1

= Fj-Fg , 
= F 3-F3 ,

2

18.6

C.H. Dungan and J.R. Van Wazer, Compilation of Reported ^^F n.m.r. 
Chemical Shifts, Wiley Interscience, N.Y. (1970)

Emsley, Feeney and Sutcliffe, Progress In Nuclear Resonance 
Spectroscopy, Vol. 7_, (1971)

Product from the reaction of fluoropentachlorobenzene with 
potassium fluoride (page 56).

(b)

(c)
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Table 35

19F N.m.r. chemical shifts of fluorine-containing products from 
the reaction of pentachlorobenzene and 2,3,5,6-tetrachlorofluoro­
benzene with potassium fluoride in sul|>holan

Arene F atom exp. 6 calc.6 (b) Coupling constant (Hz)

(A) 1 109.5 1 1 1 . 2 F-H , 9.6

(B) 1 1 1 0 . 0 109.0 F-H , 7.2

(C) 1 103.7 109.6 F-H , 2.4

(D) 1 133.9 135.7 pj-pj , 2 1 . 6 ; F^-Hg

2 132.2 133.5 7.8 ; Fi-Hg , 10

(E) (°) 1 113 1 1 1 . 2 F 1-F3 , 2 ; F.-H , 8 .
1 D

3 106.7 109.6 ^3-«6 / 2

(F) 1 135.5 133.5 F 1-P2 / 19 ; F^-H^ , 7

2 128.8 134 F 2-H5 / 2

(G) 2,4 1 1 2 . 6 109 F-H , 7.2

(H) 1/5 107.8 1 1 1 . 2 F-H , 9.6

(I) (") 1/5 110.4 1 1 1 . 2 F 1-F3 ' 2 , F 3-Hg ,

3 1 1 1 . 8 109.6 not resolved; F -H^ , 9.6 1 6

(N)( = ) 2,3 142 - F-F , 18.0 ; F-H , 6.0

(a)

(b)

(c)

(d)

(e)

Appendix I, page 110.

Ref. 46.

Same structure with the same coupling constant has been observed 
in n.m.r. spectrum of the mixture.

Reported^^, F^ = F^ at 110.3; F^ at 111.9 p.p.m.

Structure suggested by quartet in n.m.r. spectroscopy and also on 
the appearance of a peak with retention time of slightly greater 
than those of polyfluoro-2 ,4-dichlorobenzenes.
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Table 36
19F N.m.r. chemical shifts and coupling constants of components 
of reaction of 1,2,3,5-tetrachlorobenzene and 1,2,3,4-tetrachloro- 
benzene with potassium fluoride in sulpholan.

Arene _(b)exp. Ô 1 .. (c)calc.o Coupling constants (Hz)

(0) 106.1 1 1 1 . 8 F 1-H4 , 1 . 9 ;  F^-H^ , 8.2

(V) 106.0 109.6 F^-H^ , 1.4 ; F^-H^ , 4.2

(W) 107.2 111.2 F^-H^ , 4.2 ; F^-Hg , 7.8

' (P) 116.6^^^ 109.0 triplet ; F^-H^ , 6

(Q) 1 1 0 . 6 113.4 triplet ; F^-H^ , 8

(R) 109.7 ■ 108.8 quartet ; F^-H^ , 8 ; F^-H^ , 1

(S) 104.6 107.9 triplet ; F^-H^ / 6 ;
108.5 109.4 triplet ; F 3-H2 / 8

(T) 110 triplet ; F^-Hg = F^-H^, 8

(a)

(b)

(c)

(d)

Appendix II, page 112.

Using tetrachloromethane as solvent and trichlorofluoromethane 
as external reference.

Ref. 46
.105Authentic compound was prepared and gave the identical chemical 

shift.

Table 37
Retention times of the isomers oftrichlorobenzenes

Tr i ch lor ob e nz e ne Retention time (min)
Column : 
Temp.°C

Apiezon L 
120

1,2,3-Trichlorobenzene 20

1,2,4-Trichlorobenzene 15

1,3,5-Trichlorobenzene 13
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Table 3 8

Retention times of the components of reaction of 1,2,3,5-tetra- 
çhlorobenzene with potassium fluoride in sulpholan

Arene
Retention 

Column OV-1
time (min) 
OV-1 Apiezon L

Temp. °C 65 80 120

(R) 4 2 2.2

(S) 5.2 2.5 4.4

(T) 6.3 3 5.1

(Q) and (P) 17.2 7.9 16.4

(P) 22.4 9 16.4

1,2,3-Trichlorobenzene - - 18.5 (*)

1,2,3,5-Tetrachlorobenzene - 25.2 48.5
4-Fluorobiphenyl(b) - 35.6 48.5

Sulpholan - 7 10

(a)

(b)
Authentic compound Identical

Was used as a marker in the exchange reaction.

Table 39
Retention times of components of reaction of 1,2,3,4-tetrachloro­
benzene with potassium fluoride in sulpholan

Arene o .
Retention time (min) 
Column Temp. ~C
OV-1 90

(V) and (W)

1,2,3,4-Tetrachlorobenzene

6.8
21
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Table 40
19F N.m.r- chemical shifts and coupling constants of fluorine- 
containing products from the reaction of 2,3,4,5,6-pentachloro- 
tqluene with potassium fluoride in sulpholan

Arene ( a) F atom Exp.6 Calc.5 (b) Coupling constant (Hz)

2-Fluoro-3,4,5,5- 
te trachlorotoluene
(A)

110 1 1 1 .2 quartet F2~H^/ 2.5

3-Fluoro-2,4,5,5- 
tetrachlorotoluene
(B)

107 109 singlet; slightly broadened

4-Fluoro-2,3,5,6- 
tetrachlorotoluene
(C)

108.3 109.6 singlet

2 ,4-Difluorp-3,5,6- 
trichlorotoluene F, 
(E)

114 111.2
111.9 109.6

broad, not resolved 
sharp singlet

2 ,6-Difluoro-3,4,5- 
t r i ch 1 or o to lue ne 
(H)

112.1 . 111.2 broad, not resolved

3,5-Difluoro-2,4,6- 
trichlorotoluene 
(G)

111.3 111.2 singlet, slightly broadened

(a) Appendix I

(b) Ref. 46
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F N.m.r. chemical shifts and coupling constants of fluorine- 

containing products from reaction of octachloronaphthalene with 
potassium fluoride

Arene F atom 0 CFCl Couplingconstant (Hz)

1-Fluoroheptachloronaphthalene - 108.8

2-Fluoroheptachloronaphthalene - 102

2 , 7-Difluorohexachloronaphthalene - 102.8

1,8-Difluorohexachloronaphthalene - 109

1 , 3-Difluorohexachloronaphthalene ^3 102 

■ 111.8
V h  ' 1-5

1,5-Difluorohexachloronaphthalene ^6 101

111.0

F-F , 3.7

1,3,6-Trifluoropentachloro- 
naphthalene ^3 101 ■ Fj-Fg , 3.7

^6 107.9 h - ^ 6  ' 5
112.8

1,3,8-Trifluoropentachloro- 
naphthalene

^8

^3

105

105.5

104.9

not resolved

6-Fluoro-2H-hexachloro- 99 singletnaphthalene

4-Fluoro-lH-hexachloro-
naphthalene 109.5 F-H , 3

lit.^^^ 6 = 103 p.p.m.

(b) Reduction products. Presence of these reduction products has also 
been observed in the spectrum of the mixture.
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Table 12

Observed and calculated ̂ n.m.r. shifts of polychloro-
fluoronapthalenes formed during the reaction of octachloro- 
naphtlialene with potassium fluoride

Are ne F atom 6 CFCl2 obs. (5 calc.

1-Fluoroheptachloronaphthalene 108.8 112.45

2-Fluoroheptachloronaphthalene 102' 102.75

2,7-Difluorohexachloronaphthalene 2,7 102.8 100.75

1,8-Difluorohexachloronaphthalene 1/8 109 110.45

1,3-Difluorohexachloronaphthalene 1 111.8 108.45

3 102 98.75

1,5-Difluorohexachloronaphthalene 1 111.0 110.45

5 101 100.75

1,3,5-Trifluoropentachloro- 1 112.8 105.45
naphthalene 3 ' 101.0 95.75

5 107.9 98,75
1,3,8-Trifluoropentachloro- 1 105.5 105.45
naphthalene

3 ' 104.9 95.75

8 105.5 108.45

4-Fluoro-lH-hexachloronaphthalene 4 109.5 110.95

5-Fluoro-2H-hexachloronaphthalene 5 99 102.0

(a) Using octafluoronaphthalene (6 F^ = 145, Ô F^ = 155 p.p.m. . 107 ) as

standard and considering that in fluorobenzene, ô -F raises 5 by 25 p.p.m., 

m-F lowers ô by 4 p.p.m., p-F raises 6 by 5 p.p.m., o-Cl raises 5 by

1.8 p.p.m., mpCl raises 5 by 0 p.pm. and p-Cl raises 5 by 1.5 p.p.m.

The effect of second ring halogens on each ring, has been considered as 

half of the effect of its own halogens. Thus, 6 for 2-fluoroheptachloro 

naphthalene is :
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155 - 2 X 25 - 15.5 + 4 + 2 + 2 +  1 . 8 + 1 .8 + 1.65 = 102 .75 p.p.m. and

6 for 1-fluoroheptachloronaphthalene is :

146 — 2 5 — 6 — 1 5 . 5 + 4 + 2 +  2 +  1 .8+ 1.5 + 1.65 - 112 .45 p.p.m.

Table 43

Retention times of 'the components in the reaction of
pentachlorobenzene with potassium fluoride

(a)Arene Retention time (min)
Column OV-1 OV-1
Temp. °C 100 80

Trifluorodichlorobenzene (I) 1 2.3

Total difluorotrichlorobenzenes 3.2 7.8
(D) , (E) , (F) , (G) and (H) '
Total monofluorotetrachloro­ 9.9 24.4
benzenes
(A) , (B) and (C)

Pentachlorobenzene 27.5 —

(a) Appendix I
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Table 44

G.l.c. analysis on the products from the reaction of 
octachloronaphtlialene witli potassium fluoride in 
sulpholan at 220-225° for 5 hours

Are ne Retention time (min) 
Column Apiezon L 
Temp.°C 200

OV-1
150

Tetrachlorotetrafluoronaphthalenes 30 21

Tri chloropen tafluoronaphthalenes 21 9 - 9.e(^)

Dichlorohexafluoronaphthalenes 8 3.6 - 3.8/^)

Monochloroheptafluoronaph th ale nes 3 1 .4 (b)

Octafluoronaphthalene 1 0.5

(a)

(b)
Two peaks for each mixture of isomers

Authentic sample identical

Table 45
Mass spectroscopy on the products from the reaction of octachloro­
naphthalene with potassium fluoride in sulpholan at 220 - 225°C 
for 5 hours

Arene M/e (top peak) Ratios

Tetrachlorotetrafluoro- 
n aph th ale ne s

336-338-340-342-344 81:108:54:12:1

Trichloropen tafluoro- 
naphthalenes

320-322-324-326 27:27:9:1

Di chlorohexafluoro- 
naphthalenes

304-306-308 9:6:1

Monochloroheptaf luoro- 
naphthalenes

288-290 3:1

Octafluoronaphthalene 272
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Table 46 .

19F N.m.r. chemical shifts and retention times of the components 
from the reaction of octachloronaphthalene with potassium fluoride 
in sulpholan at 142 - 144° for 5 hours

Arene Retention time (min) 
G.L.C.(a)

0 CFCl^
19F N.M.R.

2-Fluoroheptachloronaphthalene 14.4 102.0

1-Fluoroheptachloronaphthalene 8 108.8

2,7-Difluorohexachloronaphthalene 4 102.8

Octachloronaphthalene 23.8 -

Using OV-1 Column at 240°C.

Table 47
19F N.m.r., g.l.c. and mass spectroscopy of products from the
reaction of octachloronaphthalene with potassium fluoride in
sulpholan at 255 - 250 for 5 hours

Arene G.l.c.^b) Mass spect- No. of (S CFCl Coupling
ret.time M/e F constant (Hz)
(min)

Octafluoro-  ̂ 1.6 272 145 o F-F , 17
naphthalene

^2 154 m F-F , 2.8
Monochlorohepta- 10 288-290 -
fluor©naphthalenes

Dichlorohexafluoro­ 304-306--308 -

naphthalenes

(a) Main product (57% yield)

(b) Apiezon L Column at 180°C
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23, General Method of Following the Course of the Reactions

A stirred mixture of the organic polychloroarene with anhydrous

dry potassium fluoride (molar ratios 0.1 : 1.0) in the aprotic solvents

(sulpholan or in some cases DMSO) were heated under reflux with the

exclusion of moisture at the temperatures indicated in each case

(Chapter 2) . Samples were talien from the boiling reaction mixtures and

were quenched in water. Organic compounds were usually extracted by

fluorotrichloromethane or in some cases, by other solvents like

tetrachloro-, or trichloromethane.' The compounds of these extracts were
19then characterised by F n.m.r. spectroscopy and g.l.c. In some cases

where the calculation of the composition of the reaction mixtures from 
19F n.m.r. integrals was not accurate (poor signal-to-noise ratios) , 

mass spectroscopy together with gas chromatography were used for the analysis 

of the mixtures. In some reactions 4-fluorobiphenyl has been used as a 

marker for calculation of the composition of the reaction mixtures.

24. Extraction of the Tars

In some exchange reactions considerable amount of tars were formed 

which were not soluble in chlorinated organic solvents, such as 

fluorotrichioromethane, chloroform, carbon tetrachloride, dichloromethane 

or in benzene and toluene. Reaction of 2,3,4,5,5-pentachlorotoluene 

or 1,2,3,5-tetrachlorobenzene with potassium fluoride in sulpholan gave 

a considerable amount of tarry materials. After the isolation of steam 

volatile products from these tars, the residues were Soxhlet extracted 

(using petroleum ether b.p. (60-80°)) and then purified by column 

chromatography (using alumina column) or by recrystallisation, without 

obtaining any pure products for identification.
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25. Reaction of Polychloro-arenes with Potassium Fluoride in 
Sulpholan in the Presence of Crown Ethers

The polychloroarene (2.5 q) with anhydrous dry potassium fluoride

(1.0 g) and 18-crown-6-ether (2.5 g) in sulpholan (10 ml) were stirred

and heated at about 200° (for 2,3,4,5,6-pentachlorotoluene, about 270°),
19Samples were taken at 30 and 60 minutes for direct F n.m.r. 

observation. The rest of the reaction mixtures were heated under reflux for 

one more hour, then quenched in water and extracted with trichlorofluoro- 

methane or tetrachloromethane and analysed as before.

26. Derivation of the Kinetic Form

In this section of the thesis, the basis for the complex kinetic 

form is established. Although the following derivation is not rigorous 

it indicates the way in which the more complicated kinetic equations 

are obtained.

If compound A^ with an initial concentration of C^^°^ reacts 

with an excess of B by a first order kinetic process, to give A^ , 

and this A^ is converted to A^ which in the third stage is transformed 

into A^. The specific first order rate constants for these reactions 

are, respectively, k^, k^ and k^.

The course of the reactions is shown in the scheme below:

^1 ^2 ^3
\     A ,  ---------- ^  A ^  ----------^  A 3  .

=0 h  S  S

(o)
o

where C , C,, and C_ are the concentrations at time (t,) and o 1 2 3 —
and C °̂̂  is the initial concentration of the starting material A . o o



For substance A0 c0
(0 )

l'’< xr .s-ul).‘d aiice s c:0
(n)

For substance ''2 c0
(0 )

For substance ^3 c0
(0 )

102 .

The concentration of any substance which has reacted by the time (t,) 

can be expressed by one of the following equations:

- = o  '

-‘o - h  '

- V h - S  ' 

- V S - S ’S  “ °

Assuming the rate at which each substance is consumed, to be proportional 

to its concentration, we can write the following set of equations:

d(C ‘°'-c )
° d V —  = S S "  :   '">

d(C -C -C )
° d t --°-  ■ = W    <2)

d(C *°hc -c -c )

dt

Where Z is a constant proportional to the concentration of B. As [b ] >> [A^], 

we can introduce the constant Z into the rate constants and after a few 

rearrangements we have: 

dC
- à -  = S S  '.........................................................................

dc
^  = S S - S S  .....

dC;
—  = S S - S S  .....

a s
"dl = K3C2-0   (8)
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Here. K^--K|Z , / K -K'Z.

If we replace flie unknown functions (-^) by their transforms (P) , the 

above equations will change to the following equations:

PC -PC = -K,C   (9) or: C =

K PCPC,= K,C -K,C,   (10) or: C, = 1 o" 1 ° 2 1 1 (p+K^)

PC2 = K^C^-KjC,   (11) or: C^ = ^K^pC,
(P+K ) (P+K^) (P+K^)

K K K rPC = K C -0   (12) or: C, = 1 2 3 o __________
(P+K^) (P+K^) (P+K^)

( o )(The initial concentration of substance A is C , while the initialo o
concentrations of each of the other substances is %ero).

We shall next use formulas 4,5,6 and 7 in Appendix (III). To 

replace the transforms of the unknown function C^, and by their

originals :
C = c e'Kt   (13)o o

s  = ............

(Kj-Kj) ̂ K^-Kj) ® ' ] ' ,......

C = c fl ____________   g-Kit _  S S ______  -K t
3 o (K^-K^) (K^-K^) (K^-K^) (K^-K^)

 —   e V ]    (16)
(K,-K3)(K2-K3)



104.

The concentration of the last substance / can also be determined 

by another method, as the difference between the initial concentration

of the initial substance and the sum total of all the concentrations of
,

all substances participating in the reaction;

(o)c_ = C (C + c + C :3 o o 1 z (17)

Reaction of pentachlorobenzene with potassium fluoride:

If we show- all the necessary steps in the reaction of pentachloro­

benzene with potassium fluoride in the Scheme II, where the pseudo first- 

order rate constants are distinguished by superscripts which, reading from 

left to right, indicate the order in which fluoride ions are introduced 

into pentachlorobenzene (H = 1).

4-F

3-F

2-F

2,4,5 - F,

Scheme (II)

Therefore, the formation of 1,2-difluoro-3,4,5-trichlorobenzene
3 2(2,3 - Fg) is controlled by two rate constants ; K ' is associated

with attack upon the 2,4,5,6-tetrachlorofluorobenzene (3-F), and K2,3

with attack upon the 2,3,4,5-tetrachlorobenzene (2-F). If a is the rate
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constant for the consumption of the pentachlorobenzene, so the 

concentration of the pentachlorobenzene at time (t,) according to 

the equation (9) is :

[C C1,H] =6 5 ' t --------- ---
p + a

[CeCljHJt = [CgClgHlo 
1 2  3 4Taking a , a , a and a as the rates of consumption of starting materials 

and the monofluorinated isomers'then;

= 2 k ^+ 2K^ + k '*

a" = K?'] + x2,4 +

a^ = K3'4 + :

a i  = K^'2 + k ^'3

and the instantaneous concentration of the mono-fluorinated isomers 

according to the equation (10) becomes:

p[ 4-F] ^ = K‘‘ [CgCl^H]^ -  a^[4-P ]^

P[3-F]j, = K^[CgCl^H]|. - a^[3-F]^

P[2-F]^_ = K^[CgCl^H]^ - a^[2-F]^

[4-P]^ =t r 4 ,[P + a J

[3-f ]^ =
[P + a^]

[2-F]^ = K^LCgCl^H]^

[P + a^]
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Then,

t4-Fl. = K 
c  i —(p+a ) (p+a )

[3 -F ] =
^ 1 3(p+a ) (p+a )

[2-F] = ^
^ 1 2  (p+a ) (p+a )

and according to the equation (14)

.  - a h  e
~4 1

“—a -  a

- a h

1 4a - a

or:
K
1 4 L 6 5 ■'oa - a

similarly:

[3-F] K'
1 3 *■ 6 5 -'oa - a

and:

[2-F]t = K
1 2 L 6 5 -"oa - a

and the instantaneous concentrations of the difluoro-isomers according to 

the equations (10), (11) and (12) are:

p [2,4-F2]^ = K^'^[4-F]^ + K^'^[2-F]^ - [2 ,4-^] ̂

p[3,4-F2]^ = K^'^[4-F]^ + K^''’[3-P]^
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or:

or:

' = K^'^t3-F]^ + k^'^[2-f]^

Pt2,G-F2]|. = K^'®[2-Fjj. - k“  ̂1 2 ,6-^] ̂

r2,4-F,l = + «''"[2-^Jt

[3,4-f 2 ] ^ =

[S.S-Fg]^

[2,3-F2]^ = ! Î : ! l î ! k l £ l [ î î l
p

[2,6-f 2], =

[2,4-F2]^ = K ' K p[CgCl^H]^ ^ ,̂2,4 ^2
.2,4,6, , , 1,, , 4,(p+K ) (p+a ) (P+a ) (p+K^’̂ 'h (p+ai (p+ai

[3,4-Fj. = K^'VjiCCgCljH]^ K^'hhrCgCljH]^
1 4  4- 1 3

2$(p+a ) (p+a ) ^(p+a ) (p+a )

r3 , 5 - F j .  = K ^ - h h l C e C i s H ] ^
1 3  f$(p+a ) (p+a )

[2,3-F,], = K ^ ' V ^ f C s C y ] ^ .  k^ytCgClsH] ̂
1 3 '*' 1 2^(p+a ) (p+a ) ^(p+a ) (p+a )



and finally:

[2,6-P2]^ = K"'Vp[CgCl^H]

After replacement of the transforms we have:

[2,4-F2]^ = [CgCl^H]^ K ^ ' V
-ait - a h

( a h a i  (a^-a^) (K^'^'ha^)

(al-K2'4'6)(a4_K2'4,6)
2 4 ? + [C^CIH] K ' K 

5 5 o

- a h

( a h a i ^ ' ^ . S y ,

2-a t

(a^-ai)(K^'^'®-a^) (a’- K ^ ' ^ ' h t a h K + ^ ' h

^ 2 h  I 1 4

- a h - a h ~

- - 1, 4 1a a a (a  —a )
4 1 4\

a (a  - a  )

+ [C-C1_H]
5 5 o

- a h -a^t
1 3  1 , 3  1, 3 ,  1 3,a a a (a - a  ) a (a  - a  )

1, 3 nr
1 e-a t

1 3  1 , 3  1, 3 ,  1 3,
a a a (a - a  ) a (a - a  )

[2,3-F2]^ = [ y h ^ h
- a h - a h

1 3  1 , 3  1, 3 ,  1 3,
a a a (a - a  ) a (a  - a  )

+ [C Cl h ]
5 5 o

- a h

1 2  1 , 2  1, 2 , .
a a a (a - a  ) a (a  -
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and :

[2,6-F2]^
- a h - a h

(al-K2'G'4,(a2_K2'G'i

Similarly the instantaneous concentration of the components in all 

other'fluorodechlorination processes, can be calculated by using similar 

equations because, in all the processes, the concentration of potassium 

fluoride is more than that of arylchloride, i.e. [KF] >> [ArCl].
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Fluorotetrachlorobenzenes (X=H) or toluenes (X=Me)

110.

1Cl!
:ici
Ici

(A)

Cl
2,3,4,5-Tetrachloro- 
fluorobenzene (X-H)

Clr" <^C1 (B)

2,3,4,6-Tetrachloro- 
fluorobenzene (X=H)

(C)

2,3,5,6-Te trachloro- 
fluorobenzene (X=H)

Difluorotrichloro- and dichlorotrifluorobenzeneS(X=H) or toluenes (X=Me)

F

Cl

(D)

1.2-Difluoro-3,4,5-trichloro-
(2,3-F -4,5,5-trichlorobenzene;X=H
2.3-f J

Clf
X

Cl

(F)
Cl

Cl (E)

1,3-Difluoro-2,4,5-trichloro- 
(2,4-F -3,5,5-trichlorobenzene; X=H 
2,4-F2)

Cl
X

F

Cl
F

(G)

Cl

1,2-Difluoro-3,4,5-trichloro- 
(3,4-F2-2,5,5-trichloro-,
4,5-F -2,3,5-trichlorobenzene,X=H 
3,4-F^)

Cl
Cl

(II)

Cl

2 .4-Difluoro-l,3,5-trichloro-'
(3,5-F -2,4,5-trichlorobenzene; X=H
3.5-FbT

Cl
F

Cl

(I)

1.5-Difluoro-2,3,4-trichloro-
(2,5-F -3,4,5-trichlorobenzene; X=H
2 .5-F 1

1.3.5-Trifluoro-2,4-dichloro- 
(2,4,5-F--3,5-dichlorobenzene; X=H
2.4.5-F^T

X
Cl

Cl
Cl

(J)

1,4-01fluoro-2,3,5-trichlorobenzene (X=H)
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111

ClI.
(K)

Cl

F

F

(L)
Cl

1 ,2 ,3-Trifluoro-4,5-dichloro- 
benzene (X=H)

F
-^F
Cl

(M)

Cl

1,2,4-Trifluoro-3,5-dichloro- 
benzene (X=H)

1,2,5-Trifluoro-3,4-dichlorobenzene (X=H) 
Cl

(N)

Cl

2,3,-Difluoro-l,4-dichlorobenzene (X=H)
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Appendix II

Cl
Cl
Cl (O)

2,3,5rTrichlorofluorobenzene

Cl Cl

Cl

(P)

2,4,6-Trichlorofluorobenzene

CIT ^  Cl 
Cl

(Q)

3,4,5-Trichlorofluorobenzene

Cl
Cl
F

(R)

1,3- Difluoro-2,5-dichlorobenzene

(S)
Cl

Cl

1,3-Difluoro-4,5-dichlorobenzene

Cl Cl
(T)

3,5-D;Lchlorof luorobenzene

F

Cl
F
Cl (U)

1,2-Difluoro-3,5,-dichlorobenzene

(V)

2,3,6-Trichlorofluorobenzene
Cl

Cl
Cl (W)

2,3,4-Trichlorofluorobenzene

Cl (X). Cl
1

F (Y)
F Cl

1,3-Difluoro-2,4,-dichloro- 
benzene

2,3-Difluoro-1,4-dichloro­
benzene

(Z)
Cl

Cl

1,2-Difluoro-3,4- 
dichlorobenzene
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Appendix III (a)

Table of Transforms and Originals

No. Transforms Originals

p±a ±a ±a
1 ■ ±ate

p±a
±at

(p+a^)(p+a^)

1 ' 21 - a t ,  1 - a t
2 1 ®  1 2 ® .  a -a a -a

1 2  3(p+a ) (p+a ) (p+a ) , 2 1. , 3 1.(a -a ) (a -a ) , 1 2, , 3 2 '(a -a ) (a -a )

- a \
, 1 3, , 2 3,(a —a ) (a -a )

1 2  3(p+a ) (p+a ) (p+a )
- a h

ah^a^ a h a h a ^ X a W )

1 - a h - a h
2 , 1  2, , 3 2,a (a -a ) (a -a ) 3, 1 3. , 2 3̂a (a -a ) (a -a )

(a)
N.M. Rodiguin and E.N. Rodiguina, Consecutive Chemical Reactions, 
Mathematical Analysis and Development, (1954), pages 125, 126.
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