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ABSTRACT

The technique of dispersive Fourier transform spectroscopy (DFTS) 
permits the direct measurement of phase spectra, and thus removes a major 
limitation of conventional spectroscopy where the phase, which is required 
to determine the dielectric response, must he derived from a Kramers-Kronig 
analysis of the measured power reflectivity. DFTS studies between 300K and 
lOOK using interferometers equipped with dielectric beam dividers have 
recently been reported, but the performance of such instruments at frequencies 
less than about 30 cm ^ is seriously impaired by interference effects in 
the dividers.

The acquisition of accurate data from this region is extremely 
important when investigating phase transitions in ferroelectric crystals 
such as KHgPO^ (KDP), characterised by a ’soft* mode whose frequency

0. The development of polarising interferometers employing wire grid 
beam dividers has made low frequency dispersive studies feasible, although 
such measurements have been previously made only at ambient temperature.

In the present work a dispersive polarising interferometer has been 
constructed. The instrument has a working range of 20 - 235 cm ^ when used 
with a Golay detector and this can be extended to ~ 2 cm ^ by using a liquid 
helium cooled Ge bolometer. The sample temperature may be held to ±0.1K 
anywhere between 9OK and 300K. Consequently the interferometer permits low 
frequency temperature dependent DFTS studies of solids for the first time, 
simultaneously overcoming all the aforementioned problems.

The performance of the instrument was evaluated by measuring the 
complex reflectivity of Csl and CsBr at lOOK and 300K. The results agree 
well with published data.

The complex reflectivity of KDP was measured from 300K down towards



the ferroelectric transition at 122K, The resultant *c* axis dielectric 
functions were analysed in terms of the coupled mode formalism adopted 
hy previous workers, whose work is briefly reviewed. The results are 
supplemented by transmission measurements performed with a conventional 
power interferometer on thin KDP crystals, whose *c* axis spectra were 
found to exhibit a temperature dependent transmission window. Complex 
reflectivity spectra of antiferroelectric NHĵ Ĥ POĵ  (ADP) are also presented,

The results illustrate the advantages to be obtained by using 
dispersive Fourier transform spectroscopy when accurate vadues of the 
complex dielectric response are required.
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CHAPTER 1 

INTRODUCTION

The science of spectroscopy has its origins in the experiments of Sir 
Isaac Newton who produced an array of the colours of the rainbow on a screen 
by refracting sunlight with a glass prism. Nowadays spectroscopy is performed 
throughout the electromagnetic spectrum from radiowaves through to y-rays 
and is an extremely important tool of the physicist.

Spectroscopy has proved invaluable in gaining an insight into the 
lattice dynamics of materials and provides information on many of their 
important physical properties, including the specific heat and the thermal 
and electrical conductivities. The foundations of the rigorous theory of 
lattice vibrations and the calculation of the possible modes of vibration of 
atomic lattices were laid at the beginning of this century by Born and
Von Karman^^\ Their work followed earlier theories by Einstein^^^ and

(3) . . .Debye and in their simplest model of a linear chain of equidistantly
spaced atcms of identical mass the interatomic force constant and the atomic
mass determine a maximum frequency that may be propagated through the chain.

13This frequency is of the order of 10 Hz and thus lies in the infrared 
region of the spectrum. Hence even the simple linear chain model indicates 
the importance of IR experimental studies to obtain information on lattice 
dynamics.

However, until about 1950, the infrared region of the spectrum, and 
in particular the extreme infrared, was one of the most inaccessible to the 
spectroscopist due to the severe technical difficulties encountered when 
attempting measurements in this region. All this began to change with 
developments in IR sources and detectors, improvements in IR grating 
spectroscopy and later, the development of Fourier transform spectroscopy.



a technique which became feasible with the advent of the computer age. In 
future years, the tunable laser, which is at present under intense develop
ment, might prove to be the most powerful technique available for IR 
measurements, superceding the majority, if not all, of the techniques in 
present-day use.

Fourier transform spectroscopy (hereafter abbreviated to FTS) using 
Michelson-type interferometers, has been used to measure the IR power 
spectra of numerous solids, liquids and gases during the last decade and 
has become an extremely popular and valuable technique in the study of the 
vibrational properties of materials. Conventional power FTS does, however, 
have one particular disadvantage, a disadvantage suffered also by grating 
spectroscopy. Phase spectra, required to calculate the optical constants 
and the related dielectric functions, are not measured directly but must be 
constructed from a Kramers-Kronig (KK) mathematical analysis of the measured 
power spectra. Such an analysis is inevitably an approximate procedure 
when applied to the truncated spectral range covered in any FTS experiment.

The construction of phase spectra by KK analysis has proved successful 
in some experiments where data has been available from a wide spectral 
range by combining results obtained using FT and grating spectrometers. 
However, the method is inadequate for studies where accurate phase values 
are required over a restricted spectral range, particularly at frequencies 
near the truncation. An important example of such studies is the 
investigation of the phase transition in ferroelectric materials where 
temperature dependent changes in the optical constant and dielectric 
function values must be monitored via small changes, often ^ 1^, in the 
measured phase spectra.

Recent years have seen the development of a major new technique in 
the field of FTS, a technique known as dispersive Fourier transform
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spectroscopy (DFTS). The principal difference between this and conventional 
"power" FTS is that the sample under investigation is introduced into the 
optical path in one arm of the interferometer. This enables the complex 
reflectivity or transmissivity, that is both the amplitude and phase spectra, 
to be measured. The optical constants can then be determined from the 
measured phase spectra, thus avoiding the need for a KK analysis.

The technique of DFTS has been used by a number of workers to make 
ambient temperature measurements of solids, liquids and gases. The pioneering 
workers include Ball^^\ Genzel (see for example Gast et al^^^) and 
Chamberlain^Later measurements have been performed by Birch et al^^^

/ o \
and Gauss et al . Measurements below ambient temperature introduce 
further difficulties which have however been overcome by Parker et al^^ 
who have performed DFTS studies down to 90K using an interferometer equipped 
with a dielectric beam divider. These additional problems were largely 
solved by use of an experimental technique termed the division of the field 
of view. This technique and the problems it solves are discussed in 
Chapter U of this thesis.

For many studies in solid state physics the ability to make measurements 
over a wide temperature range is important. In addition it is often 
extremely important to obtain data from the low frequency end of the far 
IR spectrum. This is particularly true for many ferroelectric materials 
since much of the information required to explain the mechanism of the phase 
transition, from paraelectric to ferroelectric, lies in this spectral region. 
However, the performance below 'v 30 cm of interferometers equipped with 
dielectric beam dividers is seriously impaired by interference effects in 
the dividers. The effects lead to a strongly frequency-dependent trans
missivity, rising from zero at zero frequency to a maximum and falling to 
zero again at a frequency inversely proportional to the beam divider thickness.
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To overcome these difficulties Martin^devised a polarising 
interferometer employing wire grid beam dividers with a constant trans
missivity up to a frequency inversely proportional to the grid spacing.
The author has built a polarising interferometer for far IR reflection 
studies which employs two wire grid beam dividers in a configuration similar
to that developed by Chamberlain^ The instrument has a working range of 

-120 - 235 cm when used with a Golay detector and this can be extended to 
“12 cm by using a liquid helium cooled Ge bolometer.

The design of the instrument permits measurements to be performed at 
any temperature between 90K and 300K, Thus the interferometer allows low 
frequency temperature dependent DFTS studies of solids to be made for the 
first time. Descriptions of the polarising interferometer and the severe 
technical problems involved in its construction are presented in Chapter %.

Initial measurements made with the polarising interferometer were 
of the complex reflectivity spectra of the alkali halides CsBr and Csl.
These materials were chosen partly because the reststrahlen band of each 
lies comfortably within the working range of the instrument and partly 
because their reflection spectra are comparatively well known from power 
measurements.

The main subject of study was the ferroelectric KHgPO^ (KDP) which
has been investigated previously by a number of workers using Raman
scattering techniques, grating spectroscopy and power FTS. The transition
in KDP is characterised by a soft mode whose frequency -► 0. Thus, use
of a polarising interferometer is highly desirable when DFTS studies of
KDP are being considered in order that the mode may be tracked into the

_ 1low frequency region below ~ 30 cm , as the temperature is lowered towards 
the transition. Previous work on KDP, both experimental and theoretical, 
is reviewed in Chapter 5*
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The complex reflectivity spectrum of the KDP ferroelectric 'c* axis 
•was measured from 300K dovm towards the transition temperature at 123K,
The ensuing dielectric functions exhibit the expected soft mode behaviour 
and were analysed in terms of the coupled mode formalism of Barker and 
Hopfield^^^^. These results are presented, discussed and compared to those 
obtained by other workers in Chapter 6. Room tenperature measurements of 
the complex reflectivity spectra of the 'a* axis of KDP and both axes of 
antiferroelectric NH^H^PO^ (ADP) are also presented.

The KDP results obtained with the polarising interferometer were 
supplemented by power transmission and reflection studies of KDP. These 
measurements were made from 300K do'wn to below the transition temperature 
using a conventional interferometer with a mylar beam divider. The trans
mission measurements were made on thin crystals of KDP, the *c’ axis of 
which was found to exhibit a temperature dependent transmission window.
This enabled a check to be made, in the region of the spectral window, on 
the accuracy of the phase values which were obtained directly using the 
polarising interferometer. These power FTS studies are described and the 
results presented and discussed in Chapter 7.
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CHAPTER 2
THE THEORY OF FOURIER TRANSFORM SPECTROSCOPY

2.1 INTRODUCTION

The aim of this chapter is to give a brief description of the method 
of FTS. Following a few general comments on the technique, an outline of 
the theory involved is presented. The concepts of resolution, resolving 
power, étendue, apodisation, aliasing and the Fellgett and Jacquinot advantages, 
amongst others, are introduced and defined. The chapter is concluded with 
a discussion of the advanced technique of DFTS.

Throughout the chapter comparisons are made with the theory of a 
grating spectrometer to clarify certain points and to illustrate the 
advantages and disadvantages of the FTS method.

Much of the theoretical detail is omitted for the sake of brevity
but can readily be found in various books, in particular an excellent

970 
(16)

review of FTS by Bell and the Proceedings of the 1970 International
Conference on Fourier Spectroscopy at Aspen, Colorado

In describing the theory of FTS it is necessary from time to time to 
mention certain details of the apparatus used. The discussions in this 
chapter consequently assume an elementary knowledge of the Michelson 
interferometer, a knowledge which may be obtained from a vast number of 
sources including the majority of text books on optics.

The chief reason for the sudden rise of FTS to the front line of 
solid state experimental research lies with one of the basic procedures 
the method involves. The output from the optical instrument, in general a 
Michelson-type interferometer or one of its variants, is obtained in the 
form of an interferogram, a plot of recorded signal versus optical path 
difference, the path difference being related to the relative displacement
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of the two mirrors in the two arms of the interferometer. This interferogram 
must undergo a point-hy-point mathematical Fourier transformation to obtain 
the required spectral information. The task of performing this FT procedure 
by hand calculation was far too daunting a prospect to make FTS a viable 
proposition, until the advent of computers. Now, advances in program 
development and in particular the Fast Fourier transform algorithm, have 
turned this once mammoth task into a computational procedure which can be 
performed in a fraction of a second.

In conventional "power" FTS the role of the Michelson is similar to 
that of the IR grating spectrometer in that it defines a throughput spectrum 
P(v), the intensity of IR radiation as a function of frequency. The profile 
of this power spectrum, which essentially dictates the pass-band of the 
instrument, is fixed by features in the instrumental design, the use of 
filters and the mode of operation of the recording electronics. Some of 
these factors which define the spectral profile are undesirable but are, 
unfortunately, in many cases unavoidable.

The throughput radiation from the Michelson is caused to be incident 
upon the sample under investigation and the output optics arranged so as 
to obtain either the power reflection or the power transmission spectrum 
by FT of the resulting interferogram. The phase spectrum is then obtained 
from the experimental power spectrum by use of a Kramers-Kronig (KK) 
mathematical analysis, the essential equations of which are presented in 
section 3.7. Information on the optical constants and the related dielectric 
parameters is then obtained using the Fresnel equations which are derived in 
section 3.%.



15

2.2 THE BASIC INTEGRAL FOR POWER FTS

On displacement of the moving mirror in one arm of the Michelson, 
each wavelength present produces its own characteristic interferogram. For 
a monochromatic source the flux of the combined radiation from the two arms 
is a cosine variation, a well-known FT result.

For a polychromatic source the interferogram is the sum of the fluxes 
of the patterns produced by each wavelength. The method of Fourier analysis 
unscrambles this interferogram to obtain the pattern for each frequency, 
and hence determines the magnitude of the flux at that frequency, the Fourier 
coefficient. Thus a record of signal versus frequency, ie a spectrum, is 
obtained.

The two coherent waves in the two arms of the interferometer, each a 
continuous distribution of frequencies, which have the same amplitude g(v) 
at wave number v and which are separated by a phase difference 2 ï ïv x  where 
X is the optical path difference between the two waves, can be expressed as

E^(z) = g(v) exp[2iTivz] dv
(2.1)

g(v) exp[2niu(z+x)] dv

where z is the parameter defining position in the interferometer arms.

Providing the response of the system to a disturbance is linear, the 
principle of Linear Superposition can be applied to define the resultant 
field of the recombined waves in terms of the amplitude g(v).

Horrever, it is not the amplitude of the field but its intensity which 
is required in order to obtain an expression for the power spectrum. To 
derive such an expression an assumption must be made before we can justify 
applying the principle of Linear Superposition to the beam intensities.

We must assume that all wave packets in the beams are identical and
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that they are both closely and randomly spaced in time, ie there is no 
phase relation between the fluxes of different frequencies at a given path 
difference from a polychromatic source.

We can then derive the basic equation of power FTS giving the intensity 
of the interferogram l(x) in terms of the power spectrum P(v) (Bell )

l(x) = I P(v) cos2ttvx dv (2.2)
o

where x is the path difference between the two arms of the interferometer 

and V is the wavenumber.

By use of the Fourier transform integral theorem we can invert (2.2) 
to obtain its Fourier "pair", an expression for the power spectrum

P(v) = I(x) c o s 2 itvx dx . (2.3)
o

2.3 FUNDAMENTAL DEFINITIONS OF FTS

(a) Resolution
We may obtain a simple expression for the resolution of the Michelson 

by considering the particular case of

P(v) = P^6(v - v^) (2.%)

ie a Dirac 6 function or in physical terms, a purely monochromatic line. 
Thus

l(x) = Py6(v - v^) cos2wvxdv = P^cos2ïïv̂ x . (2.5)
o

Now the mechanical limitations of the Michelson apparatus impose a 
restriction on the interferogram I(x). It is obviously impossible to 
record the interferogram to infinity and in practice we are restricted to 
a maximum displacement 0 x^. Owing to unavoidable asymmetry, double
sided interferograms are usually recorded and hence we are forced to
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truncate the integral within the limits ±L where L = Hence the
recovered spectrum is given by

: v )  =  j  p ^ <P(v) = I P^cos2ttv̂ x cos2irvxdx
-L

= P Lc [sin2ïï(v+v )L sin2ïï(v“V^)L “1 
27r(v+v^)L 2tt(v“V^)l j ’ (2.6)

The first term is very small compared to the second, thus we can consider 
P(v) as a sine function which has zeros when

2u(v-v )L = ±iT or v»v ± . (2.7)
O O cLi

Therefore we recover the 6 function as a peak with full width

Av = ^  (2.8)

We may take (2.8) as a measure of the resolution of the interferometer. 
There can, however, be no fixed definition of the resolution of a Michelson, 
for a number of different viewpoints may be considered including the effect 
of apodisation, a discussion of which is left until section 2.3(c), However, 
in all cases the general result is obtained that the resolution is inversely 
proportional to the maximum path difference.

For the case of (2.6) one possible definition is obtained from the 
width of the sine function at half its peak value, commonly termed the half
width. Fig 2.1 illustrates the function sine z' versus z’ and from this it 
can be determined that the intensity drops to half its peak value at z* = 
±0.607tt. Hence the full half-width is l,21w and so, for z* = 2ïï(v~v^)L, 
we obtain the resolution

iv = . (2.9)

Another possible definition follows from the so-called Rayleigh 
criterion which defines the resolution in terms of the separation of two
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lines of equal intensity. If we consider that each of the recovered lines 
is given by (2.6) then we can show (Bell^^ chapter 6)

" 2L * (2.10)

As (2.9) and (2,10) differ by only 20%, the simpler expression of 
(2.10) will be used as a definition for the resolution for an unapodized 
interferogram in the derivation of further spectroscopic quantities.

The resolving power of an interferometer can be very large; eg relative
mirror displacements of ̂  2 metres have been obtained in practice leading

-1to resolutions 0.0025 cm

(b) The Fellgett and Jacquinot Advantages

The potentially large resolving power of the interferometer may be 
practically realised as a consequence of two important properties of the 
instrument, the Fellgett and Jacquinot advantages.

The Fellgett (or Multiplex) advantage can be stated in the following 
way. Suppose we observe a spectrum of N elements in a time T, each spectral 
increment being equal to the resolution. With a grating spectrometer each 
element will be observed for a time T/N as it lies within the exit slit 
of the instrument. The signal-to-noise ratio in the observed spectrum 
will be proportional to the square root of the observation time, ie (T/N)-. 
However, with an interferometer each element is observed all the time during 
a scan so that the signal-to-noise will be proportional to T^. Thus the 
interferometric system is superior by the factor which is generally 
considerable, N being typically of the order of 100 or more.

Fig .2.2 shows an equivalent optical diagram of a Michelson inter
ferometer where the two arms containing the mirrors have been superimposed 
and off-axis rays are included. This diagram is an aid to the understanding 
of the following discussion.
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Prior to describing the Jacquinot or throughput advantage (étendue) 
we must define the maximum aperture we may use with a Michelson, This is 
a consequence of the well-known circular fringe pattern produced when the 
mirrors in the two aims, as illustrated in the equivalent diagram of 
Fig 2.2, are parallel. The rings shrink as the path difference (x) is
increased causing the intensity at any point to vary sinusoidally from a
maximum to a minimum. The aperture must therefore be limited to include 
only the central fringe in order that the interferogram exhibit a variation 
of intensity with x. Hence we set the aperture to the size of the central 
fringe spot at maximum path difference x = X.

Fig 2.2 shows an oblique ray incident on and reflected from the fixed 
and movable mirrors, at an angle a to the optic axis. The optical path 
difference (a ) for this oblique ray is given by

A = (2d/cosa) - 2d tanasinot = 2d cosa (2.11)

where d is the mirror separation. However, the measured "there and back" 
optical path difference for a ray on the optic axis is x = 2d; thus we may 
write

. A = X cosa . (2.12)

Modifying (2.2) to take account of the off-axis rays in the interferometer 
we write

1(A) = P(v) c o s2ttvA dv . (2.13)
o

Therefore integrating over the solid angle Q subtended by the source

l(x.Q) = i P(v) [cos(2uvxcosa)] dS2dv . (2.lU)
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The size of the central fringe is governed by the term in (2.1%)

cos(2irvxcosa) = c o s 2 ttvx for small a . (2.15)

The phase difference between the central ray (a = 0) and the first 
intensity minimum is so the first minimum is given by

2 ttvx “  v x  * (2.l6)

The solid angle subtended from the centre to the first intensity
minimum, the size of the central fringe, is therefore

“ = ’'“n “ ^  • (2.17)

Thus the maximum aperture which is dictated by the size of the 
central fringe and which occurs for x = L, the maximum path difference and

A further limiting factor arises from the integration of (2.1%). By
use of the small angle expression cosa = (l - a^/2), setting Q = va^ and 
using trigonometric identities, evaluation of (2.1%) yields

I(x,Q) = P(v) sine
o

O v x
c o s ( 2 ttvx[ 1  -  ] ~ ] ) d v  . ( 2 . 1 9 )

The interferogram is now modulated by a sine function which has its 
first zero at

Pttn = . (2.20)

On progressing beyond the first zero of the sine function the phase 
of the fringes is reversed and energy is removed not added to the spectrum 
as X is increased. From these considerations, the maximum usable aperture 
is therefore

»e ■
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The aperture is a limit imposed by the modulating sine function
and not that of (2.18) which was dictated by the size of the central fringe
spot. For correct interferometry the smaller of the two apertures must be
employed. Since < Q , it is that is taken to define the maximumm e  m
usable aperture for the interferometer.

The étendue for a particular optical system is a constant which 
determines the amount of light that can be transmitted by the system or 
the "throughput". It is defined as

E = AQ (2.22)

where A is the area of the collimator and 0 is the solid angle subtended by 
the source.

The Jacquinot advantage states that we may consider the flux through
put at any point in a lossless optical system for, in such a system, the 
brightness of an object is equal to the brightness of an image. We may 
now compare the étendues of a Michelson and a grating spectrometer.

From (2.10) the resolution of a Michelson was defined as 

dv = i  .

We now define the resolving power as

E = ^  . (2.23)

Thus, from (2.10) and (2.18) the maximum solid angle aperture of the 
Michelson is given by

"m = T  • (2.21»)

Therefore the étendue of the Michelson

• (2.25)
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In the case of the grating spectrometer the throughput power is 
limited by the entrance slit. The grating solid angle is

Gg = (2.26)

where f is the focal length of the collimator, w the width and Z the length 
of the slit.

The resolving power of a grating spectrometer can be expressed in 
terms of the angle increment d0 through which the grating must be rotated 
to move a spectral increment dv across the exit slit. With reference to

(p 21)

d@ = 5? thus R„ = tane . (2.27)
c l  Ü W

Therefore
Eg = AgCg = J  ^2tane . (2.28)

G
For maximum efficiency 0 is chosen near the blaze angle 0^ and for 

0g typically 30°, we have 2tanQ v 1.

Hence we obtain

SQ ~ ?  5: • (2.29)G
Assuming A^ A^, and that the focal length of the collimators and 

the resolving powers of the Michelson and the grating instrument are the 
same, a justifiable assumption, then

ËL " 2% Y  . (2.30)
G

Even in the best grating spectrometer, Z/f does not exceed 1/30 thus 
the étendue of the Michelson is nearly 200 times better than that of the 
grating spectrometer, a factor attributable to the cylindrical symmetry of 
the interferometer.



23

It is important that the design of the interferometer allows the 
detector to accept the whole available solid angle from the instrument to 
make the best use of this throughput advantage,

(c) Instrumental Line Shape and Apodization

The effect of truncating the interferogram as defined by (2.2) and 
(2.3), within the limits ±L has already been demonstrated for the case of a 
purely monochromatic line of frequency v^. From (2.6) the recovered spectrum 
is of the form

sin2-iï(v-v )L
g.Tv--v;-)L°-- • (2.31)

that is, we obtain a sine function as an approximation to the monochromatic 
beam. From (2.31) we define the Instrumental Line Shape (ILS) or spectral 
window as

W(v) = L sine { 2ïï(v-v^)L } . (2.32)

Besides a central peak of finite width which we can tolerate as an 
approximation to the monochromatic line within the resolution limits imposed 
by the truncation, the sine function also possesses sharp sidelobes or 
"feet" (see Fig 2.1). These undesirable features are symmetrically placed 
either side of the central peak and in practice they could be mistaken for 
real spectral features. This situation is improved by a mathematical 
procedure known as "apodization" from the Greek word apodal meaning 
"removal of the feet".

The feet arise from the sharp cut-off at x = ±L and the process of 
apodization arranges for the interferogram to be smoothly and progressively 
reduced to zero at these points. In consequence a greatly improved spectral 
profile is obtained though a sacrifice of some of the resolution accompanies 
the procedure.
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The apodization process can of course he applied to the Case of a 
polychromatic source which can he considered as a linear superposition of 
Dirac 6 functions or monochromatic lines.

The apodizing function f(x) is introduced into (2.3) to give the 
computed apodized spectrum

P(v) = I f(x) l(x) cos2ïïvxdx (2.33)
-L

a closer approximation to the true spectrum than the unapodized
fL

P(v) = l(x) cos2ïïvxdx . (2.3%)
-L

In order that both positive and negative x values may be scanned the 
chosen f(x) should be an even function. In addition, to avoid phase errors 
for the two-sided interferograms the peak of f(x) should fall at the 
experimental origin, the position of zero path difference.

Three widely used apodizing functions are

f(x) = 1 - |x|/L

f(x) = 1 - ( x / L ) 2  (2.35)

f(x) = c o s i t x / 2 L

As an example let us apply apodization in the form of the "triangular"
function f(x) = 1 - |x|/L to the case of the monochromatic line. Thus 
using (2.6)

pL

P(v) = I Pq 1 - |x|/L
-L

c o s 2 ttv X cos2ïïvxdx o
(2.36)

L
1 - |x|/L c o s 2 tt( v - v  )xdx ,

o
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where we have dropped the cos2Tr(v+v^)x term as its contribution to the 
integral is very small.

Hence
P

p(v) = -~
1  ~  c o s 2 tt( v “ V ^ ) x  

[2tt(v-v̂ )]̂

2and by use of the identity cos20 = 1 - 2sin 0 we obtain
2, sin n(v-v_)L

P(v) = p i  --------
[ïï(v-v̂ )L]̂

ie P(v) = Pq ̂  sinc^ {7r(v-v̂ )L } . (2.37)

This result is illustrated in Fig 2 . 1  along with the unapodized 
spectrum given by ( 2 . 3 1 ) ,  The effect of the apodization can easily be seen. 
The sidelobes are greatly reduced in height and the negative intensity 
values disappear. The width has s]ightly increased, hence the resolution 
has been slightly degraded but not seriously. The resultant apodized 
spectrum is now a spectroscopically acceptable approximation to the pure 
monochromatic line.

(d) Discrete Sampling and the Phenomenon of Aliasing

In a real experiment the problem arises of how to record the inter- 
ferogram in a form that can be fed into the computer for Fourier analysis.
In practice the interferogram is sampled at equal intervals of path 
difference Ax. This is often achieved as in our case by mounting the 
movable mirror on a micrometer which is moved in discrete steps of length 
x' = Ax/2 thus giving a "there and back" path difference increment of Ax 
in the arm of the interferometer.

One benefit of adopting this procedure is that use msy be made of 
the Fast Fourier "Cooley Tukey" algorithm in the Fourier analysis, which
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greatly reduces the computation time, for this method requires the data to 
he recorded in equal increments.

The sampled interferogram Ig(x) obtained in this way is not the 
continuous interferogram I^(x) as given by (2.2), for the integration has 
now been replaced by a summation. The two interferograms are related by

Ig(x) = L Ü  (^) (2.38)

where I j I  (— ) is the Shah "Comb" function defined mathematically in terms 
of the Dirac 5 function

III (x) = % 6(x-n) (2.39)
n  =  -00

where n is an integer.

Therefore in (2.38) the Shah function allows for Ig(x) to have only 
those values for which x = 0, ±Ax, ±2Ax ... .

The effect of discrete sampling on the final computed spectrum can be 
deduced using the convenient property of the Shah function that it is its 
own Fourier transform. That is

FT { L l J (ax) } = LiJ (v/a) . (2.U0)
|a|

This follows from the definition of the Dirac 6 function and a change of 
variable relation.

And from (2.2) and (2,3)

Pg(v) = FT{lg(x)}
(2,1(1)

P^(v) = FT{i^(x )} ,

Use must now be made of the convolution theorem which states that
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if h(x) = |f(y)g(x-^)dy = f(x)*g(x), ie the convolution of f(x) and g(x)

then H(K) = F(K)G(K) where H(K) = FT{h(x)} etc.

Hence from (2.38)

Pg(v) = FT{ LiJ (^)l * Pc(v) . (2.42)

and using (2.Uo) one may write

P g ( v )  = Ax I i I (vAx) * Pçj(̂ )

leading to
FT{lg(x)} = Pg(v) = I P (v - nA'v) (2.^3)

n= -«>

where A'v = l/Ax and the definitions of the Shah function, the convolution 
integral and the Dirac 6 function were employed. Note that A*v is not the 
same as the resolution Av discussed previously.

The complete spectrum P^(v) is then obtained for v = nA'v for all n, 
leading to duplicate spectra starting at nA’v, Overlapping or aliasing of 
these spectra may occur depending on the magnitude of A’v. This aliasing 
must be avoided by separating the repeated spectra in order to determine 
the true spectrum. Fig 2.3 shows a spectrum where the problem of aliasing 
arises, A double-sided continuous interferogram Ij,(x) gives both positive 
and negative frequency values for P^(v) which thus extends from to
+v^^, a width of 2Vj^, In Fig 2.3(a) the full lines represent the positive 
spectra and the dashed lines the negative spectra as computed from a sampled 
interferogram. Fig 2.3(b) shows the resultant spectrum which would thus be 
computed, the sum of the components of (a). The negative mirrored spectrum 
from to zero is ordinarily ignored leaving the required positive
spectrum from zero to v^^^. But of course, as illustrated by Fig 2,3, the 
separation of repeated spectra can only be assured by setting
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*’'■ 2. 2Vjiax
(2.UU)

or Ax < l/2Vj^

The stepping increment x ’ = Ax/2 must therefore he chosen carefully 
to avoid aliasing. As the true spectral information is restricted to the 
range 0 ■> we define the cut-off or aliasing frequency

^ = '’max “ i k  = • (2-^5)

The micrometer of the polarising interferometer was rotated using a
stepping motor with a maximum of 200 steps per revolution, equivalent to
0,5 mm of micrometer travel. Thus the smallest stepping increment was

- -12.5 ym corresponding to a cut-off frequency K = 1000 cm .

2,k DISPERSIVE FOURIER TPANSFORM SPECTROSCOPY

The technique of DFTS, where the phase spectrum is measured directly 
hy placing the sample in one arm of the interferometer, was developed to 
remove some of the limitations that arose in conventional power FTS. There, 
the phase must he constructed from the power reflectivity P(v) using the 
Kramers-Kr5nig (KK) analysis which is, in practice, an approximation 
procedure, for the experimental data is generally incomplete since it is 
recorded over a restricted spectral range. Details of the KK procedure 
are given in chapter 3. In this section, the basic integral for DFTS is 
derived and shown to be valid also for the power FTS case.

First we must again assume that the law of superposition holds and 
also that the electric fields are real functions. In addition we now 
attribute different reflectivities to the two reflectors in the two arms of
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the interferometer.

The essential expression for the electric field as a function of 
position z is

E(z) = I g(v) exp[27rivz]dv . (2.U6)
i — 00

Here we are concerned with electric field amplitudes and the corresponding 
reflectivity is the complex reflection coefficient defined as

p(v) = |p(v)| exp i*(v) (2.U7)

where |p(v)| is the modulus or amplitude and <J>(v) the phase. For a plane 
mirror, for example, |p(v)| = 1 and *(v) = w, thus p(v) = exp iir = -1.

The power reflectivity or reflectance, the ratio of reflected to 
incident power is given hy

R(v) = p(v)p*(v) (2.U8)

where the * denotes the complex conjugate.

The field from the sample arm is

E^(z) = f p(v)g(v) exp(2irivz)dv (2.U9)
} —oa

and from the moving mirror arm

Egfz) = [ exp (ill) g(v) exp(2iriv[z+x] )dv (2.50)

where x is the path difference "between the two arms and p(v) the true 
complex reflection coefficient of the sample.

Invoking the principle of linear superposition the resultant recombined 
amplitude is

gĵ (x,v) = g(v) [p(v) + exp i(2wvx+n)] , (2.51)



30

and the resulting flux

P(x,v) = g^(x,v) g*(x,v)

= g^(v)(l+R(v)+|p(v) I [exp i(2Trvx+Tr-(J)(v))+exp“i(2'irvx+ir-(j)(v))] }
(2.52)

Hence the interferogram

(«» ^
g^(v)(l+R(v) + 2|p(v) lcos[2ïïvx+ir-(|>(v)] }dv (2,53)

— 00

The information on the spectrum is, however, provided hy the varying part of 
the interference function ie the cosine term, the other terms merely contributing 
to a charge in the overall level. Thus essentially

l(x) = 2 I |p(v)| g^(v) cos[2nvx+n-*(v)] dv . (2.5%)
J -<x>

Now multiplying both sides by exp(-2ïïiv’x), expressing the cosine as a sum 
of complex exponentials and integrating we obtain

#co .00

exp(-2iriv*x) l(x)dv = |p(v)|g (v){ (exp i[2Tr(v-v* )x+7r-(j>(v)]
■ ■00 ■ «̂00  ̂•■■CO

+ exp-i[2v(v+v*)x+n-#(v)])dx } dv , (2.55)

Using the integral result

f exp (iKx) dx = 2it6(K)
J —<0

where ô(K) is the Dirac delta function defined such that

I ô(x-a) f(x) dx = f(a)
J -*.00

and ignoring the negative wave number part of the solution and any multiplying 
constants we obtain the result
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1p ( v ' )  | g ^ ( v ' ) e x p  i [ TT- ( | >( v ’ ) ]  = I(x) exp(-2ïïiv*x)dx . (2.56)

2since P(v) = g (v) is the spectrum, (2.56) yields the basic complex Fourier 
transform integral for FTS

-P(v) p*(v) = f I(x) exp[-2Trivx] dx . (2.57)
J ̂-00

Hence for the case where a sample replaces one of the interferometer mirrors 
we require the complex FT (2.57) and not the cosine FT (2.3). The complex 
FT yields p(v)P(v) rather than just P(v) where p(v) is the complex reflection 
coefficient of the sample.

For conventional power FTS where the sample is placed in the recombined 
beams and the interferometer contains perfect mirrors in each of the two 
arms, we have p(v) = -1. Thus (2.57), the complex transform, may be used 
for this case as well as for the dispersive case. Even if the two mirrors 
are not perfect, this factor cancels when ratioing results obtained with 
the sample in against those with the sample out.

Returning to the dispersive situation described by (2.57), P(v) is 
easily obtained by replacing the sample with a perfect plane mirror

[ |p(v)| = 1, p(v) = exp iir = -1 ] .

Hence

P(v) = f ^(^)mirror exp[-2ïïivx]dx . (2.58)

Ratioing this with the complex FT of the sample interferogram gives

p*(v) = |p(v)jexp -i<|>(v)  ------ " . (2.59)
FT{I(x )ĵ ĵ Or }

Thus both the amplitude p(v) and the phase <{)(v) reflection spectra are
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obtained by direct measurement. The optical constants [n and k] and the 
related dielectric functions [e* and e"] may then be calculated using the 
Fresnel relations which are derived in the following chapter.

Besides providing a direct measurement of #(v) another advantage of
DFTS is that extremely small values of power reflection or transmission 
may be determined on squaring the measured ac^litudes. For example, a 
measured transmission amplitude of \% yields a power transmission of 0.01#, 
a figure beyond the limits of a power FTS experiment.

2.5 PHASE ERRORS DUE TO MISMATCHING OF RATIOED INTERFEROGRAMS

It has been shown that to obtain the phase spectrum 4>(v) in DFTS we
may ratio the interferogram obtained with the sample in the fixed arm against 
that obtained with the mirror in the same arm. To avoid phase errors it is 
important that the reflecting plane of the sample coincides exactly with 
that of the mirror it replaces and that the recording of the two interferograms 
commences at the same point. This is to ensure that the experimental origins 
coincide, A technique for achieving this exact replacement experimentally 
will be discussed later in chapter %.

We will now consider the effect on the measured phase spectrum of a 
mismatch of the two interferograms.

For the sample, using (2.57)

-P(v) p*(v) = f Is^ l e(x ) exp[-2ïïivx]dx . (2.60)
J —00

Suppose the mirror interferogram is mismatched at every step by a 
distance 6 ; ie the experimental origin of the interferogram is displaced 
a distance 6 from that of the sample interferogram. We can express the 
mirror spectrum as

B(v) = I exp[-2nivx]dx . (2.6l)
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On ratioing we obtained

p'»(v) = p*(v) (2.62)

and not the required p*(v) as for (2.59).

However, use of the Shift rule for Fourier transforms gives

B(v) = exp[-2TTiv0] | Gxp[-27rivx]dx . (2.63)

Thus
E(v) = exp[-27riv6] . P(v) (2.6%)

and
p'*(v) = exp[2niv6] p*(v)

= |p(v)| exp - i[(|)(v) - 2wv5] . (2.65)

Thus the true phase spectrum is shifted by a factor which is linear 
in wave number v.

If, for example, we mismatch by one sampling step, ie 6 = Ax, then 
the phase error is

A<1> =  2 ttvAx  .  ( 2 . 6 6 )

At the cut-off or aliasing frequency v = K = (see 2.%5),

the phase error A^ = n

Hence a one sampling step mismatch between the ratioed interferograms 
leads to a phase error of w at the cut-off or aliasing frequency.
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CHAPTER 3
DIELECTRIC AND OPTICAL THEORY OF CRYSTALS

3.1 INTRODUCTION

With a view to providing a hackground for the discussion and interpretation 
of experimental results,the relevant elements of the dielectric and optical 
theory of crystals are presented in this chapter.

It is inevitable that such an outline will commence with a statement
of Maxwell’s fundamental equations giving a description of an electromagnetic 
field. With these as a basis, the electromagnetic theory of reflection and 
refraction is considered leading to a derivation of the Fresnel equations,
relating reflected and refracted energy to incident energy.

Then via dispersion theory the oscillator model equation for the 
dielectric constants e' and e” is developed and certain other aspects of 
the theory are thereby deduced.

The chapter is concluded with a section on linear response theory and 
Kramers-Krbnig analysis. It has already been indicated that knowledge of 
this procedure is required in order to obtain optical constant data from 
conventional power FTS measurements.

The theoretical details presented in this chapter were obtained from
( it)a number of sources which included books by Born and Wolf , B o m  and 

Huang^^^\ Turrell^^^^ and Nudelman and Mitra (eds)^^^^.

As most of the time available was spent making measurements on the 
ferroelectric KDP and the anti-ferroelectric ADP and fitting theoretical 
models to these results, a discussion of the theory of ferroelectricity and 
crystals such as KDP merits a chapter of its ovm. Hence, chapter 5 has 
been devoted to this topic.



37

3.2 ELECTROMAGNETIC BASIS

An electromagnetic field in a dielectric medium is described by four 
vector quantities, the electric field jB, the magnetic field H, the electric 
displacement D and the magnetic induction B̂. The macroscopic electromagnetic 
properties of the medium are then determined by Maxwell’s equations which 
take the general foim

V • D = p (3.1)

V ” B = 0 (3.2)

7 X H = i  + D (3.3)

V X E = -B ' (3.U)

where p is the charge density in the medium and i  is the current density 
given by Ohm’s law

i  = oE (3.5)

a being the electrical conductivity which is zero for a non-conducting 
dielectric medium.

It is convenient to introduce an additional variable, the polarization 
jP which represents the electric dipole moment per unit volume defined by 
the relation

D = e E + P (3.6)—  o —  —

where is the permittivity of a vacuum.

For an isotropic medium D, ̂  and P are parallel and for small fields
2  is proportional to D, Thus we write

D = eE (3.7)
P

where e = +-;r (3.8)

and e/Eg is the dielectric constant or relative permittivity of the medium.
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Rewriting (3.8) gives
p = E(e - ê ) , (3,9)

We now define the electric susceptibility or polarizability x by 
the equation

£  = . (3.10)

Hence
X = ^  - 1 (3.11)

o
which is usually split into electronic and atcmic contributions. For an 
isotropic crystal

f  = Xelec + Xion <3-^2)o

where x^^g^ due to distortion of the electron distribution by the electric 
field, and x^^^ arises from ionic displacements during lattice vibrations.
At frequencies which are high compared to molecular and ionic vibrational 
frequencies a high-frequency or optical dielectric constant may be defined as

^  ^ * Xelec • (3.13)o
At lower frequencies is essentially constant and the variation of e is 

due to the x^Q^ iu (3.12).

Considering the magnetic properties of the medium, H is defined by

y H = B - y M (3.1%)Or- —  No
where M is the magnetic polarization for unit volume. Similar considerations 
as those used for the electric properties lead to

pH = B (3.15)

where y/y^ is the relative permeability of the medium.

Furthermore, for a homogeneous electrically neutral medium there is
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no net charge, ie p = 0, We may thus rewrite equations (3.1) to (3.%) as

V o D = eV • E = 0 (3.16)

V » H = 0 (3.17)

V X H = aE + + 2  (3.18)

V X E = -yi . ' (3.19)

By taking the curl of (3.19) and using (3.18) we obtain the differential 
equation for the electric field in a homogeneous, neutral medium, as

“ yeE + yoE • (3.20)

The final term in (3.20) essentially describes the damping of the 
field by the medium. For a non-conducting, lossless, dielectric medium the 
conductivity a = 0. However, for real crystals losses are present, ie radiation 
is absorbed by the medium, in the infrared region of the spectrum and hence 
a cannot be set equal to zero. This requires both the refractive index and 
the dielectric constant of the medium to be complex.

3.3 GENER.AL CONSIDERATIONS AND DEFINITIONS

Plane wave solutions of (3.20) are of the form

2  = exp i[K»r - wt] (3.21)

where K is the propagation constant and is in general complex for a lossy
medium; ie K = B + ia.

Taking the simple example of a wave travelling in the positive z 
direction, ie

E = Eg exp i[Kz - wt] (3.21b)

then substitution into (3.20) which now has the form



ko

l-I = ye o .  + yg ||. (3.22)
9z^ 9t^ ^

yields
= w2p(e + — ) . (3.23)

This corresponds to the situation for non-conducting media (a = O) 
where the dielectric constant is real if a complex dielectric constant ê 
is introduced as

Ê =  e  +  - ^  .  ( 3 . 2 h )

Hence
K = (jji/yF = w/v , (3.25)

where v = (yê)  ̂is the complex phase velocity at which 2  is propagated 
in the medium.

Following from the general definition of refractive index we may 
introduce a complex refractive index

N = f ^  . (3.26)

Thus
N(w) = [e + ir ]V o

= n + ik (3.27)

where n and k are the optical constants of the absorbing medium, n is the 
real refractive index and k/n is known as the extinction coefficient or 
attenuation index.

Now the magnetic equivalent of (3.11) is

= y/p^ - 1 (3.28)

where is the magnetic susceptibility which is zero in our case for we 
are not concerned with magnetic phenomena.
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Therefore (3.28) gives y = y^. Using this result and equating real 
and imaginary parts of (3.2T)

= e/e^ , (3.29)
and

2nk = a/e^w. (3.30)

From (3.2%) and (3.27) ve may write

ê = E^[n + ik]^ = E* + ie” (3.31)

leading to
e'/e^ = - kf (3.32)

= 2nk . (3.33)

Henceforth the symbol e  will be used to designate the complex 
dielectric constant given by

af(w) . ^  ' (3.3k)

and not the real part of the dielectric constant as in (3.2%).

A relative refractive index for two media 1 and 2 may be defined as

^21 = S; = ^  -  = / i ;  • (3.35)

The effect of absorption due to the medium through which the wave 
propagates can be determined by substitution of (3.26) and (3.27) into the 
equation for the plane wave (3.21).

Consequently,
kü)E = E exp — c exp iw[n/C K\r - wt] (3.36)

where K is the unit vector in the direction of propagation.

This represents a plane wave with velocity C/n which is exponentially
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damped by the term

exp(- ̂  K=r).

The power flux I is proportional to the square of the modulus of the complex 
amplitude, hence

E°E*I
—O

= e x p | ^ ^ K . r ^  (3.37)

or
1 = 1 ^  exp -a(K»r) (3.38)

which is usually referred to as Lambert’s Law,

a = S&L = (3.39)

is the power absorption coefficient per unit length within the medium,
X being the wavelength in vacuum.

3.% REFLECTION AND REFRACTION OF RADIATION - THE FRESNEL RELATIONS

Now consider the case of a plane wave as given by (3.21) incident 
onto a plane boundary separating two media 1 and 2, with medium 2 more 
dense, ie kg > k^.

The situation is illustrated in Fig 3.1 where the relevant E and H 
vectors, the propagation vectors n^ and the required angles are drawn. The 
problem is treated in two separate cases for ̂  perpendicular and E^ 
parallel to the plane of incidence.

The boundary plane is designated by

n 0 r = 0 . (3.%0)
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The wave vectors are:

For the incident wave K = K n-o 0-0

4  = ^1-1

4  =

For the reflected wave K_ = K_n_ (3.%l)

where K. is given hy (3.23).1
To relate the 2  and H vectors, assume they are of the form given hy 

(3.21h) and substitute into (3.19), one of Maxwell's equations.

Therefore
92II X —  » -yH = iwyH (3.%2)

or
{ iK(n̂  X E^) - ituyĤ  } exp i[Kz - wt] = 0

ie = ^ ( n x E ^ )  . (3.U3)

Since E »n x E = 0,—o —  —o '
then E • H = 0 .  (3.%%)-no —o

Therefore E^ and are mutually perpendicular and both are perpendicular 
to n, the propagation direction. These three vectors form a positive right- 
handed triad.

We may now write the wave equations as:

Incident plane wave E^ = E^ exp i[K^ n̂ »jp - wt]

H. =  n X E.
(3.k5)

wy^ -o —1

Reflected wave (assume plane)

E = 2i exp i[K^ n^»r - wt]

H = n. X E-T wy^ —1 —T

(3.%6)
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Transmitted wave (assume plane)

® Eg exp ng«r - o)t]

4 = ojpg -2 x ^
(3.kT)

The boundary conditions of the problem demand that the tangential 
components of 2  ®nd 2  be continuous across the boundary plane n̂*r_ = 0, 
Consequently the arguments of the exponentials in the three cases are 
identical and this condition requires that the frequencies be the same for 
the three waves. We may rewrite the boundary condition using the expression

n X (n X r) = n(n»r) - r(n»n) . (3.%8)

The first term on the right-hand side is zero at the boundary and (ii*n_) = 1. 
Thus

-r = 2 *  (n * = n X h (3.%9)

where h = ri x must lie in the boundary plane.

Substitution for ̂  in (3.%5) (3.%7) and using the boundary condition
yields

• (n X h) = * (n X h) = Kg ° (a x h) (3.50)

or (Kg % n) ' h = (K^ x n) • h = Kg • (n x h) (3.51)

Hence (K - IL ) x n. • h = 0 (3.52)

(Ki - Kg) X n . h = 0 . (3.53)

As the plane of incidence is defined by K and n then K_ and K_ alsoJ. o —  —d. —g
lie in this plane, a statement of the Coplanar Law.

Furthermore, from Fig 3.1

|KgXn| = Kĵ sinê ; |K̂ xn| = K^sinO^; |j x̂n| = KgSin8g .

(3.5k)
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So using (3.52)

sin0^ = sinO^ (3.55)

and K^sine^ = KgSinGg ; (3.56)

respectively, the law of Reflection and Snell's law of Refraction.
For 2  and 2  to be continuous across the boundary

n X (E^+2i) = n Eg (3.57)

emd n x  (H^+H^) = n x Hg (3.58)

or rewriting (3.58) using (3.%3)

E  X (£0  ̂So * S-l “ &  * (Sg * Sg) • (3-59)

Expanding, we have typically

n X (n X E ) = n (n*E ) - E (u°n ) . (3.6o)—  —o —o —o  o ~*o —  —c

We now resolve E^ into components perpendicular and parallel to the 
plane of incidence and treat the two cases independently.

CASE 1 ; E^ perpendicular (_£_) to the plane of incidence

Consequently we have

n«E = n «E = n'E^ = n°E_ = 0 (3.6l)-- cy_ -o cy_ —  lj_ —  2j_

for in this case E , E, and E_ are parallel.OJL 1_L 2jL

Now n * n  =  COS0 ; n ° n ^  =  cos(ir-O-) = -cos0_; n « n _  = cos0^ , ( 3 . 6 2 )
 o 0 ----------1 1 1 ----------2 2 ’

so from (3.57) and (3.5%) and putting = yg as before,

E + = E„ (3.63)Oi IjL 2j.

and [ - E (n«n^) - E, (n'n^)] = - Eg^(n»ng) Kg (3.6k)
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Thus
Kp

cosOo “ \j_ c°s8i “ cosQg k ' (3.65)

so solving (3.63) and (3.65) for and E^^.

The reflected wave is given by

K, COS0 - cos0_
®lj_ " cosG^ + Kg cos0g ° ̂ oj_ (3.66)

and the transmitted wave is given by

K _ ( c o s 0  +  C O S 0T )

E o .  =  A - r -9  ^  . ( 3 . 6 7 )2j_ K^cos0^ + KgCOS0g

CASE 2 ; E^ parallel ( 1| ) to the plane of incidence •

As 2  and 2  are perpendicular, then for this case, the 2  vectors are 
perpendicular to the plane of incidence, and also n^«E^ = 0 since E^ is 
transverse.

K,
From (3.%3) H =  n x E

Thus
“TD —o -o

" 4  ° fSo^So'So^ -

and hence
w y ,

E.II = - -r^(cL X H_ ) . (3.68)
- o  OjL

Similarly
w y ,  o)yp

E, II = - - ^ ( n , x H ,  ): Ê i, = --=r^(n„xH ). (3.69)Kl '-1 Ij:' = 2II K, “2_l'

Typically, 
K
„ ^ £ x Ê ||) = -nx(n^xH^J = - n^(n=H^^) + H^Jn-n^)

= COS0^ , (3.TO)
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since n»H^^ = 0, and so from (3.57)

t V ° " ® 0  ■ h  ° V ° ® ® 2  %  (3-Tl)

and using (3.58)

• (3-72)

Solving (3.71) and (3.72) for and Hg^, and putting = Pg, gives
for the reflected wave

K_cos@_ - K_cos8^TT s - - V - ■ -*• ^ TT /Q 'T̂ \
1_L KgCOsO^ + K^cosGg oĵ

and the transmitted wave is given hy
K (cos0 + COS0.)

®2X ° KgCosB^ + K^cosGg ®ox ' (3.7k)

Using (3.35)9 the Law of Reflection (3.55) and Snell’s Law of Refraction
(3.56)9 the complex refractive index

Kp sinO.
®12 = = ilSS; (3-75)

and we may rewrite (3.66), (3.67), (3.73) and (3.7%) as

sin(0^-0g)
'ijL ** sin(8^+0g) Q̂j_ (3.76)

2sin0^cos0.
V  = -s-n â i ^  V

tanfG^-Gg)V  “  V  (^-^8)

2sin20.
2̂_l “ sin20^+sin20g ôj_ ' (3.79)

The equations (3.78) and (3.79) for the 2  vectors may he expressed in terms
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of the E vectors remembering from (3.%3) that

E, i i  I =  ~  Ie, J  ( 3 . 8 0 )‘ill I - kT  i"ij

giving
tan(0.-0 )

®i|| = tlETë-Rp- :o|| (3-8:)

2sinOpCos0^
Enll =  ITlTrT 7 -: ^ " -.- V . ( 3 . 8 2 )'2II “ sin(8^+Gg)co8(8^-8g)

The four equations for the 2  vectors form the well-known Fresnel
relations, derived in slightly less general form by Fresnel in 1823, on
the basis of his elastic theory of light.

For normal incidence, 0^ = 0 and consequently 0g = 0 and so the
Fresnel relations reduce to

N.p - 1V  ■  -  V  < 3 - « '

‘ H I  ■  ' o i l  " • » «
' H I  ■  ' o i l  • l 3 - » «

The distinction between perpendicular components now disappears and the 
concept of a plane of incidence becomes inapplicable.
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3.5 REFLECTION AT NORMAL M D  OBLIQUE INCIDENCE

The reflecting power R^ is defined to he the ratio of the reflected 
to the incident energy for normal incidence. Thus, from (3.83) and (3.85) 
we have

E. «E» E, ir E*|;R = d. _ :|l : |l _ n_i
° J,2 “ J,2 “ N+1 “ H«+l (3.87)

ox o|

and with N = n + ik,
(n-1)^ + k^

For regions of the spectrum where the conductivity a and hence losses 
2 2are low, k << n , hence (3.88) may he modified to assume the form for a

2non-conducting medium (N = n is real), hy neglecting k . This leads to

Ro
2

= R ’ = -  — p- (3.89)
0=0 (n+1)

1 +
or n =    . (3.90)

1 - /F*o

For the case of oblique incidence we have from (3.76) and (3.81)

1̂_L sin( 0^-02 )
= p. = - TTZTTTTT- (3.91)6 sMejt-Og)

®ll| tan(0 -0 )
“ Pp ° tanfo^+egT (3-92)

where, via Snell’s Law, cosOp = “ sin^B^) . (3.93)
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o 2 1Expressing (N - sin 0^)* = a + ib, then

2 2 2 2 2 a - b  = n - k - sin 0, ; ab = nk (3.9k)

and with these new variables we may conveniently write (3.93) as

cosG,

(Ref. Roessler^^^^)

a+ib
N (3.95)

Thus
(a+ib) - COS0.
(a+ib) + cosO. (3.96)

and
(a+ib) - siiiO^tanG^
(a+ib) + sinG^tanG^ (3.97)

The corresponding power reflectivities are hence

12 =
(a-cosG^)^ + b^

 ̂  ̂ (a+cosG^)^ + b^
(3.98)

R & (a-sinG^tanG^)^ + b^ 
(a+sinG^tanG^)^ + b^

(3.99)

The phase change ii>) on reflection at the boundary for normal 
incidence can be found using (3.83) or (3.85).

The complex reflected amplitude

E.
E = = |5„l exp ij, = n+ik - 1 

n+ik + 1  * (3.100)
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ie |S I {cos* + isin*} = i?—  ,+gik _ (3.101)
(n+l)2 +

Comparison of real and imaginary parts yields

\pj cos* = - -g -g ; |p̂ l sin* = 2., 2(n+1) +k (n+l) +k

pvor tan* = . (3.102)2 2 n^-l+k^
However, from (3.33)

e"—  = 2nk; 
^o

thus
1 S"/Gn* = tan  r — 2---  . (3.103)
n(n -l)+nk

2 2For the limiting case n >> k , we obtain

* = tan ^ ---r-2- . (3.10k)
n(n -l)

3.6 INFRARED DISPERSION BY IONIC CRYSTALS

There now follows an outline of the dispersion of infrared radiation 
by cubic diatomic ionic crystals which possess optical isotropy. This 
category includes the common alkali halides such as HaCl. The analysis of 
lattice vibrations in such crystals has been dealt with in depth by various 
authors (Bom and H u a n g ; Donovan and Angress^'^^^ ) requiring the solution 
of an eigenvalue equation relating a dynamical matrix D to the frequencies 
w^(q).

In general, for a crystal with n atoms per unit cell, the angular 
frequency w has 3n branches. Three of these branches are the so-called 
acoustic modes identified by the fact that w^(q) + 0 as q 0. The raaaining 
3n-3 branches are termed the optic modes and have non-zero values of w^(q) 
as q •+ 0. A diatomic crystal thus has six branches, three acoustic and
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three optic.

In the long wavelength limit the optical vibrations of a diatomic 
lattice correspond to atoms of one type moving as a body in anti-phase to 
atoms of the other kind. The resultant strong electric moment will interact 
directly with an electric field due to incident electromagnetic radiation.
The infrared active frequency branches are modified by the incident radiation 
and the resulting waves that propagate through the crystal are due to a 
combination of the EM and mechanical vibrations.

A rigorous treatment of the diatomic dispersion problem must account 
for this electro-mechanical combination in order that both the lattice 
vibrations and the optical (radiative) waves, which together form the 
infrared dispersion, are accounted for.

If u represents the displacement of the positive ions relative to 
the negative ions, a reduced vector w may be expressed as w = u/m where 
m is the reduced mass of the positive and negative ions. The macroscopic 
equations describing the polar notions are then (Huang )

“  (3.105)
and P = bg^m + bg^E

where E^the macroscopic electric field and 2  the dielectric polarisation 
are related by (3.8). The b coefficients are scalar constants which are 
characteristic of the solid and furthermore the principle of conservation 
of energy gives

b^g = bg^ (3,106)

for the cubic diatomic lattice.

The linearity of the equations of motion implies that anhormonic, 
higher order terms in the electric moment have been neglected.
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A purely electrostatic treatment of the problem, which assumes a 
Coulomb-type interaction between the ions, fails to take into account the 
retardation of the interaction forces due to the finite velocity of light. 
The full electro-mechanical analysis recognises the retardation by solving 
the two equations of motion simultaneously with the four Maxwell equations 
(3.16) (3.19). (Born and Huang^^^^)

The short range isotropic forces are represented by the coefficient 
b^^ whilst the long range forces are represented by an EM field which 
satisfies Maxwell's equations.

Trial solutions of the form

= («ÜqjZosSq) exp i(K=x - wt) (3.107)

are used.

Elimination of ̂  from the equations of motion (3.105) yields 

P = {b + -12-21 JE (3.108)
“bii"“

and comparison with (3.9) gives the dielectric constant

e = e + b + - . (3.109)
- h i - '

This dispersion formula is more generally written

C =  E .  +  ------------------------- g  ( 3 . 1 1 0 )
1 - (w/w^)2

where is the infrared dispersion frequency, the frequency at which the 
dielectric constant and refractive index become infinitely large.

Comparison of (3.109) and (3.110) enables us to express the b 
coefficients in terms of measurable quantities,

h i  ° h 2  ' ^21 = h 2  “
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Substitution of solutions of the form (3.107) into the system of six 
simultaneous equations and recognising that cannot vanish as this gives 
the trivial case = 0, leads to two alternative possibilities
(Born and Huang^^^^):

(i) (Ü, 2» Z  K are all parallel and the resulting longitudinal
frequencies are given by solution of

= -til + i ÿ j  = “I (3-112)

which is a constant independent of K.

Use of the identities (3.111) leads to the well-known Lyddane- 
Sachs-Teller (LST) relation

=
s

. (3.113)^  o 
or
(ii) (Ü, P and E are parallel but are perpendicular to IC, The resulting 
transverse modes are given by

( jD

For a given K (3.Ilk) gives two solutions. However, there also exist two 
alternative orientations of K with respect to JS which maintain their 
mutual orthogonality. Thus there are two doubly degenerate frequencies 
and hence four independent transverse vibrational modes. These modes 
which arise as a result of the long range polarisation of the crystal by 
the ionic motion are termed polarisation modes. The excitations are neither 
those of pure phonons or pure photons and the term polariton has come 
to be used for such a coupled excitation.

Using the dispersion relation (3.110) we may formulate the 
corresponding reflection spectra from (3.87) the expression for the
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reflecting power at normal incidence and remembering that 
from (3.3k).

"o

As Ü)' increases, N increases steadily and when w reaches the dispersion 
frequency e(u)) and hence N become infinite and R = 1, ie the crystal 
becomes a perfect reflector. Past this point e(w) is negative until 
becoming zero again for a frequency satisfying

wj(e -e )
0 = + - t V "wr-wr

or w = = ti)„ (3.116)

the longitudinal optic (LO) frequency of equation (3.112). Thus between 
the frequency values and the refractive index N is imaginary and 
there exists a band of perfect reflection. This is knoim as the Reststrahlen 
phenomenon.

In real diatomic cubic crystals the observed reflectivities in this 
region, the characteristic reststrahlen bands, do not agree quantitatively 
with the above case of an ideal crystal. This is because the dispersion 
relation (3.110) is incapable of representing the dispersion of a real 
crystal in the region w ~ Anharmonic, higher order electric moment
terms must be included in the equations of motion to account for energy 
dissipation.

A more realistic dispersion relation may be obtained by the inclusion 
of a damping term in the first equation of motion which now becomes

—  “ ^11—  " (3.117)

leading to the following relation which includes the effect of absorption 
in the vicinity of :
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ü)^(e -E  )
s(w) = . (3.118)

ŵ -w^-ivü)o

However, in reality the damping (y) may he frequency dependent giving 
rise to additional structure in the observed spectrum. For most alkali 
halides y varies considerably in the LO frequency region and the theory 
must be modified to account for this.

Two important effects, which are features of real crystals, arise 
from the inclusion of anharmonic terms in the equation of motion. First, 
thermal expansion is allowed, and secondly, the anharmonicity leads to 
interactions between the normal modes. The temperature dependent changes 
of the normal mode frequencies, ie the phonon energy shifts, of an anharmonic 
crystal can thus be divided into two parts. The thermal expansion causes 
changes in the distances and hence the forces between the ions resulting 
in a temperature dependent change in the harmonic normal mode frequencies.
The other contribution arises from the anharmonic interactions between 
phonons causing a further temperature dependent shift in the normal mode 
frequencies and this is present even if the crystal is held at a constant 
volume.

To account for anharmonic ity, Maradudin and Fein^^^^ and Cowley^ 
proposed that the dielectric function may be fitted to an oscillator model 
according to

wj(e -e )
e(w) = e'+ie" = e + -------------------- (3.119)w^“ü)^+2üj^( A(w)-ir(w) )

where the real and imaginary parts A(w) and r(w) are, respectively, the 
frequency dependent self-energy and mods damping functions.

E . .The phonon self-energy shift A(w) has two components, A which is 
frequency independent and arises from thermal expansion, and A'̂ (oj) which
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arises purely from the anhamonic interactions. The experimental 
determination of r(w) and the components of A(to) is discussed in chapter 6,

3.7 THE KRAMERS-KPONIG DISPERSION RELATIONS

To obtain information on the optical properties of a material from 
measurements of its power reflectivity spectrum P(v), use must be made of 
Kramers-Krbnig (KK) analysis (K r a m e r s a n d  KrOnig^^^^). A dispersion 
relation must first be employed to calculate the phase *(v) from P(v).
In order to do this with confidence, P(v) must be known over a wide 
frequency range. In practice this is achieved by a combination of 
measurement and extrapolation. Then from P(v) and *(v), the optical 
constants, n, k and the related dielectric functions e'(v) and e”(v) can 
be calculated.

However, the method of KK, although successful in many aspects, is 
an approximation procedure when applied to a truncated spectrum and its 
use is very precarious; small errors in P(v) can lead to very large errors 
in the final optical, property data.

It is principally for this reason that the method of DFTS was 
developed. Here, the phase is measured directly avoiding the need for 
extrapolations, wide frequency range measurements and the approximating 
KK analysis. Since this thesis is chiefly concerned with the method of 
DPTS, only the basics of the KK analysis are outlined. This section is, 
however, relevant to the power transmission measurements performed on 
thin crystals of KDP which are described in chapter 7.

The behaviour of a dielectric under the influence of an electric 
field is one example of various physical phenomena which can be treated 
using linear response theory. In general, a system is linear if its
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response to the sum of a number of independent applied signals is equal 
to the sum of its responses to each signal. The linear response may be
related to the stimulus or cause by a set of dispersion relations.

For a linear response, we may write

g(w) = A(w)f(w) (3.120)

where f(w) and g(w) are generalised input and output functions, and A(w)
is the generalised response function. The time dependent stimulus F(t) 
and the response G(t) are then given by the Fourier transforms

f(w) = I F(t) exp iüit dt
Æîr J -CO

(3.121)

s ( w )  =  — G(t) exp iwt dt .

Let us now consider the response T(t-t') produced at time t by a 
6-function pulse applied at time t '. The response produced by F(t) is then

G(t) = —  [ T(t-t') F(t') dt' . (3.122)
ÆÎ7 / -CO

The principle of causality implies T(t-t') = 0 for t < t* as there can 
be no response to the pulse until the pulse (or cause) is applied.

To relate the above to the measurements obtained by FTS, we introduce 
the power reflectivity R(w) via the expression for the complex reflection 
coefficient (2.kk)

p(w) = |p(w)| exp i*(w) = /rÎüÎT exp i*(w) . (3.123)
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For normal incidence reflection at a vacnim/medinm. interface, p(w) is given 
by (3.100) and is an analytic function of the complex valued w, having no 
poles in the upper half plane.

A further and obvious condition is that for a finite input signal, 
the conservation of energy requires that the output signal be less than 
or equal to the input.

The response function A(w) of (3.120), analytic in the upper half 
plane, nay be expressed by the contour integral

A(oj_)
# r o • ' y o  ' p o

(3.12k)

The first term is the Cauchy principal integral, denoted by P, along 
the real axis. The second term is the integral along the contour y
of radius r about the singularity on the real axis, and the third term 
is the contribution of contour F of radius R as R-x».

Evaluation of the integrals leads to 

fCO A(w )
P  ^d(i) - in(A(w^) - A(=)) = 0 . (3.125)
J-co ^ ®

Now we relate the function A(w) to the reflectivity via the definition

A(w) = &n p(w) = Jin |p(w)| + i*(w) . (3.126)

Equating real and imaginary parts of (3.125) and (3.126) leads to

(})(üJ ) = - —  PO TT
&n|p(Wy)|

-  Wr~Wo r
dm + *(«) (3.127)

1 r )Jln |p(üî̂ )l = —  P dü)̂  + log|p(«)l . (3.128)
J —03 r o
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For real response functions p(-m) = p*(w) and by the choice of phase 
*(co) =0, the phase shift dispersion relation of (3.127) may be rewritten

f” An|p(w )|
*(w_) = - -tr P ------—  . (3.129)

°  ”  J u)2-u)Zo r o

The optical constants and the dielectric functions may then be calculated 
from an expression such as (3.100) which leads to

e'(w)+ie"(w)
e ■  » < ■ '  ♦  i ; i : l  ■

(3.130)

The KK dispersion relation (3.129) is the relevant one for the 
power FTS measurements covered in this thesis. Details of the KK analysis 
and other dispersion relations may be found in a number of books including 
a conference review edited by Nudelman and Mitra^^^^.
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CHAPTER k

THE EXPERIÎŒNTAL APPARATUS

l+.l INTRODUCTION

Two different interferometers were used during the course of the 
experimental work. The great majority of the time available was spent 
building and developing the polarising instrument for low frequency measure
ment. However, the versatility of a conventional power FTS interferometer 
was exploited in order to obtain the transmission results for thin crystals 
of KDP.

The chapter commences with a description of this basic power instrument 
together with a discussion of the limitations one encounters when long 
wavelength spectral measurement below ̂  30 cm ^ is being considered. There 
is then a natural progression to a description of the development of the 
polarising interferometer for DFTS, with emphasis on the way the limitations 
of the power instrument are overcome in this design.

Various experimental problems that arose are then discussed together 
with their solutions and the dispersive spectroscopic method of division of 
the field of view is introduced (Parker et al^^). The chapter is concluded 
with a short description of the mode of operation of the recording electronics.

^.2 THE BASIC INTERFEROMETER FOR POWER FTS

The design of both interferometers is based upon the modular units 
developed by the National Physical Laboratory with the cooperation of 
Grubb Parsons and Co Ltd (C h a n t r y ^ , and follows very closely that of 
the original interferometer conceived by Michel son. In addition a large
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nimiber of supplementary units which are not commercially available have 
been designed and built here at Westfield and their compatibility with the 
basic units enables the interferometer designs to be extended to allow 
specialised work to be performed.

A typical configuration of the instrument used for general power 
measurements is illustrated in Fig 1*,1. The hub of the design is the 
central cube which contains the mylar beam divider held vertically along 
the cube diagonal. The ports in the four vertical faces of the cube allow 
four extension arms to be bolted on. Essentially these arms house the 
source, the moving mirror, the fixed mirror and the detector.

The source is a quartz encapsulated mercury lamp which generates broad 
band submillimetre radiation by thermal emission. The lamp is located in 
a water-cooled housing and to approximate a point source, the aperture is 
limited using a cylinder of copper positioned around the lamp with a hole of 
diameter centred on the optical axis of the instrument. The radiation
emerging from this aperture is collimated and caused to be incident upon 
the beam divider by the joint influence of a parabolic and a plane mirror 

and Mg in Fig 4.1), which together form the collimator unit.

At the divider the radiation is partially transmitted and partially 
reflected into the two mirror arms. The movable plane mirror in one arm 
is mounted on the non-rotating spindle of a micrometer which has a maximum 
travel of 25 mm and which is driven by a stepping motor. The motor and 
its associated electronics allow the mirror to move in either direction 
in steps of length 2.5, 5, T-5 or 10 ]xn corresponding to cut-off or 
aliasing frequencies of 1000, 500, 333 and 250 cm ^ respectively. (Ref 
equation 2.45). For power measurements the mirror in the fixed arm is 
clamped, but a facility for aligning it to give a maximum throughput signal 
is provided by a system of three aligning screws.
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Following reflection by the two mirrors, the two beams are incident 
back onto the beam divider where they recombine and interfere according to 
the difference in the optical paths in the two mirror arms. The recombined 
beam then passes through a specimen chamber where the optical system focusses 
it down to be either reflected or transmitted by the sample under investigation. 
It is then finally refocussed by a Pfund-type all-reflecting condensing 
system onto the window of a Golay detector.

The Pfund system consists of a plain mirror and a spherical concave 
mirror (14̂  and in Fig 4.1), and replaces the pair of polythene lenses 
which are normally used and which absorb a large proportion of the energy 
that would othenfise be incident on the Golay H->se, Use of the Pfund 
system in place of the lenses increases the throughput energy of the 
instrument by more than 100^.

Two important precautionary measures to improve the performance of 
the apparatus were adopted and were also incorporated into the design of 
the polarising interferometer.

A temperature stabilising system was installed on the interferometers 
to reduce thermal expansion or contraction due to ambient temperature 
changes. Water circulates through pipes attached to the outside of the 
interferometer and then passes through a radiator and is kept at a temperature 
of a few degrees above room temperature by a thermostatic heater incorporated 
in the circulator. Thermal stability is maintained to better than 0.25° C 
over periods of many hours. This is particularly important for a dispersive 
instrument such as the polarising one when changes in the overall temperature 
and differential expansion of the two mirror arms can cause significant 
errors in the directly measured phase spectra.

The second precaution taken is that the interferometer is evacuated 
to eliminate water vapour which heavily absorbs the radiation in the far
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infrared and which would, if not removed, seriously degrade sample spectra
recorded in this region of the spectrum, A water vapour spectrum is
included amongst the results (Fig 6,2) and the strong absorption at certain
wavelengths is clearly visible. For room temperature work reduction of

-1the pressure to 10 Torr is sufficient to remove the absorption effect 
of the vapour and such pressures are easily obtained with a rotary vacuum 
pump. However, when low temperature data is being recorded pressures as

-5low as 10 Torr are required to prevent or at least delay icing-up of the 
sample surface due to the small amounts of water vapour present even in 
such a vacuum. This icing-up can have a serious effect on the phase spectrum 
measured by DFTS especially in the case of alkali halides. A diffusion 
pump is employed to obtain these low pressures and is situated immediately 
below the central cube. The modular components have either male or female 
flanges and an 'O' ring is carried on the male flange. This provides a 
vacuum tight seal when the male flange is mated and bolted tightly to the 
female flange.

4.3 FACTORS LIMITING THE PERFORMANCE OF THE CONVENTIONAL INTERFEROMETER

A number of factors exist which limit the working range of the 
conventional instrument described above.

As previously indicated the detector in standard use is a Golay cell.
Amongst its advantages are its convenient size, its ease of operation and
the fact that its performance is perfectly adequate for most IR applications.
A choice of window materials enables different regions of the IR spectrum
to be investigated, the two most commonly used for interferometric studies
being diamond and quartz. The diamond Golay has no upper frequency cut-off

-1in the IR, being transparent up to and beyond 10,000 cm , apart from an
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absorption region between about I500 and 3000 cm~^. The cheaper quartz 
Golay has a high frequency cut-off at ~ 250 cm"^.

”1Below about 30 cm the output from the mercury lamp is extremely 
weak and for accurate spectroscopy below this point the Golay cell must be 
exchanged for a liquid helium cooled detector. The performance of any 
detector is characterised by the radiating power "equivalent to the noise 
of the receiver", a factor termed the Noise Equivalent Power (NEP), This 
is the average power of sinusoidal modulated radiation which would give a 
signal equal to the average quadratic value of the detector noise. When 
defining the NEP, the experimental conditions such as the time constant, 
the modulation frequency, the tauperature and the solid angle employed 
must be stated. The inverse of the NEP is termed the detectivity, a 
measure of the quality of the detector (Hadni^^^^). The NEP for a typical 
liquid helium cooled detector is of the order of 1000 times better than 
that of a Golay, under similar experimental conditions, with a corresponding 
superior detectivity. Consequently such detectors perform well in this 
energy starved region. The helium cooled detector used in the laboratory 
is an Antimony (Sb) doped Germanium (Go) thermal bolometer manufactured 
by QMC Industrial Research Limited. This detector has a working range of 
2 to 250 cm Other types of liquid helium cooled detector are also 
available, in particular an Indium Antimonide (inSb) photodetector with 
a range of 1 to 50 cm Helium cooled detectors are normally only used 
for special applications, when the performance of a Golay is inadequate, 
because of the need for cryogenic facilities.

To discriminate against noise inherent in the interferometer, such 
as lamp fluctuations, the radiation is modulated before reaching the 
detector and the recording electronics only measures the signal which lies 
within a small bandwidth around the modulation frequency. This procedure
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is discussed in more detail in section 4,8 where the node of operation of 
the recording electronics is described. A significant amount of far IR 
radiation is emitted by the warm walls of the interferometer and by other 
points in the field of view in addition to the lamp source. Due to the 
large acceptance angle of the Golay nose (60°), modulation must be performed 
far enough back along the optical path in the interferometer in order that 
any stray rays produced by these extraneous sources, that may enter the 
nose, are unmodulated and thus do not contribute to the measured signal.

Several methods of modulating the radiation may be used. The first 
and most obvious is amplitude modulation (AM) or chopping, usually 
performed in the Grubb Parsons system, by installing a cylindrical chopper 
around the lamp. This however has the unfortunate result that a large DC 
load is carried at the detector as a background to the required signal.
The resultant noise and drift of the mean level of the interferogram is 
often an embarrassment when accurate spectroscopy is required. This DC 
load may be reduced by chopping in one of the mirror arms though this 
presents practical problems, in particular microphony effects at the 
detector due to the vibrations caused by the rotating chopper. Furthermore, 
by its very nature, AM has the disadvantage that 50^ of the lamp energy, 
or more for a non-ideal chopping system, is immediately extinguished. Its 
great advantage is that it is frequency independent, and does not impose 
any envelope or cut-off on the throughput spectrum.

The second form of modulation that has found favour in the last few 
years after initial development problems, is that of phase modulation (PM). 
Here the path difference is modulated by a small periodic displacement of 
one of the interferometer mirrors.

If the modulation function has the form

j(ft) = a sin2TT ft , (4.1)
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where *a* is the maximum amplitude of vibration of the mirror, then the 
time dependent signal from the detector is a modified form of (2,2)

V(x,t) 'X/ P(v) cos{ 2 ttv (x + a sinPir ft)} . (4.2)

The time dependent parts of this function are complicated and the coefficients 
of their Fourier components are Bessel functions. The pass band of the 
electronics may be arranged so as to include only the first order and the 
resulting interferogram adopts the form ( Chantry^Chamberlain^ ̂ ^̂  )

I(x) ~ I P(v) J^(2nva)sin2wx dv . (4.3)
o

Thus the effect of sinusoidal PM on the throughput spectrum is to 
impose on it a Bessel function envelope. The Bessel function Ĵ (2'rrva) has 
its first zero at v = 0 and next zeroes at a frequency given by 2irva = 3.84 
(Chamberlain^^^^ ). Use of PM thus impairs the low frequency side of the 
throughput spectrum, although it does have a number of distinct advantages 
over AM.

In the region of the primary maximum of the Bessel function the 
modulation approaches 100%, a vast improvement on AM. Furthermore, the 
DC contribution to the signal is unmodulated so drift problems are eliminated 
and the noise due to source fluctuations is greatly reduced. The vibrational 
problems associated with the chopper in AM do not occur and finally the 
frequency dependent nature of the Bessel function provides a non-absorptive 
method of limiting the frequency range of the instrument. For good quality 
spectroscopy it is usually an advantage to limit the throughput profile to 
the spectral range of interest. Since the Bessel function maximises and 
zeroes at frequencies dictated by 'a* the amplitude of vibration of the 
mirror, then changing 'a' by altering the power provided by the oscillator 
drive unit enables the response in a particular frequency region to be



69

optimised. Thus, for instance, improved low frequency performance may he 
obtained by increasing the vibrational amplitude to shift the primary 
maximum and hence the peak of the measured energy spectrum to lower wave 
numbers. The pass band however is consequently progressively reduced in 
width and the resultant lack of "high" frequency modulated energy required 
for aligning purposes can be a great handicap when DFTS measurements are 
performed as the quality of the optical alignment is dependent on the 
highest frequency present.

It is of interest at this stage to compare the interferograms 
obtained using AM and PM. The two situations are illustrated in Fig 4.2. 
The AM interferogram is symmetrical about the position of zero-path 
difference (ZPD) and has a mean background level of ideally half the value 
of the central maximum. The PM interferogram of (4.3) is, however, 
anti symmetrical about ZPD and has a mean level of zero as there is no DC 
contribution to the signal. The interferogram of (4,3) involves sine 
rather than cosine terms, but it is just as readily Fourier transformed 
using the complex transform of equation (2.57).

Apart from the use of Golay detectors and phase modulation, a third 
limitation on the working range of the conventional interferometer is 
caused by the use of dielectric beam dividers. These are usually made of 
mylar (polyethylene terepthalate) and are stretched taut on a metal frame 
which locates into a slot cut across the diagonal of the central cube.

Since the divider is parallel sided the phenomenon of multiple 
internal reflection occurs. Hence, not only the primary reflected and 
transmitted beams must be considered but all the other beams produced by 
internal reflection as well. It is obviously necessary to determine 
which, if any, of the secondary and higher order beams are of sufficient 
magnitude to ’ e important. Bell^^^ has shown that for an unpolarised beam 
of radiation incident at 45° upon a mylar beam divider, the primary
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transmitted beam contains about 83% of the incident flux whereas the 
secondary transmitted beam contributes a mere 0.7%, a negligible amount.
The primary, secondary and third order reflected beams respectively 
contain 8.9» 7.4 and 0.07% of the incident intensity. Hence, only the 
two primary beams and the secondary reflected beam are significant. For 
these calculations the refractive index of the mylar was taken to be 1.85 
and the divider was assumed to be non-absorbing whereas in practice, 
absorption occurs.

As the magnitudes of the two reflected beams are nearly equal and 
a definite phase relationship exists between them, these two components
interfere. This interference occurs upon each reflection by the divider.

For external and internal reflection by the divider the phase shifts 
are it and zero respectively. If d is the thickness of the mylar and n 
the refractive index, then the condition for interference between the two 
reflected components is (Bell^^^)

mX = 2d (nM)^ (4.4)

where for destructuve interference m = 0, 1, 2, 3 ....
and for constructive interference m = J, 3/2, 5/2

Equation (4.4) essentially governs the efficiency of the beam divider. 
The efficiency at v = 1/X = 0 is zero as one reflected component has a phase 
shift of TT with respect to the other and they thus interfere destructively. 
The other minima are predicted by (4.4) with m * 1,2 etc. The first order 
interference fringes, ie those lying between m = 0 and m = 1, for a number 
of different thicknesses (d) of mylar are illustrated in Fig 4.3. Clearly, 
when measurements are performed using an interferometer equipped with a 
mylar or similar dielectric beam divider, the thickness d must be chosen 
so as to optimise the throughput energy in the spectral region under
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investigation. By the use of thicker and thicker nylar, the low frequency 
performance of the instrument may be improved although as Fig 4.3 shows, 
the instrumental bandwidth dictated by the first order interference fringe 
progressively narrows. Consequently, such dielectric beam dividers are 
far from ideal for long wavelength measurements below 'v 20 cm” .̂

Some other properties of dielectric beam dividers are worth 
mentioning at this stage prior to discussing possible solutions to the 
problems they cause.

The beams in the two arms of a conventional interferometer each
undergo one transmission and one reflection before reaching the detector.
Assuming unit incident intensity and that the non-absorbing beam divider
has power transmission and reflection coefficients T^ and respectively,
then the intensity falling on the detector is 2R^T^ and that lost back

2 2to the source is R + T . The maximum of 2R T occurs for R = T = 0.50o o o o o o
and hence the maximum efficiency of even a perfect Michelson is only 50%.

The reflected and transmitted powers are given by the Fresnel 
relations (section 3.4) and are dependent on the angle of incidence.
Hence, if a beam of unpolarised radiation is incident upon a dielectric 
divider, the reflected and transmitted beams are partially polarised. For 
nylar, the well-known Brewster angle 6^ (given by tan0^ = n, where n is 
the refractive index), the angle for which the reflected radiation is 
100% perpendicularly polarised, is approximately 60°. So with beam 
dividers used in practice at the convenient angle of 45° to the incident 
beam, a considerable degree of polarisation occurs in the emerging 
recombined beam. The experimental polarising ratio of the parallel and 
perpendicular components in the beam at the detector for the power 
instrument with a 12.5 pm mylar divider is shown in Fig 4.4, The most 
extreme ratio is 2:1 in favour of the vertical component, ie the
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component perpendicular to the plane of incidence.

To summarise this section, the main problems that restrict the
range of the conventional instrument and in particular impair its 
performance at the important low frequency end of the IR are the following. 
First, the high NEP of the Golay detector which severely limits its use 
at frequencies < 30 cm due to the extremely low lamp energy in this 
region. This may be overcome by the use of a liquid helium cooled detector 
with its vastly superior detectivity. Secondly, the use of phase modulation 
which imposes an envelope function on the throughput spectrum. PM may, 
however, be "tuned" to the low frequency region provided the resultant 
narrow bandwidth can be tolerated. Otherwise, frequency independent AM 
may be used as long as the associated noise levels and drift can be 
adequately suppressed. Finally, due to multiple internal reflection in 
the dielectric beam divider, the divider efficiency and consequently the 
throughput of the instrument is extremely frequency dependent. It is 
zero at zero frequency and has additional minima at frequencies inversely 
proportional to the beam divider thickness (4.4).

This last problem has been surmounted by the use of polarising
interferometers, several configurations of which have been recently

( 13)developed, eg Martin . These employ one or more wire grid polarisera 
as beam dividers, resulting in greatly improved low frequency throughput.
The following sections describe the layout and mode of action of the 
polarising interferometer developed by the author at Westfield College.

4.4 THE POLARISING INTERFEROMETER

The fundamental design of the polarising interferometer developed 
was formulated by Chamberlain at the National Physical Labotatory (see
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for example Chamberlain et Its principal advantages over other
types of polarising interferometer are first that the radiation is incident 
normally on the specimen, and secondly its relative simplicity. As a result, 
few modifications are required to the dispersive "mylar" interferometer 
developed by Parker which has been successfully employed to obtain a variety 
of DFTS results in the range 30 to 500 cm”^

The layout of the polarising instrument is illustrated in Fig 4.5 and 
the photograph Fig 4.6 which shows an updated form of an earlier version^
Many of the modular components are identical to those previously described 
for the power instrument. The major difference is the use of two "central 
cube" units each containing a wire grid polariser.

The Pfund type "all-reflecting" condensing optics was designed to
(3l)replace the polythene lenses used in the earlier version . Since, as 

will be shown in the following section, the grid polarisera themselves act 
as low pass filters, none of the usual polythene filters to suppress the 
near IR and protect the Golay from overload, are required. Thus, removal of 
the lenses eliminates all absorbing material from the path of the radiation 
from source to the detector window excepting, of course, the sample under 
investigation, and consequently troublesome polythene absorption lines do 
not appear in the measured spectra. The Pfund system was designed to be 
compact since pressures as low as 10 ^ Torr were required and so it was 
desirable that the volume of the instrument to be pumped was kept to a 
minimum. A compromise had to be made between the compactness and the need 
for space to arrange the optics so as to minimise off-axis aberrations.
This was achieved by choosing a concave mirror (14̂  in Fig 4.5) with 
f = 10 cm and r = 2.5 cm.

Phase modulation was originally provided by mounting the moving mirror 
on the cone of a loudspeaker. This arrangement, which worked within the
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tolerances required of the quality of the oscillations, is shown in Fig 
4.7. The loudspeaker is bolted to an adjustable jig mounted on the 
micrometer spindle and the plane of the mirror was aligned normal to the 
axis of the spindle by spinning the complete assembly slowly on a lathe.

The proposed use of a liquid helium cooled detector initiated a change 
in the PM arrangement. The noise which occurs in the recording electronics 
is not "white" but varies inversely with the frequency of modulation. It 
is thus desirable to use as high a chopping frequency as possible to avoid 
excessive noise though this frequency is limited by the response time of 
the detector. For the Golay, a frequency of ̂  I6 Hz is used and cannot be 
greatly exceeded. However, the response time of a typical helium cooled 
detector is much faster 1 ys) and hence much higher modulation frequencies 
(up to 800 Hz with some detectors) may be used, with a corresponding 
decrease in noise. The performance of the loudspeaker at such high frequencies 
over long periods of time was suspect and so a more robust commercial 
vibrator was used. This necessitated a change in the design of the moving 
mirror arm. The vibrator could not be attached to the micrometer spindle 
but was housed in a right-angled unit half-way along the arm and vibrated a 
plane mirror at 45° to the propagation direction. This angle could be 
adjusted using a system of aligning screws.

The temperature of the interferometer was stabilised to within 0.25°C
using a thermostatically controlled water supply circulating through tubes
attached to the arms, cubes and lamp housing, a system similar to that used

-6on the power instrument. The interferometer could be evacuated to ^ 10 
Torr using a diffusion pump. This pump was situated beneath the cube to 
which the two arms were attached so as to be as near the sample as possible.

The arm that contained the fixed mirror or sample was designed so 
that the DFTS technique of "Division of the field of view" developed by
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Parker et could be adopted.

The fixed reflector was held in a copper mount (Fig U.8). This was 
attached by means of thermally isolating nylon bolts to a sensitive micro
meter alignment mechanism in the specimen chamber (Fig î .lO) and could be 
aligned in vacuum by the use of feedthrough adjusters in the chamber lid.
Using this arrangement the fixed reflector could be accurately aligned with 
a precision of better than 0.15 wm. at any temperature between 90 and 300K. 
Changing the reflector was a simple task and it could also be rotated 
through any angle without first being removed from the mount, a great 
advantage when studying the different axes of ferroelectric crystals.

The direct measurement of phase by DFTS requires replacement of the 
fixed mirror by the sample, between recording calibration and sample inter- 
ferograms, to a high degree of accuracy. The phase error due to a misplacement 
was calculated in section (2.5), from which it follows that typically 
replacement to within 0.2 ym (ie ±0.1 ym) results in a phase accuracy of 
~ ±1.5° at 100 cm” .̂

DFTS measurements have been undertaicen by a number of workers using 
the obvious method of accurately replacing the fixed mirror by the sample,

(t )Birch et al have designed a counter-balancing support system for the 
fixed reflector which enables replacement to be made to better than 0,1 ym 
and allows this replacement to be performed inside the evacuated inter
ferometer. There are, however, two major problems: the sinkage of soft 
specimens on the reference supports and the fact that since the crystal 
must remain ’’free”, it is not possible to perform low temperature measure
ments requiring good thermal linkage between the sample and a liquid 
nitrogen dewar. Other workers have tried similar methods and met the same 
problems and more besides.

Although when using the copper mount, the reflectors in the fixed
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arm could not be replaced to within the limits set by the desired phase 
accuracy, use of the division of the field of view technique developed by 
Parker et al^*^ gave reproducibility of phase measurements to within +1°.
It also solved the problems met by other workers.

Low temperature results were obtained by connecting the back of the 
mount to the base of a nitrogen "cold finger" dewar using a thick piece of 
copper braid (Fig U.8). A feedback system comprising a Uo W thermostat 
heater mounted on the back of the sample mount and controlled by a cryogenic 
temperature unit, and two copper-constantan thermocouples held the sample 
at the required temperature. Stability to 'v O.IK could be obtained in 
practice anywhere between 90 and 300K. This was achieved within 5 minutes 
for small temperature steps 'v 25K and took up to 30 minutes for changes 
of ^ 150K.

U.5 THE TECHNIQUE OF DIVISION OF THE FIELD OF VIEW

The division of the field of view technique was utilised in the 
following way. With reference to Fig U.9, the outer ring X of the optically 
flat sample was aluminised in an evaporator using a mask to cover the 
inner circle Y which thus remained as exposed sample surface. By an 
arrangement of opaque screens located in a screen unit between the wire 
grid and the specimen chamber (Fig U.ll) which could be slid into position 
from outside the interferometer when it was evacuated, each of the areas 
X and Y could in turn be used as the fixed reflector. The geometry of the 
screens is illustrated in Fig h,9 and was such that the possibility of 
cross-talk between the areas X and Y was eliminated.

A set of data was recorded in the following manner. First, with 
the fixed mirror installed in the mount, the outer area X was used to align
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its surface perpendicular to the incident beam. This was achieved by 
maximising the detector signal at the grand maximum of the PM interferogram 
near the zero path position with the moving mirror at a sampling point. 
Having a large radius the area X provides a very reproducible alignment, 
Interferograns were then recorded from part X and by moving the screens, 
part Y. The interferograns were Fourier transformed and the resulting 
amplitude and phase spectra and r&tioed to give a complex
calibration spectrum (r^/r^ and The experiment was then repeated
using the sample in place of the mirror. The sample was again aligned on 
the aluminised outer ring X and two more interferograns recorded from area 
X and area Y, the exposed sample surface. These interferograns were also 
Fourier transformed and the ensuing complex spectra (r^, ^ and rg,$g) were 
ratioed to give the complex reflection spectrum of the sample and
^S~^X^ * Then, systematic errors caused by asymmetry between the areas X 
and Y and differences in the two arms were reduced by re-ratioing against 
the calibration spectrum. Thus the corrected amplitude and phase sample 
spectra are

r . = - yy - and

In this way the sample phase spectrum was measured directly though a 
correction had to be made (see section 2.5) to allow for the thickness of 
the aluminising film. The thickness of the film introduces an undesirable 
problem. Typically films laid down by the evaporator have a thickness 
0.2 ym. However, at 300K the skin depth (d) for aluminium at 100 cm ̂  

is 'v̂ 0.05 ym and at 10 cm ^ increases to O.I65 ym^^^^, Thus the use of 
films 'v 0.2 ym thick could lead to significant errors in the measured 
amplitude particularly at low frequencies (d A/a where 0 is the 
conductivity). For example, with a deposition which corresponds to 2d for 
a wavelength X, the reflectivity from the aluminium which should be 100% to
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match that from the mirror is low hy an amount (l/e)^ 'w 13% at that point 
in the spectrum. Increasing the thickness to reduces the error to less 
than 2%, a figure comparable to the reproducibility of repeated amplitude 
spectral measurements. Hence, for measurements below 100 cm”^ the film 
thickness should be at least a, 0.5 ym thus requiring a large phase correction 

3.6° at 100 cm ̂ ). When the specimen is cooled for low temperature 
measurements, the situation improves since the conductivity a increases 
leading to a reduction in the skin depth.

Thus the division of field technique eliminates the need for exact 
replacement of the fixed mirror by the sample.

Certain precautions were taken to minimise other systematic errors. 
Backlash errors due to the micrometer were minimised by scanning each 
interferogram in the same direction. Also, each interferogram commenced 
at the same sampling point which could thus be used as the phase reference.
A manual single step trigger in the stepping motor drive circuit enabled 
the starting point to be chosen conveniently. The method itself reduces 
the effects of any systematic changes in the lamp intensity between the 
mirror and sample runs. However, the effects of fluctuations in the lamp 
output during the time taken to record a pair of runs from areas X and Y 
contributed to noise in the usual way.

The method does, however, have drawbacks. Firstly, a series of four 
interferograms is required, each of which is in practice recorded a number 
of times and averaged to reduce the noise. Also, the measured reflector 
areas are reduced by the use of the screens, Tlie excessive cost and 
general unavailability of some of the crystals measured necessitated using 
small samples. The crystals used were either 1" diameter or 1” square 
and were aluminised so as to leave a 0.6" diameter exposed area of the 
sample surface at the centre. However, despite the small reflector areas.
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the phase reproducibility appeared to be limited, not by lack of energy, 
but by flatness of the specimen surface, typically 'V/ ±0.2 ym, and by the 
flatness of the wire grids, a problem discussed in the following section.

In addition to the division of field technique, a simpler method
which did not require four different interferograms was employed. Inter- 
ferograms were recorded from the whole unaluminised sample surface which 
was then replaced by the fixed mirror from which interferograms were also
recorded for calibration purposes; no screens were used at all. When the
spectra obtained by Fourier transform from these sample end mirror inter
ferograms were ratioed, a true measurement of the sample amplitude reflection 
spectrum was obtained. This was providing the lamp intensity and various 
other experimental factors did not change significantly between the sample 
and mirror measurements. However, as the sample surface had not been, indeed 
could not be, replaced exactly by the mirror surface, the phase spectrum 
obtained had to be corrected for the error in the zero path. Knowledge 
of the exact phase at a particular point obtained from spectra measured 
using the division of field technique enabled this correction to be made.

The advantages of this method were that, unlike in the division of 
field technique where about 50% of the sample surface was covered by the 
aluminising layer, the whole of this surface could be utilised for the 
recording of sample data, thus giving a large increase in the reflected 
energy. In addition, only two different interferograms were required to 
achieve a final result, though prior knowledge of certain phase points was 
required. The two techniques thus go hand-in-hand.
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U.6 V7IRE GRID POLARISEES AND THE MODE OF ACTION OF THE 
POLARISING INTERFEROMETER

Some of the earliest experiments with wire grids were performed by 
Hertz at the turn of the century using short wavelength radio waves (X ~
1 cm). If d is the distance between the centres of adjacent wires of the 
grid. Hertz demonstrated that for X £  d the transmitted radiation is 
partially polarised whilst for X d, it is completely polarised with the 
electric vector ̂  perpendicular to the wires. The reflected radiation is 
always completely polarised with ̂  parallel to the wire direction. In 
practice the polarisation is never 100%; however, in general it is typically 
of the order of 95%, enough to justify ignoring the minor component.

The electromagnetic theory of the polarising action of such grids
has been discussed by a number of authors by analogy with a transmission
line problem. The theory explains why the E vector parallel to the wires
is reflected and that perpendicular is transmitted with constant efficiency
up to a frequency 1/d, in fact in practice 'V' l/2d. The expressions for
the transmittances of the polarising grid for radiation with ̂  perpendicular

)and parallel to the grid lines have been derived by Marcuvitz and tested 
experimentally by Auton^^^^. The grids and the more complex meshes have 
been used in various aspects of IR spectroscopy for a number of years 
(Vogel and Genzel^^^^, Martin and Puplett^^^^).

The polarising interferometer employs two grid dividers, one in each 
central cube unit, a configuration similar to that first used by 
Chamberlain et al^^^. The grids are constructed of 10 ym tungsten wire 
wound with a spacing of 25 ym using a technique developed at the National 
Physical L a b o r a t o r y ^ H e n c e  the interferometer has a constant 
transmissivity up to frequencies in excess of 200 cm ^ eliminating the 
internal reflection problem associated with dielectric dividers which
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leads to a frequency dependent transmissivity in this range.

For use in the polarising interferometer, one grid is wound with the
wires vertical (grid A in Fig %.5), and the other (grid B) so that its
wires lie at with respect to the wires in grid A. As the grid frames
are held across the cube diagonals, grid B must be wound at an angle
tan ^ /2 = 35° 16’ on the divider frame in order that the incident
radiation "sees" the wires at an effective angle of %5°. Improved "high"
frequency performance is obtained by winding grid A vertically as opposed
to horizontally since, as it lies across the cube diagonal, the effective
spacing "seen" by the incident radiation is a factor ~  times the real

1/2
spacing.

The grids are wound concurrently onto frames which are a slightly 
modified form of those used for the dielectric beam dividers. One half 
of each of the frames is clamped at the appropriate angle to either side 
of a winding jig which is slowly rotated on a lathe. The tungsten wire is 
held in a tensioned bobbin which traverses the length of the jig such that 
the wire winds around the jig and frames with the desired spacing. On 
completion of the winding across the whole frame aperture of U" diameter, 
the other two halves of the frames are carefully bolted to the halves 
lying on the jig, the wires being held in position by an *0* ring contained 
in the top half frame. A solution of "Durofix" adhesive and acetone is 
then dripped onto the wires around the outside of the frames to ensure 
they are firmly secured and then the wire is cut so that the complete grids 
may be lifted away from the jig. A grid wound in this manner is shown in 
Fig Î+.12.

To maintain plane wavefronts upon reflection and thus minimise 
errors in the directly measured phase spectra, it is obviously important 
for the grids to be as flat as possible. This was found to be a critical
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factor in the performance of the instrument along with the flatness of the 
reflecting surface of the specimen.

To improve the flatness of the grid across the important central area 
a simple tensioning system was installed on the grid frames. This system 
consisted of a brass annular ring of 2.5” diameter, one side of which was 
lapped and pressed gently against the grid wires by means of three copper 
spring strips. The arrangement, which may clearly be seen in the photograph 
of Fig U.12, markedly improved the reproducibility of the alignment of the 
specimen and consequently the accuracy of the measured phase spectra.

The polarising action of the interferometer can be briefly summarised 
as follows. With reference to Fig U.5, having emerged from the collimator, 
the unpolarised radiation is incident upon the grid A which reflects a plane 
polarised beam towards grid B, the wires of which are at 45° to the plane 
of polarisation of the incident radiation. The component of this radiation 
with its E-vector perpendicular to the grid wires is transmitted into the 
moving mirror arm, whilst the parallel component is reflected into the fixed 
am. Following reflection from the moving mirror and fixed reflector, the 
beams follow the same transmission and reflection laws on their return to 
B and pass on to grid A which now acts as an analyser. The components of 
each beam with their E-vectors perpendicular to the wires of A are transmitted 
by A and interfere according to the difference in the optical paths of the 
two beams in the instrument. Thus an interferogram is obtained in the usual 
woy by displacing the moving mirror about the position of zero path difference. 
An advantage of this arrangement is that the radiation in the fixed reflector 
arm is plane polarised and so no additional polariser is required when single 
axis measurements on certain samples are performed.

A more detailed analysis of this polarising action is presented with 
the aid of the vector diagrams illustrated in Fig 4.13. This clearly shows
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why the interference function has a dark fringe, ie a minimum, at the 
position of zero path difference when amplitude modulation is used.

Empirical curves illustrating the performance of wire grids similar 
to the type used in the polarising interferometer may he found in a paper 
hy Costley et

4.7 ADDITIONAL EXPERIMENTAL METHODS AND PROBLEMS

The importance of the temperature stability of the instrument for DFTS 
measurements has already been stressed. Differential expansion between the 
two arms can cause severe errors in the measured phase spectra. The water 
circulation system stabilised the temperature of the overall interferometer 
to better than ±0.25°C over a period of many hours. For low temperature 
measurement the sample temperature could be held to 'u O.IK anywhere between 
9OK and 3OOK. To check the stability of the apparatus the detector signal 
at a sampling point near the position of ZPD was monitored over a period of 
time. As the chosen point lay between the grand maximum and the grand 
minimum of the phase modulated interferogram it was extremely sensitive to 
instability. In practice, fluctuation and drift of the signal were negligible 
provided the apparatus had been allowed sufficient time to stabilise. The 
time allowed was generally 'v 12 hours after having turned on the apparatus 
which, during a course of measurements, was probably not turned off again 
for a few weeks.

Another possible source of significant phase errors was the flatness 
of the mirrors and samples used in the interferometer. All the mirrors used 
were flat to better than ±0.1 ym. Simple geometrical considerations show 
that finer tolerances are required of the flatness of the 45 vibrating 
mirror in the moving mirror arm and so it is particularly important that 
this mirror is as flat, if not flatter, than the other interferometer mirrors.
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The samples could often not he polished commercially to better than ±0,2 ym 
and thus the accuracy of phase measurement was determined by sample flatness 
and the aforementioned flatness of the wire grids.

To prevent warping, both the samples and the mirrors used were > 5 mm 
thick to ensure that the carefully prepared surface flatness was maintained. 
Care had to be taken when performing measurements on the alkali halide Csl 
because of its hygroscopic nature. To avoid deterioration of the reflecting 
surface prolonged exposure of the crystal to the air was avoided.

Any parallel-sided piece of material in the optical path of the 
interferometer with an optical thickness (t) less than that corresponding 
to the distance scanned by the moving mirror gives rise to spurious signals 
or "signatures" at positions ±t either side of the zero path on the recorded 
interferogram, due to multiple reflection. These signatures can have a 
harmful effect on spectra, being difficult to ratio out between mirror and 
sample runs. In many interferometers the cause of the trouble can lie with 
thin filters but no filters were used in the polarising instrument though 
signatures were present at a distance ±1.2 mm from the zero path. At first 
the quartz envelope of the lamp was suspected and so a dimpled lamp was 
fitted but the problem still existed. It was finally traced to multiple 
reflections in the quartz window of the Golay detector. To avoid signatures 
or the need for extreme care to ratio them out, the interferograms were 
recorded within the limits imposed by the signatures giving a maximum 
resolution ^ 5 cm sufficient for most measurements undertaken. However,
for higher resolution a Golay with a wedged nose window (4°) was available.

-1The water vapour spectrum of Fig 6.2 resolved to better than 1 cm clearly 
shows the ability of the interferometer to attain such resolutions when 
the signatures on the interferograms are carefully ratioed out.

A particular advantage of the design of this polarising interferometer



85

is that hy replacing grid A hy a mirror, an aluminised mylar beam divider 
being used in practice, and grid B by a mylar beam divider, transferring 
the Golay to the vacant part of the other cube converts the instrument to 
the more conventional dispersive M i c h e l s o n . Thus changing the thickness 
of the mylar beam divider enables a new range of frequencies in excess of the 
2U0 cm ̂  attainable with the grids, to be sbudied.

4.8 THE RECORDING ELECTRONICS

The recording electronics used for both the power and the polarising 
interferometers was basically identical, though different sampling techniques 
could be employed leading to improved results in certain circumstances.

The signal due to the modulated radiation falling on the detector 
passes on to be rectified by a phase sensitive detector (PSD). In order 
to operate the PSD, a reference voltage which is coherent with the signal 
to be measured, is required. This reference is derived from the power 
oscillator which drives the phase modulated mirror and is passed through 
a phase-shifter where it is phase-matched to the signal. The resultant 
output comprises a DC voltage proportional to the required component of the 
signal and also AC components due to noise which are filtered using a low 
pass RC filter of variable time constant. These AC noise components are 
not coherent with the reference and the response of the electronics to the 
noise depends on the time constant x of the PSD, which acts as a selective 
rectifier of bandwidth 1/x. If x is chosen to be long, to make the 
bandwidth narrow, the spectrum must be recorded slowly in order that sharp 
features are properly observed. There is usually an optimum time constant, 
a compromise between noise reduction and the time taken to record the 
whole interferogram.
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The PSD also responds to frequencies corresponding to odd harmonics of
the reference, and noise hands centred on these frequencies are recorded hut
with reduced sensitivity. This extra noise is usually negligible but can 
be eliminated by altering the frequency response of the electronics.

The output from the PSD, which has acted as a Fourier analyser, is 
passed to both a digital voltmeter (DVM) and a chart recorder. The sampling 
sequence is dictated by an electronic triggering unit. First, the moving 
mirror is stepped; there then follows a shbrt delay during which time the 
signal to the PSD rises exponentially under the action of the RC filter. 
After this set delay which may be varied but is held accurately constant
for a series of measurements, the signal on the DVî-1 is read and recorded
on paper tape for analysis by computer. There then follows a further short 
delay before the mirror is stepped again and the cycle is repeated.

The electronic trigger units, the paper tape punch drive and the 
stepping drive were all built in the Electronics Workshop at Westfield.

The stepping time interval and the PSD time constant are inter-related 
and both are chosen to give an adequate signal to noise ratio for the 
spectrum recorded with the required resolution, whilst not allowing the 
total scan time to be prohibitive.

The electronic recording system used is shown in the block diagram of 
Fig U.l4. A slightly different recording system was available in the 
laboratory and was sometimes employed. The analogue signal from the PSD is 
converted to a square wave of frequency proportional to the analogue signal 
which passes to a frequency counter to which an oscillator is connected.
After a short delay from the time the mirror steps, the PSD integrates the 
signal for a certain "integration" time which can be varied, whilst the 
frequency counter, triggered by the oscillator counts the pulses proportional 
to the input signal over this time period. The result is then punched onto 
the paper tape and the sequence repeated until the scan is complete.
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FIG 4.15(a) THE ACTION OF THE POLARISING INTERFEROMETER

For simplicity the action is described for a single frequency component 
V and for the situation where the two interferometer arms have the same 
physical length, defined as the position of zero path difference (ZPD).
The horizontal and vertical axes with respect to the instrument are shown. 
The grids are assumed to be lossless. For an unpolarised beam, the 
component of the radiation perpendicular to the wires is 100% transmitted 
and the component parallel to the wires, assumed to have the same amplitude 
as the perpendicular component, is 100% reflected. It is also assumed 
that the reflecting areas in the two arms are equal.

1. AT GRID ’A*

d i n e c K o a
Unpolarised radiation is incident 
from the source via the collimator 
onto grid 'A’, the wires of which 
are vertical. A vertically polarised 
beam is thus reflected into the 
instrument towards grid 'B*. The 
horizontal component is transmitted 
and lost.

2. AT GRID ’B'

d»necFion

OL

The plane polarised beam from 'A* 
is split into two components 
parallel and perpendicular to the 
wires of *B'. The parallel component 
is reflected into the fixed reflector 
arm whilst the perpendicular 
component is transmitted into the 
moving mirror arm.
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FIG 4.15(b)

3. AT GRID 'B' FOLLOWING REFLECTION IN THE TWO ARMS

Assume the mirror is a perfect reflector 
and that the reflectivity of the fixed 
reflector is p(v) = |p(v)|exp i<j) with 
0^]p(v)|_<l. Thus the length X of the 
vector which represents the radiation 
from the fixed reflector is dependent 
on both the amplitude and phase reflect
ivities of the reflector, neither of 
which is completely determined by the 
value of the other at this frequency.
The vector length

X = 1 p (v) I —  cos(j)

represents the projection of the 
reflected amplitude jp(v)|a^ along the wire direction. No interference 
is observed at this stage as the two components are orthogonal.

4. ON RETURN TO GRID »Â  
Vlire dinecKon

■\ losf kack 2\ SouixC  ̂̂ y,

JZ

ReSolEanFoF *hvo Co/r»ponenhs‘ 4rt>m 6

a = 45°-3 = tan-1
l/ Æ

'A' now acts as the analyser, causing 
the interference of the two components 
from 'B' to be observable. The signal 
transmitted through to the detector is 
RsinB with R as given.
For the non-dispersive case when 
|p(vj| = 1  and (|) = 0 for all v, X = a/vT, 
and 3 = 0  and thus no signal reaches the 
detector, ie a dark fringe occurs at the 
position of ZPD.
However, in the dispersive situation when 
|p(v)| < 1 and $  ̂0, then 3  ̂0, but is 
given by

= tan  ̂ { |pCv]| cos# }

The signal transmitted to the detector, Rsin3 is therefore a function of 
|p(v)| cos# and thus information on both |p(v)|, the amplitude reflectivity 
and #(v) the phase reflectivity may be obtained.
At the frequency v, the position of equal optical path lengths, as opposed 
to physical path length, is found by displacing the moving mirror out a 
distance J (#/27rv) from the position of ZPD. Thus the positions of optical 
ZPD for different frequencies are dispersively distributed on the phase 
delayed side of the position of ZPD.
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CHAPTER 5 

ASPECTS OF FERROELECTRIC THEORY

5.1 INTRODUCTION

The dielectrics considered in Chapter 3 had a linear relation "between 
polarisation and applied electric field (3.9)• However, a class of 
dielectrics exists for which this relationship exhi"bits hysteresis effects. 
Their dielectric "behaviour, by analogy to the magnetic behaviour of ferro
magnetic materials leads to their name, ferroelectrics. Such materials 
possess a degree of polarisation in the absence of an external field, termed 
spontaneous polarisation P^, The direction of the spontaneous polarisation 
may be altered by application of an electric field.

In general, a macroscopic ferroelectric crystal consists of a number 
of domains which form to reduce the electrostatic self-energy of the crystal. 
Within each domain the polarisation has a specific direction which varies 
from one domain to another. The existence of domains, confirmed by X-ray 
studies, explains the possibility for a crystal in its ferroelectric phase 
to have a zero or verj'’ small overall polarisation. When an electric field 
is applied to such a crystal, the number and size of domains polarised in 
the field direction may be increased. Reversal of the field leads to the 
phenomenon of switching and is accompanied by the hysteresis observed in 
the P versus E curves, giving rise to dielectric losses. The domains can 
often be seen very easily with an optical microscope as a direct result of 
the birefringence of the crystal.

A necessary requirement for a solid to be a ferroelectric is that its 
crystal structure lacks a centre of symmetry. No centro-symmetric crystal 
can possess a finite polarisation, for inversion of the polarisation vector 
by the symmetry operation leads to a recognisable change, contradicting the
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symmetry requirements. This is an example of Neumann’s Principle which 
states that the symmetry elements of any physical property of a crystal must 
include the symmetry elements of the crystal point group.

Of the 32 crystal classes, 21 lack a centre of symmetry and of these,
20 are termed piezoelectric. The polarisation of such crystals may he 
altered hy external stress. Ten of the piezoelectric classes form the sub
group of pyroelectric crystals which are spontaneously polarised, possessing 
a finite polarisation even for zero external fields and stresses. The 
polarisation changes when the crystal temperature is altered. Ferroelectrics 
are a further subgroup of these spontaneously polarised pyroelectrics having 
the additional property that the polarisation may be reversed or switched 
by an applied electric field.

A permanent electrical polarisation would arise in a crystal if, 
having started with an unpolarised ionic crystal, the whole structure of 
positive ions were displaced with respect to the structure of negative 
ions, a situation of the type which seems to exist in ferroelectric materials 
where X-ray evidence shows actual displacements of ions in the polarised 
state.

The ferroelectric properties of most ferroelectric crystals disappear 
above a critical transition temperature T^. The magnitude of the spontaneous 
polarisation decreases as the temperature rises until at T^ it disappears. 
Above T^ the crystal is non-polar and the dielectric constant frequently 
obeys the Curie Weiss Law

e =  ̂ (5.1)
c

where T is the characteristic Curie temperature which sometimes coincides c
with, but more often lies a few degrees below, the transition temperature 
T^. At the transition temperature, a change in crystal structure
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accompanies the change in phase, the ferroelectric structure being a 
distortion of the non-polar structure which exists above T^, with 
correspondingly lower symmetry. Anomalies in certain physical properties 
of the crystal can occur at this transition.

Ferroelectricity was first discovered by Valasek in 1921 in the sodium- 
potassium salt of tartaric acid (NaKC^H^O^'kEgO) known as Rochelle salt.
This salt was first prepared by Seignette in I672 at La Rochelle and has 
led to ferroelectrics being alternatively termed Seignette-electrics.

In 1935, potassium dihydrogen phosphate (KEgPO^), well-known by the
initials KDP, was found to exhibit ferroelectric properties by Busch and 

(37) . .Scherrer . It is typical of a group of ferroelectrics consisting of 
dihydrogen phosphates and arsenates of the alkali metals.

In 19^2 came the observation of anomalous dielectric properties in 
barium titanate (BaTiO^), an important member of the Perovskite group of 
ferroelectrics with a general formula ABO^. The independent discovery 
of BaTiOg in several laboratories during World War II prompted renewed 
theoretical interest in the mechanisms of the crystallographic distortions 
accompanying the phase transitions and much experimental work was performed 
to try to produce practical technological devices such as piezoelectric 
transducers, from the new ferroelectric materials, to aid the war effort. 
This experimental work was primarily on BaTiO^ and the hydrogen bonded 
ferroelectrics discovered earlier, in particular triglycine sulphate (TGS) 

and KDP.

Since the war a large number of materials have been shown to exhibit 
ferroelectric properties and the vast amount of research on ferroelectrics 
done in recent years ensures that this list continues to grow.

Numerous books and articles have been written in recent years on 
ferroelectric materials, their properties and the various theories
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derived to explain ferroelectric behaviour. This Chapter only touches 
upon a few of the general aspects of ferroelectric theory that are 
pertinent to the studies performed using the polarising and power inter
ferometers. For further details consultation of the referenced literature
is required, in particular the excellent review of the experimental studies

(of structural phase transitions by Scott ,

Two further definitions deserve a mention at this stage, those of 
an antiferroelectric and the order of a transition. Early definitions of 
anti-ferroelectricity were based on the model of dipoles occupying lattice 
sites in a simple cubic structure with alternate arrays of the dipoles 
orientated in opposite directions leading to zero overall polarisation. 
Calculations show that this anti-ferroelectric configuration is the stable 
arrangement for such a two-dimensional system of dipoles, as opposed to 
the metastable ferroelectric arrangement of parallel dipoles all with the 
same orientation.

Later definitions of anti-ferroelectrics were based on the behaviour 
of the dielectric constant in which a small peak is generally observed at 
the transition ten^erature between the anti-ferroelectric and the higher 
temperature paraelectric phases. Scott however points out that according 
to this definition a crystal without a phase transition cannot be defined 
as anti-ferroelectric and neither can the highest temperature phase of any 
crystal. He proposes a definition analogous to the one he puts forward 
for a ferroelectric. Ammonium dihydrogen phosphate , otherwise
known as ADP, is an example of a crystal that has been termed anti
ferroelectric .

A common feature of any phase transition, whether it is ferroelectric 
or of another nature, is the existence of a displacement or order 
parameter which is a measure of the ordering which takes place at the
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transition temperature (see for example Burfoot^^^ ̂ ). In ferroelectrics 
the order parameter is the spontaneous polarisation which has the 
temperature dependence

p 'Xi (T -T)^ for T < T and P = 0 for T > T (5.2)s o  0 8 O

where 3 has the value of J in some theories,

A ’first order’ transition, and use of the word order here is not to
he confused with its use above, is one where the displacement parameter 
changes dis continuously at T = T^. By second order we designate those 
transitions in which the displacement parameter decreases continuously to 
zero as is approached from above and below. Hence ferroelectric 
transitions are graded according to the continuous or discontinuous 
behaviour of the spontaneous polarisation at T = T^. However, it is usually 
not possible to obtain a clear-cut distinction between a first or second 
order transition from measurement cf P^ with temperature as, even for a
second order transition, the rise of P^ just below is rapid. They may,
however, be distinguished by the so-called "double hysteresis loop" 
experiment (Dekker^^^^).

It is perhaps worth noting in passing that a class of ferroelectrics 
exists where P^ is not the phase transition displacement parameter, and 
such materials are termed ’improper ferroelectrics’. The observed 
spontaneous polarisation and the dielectric anomalies are here not the 
primary critical characteristics but are secondary effects linked to the 
primary lattice anomaly, a crystallographic quantity usually being the 

order parameter.
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5.2 THEORIES OF THE FERROELECTRIC mdNSITION

A comprehensive discussion of the ferroelectric phenomenon and the 
phase transition has been given by S l a t e r ^ w h o  employs the analogy of 
the mechanical problem of a particle held in a double potential well, two 
minima with a maximum between. The maximum, a position of unstable 
equilibrium, corresponds to the unpolarised state and the particle can be 
pushed in either of two opposite directions into a lower, stable^ potential 
minimum corresponding to a permanent polarisation P . P is the product 
of ion displacement and ion charge, the displacement in this simple model 
being the maximum to minimum separation. Thus the decrease to zero at 
T = of the magnitude of P^ as the temperature is raised, corresponds to 
the two minima becoming shallower, moving together and finally coalescing 
at the critical transition temperature T^. This treatment leads to the 
proposed existence of a vibrational mode with a frequency of the form

O)̂ (T) C(T-T^) (5.3)

which thus vanishes at T = T^ and becomes unstable for T < leading to
the onset of spontaneous polarisation. The existence of such a mode was
earlier predicted by the free energy theories of Landau^ and Devonshire^
the lattice dynamical theory of C o c h r a n ^ a n d  the microscopic,

( 2s)anharmonic theory of Cowley  ̂.

An earlier dipole theory (Dekker^^^^ p 192), analogous to the 
Langevin-Weiss theory of ferromagnetism, assumed that in ferroelectrics 
a degree of "cooperation" was present. The existence of spontaneous 
polarisation requires that the dipole moments of the different unit cells 
in the crystal are orientated in the same direction, the cooperation being 
the tendency for a unit cell to have its dipole direction parallel to that 
of its neighbours. An expression for the internal field which orientates
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a given dipole

= E + yP (5.U)

where E is the external field, P the polarisation and y the internal field 
constant, illustrates the cooperation between the dipoles. The larger the 
value of P, the largerEL and the stronger the tendency for the dipole to 
align itself in the direction of the polarisation of its surroundings. The 
field of (5,k) leads to the Curie-Weiss law for the dielectric constant for 
T > T^ and also an expression for the saturation polarisation corresponding 
to complete alignment of dipoles.

The free energy theories assume the free energy F near T^ may be 
expanded in a power series of the displacement parameter, the spontaneous 
polarisation in the case of a ferroelectric. By requiring F to be a 
minimum, the condition for stability, then the signs of the remaining 
coefficients of the expansion describe both the onset of the transition 
and its order. This leads to the prediction that the order parameter rj 
obeys

n = n^(T^-T)^ . (5.5)

From the simple single harmonic oscillator equation with linear response

ma)2 = ——— (5.6)

it follows that there exists a phonon frequency

(T-T . (5.7)o o

Hence- the free energy model, which assumes infinitely long range forces, 
leads to an equation of the form (5.3).

This same equation was obtained by both Cowley and Cochran via their 
particular theories. In general, Cochran proposed that for most transitions
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in which the crystal possesses periodic transitional symmetry (ie is 
ordered) in both the phases, above and below T^, the structured distortions 
are characterised by an unstable optical phonon, whose frequency decreases 
substantially as the transition temperature is approached from above or 
below. The stability of a crystal lattice is dependent upon the elastic 
coefficients which must satisfy certain conditions conveniently summarised 
by the requirement that

wu > 0

for all i, where is the i normal mode frequency. Thus ->• 0 is 
equivalent to some generalised elastic coefficient becoming small. The 
crystal's restoring force against some shear deformations is consequently 
weak and the crystal literally softens. This equivalence of with a 
generalised elastic coefficient is thus responsible for the term "soft mode" 
applied to the normal mode for which w(T) 0,

The basic concept of such a soft mode was first put forward after 
measurements on quartz by Raman and Nedungadi^^^^^ in 19^0. Following 
Cochran's theory, the existence of such a mode in the vibrational spectrum 
of strontium titanate (SrTiO^) was shown experimentally by Cowley^^^^ 
using neutron scattering techniques, the mode becoming unstable for T < T^ 
resulting in the onset of spontaneous polarisation.

The soft mode concept can be readily extended to anti-ferroelectric 
materials as discussed by Cochran. However, here the transition is 
usually characterised by a soft mode at the Brillouin zone boundary, not 
at the zone centre as in ferroelectrics.

Objections have been raised to various aspects of the theories 
outlined above, but they form a background to the vast amount of work, 
both experimental and theoretical, that has been performed in recent years 
on ferroelectric materials and soft modes.
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5.3 POTASSIUM DIHYDROGEN PHOSPHATE (KHgPO;_̂ )

The hulk of theoretical and experimental studies on ferroelectrics 
belonging to the hydrogen-bonded group have concerned KDP and its isomorphs. 
Such materials have been known for a long time in comparison to other 
ferroelectrics and work in the early days of ferroelectricity was largely 
limited to these crystals.

KDP has one ferroelectric transition temperature, T^ =* 122K. It is 
perhaps worth mentioning at this stage that some crystals have more than 
one such transition temperature. Rochelle salt, for example, has the 
peculiar property of being ferroelectric only in the region between 255K 
and 296K, thus it has two transition temperatures.

KDP is piezoelectric in both phases. In its non-polar paraelectric 
phase above 122K the crystal symmetry is tetragonal with the point group 
)+2m In the ferroelectric phase the crystal is orthorhombic
belonging to the group mm2 In both cases, the primitive cell
contains two KĤ POĵ  units. In the paraelectric phase, there are three 
mutually perpendicular axes a, a and c. Thus above T^ the dielectric 
properties of KDP are described by two complex dielectric constants, one 
for radiation polarised parallel to the 'c' axis and one for radiation 
polarised along an 'a' axis. Below T^, the three mutually perpendicular 
axes are a, b and c, corresponding to the orthorhomb ic symmetry.

The crystal structure is built up in the following manner (Agrawal̂ '̂̂  ̂ ) 
Each phosphorus atom is surrounded by four oxygens at the corners of a 
near regular tetrahedron. Every [PÔ ] group of this kind is linked to 
four others by hydrogen bonds. These bonds are between the upper oxygen 
of one [POĵ ] group and a lower oxygen of a neighbouring group, and hence 
each adopt a form O-H-0. Each hydrogen bond of this type lies almost 
perpendicular to the 'c' axis and thus perpendicular to the ferroelectric
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axis, for this axis, the direction along which the spontaneous polarisation 
occurs, lies parallel to the 'c' axis of the tetragonal phase.

The important role played hy these hydrogen bonds in the polarisation 
of the crystal is clear from the large effect deuteration has been shown 
to have on the transition temperature. Replacement of the hydrogen by 
deuterium in KDP, leading to KD̂ POĵ , raises the transition temperature 
from 122K to 213K.

Above T^, neutron and X-ray studies have revealed that the protons 
are randomly distributed on either side of the O-H-0 bond and are not 
centred exactly between the oxygens. They can thus be considered as ' 
disordered. In passing through the transition from above, the lengths of 
the hydrogen bonds do not change significantly but below T^, the protons 
are all near the upper oxygens or near lower oxygens depending on polarity, 
resulting in an ordered arrangement. Reversal of the polarity by means 
of an electric field, for exemple, produces a shift of the hydrogen atoms 
along the O-H-0 bonds from one ordered system to another.

The ferroelectric transition in KDP is thus of the order - disorder 
type. Whilst the protons undergo the order-disorder transition at T^, 
the metal ions undergo a displacive transition from one ordered arrangement 
to another.

The ordering of the protons below T^ results in changed forces on
the other ions which result in a distortion of the crystal as a whole,
there being a small though significant shift of the other ions from their
equilibrium positions in the tetragonal phase. Since the proton shifts
at T^ are nearly perpendicular to the *c’ axis, the axis along which the
spontaneous polarisation occurs, then the 'c' axis component of such a
displacement is far too small to account for the total polarisation which
develops at T . It is far more likely that the spontaneous polarisation o
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arises from the aforementioned displacement of the potassium and phosphorus 
ions along the *c’ axis caused by complex coupling between the protons 
and these heavy ions. Indeed it has been shown by Bacon and Pease^^^^ 
that the polarisation calculated in this way agrees well with experimental 
values.

Following his double potential well model developed to explain the 
occurrence of the ferroelectric transition in generalised terms (section 
5.2), Slater^suggested that the protons in KDP occupy such double 
wells corresponding to the O-H-O hydrogen bond arrangement. He produced a 
statistical theory based on this model showing that the proton ordering 
was the origin of the ferroelectric transition.

In 1968 Kobayashi^ published a theory which assumed a tunnelling 
motion of individual protons between the two Slater potential minima in 
the presence of direct proton-proton interaction. The two positions of 
the proton in the hydrogen bond well are treated like a spin system 
described by ficticious spin +i and -3 states. He incorporated into his 
theory the strong proton-lattice interaction, the coupling of the tunnelling 
frequency of the protons to the lattice vibrations of the heavy potassium 
and phosphorus ions. This strong coupling results in a pair of optic- 
lattice-vibration modes and Kobayashi identified the low frequency
member as the ferroelectric mode which follows the soft behaviour 
predicted by Cochran, the higher frequency transverse optic mode 
remaining unshifted as the temperature is lowered towards T^.

Since, for KDP, the transition order parameter is given by the 
proton tunnelling, whereas the polarisation is determined by a transverse 
optic mode of the K-P-0 system, the material has been considered by some 
to be an improper ferroelectric, although its properties are typical of 
those of a ferroelectric. However, the strong proton-lattice interaction 
leads to a coupling between P^ and the proton ordering which, furthermore.
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is linear. They thus have the same temperature dependence whereas in a 
typical imiDroper ferroelectric the coupling is not linear. Hence KDP is a 
ferroelectric in which we are dealing with a mixed, coupled mode system and 
not just with a simple soft mode. An analysis of the coupled mode problem 
is given in the following section.

Until recently all evidence indicated that the transition in KDP was 
of second order, that is, the spontaneous polarisation P^ rises continuously 
from zero at T^. However, Benepe and Reese^^^^ in 1971 found that P^ actually 
rises discontinuously at the transition indicating a first order type 
transition. A double hysteresis loop in the P versus E relation has been 
observed, by a number of workers, just above T^ by use of an external field 
of ultra-low frequency.

5.4 THE COUPLED MODE ANALYSIS

It was described in the previous section how the onset of ferro- 
electricity in KDP involves both proton displacements (tunnelling) and some 
optical-phonon instability involving the heavier ions. This section deals 
with the experimental work performed on KDP in recent years, and its 
interpretation in terms of a coupled mode formalism which has led to a 
better understanding of the transition.

( 5 2 )In 1962 Barker and Tinkham found a low frequency highly overdsmped 
band peaking at 'v 50 cm ^ in the room temperature reflectivity spectrum of 
the KDP *c' axis. By means of its strength and temperature dependence, 
they deduced that it was the mode responsible for the interesting ferro
electric and electro-optic properties of the crystal. They could not, 
however, give a precise description of it in terms of classical oscillator 

parameters.
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Quantitative measurements of the temperature dependence of this low
( 53)frequency mode were first made hy Keminow and Damen using the technique

of Raman scattering. Their measurements revealed a broad low frequency
ferroelectric mode which they represented by a simple damped harmonic 
oscillator function in the following manner.

The classical equation for force- damped harmonic motion may be 
written as

X + rx + kx = eE(w) (5.8)

where x is the displacement parameter, T is the damping, k represents the 
restoring forces and e is the effective charge. The mass m of the particle 
is included in these definitions.

Assuming harmonic solutions E, x 'v exp iwt then (5.8) leads to

(-0)2 + iro) + k)x = eE . (5.9)
The polarisation P = ex, the product of charge and displacement, is 

also given by (3.9) which thus allows for the substitution for x in (5.9) 
yielding

2
M  = +     (5.10)

0)'^ )2-w2+irwo
where the restoring force parameter has been written in the form k = mo)2.

The Raman (Stokes) scattering intensity S(w) measured by Kaminow 
and Damen is related to the imaginary part of the susceptibility x"(w) 
by means of the fluctuation-dissipation theorem

S(w) = R[n(w+l)]x"(w) (5.11)

where .

n(iii) = j^exp ^  - i j  (5.12)

and R is a normalisation constant.
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The electrical susceptibility %(w) and the dielectric function e(w) 
are related by (3.11) and comparison with (5.10) yields

1 2
x(w) =    . (5 .13)

o (c*)2-(j)2+ir(jj)

simplification may be achieved via the limit w -► 0 which gives
,2

x(0) = . (5.1k)

Hence we may write

WqX(O)
X(w) = -----^ —  , (5.15) '

o)2-oi)2+irwo

the imaginary part of which is

w^x(0)rw
= —    (5.16)

( 0)2—(Ü 2 ) 2+p2w2

enabling us to relate to the measured scattering intensities via (5.11).

On fitting their experimental intensity curves using the oscillator 
function of (5.15), Kaminow and Damen made the following observations.

To a good accuracy

x(0) = - S _  (5.17)
T-Tc

with T^ = 117K and C an undetermined Curie constant. The damping constant 
r was large and temperature independent to within the experimental accuracy 
and the characteristic frequency o)̂ tended to zero as T and approached
a constant value for T »  T^.

To obtain a function fitting this temperature dependence they 
employed an elementary single oscillator model of a ferroelectric and 
assumed certain temperature dependences for the microscopic parameters
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which would lead to the observed dependence of (5.17).

They thereby obtained an temperature dependence of the form

w2 = /  x(0)T =-
T-T*
T (5.18)

where for the best fit to their experimental data, the high temperature 
value of 0)2, k/m = 99 cm This fit was achieved to within the experimental 
uncertainty over the range 10 l40 cm

However, by use of only a single oscillator model, Kaminow and Damen 
had neglected the strong coupling between the ferroelectric mode and the 
optic phonon mode of the same symmetry lying near 180 cm the proton- 
phonon interaction proposed by Kobayashi.

This was later pointed out byKatiyar et al^^^^ and She et al^55)^ who 
realised that only when this coupling was properly accounted for could the 
correct temperature dependence of the uncoupled soft mode parameter be found,

Barker and Hopfield^^ formulated such a coupled-optical-phonon mode 
theory in 1964 in order to explain an interference effect in the IR dispersion 
of BaTiO^ and other high dielectric constant materials. They found such an 
analysis gave greatly improved fits to their data which could not be fitted 
by any choice of parameters using uncoupled oscillators.

Their analysis took the following form. Consider a system of two 
particles with effective charges e^ and e^ coupled mutually by a spring of 
constant k^^ to fixed points by springs of constants k^ and kg 
respectively. The equations of motion of the two particles coupled 
re actively in this way may be written

ÿi + + k^gfyg - y^)

ÿg + rÿg + kgyg = e^E + k]̂ g(ŷ  - y^) ,
(5.19)
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with polarisation P = + y^eg (5.20)

Here E is the applied electric field, y^ and y^ are the displacements 
of particles 1 and 2 and the are dancing constants. The model for two 
independent oscillators is identical but with = 0.

As shown by Barker and Hopfield these equations of motion can be 
written in an equivalent way to describe two particles with resistive 
"dashpot” coupling:

*1 * “i*l “ *1® * ^12 (^2 " *1^

«2 + Ygig + = ZgE + Yi2 - Xg)
(5.21) .

with polarisation P = + XgZg (5.22)

The equivalence is given by a 2x2 orthogonal (ie a real unitary) 
transformation (u) which diagonalises the force constant matrix, with

COS0 s in S "
u =

-sinO COS0
(5.23)

= u ^1 '"l
=  U

®i
["2j M

(5.2k)

''̂l''"'̂12 '’̂12 'h o'

. ^12 ^2^12,
= u 0 ^2

u-1 (5.25)

and 0 '
= u V h s h 2

0 . h 2 2̂'"'h2
u-1 (5.26)

Multiplying out equation (5.26) leads to the following expression

for 0,
cot^0 +{(kg-k^)/k^2 }cot0 - 1  = 0 (5.27)
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The mechanical analogue of (5.21) is illustrated in Fig 5.1. The 
three "resistive" dashpots and y^^ contribute to losses by providing
velocity dependent damping for driving fields of nearly any frequency. If 
the two particles have opposite charges there exists a frequency, between 
the resonant frequencies of each of the particles, which causes them to 
move together resulting in the y^^ dashpot becoming inactive, and hence, 
a reduction in the losses.

If we assume harmonic soluctions E, x^, x^ ~ exp iwt, then from (5.21)

iwy,pZpE 
z^E + ------ --------

wZ-wZ+iwCVg+Yig)
^ O o

w2-w^+iw(Y^+Ï3^2^ *
wZ-wZ+iwCYg+Y^g)

(5.28)

ZgE +
iwYigZiE

)2-w%+iw(Yi+Yi2)
w^Y?2

w2-w2+iw(Y2+Yi2) *
w^-w^+iw(y^+Y^2^

The dielectric constant e is the sum of the contributions due to each 
oscillator plus the background term due to any higher frequency modes 

{(3.8) -+ (3.13)}

ie e(w) = + I  = + e^ + Eg (5.29)

where = z^x^/E; E^ = ZgX^/E . (5.30)

Thus substitution yields :



H T

z. +iwY, pZ 7. ! [ü)H(ü̂ +iü)(Yp+Yn o )1
= ---- -----— — ---  ^ -------- (5.31)w2-w2+iw(Yi+Yi2)+w2Yig%w2-w2+iw(Y2+Yi2)3

z^^iwYnpZ z /[w2-w2+iw(Y\+Yi9)]=  S  i --------   (5.32)
w|-ŵ +icü ( Y2"̂ 12 ̂ [w|~ŵ +iü)( Y2̂ +Y]̂ 2 ̂ 3

and hence from (5.29)

where

e(w)-E = I  = (5.33)

0. = --------- Y  (j = 1,2) (5.3k)
(1)? - 0)̂ + iw(Yj+Y^2)

is the response function of the uncoupled mode.

Alternatively, from the equations of motion for the spring coupling 
model (5.19) we may obtain

c(.)-e. = I  = (5.35)
1 - 4^010^

where
GÎ = ----------    (j = 1,2) . (5.36)
 ̂ [kj + k^2 - w2 + iwfj]

The models of (5.33) and (5.35) each have seven parameters.

There are in fact an infinite number of mathematically correct models 
to describe a coupled mode system, each with its corresponding set of 
seven parameters. The "spring" and "dashpot" couplings are two particular
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choices. These additional solutions are intermediate forms involving 
both kinds of coupling and are obtained by use of unitary transformations (u) 
which diagonalise neither the force constant matrix nor the damping matrix. 
Each model gives the same fit to data since they are equivalent to within 
the unitary transformation. However, the different models may be used to 
give insights into the physics of the vibrating system.

One consequence of the coupled node analysis may be noted from (5.33)
where it may be seen that e(w) depends on the signs of the effective charges
of the two interacting nodes, via the last term in the numerator. The
independent mode formula, however, obtained by putting = 0 is insensitive

2 2to the sign of the charges as only and appear.

Barker and Hopfield found that fits obtained using interaction 
damping for BaTiO^ and other perovskite materials were a great improvement 
in the region that could not be fitted by any choice of parameters using 
uncoupled oscillators, A third classical independent mode was added in 
each case as these perovskite structure materials all have three optically 
active modes.

Thus e(w) = + Eg + (5.37)

where and are given by (5.31) and (5.32) and

e
^ w^-w^+iwYg

zE2---- . (5.38)

It was this coupled mode formalism of Barker and Hopfield that was 
adopted by She et al^^^^ to explain their KDP ’c* axis Roman spectra in 
terms of the proton-phonon coupling. This resulted in a more complete 
treatment of the problem than that which had been performed by Kaminow 
and Damen, who neglected this interaction. Katiyar et also applied
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this analysis to treat similar coupling in CsH^AsO^ (CsDA) and KÊ AsOĵ  

(KDA).

In these and other cases where coupled mode fits were made to Raman 
spectra, a Green's function formalism of the problem was employed.

Following Katiyar, the complex susceptibility %(w) for the coupled
modes may be written in terms of the Green's functions G. .(w) and the moder J
strengths P., P. as r J

X(w) = I P.P. G. .(w)ij 1 J (5.39)

where the G. .(w) may be expressed in terms of the response functions of r J
the uncounled modes

Gi = (5.40)

from (5.39)

x”(w) = Im y p.p. G..(w)i^ 1 J 10 (5.41)

which may be related to the scattered Raman intensity S(w) by means of the 
fluctuation-dissipation theorem (5.11).

For the case of coupling between the ferroelectric mode and the 
higher frequency optic mode, let G^ = [w^-w^+iwl^] ^ and G^ = [w^-w^+iwT^] ^ 
be the response function of the uncoupled ferroelectric and optic modes, 

respectively.

The coupled mode equation may then be written as

(5.42)<̂ 11 ^12 1 0

-12 &22 0 1
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where the coupling is described by A^+iwIg^, is the force constant of 
a "spring" connecting the two oscillators having unperturbed frequencies 

and and is the damping constant of a "dashpot" connecting the 
two modes.

Thus, solving (5.42)

a

12
ab'

^  + «22 [A=+i"rab] &

«12 [A:+iwrab] + ̂

Comparison of coefficients yields

(5.k3)

a
= 1 (i)

+ «22tA"-̂ i“rabla

Ĝ j_[û2+iü>r̂ ]̂ + 12

= 0

= 0

(ii)

(iii)
(5.kk)

«12[A2+iu>r„J + 22
ab" «b

= 1 (iv)

From (ii) and (iv), elimination of yields

G.
G—  + (A2+io)r^^){ 1 - GT,(A2+iior„^)}G^ = 0
a 12 (5.k5)

Thus

12
(A=+iwrab)^«a«b-l

(5.k6)
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and from (i) and (iii) elimination of leads to

« U  «b = 1 ' (5-kT)a

Hence

= ----:----^ ----- . (5.k8)
l-(A2+iu.r^^)2 Ĝ Gĵ  

Likewise from (ii) and (iv)

G = ----    . (5,lt9)
l-(A*+iur . ) G^G.ab a b

Expansion of (5.39) gives

X(w) = ^1«11 + P|«22 + (5.50)

and substituting for the G^j

, , 4 « a  + 4 %  - 2PiPg(A:+iwr^^)G^G^
X(w)   ----------------- r-------------  . (5.51)

1 - (A=+iwrab) « A

As described previously. Barker and Hopfield pointed out that the 
equations of motion of the oscillators coupled by a spring (f^^ = O) may be 
transformed to describe oscillators coupled by a dashpot (A = 0) since 
they are connected by a unitary transformation. Thus the choice of real or 
imaginary coupling is arbitrary; both will give the same fits to spectra. 
Katiyar et al^ and She et al^ both chose real coupling (r^^ = 0) as 
they found only this produced simple temperature dependences for the 

parameters.
The expression of (5.51) may be compared with (5.33) and (5.35) by 

use of (3.8) -► (3.13) which gives
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e 1 - (6:+iwrg%)<

Thus, putting = 0 leads to (5.33) and putting = 0 leads to 
(5.35). It should he noted that the effective charges of (5.33) and (5.35) 
ie e^, Gg and z^, z^ are both pairs of opposite sign charges. To indicate 
this, a minus is attached to e^ and Zg when performing parameter fits 
(see Chapter 6), This accounts for the difference in sign of the third 
term in the numerator of (5.51) compared to (5.33) and (5.35).

5.5 FURTHER ASPECTS OF THE COUPLED MODE THEORY

The choice of real or imaginary coupling has an effect on the 
temperature at which the uncoupled soft mode frequency extrapolates to 
zero. The choice of real (P̂ .̂  = O) coupling, as used by She et al, causes 
this temperature to be necessarily lower than T^, the clamped Curie temperature 
which occurs when x(0) ™ or l/x(0) ->-0,

ie from (5.51)

[1 - a‘*GJ0)Gĵ (0)] ^ = 0 . (5.53)
^ c

This occurs above the temperature at which G (0) = -1— ■* ■»; ie <d̂ + 0.
Si

The appearance of this finite temperature gap resulting from an 
analysis with real coupling is a consequence of the proton-phonon coupling.
The divergence of x(0) Q-t T* is a property of the coupled modes and not 
of the ferroelectric mode alone.

From Kobayashi^ the coupled mode frequency üj__, with damping 

neglected, is given by
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~  (w^+w^) - . (5.54)

Now, the results of She et al may be summarised analytically as

l/x(0) « (T - 116) (5.55)

w| = 67.7 (T - 30) cm~^ (5.56)

from which it is clear that the square of the uncoupled soft mode 
frequency, is linear with temperature and extrapolates to zero at 30K, This 
dependence differs from that obtained by Kaminow and Damen using a single 
oscillator fit, (5.17). When they plotted w^, given by (5.54), as a function 
of tecperature, a linear plot was again obtained which extrapolated to zero
at the same temperature as l/x(0), ie 116K. The temperature gap, they
explained, was attributable to the level repulsion of the strong proton- 
phonon coupling which forces the coupled mode to become soft (w^ O) long 
before the extrapolated transition temperature of the uncoupled soft mode 
is reached at 30K»

If, on the other hand, the coupling is chosen to be imaginary (A = O) 

then from (5.51)

x(0) = P^G^fO) + PgG^(O) (5.5T)

*and thus x(0) and C^(0) must diverge at the same temperature T^, or in
other words, l/x(0) and (= 1/G^(0)) extrapolate to the same temperature,
*

^0-
The difference between the extrapolated temperature of 116K obtained 

by She et al and the true phase transition in KDP at 122K, may be explained 
in terms of further coupling between the ferroelectric soft mode and a soft 
transverse acoustic mode. This coupling was described by Brody and Cummins, 
(56)p and later by Reese, Fritz and Cummins^ . They extended the theory
of Kobayashi to include the piezoelectric coupling between the ferro
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electric soft mode and the x-y shear acoustic mode. As T -► the soft
ferroelectric mode frequency approaches that of the acoustic mode and the
piezoelectric interaction forces the acoustic mode frequency down until it
reaches zero. As the transition is approached from above, the phase
transition occurs when this soft acoustic mode reaches zero at T^, a few 

*degrees above Thus, the acoustic mode becomes unstable before the
optic mode has an opportunity to do so.

The difference in the transition temperatures for the acoustic and 
optic modes is a manifestation of a similar measured difference for high and 
low frequency (clamped and free) dielectric constants. This has been shown 
by Lagakos and Cummins ̂ . In order to describe the coupling of the ferro
electric mode to both the x-y transverse acoustic mode and the optic mode 
they extended the coupled mode formalism of Barker and Hopfield to a three 
oscillator model. The response function of the acoustic mode was taken to 
be of the form

G = [ŵ  - + iwr ] ^ (5.58)c c c

and direct coupling between the optic mode and the acoustic mode was 
excluded as it was considered unimportant. The coupling of the ferroelectric
mode to the optic mode was chosen as imaginary (A = O) and that between
the ferroelectric and acoustic modes was taken to be real (r^^ = O). By 
solving the coupled mode equation of the form (5.42) which now of course 
includes 3x3 matrices, the static susceptibility is given by

Pl«a + ^3«o +x(o)  --------------- :--------------------------
1 - A^„ G^G^ac a c (5.59)

If the crystal is clamped, then G^ = 0 and x(o) is again given by 
(5.5T) demonstrating that 0^(0) should diverge at the clamped Curie
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*tenqperature ascribed the value of 117.7K by Lagakos and Cummins, For 
a free crystal, the transition will occur at the free Curie temperature 
detemined by

[ 1  -  A S c G a ( 0 ) G c ( 0 ) ] T = T  =  0  . ( 5 . 6 0 )
o

For KDP the free Curie temperature = 122K, b.3K above the clamped Curie 
temperature.

Some workers reported improved fits to their KDP data by assuming a 
Debye relaxation form for the soft mode response when using the two oscillator 
coupled model. Such a Debye response has the form

x(w) = (5.61)

when the relaxation time

t ( T )  = rjT)/o)2(T) . (5.62)

However, the work of Peercy^^®^ who obtained an underdamped soft
mode in KDP by applying hydrostatic pressure showed that the mode can only 
be described by a damped harmonic oscillator and not by a Debye relaxation.

5.6 A SUT#ÎARY OF OTHER WORK ON KDP-TYPE CRYSTALS

Though much of the coupled mode theory of KDP discussed to date in
this chapter followed from Raman scattering experiments the techniques of
FTS and grating spectroscopy have also proved useful in the investigation.

(52)The earliest work of this tj'pe was that of Barker and Tinkham in 1962 
who used an IR monochromator with a wire grid polariser. It was they who 
first found the overdamped ferroelectric mode band in the *c* axis of
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paraelectric KDP,

Other work was later performed by Onyango et al^^^^ who used the
combination of a power interferometer and a grating spectrometer to obtain
reflection spectra of the â* and *c* axes of KDP at 290K and of the ’a’
axis at 125K over the range 10 - TOO cm Furthermore, they obtained
transmission data from thin polycrystalline films of KDP and correlated
these results with the dielectric functions obtained from a Kramers-Kr5nig
analysis of the reflection spectra. Similar power reflection measurements

( ̂ 7) *have been performed by Agrawal on KDP, KD P (KDgPO|̂ ) and ADP, to
supplement results he obtained using Raman techniques, Reflection measurements

( 6l) ( 62)have also been made on KDP by Kawamura et al and Sugawara and Nakamura
using far IR grating spectrometers.

The technique of DFTS has been used to investigate KDP by Gauss et
/ 8 )al who measured the *c* axis complex reflection spectrum at 300K -vrith 

an asymmetric interferometer. The spectrum was fitted with a coupled 
oscillator model of the form (5.52) using the choice of imaginary coupling,
(a = O). They also measured the complex reflection coefficient for both 

and *c' axes at w = k,62 cm ^ between 100 and 295K using a Michelson 
and a laser radiation source. Hence they were able to deduce the temperature 
dependence of the complex dielectric constants of both axes. They concluded 
that the temperature dependence of (where is the uncoupled soft mode 
frequency associated with the ’c* axis) was not linear in the range between 
T^ and room temperature but was best fitted with a formula of the type

■Î ■ .

thereby disagreeing with the linear fits obtained by other workers.

Gauss also measured the ’a* axis complex reflection spectrum at room
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tenqperature in the range 10 to 80 cm ^ and found evidence of a shoulder on 
the e" curve. This had also been found by Onyango et al^^^^ during the 
course of their power interferometric studies. This low frequency structure 
could be fitted by a heavily damped oscillator and was identified as the 
protonic mode of E symmetry which has been discussed in a recent publication 
by Havlin et al^^^^ using a theoretical pseudospin model. These authors 
found the frequency of this mode to be nearly temperature independent for 
T > T^ but strongly temperature dependent for T < T^. They concluded that 
the pseudospin formalism which predicts anomalous behaviour for the ferro
electric soft mode (a protonic mode of symmetry), necessarily predicts 
an anomalous behaviour of the protonic E mode. Quantitative temperature 
dependence measurements of this E mode have yet to be performed.

A number of workers have investigated, both experimentally and 
theoretically, the behaviour of KDP in its ferroelectric phase (ie T < 122K) 
where the crystal has orthorhombic symmetry. Amongst their power reflectivity 
results, Sugawara and Nakamura^^^^ included a spectrum for the electric 
vector parallel to the *c* axis recorded at a temperature of 83K.

Raman scattering was used to investigate KDP below its transition by 
Shigenari and Takagi^^^^ in 19T1. They found evidence of a satellite mode 
appearing on the high frequency side of the ferroelectric mode. This extra 
mode appeared on cooling the crystal below lUOK, as a shoulder at 130 cm ^ 
which was hidden under the broad ferroelectric mode at room temperature. On 
cooling further to below the transition, the mode width narrowed and its 
frequency increased. Lavrencic et analysed this underdamped
spectral feature and concluded that it was also a soft mode with a frequency 
proportional to the spontaneous polarisation. Their theoretical spectra 
calculated from a pseudospin analysis with damping included, were in 
excellent agreement with the experimental results of Shigenari and Takagi^^^^.
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This chapter summarises the theoretical and experimental work on 
ferroelectrics which is relevant to the measurements that have been performed 
with the power and polarising interferometers. Various other important but 
less relevant aspects of ferroelectric theory have been omitted but may 
readily be found described in recent literature. They include the recently 
theoretically predicted central modes, a peak at w ^ 0 which grows in 
intensity as T ->• T^. The existence of such modes has been confirmed by 
various Raman experiments including the work of Lagakos and Cummins ̂ ,
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CHAPTER 6

A DISCUSSION OF THE RESULTS OBTAINED VTITH 
THE POLARISING INTERFEROMETER

6.1 INTRODUCTION

The performance of the polarising interferometer was rigorously 
assessed at each stage in its development to detect any defects in the 
various components. Primarily the testing consisted of performing repeated 
ratioed run pairs, area Y divided by area X (section U.5), with the two 
mirrors in the two arms to check the reproducibility of the complex 
calibration spectra. This provided an insight into the limitations due to 
various instrumental factors such as micrometer backlash, instrumental 
alignment, the flatness of the mirrors and wire grids, and the quality of 
motion of the phase modulated mirror.

The high frequency cut-off of the wire grid beam dividers was near 
250 cm ̂  and so to avoid aliasing effects a stepping increment (%*) of 5 pni 
was used corresponding to an aliasing frequency K = 500 cm ^ (2.^5). This 
micrometer step length was twice the smallest that could be achieved with 
the stepping motor used. No spectral information was lost by 'double' 
rather than * single* stepping (K = 1000 cm and the time taken to record 
each data run was halved.

Fig 6.1 illustrates three throughput *amplitude* spectra |p(v)| 
obtained with mirrors in the two arms of the evacuated polarising inter
ferometer and using a quartz window Golay detector. Each of the three 
spectra corresponds to a different vibrational amplitude of the phase 
modulated mirror achieved by altering the power (v) supplied by the 
oscillator driving the mirror vibrator. As discussed in the previous
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chapter, this has the effect of shifting the peak of |p(v)| within the 
spectral range, an effect clearly shown by Fig 6,1. Curve *a* was obtained 
by optimising the power delivered by the oscillator (v = 9.5 ciV) to give the 
largest possible Golay signal from the aligned interferometer at the grand 
maximum of the interferogram. Curves *b* and *c* were obtained by respectively 
’underblowing* (v = 5 mV) and ’overblowing* (v = 25 mV) the phase modulation.
In the case of curve *c*, the effect of the envelope Bessel function imposed 
by the phase modulation is clearly recognisable.

For the majority of studies undertaken a resolution of ̂  5 cm ̂  was 
adequate. This was achieved by recording double-sided interferograms each 
of 400 double (5 um) steps (2.10). The resolving power of the instrument 
could be conveniently assessed by recording a water vapour spectrum.
Published results show a large number of narrow absorption lines in the far 
IR. The spectrum is easily measured by ratioing the mirror calibration 
spectrum obtained with air in the interferometer against that obtained from 
the evacuated interferometer. A spectrum obtained in this manner is 
illustrated in Fig 6.2. The lines indicated are listed in a reference of 
wavelength standards in the IR^^^^. The spectrum was computed from a 
’single side* interferogram scan whereby the moving mirror traversed 200 
steps up to the position of ZPD and continued beyond for a further 2000 steps. 
This corresponds to a resolution of 0.5 cm ^ which is slightly degraded in 
the final computed spectrum by the apodisation process. The leading 200 
points were required by the ’single side scan* computer program to detect 
and computationally relocate the position of zero path difference at an 
actual sampling point. The water vapour interferogram, recorded from the 
unevacuated interferometer in the manner just described is shown in Fig 6.3.



132

6.2 ALKALI HALIDE STUDIES

Alkali halides are a good subject for spectroscopic studies in the 
far IR because of their distinctive reststrahlen region. Previous DFTS 
work has been done mainly on however, for studies using the
polarising interferometer, CsBr and Csl were chosen, for the reststrahlen 
band of each lies comfortably within the working range of the instrument.

The major problems encountered during these studies were in preparing 
the samples for measurement in the interferometer. Both the Cs salts 
investigated are hygroscopic, and so prolonged exposure of the crystals to 
the air had to be avoided. The crystals were polished flat to ~ 0.2 ym 
(ie 'V' ±0.1 ym) across the reflecting surface of 1” diameter. It was soon 
discovered that the flatness of these samples deteriorated with time. The 
deterioration was hastened by repeated cooling to low temperatures. The 
surface flatness was thus checked after each set of measurements and if 
necessary, the crystal was repolished.

After polishing, the crystals were aluminised in an evaporator. A 
mask was used in order that a 0.6” diameter area of exposed crystal surface 
remained at the centre of the crystal. The thickness of the aluminium film 
exceeded 0.3 ym, thus the problems due to skin-depth, discussed in section 
U.5, were overcome. Any errors in the amplitude spectra due to this cause 
that were still present were smaller than those in the reproducibility of 
repeated amplitude measurements.

Upon installing the sample in the interferometer, the screens were 
carefully aligned to eliminate crosstalk between the aluminised and exposed 
crystal areas. Care was also taken to ensure that the exposed area was 
free of specks of aluminium. The effect of these specks, crosstalk or 
scmple flatness outside the required tolerances was particularly apparent
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at the point in the crystal spectrum where the amplitude reflectivity drops 
to a minimum on the high frequency side of the reststrahlen resonance. In 
the region of this minimum, which is characteristic of an alkali halide, 
excess noise has a marked effect on the phase spectrum and must therefore 
he avoided in order that accurate dielectric function values can he obtained.

The complex reflectivity spectra of CsBr and Csl, measured using the 
polarising interferometer, are shown in Figs 6,h and 6.5, and the ensuing
dielectric functions are illustrated in Figs 6.6 and 6.7. The TO and LO
frequencies are given and may be compared to those of Lowndes and Martin^

Assuming these functions can be fitted by an oscillator model according
to (3.119) then A(w) and f(w) the self-energy and damping functions respectively
can be derived and are shown in Figs 6.8 and 6,9. The self-energy calculated
in this manner by fits to the dielectric functions is the sum of two 

E . .components, A which is frequency independent and arises from thermal 
expansion and A“̂(w) arising purely from enharmonic interactions. In order 
to isolate the enharmonie contribution A^(w), knowledge of A^ must be
acquired. Lowndes^^^^ has obtained such information for Rbl, Csl and TlCl
using high pressure far IR studies.

6.3 INITIAL Al̂ -ÜBIENT TEMPERATURE STUDIES OF KDP AND ADP

Ferroelectric KDP was first investigated, along with anti-ferroelectric 
ADP, at ambient temperature using an early version of the polarising 
interferometer^^^). In this early form, the phase modulation was provided 
by the loudspeaker arrangement sho^m in Fig U.7 and the output focussing 
was performed by polythene lenses rather than the all—reflecting output 

optics system adopted later.

Both the ’a' and 'c' axis spectra were obtained for KDP and ADP. The
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-1results over the range hO - 210 cm are illustrated in Figs 6.10 to 6.15. 
They are in good agreement with previous published data including that of

(t)Birch et al in which the first direct measurements of the complex 
reflectivities of both axes of KDP and the "a* axis of ADP are reported, 
and with earlier work involving Kramers-Kronig d e t e r m i n a t i o n s ^ .

The e" curve for the KDP 'c* axis should exhibit a maximum in the 
region of 50 cm associated with the ferroelectric transition, but in these
initial measurements this was not resolved.

The sensitivity of the dielectric functions of both KDP and ADP to 
small changes in the phase spectra is illustrated by the dotted and dashed 
curves in Figs 6.11, 6.12, 6.1b and 6.15. These curves show the effect of 
errors of ±0.1 of a sampling step (ie ±0.5 ym), on the computed dielectric 
functions. The dotted and dashed curves correspond, respectively, to shifts 
which increase and decrease the phase of the computed reflectivity, by an 
amount linearly proportional to the frequency. This has little effect on 
the positions of the various features in the spectrum but changes the 
magnitudes of the features quite markedly in seme cases.

6.U TEMPERATURE DEPENDENT INVESTIGATIONS 
OF THE KDP FERROELECTRIC »c* AXIS

In order to improve upon the results presented in section 6.3, certain 
modifications described in Chapter b were made to the polarising inter
ferometer. These included changes in the phase modulation system and the 
use of all-reflecting output optics. This later version of the polarising 
interferometer was used for temperature dependent studies of the KDP *c*

axis(7°).

The complex reflectivity spectra of the 'c* axis of KDP at 300, 200,
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175 and I5OK are shown in Fig 6.I6 and the resulting dielectric functions 
are displayed in Fig 6.I7. The results were obtained from two crystals 
purchased from different sources and no significant difference was observed 
in the spectra obtained from them.

( 52 )The overdamped band, found by Barker and Tinkham , in the 300K e”
curve which peaks at about 50 cm ^ has been resolved.

To account for the coupling in the KDP ’c* axis spectrum between the
the : 
,(lb)

“1soft mode and the higher frequency optic mode lying near I80 cm , the results
were fitted using the coupled mode formalism of Barker and Hopfield 
discussed in Chapter 6.

Both resistive *dashpot' and reactive ’spring' coupling fits were 
performed to the KDP spectra using equations (5.33) and (5.35) respectively. 
In each case, j = 1 was taken to designate the ferroelectric soft mode and 
j = 2, the optic mode. Each model has seven parameters, the set 
(y^+y^g), (yg+y^g), y^g, was used for resistive coupling and the set

(k^Hk^2 »̂ r^, Ig, e^, -e^ was used for reactive coupling
following Barker and Eopfield. The effective charges are of opposite sign 
and to indicate this a minus sign is attached to e^ and z^.

The parameters obtained via the fits are listed in Tables 1 and 2.
For both sets of parameters the value = 3.2 was used^^’̂ ^^, and only the 
results above bO cm ^ were employed in the fits. Also included in these 
tables is the equivalent notation for the parameters as used by other 
workers who employed the same coupling model.

The use of the Barker and Hopfield notation clearly illustrates the 
problem that arises when the resistive coupling model is employed. This 
problem, encountered by Barker and Hopfield, has since become obscured by 
the different notation adopted by other workers^^^. It is immediately



136

H3
II

H H ro (jOVwH -3 o OO VJ3 g O« W

w  w
CO ON 03 W

"-QCD

VJl

CD

W
ro

ro\oU)

f  vn 
CD o 
0 3  —3

■tr-4ro

IN') VJ1
- 3 H LO W
O O O CD
O O O O

(jO LO w LO
ON - 4 VO - 3
U ) VO ro COo O o Oo O o o

o mM, A
0 H*
1 t
W CD

« S-
'"o
p-a
Oa w.

HU)VO fU)

-4CT\

VOVO

CO
0 3

H
S

VOo\

8

ro

efONJ

H-"

p W
p P

p - S '
«4 CD
D3 4
H *
ca

% P *

P W

P w
CD
c+ H *

9
CO

H
p i

o
B N I H

ro

p e I roro ro

l iro

o

Q ro

y ro

I
I
p.IP
fi
03 H*
<g
g
CD

4 
CD 
ax H* 
CQ 
rh  H*
g
g-I
»
01s04
0g

‘X)

c+
CD4
toI
p.
gpi

:
s *
CD0
1H*O
p.
H)
ax

cfO
s
CD

H3
S



137

w pip4 W
W

et- H
01 p>

v noo vn00vo00\o

oo00 oo

ooroLO vn
oo

ro H  
—' ro

ro
VJ1vo Q ro©CT\

a* N>

ro
oo

ON
vn

Ia>4I
&

g
P
P
03 
H*
g
g(P
4(D
I

4
H*

0
1
K

&
O

;

S*
RCQ
I
PH*P
PpiI
c+
g"
4
8“
H*

E

Cl
c+
O
c+
?

S
ro



138

evident from Table 1 that all cases hence Yg < 0 and so
we have the unphysical occurrence of a negative resistance in the high 
frequency mode. The resistive model should thus be treated simply as a 
mathematical curve fitting exercise and not as a description of the physical 
situation. Consequently, the author prefers to use reactive coupling as did 
She et al(55).

In this version, it is found that in two cases the spring constant 
is negative, but this simply means that the low frequency oscillator would 

be unstable by itself, and that the overall stability is maintained by the 
spring coupling to the other oscillator.

The clue to what is happening is the very small value of e” at ~ 135 
cm ̂  (Fig 6.17). This minimum can be described as follows. The heavily 
damped soft mode is not being driven here because the direct coupling to 
the radiation field is cancelled by the indirect coupling through the high 
frequency mode. The low value of e" caused by this "interference" requires 
firstly that any danping in the coupling and in the high frequency mode must 
be small, and secondly that the effective charges must have opposite signs, 
since the interference takes place below the frequency of the high frequency 
mode. Any attempt to describe the situation by using resistive coupling 
leads to the use of an unphysical compensating negative damping in the high 
frequency node. The reactive mode, however, only requires a low value of 
Pg and opposite signs for the effective charges. There may be some damping 
in the coupling but it cannot be very large; a recent paper by Wehner and 
Steigmeier^^^^ discusses the need for more information before the choice of 
one set of parameters can be physically justified.

The resistive parameters are listed so that comparison can be made 
with results obtained by other w o r k e r s ^ ^ . The main difference is that
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the values obtained, the square of the ferroelectric mode frequency, are 
consistently larger due perhaps to a lack of accurate data below cm 
However, the trend in these values does exhibit the soft behaviour of this 
mode.

Theoretical fits to the dielectric functions using the reactive "spring" 
coupling model are illustrated in Fig 6.18. The parameters obtained can be 
compared with those of She et al^^^^. Here the (k^+k^^) values are higher 
than those of She but show the expected "softening" whereas the 
values are temperature independent to ±1%.

Fits using the reactive model were also performed on three modified 
300K spectra. These spectra were obtained by ±1% changes in the experimental 
p curve and by shifting the «ÿ curve by the equivalent of -0.020 of a sampling 
step (ie 0.020 x 5 pm). This corresponds to a phase shift which is linearly 
proportional to the frequency and typically produces a change of -1^ at 
136 cm ^ in the ({) spectrum. In this way, the effects on the parameter values 
of errors in the measured spectra could be observed.

The parameters changed by only 1.% due to the modifications in the 
amplitude. However, the model appeared to be sensitive to shifts in the 
phase spectrum. The phase shift used gave the following parameter values.
The figures in brackets show the difference between these values and those 
given in Table 2, obtained from the unmodified spectra.

= 551 (+5%) ; = 186 (+3%)

kj_+kĵ  = 21600 (+11%); kg-l = 26100 (+2%)

= 248 (+9%); Ig = 4.3 (-40%); = 15900 (+6%)

One of the important regions in the spectra is the phase minimum 
between the two modes. The division of field technique gave 3.2±0.5° at
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300%, 2.5+0.05° at 200% and 2.3+0.5° at 175K and I5OK as the phase at the 
minimim. Simulated curves show no significant variation of the phase ^

/o \
at this point with ( . Measurements by Gauss et al at 300K show
almost zero phase at this point indicating decoupling of the soft mode to 
the electric field.

Because of the limit on the accuracy of the phase measurements the 
uncorrected (f) curves, obtained by replacement of the crystal by the mirror 
were "phased-up" to 3^ at 300% and 2.5° at 200, 175 and 150K at the minimum.

Due to the minimum in e" 1 at 136 cm and the corresponding low 
value for the absorption coefficient ((3.33) and (3.39)), this dip in the 
spectrum is particularly suited to investigations by transmission spectroscopy, 
Such investigations, which are far more sensitive to changes of phase than 
those obtained by reflection techniques, are described in Chapter 7»

The trends in the curves of Fig 6.I6 and 6.17 below 1̂ 0 cm ^ illustrate 
the importance of obtaining better low frequency data, for most of the 
effects produced by cooling manifest themselves in this region. The over
damped e" band associated with the ferroelectric transition, which peaks 
at 'V 50 cm ^ at 300%, peaks at lower frequencies as the temperature drops 
towards the transition temperature. Resolution of this band at these lower 
temperatures necessitates the use of a liquid helium cooled detector. Such 
a detector is now available in the laboratory and it is hoped that its use 
will enable the spectra to be extended down to at least ^ 5  cm and 
consequently enable better theoretical fits to be made.
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CH/iPTER 7

POWER FTS MEASUREMENTS ON KDP

7.1 INTRODUCTION

Transmission spectroscopy has, in certain cases, advantages over 
reflection studies. One such advantage is that accurate values of the 
phase change on reflection at a surface, the phase reflectivity, may he 
calculated from power transmission data. To obtain values of similar 
accuracy by reflection studies requires high quality dispersive measurements. 
Consequently, in addition to providing further information on crystal 
properties, the possibility arises of checking the performance of the 
polarising interferometer by power transmission measurements.

The main problem that arises when performing such measurements on
KDP-type crystals is the high optical absorption in the spectral region
of interest which necessitates the use of extremely thin single crystals.
The difficulty of thinning down specimens to thicknesses at which a
measurable amount of energy is transmitted has been by-passed by previous
workers. Onyango et al^^^^ have published results obtained from poly-

(72)crystalline films of KDP whilst Aref'ev et alyused suspensions of KDP 
powder in paraffin. However, their results fail to provide all the 
information required on the various parameters involved.

Fortunately, in KDP there exists a region in the far IR 'c' axis 
spectrum where the imaginary part of the dielectric constant e”, which 
governs the optical absorption, falls sufficiently to allow crystals of 
thicknesses 150 ym to transmit radiation. The e" curves for the KDP 
*c* axis. Fig 6.17,obtained dispersively, show e” falling to low values 
at V 135 cm ^ and first indicated the possibility of transmission measure
ments, Following these dispersive results, the first transmission measure-
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merits on a single KDP crystal were performed by Gledhill et al in this 
laboratory. Their result displayed the 300K 'ĉ  axis transmission as a 
sharp spike peaking at 136 cm with a width of ^ 10 cm and a height 
of 1.3% for a specimen of mean thickness 120 ym,

Fuithermore, the dispersive curves of Fig Sl'J show that on cooling 
towards the transition, e” drops even lower in the region of the spectral 
window indicating that transmission measurements should become easier as 
the crystal is cooled due to the greater transmitted energy.

To supplement the dispersive results obtained with the polarising 
interferometer and to obtain further information on the nature of the 
ferroelectric transition in KDP, the room temperature measurements of 
Gledhill et al have been repeated and extended to low temperatures, down 
to and beyond the ferroelectric transition temperature.

7.2 THE THEORY OF TRANSMISSION THROUGH A THIN CRYSTAL

Fig 7.1 shows a beam of radiation of unit intensity incident normally 
on a parallel sided slab of crystal of thickness d. The transmitted 
and reflected beams up to and including the fifth multiple internal 
reflection are included. R and T are the normal incidence power reflection 
and transmission coefficients respectively, and a is the absorption 
coefficient of (3.39).

Allowing for multiple reflections, the power transmission (T) is 
given by the sum of the transmitted beams

T = (1-R)2 exp[-ad]. { 1 + R^x + R^x^ + ... } (7.1)

where x = exp[-2ad].
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This is a converging series, the sum of which is

T = (1-B)^ erpf-aal _ (yg)
1-R^ exp[-2ad]

It is important to consider the contribution of the multiple
reflections to the transmitted energy. This may be done by investigating

« 2the ratio T^/T where T^ = (l-R) exp[-ad] is the contribution of the primary
transmitted beam and T is given by (7.2).

Thus T^/T = 1 - R^ exp[-2ad] . (7.3)

By considering the dispersive results obtained with the polarising
interferometer an approximate value may be attached to the ratio of (7.3).
The results of Gledhill et al show that the spectral region under con
sideration is 'V 130 - lUO cm From Figs 6l6 and 617, to good approximations, 
R = |p|2 'v 20% and e^/G^ ^ 1 in this region for temperatures between 150 
and 300K.

Using equations (3.33) and (3.39) we obtain

“ = #  (7-4)

where X is the wavelength of the radiation. In addition, the use of 

(3.90) yields

2tt'
" X eo

(7.5)

By inserting the approximate values for X, e"/e^ and R, and assuming 
a crystal of thickness d I50 ym we obtain

ad = 1+.86 .

Hence from (7.3):
T /T = 1 - (0.2)2 exp[-9.Y2] = 1 - (2.Ü x 10"°).
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However, because of the exponential factor in (7.3) we should 
investigate the ratio T^/T more thoroughly, particularly as Fig 6.17 
indicates that e” decreases as the temperature is lowered. If, for example, 

falls by an order of magnitude to a value of 0.1, then ad « 0.U86,
and

T^/T = 1 - (0.2)2 exp[-0.972] = 1 - 0.015.

Thus, even in this extreme case T^ = T and hence we may justifiably 
ignore multiple reflections. The transmitted power is therefore

T = = (1-E)2 exp[-ad] . (T.6) '

Equations (7.%) and (7.6) yield

f  ■ I k  ^  ■ (T.T)o

The values of obtained using this expression may be used to
calculate values of (}), the phase change on reflection at a surface, via 
(3.IOU), which was derived from the Fresnel relations and has the form

9 = tan"^ ( •  1-- } (for »  k^) . (7.8)
o n(n -1)

7.3 THE EXPERIMENTAL METHOD

More than twenty samples of X-cut KDP (ie *a* and 'c' axes in the
plane of incidence) of varying thicknesses between 100 ym and 250 ym were
used for the low temperature transmission measurements. All the samples

2had an area 1 cm . One of the great advantages of power FTS over DFTS 
is that sample preparation is comparatively simple. The tolerances on the 
sample flatness are far greater than the ±0.1 ym required for accurate
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DFTS studies. Consequently the samples for FTS are much simpler and 
cheaper to prepare. Each specimen was obtained by polishing down a single 
crystal of KDP grown in this laboratory by a precipitation method. Care 
was taken to ensure the orientation of the *ĉ  axis in the final specimen 
was kno’tm though this could be checked by X-ray analysis.

The spectra were obtained using the power interferometer described in 
Chapter U and the tenperature control system was similar to that used with 
the polarising interferometer giving stability to ±0.25K anywhere between 
90 and 300K.

It is evident from the theory (7.7) that in order to calculate values 
for and hence (|) at points in the IR spectrum from power transmission
data, information on the power reflection (R) in that spectral region is 
required. Some of this information could be obtained from the dispersive 
results. However, in addition to the power transmission, power reflection 
measurements were performed over the same temperature range using the 
interferometer in the reflection mode. Once again, the samples used were 
cut from single crystals of KDP grown in this laboratory. After recording 
interferograms by reflection from the sample, the sample was then aluminised 
whilst still held in the sample mount which was detachable from the base 
of the "cold finger" dewar. Background calibration spectra were then 
recorded from the aluminised sample. Thus the area of the reflection surface 
was identical for both crystal and calibration measurements.

The reflection measurements were performed at an angle of incidence of 
20°, technically necessitating the use of a correction (section 3.5) to 
obtain the normal incidence spectra. Figs 7.2 and 7.3 display the spectra 
recorded at an angle of 20° (R^q ). The normal incidence spectra (R^) are 
very similar to R^q in the region under investigation. However, the values
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of the power reflection used to calculate e" and <j) from the transmission 
data were corrected to the normal incidence values. Tj-pically, =
(26.0 ± 0.5)% at 136 cm ̂  on the 300K curve gives a corresponding value of 
Rq “ (23.9 ± 0,5)%. This value is calculated using the optical constant 
values derived from the dispersive results.

For the reflection measurements it was necessary to employ a polariser 
placed in the beam before the sample and orientated so as to ensure the 
'c' axis alone was being measured. Due to the finite width of the polarising 
strips, use of the polariser has the unfortunate but unavoidable result 
of reducing the throughput energy of the instrument by a, factor in excess 
of three. This is not a real disadvantage for the reflection measurements 
as the reflected energy incident on the Golay detector is plentiful. But, 
for the transmission measurements where the measurable energy is already 
extremely small due to the high absorption of the sample, use of the 
polariser is highly undesirable.

Fortunately, the relatively high value of e^/e^ (Fig over the
measured region, excludes the possibility of any measurable radiation 
being transmitted in the direction of the 'a* axis. Thus, no polariser 
was required when recording the crystal transmission spectra though it was 
used to check the results. The calibration mirror spectra against which 
the crystal spectra are ratioed can then either be measured using the 
polariser in the correct orientation or corrected to allow for its absence, 
taking into account the polarising effect of the mylar beam divider in the 
interferometer (Fig U.U).
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T.H DISCUSSION OF RESULTS

The power reflection spectra (Rg^) are illustrated in Figs 7.2 and 7.3. 
The results for T > T^ compare favourably with the dispersive results of 
Fig 6.16 and other power reflection measurement g( \  Published 
results for T < T^ are scarce, though a qualitative comparison may be 
made with the power measurement of Sugawara and Nakamura^ performed 
at 83K.

The power reflection studies were primarily undertaken to obtain 
reflectivity measurements in the region of the transmission window, required 
in order to calculate phase values from the transmission measurements. 
However, extending the spectral range to higher frequencies by changing to 
a thinner mylar beam divider would yield more information on the behaviour 
of KDP below the transition and allow a better comparison with the result 
of Sugawara. Clearly there is much work that could be done in this area.
If dispersive measurements are attempted below T^, great care must be taken 
to ensure that the stresses that accompany the phase transition do not cause 
the expensive and carefully prepared samples to crack. One sample shattered 
in just this manner. Power reflectivity measurements below T^ have the 
advantage that the samples are cheap and easy to prepare and thus, to a 
certain degree, expendable.

The power transmission results are summarised in Table 3. The results 
given for each temperature are average values obtained from repeated 
measurements on many samples. The phase values listed are in close 
agreement with the corresponding results obtained dispersively (Fig 
and give a good indication of the accuracy to which direct phase measure
ments may be made with the polarising interferometer. This accuracy 
appears to be well within the error of ±0.5°, at 136 cm assigned in 
Chapter 6.
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Two typical interferograms recorded during the course of the measure
ments are illustrated in Fig 7.^ and three transmission spectra, for crystals 
of thickness d as given, which were typical of the many obtained, are 
illustrated in Fig T*5« The gain factor of the ordinate should be noted 
when comparing the three spectra shown, each of which was arrived at by 
averaging at least three interferograms for both sample and calibration 
spectra.

Besides providing the phase values in the window region, the power 
results also provide qualitative information on the ferroelectric behaviour 
of KDP, The transmission window indicates the position of the gap between 
the soft ferroelectric and the optic modes, shown in the dispersive results 
of Fig 6.17, where the value of eJJ is a minimum. The results presented in 
Table 3 show that on cooling towards the transition at T^, the value of 
the minimum in the e” curve falls, with a corresponding increase in the 
transmission at this point in the spectrum. The minimum also moves to 
slightly higher frequencies on cooling. Such behaviour is predictable from 
the dispersive results and to this degree, the two sets of results correlate.

On cooling to below the transition these trends continue, the 
transmission increasing still further as drops to even lower values at 
the minimum which itself continues to move slowly up the frequency scale. 
However, as shown in Fig 7*5, when the temperature falls sufficiently, the 
crystal begins to become transparent in the low frequency region 80 cm 
Evidence of this first appears on reaching lOOK. The 92K curve of 
Fig 7.5 shows a significant amount of radiation is transmitted in this 
region at this temperature. On cooling further, results indicate that 
the energy transmitted by this low frequency region greatly increases.
When the temperature reaches ~ 85K, the energy transmitted by the higher 
frequency window is negligible in comparison. Accurate quantitative
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measurements have not yet, however, been performed at temperatures lower 
than 92K.

The results obtained below the transition temperature are in 
qualitative agreement with the Raman scattering results of Shigenari and 
Tagaki^^^). From their Raman intensity curves the possible occurrence of 
a low frequency window at temperatures below 'v lOOK can be predicted. In 
addition their results, which cover the range from 300K to 93K indicate 
that, as has indeed been found, the higher frequency window exists throughout 
this temperature range and would not be expected to shift significantly 
in the spectrum.

The transmission results are an aid to the understanding of KDP in 
its ferroelectric phase and to the determination of parameter values for 
models describing its behaviour, particularly when considered along with 
the Raman results of Shigenari. However, extensive IR reflection studies 
should greatly help to clarify the mode behaviour, in particular the 
existence of a further soft mode, below the transition.

7.5 A SHORT DISCUSSION OF EXPERIMENTAL ERRORS

As stated previously, the results in Table 3 were obtained by 
averaging a number of equivalent results from measurements on over 20 
different samples, though no sample was measured over the whole temperature 
range covered in the experiment. The errors assigned to the dielectric 
function and phase values are the standard errors in these mean values and 
indicate the perhaps surprisingly good agreement of repeated results.

The most significant error in an individual result was caused by 
measurement of sample thickness though any systematic errors present were
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minimised by the use of a number of different samples. The samples were 
ground down to the required thickness by hand in a fairly crude manner 
though the finished result was spectroscopically acceptable for power 
transmission measurements. The mean thickness was calculated from measure
ments of the sample surface area, its weight and its known density. The 
error in the value calculated in this manner is estimated at ±10%, a figure 
that should also take account of the variation in thickness across the 
sample. This error, when carried through the various stages in the 
calculations, leads typically to errors of ±0.3° and ±0.1^ in the phase 
values at 300K and 112K respectively, as calculated from a single result 
rather than from an average of repeated results.

The sample temperature could be stabilised to better than ±0.25K 
using the thermostatic control system described in Chapter k. However, the 
sample temperatures quoted are estimated to be in error by ±2K due to 
problems encountered in temperature measurement during the power FTS studies. 
In particular, the thermocouples used could not be attached to the sample 
but were attached instead to the sample mount as near the sample as possible. 
Thus, the likely existence of a temperature gradient between the mount and 
the area of the sample in the radiation field would lead to incorrect 
sanple temperatures being recorded.
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CHAPTER 8 

CONCLUDING RE!#RKS

The direct experimental measurement of the optical constants and 
the dielectric response of solids in the far infrared, vhich provides 
knowledge invaluable to the understanding of the dynamics of crystal 
lattices, became a reality following recent advances in the technique of 
dispersive Fourier transform spectroscopy. This technique was firmly 
established by several workers including Parker et who have
recently reported the first results of temperature dependent dispersive 
reflection studies on a number of different materials.

For reasons discussed in Chapter 4, extending the range of such 
investigations to the extreme infrared, an important spectral region in 
the study of many materials, notably ferrcelectrics, requires the solution 
of a number of severe technical problems.

The design and construction of a polarising interferometer which 
overcomes these problems has been described in Chapter U and results 
obtained with it have been presented in Chapter 6. The instrument represents 
a significant advance in Fourier transform spectroscopy, allowing low 
frequency temperature dependent dispersive reflection studies to be performed 
for the first time.

The present working range of the polarising interferometer is
-1approximately 20 - 235 cm when used with a Golay detector. However, 

results in this range should be greatly improved and the range itself 
extended down to 'v 2 cm ^ by the use of the liquid He cooled Ge bolometer 
which has recently become available in the laboratory.

An enormous amount of time and effort was put into solving numerous
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experimental problems that arose during the construction of the interferometer
and in evaluating the performance of the instrument at each stage in its
development. A major problem lay with the fine tolerances required of the
flatness of the optical components which is dictated by the accuracy
required of the measured phase values. The mirrors, flat to well within
the set limits, were obtained commercially, but the wire grid beam dividers
were wound by the author using 10 ym diameter tungsten wire to a modified
form of a design obtained from the National Physical Laboratory. The grid
frames incorporated a simple tensioning system which greatly improved the
flatness of the dividers and thereby removed a major source of phase errors.
A possible future development would be the design of a more complex "wire-
stretching” system to further improve the grid quality. The use of finer
grids is planned, wound with the 5 pm. diameter wire now available. The
employment of these grids in the polarising interferometer would allow the

-1high frequency cut-off to be raised towards 500 cm and consequently 
improve the quality of the optical alignment.

At present the accuracy of phase measurement appears to be limited by 
the optical quality of the specimen reflecting surfaces and not by factors 
in the instrumental design. This was particularly apparent with the measure
ments on the Cs salts where the specimen surfaces appeared to deteriorate 
with time leading to poor reproducibility of results. The problem was much 
less evident with the KDP samples. The careful preparation and subsequent 
care of samples requires further investigation in order that the potential 
of the polarising interferometer be fully realised.

The KDP studies, using both the polarising interferometer and a 
conventional power interferometer, have provided further valuable information 
for the study of ferroelectric behaviour and the mechanism of the phase 
transition in KDP at 123K. The results obtained are discussed in detail in
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Chapters 6 and 7 and are in good agreement with previously published data, 
where this is available. The use of the Ge bolometer detector should 
greatly improve the quality and extend the range of these encouraging 
results and lead to better correlation between experimental and theoretical 
studies.
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DISPERSIVE REFLECTION SPECTROSCOPY 
IN THE FAR-INFRARED

T. J. P arker,*! D. A. Ledsham!  and W. G. Chambers!
W estfield College, U niversity  o f L ondon , L ondon , N W 3 7ST, U .K . 

{Received  28 August 1975)

A bstract— T echniques are  described for m aking  dispersive reflection m easurem ents on solids be
tween ab o u t 5 an d  500 cm " ' an d  a t tem pera tu res above 77 K using F o u rie r spectrom eters 
equipped w ith dielectric o r w ire grid  beam  dividers a n d  used in the asym m etric  m ode. In terfero- 
gram s can be recorded  with a positional accuracy  of ± 0 1  g m  w hich is independen t o f the 
specim en tem pera tu re , an d  the perfo rm ance o f the in strum en ts is illustra ted  w ith am plitude 
reflection m easurem ents on  crystals o f N aC l and  C sl a t ro o m  tem peratu re . T he ensuing  dielectric 
response functions are  also given and  the T O  and  L G  m ode frequencies taken  from  these are  in 
good  agreem ent w ith  published data . In the case of N aC l the self-energy and  dam ping  functions 
are  also com pu ted  from  the d a ta  and  the results a re  in reasonab le agreem ent w ith theoretical 
calcu lations by H isano  et al.

IN T R O D U C T IO N
During the past few years important advances have been made in the use of dispersive 
Fourier transform spectroscopy for the determination of refractive index spectra in the 
far infrared from transmission m e a su r e m e n ts ,^ a n d  for obtaining the optical constants 
or dielectric functions directly from measurements of amplitude and phase reflection 
spectra.̂''"®'

Although it is well known that there are advantages in certain circumstances in obtain
ing the phase spectrum directly from dispersive reflection measurements rather than 
from a Kramers-Kronig analysis of the power reflectivity^® the technique is not widely 
used because o f the difficulty of measuring the phase with sufficient accuracy. Ideally, 
the phase accuracy would be limited only by the signal to noise ratio in the normal 
way. However, this requirement imposes severe constraints on the permissible error 
in the location of each interferogram on the micrometer scale. For instance, a signal 
to noise ratio of 100 at a frequency v =  300 cm “  ̂ implies a phase accuracy =  1/100 
rad, corresponding to an absolute positional error Ax between the recorded sample 
and reference mirror interferograms of only Ax 1 /4 7 tv  x  1/100 =  0 0 3  gm, and it is 
the difficulty o f finding a technique for comparing reference mirror and sample phase 
spectra with this accuracy over a wide temperature range which has been the main 
obstacle to further development o f dispersive reflection spectroscopy.

EXPERIMENTAL

We have recently described a phase modulated Fourier spectrometeF®’̂  ̂ with which 
dispersive measurements can be made on suitable solids by either reflection or transmis
sion in the frequency range from 20 to 500 cm ” h In this instrument, which is equipped 
with a dielectric beam splitter, the phase errors which usually result from the mechanical 
replacement of reflecting surfaces are avoided by metallising part of the specimen surface 
for use as a phase reference surface. The technique, which has been successfully used 
at room temperature and 100 K, is suitable for many applications, and the phase accu
racy is independent o f the specimen temperature and is illustrated in Fig, 1. The dashed 
line shows the mean of three phase spectra obtained with a reference mirror using a

* O n leave o f absence at the D ep artm en t o f Physics, N o rth easte rn  U niversity , B oston, M A 02115, U.S.A. 
t  D ep artm en t o f Physics.
Î  D ep artm en t o f M athem atics.
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Fig. 1. D ashed  curve show s the phase o f the m ean o f three ratios o f background  pairs. Solid 
curves show the deviations of phase o f each ratio  from  the phase o f the m ean.

1.00

160
80

120
d eg s60 100

«0 - 60
- 4020 - 20

0.00 300100 150 200 350
Fig. 2.

FREQUENCY CM

M agnitude  r  and  phase (j) o f reflectivity am plitude  o b ta ined  for N aC l a t 300 K. R eso lu tion
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Fig. 3. Real an d  im aginary  p arts  (e'. e" respectively) o f dielectric function ob ta ined  from  (1)

for N aC l a t 300 K.
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Fig. 4. D am ping  an d  self energy functions (F an d  A respectively) ob ta in ed  from  (2) for N aC l
a t 300 K.

6 25 /ÜT1 mylar beam splitter, and the solid lines show the deviation of each phase 
spectrum from the mean. The interferometer was optically realigned at the position  
of zero path difference before each measurement so the reproducibility is limited by 
positional errors which arise during realignment and depend on the Golay detector 
noise level, as well as by positional errors due to the micrometer backlash. Errors 
due to the lack of flatness in the M ichelson mirrors are insignificant but there may 
be a significant contribution from the flatness of the beam splitter. It is clear from 
the figure that the overall positional error does not exceed the noise level, indicating 
that the instrument is performing satisfactorily with a positional accuracy o f better 
than OT/im. Similar phase reproducibility is obtained with specimens o f 2-5 cm dia 
either at room temperature or at low temperatures. However, the flatness o f the specimen
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Fig. 5. M ag n itu d e  r an d  phase (j) o f reflectivity am plitude  o b ta ined  for C sl a t 300 K. R esolution
is ab o u t 5 cm "  \
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surface becomes the limiting factor in most measurements. The lower frequency limit 
can be conveniently extended to about 20 cm ” * by changing to thicker beam splitters.

The performance of this instrument is illustrated in Fig. 2 with measurements of 
the amplitude and phase reflection spectra of NaCl at a temperature of 300 K, and 
the related dielectric functions calculated from**°*

61 6

80

40 -

886

-4 0

4 0  60 80
Frequency cm"

100 120

Fig. 6. Real an d  im aginary p arts  (e', e" respectively) o f dielectric function ob ta in ed  from  (1)
for C sl a t 300 K.

(1)
are shown in Fig. 3. If it is assumed that the dielectric functions can be fitted by 
an oscillator model according to the formula****

g ' +  ie" =  G ^  +  cu§(Go -  e ^ ) / [ c ü 5  -  cô  +  2coo(A -  i f j ] (2)
where coq is the oscillator frequency, then A(co) and F(ca), the self energy and damping 
functions respectively, can be obtained from the data shown in Figs. 2 and 3 and they 
are shown in Fig. 4 for the limited frequency range available from these measurements. 
The parameters were chosen as €q =  5 90, e ,  — 2 30 and cuq =  164 cm “ *, and the results 
for F and A are in reasonable agreement with the theoretical curves o f Hisano et a/.**** 
with the exception of the feature at about 235 cm ” * which is not present in the theoreti
cal curves.

This technique should be particularly useful in circumstances in which K K  analysis 
is difficult as, for instance, in the study of soft mode behaviour in ferroelectric crystals**"*, 
but it would be preferable if the lower frequency limit o f the spectrometer could be 
reduced without loss o f phase accuracy. This is difficult with a conventional Michelson 
interferometer because of the poor efficiency of dielectric beam splitters at low frequen
cies, combined with the disadvantage of the appearance of additional unwanted interfer
ence minima on increasing the beam splitter thickness, but these limitations are avoided 
in a polarising interferometer with a wire grid beam splitter.**^*

With these considerations in mind we have constructed a polarising interferometer 
with suitable modifications to enable dispersive measurements to be made as a function 
of temperature as described above. Two wire grid beam dividers constructed of 10 ûm 
tungsten wire with 25 //m spacing are used in a configuration similar to that employed 
by Chamberlain et a/.**'*'* This allows dispersive reflection or transmission measurements 
to be made at normal incidence in the frequency range from about 7 to 200 cm ” * 
using a Golay detector, and the limitation on the phase accuracy is again found to 
be about 01 jum for the same reasons as before.

The amplitude and phase reflection spectra of a Csl crystal measured at room tem
perature in the region of the restrahlen band with the polarising interferometer are
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shown in Fig. 5, and the resulting dielectric functions calculated from the Fresnel rela
tions***** are shown in Fig. 6. These results are in good agreement with published data.
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A bstract— A polarising  in terferom eter designed for dispersive reflection m easurem ents on  solids 
betw een ab o u t 5 an d  210 cm "   ̂ a t tem pera tu res betw een 77 K. an d  300''K. is described and  
its perform ance illu stra ted  with m easurem ents o f the com plex reflectivity spectra  o f C sl, K D P  
and  A D P  at 300°K in the range 4 0 -2 1 0 cm "* . T he dielectric functions resu lting  from  these 
spectra  are  given and  are  in good  agreem ent with pub lished  data . In  add ition , the self energy 
and  d am ping  functions are  com pu ted  for C sl. D evelopm ents for fu ture m easurem ents dow n 
to  77°K and  5 cm "*  are discussed.

INTRODUCTIO N
The use of dispersive Fourier transform spectroscopy (DFTS) for the determination 
of the optical constants or the dielectric functions directly from measurements of the 
amplitude and phase reflection spectra in the far infrared has been firmly established 
over the past few years,**~^* This method has well-known advantages over conventional 
Fourier transform spectroscopy where the phase is constructed from a Kramers-Kronig 
analysis of the power transmission or reflection.

The advantages of a polarising interferometer over a conventional Michelson with 
dielectric beam splitters, for DFTS in the range 5 -2 1 0 cm ” * have been discussed in 
various articles,*"'^* In the conventional instrument the poor efficiency of the dielectric 
beam splitters at low frequencies combined with the unwanted interference effects, leading 
to a strongly frequency-dependent transmissivity, make reducing the low frequency limit 
to 20 cm ” * and beyond extremely difficult, Flowever, these problems are avoided in 
a polarising interferometer with wire grid beam splitters which have a constant transmis
sivity up to a frequency inversely proportional to the grid spacing.

In this paper we describe a polarising interferometer and initial measurements made 
with it on crystals of Csl, ferroelectric K H 2P O 4 (KDP) and antiferroelectric N H 4H 2P O 4 
(ADP) at 300°K. The technique reported in previous articles*^’*** of division of the field 
o f view in the fixed arm of the interferometer, eliminating errors due to mechanical 
replacement of reflecting surfaces, is used. This enables interferograms to be recorded 
with a positional accuracy of ~  ±0.15  /im,

EXPERIMENTAL METHOD

The basic form of the instrument is illustrated in Fig. 1. The design is an extension 
of the conventional instrument with dielectric beam splitters.**’̂ ’®* Two grid beam split
ters are used in a configuration similar to that employed by Chamberlain et and 
are constructed of 10 fim tungsten wire with a spacing of 25 /<m, using a technique 
developed by them at the National Physical Laboratory, Teddington, Middlesex. Having 
emerged from the collimator, the unpolarised radiation is incident upon the grid A 
which reflects a plane polarised beam towards grid B, the wires of which are at 45° 
to the plane of polarisation of the incident radiation. The component of this radiation 
with its jE-vector perpendicular to the grid wires is transmitted into the moving mirror 
arm, whilst the parallel component is reflected into the fixed arm. Following reflection

t  O n leave of absence at the D ep artm en t o f Physics, N o rth easte rn  U niversity , B oston, M ass. 02115, USA, 
until S eptem ber 1976.
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Collimating
mirrors

Mercury
lamp

Phase modulation

Quartz
goiay
detecto r

Polythene
lens

Wire grid /  
beam  spiitters Moving mirror

Fixed
refiector

Fig. 1. Schem atic d iagram  of the polarising interferom eter.

from the moving mirror and the fixed mirror (or sample) the beams follow the same 
transmission and reflection laws on their return to grid B, and pass onto grid A, which 
now acts as an analyser. The components of each beam with their E-vectors perpendicu
lar to the wires of A are transmitted by A and interfere according to the difference 
in the optical paths of the two beams in the instrument. Thus, an interferogram is 
obtained in the usual way by displacing the moving mirror about the position of zero 
path difference.

Other modifications include the use of phase modulation, described in a previous 
article,^ achieved by mounting the moving mirror on the cone of a loudspeaker, and 
the design of a new mounting arrangement for the fixed reflector, based on one that 
has been successfully employed before.*®’ Using this arrangement (Fig. 2) the fixed reflec
tor could be accurately aligned with a precision of 0.15 i-im at any temperature between 
77 and 300°K. Changing the reflector was a simple task, and it could also be rotated 
through any angle without first being removed from the mount, a great advantage 
when studying the different axes of ferroelectric crystals.

With the temperature of the interferometer stabilised to within 0.25"C using a tempera
ture controlled water supply circulating through cooling tubes attached to the arms, 
cubes and lamp housing, it was found that within one hour of installing the mount 
and evacuating the instrument to the working pressure of 10“ ’ Torr, movement of 
the fixed reflector surface due to thermal instability was negligible.

Spring
strip

Nylon
bolt

Aperture pixed 
0.95 in.dio reflector

Copper

Fig. 2. T he fixed reflector m ount.
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Although using this mount, replacement of reflectors in the fixed arm could not 
be achieved to within 0 .15 /mi, use of the division of the held of view technique gave 
phase reproducibility to within + 1 ”. This technique has been fully described before, 
however, the geometry of the screens has been modihed (Fig. 3) and is such that the 
possibility of cross-talk between the areas X  and 7  has been eliminated.

Four interferograms are again required. Firstly, with the hxed gold mirror installed 
and aligned on the outer ring X,  interferograms are recorded from parts X  and Y. 
These are Fourier transformed and the resulting spectra ratioed to give a calibration 
spectrum. Then, with the crystal installed and again aligned on the outer ring X  which 
has been metallised with gold, two more interferograms are recorded, from part X  
and from part Y, the exposed specimen surface. On ratioing the resulting spectra.

Fixed re fle c to r

\ VOS'*" V

Fig. 3. T he geom etry o f the screens and  the division o f the field o f view a t the fixed reflector.

the complex reflection spectrum of the specimen is obtained and then, systematic errors, 
caused by asymmetry between the areas X and Y and differences in the two arms, 
are reduced by re-ratioing against the calibration spectrum.

The crystals used were either 1 in. dia or 1 in. square and were metallised so as 
to leave a 0.6 in. dia exposed area of the specimen surface at the centre. Previous 
measurements^ used 2.5 in. dia specimens with exposed surfaces of approximately 1 in. 
dia. However, the excessive cost and general unavailability of suitable ferroelectric crys
tals of this size necessitated adapting the technique for use on smaller crystals without 
loss of phase accuracy due to the reduction in the energy reflected from the smaller 
specimens. This has been achieved to the extent that the phase reproducibility now  
appears to be limited, not by lack of energy, but by the flatness of the specimen surface.

DISC USSI ON  OF RESULTS  

To improve the signal to noise ratio which, for an individual crystal measurement 
was of the order of 100: 1, each pair of interferograms was recorded at least four times. 
An average pair of interferograms was then obtained which were Fourier transformed 
in the usual way. Before each pair was recorded, the interferometer was optically rea
ligned at the position of zero path difference. Thus, the reproducibility of successive 
pairs from the same fixed reflector is limited by positional errors due to realignment, 
dependent on the Golay detector noise level, and micrometer backlash. Reproducibility
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to ±  I" was obtainable in practice, thus with a sampling step length of 5 //m, giving 
a 5 0 0 cm " ' c u t - o f f ^ t h i s  implies a positional accuracy A x ~ 0 .1 5 / im  at 150c m 'b

Below about 4 0 c m ~ ‘, the reproducibility of the results is impaired by lack of energy, 
due in particular to the low frequency cut-off imposed by the use of phase modulation. 
The ferroelectric spectra are shown with faint lines in this region, as further measure
ments are required before the spectral features can be published with any confidence.

This, of course, is the region of interest when ferroelectrics such as K D P  are being 
studied, for it is here that the soft modes lie. The use of amplitude modulation which, 
although noisier than phase modulation, has no low frequency cut-off, and other modifi
cations are at present being investigated to improve the performance of the instrument 
below 40 c m ' \  The results will be published in a later article. Ultimately for results 
below about 7 c m " \ the Golay cell will have to be changed for a liquid Helium cooled 
detector.

120ICO

80  -
- 9 0

60

4 0  -

30
20

20 40 60 80 100 120 140 160

F requency, c m -'

Fig. 4. T he m agnitude and  phase reflection spectra o f C sl a t 300°K. T he reso lu tion  is 5 c m 'b

(!) Csl Results

Alkali halides are a good subject for spectroscopic studies in the far infrared because 
of their distinctive restrahlen region. Previous work has been done mainly on 
however, for this work, Csl was chosen as its restrahlen band, along with that of CsBr, 
are the only two of the common alkali halides to lie comfortably within the working 
range of the instrument. Unfortunately, the hygroscopic nature of Csl introduced un
wanted problems into the measurements and care had to be taken to avoid prolonged 
exposure of the crystal to the air.

The reflection spectra of Csl at 300"K are shown in Fig. 4 and the related dielectric 
functions calculated from

+ ic" = [(1 -F re'‘̂)/(l — (1)
are shown in Fig. 5. The values coro =  62.2 cm '^ and culo =  90.3 c m o b t a i n e d  from
these functions are in good agreement with published data,^ -̂  ̂ and are more accurate 
than those published previously.^^’ Assuming these functions can be fitted by an oscil
lator model according to

= ̂00 + (̂tg(̂o — ̂oo) [<̂ To — oĵ + 2 cuto(A — (2)
then A(co) and r{co) the self energy and damping functions respectively, can be obtained
and are shown in Fig. 6 . The parameters were chosen as Cq =  6.54 and =  3.02.̂ ^̂ ^

(ii) The K D P  and ADP results

Both the ‘a’ and ‘c’ axis spectra were obtained for K D P and ADP. The results.
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Fig. 5. T he real an d  im aginary  p arts  (e',e" respectively) o f the dielectric functions for C sl at
300“K.
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Fig. 6. T he dam ping  and self energy functions (T and  A respectively) for C sl a t 300°K.
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Fig. 7. T he m agnitude an d  phase reflection spectre o f K D P  a t 300"K for rad ja tio n  polarised  
(a) parallel to a-axis, (b) parallel to  c-axis. T he reso lu tion  is 5 cm  \
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Figs. 8 and  9. Solid curves: T he real and  im aginary parts respectively o f the dielectric functions 
o f K D P  at 300"K for rad ia tion  polarised, (a) parallel to a-axis, (b) parallel to  c-axis. D o tted  
and  dashed curves: Effect o f erro rs o f + 0 .1  o f a  sam pling step o n  the calcu lated  dielectric

functions.

Figs. 7-12, over the range 4 0 -2 1 0 cm ”  ̂ are in good agreement with previous published 
data including that by Birch et in which the first direct measurements of the
complex reflectivities of both axes of K D P and the ‘a’ axis of A D P are reported, and 
earlier work involving Kramers-Kronig determinations.^ 14- 16)

The e" curve for the K D P ‘c’ axis should exhibit a maximum in the region of 50 cm ” \  
associated with the ferroelectric transition but this has not been resolved. However, 
the improvements in the performance of the instrument below 40 cm ” ,̂ mentioned 
earlier, should solve this problem.

The sensitivity of the dielectric functions, of both K D P and ADP, to small changes 
in the phase spectra is illustrated by the dotted and dashed curves in Figs. 8, 9, 11, 
12. These curves show the effect of errors of ±0.1 of a sampling step (ie ± 0 .5 /im) 
on the computed dielectric functions. The dotted and dashed curves correspond, respect
ively, to shifts which increase and decrease the phase of the computed reflectivity, by 
an amount linearly proportional to the frequency. This has little effect on the positions 
of the various features in the spectrum but changes the magnitudes of the features 
quite markedly in some cases.

CO NC L U D IN G  REMARKS  
Besides the use of amplitude modulation to improve the low frequency performance 

of the instrument, other developments are being investigated.
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The stability of the instrument has already been tested at low temperatures. It is 
now possible to control the temperature of the crystal to within ~  0.25’’C anywhere 
between 90'’K and BOO'̂ K using a cryogenic temperature controller and a system of 
thermocouples and heaters in conjunction with a dewar of liquid nitrogen. Improving 
the working pressure from ~  10"^ Torr to better than 10“  ̂ Torr should eliminate 
or delay the ‘1cing-up” of the crystal surface caused by water vapour inside the instru
ment condensing on it. At present this gradual “icing-up” process doesn’t allow sufficient 
time for repeated measurements on the cooled crystal after allowing time for the tem
perature, and then the output at that temperature, to stabilise.

Use of “all-reflecting” output optics to replace the polythene lenses is also being 
considered as the lenses absorb a large proportion of the energy that would otherwise 
be incident on the Golay nose. Since the grids themselves act as low pass filters, 
none of the usual black polythene filters are required and so removal of the lenses 
would eliminate all absorbing material from the path of the radiation from source 
to detector, excepting, of course, the crystal.

With these developments and the use of a liquid Helium cooled detector, the measure
ment of spectra down to about 5cm"^ and 1 1 "’K  should be possible to the required 
accuracy, allowing plots of the soft mode frequency of various ferroelectrics, such as 
K D P, vs temperature, to be obtained down to their ferroelectric transition temperature.

A particular advantage of the design of this polarising interferometer is that by replac
ing grid A by a mirror, an aluminised mylar beam splitter is used in practice, and 
grid B by a mylar beam splitter, transferring the Golay to the vacant port of the other 
cube converts the instrument to the more conventional Michelson.^ Thus, changing 
the thickness of the mylar beam splitter enables a new range of frequencies, greater 
than 210 cm to be studied.
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A bstract— D ispersive m easurem ents o f the c axis com plex reflectivity spectra  o f K H ^ P O ^  in 
th e  range 20-235 c m “ k  from  300 dow n to  150°K, ob ta in ed  using a  po larising  in terferom eter 
are  presented. T h e  resulting  dielectric functions are  ca lcu lated  an d  th e  results a re  analysed  in 
te rm s of coupled  m ode theory . T h e  m odel p aram eters ob ta in ed  by curve-fitting, using b o th  
reactive “spring” coupling  and  resistive “d ash p o t” coupling , a re  listed an d  com parison  m ade 
w ith those ob ta in ed  by o th er w orkers. F o r  b o th  m odels, the “soft” frequency values are  h igher 
th an  those o f o th er au th o rs , p robab ly  because o f the lack o f reliable low frequency data .

IN T R O D U C T IO N

Recent advances in the technique of dispersive Fourier transform spectroscopy (DFTS) 
have led to far infrared measurements of the complex reflectivity spectra of various 
alkali halides, particularly KBr, at 300°K and and of certain ferroelectrics
at room tenrperature/^-s) The development of a polarising interferometer and initial 
results obtained with it for the reflection spectra of Csl, ferroelectric K H 2P O 4 (KDP) 
and antiferroelectric N H 4H 2P O 4 (ADP) at 300°K have been described in a previous 
article/̂)

D ue to the considerable interest, both experimental and theoretical, shown in K D P  
and similar ferroelectrics, Raman scattering and power spectroscopic measure- 
ments^^®“^̂  ̂have been performed on such materials down to and beyond their ferroelec
tric transition temperatures. Through this work, which began with measurements by 
Barker and Tinkham,^^^’ a coupled-mode picture of the infrared spectra of K D P  type 
ferroelectrics has been formulated.

In this paper we describe dispersive reflection measurements performed on the c axis 
of K D P , with the polarising interferometer, from 300 down to 150°K. The results are 
discussed in terms of the coupled-mode formalism.

EXPERIMENTAL METHOD

Descriptions of the polarising instrument, which employs two wire-grid beam dividers, 
and of the measuring technique, have been given in detail previously,^^’̂ *̂  ̂ though certain 
modifications have brought improvements and simplifications to both.

An all-reflecting output optics system has been developed to replace the polythene 
lenses. This increases the through-put energy of the instrument by more than 100%, 
since the lenses absorbed a large proportion of the infrared radiation. Since the grids 
themselves act as low pass filters, none of the usual polythene filters are used and 
the polythene absorption lines in the measured spectra have been eliminated.

Phase modulation is produced by vibrating a mirror, at 45° to the propagation direc
tion, mounted in a right-angled unit halfway along the moving mirror arm. This arrange
ment is similar to that used by Birch et The vibrator used, makes this arrangement 
capable of a far wider range of modulation frequencies with far larger amplitudes than 
were possible with the system previously employed,^^' and gives improved stability. These 
aspects are especially important as the use of a liquid Helium detector is being con
sidered for low frequency measurements below ~  3 0 cm ~ h

165
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Although the wire grids, which cut-off above 250 cm “ ,̂ and the Golay detector, the 
efficiency of which falls off rapidly below about SOcm"^, limit the working range of 
the instrument, the profile o f the through-put spectrum could be altered within this 
range by changing the amplitude of the phase modulation. This has the effect of shifting 
the peak of the energy spectrum, thus enabling more accurate results to be obtained 
by concentrating the energy in different regions of the range.

The working pressure for the low temperature measurements has been reduced 
to <  10“  ̂ Torr and no significant “icing-up” of the crystal surface occurred during 
low temperature experimental runs. These runs had a duration of up to 5 h.

The measuring technique was simplified in the following way. The division of the 
field of view method^^’̂ ’̂ was again used. Partly aluminised crystal surfaces and screens 
enable the phase to be measured directly after a correction has been made to allow 
for the thickness of the aluminising film (:^ 0.1 ^m). This method eliminates the need 
for exact replacement of the crystal by the fixed mirror, though a series of four interfero
grams is required.

However, in addition, interferograms were recorded from the whole unaluminised 
crystal surface which was then replaced by the fixed mirror from which an interferogram 
was also recorded for calibration purposes; no screens were used at all. When the 
spectra obtained by Fourier transform from these crystal and mirror interferograms 
were ratioed, a true measurement of the crystal amplitude reflection spectrum was 
obtained. This was providing the lamp intensity and various other experimental factors 
did not change significantly between the crystal and mirror measurements. However, 
as the crystal surface had not, indeed could not, be replaced exactly by the mirror 
surface, the phase spectrum obtained had to be corrected for the error in the zero 
path. Knowledge of the exact phase at a particular point obtained from spectra measured 
using the division of field technique, together with a knowledge of the theory, enabled 
this correction to be made.

The advantages of this method were that unlike the division of field technique where 
about 50% of the crystal surface was covered by the aluminising layer, the whole of 
this surface could be utilised for the recording of crystal data, thus giving a large increase 
in the reflected energy. In addition, only two different interferograms were required 
to achieve a final result though prior knowledge of certain phase points is required. 
The two techniques thus go hand-in-hand and gave a series of spectra which were 
averaged to give the results presented in this paper.

The low temperature measurements were obtained using a liquid nitrogen dewar fixed 
to the sample chamber of the interferometer and in good thermal contact with the 
crystal mount. A feedback system comprising of a 40 W  thermostat heater, controlled 
by a cryogenic temperature unit, and two thermocouples, held the crystal mount at 
the required temperature. Stability to ~  0.1°K could be obtained in practice anywhere 
between 90° and 300°K. This was achieved within 5 min for small temperature 
steps ~  25°K and took up to about 30 min for changes of ~  150°K.

RESULTS AND CURVE FITTING  
The amplitude and phase reflection spectra for the c axis of K D P  at 300, 200, 175 

and 150°K are shown in Figs. 1(a) and (b) and the resulting dielectric functions are 
displayed in Figs. 2(a) and (b). It should be noted that the results were obtained from 
two crystals purchased from different sources and no significant difference was observed 
in the spectra obtained from them.

The overdamped band in the 300°K e" curve which peaks at about 5 0 cm “  ̂ and 
is associated with the ferroelectric transition has been resolved. This feature was found 
by Barker and Tinkham in 1962.̂ ^̂  ̂ Quantitative measurements of the temperature 
dependence of this low frequency mode were first made by Kaminov and Damen, 
using Raman scattering, who fitted their data to a simple damped harmonic oscillator 
function.
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Figs. 1(a) an d  (b). T he am p litu d e  (r) an d  phase (<̂ ) reflection spectra , respectively, o f the  c 
axis o f K D P . T he reso lu tion  is 5 c m " \

More recent Raman experiments^®’̂  ̂ have revealed that the ferroelectric soft mode 
is strongly coupled to an optic phonon mode of the same symmetry lying near 180 cm" ^ 
Barker and Hopfield^^^^ formulated a coupled-optical-phonon mode theory in 1964 in 
order to explain the i.r. dispersion of BaTiOa and other high dielectric constant mater
ials. They found such an analysis gave greatly improved fits to their data which could 
not be fitted by any choice of parameters using uncoupled oscillators.

This coupled mode theory has been used to analyse the spectra of K D P  and similar 
materials^^"^'^) where, once again, spectra could not be interpreted by superposition 
of independent oscillators, and will be used in the discussion of our present data.*

* T his theo ry  has been fu rther developed recently, for the  ferroelectric soft m ode is also  coupled  piezoelectri- 
cally to  a  soft acoustic  m ode.'^*’*^' T hus, a th ree-m ode form alism  has been p u t forward'®’ w hich has been 
used to  explain  th e  occurrence o f a  finite tem p era tu re  g ap  betw een the ferroelectric tran sitio n  tem p era tu re  
and  the  tem p era tu re  a t w hich the  frequency of the ferroelectric soft m ode goes to  zero.
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Following Barker and Hopfield^^^’ we consider two particles of unit mass with effective 
charges and £2 , coupled mutually by a spring of spring constant k ^2  and to fixed 
points by springs of constants and respectively. The equations of motion for 
the two particles are;

ÿi +  Fiÿi +  ki^j =  £ i E  +  ^12(^2 -  ki)

ÿl "F ̂ 2̂ 2 T &2̂ 2 — ̂ 2̂  F k%2 (yi ~ y2) 
with polarisation P  =  +  ^2^2-

Here E is the applied electric field, and y 2 are the displacements of particles 1 
and 2, and the P,- are damping constants.
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Figs. 2(a) an d  (b). T he real (e') and  im aginary  part, (e") respectively, o f the dielectric functions
of the c axis o f K D P .
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As shown by Barker and Hopfield, these equations of motion can be written in an 
equivalent way to describe two particles with resistive “dashpot” coupling. The equiva
lence is given by a 2 x 2 orthogonal transformation which diagonalizes the force con
stant matrix to give:

Xi +  yiXi +  wjxi =  ziE +  yi2 {^2 -  ^1)
x'2 +  y2X2 +  w j x 2 =  Z 2 E  +  yi2 {xi -  X2)

with the polarisation P  =  XjZi +

If we assume harmonic solutions E, x^, ~  e'"’* then from (2) the dielectric function

(2)



170 D . A. L e d s h a m , W. G. C h a m b e r s  an d  T. J. P a r k e r

is given by

where

=  wj  - « :  +  m(yj  +  T,7)

is the response function of the uncoupled mode.
The dielectric function for the case of reactive “spring” coupling is similarly obtained 

using (1). For the analysis of our K D P c axis spectra we take j  =  1 to designate the 
ferroelectric soft mode and j  =  2, the optic mode.

The model described by (3) has seven parameters. We use the sets Wj, w l ,  {y  ̂ +  y ,]) , 
(72 +  712), 7i 2, Zi, - Z 2 for resistive coupling and {k  ̂ +  (k  ̂ +  k^ )̂, k i2, f i ,  ^ 2,
€i, — 6 2  for reactive coupling following Barker and Hopfield. The effective charges are 
of opposite sign and to indicate this we have attached a minus to 6 2  and 22.

There are in fact an infinite number of mathematically correct solutions to the dia- 
gonalization of the force constant matrix each with its corresponding set of seven par
ameters. The “spring” and “dashpot” couplings are two particular choices.

We have performed both “spring” and “dashpot” coupling fits to our K D P  spectra 
and the parameters obtained are listed in Tables 1 and 2. For both sets of parameters 
we took the value =  3.2 from Gauss et and only used the results above 40 cm "  ̂
in the fits. Also included in these tables is the equivalent notation for the parameters
as used by other workers who employed the same coupling model.

The use of Barker and Hopfield notation clearly illustrates the problem that arises 
when the resistive coupling model is employed. This problem, encountered by Barker 
and Hopfield, has since become obscured by the different notation adopted by other 
workers.^^'^) It is immediately evident from Table 2 that (72 +  712) <  7i2 io all cases, 
hence y2 <  0 and so we have the unphysical occurrence of a negative resistance in 
the high frequency mode. We should thus treat the resistive model simply as a mathema
tical curve fitting exercise and not as a description of the physical situation. Conse
quently we prefer to use reactive coupling as did She et alP^

In this version we find that in two cases the spring constant is negative, but 
this simply means that the low frequency oscillator would be unstable by itself, and 
that the overall stability is maintained by the spring coupling to the other oscillator.

The clue to what is happening is the very small value of e" at ~  135 cm"  ̂ [Fig. 
2(b)]. This dip can be described as follows. The heavily damped soft mode is not being 
driven here because the direct coupling to the radiation field is cancelled by the indirect 
coupling through the high frequency mode. The low value of e" caused by this “interfer
ence” requires firstly that any damping in the coupling and in the high frequency mode 
must be small, and secondly that the effective charges must have opposite signs, since 
the interference takes place below the frequency of the high frequency mode. Any attempt 
to describe the situation by using resistive coupling leads to the use of an unphysical 
compensating negative damping in the high frequency mode. The reactive model, how-

T ab le  1. P aram eters  ob tained  from  theoretical fits to  the experim ental d a ta  using th e  reactive “spring” coupling
m odel

B arker &  H opfield 
analysis param eters

E quivalen t no ta tio n  
of She et aP ^

(cm ') 

Pa

^2 , 
(cm

P t

+  ki2  
(cm'̂)

Wa

k i  +  k i2  
(cm “2)

Wb

P i 
(cm h

Pa

P i
(cm

P ,

k\2
(cm"h

A ^ (G , =  0)

T  =  300°K 526 181 19,500 25,600 228 7.2 15,000
200°K 589 182 18,200 26,300 229 2.3 16,500
175°K 581 181 15,800 26,200 211 4.0 16,100
150°K 589 181 13,100 25,900 180 4.1 15,600
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T ab le  2. P a ram eters  o b ta ined  from  theoretical fits to  the experim ental d a ta  using the resistive “d ash p o t”
coupling  m odel

B arker &  H opfield 
analysis param eters

E quivalen t n o ta tio n  
o f G au ss et alP^

(cm 0

M l

(cm

M 2

w l
(cm

w l

(cm

w j

7i +  yi2  
(cm 0

yi

72 +  712 
(cm 0

72

7 i 2 
(cm 0

F  (A =  0)

T  =  300°K 293 472 7300 37,800 140 96 108
200°K 352 507 5300 39,200 143 88 110
175°K 363 488 4100 37,900 139 76 99
150°K 388 478 2700 36,300 125 59 81

ever, only requires a low value of and opposite signs for the effective charges. There 
may be some damping in the coupling but it cannot be very large; a recent paper 
by Wehner and Steigmeier^ discusses the need for more information before the choice 
of one set of parameters can be physically justified.

COMPARISONS A ND ERRORS
The resistive parameters are listed so that comparison can be made with results 

obtained by other workers.^^’^̂ The main difference is that our wj  values, the square 
of the ferroelectric mode frequency, are consistently larger due perhaps to a lack of 
accurate data below 40 cm " h  However, the trend in these values does exhibit the soft 
behaviour of this mode.

The parameters obtained for the reactive model can be compared with those of She 
et alP^ Here the (kj +  k i2) values are higher than those of She but show the expected 
“softening” whereas the (kj +  k i2) values are temperature independent to ~  ±1% .

Fits using the reactive model were also performed on three modified 300°K spectra. 
These spectra were obtained by ±1%  changes in the experimental r curve and by 
shifting the (j) curve by the equivalent of —0.020 of a sampling step (i.e. 0.020 x 5 /xm). 
This corresponds to a phase shift which is linearly proportioned to the frequency and 
typically produces a change of —1° at 136 cm"  ̂ in the cj) spectrum. In this way, the 
effects on the parameter values of errors in the measured spectra could be observed.

The parameters changed by only ~  1% due to the modifications in the amplitude. 
However the model appeared to be sensitive to shifts in the phase spectrum. The phase 
shift used gave the following parameter values. The figures in brackets showing the 
difference between these values and those given in Table 1, obtained from the unmodified 
spectra.

=  551 ( +  5% );^2= 186( +  3%);ki +  ki2 =  21600(4-11% ); 

k2 + ki2 = 26100( + 2%)
F] = 248( + 9%);F2 = 4.3(-40%);ki2 = 15900( + 6%).

One of the important regions in the spectra is the phase minimum between the two 
modes. The division of field technique gave 3.2 ±  0.5° at 300°K, 2.5 +  0.5° at 200°K  
and 2.3 ±  0.5° at 175°K and 150°K as the phase at 136 cm "h Simulated curves show  
no significant variation of the phase 0  at this point with (k̂  4- k i2)- Measurements 
by Gauss et  at 300°K show almost zero phase at this point indicating decoupling 
of the soft mode to the electric field.

Because of the limit on the accuracy of the phase measurements the uncorrected 
(j) curves, obtained by replacement of the crystal by the mirror were “phased up” to 
3° at 300°K and 2.5° at 200, 175 and 150°K at 136 cm" h

D ue to the minimum in e" ( ~  1 at 136 cm"^) and the corresponding low value for 
the absorption coefficient,^^this point in the spectrum is particularly suited to investiga
tions by transmission spectroscopy. Such measurements are far more sensitive to changes 
of phase than those obtained by reflection techniques.

Initial transmission measurements on a 0.17 mm thick crystal of K D P  at 300°K dis
played the ‘c’ axis transmission as a sharp spike peaking at ~  135 cm "h They also gave
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indication of a similar phase value to the 3.2° obtained by the reflection studies.^^®  ̂
Further such measurements at lower temperatures are planned to give a good fix 

on the behaviour of 0  in this spectral region, and hence accurate phase reference points 
for calibrating the reflection data.

CONC L U D IN G  REMARKS

The trends in the curves of Figs. 1 and 2 below 40 cm"^ illustrate the importance of 
obtaining better low frequency data, for most of the effects produced by cooling manifest 
themselves in this region. The overdamped e" band, associated with the ferroelectric 
transition, which peaks at ~  50 cm"  ̂ at 300°K, peaks at lower frequencies as T drops 
towards the transition temperature.^^ To resolve this band at these lower temperatures 
necessitates the use of a Helium cooled detector. It is hoped that such measurements 
will commence shortly, enabling the spectra to be extended down to at least ~  5 cm"^ 
and consequently better theoretical fits to be made.

Initial results have been obtained at 125°K, just above the transition temperature 
Tc =  122°K, but a further problem was encountered. On cooling the crystal to 125°K 
the temperature sometimes overshot and fell below before the thermostat heater 
restored the system to equilibrium at 125°K. Thus, the crystal undergoes the transition 
from its paraelectric to ferroelectric phase. The stresses in the crystal that accompany 
this transition have caused one sample to crack. However, this “overshoot” can now 
be prevented by taking extra precautions with the cooling process.
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