by

Thaddeus Christopher Hurley

University of London, Ph. D. Pure Mathematics 1970.

ProQuest Number: 10096757

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096757
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT

W. Magnus represents a free group in a formal power series ring with no relations. We obtain power series representations for certain relatively free groups by putting various relations on the set of variables of the power series. Among those we obtain power series representations for are F / F_{m} (the free nilpotent groups), F/F" (the free metabelian group), $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$, $F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}, F /\left[F^{\prime \prime}, E\right]$ (the free centre by metabelian group), $F /\left[{ }^{[} \mid, F, \vec{F}\right]$ (the free centre by centre by metabelian group) and $F /\left[F^{\prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$. In the process it is shown that $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is free abelian and an explicit basis is given. This basis is used to derive a basis for $\left[{ }^{\prime} ., \vec{F}\right] /\left[{ }^{\prime \prime}, F, F\right]$ and various other subgroups of the groups, for which we obtain power series representations, are shown to be free abelian. We prove that all these groups mentioned above are residually torsion free nilpotent using their pöwer series representations.
W. Magnus has also proved that the so-called dimension subgroups and the lower central factors of the free group coincide. In Chapter 5 we present analogues of this result of Magnus for the groups $F / F^{\prime \prime}, F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ and $F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}$ and in the process, compute the structure
of the lower central factors of these three groups. We conclude with a contribution to a problem of Fox on the determination of certain ideals in the group ring -of the free group.

ACKNOWLEDGEMENT:

I thank my supervisor, Professor K.W. Gruenberg, for his encouragement and advice during the preparation of this thesis and also Miss Valerie Kinsella and Mrs. Lynn Parry for their excellent work in typing. I am also grateful to Royal Holloway College for enabling me to study in London.

CONTENTS:

Chapter	1	:	Introduction.
Section	1		Basic Definitions.
Section	2		Basic results.
Section	3		Summary.
Chapter	2	:	Machinery.
Section	1.		The free nilpotent groups.
Section	2		The free abelian group ring.
Section	3.		Derivations in E.
Chapter	3	:	Identification and Properties.
Section	1		$C_{1,0}, C_{2,0}, C_{3,0}$ and $C_{4,0}$.
Section	2		Residual properties.
Chapter	4	:	More Identification.
Section	1		F/ [E", ${ }^{\prime \prime}$
Section	2		F/ [$\left.{ }^{\prime \prime}, ~=, ~ \bar{F}\right]$
Section	3		$F /\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$
Chapter	5	:	More properties and Fox's Problem.
Section	1.		Lower central factors.
Section	2.		A problem of Fox.

CHAPTER 1.

Section 1: Basic Definitions: Let a and be be elements . of a group G; then the commutator $[a, b]=a^{-1} b^{-1} a b$. The commutator $\left[a_{1}, \ldots, a_{n}\right]$ is definea for $n>2$ by putting $\left[a_{1}, \ldots, a_{n}\right]=\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right] . a_{1}, \ldots, a_{n}$ are called the entries. If none of the entries is itself a commutator, then $\left[a_{1}, \ldots, a_{n}\right]$ is said to be simple and to have weight n (a simple commutator of weight one is just an element a_{1}). A commutator that is not simple is called complex, and its weight is the sum of the weights of its entries. The conjugate of a by $b, a^{b}=b^{-1} a b$ and a and b are said to commute if $a^{b}=a$. The centre of G is the set of all eiements x of G such that $[x, g]=1$ for all g in G.
The upper central series of G
$Z_{0}=1 \leq Z_{1}(G) \leq Z_{2}(G) \leq \cdots \leq Z_{i}(G) \leq Z_{i+1}(G) \leq \cdots$
is defined by the rule: $Z_{i+1}(G) / Z_{i}(G)$ is the centre of $G / Z_{i}(G)$.
If H and K are subgroups of G, then $[H, K]$ is the subgroup generated by all $[\mathrm{h}, \mathrm{k}]$ with h in H and k in K . In particular the commutaton subgroup or derived group of H^{\prime} is $H^{\prime}=[H, H]$. The lower central series of G $G=G_{I} \geq G_{2} \geq \cdots \geq G_{i} \geq G_{i+1} \geq \cdots$
is defined by the rule: $G_{i+l}=\left[G_{i}, G\right]$, and the derived
series
$G=G^{\circ} \geq G^{I} \geq \cdots \geq G^{i} \geq G^{i+1} \geq \ldots$
is defined by the rule: $G^{i+1}=\left[G^{i}, G^{i}\right]$. If $G_{n+1}=1$ but $G_{n} \neq l$, then G is said to be nilpotent: of class n, and if $G^{m+1}=1$ but $G^{m} \neq 1$ then G is said to be soluble of derived length m. The n-th lower central factor of G is G_{n} / G_{n+1}.
If P and Q are any properties pertaining to groups then G is said to be P by O if there exists a normal subgroup N of G such that N has P and G / N has Q. P by P groups are called meta-P groups. G is said to be residually P if given g in $G, g \neq 1$, there exi,sts a normal subgroup N of G, g not in N and G / N has P, or equivalently if all the normal subgroups N of G such that G / N has P intersect in the identity. It is easy to see that if G has P then G is residually P and a residually (residually P) group is just a residually P group.

If H is a subgroup of a group G, then H is said to be fully invariant in G if given any endomorphism θ of G, $H \theta \leq H$. Let F be the free group on a countable set Y. (Countable wili mean either finite or denumerable.)
G is said to be relatively free in the variety defined
by R if G is isomorphic to F / R, where R is a fully
invariant subgroup of F. (See Neumann, Hanna [12], for alternative equivalent definitions). If so, then the rank of G is the rank of F, that is, the number of elements in the free generating set Y of F. If F is the free group on y_{1}, \ldots, y_{r} then a set of basic commutators in F is a sequence c_{1}, c_{2}, \ldots that can be defined as follows. First $c_{i}=y_{i}(i=1,2, \ldots, r)$ are the basic commutators weight one. Next if the basic commutators $c_{1}, c_{2}, \ldots, c_{t}$ of weight less than n have been defined and put in order of non-decreasing weight, then the basic commutators of weight n consist of all commutators $\left[c_{i}, c_{j}\right]$ such that $t \geq i>j \geq 1$ such that if $c_{i}=\left[c_{k}, c_{h}\right]$ then $h \leq j$ and such that the sum of the weights of c_{i} and c_{j} is n. The basic commutators of weight n thus defined are put in any order at the end of the sequence. See Hall, M. [7], page 166 .

Let r,s be elements of a ring R. Then the additive commutator ($r, s)^{\circ}=r s-s r$. The additive commutator $\left(r_{1}, \ldots, r_{n}\right)$ is defined for $n>2$ by $\left(r_{1}, \ldots, r_{n}\right)=$ $\left(\left(r_{1}, \ldots, r_{n-1}\right), r_{n}\right)$. Let $Z G$ be the group ring of a group G over the integers. Define the augmentation . ε, a ring homomorphism from $\mathbb{E} G$ to \mathbb{Z} by $\varepsilon: \mathbb{Z} \rightarrow \mathbb{Z}$, $\sum a_{g} g \mapsto \sum a_{g} . \quad$ The kernel of ε is the augmentation ideal
of of $\mathbb{Z G}$. A right derivation d on $\mathbb{Z G}$ is a mapping from $\mathbb{Z G}$ to $\mathbb{Z G}$ such that for all x and y in $\mathbb{Z G}$,
(i) $(x+y) d=x d+y d .(i i)(x y) d=(x d) y+(x \varepsilon) y d$.

A left derivation D on $\mathbb{Z G}$ is a mapping from $\mathbb{Z G}$ to $\mathbb{Z} G$ such that for all x and y in $\mathbb{Z G}$
(i) $D(x+y)=D x+D y$
(ii) $D(x y)=x(D y)+(y \varepsilon) D x$.

If F is the free group on Y, d_{i} will denote the right Fox-derivation on $\mathbb{Z} F$ given by $y_{j} \rightarrow \delta_{i j}$, where $\delta_{i j}$ is the Kroneker delta, and D_{i} will denote the left Fox-derivation on $\mathbb{Z F}$ given by $y_{j} \mapsto \delta_{i j}$ (see Fox [4] and Gruenberg [6] Chapter 4).

If X is a countable set of variables, E will denote the formal power ring in X over \mathbb{Z} (see e.g. Magnus, Karrass and Solitar [II] p.298). A monomial of degree \underline{n} in E is an expression of the form $p x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}$ with P in \mathbb{Z} and the x_{i} in $X . \quad A_{n}$ is the set of monomials of degree n. Every element a of E is an infinite sum $a=a_{(0)}+a_{(1)}+a_{(2)}+\ldots$, where $a_{(r)}$ is the homogeneous component of a of degree r and is a finite sum of monomials of degree r. If $a_{(0)}=\dot{a}_{(1)}=\ldots$ $=a_{(m-I)}=0$ but $a_{(m)} \neq 0$ then the order of a is m. The group of units of $E, U(E)$, is the set of invertible elements of E and consists of elements a in E such that
$a(O)= \pm I \cdot W(E)$ will denote the subgroup of $U(E)$
consisting of elements a in $U(E)$ such that $a_{(0)}=1$. The leading term of an element a in $W(E)$ is the first non-zero homogeneous component of $a-1$.

Section 2: Basic results

F is the free group on Y and Y is in 1 - 1 correspondence with x by $y_{i} \rightarrow x_{i}$.
Theorem 1.1: (Gruenberg [5] Theorem 2.1(i))
A finitely generated torsion-free nilpotent group is residually a finite p-group for every prime p.
Lemma 1.2: (This is a special case of Lemma I.9
Gruenberg [5]). Any free group in a variety is residually a finitely generated free group in the same variety.

Theorem 1.3: (Gruenberg [6] Chap. 3 Theorem 1). If $R \triangleleft F$ and R is free on a set Y, then $r=$ Ker $(\mathbb{Z F} \rightarrow \mathbb{Z}(F / R)$) is free as right (or left) $\mathbb{Z F}$-module on $Y-1$.

Lemma 1.4: (Gruenberg [6] Chap.3. Lemmas 3 and.4).
If $\mathscr{F}^{\sim}=\operatorname{Ker}(\mathbb{Z} F \rightarrow \mathbb{Z}(F / R))$ and if or is a right ideal of
\mathbb{E}, then $O / \sigma+1$ is a right F / R module and
(i) If or is free as right ideal of $R F$ on S, $O Z / \sigma L \sigma$ is F / R - free on $S+\pi L 5$
(ii) If \boldsymbol{O} is free as right ideal of $\mathbb{Z F}$ on S, Co is free as right ideal of $\mathbb{Z} F$ on T and is also two-sided, then OLteis free as right ideal of $\mathbb{Z F}$ on ST.

Corollary: If $o \boldsymbol{c}$ is free as right ideal of $\mathbb{Z F}$ on S then orlor θ is free abelian on $s+o \boldsymbol{Z} \ell$.
(Ditto with right and left interchanged)
Theorem-1.5: (Magnus [10])
$\left(1+\ell^{n}\right) \cdot n F=F_{n}$.
Thecrem 1.6: (Gruenberg [6] Chap.4, Proposition 1)
If $\mathscr{F}^{\circ}=\operatorname{Ker} \mathbb{Z F} \rightarrow \mathbb{Z}(F / R)$ then
$\left(1+f w^{n}\right) \cap F=\left(1+w^{n+1}\right) \cap F=R_{n+1}$.
(Case $n=1$ is an old result. of Schumann. [14]. Cf.
also Fox [4].)
Ne shall be particularly interested in case $n=1$ of this theorem when $\mathbb{W}^{\boldsymbol{F}} \boldsymbol{O}=\operatorname{Ker}\left(\mathbb{Z F} \rightarrow \mathbb{Z}\left(\mathrm{F} / \mathrm{F}^{\prime}\right)\right)$, so that $(1+f o r) \wedge F=F^{\prime \prime}$.

Theorem 1.7: (Fox [4] (4.5)) Letor be any ideal of $\mathbb{E F}$ that is contained in $\#$. Then (i) α in \mathbb{E} belongs to or f^{n} if and onily if α belongs to θ and $D_{i_{1}} D_{i_{2}} \ldots D_{i_{r}}{ }^{\alpha}$ belongs to or θ^{n-r} for all left Fox derivatives $D_{i_{1}}, D_{i_{2}}, \ldots, D_{i_{r}}$ and $0 \leq r \leq n$. (i.e. for any particular r between 0 and n.$) (ii) \alpha$ in $\mathbb{Z F}$ belongs to $\&^{n}$ or if and only if α belongs to \mathcal{B} and $\alpha d_{i_{l}} d_{i_{2}} \ldots i_{i_{r}}$ belongs to $f^{n-r} o r$ for all right Fox derivatives
$\mathrm{d}_{\mathrm{i}_{1}}, \mathrm{~d}_{\mathrm{i}_{2}}, \ldots, \mathrm{~d}_{\mathrm{i}_{r}}$ and $0 \leq \mathrm{r} \leq \mathrm{n}$.
Theorem 1.8: (See Gruenberg [6] Chap.4, Proposition 4. Also Fox [4]. The original presentation of F in E is due to Magnus [9].)
(i)• The mapping $\delta: \mathbb{Z F} \rightarrow E$ given by $\alpha \delta=\alpha \varepsilon+\sum x_{i}\left(\alpha d_{i} \varepsilon\right)+$ $\sum x_{i} x_{j}\left(\alpha d_{i}{ }_{j} \varepsilon\right)+\ldots$ is a ring monomorphism.
(ii) The mapping $p: \mathbb{Z} F \rightarrow E$ given by $\alpha p=\alpha \varepsilon+\sum x_{i}\left(\left(D_{i} \alpha\right) \varepsilon\right)$
$+\sum x_{i} x_{j}\left(\left(D_{i} D_{j}^{\alpha}\right) \varepsilon\right)+\ldots$ is a ring monomorphism.
It is easy to see that $p=\delta$ in this theorem. We argue thus. $\quad \delta^{\prime}: F \rightarrow U(E)$ given by $y_{i} \delta^{\prime}=1+x_{i}$ is a group monomorphism and δ^{\prime} is the restriction of δ to F. If $\alpha=\sum a_{g} g$ is in $\mathbb{Z F}$ then $\alpha \delta=\sum a_{g}\left(g \delta^{\prime}\right) . \delta^{\prime}$ is also the restriction of p to F and $\alpha p=\sum a_{g}\left(g \delta^{\prime}\right)$. Hence $p=\delta$. Let E_{n} be the ideal of elements in E of order $\geq n$. Then by Theorem 1.8 and (4.1) of Fox [4], $\ell^{n} \delta=E_{n} \cap$ (ZF) δ.
Hence by Theorem 1.5 above we get
Theorem 1.9: $\left(1+E_{n}\right) \cap F \delta=\left(F_{n}\right)$. (See Gruenberg [6] page 61):
Note: Throughout the thesis F will denote the free group on a set of variables Y (countable) and X will always be a set of variables in l-l correspondence with Y by $x_{i} \leftrightarrow y_{i}$. F will also denote the free group on X. In other words X and Y will be interchangeable and the only reason we introduce 2 sets of
variables at times is to avoid confusion. We shall reserve or for $\operatorname{ker}\left(\mathbb{Z} F \rightarrow \mathbb{Z}\left(F / F^{\prime}\right)\right)$ throughout the thesis. The notation given in Section 1 of this chapter will continue to be used throughout. without further reference. The group of units of a power series ring P over the integers should be denoted by $U(P)$ but we shall be more interested in $W(P)=\{a \varepsilon P / a(0)=+1\}$ so that when we consider the "group of units" we shall in fact be considering $W(P)$. In other words adopt the convention, group of units $\equiv W(P)$.

Section 3: Summary.
The aim of this thesis is to present analogues of Magnus' representation (Theorem 1.8) of the free group in a formal power series for other relatively free groups. If we put certain relations on the variables in the power series and if these relations are "homogeneous" we expect that the subgroup of the power series with relations generated by $I+X$ is isomorphic to some relatively free group. The method of identifying. these relatively free groups as given in a power series is usually very difficult. However we note that the power series with relations is isomorphic to the formal power series factored out by the ideal of these relations,
call it D, and if we can identify $(1+D) \sim F \delta$ then we can say what relatively free group we have under consideration.

This "Fox-type" problem can sometimes be as difficult as the original problem but at least it gives us something to get our teeth into. Once we have a group represented in a power series many of its properties are easy consequences. In Chapter 2 Section 1 , we present a power series representation for the free nilpotent groups more for completeness than it actually presents any new properties of these groups. However if anyone wants to go to the trouble, this representation can be used to present a constructive proof of the Theorem of $K . W$. Gruenberg that these groups are residually finite p-groups for all primes p, (see proof of Theorem 3.7) and it also seems likely that if we let the power series be over the rationals then we get a representation of the free nilpotent D-group (see Baumslag [2] for definitions of free D-groups in a variety). This latter remark also applies to the other power series representations we present in the thesis. In Chapter 2, Section 2 , we present a representation of the group ring of the free abelian group in a power series analogous to

Theorem 1.8. This is fundamental for the basic idea developed in Chapter 2, Section 3. In this latter section we present the basic construction which yields Lemma 2.19 Corollary viz. Let $c \tau=\operatorname{Ker}\left(\mathbb{Z} F \rightarrow \mathbb{Z}\left(F / F^{\prime}\right)\right)$ and let $P_{n, m}$ denote the power series ring in X over \mathbb{Z} subject to $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\left(x_{i_{n+1}} x_{i_{n+2}}-x_{i_{n+2}} x_{i_{n+1}}\right) x_{j_{1}} x_{j_{2}}$ $\ldots x_{j}=0$, then subgroup G of $W\left(P_{n, m}\right)$ generated by $1+X$ is isomorphic to $F /\left(1+\ell^{n}\right.$ or $\left.\ell^{m}\right) \cap F=C_{n, m}$ say.

In Chapter 3; Section 1, we begin to identify some of these groups $C_{n, m}$.
$C_{1,0}=F / F^{\prime \prime}, \quad C_{2,0}=F / F^{\prime \prime}, \quad C_{3,0}=F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$, $C_{4,0}=F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}$. In Section 2 of this chapter we show how to prove that the group of units of these power series are residually torsion-free nilpotent and when X is finite, residually finite p-groups for all primes p, which imply the corresponding results for the groups embedded in these power series.

We begin Chapter 4 by constructing a set of generators for $F^{\prime \prime} /\left[^{\prime \prime}, F\right]$ (which later turn out to be free generators) and use this to prove $C_{1,1}=F /\left[F^{\prime \prime}, F\right]$. This proves that $F /\left[F^{\prime \prime}, F\right]$ (the free centre by metabelian group) is residually torsion-free nilpotent. Ridley [13] proves this in the case where F has rank two. The basis for $F^{\prime \prime} /\left[{ }^{\prime \prime}, F\right]$ is then used to construct a basis
for $\left[F^{\prime \prime}, F\right] /\left[F^{\prime \prime}, F, F\right]$ and hence to show that $C_{1,2}=$ $F /\left[F^{\prime \prime}, F, F\right]$. This proves that $F /\left[F^{\prime \prime}, F, F\right]$ (the free centre by centre by metabelian group) is residually torsion-free nilpotent. We conclude Chapter 4 by showing $C_{2,2}=F /\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$, and hence that this group is residually torsion-free nilpotent. In Chapter 5 we present a method which computes the structure of the lower central factors of the groups $C_{1,0}, C_{3,0}, C_{4,0}$ and also prove analogues of Magnus' Theorem 1.5 for these groups. 'We conclude Chapter 5, and the thesis, with a contribution to a problem of Fox $[4]$ by showing $\left(I+\phi^{2} L\right) \cap F=\left[R \cap F^{\prime}, R \cap F^{\prime}\right] R_{3}$.

CHAPTER 2

Section 1: The free nilpotent groups.
In this section we derive power series representations for the free nilpotent groups F / F_{n}.

Let G be any group generated by Y. Let $y_{i}-1=x_{i}$
(in $\mathbb{Z} G$) and let C_{n} denote the ideal in $\mathbb{Z G}$ generated by
$x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}-x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}} . \quad$ Then $c_{n} \leq \theta^{n}$. Define $\alpha \equiv \beta\left(\bmod C_{n} *\right)$ if $\alpha-\beta=\gamma$ with $\gamma \varepsilon C_{n}$ and γ is a finite sum of terms of the form $\tau=\delta\left(x_{i_{1}} x_{i_{2}} \ldots\right.$ $\left.x_{i_{n}}-x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}}.\right)_{n}$ where the x^{\prime} s involved in the expression for a are the only x 's involved in the expression for $\tau, \quad \eta$ is either 1 or a product of X's and δ is either (i) 1 , (ii) a product of $x^{\prime} s$ (iii) a product of $(1+x)^{-l_{1}} s$, or (iv) a product of $x^{\prime} s$ and $(1+x)^{-1}$. . Lemma 2.1: (a) $x_{i_{n+1}} x_{i_{1}} \cdots x_{i_{n}} \equiv x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}} x_{i_{n+1}}$ $\bmod C_{n}{ }^{*}$, if n is even.
(b) $x_{i_{n+1}} x_{i_{1}} \cdots x_{i_{n}} \equiv x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-2}} x_{i_{n}} x_{i_{n-1}} x_{i_{n+1}}$ $\bmod C_{n} *$ if n is odd.
Proof: (a) $x_{i_{n+1}} x_{i_{1}} \ldots x_{i_{n}} \equiv x_{i_{n-1}} x_{i_{n+1}} x_{i_{1}} \ldots x_{i_{n-2}}$ $x_{i_{n}} \equiv x_{i_{n-1}} x_{i_{n}} x_{i_{n+1}} x_{i_{1}}--x_{i_{n-2}}$

$$
\equiv \text {... }
$$

$$
\equiv x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{n+1}}
$$

(b) is similar.

Lemma 2.2: $x_{i_{r}}{ }^{2} x_{i_{1}} \ldots x_{i_{n-1}} \equiv x_{i_{r}}{ }^{2} x_{i_{n-1}} x_{i_{1}} \ldots x_{i_{n-2}}$ $\bmod C_{n} *$.
Proof: $x_{i_{r}}{ }^{2} x_{i_{1}} \ldots x_{i_{n-1}} \equiv x_{i_{r}} x_{i_{1}} \ldots x_{i_{n-2}} x_{i_{r}} x_{i_{n-1}}$
$\equiv x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-2}} x_{i_{r}} x_{i_{r}} x_{i_{n-1}}$
$\equiv x_{i_{n-1}} x_{i_{1}} \ldots x_{i_{n-2}} x_{i_{r}} x_{i_{r}}$, by Lemma 2.1.
$\equiv x_{i_{r}} x_{i_{n-1}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-2}} x_{i_{r}}$
$\equiv x_{i_{r}} x_{i_{r}} x_{i_{n-1}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-2}}$
Lemma 2.3: $x_{i_{j}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{n-1}}$
$\equiv \dot{x}_{i_{n}} x_{i_{j}} x_{i_{l}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{n-l}}, \bmod C_{n} *$.
Proof: $x_{i_{j}} x_{i_{n}} x_{i_{l}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{n-1}}$
$\equiv x_{i_{j}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{n-1}}{ }^{x_{i}}$
$\equiv x_{i_{j}} x_{i_{2}} x_{i_{3}} \ldots x_{i_{j}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{l}}$
$\equiv x_{i_{j}} x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} \cdots x_{i_{j-1}}$
$\equiv x_{i_{j+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{l}} \cdots x_{i_{j-2}} x_{i_{j}} x_{i_{j}} x_{i_{j-1}}$
$\equiv x_{i_{j-1}} x_{i_{j+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j-2}} x_{i_{j}} x_{i_{j}}$, by
Lemma 2.1.

$$
\equiv x_{i_{j-1}} x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i-2} x_{i_{j}}
$$

$$
\begin{aligned}
& \equiv x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}} x_{i_{j}} \\
& \equiv x_{i_{n}} x_{i_{j}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}}
\end{aligned}
$$

Lemma 2.4: If $x_{i_{k}}=x_{i_{j}}$ then $x_{i_{i}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{j}} \ldots$

$$
\begin{aligned}
& x_{i_{k}} \ldots x_{i_{n-1}} \equiv x_{i_{n}} x_{i} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \ldots x_{i_{k}} \ldots x_{i_{n-1}} \\
& \bmod C_{n} *
\end{aligned}
$$

Proof: $x_{i} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{k}} \ldots x_{i_{n-1}}$

$$
\begin{aligned}
& \equiv x_{i} x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{k}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j-1}} \\
& \equiv x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{k}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j-2}} x_{i} x_{i_{j-1}} \\
& \equiv x_{i_{j}} x_{i_{k}} x_{i_{k+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j-2}} x_{i^{\prime}} x_{i_{j-1}} x_{i_{j+1}}
\end{aligned}
$$

$$
\cdots x_{i_{k-1}}
$$

$$
\equiv x_{i_{k+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j-2}} x_{i^{x}}^{x_{j-1}} x_{i_{j+1}} \cdots
$$

$$
x_{i_{k-2}} x_{i_{j}} x_{i_{k}} x_{i_{k-1}}
$$

$$
\equiv x_{i_{k-1}} x_{i_{k+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j-2}} x_{i^{\prime}} x_{i_{j-1}} x_{i_{j+1}}
$$

$\cdots x_{i_{k-2}} x_{i_{j}}{ }_{x_{i_{k}}}$, by Lemma 2.1 .
$\equiv x_{i_{k-1}} x_{i_{k}} x_{i_{k+1}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} \cdots x_{i_{j-2}} x_{i} x_{i_{j-1}} x_{i_{j+1}}$
$\cdots x_{i_{k-2}} x_{i_{j}}$
$\equiv x_{i_{j-1}} x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{k-2}} x_{i_{k-1}} x_{i_{k}} \cdots x_{i_{n-1}} x_{i_{n}} x_{i_{1}} \cdots$
$\mathrm{x}_{\mathrm{i}_{j-2}} \mathrm{x}_{\mathrm{i}}$
$\equiv x_{i_{1}} \ldots x_{i_{j-2}} x_{i_{j-1}} x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{k-2}} x_{i_{k-1}} x_{i_{k}} \ldots x_{i_{n-1}}$
$x_{i}{ }_{n}{ }_{i}$
$\equiv x_{i_{n}} x_{i_{1}} \cdots x_{i_{j-2}} x_{i_{j-1}} x_{i_{j}} \cdots x_{i_{k-1}} x_{i_{k}} \ldots x_{i_{n-1}} x_{i}$
$\equiv x_{i_{n}} x_{i^{\prime}} i_{1} \cdots x_{j-1} x_{i_{j}} \cdots x_{i_{k-1}} x_{i_{k}} \cdots x_{i_{n-1}}$
Lemma 2.5: $\left[y_{i_{1}}, y_{i_{2}}, \ldots ., y_{i_{n}}\right]=\left[1+\dot{x}_{i_{1}}, l+x_{i_{2}}, \ldots\right.$
$\left.I+x_{i}\right] \equiv I \bmod C_{n} *$.
Proof: We use induction on n. Case $n=2$ is clear
since $\left[1+x_{i_{1}}, 1+x_{i_{2}}\right]=1+\left(1+x_{i_{1}}\right)^{-1}\left(1+x_{i_{2}}{ }^{-1}\right)$
$\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)$.
$\left[1+x_{i_{1}}, 1+x_{i_{2}}, \ldots, 1+x_{i_{n}}\right]=1+\gamma_{0}\left\{\left[I+x_{i_{1}}\right.\right.$,
$\left.I^{\prime}+x_{i_{2}}, \ldots, I+x_{i_{n-1}}\right]\left(1+x_{i_{n}}\right)-\left(1+x_{i_{n}}\right)\left[1+x_{i_{1}}\right.$,
$\left.\left.1+x_{i_{2}}, \ldots, 1+x_{i_{n-1}}\right]\right\}=b$ say where \quad.
$\gamma_{0}=\left[1+x_{i_{1}}, \ldots, 1+x_{i_{n-1}}\right]^{-1}\left(1+x_{i_{n}}\right)^{-1}$. we see
that γ_{0} is a finite sum $\sum_{i=1}^{n} \gamma_{i}$ where each γ_{i} is a
product of $x^{\prime} s$ and $(1+x)^{-1}$'s (or 1$)$.
$b=1+\gamma_{0}^{\{ }\left[1+x_{i_{1}}, 1+x_{i_{2}}, \ldots, 1+x_{i_{n-1}}\right] x_{i_{n}}-x_{i_{n}}$
$\left.\left[1+x_{i_{1}}, I+x_{i_{2}}, \ldots, 1+x_{i_{n-1}}\right]\right\}$.
By inductive hypothesis $\left[I+x_{i_{1}}, \ldots, l+x_{i_{n-1}}\right]=1+\alpha$, with $\alpha \in C_{n-1}$ and α is a finite sum of terms of the form $\gamma\left(a_{1} a_{2} \ldots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right) \delta$ with γ a product of $a_{i}{ }^{\prime} s$ and $\left(1+a_{i}\right)^{-1}{ }^{1}, \delta$ product of a_{i} 's and the a's are just members of the set $\left\{x_{i_{1}}, \ldots, x_{i_{n-1}}\right\}$.
$\Rightarrow b=1+\gamma_{0}\left(\alpha x_{i_{n}}-x_{i_{n}} \alpha\right)$.
Let $x_{i_{n}}=a_{n} \Rightarrow b=1+\gamma_{0}\left(\alpha a_{n}-a_{n} \alpha\right)$. Hence we see it is sufficient to prove that $r\left(a_{1} a_{2} \ldots a_{n-1}-a_{n-1}\right.$ $\left.a_{1} a_{2} \ldots a_{n-2}\right) \delta a_{n}-a_{n} \gamma\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right)$ $\delta \varepsilon C_{n}$ *. All congruences are mod C_{n}. Suppose $\gamma=\gamma_{1}\left(1+a_{i}\right)^{-1} \delta$, where γ_{1} is a product like γ and δ_{1} is a product like δ. $\quad r\left(a_{1} \ldots a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right) \delta$
$=\gamma_{1}\left(1+a_{i}\right)^{-1} \delta_{1}\left(a_{1} a_{2} \ldots a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right) \delta$ $\equiv r_{1}\left(1+a_{i}\right)^{-1}\left(a_{1} a_{2} \ldots a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right) \delta_{1} \delta$ $=\gamma_{1}\left\{\left(1-a_{i}+\left(1+a_{i}\right)^{-1} a_{i}{ }^{2}\right)\left(a_{1} a_{2} \ldots a_{n-1}-a_{n-1} a_{1} \cdots a_{n-2}\right)\right\}$ $\delta_{1} \delta$
$\equiv \gamma_{1}\left\{\left(1-a_{i}\right)\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right)\right\} \delta_{1} \delta$
by Lemma 2.2.

$$
\equiv r_{1}\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right)\left(1-a_{i}\right) \delta_{1} \delta
$$

Hence we see that it is sufficient to show that
$\gamma\left(a_{1} a_{2} \ldots a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right) \delta a_{n}-a_{n} \gamma\left(a_{1} a_{2} \ldots\right.$ $\left.a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right)_{\delta}=d \varepsilon{ }^{\circ} c_{n} *$ where now γ is a
product like δ i.e. is a product of a_{i}.
$d \equiv \gamma \delta\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right) a_{n}-a_{n} \quad \gamma \delta\left(a_{1} a_{2} \cdots\right.$
$\left.a_{n-1}-a_{n-1} a_{1} a_{2} \ldots a_{n-2}\right) \equiv 0$ if $\gamma \delta=1$.
Suppose $\gamma \delta=b_{1} \ldots b_{r}, b_{i} \varepsilon \operatorname{set}\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-1}}\right\}$.
$\Rightarrow d \equiv b_{1} b_{2} \cdots b_{r}\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right) a_{n}-a_{n}$
$b_{1} b_{2} \ldots b_{r}\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right)$
$\equiv\left(b_{1} b_{2} \cdots b_{r} a_{n}-a_{n} b_{1} b_{2} \cdots b_{r}\right)\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots\right.$
a_{n-2}.
We have the identity:-
$b_{1} b_{2} \ldots b_{r} a_{n}-a_{n} b_{1} \cdots b_{r}=\left(b_{1} a_{n}-a_{n} b_{1}\right) b_{2} \ldots b_{r}+b_{1}$
$\left(b_{2} a_{n}-a_{n} b_{2}\right) b_{3} \cdots b_{r}+b_{1} b_{2}\left(b_{3} a_{n}-a_{n} b_{3}\right) b_{4} b_{5} \ldots b_{r}+\ldots+$
$b_{1} b_{2} \ldots b_{r-1}\left(b_{r} a_{n}-a_{n} b_{r}\right)$. Also $b_{1} b_{2} \cdots b_{i-1}\left(b_{i} a_{n}-a_{n} b_{i}\right)$
$b_{i+1} \cdots b_{r}\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right) \equiv b_{1} b_{2} \cdots b_{i-1}$
$\left(b_{i} a_{n}-a_{n} b_{i}\right)\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right) b_{i+1} \cdots b_{r}$.
Hence it is sufficient to prove that $p=\left(b_{i} a_{n}-a_{n} b_{i}\right)$
$\left(a_{1} a_{2} \cdots a_{n-1}-a_{n-1} a_{1} a_{2} \cdots a_{n-2}\right) \equiv 0$.
Now $b_{i} \varepsilon \operatorname{set}\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-1}}\right\}$ and also $a_{1}, a_{2}, \ldots, a_{n-1}$
are contained in this set. Hence amongst $b_{i}, a_{1}, a_{2}, \ldots$
\ldots, a_{n-1} there is an equality. If $b_{i}=a_{j}$ Lemma 2.3
shows that $p \equiv 0$ and if $a_{k}=a_{r}$ for $r \neq k$ then Lemma 2.4 shows that $p \equiv 0$. This completes the proof.

Corollary I: $G_{n} \leq\left(1+C_{n}\right) \cap G$.
Corollary 2: If F is the free group on Y then $\left(1+C_{n}\right)$
$n \mathrm{~F}=\mathrm{F}_{\mathrm{n}}$.
Proof: Follows immediately from Magnus' theorem 1.5. Corollary 3: Let δ be the mapping of Theorem 1.8, and F the free group on Y. Now let $C_{n} \delta$ generate the ideal D_{n} in E. Then $\left(I+D_{n}\right) \frown F_{\delta}=\left(F_{n}\right) \delta$. Proof: Follows immediately from Theorem 1.9. Corollary 3 gives us a power series representation for the free nilpotent group of class $n-1, F / F_{n}$, which we state as Theorem 2.6 below.

Theorem 2.6: Let K_{n} denote the power series ring in X over Z subject to the relations $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}-x_{i_{n}} x_{i_{1}}$ $x_{i_{2}} \ldots x_{i_{n-1}}=0$ (i.e. let the ideal generated by the n-l homogeneous part be central) then subgroup of $W\left(K_{n}\right)$ generated by $l+X$ is isomorphic to F / F_{n} under the mapping $y_{i} \mapsto 1+x_{i}$.
In particular this gives the well known power series representation of F / F^{\prime} viz. K_{2} the power series ring in commuting indeterminates. In the next section we show how this representation of F / F^{\prime} can be extended to a
representation of the group ring $\mathbb{Z}\left(F / F^{\prime}\right)$.
Section 2: The free abelian group ring.
Let $G=F / F^{\prime}$ be the free abelian group on Y and K_{2} as
in Section l. of is the augmentation ideal of G and
$\phi^{\prime}: G \rightarrow W\left(K_{2}\right)$.the embedding of G in K_{2}.
Lemma 2.7: $\mathcal{y}^{j} / y^{j+1}$ is freely generated as \mathbb{Z}-module by $\left\{\left(y_{i_{1}}-1\right)^{\alpha_{i_{1}}}\left(y_{i_{2}}-1\right)^{\alpha_{i_{2}}} \ldots\left(y_{i_{t}}-1\right)^{\alpha_{i_{t}}} /_{\alpha_{i_{k}}} \varepsilon \mathbb{Z}\right.$ $-\{0\}, i_{i}<i_{2}<\ldots<i_{t}$ and $\left.\alpha_{i_{1}}+\alpha_{i_{2}}+\ldots+\alpha_{i_{t}}=j\right\}$
Proof: Clearly this set generates $q^{j} / \operatorname{g}^{j+1}$. Suppose

$\left(y_{j_{S}}-1\right)^{\beta_{j_{S}}}$, with $m_{j_{1}}^{\beta_{j}}{ }_{2}^{\beta_{j}} \cdots^{j_{S}}{ }^{\beta_{j}}{ }_{S}{ }_{\varepsilon} \mathbb{Z} G$ and $\beta_{j_{1}}+\beta_{j_{2}}+\ldots$
$+\beta_{j_{s}}=j+1$. We can extend ϕ^{\prime} to a ring homomorphism
$\phi: \mathbb{Z} G \rightarrow K_{2}$ by $\phi: \sum \mathrm{a}_{\mathrm{g}} \mathrm{g} \mapsto \sum \mathrm{a}_{\mathrm{g}}\left(\mathrm{g}^{\prime}\right)$. It is clear. that an element of \mathcal{g}^{j+1} will be mapped by ϕ into the ideal of elements in K_{2} of order $\geq j+1$. This implies

to this we have the following Lemmas.
Lemma 2.8: ϕ as defined in Lemma 2.7 is mono.
Proof: If $a \phi=0 \Rightarrow a \varepsilon \bigcap_{i=1}^{\infty} g^{i}$. By Hartley [8]
Lemma 18, the intersection of the powers of the augmentation ideal of a torsion-free nilpotent group is zero. There-
fore $a=0$.
$\underline{\text { Proposition 2. 3: }} \operatorname{gr}\left(\mathbb{Z} G, g^{k}\right)=\underset{j \geq 0}{\oplus} \operatorname{of}^{j / o^{j+1}}$ is
isomorphic to the polynomial ring $\mathbb{Z}[X]$ in commuting
indeterminates.
Proof: Note that $Z[X]$ is just the direct sum of the
homogeneous components of K_{2}. Hence an isomorphism
$\psi: \operatorname{lgr}\left(\mathbb{Z} G, g^{k}\right) \rightarrow \mathbb{Z} X$ is given by $\psi:\left(y_{i_{1}}-I\right)^{\alpha} i_{I}\left(y_{i_{2}}-I\right)^{\alpha} i_{2}$

Proposition 2.10: $\quad \lim \mathbb{Z G} / \operatorname{of}^{k}=K_{2}$
Proof: Comes directly from definition of the inverse
limit and Lemma 2.7.
(For definition of the inverse limit lim, see e.g.
Eilenberg and Steenrod [3]).

Section 3: Derivations in E.
Define a linear mapping $\overline{\mathrm{d}}_{\mathrm{j}}$. of E into E by
$1 \overline{\mathrm{~d}}_{\mathrm{j}}=0$,
$\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right) \bar{d}_{j}=\delta_{i_{1} j} x_{i_{2}} \ldots x_{i_{n}}$: Then $\bar{d}_{j}: A_{n} \rightarrow A_{n-1}$.
Lemma 2.11: For a and b. in E,
$(a b) \bar{d}_{j}=\left(a \bar{d}_{j}\right) b+\left(b \bar{d}_{j}\right) a(o)$
Proof: $\left((a b) \overline{\mathrm{d}}_{j}\right)_{(r)}=(a b)_{(r+1)} \overline{\mathrm{d}}_{j}$
$=\left(\sum_{i=0}^{r+1} a(i)^{b}(r+1-i)\right) \bar{d}_{j}$
$\left.=a_{(o)^{(b}(r+1)} \bar{d}_{j}\right)+\left(\sum_{i=1}^{r+1} a(i)^{b}(r+1-i)\right) \bar{d}_{j}$
$=a_{(o)}\left(b_{(r+1)} \bar{d}_{j}\right)+\sum_{i=1}^{r+1}\left(a_{i} \bar{d}_{j}\right) b_{(r+1-i)}$
$=a_{(0)}\left(b \bar{d}_{j}\right)_{(r)}+\sum_{i=1}^{r+1}\left(a \bar{d}_{j}\right)(i-1)^{b}(r+1-i)$
$=a_{(0)}\left(b \bar{d}_{j}\right)(r)+\sum_{i=0}^{r}\left(a \bar{d}_{j}\right)(i)^{b}(r-i)$
$=a_{(o)}\left(b \bar{d}_{j}\right)_{(r)}+\left(a \bar{d}_{j} b\right)_{(r)}$
$=\left\{a_{(o)}\left(b \overline{\mathrm{~d}}_{j}\right)+\left(a \overline{\mathrm{~d}}_{j}\right) b\right\}(r)$
$\Rightarrow(a b) \bar{d}_{j}=\left(a \bar{d}_{j}\right) b+\left(b \bar{d}_{j}\right) a(0) \cdot$

Lemma 2.12: For all α in $\mathbb{Z F},\left(\alpha \mathrm{d}_{j}\right) \delta=(\alpha \delta) \overline{\mathrm{d}}_{j}$ (δ is the δ of Theorem 1.8).

Proof: $\left\{\left(\alpha d_{j}\right) \delta\right\}(r)$
$=i_{i_{I}}, i_{2}, \ldots i_{r}{ }^{x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}\left(\alpha d_{j} d_{i_{1}} d_{i_{2}} \ldots d_{i_{r}}{ }^{\varepsilon}\right)}$
$=\left\{_{i_{1}}, i_{2}, \ldots i_{r} x_{i_{I}} x_{i_{2}} \ldots x_{i_{r}}\left(\alpha d_{j} d_{i_{1}} d_{i_{2}} \ldots d_{i_{r}}{ }^{\varepsilon}\right)\right\} \bar{d}_{j}$

$=\left\{(\alpha \delta) \overline{\mathrm{d}}_{j}\right\}(r)$
$\Rightarrow\left(\alpha \mathrm{d}_{\mathrm{j}}\right) \delta=(\alpha \delta) \overline{\mathrm{d}}_{\mathrm{j}}$.

Lemma 2.13: Let Co be an ideal of $\mathbb{Z F}$ that is contained in of and let (b) δ generate the ideal D_{0} in E such that $D_{0} \cap(\mathbb{Z})_{\delta}=(\mathcal{Q}) \delta$. If $\left(\ell^{n} \mathcal{Q}\right)_{\delta}$ generates the ideal D_{n} in E, then $D_{n} \cap(\mathbb{Z} F) \delta=\left(\theta^{n} \in\right)^{\prime}$.
Proof: By induction on n. Case $n=0$ is part of hypothesis. $\left(\theta^{n}(\theta) \delta \leq D_{n} \cap(\mathbb{Z F}) \delta\right.$ is clear. Suppose a $\varepsilon \mathbb{Z F}$ and a $\varepsilon \mathrm{D}_{\mathrm{n}}$
$\Rightarrow a \delta=\sum \underline{\alpha}_{i} \beta_{i} \gamma_{i} \underline{\delta}_{i}, \underline{\alpha}_{i}$ and $\underline{\delta}_{i} \varepsilon E$, $\beta_{i} \varepsilon \quad(f) \delta, \gamma_{i} \varepsilon \quad\left(f^{n-1} l_{e}\right) \delta$ 。

$$
\begin{aligned}
\left(a d_{j}\right) \delta & =(a \delta) \bar{d}_{j} \text { by Lemma 2.12 } \\
& =\left(\sum \underline{\alpha}_{i} \beta_{i} \gamma_{i} \underline{\delta}_{i}\right) \bar{d}_{j} \\
& =\sum\left\{\left(\underline{\alpha}_{i} \beta_{i}\right) \bar{d}_{j} \gamma_{i} \underline{\delta}_{i}+\gamma_{i} \underline{\delta}_{i} \bar{d}_{j}\left(\underline{\alpha}_{i} \beta_{i}\right)(o)\right.
\end{aligned}
$$

$=\sum\left(\underline{\alpha}_{i} \beta_{i}\right) \dot{\bar{d}}_{j} \gamma_{i} \underline{\delta}_{i}$ which is in D_{n-1}. Hence by induction
$\left(a d_{j}\right) \delta \varepsilon\left(\boldsymbol{f}^{n-1} \theta\right) \delta$, for all d_{j}.
$\Rightarrow a_{j} \in \mathscr{f}^{n-1} G$, for all d_{j}.
$\Rightarrow a \varepsilon \ell^{n} b$. (By Theorem 1.7).
$\Rightarrow a \delta \varepsilon\left(f^{n} f\right) \delta$

Lemma 2.14: Let $\boldsymbol{H}=$ Ker $\mathbb{Z F} \rightarrow \mathbb{Z}(F / R)$ and letwo generate the ideal D in E. Then $\mathbb{Z F} \delta 口 D=L \leftarrow \delta$ if and only if the homomorphism $\psi^{\prime}:(\mathrm{F} \delta) /(\mathrm{R} \delta) \rightarrow E / D$ given by $\mathrm{l}+\mathrm{x}$ \rightarrow I $+\mathrm{x}+\mathrm{D}$ extends to a ring monomorphism
$\psi: Z((F \delta) /(R \delta)) \rightarrow E / D \quad\left(\psi: \quad \sum a_{g} g \rightarrow \sum a_{g}\left(g \psi^{\prime}\right)\right)$.

Proof:

θ is induced by the natural map $E \rightarrow E / D$. This diagram commutes. (ϕ is onto). That is, $\phi \psi=\theta$. Suppose $(\mathbb{Z} F) \delta \cap D=4 \delta \delta$ and let $\quad \phi \varepsilon \operatorname{Ker} \psi, a \varepsilon \mathbb{Z} \delta \delta$.
$\Rightarrow a \phi \psi=0 \Rightarrow a \theta=0 \Rightarrow a \varepsilon D$
$\Rightarrow a \varepsilon D \cap \mathbb{Z F} \delta=$ Lూ $\Rightarrow a \phi=0$
$\Rightarrow \psi$ is a monomorphism.
Suppose ψ is a monomorphism. Clearly $\boldsymbol{r}^{\circ} \leq \mathbb{Z} F \delta \cap \mathrm{D}$.

Let $a \delta \varepsilon \mathbb{Z F} \delta \cap D, a \varepsilon \mathbb{Z F}, \Rightarrow(a \delta)_{\phi} \dot{\psi}=(a \delta)_{\theta}=0$
$\Rightarrow(a \delta)_{\phi}=0 \Rightarrow a \delta \varepsilon L^{\sigma} \delta$

Lemma 2.15: Let $\boldsymbol{\sigma}=$ Ker $\mathbb{Z} F \rightarrow \mathbb{Z}\left(F / F^{\prime}\right)$ and suppose (ϕ^{n} or) δ generates the ideal D_{n} in E. Then $\mathbb{Z} F_{\delta} \cap D_{n}=$ (f^{n} or) δ.

Proof: By Lemmas 2.8, 2.14 and 2.13.
Corollary: Let P_{n} be the power series ring in X over
Z subject to the relations $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}\left(x_{i_{n+1}} x_{i_{n+2}}-x_{i_{n+2}}\right.$
$\left.x_{i_{n+1}}\right)=0$, then the subgroup G of $W\left(P_{n}\right)$ generated by .
$I+X$ is isomorphic to $F /\left(I+f^{n} \sigma\right) \cap F$.

- Proof: Is clear from Lemma since f^{n} or is the ideal on
$\left(y_{i_{1}}-1\right)\left(y_{i_{2}}-l\right) \ldots\left(y_{i_{n}}-1\right)\left\{\left(y_{i_{n+1}}-1\right)\left(y_{i_{n+2}}-1\right)-\right.$
$\left.\left(y_{i_{n+2}}-1\right)\left(y_{i_{n+1}}-l\right)\right\}$.

We shall show below how this enables us to prove that these groups are residually torsion free nilpotent. Note that these groups are relatively free since $\left(1+\|^{n} \sigma\right) \cap F$ is a fully invariant subgroup of F. Define a linear mapping \bar{D}_{j} of E into E by $\bar{D}_{j}\left(x_{i_{l}} x_{i_{2}} \ldots\right.$
$\left.x_{i}{ }_{n}\right)=\delta_{i_{n}}{ }^{x_{i}}{ }^{\prime} \cdot x_{i_{n-1}} \cdot \bar{D}_{j} 1=0$.
Lemma 2.16: For a and b in $E, \bar{D}_{j}(a b)=b_{(o)} \bar{D}_{j}(a)+a \bar{D}_{j}(b)$.

Proof: $\quad\left\{\bar{D}_{j}(a b)\right\}(r)=\bar{D}_{j}\{(a b)(r+1)\}$
$=\bar{D}_{j}\left(\sum_{i=0}^{r+1} \cdot a(i)^{b}(r+1-i)\right)$
$=\bar{D}_{j}\left(\sum_{i=0}^{r}{ }^{a}(i)^{b}(r+1-i)+a(r+1)^{b}(0)\right)$
$=\sum_{i=0}^{r}{ }_{(i)} \bar{D}_{j}\left(b_{(r+l-i)}\right)+b_{(0)} \bar{D}_{j}\left(a_{(r+1)}\right)$
$=\sum_{i=0}^{r} a(i)^{\left(\bar{D}_{j}(b)\right)}(r-i)+b(0)^{\left(\bar{D}_{j}^{a)}(r)\right.}$
$=\left\{a \bar{D}_{j}(b)\right\}_{(r)}+b_{(o)}\left(\bar{D}_{j}^{a)}(r)\right.$
$=\left\{a \bar{D}_{j}(b)+b(o)^{D} \bar{D}_{j}(a)\right\}(r)$
$\Rightarrow \bar{D}_{j}(a b)=b_{(o)} \bar{D}_{j}(a)+a \bar{D}_{j}(b)$

Lemma 2.17: For all α in $\mathbb{Z F},\left(D_{j} \alpha\right)_{\delta}=\bar{D}_{j}(\alpha \delta)$

Proof: Similar to Lemma 2.12.
Note first of all that $\delta=p$ in Theorem 1.8.
$\left\{\left(D_{j}^{\alpha}\right)^{\delta\}}(r)=i_{i_{1} i_{2}}, \ldots, i_{r} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}\left(D_{i_{1}} D_{i_{2}} \ldots D_{i_{r}} D_{j}^{\alpha}\right) \varepsilon\right.$
$=\bar{D}_{j} i_{1}, i_{2}, \ldots i_{r}{ }^{x_{i_{1}}}{ }^{x_{i_{2}}} \ldots x_{i_{r}} x_{i_{j}}\left(D_{i_{1}} D_{i_{2}} \ldots D_{i_{r}} D_{j} d\right)=$
$=\bar{D}_{j} i_{1}, i_{2}, \ldots, i_{r}, i^{x_{i_{1}}} x_{i_{2}} \ldots x_{i_{r}} x_{i}\left(D_{i_{1}} D_{i_{2}} \ldots D_{i_{r}} D_{i}\right)_{k}$
$=\bar{D}_{j}(\alpha \delta)(r+1)$
$=\left\{\bar{D}_{j}(\alpha \delta)\right\}(r)$
$\Rightarrow\left(D_{j} \alpha\right) \delta=\bar{D}_{j}(\alpha \delta)$.
Lemma 2.18: Let G be an ideal of $\mathbb{Z F}$ that is contained in and let (f) δ generate the ideal B_{o} in E such that $B_{0} \cap \mathbb{Z F} \delta=G_{\delta}$. Then if $\left(G^{f}\right) \delta$ generates the ideal E_{n} in E ,

$$
B_{n} \cap \mathbb{Z F \delta}=\left(b f^{n}\right) \delta .
$$

Proof: Induction on n.
Case $\mathrm{n}=0$ is part of hypothesis.
$\left(\mathcal{G} \boldsymbol{f}^{n}\right) \delta \leq B_{n} \cap \mathbb{Z} F \delta$ is clear. Suppose $a \varepsilon \mathbb{Z} F$ and
a $\delta \underline{\sigma_{n}} \Rightarrow a \delta=\left[\underline{\alpha}_{i} \beta_{i}{ }^{\gamma}{ }_{i} \underline{\delta}_{i}\right.$, where $\underline{\alpha}_{i}, \underline{\delta}_{i}$ are in E,
$\beta_{i} \varepsilon\left(\theta^{n-1}\right) \delta$ and $\gamma_{i} \varepsilon \notin \delta$.
$\left(D_{j} a\right) \delta=\bar{D}_{j}(a \delta)$, by Lemma 2.17
$=\bar{D}_{j}\left(\sum \quad \underline{\alpha}_{i} \beta_{i} \gamma_{i} \underline{\delta}_{i}\right)$
$=\sum \bar{D}_{j}\left(\underline{\alpha}_{i} \beta_{i} \gamma_{i} \underline{\varepsilon}_{i}\right)$
$=\sum \underline{\alpha}_{i} \beta_{i} \bar{D}_{j}\left(\gamma_{i} \underline{\delta}_{i}\right)+\left(\gamma_{i} \underline{\delta}_{i}\right)(o)^{\bar{D}}{ }_{j}\left(\underline{\alpha}_{i}{ }^{\beta}\right)$
$=\sum \underline{\alpha}_{i} \beta_{i} \bar{D}_{j}\left(\gamma_{i} \underline{\delta}_{i}\right)$, which is in B_{n-1}.
Hence by induction
$\left(D_{j} a\right) \delta \varepsilon\left(b f^{n-1}\right) \delta$, for all D_{j}.
$\Rightarrow D_{j} a \varepsilon \operatorname{lof}{ }^{n-1}$, for all D_{j}
$\Rightarrow a \varepsilon \in f^{n}$, by Theorem 1.7.
$\Rightarrow a \delta \varepsilon\left(t f^{n}\right) \delta$

Lemma 2.19: Let $\sigma=\operatorname{Ker} \mathbb{Z} F \rightarrow \mathbb{Z}\left(F / F^{\prime}\right)$. If $\left(f^{n} \text { or } f^{m}\right)_{\delta}$ generates the ideal $D_{n, m}$ in E then $\left(\theta^{n}\right.$ or $\left.\theta^{m}\right) \delta=$ $D_{n, m} \cap \mathrm{ZF} \mathrm{\delta}$.
Proof: From lemmas 2.15 and 2.18.
Corollary: Let $P_{n, m}$ be the power series ring in X over \mathbb{Z} subject to
$x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\left(x_{i_{n+1}} x_{i_{n+2}} x_{i_{n+2}}{ }_{i_{n+1}}\right) x_{j_{1}} x_{j_{2}} \ldots x_{j}=0$ then
subgroup G of $W\left(P_{n, m}\right)$ generates by $I+X$ is isomorphic to $F /\left(1+f^{n}\right.$ or $\left.f^{m}\right) \cap F$.
Proof: Is clear since f^{n} or q^{m} is the ideal on $\left(y_{i_{1}}-1\right)\left(y_{i_{2}}-1\right) \ldots\left(y_{i_{n}}-1\right)\left(y_{i_{n+1}} y_{i_{n+2}}-y_{i_{n+2}} y_{i_{n+1}}\right)$.
$\left(y_{j_{1}}-1\right)\left(y_{j_{2}}-1\right) \ldots\left(y_{j_{m}}-1\right) . /$
Note that $F /\left(1+\psi^{n}\right.$ or $\left.\beta^{m}\right) \cap F$ is a relatively free group since $\left(1+f^{n} o{ }^{m}\right) \wedge E$ is a fully invariant subgroup of F .

The problem now will be to identify the groups $\left(1+f^{n}\right.$ or $\left.f^{m}\right) \cap F$. Let $c_{n, m}=F /\left(1+f^{n}\right.$ ou \& $\left.m\right) \cap F$ and we shall continue to use this notation in the following chapters.

CHAPTER 3

Section 1: $\quad C_{1,0}, C_{2,0}, C_{3,0}$ and $C_{4,0}$
Lemma 3.1: $\left(1+\beta^{2} \Omega\right) \cap F=(1+f o r) \cap F=F^{\prime \prime}$
Proof: $F^{\prime \prime} \leq\left(1+\Omega^{2}\right) \cap F \leq\left(1+f^{2} \sigma\right) \cap F^{\prime}$
$\leq(1+f o r) \cap F=F^{\prime \prime}$ by Theorem 1.6.
Corollary: Let Q denote the power series ring in X over Z subject to $x_{i_{1}}\left(x_{i_{2}} x_{i_{3}}-x_{i_{3}} x_{i_{2}}\right)=0$ then subgroup of $W(Q)$ generated by $1+X$ is isomorphic to $F / F^{\prime \prime}$.
Let F be free on Y. Before proceeding we introduce some well known commutator identities. If a, b and c are any elements of a group G then

1. $[a, b c]=[a, c][a, b]^{c}=[a, c][a, b][a, b, c]$.
2. $[a b, c]=[a, c]^{b}[b, c]=[a, c][a, c, b][b, c]$.
3. $\left[a^{-1}, b\right]=[a, b]^{-a^{-1}}=[a, b]^{-1}\left[[a, b]^{-1}, a^{-1}\right]$.
4. $\left[a, b^{-1}\right]=[a, b]^{-b^{-1}}=[a, b]^{-1}\left[[a, b]^{-1}, b^{-1}\right]$.
5. $\quad a b=b a[a, b]$.

We shall refer to these as (R).
Lemma 3.2: $\left(1+\beta^{3} \sigma\right) \sim F=\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$.
Proof: $\left(F^{\prime}\right)_{3} \leq\left(1+o \Omega^{3}\right) \cap F \leq\left(1+f^{3} \sigma\right) \cap F$.
Let $f_{1}, f_{2} \varepsilon F_{3}$ then $f_{1}-1 \in \beta^{3} \cap O \quad$ and $f_{2}-1 \varepsilon \forall^{3} \cap \sigma$. $\left[f_{1}, f_{2}\right]=1+f_{1}^{-1} f_{2}{ }^{-1}\left\{\left(f_{1}-1\right)\left(f_{2}-1\right)-\left(f_{2}-1\right)\left(f_{1}-1\right)\right\} \varepsilon$
$1+\theta^{3} \sigma$.
Hence $\left(\mathrm{F}^{\prime}\right)_{3}\left(\mathrm{~F}_{3}\right)^{\prime} \leq\left(1+f^{3} \mathrm{O}\right) \cap \mathrm{F}$.

Suppose a $\varepsilon\left(1+f^{3} \sigma\right) \cap F$. Then a $\varepsilon F^{\prime \prime}$ by theorem 1.6 (all congruences are mod $\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ unless otherwise stated).
$\Rightarrow a=\pi\left[\left[\bar{y}_{i_{1}}, y_{i_{2}}\right]^{\alpha},\left[y_{i_{3}}, y_{i_{4}}\right]^{\beta_{i}}\right]^{\gamma_{i}}$ with $\alpha_{i}, \beta_{i} \varepsilon F$,
$\gamma_{i} \varepsilon F^{\prime}$.
$\Rightarrow a \equiv \pi\left[\left[y_{i_{1}}, \dot{y}_{i_{2}}\right]^{\alpha}{ }^{\alpha},\left[y_{i_{3}}, y_{i_{4}}\right]^{\beta_{i}}\right]$
$=\pi\left[\left[y_{i_{1}}, y_{i_{2}}\right]\left[y_{i_{1}}, y_{i_{2}}, \alpha_{i}\right],\left[y_{i_{3}}, y_{i_{4}}\right]\left[y_{i_{3}}, y_{i_{4}}, \beta_{i}\right]\right]$
$\equiv \pi\left[\left[y_{i_{1}}, y_{i_{2}}\right],\left[y_{i_{3}}, y_{i_{4}}\right]\right]\left[\left[y_{i_{1}}, y_{i_{2}}\right],\left[y_{i_{3}}, y_{i_{4}}, \beta_{i}\right]\right]$
$\left[\left[y_{i_{1}}, y_{i_{2}}, \alpha_{i}\right],\left[y_{i_{3}}, y_{i_{4}}\right]\right]$, by (P).
$\equiv \Pi\left[\left[\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}_{2}}\right],\left[\mathrm{y}_{\mathrm{i}_{3}}, \dot{y}_{i_{4}}\right]\right]\left[\left[\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}_{2}}\right],\left[\mathrm{y}_{\mathrm{i}_{3}},{ }_{\mathrm{y}_{4}},{ }^{2} \beta_{i}\right]\right]$
$\left[\left[\mathrm{y}_{\mathrm{i}_{3}}, y_{i_{4}}\right],\left[\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}_{2}}, \alpha_{\mathrm{i}}\right]^{-1}\right]$, by (R).

Call this (A). Cancel inverse pairs. By (R) we see that a is congruent to a product type (A) (where now we allow the double commutators in (A) to have negative sign) in which the 2 -commutators are basic ($i_{1}>i_{2}$, $i_{3}>i_{4}$). Cancel inverse pairs after this reduction and call the new product obtained (B). We proceed by induction on the number of distinct (basic) 2-commutators
in（B）to show a \equiv ．If no 2－commutator is left after cancellation we are through．Let $\left[\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}_{2}}\right]$ be a particular 2 －commutator in（B）．We may now collect in one commutator all the commutators in（B） involving $\left[y_{i_{I}}, y_{i_{2}}\right]$（modulo（ $\left.\left.F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}\right)$ using（ P ）．Thus
$a \equiv\left[\left[y_{i_{1}}, y_{i_{2}}\right], \Pi\left[y_{i_{3}}, y_{i_{4}}\right]^{\varepsilon} \cdot \Pi\left[y_{j_{1}}, y_{j_{2}}, \alpha_{j}\right]^{\eta}\right]$
π（type（B）$\left[y_{i_{1}}, y_{i_{2}}\right]$ not a 2 －commutator），with $\varepsilon= \pm 1$ ， $n= \pm 1,\left[y_{i_{3}}, y_{i_{4}}\right] \neq\left[y_{i_{1}}, y_{i_{2}}\right]$ ．Now for f_{1}, f_{2} and $f_{3} \varepsilon F,\left[f_{1}, f_{2}\right] \equiv 1+\left(f_{1} f_{2}-f_{2} f_{1}\right) \bmod f^{3}$ and $\left[\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right] \equiv 1 \bmod \ell^{3}$ ．Fence since $a-1 \varepsilon \ell^{3} o r$ and $\left(\mathrm{F}^{\prime}\right)_{3}\left(\mathrm{~F}_{3}\right)^{\prime} \leqslant 1+f^{3} \mathrm{cr}$ ，
$\left\{\left(y_{i_{1}}-l\right)\left(y_{i_{2}}-1\right)-\left(y_{i_{2}}-l\right)\left(y_{i_{1}}-l\right)\right\}\left\{\pi\left[y_{i_{3}}, y_{i_{4}}\right]^{\varepsilon}\right.$
$\left.\pi\left[y_{j_{1}}, y_{j_{2}}, \alpha_{j}\right]^{n}-l\right\}-\sum \varepsilon\left\{\left(y_{i_{3}}-l\right)\left(y_{i_{4}}-l\right)-\left(y_{i_{4}}-l\right)\left(y_{i_{3}}-l\right)\right\}$
$\left\{\left(\left[y_{i_{1}}, y_{i_{2}}\right]-1\right)\right\}+\sum\left\{\left(y_{\mathrm{k}_{1}}-1\right)\left(y_{k_{2}}-1\right)-\left(y_{k_{2}}-1\right)\left(y_{k_{1}}-1\right)\right\}\left(\gamma_{k}-1\right)$
$=\alpha$ say，is contained in $⿻ ⿱ 一 一 ⿰ 丨 丨 一 ⿻ 冂 土^{3} O$ ，where $\left[\mathrm{y}_{\mathrm{k}_{1}}, \mathrm{y}_{\mathrm{k}_{2}}\right] \neq\left[\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}_{2}}\right]$ ， and $\gamma_{k} \varepsilon F$ ．
By Theorem 1．7，ad $i_{1} d_{i_{2}} \varepsilon$ for．
$\Rightarrow \pi\left[y_{i_{3}}, y_{i_{4}}\right] \Pi\left[y_{j_{1}}, y_{j_{2}}, \alpha_{j}\right]^{n}-1 \varepsilon$ for
$\Rightarrow \pi\left[\bar{y}_{i_{3}}, y_{i_{4}}\right] \pi\left[\bar{y}_{j_{1}}, y_{j_{2}}, \alpha_{j}\right]^{n} F^{\prime \prime}$ by Theorem 1.6.
$\Rightarrow a \equiv \pi$ (type (B) with one less distinct. 2-commutator),
\Rightarrow by induction, $a \equiv 1$.
Corollany: Let P be the power series ring in X over
\mathbb{Z} subject to $x_{i_{1}} x_{i_{2}} x_{i_{3}}\left(x_{i_{4}} x_{i_{5}}{ }^{-x_{i_{5}}}{ }^{x_{i_{4}}}\right.$) $=0$ then subgroup
G of $W(P)$ generated by $1+X$ is isomorphic to $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$.
Lemma 3.3: $\quad\left(1+f^{4} O \quad \cap F=\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}\right.$.
Proof: $\left(F^{\prime}\right)_{3} \leq\left(I+\sigma^{3}\right) \cap F \leq\left(1+f^{4} \sigma\right) \cap F$ since $a \leq \theta^{2}$.
Let f_{1}, f_{2} be in F_{4} then
$\left[f_{1}, f_{2}\right]=1+f_{1}^{-1} f_{2}^{-1}\left\{\left(f_{1}-I\right)\left(f_{2}-1\right)-\left(f_{2}-1\right)\left(f_{1}-1\right)\right.$ \}and
hence $\left(F_{4}\right)^{\prime} \leq\left(1+\theta^{4} \sigma\right) \cap F$
$\Rightarrow\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime} \leq\left(1+\theta^{4}\right.$ or $) \cap F$.
Suppose a-1 $\varepsilon \|^{4}$ on with a $\varepsilon F \Rightarrow a \varepsilon\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ by Lemma
3.2. (All congruences will be mod $\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}$ unless
otherwise stated).
$\Rightarrow a \equiv \mathrm{f}$ with $\mathrm{f} \varepsilon\left(\mathrm{F}_{3}\right)^{\prime}$
$\Rightarrow a \equiv \pi\left[\alpha_{i_{1}}{ }^{\eta_{1}} \ldots \alpha_{i_{n}}{ }_{n}{ }_{\eta_{i}}, \beta_{j_{I}}{ }^{\varepsilon j_{1}} \ldots \beta_{j}{ }_{m} j_{m} g_{j}\right]^{\ell, i, j}$,
$\alpha_{i_{\ell}}, \beta_{j_{k}}$ are basic commutators weight $3, i_{1}<i_{2}<\ldots$
$<i_{n}$ and $j_{1}<j_{2}<\ldots<j_{m}$ in the ordering of the basic
commutators weight $3, \eta_{i_{l}}, \varepsilon_{j_{k}}$ are in $\mathbb{Z}_{i}, f_{i}, g_{j}$ are in F_{4} and the $\ell_{i, j}$ are in F_{3}.

$$
\begin{aligned}
& {\left[f_{i}, \beta_{j_{1}}^{\varepsilon_{j}} \quad \beta_{j_{2}}^{\varepsilon_{j}} \quad \cdots \quad \beta_{j_{m}}^{m_{j}}\right]-(B),(b y \quad(R))}
\end{aligned}
$$

Cancel inverse pairs and after this we proceed by induction on the number of distinct basic commutators weight 3 remaining. If no basic commutator weight 3 is left we are through. We collect using (R) all terms of the product involving a particular basic α_{j} say, noting that α_{j}^{-1} is also collected using $\left[\alpha_{j}^{-1}, \beta\right] \equiv\left[\alpha_{j}, \beta^{-1}\right]$ for β in F^{\prime}.
Thus $a \equiv \Pi\left[\alpha_{j}, P q\right]$ (type (B) not involving the basic
α_{j}), where p is a product of basics weight 3 , not involving α_{j} and $q \in F_{4}$. '
For x, y, z and $w \in F$
$[x, y, z] \equiv 1+(x y-y x) z-z(x y-y x) \bmod f^{4}$
$[x, y, z, w] \equiv 1 \bmod \ell^{4}$
Since a-1 $\varepsilon B^{4} \sigma$ and $\left(F^{\prime}\right)_{3}\left(E_{4}\right)^{\prime} \leq\left(1+\theta^{4} \sigma\right)$
$\Rightarrow\left(\alpha_{j}-1\right)(p q-1)-(p-1)\left(\alpha_{j}-1\right)+\left[\pm\left(\gamma_{k}-1\right)\left(\delta_{k}-1\right) \varepsilon \|^{4} o r\right.$,
where the γ_{i} are basics $\neq \alpha_{j}$, and $\delta_{k} \varepsilon F_{3}$. Also
$p-1 \equiv \sum \pm\left(w_{k}-1\right) \bmod f^{4}$, where w_{k} is a basic $\neq \alpha_{j}$.
$\Rightarrow\left(\alpha_{j}-1\right)(p q-1)+\sum_{ \pm}\left(\gamma_{k}-1\right)\left(\delta_{k}-1\right)$ is in $\ell^{4} \sigma-(C)$,
where γ_{i} is a basic $\neq \alpha_{j}, \delta_{k} \varepsilon F_{3}$.
Let $\alpha_{j}=\left[y_{i_{1}}, y_{i_{2}}, y_{i_{3}}\right], i_{1}>i_{2}, i_{2} \leq i_{3}$.
The only other basic commutator weight 3 that involves each of $\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}_{2}}$ and $\mathrm{y}_{\mathrm{i}_{3}}$ is $\left[\mathrm{y}_{\mathrm{i}_{3}}, \mathrm{y}_{\mathrm{i}_{2}}, \mathrm{y}_{\mathrm{i}_{1}}\right], \mathrm{y}_{\mathrm{i}_{3}} \neq \mathrm{y}_{\mathrm{i}_{2}}$.
$\alpha_{j}-1 \equiv\left(y_{i_{1}} y_{i_{2}}-y_{i_{2}} y_{i_{1}}\right) y_{i_{3}}-y_{i_{3}}\left(\dot{y}_{i_{1}} y_{i_{2}}-y_{i_{2}} y_{i_{1}}\right) \bmod f^{4}$.
$\left[y_{i_{3}}, y_{i_{2}}, y_{i_{1}}\right]-1 \equiv\left(y_{i_{3}} y_{i_{2}}-y_{i_{2}} y_{i_{3}}\right) y_{i_{1}}-y_{i_{1}}$
$\left(y_{i_{3}} y_{i_{2}}-y_{i_{2}} y_{i_{3}}\right) \bmod f^{4}$.
$\left(y_{i_{3}}, y_{i_{2}}, y_{i_{1}}\right)$ does not involve $y_{i_{3}}, y_{i_{2}}$ and $y_{i_{1}}$ in the sequence i_{2}, i_{1}, i_{3} for $i_{3} \neq i_{1}$.
From (C) we get
$\left(y_{i_{1}}, y_{i_{2}}, y_{i_{3}}\right)(p q-1)+\sum \pm\left(y_{k_{1}}, y_{k_{2}}, y_{k_{3}}\right)\left(\delta_{k^{\prime}}-1\right)=\gamma, \varepsilon f^{4} \sigma$.
$\Rightarrow \gamma d_{i_{2}}{ }_{i_{1}}{ }^{d} i_{3}$. for (if $i_{2}=i_{3}$ take $\gamma \mathrm{d}_{i_{1}}{ }_{i_{i}}{ }^{d_{i_{3}}} \varepsilon$ for)
$\Rightarrow p q-1 \quad$ for
$\Rightarrow \mathrm{Pq} \varepsilon \mathrm{F}^{\prime \prime}$ by Theorem I.6.
$\Rightarrow a \equiv \Pi$ (type B with one less distinct basic commutator weight 3).
\Rightarrow by induction, $a \equiv .1$.

Corollary: Let S be the power series ring in X over \mathbb{Z} subject to $x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}}\left(x_{i_{5}} x_{i_{6}}-x_{i_{6}} x_{i_{5}}\right)=0$ then
subgroup G of $W(S)$ generated by $1+X$ is isomorphic to $F /\left(F^{\prime}\right)_{3}^{\prime}\left(F_{4}\right)$ ' under the mapping $y_{i} \rightarrow 1+x_{i}$.

Section 2: Residual Properties

This section is devoted to proving that the groups of units of the $P_{n} m_{m}$ (as constructed in Lemma 2.19 Corollary) are residually torsion free nilpotent and when the set of variables is finite, are residually finite p-groups for all primes p.: This will prove that the groups F/(1 $+f^{n}$ OL $\left.f^{m}\right) \sim F$ embedded in these power series are residually torsion free nilpotent and residually finite p-groups for all primes p, (without any restriction to finite generation by Lemma 1.2). We shall confine our attention to Q, the power series ring in X over \mathbb{Z} subject to $x_{i_{1}}\left(x_{i_{2}} x_{i_{3}}-x_{i_{3}} x_{i_{2}}\right)=0$ but it is easy to see how these results can be generalised to $P_{n}{ }_{m}$ (with probably a little notational difficulty!)

In Q every element s in the multiplicative semigroup of Q generated by X can be written uniquely in the form $s=x_{i_{1}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{n}}, i_{2} \leq i_{3} \leq \cdots \leq i_{n}$

Term ms with $m \varepsilon \mathbb{Z}$, a monomial in Q. Let K_{i} be the ideal
of clements in \cap of order $\geq i$. Then $\cap K_{i}=?$.
Lemma 3.4: Let $a . \varepsilon \quad W(Q)$ and let the order of $a-1$ be
i. Then the order of $a^{m}-1$ is also i, for $m \in Z-\{0\}$.

Proof: Let $a=1+a_{(i)}+g(x), a_{(i)} \neq 0$
$\dot{g}(x) \varepsilon \underset{j>i}{\prod} K_{j}$ (the. Cartesian product.)
$a^{m}=\left\{1+a_{(i)}+g(x)\right\}^{m} \Rightarrow\left(a^{m}\right)_{(i)}=m a(i)$ and
$\left(a^{m}\right)(k)=0$ for $0<k<i$ and $\left(a^{m}\right)_{(o)}=1$. By (I) if
$m a_{(i)}=0 \Rightarrow a_{(i)}=0$. Hence the order of $a^{m}-1$ is i.

Theorem 3.5: $W(Q)$ is residually torsion free nilpotent.
Proof: $\cap\left(1+K_{i}\right)=1$ and $\left(1+K_{i}\right) \quad W(Q)$.
Clearly $\{W(Q)\}_{i} \leq 1+K_{i} . \quad$ (Note $\{W(Q)\}_{i}$ is the ith term of the lower central series of $H(0))$. Hence $W(C) /\left(l+K_{i}\right)$ is nilpotent and is torsion free by

Lemma 3.4. $\Rightarrow W(Q)$ is residually torsion free nilpotent.

As a corollary to this we get the well known theorem: Theorem 3.6: The free metabelian group is residually torsion free nilpotent.

Proof: By Lemma 3.1, Corollary and Theorem 3.5./ We can now use Lemma 1.2 and Theorems 1.1 and 3.6 to prove that the free metabelian group is residually a finite p-group for all primes p. However this result is a corollary of the following constructive Theorem.

Theorem 3.7: If X is finite then $W(Q)$ is residually
a finite p-group for all primes p.
Proof: Let $X=x_{1}, x_{2}, \ldots, x_{r+1}$. Define
$R_{i, n}=\left\{1+p^{i} g(x)+f(x) / f(x) \varepsilon \underset{i>n}{\Pi} K_{i}, g(x) \varepsilon{\underset{i}{\oplus}}_{=}^{=} K_{i}\right\}$
(II denotes the Cartesian product and \oplus the direct sum).
Then $R_{i, n}<W(Q) .\left[W(Q): R_{i}, n\right]=\prod_{j=1}^{n}\left[R_{i}, j-1: R_{i}, j\right]$
and we let $R_{i}{ }^{\prime} 0=W(Q)$. The number of distinct elements of degree j in the multiplicative semigroup of Q, (generated by X) is by (I)
$(r+1)\binom{r-1+j}{j}$. Then $\left[R_{i}, j-1: R_{i, j}\right]=p^{i(r+1)(r-1+j)}$
since $\left\{1+\sum C_{t_{1}} \cdots t_{j} x_{t_{1}} \cdots x_{t_{j}} /\right.$ with $0 \leq c_{t_{1}} \cdots t_{j}<p^{i}$, $\left.t_{2} \leq t_{3} \leq \cdots \leq t_{j}\right\}$ gives a transversal of $R_{i},_{j}$ in $R_{i},_{j-1}$. Hence $W\left(Q_{1}\right) / R_{i, n}$ is a p-group. Suppose $a \neq 1$ is contained in $W(Q)$ and let the order of a-l be $\ell . a_{(\ell)} \neq 0$ and $a_{(\ell)}$ is a finite sum of monomials of length ℓ. Suppose $a(\ell)=p^{i-1} g(x)$ where a monomial of $g(x)$ is not divisible by p. Then a $\& R_{i}{ }^{\prime} \ell$.

Using the methods derived in this section we prove in a similar manner as Theorems 3.6 and 3.7 .

Theorem 3.8: $\mathrm{F} /\left(\mathrm{F}^{\text { }}\right)_{3}\left(\mathrm{~F}_{3}\right)^{\prime}$ is residually torsion-free nilpotent.

Proof: By Lemma 3.2 Corollary $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ is embedded in $\mathrm{P}_{3}, 0^{\circ}$

Theorem 3.9: $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ is residually a finite p-group for all primes p.

Theorem 3.10: $\mathrm{F} /\left(\mathrm{F}^{\prime}\right)_{3}\left(\dot{\mathrm{~F}}_{4}\right)^{\prime}$ is residually torsion-free nilpotent.

Proof: By Lemma 3.3 Corollary $F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}$ is embedded in $\mathrm{P}_{4^{\prime}}, 0^{\circ}$
Theorem 3.11: $\dot{F} /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\text {t }}$ is residually a finite p-group for all primes p.

CHAPTER 4
Section 1: $F /\left[F^{\prime \prime}, F\right] ;$ The free centre by metabelian group. In this section we show that $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is free abelian and an explicit basis is given. We also show $C_{l}, 1=F /\left[F^{\prime \prime}, F\right]$ and hence that $F /\left[F^{\prime \prime}, F\right]$ is residually torsion free nilpotent. We use lengthy computations with commutators and the reader is assumed to be very familiar with commutator identities. Lemmas 4.1-4.6 below are an attempt to familiarise the reader with the identities we shall frequently use.

We collect in Lemma 4.1 some well-known results to which we shall make frequent reference later on.

Lemma 4.1: G any group.
(i) If $a_{1} \varepsilon G^{\prime}, a_{2}, \ldots, a_{n} \varepsilon G$ then

$$
\left[a_{1}, a_{2}^{*}, \ldots, a_{n}\right]^{-1} \equiv\left[a_{1}^{-1}, a_{2}, \ldots, a_{n}\right] \bmod G^{\prime \prime}
$$

(ii) If a, b and $c \varepsilon G$ then

$$
\begin{aligned}
& {[a, b, c] \equiv[b, c, a]^{-1}[c, a, b]^{-1}} \\
& \equiv[b, c, a]^{-1}[a, c, b] \\
& \equiv[c, b, a][c, a, b]^{-1} \\
& \equiv[c, b, a][a, c, b] \bmod G^{\prime \prime} .
\end{aligned}
$$

(These are just restatements of the Jacobi Identity.)
(iii) If $a_{1}, G^{\prime}, a_{2}, \ldots, a_{n} \varepsilon G$ then

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right] \equiv\left[a_{1}, a_{i_{2}}, \ldots, a_{i_{n}}\right]
$$

$\bmod G^{\prime \prime}$, where i_{2}, \ldots, i_{n} is any permutation of $2, \ldots, n$.
(iv) If a and $b \varepsilon G^{\prime}, c \varepsilon G^{\prime \prime}$ and $a_{1}, a_{2}, \ldots, a_{n} \varepsilon G$ then
$\left[a b c, a_{1}, a_{2}, \ldots, a_{n}\right]$
$\equiv\left[a, a_{1}, a_{2}, \ldots, a_{n}\right]\left[b, a_{1}, a_{2}, \ldots, a_{n}\right] \bmod G^{\prime \prime}$.
(v) If $a, b, c, a_{1}, a_{n}, \ldots, a_{n} \varepsilon G$ then
$\left[a, b, c, a_{1}, a_{2}, \ldots, a_{n}\right] \equiv\left[b, c, a, a_{1}, a_{2}, \ldots, a_{n}\right]^{-1}$.
$\left[c, a, b, a_{1}, a_{2}, \ldots, a_{n}\right]^{-1}$
$\equiv\left[c, b, a, a_{1}, a_{2}, \ldots, a_{n}\right]\left[c, a, b, a_{1}, a_{2}, \ldots, a_{n}\right]^{-1}$
$\equiv\left[b, c, a, a_{1}, a_{2}, \ldots, a_{n}\right]^{-1}\left[a, c, b, a_{1}, a_{2}, \ldots, a_{n}\right]$
$\equiv\left[c, b, a, a_{1}, a_{2}, \ldots, a_{n}\right]\left[a, c, b, a_{1}, a_{2}, \ldots, a_{n}\right]$ $\bmod G^{\prime \prime}$.
(vi) If $a_{1}, a_{2}, \ldots, a_{n} \varepsilon G$ then
(a) $\left[a_{1}, a_{2}, \ldots, a_{i} ; a_{i+1}, \ldots, a_{n}\right]$
$\equiv\left[a_{1}, a_{2}, \ldots, a_{i}^{-1}, a_{i+1}, \ldots, a_{n}\right]^{-1}$.
$\left[a_{1}, a_{2}, \ldots, a_{i}^{-1}, a_{i}, a_{i+1}, \ldots, a_{n}\right]^{-1} \bmod G \prime$ for $2 \leq i \leq n$.
(B) $\left[a_{1}, a_{2}, \ldots, a_{n}\right] \equiv\left[a_{1}^{-1}, a_{2}, \ldots, a_{n}\right]^{-1}$.

$$
\left[a_{1}^{-1}, a_{2}, a_{1}, a_{3}, \ldots, a_{n}\right]^{-1} \bmod G " .
$$

Proof: (i), (ii) and (iii) are well known.
(iv) is easy by induction on n.
(v) is just a combination of (i), (ii) and (iv).
(vi) comes from the songtiences

$$
\begin{aligned}
& {[x, y] \equiv\left[x^{-1}, y\right]^{-1}\left[x^{-1}, y, x\right]^{-1} \quad \bmod C^{\prime \prime}} \\
& {[x, y] \equiv\left[x, y^{-1}\right]^{-1}\left[x, y^{-1}, y\right]^{-1} \quad \bmod C^{\prime \prime}}
\end{aligned}
$$

Lemma 4.2 below is due to Ridley [13].
Lemma 4.2: G any group, a, b and $c \varepsilon G^{\prime} e, f \varepsilon G$, then
(i) $\left[a^{-1}, b\right] \equiv[a, b]^{-1} \equiv\left[a, b^{-1}\right], \bmod \left(G^{\prime}\right)_{3}$.
(ii) $\left[a^{\dot{e}}, b^{f}\right] \equiv\left[a^{e f^{-1}}, b\right], \bmod \left[G^{\prime \prime}, G\right]$.
(iii) $[a b, c] \equiv[a, c][b, c], \bmod \left(G^{\prime}\right)_{3}$.
(iv) $\left[a^{b}, c\right] \equiv[a, c], \bmod \left(G^{\prime}\right)_{3} . \quad$.
(v) $\quad[a, e, b] \equiv\left[a,\left[b, e^{-1}\right]\right] \bmod \left[G^{\prime \prime}, G\right]$.

Proof: (i), (iii) and (iv) are clear.
For (ii):- $\left[a^{e}, b^{f}\right]=\left[a^{e f^{-l}}, b\right]^{f}$
$=\left[a^{e f^{-1}}, b\right]\left[a^{e f^{-1}}, b, f\right] \equiv\left[a^{e f^{-1}}, b\right] \bmod [G ", G]$
For $(v):-\quad[a, e], b] \fallingdotseq=\left[a^{-1} a^{e}, b\right]$

$$
\begin{array}{rlr}
\equiv\left[a^{-1}, b\right]\left[a^{e}, b\right] \text { from (iii) } \\
& \equiv\left[a, b^{-1}\right]\left[a, b^{e^{-1}}\right] & \text { from (i) and (ii) } \\
& \equiv\left[a, b^{-1} b^{e^{-1}}\right] & \text { from (iii) } \\
& \equiv\left[a,\left[b, e^{-1}\right]\right] . &
\end{array}
$$

Let \ddot{G} be any group generated by X (countable). Let
$a=\left[x_{i_{1}}{ }^{\varepsilon} i_{l}, x_{i_{2}}{ }^{\varepsilon} i_{2}, \ldots, x_{i_{n}}{ }^{\varepsilon}{ }_{n}\right]$ be a commutator in G, then
. at $x_{i k}$
we say the sign of $x_{i_{j}}$ talies in a hif $x_{i} \neq \dot{x}_{i_{k}}$ \therefore or if $x_{i}=x_{i_{k}}$ and $\varepsilon_{i_{j}}=\varepsilon_{i_{k}}$ for $l \leq k \leq n$. Otherwise we say the sign of x_{i} does not tally.
Lemma 4.3: Let $a=\left[x_{i_{1}}{ }^{\varepsilon_{i_{1}}}, x_{i_{2}}{ }^{\varepsilon_{i_{2}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right] \neq 1$ where the signs of $x_{i_{1}}, \ldots, x_{i_{n-1}}$ tally, and $i_{3} \leq i_{4} \leq \cdots \leq i_{n-1}$. Then a is a product modulo $G^{\prime \prime}$ of commutators of the form $b=\left[x_{j_{1}}{ }^{n_{j}} 1, x_{j_{2}}{ }^{\eta_{j}}, \ldots, x_{j_{m}}{ }^{n_{j}}{ }_{m}\right.$, where $j_{1}=i_{1}, j_{2}=i_{2}, j_{3} \leq j_{4}<-\cdots \leq j_{m}$ and the sign of $\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}$ tallies for $\mathrm{l} \leq \mathrm{k} \leq \mathrm{m}$, and also for every s , $\mathrm{l} \leq \mathrm{s} \leq \mathrm{n}$, $i_{s}=j_{k}$ for some. $k, 1 \leq k \leq m$.

Proof: If $i_{n} \neq i_{k}$ for any $k, l \leq k \leq n-l$ or if $i_{n}=i_{k}$ and $\varepsilon_{i_{m}}=\varepsilon_{i_{k}}$ for any $k \quad l \leq k \leq n$ then by Lemma 4.1 we are through. If $i_{n}=i_{k}$ and $\varepsilon_{i_{n}}=-\varepsilon_{i_{k}}$ for some k, $1 \leq k \leq n-1$ then we proceed by induction on the number to of times i_{n} occurs amongst $i_{1}, i_{2}, \ldots, i_{n-1}$. If $t=l$ Lemma 4.1 (iii) and (vi) gives the result. If $t>1$ then Lemma 4.1 (iii) and (vi) shows that a is a product mod G" of a commutator of the required type and one of the same form as a but where i_{n} occurs less than t times amongst the indices $i_{1}, i_{2}, \ldots, i_{n-1}$.
Lemma 4.4: Let $a=\left[x_{i_{1}}{ }^{i_{1}}, x_{i_{2}}{ }^{\varepsilon} i_{2}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right]$, with $n \geq 4, i_{3} \leq i_{4} \leq \cdots \leq i_{n-1}$ and the sign tallies of $x_{i_{k}}$

for $3 \leq \mathrm{k} \leq \mathrm{n}-1$. Then a is a product modulo $\mathrm{G}^{\prime \prime}$

of commutators of the form
$b=\left[x_{i_{1}}, x_{i_{2}}, x_{j_{3}}{ }^{n_{j}}, \ldots, x_{j_{m}}{ }^{n_{j}}\right]$ with $j_{3} \leq j_{4} \leq \cdots \leq j_{m}$,
the sign of $x_{j_{t}}$ tallies for $3 \leq t \leq m$ and for every s, $3 \leq s \leq m, i_{s}=j_{k}$ for some $k, 3 \leq k \leq m$.

Proof: The proof is similar to the proof of the previous Lemma.
Lemma. 4.5: Let $a=\left[x_{i_{1}}{ }^{\varepsilon} i_{1}, x_{i_{2}}{ }^{\varepsilon} i_{2}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right] \neq 1$.
Then a is a product modulo $G^{\prime \prime}$ of commutators of the form $b=\left[x_{j_{1}}{ }^{\eta} j_{1}, x_{j_{2}}{ }^{\eta} j_{2}, \ldots, x_{j_{m}}{ }^{\eta} j_{m}\right]$, with $j_{1}=i_{1}, j_{2}=i_{2}$, $j_{3} \leq j_{4} \leq \cdots \leq j_{m}$, the sign of $x_{j_{t}}$ tallies for $1 \leq t \leq m$, and for every $i_{s}, l \leq s \leq n$, $i_{s}=j_{k}$ for some $k, 3 \leq k \leq m$.

Proof: We use induction on n. Case $n=2$ is clear. Suppose $\mathrm{n} \geq$ 3. By the induction hypothesis $\left[x_{i_{1}} .{ }^{\varepsilon} i_{1},{ }_{x_{i}}{ }^{\varepsilon} i_{2}, \ldots, x_{i_{n-1}}{ }^{\varepsilon} i_{n-1}\right]$ is a product modulo G " of commutators of the required form. Hence by Lemma 4.1 we need only show that $\left[x_{j_{1}}{ }^{\eta_{j}}{ }_{1}, x_{j_{2}}{ }^{\eta_{j}}, \ldots, x_{j_{m}}{ }^{n_{j}}, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right.$ with $\left[x_{j_{1}}{ }^{n} j_{1}, x_{j} \cdot{ }^{n} j_{2}, \ldots, x_{j}{ }^{n} j_{m}\right]$ a commutator of the required form, is a product of commutators of the required form. Lemma 4.3 does this for us.
$\frac{\text { Lemma } 4.6}{{ }^{n}{ }_{i}}{ }^{n}{ }^{j}{ }_{j}$. Let $a=\left[\left[x_{i_{1}}{ }^{\varepsilon} i_{1}, x_{i_{2}}{ }^{\varepsilon} i_{2}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n]}\right.\right.$, $\left.\left[x_{i}{ }^{n}, x_{j}{ }^{n}{ }^{j}\right]\right]$. Then a is a product modulo $\left[G^{n}, G\right]$ of
commutators of the form $b=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{j_{3}}{ }^{n_{j}}, \ldots\right.\right.$,
$\left.\left.x_{j_{m}}{ }^{n} j_{m}\right],\left[x_{i}, x_{j}\right]\right]$ where (i) $j_{3} \leq \cdots \leq j_{m}$
(ii) if $j_{k}=j_{t}$ for $3 \leq k, t \leq m$ then $\eta_{j_{k}}={ }^{n} j_{t}$
(iii) for every $s, 3 \leq s \leq n$, $i_{s}=j_{t}$ for some $t, 3 \leq t \leq m$. Proof: By Lemma 4.1 (iii) and (vi), and Lemma 4.4 we can assume $\varepsilon_{i_{1}}=+1, \varepsilon_{i_{2}}=+1, i_{3} \leq i_{4} \leq \cdots \leq i_{n}$ and if $i_{t}=i_{s}$ for $l \leq t, s \leq n$ then $\varepsilon_{i_{t}}=\varepsilon_{i_{s}}$. If $n_{i}=-1$ then $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}{ }^{-1}, x_{j}{ }^{\eta}\right]\right]$

$$
\begin{aligned}
\equiv & {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}},{ }_{n},\left[x_{i}, x_{j}{ }^{\eta_{j}}\right]\right]^{-1}\right.} \\
& {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i}, x_{j}{ }^{\eta}, x_{i}{ }^{-1}\right]^{-1}\right.\right.}
\end{aligned}
$$

$=p q$ say
$q=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}, x_{i}\right],\left[x_{i}, x_{j}{ }^{n}{ }_{j}\right]\right]$
by Lemma 4.2.
By Lemma 4.4 we can now assume $n_{i}=+1$. Similarly we can deal with $\eta_{j}=-1$.
The reader is advised to be very familiar with the last six Lemmas before proceeding. We also introduce some further terminology. We say an amalgamation of $x_{i_{k}}$ is necessary in the commutator $\left[x_{i_{1}}{ }^{\varepsilon} i_{1}, x_{i_{2}}{ }^{\varepsilon} i_{2}, \ldots, x_{i_{n}}{ }^{\varepsilon}{ }_{n}{ }^{1}\right.$] if the sign of
$x_{i_{k}}$ does not tally in this commutator (we have to apply Lemma 4.5 in order to express the commutator modulo $G^{\prime \prime}$ as a product of commutators in which the sign of $x_{i_{k}}$ does tally). From now on F is the free group on X and as usual $\mathscr{A}=\operatorname{Ker}(\mathbb{Z} F \rightarrow \mathbb{Z})$, and $\sigma=\operatorname{Ker} \mathbb{Z} F \rightarrow \mathbb{Z}\left(F / F^{\prime}\right)$. Free generators of F^{\prime} are derived in Gruenberg [5] Theorem 5.2 namely the set, W consisting of commutators of the form

- $\left[x_{i_{1}}{ }^{\varepsilon_{i}}{ }_{1}, x_{i_{2}}{ }^{\varepsilon_{i_{2}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right]$ with $i_{1}>i_{2}, i_{2} \leq i_{3} \leq \cdots \leq i_{n}$ and the sign of $\mathrm{x}_{\mathrm{i}_{\mathrm{k}}}$ tallies for all $\mathrm{k}, \mathrm{l} \leq \mathrm{k} \leq \mathrm{n}$. Hence by Theorem $\mathbf{l} .3$, or is free as right (or left) $\underset{\sim}{\mathbb{Z}} \mathrm{F}$-module on $W-1, \Rightarrow$ by Lemma 1.4 for is free as right (on left) $\mathbb{Z} F$-module on ${ }^{\prime}(X-1)(W-1), \Rightarrow \neq \sigma / f o q \notin$ is free abelian on ($\mathrm{X}-\mathrm{I}$)W-I) by Lemma 1.4 Corollary. This latter fact is crucial for what is to follow. We shall also say that an amalgamation of $x_{i_{k}}$ is necessary in $a=\left(x_{i}-I\right)$
$\left(\left[x_{i_{l}}{ }^{\varepsilon_{i_{1}}, x_{i_{2}}}{ }^{\varepsilon_{i_{2}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right]-1\right)$ if the sign of $x_{i_{k}}$ does not tally and we have to apply Lemma 4.5 in order to express the commutator of a as a product, modulo F ", of commutators in which the sign of $\mathrm{x}_{\mathrm{i}_{\mathrm{k}}}$ tallies and hence to express a as a sum modulo θ or θ of terms of the form $b=\left(x_{i}-1\right)$ $\left(\left[x_{j}{ }^{n_{j}}{ }_{1}, x_{j_{2}}{ }^{\eta_{j}}{ }_{2}, \ldots, x_{j_{m}}{ }^{n} j_{m}\right]-1\right)$ where now the sign of $\mathrm{x}_{\mathrm{i}_{\mathrm{k}}}$ in b tallies.

We introduce an ordering on the basic 2-commutators by

$$
\left[x_{i}, x_{j}\right]<\left[x_{k}, x_{\ell}\right] \text { if } j<\ell \text { and }
$$

$$
\left[x_{i}, x_{j}\right]<\left[x_{k}, x_{j}\right] \text { if } i<k .
$$

(This ordering is valid in any group for which
$\left[x_{i}, x_{j}\right]=\left[x_{k}, x_{\ell}\right] \Rightarrow i=k$ and $\left.j=\ell.\right)$
The following proposition derives generators for $\mathrm{F}^{\prime \prime} /\left[\mathrm{F}^{\prime \prime}, \mathrm{F}\right]$ which later turn out to be free generators. Note that frequent use of Lemmas 4.1 and 4.2 will be made and we shall at times use these Lemmas without reference. Proposition 4.7: $F^{\prime \prime} /[F ", F]$ is generated by the double commutators of the form $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right]$ with $\varepsilon_{i_{k}}=+1$ subject to the following conditions:
(i) $i_{1}>i_{2} \quad i_{2} \leq i_{3} \leq \cdots \leq i_{n}$

$$
i>j . \quad j \leq i_{3} \leq \cdots \leq i_{n}
$$

(ii) If $i_{\alpha}=i_{\beta}$ for $3 \leq \alpha, \beta \leq n$ then $\varepsilon_{i_{\alpha}}=\varepsilon_{i_{\beta}}$.
(iii) $\left[x_{i_{1}}, x_{i_{2}}\right] \leq\left[x_{i}, x_{j}\right]$ in the ordering of the basic 2-commutators (ordered as shown above) and if $\left[x_{i_{1}}, x_{i_{2}}\right]=\left[x_{i}, x_{j}\right]$ then $\varepsilon_{i_{3}}=+1$.
(iv) (a) If $i_{2}=j \neq i_{3}$ then either $i_{1} \leq \dot{i}_{3}$ or else $i_{3}<i_{1} \leq i \leq i_{4}, \varepsilon_{i_{3}}=+1$.
(B) (If $\left.i_{2}=j \neq i_{3}\right)$ and $i_{1}=i_{3}<i=i_{4}$ then $\varepsilon_{i_{3}}=+1$ (For this condition (iv) if an index is not applicable to the double commutator just omit it from the condition.)

Proof: Let $G=F /\left[F^{\prime \prime}, F\right]$.
Then G^{\prime} is generated by $\left\{\left[x_{i}, x_{j}\right]^{\alpha} / i>j, \alpha \varepsilon\right.$ G\}. Hence $G^{\prime \prime}$ is generated by $\left\{\left[x_{i_{1}}, x_{i_{2}}\right]^{\alpha},\left[x_{i} ; x_{j}\right]^{\beta}\right] / i_{1}>i_{2}, i>j$, α and $\beta \in$ G\}. By Lemma 4.2
$\left[\left[x_{i_{1}}, x_{i_{2}}\right]^{\alpha},\left[x_{i}, x_{j}\right]^{\beta}\right]=\left[\left[x_{i_{1}}, x_{i_{2}}\right]^{\alpha \beta},\left[x_{i}, x_{j}\right]\right]$

It is easy to see using $[x, y z]=[x, z][x, y][x, y, z]$ that $\left[x_{i_{1}}, x_{i_{2}}\right]^{x_{i_{3}}} \ldots x_{i_{m}}$ is a product of commutators of the form
and if $j_{k}=j_{s}$ then $\varepsilon_{j_{k}}=\varepsilon_{j_{s}}$. Hence $G^{\prime \prime}$ is generated by $\left\{\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right],\left[x_{i}, x_{j}\right] / i_{i}>i_{2}\right.\right.$,

$$
\begin{aligned}
& i>j, i_{3} \leq \cdots \leq i_{n} \text { and if } i_{k}=i_{s} \text { then } \varepsilon_{i_{k}}=\varepsilon_{i_{s}} \text { for } \\
& 3 \leq k \leq n \text { and } 3 \leq s \leq n\} \text {. Suppose } i_{2}>i_{3} \text { then } \\
& {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right]} \\
& =\left[\left[x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{1}}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots,{ }_{x_{i_{n}}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right] . \\
& {\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right] .}
\end{aligned}
$$

$=$ pa say.
Note that $i_{2}>i_{3}$ and hence $i_{1}>i_{3}$. Now apply. Lemma 4.6 to write p and q as a product of commutators of the form $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right], i_{1}>i_{2}$, $i_{2} \leq i_{3} \leq \cdots \leq i_{n}, i>j$ and if $i_{k}=i_{s}, 3 \leq k, s \leq n$ then $\varepsilon_{i_{k}}=\varepsilon_{i_{s}}$. Hence $G^{\prime \prime}$ is generated by commutators of this form. If $j>i_{3}$ then

$$
\begin{aligned}
& {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\left.\varepsilon_{i_{n}}\right]},\left[x_{i}, x_{j}\right]\right] .\right.} \\
& \quad=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\left.\varepsilon_{i_{n}}\right]},\left[x_{i}, x_{j}, x_{i_{3}}{ }^{\left.\left.-\varepsilon_{i_{3}}\right]\right]}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right],\left[x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, x_{i}\right]\right] . \\
& {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}, \quad\left[x_{i}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, x_{j}\right]\right]\right.} \\
& =\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}, x_{i}{ }^{-1}\right],\left[x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}\right]\right] . \\
& \cdot\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}, x_{j}{ }^{-1}\right],\left[x_{i}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}{ }\right]\right.
\end{aligned}
$$

$=$ pq say. Apply Lemma 4.6 to p and q to show that $G "$ is generated by $\left\{\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i}, x_{j}\right]\right] /\right.$ $i_{1}>i_{2}, i_{2} \leq i_{3} \leq \cdots \leq i_{n}, i>j, j \leq i_{3}$ and if $i_{k}=i_{s}$ for $3 \leq k, s \leq n$ then $\left.\varepsilon_{i_{k}}=\varepsilon_{i}\right\}$.
By Lemma 4.2 $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i}, x_{j}\right]\right]\right.$
$=\left[\left[x_{i_{1}}, x_{i_{2}}\right],\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}\right]\right]$
$=\left[\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}},\left[x_{i_{1}}, x_{i_{2}}\right]\right]^{-1}\right.$

Hence we can assume condition (iii).
We are left to show condition (iv). First of all we show condition (iv) (a). Let $a=$
$\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n]},\left[x_{i}, x_{i_{2}}\right]\right], i_{2} \neq i_{3}\right.$
and suppose $i_{1}>i_{3}$. Suppose further i_{3} is a repeated entry of a. Then clearly for $n=3, i_{1} \leq i_{3}$. (Note that $i_{i} \leq i$ from condition (iii).) So we consider $i_{1}>i_{3}=i_{4}$. Then

$$
\begin{aligned}
& a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{i_{2}}\right]\right] \\
& =\left[\left[x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{1}}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right], \quad\left[x_{i}, x_{i_{2}}\right]\right] . \\
& {\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{\varepsilon}{ }_{i_{n}}\right],\left[x_{i}, x_{i_{2}}\right]\right]}
\end{aligned}
$$

$=$ bc say.
b is a product of commutators of the correct form by Lemma 4.6. $c=\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{i_{2}}, x_{i_{4}}{ }^{-\varepsilon} i_{4}\right]\right]$ $=\left[\left[x_{i_{1}}, x_{i_{j}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i_{4}}{ }^{-\varepsilon} i_{4}, x_{i_{2}}, x_{i}\right]\right]$ $\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, x_{i_{2}}\right]\right]$ $=$ de say.
$d=\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right],\left[x_{i_{4}}{ }^{-\varepsilon} i_{4}, x_{i_{2}}\right]_{2}\right]$ $=\left[\left[x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right],\left[x_{i_{4}}{ }^{-\varepsilon} \cdot i_{4}, x_{i_{2}}\right]\right]^{-1}$

$$
\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right],\left[x_{i_{4}}{ }^{-\varepsilon} i_{4}, x_{i_{2}}\right]\right]
$$

$=q^{-1} p$ say.
Apply (A) and Lemma 4.6 to p and q to express them as products of commutators satisfying (i), (ii), (iii) and (iv).
$e=\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{2}}{ }^{-1}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\left.\varepsilon_{i_{n}}\right],\left[x_{i}, x_{i_{4}}\right.}{ }^{-\varepsilon_{i_{4}}}{ }\right]\right.$
$=\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i}, x_{i_{4}}{ }^{\left.\left.-\varepsilon_{i_{4}}\right]\right]}{ }^{-1}\right.\right.\right.$
$\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}{ }^{-1}, x_{i_{5}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{4}}{ }^{\left.\left.-\varepsilon_{i_{4}}\right]\right]}{ }^{-1}\right.\right.$
$=s^{-1} t^{-1}$ say .
$s^{-1}=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}\right]\right]^{-1}\right.$
$\left[\left[x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}\right]\right]\right.$
and we apply Lemma 4.6 again to these to express them as products of commutators satisfying (i), (ii), (iii) and (iv) since $i_{2} \neq i_{3}$.
$t^{-1}=\left[\left[x_{i}, x_{i_{4}}{ }^{-\varepsilon} i_{4}, x_{i_{2}}, x_{i_{5}}{ }^{-\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{-\varepsilon} i_{n}\right],\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}\right]\right]$
and proceed as with s^{-1} just above to show t^{-1} is a product of commutators satisfying (i), (ii), (iii) and (iv). We shall refer to this process of dealing with e as 'amalgamating' $x_{i_{2}}$.

Let $a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{2}}\right]\right]$
$i_{3} \neq j, i_{1}>i_{3}$, and suppose i_{3} is not a repeated entry.
By the same argument as that for the case of i_{3} repeated we can take $i_{1} \leq i_{4}$: Suppose $i_{4}<i$. Then
$a=\left[\left[x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{1}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{i_{2}}\right]\right]$

$$
\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}^{\prime}{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{2}}\right]\right]
$$

$=b c$ say.
Apply Lemma 4.6 and (A) to b to express it as a product of commutators of the correct form.

$$
d=\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right],\left[x_{i_{4}}^{-\varepsilon_{i_{4}}}, x_{i_{2}}\right]\right]
$$

$$
\begin{aligned}
& c=\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}} .{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{2}}, x_{i_{4}}{ }^{\left.\left.-\varepsilon_{i_{4}}\right]\right]}\right.\right. \\
& =\left[\left[x_{i_{1}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right], \quad\left[x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, x_{i_{2}}, x_{i}\right]\right] \\
& {\left[\left[x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i_{n}}\right],\left[x_{i}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, x_{i_{2}}\right]\right]}\right.\right.} \\
& =\text { de say. }
\end{aligned}
$$

$=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right],\left[x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, x_{i_{2}}\right]\right]$
$\left[\left[x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon} i_{5}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right],\left[x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, x_{i_{2}}\right]\right]$

Apply Lemma 4.6 and (A) to these to express them as products of commutators satisfying (i), (ii), (iii) and (iv).
e can be dealt with by amalgamating $\mathrm{x}_{\mathrm{i}_{2}}$.
Hence we have in
$a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}},{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{i_{2}}\right]\right],\left(i_{2} \neq i_{3}\right)$
either $i_{1} \leq i_{3}$ or else $i_{3}<i_{1} \leq i \leq i_{4}$. Suppose in a $i_{3}<i_{1} \leq i \leq i_{4}$ and $\varepsilon_{i_{3}}=-1$. Then
$a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}, \cdot\left[x_{i}, x_{i_{2}}\right]\right]^{-1}\right.$
$\left[\left[x_{i_{1}}, \cdot x_{i_{2}}, x_{i_{3}}, x_{i_{3}}{ }^{-1}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{2}}\right]\right]^{-1}$
$=b^{-1} c^{-1}$ say .
b^{-1} is okay.
$c^{-1}=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}{ }^{\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n]},\left[x_{i}, x_{i_{2}}, x_{i_{3}}\right]\right]\right.$
$=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}{ }^{\varepsilon}{ }_{i_{4}}, \ldots, x_{i_{n}}{ }^{\varepsilon}{ }_{i_{n}}\right],\left[x_{i_{3}}, x_{i_{2}}, x_{i}\right]\right]$
$\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{3}}, x_{i_{2}}\right]\right]$
and proceed as for the case above when i_{3} is a repeated entry. We now show (iv) (β). Suppose
$a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\left.\varepsilon_{i_{n}}\right]},\left[x_{i}, x_{i_{2}}\right]\right]\right.$
with $i_{1}=i_{3}<i=i_{4}$ and $\varepsilon_{\dot{i}_{3}}=-1$. Then
$a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\left.\varepsilon_{i_{n}}\right]},\left[x_{i}, x_{i_{2}}, x_{i_{1}}\right]\right]\right.$

$$
\begin{aligned}
= & {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i_{n}}\right],\left[x_{i_{1}}, x_{i_{2}}, x_{i}\right]\right]}\right.\right.} \\
& {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i_{n}}\right],\left[x_{i}, x_{i_{1}}, x_{i_{2}}\right]\right]}\right.\right.}
\end{aligned}
$$

$=\mathrm{bc}$ say.
b can be expressed as a product of commutators of the required type as before.
$c=\left[\left[x_{i_{4}}{ }^{\varepsilon} i_{4}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n]},\left[x_{i}, x_{i_{1}}, x_{i_{2}}\right]\right]\right.$
$\left[\left[x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, x_{i_{1}}, x_{i_{2}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\left.\varepsilon_{i_{n}}\right]},\left[x_{i}, x_{i_{1}}, x_{i_{2}}\right]\right]\right.$
$=d e^{-1}$ say.
e^{-1} can be dealt with by amalgamating $x_{i_{2}}$.

$$
\begin{aligned}
& d=\left[\left[x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i_{n}}\right],\left[x_{i}, x_{i_{2}}, x_{i_{1}}\right]\right]}\right.\right. \\
& {\left[\left[x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i_{n}}\right],\left[x_{i_{1}}, x_{i_{2}}, x_{i}\right]\right]^{-1}}\right.\right.}
\end{aligned}
$$

$=f g^{-1}$ say.
g is a product of commutators of the required type by a similar argument as before.

$$
\begin{gathered}
f=\left[\left[x_{i_{4}}{ }_{i_{i_{4}}}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{\varepsilon_{i_{5}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i_{n}}\right],\left[x_{i}, x_{i_{2}}\right]\right]}{ }^{-1}\right.\right. \\
{\left[\left[x_{i}, x_{i_{2}}, x_{i_{1}}, x_{i_{5}}{ }^{-\varepsilon_{i_{5}}}, \ldots, x_{i_{2}}{ }^{-\varepsilon_{i}}{ }_{n}\right],\left[x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, x_{i_{2}}\right]\right]}
\end{gathered}
$$

and these are products of commutators of the required type (note $i=i_{4}$). This completes the proof.

Lemma 4.8: If a and $b \varepsilon F, C \varepsilon F$ ' then
$(a-1)(b-1)(c-1) \equiv(a-1)\left(\left[c, b^{-1}\right]-1\right) \bmod f o r f$
Proof: $\quad(a-1)\left(\left[c, b^{-1}\right]-I\right)$
$=(a-1)\left\{c^{-1} b\left(c b^{-1}-b^{-1} c\right)\right\}$
$=(a-1)\left\{c^{-1} b\left((c-1)\left(b^{-1}-1\right)-\left(b^{-1}-1\right)(c-1)\right)\right\}$
$\equiv-(a-1) c^{-1} b\left(b^{-1}-1\right)(c-1) \bmod$ for f
$=-(a-1) c^{-1}(1-b)(c-1)$
$=(a-1) c^{-1}(b-1)(c-1)$
$\equiv(a-1)(b-1)(c-1) \bmod$ for f

Lemma 4.9: $a_{1}, a_{2}, \ldots, a_{n} \varepsilon F$ then
$\left[a_{1}, a_{2}, \ldots, a_{n}\right]-1 \equiv\left\{\left(a_{1}-1\right)\left(a_{2}-1\right)-\left(a_{2}-1\right)\left(a_{1}-1\right)\right\}$
$\left\{\left(a_{3}-1\right) \ldots\left(a_{n}-1\right)\right\} \bmod$ for.
Proof: $\left[a_{1}, a_{2}\right]-1=a_{1}^{-1} a_{2}^{-1}\left(a_{1} a_{2}-a_{2} a_{1}\right)$

$$
\begin{aligned}
& =a_{1} a_{2}-a_{2} a_{1} \bmod \text { for } \\
& =\left(a_{2}-1\right)\left(a_{2}-1\right)-\left(a_{2}-1\right)\left(a_{1}-1\right)
\end{aligned}
$$

Hence it is true for $n=2$.
We now proceed by induction on n.

$$
\begin{aligned}
& {\left[a_{1}, a_{2}, \ldots, a_{n}\right]-1=\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]^{-1} a_{n}-1} \\
& \left\{\left(\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]-1\right)\left(a_{n}-1\right)-\left(a_{n}-1\right)\left(\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]-1\right)\right\} \\
& \equiv\left(\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]-1\right)\left(a_{n}-1\right)-\left(a_{n}-1\right)\left(\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]-1\right) \\
& \equiv\left\{\left(a_{1}-1\right)\left(a_{2}-1\right)-\left(a_{2}-1\right)\left(a_{2}-1\right)\right\}\left(a_{3}-1\right) \ldots\left(a_{n}-1\right)
\end{aligned}
$$

by the inductive hypothesis./
Let $a=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right],\left[x_{i}, x_{j}\right]\right]$
be a generator of $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ as in Proposition 4.7. Call $\left[x_{i_{1}}, x_{i_{2}}\right]$ and $\left[x_{i}, x_{j}\right]$ the heads of a and call $\left[x_{i_{1}}, x_{i_{2}}\right]$ the leading head of a. For the following proposition a 'generator', with inverted commas, will mean a generator as in Proposition 4.7 in order to distinguish it from the terms free generators of $f, o \pi$, or $f o r$.

Proposition 4.10: ($1+\& 0 \%$) $\cap F=\left[F^{\prime \prime}, F\right]$.
Proof. First of all we show $\left[F^{\prime \prime}, F\right] \leq(1+$ for $) \cap \mathrm{F}$.
Now $F^{\prime \prime} \leq 1+o \Omega^{2}$. Let $a \varepsilon F^{\prime \prime}, b \varepsilon F$ then
$[a, b]=1+a^{-1} b^{-1}\{(a-1)(b-1)-(b-1)(a-1)\} \varepsilon 1+\beta \sigma \beta$,
since $a-1 \varepsilon C L^{2}$ and $b-1 \varepsilon \hat{\theta}$.
Suppose d $\varepsilon(1+f o i f) \cap$ F. Then $d \varepsilon$ F" by Theorem I. 6.
Suppose d $\ddagger\left[F^{\prime \prime}, F\right]$.

$$
d \equiv \pi\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right]^{\alpha}
$$

$\bmod [F \mid, F], \alpha_{i} E \cdot \mathbb{Z}-\{0\},(b y$ Proposition 4.7) where the commutators of the product are as in the Proposition.

Call this product (A).
Since $\left[F^{\prime \prime}, \mathrm{F}\right] \leq 1+$ for, and $d \in 1+$ for θ,
$\Rightarrow \pi\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }_{i_{n}}\right],\left[x_{i}, x_{j}\right]\right]^{\alpha_{i}}$
$\varepsilon \quad 1+\operatorname{toc} \theta$
$\Rightarrow \Sigma \alpha_{i}\left(\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right]-1\right)$

- forb

Let $a=\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon}{ }_{i_{n}}\right]$ and $b=\left[x_{i}, x_{j}\right]$.
All congruences, unless otherwise stated, will be mod fork.

$$
\begin{aligned}
{[a, b]-1 } & =a^{-1} b^{-1}\{(a-1)(b-1)-(b-1)(a-1)\} \\
& \equiv(a-1)(b-1)-(b-1)(a-1)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv\left\{\left(x_{i_{1}}-1\right)\left(x_{i_{2}}-1\right)-\left(x_{i_{2}}-1\right)\left(x_{i_{1}}-1\right)\right\}\left\{\left(x_{i_{3}}{ }^{\varepsilon_{i_{3}}}-1\right) \ldots\right. \\
& \left.\left(x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}-1\right)\right\}\left(\left[x_{i}, x_{j}\right]-1\right)-\left\{\left(x_{i}-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(x_{i^{\prime}}-1\right)\right\} \\
& \left(\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\left.\left.\varepsilon_{i}\right]-1\right)}\right.\right.
\end{aligned}
$$

by Lemma 4.9.

$$
\begin{aligned}
& \equiv\left(x_{i_{1}}-1\right)\left(\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon} i_{n}, x_{i_{2}}{ }^{-1}\right]-1\right) \\
& -\left(x_{i_{2}}-1\right)\left(\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}, x_{i_{1}}{ }^{-1}\right]-1\right) \\
& -\left(x_{i}-1\right)\left(\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}, x_{j}{ }^{-1}{ }^{j}-1\right)\right. \\
& +\left(x_{j}-1\right)\left(\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }_{i_{3}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right]-1\right) \\
& =\beta_{i} \text { say (by Lemmas } 4.8 \text { and 4.9). }
\end{aligned}
$$

We can now express the commutators in the expression for β_{i} as a product of free generators of F^{\prime} modulo $F^{\prime \prime}$ using Lemmas 4.1 and 4.5, and hence we can express β_{i} as the sum of free generators of for modulo forf. (We note that for / for f is free abelian on ($\mathrm{X}-1$) $(\mathrm{W}-1)$ by previous remarks.) We indicate how this is done for
$s=\left(x_{i_{1}}-1\right)\left(\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}, x_{i_{2}}{ }^{-1}\right]-1\right)$.

The others are similar.
Case (a): $i_{2}<j$. Then
$\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}, x_{i_{2}}{ }^{-1}\right]$
$\equiv\left[x_{i}, x_{i_{2}}{ }^{-1}, x_{j}, \dot{x}_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i}}{ }_{n}\right]$.

$$
\left[x_{j}, x_{i_{2}}{ }^{-1}, x_{i}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}^{-\varepsilon_{i_{n}}}{ }^{-1}\right.
$$

modulo F', by Lemma 4.1.

We can now apply Lemma 4.5 to express the commutators on the right hand side as products of free generators of F^{\prime} (mod'E") and hence we can express s as a sum of free generators of $\& \subset=2$ modulo forf. There are a few things to note about this expression for s as a sum of free generators of for/forf.
(i) No index is lost; i.e., the free generators of for forf produced involve $i_{1}, i_{2}, \ldots, i_{n}, i, j$. (ii) The length of the commutator part of the free generator of \mathcal{G} does not exceed $n+1$. (iii) Distinct free generators of for are produced. (iv) The only time it is possible for the sign of x_{i} or x_{j} to be -1 in the commutator part of the free
generator of for is when an amalgamation (i.e., a reduction of the length) of x_{i} or x_{j} is necessary in s to order to express it as the sum of free generators of $\mathcal{\beta}$ or. (v) We shall be interested in the free generators of greatest length produced from s and we note that the commutator part of these have length at least $n-2$. . (In this particular case at least n-l but for general purposes at least $n-2$, e.g., for $t=\left(x_{i_{2}}-1\right)$. $\left(\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i}}{ }_{3}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}, x_{i_{1}}{ }^{-l}\right]-1\right)$; amalgamations of x_{i}, x_{j} and $x_{i_{l}}$ may be necessary. Note also for t that the commutator part of the free generators of for produced from t have X_{i} with a minus sign except when an amalgamation of $x_{i_{1}}$ is necessary.) (vi) The non-commutator part of the free generators of for come from entries of the heads of the 'generators' of (A). (vii) The entries of the head of the commutator part of. the free generators of for produced aiso come from the heads of the 'generators' of (A), and the first entry comes from a different head than $x_{i_{1}}$ does. Case (b): $i_{2}=j$. We need only apply Lemma 4.5. Notes (i) to (vii) hold in this case also.

Since for/for is free abelian on $(X-1)(W-1)$, for every free generator α of $f o r$ produced from the 'generators' of the
product (A) we must have its inverse produced from (A) as well. When we shall say 'look for an inverse for α ' we mean try to find a 'generator' from (A) which will produce an inverse for α. What we are going to do is choose a 'generator' : of greatest length from (A) and we look at the free generators it produces. We shall be particularly interested in the free generators of greatest length that it produces. We shall show that there is at least one free generator which does not have an inverse for it produced, thereby getting a contradiction and hence showing that our original assumption that $d \geqslant 1 \bmod [F ", F]$ is incorrect. We have four cases to consider: (α), (β), (γ) and (δ) below. We must consider case (γ) first.
(a). Suppose we can choose a 'generator'
$p=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}\right],\left[x_{i}, x_{j}\right]\right]$ of
greatest length with $i_{2}<j$. If no amalgamation of $x_{i_{i}}$ or
x_{j} is necessary in $t=\left(x_{i_{1}}-1\right)\left(\left[x_{i}, x_{j}, x_{i_{3}}{ }^{-i_{3}}, \ldots, x_{i_{n}}{ }_{n}\right.\right.$, $\left.x_{i_{2}}{ }^{-1}\right]$ - I) then look for an inverse for
$q=\left(x_{i_{1}}-1\right)\left(\left[x_{i}, x_{i_{2}}{ }^{-1}, x_{j}, x_{i_{3}}{ }^{-\varepsilon_{i}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i}}{ }_{n}\right]-1\right)$. By (vi) and (vii) $x_{i_{1}}$ and x_{i} must be entries of distinct heads of the 'generator'that produces an inverse for q; $x_{i_{2}}$ must be the second entry of the leading head by the
ordering but it cannot occur in the same head as x_{i} in order to produce an inverse for q. Hence the heads must be $\left[x_{i_{1}}, x_{i_{2}}\right]$ and $\left[x_{i}, x_{j}\right]$ with $\left[x_{i_{1}}, x_{i_{2}}\right]$ the leading head and (see the ordering of the indices) thus we see that there is no inverse for q. If an amalgamation of x_{j} but not x_{i} is necessary in t then look for an inverse for
$q=\left(x_{i_{1}}-1\right)\left(\left[x_{i}, x_{i_{2}}^{-1}, x_{j}{ }^{-1}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i}}{ }_{n}\right]-1\right)$ and noting (v) above we see as before there is no inverse. for q. If an amalgamation of x_{i} but not x_{j} is necessary in t (suppose $i=i_{k}$) then look for an inverse for $q=\left(x_{i_{1}}-1\right)$ $([x_{i}{ }^{-1}, x_{i_{2}}{ }^{-1}, x_{j}, \underbrace{x_{i_{3}}}_{\text {missing }}{ }^{-\varepsilon_{i}}{ }_{3}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i}}{ }_{n}]-1)$ and again we find (see (v)) there is no inverse for q. If amalgamations of both x_{i} and x_{j} are necessary in t then look for an inverse for
$q=\left(x_{i_{1}}-1\right)\left(\left[x_{i^{\prime}}^{-1}, x_{i_{2}}^{-1}, x_{j}^{-1}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}\right]-1\right)$ missing i_{k}
(where $i=i_{k}$) and as before find there is no inverse for q. Hence we have no 'generators' of greatest length of form p with $i_{2}<j$.
(β). Suppose we can choose'generators' of greatest length of the form $P=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}} \varepsilon_{i_{3}}, \ldots, x_{i_{n}} \varepsilon_{i_{n}}\right],\left[x_{i}, x_{j}\right]\right]$
with $i_{2}=j, i_{2}=i_{3}$ and $n \geq 3$.
If an amalgamation of x_{i} is not necessary in
$t=\left(x_{i_{1}}-1\right)\left(\left[x_{i}, x_{i_{2}}, x_{i_{3}}^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}, x_{i_{2}}{ }^{-1}\right]-1\right)$
and if $\varepsilon_{i_{3}}=+1$ then look for an inverse for
$q=\left(x_{i_{1}}-l\right)\left(\left[x_{i_{1}}, x_{i_{2}}{ }^{-1}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\left.\left.-\varepsilon_{i_{n}}\right]-1\right) .}\right.\right.$
$x_{i_{1}}$ and x_{i} must be entries of distinct heads by (vi) and (vii) and since the index i_{2} occurs more than once in q (note $i_{2}=i_{3}$) then the heads must be $\left[x_{i_{1}}, x_{i_{2}}\right]$ and $\left[x_{i}, x_{i_{2}}\right]$. If $i_{I}<i$ then $\left[x_{i_{1}}, x_{i_{i}}\right]$ is the leading head and noting that $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}{ }^{n},\left[x_{i}, x_{i_{2}}\right]\right.\right.$] does not give an inverse for q we find there is no inverse for q produced from any other generator. If $i_{1}=i$ then noting that $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}},\left[x_{i_{1}}, x_{i_{2}}\right]\right]\right.$ is not a generator when $\varepsilon_{i_{3}}=-1$ (see condition (iii) of proposition 4.7) and that $\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right]\right.$, [$\left.x_{i_{1}}, x_{i_{2}}\right]$] does not give an inverse for q, we find there is no inverse for q. If an amalgamation of x_{i} is not necessary in t and if $\varepsilon_{i_{3}}=-1$ look for an inverse for $\left(x_{i_{1}}-1\right)$ $\left(\left[x_{i}, x_{i_{2}}, x_{i_{3}}{ }^{-\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{-\varepsilon} i_{n}\right]-1\right)$ and again get a
contradiction. If an amalgamation of x_{i} is necessary in t and if $\varepsilon_{i_{3}}=+1$ look for an inverse for $\left(x_{i_{1}}-1\right)$

if an amalgamation of x_{i} is necessary and if $\varepsilon_{i_{3}}=-1$, look for an inverse for $\left(x_{i_{1}}-1\right)([x_{i}{ }^{-1}, x_{i_{1}}, \underbrace{\left.x_{i_{3}} \varepsilon_{i_{3}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right]}_{\text {missing } i_{k}}$

- l) (where $i=i_{k}$). In both cases we get a contradiction. Hence we may suppose there are no 'generators' of greatest length in the product (A) of the forms (α) or (β).
(γ). Suppose we can choose a 'generator' of greatest length of the form $p=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }_{i_{3}}, \ldots ; x_{i_{n}}{ }^{\varepsilon_{i}}{ }_{n}\right],\left[x_{i}, x_{j}\right]\right]$, with $i_{2}=j$ and $i_{2} \neq i_{3}$ and $i_{1}<i$. If $n=2$ look for an inverse for $\left(x_{i_{2}}-1\right)\left(\left[x_{i}, x_{i_{2}}, x_{i_{1}}{ }^{-1}\right]-1\right)$ and get a contradiction. We take three sub-cases.
(1) Suppose further i_{3} is a repeated entry of p. This implies by condition (iv) of proposition that $i_{1} \leq i_{3}$. If an amalgamation of neither $x_{i_{1}}$ nor x_{i} is necessary in $t=\left(x_{i_{2}}-1\right)\left(\left[x_{i}, x_{i_{2}}, x_{i_{3}}{ }^{-\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{-\varepsilon} i_{n}, x_{i_{1}}{ }^{-1}\right]-1\right.$, look
for an inverse for $\left(x_{i_{2}}-1\right)\left(\left[x_{i}, x_{i_{2}}, x_{i_{1}}{ }^{-1}, x_{i_{3}}{ }^{-\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{-\varepsilon} i_{n]-1}\right.\right.$; if an amalgamation of $x_{i_{1}}$ but not x_{i} is necessary in t and if $i_{1}=i_{4}$ (or. $n=3$) look for an inverse for $\left(x_{i_{2}}-1\right)$ $\left(\left[x_{i}, x_{i_{2}}, x_{i_{1}}, x_{i_{4}}{ }^{-\varepsilon} i_{4}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i}} i_{n]}-1\right) ;\right.$ if an
amalgamation of x_{i} but not $x_{i_{1}}$ is necessary in t look for an inverse for $\left(x_{i_{2}}-1\right)([x_{i}{ }^{-1}, x_{i_{2}}, x_{i_{1}}{ }^{-1}, \underbrace{\left.x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}{ }^{-1}\right)}_{\text {missing } i_{k}}$
(where $i_{k}=i$); if amalgamations of both $x_{i_{1}}$ and x_{i} are necessary in t and if $i_{1}=i_{4}$ (or $n=3$) look for an inverse for $\left(x_{i_{2}}-1\right)([x_{i}^{l}, x_{i_{2}}, \underbrace{\left.x_{i_{1}}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}, \ldots, x_{i_{n}}}{ }^{-\varepsilon_{i}}{ }_{n]-l}\right)}_{\text {missing } i_{k}}$
(where $i=i_{k}$). In all these cases we get contradiction. If further in $p, i_{1}=i_{3} \varepsilon_{i_{3}}=-1, i_{3} \neq i_{4}$ and $i \neq i_{4}$ (Case $i_{1}=i_{3}, \varepsilon_{i_{3}}=-1, i_{3} \neq i_{4}$ and $i=i_{4}$ does not arise by condition (iv) (β) of Proposition 4.7) look for an inverse for $\left(x_{i_{2}}-1\right)\left(\left[x_{i_{1}}{ }^{-1}, x_{i_{2}}, x_{i}{ }^{-1}, x_{i_{4}}{ }_{i_{4}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n]}-1\right)\right.$ if $i<i_{4}$ so that we can assume we can choose a 'generator' of the same form as p of greatest length for which i_{4} < i or else $q=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}\right],\left[x_{i_{1}}, x_{i_{2}}\right]\right]$ is a 'generator' of greatest length; now look for an inverse for
$\left(x_{i_{2}}-1\right)\left(\left[x_{i_{1}}{ }^{-1}, x_{i_{2}}, x_{i}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}{ }^{-1}\right)\right.$ and we see that the only possibility is a 'generator' of the same form as p but with $\mathrm{i}^{>} \mathrm{J}_{4}$. . So we can assume we can choose a 'generator' of greatest length of the same form as p with $i>i_{4}$. Now look for an inverse for $\left(x_{i_{2}}-1\right)$
$\left(\left[x_{i}, x_{i_{2}}, x_{i_{1}}, x_{i_{4}}{ }^{-\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}{ }^{\prime}-1\right)\right.$ if an amalgamation of x_{i} is not. necessary in t or look for an

(where $i=i_{k}$) if an amalgamation of x_{i} is necessary in t. We now get our contradiction on noting carefully condition (iv) of Proposition 4.7.
(2) Suppose further in $p, i_{1}<i_{3}$. Look for an inverse for $\left(x_{i_{2}}-1\right)\left(\left[x_{i}, x_{i_{2}}, x_{i_{1}}{ }^{-1}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}{ }^{\prime}\right.\right.$ if an amalgamation of x_{i} is not necessary in $t=\left(x_{i_{2}}-1\right)\left(\left[x_{i}, x_{i_{2}}, x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i_{n}}}, x_{i_{1}}{ }^{-1}\right]-1\right)$ and look for an inverse for $\left(\mathrm{X}_{\mathrm{i}_{2}}-\mathrm{I}\right)$

if an amalgamation of x_{i} is necessary in t. The only possibility, in both these cases, is the generator $q=\left[\left[x_{i_{3}}, x_{i_{2}}, x_{i_{1}}, x_{i_{4}}{ }^{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right],\left[x_{i}, x_{i_{2}}\right]\right]$ with $i_{1}<i_{3} \leq i \leq i_{4}$. If an amalgamation of neither X_{i} nor i is necessary in $u=\left(x_{i_{2}}-1\right)$
$\left(\left[x_{i_{3}}, x_{i_{2}}, x_{i_{1}}, x_{i_{4}}{ }_{i_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon} i_{n}, x_{i}{ }^{-1}\right]-1\right)$ we must now look for an inverse for $\left(x_{i_{2}}-1\right)$.
$\left(\left[x_{i_{3}}, x_{i_{2}}, x_{i_{1}}, x_{i}{ }^{-1}, x_{i_{4}}{ }_{\varepsilon_{i_{4}}}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i_{n}}}\right]-1\right)$ and look for the appropriate inverses when amalgamations are necessary and we see that we have a contradiction.
(3) Suppose further in.p, $i_{3}<i_{1} \leq i \leq i_{4}$. This can be dealt with in a similar manner as (2).
(δ). We can now suppose that the only generators of greatest length are of the form $p=\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}{ }^{\varepsilon} i_{3}, \ldots, x_{i_{n}}{ }^{\varepsilon_{i}}\right]\right.$, $\left.\left[x_{i}, x_{j}\right]\right]$ with $i_{2}=j \neq i_{3}$ and $i_{1}=i . \quad\left(\quad \varepsilon_{i_{3-1}}=+1\right)$. Look for an inverse for $\left(x_{i_{2}}-1\right)\left(\left[x_{i_{1}}{ }^{-1}, x_{i_{2}}, x_{i_{3}} \varepsilon_{i_{3}}, \ldots\right.\right.$, $\left.x_{i_{n}}{ }^{-\varepsilon} i_{n]}-1\right)$. The only possibility is
$q=[[x_{i_{1}}, x_{i_{2}}, x_{i_{1}}{ }^{-1}, \underbrace{\left.x_{i_{3}}{ }^{-\varepsilon_{i_{3}}}, \ldots, x_{i_{n}}{ }^{-\varepsilon_{i}} i_{n}\right]}_{\text {missing } i_{k}},\left[x_{i_{k}}, x_{i_{2}}\right]]$
with $i_{k} \neq i_{I}$ (we must of course have had $\varepsilon_{i_{k}}=+1$). But q is of the same length as p and is of a different form to p. Hence we have no such q in our product (A).

This completes the proof.
Corollary. $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]=\frac{q^{[2]}+\beta o \theta}{\hat{\theta} \theta}$ and hence is free abelian (being a subgroup of for/forf) where
$G^{[2]}=\operatorname{Ker} \mathbb{Z} F \rightarrow \mathbb{Z}\left(F / F^{\prime \prime}\right)$. Further the free generators of F"/[F", F] are as in Proposition 4.7.

Proof: The isomorphism is given by $a \rightarrow a-1$ and we note that what proposition 4.10 does exactly is prove the generators of proposition 4.7 are linearly independent modulo forf.

Note $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is the Schur Multiplier of $F / F^{\prime \prime}\left(H_{2}\left(F / F^{\prime \prime}, \mathbb{Z}\right)\right)$ (see, e.g., Gruenberg [6] Chapter 3, Proposition 7), and so we

Theorem 4.11: Let $P_{1,1}$ be the power series ring in X over subject to $x_{i_{1}}\left(x_{i_{2}} x_{i_{3}}-x_{i_{3}} x_{i_{2}}\right) x_{i_{4}}=0$ then subgroup G of $\mathrm{U}\left(\mathrm{P}_{I, l}\right)$) generated by $1+X$ is isomorphic to $F /\left[F^{\prime \prime}, F\right]$.

Proof: Immediate from Lemma:2.19 Corollary and Proposition 4.10.

Theorem 4.12: $F /\left[F^{\prime \prime}, F\right]$ is residually torsion-free nilpotent.

Proof: Use Theorem 4.8 with minor alterations to Theorem 3.5. Corollary: F"/[F", F] is residually a finite p-group for all primes p.

This theorem has been proved by Ridley [13], for the case where F has rank 2.

Section 2: F will again denote the free group of X. Let S denote the set of free generators of $\mathrm{F}^{\prime \prime} /\left[\mathrm{F}^{\prime \prime}, \mathrm{F}\right]$ derived in Proposition 4.7.

Lemma 4.13: [F", F]/[F", F, F] is generated by
. . . $\left\{\left[s, X_{i}\right] / s \varepsilon S, X_{i} \in X\right\} \ldots$
Proof: Follows easily from $[a b, c]=[a, c][a, c, b][b, c]$. Proposition 4.14:

$$
\left(1+f o r f^{2}\right) \cap F=\left[F^{\prime \prime}, F, F\right] .
$$

Proof: $\left[F^{\prime \prime}, F\right] \leq 1+f \sigma^{2}+\sigma^{2} f$.
Let $a \varepsilon\left[F^{\prime \prime}, F\right], b \varepsilon F$ then
$[a, b]=1+a^{-1} b^{-1}\{(a-1)(b-1)-(b-1)(a-1)\}$
$\varepsilon 1+\left(f \sigma^{2}+a^{2} f\right) f+f\left(f \sigma^{2}+\sigma^{2} f\right)$

$$
\leq 1+\text { ford }^{2} \text {. }
$$

Hence $[F ", F, F] \leq\left(1+f o r f^{2}\right) \cap F$. (Note also $\left[F^{\prime \prime}, F, F\right] \leq\left(1+f^{2} \sigma(\theta) \cap F\right)$. Suppose a $\varepsilon\left(1+f o \theta^{2}\right) \cap E$. Then a $\varepsilon\left[F^{\prime \prime}, F\right]$ by Proposition 4.la. Suppose a $\ddagger[F \prime, F, F]$. Then

$$
\begin{aligned}
& a \equiv \prod_{i, j}\left[s_{j(i)}, x_{i}\right]^{\alpha_{i}, j} \operatorname{modulo}[F ", F, F] \text { with } s_{j(i)} \varepsilon S, \\
& x_{i} \in X, \alpha_{i, j} \varepsilon \mathbb{Z} \text { and if } x_{i}=x_{k}, s_{j(i)} \neq s_{j(k)} \text { (by }
\end{aligned}
$$

Lemma 4.13).

- Since $a \cdot \varepsilon 1+$ for ${ }^{2}$ and $\left[F^{\prime \prime}, F, F\right] \leq 1+$ for f^{2}
$\Rightarrow \prod_{i, j}\left[s_{j(i)}, x_{i}\right]^{\alpha}, j$. $1+$ for f^{2}.
$\left[s_{j(i)}, x_{i}\right]=1+s_{j}^{-1}(i) x_{i}^{-1}\left\{\left(s_{j(i)}^{-1)}\left(x_{i}-1\right)-\right.\right.$ $\left.\left(x_{i}-1\right)\left(s_{j(i)}-l\right)\right\}$.

$$
\equiv 1+\left(s_{j(i)}-1\right)\left(x_{i}-1\right)-\left(x_{i}-1\right)\left(s_{j}(i)-1\right),
$$

modulo \neq of 2 since $s_{j(i)}-1 \varepsilon \sigma^{2}+\sigma^{2} \notin$

$$
\equiv 1+\left(s_{j(i)}-1\right)\left(x_{i}-1\right) \text { modulo for } \beta^{2} .
$$

Hence $\left.{ }_{i, j}{ }^{\alpha}{ }_{i, j}{ }^{\left(s_{j}(i)\right.}-1\right)\left(x_{i}-1\right) \varepsilon \notin \sigma f^{2}$
$\Rightarrow D_{k} \sum_{i, j}^{\varepsilon}{ }^{\alpha_{i, j}}{ }^{\left(s_{j(i)}-1\right)\left(x_{i}-1\right) \varepsilon}$ for
for all k by Theorem 1.7.
$\left.\Rightarrow \sum_{j} \alpha_{k, j}{ }^{\left(s_{j}(k)\right.}-1\right) \varepsilon$ forb for all $k \Rightarrow \alpha_{k, j}=0$ for all k by Proposition 4.10. Hence a ε [F', F, F].
Corollary I: $\left[F^{\prime \prime}, F\right] /\left[F^{\prime \prime}, F, F\right] \simeq \frac{5^{\circ}+f o r \phi^{2}}{f_{0} f^{2}}$ where $\mathbb{L}^{5}=\operatorname{Ker} \mathbb{Z} F \rightarrow \mathbb{Z}\left(F /\left[F^{\prime \prime}, F\right]\right)$ and hence is free abelian with free generators given by Lemma 4:13. (Note [F"/F]/[F", F, F] is also the Schur Multiplier of $F /\left[F^{\prime \prime}, F\right]$.)

Proof: See proof of Corollary to Proposition 4.10.
Corollary 2: Let $P_{1,2}$ be the power series ring in X over \mathbb{Z}
subject to the relations $x_{i_{1}}\left(x_{i_{2}} x_{i_{3}}-x_{i_{3}} x_{i_{2}}\right) x_{i_{4}} x_{i_{5}}=0$, then subgroup of $U\left(P_{1,2}\right)$ generated by $1+X$ is isomorphic to $F /\left[F^{\prime \prime}, F, F\right]$.

Proof: From Lemma 2.19.
Theorem 4.15: F/[F", F, F] is residually torsion-free.
nilpotent.
Proof: See proof of Theorem 3.5.
Corollary: F/[F", F, F] is residually a finite p-group for all primes p.

Section 3:
Lemma 4.16: If a $\varepsilon \mathrm{F}^{\prime \prime}$, b and $\mathrm{C} \varepsilon \mathrm{F}$ then
$[a, b, c] \equiv[a, c, b]$ modulo $\left(F^{\prime}\right)_{3}$.
Proof: $[a, b c]=[a, c][a, b][a, b, c]$

$$
\begin{aligned}
& =[a, c b[b, c]] \\
& \equiv[a, c b] \\
& =[a, b][a, c][a, c, b]
\end{aligned}
$$

Hence result.
Lemma 4.17: [F", F, F] modulo $\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$ is generated by $\left\{\left[s, x_{i}, x_{j}\right] / s \varepsilon S, x_{i}\right.$ and $x_{j} \varepsilon X$, and $\left.i \leq j\right\}$.
Proof: Apply Lemma 4.16 for the condition $i \leq j$.

Proposition 4.18: $\left(1+f^{2} O f^{2}\right) \cap F=\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$. Proof: $\left(F^{\dagger}\right)_{3} \leq\left(1+\sigma^{3}\right) \cap F \leq\left(1+f^{2}\left(\sigma \beta^{2}\right) \cap \mathrm{F}\right.$. $\left[F^{\prime \prime}, F, F\right] \leq\left\{\left(1+\phi o \theta^{2}\right) \cap \mathrm{F}\right\} \cap\{(1+\phi \sigma \theta) \cap \mathrm{F}\}$ (see Proposition 4.14).

Let $a \varepsilon\left[F^{\prime \prime}, F, F\right], b \in F$ then

$$
\begin{aligned}
{[a, b] } & =1+a^{-1} b^{-1}\{(a-1)(b-1)-(b-1)(a-1)\} \\
& \leq 1+f^{2} b f^{2} \text { since } a-1 \varepsilon f^{2} \text { orff for for } f^{2} .
\end{aligned}
$$

Hence $\left[F^{\prime \prime}, F, F, F\right] \leq\left(I+\mathcal{B}^{2}\right.$ or $\left.f^{2}\right) \sim F$. Suppose $a \varepsilon\left(1+\xi^{2} \dot{\sigma} \beta^{2}\right) \cap F$. Then $a \varepsilon[F ", F, F]$ by Proposition 4.14. Suppose a $\ddagger\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$ then by Lemma 4.17 $a \equiv \underset{i, j, k}{\pi}\left[s_{k(i, j)}, x_{i}, x_{j}\right]^{\alpha} k, i, j$ modulo $[F \prime, F, F, F]\left(F^{\prime}\right)_{3}$ with $s_{k(i, j)} \varepsilon S x_{i}$ and $x_{j} \varepsilon X, i \leq j, \alpha_{k, i, j} \varepsilon \mathbb{Z}-\{0\}$ and if $x_{i}=x_{t}$ and $x_{j}=x_{u}$ then $s_{k(i, j)} \neq s_{k(t, u)}$.

$$
\left[s_{k(i, j)}, x_{i}, x_{j}\right]=1+\left[s_{k(i, j)}, x_{i}\right]^{-1} x_{j}^{-1}
$$

$$
\left\{\left(\left[s_{k}(i, j), x_{i}\right]-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(\left[s_{k}(i, j), x_{j}\right]-1\right)\right\}
$$

$$
\equiv 1+\left(\left[s_{k}(i, j), x_{i}\right]-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right) .
$$

$\left(\left[s_{k}(i, j), x_{j}\right]-1\right)$, modulo $\phi^{2} \sigma \dot{f}^{2}$ since $[F ", F] \leq 1+\hat{f} \sigma \dot{f}^{2}$. Now $\left[s_{k(i, j)}, x_{i}\right]=i+s_{k(i, j)}^{-1} x_{i}{ }^{-1}\left\{\left(s_{k(i, j)}-1\right)\left(x_{i}-1\right)-\right.$ $\left.\left(x_{i}-1\right)\left(s_{k}(i, j)-l\right)\right\}$. Hence

$$
\begin{aligned}
& {\left[s_{k(i, j)}, x_{i}, x_{j}\right] \equiv 1+\left\{\left(s_{k(i, j)}-1\right)\left(x_{i}-1\right)-\left(x_{i}-1\right)\left(s_{k(i, j}\right)^{-1)\}}\right.} \\
& \left(x_{j}-1\right)-\left(x_{j}-1\right)\left\{\left(s_{k}(i, j)^{-1}\right)\left(x_{i}-1\right)-\left(x_{i}-1\right)\left(s_{k}(i, j)-1\right)\right\}, \\
& \text { modulo } \beta^{2} \pi \beta^{2} \text { since } F^{\prime \prime} \leq 1+\sigma^{2} \text {. } \\
& \equiv 1-\left(x_{i}-1\right)\left(s_{k}(i, j)-1\right)\left(x_{j}-1\right) \\
& -\left(x_{j}-1\right)\left(s_{k}(i, j)-1\right)\left(x_{i}-1\right) \text { modulo } f^{2} a f^{2} \\
& =1+\gamma_{i, j, k} \quad \text { say. } \\
& \Rightarrow \quad \sum_{i, j, k} \alpha_{i, j, k} \gamma_{i, j, k} \in f^{2} o i f^{2} \\
& \Rightarrow \Sigma\left(D_{t} \alpha_{i, j, k} \gamma_{i, j, k}\right) d_{u} \varepsilon \text { for } \theta^{*}
\end{aligned}
$$

for all t and u by Theorem 1.7. If $u<t \underset{k}{\Rightarrow} \sum_{k}-\alpha_{i}, k$ $\left(s_{k}(u, t)-1\right) \varepsilon$ for and if $u=t \Rightarrow \sum_{k}-2 \alpha_{t, t, k}\left(s_{k}(t, t)-1\right) \varepsilon$ forb. In any case this implies that $\alpha_{u, t, k}=0$ for all u,t,k by Proposition 4.10.
$\Rightarrow a \varepsilon\left[F^{\prime \prime}, F, F, \dot{F}^{\prime}\right]\left(F^{\prime}\right)_{3}$.
Corollary 1: $\left[F^{\prime \prime}, F, F\right] /\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3} \simeq \frac{6^{2}+\beta^{2} \sigma \beta^{2}}{\beta^{2} \sigma \beta^{2}}$
and hence is free abelian with free generators given by
Lemma 4.15, where $5^{6}=\operatorname{Ker} \mathbb{Z} F \rightarrow \mathbb{Z}\left(F /\left[F^{\prime}, F, F\right]\right)$
Proof: See proof of Corollary to Proposition 4.10.

Corollary 2: Let. $P_{2,2}$ be the power series ring in X over \mathbb{Z} subject to the relations
$x_{i_{1}} x_{i_{2}}\left(x_{i_{3}} x_{i_{4}}-x_{i_{4}} x_{i_{3}}\right) x_{i_{5}} x_{i_{6}}$ then subgroup of $U(P)$ generated by $1+X$ is isomorphic to $F /\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$.

Theorem 4.19: $F /\left[F^{\prime \prime}, F, F, F\right]\left(F^{\prime}\right)_{3}$ is residually torsion-free nilpotent.

Proof: See proof of Theorem 3.5.
Corollary: $F /\left[F^{\prime \prime}, F, F, F\right]\left(F .^{\prime}\right)_{3}$ is residually a finite p-group for all primes p.

CHAPTER 5

Section l: In this section we prove analogues of Magnus' Theorem (Theorem 1.5) for the groups $F / F^{\prime \prime}, F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ and $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ and $F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}$ and compute the structure of the lower central factors. of these groups. It seems probable that the methods devised here can be used to obtain the structure of the lower central factors of $F /\left[F^{\prime \prime}, F\right]$ and $F /\left[F^{\prime \prime}, F, F\right]$ but a Theorem like Theorems 5.3, 5.8 and 5.13 below is not true for $F /\left[F^{\prime \prime}, F\right]$ since Ridley [13] has shown that the lower central factors of $F^{\prime} /\left[F^{\prime \prime}, F\right]$ contain torsion elements.
Let $Q=P_{1,0}$, i.e. the power series ring in X over Z subject to $x_{i_{1}}\left(x_{i_{2}} x_{i_{3}}-x_{i_{3}} x_{i_{2}}\right)=0$. Identify F/F" with its (isomorphic) image G in Q. This representation of $F / F^{\prime \prime}$ is very similar to that obtained by Baumslag [1]. Compare Theorem 5.3 below with Theorem 2 in [1]. In fact $x_{i}+x_{2} \prime_{i}+x_{1, i}$ gives a homomorphism from Q to Baumslag's power series. Every element s in the multiplicative semigroup of Q generated by X can be written uniquely in the form $s=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}, i_{2} \leq i_{3} \leq \cdots \leq i_{n}$

Let K_{i} be the ideal of elements in Q of order $\geq i$.

Lemma 5.1: In $Q,\left[I+x_{i_{1}}, I+x_{i_{2}}, \ldots, l+x_{i_{n}}\right]$
$=1+\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{n}}$ for $n \geq 2$.
Proof: $\left[1+x_{i_{1}}, 1+x_{i_{2}}\right]=1+\left(1+x_{i_{1}}\right)^{-1}\left(1+x_{i_{2}}\right)^{-1}$
$\left\{\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)\right\}$.
$=1+\left\{1-\left(1+x_{i_{1}}\right)^{-1} x_{i_{1}}\right\}\left\{1-\left(1+x_{i_{2}}\right)^{-1} x_{i_{2}}\right\}\left\{\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)\right\}$.
$=1+x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}$

Hence we have result for $n=2$. Let $r \geq 3$. Then $\left[1+x_{i_{1}}, 1+x_{i_{2}}, \ldots, 1+x_{i_{r}}\right]=1+\left[1+x_{i_{1}}, 1+x_{i_{2}}, \ldots\right.$
$\left.\ldots, 1+x_{i_{r-1}}\right]^{-1}\left(I+x_{i_{r}}\right)^{-1}\left\{\left(\left[I+x_{i_{1}}, 1+x_{i_{2}}, \ldots, i+x_{i_{r-1}}\right]-1\right.\right.$
$\left.x_{i_{r}}-x_{i_{r}}\left(\left[1+x_{i_{1}}, 1+x_{i_{2}}, \ldots, 1+x_{i_{r-1}}\right]-1\right)\right\}$
$=1+\left\{1+\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right) x_{i_{3}} \cdots x_{i_{r-1}}\right\}\left\{l-\left(1+x_{i_{r}}\right)^{-l} x_{i_{r}}\right\}$
$\left\{\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \cdots x_{i_{r}}-x_{i_{r}}\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) \cdot x_{i_{3}} \ldots\right.$
$\left.\ldots x_{r-1}\right\}$ by an inductive argument.
$=1+\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{r}}$.

Theorem 5.2: The basic commutators of G weight n freely generate modulo $\mathrm{K}_{\mathrm{n}+1}$ a free abelian group.

Proof: A basic commutator of G weight n is of the
form $a=\left[I+x_{i_{1}}, I+x_{i_{2}}, \ldots, I+x_{i_{n}}\right], i_{1}>i_{2}$,
$i_{2} \leq i_{3} \leq \cdots \leq i_{n}:$ By Lemma $5.1, a=1+\left(x_{i_{1}} x_{i_{2}}-\right.$ $\left.x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{n}}$ and result follows from (I).

Corollany: (a theorem of Magnus, see Neumann (Chap.3) [12]). The basic commutators in the free metabelian group are linearly independent.
Theorem 5.3: $\left(1+K_{i}\right) \cap G=G_{i}$
Proof: Clearly $G_{i} \leq\left(1+K_{i}\right) \cap G$ and $\left(1+K_{1}\right) \cap G=$ $G_{1}=G$. We proceed by induction on i. Suppose a $\varepsilon\left(1+K_{i+1}\right) \cap G$ and $a \in G_{i+1}$. By induction $a \varepsilon G_{i} \Rightarrow a=b c, c \varepsilon G_{i+1} b(\neq I) \varepsilon G_{i}$, and is a product of basic commutators weight i. a-1 $\varepsilon K_{i+1} \Rightarrow$ b-1 εK_{i+1}, since $G_{i+1} \equiv 1+K_{i+1}$. This contradicts Theorem 5.2.

Conollary: $\left(I+o^{n}\right) \cap G=G_{n}$ where of is the augmentation ideal of G.
Proof: Clearly $G_{n} \leq\left(1+g^{n}\right) \cap G$. The map $\phi^{\prime}: F / F \prime \rightarrow$ $U(Q)$ given by $y_{i} \rightarrow l+x_{i}$ can be extended (uniquely)
to a map $\phi: Z\left(F / F^{\prime \prime}\right) \rightarrow Q$. Then $\phi: g^{n} \rightarrow K_{n}$. If
$a \varepsilon\left(1+\mathcal{O}^{n}\right) \cap F \Rightarrow(a-1) \phi=a \phi-1=a \phi^{\prime}-1 \varepsilon K_{n} . \Rightarrow a \phi^{\prime} \varepsilon G_{n}$
by the theorem. /

Let $P=P_{3,0}$, the power series ring in X over \mathbb{Z}
subject to $x_{i_{1}} x_{i_{2}} x_{i_{3}}\left(x_{i_{4}} x_{i_{5}}-x_{i_{5}} x_{i_{4}}\right)=0$. Every element s in the multiplicative semigroup of P
generated by X can be written uniquely in the form
$s=x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} \cdots x_{i_{n}}, i_{4} \leq i_{5} \leq \cdots \leq i_{n}$
By Lemma 3.2. Corollary $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ is embedded in P and we identify $F /\left(F^{\prime}\right)_{3}\left(F_{3}\right)^{\prime}$ with its image H in P. Let R_{i} be the ideal of elements in P of order $\geq i$ and let ψ be the natural homomorphism from P to Q. When $I+x_{i}$ occurs as an entry of a commutator we shall write x_{i} instead of $l+x_{i}$, it being clear that $1+x_{i}$ is meant. (We shall continue to use this convention from now on). What do the basics of H look like?

Lemma 5.4: H_{n} modulo H_{n+I} is generated by the basics of the forms either
(i) $\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right], i_{1}>i_{2}, i_{2} \leq i_{3} \leq \cdots \leq i_{n}$
(ii) $\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i},\left[x_{i-2}, x_{j}\right]\right], i_{1}>i_{2}\right.$
$i_{2} \leq i_{3} \leq \cdots \leq i_{n-2}, i>j, n \geq 4$ and when $n=4$ $x_{i_{1}}, x_{i_{2}}>x_{i}, x_{j}$ in the ordering of the basic 2-commutators.
Proof: Is clear since $\left[\mathrm{H}_{3}, \mathrm{H}_{3}\right]=1$ and $\left[\mathrm{H}_{2}, \mathrm{H}_{2}, \mathrm{H}_{2}\right]=1$, i.e. the basics of any other type vanish.

We shall call the basics in the statement of the Lemma basics of type (i) and type (ii) respectively.

Lemma 5.5: The nth homogeneous component (in. P) of
, $\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-2}}\right],\left[x_{i}, x_{j}\right]\right]-1$ is
(a) $\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)\left(x_{i} x_{j}-x_{j} x_{i}\right)-\left(x_{i} x_{j}-x_{j} x_{i}\right)$

$$
\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right), \text { for } n=4
$$

(b) $-\left(x_{i} x_{j}-x_{j} x_{i}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \cdots x_{i_{n-2}}$, for $n>4$.

Proof: (a) is clear. The nth homogeneous component of $\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right],\left[x_{i}, x_{j}\right]\right]-1$
$=\left(\left(x_{i_{I}}, x_{i_{2}}, \ldots, x_{i_{n-2}}\right),\left(x_{i}, x_{j}\right)\right)$
$=\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-2}}\right)\left(x_{i}, x_{j}\right)-\left(x_{i}, x_{j}\right)\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-2}}\right)$
$=-\left(x_{i}, x_{j}\right)\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-2}}\right)$, when $n>4$.
$=-\left(x_{i} x_{j}-x_{j} x_{i}\right)\left\{\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right) x_{i_{n-2}}\right.$
$\left.x_{i_{n-2}}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right)\right\}$.
$=-\left(x_{i} x_{j}-x_{j} x_{i}\right)\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right) x_{i_{n-2}}$, since
$\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right)$ involves $\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)$ implicitly
$=-\left(x_{i} x_{j}-x_{j} x_{i}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{n-2}}$, by an
inductive argument.
Theorem 5.6: The basic commutators of H of weight n, types (i) and (ii), free generate modulo R_{n+1} a free abelian. group.

Proof: Need only prove linear independence. By taking the map ψ from P to 0 we see that it suffices to prove that the basic commutators type (ii) are. " linearly independent (by Theorem 5.2). 3 y Lemma 5.5 , the leading term of $a=\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots\right.\right.$, $\left.\left.x_{i_{n-2}}\right],\left[x_{i}, x_{j}\right]\right]$ is
$\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}}{ }^{x_{i}}\right)\left(x_{i} x_{j}-x_{j} x_{i}\right)-\left(x_{i} x_{j}-x_{j} x_{i}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)$ for $n=4$ and $-\left(x_{i} x_{j}-x_{j} x_{i}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \cdots x_{i_{n-2}}$ for $n>4$.

The proof for the case $n=4$ follows from (2) and Theorem l.9 (i.e. for case $n=4$ we have the same situation as for the absolutely free case). So need only consider $n>4$. If not linearly independent we must try to find a commutator not a which will give an inverse for $p=x_{i} x_{j} x_{i_{1}} x_{i_{2}} \ldots x_{i_{n-2}} . \quad$ By (2)
the 2 -commutator part of this basic (which is to give
an inverse for p) must be $\left[x_{i}, \dot{x}_{j}\right]$. Also by (2) $x_{i_{l}}$ must be an entry of the head of the other part of this basic and $x_{i_{2}}, x_{i_{3}}, \ldots, x_{i_{n-2}}$ must be the other entries of this basic. By the ordering of the indices we get a contradiction.

As corollaries to this we get the following theorems. Theorem 5.7: H_{n} modulo H_{n+1} is free abelian, freely generated by the basics type (i) and type (ii).

Theorem 5.8: $\left(1+R_{i}\right) \cap H=H_{i}$
Proof: See proof of Theorem 5.3.
Conollary: $\left(1+\psi^{n}\right) \cap H=H_{n}$, where \neq is the augmentation ideal of H .

Proof: See proof of Corollary to Theorem 5.3./
Let $S=P_{4}$, 0 be the power series ring in X over \mathbb{Z} subject to $x_{i_{i}} x_{i_{2}} x_{i_{3}} x_{i_{4}}\left(x_{i_{5}} x_{i_{6}}{ }^{-x_{i_{6}}} x_{i_{5}}\right)=0$. Then
$F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)$! is embedded in S by Lemma 3.3 Corollary, and we identify $F /\left(F^{\prime}\right)_{3}\left(F_{4}\right)^{\prime}$ with its image L in S. Every element w in the multiplicative semigroup of S generated by X can be written uniquely in the form

$$
\begin{equation*}
w=x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} x_{i_{5}} \cdots x_{i_{n}}, \quad i_{5} \leq i_{6} \leq \cdots \leq i_{n} \tag{3}
\end{equation*}
$$

Let T_{i} be the ideal of elements in S of order $\geq i$ and let θ be the natural homomorphism from S to P.

Lemma 5.9: L_{n} modulo L_{n+1} is generated by the basic commutators of the forms either
(i) $\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right], i_{1}>i_{2}, i_{2} \leq i_{3} \leq \cdots \leq i_{n}$
or
(ii) $\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-2}}\right],\left[x_{i}, x_{j}\right]\right], \quad i_{1}>i_{2}$,
$i_{2} \leq i_{3} \leq \cdots \leq i_{n-2}, i>j, n \geq 4$ and for $n=4$
$\left[x_{i_{1}}, x_{i_{2}}\right]>\left[x_{i}, x_{j}\right]$ in the ordering of the basic 2commutators.
(iii) $\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right],\left[x_{i}, x_{j}, x_{k}\right]\right]$,
$i_{1}>i_{2}, i_{2} \leq i_{3} \leq \cdots \leq i_{n-3}, i>j, j \leq k, n \geq 6$ and for $n=6,\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right]>\left[x_{i}, x_{j}, x_{k}\right]$ in the ordering of the basic 3-commutators.

Proof: Is clear since $\left[L_{4}, L_{4}\right]=1$ and $\left[L_{2}, L_{2}, L_{2}\right]=1$. We shall call the basics in the statement of the Lemma basics of type (i), type (ii) and type (iii) respectively.

Lemma 5.10: In S, the nth homogeneous component of $\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right],\left[x_{i}, x_{j}, x_{k}\right]\right]-1$ is
$@\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}}$,
for $n=6$.

$$
\text { (B) }-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{n-3}} \text {, for } n>6 .
$$

Proof: @:- the 6 th homogeneous component of

$$
\begin{aligned}
& {\left[\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right],\left[x_{i}, x_{j}, x_{k}\right]\right]-1 \text { is }} \\
& \left(\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right),\left(x_{i}, x_{j}, x_{k}\right)\right) \\
& =\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)\left(x_{i}, x_{j}, x_{k}\right)-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right) \\
& =\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)\left\{\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-x_{k}\left(x_{i} x_{j}-x_{j} x_{i}\right)\right\} \\
& -\left(x_{i}, x_{j}, x_{k}\right)\left\{\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}}-x_{i_{3}}\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)\right\} \\
& =\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{j}} \\
& \text { (B):- nth homogeneous component of } \\
& {\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right],\left[x_{i}, x_{j}, x_{k}\right]\right]-1 \text { is }} \\
& \left(\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right) ;\left(x_{i}, x_{j}, x_{k}\right)\right) \\
& =\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right)\left(x_{i}, x_{j}, x_{k}\right)-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{f}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right) . \\
& =-\left(x_{i} ; x_{j}, x_{k}\right)\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right) \text {, since } n>6 \text { and } \\
& \left(x_{i}, x_{j}, x_{k}\right) \text { contains }\left(x_{i} x_{j}-x_{j} x_{i}\right) \text { implicitly. } \\
& =-\left(x_{i}, x_{j}, x_{k}\right)\left\{\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-4}}\right) x_{i_{n-3}}-x_{i_{n-3}}\left(x_{i_{1}}, x_{i_{2}}, \ldots\right.\right. \\
& \left.\left.\cdots, x_{i_{n-4}}\right)\right\} . \\
& =-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-4}}\right) x_{i_{n-3}} . \\
& =-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{n-3}} \text {, by an inductive } \\
& \text { argument. }
\end{aligned}
$$

For basic's type (iii) call $\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right]$ the leading part of the double commutator
$\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right],\left[x_{i}, x_{j}, x_{k}\right]\right]$

Theorem 5.11: The basic commutators of L of weight n, types (i), (ii) and (iii), freely generate modulo $\mathrm{T}_{\mathrm{n}+\mathrm{l}}$ a.free abelian group.

Proof: Need only prove linear independence. By taking the map θ from S to P we need only show that the basics type (iii) are linearly independent, by Theorem 5.6. By Lemma 5.10, the leading term t of $a=\left[\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right],\left[x_{i}, x_{j}, x_{k}\right]\right]$ is
@ ($\left.x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}}$ for $n=6$,
(B) $-\left(x_{i}, x_{j}, x_{k}\right)\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}} \ldots x_{i_{n-3}}$ for $n>6$.

First of all we shall take case $n=6$.
$t=\left\{\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}}-x_{i_{3}}\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right)\right\}$ $\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-\left\{\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-x_{k}\left(x_{i} x_{j}-x_{j} x_{i}\right)\right\}$
$\left(x_{i_{1}} x_{i_{2}}-x_{i_{2}} x_{i_{1}}\right) x_{i_{3}}$.
If not linearly independent, then there exists a basic
type (iii) (length 6) not a which gives an inverse for $p=x_{i_{2}} x_{i_{1}} x_{i_{3}} x_{i} \dot{x}_{j} x_{k} \cdot$ By (3) $x_{i_{2}}, x_{i_{1}}$ and $x_{i_{3}}$ must be entries of the same part of this basic (which is to give an inverse for p). Thus one part must be either $\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right]$ or $\left[x_{i_{3}}, x_{i_{2}}, x_{i_{1}}\right]$. For $i_{3} \neq i_{1}\left(x_{i_{3}}, x_{i_{2}}\right.$, $x_{i_{1}}$) does not involve $x_{i_{3}}, x_{i_{2}}, x_{i_{1}}$ in the sequence i_{2}, $i_{1}, i_{3} . \Rightarrow$ one part of the basic must be $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$. iBy (3) x_{i} must be an entry of the head of another part and $x_{i_{2}}$ and $x_{i_{3}}$ must also be entries of this part. \Rightarrow The other part must be $\left[x_{i}, x_{j}, x_{k}\right]$. Hence there is no inverse for p. $\left(\left[x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right]>\left[x_{i}, x_{j}, x_{k}\right]\right.$ in the ordering of the basic 3-commutators).

We now consider case $n>6$.
$\left(x_{i}, x_{j}, x_{k}\right)=\left(x_{i} x_{j}-x_{j} x_{i}\right) x_{k}-x_{k}\left(x_{i} x_{j}-x_{j} x_{i}\right)$. If not linearly independent, then there exists a basic commutator type (iii) (length n), not a, which gives an inverse for $p=x_{j} x_{i} x_{k} x_{i_{1}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{n-3}}$. By (3) x_{j}, x_{i} and x_{k} must be the entries of the last part of this basic (which is to give an inverse for p). Hence last part must be either $\left[x_{i}, x_{j}, x_{k}\right]$ or $\left[x_{k}, x_{j}, x_{i}\right]$. For $i \neq k\left(x_{k}, x_{j}, x_{i}\right)$ does not involve x_{k}, x_{j}, x_{i} in the
sequence j,i,k.
\Rightarrow last part must be $\left[x_{i}, x_{j}, x_{k}\right]$. By (3) $x_{i_{1}}$ must
be an entry of the head of the other part and $x_{i_{2}}, \ldots$,
$x_{i_{n-2}}$ must be the other entries of this part.
\Rightarrow other part must be $\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-3}}\right]$. Hence we
have no inverse for p which is a contradiction.
As corollaries to this we get the following:
Theorem 5.12: L_{n} modulo L_{n+1}. is free abelian freely
generated by the basic types (i), (ii) and (iii).
Theorem 5.13: $\left(1+T_{n}\right) \cap L=L_{n}$
Proof: See proof of Theorem 5.3.
Corollary: $\left(1+\mathcal{Z}^{i}\right) \cap L=L_{i}$ where \mathcal{L} is the augmentation ideal of L .

Proof: See proof of corollary to Theorem 5.3.

Section 2:

An old problem of Fox [4] is the determination of $f^{n} h^{5}$ i.e. to give an explicit form for $\left(1+\psi^{n} L\right) \cap F$.

Theorem 1.6 shows $\left(1+f L^{r}\right) \cap F=R^{\prime}$ and in this section we make a small contribution by showing $\left(1+f^{2} r\right) \cap F=$ $\left[R \cap F^{\prime}, R \cap F^{\prime}\right] R_{3}$.
Proposition 5.14: (1+ $\left.\hat{\theta}^{2} \nu\right) \cap F=\left[R \cap F^{i}, R \cap F^{i}\right] R_{3}$
Proof: Now $R_{3} \leq 1+W^{3} \leq 1+f^{2}+5$
Hence $R_{3} \leq\left(1+\theta^{2}+\infty\right) \cap F$.

Let $a \varepsilon R \cap F^{\prime}$ and $b \varepsilon R \cap F^{\prime}$ then
$[a, b]=1+a^{-1} b^{-1}\{(a-1)(b-1)-(b-1)(a-l)\}$
$\varepsilon i+\theta^{2} r$.
Suppose a $\varepsilon\left(1+f^{2} L r\right) \cap F$. Then by Theorem 1.6
a εR^{\prime}. " Let R be free on W (F is free on X). Then
$a \equiv \pi\left[w_{i}, w_{j}\right]$ mod $R_{3} . \quad$ Call this product (I). We use induction on the number of distinct free generators w that occur in the product (1) to show that $a \equiv 1 \bmod \left[R \cap F^{\prime}, R \cap F^{\prime}\right] R_{3}$. If there is no free generator in the product we are through. Let w be a particular free generator of R occuring in the product. We can now collect in one commutator mod R_{3}
all the commutators involving w thus:-

where the w_{k} 'sin'the product do not involve w, and $i_{1}<i_{2}<\ldots<i_{n}$ (This latter condition is not necessary for the argument). If b and $C \varepsilon R$ then $[b, c] \equiv 1+(b-1)(c-1)-(c-1)(b-1) \bmod f^{2} r \sigma$. Hence since a-1 $\varepsilon f^{2} \mathscr{F}$ and $R_{3} \leq 1+f^{2} 5$ thịs implies
 $+\quad \sum\left\{\left(w_{i}-1\right)\left(w_{j}-1\right)-\left(w_{j}-1\right)\left(w_{i}-1\right)\right\}=f \varepsilon \mathcal{f}^{2} \sigma_{\sigma}$. This
implies by Theorem 1.7 that $f d_{k} \in$ for for all k.
$\Rightarrow\left(w_{i_{1}}^{\alpha_{1}}{ }_{w_{i_{2}}}^{\alpha_{i_{2}}} \ldots{ }^{\alpha_{i_{n}}}{ }_{i_{n}}-1\right) d_{k}(w-1)$
$-(w-1) d_{k}\left(w_{i_{1}}^{\alpha_{i}}{ }_{w_{i}}{ }_{i_{i}}{ }_{2} \ldots{ }^{w_{i_{i}}}{ }_{n}-1\right)+\sum\left\{\left(w_{i}-1\right) d_{k}\left(w_{j}-1\right)-\right.$
$\left.\left(w_{j}-1\right) d_{k}\left(w_{i}-1\right)\right\}$.
We note that $q \equiv q \varepsilon \bmod f$ for any $q \varepsilon Z F$ (where $\varepsilon=$ the augmentation) and hence since $W /$ frr is free abelian on $W-1$ by Lemma 1.4,
$\left(w_{i_{1}}^{\alpha_{i}}{ }_{w_{i_{2}}}^{\alpha_{i_{2}}} \ldots{ }^{w_{i}}{ }_{n}{ }_{n}-l\right) d_{k} \varepsilon^{\varepsilon}: f$
for all $k \Rightarrow$ by theorem 1.7 that

by Magnus' Theorem l.5. In a similar manner we can collect in one commutator all the commutators of the product (1) involving w_{i} for $l \leq j \leq n$ and by a similar argument we get that
${ }^{w^{\alpha}}{ }^{j} t_{i_{j}} \varepsilon F^{\prime}$ for some $t_{i_{j}}$ which is a product of w_{t} which are involved in the product (1), $w_{t} \neq w$ (and $\left.w_{t} \neq w_{i_{j}}\right)$. Let d be the highest common factor of
$\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{n}} . \quad$ Then there exist integers
$s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{n}}$ such that $\alpha_{i_{i_{1}}} s_{i_{1}}+\alpha_{i_{2}} s_{i_{2}}+\ldots$
$\ldots+\alpha_{i_{n}} s_{i_{n}}=d$. Since $w^{i_{j}} t_{i_{j}} \varepsilon F^{\prime}$

$\Rightarrow\left(w_{i_{1}}{ }_{i_{1}} /{ }^{w_{i_{2}}}{ }_{\alpha_{2}} / d \quad \ldots{ }^{w_{i_{n}}}{ }^{\alpha_{i_{n}} / d}\right)^{d}{ }_{\varepsilon} F^{\prime}$ but since F / F^{\prime} is
 congruences from here on are $\bmod \left[R \cap F^{\prime}, R \cap F^{\prime}\right] R_{3}$.
$\left[{ }^{w_{i_{1}}}{ }_{1}{ }_{w_{i_{2}}}^{\alpha_{i_{2}}} \quad \therefore{ }^{\alpha_{i_{n}}}{ }^{w_{i_{n}}}, w\right]$.

This implies that $a \equiv \Pi^{\prime}\left[{ }^{w}, w_{i},{ }_{j}\right]$ where now the product involves one less distinct free generator of R. Since
$\left[R \cap F^{\prime}, R \cap F^{\prime}\right] R_{3} \leq I+\theta^{2} \sigma^{\prime} \Rightarrow \Pi^{\prime}\left[\mathrm{w}_{i}, \mathrm{w}_{j}\right] \varepsilon \quad I+\forall^{2} L^{2}$ and hence by inductive hypothesis $\pi^{\prime}\left[w_{i}, w_{j}\right] \equiv 1 \Rightarrow$ $a \equiv l$.
Corollary: $R^{\prime} /\left[R \cap F^{\prime}, R \cap F^{1}\right] R_{3} \simeq \frac{L^{[2]}+\phi^{2} L^{5}}{f^{2} L 5}$
(where $\mathcal{L}^{[2]}=\operatorname{Ker} \mathbb{Z} F \rightarrow \mathbb{Z}\left(F / R^{\prime}\right)$), and hence is free abelian, being a subgroup of $\mathcal{f} 16 / \phi^{2} \boldsymbol{\sigma}$. (See Lemma 1.4)

RIFERENCES

1. Baumslag, r.: A representation of the wreath product of two torsion-free abelian groups in a power series ring. Proc.Amer.Math. Soc. 17 (1966) 1153-1165.
2. Baumslag, ${ }^{\text {. }: ~ S o m e ~ a s p e c t s ~ o f ~ g r o u p s ~ w i t h ~ u n i q u e ~}$ roots. Acta Math. 104 (1960) 217-303.
3. Eilenberg, S. and Steenrod, N.: Foundations of Algebraic Topology, Princeton University Press 1957.
4. Fox, R.F.: Free differential calculus, I, Annals Math. 57(1953) 547-560.
5. Gruenberg, K.W.: Residual properties of infinite soluble groups. Froc. London Math. Soc. (3) 7 (1957) 29-62.
6. Gruenberg, K.W.: Some cohomological topics in group theory. Queen Mary College Mathematics Notes. London E.I. 1967.
7. Hall, M.: The theory of groups. Macmillan, New York, 1959.
8.: Hartley, P.: The residual nilpotence of wreath products, Proc.London Math. Soc. (3) 20 (1970) 365-392.
8. Magnus, W.: Beziehungen zwischen rruppen und Idealen in einem speziellen Ring. Math. Ann. Ill (1935) 259-280.
9. Magnus, W.: U"ber Beziehungen zwischen h8horen Kommutatorem. Crelle 177 (1937) 105-115.
10. Magnus, V., Karrass, A., and Solitar, D.: Combinatorial group theory. Interscience 1966.
11. Neumann, Hanna: Varieties of groups. Springer-Verlag, Berlin, Heidelberg, New York. 1367.
12. Ridley, J.N.: The free centre by metabelian group of rank.two. Proc. London Math.Soc. (3) 20 (1970) 321-347.
13. Schumann, İ.G.: Über Moduln und Gruppenbilder. Math.Ann. 114 (1935) 385-413.
