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Abstract

In a world that is increasingly relying on digital technologies, the ability to securely
communicate and distribute information is of crucial importance. Cryptography
plays a key role in this context and the research presented in this thesis focuses on
developing cryptographic primitives whose properties address more closely the needs
of users.

We start by considering the notion of robustness in public-key encryption, a
property which models the idea that a ciphertext should not decrypt to a valid mes-
sage under two different keys. In contexts where anonymity is relevant, robustness
is likely to be needed as well, since a user cannot tell from the ciphertext if it is
intended for him or not. We develop and study new notions of robustness, relating
them to one another and showing how to achieve them.

We then consider the important issue of protecting users’ privacy in broadcast
encryption. Broadcast encryption (BE) is a cryptographic primitive designed to
efficiently broadcast an encrypted message to a target set of users that can decrypt
it. Its extensive real-life application to radio, television and web-casting renders
BE an extremely interesting area. However, all the work so far has striven for
efficiency, focusing in particular on solutions which achieve short ciphertexts, while
very little attention has been given to anonymity. To address this issue, we formally
define anonymous broadcast encryption, which guarantees recipient-anonymity, and
we provide generic constructions to achieve it from public-key, identity-based and
attribute-based encryption. Furthermore, we present techniques to improve the
efficiency of our constructions.

Finally, we develop a new primitive, called time-specific encryption (TSE), which
allows us to include the important element of time in the encryption and decryption
processes. In TSE, the sender is able to specify during what time interval a ciphertext
can be decrypted by a receiver. This is a relevant property since information may
become useless after a certain point, sensitive data may not be released before a
particular time, or we may wish to enable access to information for only a limited
period. We define security models for various flavours of TSE and provide efficient
instantiations for all of them.

These results represent our efforts in developing public-key encryption schemes
with enhanced properties, whilst maintaining the delicate balance between security
and efficiency.
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Chapter 1

Introduction

Contents

1.1 A delicate balance . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Anonymity and time in public-key encryption . . . . . . 9

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . 11

1.1 A delicate balance

Claude Shannon’s famous paper “Communication Theory of Secrecy Systems” [83]

can be regarded as the pivotal work which transformed cryptography from an almost

recreational brain-teasing activity to the official science of secrets [88]. It was in [83],

in fact, that the bases of the theory of cryptography were set and that a first rigorous

mathematical proof of the perfect secrecy of the Vernam cipher (also known as the

one-time pad) was given.

One of the original goals of cryptography can be considered that of enabling

secure communication. Therefore, having designed a perfectly secure cipher could

seem to have already solved this problem. On the other hand, we know that research

in this area has rapidly evolved since this result and it is still progressing at a very

high pace. So, what is the catch?

It is well-known that, however secure the one-time pad is, it suffers from se-

vere practical limitations. Indeed, the secret key to encrypt can be used only once

and it has to be as long as the message, raising the fundamental real-world issue

of key-management. The realization of the need of practicality in the design of

cryptosystems characterizes the advances of the cryptographic research community,

which has tried to find the delicate balance between security and efficiency ever

since.
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1.2 Anonymity and time in public-key encryption

One may ask why efficiency is actually needed. Why isn’t the mere intellectual

satisfaction of achieving a perfectly secure way of communicating enough? A simple

answer to these questions is because cryptography is used. In a world that is in-

creasingly relying on digital technologies cryptography has become part of our daily

life. Mobile phone communications, credit card payments, web browsing are only

a few examples of cryptographically enabled operations that are widely used today.

One does not have to look too far to see many more: e-voting, e-commerce, on-line

banking, distribution of digital copyright media are further examples of this.

Given the widespread use of cryptography in a variety of applications, it is fairly

natural that the related research has focused on developing systems capable of pro-

viding the required security guarantees whilst maintaining acceptable levels of prac-

ticality for real-life deployment. One could regard this quest as being the leitmotif

behind the progress of cryptography through the years. In this respect, we view

the results in this thesis as making a contribution to the theme of designing crypto-

graphic schemes delicately balanced between security and efficiency.

1.2 Anonymity and time in public-key encryption

The title of this thesis, “Anonymity and time in public-key encryption”, identifies

the core features of our work. We are going to design and construct several encryp-

tion schemes in the public-key setting satisfying enhanced security properties. In

particular, we consider the important property of anonymity, the related notion of

robustness, and the ability to include the element of time in the encryption process.

Public-key encryption. Since its revolutionary introduction in 1976 [42], public-

key cryptography has developed greatly, and by now it represents a fundamental

area of cryptography. In particular, public-key encryption (PKE) has received a lot

of research attention. Indeed the cryptographic community has obtained numerous

results, by achieving various levels of security in the proposed schemes, by continu-

ously improving on the efficiency of the constructions, and by developing a variety

of additional functionalities. We recall the basic notions for PKE relevant to our

work in Chapter 2. However, since an exhaustive and detailed presentation of PKE

is beyond the scope of this thesis, we refer the interested reader to [57].
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1.2 Anonymity and time in public-key encryption

The importance of anonymity. Addressing the issue of protecting users’ privacy

is of crucial importance. This is reflected by the great attention given to anonymity

in all the main fields of modern cryptography. In the area of PKE, anonymity

is often referred to as key-privacy [8]. This notion captures the property that an

eavesdropper is not able to tell under which one of several public keys a ciphertext

was created. The analogous concept in the identity-based setting was studied in [1,

23]. The benefit of preserving receivers’ privacy is relevant in more elaborate systems

involving for example hierarchical identity-based encryption (HIBE) [22], attribute-

based encryption (ABE) or predicate encryption [58], where achieving anonymity

guarantees becomes increasingly challenging. Furthermore, in the context of digital

signatures, a number of primitives effectively rely on anonymity – group signatures

[30], anonymous credentials [29] and e-cash [28] are well-known examples of this. In

our work, we consider anonymity in the context of public-key broadcast encryption,

a primitive designed to address a dynamically changing set of receivers for the secure

distribution of digital data.

The importance of time. As the amount of transmitted and stored digital content

rapidly increases, concerns naturally arise regarding the accessibility of such data.

In this context, the dimension of time has become significantly relevant. Indeed,

security research aims to address not only the issue of who can access the content,

but also when and for how long. In the cryptographic literature, the element of

time has appeared in several contexts, as the following examples will illustrate. In

the IBE setting [16], for instance, it was suggested to extend the identity of a user

so as to include a decryption time, allowing therefore to encrypt to the future.

A whole branch of research is dedicated to the study and development of timed-

release encryption [65, 27, 26], a primitive which precisely allows a sender to specify

a release-time for the encrypted message, before which encryption is not possible.

Some effort has also been put in developing ways to make the data unavailable after

it has passed its expiry date. The Ephemeral line of research, initiated by [74], and

the Vanish system [49] are examples of this. Our work on time-specific encryption

offers a cryptographic solution to access data in a specific time interval, and its

efficient realisation makes it suitable for many practical applications.
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1.3 Organization of the thesis

1.3 Organization of the thesis

In this thesis we give a series of results in the context of public-key encryption.

We start by fixing the notation and giving some basic definitions and security

models, key to the development of our work, in Chapter 2.

Our contributions are then presented in the chapters that follow. More specif-

ically, in Chapter 3 we propose new notions of robustness, which (informally) is

the security property that deals with the issue of using the wrong private key for

decryption. We justify the need for such notions and provide generic ways to achieve

the strongest robustness notion we introduce. The work presented in this chapter

appears in [45].

In Chapter 4 we consider the fundamental problem of anonymity in the context

of broadcast encryption. After giving formal definitions and security models for the

corresponding primitive, we provide constructions to achieve it securely. These

results will appear in the proceedings of the international cryptographic conference

Public-Key Cryptography 2012 as part of [62].

Finally, in Chapter 5, we introduce a new primitive, called time-specific en-

cryption, which allows the sender to express a time interval during the encryption

process, specifying the period a ciphertext can be decrypted. We present several

flavours of this primitive and show how to generically and securely achieve schemes

in the different settings. This work was published as [71] at the conference Security

and Cryptography for Networks 2010 and received the Best Paper Award.

The topics presented in this thesis are connected by the dynamics of our research,

namely the study of one problem led to the consideration of another and so on. For

instance, we proposed the notion of time-specific encryption (TSE) to address a

practical issue arising from a shortcoming of timed-release encryption, a closely

related primitive. While developing ways to achieve TSE we realized that broadcast

encryption (BE) could be used for this purpose. This brought us to the study of

the relevant literature, through which we discovered the limitations of the current

BE security models and schemes. Our work on anonymous broadcast encryption
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1.3 Organization of the thesis

developed naturally from here. Since in an anonymous setting ciphertexts do not

reveal the intended recipients, we had to address the issue of receivers using their

private key on possibly the wrong ciphertext. Precisely this was our motivation for

looking at robustness, which eventually resulted in the development of new, stronger

notions, for which we provide provably secure constructions.

This brief illustration of our research flow has hopefully made the connecting

line between our results more visible. In any case, for each topic, we will give (in

the relevant chapter) a detailed introduction, inclusive of motivation, related work

and a more in-depth description of our contributions.
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Chapter 2

Preliminaries

Contents

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Provable security . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Formal definitions of cryptographic primitives . . . . . . 16

2.3.1 Public-key encryption . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Identity-based encryption . . . . . . . . . . . . . . . . . . . 20

2.3.3 Attribute-based encryption . . . . . . . . . . . . . . . . . . 26

2.3.4 Digital signatures . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5 Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Cryptographic tools and techniques . . . . . . . . . . . . 35

2.4.1 A useful proof technique . . . . . . . . . . . . . . . . . . . . 35

2.4.2 A useful transformation . . . . . . . . . . . . . . . . . . . . 36

In this chapter we introduce the basic notation that will be adopted throughout

this thesis, as well as some of the fundamental concepts of provable security which

have been used in our work. We then provide the formal definitions and security

models for the cryptographic primitives relevant to the following chapters.

2.1 Notation

We introduce some basic notation that will be adopted in this and the following

chapters.

- By “:=” we denote a definition, with the definiens on the right-hand side

(RHS) and the definiendum on the left-hand side (LHS).
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2.1 Notation

- G denotes an algebraic group, Z denotes the integers, N the non-negative

integers and R the reals.

- p denotes a prime, Zp the cyclic group of order p and Z∗
p := Zp \ {0}, i.e. the

group without the neutral element.

- MsgSp, CtSp, IdSp, SSp, KSp, VSp are the spaces for messages, ciphertexts,

identities, signatures, keys and values, respectively.

- O denotes an oracle and Osk denotes an oracle equipped with sk. The be-

haviour of an oracle will be made explicit in the relevant definitions.

- By “←” we denote a random assignment where the RHS is either a finite set or

a probabilistic algorithm. In the former case, it denotes the assignment to the

LHS of a random value chosen uniformly from the set; in the latter it denotes

choosing the algorithm’s random tape uniformly and assigning the outcome to

the LHS.

- If s and t are two bit strings, s||t denotes the concatenation of s and t, and

s⊕ t denotes their exclusive or.

- {0, 1}n denotes all bit strings of length n.

- Algorithms are assumed to be polynomial time (p.t.) or probabilistic poly-

nomial time (p.p.t.). If algorithm Alg is run on inputs x and y, we denote it

by Alg(x, y), and if r is the internal randomness we may make it explicit by

writing Alg(x, y; r).

- λ ∈ N denotes a security parameter. By convention, the running time of an

algorithm is measured as a function of the length of its input, and therefore λ

will be provided to the algorithm in unary as 1λ (i.e. the string of λ ones).

- A function f : N → R is called negligible if for all c ∈ N there exists k0 ∈ N

such that for all k > k0 : |f(k)| < 1
kc .

- The symbol ⊥ denotes a distinguished output of an algorithm intended to

indicate an error.
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2.2 Provable security

2.2 Provable security

The aim of this thesis is to provide constructions for public-key encryption primitives

with enhanced properties, maintaining a balance between security and efficiency

whilst achieving the desired functionality. In order to do so, we make extensive use of

the tools and techniques of provable security, which provides a rigorous mathematical

framework for the security analysis and proofs of our schemes.

In presenting the results in this thesis our approach will typically be the following.

• As a first step, we will give a formal definition of the cryptographic primitive

we wish to study. This is essentially the description of the algorithms (with

their inputs and outputs) that constitute the primitive.

• The next step is to define an adversarial model which formally specifies what

a computationally bounded adversary is allowed to do when perpetrating an

attack. Such a model should capture the idea of what it means for a prim-

itive to be secure with respect to a specific security goal (e.g confidentiality,

anonymity, ...). The security models we present will be described as games

between a benign entity called the challenger and an adversary, which may

or may not have access to a set of oracles controlled by the challenger. We

specify a winning condition for the game and we typically define the adver-

sary’s advantage as a measure of the success of its strategy over that of simply

guessing.

There are two common approaches when studying computational security: the

concrete one and the asymptotic one ([57, Chapter 3] provides an interesting

discussion on the topic). The asymptotic approach is the one we will follow

in this thesis. Here, the running time of the adversary as well as its success

probability are functions of the security parameter λ, as opposed to concrete

numbers. In particular, an adversary is a probabilistic algorithm whose run-

ning time is polynomial in λ and whose success probability we would like to

be negligible in λ. This leads to the following informal definition ([57]):

A scheme is secure if for every p.p.t. adversary A playing a game of some

specified type, the advantage of A in winning the game (where the winning

condition is also well-defined) is negligible.

15



2.3 Formal definitions of cryptographic primitives

• The following step is to achieve the specified primitive with the desired security

properties. To this goal, we present possible constructions for it (typically

using simpler cryptographic primitives as building blocks), and prove that such

constructions yield secure schemes.

• To prove a scheme is secure with respect to a specific security model, we reduce

its security to that of the underlying cryptographic primitive or to the hard

problem it is based on. More specifically, providing a proof of security

(also called a reduction) involves converting any efficient adversary that has

a non-negligible advantage in winning the specific game into another efficient

algorithm that succeeds in breaking the underlying primitive or in solving a

hard problem. This is nowadays a standard proof technique in cryptography.

It is within this framework that the research presented in this thesis has been con-

ducted.

2.3 Formal definitions of cryptographic primitives

Cryptographic primitives are the basic building blocks used to construct more com-

plex cryptographic systems. Their algorithms are designed to achieve a variety of

functionalities and they are carefully crafted so as to satisfy the required security

properties. While there are many such primitives, the focus of this thesis will be on

primitives in the public-key setting. We recall the ones relevant to our work next.

2.3.1 Public-key encryption

In a public-key encryption (PKE) scheme anyone can encrypt a message with respect

to a public key, but only the holder of the corresponding secret key can recover it.

The two keys, i.e the public encryption key and the secret decryption key, have to

be mathematically related and it should be hard to obtain the secret key simply by

knowing the public key.

We present a definition for PKE. This slightly differs from the usual notation by

16



2.3 Formal definitions of cryptographic primitives

having a parameter generation algorithm PKE.PG as an additional algorithm. This

will ease the introduction of future notions. We can recover the standard definition

simply by letting PKE.PG output the security parameter.

Definition 2.1 (PKE scheme) A public-key encryption (PKE) scheme is defined

by four algorithms (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec), which are as follows.

PKE.PG: This algorithm takes as input the security parameter 1λ and returns the

public parameters pars. These will include a description of the message space

MsgSp and the ciphertext space CtSp of the scheme. We write this as pars←
PKE.PG(1λ).

PKE.KeyGen: This is a key generation algorithm that on input pars outputs a

public key pk and its corresponding secret key sk. We write this as (pk, sk)←
PKE.KeyGen(pars).

PKE.Enc: This is an encryption algorithm that on input pars, a message M ∈
MsgSp and a public key pk returns a ciphertext C ∈ CtSp. We write this as

C ← PKE.Enc(pars,M, pk).

PKE.Dec: This is a decryption algorithm that on input public parameters pars, a

public key pk, a ciphertext C and a secret key sk returns either a message or the

special symbol ⊥ denoting failure. We write this as PKE.Dec(pars, pk, C, sk) =

M , where M ∈ MsgSp ∪ {⊥}.

These algorithms are required to satisfy the following correctness property: For

every λ, for every set of parameters pars output by PKE.PG, for every message M ∈
MsgSp and every key-pair (pk, sk) generated by PKE.KeyGen, if C ← PKE.Enc(pars,

M, pk) then PKE.Dec(pars, pk, C, sk) = M .

For simplicity, we will often omit the public parameters as input to the encryption

and decryption algorithm and assume they are implicit. The same holds for the

public key in the decryption algorithm.

As mentioned in the previous section, we will model security for a cryptographic

primitive in terms of a game between a challenger and an adversary. In particu-
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lar, we define the security notion of indistinguishability under chosen-ciphertext at-

tacks (IND-CCA) [52, 77] for a PKE scheme Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) as follows.

IND-CCA security game for PKE

Setup. The challenger C runs PKE.PG(1λ) to generate pars and PKE.KeyGen(pars)

to obtain a key-pair (pk, sk). C gives (pars, pk) to the adversary A.

Phase 1. A has access to a decryption oracle Osk, to which it submits queries of

the type C. The oracle returns PKE.Dec(pars, pk, C, sk).

Challenge. A selects two equal-length messages M0, M1 ∈ MsgSp and passes them

to C. C chooses a random bit b ← {0, 1} and computes C" ← PKE.Enc(pars,

Mb, pk). C" is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to have access to a decryption oracle Osk, with the restriction

that it cannot submit the query C" to this oracle.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game as AdvIND−CCA
A,Π (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Intuitively, the advantage is a measure of how successful the adversary’s strategy in

the game is over that of simply guessing the bit b.

Definition 2.2 (IND-CCA) A PKE scheme Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) is indistinguishable under chosen-ciphertext attacks (or is IND-

CCA secure) if all p.p.t. adversaries have at most negligible advantage in the above

game.

It is possible to define a weaker notion of security, namely indistinguishability

under chosen-plaintext attacks (IND-CPA), by removing the adversary’s access to

the decryption oracle Osk in the game described above.
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Since it will be relevant in this thesis, we recall a security notion for public-key

encryption which models both indistinguishability and anonymity. In the public-key

setting, the latter is often referred to as key-privacy, and was introduced by Bellare

et al. in [8]. Informally, a PKE scheme is key-private if the ciphertext does not

leak under which public key it was created. The authors of [8] give two notions

of security of indistinguishability of keys (IK), IK-CPA and IK-CCA, which model

key-privacy under chosen-plaintext and chosen-ciphertext attacks, respectively. We

will use a combined notion of security, which helps streamline our presentation and

proofs. The relevant game and security notion are as follows.

IND-IK-CCA security game for PKE

Setup. The challenger C runs PKE.PG(1λ) to generate pars and PKE.KeyGen(pars)

twice to obtain two key-pairs (pk0, sk0) and (pk1, sk1). C gives (pars, pk0, pk1)

to the adversary A.

Phase 1. A has access to a decryption oracle Osk0,sk1 , to which it submits queries of

the type (C, pki), i ∈ {0, 1}. More specifically, the oracle returns PKE.Dec(pars,

pki, C, ski), i ∈ {0, 1}.

Challenge. A selects two equal-length messages M0, M1 ∈ MsgSp and passes them

to C. C chooses a random bit b ← {0, 1} and computes C" ← PKE.Enc(pars,

Mb, pkb). C" is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to have access to the decryption oracle, with the restriction

that it cannot submit queries containing C" to the oracle.

Guess. The adversary outputs its guess b′ for b.

We defineA’s advantage in the above game asAdvIND−IK−CCA
A,Π (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.3 (IND-IK-CCA) A PKE scheme Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) is indistinguishable and key-private under chosen-ciphertext at-

tacks (or is IND-IK-CCA secure) if all p.p.t. adversaries have at most negligible

advantage in the above game.
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Also here we can define a weaker notion of security, namely IND-IK-CPA, by

removing the adversary’s access to the decryption oracles.

We note that for simplicity, and in accordance with the majority of the relevant

literature, we decided to model indistinguishability and anonymity by letting the

challenger randomly pick one bit, used to select both the message and the key.

An alternative and equivalent approach would be to let the challenger select two

bits, one for the message and one for the key. All primitives for which we model

indistinguishability and anonymity in this thesis will be analyzed and proved secure

in the 1-bit setting.

Examples of IND-IK-ATK secure schemes, where ATK ∈ {CPA,CCA}, are the

ElGamal [48] and the Cramer–Shoup [37] encryption schemes. Furthermore, in [73],

the authors present a generic way to achieve an IND-IK-CCA secure PKE scheme

from identity-based encryption, a primitive which we introduce next.

2.3.2 Identity-based encryption

Identity-based encryption (IBE) was first proposed by Shamir in 1984 [82], but

was only realized in 2000 by Sakai, Ohgishi and Kasahara [80], and in 2001 in the

works of Boneh and Franklin [16] and Cocks [34]. The key idea in IBE is that the

public key of a user can be an arbitrary string, typically representing his identity

(e.g. the user’s e-mail address), rather than a string that is output by a key generation

algorithm as in normal PKE. The main motivation behind the introduction of IBE

is that it simplifies the problem of certificate management, distinctive to public-key

cryptography. This however requires a Trusted Authority (TA) to issue the users’

corresponding secret keys. The need for such an authority is an inherent feature of

the identity-based setting.

We next formalize the description of the IBE primitive, introducing an additional

parameter generation algorithm, IBE.PG, for ease of exposition. As in the PKE

case, the standard notion is recovered simply by letting IBE.PG output the security

parameter.
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Definition 2.4 (IBE scheme) An identity-based encryption (IBE) scheme is de-

fined by five algorithms, which are as follows.

IBE.PG: This algorithm takes as input the security parameter 1λ and returns the

system’s parameters pars. These include a description of the message space

MsgSp, the ciphertext space CtSp and the identity space IdSp of the scheme.

We write this as pars← IBE.PG(1λ).

IBE.Setup: This algorithm takes as input pars and returns a master public key

ID-MPK and a master secret key ID-MSK. We write (ID-MPK, ID-MSK) ←
IBE.Setup(pars).

IBE.KeyExt: This is a key extraction algorithm that on input ID-MPK, ID-MSK

and an identity id ∈ IdSp outputs a secret key skid. We write this as skid ←
IBE.KeyExt(ID-MPK, ID-MSK, id).

IBE.Enc: This is an encryption algorithm that on input ID-MPK, a message M ∈
MsgSp and an identity id ∈ IdSp returns a ciphertext C ∈ CtSp. We write this

as C ← IBE.Enc(ID-MPK,M, id).

IBE.Dec: This is a decryption algorithm that on input ID-MPK, a ciphertext C

and a secret key skid returns either a message or a failure symbol ⊥. We write

this as IBE.Dec(ID-MPK, C, skid) = M , where M ∈ MsgSp ∪ {⊥}.

These algorithms are required to satisfy the following correctness property: For

every λ, for any pars output by IBE.PG, for every ID-MPK, ID-MSK output by

IBE.Setup, for every message M ∈ MsgSp and every identity id ∈ IdSp, if skid ←
IBE.KeyExt(ID-MPK,ID-MSK, id) and if C ← IBE.Enc(ID-MPK,M, id) then

IBE.Dec(ID-MPK, C, skid) = M .

We define the security notion of id-based indistinguishability under chosen-

ciphertext attacks (IND-ID-CCA) [16] for an IBE scheme I = (IBE.PG, IBE.Setup,

IBE.KeyExt, IBE.Enc, IBE.Dec) as follows.
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IND-ID-CCA security game for IBE

Setup. The challenger C runs IBE.PG(1λ) to generate pars and IBE.Setup(pars) to

obtain the master public key ID-MPK and the master secret key ID-MSK and

gives (pars, ID-MPK) to the adversary A.

Phase 1. A has access to a secret-key-extraction oracle OID-MSK, to obtain secret

keys of any id ∈ IdSp. A has also access to a decryption oracle OID-MSK, to

which it submits queries of the type (C, id). This oracle returns

IBE.Dec(ID-MPK, C, skid), where skid is extracted using ID-MSK.

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and an id" ∈
IdSp with the restriction that for none of the secret-key-extraction queries in

Phase 1 we have that id = id". A passes M0,M1, id" to C. C chooses a random

bit b ← {0, 1} and computes C" ← IBE.Enc(ID-MPK,Mb, id"). C" is called

the challenge ciphertext and it is passed to A.

Phase 2. A continues to have access to a secret-key-extraction oracle OID-MSK,

with the same restriction we have in the Challenge phase, and to a decryption

oracle OID-MSK, with the restriction that it cannot submit the query (C", id")

to this oracle.

Guess. The adversary outputs its guess b′ for b.

We defineA’s advantage in the above game asAdvIND−ID−CCA
A,I (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.5 (IND-ID-CCA) An IBE scheme I = (IBE.PG, IBE.Setup,

IBE.KeyExt, IBE.Enc, IBE.Dec) is indistinguishable under chosen-ciphertext attacks

(or is IND-ID-CCA secure) if all p.p.t. adversaries have at most negligible advantage

in the above game.

We define the notion of IND-ID-CPA security (indistinguishability under chosen-

plaintext attacks) by removing the adversary’s access to the decryption oracle in the

game described above.

In our work we will make use of a weaker security notion for IBE called selective-

id security, introduced in [24, 13], where an adversary has to output a challenge

22



2.3 Formal definitions of cryptographic primitives

identity id" at the beginning of the game. The identity id" will be then used by the

challenger as the identity to which encrypt Mb. We give details of this game next.

sID-IND-CCA security game for IBE

Initialize. The challenger C runs IBE.PG(1λ) to generate pars and gives them to

the adversary A. A outputs id" ∈ IdSp.

Setup. C runs IBE.Setup(pars) to obtain the master public key ID-MPK and the

master secret key ID-MSK and gives ID-MPK to A.

Phase 1. A has access to a secret-key-extraction oracle OID-MSK, to obtain secret

keys of any id (= id" ∈ IdSp. A has also access to a decryption oracle OID-MSK,

to which it submits queries of the type (C, id).

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp. A passes

M0,M1 to C. C chooses a random bit b ← {0, 1} and computes C" ←
IBE.Enc(ID-MPK,Mb, id"). C" is called the challenge ciphertext and it is

passed to A.

Phase 2. A continues to have access to a secret-key-extraction oracleOID-MSK, with

the same restriction we have in Phase 1, and to a decryption oracle OID-MSK,

with the restriction that it cannot submit the query (C", id") to this oracle.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage as AdvsID−IND−CCA
A,I (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.6 (sID-IND-CCA) An IBE scheme I = (IBE.PG, IBE.Setup,

IBE.KeyExt, IBE.Enc, IBE.Dec) is selective-id indistinguishable under chosen-

ciphertext attacks (or sID-IND-CCA secure) if all p.p.t. adversaries have at most

negligible advantage in the above game.

Removing access to the decryption oracle gives rise to the notion of sID-IND-

CPA security.
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As for the public-key setting, it is useful at this point to give the security notion

for anonymous IBE [1], which informally models the idea that a ciphertext does

not leak the identity of the intended recipient. We present a combined notion of

indistinguishability and anonymity for IBE in the following game.

ANO-IND-CCA security game for IBE

Setup. The challenger C runs IBE.PG(1λ) to generate pars and IBE.Setup(pars) to

obtain the master public key ID-MPK and the master secret key ID-MSK and

gives (pars, ID-MPK) to the adversary A.

Phase 1. A has access to a secret-key-extraction oracle OID-MSK, to obtain secret

keys of any id ∈ IdSp. A has also access to a decryption oracle OID-MSK, to

which it submits queries of the type (C, id).

Challenge. A selects two equal-length messages M0, M1 ∈ MsgSp and two iden-

tities id0, id1 ∈ IdSp with the restriction that for none of the secret-key-

extraction queries in Phase 1 we have that id = id0 or id = id1. A passes

M0,M1, id0, id1 to C. C chooses a random bit b ← {0, 1} and computes

C" ← IBE.Enc(ID-MPK,Mb, idb). C" is called the challenge ciphertext and

it is passed to A.

Phase 2. A continues to have access to a secret-key-extraction oracle OID-MSK,

with the same restriction we have in the Challenge phase, and to a decryption

oracle OID-MSK, with the restriction that it cannot submit the queries (C", id0)

or (C", id1), to this oracle.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage as AdvANO−IND−CCA
A,I (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.7 (ANO-IND-CCA) An IBE scheme I = (IBE.PG, IBE.Setup,

IBE.KeyExt, IBE.Enc, IBE.Dec) is anonymous and indistinguishable under chosen-

ciphertext attacks (or ANO-IND-CCA secure) if all p.p.t. adversaries have at most

negligible advantage in the above game.
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As usual, removing access to the decryption oracle defines the corresponding

notion of security in a chosen-plaintext attack scenario.

Since it will be relevant to our work, we briefly recall the notion of multi-TA

IBE [72], where multiple and independent trusted authorities coexist in the system.

A typical multi-TA IBE scheme consists of five algorithms: IBE.PG, which takes as

input the security parameter and outputs the shared parameters pars and a set of

labels of the TAs in the system; IBE.TASetup, which takes as input pars and outputs

a master public key and a master secret key (this is run independently for each TA

in the system); IBE.KeyExt, IBE.Enc, IBE.Dec as for a normal IBE scheme. Security

notions such as indistinguishability and recipient anonymity have been considered

in this setting in [72], where in particular the notion of multi-TA anonymity was

introduced and studied. Informally, this models the idea that a ciphertext does

not leak the master public key under which it was created. It should therefore be

hard for an adversary to distinguish between two ciphertexts generated under two

distinct master public keys, even if for the same message and the same identity. In

[72] several security models for multi-TA IBE were put forth. We recall the one

relevant for our work next.

sID-TAA-IND-CPA security game for multi-authority IBE

Initialize. The challenger C runs IBE.PG(1λ) to generate pars and gives them to

the adversary A. A outputs id" ∈ IdSp.

Setup. C runs IBE.TASetup(pars) to obtain master public keys MPKi and master

secret keys MSKi where i ∈ {1, ..., n} for all TAs in the system. C gives

{MPKi}i∈{1,...,n} to A.

Phase 1. A has access to a corrupt oracle O{MSKi} to obtain the master secret

key of TA i where i ∈ {1, ..., n}. It has also access to a secret-key-extraction

oracle to which it can submit queries of the form (i, id), where i is a TA and

id ∈ IdSp, in order to obtain the secret key corresponding to identity id under

the trusted authority i.

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and two

TAs i0 and i1, with the restriction that neither i0 nor i1 was corrupted and
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none of the queries in Phase 1 was of the form (ij , id"), with j ∈ {0, 1}. A
passes M0,M1, i0, i1 to C. C chooses a random bit b ← {0, 1} and computes

C" ← IBE.Enc(MPKib ,Mb, id"). C" is called the challenge ciphertext and it is

passed to A.

Phase 2. A continues to have access to a corrupt oracle and a secret-key-extraction

oracle with the same restrictions we have in the challenge phase.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage as AdvsID−TAA−IND−CPA
A,I (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.8 (sID-TAA-IND-CPA) A multi-TA IBE scheme I = (IBE.PG,

IBE.TASetup, IBE.KeyExt, IBE.Enc, IBE.Dec) is selective-id, TA-anonymous and in-

distinguishable under chosen-plaintext attacks (or sID-TAA-IND-CPA secure) if

all p.p.t. adversaries have at most negligible advantage in the above game.

An example of IBE scheme satisfying the notion of sID-TAA-IND-CPA security

is the multi-TA version of Gentry’s IBE scheme [50], as shown in [73].

We note that by having i0 = i1 we obtain the standard notion of selective-id

security under chosen-plaintext attacks (sID-IND-CPA) for a multi-TA IBE scheme.

2.3.3 Attribute-based encryption

Attribute-based encryption (ABE) is a powerful cryptographic primitive first intro-

duced by Sahai and Waters [79]. The key idea in ABE is that a user can decrypt

only if he has the appropriate set of attributes. We are hence intuitively encrypting

to a set of users, as opposed to one as in the standard public-key and identity-

based settings. In doing so our main concern is to avoid collusion attacks, which

would allow distinct users to combine their attributes in order to decrypt something

that individually they would not have been able to. ABE historically has two main

flavours: key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE). In KP-

ABE [53, 70] the attributes are associated with the ciphertext while the policy is
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expressed in the key. In CP-ABE [12, 32] the situation is reversed, giving the sender

the control over what policy needs to be satisfied in order to decrypt. Typically,

such a policy will be expressed in terms of an access structure, as defined in [7].

Definition 2.9 (Access structure) Let P = {P1, P2, ..., Pn} be a set of parties

and let 2P denote its power set. A collection A ⊆ 2P is monotone if for every B and

C, if B ∈ A and B ⊆ C then C ∈ A. An access structure (respectively, monotone

access structure) is a collection (respectively, monotone collection) A of non-empty

subsets of P , i.e. P \ ∅. The sets in A are called the authorized sets, and the sets

not in A are called the unauthorized sets.

In our work, as in most relevant literature [53, 12], we will restrict ourselves to

monotone access structures which will be specified by access trees. In this model,

each interior node of a tree T is a threshold gate and the leaves are associated

with attributes. If a set of attributes S satisfies the access tree T , we denote it as

T (S) = 1.1 This is defined recursively for Tx, the subtree of T rooted at node x.

In particular, if x is a leaf node, then Tx(S) returns 1 if and only if the attribute

associated to the leaf node x belongs to S.

This is the framework within which we provide the formal definitions and security

models for CP-ABE and KP-ABE.

Definition 2.10 (CP-ABE scheme) A ciphertext-policy ABE (CP-ABE) scheme

is defined by five algorithms, which are as follows.

CPABE.PG: This algorithm takes as input the security parameter 1λ and returns

the system’s parameters pars. These will include the message space MsgSp,

the ciphertext space CtSp and the universe of attributes U associated to the

scheme. We write this as pars← CPABE.PG(1λ).

CPABE.Setup: This algorithm takes as input pars and returns a master public key

CP-MPK and a master secret key CP-MSK. We write (CP-MPK,CP-MSK)←
CPABE.Setup(pars).

1In general, if S satisfies an access structure A, we denote it as S ∈ A
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CPABE.KeyGen: This is a key generation algorithm that on input CP-MPK,

CP-MSK and a set of attributes S ∈ U outputs a secret key skS . We write

this as skS ← CPABE.KeyGen(CP-MPK,CP-MSK, S).

CPABE.Enc: This is an encryption algorithm that on input CP-MPK, a message

M ∈ MsgSp and an access structure A over the universe of attributes U returns

a ciphertext C ∈ CtSp. We write this as C ← CPABE.Enc(CP-MPK,M,A).

CPABE.Dec: This is a decryption algorithm that on input CP-MPK, a ciphertext C

and a secret key skS returns either a message or a failure symbol ⊥. We write

this as CPABE.Dec(CP-MPK, C, skS) = M , where M ∈ MsgSp ∪ {⊥}.

These algorithms are required to satisfy the following correctness property: For

every λ, for every pars output by CPABE.PG, for every CP-MPK, CP-MSK output

by CPABE.Setup, for every message M ∈ MsgSp and for every access structure A

supported by the system, if skS ← CPABE.KeyGen(CP-MPK,CP-MSK, S), if C ←
CPABE.Enc(CP-MPK,M,A) and if S ∈ A, then CPABE.Dec(CP-MPK, C, skS) = M .

We define indistinguishability under chosen-ciphertext attacks (IND-CCA) for a

CP-ABE scheme Γ = (CPABE.PG,CPABE.Setup,CPABE.KeyGen,CPABE.Enc,

CPABE.Dec) in the following way.

IND-CCA security game for CP-ABE

Setup. The challenger C runs CPABE.PG(1λ) to obtain pars and CPABE.Setup(pars)

to generate the master public key CP-MPK and the master secret key CP-MSK

and gives (pars,CP-MPK) to the adversary A.

Phase 1. A has access to a secret-key-extraction oracle OCP-MSK, to obtain secret

keys for any set of attributes S ⊆ U . A has also access to a decryption

oracle OCP-MSK, to which it submits queries of the type (C, S). Such an oracle

will respond with CPABE.Dec(CP-MPK, C, skS), where skS is extracted using

CP-MSK.

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and a chal-

lenge access structure A" with the restriction that none of the attribute sets
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for which a key was queried in Phase 1 satisfy A". A passes M0,M1,A" to C. C
chooses a random bit b← {0, 1} and computes C" ← CPABE.Enc(CP-MPK,Mb,

A"). C" is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to have access to a secret-key-extraction oracle OCP-MSK,

with the same restriction we have in the Challenge phase, and to a decryption

oracle OCP-MSK, with the restriction that it cannot submit the query (C", S),

for any S satisfying A".

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game as AdvIND−CCA
A,Γ (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.11 (IND-CCA) A CP-ABE scheme Γ = (CPABE.PG,CPABE.Setup,

CPABE.KeyGen,CPABE.Enc,CPABE.Dec) is indistinguishable under chosen-ciphertext

attacks (or is IND-CCA secure) if all p.p.t. adversaries have at most negligible

advantage in the above game.

We next recall the other type of ABE scheme, namely KP-ABE.

Definition 2.12 (KP-ABE scheme) A key-policy ABE (KP-ABE) scheme is de-

fined by five algorithms, which are as follows.

KPABE.PG: This algorithm takes as input the security parameter 1λ and returns

the system’s parameters pars. These will include a description of the mes-

sage space MsgSp, the ciphertext space CtSp and the universe of attributes U

associated to the scheme. We write this as pars← KPABE.PG(1λ).

KPABE.Setup: This algorithm takes as input pars and returns a master public key

KP-MPK and a master secret key KP-MSK. We write (KP-MPK,KP-MSK)←
KPABE.Setup(pars).

KPABE.KeyGen: This is a key generation algorithm that on input KP-MPK,

KP-MSK and an access structure A outputs a secret key skA. We write this

as skA ← KPABE.KeyGen(KP-MPK,KP-MSK,A).

29



2.3 Formal definitions of cryptographic primitives

KPABE.Enc: This is an encryption algorithm that on input KP-MPK, a message

M ∈ MsgSp and a set of attributes S ∈ U returns a ciphertext C ∈ CtSp. We

write this as C ← KPABE.Enc(KP-MPK,M, S).

KPABE.Dec: This is a decryption algorithm that on input KP-MPK, a ciphertext

C and a secret key skA returns either a message or a failure symbol ⊥. We

write this as KPABE.Dec(KP-MPK, C, skA) = M , where M ∈ MsgSp ∪ {⊥}.

These algorithms are required to satisfy the following correctness property: For

every λ, for every pars output by KPABE.PG, for every KP-MPK,KP-MSK out-

put by KPABE.KeyGen, for every message M ∈ MsgSp, for every access struc-

ture A supported by the system and every set of attributes S ∈ U , if skA ←
KPABE.KeyGen(KP-MPK,KP-MSK,A), if C ← KPABE.Enc(KP-MPK,M, S) and if

S ∈ A, then KPABE.Dec(KP-MPK, C, skA) = M .

We define indistinguishability under chosen-ciphertext attacks (IND-CCA) for a

KP-ABE scheme K = (KPABE.PG,KPABE.Setup,KPABE.KeyGen,KPABE.Enc,

KPABE.Dec) in the following way.

IND-CCA security game for KP-ABE

Setup. The challenger C runs KPABE.PG(1λ) to obtain pars and KPABE.Setup(pars)

to generate the master public key KP-MPK and the master secret key KP-MSK

and gives (pars,KP-MPK) to the adversary A.

Phase 1. A has access to a secret-key-extraction oracle OKP-MSK, to obtain se-

cret keys for access structures Ai. A has also access to a decryption oracle

OKP-MSK, to which it submits queries of the type (C,A), where A is an ac-

cess structure supported by the system. Such an oracle will respond with

KPABE.Dec(KP-MPK, C, skA), where skA is extracted using KP-MSK.

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and a chal-

lenge set of attributes S" ⊆ U with the restriction that none of the access

structures for which a key was queried in Phase 1 are satisfied by S". A
passes M0,M1, S" to C. C chooses a random bit b ← {0, 1} and computes
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C" ← KPABE.Enc(KP-MPK,Mb, S"). C" is called the challenge ciphertext

and it is passed to A.

Phase 2. A continues to have access to a secret-key-extraction oracle OKP-MSK,

with the same restriction we have in the Challenge phase, and to a decryption

oracle OKP-MSK, with the restriction that it cannot submit the query (C",A),

for any access structure A satisfied by S".

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game as AdvIND−CCA
A,K (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.13 (IND-CCA) A KP-ABE scheme K = (KPABE.PG,KPABE.Setup,

KPABE.KeyGen,KPABE.Enc,KPABE.Dec) is indistinguishable under chosen-ciphertext

attacks (or is IND-CCA secure) if all p.p.t. adversaries have at most negligible

advantage in the above game.

The security models we have presented so far address adversaries that can adap-

tively issue queries before and after the challenge phase. Most relevant work in the

area [53, 32, 12, 70], however, achieves security only in the selective setting, where

a less powerful adversary has to select a priori the set (or policy) he wishes to be

challenged on. In [61], Lewko et al. provide a fully secure ABE scheme in the

more general framework of functional encryption. Follow-up work in the area (for

instance, [69]) also achieves this level of security.

Anonymity in ABE. As for previously considered primitives such as PKE and

IBE, also in the context of ABE the issue of anonymity arises naturally. In the case

of CP-ABE we call it policy-hiding property, reflecting that the ciphertext does not

leak under what policy (access structure) it was created. Similarly for KP-ABE we

denote it attribute-hiding property, capturing the idea that an adversary cannot tell

what set of attributes a message was encrypted for. This notion was first introduced

and achieved in the context of predicate encryption [58] for the special class of

predicates defined by inner products.

These security notions are modeled in the natural way: an adversary selects two

access structures (respectively, attribute sets) in the challenge phase and he will
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have to guess under what access structure (attribute set) encryption was performed.

Throughout the game the adversary will have access to secret-key-extraction and

decryption oracles, to which he can submit queries having the obvious restrictions

that prevent him from winning trivially.

We have so far introduced several encryption primitives. We next give the basic

notions for two other primitives in the public-key setting which will be relevant to

our work, namely digital signatures and commitments.

2.3.4 Digital signatures

In a digital signature scheme, or simply a signature scheme, a signer uses a secret

key to sign a message and anyone can verify its validity using the corresponding

(public) verification key. This is formalized in the following definition.

Definition 2.14 (Signature scheme) A signature scheme Σ = (Gen, Sign,Ver) is

defined by three algorithms, which are as follows.

Gen: This is a key-generation algorithm that takes as input the security parameter

1λ and outputs the system’s parameters, which include a description of the

message space MsgSp, the key space KSp and the signature space SSp, and a

signing-verification key pair (sigk, vk). For ease of exposition, we will consider

the parameters implicit and simply write (sigk, vk)← Gen(1λ).

Sign: This is a signing algorithm that on input a signing key sigk and a message

M ∈ MsgSp outputs a signature σ ∈ SSp. We write this as σ ← Sign(sigk,M).

Ver: This is a verification algorithm that takes as input a verification key vk, a

message M and a signature σ and outputs a bit b ∈ {0, 1}. We write this as

Ver(vk,M,σ) = b.

These algorithms are required to satisfy the following property: For every λ,

for every message M ∈ MsgSp and every key-pair (sigk, vk) generated by Gen, if

σ ← Sign(sigk,M) then Ver(vk,M,σ) = 1.
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We next define a security notion for a signature scheme Σ = (Gen, Sign,Ver)

which will be relevant in this thesis, namely the notion of strong unforgeability

under a one-time message attack (SUF-1CMA). Consider the following game.

SUF-1CMA security game for a digital signature scheme

Setup. The challenger C runs Gen(1λ) to generate a signing-verification key pair

(sigk, vk) and gives vk to the adversary A.

Signing Query. A selects a message M ∈ MsgSp and gives it to C. C computes

σ = Sign(sigk,M). σ is passed to A.

Forgery. A outputs a pair (M",σ").

A’s advantage is defined asAdvSUF−1CMA
A,Σ (λ) = Pr[Ver(vk,M",σ") = 1 ∧(M",σ") (=

(M,σ)].

Intuitively, this models the idea that an adversary cannot produce a new valid

signature even on the previously signed message.

Definition 2.15 (SUF-1CMA) A signature scheme Σ = (Gen, Sign,Ver) is SUF-

1CMA secure (or strongly one-time) if all polynomial-time adversaries have at most

negligible advantage in the above game.

2.3.5 Commitments

Definition 2.16 (Commitment scheme) A non-interactive commitment scheme

CMT = (CPG,Com,Vrfy) is defined by three algorithms as follows.

CPG: This is a common parameters generation algorithm that takes as input the

security parameter 1λ and outputs the scheme’s parameters cpars. These will

include a description of the commitable value space VSp. We write this as

cpars← CPG(1λ).
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Com: This is a committing algorithm that on input the parameters cpars and a

value x ∈ VSp returns a commitment com to x and a decommitment key dec.

We write this as (com, dec)← Com(cpars, x).

Vrfy: This is a verification algorithm that takes as input the common parameters

cpars, a value x ∈ VSp, a commitment com and a decommitment key dec and

outputs a bit b ∈ {0, 1}. We write this as Vrfy(cpars, x, com, dec) = b.

These algorithms are required to satisfy the following correctness property: For every

λ, for every set of parameters cpars generated by CPG and for every value x ∈ VSp,

if (com, dec)← Com(cpars, x) then Vrfy(cpars, x, com, dec) = 1.

Let CMT = (CPG,Com,Vrfy) be a commitment scheme. We recall two standard

security properties for CMT , namely hiding and binding. The former property

models the idea that an adversary cannot learn information about the committed

value, while the latter that an adversary cannot find two distinct inputs that commit

to the same value. Consider the following game.

Hiding security game for a commitment scheme

Setup. The challenger C runs CPG(1λ) to generate the common parameters cpars

and gives cpars to the adversary A.

Challenge. A selects two values x0 and x1 ∈ VSp and gives them to C. C chooses a

random bit b← {0, 1} and computes (com, dec) = Com(cpars, xb). The value

com is passed to A.

Guess. The adversary outputs its guess b′ for b.

A’s advantage is defined as AdvHiding
A,CMT

(λ) =
∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 2.17 (Hiding) A commitment scheme CMT = (CPG,Com,Vrfy) is

hiding if all polynomial-time adversaries have at most negligible advantage in the

above game.
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Binding security game for a commitment scheme

Setup. The challenger C runs CPG(1λ) to generate the common parameters cpars

and gives cpars to the adversary A.

Collision finding. A outputs a tuple (com, x0, x1, dec0, dec1).

A’s advantage is defined as AdvBinding
A,CMT

(λ) = Pr[Vrfy(cpars, x0, com, dec0) = 1 ∧
Vrfy(cpars, x1, com, dec1) = 1 ∧ x0, x1 ∈ VSp such that x0 (= x1].

Definition 2.18 (Binding) A commitment scheme CMT = (CPG,Com,Vrfy) is

binding if all polynomial-time adversaries have at most negligible advantage in the

above game.

2.4 Cryptographic tools and techniques

We have introduced the definitions and security models for some cryptographic prim-

itives, selecting the ones which will be used in this thesis as building blocks for more

advanced primitives. We next recall two useful cryptographic tools which are rel-

evant in achieving some of the results in the following chapters: the first is an

important proof technique based on hybrid arguments, and the second is a powerful

transformation to build IND-CCA secure PKE from sID-IND-CPA secure IBE.

2.4.1 A useful proof technique

As mentioned in Section 2.2 and seen in the sections which followed, we define

security for a primitive as a game between an adversary and a challenger modelled

as probabilistic algorithms interacting with each other. The winning condition for

the game typically depends on some particular event E occurring, and security is

defined in terms of its probability being negligibly close to a “target probability”,

such as 0, 1/2 or the probability of some other event in some other game (where the

same adversary is interacting with a different challenger). Showing that this holds

is a proof of security for the primitive.
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A very popular security proof technique in modern cryptography is to consider

a sequence of games, instead of just the single one defined in the model. Since we

extensively make use of such technique in this thesis, we briefly recall the main idea

behind it, referring to [85] for a more detailed exposition of the topic.

We start by describing a sequence of games G0, G1 up to Gn, where G0 is the

original game, as defined in a security model specific to a primitive and an adversary

type. For each game Gi we define an event Ei, somehow related to E, the event

on which the winning condition for game G0 depends. The aim is to show that

Pr[Ei] is negligibly close to Pr[Ei+1] for all i ∈ {0, ..., n − 1} and that Pr[En] is

negligibly close to the target probability. To prove security we need to evaluate

|Pr[Ei]− Pr[Ei+1]|, and this is typically done by basing the transitions between Gi

and Gi+1 on one of the following [85]: indistinguishability, failure events or a formal

change. In the first case, the idea is that we show that if an adversary detects the

change between two successive games then we can build another adversary that is

able to distinguish between two distributions that are meant to be indistiguishable.

In the second case, when two successive games Gi and Gi+1 are identical up to the

occurrence of a certain failure event, we show that if the probability of such event

occurring is negligible then so is |Pr[Ei]− Pr[Ei+1]|. This is known as the Difference

Lemma [85, Lemma 1]. Finally, it could be the case that simple formal changes

are made between Gi and Gi+1, so as to make the proof easier to follow, and hence

Pr[Ei] = Pr[Ei+1]. Examples of this proof technique being adopted can be found

for instance in Sections 4.3.1 and 4.3.2 of this thesis.

2.4.2 A useful transformation

In 2004, Canetti et al. [25] introduced a very powerful transformation to achieve

IND-CCA secure PKE schemes from any weakly CPA-secure IBE scheme.

Informally, the transformation works as follows: the public key and secret key of

the PKE scheme are simply the master public key and master secret key of the IBE

scheme, respectively. To encrypt a message, the sender first generates a signing-

verification key pair (sigk, vk) for a strong one-time signature scheme, and then he

runs the identity-based encryption algorithm on input the message and the identity
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vk. The resulting ciphertext c is then signed using sigk to obtain a signature σ.

The final ciphertext consists of the verification key vk, the IBE ciphertext c, and the

signature σ. To decrypt a ciphertext (vk, c,σ), the receiver first verifies the signature

on c with respect to the verification key vk. If it fails, he outputs ⊥. Otherwise, the

receiver runs the identity-based key-extraction algorithm on identity vk to obtain

the corresponding secret key skvk, which he then uses to decrypt c.

We recall the details of this transformation next.

Let I = (IBE.PG, IBE.Setup, IBE.KeyExt, IBE.Enc, IBE.Dec) be an IBE scheme

and let Σ=(Gen,Sign,Ver) be a signature scheme. The PKE scheme Π = (PKE.PG,

PKE.KeyGen,PKE.Enc,PKE.Dec) is constructed from I and Σ as follows.

PKE.PG(1λ): Run IBE.PG(1λ) and return pars.

PKE.KeyGen(pars): Run IBE.Setup(pars) to obtain a master public key ID-MPK

and a master secret key ID-MSK. These will be the public key pk and secret

key sk of the PKE scheme, respectively.

PKE.Enc(pars,M, pk): Run Gen(1λ) to obtain a signing-verification key pair (sigk,

vk). Compute c← IBE.Enc(pk,M, vk), where pk acts as the master public key

of the IBE scheme and vk acts as an identity. Run Sign(sigk, c) and let σ be

the resulting signature. The final ciphertext is C = (vk, c,σ).

PKE.Dec(pars, pk, C, sk): Parse C into (vk, c,σ) and check whether Ver(vk, c,σ) =

1. If not, output ⊥. Otherwise compute skvk ←IBE.KeyExt(pk, sk, vk), the

secret key corresponding to identity vk, and output IBE.Dec(pk, c, skvk).

In [25], the following result is shown to hold.

Theorem 2.19 [25, Theorem 1] If I is an sID-IND-CPA secure IBE scheme and

Σ is a SUF-1CMA secure signature scheme then Π is an IND-CCA secure PKE

scheme.

Not only is this transformation an extremely powerful tool, it has also the ad-

vantage of being very flexible. Indeed, we will suitably adapt the key ideas behind
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it to achieve CCA security in a variety of settings, as we will explore in detail in

Chapter 4 and Chapter 5.

We are now ready to present our results. We start with our contributions to the

area of robust public-key encryption.
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In this chapter we study the notion of robustness in public-key encryption. After

recalling existing definitions, we define stronger notions and provide motivation for

our work. Furthermore, we classify these new notions in terms of implications and

separation results, and we show how to generically achieve the strongest one we

introduce. Part of the content of this chapter appears in [45], which is joint work

with Pooya Farshim, Benôıt Libert and Kenneth G. Paterson.
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3.1 Introduction

3.1.1 Robustness and related work

A commonly pursued goal in cryptography is message privacy, which is typically

achieved by means of encryption. In recent years, the privacy of users has be-

come an equally relevant concern. It has led the research community to strive for

anonymity properties when designing cryptographic primitives. In particular, key-

privacy was introduced by [8] in the public-key setting to capture the idea that a

ciphertext does not leak any information about the public key under which it was

created, making therefore the communication anonymous. In this context, Abdalla,

Bellare and Neven [2] raised a fundamental question: how does a legitimate user

know if an anonymous ciphertext is intended for him? Moreover, what happens if

he uses his secret key on a ciphertext not created under his public key? To ad-

dress this question, Abdalla et al. formalized a property called robustness, which

(informally speaking) guarantees that decryption attempts fail with high probabil-

ity if the “wrong” private key is used, and argued that, in all applications requiring

anonymous public-key encryption, robustness is usually needed as well. These appli-

cations include auction protocols with bid privacy [81], consistency [1] in searchable

encryption [15] and anonymous broadcast encryption (Chapter 4). As shown by

Mohassel [66], robustness is also important in guaranteeing the anonymity of hybrid

encryption schemes resulting from the combination of anonymous asymmetric and

symmetric components.

Robustness ensures that a ciphertext cannot correctly decrypt under two different

secret keys. This notion has (often implicitly) been present in the literature (e.g.

[81, 58, 6]), but formal definitions remained lacking until the recent foundational

work of Abdalla et al. [2]. In particular, the authors introduced two flavours of

encryption robustness: weak and strong robustness. Weak robustness is modeled as

a game in which a winning adversary outputs a valid message M and two distinct

public keys pk0 and pk1 such that the encryption of M under pk0 decrypts to a valid

message under sk1, the secret key corresponding to pk1. Strong robustness allows

for a more powerful adversary which gets to choose a ciphertext C (as opposed

to a message which will be honestly encrypted) and outputs it together with two

40



3.1 Introduction

distinct public keys. The adversary wins if C decrypts to a valid message under

both corresponding secret keys.

Achieving robustness is not as straightforward as it might seem. As pointed out

by Abdalla et al. [2], merely appending the receiver’s public key to the ciphertext

is not an option for providing robustness, since it destroys key-privacy properties.

Abdalla et al. also showed that the seemingly natural solution of using an unkeyed

redundancy function to modify the message before encryption does not achieve even

weak robustness, thus demonstrating the non-triviality of the problem. The authors

of [2] then gave anonymity-preserving constructions to obtain both weak and strong

robustness for public-key encryption. Using a simple tweak, they also showed how

to render the Cramer-Shoup cryptosystem [36] strongly robust without introducing

any overhead.

More recently, Mohassel [66] studied robustness in the context of hybrid encryp-

tion [37]. He showed that weak robustness (and not only anonymity) is needed in the

asymmetric part of a hybrid encryption scheme to ensure anonymity of the overall

scheme. Mohassel also considered relaxations, called collision-freeness, of both weak

and strong robustness. He showed that many constructions in the literature are na-

tively collision-free and showed how to generically turn any weakly (resp. strongly)

collision-free cryptosystem into a weakly (resp. strongly) robust one.

In [62] we proved the strong robustness of a variant of the Kurosawa-Desmedt

[60] cryptosystem.

3.1.2 Our contributions

This chapter is dedicated to the development and study of new notions of robustness

in the context of public-key encryption. We will first look at existing definitions and

point out some of their limitations, justifying the need for stronger notions. These

are obtained by progressively removing various restrictions on the capabilities of the

adversary in the strong robustness security model. We then show how these notions

relate to each other and thus give a more complete picture of robustness in general.

We finally present ways of achieving the introduced notions.
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This work wishes to provide a more in depth study and an overall better un-

derstanding of robustness. We do this by introducing stronger and simpler notions

which help unify and clarify this research area. Robustness is an important property

which is relevant especially in the context of anonymity. Indeed, it will be key in

achieving anonymous broadcast encryption, a primitive we develop in Chapter 4.

3.2 Weak and Strong Robustness

This section recalls the definitions of robust public-key encryption given by Abdalla,

Bellare and Neven [2]. We first present the notion of weak robustness, which

informally models the idea that an adversary cannot come up with a message and

two distinct public keys such that the encryption of that message under the first

public key returns a valid message when decrypted with the secret key corresponding

to the second public key. We formalize this next.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Let us

consider the following game.

WROB-CCA security game

Setup. The challenger C runs PKE.PG(1λ) to generate the common parameters

pars, which are passed on to A.

Query Phase. On a polynomial number of occasions, A may submit the following

queries:

– Public-key query: C generates and stores a key-pair (pk, sk) and returns

pk to A. We call pk a valid public key.

– Secret-key query for pk: If pk is valid, C returns sk, the secret key corre-

sponding to pk. Otherwise, it returns ⊥.

–Decryption query (C, pk): If pk is valid, C returns PKE.Dec(pars, pk, C, sk).

Otherwise, it returns ⊥.

Finalize. A outputs (M,pk0, pk1).
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A is a winning adversary if its output satisfies the following conditions:

1. both pk0 and pk1 are valid public keys (i.e. they are honestly generated public

keys output by C in the Query Phase);

2. neither sk0 nor sk1, the secret keys corresponding to pk0 and pk1 respectively,

has been queried in the query phase;

3. pk0 (= pk1;

4. M (=⊥ ∧ PKE.Dec(PKE.Enc(M,pk0), sk1) (=⊥.

We define A’s advantage as being the probability, taken over all random coins, of

outputting a tuple (M,pk0, pk1) satisfying all of the above conditions.

Definition 3.1 (WROB-CCA[2]) A PKE scheme Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) is weakly robust under chosen-ciphertext attacks (or WROB-

CCA) if all polynomial-time adversaries have at most negligible advantage in the

above game.

In [2] the authors present a generic transformation, for both the public-key and

the identity-based settings, conferring weak robustness to chosen-ciphertext (and

chosen plaintext) secure schemes. The key idea is to append some publicly-known

and keyed redundancy to the message before encryption, and to check for it upon de-

cryption. This allows for weak robustness to be efficiently and generically achieved.

The notion of weak robustness is of interest since it precisely addresses the issue of

using the wrong key that arises in anonymity contexts (such as anonymous broadcast

encryption [6, 62], for instance), but it is also useful in achieving strong robustness.

Strong robustness was proposed by Abdalla et al. [2] as a, not surprisingly,

stronger notion of robustness, which allows for adversarially generated ciphertexts.

Roughly speaking, a scheme is strongly robust if an adversary cannot produce a

ciphertext that decrypts to a valid message under two distinct keys. We formalize

this idea next.
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Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Let us

consider the following game.

SROB-CCA security game

Setup. The challenger C runs PKE.PG(1λ) to generate the common parameters

pars, which are passed on to A.

Query Phase. On a polynomial number of occasions, A may submit the following

queries:

– Public-key query: C generates and stores a key-pair (pk, sk) and returns

pk to A. We call pk a valid public key.

– Secret-key query for pk: If pk is valid, C returns sk, the secret key corre-

sponding to pk. Otherwise, it returns ⊥.

–Decryption query (C, pk): If pk is valid, C returns PKE.Dec(pars, pk, C, sk).

Otherwise, it returns ⊥.

Finalize. A outputs (C, pk0, pk1).

A is a winning adversary if its output satisfies the following conditions:

1. both pk0 and pk1 are valid public keys;

2. neither sk0 nor sk1, the secret keys corresponding to pk0 and pk1 respectively,

has been queried in the query phase;

3. pk0 (= pk1;

4. PKE.Dec(C, sk0) (=⊥ ∧ PKE.Dec(C, sk1) (=⊥.

We define A’s advantage as the probability of outputting a tuple (C, pk0, pk1) satis-

fying all of the above conditions.

Definition 3.2 (SROB-CCA[2]) A PKE scheme Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) is strongly robust under chosen-ciphertext attacks (or SROB-

CCA) if all polynomial-time adversaries have at most negligible advantage in the

above game.
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The authors of [2] show, and it is easy to see, that SROB-CCA implies WROB-

CCA. Indeed, an adversary against the weak robustness of a scheme can be trans-

formed into a strong robustness adversary simply by taking its output (M,pk0, pk1),

encrypting M under pk0 and outputting the resulting ciphertext together with pk0

and pk1.

We note that it is possible to define the chosen-plaintext analogues of weak and

strong robustness (WROB-CPA and SROB-CPA, respectively) simply by disallow-

ing decryption queries.

Abdalla et al. show that also strong robustness is achievable generically by apply-

ing a particular transformation. The main idea of the transformation is to include,

as part of the ciphertext, a commitment to the public key: the decommitment key is

encrypted along with the message and the commitment is appended to the cipher-

text. We give details of this transformation, which we call the ABN transformation,

in Section 3.5.1.

We stress that the difference between WROB-CCA and SROB-CCA is that in the

former the adversary has to produce a message, while in the latter it has to output

a ciphertext, which may not have been obtained as an honest encryption. In [2] the

need for the strong robustness notion is motivated by scenarios where ciphertexts

can be adversarially chosen. The authors of [2] give Sako’s auction protocol [81] as

an example of such a situation, explaining that strong robustness is required in order

to prevent an attack on its fairness mounted by a cheating bidder and a colluding

auctioneer.

As a first motivating step towards the development of new and stronger notions

of robustness we show that strong robustness is actually not sufficient to prevent

such types of attack. We next take a closer look at Sako’s protocol [81] and present

a new attack on its fairness.
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3.2.1 An attack on the fairness of Sako’s protocol

Sako’s auction protocol [81] was the first practical protocol to ensure bid privacy,

i.e. to hide the value of losing bids. The basic idea is the following1: Let V =

{v1, ..., vN} be the set of possible bid values. The auctioneer prepares N key-pairs

(pki, ski)i∈{1,...,N} and publishes the N public keys. To bid for a value vi a bidder

encrypts a pre-determined message M under the public key pki. This is signed and

posted by the bidder. To open a bid the auctioneer takes the largest value vN in V

and attempts to decrypt the encrypted bids one by one using skN . If at least one

decrypts to M , the auctioneer publishes the winning bid vN , a list of all the winning

bidders and the secret key skN for the bidders to verify. If no decryption returns

M , the auctioneer repeats the procedure using skN−1, and so on. For the auction

to hide the values of losing bids, the underlying public-key encryption scheme is

required to be key-private, in the sense of [8].

In [81], Sako provides an example of an auction protocol scheme based on the

ElGamal cryptosystem, which is key-private. In [2], Abdalla et al. give an attack

which allows a cheating bidder and a colluding auctioneer to break the fairness of

the protocol. Informally, this property ensures that a cheating bidder does not have

an unfair advantage over an honest one (for instance, a bidder should not be able to

see another bidder’s encryption and produce an encryption of a bid that is one value

higher). This attack is based on the fact that ElGamal is not robust and results in

the auctioneer being able to open the cheating bidder’s bid to an arbitrary (winning)

value. To prevent this attack, the authors of [2] suggest using any strongly robust

scheme (strong robustness, instead of simply weak robustness, is required since the

ciphertexts are generated adversarially).

We now show that strong robustness is not sufficient to prevent an attack of this

type to the fairness of Sako’s protocol. More precisely, we present an attack to the

protocol when instantiated with a variant of the Cramer–Shoup encryption scheme,

CS∗, which is key-private and strongly robust (the latter result was proved in [2]).

We first recall the CS∗ scheme.

1For the purpose of this thesis, we focus on the public-key setting.
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CS∗ encryption scheme

The common public parameters consist of a group G of prime order p and the

description of a family of functions H : Keys(H)×G3 → G.

PG(1λ): Choose K ← Keys(H), g1 ← G and w ← Z∗
p. Let g2 = gw1 . Return

pars = (K, g1, g2).

KeyGen(pars): Choose random exponents x1, x2, y1, y2, z1, z2 ← Zp and compute

e = gx1
1 gx2

2 , f = gy11 gy22 , h = gz11 gz22 .

The public key is pk = (e, f, h) and the private key is sk = (x1, x2, y1, y2, z1, z2).

Enc(pars,M, pk): To encrypt a message M ∈ G,

1. Pick u← Z∗
p and compute

a1 = gu1 , a2 = gu2 , b = hu,

2. Let c← b ·M, v ← HK(a1, a2, c), d← eufuv

The ciphertext is C = (a1, a2, c, d).

Dec(C, sk): Parse the ciphertext C as (a1, a2, c, d). Compute v = HK(a1, a2, c),

M = c · a−z1
1 a−z2

2 . If d (= ax1+y1v
1 ax2+y2v

2 then set M =⊥. If a1 = 1 then set

M =⊥. Return M .

Just as with the attack of Abdalla et al. [2], the attack we present below on the

Sako protocol instantiated with the scheme CS∗ assumes a dishonest bidder and a

colluding auctioneer, and works as follows.

Let V = {v1, ..., vN} be the set of possible bid values. The auctioneer runs

PG(1λ) to obtain the public parameters (K, g1, g2). He chooses a fixed message

M ∈ G as per Sako’s protocol. He selects u, z1, z2 ← Z∗
p and computes a1 = gu1 ,

a2 = gu2 , b = az11 az22 and c = b ·M . He then computes v = HK(a1, a2, c). If v = 0, the

auctioneer re-samples and re-computes the values, until v (= 0. He then considers

the following system of linear equations
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{

x1 + vy1 = α1 mod p

x2 + vy2 = α2 mod p

for some α1, α2 in Zp, and finds N distinct solutions (x1,i, x2,i, y1,i, y2,i) with i ∈
{1, ..., N}, where all the values are in Zp.

The auctioneer sets ski to be (x1,i, x2,i, y1,i, y2,i, z1, z2) for i ∈ {1, ..., N}. He

passes u to the cheating bidder and publishes all the public keys pki = (g
x1,i

1 g
x2,i

2 ,

g
y1,i
1 g

y2,i
2 , gz11 gz22 ) with i ∈ {1, ..., N}.

The cheating bidder can now bid for the value vi by encrypting M with ran-

domness u under the public key pki to get ciphertext C. Such an encrypted bid C

will decrypt to M under any skj with j ∈ {1, ..., N}, since x1,i + vy1,i = xj1 + vyj1

and x2,i + vy2,i = xj2 + vyj2 , by construction. This means that during the protocol,

the auctioneer can first observe the highest honest bid (say h < N). Then, he can

declare the cheating bidder as the winner (for the bid h + 1) by revealing the pri-

vate key skh+1. This clearly gives the dishonest bidder and colluding auctioneer a

cheating strategy and breaks the fairness of the protocol.

Remark 1 It may be argued that the above attack can be detected by the bid-

ders, as the maliciously generated public keys all share the same third component.

Although this is a valid point, it may be unreasonable to assume that the bidders

perform such checks outside the protocol description. Indeed, one (or the) goal of ro-

bustness is to ensure that such checks are already implemented within the decryption

algorithm. Let us note that the attack of Abdalla et al. on the robustness of ElGamal

also falls within the category of such “traceable” attacks, as the ciphertexts in their

attack are of the form (1, C). To further justify the relevance of the new notions, we

demonstrate an untraceable attack on the modified Kurosawa–Desmedt encryption

scheme (which is proven strongly robust under chosen-ciphertext attacks [62]) in

Section 3.3.4.

Evidently, this attack shows that strong robustness is not enough to guarantee

fairness in Sako’s auction protocol. Intuitively what is needed is a stronger notion

of robustness, wherein all the public keys and ciphertexts in the system may be

adversarially generated. This is precisely the notion we will develop next.
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3.3 A Direct Strengthening: Full Robustness

The attack in the previous section highlights the need for stronger notions of robust-

ness. Developing such notions will not only address the limitations of the existing

ones but it will also help in providing a more complete picture of the various flavours

of robustness. We start by directly strengthening strong robustness. This will lead

to a very natural and simple notion which we name full robustness. We then con-

sider what later can be seen as its “dual” notion, namely key-less robustness. In this

section, we define and relate these notions, providing implications and separating

examples.

3.3.1 Full robustness

Recall that an SROB-CCA adversary has to output a ciphertext C and two public

keys pk0 and pk1 such that C decrypts to a valid message M0 under sk0 and to a

valid message M1 under sk1. The notion poses three restrictions on the public keys

output by the adversary:

1. the public keys are honestly generated;

2. the corresponding secret keys cannot have been queried by the adversary;

3. pk0 and pk1 have to be distinct.

We will next see that by removing some of these restrictions we obtain increas-

ingly stronger notions of robustness.

We start by observing that the last condition is inherent to modeling the be-

haviour of an encryption scheme when used on different public keys, and removing

it would make it trivial for an adversary to win. In fact, an adversary can always

encrypt a valid message M under a valid public key pk, obtaining C. By submitting

(C, pk, pk) the adversary will win with probability 1, due to the correctness of the

scheme2.
2We assume that the public-key schemes we consider are perfectly correct.
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We now look at the notion resulting from the removal of restriction 2, i.e. the

adversary is now allowed to query secret keys even for the finally output public

keys. We call this notion unrestricted strong robustness (USROB). This game

therefore proceeds as the SROB-CCA game in Definition 3.2 except that condition

2 is removed. This notion is powerful enough to model scenarios where keys are

honestly generated, but an adversary trying to break the robustness of the scheme

may know the secret keys.

If an adversary can control the generation of keys, it may be unreasonable to

assume that it can only generate the keys honestly. We therefore strengthen USROB

further by removing the first restriction on the adversary. We ask, however, that

the adversary return the secret keys for the public keys that it chooses. Two points

deserve further attention at this point. First, returning the secret keys is to allow

for a polynomial-time game definition which is not excessively strong. Second, we

do not require the secret keys to be valid. Indeed, it is the responsibility of the

decryption algorithm to check that the key-pair it receives is valid. Note that as a

result of removing the two restrictions, the adversary has now full control over the

keys, and we no longer need to provide the adversary with the oracles present in the

SROB-CCA and USROB games. These modifications result in a simple, but strong,

notion which we call full robustness (FROB), and which we formalize below.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Let us

consider the following game.

FROB security game

Setup. The challenger C runs PKE.PG(1λ) to generate the common parameters pars

and passes them on to A.

Finalize. A outputs (C, pk0, pk1, sk0, sk1).

A is a winning adversary if its output satisfies the following conditions:

1. pk0 (= pk1;

2. PKE.Dec(pars, pk0, C, sk0) (=⊥ ∧ PKE.Dec(pars, pk1, C, sk1) (=⊥.
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We defineA’s advantage as the probability of outputting a tuple (C, pk0, pk1, sk0, sk1)

satisfying both of the above conditions.

Definition 3.3 (FROB) A PKE scheme Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) is fully robust (or FROB) if all polynomial-time adversaries have at most

negligible advantage in the above game.

We note that we no longer require public key, secret key and decryption oracles

and therefore there is no CPA or CCA notion for full robustness. This is because a

FROB adversary is not restricted by conditions 1 and 2 and, having access to pars,

it can implement the oracles on its own.

3.3.2 Key-less robustness

The new notion of full robustness accounts for an adversary which is allowed to

output self-generated public keys. However, in order for the game to test the winning

condition in polynomial time, such an adversary also has to output the corresponding

secret keys. Such a requirement may be inconvenient for the adversary (who prefers

not to give away the secret keys) or may even be unsatisfiable (the adversary may

not know them!). To address this issue, we propose an alternative definition of

robustness, called key-less robustness (KROB), where the adversary no longer

needs to return any secret keys, but instead “opens” a ciphertext by providing the

random coins and the message used in the encryption. More precisely, the adversary

outputs two messages, two distinct public keys and two sets of random coins, and

its goal is to produce a collision in the encryption algorithm. The game for key-less

robustness is described next.

KROB security game

Setup. The challenger C runs PKE.PG(1λ) to generate the common parameters pars

and passes them on to A.

Finalize. A outputs (M0,M1, pk0, pk1, r0, r1).
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WROB-CPA SROB-CCA USROB FROB

KROB

Figure 3.1: Relations among notions of robustness.

A is a winning adversary if its output satisfies the following conditions:

1. pk0 (= pk1;

2. PKE.Enc(pars,M0, pk0; r0) = PKE.Enc(pars,M1, pk1; r1).

We define A’s advantage as the probability of outputting (M0,M1, pk0, pk1, r0, r1)

satisfying the above conditions.

Definition 3.4 (KROB) A PKE scheme Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) is key-less robust (or KROB) if all polynomial-time adversaries have at

most negligible advantage in the above game.

Intuitively this notion appears to be the strongest amongst the ones considered

so far, since the adversary has the liberty to choose the public keys and does not have

to reveal any secret information. Surprisingly, we will see that key-less robustness

does not imply any of the other notions (FROB, SROB-CCA, and not even weak

robustness). Furthermore, we will show that FROB does not imply KROB either.

3.3.3 Relations among notions of robustness

We now study how the various notions of robustness relate to each other. We

summarize our initial findings in Figure 3.1. It is clear that FROB ⇒ USROB ⇒
SROB-CCA as the adversary becomes progressively more restricted in each game.

For completeness, we provide proofs of these relations below.
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Proposition 3.5 (FROB ⇒ USROB ⇒ SROB-CCA) Let Π be a PKE scheme

which is FROB (resp. USROB). Then it is also USROB (resp. SROB-CCA).

Proof. We want to prove that if a PKE scheme Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) is FROB, then it is also USROB. Suppose there exists an ad-

versary A breaking Π’s USROB, then we can build an adversary B that interacts

with A to break Π’s FROB.

The game proceeds as follows. B’s challenger C runs PKE.PG(1λ) to obtain pars,

which are passed to B. B handles all of A’s queries by simulating A’s oracles (it can,

since it knows pars). Finally A outputs (C, pk0, pk1) and B outputs (C, pk0, pk1,

sk0, sk1), where sk0 and sk1 are the secret keys corresponding to pk0 and pk1,

respectively. We note that B knows such keys since it created them when generating

the valid public keys pk0 and pk1 for A. B provides a perfect simulation of A’s

environment and therefore has exactly the same advantage in winning the FROB

game as A has in winning the USROB one.

For the second implication, we want to prove that if a PKE scheme Π = (PKE.PG,

PKE.KeyGen,PKE.Enc,PKE.Dec) is USROB, then it is also SROB-CCA. Suppose

there exists an adversary A breaking Π’s SROB-CCA, then we can build an adver-

sary B that interacts with A to break Π’s USROB.

The game proceeds as follows. B’s challenger C runs PKE.PG(1λ) to obtain pars.

B handles all of A’s queries by forwarding them to C. Finally A outputs (C, pk0, pk1)

and B outputs the same. B has exactly the same advantage in winning the USROB

game as A has in winning the SROB-CCA one. !

Next we show that USROB is strictly stronger than SROB-CCA, and that FROB

is strictly stronger than USROB.

Proposition 3.6 (SROB-CCA ! USROB) Let Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) be SROB-CCA. Then there is a scheme Π1 = (PKE.PG1,

PKE.KeyGen1,PKE.Enc1, PKE.Dec1) which is SROB-CCA, but fails to be USROB.
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Proof. Informally, Π1 is obtained from Π by running its algorithms, with the

difference that a random string is appended to the secret key output by PKE.KeyGen.

Checking for such string will be an alternative decryption rule in case PKE.Dec

returns ⊥. More precisely, we define the required scheme Π1 as follows.

PKE.PG1(1λ): Run PKE.PG(1λ) to obtain pars. Return pars.

PKE.KeyGen1(pars): Run PKE.KeyGen(pars) to obtain (pk, sk). Sample s ←
{0, 1}λ and return (pk, (sk||s)).

PKE.Enc1(pars,M, pk): Run PKE.Enc(pars,M, pk) to obtain ciphertext C. Return

C.

PKE.Dec1(pars, pk, C, (sk||s)): Parse C as C||C ′. Run PKE.Dec(pars, pk, C, sk). If

the output is a valid message M , return M . Otherwise, check if s = C ′, and

if so return a message M from the message space for pk. Else, return ⊥.3

We first prove Π1 is not USROB by constructing an adversary A which wins

the USROB game against Π1. Algorithm A queries the public-key oracle to obtain

public keys pk0 and pk1. It then queries the secret-key-extraction oracle to receive

(sk0||s0), the secret key corresponding to pk0. It runs PKE.Enc1(pars,M1, pk1),

where M1 is any (valid) message, obtaining C1. A then sets C ′
1 := s0 and outputs

(C := (C1||C ′
1), pk0, pk1) as its final output. It is easy to see that this is a winning

strategy for A: C when decrypted with respect to pk1 will return M1 due to the

correctness of the scheme. Now, if we run the decryption algorithm on C = (C1||C ′
1)

with respect to pk0, C1 will not decrypt to a valid message, due to the strong

robustness of Π, however C ′
1 = s0 and therefore we obtain a valid message M .

We now prove that Π1 is SROB-CCA. Suppose there is an adversary A which

wins the SROB-CCA game against Π1. We construct an adversary B that interacts

with A to win the SROB-CCA game against Π. A’s challenger generates pars. B
handles A’s queries as follows:

– Public-key query: B invokes C to get a valid public key pk. It then selects

and stores a random bit-string s of length λ. B gives pk to A.

3An alternative decryption rule, which checks for the equality before running PKE.Dec, is possible
but only guarantees overwhelming, instead of perfect, correctness.
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– Secret-key query for pk: B queries C for the corresponding secret key sk. B
then appends s to sk and gives (sk||s) as the response to A.

– Decryption query (C||C ′, pk): B passes (C, pk) to its own oracle. If the

answer is a valid message M , B forwards M to A. If the output is ⊥, B checks

whether C ′ is equal to s (which it holds). If so, B outputs a valid message as a

response to A’s query. If not, B returns ⊥.

Finally, when A outputs (C||C ′, pk0, pk1), B outputs (C, pk0, pk1).

We note that B provides a perfect simulation of A’s environment and that B
wins whenever A wins unless A does so by guessing the s-component of either sk0

or sk1. Since the s-components are random and information theoretically hidden

from A’s view the probability of this event is at most 2 · 1
2λ
. This completes the

proof. !

Proposition 3.7 (USROB ! FROB) Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) be USROB. Then there is a scheme Π2 = (PKE.PG2,PKE.KeyGen2,

PKE.Enc2,PKE.Dec2) which is USROB, but fails to be FROB.

Proof. Informally, the required scheme Π2 is derived from Π simply by prepending a

zero-bit to the public key output by PKE.KeyGen. This zero-bit is then discarded by

the encryption and decryption algorithms. We define Π2 more precisely as follows.

PKE.PG2(1λ): Run PKE.PG(1λ) to obtain pars. Return pars.

PKE.KeyGen2(pars): Run PKE.KeyGen(pars) to obtain (pk, sk). Return (0||pk, sk).

PKE.Enc2(pars,M, b||pk): Run PKE.Enc(pars,M, pk) to obtain C. Return C.

PKE.Dec2(pars, b||pk, C, sk): Return PKE.Dec(pars, pk, C, sk).

Π2 is not FROB. Consider the adversary A which runs PKE.KeyGen2(pars) to

get a valid key-pair (0||pk, sk), picks a randomM and runs PKE.Enc2(pars,M, 0||pk)
to obtain a ciphertext C. A gives (C, 0||pk, 1||pk, sk, sk) as its final output. It is
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easy to see that A wins with probability 1: 0||pk (= 1||pk and the decryption of C

with the secret key sk returns a valid message due to correctness.

We now show Π2 is USROB. Suppose there is an adversary A which wins the

USROB game against Π2. We construct an adversary B that interacts with A to win

the USROB game against Π with the same probability. The challenger C generates

pars. B handles A’s queries by forwarding them to its own oracles prepending or

removing a zero-bit to all the public keys sent and received as appropriate. Finally,

when A outputs (C, 0||pk0, 0||pk1) with pk0 (= pk1, B also outputs (C, pk0, pk1). It’s

easy to see that B provides a perfect simulation of A’s environment, and that if A
wins so does B. !

The next proposition shows that KROB does not even imply WROB-CPA. It

follows that KROB ! USROB and KROB ! FROB.

Proposition 3.8 (KROB ! WROB-CPA) Let Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) be KROB. Then there is a scheme Π3 = (PKE.PG3,PKE.KeyGen3,

PKE.Enc3,PKE.Dec3) which is KROB, but fails to be WROB-CPA.

Proof. We define the required scheme Π3 to be identical to Π except for its decryp-

tion algorithm, which we modify as follows:

PKE.Dec3(pars, pk, C, sk): If PKE.Dec(pars, pk, C, sk) is a valid message M , return

M . If not, return a valid fixed message M from the message space.

It is easy to see that Π3 is not even WROB-CPA as the decryption algorithm

never returns ⊥. However, the modified scheme is still KROB as the tweaked de-

cryption algorithm does not affect the KROB game. !

Finally, we show also that FROB does not imply KROB, separating the two

seemingly stronger notions so far and completing the relations represented in Figure

3.1.
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Proposition 3.9 (FROB ! KROB) Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) be FROB. Then there is a scheme Π4 = (PKE.PG4,PKE.KeyGen4,

PKE.Enc4,PKE.Dec4) which is FROB, but fails to be KROB.

Proof. We define the required scheme Π4 as follows.

PKE.PG4(1λ): Run PKE.PG(1λ) to obtain pars. Return pars.

PKE.KeyGen4(pars): Run PKE.KeyGen(pars) to obtain (pk, sk). Return (0||pk, sk).

PKE.Enc4(pars,M, b||pk): If b = 1, output a fixed ciphertext C". If b = 0, run

PKE.Enc(pars,M, pk), obtain ciphertext C and output it.

PKE.Dec4(pars, b||pk, C, sk): If b = 1 return ⊥. Else, output PKE.Dec(pars, pk, C,
sk).

To see that Π4 is not KROB, note that an adversary which outputs 1||pk0 and

1||pk1, for two valid public keys pk1 and pk0 wins the KROB game (for any pair of

messages and any pair of random coins) as the resulting ciphertext in both cases is

C".

In order to show that Π4 is still FROB, suppose an adversary A on input pars

outputs a winning tuple (C, b0||pk0, b1||pk1, sk0, sk1), where b0||pk0 and b1||pk1 are

two distinct public keys. Note it must be the case that b0 = b1 = 0, as otherwise

A cannot win the FROB game. Therefore it is necessarily the case that pk0 (= pk1,

and B can win its FROB game against Π by outputting (C, pk0, pk1, sk0, sk1). !

The separations we provided were crafted in order to systematically relate the

new notions of robustness to one another. We next show an example of a more

natural separating example between SROB-CCA and the stronger notions of FROB

and KROB.
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3.3.4 KD∗ is neither FROB nor KROB

We provide a separating example between the existing notion of strong robustness

and the newly defined full and key-less robustness. Indeed we show that a variant

of the Kurosawa-Desmedt (KD) encryption scheme [60], proved strongly robust in

[62], achieves neither full nor key-less robustness. We recall the KD cryptosystem.

KD encryption scheme

The common public parameters consist of a group G of prime order p > 2λ, with

generators g1, g2 ← G. They also include the description of a universal one-way

hash function H : {0, 1}∗ → Zp, a key derivation function KDF : G → {0, 1}k, for
some integer k ∈ poly(1λ) and a symmetric authenticated encryption scheme (E,D)

of key length k.

KeyGen(pars): Given common public parameters pars = (G, g1, g2, H,KDF, (E,D)),

choose random exponents x1, x2, y1, y2 ← Zp and compute

e = gx1
1 gx2

2 , f = gy11 gy22

The public key is pk = (e, f) and the private key is sk = (x1, x2, y1, y2).

Enc(pars,M, pk): To encrypt a message M ∈ G,

1. Pick u← Zp and compute

a1 = gu1 , a2 = gu2 , d = (e · fv)u,

where v = H(a1, a2) ∈ Zp.

2. Compute K = KDF(d) ∈ {0, 1}k, c = EK(M).

The ciphertext is C = (a1, a2, c).

Dec(pars, pk, C, sk): Parse the ciphertext C as (a1, a2, c). Compute v = H(a1, a2),

d = ax1+v·y1
1 · ax2+v·y2

2 and K = KDF(d) ∈ {0, 1}k. Then, return M = DK(c)

(which may be ⊥ if c fails to properly decrypt under the key K).
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The above algorithms describe the original Kurosawa–Desmedt encryption scheme.

Following [2], we denote by KD∗ the modified KD scheme where the encryption ex-

ponent u = 0 is explicitly disallowed: namely, the sender chooses u← Z∗
p (instead of

u← Zp) during encryption and the receiver outputs ⊥ upon receiving a ciphertext

(a1, a2, c) such that a1 = 1G. In [62] it is proven that KD∗ is strongly robust (with

some conditions on the symmetric components).

We will next see that KD∗ is not fully robust. We construct an adversary A
which gets as input pars, picks M ← G and u,α1,α2 ← Z∗

p. It then computes

a1 = gu1 , a2 = gu2 , v = H(a1, a2), d = aα1
1 aα2

2 .

If v = 0, A re-samples and re-computes the values, until v (= 0. Now consider the

following system of linear equations

{

x1 + vy1 = α1 mod p

x2 + vy2 = α2 mod p

for some α1, α2 in Zp. Let (x10, x20, y10, y20) and (x11, x21, y11, y21) be two distinct

integer solutions to the system.

Now A sets pk = (e, f) and pk′ = (e′, f ′) where

e = gx10
1 gx20

2 , f = gy101 gy202 ,

e′ = gx11
1 gx21

2 , f ′ = gy111 gy212 ,

i.e., the public keys corresponding to secret keys sk = (x10, x20, y10, y20) and sk′ =

(x11, x21, y11, y21), respectively. A finally computes d = aα1
1 aα2

2 , K = KDF(d) and

c = EK(M). Let C = (a1, a2, c).

A’s output for the FROB game will be (C, pk, pk′, sk, sk′). Now, pk (= pk′ and

by the choice of sk and sk′ it is clear that C, decrypted under both secret keys,

will return a valid message M with overwhelming probability. It is easy to see that

this same strategy allows A to win also the KROB game. A’s output will simply be
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(M,M, pk, pk′, u, u), where pk (= pk′ and Enc(pars,M, pk;u) = Enc(pars,M, pk′;u)

by construction.

We therefore have an attack against the full and key-less robustness of KD∗,

providing a natural separation between these notions and that of strong robustness.

We note that in a similar way we can show that CS∗ is neither fully robust nor

key-less robust. In fact, we can view the auctioneer in the attack in Section 3.2.1

as the adversary which is allowed to maliciously generate keys and therefore, using

the same strategy, it can come up with winning outputs for both the FROB and the

KROB games.

3.4 A Unified Approach: Complete Robustness

3.4.1 Complete robustness

At this point it can be asked if there are attacks which fall outside the FROB/KROB

model. To answer this question, we take a somewhat different approach towards ro-

bustness and view it in terms of the behaviour of the encryption and decryption

routines of a scheme with respect to each other. In fact, this is the underlying in-

tuition behind not only the original weak robustness notion (which disappears in

the SROB game because the adversary outputs ciphertexts), but also the standard

correctness property for a PKE scheme (albeit for a single key). This approach leads

to a new notion which we term complete robustness (CROB). In this notion the

shared parameters of the system are passed to an adversary, which then arbitrar-

ily interacts with the encryption and decryption routines on plaintexts, ciphertexts,

keys, and even random coins of its choice. The adversary’s goal is to find an “un-

expected collision” in the cryptosystem (i.e., one outside the natural restrictions

imposed by correctness). We formalize the CROB notion next.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Consider

the following game.
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CROB security game

Setup. The challenger C runs PKE.PG(1λ) to generate the common parameters pars

and initializes a list L to the empty list. C passes pars on to A.

List building phase. A can make the following queries.

• Encryption query: A gives a public key pk, a message M and random-

ness r to C and obtains C = PKE.Enc(pars,M, pk; r). C adds to the list

L the tuple (pk,M,C,⊥, r).

• Decryption query: A gives a public key pk, a secret key sk and a

ciphertext C to C and obtains M = PKE.Dec(pars, pk, C, sk). C adds to

the list L the tuple (pk,M,C, sk,⊥).

A is a winning adversary if there exist two tuples (pk0,M0, C0, e01, e02), (pk1,M1, C1,

e11, e12) in list L, where (ei1, ei2) ∈ {(⊥, ri), (ski,⊥)} for i ∈ {0, 1}, such that:

1. pk0 (= pk1;

2. M0 (=⊥ ∧ M1 (=⊥; and

3. C0 = C1.

We define A’s advantage as the probability of outputting two tuples (pk0,M0, C0,

e01, e02), (pk1,M1, C1, e11, e12) satisfying all of the above conditions.

Definition 3.10 (CROB) A PKE scheme Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) is completely robust (or CROB) if all polynomial-time adversaries have

at most negligible advantage in the above game.

It can be seen through an easy inspection that full robustness is a sub-case

of complete robustness and it can be viewed as the “decryption component” of

the above definition. Key-less robustness, its dual, can similarly be viewed as the

encryption component and therefore it is also implied by complete robustness.
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WROB-CPA SROB-CCA USROB FROB

KROB

XROB

CROB

Figure 3.2: Relations among notions of robustness.

3.4.2 Relations among notions of robustness

Let us now see where CROB stands in relation to the other notions. For instance,

it may be asked if FROB and KROB are strong enough together to jointly imply

CROB. We show this is not the case. To this end, we first characterize CROB in

terms of three notions of robustness consisting of FROB, KROB and a new mixed

notion which we call XROB. We then show that XROB is necessary in the sense that

it is not always implied by FROB and KROB put together. Figure 3.2 summarizes

the main relations among notions of robustness we establish in our work.

Before proving our results we formally define the XROB game. LetΠ = (PKE.PG,

PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Consider the following game.

XROB security game

Setup. The challenger C runs PKE.PG(1λ) to generate the common parameters pars

and passes them on to A.

Finalize. A outputs ((M0, pk0, r0), (C1, pk1, sk1)).

A is a winning adversary if its output satisfies the following conditions:

1. pk0 (= pk1;
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2. PKE.Enc(pars,M0, pk0; r0) = C1 ∧ (M0 (=⊥) ∧ PKE.Dec(pars, pk1, C1, sk1) (=⊥.

We defineA’s advantage as the probability of outputting ((M0, pk0, r0), (C1, pk1, sk1))

satisfying all of the above conditions.

Definition 3.11 (XROB) A PKE scheme Π = (PKE.PG,PKE.KeyGen,PKE.Enc,

PKE.Dec) is XROB if all polynomial-time adversaries have at most negligible ad-

vantage in the above game.

The following results hold.

Proposition 3.12 (CROB ⇔ FROB ∧ KROB ∧ XROB) A PKE scheme is

CROB if and only if it is simultaneously FROB, KROB and XROB.

Proof. A pair of winning tuples can arise in one of three possible ways:

• Both tuples have a secret key as their fourth entry (and therefore a ⊥ as their

last entry), meaning they were added to list L as decryption queries. These

can be translated into a winning output for a FROB adversary.

• Both tuples have the encryption randomness as their last entry (and therefore

a ⊥ as their fourth entry), meaning they were added to list L as encryption

queries. These can be translated into a winning output for a KROB adversary.

• One tuple has ⊥ as its fourth entry and the other has it as its last. These

tuples can be translated into a winning output for an XROB adversary.

!

Proposition 3.13 (FROB ∧ KROB ! CROB) Let Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) be FROB and KROB. Then there is a scheme Π5 = (PKE.PG5,

PKE.KeyGen5,PKE.Enc5,PKE.Dec5) which is FROB and KROB but fails to be CROB.
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Proof. We define the required scheme Π5 as follows.

PKE.PG5(1λ): Run PKE.PG(1λ) to obtain pars′. Run PKE.KeyGen(pars′) to ob-

tain (pk", sk"). Let M" and C" be, respectively, a fixed message and a fixed

ciphertext corresponding to pk". Return pars := (pars′, pk", C",M").

PKE.KeyGen5(pars): Run PKE.KeyGen(pars′) to obtain (pk, sk). Return (0||pk, sk).

PKE.Enc5(pars,M, b||pk; r): If b = 0 return 0||PKE.Enc(pars′,M, pk; r). If b = 1

and pk = pk", output 1||C". Else return ⊥.

PKE.Dec5(pars, b||pk, c||C, sk): If b (= c return ⊥. If b = 0 return PKE.Dec(pars′, C,

sk). If b = 1, pk = pk" ⊕ 1 and C = C" return M". Else return ⊥.

We first show that Π5 is not XROB (and hence it is also not CROB). We

construct an XROB adversary A as follows. Algorithm A obtains pars and sets

r = sk = 0. It then returns the tuples (M", 1||pk"; r) and (1||C", 1||(pk" ⊕ 1), sk).

Now

PKE.Enc5(pars,M
", 1||pk"; r) = 1||C"

and

PKE.Dec5(pars, 1||(pk" ⊕ 1), sk, 1||C") = M".

Furthermore, 1||pk" (= 1||(pk" ⊕ 1), M" (=⊥, and C" (=⊥. Therefore A wins the

XROB game with probability 1.

We now show Π5 is still FROB. Take any FROB adversary A against Π5. We

construct a FROB adversary B against Π as follows. B runs on pars′ and provides

A with pars based on pars′ as in the description of the scheme. Now if the public

keys that A outputs begin with different bits, since PKE.Dec5 checks if b (= c, it

must be the case that the ciphertexts also begin with different bits, and hence A
will not win the FROB game. Suppose A returns two public keys beginning with

b = 0. It is clear that in this case B can also win its FROB game by stripping away

the redundant bits. Finally, suppose both beginning bits are b = 1. In this case

PKE.Dec5 will return a non-⊥ value only when the public keys are both 1||(pk"⊕1),

and hence A cannot win its game in this case.
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It remains to show Π5 is KROB. Take any KROB adversary A against Π5.

We construct a KROB adversary B against Π as follows. B receives pars′ and

generates pars for Π5 as in description of PKE.PG5 above. Now if the public keys

that A outputs begin with different bits, the ciphertexts will not be colliding as the

encryption algorithm attaches the first bit of the public key to the ciphertext. If A
outputs a winning pair with pk0 and pk1 starting with b = 0, it is clear that B can

break the KROB property of the underlying scheme by removing the redundant bits

from the public keys. If both public keys start with b = 1 (and the ciphertexts are

not ⊥), and A is winning, then it must be the case that the public keys are equal,

and so this case cannot lead to A winning the KROB game. !

Having defined complete robustness, CROB, and its weaker relatives, we now

want to prove that it is achievable using generic constructions. In particular, we

show that the construction for strong robustness presented in [2] (which we call the

ABN transformation for short) is actually so powerful as to also achieve CROB.

3.5 Generic Constructions for Complete Robustness

3.5.1 The ABN transformation

In [2] the authors give a generic transformation which takes a scheme Π that satisfies

IND-IK-ATK security (where ATK ∈ {CPA,CCA}), and outputs a scheme Π that

preserves IND-IK-ATK security but is also strongly robust.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme and let

CMT = (CPG,Com,Vrfy) be a commitment scheme. Π = (PKE.PG,PKE.KeyGen,

PKE.Enc,PKE.Dec) is constructed as follows [2].

PKE.PG(1λ): Run PKE.PG and CPG on input 1λ to obtain pars and cpars. Return

pars′ = (pars, cpars).

PKE.KeyGen(pars′): Run PKE.KeyGen(pars) to obtain (pk, sk).

PKE.Enc(pars′,M, pk): Generate (com, dec)← Com(cpars, pk). Run PKE.Enc(pars,

M ||dec, pk) to obtain ciphertext c. Return C = (c, com).
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PKE.Dec(pars′, pk, C, sk): Parse C as (c, com). Run PKE.Dec(pars, c, sk) and ob-

tain M ′. If M ′ = ⊥ then return ⊥. Otherwise, parse M ′ as M ||dec, for dec

of the appropriate length. If Vrfy(cpars, pk, com, dec) = 1 then return M ,

otherwise return ⊥.

Abdalla et al. prove that this transformation preserves the IND-IK-ATK security

of Π if Π is also WROB ([2, Theorem 4.2, part 1]), and that Π is also strongly robust

([2, Theorem 4.2, part 2]). We re-use the first part of this result but strengthen its

second part by showing that the transformation confers complete robustness.

Theorem 3.14 If CMT is binding, the ABN transformation results in a CROB

scheme.

Proof. We treat the three possible cases corresponding to FROB, KROB and

XROB.

Given an FROB adversary A against Π we construct an adversary B1 that will

interact with A to break the binding property of CMT . The game is as follows.

Let C be B1’s challenger. C runs CPG to obtain the commitment scheme’s pa-

rameters cpars and passes them on to B1. B1 runs PKE.PG to obtain pars, which it

passes to A together with cpars.

Finally, A outputs (C, pk0, pk1, sk0, sk1), where C = (c, com) and pk0 (= pk1. Now

B1 runs PKE.Dec(pars, pk0, c, sk0), obtaining M0, and PKE.Dec(pars, pk1, c, sk1),

obtaining M1. Let Succ be the event that neither M0 nor M1 are ⊥. If Succ occurs

then B1 parses M0 and M1 into M̃0||dec0 and M̃1||dec1, respectively. It then gives

(com, pk0, pk1, dec0, dec1) to C as its final output.

B1 provides a perfect simulation for A as well as a legal strategy for attacking the

binding property of CMT , provided Succ occurs. Since this happens whenever A is

a winning adversary against the full robustness of Π, we have that B1’s advantage

is the same as A’s.

Given a KROB adversary A against Π we construct an adversary B2 that will

interact with A to break the binding property of CMT . The game is as follows.
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Let C be B2’s challenger. C runs CPG to obtain the commitment scheme’s pa-

rameters cpars and passes them on to B2. B2 runs PKE.PG to obtain pars, which it

passes to A together with cpars.

A outputs (M0,M1, pk0, pk1, r0, r1), where pk0 (= pk1, r0 = (r0cmt , r0enc) and r1 =

(r1cmt , r1enc). Now B2 runs Com(cpars, pk0; r0cmt), obtaining (com0, dec0), and

Com(cpars, pk1; r1cmt), obtaining (com1, dec1). B2 computes c0 = PKE.Enc(pars,

M0||dec0, pk0; r0enc) and c1 = PKE.Enc(pars,M1||dec1, pk1; r1enc). Let C0 = (c0,

com0) and C1 = (c1, com1). Let Succ be the event that C0 = C1 (and there-

fore c0 = c1 = c and com0 = com1 = com). If Succ occurs then B2 outputs

(com, pk0, pk1, dec0, dec1) and gives it to C.
B2 provides a perfect simulation for A as well as a legal strategy for attacking the

binding property of CMT , provided Succ occurs. Since this happens whenever A is a

winning adversary against the key-less robustness of Π, we have that B2’s advantage

is the same as A’s.

Given an XROB adversary A against Π we construct an adversary B3 that will

interact with A to break the binding property of CMT . The game proceeds as

follows.

Let C be B3’s challenger. C runs CPG to obtain the commitment schemes’s

parameters cpars and passes them on to B3. B3 runs PKE.PG to obtain pars, which

it passes to A together with cpars.

A outputs (M0, pk0, r0, C1, pk1, sk1), where pk0 (= pk1, r0 = (r0cmt , r0enc) and C1 =

(c1, com1). Now B3 runs Com(cpars, pk0; r0cmt), in order to obtain (com0, dec0),

and it also runs PKE.Dec(pars, pk1, c1, sk1), obtaining M1. Then B3 computes the

ciphertext c0 = PKE.Enc(pars,M0||dec0, pk0; r0enc). Let C0 = (c0, com0). Let Succ

be the event that C0 = C1 (and therefore c0 = c1 = c and com0 = com1 = com). If

Succ occurs then B3 outputs (com, pk0, pk1, dec0, dec1) and gives it to C.
B3 provides a perfect simulation for A as well as a legal strategy for attacking the

binding property of CMT , provided Succ occurs. Since this happens whenever A is a

winning adversary against the key-less robustness of Π, we have that B3’s advantage

is the same as A’s. !
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3.5.2 Further constructions

We have presented a generic construction for complete robustness. We now pro-

vide an overview of alternative ways to achieve this notion. Details of some of the

following results can be found in [45].

3.5.2.1 Mohassel’s transformation

Mohassel [66] provides a generic transformation in the random oracle model that

converts an IND-IK-ATK encryption scheme into one which is SROB-CCA, with-

out compromising its IND-IK-ATK security. In his construction, the hash value

H(pk, r,M), where r is the randomness used in the encryption, is attached to ci-

phertexts. This immediately rules out all forms of collisions between ciphertexts, as

the hash values are unlikely to collide on two distinct public keys. It is then easy to

see that this construction also achieves complete robustness.

3.5.2.2 A modified ABN transform

While the original transformation [2] does preserve IND-IK-CCA security and con-

fers CROB security, the IND-IK-CCA security of the transformed scheme Π relies

on the weak robustness of the underlying encryption scheme Π. It is possible to

show that if the underlying encryption scheme supports labels (in which case the

encryption and decryption algorithms both take an additional public string L as

input), this assumption can be eliminated and we only need Π to be IND-IK-CCA

secure. Although the weak robustness requirement is not too demanding in the-

ory (since any encryption scheme can be made weakly robust by means of a keyed

redundancy-based transformation [2]), this construction provides better efficiency in

cases where the IND-IK-CCA encryption scheme natively supports labels (such as

for the Cramer–Shoup and Kurosawa–Desmedt schemes). Details of this approach

can be found in [45].

68



3.5 Generic Constructions for Complete Robustness

3.5.2.3 Complete robustness from IBE

In [45] the authors also answer in a positive sense a question left open in [2] as to

whether the Canetti–Halevi–Katz [25] (CHK) paradigm can be leveraged so as to

obtain schemes that simultaneously offer IND-IK-CCA security and robustness in a

strong sense. Answering this question is non-trivial: Abdalla et al. pinpointed that

applying the one-time-signature-based CHK transformation to the Boyen–Waters

IBE [22], for example, does not provide SROB-CCA or even SROB-CPA security.

The construction in [45] is a variant of the Boneh–Katz construction [19] for chosen-

ciphertext security, and it requires the underlying IBE to only satisfy a weak level

of security under chosen-plaintext attacks. Because this approach simultaneously

provides complete robustness and IND-IK-CCA security, it results in schemes having

better efficiency than what would be obtained by applying the ABN transformation

of [2] to an IND-IK-CCA secure scheme obtained from the original Boneh–Katz

transformation.

3.5.2.4 Concrete schemes

It is natural to ask whether it is possible to improve upon the efficiency of generic

constructions with concrete schemes whose security rests on specific computational

assumptions. Indeed, this is the case, and another achievement in this area of

research is to directly construct a CROB and IND-IK-CCA secure scheme using, as

a starting point, certain hybrid encryption systems, such as the Hofheinz–Kiltz [55]

and the Kurosawa–Desmedt [60] schemes. This is developed in detail in [45].

3.5.3 Conclusions

We have developed new notions of robustness in the public-key setting, identifying

complete robustness as the strongest one. We have also explored the relationship be-

tween these notions. Furthermore, we have shown how to generically achieve public-

key encryption schemes which are completely robust, and provided an overview of

further results in this area of research.
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As a next step, it would be interesting to consider the newly introduced notions

of robustness in the identity-based setting. In such a context, the natural extension

of our notions would be to allow the adversary to choose the IBE master keys mali-

ciously. It would also be interesting to explore the significance of robustness in more

advanced primitives such as attribute-based encryption and predicate encryption.

We leave further development of these ideas as future work.
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In this chapter we consider anonymity in the context of broadcast encryption.

We provide a security definition for anonymous broadcast encryption (ANOBE) and

show that it is achievable from public-key, identity-based and attribute-based encryp-

tion, providing secure constructions from all of these primitives. Furthermore, we

show how randomness re-use techniques can be deployed in the ANOBE context to

reduce computational and communication costs. All of our results are in the standard
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model, achieving fully collusion-resistant ANOBE schemes secure against adaptive

IND-CCA adversaries. This chapter will appear as part of [62] in the proceedings of

the international cryptographic conference Public-Key Cryptography 2012, as joint

work with Benôıt Libert and Kenneth G. Paterson.

4.1 Introduction

4.1.1 Broadcast encryption

Broadcast encryption (BE) addresses the issue of broadcasting a message to a dy-

namically changing privileged subset of a set of users, in a way that no user outside

the privileged set can learn the message. We will call the universe of n users U and

the privileged (or target) set S, where S ⊆ U . Since its introduction in 1993 by Fiat

and Naor this area of research has received a lot of attention. This is largely due to

the numerous real-world applications BE has, namely pay TV, multicast communi-

cation, Internet broadcast, audio streaming and, in general, any secure distribution

of copyright-protected content. In this respect, BE represents an essential compo-

nent offering solutions to several issues these applications may face: maintaining

the confidentiality of the message, protecting user privacy, revoking unauthorized

users, deploying traitor-tracing mechanisms, etc. Indeed, the BE schemes the cryp-

tographic community has put forth can be seen as building blocks upon which a

fully-fledged broadcast system can be developed.

Given BE’s inherent practical vocation, the relevant research has progressed in

achieving the desired functionalities whilst being extremely alert with respect to the

efficiency of the proposed schemes. Since the very beginning, the benchmark for

performance comparison has been what can be considered as the natural solution

to the broadcast problem, that is, encrypt the message repeatedly to each user in

the privileged set. This approach, however simple and efficient in terms of key-

storage, results in ciphertexts whose size is linear in the size of the privileged set. In

the symmetric setting, where the first BE schemes were proposed, the other natural

solution is to assign a key to every possible subset of the set of users and encrypt the

message with the appropriate key. This would result in constant-size ciphertexts but

an exponential number of keys for the user to store (one for each subset he belongs
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to). The practicality of this solution is further limited by the fact that for any new

user joining the system, the existing users would have to go on-line to update their

keys, creating even more key-management issues.

Finding a trade-off between key-storage requirements and ciphertext size was

the main concern behind the design of the first (symmetric) BE schemes. These

were predominantly presented as revocation schemes, allowing to address a large

privileged set of receivers and, at each broadcast, to revoke a small number r of

unauthorized users. The solutions of [47, 67] employ tree-based techniques to achieve

sub-linearity in both the keys and the ciphertext size. To be more precise, [67]

presents schemes with O(logn) key-storage requirements and ciphertexts of size

O(r logn). The results of [67] go even further by providing an elegant framework

called the subset cover framework, within which fully collusion-resistant broadcast

encryption schemes for stateless receivers can efficiently be obtained. Achieving

these properties is yet another advantage of this approach.

A stateless receiver is a user who does not need to update his private key,

i.e. the key is fixed for the lifetime of the system. This clearly is more practical than

having a stateful receiver, who may need a key update each time a new user joins

the system or may have to change keys based on previous message transmissions.

Collusion resistance is one of the fundamental properties of a BE scheme. This is

the requirement that no coalition of users outside the privileged set can recover the

message. In the literature we can find several schemes that resist collusion attacks

mounted by coalitions of at most t < n users, where n is the maximal number of

users; only some schemes are fully collusion-resistant, i.e., they can tolerate attacks

by coalitions of any size.

In our work, we will consider systems that allow stateless receivers and are fully

collusion-resistant. These are by now standard objectives for a BE scheme. Our

focus will be on developing schemes in the public-key setting, of which we give a

brief overview next.
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4.1.1.1 Public-key broadcast encryption

The subset cover framework was originally proposed in the symmetric setting. How-

ever, [67] suggests a way to extend this to the public-key environment, incurring

unfortunately a very large public key. The authors of [43] improve on the efficiency

of such extension by employing identity-based techniques which result in constant-

size key-storage requirements and similar ciphertext length (linear in r, sublinear

in n). We observe that the type of (revocation) schemes in [67, 43] are considered

efficient as long as the number of revoked users in the system is small (this is the

case in the context of content distribution, for example).

In the years following this work a large number of BE variants have been pro-

posed, examples of which are dynamic join [40, 76] and identity-based broadcast

encryption [39], highlighting the interest of the community in this area of research.

A major breakthrough in BE was the work by Boneh, Gentry and Waters [17]

which no longer employed combinatorial techniques but adopted groups with bilinear

maps to achieve very efficient public-key BE schemes. More specifically, two schemes

are presented in [17]: one obtains constant-size private keys and ciphertexts, consist-

ing of 1 and 2 group elements, respectively, but has a public key whose size is linear

in n, the total number of users; the second construction can be parametrized so as to

have again constant-size private keys, but ciphertexts and public key of size O(
√
n),

enabling a trade-off in sizes. This work has been regarded as ground-breaking in

terms of performance achieved.

Follow up work by Gentry and Waters [51] presented a BE scheme with similar

efficiency, in particular yielding constant-size ciphertexts, but achieving a stronger

notion of security, namely against adaptive adversaries, which we discuss next.

4.1.1.2 Static vs. adaptive security in BE

Amongst the many challenges BE poses, obtaining schemes which satisfy a strong

security notion is one of the latest to have been overcome. In fact, the impressively

efficient schemes in [17], dating from 2005, only achieve security against a static
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adversary. This type of adversary is limited with respect to the set of users he can

corrupt. More precisely, he needs to specify a priori the target set he wishes to be

challenged on. The authors of [17] leave the construction of an efficient BE scheme

secure against an adaptive adversary, i.e., one that can adaptively corrupt users

during the game, as a major open problem. Four years later, Gentry and Waters

[51] solved the problem, achieving adaptively secure BE. This stronger notion of

security is arguably the correct one for BE since it captures the most general class

of attackers who are allowed to see the system’s parameters and can arbitrarily

corrupt users before committing to a challenge set.

4.1.2 Anonymity in broadcast encryption

As discussed so far, several practical aspects need to be taken into consideration

when designing a BE scheme, especially in view of its real-life applications: strength

of security notions, public and private storage requirements, ciphertext length, and

computational costs. The specific nature of the primitive however has led researchers

to focus in particular on solutions having ciphertexts that are as short as possible. In

this respect, the results of [17] and [51] are nearly optimal. However, designing BE

schemes for real-life applications to broadcasting should not only involve efficiency

and confidentiality issues. In particular, the privacy of users should be protected

as much as possible. We believe that, to date, this aspect has not been adequately

dealt with. Our study of the literature reveals that anonymity in BE has only been

considered in a single paper [6], in the context of encrypted file systems. Surprisingly,

almost all subsequent work on BE has ignored the issue of anonymity. Moreover,

as we shall explain next, state-of-the-art BE schemes are inherently incapable of

providing any kind of anonymity.

4.1.2.1 An illustrative example

To illustrate our point, we recall one of the schemes proposed by Gentry and Waters

in [51, Section 3.1], which achieves adaptive security and appears to offer very short

(constant-size) ciphertexts, namely 3 group elements. We call this scheme GW. As

per standard BE schemes (a formal definition of which will be provided in Section
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4.2), GW consists of four algorithms: BE.Setup, which on input the security param-

eter returns the master public key and the master secret key of the system; a key

generation algorithm BE.KeyGen; an encryption algorithm BE.Enc, which on input a

message and the target set returns a ciphertext, and a decryption algorithm BE.Dec,

which returns the message if the secret key used belongs to a member of the target

set. More precisely, GW is defined as follows.

The GW broadcast encryption scheme

Let GroupGen be an algorithm that on input a security parameter 1λ generates

G and GT , groups of prime order p equipped with a bilinear map e : G×G→ GT .

We define the algorithms for GW in the following way.

Setup(1λ, n): Run GroupGen(1λ) to obtain (G,GT , e). Choose random α← Zp and

g, h1, ..., hn ← Gn+1. The master public key is

BE-MPK = (G,GT , e, g, e(g, g)
α, h1, ..., hn)

and the master secret key is BE-MSK = gα.

KeyGen(i,BE-MSK): Choose random ri ← Zp and output

di = (di,0, ..., di,n) where di,0 = g−ri , di,i = gαhrii , ∀j %=i di,j = hrij .

Enc(BE-MPK,M, S): Select t← Zp and set

C1 = gt, C2 = (
∏

j∈S

hj)
t, C3 = M · e(g, g)α·t.

Output C = (C1, C2, C3).

Dec(BE-MPK, C, i, di, S): If i ∈ S, parse di as (di,0, ..., di,n) and C as (C1, C2, C3).

Compute

C ′ = e(di,i ·
∏

j∈S\{i}

di,j , C1) · e(di,0, C2).

Compute M = C3/C ′.

The scheme is proved correct and secure in [51].
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As we would expect from any public-key BE scheme, each user in the system can

obtain his private key from the BE.KeyGen algorithm, and the sender can choose

an arbitrary target set of users S to which he wishes to broadcast a message. A

closer look at the decryption algorithm, however, reveals something rather peculiar:

to recover the message, a legitimate user, i.e., a user in S, has to run the decryption

algorithm on input the ciphertext, his private key and a description of the target set

S. This set S is required specifically as an input to BE.Dec in the existing definitions

of BE [51, 18, 39]. We note that, as is evident from our illustrative example, this is

not just a formality issue which could be solved simply by removing this requirement

from the BE model. Current schemes such as GW explicitly rely on S as an input

to BE.Dec for decryption to work. Therefore the user needs to somehow know to

which set S the message was broadcast, otherwise he cannot decrypt.

This simple but crucial observation raises a fundamental question: where does

S come from? In the most general usage scenario intended for BE, where S is

dynamic and may be unpredictable from message to message, the ciphertexts must

effectively include a description of S as part of the ciphertexts themselves. This

leads to two considerations. Firstly, current BE schemes such as those in [51, 17, 39]

do not account for the cost of broadcasting a description of S when calculating

the size of ciphertexts. This means that the true ciphertext size in these schemes

is linear in n rather than constant-size, as a cursory examination of the schemes

might suggest1. However, we say that the results in [17] and [51] are nearly optimal

(having ciphertexts of size n bits plus a constant number of group elements) since

there is a simple counting argument showing that, for a universe of n users in which

every possible subset S should be reachable by secure broadcast, ciphertexts must

contain at least n bits. Indeed the ciphertext should be long enough to uniquely

identify the privileged subset S. The overhead provided by these schemes is therefore

impressively small, but, to repeat, the true ciphertext size is linear in n.

The second important consideration that comes from noticing S as a required

input to the decryption algorithm is that this limitation in the existing BE model

and schemes clearly causes serious privacy issues. Imagine we deploy a BE scheme,

as defined above, for television broadcasting. Suppose the privileged set is the set of

1This does not rule the use of compact encodings of S being transmitted with ciphertexts in more
restrictive usage scenarios, for example, only sending the difference in S when the set S changes
only slowly from message to message.
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all users who have paid a subscription to a certain channel. Each customer should

have access to that channel using his private key. The problem is that, to decrypt,

he will have to know who else has paid for the specific subscription! Not only is this

requirement very inconvenient for the practical deployment of BE schemes, it is also

a severe violation of the individual subscriber’s privacy. Ideally, a BE scheme should

protect users’ privacy by guaranteeing that ciphertexts do not leak any information

about the privileged set S. This is exactly what we mean for a BE scheme to

be anonymous and we view this as a highly desirable security property for BE in

practical applications.

There are many reasons why ensuring anonymity should be a top priority when

designing a BE scheme. First of all, knowledge of the target set of receivers of a

certain message may be more sensitive than the message itself. Furthermore, in most

usage scenarios, hiding the identities of the privileged users (even from each other) is

essential to guaranteeing the adequate level of security expected from the application

(pay TV, Internet broadcast, etc.). It is very surprising that this problem has been

so overlooked throughout these years.

4.1.2.2 Related work

The only prior work addressing the issue of anonymity in BE appears to be that

of Barth et al. [6] (there, it is called privacy). In [6] the authors highlight the

need for user privacy in certain applications of BE, such as encrypted file systems

and content delivery systems. To address this they introduce the notion of private

broadcast encryption and define a security model for recipient privacy. This model

suffers from the limitation that only static adversaries are considered. Indeed, the

two generic constructions for private broadcast encryption presented in [6] are proved

secure only against this less powerful type of adversary. The first construction uses

a key-private, IND-CCA secure PKE scheme as a base to encrypt the message to

each user in the target set, and then ties together the resulting ciphertexts using a

strongly secure one-time signature. This yields a private BE scheme that is secure

in the standard model. A drawback of this approach, however, is that decryption is

linear in the size of the target set S, as an intended recipient needs to perform an

average of |S|/2 decryptions before recovering the message. The second construction
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is a modification of the first one which allows for efficient decryption. The basic

idea is to append a tag to each ciphertext component so that the legitimate user

can recompute the tag with his private key and then identify his corresponding

ciphertext component. The technique presented in [6] to speed-up decryption was,

however, only analyzed in the random oracle model.

In [21] the authors provide a private linear broadcast encryption (PLBE) scheme

to realize a fully collusion-resistant traitor-tracing scheme. A PLBE, however, is a

BE system with limited capabilities (i.e. it cannot address arbitrary sets of users)

and hence this work does not provide a solution to the problem considered so far.

In very recent work [46] that builds on [6] and [62], the authors introduce the

notion of outsider -anonymous broadcast encryption, which is designed to hide the

privileged set from any outsider but provides no privacy guarantees with respect to

the legitimate users. The claim (in [46]) that this notion is justified since the content

of the communication already reveals something about the recipient set is highly

debatable, and certainly does not suit our motivation for the study of anonymity in

BE. This primitive, however artificial it may seem, can be achieved using tree-based

techniques from [67, 43], yielding schemes whose ciphertexts have similar (compact)

size, i.e. linear in the number of revoked users.

4.1.3 Our contributions

We start by giving a unified security definition for anonymous broadcast encryption

(ANOBE) in Section 4.2. Instead of separating anonymity and confidentiality as in

[6], we use a combined security notion for ANOBE which helps to streamline our

presentation and proofs. In addition, we strengthen the model to allow the adversary

to make adaptive corruptions, with all of our constructions achieving security in this

setting. In contrast, the definition of [6] is static, requiring the adversary to choose

whom to corrupt before seeing the public key of the system. As a first step we show

in Section 4.3.1 that our enhanced security definition is indeed satisfiable: adaptively

secure ANOBE can be built based only on the existence of IND-CCA secure PKE

(without requiring the base PKE scheme to have any anonymity properties itself).

This construction results in a very efficient (constant) decryption procedure but has
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ciphertexts whose size is linear in n, the number of users in the universe U .

In Section 4.3.2 we show that the generic construction for ANOBE suggested by

Barth et al. [6] actually possesses adaptive security, and not merely static security

as was established in [6]. This construction starts from any weakly robust (in the

sense of [2]), key-private PKE scheme with chosen-ciphertext security. In comparison

with our first generic construction, this result imposes stronger requirements on the

underlying encryption scheme. However, it achieves shorter ciphertexts, with the

size being linear in the size of the target set S.

In Section 4.4 we provide another generic construction which uses an identity-

based encryption (IBE) scheme having suitable security properties, in the style of

the CHK transformation (see Section 2.4.2). This alternative further increases the

set of components that can be used to obtain ANOBE.

With the aim of setting the ground for a systematic study of ANOBE and its re-

lations to other important primitives, we explore the interesting connection between

attribute-based encryption (ABE) and BE. In Section 4.5 we prove that ANOBE

can be securely achieved from ABE as well.

Having so far demonstrated the achievability of ANOBE, we next focus on im-

proving the performance of the resulting schemes. To this end, we show how ran-

domness re-use techniques originally developed for PKE in [59, 10, 9] can be modified

for secure deployment in the ANOBE setting. In particular, we identify a slightly

stronger notion of reproducibility that we call key-less reproducibility. We show in

Section 4.6 that if our base PKE scheme has this property (in addition to the other

properties needed in our generic construction) then it can be used with the same

randomness across all ciphertext components in our main ANOBE construction.

This not only allows the size of ciphertexts to be reduced further (by eliminating

repeated ciphertext elements) but also reduces the sender’s computational overhead.

We conclude the chapter by briefly presenting further results on ANOBE and by

giving possible directions for future work.
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4.2 Anonymous Broadcast Encryption

In this section we define a model for public-key broadcast encryption (BE), where

algorithms are specified to allow for anonymity (similarly to [6]) and they are general

enough to include the identity-based variant of BE introduced in [39].

Definition 4.1 (Broadcast encryption scheme) Let U = {1, ..., n} be the uni-

verse of users. A broadcast encryption (BE) scheme is defined by five algorithms,

which are as follows.

BE.PG: This algorithm takes as input the security parameter 1λ and the number

of users in the system n. It returns the system’s parameters pars. These will

include a description of the message space MsgSp and the ciphertext space

CtSp of the scheme. We write this as pars← BE.PG(1λ, n).

BE.Setup: This algorithm takes as input pars and returns a master public key

BE-MPK and a master secret key BE-MSK. We write this as (BE-MPK,

BE-MSK)← BE.Setup(pars).

BE.KeyGen: This is a key generation algorithm that on input BE-MPK, BE-MSK

and an index i ∈ U outputs a secret key ski for user i. We write this as

ski ← BE.KeyGen(BE-MPK,BE-MSK, i).

BE.Enc: This is an encryption algorithm that on input BE-MPK, a message M ∈
MsgSp and a subset S ⊆ U , the broadcast target set, returns a ciphertext

C ∈ CtSp. We write this as C ← BE.Enc(BE-MPK,M, S).

BE.Dec: This is a decryption algorithm that on input BE-MPK, a ciphertext C

and a secret key ski returns either a message M ∈ MsgSp or a failure symbol

⊥. We write this as BE.Dec(BE-MPK, C, ski) = M or ⊥.

These algorithms are required to satisfy the following correctness property: For

every λ, for every set of parameters pars output by BE.PG, for every BE-MPK,

BE-MSK output by BE.KeyGen, for every message M ∈ MsgSp, for every index

i ∈ U and for every S ⊆ U , if ski ← BE.KeyGen(BE-MPK,BE-MSK, i), if C ←
BE.Enc(BE-MPK,M, S) and if i ∈ S then BE.Dec(BE-MPK, C, ski) = M .
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We observe that this definition no longer requires the set S as an input to the de-

cryption algorithm. This is crucial in developing the notion of anonymous broad-

cast encryption (ANOBE), for which we next provide an appropriate security

model for the case of adaptive adversaries.

We define the notion of anonymity and indistinguishability under chosen-ciphertext

attacks (ANO-IND-CCA) for BE as follows.

ANO-IND-CCA security game for BE

Setup. The challenger C runs BE.PG(1λ, n) to generate pars and BE.Setup(pars)

to obtain the master public key BE-MPK and the master secret key BE-MSK

and gives BE-MPK to the adversary A.

Phase 1. A has access to a secret-key-extraction oracle OBE-MSK, to obtain se-

cret keys of any index i ∈ U . The oracle will respond by returning ski =

BE.KeyGen(BE-MPK,BE-MSK, i). A has also access to a decryption oracle

OBE-MSK, to which it submits queries of the type (C, i), where i ∈ U , and the

oracle will return the decryption BE.Dec(BE-MPK, C, ski).

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and sets

S0, S1 ⊆ U of users. We require that S0 and S1 be of equal size and also impose

the restriction that A has not issued key queries for any i ∈ S0 1 S1 = (S0 \
S1)∪(S1\S0). Further, if there exists an i ∈ S0∩S1 for which A has queried the

key, then we require that M0 = M1. A passes M0,M1, S0, S1 to C. C chooses

a random bit b ← {0, 1} and computes C" ← BE.Enc(BE-MPK,Mb, Sb). C"

is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to have access to a secret-key-extraction oracle OBE-MSK,

with the restrictions that i /∈ S01 S1 and that, if i ∈ S0 ∩ S1, then M0 = M1.

A may continue issuing decryption queries (C, i) with the restriction that if

C = C" then either i /∈ S0 1 S1 or i ∈ S0 ∩ S1 and M0 = M1.

Guess. The adversary outputs its guess b′ for b.

Definition 4.2 A BE scheme B = (BE.PG,BE.Setup,BE.KeyGen,BE.Enc,BE.Dec)

is adaptively anonymous and indistinguishable under chosen-ciphertext attacks (or
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ANO-IND-CCA secure) if all p.p.t. adversaries have at most negligible advantage in

the above game, where A’s advantage is defined as AdvANO−IND−CCA
A,BE (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣ .

Like the corresponding definition of [6, Section 2], Definition 4.2 does not require

the ANOBE ciphertext to hide the number of receivers. However, specific schemes

(such as the one in Section 4.3.1) can also conceal the cardinality of S.

We have introduced a new notion of security for BE, namely ANO-IND-CCA

security against adaptive adversaries. Our next step is to show that this notion is

indeed feasible, and we do so by presenting a generic construction that relies solely

on the existence of an IND-CCA secure PKE scheme. We will then improve its

performance by giving alternative generic constructions whose underlying primitives

require additional security properties.

4.3 ANOBE from Public-Key Encryption

4.3.1 ANOBE from minimal assumptions

Since our aim is to provide a formal treatment of anonymous broadcast encryption,

we begin by showing that ANOBE can be achieved. Indeed, by simply assuming the

existence of an IND-CCA secure PKE scheme we can construct an adaptively secure

ANO-IND-CCA BE scheme.

The idea is simple. We will encrypt a message to all users in the system under

each of their respective public keys. More specifically, we will use the PKE scheme

to encrypt the intended message M to the users in the target set, and a special

valid message ε to all the other users. The BE ciphertext will be a concatenation

of PKE ciphertexts on which a signature is performed. The intended recipients will

efficiently recover the message M by selecting the ciphertext corresponding to their

index, while for the unauthorized users the public-key decryption algorithm will

return ε. It is fairly intuitive to see that no property other than IND-CCA security

for the PKE scheme (and strong one-time unforgeability for the signature) has to
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be assumed in order to yield a secure ANOBE scheme, proving feasibility of our

new notion. Let us explore in more detail this initial construction, for which we will

assume the message spaces and key space to be bit-strings of fixed length.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme with mes-

sage space MsgSp = {0, 1}m. Let Σ=(Gen,Sign,Ver) be a signature scheme. We as-

sume that the key space of Σ is KSp = {0, 1}v, for some v ∈ poly(λ). We use Π and

Σ to generically instantiate a BE scheme, with message space {0, 1}m−v. In the de-

scription hereafter, we include the symbol ε as a valid but distinguished message in

{0, 1}m−v: in other words, all the messages that receivers accept as legal plaintexts

are different from ε. The construction is as follows.

BE.PG(1λ, n): Generate pars← PKE.PG(1λ) and return (pars, n).

BE.Setup(pars, n): For i = 1 to n, generate (ski, pki) ← PKE.KeyGen(pars). The

master private key is BE-MSK = {ski}ni=1 and the master public key consists

of

BE-MPK =
(

pars, Σ, {pki}ni=1

)

.

BE.KeyGen(BE-MPK,BE-MSK, i): Parse the master secret key BE-MSK as

{ski}ni=1 and output ski.

BE.Enc(BE-MPK,M, S): To encrypt a messageM for a receiver set S ⊆ {1, . . . , n},
generate a one-time signature key pair (sigk, vk) ← Gen(1λ). Then, for each

j = 1 to n, compute Cj = PKE.Enc(pars,M ||vk, pkj) if j ∈ S and Cj =

PKE.Enc(pars, ε||vk, pkj) if j (∈ S. The ANOBE ciphertext consists of C =
(

C1, . . . , Cn,σ
)

, where σ = Sign
(

sigk, (C1, . . . , Cn)
)

.

BE.Dec(BE-MPK, C, ski): Given C =
(

C1, . . . , Cn,σ
)

, computeM ′ = PKE.Dec(Ci,

ski). If M ′ (=⊥, parse M ′ as M ′ = M ||vk for some bit strings M ∈ {0, 1}m−v

and vk ∈ {0, 1}v. Then, if Ver
(

vk, (C1, . . . , Cn),σ
)

= 1 and M (= ε return M .

Otherwise, output ⊥.

The correctness of the BE scheme follows directly from the correctness of Π and

Σ. This construction is reminiscent of generic constructions of chosen-ciphertext-

secure multiple encryption [44] and it is easily seen to yield a secure ANOBE. The

following result in fact holds.
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Theorem 4.3 Let Π be an IND-CCA secure PKE scheme and let Σ be a strongly

unforgeable one-time signature scheme. The BE scheme constructed above is ANO-

IND-CCA secure against adaptive adversaries.

In our proof of adaptive security we make use of a sequence of hybrid arguments

where ciphertext components are gradually modified at each step and each hybrid

argument requires the reduction to guess upfront the identity of an uncorrupted

user. We note that Gentry and Waters [51] already briefly mentioned that such an

approach could potentially be useful to prove adaptive security but, to the best of our

knowledge, no rigorous analysis of this type was previously given in the literature.

Moreover, in the constructions that follow in the rest of this chapter, achieving

adaptive security represents even more of a challenge since it is a non-trivial task

to get this proof technique to suitably interact with the methods we present for

improving the overall efficiency.

For the proof of Theorem 4.3 we consider a sequence of games starting with

Game 0 where the adversary is given an encryption of M0 for S0. In the last game,

the adversary obtains an encryption of M1 under S1.

Game 0real: is the real game when the challenger’s bit is set to b = 0. The ANOBE

adversary A is given public parameters BE-MPK consisting of n public-key

encryption keys {pki}ni=1. For each i ∈ {1, . . . , n}, user i’s private key is ski.

In the first stage, A adaptively chooses indices i ∈ {1, . . . , n} and obtains the

corresponding ski. The adversary may also query the decryption oracle by

sending requests (C, i) which are answered using the relevant private key ski.

In the challenge step, A chooses messages M0,M1 and two subsets S0, S1 ⊂
{1, . . . , n} of equal size |S0| = |S1| = %. The challenger generates a one-time

signature key pair (sigk", vk")← Gen(1λ) and returns the challenge ciphertext

C" =
(

C1, . . . , Cn,σ
)

where σ = Sign(sigk", (C1, . . . , Cn)) and, for j = 1

to n, Cj is computed as Cj = PKE.Enc(M0||vk", pkj) if j ∈ S0 and Cj =

PKE.Enc(ε||vk", pkj) if j (∈ S0. In the second phase, A is allowed to make

more corruption queries for indices i such that i ∈ {1, . . . , n}\(S0 1 S1) and

is granted further access to the decryption oracle under the usual restriction.

Upon termination, A outputs a bit b′ ∈ {0, 1} and we define Ereal
0 to be the

event that b′ = 0.
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Game 0: is as Game 0real with the difference that the challenger now rejects all

post-challenge decryption queries
(

C = (C1, . . . , Cn,σ), i
)

for which Ci = C"
i

(i.e., the i-component of C coincides with that of the challenge ciphertext).

Clearly, the only situation where the challenger rejects a ciphertext that would

not have been rejected in Game 0real is when A breaks the security of the one-

time signature. It is easy to see since Ci = C"
i decrypts to a message whose

last v bits form the challenge verification key vk" as in the challenge phase.

We call E0 the event that A outputs b′ = 0 in Game 0.

To describe subsequent games, it is convenient to represent the sets S0 and S1 as n-

bit strings s01 . . . s0n ∈ {0, 1}n and s11 . . . s1n ∈ {0, 1}n such that, for each b ∈ {0, 1}
and j ∈ {1, . . . , n}, sbj = 1 if and only if j ∈ Sb.

Game k (1 ≤ k ≤ n): From the two adversarially-chosen sets S0, S1 ⊂ {1, . . . , n}
and their respective n-bit strings s01 . . . s0n and s11 . . . s1n, the challenger B
generates the challenge ciphertext as follows.

1. If s0j = s1j = 1, set Cj = PKE.Enc(M1||vk", pkj) if j ≤ k and Cj =

PKE.Enc(M0||vk", pkj) if j > k. If s0j = s1j = 0, set Cj = PKE.Enc(ε||vk",
pkj).

2. If s0j = 1 and s1j = 0, set Cj = PKE.Enc(ε||vk", pkj) if j ≤ k and

Cj = PKE.Enc(M0||vk", pkj) if j > k.

3. If s0j = 0 and s1j = 1, set Cj = PKE.Enc(M1||vk"), pkj if j ≤ k and

Cj = PKE.Enc(ε||vk", pkj) if j > k.

The adversary is then returned C" =
(

C1, . . . , Cn,σ
)

and the second phase is

handled as in previous games. We call Ek the event of A outputting b′ = 0 at

the end of Game k.

Game nreal: is identical to Game n with the difference that, when handling de-

cryption queries, the challenger no longer returns ⊥ in decryption queries

(C = (C1, . . . , Cn,σ), i) such that that Ci = C"
i . Game nreal thus coincides

with the real game when the challenger’s bit equals b = 1. We let Ereal
n be the

event that A outputs the bit b′ = 0 at the end of Game nreal.
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Game 0real and Game 0 are clearly indistinguishable if the one-time signature is

strongly unforgeable and the same argument can be made about Game n and Game

nreal.

We thus have |Pr[Ereal
0 ]−Pr[E0]| = |Pr[Ereal

n ]−Pr[En]| ≤ AdvSUF−1CMA
A,Σ (λ). As

for other game transitions, they are justified by Lemma 4.4 which demonstrates that,

if Game k and Game k− 1 can be distinguished for some k ∈ {1, . . . , n}, there must

exist an IND-CCA adversary B against the underlying encryption scheme. Putting

the above altogether, we find

|Pr[Ereal
0 ]− Pr[Ereal

n ]| ≤ 2 ·AdvSUF−1CMA
A,Σ (λ) + n ·AdvIND−CCA

B,Π (λ).

Lemma 4.4 Let Π be an IND-CCA secure PKE scheme. Then for any k ∈ {1, . . . , n},
Game k is indistinguishable from Game k − 1. More precisely, we have

|Pr[Ek]− Pr[Ek−1]| ≤ AdvIND−CCA
B,Π (λ).

Proof. Towards a contradiction, let us assume that an adversary A can distinguish

Game k and Game k − 1. We show that it implies a chosen-ciphertext adversary B
against Π.

We first recall that, in the challenge phase, the adversarially-chosen messages

M0,M1 and sets S0, S1 must be such that either

- S0 = S1 and M0 (= M1, in which case the adversary cannot corrupt any user

in S0 = S1 (and, of course, we must have |S0| = |S1| ≥ 1).

- S0 (= S1, in which case the adversary is disallowed to corrupt any user in

S01S1.

If we consider the n-bit strings s01 . . . s0n ∈ {0, 1}n and s11 . . . s1n ∈ {0, 1}n asso-

ciated with S0 and S1, Game k is identical to Game k − 1 if s0k = s1k = 0 (since

Ck is an encryption of ε in both games) and we thus assume that s0k = s1k = 1 or

s0k (= s1k. Moreover, if s0k = s1k = 1 (in other words, if k ∈ S0 ∩ S1), the adversary

can only corrupt skk in the situation where M0 = M1, in which case Game k and

Game k − 1 are also identical. In the following, we can thus only consider the situ-

ation s0k (= s1k (i.e., k ∈ S01S1), in which the adversary cannot legally query skk.
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Our IND-CCA adversary B receives the public parameters pars and a pub-

lic key pk" from its challenger and, to prepare BE-MPK for A, it has to gen-

erate n encryption keys pk1, . . . , pkn. To do this, B defines pkk = pk". Then,

B runs the key generation algorithm of Π itself and generates n − 1 key pairs

(ski, pki) ← PKE.KeyGen(pars) for each i ∈ {1, . . . , n}\{k}. It finally hands the

master public key BE-MPK =
(

pars, {pki}ni=1,Σ
)

to A.

At any time, A can corrupt an arbitrary user i ∈ {1, . . . , n} depending on the

previously collected information. At each corruption query, B can consistently an-

swer the query since it knows secret keys {ski}i %=k. When A queries the decryption

of a ciphertext (C = (C1, . . . , Cn,σ), i), we assume that i = k (i.e., the query in-

volves the challenge key pkk = pk") since B can always decrypt by itself otherwise.

To simulate the behaviour of the decryption algorithm without knowing skk = sk",

B invokes its own decryption oracle on Ck. If the IND-CCA challenger’s response is

not ⊥ and can be parsed as M ||vk, for some message M ∈ {0, 1}m−v and some bit

string vk ∈ {0, 1}v, B returns M to A if Ver(vk, (C1, . . . , Cn),σ) = 1 and M (= ε. In

any other situation, B returns ⊥, meaning that Ck fails to decrypt properly under

skk.

In the challenge phase, A outputs messages M0,M1 and two subsets S0, S1 ⊆
{1, . . . , n}. At this step, B generates a one-time signature key pair (sigk", vk") ←
Gen(1λ) and constructs two messages M ′

0,M
′
1 as follows.

- If s0k = 1 and s1k = 0, it sets M ′
0 = M0||vk" and M ′

1 = ε||vk".

- If s0k = 0 and s1k = 1, it sets M ′
0 = ε||vk" and M ′

1 = M1||vk".

The two messages M ′
0 and M ′

1 are sent to B’s IND-CCA challenger which returns

a challenge ciphertext C" = PKE.Enc(M ′
b, pk

"), for some internally flipped random

bit b ← {0, 1}. The ANOBE challenge ciphertext is generated by setting C"
k = C"

and by defining the remaining ciphertext components as follows, for j = 1 to n.

1. If s0j = s1j = 1, set C"
j = PKE.Enc(M1||vk", pkj) if j ≤ k − 1 and C"

j =

PKE.Enc(M0||vk", pkj) if j > k. If s0j = s1j = 0 set Cj = PKE.Enc(ε||vk", pkj).

2. If s0j = 1 and s1j = 0, set C"
j = PKE.Enc(ε||vk", pkj) if j ≤ k − 1 and

C"
j = PKE.Enc(M0||vk", pkj) if j > k.

88
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3. If s0j = 0 and s1j = 1, set C"
j = PKE.Enc(M1||vk", pkj) if j ≤ k − 1 and

C"
j = PKE.Enc(ε||vk", pkj) if j > k.

The ANOBE adversary A is given C = (C"
1 , . . . , C

"
n,σ), where σ = Sign(sigk",

(C"
1 , . . . , C

"
n)).

In Phase 2, A makes another series of adaptive corruption queries for indices i (∈
S01S1 (and a fortiori such that i (= k) and B deals with them as in Phase 1. When

A makes a decryption query (C, i), B parses the ciphertext C as C = (C1, . . . , Cn,σ)

and handles the query using {ski}i %=k if i (= k. If i = k, B returns ⊥ if Ck = C"
k . If

Ck (= C"
k , B can query Ck for decryption to its IND-CCA challenger and proceed as

in pre-challenge decryption queries.

At the end of the game, A outputs a bit b′ ∈ {0, 1} and B outputs the same

result. It is easy to see that B’s advantage as an IND-CCA adversary is exactly the

difference between A’s probabilities of outputting 0 in Game k and Game k − 1.

Indeed, if B’s challenger chooses b = 0 (and encrypts M ′
0 in the challenge phase), B

is playing Game k − 1. If b = 1, B is rather playing Game k. !

We have described an ANOBE scheme from minimal assumptions. We note that

the encryption time is linear in n but decryption is performed in constant time, since

a user simply selects the ciphertext component to decrypt according to its index.

However, the ciphertext size is linear in n, as we encrypt to each user in the universe.

It is desirable to improve on this and achieve a realization of ANOBE with more

compact ciphertexts.

We will next see how to modify this first generic construction, obtaining an

ANOBE scheme whose ciphertext size is linear in the size of the target set S.

4.3.2 ANOBE from robust and key-private PKE

As mentioned in the introduction, a solution to the broadcast encryption problem

is to encrypt the message under the public key of each user in the privileged set

(there we call it the natural solution). This approach, so often discarded in most BE

literature due to efficiency reasons, turns out to provide another generic construction

for ANOBE, which differs from the previous one as now we deploy a public-key
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encryption scheme only to encrypt the message to the users in the target set.

However natural this solution may seem, it should not be approached naively.

For this to yield an ANO-IND-CCA secure BE scheme, the underlying PKE scheme

has to be IND-CCA and key-private as per Definition 2.3. While the need for this

property is fairly intuitive, the requirement for the PKE scheme to be additionally

weakly robust [2] is slightly more involved. Weak robustness is necessary for the

correctness of the scheme but also for simulation consistency in the security proof.

We have thoroughly studied the notion of robustness in Chapter 3 and seen many

flavours of varying strength. For this application, weak robustness suffices and it

can be generically achieved for any PKE scheme by appending some publicly-known

redundancy to the message and checking it upon decryption. We refer to [2] for

further details.

The construction we present is essentially the same as the construction that

was already suggested by Barth, Boneh and Waters [6]. The novelty is that we

now prove that it is actually adaptively secure, rather than just statically secure, as

was established in [6]. Indeed, achieving security against such a strong adversary

represents an important advance in the context of BE, as discussed in Section 4.1.1.2.

The construction is as follows.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme and Σ =

(Gen, Sign,Ver) be a signature scheme. We construct an ANOBE scheme in the

following way.

BE.PG(1λ, n): Generate pars← PKE.PG(1λ) and return (pars, n).

BE.Setup(pars, n): For i = 1 to n, generate (ski, pki) ← PKE.KeyGen(pars). The

master private key is BE-MSK = {ski}ni=1 and the master public key consists

of

BE-MPK =
(

pars, Σ, {pki}ni=1

)

.

BE.KeyGen(BE-MPK,BE-MSK, i): Parse the master secret key BE-MSK as

{ski}ni=1 and output ski.

BE.Enc(BE-MPK,M, S): To encrypt messageM for a receiver set S = {i1, . . . , i$} ⊆
{1, . . . , n} of size %, generate a one-time signature key pair (sigk, vk)← Gen(1λ).
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Then, for each j = 1 to %, compute Cj = PKE.Enc(pars,M ||vk, pkij ). The

ANOBE ciphertext consists of C =
(

vk, Cτ(1), . . . , Cτ($),σ
)

, where σ =

Sign
(

sigk, (Cτ(1), . . . , Cτ($))
)

and τ : {1, . . . , %} → {1, . . . , %} is a random per-

mutation.

BE.Dec(BE-MPK, C, ski): Parse the ciphertext C as a tuple
(

vk, C1, . . . , C$,σ
)

. If

Ver
(

vk, C1, . . . , C$,σ
)

= 0, return ⊥. Otherwise, repeat the following steps for

j = 1 to %.

1. Compute M ′ = PKE.Dec(Cj , ski). If M ′ (=⊥ and can moreover be parsed

as M ′ = M ||vk for some M of appropriate length, return M .

2. If j = % output ⊥.

The correctness of the ANOBE scheme follows directly from the correctness and

weak robustness of Π.

We note that actually this construction differs from the one presented in [6,

Section 4.1] in a subtle way. Our construction, in fact, enjoys a slightly more effi-

cient decryption procedure, since a legitimate user first checks whether the one-time

signature verifies and then attempts decryption on the various PKE ciphertext com-

ponents, a step which requires linear time. In [6], the analogous construction allows

the receiver to perform the signature check only after having identified the correct

ciphertext component, from the decryption of which he can recover the necessary

verification key.

Theorem 4.5 Let Π be an IND-CCA, key-private and weakly robust PKE scheme,

and let Σ be a strongly unforgeable one-time signature scheme. Then the BE scheme

constructed above is adaptively ANO-IND-CCA.

Similarly to the proof of Theorem 4.3, for the proof of Theorem 4.5 we consider

a sequence of games where the adversary is given an encryption of M0 under S0 in

Game 0 while, in the last game, the adversary gets an encryption of M1 under S1.

Game 0real: corresponds to the real game when the challenger’s bit is b = 0.

Namely, the ANOBE adversary A is given public parameters BE-MPK con-
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taining pars and n public keys {pki}ni=1. For each i ∈ {1, . . . , n}, user i’s

private key is ski. In the first phase, the adversary A adaptively chooses in-

dices i ∈ {1, . . . , n} and obtains the corresponding ski. The adversary may

also invoke the decryption oracle by making queries (C, i) which are han-

dled using the relevant private key ski. In the challenge phase, the adversary

A comes up with messages M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of

equal size |S0| = |S1| = % with S0 (= S1. The challenger generates a one-

time signature key pair (sigk", vk") ← Gen(1λ), parses S0 as {θ1, . . . , θ$} and

returns the challenge ciphertext C" =
(

vk", Cτ(1), . . . , Cτ($),σ
)

where Cj =

PKE.Enc(pars,M0||vk", pkθj ) for j = 1 to % and τ : {1, . . . , %}→ {1, . . . , %} is a

random permutation. In the second phase, A is allowed to make more decryp-

tion queries (under the usual restriction) and key queries for arbitrary indices

i such that i ∈ {1, . . . , n}\(S0 1 S1). Eventually, A outputs a bit b′ ∈ {0, 1}
and we define Ereal

0 to be the event that b′ = 0.

Game 0: is as Game 0real but the challenger now rejects all post-challenge decryp-

tion queries (C, i) where C contains the same verification key vk" as in the

challenge phase. We call E0 the event that A outputs b′ = 0 in Game 0.

Game k (1 ≤ k ≤ %): From the two adversarially-chosen sets S0, S1 ⊆ {1, . . . , n},
the challenger B defines the value φ = |S0∩S1| and then considers two ordered

sets S′
0 = {θ1, . . . , θφ, θφ+1, . . . , θ$}, S′

1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ$} that are

obtained by ordering S0 and S1 in such a way that θj = ρj for each j ∈
{1, . . . ,φ} and θj (= ρj if j ∈ {φ + 1, . . . , %}. Then, B generates the challenge

ciphertext as follows.

1. For j = 1 to φ, set Cj = PKE.Enc(pars,M1||vk", pkθj ) if j ≤ k and

Cj = PKE.Enc(pars,M0||vk", pkθj ) if j > k.

2. For j = φ+ 1 to %, set Cj = PKE.Enc(pars,M1||vk", pkρj ) if j ≤ k and

Cj = PKE.Enc(pars,M0||vk", pkθj ) if j > k.

The adversary is then returned C" =
(

vk", Cτ(1), . . . , Cτ($),σ
)

, for a randomly

chosen permutation τ : {1, . . . , %} → {1, . . . , %}, and the second phase is han-

dled as in previous games. We call Ek the event of A outputting b′ = 0 at the

end of Game k.
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Game %real: is identical to Game % with the difference that, when handling de-

cryption queries, the challenger no longer rejects ciphertexts that contain the

verification key vk". Game %real actually proceeds like the real game when the

challenger’s bit is b = 1. We let Ereal
$ be the event that A outputs the bit

b′ = 0 at the end of Game %real.

Game 0real and Game 0 are indistinguishable if the one-time signature is strongly

unforgeable and the same argument can be made about Game % and Game %real.

We thus have |Pr[Ereal
0 ]−Pr[E0]| = |Pr[Ereal

$ ]−Pr[E$]| ≤ AdvSUF−1CMA
A,Σ (λ). As

for other game transitions, they are justified by Lemmas 4.6 and 4.7 that separately

consider the situations where k ≤ φ and k > φ. More precisely, we have that, if

Game k and Game k − 1 can be distinguished for some k ∈ {1, . . . , %}, Lemmas 4.6

and 4.7 show that there exists either a IND-IK-CCA adversary B or a WROB-CCA

adversary B′ (see sections 2.3.1 and 3.2 for definitions of these two notions) against

the encryption scheme. Putting the above arguments altogether, we obtain

|Pr[Ereal
0 ]− Pr[Ereal

$ ]| ≤ 2 ·AdvSUF−1CMA
A,Σ (λ) + n2 · % ·

(

AdvIND−IK−CCA
B,Π (λ)

+AdvWROB−CCA
B′,Π (λ)

)

≤ 2 ·AdvSUF−1CMA
A,Σ (λ) + n3 ·

(

AdvIND−IK−CCA
B,Π (λ)

+AdvWROB−CCA
B′,Π (λ)

)

.

Lemma 4.6 Let Π be an IND-CCA PKE scheme. Then for each k ∈ {1, . . . ,φ},
Game k is indistinguishable from Game k − 1. More precisely, we have

|Pr[Ek]− Pr[Ek−1]| ≤ n ·Adv
IND−CCA
B,Π (λ).

Proof. Assuming that an attacker A can distinguish Game k and Game k − 1,

we build a chosen-ciphertext adversary B against Π. For each k ∈ {1, . . . ,φ}, we
observe that Game k and Game k − 1 are identical when M0 = M1 and we thus

assume M0 (= M1, so that the adversary cannot corrupt any user in S0 ∩ S1.

B obtains pars and a public key pk" from its challenger and it has to prepare

a master public key BE-MPK comprising n encryption keys pk1, . . . , pkn for the

ANOBE adversary A. To this end, picks i" ← {1, . . . , n} at random and defines

pki" = pk". Then, B runs PKE.KeyGen and generates n − 1 key pairs (ski, pki)

93



4.3 ANOBE from Public-Key Encryption

on its own for each i ∈ {1, . . . , n}\{i"}. It finally gives the master public key

BE-MPK =
(

pars,Σ, {pki}ni=1

)

to A.

At any time, A is allowed to corrupt an arbitrary user i ∈ {1, . . . , n} depending

on the information it gathered so far. At each corruption query, B aborts and fails

in the event that A chooses to corrupt user i". Otherwise, B is necessarily able

to consistently answer the query since it knows secret keys {ski}i %=i" . When the

adversary A makes a decryption query (C = (vk, C1, . . . , C$,σ), i), we assume that

the query involves the challenge key pk" since B can always decrypt itself using

ski otherwise. To simulate the decryption algorithm without knowing the challenge

private key sk", B proceeds as follows. For j = 1 to %, it resorts to its IND-CCA

challenger and asks it for the decryption of Cj . If the IND-CCA challenger’s response

differs from ⊥ and can be parsed as M ||vk, for some message M of appropriate

length, B returns M to A. If the counter j reaches its maximal value % and no

decryption query provided a result of the form M ||vk, B returns ⊥ to indicate that

the ciphertext fails to decrypt properly.

In the challenge phase, A outputs two equal-length messages M0,M1 and two

subsets S0, S1 ⊆ {1, . . . , n} of equal size. B re-orders S0, S1 as S′
0 = {θ1, . . . , θφ, θφ+1,

. . . , θ$}, S′
1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ$} where θj = ρj for each j ∈ {1, . . . ,φ}. If

θk (= i", B aborts and declares failure and we denote by Good the event that θk = i".

If the event Good occurs, B chooses a one-time signature key pair (sigk", vk")←
Gen(1λ) and sends the messages (M0||vk"), (M1||vk") to its IND-CCA challenger.

The latter replies by generating a challenge ciphertext C" = PKE.Enc(pars,Mb||vk",
pk"), for some internally flipped random bit b ← {0, 1}. The ANOBE challenge

ciphertext is then generated as follows.

1. For j = 1 to k − 1, B sets Cj = PKE.Enc(pars,M1||vk", pkθj
)

.

2. For j = k + 1 to %, B sets Cj = PKE.Enc(pars,M0||vk", pkθj
)

.

3. Finally, set Ck = C".

A then receives C = (vk", Cτ(1), . . . , Cτ($),σ), where σ = Sign(sigk",

Cτ(1), . . . , Cτ($)) and τ : {1, . . . , %}→ {1, . . . , %} is a random permutation.

In the second phase, A makes another series of adaptive corruption queries for

indices i (∈ S01S1 and B deals with them as in the first phase. Whenever A makes

a decryption query (C, i), B parses the ciphertext C as C = (vk, C1, . . . , C$,σ) and
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outputs ⊥ if vk = vk" or if σ is invalid. Otherwise, if i (= i", B simply runs the

legal decryption procedure on its own since it knows ski. If i = i", B appeals to

its IND-CCA challenger and the decryption oracle it is given access to. Namely,

ciphertexts {C1, . . . , C$} are handled by repeating the following steps for j = 1 to %.

- If Cj = C", B considers that Cj decrypts to ⊥ under sk" (which is legitimate

since C" would decrypt to Mb||vk" and vk (= vk") and does not make use of

its decryption oracle.

- If Cj (= C", B queries the decryption of Cj . If the result can be parsed as

M ||vk for some plaintext M of appropriate length, B outputs M .

If the counter j reaches % and no decryption query resulted in a plaintext of the form

M ||vk, B returns ⊥.
Eventually, the adversary A outputs a bit b′ ∈ {0, 1} and B outputs the same

result. If B did not abort, its advantage as an IND-CCA adversary is as large as

the difference between A’s probabilities of outputting 0 in Game k and Game k− 1.

Indeed, if B’s challenger chooses b = 0, then B is clearly playing Game k−1 whereas,

if b = 1, B is playing Game k.

Now, let us assess B’s probability not to abort. First, since M0 (= M1 by hypoth-

esis, A is not allowed to corrupt any user in S0∩S1 = {θ1, . . . , θφ}. Since θk ∈ S0∩S1,

a sufficient condition for B not to be asked for the unknown private key ski" is to be

lucky when drawing i" ← {1, . . . , n} and have event Good occurring. This is the case

with probability Pr[Good] = 1/n since the choice of i" is completely independent of

A’s view. !

Lemma 4.7 Let Π be a IND-IK-CCA and weakly robust PKE scheme. Then for

each k ∈ {φ+1, . . . , %}, Game k is indistinguishable from Game k−1. More precisely,

for any ANOBE adversary distinguishing the two games, there exists either an IND-

IK-CCA adversary B or a WROB-CCA adversary B′ such that

|Pr[Ek]− Pr[Ek−1]| ≤ n2 ·
(

Adv
IND−IK−CCA
B,Π (λ) +Adv

WROB−CCA
B′,Π (λ)

)

.

Proof. We prove that, if an ANOBE attacker A is able to distinguish Game k and

Game k − 1 for some k ∈ {φ+ 1, . . . , %}, we can either translate A into an IND-IK-
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CCA adversary B against Π or break its WROB-CCA property.

The IND-IK-CCA adversary B takes as input pars and two public keys pk"0, pk
"
1

from its IND-IK-CCA challenger and we call sk"0 and sk"1 the underlying private

keys. Algorithm B has to generate a master public key BE-MPK containing n pub-

lic key keys pk1, . . . , pkn. To this end, B picks two distinct indices i"0, i
"
1 ← {1, . . . , n}

and defines pki"0 = pk"0 and pki"1 = pk"1. Then, B runs PKE.Keygen and generates

n − 2 key pairs (ski, pki) for each i ∈ {1, . . . , n}\{i"0, i"1}. The master public key

BE-MPK =
(

pars,Σ, {pki}ni=1

)

is provided as input to A.

Throughout the game, A can adaptively corrupt any user i ∈ {1, . . . , n}. At

each corruption query, B aborts if the queried index i falls in {i"0, i"1}. Otherwise, B
necessarily knows the queried secret key ski and hands it to A. For each decryption

query (C = (vk, C1, . . . , C$,σ), i) made by A, B can handle the query on its own

whenever i (∈ {i"0, i"1}. If i = i"0 (resp. i = i"1), B queries its own decryption oracle

up to % times and successively asks for the decryption of C1, . . . , C$ under sk
"
0 (resp.

sk"1). At the first answer that differs from ⊥ and can be parses as M ||vk, for some M

of the right length, B returns M . If B fails to obtain a decryption result of the form

M ||vk, for some M , B returns ⊥ to A, meaning that C does not properly decrypt

under sk"0 (resp. sk"1).

In the challenge phase, A outputs two equal-length messages M0,M1 and subsets

S0, S1 ⊆ {1, . . . , n} of equal size %. These sets are re-ordered as S′
0 = {θ1, . . . , θφ, θφ+1,

. . . , θ$} and S′
1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ$} where θj = ρj for each j ∈ {1, . . . ,φ}. If

θk (= i"0 or ρk (= i"1, B aborts. We denote by Good the event (θk = i"0) ∧ (ρk = i"1),

which implies pkθk = pk"0 and pkρk = pk"1.

If Good occurs, B generates a one-time signature key pair (sigk", vk")← Gen(λ)

and sends the messages (M0||vk"), (M1||vk") to its IND-IK-CCA challenger. The

latter returns a challenge ciphertext C" ← PKE.Enc(pars,Mb||vk", pk"b), for some

internally flipped random bit b← {0, 1}. The ANOBE adversary’s challenge cipher-

text is then obtained as follows.

1. For j = 1 to k − 1, B sets Cj = PKE.Enc(pars,M1||vk", pkρj
)

.

2. For j = k + 1 to %, B computes Cj = PKE.Enc(pars,M0||vk", pkθj
)

.

3. Finally, set Ck = C".

A receives the challenge C = (vk", Cτ(1), . . . , Cτ($),σ), where σ = Sign(sigk",
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(Cτ(1), . . . , Cτ($))) and τ : {1, . . . , %}→ {1, . . . , %} is a random permutation.

In the second phase, A makes further adaptive corruption queries for indices

i (∈ S0 1 S1 and B handles them as previously. Decryption queries are han-

dled as in the first phase with one difference: if A makes a decryption query

(C = (vk, C1, . . . , C$,σ), i) for which we simultaneously have i ∈ {i0, i1}, vk (= vk"

and Cj = C" for some j ∈ {1, . . . , %}, B considers that Cj decrypts to ⊥ under ski

without invoking its own decryption oracles on Cj . Since vk (= vk", it is clear that

C" cannot correctly decrypt to a message ending with vk under the private key sk"b .

Still, we have to rule out the possibility to have PKE.Dec(C", sk"1−b) = M ||vk, for
some plaintext M , since this could render A’s view inconsistent. If this event were

to happen with non-negligible probability, algorithm B could be turned into a weak

robustness (more precisely, WROB-CCA) adversary B′. The latter would simply

generate the ANOBE challenge ciphertext by computing C1, . . . , C$ itself and wait-

ing for A to make a decryption query C = (vk, C1, . . . , C$,σ) for which there exists

j ∈ {1, . . . , %} such that Cj correctly decrypts under both skb and sk1−b.

When A halts, it outputs a result b′ ∈ {0, 1} and B outputs b′ as well. If B
did not abort, its IND-IK-CCA advantage is as large as the gap between A’s prob-

abilities of outputting 0 in Game k and Game k − 1. Indeed, if B’s IND-IK-CCA

challenger sets its challenge bit as b = 0, B is playing Game k − 1 with A whereas,

if the IND-IK-CCA challenger sets b = 1, B is playing Game k.

Now, let us assess B’s probability not to abort. Recall that the adversary A can-

not legally corrupt any user in S01S1 = {θφ+1, . . . , θ$, ρφ+1, . . . , ρ$}. For this reason,
a sufficient condition for A not to query the private keys skθk or skρk is to have Good

occurring. Since event Good occurs with probability Pr[Good] = 1/n(n− 1) > 1/n2,

the claimed result follows. !

In terms of efficiency, from this construction we will obtain secure ANOBE

schemes with typically very small (constant) private key storage requirements and

ciphertexts which are |S| times the size of the ciphertext of the underlying PKE

scheme. Encryption and decryption have both cost linear in the size of S. If, for

example (as suggested in [6]), we use the Cramer–Shoup PKE scheme to instantiate

the ANOBE scheme, the private keys will have constant size (namely 5 elements in

Zp), and the resulting ciphertext will consist of roughly 4 · |S| group elements. The

scheme will be adaptively secure in the standard model under the DDH assumption.
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If we look at recent efficient instantiations of BE, for example that of Gentry and

Waters [51], we have private keys whose size is linear in the number of users, and

ciphertexts which consist of n bits plus 3 group elements (if we include the cost of

transmitting a description of S as part of the ciphertext). It is clear that in general

the solution of [51] is more efficient in terms of ciphertext size. The key point though

is that it is not anonymous.

4.4 ANOBE from Identity-Based Encryption

In this section we present a generic construction for ANOBE from identity-based

encryption (IBE). For this approach, we build upon the Canetti-Halevi-Katz (CHK)

transformation [25] by applying carefully-crafted modifications. As recalled in Sec-

tion 2.4, the CHK transformation takes a weakly secure IBE scheme (and a strongly

one-time unforgeable signature scheme) and returns an IND-CCA secure PKE scheme.

The idea is first to consider the master keys (MPK,MSK) of the IBE scheme as the

key-pair (pk, sk) for the resulting PKE scheme and then to generate a signature

key-pair (sigk, vk). To encrypt message M to public key MPK run the identity-

based encryption algorithm on master public key MPK, message M and identity vk.

Finally sign the ciphertext and the verification key with sigk.

We modify the original transformation as follows. First of all, borrowing ideas

from [73], we adapt it to be suitable for the anonymity setting. This involves using

a multi-TA IBE scheme (as defined in Section 2.3.2), with the appropriate security

property, namely sID-TAA-IND-CPA security. The work in [73] does this to achieve

a key-private IND-CCA secure PKE scheme. For our purposes, we need to extend

this technique to the BE setting, where multiple users are being addressed. The idea

is that, within this transform, we encrypt m for the same identity vk under the |S|
different public keys. We then sign all ciphertexts and append the verification key vk

(note that this signature binds all these ciphertexts together). Upon decryption, a

user verifies the signature against vk and, if valid, proceeds to derive the decryption

key for identity vk by running the IBE key-extraction algorithm on input his private

key. We formalize this idea next.

Let I = (IBE.PG, IBE.TASetup, IBE.KeyExt, IBE.Enc, IBE.Dec) be a weakly robust,
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in a sense to be defined below, multi-TA IBE scheme and let Σ=(Gen,Sign,Ver) be

a signature scheme. A multi-TA IBE scheme is weakly robust (as defined in [62])

if a polynomial-time adversary cannot find a valid message such that its encryption

for identity id under a master public key returns a valid message when decrypted

using the secret key corresponding to id, but extracted under another master public

key. We use I and Σ to generically instantiate a BE scheme in the following way.

BE.PG(1λ, n): Run IBE.PG on input 1λ to obtain the system’s parameters pars.

Return (pars, n).

BE.Setup(pars, n): For i = 1 to n, generate (MSKi,MPKi)← IBE.TASetup(pars).

The master private key is BE-MSK = {MSKi}ni=1 and the master public key

consists of

BE-MPK =
(

pars, Σ, {MPKi}ni=1

)

.

BE.KeyGen(BE-MPK,BE-MSK, i): Parse the master secret key BE-MSK as

{MSKi}ni=1 and output MSKi.

BE.Enc(BE-MPK,M, S): To encrypt M for a receiver set S = {i1, . . . , i$} ⊆
{1, . . . , n} of size %, generate a one-time signature key pair (sigk, vk)← Gen(1λ).

Then, for each j = 1 to %, compute Cj ← IBE.Enc(MPKi,M, vk). The ANOBE

ciphertext is

C =
(

vk, Cτ(1), . . . , Cτ($),σ
)

,

where σ ← Sign
(

sigk, Cτ(1), . . . , Cτ($)

)

and τ : {1, . . . , %} → {1, . . . , %} is a

random permutation.

BE.Dec(BE-MPK, C,MSKi): Parse the ciphertext C as a tuple
(

vk, C1, . . . , C$,σ
)

.

If Ver
(

vk, C1, . . . , C$,σ
)

= 0, return ⊥. Otherwise, compute skivk ←
IBE.KeyExt(MPKi,MSKi, vk) and repeat the following steps for j = 1 to %.

1. Compute M ′ = IBE.Dec(MPKi, skivk , Cj). If M ′ (=⊥ return M ′.

2. If j = % output ⊥.

The correctness of the BE scheme follows directly from the correctness and the

weak robustness of the IBE scheme I used to construct it.

99



4.4 ANOBE from Identity-Based Encryption

From the details of the security proof which we give next it will become apparent

that in this construction the weak robustness of the underlying primitive is only

needed for correctness, and it is not required in the simulation.

If instantiated with the multi-TA version of Gentry’s IBE scheme [50, 73] (which

can be made weakly robust simply by applying the transform in [2], as proved in

[62]), this construction yields very short constant size private keys (just one element

in Z∗
p) and ciphertexts consisting of roughly 3 · |S| group elements (|S| in G and

2 · |S| in GT ) plus a signature and a verification key. Encryption and decryption

have both cost linear in the size of S.

The following result holds.

Theorem 4.8 Let I be a sID-TAA-IND-CPA secure IBE scheme and let Σ be a

strongly unforgeable one-time signature. Then, the above BE scheme is adaptively

ANO-IND-CCA secure.

We first give some intuition for the proof. As observed earlier, in [73], the authors

apply a modified version of the CHK transformation [25] using the same primitives

as our generic construction to obtain a key-private IND-CCA PKE scheme. We

introduced further modifications to build an ANO-IND-CCA secure broadcast en-

cryption scheme. By similar arguments to those in [25] and [73], and by applying

techniques analogous to those proving adaptive security in Theorem 4.5, we can

show that adaptive ANO-IND-CCA security is achieved. We give details of the

proof next.

Let us consider a sequence of games where the adversary is given an encryption

of M0 for S0 in Game 0 while, in the last game, the adversary obtains an encryption

of M1 under S1.

Game 0real: corresponds to the real game when the challenger’s bit is b = 0.

In this game the challenger C first generates a one-time signature key pair

(sigk", vk")← Gen(1λ). It then gives the ANOBE adversary A the public pa-

rameters BE-MPK containing pars and n public keys {MPKi}ni=1. For each
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i ∈ {1, . . . , n}, user i’s private key is MSKi. In the first phase, the adver-

sary A adaptively chooses indices i ∈ {1, . . . , n} and obtains the correspond-

ing MSKi. The adversary may also invoke the decryption oracle by making

queries (C, i) which are handled using the relevant private key MSKi. In the

challenge phase, the adversary A comes up with two equal-length messages

M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of equal size |S0| = |S1| = % with

S0 (= S1. The challenger parses S0 as {θ1, . . . , θ$} and returns the challenge ci-

phertext C" =
(

vk", Cτ(1), . . . , Cτ($),σ
)

where Cj ← IBE.Enc(MPKθj ,M0, vk
")

for j = 1 to %, τ : {1, . . . , %} → {1, . . . , %} is a random permutation and

σ ← Sign(sigk", (Cτ(1), . . . , Cτ($))). In the second phase, A is allowed to make

more decryption queries (under the usual restriction) and key queries for ar-

bitrary indices i such that i ∈ {1, . . . , n}\(S0 1 S1). Eventually, A outputs a

bit b′ ∈ {0, 1} and we define Ereal
0 to be the event that b′ = 0.

Game 0: is as Game 0real but the challenger now rejects all decryption queries

(C, i) where C contains the verification key vk". We call E0 the event that A
outputs b′ = 0 in Game 0.

Game k (1 ≤ k ≤ %): From the two adversarially-chosen sets S0, S1 ⊆ {1, . . . , n},
the challenger B defines the value φ = |S0∩S1| and then considers two ordered

sets S′
0 = {θ1, . . . , θφ, θφ+1, . . . , θ$}, S′

1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ$} that are

obtained by ordering S0 and S1 in such a way that θj = ρj for each j ∈
{1, . . . ,φ} and θj (= ρj if j ∈ {φ + 1, . . . , %}. Then, B generates the challenge

ciphertext as follows.

1. For j = 1 to φ, set Cj = IBE.Enc(MPKθj ,M1, vk
") if j ≤ k and

Cj = IBE.Enc(MPKθj ,M0, vk
") if j > k.

2. For j = φ+ 1 to %, set Cj = IBE.Enc(MPKρj ,M1, vk
") if j ≤ k and

Cj = IBE.Enc(MPKθj ,M0, vk
") if j > k.

The adversary is then returned C" =
(

vk", Cτ(1), . . . , Cτ($),σ
)

, for a randomly

chosen permutation τ : {1, . . . , %} → {1, . . . , %}, and the second phase is han-

dled as in previous games. We call Ek the event of A outputting b′ = 0 at the

end of Game k.

Game %real: is identical to Game % with the difference that, when handling de-

cryption queries, the challenger no longer rejects ciphertexts that contain the
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verification key vk". Game %real actually proceeds like the real game when the

challenger’s bit is b = 1. We let Ereal
$ be the event that A outputs the bit

b′ = 0 at the end of Game %real.

Game 0real and Game 0 are indistinguishable if the one-time signature is strongly

unforgeable and the same argument can be made about Game % and Game %real.

We thus have |Pr[Ereal
0 ]−Pr[E0]| = |Pr[Ereal

$ ]−Pr[E$]| ≤ AdvSUF−1CMA
A,Σ (λ). As

for other game transitions, they are justified by Lemmas 4.9 and 4.10 that separately

consider the situations where k ≤ φ and k > φ. More precisely, we have that, if

Game k and Game k − 1 can be distinguished for some k ∈ {1, . . . , %}, Lemmas 4.9

and 4.10 show that there exists a sID-TAA-IND-CPA adversary B against the IBE

scheme. Putting the above arguments altogether, we obtain

|Pr[Ereal
0 ]− Pr[Ereal

$ ]| ≤ 2 ·AdvSUF−1CMA
A,Σ (λ) + n2 · % ·AdvsID−TAA−IND−CPA

B,Π (λ)

≤ 2 ·AdvSUF−1CMA
A,Σ (λ) + n3 ·AdvsID−TAA−IND−CPA

B,Π (λ).

Lemma 4.9 Let I be a sID-IND-CPA multi-TA IBE scheme. Then for each k ∈
{1, . . . ,φ}, Game k is indistinguishable from Game k − 1. More precisely, we have

|Pr[Ek]− Pr[Ek−1]| ≤ n ·Adv
sID−IND−CPA
B,I (λ).

Proof. Assuming that an attacker A can distinguish Game k and Game k − 1, we

build a selective-id chosen-plaintext adversary B against I. For each k ∈ {1, . . . ,φ},
we observe that Game k and Game k − 1 are identical when M0 = M1 and we thus

assume M0 (= M1, so that the adversary cannot corrupt any user in S0 ∩ S1.

B first generates a one-time signature key pair (sigk", vk")← Gen(1λ) and gives

vk" to its challenger C. It then obtains pars and the master public keys {MPKi}ni=1

of all TAs in the system from its challenger. At this point B selects the master

public key MPK" it wishes to be challenged on. To this end, it picks i" ← {1, . . . , n}
at random and defines MPKi" = MPK". It finally gives the master public key

BE-MPK =
(

pars,Σ, {MPKi}ni=1

)

to A.

At any time, A is allowed to corrupt an arbitrary user i ∈ {1, . . . , n} depend-

ing on the information it gathered so far. At each corruption query, B aborts and

fails in the event that A chooses to corrupt user i". Otherwise, B is able to consis-

tently answer the query since it can forward the same corruption query to its own
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challenger. When the adversary A makes a decryption query (C, i), B simulates

the decryption algorithm in the following way. First, it parses the ciphertext C as

C = (vk, C1, . . . , C$,σ) and outputs ⊥ if vk = vk" or if σ is invalid. Otherwise, B
submits the query (i, vk) to its challenger to obtain skivk , the secret key correspond-

ing to identity vk under TA i. Then, for j = 1 to %, it runs IBE.Dec(MPKi, skivk , Cj)

and returns M to A if it obtains a message M of the appropriate length. If the

counter j reaches its maximal value % and no decryption provided such a message,

B returns ⊥ to indicate that the ciphertext fails to decrypt properly.

In the challenge phase, A outputs two equal-length messages M0,M1 and two

subsets S0, S1 ⊆ {1, . . . , n} of equal size. At this step, B re-orders S0, S1 as S′
0 =

{θ1, . . . , θφ, θφ+1, . . . , θ$}, S′
1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ$} where θj = ρj for each

j ∈ {1, . . . ,φ}. If θk (= i", B aborts and declares failure and we denote by Good the

event that θk = i".

If the event Good occurs, B sends i" and the two messages M0, M1 to its

IND-CPA challenger. The latter replies by generating a challenge ciphertext C" =

IBE.Enc(MPKi" ,Mb, vk
"), for some internally flipped random bit b ← {0, 1}. The

ANOBE challenge ciphertext is then generated as follows.

1. For j = 1 to k − 1, B sets Cj = IBE.Enc(MPKρj ,M1, vk
").

2. For j = k + 1 to %, B sets Cj = IBE.Enc(MPKθj ,M0, vk
").

3. Finally, set Ck = C".

A then receives C = (vk", Cτ(1), . . . , Cτ($),σ), where σ = Sign(sigk",

Cτ(1), . . . , Cτ($)) and τ : {1, . . . , %}→ {1, . . . , %} is a random permutation.

In the second phase, A makes another series of adaptive corruption queries for

indices i (∈ S01S1 and B deals with them as in the first phase. Similarly, whenever

A makes a decryption query (C = (vk, C1, . . . , C$,σ), i), B handles it as before. In

fact, (i, vk) is always a valid query to its challenger since vk (= vk". Eventually,

the adversary A outputs a bit b′ ∈ {0, 1} and B outputs the same result. If B did

not abort, its advantage as an IND-CCA adversary is as large as the difference be-

tween A’s probabilities of outputting 0 in Game k and Game k − 1. Indeed, if B’s
challenger chooses b = 0, then B is clearly playing Game k − 1 whereas, if b = 1, B
is playing Game k.
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Now, let us assess B’s probability not to abort. First, since M0 (= M1 by hypoth-

esis, A is not allowed to corrupt any user in S0∩S1 = {θ1, . . . , θφ}. Since θk ∈ S0∩S1,

a sufficient condition for B not to be asked for the unknown private key MSKi" is

to be lucky when drawing i" ← {1, . . . , n} and have event Good occurring. This

is the case with probability Pr[Good] = 1/n since the choice of i" is completely

independent of A’s view. !

Lemma 4.10 Let I be a sID-TAA-IND-CPA secure IBE scheme. Then for each

k ∈ {φ + 1, . . . , %}, Game k is indistinguishable from Game k − 1. More precisely,

for any ANOBE adversary distinguishing the two games, there exists an sID-TAA-

IND-CPA adversary B such that

|Pr[Ek]− Pr[Ek−1]| ≤ n2 ·Adv
sID−TAA−IND−CPA
B,Π (λ).

Proof. We prove that, if an ANOBE attacker A is able to distinguish Game k

and Game k − 1 for some k ∈ {φ + 1, . . . , %}, we can translate A into a successful

sID-TAA-IND-CPA adversary B against I.

B first generates a one-time signature key pair (sigk", vk")← Gen(1λ) and gives vk"

to its challenger C. It then obtains pars and the master public keys {MPKi}ni=1

of all TAs in the system from its challenger. At this point B selects the master

public keys MPK0" and MPK1" it wishes to be challenged on. To this end, it picks

i"0, i
"
1 ← {1, . . . , n} at random and defines MPKi"0

= MPK0" and MPKi"1
= MPK1" .

It finally gives the master public key BE-MPK =
(

pars,Σ, {MPKi}ni=1

)

to A.

Throughout the game, A can adaptively corrupt any user i ∈ {1, . . . , n}. At

each corruption query, B aborts if the queried index i falls in {i"0, i"1}. Otherwise, B
simply passes the corruption query to its challenger and forwards its response to A.

For each decryption query (C, i) made by A, B parses C as (vk, C1, . . . , C$,σ) and

outputs ⊥ if vk = vk" or or if σ is invalid. Otherwise, B submits the query (i, vk) to

its challenger to obtain skivk , the secret key corresponding to identity vk under TA

i. Then, for j = 1 to %, it runs IBE.Dec(MPKi, skivk , Cj) and returns M to A if it

obtains a message M of the appropriate length. If the counter j reaches its maximal

value % and no decryption provided such a message, B returns ⊥ to indicate that

the ciphertext fails to decrypt properly.

In the challenge phase, A outputs two equal-length messages M0,M1 and subsets

S0, S1 ⊆ {1, . . . , n} of equal size %. These sets are re-ordered as S′
0 = {θ1, . . . , θφ, θφ+1,
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. . . , θ$} and S′
1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ$} where θj = ρj for each j ∈ {1, . . . ,φ}. If

θk (= i"0 or ρk (= i"1, B aborts. We denote by Good the event (θk = i"0) ∧ (ρk = i"1),

which implies MPKθk = MPKi"0
and MPKρk = MPKi"1

.

If the event Good occurs, B sends i"0, i
"
1 and the two messages M0, M1 to its IND-

CPA challenger. The latter returns a challenge ciphertext C" ← IBE.Enc(MPKi"b
,

Mb, vk"), for some internally flipped random bit b ← {0, 1}. The ANOBE adver-

sary’s challenge ciphertext is then obtained as follows.

1. For j = 1 to k − 1, B sets Cj = IBE.Enc(MPKρj ,M1, vk
").

2. For j = k + 1 to %, B computes Cj = IBE.Enc(MPKθj ,M0, vk
").

3. Finally, set Ck = C".

A receives the challenge C = (vk", Cτ(1), . . . , Cτ($),σ), where σ = Sign(sigk",

(Cτ(1), . . . , Cτ($))) and τ : {1, . . . , %}→ {1, . . . , %} is a random permutation.

In the second phase, A makes further adaptive corruption queries for indices

i (∈ S0 1 S1 and B handles them as previously. Decryption queries are handled as

in the first phase. As before, we note that since vk (= vk", (i, vk) is always a valid

query to B’s challenger.

When A halts, it outputs a result b′ ∈ {0, 1} and B outputs b′ as well. If B did not

abort, its advantage is as large as the gap between A’s probabilities of outputting 0

in Game k and Game k− 1. Indeed, if B’s challenger sets its challenge bit as b = 0,

B is playing Game k − 1 with A whereas, if the challenger sets b = 1, B is playing

Game k.

Now, let us assess B’s probability not to abort. Recall that the adversary A
cannot legally corrupt any user in S0 1 S1 = {θφ+1, . . . , θ$, ρφ+1, . . . , ρ$}. For this

reason, a sufficient condition for A not to query the private keys skθk or skρk is

to have Good occurring. Since event Good occurs with probability Pr[Good] =

1/n(n− 1) > 1/n2, the claimed result follows. !

We have therefore proved that identity-based encryption can be used to obtain

a secure ANOBE scheme. We will next study the relation between ANOBE and

another important primitive, attribute-based encryption.
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4.5 ANOBE from Attribute-Based Encryption

Our goal is to establish the connections between attribute-based encryption (ABE)

and BE. As a warm up, we look at some security notions and properties in both

settings, and see how they relate to each other.

Before looking at the relation between the security models for BE and ABE, we

consider an important notion common to both primitives, namely collusion resis-

tance. As mentioned in Chapter 2, one of the defining properties of ABE is collusion

resistance, in the sense that users cannot combine their attributes and successfully

decrypt something they could have not decrypted individually. By building a BE

scheme from an ABE one, as we intend to do next, the collusion resistance of the

original ABE scheme is automatically inherited by the BE scheme. However in the

BE setting, the only attribute a user can be associated with is to have a certain

identity. In this sense, the collusion resistance property of ABE seems to be signifi-

cantly stronger than the notion having the same name in the BE setting. By pooling

identities together the users do not gain any advantage: either none of them is a

legitimate user, and so, by the security of the scheme, they still cannot decrypt, or

at least one is, but in this case it would make no sense for that user to collude with

others. Obviously a legitimate user can give his private key to a non-intended re-

cipient, but this is a completely different issue which does not fall in the framework

of collusion resistance.

Also in the BE setting there is a notion of resistance against collusion attacks,

i.e., attacks mounted by a coalition of users not in the target set who wish to decrypt

the broadcast message. If, as detailed next, we construct a BE scheme from an ABE

scheme, this property is naturally met by the security of the underlying ABE scheme,

as this guarantees that only the authorized users can decrypt successfully.

We now recall some types of adversary and security properties in the two settings.

In BE, we can find the following types of adversary, each of which we relate to

concepts in the ABE world.

• Static adversary. This is an adversary that commits to a set of users S∗ in

106



4.5 ANOBE from Attribute-Based Encryption

an Initialize phase before the setup algorithm is run. S∗ is the set he wishes

to attack and therefore there are some standard restrictions to the key ex-

traction and decryption queries the adversary can issue (see [17] for details).

From an ABE perspective, this is precisely an adversary in the selective-set

(or selective-policy) security model.

• Semi-Static adversary. This notion has only recently been introduced in

[51] and addresses an adversary who has to commit to a set S̃ in the Initialize

phase, who can make private key extraction queries for any i /∈ S̃, and who

must choose a target set S∗ for the challenge ciphertext with the restriction

that S∗ ⊆ S̃. Such an adversary is weaker than an adaptive adversary, but

stronger than a static one, as the BE adversary can adaptively choose what

subset of S̃ to attack. There is no existing equivalent notion in the ABE world,

but it can be naturally introduced. For instance, in the key-policy setting, the

adversary will have to commit ahead to a set of attributes S̃; he will be able

to issue queries for attributes not in S̃ and finally he will choose an arbitrary

subset of S̃.

• Adaptive adversary. This is the strongest type of adversary against BE

[51], as he need not commit to any set of users before the setup algorithm is

run. In ABE, such an adversarial notion is captured by the standard security

model in which only in the challenge phase does the adversary select a set of

attributes (or a policy) he wishes to attack, with the restriction that none of

the answered queries allow him to win trivially.

As we have stressed so far, anonymity is a crucial security property for which

we aim in a BE system. In the context of relating BE to ABE, we can observe that

anonymity corresponds to the notion of attribute/policy-hiding, as defined in [58].

Briefly, the adversary selects two sets (policies) in either the Initialize phase or the

Challenge phase, and then he will have to guess under which set (policy) encryption

was performed.

We will now show how to obtain BE from ABE. As a consequence, any progress

in the efficiency and security of ABE can be translated directly into corresponding

improvements for ANOBE.
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4.5.1 Generic constructions for ANOBE from ABE

This section is dedicated to formalizing the relation between ABE and BE. To this

end, we provide generic ways to achieve BE (and in particular ANOBE) from both

flavours of ABE, namely ciphertext-policy ABE (CP-ABE) and key-policy ABE

(KP-ABE). While it is fairly natural to think of a BE scheme as a CP-ABE scheme

whose ciphertext policy is set-membership, it is perhaps not so intuitive to see BE

as arising as a special instance of KP-ABE.

We explore these ideas next, giving first some intuition and then the detailed

constructions and proofs.

BE and CP-ABE. Let U be the universe of users of the desired BE scheme.

We consider a CP-ABE scheme whose universe of attributes is precisely U . Being

user i will translate to having attribute i. Furthermore, belonging to the target

broadcast set S will correspond to a set-membership policy. This can be expressed

as a disjunction of attributes, i.e. users. It is then very intuitive to think of a BE

scheme as a CP-ABE scheme with the above-mentioned encryption policy.

More formally, let Γ = (CPABE.PG,CPABE.Setup, CPABE.KeyGen,CPABE.Enc,

CPABE.Dec) be a CP-ABE scheme which efficiently supports disjunction policies.

Let U be the universe of attributes, where |U | = n. We will construct a BE scheme

from Γ, having U as the universe of users and the same message and ciphertext

space, in the following way:

BE.PG(1λ, n): Run CPABE.PG on input 1λ and return pars, which implicitly contain

n and a description of the message space MsgSp and the ciphertext space CtSp

of the scheme.

BE.Setup(pars): Run CPABE.Setup(pars) to obtain the master public key CP-MPK

and the master secret key CP-MSK. Let BE-MPK := CP-MPK, BE-MSK :=

CP-MSK and output (BE-MPK,BE-MSK).

BE.KeyGen(BE-MPK,BE-MSK, i): Run CPABE.KeyGen(BE-MPK,BE-MSK, i) to

obtain ski, the secret key corresponding to user (attribute) i.
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BE.Enc(BE-MPK,M, S): Let
∨

j∈S j be the policy representing the disjunction of

attributes (users) j ∈ S. Let A be the access structure supporting this policy.

Run CPABE.Enc(BE-MPK,M,A) to obtain a ciphertext C.

BE.Dec(BE-MPK, C, ski): Run CPABE.Dec on the same input to obtain either a

message M or a failure symbol ⊥.

The correctness of the BE scheme follows directly from the correctness of the CP-

ABE scheme Γ used to construct it. This guarantees that if user i satisfies the

disjunction policy (i.e. i ∈ S) then he can successfully decrypt.

The following result holds.

Theorem 4.11 Let Γ be a policy-hiding and IND-CCA secure CP-ABE scheme sup-

porting disjunction policies. Then the BE scheme constructed as above is adaptively

ANO-IND-CCA secure.

Proof. Let A be an adversary against the ANO-IND-CCA security of the BE

scheme. We will construct an adversary B that will interact with A to break the

policy-hiding and IND-CCA security of Γ. The game proceeds as follows.

Setup. The challenger C runs CPABE.PG(1λ) to obtain pars and CPABE.Setup(pars)

to generate the master public key CP-MPK and the master secret key CP-MSK

and gives (pars,CP-MPK) to the adversary A.

Phase 1. A can adaptively issue key-extraction queries for any user i ∈ U . Such a

query is passed on to B, who gives it to C as secret-key query for attribute i. C
will respond to each query with the private key ski, which is passed to B, who
then forwards it to A as the key for user i. A may also issue decryption queries

of the type (C, i), where i ∈ U . B passes such queries to C and forwards C’s
response to A.

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and two

equal-size target sets S0, S1 ⊆ U , such that i /∈ S0 1 S1 for any of the queries

i made in Phase 1. If for any of such queries we have that i ∈ S0 ∩ S1 the we
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require M0 = M1. A passes M0,M1, S0, S1 to B. B creates access structures

A0 and A1 expressing the disjunction of all the indices j ∈ S0 and k ∈ S1,

respectively. It passes M0,M1,A0,A1 to C. C chooses a random b ← {0, 1},
computes C" ← CPABE.Enc(CP-MPK,Mb,Ab) and passes C" to B, who in turn

passes it to A.

Phase 2. A continues to issue secret-key-extraction queries with the restriction that

i /∈ S0 1 S1 and if i ∈ S0 ∩ S1 then we require M0 = M1. These queries are

dealt with by B as in Phase 1. A can also issue decryption queries with the

restriction that if C = C" then either i /∈ S01S1 or i ∈ S0∩S1 and M0 = M1.

Guess. The adversary outputs its guess b′ for b and B outputs the same guess.

B perfectly simulates the ANO-IND-CCA game for A. Hence A’s advantage is

as it would be in the real game and by construction B wins whenever A does. !

BE and KP-ABE. Not so intuitive is to see BE as arising as a special instance

of KP-ABE. In the definition of KP-ABE the policy input to the key generation

algorithm is expressed by an access structure, which in our model is represented by

an access tree. In order to realize BE using ABE, we select as the tree for generating

the key of user i the trivial tree consisting of a single leaf for attribute i. In KP-

ABE, decryption succeeds if the set of attributes S specified in the encryption phase

satisfies the policy given during key generation. In particular, for the degenerate

case of BE, the policy (tree) is satisfied if and only if the attribute (user) i is in S.

This is precisely what is needed in the BE setting, i.e., a user i can decrypt if and

only if i ∈ S, where S is the target broadcast set. Hence, BE can also be cast in the

framework of KP-ABE.

We formalize this by considering a KP-ABE scheme K = (KPABE.PG,

KPABE.Setup, KPABE.KeyGen,KPABE.Enc,KPABE.Dec). Let U be the universe of at-

tributes, where |U | = n. We will construct a BE scheme from K, having U as the

universe of users and the same message and ciphertext space, in the following way:

BE.PG(1λ, n): Run KPABE.PG on input 1λ and return pars, which implicitly contain

n and a description of the message space MsgSp and the ciphertext space CtSp

of the scheme.
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BE.Setup(pars): Run KPABE.Setup(pars) to obtain the master public key KP-MPK

and the master secret key KP-MSK. Let BE-MPK := KP-MPK, BE-MSK :=

KP-MSK and output (BE-MPK,BE-MSK).

BE.KeyGen(BE-MPK,BE-MSK, i): Run KPABE.KeyGen(BE-MPK,BE-MSK, i) to

obtain ski, the secret key corresponding to the single-leaf access tree i.

BE.Enc(BE-MPK,M, S): Run KPABE.Enc(BE-MPK,M, S) to obtain a ciphertext

C.

BE.Dec(BE-MPK, C, ski): Run KPABE.Dec on the same input to obtain either a

message M or a failure symbol ⊥.

The correctness of the BE scheme follows from the correctness of the KP-ABE

scheme K used to construct it since in our model a set of attributes S satisfies a

single-leaf access tree if and only if the attribute associated with that leaf is in S.

The following result holds.

Theorem 4.12 Let K be an attribute-hiding and IND-CCA secure KP-ABE scheme.

Then the BE scheme constructed as above is adaptively ANO-IND-CCA secure.

Proof. Let A be an adversary against the ANO-IND-CCA security of the BE

scheme. We will construct an adversary B that will interact with A to break the

attribute-hiding and IND-CCA security of K. The game proceeds as follows.

Setup. The challenger C runs KPABE.PG(1λ) to obtain pars and KPABE.Setup(pars)

to generate the master public key KP-MPK and the master secret key KP-MSK

and gives (pars,KP-MPK) to the adversary A.

Phase 1. A can adaptively issue key-extraction queries for any user i ∈ U . Such a

query is passed on to B, who gives it to C as secret-key query for the degenerate

single-leaf access tree i. C will respond to each query with the private key ski,

which is passed to B, who then forwards it to A as the key for user i. A may

also issue decryption queries of the type (C, i), where i ∈ U . B passes such

queries to C and forwards to C’s response to A.

111



4.5 ANOBE from Attribute-Based Encryption

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and two

equal-size target sets S0, S1 ⊆ U , such that i /∈ S0 1 S1 for any of the queries

i made in Phase 1. If for any of such queries we have that i ∈ S0 ∩ S1 the we

require M0 = M1. A passes M0,M1, S0, S1 to B. B passes M0,M1, S0, S1 to C.
C chooses a random b← {0, 1}, computes C" ← KPABE.Enc(KP-MPK,Mb, Sb)

and passes C" to B, who in turn passes it to A.

Phase 2. A continues to issue secret-key-extraction queries with the restriction

that i /∈ S0 1 S1 and if i ∈ S0 ∩ S1 then we require M0 = M1. These queries

are dealt with by B as in Phase 1. A can also issue decryption queries with

the restriction that if (C, i) = (C", i) then either i /∈ S0 1 S1 or i ∈ S0 ∩ S1

and M0 = M1.

Guess. The adversary outputs its guess b′ for b and B outputs the same guess.

B perfectly simulates the ANO-IND-CCA game for A. Hence A’s advantage is

as it would be in the real game and by construction B wins whenever A does. !

What we have just proved provides us with a potentially powerful tool: all

the progress achieved in the area of ABE could be highly relevant to the improve-

ment of the state of the art of BE. In practice, this approach is limited to the

currently available ABE schemes. In particular, what we are looking for ideally is

an attribute(policy)-hiding KP(CP)-ABE scheme, with short ciphertexts, involving

efficient algorithms, and which is non-selectively IND-CCA secure in the standard

model. Unfortunately, we do not have such a scheme. We hence briefly recall what

are the features of the existing ABE schemes.

The ABE research community has focused on obtaining schemes allowing for poli-

cies that could be as expressive as possible [53, 32, 12, 70]. These schemes however

only achieve selective security and provide no anonymity guarantee. Furthermore,

they are not very efficient. In [54], the authors present a threshold CP-ABE scheme

with constant-size ciphertext. Even if this limited policy could fit our purposes, the

scheme unfortunately suffers from the same security drawbacks as the other ABE

schemes.

In a related line of research called predicate encryption [58], Katz et al. address
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the issue of anonymity, but the scheme the authors present is characterized by large

keys and ciphertexts, linear in n as opposed to the size of S. Similar considerations go

for the work in [61], where Lewko et al. introduce the notion of functional encryption

and provide a fully secure ABE scheme, but the private key and ciphertext sizes

prevent it from being a suitable candidate for the construction of BE. Follow-up

work in the area (for instance, [69]) suffers from the same limitation. Indeed these

recently proposed primitives, which have ABE as a special case, are very powerful

and their instantiation allows for great expressiveness. However, for the use of ABE

that we have in mind, namely constructing ANOBE schemes, finding anonymous and

fully secure ABE schemes that support even simple policies but that are efficient is

still an open problem.

4.6 Reducing the Size of the Ciphertext with Randomness

Re-Use

Our main focus so far has been to show that ANOBE is achievable. Indeed we have

proved that we can obtain it starting from public-key, identity-based and attribute-

based encryption. Our next step is to look at how to improve on the efficiency of

certain constructions, striving towards more practical ANOBE schemes.

To this end, we investigate the technique of randomness re-use, a rigorous and

formal study of which can be found in [9] (followed by [5]). The usefulness of this

technique appears obvious in the context of multi-recipient encryption, where the

same “base” encryption scheme is used to send messages to multiple receivers. Re-

using randomness has several practical implications: first of all, randomness is not

cheap, and therefore generating less of it already represents a performance improve-

ment. Secondly, it implies a saving in computational costs, since some components

will be re-used in the encryption process. Finally, it allows for smaller bandwidth

consumption.

While the efficiency benefits of applying this technique have always been clear,

the impact of randomness re-use on the security of the scheme has required some

attention. In particular, the authors of [9] provide a condition under which ran-

domness re-use is secure in the setting of public-key encryption. Namely, if the
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base scheme satisfies a certain property (called reproducibility) then sharing the

randomness across ciphertext components can be done without altering the security

of the scheme. Informally, a scheme is reproducible if there exists a polynomial-time

algorithm that on input the public parameters, a public key pk, a ciphertext C,

encryption of a message M under pk using randomness r, a public/secret key-pair

(pk′, sk′) and a message M ′, returns C ′, the encryption of M ′ under pk′ using the

same randomness r. We recall the formal definition from [9].

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Let

MsgSp and RSp be the message and randomness space of Π, respectively. Let R

be an algorithm that takes as input the public parameters, a public key, a cipher-

text generated under such public key, a random message and a key-pair, and outputs

a ciphertext. Consider the following experiment.

ExpRep
Π,R(1

λ)

(pars)← PKE.PG(1λ)

(pk, sk)← PKE.KeyGen(pars)

M ← MsgSp; r ← RSp

C = PKE.Enc(pars,M, pk; r)

(pk′, sk′)← PKE.KeyGen(pars)

M ′ ← MsgSp

return 1 if PKE.Enc(pars,M ′, pk′; r) = R(pars, pk, C,M ′, pk′, sk′)

and 0 otherwise.

Definition 4.13 (Reproducibility) Π is reproducible if for any λ there is a p.t. al-

gorithm R such that the experiment ExpRep
Π,R(1

λ) outputs 1 with probability 1.

Informally, the main reproducibility theorem [9, Theorem 1] implies that if a PKE

scheme is reproducible and IND-CCA secure, then the corresponding randomness

re-using, multi-recipient PKE scheme is also IND-CCA secure.

Now, a crucial observation is that effectively some of our constructions for

ANOBE (we will focus on the one in Section 4.3.2) originate from a base encryption

scheme which is used repeatedly to encrypt the same message to multiple receivers.
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The relation between multi-recipient and broadcast encryption was briefly discussed

in [9]: a multi-recipient encryption scheme can indeed be transformed into a BE

scheme by encrypting the same message to each user in the target set, by broad-

casting the whole vector of ciphertext components, and by specifying a decryption

procedure that will allow each legitimate user to decrypt. Therefore it seems natural

to consider randomness re-use as an efficiency-enhancing technique in the context of

anonymous broadcast encryption.

It turns out that, in order to do so in a provably secure way, we have to introduce

a new notion of reproducibility, called key-less reproducibility, better suited for a

setting where anonymity is needed. In a nutshell, key-less reproducibility differs

from reproducibility in that the reproduction algorithm no longer requires as input

pk, the public key under which C was created. We formalize this as follows.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. Let

MsgSp and RSp be the message and randomness space of Π, respectively. Let R

be an algorithm that takes as input public parameters, a ciphertext, a random mes-

sage and a key-pair, and outputs a ciphertext. Consider the experiment:

ExpKLRep
Π,R (1λ)

(pars)← PKE.PG(1λ)

(pk, sk)← PKE.KeyGen(pars)

M ← MsgSp; r ← RSp

C = PKE.Enc(pars,M, pk; r)

(pk′, sk′)← PKE.KeyGen(pars)

M ′ ← MsgSp

return 1 if PKE.Enc(pars,M ′, pk′; r) = R(pars, C,M ′, pk′, sk′)

and 0 otherwise.

Definition 4.14 (Key-less reproducibility) Π is key-less reproducible if for any

λ there is a p.t. algorithm R such that the experiment ExpKLRep
Π,R (1λ) outputs 1 with

probability 1.
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We note that we can recover the original reproducibility notion simply by in-

cluding a description of pk in the ciphertext C.

We now apply the technique of randomness re-use to obtain more efficient in-

stantiations for ANOBE. Let us reconsider the generic construction presented in

Section 4.3.2.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a key-less reproducible

PKE scheme, and let Σ = (Gen, Sign,Ver) be a signature scheme. We call ANOBE Π,Σ
rr

the scheme constructed from Π and Σ as follows.

BE.PG,BE.KeyGen,BE.Dec are as in Section 4.3.2.

BE.Enc(BE-MPK,M, S): to encrypt M for a receiver set S = {i1, . . . , i$} ⊆
{1, . . . , n} of size % = |S|, generate a signature key-pair (sigk, vk)← Gen(1λ).

Choose r ← RSp, where RSp is the randomness space of Π. Then, for each j =

1 to %, compute Cj = PKE.Enc(pars,M ||vk, pkij ; r). The final BE ciphertext

consists of C =
(

vk, Cτ(1), . . . , Cτ($),σ
)

, where σ = Sign
(

sigk, Cτ(1), . . . , Cτ($)

)

and τ : {1, . . . , %}→ {1, . . . , %} is a random permutation.

Theorem 4.15 Let Π be an IND-IK-CCA secure, weakly robust and key-less repro-

ducible PKE scheme. Let Σ be a strongly unforgeable one-time signature scheme.

Then ANOBE Π,Σ
rr is adaptively ANO-IND-CCA secure.

Proof. The proof follows precisely the proof of Theorem 4.5 up until the BE chal-

lenge ciphertext is generated. The modifications are in the following steps and apply

to both Lemma 4.6 and Lemma 4.7.

1. For j = 1 to k − 1, B sets Cj = R(pars, C",M1||vk", pkρj , skρj ).

2. For j = k + 1 to %, B computes Cj = R(pars, C",M0||vk", pkθj , skθj ).

3. Finally, set Ck = C".
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We observe that B knows all the necessary secret keys since it generated them

on its own at the beginning of the simulation. The proof then continues as in

Theorem 4.5.

We note that there is no further loss in the security reduction since the key-

less reproducibility property of Π implies that PKE.Enc(pars,M ′, pk′; r) = R(pars,

PKE.Enc(pars,M, pk; r),M ′, pk′, sk′) with probability 1. !

We have shown that the key-less reproducibility of a PKE scheme guarantees

that randomness can be re-used securely. We can exploit this property to compress

the ANOBE ciphertexts and, depending on the concrete instantiation, significantly

increase the efficiency of the scheme. More precisely, given an ANOBE Π,Σ
rr cipher-

text C = (vk, Cτ(1), . . . , Cτ($),σ), let ccc denote the common ciphertext components

that may arise in Cτ(1), . . . , Cτ($) from sharing randomness across PKE components,

i.e.,

Cτ(1) = (ccc, c̃τ(1)), . . . , Cτ($) = (ccc, c̃τ($)).

The compressed ANOBE ciphertext will be C̃ = (vk, ccc, c̃τ(1), . . . , c̃τ($),σ). Upon

receipt, the user simply reconstitutes the original ciphertext C and runs BE.Dec as

usual. In Section 4.7 we will discuss briefly a possible instantiation of these ideas.

4.7 Further results

The results in [62] include parts of the work presented so far and go even further in

improving the efficiency of the introduced constructions. The authors provide a way

to speed-up decryption and finally they present a concrete ANOBE scheme, which

can be considered the state of the art. We give an overview of these results next.

4.7.1 Efficient decryption in the standard model

One major drawback of some of our constructions is that decryption takes linear

time in the size of the set S. This arises from the fact that users do not know

which ciphertext component is intended for them, and hence will have to perform

an average of |S|/2 decryptions before recovering the message. Clearly this procedure

is quite cumbersome. In [62], the authors present a technique allowing for constant
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decryption cost and which is proved secure in the standard model (i.e., without

random oracles) using our enhanced security definition. So far, the only known

technique – put forth by Barth et al. [6] – enabling constant-time decryption requires

the random oracle heuristic in the security analysis. To eliminate the random oracle,

the authors of [62] introduce a new primitive, called an anonymous hint system. In

essence, this primitive provides a way for an encrypter to securely tell receivers

which ciphertext component is intended for them, allowing them to ignore all but

one ciphertext component and so decrypt more efficiently. The hint primitive, for

which they provide an implementation based on the Decision-Diffie-Hellman (DDH)

assumption, is defined and realized in such a way that its integration with our generic

ANOBE constructions maintains compatibility with our proofs of adaptive security,

allowing to generically obtain ANOBE with efficient decryption.

4.7.2 A concrete ANOBE scheme

In [62] it is also established that the Kurosawa–Desmedt (KD) [60] hybrid encryption

scheme can be tweaked to have all the properties that are needed of the base PKE

scheme in our constructions. The KD scheme is an ideal starting point since it is one

of most efficient PKE schemes with IND-CCA security in the standard model. The

authors present KD∗, a modified version of the KD scheme, that is strongly robust

(although weak robustness suffices for our purposes), assuming that its symmetric

components satisfy some relatively mild conditions; anonymous under the DDH

assumption (and, again, under mild assumptions on its symmetric components) and

key-less reproducible. Tying everything together and using KD∗ as the base scheme,

they obtain the currently most efficient instantiation of an ANOBE scheme, for

which ciphertexts contain only 2 group elements and |S| symmetric ciphertexts (plus

a signature and a verification key). Decryption can be achieved in constant time by

combining this scheme with the DDH-based hint system mentioned in the previous

section, with an additional 2|S|+ 1 group elements in the ciphertext.

118



4.7 Further results

Table 4.1: Comparison of broadcast encryption schemes

Scheme Security Private key size Ciphertext size

GW IND-CCA n · |g| n+ 3|g|
ANOBECS ANO-IND-CCA 5 · |a| s · 4|g|+ ω
ANOBEmG ANO-IND-CCA 1 · |a| s · (|g|+ 2|gT |) + ω
ANOBEKD∗ ANO-IND-CCA 4 · |a| s · |c|+ 2|g|+ ω

Let n be the size of the universe and s the size of the target set, let a ∈ Zp, g ∈ G, gT ∈ GT , let ω
be the cost of transmitting a signature and a verification key and let c be a symmetric ciphertext.

In light of this result, it could be helpful to summarize our findings and compare

the state of the art in this area. We do this in Table 4.1, where we consider various

BE schemes and focus on three important features: security level achieved, private

key storage requirements and ciphertext length. This choice is motivated by the fact

that these are the most commonly observed features. We note that other parameters

such as public key size, strength of security assumptions and computational costs

may be considered.

The notation used in the table is specified as follows.

- GW is the scheme by Gentry and Waters [51] recalled in Section 4.1.2.1;

- ANOBECS is the scheme that results from instantiating the construction in

Section 4.3.2 with the Cramer–Shoup encryption scheme;

- ANOBEmG is the scheme that results from instantiating the construction in

Section 4.4 with the multi-TA version of Gentry’s IBE scheme [50, 72];

- ANOBEKD∗ is the scheme in [62] mentioned in this section.

From Table 4.1 we can observe that the ANOBE schemes presented in this chapter

enjoy increasingly improved performance, with ANOBEKD∗ being almost competi-

tive with the non-anonymous but very efficient GW scheme. Once again we see the

challenges of maintaining a balance between security and efficiency.
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4.7.3 Extensions to identity-based broadcast encryption

When giving the formal definition of a public-key BE scheme in Section 4.2 we ob-

served that this was general enough to include the identity-based variant introduced

in [39]. This flexibility allows to readily extend some of our results to the identity-

based setting. Using an anonymous and weakly robust IBE scheme (see Section 2.3.2

and [2] for the relevant definitions) we can indeed obtain an anonymous identity-

based broadcast encryption scheme with a construction similar to the one presented

in Section 4.3.2. We can also extend the results in Section 4.4 by deploying a hier-

archical IBE scheme, and furthermore analyze techniques for randomness re-use in

this new setting. We leave details of these extensions to future work.

4.8 Conclusions

We have seen that in the context of broadcast encryption the main focus of research

to date has been on reducing ciphertext size. Achieving this has entailed sacrificing

all anonymity properties. Yet we have argued that anonymity is a fundamental

property to strive for in broadcast encryption. One may wonder why this feature

has been so neglected in the BE literature. It seems that a natural concern could be

that adding anonymity would severely damage the performance of the BE scheme.

Therefore, the obvious question is: how much does anonymity cost?

4.8.1 The price of anonymity

As can be seen from the details of our constructions, achieving anonymity does not

add any cost to the encryption process compared to non-anonymous schemes (for

example, [17, 51]): in our ANOBE schemes, encryption requires a number of group

operations that is linear in |S|. As for decryption, the speed-up technique presented

in [62] allows the legitimate user to recover the message in constant time. Our

ciphertext size is linear in |S| (and thus linear in n and of the same order of magnitude

as the true ciphertext size in existing BE schemes). Thus one interpretation of our

results is that anonymity does not “cost” anything in an asymptotic sense. Naturally,

120



4.8 Conclusions

the constants matter in practice, and reducing the constant in the ciphertext size

for ANOBE to something closer to what can be achieved in the non-anonymous

setting is a major open problem. However, we reiterate that reducing the true size

of ciphertexts below linear in n in either the anonymous or non-anonymous setting

is impossible.

4.8.2 Open problems

With the aim of highlighting the importance of anonymity in broadcast encryption,

we have formally defined the notion of anonymous broadcast encryption (ANOBE)

and given several constructions for this primitive. We have also shown how these

constructions can be improved via randomness re-use techniques (to reduce the

ciphertext size and the computational costs of encryption) and pointed to further

results developed in [62]. Our constructions set a yardstick by which future ANOBE

schemes can be measured. Much work still needs to be done in this area, from im-

proving the efficiency of ANOBE schemes to considering all the additional properties

that can be found in standard BE, such as traitor tracing, revocation, dynamism

of users joining the system, and realising them in the anonymous setting. There is

still a gap between the sizes of ciphertexts in state-of-the-art BE schemes and our

ANOBE schemes. This gap is hidden in the constants in an asymptotic evaluation

of ciphertext size (when the true size of ciphertexts is measured) but is neverthe-

less significant in practice. A major challenge, then, is to further reduce the size of

ciphertexts in ANOBE, whilst maintaining its full anonymity properties.

Anonymity is of crucial importance in modern cryptography, in particular for

primitives which have immediate real-life applications, such as BE. We hence believe

that future work in this area should consider anonymity as one of the primary goals.
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Chapter 5

Time-Specific Encryption
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This chapter introduces and explores the concept of time-specific encryption

(TSE), a newly designed primitive which allows the sender to specify in what time

interval a ciphertext can be decrypted. We present several flavours of TSE and pro-

vide generic constructions to achieve them securely in the standard model. Finally,

we suggest applications for our new primitive, and discuss its relationships with ex-

isting primitives, such as timed-release encryption and broadcast encryption. The

work in this chapter, fruit of a collaboration with Kenneth G. Paterson, was published

as [71] at the international cryptographic conference Security and Cryptography for

Networks 2010, and won the Best Paper Award.
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5.1 Introduction

5.1.1 Time and encryption

Time has always played an important role in communication. Information can be-

come useless after a certain point, sensitive data may not be released before a partic-

ular time, or we may wish to enable access to information for only a limited period

of time. In this context, being able to specify when a ciphertext can be decrypted by

a receiver is a useful and interesting property. Indeed, the idea of sending a message

“into the future”, i.e. encrypting a message so that it cannot be decrypted before a

pre-determined release time, has generated quite some interest in the cryptographic

community due to its many real-world applications such as electronic auctions, press

releases, etc. Timed-release encryption (TRE) precisely addresses this problem.

5.1.1.1 Timed-release encryption

Since its introduction by May [65], TRE has enjoyed significant development (see

[26, 27, 56, 41, 33], to name a few).

In TRE there are typically two potential approaches: the time-lock puzzle ap-

proach and the time server approach. In the former [78, 63, 20] the receiver is

required to make a substantial computational effort to solve a certain problem be-

fore recovering the message. This technique has some obvious practical limitations

since it is rather expensive for the receiver and also it guarantees only a delay in

the decryption time rather than providing the precise functionality of being able to

decrypt after a specified time. The time server approach overcomes these limita-

tions by introducing an entity, the time server (TS), which provides a common and

absolute time reference for all users in the system. In this setting, TS broadcasts

what we will call a time instant key (TIK) at each time unit and, ideally, it should

not interact with either the sender or the receiver. Most TRE literature follows this

approach.

A number of results have been achieved in this area, from providing scalable

and non-interactive systems [26, 27], to equipping TRE schemes with the additional
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functionality called pre-open capability [56, 41], which allows the receiver to decrypt

the ciphertext before the release time at the sender’s discretion. In all these systems

the key feature though is that at any point after the release time t the receiver

should be able to decrypt. However, in practice, in existing TRE schemes, successful

decryption occurs only with the TIK broadcast by TS at time t: any other key

broadcast after time t will not be useful to recover the message. Therefore these

schemes suffer from the limitation that some back-up mechanism must be provided

in case the receiver misses the key broadcast by the server at the release time.

Typically in the literature, it is assumed that the time server (or some other agency)

will make old keys available on a public server. Clearly this may be inconvenient

and would require additional infrastructure on top of the broadcast capability. The

consideration of this practical issue was key to the introduction and development of

a new cryptographic primitive which we call time-specific encryption (TSE).

5.1.1.2 Time-specific encryption

In time-specific encryption (TSE), as with TRE, a time server broadcasts a key at

the beginning of each time unit, a time instant key (TIK). But now, the sender of

a message can specify any time interval during the encryption process; the receiver

can decrypt to recover the message only if it has a TIK that corresponds to a time

in that interval.

More specifically, we consider a setting in which we have a (semi-)trusted time

server (TS). TS broadcasts a TIK kt at each time unit or “tick” of its clock, t, where

0 ≤ t ≤ T − 1. This TIK is available to all users, and we implicitly assume that it

contains a description of t. A sender can specify any interval [t0, t1], where t0 ≤ t1,

when encrypting a plaintext M to form a ciphertext C. In Plain TSE, we wish to

achieve the property that C can only be decrypted by a receiver to recover M if the

receiver is in possession of a TIK kt for some t with t ∈ [t0, t1]. Notice that we cannot

enforce the property that the receiver can only decrypt during the decryption time

interval (DTI) [t0, t1], since a receiver can always obtain an appropriate TIK and

then use it at any time later on to perform decryption. Achieving this stronger notion

could be done using trusted hardware, for example. Yet, as we discuss below, TSE

has several intriguing applications exploiting its defining property that a receiver
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must obtain a suitable TIK before being able to decrypt.

First of all, TSE generalizes TRE: indeed, TRE represents the special case of TSE

in which the sender can specify only intervals of the form [t, t]. As for the issue of

missed keys described above, TSE provides an elegant solution: if the sender specifies

an interval of the form [t, T −1] (where T −1 is the maximum time supported by the

scheme) then a receiver can decrypt using any TIK kt′ broadcast by the time server

at time t′ ≥ t. We note that the use of tree techniques to achieve this capability was

sketched in [26, 33], but without any formal security analysis. TSE, then, provides a

useful extension of TRE that can be exploited in any of the many applications that

have already been proposed for TRE in the literature, which, as mentioned before,

include electronic auctions, key escrow, on-line gaming, timed release of information

such as press releases, and so on.

However, TSE is more flexible than this in the range of applications that it

supports. For example, the encrypting party may specify an interval of the form

[0, t], meaning that a receiver can decrypt the ciphertext as soon as it is received

and a TIK has been obtained, but only up to time t. After this time, TIKs issued

by the time server will not help in decryption. Yet, a user might obtain a useful

TIK from some other user in the system, so this application of TSE only makes

sense in situations where users have a vested interest in not sharing TIKs with one

another, such as in situations where users are in competition with one another. For

example, the ciphertext may encrypt a ticket for accessing a service that is valid up

to time t. More generally, TSE can be used to support any application in which a

user benefits from accessing plaintext in a timely manner, and where the utility of

a TIK becomes limited shortly after its broadcast time. We sketch an example of

such an application in the domain of entity authentication next.

Consider a typical time-stamp based network authentication protocol, in which

entities A and B share a symmetric key K and in which A sends B messages of the

form MACK(T ||B) where T is the current time (at A) and MACK denotes a secure

MAC algorithm using the key K. Such a protocol requires roughly synchronised

clocks, and B needs to allow a “window of acceptance” for values T in A’s messages,

to cater for any loss of accuracy in synchronisation and network delay. In turn, this

means that B needs to keep a log of recently received messages to prevent replays by
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an attacker during the window. How can TSE help? Suppose B generates a nonce

N , encrypts it using a TSE scheme with an interval [t0, t1], where t1− t0 is equal to

the width of a suitable window of acceptance (to cater for network delay and clock

drift between A and B), and broadcasts the resulting ciphertext. Now A’s ability

to send a message of the form MACK(N ||B) to B before time t1 is a proof that A

obtained a TIK kt during the interval [t0, t1] and decrypted to obtain the nonce N .

Thus B obtains a proof of liveness of A within a certain window of acceptance, so

authenticating A to B. This basic protocol can be extended in a number of ways.

For example, B’s ciphertexts can be pre-distributed to A, giving A a set of tokens

which she can use to authenticate to B during specified time intervals. We can also

adapt the basic scheme to use pseudo-randomly generated nonces, so saving state

at B. We can modify it to provide key transport, by replacing the MAC with an

authenticated encryption scheme and including a session key in A’s message. We can

also add mutual authentication in obvious ways. What is notable about the protocol

design is that we no longer require synchronized clocks, and we have a window of

acceptance for responses by design. These features arise from the use of TSE.

5.1.2 Further related work

Range queries over encrypted data and related ideas: Shi et al. [84] pro-

posed schemes enabling multi-dimensional range queries over encrypted data

(MRQED). In the one-dimensional version of this primitive, data is associated with

a single value and is encrypted with respect to that value, while users are equipped

with keys enabling them to decrypt data whose values are in a given range. In

contrast, in TSE, encryption is performed with respect to a range, while the time

server makes available keys specific to a particular time value. Thus, our notion of

Plain TSE is precisely equivalent to the notion of dual MRQED, also introduced

but not formalised by Shi et al. [84]. We note that [84] gives a construction which

builds a dual MRQED scheme from a normal MRQED scheme, but this seems to

involve a doubling of dimension and, therefore, a significant loss of efficiency, a prob-

lem from which our constructions do not suffer. In addition, in our work, we give

constructions achieving non-selective security against chosen-ciphertext attackers,

whereas [84] only considers selective security notions and chosen-plaintext attackers

in any detail (and then in the MRQED setting rather than its dual). Moreover,
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we consider plain, public-key and identity-based settings, whereas [84] only handles

what amounts to the plain setting. In work related to that of Shi et al., Srivatsa et

al. [87] introduced trust-and-identity based encryption (TIBE). Replacing “trust”

with time in TIBE, and ignoring the identity-based aspects, we recover a special case

of MRQED of dimension 1, but handling only intervals of the form [t, T−1]. Another
related idea is sketched in [14], where it is shown how to transform a hierarchical

identity-based encryption scheme into an encryption system that can send messages

into the future. Translated into the language of this paper, this yields a Plain TSE

scheme that can only support intervals of the form [t, T −1]. Unfortunately, because

of specific details of the construction used, this approach does not seem capable of

being extended to support more general intervals.

ABE and PE: TSE can be seen as arising from a special case of ciphertext-

policy attribute-based encryption (ABE) [53, 12, 54], itself a special case of predicate

encryption (PE) [58], for a class of policies which express interval membership and

attributes which express specific times, and with the time server playing the role of

Attribute Authority. We note that most work on ABE and PE to date is limited to

the “selective-attribute” case. In the context of TSE, converting to a non-selective

security model would incur a cost of roughly O( 1
T 2 ) in the tightness of the security

reduction. However, our constructions for TSE in this chapter already achieve fully

adaptive security in the standard model with a tight reduction to the security of the

IBE scheme used in the specific instantiation. On the other hand, ABE schemes that

do achieve full security, such as [61] and follow-up work, suffer from low performance,

as discussed in Section 4.5.

Broadcast encryption: As discussed in Chapter 4, broadcast encryption (BE) is

a cryptographic primitive designed to address the issue of broadcasting a message to

an arbitrary subset drawn from a universe of users. Although conceptually opposites

(in TSE the keys are broadcast while the message is sent beforehand), it can be

shown that a BE scheme can be used to construct a Plain TSE scheme: assume the

users in the BE scheme can be labeled with elements from [0, T−1], consider a DTI as

the target subset of addressed users in the BE encryption algorithm, and broadcast

the secret key for user with label t at time t. In Section 5.4.1 we show that a correct
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Plain TSE scheme results from this transformation, and moreover, that the security

of this scheme can be related to standard security properties of the underlying BE

scheme. There are however some caveats to this approach, which we discuss in

detail in Section 5.4.1. In particular, the advantages and shortcomings of BE over

our approach to the realisation of Plain TSE, as developed in Section 5.3.1, can

be cast in a framework of trade-offs between the sizes of public parameters, secret

keys and ciphertexts, together with computational costs and strength of security

achieved.

Temporal access control: Significant related work in the symmetric-key setting

exists in the area of cryptographically-enabled “temporal access control”, see for

example [38] and the references therein. In this line of work, a key is associated with

each time “point”, and a key assignment scheme is used to ensure that an authorized

user is able to derive keys for all the points contained in a designated interval. Such

schemes generally require the publication of rather large amounts of information in

order to achieve the desired functionality, but do allow efficient derivation of keys

associated with time points. In contrast, we use public-key techniques, achieving

small public parameters and greater flexibility in operation, at the cost of increased

computation.

5.1.3 Our contributions

In this chapter we first develop the basic flavour of TSE, namely Plain TSE, as

described in the previous section. We then extend Plain TSE to the public-key

and identity-based settings, where receivers are additionally equipped with secret

keys and either public keys or identities, and where decryption now requires the use

of the relevant secret key as well as an appropriate TIK. This provides protection

against a curious time server, as well as ensuring that a ciphertext is decryptable

only by a specified party. We introduce security models for the plain, public-key

and identity-based settings, considering both chosen-plaintext and chosen-ciphertext

adversaries.

We provide constructions for schemes in the different settings. Firstly, we build
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Plain TSE schemes by adapting ideas of [84, 87] which themselves employ identity-

based and tree techniques. Secondly, we show how to combine Plain TSE with

public-key and identity-based encryption schemes to obtain chosen-plaintext secure

TSE schemes in the public-key and identity-based settings. Thirdly, we show how

to adapt the CHK transformation [25] to the TSE setting, obtaining a generic con-

struction for a chosen-ciphertext secure TSE scheme in the public-key setting from

a chosen-plaintext secure, identity-based TSE scheme. Our focus is on providing

generic constructions that are secure in the standard model. Naturally, more effi-

cient constructions and concrete schemes can be obtained by working in the random

oracle model (ROM), and we sketch such constructions where appropriate. In our

closing section, we discuss possible extensions of our ideas and areas for future work.

5.2 Definitions and Security Notions for TSE

5.2.1 Notation

Throughout the chapter we will consider time as a discrete set of time units, regard-

ing these as integers between 0 and T − 1, where T represents the number of time

units supported by the system. We denote by [t0, t1], where t0 ≤ t1, the interval

containing all time units from t0 to t1 inclusive.

5.2.2 Plain TSE

We start by providing the definition and the security models for the basic form of

time-specific encryption, namely Plain TSE.

Definition 5.1 (Plain TSE) Let TSp = [0, T − 1] be the time space supported by

the scheme and let the parties involved be the Time Server (TS), the sender (S) and

a user (U). A Plain TSE scheme is defined by four algorithms, which are as follows.

Plain.Setup: Run by TS, this algorithm takes as input the security parameter 1λ

and T , and returns a master public key TS-MPK (which includes a description
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of the system’s parameters, the message space MsgSp and the ciphertext space

CtSp) and a master secret key TS-MSK. We write (TS-MPK,TS-MSK) ←
Plain.Setup(1λ, T ).

Plain.TIK-Ext: Run by TS, this is a key extraction algorithm that on input

TS-MPK, TS-MSK and a time instant t ∈ TSp outputs the time instant key

(TIK) kt. We write this as kt ← Plain.TIK-Ext(TS-MPK,TS-MSK, t). This is

broadcast by TS at time t.

Plain.Enc: Run by S, this is an encryption algorithm that on input TS-MPK, a mes-

sage M ∈ MsgSp and a decryption time interval (DTI) [t0, t1] ⊆ TSp returns

a ciphertext C ∈ CtSp. We write this as C ← Plain.Enc(TS-MPK,M, [t0, t1]).

The ciphertext C is broadcast by S to all users.

Plain.Dec: Run by U , this is a decryption algorithm that on input TS-MPK, a

ciphertext C and a key kt returns either a message M ∈ MsgSp or a failure

symbol ⊥. We write this as Plain.Dec(TS-MPK, C, kt) = M or ⊥.

These algorithms are required to satisfy the following correctness property: For

every λ and every T , for every TS-MPK, TS-MSK output by Plain.Setup, for every

message M ∈ MsgSp, every time instant t ∈ TSp and time interval [t0, t1] ⊆ TSp, if

kt ← Plain.TIK-Ext(TS-MPK,TS-MSK, t) and if C ← Plain.Enc(TS-MPK,M, [t0, t1])

then Plain.Dec(TS-MPK, C, kt) returns M when t ∈ [t0, t1] and ⊥ otherwise.

We note that for this primitive, as well as for the other flavours of TSE, the cor-

rectness property requires the decryption algorithm to return ⊥ if an inappropriate

TIK is used (i.e. a TIK not in the DTI). Including this condition here is largely

motivated by the ABE and PE literature, where correctness properties deal with

decryption with “incorrect” keys in a similar way. An alternative approach could

be to not specify this as a correctness requirement, but to consider it as a security

issue, and hence defer its handling to the security property of robustness.

We define the security notion of indistinguishability under chosen-plaintext at-

tacks (IND-CPA) for a Plain TSE scheme P = (Plain.Setup,Plain.TIK-Ext,Plain.Enc,

Plain.Dec) as follows.
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IND-CPA security game for Plain TSE

Setup. The challenger C runs Plain.Setup(1λ, T ) to obtain the master public key

TS-MPK and the master secret key TS-MSK and gives TS-MPK to the ad-

versary A.

Phase 1. A can adaptively issue TIK extraction queries to an oracle OTS-MSK

for any time t ∈ TSp. The oracle will respond to each query with kt ←
Plain.TIK-Ext(TS-MPK,TS-MSK, t).

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and a time

interval [t0, t1] ⊆ TSp with the restriction that t /∈ [t0, t1] for all of the TIK

extraction queries t in Phase 1. A passes M0,M1, [t0, t1] to C. C chooses a

random bit b ← {0, 1} and computes C" ← Plain.Enc(TS-MPK,Mb, [t0, t1]).

C" is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to have access to a TIK extraction oracle OTS-MSK, with the

same restriction we have in the Challenge phase.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game as AdvIND−CPA
A,P (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 5.2 (IND-CPA) A Plain TSE scheme P = (Plain.Setup,Plain.KeyExt,

Plain.Enc, Plain.Dec) is indistinguishable under chosen-plaintext attacks (or is IND-

CPA secure) if all p.p.t. adversaries have at most negligible advantage in the above

game.

We can extend this definition to address IND-CCA security by considering, in

addition, a decryption oracle that acts as follows. On input the pair (C, t), where C is

a ciphertext and t ∈ TSp, it passes t to the TIK extraction oracle, which will respond

with kt. The decryption oracle will then compute Plain.Dec(TS-MPK, C, kt) and

return either a message M or a failure symbol ⊥ to the adversary. The decryption

oracle can be adaptively issued queries (C, t) in both Phase 1 and Phase 2, but in the

latter phase with the restriction that if C" and [t0, t1] are the challenge ciphertext

and time interval, respectively, then the adversary cannot make a decryption query
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(C, t) where C = C" and t ∈ [t0, t1]. This restriction prevents the adversary from

winning the game trivially.

5.2.3 Public-key TSE

We now define another version of TSE called public-key TSE (PK-TSE) in which

the sender S encrypts a message M to a particular receiver R who holds a key-pair

(pk, sk). The message M has an associated decryption time interval [t0, t1] specified

by S. R can decrypt if he has his private key sk and a time instant key (TIK) issued

by TS between time t0 and time t1. We provide a formal definition of PK-TSE next.

Definition 5.3 Let TSp = [0, T − 1] be the time space supported by the scheme and

let the parties involved be the Time Server (TS), the sender (S) and the receiver

(R). A PK-TSE scheme is defined by five algorithms, which are as follows.

PK.Setup: Run by TS, this algorithm takes as input the security parameter 1λ and

T , and returns a master public key TS-MPK (which includes a description of

the system’s parameters, the message space MsgSp and the ciphertext space

CtSp) and a master secret key TS-MSK. We write (TS-MPK,TS-MSK) ←
PK.Setup(1λ, T ).

PK.TIK-Ext: Run by TS, this is a key extraction algorithm that on input TS-MPK,

TS-MSK and a time instant t ∈ TSp outputs the TIK kt. We write this as

kt ← PK.TIK-Ext(TS-MPK,TS-MSK, t). This is broadcast by TS at time t.

PK.KeyGen: Run by R, this is a key generation algorithm that on input the se-

curity parameter 1λ outputs a key-pair (pk, sk). We write this as (pk, sk) ←
PK.KeyGen(1λ).

PK.Enc: Run by S, this is an encryption algorithm that on input TS-MPK, a

message M ∈ MsgSp, a decryption time interval (DTI) [t0, t1] ⊆ TSp and

a public key pk returns a ciphertext C ∈ CtSp. We write this as C ←
PK.Enc(TS-MPK,M, [t0, t1], pk).
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PK.Dec: Run by R, this is a decryption algorithm that on input TS-MPK, a cipher-

text C, a TIK kt and a private key sk returns either a message M ∈ MsgSp or

⊥. We write this as PK.Dec(TS-MPK, C, kt, sk) = M or ⊥.

These algorithms are required to satisfy the following correctness property: For

every λ and every T , for every TS-MPK, TS-MSK output by PK.Setup, for every

message M ∈ MsgSp, every time instant t ∈ TSp and time interval [t0, t1] ⊆ TSp,

and every (pk, sk) output by PK.KeyGen, if kt ← PK.TIK-Ext(TS-MPK,TS-MSK, t)

and if C ← PK.Enc(TS-MPK,M, [t0, t1], pk) then PK.Dec(TS-MPK, C, kt, sk) re-

turns M when t ∈ [t0, t1] and ⊥ otherwise.

To model the security of a PK-TSE scheme, we consider (as in [41] for the TRE

case) the following kinds of adversaries:

• A curious TS who holds TS-MSK and wishes to break the confidentiality of

the message.

• An intended but curious receiver who wishes to decrypt the message outside

of the appropriate decryption time interval.

We observe that security against an outside adversary (who is not the intended

recipient and does not know TS-MSK) trivially follows from security against either

type of adversary considered above.

Remark 2 In Plain TSE there is only one type of adversary, i.e. the curious user,

since there is no specific receiver and TS can trivially decrypt any message.

We define the security notion of indistinguishability under chosen-plaintext at-

tacks against a curious TS (IND-CPATS) for a PK-TSE scheme PK = (PK.Setup,

PK.TIK-Ext,PK.KeyGen,PK.Enc, PK.Dec) as follows1.

1We note that in defining the security models for PK-TSE we consider, for simplicity, a single-
user setting. This also justifies the fact that a separate parameter generation algorithm is not
required in the definition of PK-TSE.
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IND-CPATS security game for PK-TSE

Consider the following game, which we call GamePK-TS.

Setup. The challenger C runs PK.Setup(1λ, T ) to obtain the master public key

TS-MPK and the master secret key TS-MSK and runs PK.KeyGen(1λ) to get

a pair (pk, sk). C gives (TS-MPK,TS-MSK, pk) to the adversary A.

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and a time

interval [t0, t1] ⊆ TSp. A passes M0,M1, [t0, t1] to C. C chooses a random bit

b← {0, 1} and computes C" ← PK.Enc(TS-MPK,Mb, [t0, t1], pk). C" is called

the challenge ciphertext and it is passed to A.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game as AdvIND−CPATS
A,PK (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 5.4 (IND-CPATS) We say that a PK-TSE scheme is IND-CPATS

secure if all p.p.t. adversaries have at most negligible advantage in GamePK-TS.

We can extend this definition to address IND-CCATS security by considering, in

addition, a decryption oracle that on input the pair (C, t), where C is a ciphertext

and t ∈ TSp, returns either a message M or failure symbol ⊥ to the adversary.

The decryption oracle can be adaptively issued queries (C, t) before and after the

Challenge phase, but with the obvious restriction that the adversary cannot make

queries of the form (C, t) where C = C" and t ∈ [t0, t1] after the Challenge phase.

For both IND-CPA and IND-CCA settings, it is possible to model security games

in which the public keys are maliciously generated. In our work, however, we will

consider only honest key-generation, leaving such extension for future research.

We now address IND-CPA security against a curious receiver (IND-CPACR).

IND-CPACR security game for PK-TSE

Consider the following game, which we call GamePK-CR.
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Setup. The challenger C runs PK.Setup(1λ, T ) to obtain the master public key

TS-MPK and the master secret key TS-MSK, and runs PK.KeyGen(1λ) to

get a key-pair (pk, sk). C gives (TS-MPK, pk, sk) to the adversary A.

Phase 1. A can adaptively issue TIK extraction queries for any time t ∈ TSp. The

challenger responds to each query with kt ← PK.TIK-Ext(TS-MPK,TS-MSK, t).

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and a time

interval [t0, t1] ⊆ TSp with the restriction that t /∈ [t0, t1] for all of the TIK

extraction queries t in Phase 1. A passes M0,M1, [t0, t1] to C. C chooses a

random bit b ← {0, 1} and computes C" ← PK.Enc(TS-MPK,Mb, [t0, t1], pk).

C" is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to make TIK extraction queries with the same restriction we

have in the Challenge phase.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game asAdvIND−CPACR
A,PK (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 5.5 (IND-CPACR) We say that a PK-TSE scheme is IND-CPACR

secure if all p.p.t. adversaries have at most negligible advantage in GamePK-CR.

We observe that this chosen-plaintext notion of security is sufficient to capture

all realistic attacks that can be mounted by a curious receiver, so that a chosen-

ciphertext notion of security is not required for curious receivers. Indeed such a

receiver would be the only entity in possession of its private key, and so would be

the only entity that could implement a general decryption oracle in practice. We

show next that such an oracle would either allow the receiver to win trivially or

would not provide any advantage over just having access to the TIK extraction

oracle in the chosen-plaintext setting. More precisely, suppose C" is the challenge

ciphertext and [t0, t1] the challenge interval. To handle decryption queries of the

form (C, t) where C (= C" and t ∈ [t0, t1], the receiver would need to use its private

key in combination with a key kt obtained from TS. But then having such a key kt

would also allow the curious receiver to decrypt C" and so win the security game

trivially. For any other decryption query (C, t), where now t /∈ [t0, t1], the curious
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receiver would be able to obtain the key kt by making a TIK extraction query, and

then use kt together with its private key sk to decrypt c. So, in this situation, the

curious receiver would gain no advantage from having access to a decryption oracle.

We formalize the unified notion of indistinguishability under chosen-plaintext

attacks for PK-TSE as follows.

Definition 5.6 (IND-CPA) We say that a PK-TSE scheme PK = (PK.Setup,

PK.TIK-Ext,PK.KeyGen,PK.Enc, PK.Dec) is IND-CPA secure if it is both is IND-

CPATS and IND-CPACR secure.

5.2.4 Identity-based TSE

We finally consider an identity-based version of TSE, called ID-TSE, in which the

sender encrypts a messageM under the identity of a particular receiver. The message

M has an associated decryption time interval [t0, t1] specified by the sender. The

receiver can decrypt if he holds the private key associated with his identity (as

issued by a (semi-)trusted authority TA) and a time instant key (TIK) issued by

TS between time t0 and time t1. We now provide the formal definition of ID-TSE.

Definition 5.7 Let TSp = [0, T − 1] be the time space supported by the scheme

and let the parties involved be the Time Server (TS), a trusted authority (TA), the

sender (S) and the receiver (R). An ID-TSE scheme is defined by six algorithms,

which are as follows.

TS.Setup: Run by TS, this algorithm takes as input the security parameter 1λ and

T , and returns a master public key TS-MPK (which includes a description of

the system’s parameters, the message space MsgSp, the identity space IdSp

and the ciphertext space CtSp) and a master secret key TS-MSK. We write

(TS-MPK,TS-MSK)← TS.Setup(1λ, T ).

ID.Setup: Run by TA, this algorithm takes as input the security parameter 1λ and

outputs the master public key ID-MPK and the master secret key ID-MSK.

We write this as (ID-MPK, ID-MSK)← ID.Setup(1λ).
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ID.TIK-Ext: Run by TS, this is a key extraction algorithm that on input TS-MPK,

TS-MSK and a time instant t ∈ TSp outputs the time instant key (TIK) kt.

We write this as kt ← ID.TIK-Ext(TS-MPK,TS-MSK, t). This is broadcast by

TS at time t.

ID.Key-Ext: Run by TA, this is a key extraction algorithm that on input ID-MPK,

ID-MSK and an id ∈ IdSp outputs the secret key skid corresponding to id. We

write skid ← ID.Key-Ext(ID-MPK, ID-MSK, id).

ID.Enc: Run by S, this is an encryption algorithm that on input TS-MPK, ID-MPK,

a message M ∈ MsgSp, a decryption time interval (DTI) [t0, t1] ⊆ TSp and

an identity id ∈ IdSp returns a ciphertext C ∈ CtSp. We write this as C ←
ID.Enc(TS-MPK,ID-MPK,M, [t0, t1], id).

ID.Dec: Run by R, this is a decryption algorithm that on input TS-MPK, ID-MPK,

a ciphertext C, a TIK kt and a private key skid returns either a message M ∈
MsgSp or a failure symbol⊥. We write this as ID.Dec(TS-MPK, ID-MPK, C, kt,

skid) = M or ⊥.

These algorithms are required to satisfy the following correctness property: For ev-

ery λ and every T , for every TS-MPK, TS-MSK output by TS.Setup, for every

ID-MPK, ID-MSK output by ID.Setup, for every message M ∈ MsgSp, every time

instant t ∈ TSp, every time interval [t0, t1] ⊆ TSp, and for every id ∈ IdSp, if skid ←
ID.Key-Ext(ID-MPK, ID-MSK, id), if kt ← ID.TIK-Ext(TS-MPK,TS-MSK, t) and if

C ← ID.Enc(TS-MPK, ID-MPK,M, [t0, t1], id) then ID.Dec(TS-MPK, ID-MPK, C, kt,

skid) returns M when t ∈ [t0, t1] and ⊥ otherwise.

We now model the security of an ID-TSE scheme. Since we are in an ID-based

setting we will consider adversaries that interact with multiple users. We consider

the following two types of adversaries:

• A curious TS who holds TS-MSK, and hence can derive TIKs for any time t,

and wishes to break the confidentiality of the message.

• A curious TA who holds ID-MSK, and hence can derive private keys for any

identity id, and wishes to break the confidentiality of the message.
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We note that the latter adversary is more powerful than the natural analogue of the

curious receiver in the ID setting, so we do not give a separate security definition

for the curious receivers.

We first define IND-CPA security against a curious TS, which we denote IND-

CPATS .

IND-CPATS security game for ID-TSE

Consider the following game, which we call GameID-TS.

Setup. The challenger C runs TS.Setup(1λ, T ) to obtain the master public key

TS-MPK and the master secret key TS-MSK, and runs ID.Setup(1λ) to gen-

erate ID-MPK and ID-MSK. C gives (TS-MPK,TS-MSK, ID-MPK) to the

adversary A.

Phase 1. A can adaptively issue queries to a secret key extraction oracle to get

the secret keys corresponding to identities id of its choice. C will respond with

skid ← ID.Key-Ext(ID-MPK, ID-MSK, id).

Challenge. A selects two equal-length messagesM0 andM1 ∈ MsgSp and a time in-

terval [t0, t1] ⊆ TSp and id" ∈ IdSp with the restriction that id" was not queried

to the secret key extraction oracle in Phase 1. A passes M0,M1, [t0, t1], id" to

C. C chooses a random bit b ← {0, 1} and computes C" ← ID.Enc(TS-MPK,

ID-MPK,Mb, [t0, t1], id"). C" is called the challenge ciphertext and it is passed

to A.

Phase 2. A continues to make secret key extraction queries with the same restric-

tion we have in the Challenge phase.

Guess. The adversary outputs its guess b′ for b.

We can easily modify this game to obtain a selective-id security notion (as per

Definition 2.6), by requiring that at the beginning of the game, before the Setup

phase, the adversary will output the identity id" on which it wishes to be challenged.

We define A’s advantage in the above game as AdvIND−CPATS
A,ID (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.
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Definition 5.8 (IND-CPATS) We say that an ID-TSE scheme is IND-CPATS

secure if all p.p.t. adversaries have at most negligible advantage in GameID-TS.

We now define IND-CPA security against a curious TA (IND-CPATA).

IND-CPATA security game for ID-TSE

Consider the following game, which we call GameID-TA.

Setup. The challenger C runs TS.Setup(1λ, T ) to obtain the master public key

TS-MPK and the master secret key TS-MSK, and runs ID.Setup(1λ) to gen-

erate ID-MPK and ID-MSK. C gives (TS-MPK, ID-MPK, ID-MSK) to the

adversary A.

Phase 1. A can adaptively issue TIK extraction queries for any time t ∈ TSp. The

challenger responds to each query with kt ← ID.TIK-Ext(TS-MPK,TS-MSK, t).

Challenge. A selects two equal-length messages M0 and M1 ∈ MsgSp and a time

interval [t0, t1] ⊆ TSp, with the restriction that t /∈ [t0, t1] for all of the TIK ex-

traction queries t in Phase 1, and id" ∈ IdSp. A passes M0,M1, [t0, t1], id" to C.
C chooses a random b← {0, 1} and computes C" ← ID.Enc(TS-MPK, ID-MPK,

Mb, [t0, t1], id"). C" is called the challenge ciphertext and it is passed to A.

Phase 2. A continues to make TIK extraction queries with the same restriction as

in the Challenge phase.

Guess. The adversary outputs its guess b′ for b.

We define A’s advantage in the above game as AdvIND−CPATA
A,ID (λ) =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Definition 5.9 (IND-CPATA) We say that an ID-TSE scheme is IND-CPATA

secure if all p.p.t. adversaries have at most negligible advantage in GameID-TA.

We finally give the unified notion of indistinguishability under chosen-plaintext

attacks for ID-TSE next.
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Definition 5.10 We say that an ID-TSE scheme ID = (TS.Setup, ID.Setup,

ID.TIK-Ext, ID.Key-Ext, ID.Enc, ID.Dec) is IND-CPA secure if it is both IND-CPATS

and IND-CPATA secure.

IND-CCA security for ID-TSE can be defined by giving the adversary suitably re-

stricted access to a decryption oracle. However, we do not formalise this notion

here, since we are mainly interested in using ID-TSE as a building block to obtain

PK-TSE schemes.

5.3 Constructions for TSE Schemes

From the discussion on related work at the beginning of this chapter it is clear

that TSE is achievable. For instance, we can build Plain TSE from attribute-based

or broadcast encryption. In our work we explore alternative ways of achieving all

flavours of TSE, with the aim of obtaining more efficient constructions through a

dedicated approach.

5.3.1 Plain TSE

Our first step towards building TSE schemes is to focus on how to achieve Plain

TSE. We have to find a way to express time so that the Time Server can extract

time instant keys (TIKs) and the sender can specify a decryption time interval. Our

approach will make use of a binary tree of depth d, where we denote with parent(x)

and child(x) the standard notions of parent and child of a node x in a tree. The

input T to Plain.Setup, which represents the number of allowed time units, will be

of the form T = 2d. The root node of the tree is labeled with ∅ and the non-root

nodes are labeled with binary strings of lengths between 1 and d, as illustrated for

the case d = 3 in Figure 5.1. Hence each node is associated with a binary string

t0t1...tl−1 of length l ≤ d. In particular we will have that the leaves of the tree are

binary strings of length d labeled from 0...0 (on the left) to 1...1 (on the right). Each

leaf will represent a time instant t = Σd−1
i=0 ti2

d−1−i between 0 and T − 1.

We now define two particular sets of nodes.
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∅
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Figure 5.1: Example of binary tree of depth d = 3 used in our construction.

• Path Pt to t. Given a time instant t = Σd−1
i=0 ti2

d−1−i we construct the fol-

lowing path Pt in the tree, where the last node is the leaf corresponding to

t:

∅, t0, t0t1, ..., t0...td−1.

• Set S[t0,t1] covering the interval [t0, t1]. S[t0,t1] is defined to be the minimal

set of roots of subtrees that cover exactly the leaves representing time instants

in [t0, t1]. We will call this the cover set for [t0, t1]. Such a set is unique and

of size at most2 2d. We can compute the labels of the nodes in S[t0,t1] in a

particular order by running Algorithm 1 on input [t0, t1].

It is easy to see that Pt and S[t0,t1] intersect in a unique node if and only if

t ∈ [t0, t1]. This property will ensure that the correctness requirement holds for

the Plain TSE scheme that we will construct. The key idea, then, is to view the

nodes of the tree as identities and make use of identity-based encryption techniques

to instantiate a Plain TSE scheme. Informally, the sender will encrypt under the

nodes in the cover set for the decryption time interval (DTI), and the TIK for time

t will be the set of private keys associated to the nodes on the path Pt to t.

More formally, we use an IBE scheme I = (IBE.PG, IBE.Setup, IBE.KeyExt,

IBE.Enc, IBE.Dec) with message space MsgSp and IdSp= {0, 1}≤d to construct P =

(Plain.Setup,Plain.TIK-Ext,Plain.Enc,Plain.Dec), a Plain TSE scheme with the same

message space, in the following way.

2This can be proved by induction on d and it can be seen intuitively by considering the interval
[1, T − 1], which gives rise to the largest possible cover set. Indeed, S[1,T−1] has size 2d.
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Algorithm 1 Compute S[t0,t1].

Let L be the binary expansion of t0.
Let R be the binary expansion of t1.
Let S = ∅.
while L < R do

if L ≡ 0 mod 2 then

L = parent(L)
else

S = S ∪ {L}
L = parent(L) + 1

end if

if R ≡ 0 mod 2 then

S = S ∪ {R}
R = parent(R)− 1

else

R = parent(R)
end if

end while

if L = R then

S = S ∪ {L}
end if

return S

Plain.Setup(1λ, T ): Run IBE.PG on input 1λ to obtain pars and IBE.Setup(pars) to

obtain TS-MPK and the master secret key TS-MSK. We set T = 2d, where d

is the depth of the tree used in our construction.

Plain.TIK-Ext(TS-MPK,TS-MSK, t): Construct Pt to obtain the list of nodes {∅,
p1, ..., pd} on the path to t. Run IBE.KeyExt on all nodes p in Pt to obtain a

set of private keys Dt = {dp : p ∈ Pt}. Return Dt (we implicitly assume that t

can be recovered from this set because Dt will be broadcast at the particular

time t).

Plain.Enc(TS-MPK,M, [t0, t1]): Run Algorithm 1 on input [t0, t1] to compute a list

of nodes S[t0,t1]. For each s ∈ S[t0,t1] run IBE.Enc(TS-MPK,M, s) to obtain a

list of ciphertexts CT [t0,t1] = {cs : s ∈ S[t0,t1]}. Output C = (CT [t0,t1], [t0, t1]).

Plain.Dec(TS-MPK, C,Dt): Here C = (CT , [t0, t1]) denotes a list of ciphertexts for

the scheme I together with a time interval. If t /∈ [t0, t1] return ⊥. Otherwise

run Algorithm 1 to generate an ordered list of nodes S[t0,t1] and generate the

set Pt; the intersection of these sets is a unique node p. Obtain the key dp

corresponding to p from Dt. Run IBE.Dec(TS-MPK, cp, dp), where cp ∈ CT is

in the same position in the list CT as p is in S[t0,t1], to obtain either a message

M or a failure symbol ⊥. Output the result.
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We provide a small example to illustrate our construction. Consider d = 3 as in

Figure 1.

Example: Suppose we wish to decrypt a message that was encrypted using

time interval [2, 6]. In the tree, these endpoints will correspond to nodes with labels

010 and 110, respectively. We compute S[2,6] = {110, 01, 10}. Suppose we obtain

the TIK broadcast by TS at time 4 (corresponding to the leaf node labelled 100).

This means that we obtain a list of private keys for nodes on the path P4 from the

root to 100. In particular, we have the key corresponding to node 10, the unique

intersection of P4 and S[2,6]. Hence, we are able to decrypt. We observe that for

any time t outside of the interval [2, 6], there is no intersection between P4 and S[2,6].

For the above construction, the following result holds.

Theorem 5.11 Let I be an IND-CPA secure IBE scheme. Then the Plain TSE

scheme P constructed from I as above is IND-CPA secure, and is correct.

Proof. The proof of IND-CPA security works in two steps. In the first step, we

show that for any IND-CPA attacker A with non-negligible advantage against the

Plain TSE scheme, there is a modified IND-CPA adversary B having non-negligible

advantage against the IBE scheme. This modified adversary specifies in its challenge

phase a list of % identities, none of which are allowed to be queried to the ID-

based private key extraction oracle at any point in the game, along with a pair of

messages M0,M1. In return, B receives from its challenger the encryption of Mb

under each of the identities in its list. As usual B’s task is to find b. This reduction

is straightforward, relying on the fact that the restriction t /∈ [t0, t1] imposed on the

TIKs kt that the Plain TSE adversary A can obtain from its TIK extraction oracle

means that B can handle A’s queries to its TIK extraction oracle by passing them

to its ID-based private key extraction oracle.

In the second step, we use a standard hybrid argument to reduce the IND-CPA

security of the IBE scheme against modified adversaries to its IND-CPA security

against normal adversaries (who specify just one identity in the challenge phase).

Indeed, we can define a sequence of games starting with Game0, which is the original
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game in which the challenger encrypts M0 under all % identities, and then slightly

modify the game as usual up to Game$, the last game, in which the challenger

encrypts M1. It is easy to see that if an adversary can distinguish between any

two successive games then this can be turned into an adversary that breaks the

IND-CPA security of the underlying IBE scheme I.

The proof of correctness is straightforward, relying on the fact that Pt does not

intersect S[t0,t1] if t /∈ [t0, t1]. !

In general, ciphertexts in the Plain TSE scheme P consist of up to 2d ciphertexts

from the IBE scheme I, while private keys consist of at most d private keys from I.

The public parameters of P are the same size as those of I. The cost of encryption

for the scheme P is up to 2d times greater than its cost for the scheme I, while

decryption for P costs the same as for I. This compares well with the naive solution

of encrypting with a single private key to every time instant in the interval, as it

allows for shorter ciphertexts.

A variety of IBE schemes can be used to instantiate the above construction,

including Waters’ [90] and Gentry’s [50] schemes in the standard model, and the

Boneh-Franklin scheme [16] and the Sakai-Kasahara scheme (as analysed in [31])

in the ROM. Each of them has various advantages and disadvantages in terms of

efficiency and the sizes of public parameters and ciphertexts. For example, Waters’

scheme has relatively large public parameters, compact ciphertexts, and depends for

its security on the Bilinear Diffie-Hellman Problem, while Gentry’s scheme has small

public parameters and ciphertexts, but its security depends on a non-standard hard-

ness assumption, the q-Truncated Decisional Augmented Bilinear Diffie-Hellman

Exponent (q-TDABDHE) problem.

A potentially more efficient approach would be to use a multi-recipient, single

key, ID-based Key Encapsulation Mechanism (MR-SK-IBKEM), as defined in [4],

which would allow encapsulation of the same key for multiple recipients id1, ..., idn

in an efficient and secure manner. Using an approach similar to that in [87], we can

combine an MR-SK-IBKEM with a (symmetric) Data Encapsulation Mechanism

(DEM) to produce a multi-recipient IBE scheme in a standard way [11]; if the

underlying KEM and DEM satisfy appropriate security notions, then the resulting
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multi-recipient IBE scheme will be IND-CPA secure [11]. This primitive perfectly

matches our requirement to be able to encrypt the same message to all nodes in

a cover set simultaneously, and it is easy to see how to obtain IND-CPA secure

Plain TSE from such a primitive. However, current instantiations for IND-CPA

secure MR-SK-IBKEMs are only known in the random oracle model (ROM) (see

for example [4]). To the best of our knowledge, it remains an open problem to find

efficient instantiations that are secure in the standard model. We recall that the

scheme in [87] actually solves the dual of our problem and can only handle intervals

of the type [t, T − 1].

5.3.2 PK-TSE

Having presented a way to efficiently construct Plain TSE, we now wish to address

the problem of obtaining PK-TSE. We first look at how to achieve IND-CPA security

in the public-key setting.

5.3.2.1 IND-CPA Security

In our construction we will use a PKE scheme and a Plain TSE scheme as building

blocks3. The idea is to split the message into two parts, each of which will be

encrypted under a different primitive. To recover the message, a user will need both

appropriate keys, as desired.

Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme with mes-

sage space {0, 1}l. We will construct a PK-TSE scheme from a Plain TSE scheme

P = (Plain.Setup,Plain.TIK-Ext,Plain.Enc,Plain.Dec) with MsgSp = {0, 1}l and Π in

the following way:

PK.Setup(1λ, T ): Run Plain.Setup on the same input to obtain TS-MPK and the

master secret key TS-MSK.

3Here, we will assume the schemes have the same message space consisting of bit-strings of a
fixed length.
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PK.TIK-Ext(TS-MPK,TS-MSK, t): Run Plain.TIK-Ext(TS-MPK,TS-MSK, t) to ob-

tain kt, broadcast by TS at time t.

PK.KeyGen(1λ): Run PKE.PG(1λ) to obtain pars and PKE.KeyGen(pars) to obtain

a key-pair (pk, sk).

PK.Enc(TS-MPK,M, [t0, t1], pk): Pick a random r ∈ {0, 1}l and set M ′ = M ⊕ r.

Then run Plain.Enc(TS-MPK, r, [t0, t1]) to obtain C0 and PKE.Enc(M ′, pk) to

get C1. The ciphertext will be C = (C0, C1).

PK.Dec(TS-MPK, C, kt, sk): Parse C as C0 and C1. Run Plain.Dec(TS-MPK, C0, kt)

which will output either a message r or a failure symbol ⊥. Run PKE.Dec(C1,

sk) which will output either a message M ′ or ⊥. If either of the decryption

algorithms returns ⊥, then output ⊥; otherwise output M = r ⊕M ′.

Lemma 5.12 Let Π = (PKE.PG,PKE.KeyGen,PKE.Enc,PKE.Dec) be an IND-CPA

secure PKE scheme. Then the PK-TSE scheme PK constructed as above is IND-

CPATS secure.

Proof. Suppose we have an IND-CPATS adversary A against the PK-TSE scheme.

We will construct an adversary B that will interact with A to break the IND-CPA

security of the PKE scheme. The game proceeds as follows.

Setup. The challenger C runs PKE.PG(1λ) to obtain pars and PKE.KeyGen(pars) to

generate a pair (pk, sk). It gives pk to B. B runs Plain.Setup(1λ, T ) to generate

(TS-MPK,TS-MSK) and gives (TS-MPK,TS-MSK, pk) to the adversary A.

Challenge. A outputs two equal-length messages M0 and M1 ∈ MsgSp and a

time interval [t0, t1] ⊆ T . A passes M0,M1, [t0, t1] to B. B picks a random

r ∈ {0, 1}l and passes M0⊕r,M1⊕r to C. C picks a random bit b← {0, 1} and

computes C ′′ = PKE.Enc(Mb ⊕ r, pk). B runs Plain.Enc(TS-MPK, r, [t0, t1]) to

obtain C ′. Finally, B passes C" = (C ′, C ′′) to A.

Guess. The adversary outputs its guess b′ for b and B outputs the same guess.

B perfectly simulates the IND-CPATS game for A. Hence A’s advantage is as it

would be in GamePK-TS and by construction B wins whenever A does. !
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We can prove the following result in an analogous way.

Lemma 5.13 Let P be an IND-CPA secure Plain TSE scheme. Then the PK-TSE

scheme, constructed as above, is IND-CPACR secure. Moreover, if P is correct, then

so is the resulting PK-TSE scheme.

Proof. Suppose we have an IND-CPACR adversary A against the PK-TSE scheme.

We will construct an adversary B that will interact with A to break the IND-CPA

security of the Plain TSE scheme P . The game proceeds as follows.

Setup. The challenger C runs Plain.Setup(1λ, T ) to generate (TS-MPK,TS-MSK)

and gives TS-MPK to B. B runs PKE.PG(1λ) to obtain pars and

PKE.KeyGen(pars) to generate a pair (pk, sk) and gives (TS-MPK, pk, sk) to

the adversary A.

Phase 1. A can adaptively issue TIK extraction queries for any time t ∈ TSp.

When B receives such a query, it simply passes it on to its own challenger C.
C responds to each query with kt which B forwards to A as a response.

Challenge. A outputs two equal-length messages M0 and M1 ∈ MsgSp and a

time interval [t0, t1] ⊆ T . A passes M0,M1, [t0, t1] to B. B picks a random

r ∈ {0, 1}l and passes M0⊕r,M1⊕r to C. C picks a random bit b← {0, 1} and

computes C ′ = Plain.Enc(TS-MPK,Mb ⊕ r, [t0, t1]). B runs PKE.Enc(r, pk) to

obtain C ′′. Finally, B passes C" = (C ′, C ′′) to A.

Phase 2. A continues to make TIK extraction queries and B handles them as

before.

Guess. The adversary outputs its guess b′ for b and B outputs the same guess.

B perfectly simulates the IND-CPACR game for A. Hence A’s advantage is as it

would be in the real game and by construction B wins whenever A does. We observe

that the correctness of PK follows directly from the correctness of P . !

Hence, the following theorem holds.
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Theorem 5.14 Let P be an IND-CPA secure Plain TSE scheme and Π be an IND-

CPA secure PKE scheme. Then the PK-TSE scheme, constructed as above, is IND-

CPA secure. Moreover, if P is correct, then so is the resulting PK-TSE scheme.

5.3.2.2 IND-CPA secure ID-TSE

To achieve IND-CPA security in the ID-TSE setting we can adopt an approach simi-

lar to the one used above to build a PK-TSE scheme, where instead of a PKE scheme

we employ an IBE scheme I = (IBE.PG, IBE.Setup, IBE.KeyExt, IBE.Enc, IBE.Dec) in

the obvious manner. In this setting we obtain an analogous result:

Theorem 5.15 Let P be an IND-CPA secure Plain TSE scheme and I be an IND-

CPA secure IBE scheme. Then the ID-TSE scheme, constructed analogously to the

construction of the PK-TSE scheme above, is IND-CPA secure. Moreover, if P is

correct, then so is the resulting ID-TSE scheme.

In particular, we observe that if I is a selective-id IND-CPA secure IBE scheme,

then it can be shown that the resulting ID-TSE scheme is also selectively secure.

5.3.2.3 IND-CCA Security

We will now address the problem of building IND-CCATS secure PK-TSE schemes,

using an approach similar to that of [25].

Consider a selective-id IND-CPATS secure ID-TSE scheme ID = (TS-Setup,

ID-Setup, ID.TIK-Ext, ID.Key-Ext, ID.Enc, ID.Dec), with MsgSp = {0, 1}l and IdSp =

{0, 1}n. We will construct from ID an IND-CCATS secure PK-TSE scheme PK =

(PK.Setup,PK.TIK-Ext,PK.KeyGen,PK.Enc,PK.Dec). In the construction, we will

also use a signature scheme Σ = (Gen, Sign,Ver), whose generation algorithm Gen

outputs verification keys of length n. We construct the algorithms of PK as follows.

PK.Setup(1λ, T ): Run TS-Setup(1λ, T ) to get TS-MPK,TS-MSK.
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PK.TIK-Ext(TS-MPK,TS-MSK, t): Run ID.TIK-Ext(TS-MPK,TS-MSK, t) to ob-

tain TIK kt.

PK.KeyGen(1λ): Run ID-Setup(1λ) to get (ID-MPK, ID-MSK), a key-pair.

PK.Enc(TS-MPK,M, [t0, t1], ID-MPK): Run Gen(1λ) and obtain (sigk, vk). Com-

pute c← ID.Enc(TS-MPK, ID-MPK,M, [t0, t1], vk). Produce σ ←Sign(sigk, c).

The final ciphertext will be C = (vk, c,σ).

PK.Dec(TS-MPK, C, kt, ID-MSK): Parse C as (vk, c,σ). Check if Ver(vk, c,σ) = 1.

If not, output ⊥. Otherwise, run ID.Key-Ext(ID-MPK, ID-MSK, vk) to obtain

skvk and decrypt c by running ID.Dec with inputs kt, skvk.

The following result holds.

Theorem 5.16 Let ID be a correct, selective-id IND-CPATS secure ID-TSE scheme

and Σ a strongly unforgeable one-time signature scheme. Then PK, as constructed

above, is an IND-CCATS secure PK-TSE scheme.

Proof. Our proof follows closely the proof of [25, Theorem 1], with suitable modifi-

cations. Given an IND-CCATS adversary A against PK we construct an adversary

B that will interact with A to break the selective-id IND-CPATS security of ID.

Before presenting the game, we make the following important definitions.

First, we denote by PrA,S [Event] the probability that Event occurs when an

adversary A interacts with a scheme S in a specified security game. By ¬Event we
denote the complement of Event. In particular, we denote by Succ the event that

b′ = b in the games played in this proof.

We say that a ciphertext C = (vk, c,σ) is valid if Ver(vk, c,σ) = 1. Let C" =

(vk", c",σ") denote the challenge ciphertext received by A during the game, and let

F denote the event that in this game A submits a valid ciphertext C = (vk", c,σ)

to its decryption oracle. It can be shown that A can be used to break the under-

lying one-time signature scheme Σ with probability exactly PrA,PK [F]. Since Σ is

a strongly unforgeable one-time signature (as per Definition 2.15), we can assume

that PrA,PK [F] is negligible in the security parameter λ.
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We now describe the simulation.

Initialize. B runs Gen(1λ) to get (sigk", vk"). The string vk" will be the target

identity used by B.

Setup. C runs TS-Setup, ID-Setup to get (TS-MPK,TS-MSK, ID-MPK, ID-MSK).

It gives B (TS-MPK,TS-MSK, ID-MPK). B passes the same information to

A.

Phase 1. A can issue queries of the form (C, t) to its decryption oracle, where C is

of the form (vk, c,σ). B responds as follows:

• if Ver(vk, c,σ) (= 1 then B returns ⊥;

• if Ver(vk, c,σ) = 1 and vk = vk" then B aborts and outputs a random

bit (event F just occurred);

• if Ver(vk, c,σ) = 1 and vk (= vk" then B makes a query vk to its secret key

extraction oracle to obtain skvk. B can compute the TIK kt as it obtained

TS-MSK from its challenger. B then computes ID.Dec(TS-MPK, ID-MPK,

kt, skvk) and obtains either a message M or failure symbol ⊥, which is

passed to A.

Challenge. A outputsM0,M1 and [t0, t1] and passes the tuple (M0,M1, [t0, t1]) to B,
who then sends (M0,M1, [t0, t1], vk") to C as its challenge query. C picks a ran-

dom bit b and computes c" ← ID.Enc(TS-MPK, ID-MPK,Mb, [t0, t1], vk"). C
gives c" to B, who computes σ" = Sign(sigk", c") and returns C" = (vk", c",σ")

to A.

Phase 2. A can continue issuing queries of the form (C, t), where C = (vk, c,σ),

with the restriction that (C, t) (= (C", t′), where t′ ∈ [t0, t1]. If Ver(vk, c,σ) (= 1

then B returns⊥. Otherwise, B will respond as described in the following cases:

• Case 1: C (= C".

– if c (= c" and vk = vk" then B aborts and outputs a random bit

(event F just occurred);

– if c = c" and vk = vk" then B aborts and outputs a random bit

(event F just occurred);
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– if c = c" and vk (= vk" then B passes the oracle query vk to its chal-

lenger to obtain skvk. B then computes the TIK kt using TS-MSK.

B then computes ID.Dec(TS-MPK, ID-MPK, kt, skvk) and obtains ei-

ther a message M or failure symbol ⊥, which it passes to A.

• Case 2: C = C" and t′ /∈ [t0, t1].

In this case, the correctness of the scheme ID implies that the decryption

algorithm ID.Dec applied to c" with key kt and identity vk" should output

⊥, so B returns ⊥.

Guess. A outputs b′ as its guess for b. B outputs the same bit.

We note that B provides a perfect simulation for A as well as a legal strategy

for attacking scheme ID, provided that B is not forced to abort (a situation that

occurs only when the event F occurs). In particular B never queries its challenger

for the secret key corresponding to the target identity vk". We hence have that B
wins if A does, and this can only happen when the event F does not occur. In that

case, B is forced to abort and outputs a random bit. We therefore have

|PrB,ID[Succ]− 1
2 | = |PrA,PK [Succ ∧ ¬F] + 1

2 PrA,PK [F]− 1
2 | .

We observe that the RHS of above the equation is negligible since both PrA,PK [F]

and
∣

∣PrB,ID[Succ]− 1
2

∣

∣ are negligible, assuming the security of schemes ID and Σ.

Finally we have:

|PrA,PK [Succ]− 1
2 |

= |PrA,PK [Succ ∧ F] + PrA,PK [Succ ∧ ¬F]− 1
2 PrA,PK [F] + 1

2 PrA,PK [F]− 1
2 |

≤ |PrA,PK [Succ ∧ F]− 1
2 PrA,PK [F]|+ |PrA,PK [Succ ∧ ¬F] + 1

2 PrA,PK [F]− 1
2 |

≤ 1
2 PrA,PK [F] + |PrA,PK [Succ ∧ ¬F] + 1

2 PrA,PK [F]− 1
2 | ,

where on the RHS we have two negligible quantities. We have hence proved that

A’s advantage in winning the IND-CCATS game is negligible. !

We have therefore provided a way to generically and efficiently achieve IND-

CCA secure PK-TSE. We could also use a variant of the more complex Boneh-Katz

transform [19] to again construct PK-TSE schemes that are IND-CCA secure in the

standard model. The resulting schemes would generally have improved efficiency.
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5.4 Extensions

There are several other possible extensions to this area of research. These include

alternative approaches to the TSE problem as well as the development of additional

capabilities provided to the system. We give an overview of the ones we have con-

sidered and some that have arisen after our initial work.

5.4.1 Plain TSE from BE

As mentioned in the introduction of this chapter, Plain TSE can be seen as a special

case of broadcast encryption (BE), where time instants are the users in the BE

setting and the DTI is the target set. We formalize this idea next.

Let B = (BE.PG,BE.Setup,BE.KeyGen,BE.Enc,BE.Dec) be a BE scheme with

message space MsgSp, and let U = {0, ..., T − 1} be the universe of users in the

system. We will construct P = (Plain.Setup,Plain.TIK-Ext,Plain.Enc,Plain.Dec), a

Plain TSE scheme with the same message space, using B in the following way.

Plain.Setup(1λ, T ): Run BE.PG(1λ, T ) to obtain pars and run BE.Setup(pars) to ob-

tain BE-MPK, BE-MSK. Set TS-MPK = BE-MPK and TS-MSK = BE-MSK.

Plain.TIK-Ext(TS-MPK,TS-MSK, t): Run BE.Key-Gen on the same inputs to obtain

the TIK kt for t.

Plain.Enc(TS-MPK,M, [t0, t1]): Run BE.Enc(TS-MPK,M, S), where S is the set

{t : t ∈ [t0, t1]}, to obtain a ciphertext C.

Plain.Dec(TS-MPK, C, kt). Run BE.Dec(TS-MPK, C, kt) to obtain either a message

M or a failure symbol ⊥.

For the above construction, the following result holds.

Theorem 5.17 Let B be a fully collusion resistant, adaptively IND-CPA secure BE

scheme. Then the Plain TSE scheme P constructed from B as above is IND-CPA

secure.
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Proof. Suppose we have an adversary A against the Plain TSE scheme P . We will

construct an adversary B that will interact with A to break the IND-CPA security

of the BE scheme B used in the construction. The game proceeds as follows.

Setup. The challenger C runs BE.PG(λ, T ) to obtain pars and BE.Setup to obtain

a pair (BE-MPK,BE-MSK). It gives BE-MPK to B, who passes it on to A.

Phase 1. A can adaptively issue TIK extraction queries for any time t ∈ T . Such

a query is passed on to B, who gives it to C as secret key query for user t. C
will respond to each query with the private key skt, which is passed to B, who
then forwards it to A as the TIK for time t.

Challenge. A selects two equal-length messages M0, M1 ∈ MsgSp and a challenge

interval [t0, t1] ⊆ T , such that t /∈ [t0, t1] for any of the queries t in made in

Phase 1. A passes M0,M1, [t0, t1] to B, who passes them to C. C chooses a

random bit b and computes C" = BE.Enc(BE-MPK,Mb, [t0, t1]). C" is passed

to B, who in turn passes it to A.

Phase 2. A continues to issue TIK extraction queries with the same restriction as

in the Challenge phase. These queries are dealt with by B as in Phase 1.

Guess. The adversary A outputs its guess b′ for b and B outputs the same guess.

B perfectly simulates the IND-CPA game for A. Hence A’s advantage is as it

would be in the real security game for the BE scheme B and by construction B wins

whenever A does. !

While the above result provides an alternative way of achieving secure Plain

TSE, namely from BE, this approach has some limitations.

First of all, to meet our TSE security requirement, we need the BE scheme to be

fully collusion resistant. This condition immediately rules out many of the existing

schemes. Secondly, satisfying the TSE correctness property, as we have defined it

in Section 5.2, requires the underlying BE scheme to have appropriate robustness

guarantees, which may incur in additional computational and communication costs.

Furthermore, if adaptive security is our aim, then the currently most efficient adap-

tively secure scheme is that of Gentry and Waters in [51]. As we know from Chapter
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4, this scheme requires the specification of the target set (in our case, the DTI) as

an input to the decryption algorithm, inherently preventing the resulting Plain TSE

scheme from having the DTI confidentiality property. In terms of efficiency, the BE

scheme in [51] has constant size secret keys, but public parameters and ciphertexts

of size O(
√
T ). The resulting Plain TSE scheme inherits these sizes. If we are willing

to give up on adaptive security, then other schemes may be considered. In partic-

ular, the BE scheme of Boneh et al. in [17], proved only statically secure, results

in a Plain TSE scheme with again constant size secret keys, public parameters and

ciphertexts of size O(
√
T ). In [51] Gentry and Waters introduce the new notion of

semi-static security and provide a BE scheme achieving this notion which can be

used to construct a Plain TSE scheme with constant size secret keys and ciphertexts

but public parameters whose size is linear in T .

On the other hand, our tree-based solution results in schemes which are fully

secure, with constant size public parameters, and secret keys and ciphertexts of size

O(log T ). This brief comparison illustrates the value of a dedicated approach when

realising Plain TSE.

5.4.2 Decryption time interval confidentiality

We could consider TSE schemes (in all three settings) that have the property of

hiding the decryption time interval of ciphertexts from adversaries. Our current

constructions do not offer this. We call such a property DTIC (decryption time

interval confidentiality). We can model the DTIC-IND-CPA/CCA security of a TSE

scheme by allowing the adversary to select two messages and two time intervals in

the challenge phase and requiring him to guess which message was encrypted under

which interval. We distinguish between the plain setting, where the decryption time

interval is hidden from all users, making successful decryption a kind of proof of

work (since every user will need to attempt decryption under possibly many keys),

and the public-key and identity-based settings, where the decryption time interval

is hidden from everyone except the intended recipient.

In light of the results in Section 5.4.1 and our work on anonymous broadcast en-

cryption (ANOBE) in Chapter 4, it seems very natural to consider using an ANOBE
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scheme to build TSE having decryption time interval confidentiality. While this

approach would guarantee the desired security properties, currently known instanti-

ations of ANOBE do not provide a significant efficiency improvement over the naive

solution to the TSE problem. Indeed, the spirit of state-of-the-art ANOBE schemes

[62], even if highly optimized, is essentially that of encrypting the same message

multiple times, and therefore the resulting TSE ciphertext would have size linear in

that of the time interval.

Achieving better performing TSE schemes with DTIC, perhaps exploring possi-

ble extensions of the key-privacy/recipient-anonymity properties in the public-key

and identity-based settings, represents an interesting direction for future work.

5.4.3 Time and parameters

The model for TSE we put forth in this chapter deals with intervals of the form

[t0, t1], where 0 ≤ t0 ≤ t1 < T . In certain scenarios it could be useful to be able

to address more elaborate decryption time sets (we may want to grant access to

information only between 6 and 7 pm on Thursdays, for instance). This is clearly

a more complex problem and our current tree-based approach does not generically

guarantee an efficient solution to this: indeed, in the case of the time set being every

other time unit, our approach would degenerate to the naive solution of encrypting to

each time unit. In the plain setting, BE could achieve the desired functionality since,

by definition, in BE we can address an arbitrary subset of a universe. An interesting

extension is to consider potential approaches in the public-key and identity-based

setting as well.

In terms of practical considerations, relevant issues concerning time are for ex-

ample how to allow for a dynamic selection of time-granularity (such a consideration

was made in [87] for TIBE), or how to securely extend the maximum time value T

without resetting the parameters of the time server. Furthermore, in view of de-

signing a real-world system, one could envisage schemes supporting multiple time

servers, as well as revocation and delegation mechanisms. We observe that, in our

constructions, we used the same security parameter across the components of the

system, i.e. the TSE time server, the key generation algorithms and the IBE trusted
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authority: in reality, these may not share the same security concerns, and therefore

require different security levels.

5.4.4 Follow-up work

In [71], the published version of this chapter, we left as an interesting direction for

future work that of constructing TSE schemes allowing the capability of opening the

message outside of the decryption time interval, a useful feature supporting break

the glass policies [3]. This extension has already been considered in the setting of

TRE [56, 41]. In [64], the authors address this problem in the public-key setting

and provide a generic construction for a PK-TSE scheme with pre-open capability

which is IND-CCATS and IND-CPACR secure.

In this thesis, we have constructed PK-TSE/ID-TSE schemes in the IND-CPA

setting by combining Plain TSE schemes and PKE/IBE schemes. We have then

used the CHK technique to obtain CCA security for PK-TSE. It might be worth

investigating an alternative approach in which one first obtains an IND-CCA secure

Plain TSE scheme, and then applies a Dodis-Katz style construction [44] to combine

this with IND-CCA secure PKE/IBE schemes. This may lead to efficiency gains as

compared to our CHK-based constructions. It would also be useful to solve the open

problem of constructing MR-SK-IBKEMs that are provably secure in the standard

model, in order to improve the efficiency of our Plain TSE constructions.

Our focus has been on achieving IND-CCA security of PK-TSE in the standard

model. This leaves the problem of constructing IND-CCA secure ID-TSE schemes, in

either the standard model or the ROM. The former, we believe, should be achievable

by introducing hierarchical ID-TSE notions and further extending the CHK-style

transformation to this setting. The latter can be achieved by developing Fujisaki-

Okamoto style transformations for the TSE setting.

Thinking more broadly, one can envisage the development of the wider concept of

time-specific cryptography. This could include, for example, time-specific signatures

(where signatures can only be created within certain time intervals). We believe

there is much interesting work still to be done in this area.
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[26] Julien Cathalo, Benôıt Libert, and Jean-Jacques Quisquater. Efficient and

non-interactive timed-release encryption. In Sihan Qing, Wenbo Mao, Javier

Lopez, and Guilin Wang, editors, ICICS 2005, volume 3783 of Lecture Notes in

Computer Science, pages 291–303. Springer, 2005.

[27] Aldar C.-F. Chan and Ian F. Blake. Scalable, server-passive, user-anonymous

timed release cryptography. In ICDCS, pages 504–513. IEEE Computer Society,

2005.

[28] David Chaum. Blind signatures for untraceable payments. In David Chaum,

Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO 1982, pages 199–

203, 1982.

[29] David Chaum. Security without identification: Transaction systems to make

Big Brother obsolete. Commun. ACM 1985, 28(10):1030–1044, 1985.

[30] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,

editor, EUROCRYPT 1991, volume 547 of Lecture Notes in Computer Science,

pages 257–265. Springer, 1991.

[31] Liqun Chen and Zhaohui Cheng. Security proof of Sakai-Kasahara’s identity-

based encryption scheme. In Smart [86], pages 442–459.

[32] Ling Cheung and Calvin C. Newport. Provably secure ciphertext policy ABE.

In Ning et al. [68], pages 456–465.

[33] Sherman S. M. Chow, Volker Roth, and Eleanor G. Rieffel. General certificate-

less encryption and timed-release encryption. In Rafail Ostrovsky, Roberto De

Prisco, and Ivan Visconti, editors, SCN 2008, volume 5229 of Lecture Notes in

Computer Science, pages 126–143. Springer, 2008.

[34] Clifford Cocks. An identity based encryption scheme based on quadratic

residues. In Bahram Honary, editor, IMA Int. Conf. 2001, volume 2260 of

Lecture Notes in Computer Science, pages 360–363. Springer, 2001.

[35] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th

Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume

3494 of Lecture Notes in Computer Science. Springer, 2005.

160



BIBLIOGRAPHY

[36] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,

CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 13–

25. Springer, 1998.

[37] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key

encryption schemes secure against adaptive chosen ciphertext attack. IACR

Cryptology ePrint Archive, 2001:108, 2001.

[38] Jason Crampton. Trade-offs in cryptographic implementations of temporal ac-

cess control. In Audun Jøsang, Torleiv Maseng, and Svein J. Knapskog, editors,

NordSec 2009, volume 5838 of Lecture Notes in Computer Science, pages 72–87.

Springer, 2009.

[39] Cécile Delerablée. Identity-based broadcast encryption with constant size ci-

phertexts and private keys. In Kaoru Kurosawa, editor, ASIACRYPT 2007,

volume 4833 of Lecture Notes in Computer Science, pages 200–215. Springer,

2007.

[40] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion se-

cure dynamic broadcast encryption with constant-size ciphertexts or decryp-

tion keys. In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi

Okamoto, editors, Pairing 2007, volume 4575 of Lecture Notes in Computer

Science, pages 39–59. Springer, 2007.

[41] Alexander W. Dent and Qiang Tang. Revisiting the security model for timed-

release encryption with pre-open capability. In Juan A. Garay, Arjen K. Lenstra,
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