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ABSTRACT

W . Magnus represents a free group in a formal power 

series ring with no relations. We obtain power series 

representations for certain relatively free groups by 

putting various relations on the set of variables of 

the power series. Among those we obtain power series 

representations for are F/F^ (the free, nilpotent groups), 

F/F" (the free metabelian group), F/(F’>2(C3)' ',

F/( F') 2 ( F,̂ ) ,  F/{F’'’,f1 (the free centre by metabelian 

group), F/[f",F,Ç| (the free centre by centre by 

metabelian group) and F/[j",F ,F ,Q'(F ')2• In the

process it is shown that F’Vjj’",^ is free abelian and
(

an explicit basis is given. This basis is used to 

derive a basis for [j" , / [F" , F ,f[ and various other

subgroups of the group's, for which we obtain power 

series representations, are shown to be free abelian.

We prove that all these groups mentioned above are 

residually torsion free nilpotent using their .power 

series representations.

W. Magnus has also proved that the so-called dimension 

subgroups and the lower central factors of the free 

group coincide. In Chapter 5 we present analogues of 

this result of Magnus for the groups F/F", F/(F’)2(F2 *̂ 

and F/(F ’ ) 2 (Fî ) ' and in the process, compute the structure

R.H.C
If BP ART



of the lower central factors of these three groups.

We conclude with a contribution to a problem of Fox on 

the determination of certain ideals in the group.ring 

•of the- free group.
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CHAPTER 1.

Section 1: Basic Definitions: Let a and be be elements
1 1of a group G; then the commutator =' a b ab.

The commutator ,...,a^^ is definea for n > 2 by

putting " [ J l ’* ** ̂ ^ n - l ] ^ l ’**?^n
are called the entries. If none of the entries is 

itself a commutator, then is said to be

simple and to have weight n (a simple commutator of 

weight one is just an element a^). A commutator 

that is not simple is called complex, and its weight

is the sum of the weights of its entries. The conjugate
 1 •of a by b, a = b ab and a and b are said to commute 

b •if a = a . The centre of G is the set of all elements 

X of G such that [x,gj = 1 for all g in G.

The upper central series of G

Zq = 1 _< Z^^CG) _< Z^CG) _< ... ^ Z^(G) _< Ẑ _ĵ (̂G) ^ ...

is defined by the rule: Z^+^(G)/Z^(G) is the centre

of G/Z^(G).

If H and K are subgroups of G , then [h ,k ] is the subgroup 

generated by all |ti,k] with h in H and k in K. In 

particular the commutator subgroup or derived group of 

H is H ’ '= • The lower central series of G

G = G-| > Grt > ...> G . > G»,t > ...1 — I — — 2 — 1+1 —
is defined by the rule: G^+^ = ’ and the derived



series '

G = G° 2 _> ... > G^ 2 2
is defined by the rule: G^^^ = |G^,G . If G^^^ = 1 

but G^  ̂ 1, then G is said to be nilpotent- of class n, 

and if G^^^ = 1 but G^  ̂ 1 then G is said to be soluble 

of derived length m. The n-th lower central factor- of

If P and Q are any properties pertaining to groups

then G is said to be P by 0 if there.exists a normal

subgroup .N of G such that N has P and G/M has Q. P 

by P groups are called meta-P groups. G is said to 

be residually P if given g in G, g  ̂ 1, there exi^sts 

a normal subgroup N of G, g not in N and G/N has P, or 
equivalently if all the normal subgroups N of G ' such 

that G/N has P intersect in the identity. It is easy

to see that if G has P then G is residually P and a

residually (residually P) group is just a residually P 
group.

If H is a subgroup of a group G, then H is said to be 

fully invariant in G if given any endomorphism 8 of G, 
H0 ,H . Let F be the free group on a countable set Y. 

(Countable will mean either finite or denumerable.)■

G is said to be relatively free in•the,variety defined 

by R If G is isomorphic to F/R, where R is a fully



invariant subgroup of F. (See Neumann, Hanna Q.^ , for 

alternative equivalent definitions). If so, then the 

rank of G is the rank of F , that is, the number of 

elements in the free generating set Y of F . If F is 

the free group on then a set of basic

commutators in F is a sequence c^,C2 ,... that can be 

defined as follows. First ĉ  ̂ = (i = 1,2,.. . ,r) 

are the basic commutators weight one. Next if the 

basic commutators c^,C2 ,...,c^ of weight less than n 

have been defined and put in order of non-decreasing 

weight, then the basic commutators of weight n consist 

of all commutators such that t’^ i > j 1

such that if c^ = then h _< j and such that the

sum of the weights of c^ and c^ is n. The basic 

commutators of weight n thus defined are put in any 

order at the end of the sequence. See Hall, M . [?] ,

page 166.

Let r,s be elements of a ring R . ' Then the additive ~ 

commutator (r,s)'= rs - sr. The additive commutator 

(r^,...,r^) is defined for n > 2 by (r^,...,r^) = 

((r^,...,r^_^),r^). Let ZG be the group ring-of a 

group G over the integers. Define the augmentation 

e, a ring homomorphism from ZG to Z by e: ZG ^ Z,

Ja g ^a . The kernel of e is the augmentation ideal



of EG. A right.derivation d on EG is a mapping 

from EG to EG such that for all x and y in EG,

(i) (x + y)d = xd + yd. (ii) (xy)d = (%d)y + (xe)yd.

A left derivation D on EG is a mapping from EG to EG 

such that for all x and y in EG

( i ) D ( x + y ) = D x + D y

(ii) D(xy) = x(Dy) + (y&)Dx.
If F is the free group on Y, dj. will denote the 

right Fox-der ivation on EF given by y . 6. . , where
is the Kroneker delta, and will denote the 

left Fox-derivation on EF given by ŷ. h- 6_... (see Fox 

and Gruenberg [s] Chapter 4).

If X is a countable set of variables, F will denote

the formal power ring in X over E (see e.g. Magnus,

Karrass and Solitar [llQ p.298). A monomial of degree

_n in E is an expression of the form p x . x . ... x. with
^1 ^2 ^n

p in E and the x^ in X. A^ is the set of monomials

of degree n. Every element a of F is ah infinite
sum a = + ^(1) ^(2) » • ? where a^^^ is the
homogeneous component of a of degree r and is a finite

sum of monomials of degree r. If a, \ = ...Co) (1)
= a, n \ = 0 but a , n / 0 then the order of a is m. im-Uy Im) -----
The group of units of E, U(E), is the set of invertible 

elements of F and consists of elements a in E such that
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= ±1. W(E) will denote the subgroup of U(E) 

consisting of elements a in U(E) such that a^^^ = 1. 

The leading term of an element a in W(E) is the first 

non-zero homogeneous component of a - 1 .

Section 2: Basic results

F is the free group on Y and Y is in 1 - 1 correspondence

with X by y .1 1
Theorem 1.1: (Gruenberg Theorem 2.1(i))

A finitely generated torsion-free nilpotent group is

residually a finite p-group for every prime p.

Lemma 1.2: (This is a special case of Lemma 1.9

Gruenberg [S] ). Any free group in a variety is

residually a finitely generated free group in the same 

variety.

Theorem 1.3: . (Gruenberg [o] Chap. 3 Theorem 1)

If R F and R is free on a set Y , then = Ker 

(EF E(F/R)) is free as right (or left) EF-module on 

Y - 1.

Lemma 1.4: (Gruenberg Chap.3 Lemmas 3 and.4),

If Ker (EF E(F/R)) and if ot is a right ideal of

E F , then CTL/OPM"" is a right F/R module and

(i) If ot is free as right ideal of EF on S, C X L / û t l ^  is

F/R - free on S + (T t
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(ii) If tX-is free as right ideal of EF on S,'^is free 

as right ideal of EF on T and is also two-sided, then 

CxZ^is free as right ideal of EF on ST.

Corollary: If ot-is free as right ideal of EF on S then

/ c r i s i s  free abelian on S + ,

(Ditto with right and left interchanged)

'Theorem 1.5: (Magnus [jLO| )

(1 + F = F^.

Theorem 1.6% (Gruenberg \_6 ] Chap. 4,. Proposition 1)

If FT = Ker EF E(F/R) then

(1 ^ F = (1 + ^  F = Î n + 1*
(Case n = 1 is an old re'sult of Schumann. [l4^ . Cf. 

also Fox [4].)

We shall be particularly interested in case n = 1 ' of 

this theorem when. K'= Ctl. = Ker(EF E(F/F’)), so that 

(1 + ̂ C T L ) ^ F = F".

Theorem 1.7: (Fox [JaJ (4.5)) Letoube any icfeal of

EF .that is contained in A  . Then (i) a in EF belongs

to O VÂ if and only if a belongs to A  and D . D . . . . D . a
^1 ^2 , ^r

belongs to for all left Fox derivatives

D. ,D . , . . . ,D. and 0 _< r' _< n . ( i .e . for any particular 
1 2  ^r

r between 0 and n.) (ii) a in EF belongs t o '  A ^ O V  if

and only if a belongs to ^  and ad. d. ...d. belongs 
An-rto -y O V for all right Fox derivatives
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d . ,d. ,...,d. and 0 < r < n.
^1 ^2 "-r " ,  "

Theorem 1.8: (See Gruenberg [ 6 j Chap.4, Proposition 4.

Also Fox 1̂4J . The original presentation of F in E is

due to Magnus [9J.)

(i)' The mapping 6 : EF E given by aô = ae + %x^(ad^E) + 

^x^Xj(ad^dje)+... is a ring monomorphism.

(ii) The mapping p : EF -+ E given by ap = ae + [x^((D^a)e)
+ 5̂x . X . ( (D . D . a) £ )4 . . . is a ring monomorphism.1 j 1 j .

It is easy to see that p = 6 in this theorem. We argue

thus. ô’ :F U(E) given by y^d' = 1 + x^ is a group

monomorphism and 6 ’ is the restriction of 5 to F. If 

a = % a^g is in EF then aô - Jag(g6').6' is also the 

restriction of p to F and ap = % ag(gô’). Hence p = 6.

Let E^ be the ideal of elements in E of order _> Then

by Theorem 1.8 and (4.1) of Fox [J4] , -^^6 = E^ n. (ZF)6. 

Hence by Theorem 1.5 above we get

Theorem 1.9: (1 + E^) F6 = (F^)5. (See Gruenberg ^ 6 j '

page 61).

Note : Throughout the thesis F will denote the free

group on a set of variables Y (countable) and X will 

always be a set of variables in 1 - 1 correspondence 

with Y by x^ y ... ■ F will also denote the free

group on X. In other words X and Y will be inter

changeable and the only reason we introduce 2 sets of
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variables at times is to avoid confusion. We shall 

reserve (X for kerCEF -> E (F/F’)) throughout the thesis.

The notation given in Section 1 of this chapter will 

continue to be used throughout-without further 

reference. The group of units of a power series ring 

P over the integers should be denoted by U(P) but we 

shall be more interested in W(P) = {a e P/a^^^ = +1} 

so that when we consider the "group of units" we shall 

in fact be considering W(P). In other words adopt the 

convention, group of units e W(P).

Section 3: Summary.

The aim of this thesis is to present analogues of 

Magnus’ representation (Theorem 1.8) of the free group in 

a formal power series for other relatively free groups.

If we put certain relations on the variables in the 

power series and if these relations are "homogeneous" 

we expect that the subgroup of the power series with 

relations generated by 1 + X is isomorphic to some 

relatively free group. The method of identifying, 

these relatively free groups as given in a power series 

is usually very difficult.. However we note that the 

power series with relations is isomorphic to the formal 

power series factored out by 1he ideal of these relations.
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call it D, and if we can identify (1 + D) F 6 then 

we can say what relatively free group we have under , 

consideration.

This "Fox-type" problem can sometimes be as difficult as 

the original problem but at least it gives us something 

to'get our teeth into. Once we have a group 

represented in a power series many of its properties 

are easy consequences.

In Chapter 2 Section 1, we present a power series 

representation for the free nilpotent groups more for 

completeness than it actually.presents any new properties 

of these groups. However if anyone wants to go to the 

trouble,this representation can be used to present a 

constructive proof of the Theorem of K.W. Gruenberg 

that these groups are residually finite p-groups for 

all primes p, (see proof of Theorem 3.7) and it also 

seems likely that if we let the power series be over 

the rationale then we get a representation of the free 

nilpotent D-group (see Baumslag [2] for definitions of 

free D-groups in a variety). This latter remark also 

applies to the other power series representations we 

present in the thesis. In Chapter 2, Section 2, we 

present a representation of the group ring of the 

free abelian group in a power series analogous to
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Theorem 1.8. This is fundamental for the basic idea

developed in Chapter 2, Section 3. In this latter

section we present the basic construction which yields

Lemma 2.19 Corollary viz. Let crx, - Ker (EF E(F/F’ •) )

and let P denote the power series ring in X over E n ,m ^
subject to X. X. ... X. (x. x . - x . x. ) x . x .

il i2 ^n ^n+1 in+2 in+2 ^n+1 ^l ^2
...X. = 0, then subgroup G of W(P ) generated by,

 ̂m ■ ’
1 + X is isomorphic to F/(l + F = C^ ^ say.

In Chapter 3, Section 1, we begin to identify some of

these groups C^  ̂ n,m

Ci,o = r/r"' ^2,0 = r/F"' h , o  = ' > '
C^ ^  - F/(F’)2(F^)’. In Section 2 of this chapter we 

show how to prove that the group of units of these 

power series are residually torsion-free nilpotent and 

when X is finite^ residually finite p-groups for all 

primes p, which imply the corresponding results for 

the groups embedded in these power series..

We begin Chapter 4 by constructing a set of generators 

for F"/ |F” î^ (which later turn out to be free 

generators) and use this to prove C^ = F/ [f",f] .

This proves that F/ ,F] (the free centre by metabelian

group) is residually torsion-free nilpotent. Ridley [l3̂  

proves this in the case where F has rank two. The 

basis for F"/[j",^ is then used to construct a basis



for [f’’,T̂  / [f" ,F,^ and hence to show that 2 ~

F/[f ",F,f3 . .This proves that F/[f ",F,fJ (the free

centre by centre by metabelian group) is residually 

torsion-free nilpotent. We conclude Chapter 4 by 

showing ^2 2 " F/[j",F ,F ,^  (F ')^, and hence that this 

group is residually torsion-free nilpotent.

In Chapter 5 we present a method which computes the

structure of the lower central factors of the groups 

C-j , Cg , C^ and also prove analogues of Magnus'-LjO 0^0 M*j'0 .

Theorem 1.5 for these groups. ' 'We conclude Chapter 5,

and the thesiSjWith a contribution to a problem of

Fox [4] by showing (1 + ^^4V) ^ F = |R ^ F', R o F̂ j .
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CHAPTER 2

Section 1: The free nilpotent groups.

In this section we derive power series representations

for the free nilpotent groups F/F^.

Let G be any group generated by Y. Let ŷ  ̂ - 1 =

(in EG) and let C^ denote the ideal in EG generated by

X. X. . . . X .  - X. X. X. ... X. . Then C < gwP.
1 ^2 ^n ^n ^1 ^2 ^n-1 ^ ^

Define a =.3 (mod C *) if a -3 = Y with y e C and vn n '
is a finite sum of terras of the form x = ô (x. x. ...

^1 ^2
X. - X. X. X. ... x. .)n where the x's involved
^n .̂ n .̂1 ^2 ^n-1

in the expression for a are the only x's involved in

the expression for %, n is either 1 or a product of

x's and 6 is either (i) 1, (ii) a product of x's (iii)

a product of (1 + x)"^'s, or (iv) a product of x's and (1+x)” '̂

Lemma 2.1: ■ (a) x. x. ... x. = x. x. ... x . x.
. \  _ n+1 ^1 ^n ^1 ^2 ^n ^n+1

mod C^*, if n is even.

(b) X. x. ... X. E X .  X . ... X. X. X. X.
■ n+1 ^1 4 n  ^1 ^2 ^n-2 ^n+1

mod C^* if n is odd.

Proof : (a) X.' x . ... x. e x . x . x . ... x.
n+1 ^1 ^n-1 ^n+1 ^n-2

Xf = Xf X . X • —  X *
n n-1 n irL ~ h f 4 -

— % " % * X # ^ .
1 ^2 ^n-1 ^n ^n+1

(b) is similar.
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2 2 Lemma 2.2: x . .x . . x. e x . x . x . ... x .
^n-1 ^n-1 1 ^n-2.

mod C *.■f ̂ ■ •
2Proof : - X. X. ... x E x . x . . . . x .  x . x .

^r ^n-1 ^r ^1 n-2 ^r ^n-1

E X . x :  . . . X .  x . x . x .
^1 ^2 ^n-2 ^r ^r '^n-1

E X. X . ... X. X. X. , by Lemma 2.1.
^n-1 ^1 ^n-2 ^r ^r

E X . X .  X.'X. . . . X .  X.
^r ^n-1 ^1 ^2 ^n-2 ^r

E X . x . x .  X . X . ... X .
^r ^r ^n-1 ^1 ^2 r̂i-2

Lemma 2.3: x . x . x . x . ... x. ... x.
^1 ^2 ^n-1

— X . X . X . X. ... X . ... X . , mod C .
^1 ^2 ^n-1 ^

Proof: x . x . x . x .  ... x. ...x.
^1 '̂ 2 . ^n-1

— X * X * X* ••• X » ••• X* X»
i ^1 '̂2 , ^n-l .

— X * X * X *  • • • X *  # # # X # X # X #
i ,2 ^3 ^n-l ^1

— X« X* X # ••• X $ X# X * ••• X «
i j ^j+l ^n-l ^1 ^j-1

— ••• X* X * X* # # « X # X « X * X .
3+1 ^n-1 ^1 ^j-2 ^3^3 ^j-l

— X * ^ * ••• X * X # X # X» • • • X *  X» X* b V
3-1 3+1 n-1 ^1 ^2 . I3-2 3̂ ^3 '

Lemma 2.1.

= X. X. X. ... X. X. X. X. ... X. X.
j-1 3 j + 1 n-1 ^1 ^2 ^j-2 ^3,
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E X . X . X . . X . X .
"-1 ^2 "n-b

E X . X. X. X. ... X.
/ n ^ j  ^1 ^2 ^n-1

Lemma 2.4: If x. = x. then x.x. x. x. ... x. ...
 ̂ ^n ^2

X* ••• X # — X " X*X» X * ••• X» ••• X* ••• X"
^n-1 ^n  ̂ ^1 ^2 ^k ^n-1

mod C^*. -

Proof: x.x. x . *x. ... x. ... x . ... x.
 ̂ ^n ^1 ^2 . ^k ^n-1

“ X » X * X* ••• X* ••• X « X " X« X « ••• X "
 ̂ ^j + l ^k , ^n-l ^n ^1 ^2 / j - 1

E X . X .  . . . X .  . . . X .  X . X . X .  . . . X .  x.x.
^j ^j+1 ^k ^n-1 ^n ^1 ^2 ^j-2  ̂ ^j-1

E X . X . X .  . . . X .  X . X . X .  . . . X .  X.X. X.
ĵ ^k ^k+1 V - 1  ^ n / l  ^2 ^j-2  ̂ ^j-1 ^j+1

— X* ■ • • X *  X « X « X " • • • X *  X "X » X* •••
k + 1 ^n-1 ^n ^1 ^2 , ^j-2 ^ ^ j - 1  ^j + 1

X. X. X. X.
k-2 ĵ ^k ^k-1

5 X. X. ... X. X. X. X. ... X. X.X. X.
k-1 ^k+1 n-1 n̂. ^1 ^2 ^j-2  ̂ ^j-1 ^j+1

. . X x.x. by Lemma 2.1.
^k-2 y

X* X « X *  • • • X *  X * X * • • • X *  X«X« X*
k-1 .̂ k ^k+1 n-1 ^n ^1 ^j-2^ ^j-1 ^j+1

. . x . x .
ik-2 ij

^ ̂ ^ . . . X -  X. X. . . . X .  x . x .  ...
h - 1  U  U + l  ^k-2 ^k-l ^k ^n-l y  U
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5 X. X « X. X. X. ••• X. X . X. X.
^3-2 ^i-1 3̂ ^j+1 ^k-2 ^k-1 ^k ^n-1

<̂1 ><1
' " A
=: X . X .  « . « X . X* X . ... X . X. • • • X .  X.

^1 ^3-2 ^3-1 3̂ ^k-1 .̂ k ^n-1 ^

% X « X # X * # * # X # X # •••X» X* • • # X «
 ̂ ^j-1 ^k-1 ^k n-1

Lemma 2.5: p y . ,y,. ,...,74 "1= Fi + , 1 + , ... ■
: : L  iq ^2 ^n-1 L- ^1 ^2

1- + x^ ~j 5. 1 mod C^*.

Proof : We use induction on n. Case n = 2 is clear

since I”! + x . , 1 + x . ”1 = 1 + ( 1 + x . ) ^(1 + x.  ̂)
L  1/  12-J ^1 ■ ^2 ■

(XigXig - XigXil)-

Pl + x. , 1  + x. , ...,l + x. ~|=1 + y { [l + x. ,L  ii’ I2 inJ L. i p

1 + x. , ...,1 + x. ~l(l + x. ) - ( 1 + X . ) [l + x. ,
■2 ^n-l-J U

1 + X . , . . . ,  1- + X . } = b say where

Y_ = Fl + X/ , 1 + Xj n  (1 + X. ) .̂ We see
L_ V-l-J.

. ■ "that Yq is a finite sum /  y  ̂where each Yp is a

product of x’s and (1 + x)^ 's (or 1).

b = 1 + yJ fl + X . , 1 + X . , . . . , 1 + X . ~|x. - X.
1 2



21

Fl + X . , 1  + X. , » . . 5 l 1 " X .  I} .
L- ^2 ^n-l-l

By inductive hypothesis 1 + xu 1 + a,

with a e C -, and a is a finite sum of terms of the form n— _L
Y (a-,ag...a -, - a_ na.ag ... a_ g ) 5 with y a product1 z n—1 n—1 -L. z n-z
of a^’s and (1 + a^) 's ,6 product of a^'s and the a * s

are just members of the set {x. ,...,x. }.
^1 ^n-1

b = 1 + Y ( ot X . - X. a).
° ^n ^n

Let X. = a =^b = l +  Y(cta - a a). Hence we seen o n nn

it is sufficient to prove that Y(a-,ag...a . - a -,1 . z n-1 n-1

'̂ l'̂ 2-•-®n-2  ̂  ̂ - Unï ( a ̂ 8̂2 . . . - aĵ _'̂ â _a2 . . . )
6 e • All congruences are mod C^* . Suppose 

— 1Y = Y^(l + a^) 6, where Y^ is a product like y and 6 .̂

is a p r o d u c t  like 6. Y ( a . . . . a  -, - a -,a-,ag...a g)61 n-1 n-1 1 z n—z

= 7^(1 + a.) •-^n-1 " ®n-1^1^2''‘^n-2^f

= Y^ci + a^) ^(a^a2-. .a^_2 - 3j^_^a^a2 . . . a^_2 ) 6

Y^{(1 - a. + ( l + a p ' H 2 )(a2a2...a^_2_ - ' ̂ n-2 ̂
S 6 1
" Yi{(l - cu)(a2a2...a^_2 - a^_^a^a2 . . . a^ _̂2 ) > 6^6

by Lemma 2.2.

= Y]3a^a2...a^_^ - an-l^l®2 ‘ ‘ ̂ n-2 ̂  - aj_)



22

Hence we see that it is sufficient to show that

YCa^a^. . - â _ĵ aĵ a2 . . . a^_j ) 6 â  ̂ - a^ y

a T - a T a, ag . . . a^ g ) 6 = d e'C^* where now y is an— 1 n—_L J- z n~z n

product like 6 i.e. is a product of a^.

d a - an-l®l°2 ‘ ’ ®n-2 Y'* ^a^aj...

^n-1 " ^n-l®L^2'•'^n-2^ = 0 if = 1.
Suppose Y<S - h^..,b j b* g set {x. » x . ; » « « ; x . 3.

^ . 1  ^2 ^n-1

=^d E b^b2 . . .b^(a^a2 • . . - ^n-1^1^2 * * *'̂ n-2 ̂ ^n " ^n

^1^2 “ ’̂ r^^l^2•* *^n-1 " ^n-1^1^2’* *^n-2^

E (b^b2...b^a^ - ^nt)^b2 . . • b^ ) ( a^a2 • . . a^_^ - ^n-1^1^2*** 

^n-2 *̂
We have the identity;- 
*

^ J 2 - - - V n  - = (b^a^, - a^bpb2...b^ + b^

^^2^n -  ®n^2^^3---h ^ ' ' ‘ h  + ' ' ' +

b P i - ' - V l ^ V n  - ^nh^- , Also b^b^ . . .b. _^Cb . â  ̂- a^b.)

’̂ i+1'• • '^n-1 " ®n-l^l®2 • •‘^n-2 ̂ - ^1^2 ’■•'^i-i

(^i^n ■ •'^n-l " ^n-l^l®2 ‘ ' "̂ n-2^“̂i + l ’ ‘ '’=r ’
Hence it is sufficient to prove that p =  (b.a - a b . ) ̂ ^ i n  n 1
(a^a2...a^_^ - â _2_â â2 . . . 3ĵ _2 ) a 0.

Now b* e set {x . , x . ,..«,x. } and also an,ag,..«,a -,
1 ip I2 ^n-1

are contained in this set. Hence amongst b^,a^,a2,.. 

'.,a^_2 there is an equality. If b^ = â  Lemma 2.3
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shows that p = 0 and if a^ = a^ for r / k then Lemma

2.4 shows that p =0. This completes the proof.

Corollary 1: _< (1 + C^)/mG,

Corollary 2 : If F is the free group on Y then (1 + C^)

^ F =

Proof : Follows immediately from Magnus' theorem 1.5.

Corollary 3 : Let 6 be the mapping of Theorem 1.8, and

F the free group on Y. Now let C^g generate the 

ideal in E. Then (1 + D^) ^  Eg = (F^)g .

Proof : Follows immediately from Theorem 1.9.

Corollary 3 gives us a power series representation for 

the free nilpotent group of class n-1, F/F^, which we 

state as Theorem 2.6 below.

Theorem 2.6: Let denote the power series ring in X

over Z subject to the relations x. x. ...x. - x . x .
^1 ^2 ^n ^n ^1

X . . . . X . = 0 (i.e. let the ideal generated by the
^2 ^n-1

n-1 homogeneous part be central) then subgroup of W(K^) 

generated by 1 + X is isomorphic to F/F^ under the

mapping y . ->■ 1 + x . .1 1

In particular this gives the well known power series 
representation of F/F' viz. the power serieshring in 

commuting indeterminates. In the next section we show 
how this representation of F/F' can be extended to a
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representation of the group ring E(F/F') .
Section 2 : The' free abelian group ring.

Let G = F/F' be the free abelian group on Y and as
in Section 1. is the augmentation ideal of G and

(j)' : G W(K^) .the embedding of G in Kg.
Lemma 2.7: is freely generated as E-module

oii-i otfo cti+-
by {(y* -.1) (y* - 1) ...(y. - 1) /a; c Ely . I2 -̂ k

- {0 }, i^ < i2< ... <i^ and «p .+ ap^ + • • • + , ap = 3 }  

Proof : Clearly this set generates ^  /^ • Suppose

“h  “b. • “h.I ^ P P  p (yp - i) (yp - 1 ) •••Gyp - 1 ) ^1^2 ** t 1 ^2 t
a- a- a-n+1 I2 ... 1 ,= w e , n . . . e E . Then
^1^2 ***^t3* 3jj 3-Î 3- 3n

w = ' Jm. ^  ̂  ̂(y. - 1) \y- - 1) ^. . .3 i3 2 • • • 3 s 3 p .32
3p 84 343q 3 1 3 2 ' ' ' 3 q(y. - 1) , with m. . . e EG and g. + g. +...

3s • ' b  U

+ 3- = 3  + 1. We can extend  ̂' to a' ring homomorphism
3 s

* :. EG + Kg by (j> : J a g J a (g^'). It is clear.
that an element of will be mapped

ideal of elements in K2 of order . > 3 +
«P ap a- a- a- “i

that I n . h  2 :
1^2••* ̂ t

• t • X •
^t

t = 0 =>
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Ot • et • '#*&"
1 2 T 'n.' . ■ . - 0, completing the proof. As corollaries

^1^2---^t

to this we have the following Lemmas.

Lemma 2.8: <{) as defined in Lemma 2.7 is mono.

Proof; If a& = 0 a c By Hartley [s]
i = l ^

Lemma 18,the intersection of the powers of the augmentation 

ideal of a torsion-free nilpotent group is zero. There

fore a = 0.

Proposition 2.3: ^  r (ZG, ® / eg  ̂ is
]>0

isomorphic to the polynomial ring -2 Lx] in commuting 

indeterminates.

Proof: Note that E[_X] is just the direct sum of the

smhomogeneous components of K2. Hence an isomorphi

Ip: ̂ r ( Æ G , ) -v ^ X is given by v : (y^ - 1) ^^(y^ - 1)
1 2 a ■ a • • a • • a •

t i+1 3 2 t. . . ( y . - 1 ) + (hr X . X . . . . X . • , by Lemma 2.7.
ip if ip ig ^t

Proposition 2.10: lim E C /

'Proof : Comes directly from definition of the inverse

limit and Lemma 2.7.

(For definition of the inverse limit lim, see e.g. 

Eilenberg and Steenrod [3] ) . '
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Section 3: Derivations in E.

Define a linear mapping of E into E by 

1 d. = 0,
. ] _  ,

( X . X .... X . ) d . = 6 • . X . • . . . X . . Then d . : A -v A .
^1 ^2 ^n ] . iJ ^2 n' ^

Lemma 2.11: For a and b in E ,

(ab)dj = (adj)b + (bdj)a^^^

Proof: ((ab)dj)(y) =

r+1 ■ _
= a(i)b(r+l-i))dj '

_ r+1 _
= 3(o)(b(r+l)di) + (.1  ̂ ^(i)hr+l-i)^h

_ r+1 _
= a(0)(b(r+l)dj) + .1^

_ ’ r+1 __
= a(o)(bdj)(r) + ^ L r + 1-1)

" a(o)(bdj)(r) +

= (3(0) (bdj) +■ (acû)b)(y)

=> (ab)dj = (adj)b + (bd^ )a^^^

Lemma 2.12: For all a in ZF,(adj)g = (a 6)dj (ô is the

6 of Theorem 1.8).



Proof : {(ad.

= -  y X. X. ...X. ( a d . d .  d. . . . d . E )

= { y X. X. . ..X (ad.d. d. ...d. e)}d.
O  "2 "r : O  -U V  ]

= { y X.X. X. ...X. (ad.d., d. ...d. e)}d.
 ̂ O  O '  O  O  O  O  O  ]

= {(o6)d.

=> (a dj  ) 6 = ( a d ) d .

Lemma 2.13: Let be an ideal of ZF that is contained

in and let (Z&)6 generate the ideal D in E such that

(ZF)a = Cl^) S . If (^^%) 6 generates the ideal

in E, then D^r\(ZF)g = (̂ %̂ )  6 .

Proof : By induction on n. Case n = 0 is part of

hypothesis. 0^%-)6 £ D^o(ZF)6 is clear. Suppose 
a 6 ZF and ag e D .

=> a5 = y Yp ' Ap » , fLp and-^^ £ E , '

6p G (^)ô, Yp £ 5 . '

(adj)ô = (a6)dj by Lemma 2.12

- 2Lp 3p Y p  A p X d j
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= y ( a. 6. )d . 7 . 6 . which is in -,  ̂—1 1 ] 1—1 n-i
(ad . ) 6 e 6 , for all d . .

^  adj G for all dj .

=> a ( B y  Theorem l . l ) .

=> a ô G (4^) 6

Hence by induction

Lemma 2.14: Let î .= Ker ^ ÆCF/R)' and let ̂-fis generate

the ideal D in ,E . Then ^ F g D = WTg if and only if 

the homomorphism '4H : (Fô)/(R6) E/D given by 1 + x

M- 1 + X + D extends to a ring monomorphism 

%((F6)/(R6))'+ E/D (4̂  %a g ^ %a (gy/)).

Proof: %((F6)/(R5)) Y -> E/D

4>

2(F6) = (EF)6

6 is induced by the natural map E E/D. This diagram 

commutes. is onto). That is, cf) > = 0. Suppose 

(^F)ô n D = MTa and let a (j) eKer ijj, a g /Ffi .

-y* a (() \jj -  0 a8 = 0 ^  a G D 

=> a G D o ZFô = pf 5 => a cj) = 0 

=>  ̂is a monomorphism.

Suppose ÿf is' a monomorphism. Clearly <_ ZF g D.
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Let a 6 e ZF6 D, a e ZF, (ag)^ = (àg)Q - 0

^  (ag )* = 0 3>ag E PT6

Lemma 2.15: Let O c = Ker Z F  ^ Z(F/F') and suppose

i ^ ^ c n )  s generates the ideal in E. Then ^Fg ^ =

Proof : By Lemmas 2.8, 2.14 and 2.13.

Corollary : Let be the power series ring in X over

Z subject to the relations x. x. ...x. (x. x . - x .
• ^1-^2 ^n ^n+1 ^n+2 ^n+2

X . ) = 0, then the subgroup G of W(F̂ ) generated by .
n+1

1 + X is isomorphic to F/(l +

Proof : is clear from Lemma since (^L is the ideal on

(y. - l)(y. - l)...(y. - 1 ) {(y- - l)(y. - 1) -
^1 ^2 ■ • ^n ^n + 1 ^n+2

(y. -l)(y. - 1)}.
n+2 n+1

We shall show below how this enables us to prove that

these groups are residually torsion free nilpotent.

Note that these groups are relatively free since

(1 +^^cru)/^F is a fully invariant subgroup of F .

Define a linear mapping D. of E into E by D.(x. x. ...
,3 ] ^1 ^2

X. • ) = g . . X. . . .X. . D. 1 = 0.
n n-" 1 ' n-1 3

Lemma 2.16: For a and b in E,D. (ab) = b , . D. ( a)+- a  D . (b )3  ̂o ; ] 3
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Proof: {Dj(ab)}(p) = ^ \ j n + p )  )

_ r+1

__ r ■
^(i)’̂ (r+l-i)  ̂ ®(r+l)'^(o)^ 

r __ __

 ̂ i^o ^(i)^h' ’̂ ^Pr-i) ^ ^(o)^®i'^Pr)

= {a D.(b)}(^, + b(^j(D.a)(^)

= (a Dj(b) + b(o)Dj(a)}(y)

=>D.(ab) = b , vD.(a) '+ a D.(b) 3 (o) ] ]

Lemma 2.17: For all a in E T , (D^Jg = D^C^g)

Proof : Similar to Lemma 2.13U

Note first of all that g = p in Theorem 1.8.

aje
i^ig,^'.,ir ^1 ^2 ^r .^1 ^2 ^r 3

{(D. a ) ô } / N  = V X . X .  ...X. (D. D. ...D. D. a),] tr;  ̂ _. 1 -, i__ In j /

=D. y X. X. .;,x. X. (D. D. ...D. D. c&
 ̂ ""t "-2 : .

■1’ 2’ ’"r’ -̂ 1 "2 "t "-1 ^ 2 r

= D.
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( D j ct ) 6  ̂ D j ( ot 6 ) •

Lemma 2.18: Let be an ideal of Z Y  that is contained

in and let (î ) g generate the ideal B in E such that 

B n Z Y  6 = g. . Then if ('^'^P)g generates the ideal

E in E, n ’
r ^ Z Y 6  = ) g .n

Proof : Induction on n.

Case n=0 is part of hypothesis.

<_ B^ <1 ̂ Eg is clear. Suppose a £ Z Y  and 

ag £ B_ =>ag = y a-g.y-gj, where a.,g. are in E,Ti  ̂ —1 ]_ 1—1. —]_ —]_

i

(D.a)g = D.(ag),by Lemma 2.17 
3 .

- o^g^y )

= I D.(a.g.Yi«i)

= y a .e.D.(y.g.)jwhich■is in B  ̂ ̂ —1 1  ] ' 1—1 n-1
Hence by induction

(Bya)g E ^)g^for all .

=>Bya £^?^^ ^ for all 

=> a E by Theorem 1.7.

=> ag £ ( ) g
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Lemma 2.19: Let ot = Ker ZF ^ (F/F' ). If

generates the ideal D in E then =“ T?i,m

Dn,m^ ZrS-
Proof : From lemmas 2.15 and 2.18.

Corollary : Let P^ ^ be the power series ring in X over

Z  subject to

X. X. ...X. (x. X. X. )x. X. ...Xy = 0  then
^1 ^2 ^n ^n+1 ^n+2̂ n  + l ^1 3 2 3%̂

subgroup G of W(P^ generates by 1 + X is isomorphic

to F/(l + A F.

Proof : Is clear since ^ is the ideal on
»

(y. -l)(y. -l)...(y. -l)(y. y. - y. y. ). 
^ 1 2  ^n n+1 ^n+2 n+2 n+1

(y. —l)(y. -l)...(y. -1)./
3l 32 3^

Note that F/(l + F is a relatively free group

since (1 + 0 ^ c n L  - 0  F is a fully invariant subgroup
of F.

The problem now will be to identify the groups 

(1 + ^ ™ ) ^ F .  Let = F/(l + jÿ'“ )n F and

we shall continue to use this notation in the following 

chapters.
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CHAPTER 3

Section_l: Ci,o)C2,0'^3,0 ^^,0"

Lemma 3.1: (1 + ) n  F = (1 + 0 c n . )  n  F = E"

Proof: E" £ (1 + o E  _< (1 + 0 ^ c n  ) n F

£ (1 +0cn^)  n F = F" by Theorem 1.6 .

Corollary : Let Q denote the power series ring in X

over Z subject to x. (x. x. - x . x . ) = 0 then subgroup
^1' ^2 ^3 ^3 2̂

of VJ(Q) generated by 1 + X, is isomorphic to F/F".

Let F be free on Y. Before proceeding we introduce

some well known commutator identities. If a,b and c

are any elements of a group G then

1. [a,be] = [a,c] [a,b] =• [a,c] [a,b] [a,b,c].

2. [ab,c] = la,c]^rb,c] = [a,c] [a,c,b] [b ,c] .

3 [a ^,b] = [a,b] ^ = [a,b]  ̂ ga,b] ^,a .

[a,b ^  = [a,b] ^ = [a,b]  ̂ |ja,b] .^,b ^].4.

5 . ab = ba [a, bj] .

We shall refer to these as (R).

Lemma 3.2: (1 + 0 ^ C t l ) ^ F  = ( F ' ) ^ ( F ^ ) ' ,

Proof : (F')^ £ (1 + Ct l ^ ) n  F £ (1 + F.

Let f^, f^ E Eg then f^-1 e ^  Crv and f^-l e ^  ^

1 + f^'^f2"^{(fi-l)(f2-l) - (f2-l)(f£-l)} E
1 + 0  W .

Hence (F').(Fq)' £ (1 + )4n p.. ‘



Suppose a e(l ou) ri F. Then a e F” by theorem 1.6

(all congruences are mod (F')2(Fg)' unless otherwise 

stated).

a = n
y. e F'%

^ a  E n

= n

pii'yi,] ' [ÿi.'yi,3 4
î-i ^i^ J with c F ,

3 "4-

E n [n ’Vid ’ Picndll [n->n J » pi,’n ’ ̂ i]1 "2- 3 "4-*J L*- ■"1 "2-* L I3 I4 1

3 "4^_
, by (R).

3 "4

Call this (A). Cancel inverse pairs. By (B) we see 

that a is congruent to a product type (A) (where now we 

allow the double commutators in (A) to have negative 

sign),in which the 2-commutators are basic (i^ > ig, 

ig > i^). Cancel inverse pairs after this reduction 

and call the new product obtained (B). We proceed by 

induction on the number of distinct (basic) 2-commutators
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in (B) to show a e 1. If no 2-commutator is left 

after cancellation we are through. Let [~y. ,y. 1
L I2-*

be a particular 2-commutator in (B). We may now 

collect in one commutator all the commutators in (B) 

involving ,y^ ^ (modulo ( F' ) g ( Fg )') using (R). Thus

n 
n -

(type. (B) fy. ,y. 1 not a 2-commutât or ) ̂ with e= ±1,-Lii I2J

fg e F, (f3_f2~f2^1^ mod and
jfg^jfgjfg^ E 1 mod Fence since a-1 c 0 ^ cyt and

(F')g(Fg)' 1 + , '

{(y. -l)(y. -1) - (y. - i X y . -l)}{nfy- ,y- 1 ^a-| +9 I9 +1 L lyj

" [ W p h 2 ’“:n^-l]-ye{(y. -l)(y. -l)-(y. -l)(y. -1)}
U • -̂3  ̂U  ̂U  ̂.3

= a say, is contained in , where |y^ ,y^ J / ,y^ ^

and y, e F.

'By Theorem 1.7, ad. d. e .il %2

=> n
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=>nfy. ,y- n n [ÿ- ,y. , a-l ̂  eF" by Theorem 1.6.
L I3 ilJ 1 2̂ JJ

-t
=> a E n (type (B) with one less distinct.2-commutator),

=> by induction, a s 1.

Corollary : Let P be the power series ring in X over

Z subject to X. X. x . (x. x. -x. x. ) = 0 then subgroup
^1 ^2 ^3 ^4 ^5 ^5 ^4

G of w(P) generated by 1 + X is isomorphic to F/(F’)g(Fg)'

Lemma 3.3: (1 + ) ^ F  = (F')g(F^)'.

Proof : , (F’ ) g £ (1 + cn3 ) /\ F £ (1 + n F since
2

Crt 1 4  *
Let fj ĵfg be in F^ then

= 1 + }and

hence (F^)' £ (1 + ' ^ ' * O L ) n T  

=0 (F')g(F^)' < (1 + F.

• 4Suppose a-1 e 0  cru with a e F a e (F*)g(Fg.)’ by Lemma

3.2, (All congruences will be mod (F’)g(F^)’ unless

otherwise stated).

=> a E f with f E (Fg)'3
^i. . ^i Ej ej .

a E. n Fa . . , . a . ^ f • ,  ̂ . 3 • ^ g -I
I- 1 ■ n  ̂ ^1 ^m

a. 3 * are basic commutators weight 3, i, < i <...
£ ’ -’k ^  ^

< i^ and j ̂  < j., <...< j^ in the ordering of the basic

commutators weight 3, n,- » e- are in , f.,g. are in
■ I  ^k 1 3

F. and the %. . are in F_. ̂ 1 5 J
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f— -L A C JU -,“i a- ...a- 3 ' •••3- @4
1-1 ^2 n ^2 Jm Jj

m

%
“b

n
• • • CXp

e .
„ b3-Î
32

e.

■ b

“b  •

n
• • ap.

. . . 3.

n

i

' b  "b 
' b  ' b

. . . ' b
' b  b

' b  
b  ■

'b3 • • • •3 2
' b

' b b ]

(R)

e.

b
b

E .
= b3 A * • *
32

E .

b ]

E]
If., e. g.  ̂ ... e- ”-|-CB),(by (R))L ̂  J1 3 ? 3- J

Cancel inverse pairs and after this we proceed by

induction on the number of distinct basic commutators

weight 3 remaining. If no basic commutator- weight 3

is left we are through. We collect using (R) all

terms of the product involving a .particular basic
_ 2_say, noting that a- is also collected using 

f  33 E for 3 in F'.
Thus a E npxjspqj IÎ (type (B) not involving the basic 

a j), where p is a product of basics weight 3, not 

involving «j and q e F^.

For X , y , z and w e F

[x,y,z3 E 1 + (xy-yx) z-z(xy-yx) mod 0 ^

[x,y,z,w] E l  mod

Since a-1 e 0 ^ Cru and (F')g(F^)' £ (1 + ^  *̂ crc)
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=>(otj l)(pq-l)-(p-l)(aj-l) + y±(-Yĵ -l)((Sĵ -l) g 0  ^crc, , 

where the y . are basics / a-, and g, e F . Also' J K o
p-1 E y±(Wj^-l) mod 0  9 where w^ is a basic X

=> ( olj-1) (pq-1) + y±( Yĵ -1) ( 6̂ -1) is in - (C),
I ' .

where y ^ ds a basic Z ay, 6% % f g ' .

Let aj = A  > b '  b  ^ b -

The only other basic commutator weight 3 that involves

each of and y. is F 
^3 L ’b . l ’ VI3 ' ^ 3  •

a j -1 E ' b f i , - Yi Yi U i. 2 ^1 .3
- y, (ÿ^3 ■ b ^ b

- y . y . ) mod
I2 If

[ b s ' b 2 ’X 3  -1 = (yj y. -
^3 ^2 b / i > % - ' b  ' y

- n / i ) mod 0 -̂ .

(y. ,y. ,y. ) does not involve y. ,y. and y . in the
I3 ^1 -̂ 3 ^2 ^1

sequence i^, i^, ig for ig / i^.

From (C) we get

= y, e ÿ V  •

=> yd. d. d. E Âcn. (if i = i_ take y d . d . d. e A ctl )%2 I3 V 2 3 I2 I3 y

=> p q-1 . c ypcru
=> pq E F" by Theorem 1.6.
=>a ' E n (type B with one less .distinct basic commutator 

weight 3).

=>-by induction^ a e^I.
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Corollary: Let: S be the power series ring in X over

Z subject to X. X. x. x . (x. x. -x. x. ) = 0 then 
1 ^2 ^3 ^4 ^5 ^6 ^6 ^5

subgroup G of W(S) generated by 1 + X is isomorphic

to F/(F’)g(F^)’ under the mapping ŷ n- 1 + x̂ ,.

Section 2 : . Residual Properties.

This section is devoted to' proving that the groups of 

units of the P^,^(as constructed in Lemma 2.19 Corollary) 

are residually torsion free nilpotent and when the set 

of variables is finite, are residually finite p-groups 

for all primes p.; This will prove that the groups 

F/(l + embedded in these power series are

residually torsion free nilpotent and residually finite

p-groups for all primes p, (without-any restriction to '

finite generation by Lemma 1.2). We shall confine our '

attention to Q, the power series ring in X over Z subject

to X. (x. X. - X .  X. ) = 0  but it is easy to see how 
^1 ^2 ^3 ^3 ^2

these results can be generalised to P^,^ (with

probably a little rotational difficultyJ)

In Q every element s in the multiplicative semigroup of

Q generated by X can be written uniquely in the form

S — X« X. X. ...X. , ZLn < Uq  ̂ ... < i (1)
U' U  U  In 2 - 3 - - n

Term ms with m e a monomial in 0. Let K. be the ideal



of elements in 0 of order £ i. Then A = 0.

Lemma 3.4: Let a, c V/(Q) and let the order of a-1 be

i. Then the order of a^-1 is also i, for m e Z - {0 }. '

Proof : Let a = 1 + a^.^ + g(x), a^^) / 0 I

g(x) E tt K. ( the. Cartesian nroduct.)
j>i J

a ’ = {1 + + g(x) => (a’̂) = ma^^^ and j

= 0 for 0 < k < i and (a’̂)^^^rl. By (1) if • j

ma(i) = 0 =>a^^^ = 0. Hence the order of â '-l is i. i
■  I

Theorem 3.5: W(Q) is residually torsion free nilpotent. j

Proof : kh (1 + K .) = 1 and (1 + K .) o  W(Q). i
Clearly {W(Q)}^ £ 1 + K^. (Note {W(0)}̂ . is the ith 
term of the lower central series of W(Q)). Hence 

Vi (C)/(l + K^) is nilpotent and-is torsion free by 
Lemma 3.4. => W(Q) is residually torsion free nilpotent.

As a corollary to this we get the well known, theorem:

Theorem 3.6: The free metabelian group is residually

torsion free nilpotent.

Proof : By Lemma 3.1, Corollary and Theorem 3.5. /

We can now use Lemma 1.2 and Theoremsl.l and 3.6 to 

prove that the free metabelian group is residually a 

finite p-group for all primes p. However this result 

is a corollary of the following constructive Theorem.
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Theorem 3.7: If X is -finite then W(Q) is residually

a finite p-group for all primes p.

Proof : Let X = Define

R. = {1 + p^g(x) + f(x)/f(x) e n Kj) g(x) E /in K . } 1 »n i>n  ̂ 1 - 1 1
(II denotes the Cartesian product and 0 the direct sum) .

• h
T h e n R . ^ ^ O  W(Q). [w(Q): = .n [ R i . p r b ’j]

] - 1
and we let R^,^ = W(Q). The number of distinct

elements of degree j in the multiplicative semigroup 

of Q, (generated by X) is by (1)

r-l+i _ ., ,T\,r-l+iv
(r+l)( ). Then |R.,. ̂ :R. .1 = p^^^ D (  j )j L i 3 ”i i)]J

since {1 + ĴC . . . . x . ..x / with 0 £ C, ... . < p^,
1 i 1 1 j

t^ £ t_ £ ... £ t .} gives a transversal of R.,. in 
^ o 3 1 J

R^,j_^. Hence ,W(0)/R̂ . ^ is a p-groUp. Suppose

a A 1 is contained in W(Q) and let the order of a-1 be

£. ^(£)  ̂ ^ end a, \ is a finite sum of monomials
of length i .  Suppose a,^. = p^ ^g(x) where a monomial 

of g(x) is not divisible by p. Then a i  R^,^.

Using the methods dterived in this section we prove in 

a similar manner as Theorems 3.6 and 3.7.

Theorem 3.8: F/(F’)2(R3)’ is residually torsion-free

nilpotent.
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Proof : By Lemma 3,2 Corollary F/CP'lgCF^)' is

embedded in P^,q .

Theorem 3.9: F/(Ff)g(Fg)' is residually a finite

p-group for all primes p.

Theorem 3.10: F/(F')g(F^)' is residually torsion-frei

nilpotent.

Proof : By Lemma 3.3 Corollary F/CF'i^CF^)’ is

embedded in P^,q . ■■

T)ieorem 3.11: F/CFg^^P^X is residually a finite

p-group for all primes p.
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CHAPTER 4

Section 1: F/[F”, F]; The free centre by metabelian group.
»
In this section we show that F’V[F", F] is free abelian and

an explicit basis is given. We also show Ĉ '  ̂= F/[H", F]

and hence that F/[F", F] is residually torsion free 

nilpotent. We use lengthy computations with commutators 

and the reader is assumed to be very familiar with 

commutator identities. Lemmas 4.1 - 4.6 below are an attempt 

to familiarise the reader with the identities we shall 

frequently use.

We collect in Lemma 4.1 some well-known results to which we

shall make frequent reference later on.

Lemma 4.1: G any group.

(i) If a^ e G ’, a2, ..., a^ e G then

—  1 —  1[a^, ag, ..., a^] = [ ,  a^, ..., a^] mod G"

(if) If a, b and c e G then

[a, b, c] E [b, c, a]“^[c, a, b]~^,.

E [b, c, a]~^[a, c, b]

E [c , b, a][c , a, b]

E [c, b, a][a, c, b] mod G".

(These are just restatements of the Jacobi Identity.)

(iii) If a^.E GV^ a^, ..., a^ e G then
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ag» •••» a^] _ [a^» a^ , •••» a^ ]

mod G"5 where ig, ..., is any permutation of 2, n.

(iv) If a and b e G ’, c e G" and a^, a^, a^ s G then

[a b C) ag;

- [a, a^, ag 5 . a^].[b, a^, ag, •••» a^] mod G"

( v) If a, b, c, a^, â ., . . . , a^ e G then ■

-i[ a , b , c, â ,̂ a g, ..., a^ ] = [b, c, a, a^ » a g, ...,a^] 

[c, a, b, a^, a g, ..., a^]

= [c, b , a , a 2 » a g , . . . , a^][c, a, b, a2 » ag, .. •’ "nl
[b. c , a , a 2 » a 2 5 . . . , aj-j] [a, c, b, '̂2 ’ • • •. ]

- [c, b , a , a2 » ag. . . . , a^][a, c, b, a2 » ag, 
mod G".

• ’

(vi) If *̂ 1 ’ ^ 2 ’ • • » &n c G then

( a ) [a^, a g, . . , ai’ ^i+1 Î •••Î ]

- [a^» a g , ... -1» a 2 » 1 — 1
ap+l’ •*•’ ^nJ . *

[a^, ag , . . . a ~ 1’ i ’
-1

^i’ ^i + 1 ’ ‘ ’ ^n^ mod G”

for 2 < i < n .

(8) [a^î a g, ..., a^] _ ? ag, •••, a^]

[ a 2 5 a g , a 2̂, a g , a^ ] mod G «

Proof : (i), (ii) and (iii),are well known.
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(iv) is easy by induction on n.

(v) is just a combination of (i), (ii) and (iv). 

(vi) comes from the.

[x, y] = [X y] ^[x y, x]  ̂

[x, y] 5. [X, y " ^ ] ' ^ [ x ,  y"^, y]"^ C-"

Lemma 4.2 below is due to Ridley [13]. ^

Lemma 4.2: G any group, a, b and c e G ’ e, f c G, then

(i) [a"l, b] E [a, b]"^E [a, b"^j, mod(G') .
—  1

(ii) [a^, b^] E [a^f , b], mod[G”, G].

(iii) [ab, c] e [a, c][b, c], mod(G')g.

(iv) ■ [a^, c] E. [a, c], mod(G')g.

(v) [a, e , b ] E  [a, [b, e ^]]mod[G", G].

Proof : (i), (iii) and (iv) are clear.
e f • e f ” ̂ fFor (ii):- [ a ,■ b ] = [ a , b]

[a^f b][a^f ^ ef-1

For (v):- [[a, e], b] = [a a , b]

, b , f ] E [ a , b] mod[ G" , G ]

-1 e

E [a ^ , b][a^, b ] from (iii)
-1 e“E [a, b "'][a, b^ ]-1

E [a, b-1 ]

E [a, [ b, e"l] ] .

from (i) and (ii) 

"from (iii)

Let G be any group generated by X (countable). Let
Ep Ep Eia - [X . 1, X. 2, ..., X . n] be a commutator in G then

^1 ^2 ^n
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a t  ^ i K

we say the sign of x. tallies in a /if x. / x.

n or if X. = x. and e -  = e - for 1 < k < n.
' . j "-k ^k

Otherwise we say the sign of x. does not tally.
 ̂jEf Ej_ E£

Lemma 4.3: Let a = [ x .  l,x. 2, ...,x. n]  ̂ .
^1 2 ^

where the signs of x. , ..., x. tally, and
, , ■ ^1 ^n-1

i^ < i., < . . . < i , . Then a is a product modulo G" ofo — 4 — — n-1 m  n-
commutators of the form b = [x. -'1, x . “'2 , ..., x. m],

^2 V
where y  = = ig, ig £ i^<_ ... 1 and the sign of

X. tallies for 1 £ k £ m, and also for every s, 1 £ s £ n, 
^k

i = i1 for some k, 1 < k < m. s k — —

Proof : If i^ i  i^ for any k, 1 £ k £ n-1 or if i^ = i^

and e . = e. for any k 1 < k < n then by Lemma 4.1 we
^m k̂.

are through. If i = i, and e . = - e . for some k,
^n ^k

1 _< k g n-1 then we proceed by induction on the number to

of times occurs amongst i^, ig » •••» ^n-1' If t = 1
Lemma 4.1 (iii) and (vi) gives the result. If t > 1 then

Lemma 4.1 (iii) and (vi) shows that a is a product mod G"

of a commutator of the required type and one of the same 

form as a but where i^ occurs less than t times amongst the 

indices i., i^, ...» i_
E. E 2 E .

Lemma 4.4: Let a = [ x .  ^1, x. 2, ..., x . ^n], with .
^1 ^2 ^n •

n > 4, i_ < î  < ... < i -, and the sign tallies of x.•— £ 3 — 4 — — n-1 ® k'



.for 3 _< k _< n - 1. Then a is a product modulo G" 

of commutators of the form

b = [x. 5 X. , X. -̂ 3, X. -'ml with < j. < ... < j
i p  i p  33 3m ^  ”

the sign of x . tallies for 3 <_ t _< m and for every s,
 ̂t ,

3 < s < m, i = il for some k, 3 < k < m. •— — s ^k. — —

Proof: The proof is similar to the proof of the previous

Lemma.
e . e . E .

Lemma' 4.5: Let a = [x. ^1, x. 2, ..., x . •̂ n] i  1.
■ ^1 ^2 . ^n .

Then a is a product modulo G" of commutators of the,form
n. n . . n .

b = [x. ^1, X. • ^2, ..., X. ^m], with j = i , j = i.,
^1 . ^ 2  ^m 1 1 z z

j „ <  i , , < . . . <  j 5 the sign of x. tallies for 1 < t < m, jg _ J4 _ — -̂ m’ ^t — —
and for every i , 1 < s < n, i =j, for some k, 3 < k < m.s — — s k —

Proof : We use induction on n. Case n = 2 is clear.

Suppose n 3.- By the induction hypothesis 
£ . e 2 E.

[x. ^1, X.' 2,...,x- ^n-1] is a product modulo G" of
. ■' ^2 n-1
commutators of the required form. Hence by Lemma 4.1 we

n.. n. n. ^2
need only show that [x. ̂1 , x. -'2, ...,x. -*m, x. n]

n. b  L  3m
with [x. ^1, X. ' ^2, X. ^m] a commutator of the

' ^2 ^m
required form, is a product of commutators of the required 

form. Lemma 4.3 does this for us.
E . c . E •

Lemma 4.6: Let a = [[x. ^1, x . ^2, ..., x . n],
n . n . ^1 ^2 ^n

[x2 Xj. ^]] . Then a is a product modulo [ G”, G] of
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commutators of the form b = [[x. ,x. ,x.
^2 ^3njj

X. ^m], [x., X.]] where (i) j g £ ... £ j
^m .  ̂ ' .
(ii) if j, = i for 3 £ k, t <_ m then n • = n •

g  1 Jk . ^t
(iii) for every s, 3 £ s £ n, i^ = for some t, 3 £ t £ m

Proof : By Lemma 4.1 (iii) and (vi), and Lemma 4.4 we can
assume e. = +1 , e. = +1, i„ < i,, < ... < i and if2 3 — 4 — — n
i. = i_ for 1 < t, s < n then e . = e. . If n- = -1t s - ^

then [[x.^, x.^ x.^ b / b ] ,  [x.-l, x.L]]

E .
: x.^ x.^ X. 'b], [X., x.h)]-i

Ef  ̂ _ 2

X.^ x.^ X. 3n], [x., X. b  X."^]

= pq say
c , c . 'n .

q - [[x. , X. , X. 3, ..., X. n, x.],, [x., x.  ̂] ]
^1 ^2 I 3 n  ̂ • .

by Lemma 4.2.
By Lemma 4.4 we can now assume = +1. Similarly we can

deal with n • = -1 . .
3 I

The reader is advised to be very familiar with the last six
Lemmas before proceeding. We also introduce some further

terminology. We say an amalgamation of x. is necessary in
e . £ . e . k

the commutator [x. 1 , x. 2 , ..., x. n] if the sign of '
^2 ^n
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X. does not tally in this commutator (we have to apply Lemma

4.5 in order to express the commutator modulo G" as a .

product of commutators in which the sign of x. does tally).
^k

From now on F is the free group on X and as usual 

0 =  Ker (ZF ^ 2: ) , and Ker ZF ->Z(F/F’). Free generators

of F’ are derived in Gruenberg [5] Theorem 5.2 namely the 

set,W consisting of commutators of the form
Ef , Ef ■ E^

[x. 1, X . 2, ..., X. n] with i, > i^, i. < i- < ... < i_%2 ig 1 2’ 2 — 3 — — n
and the sign of x. tallies for all k, 1 £ k _< h . Hence

^k ..
by Theorem 1. 3̂  ct, is free as right (or left) 2EF-module on 

W-1, h y  Lemma 1.4 ^ O C  is free as right (or left)

Z.F-module on̂  (X - 1)(W - 1 )  0 c n .  /  0 r c r v ^  is free abelian 

on (X-l)W-l) by Lemma 1.4 Corollary. This latter fact is 

crucial for what is to follow. We shall also say that an

amalgamation of x. is necessary in a = (x. - 1)
Ep eg ^2([x. 1, X. 2, ..., X. n] - 1) if the sign of x. does

^1 ^2 ^n ^k
not tally and we have to apply Lemma 4.5 in order to express

the commutator of a as a product modulo F" of commutators

in which the sign of x . tallies and hence to express a as
^k

a sum modulo of terms of the form b = (x2 - 1)
l| • M • . M 4

([x. -'l, X. -*2, ..., X. -̂ m] - 1) where now the sign of
3l 3g 3m

X . in b tallies, 
^k
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We introduce an ordering on the basic 2-commutators by 

[x-, Xj ] < [x^, x^] if i < A and

[x^, Xj] < [ x ^ ,  Xj] if i < k .

(This ordering is valid in any group for which 
[x^, Xj ] = [x̂ , x^] ^ i  = k and j = £. )

The following proposition, derives generators for F’'/[F", F] 

which later turn out to be free generators.
Note that frequent use of Lemmas 4- .'1 and 4.2 will be made 

and we shall at times use these Lemmas without reference.

Proposition 4.7: F"/[F", F] is generated by the double ,

commutators of the form
Ef £i •

[[x.  ̂ X « ; X « 3} . . . ; X . n ]
U '  b ’ b  ■■■’ b  > [%i' %]]] with = il

subject to the following conditions:

(i) i^ > i2 ^2 — ^3 — ‘ * — ^n

i > j, . • j 1 in 1 ... 1 in

(ii) If i = ip for 3 ^ a ,  6£.n then e. = e. .
“ ■ a B

(iii) [x. , X. ] ^  [x., X.] in the ordering of the basicIf I2 1 3
2-commutators (ordered as shown above) and if

[x. , X. ] = [ x . , X.] then e. = +1.
^1 U -2  ̂. J . ^3

(iv) (a) If i^ = j Z ig then either i^ <_ ig or else

 ̂ il 1 i 1 ii*. U 3 =
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(3) (If ig: j i ig) and = ig < i = then 
e. = +1. (For this condition (iv) if an index is not 
applicable to the double commutator just omit it from the 
condition.)
Proof:' Let G = F/[F”, F].
Then G' is generated by {[x., x.]^/i > j,a e ' G}. Hence]
G" is generated by {[[x. , x . ] “, [x., x.]^]/i-, > i., i > jIf r 2 1 J ^
a and 3 e G }. , By Lemma 4.2

• • . -1
[[X. , X. [X., x.]^] = [[X^ , X. , [X., X.]]

...'x,“- i
= [[x , X. ] 3 m , [X., X.]], where

il. ^2 ]
-1 “3 *̂ ma3 = X . ...X. a, i „ < . . . < i  and a e G ’

^3 .

=[[x. ,x. ]^3 ^m , [x ., x. ]]by Lemma 4.2.il I2 1 3

It is easy to see using [x, y z] = [x, z][x, y][x, y, z]

X. ... X.
that [x. , X. ] 3̂ ^m is a product of commutators

^I ^2 
of the form

[x^ ,x^ , X j 3j « ; X j n ], 3 g f. 3 q IL ••• f.3ĵ

and if j, = j then e. = e • .. Hence G" is generated by

' b  u{[[x. 5 X. , X. J . . . 3 X. [x.j x.]/i. > io>
ll ^2 3 n  ̂ J



i  > j, iq ^ ... ^ i and if i, = i then e. = e . fori i j\. o U. 1 -Lk s
 ̂f. ^ f. ^ 3 f_ s <_ n} . Suppose > ig then

E • e . ■
[[x- ; X. ; X. 3j ...J X. n]) [X .) X*]]

1 ^2 ^3 ^n ^ 3

£ . E . e .
= I[x. , X. ^3, X; 3 X. ^4 3 ..., X. ^ n ]3 [ x .3 x.]] .

in ■  ̂ ]

^i ^i ^i[[x. , X. 3 ; X. , X . M-, . . ; X. n ] , [x., x.]]
if I3 ig ^4 ^n  ̂ 3

= pq say.

Note that ig > ig and hence i^ > ig. • Now apply Lemma 4.6 

to write p and q as a product of commutators of the form

Ef
[[x. , X* , X. 3, . . . j X .  n ] , [x.j X.]] J i-| > i ̂  ^

^1 ^2 ^3 ^n  ̂ 3

ig 1 3-3 1 * • • 1 in’ i > Î and if i^ = i^ , 3 _< k , s £ n
then E . = £. . Hence G" is generated by commutators of

^k ^s 
this form. If j > ig then

E . E .
[[x. 5 .X. ) X- 3, . . « ) X. n], [x.j X.]].

^I ^2 3 n -J '
£i E^ -E^

= [[x. , X. , X. 4, ..., X. n], [x., X . , X. 3]]If ig iq ^ 3 -Lg .

by Lemma 4.2.



= [[%i , n ] , [X., x^ ^3, x^]]
1 2 "4 "n J "3

Ei " -E'
[[X. , X. , X. 4, ..., X. n], [Xj, X. 3, X .]]

1 2 -̂4 ■ ^3 3

-1[[x. 5 X. , X. 4, «.'3 X. n, X. ], [x-5 X* 3]]
1 2 ^4  ̂ . 3 I3

-1[[x. 5 X. 5 X. 4, «) X. n, X. ]) [x.j X . 3]]
Iq Ig -̂4 3 ^3

= pq say. Apply Lemma 4.6 to p and q to show that G" is
Ei Ei

generated by {[x_ , x^ , x^ 3, ..., x_ n], [x^, x^]]/

1-, > In, Ir, < In < ••• i i ' M ,  3 i i, and if i = i.
for 3 j< k, s _< n then £. = £.} .

■ ,^k ^s£ i E ̂
By Lemma 4.2 [[x* , x. , x- 3j ...j x . nj , [x^, x .j j

^1 ^2 3 . ^n 3

-E
- [ [ X • Î X . ]5 [X . , X . , X . . 3 , . . . , X. n] ]

^1 . ^2 ^  3 I3 i j q  •

-E' -E- -1
“ [[x*,x^,x. 3, « « ' ; X n ] , [ x .  , x . ] ]  (A)

1 . 3 I3 ^n ^1 2

Hence we can assume condition (iii).

We are left to show condition (iv). First of all we show

condition (iv) (a)- Let a =
Ei . e j_ ^

[[x. ,x. ,x. 3, ...jX. n],[x.,x. ]] 5 in 5̂ inll ig I3 .̂n ^2



and suppose > ig. Suppose further ig is a repeated 

entry of a. Then clearly for n = 3, iĝ _< ig. (Note that

iĝ ^ i . from condition (iii).) So we consider i^ > ig = i^. 

Then
c. e. • e .

a = [[x. 5 X . , X . 3, X. 4 5 ..., X . ], [x. , x . ] ]
If i.g I3 iq In  ̂ ^2

e. e. e.
= [[x. ^3, X. , X. , X. ^4, ..., X. n], [x. , x. ] ].I3 ig ig_ iq ^n  ̂ ^2

E . e . e .
[[x. , X. ^3,'x. , x. ^4, ..., X ^n], [x., x. ]]

^1 ^3 ^2 ^4 ^n . ^2

= be say.

b is a product of commutators of the correct form by Lemma 4.6

Î i 1 ~|- [[x. J X . 3) X. J X. 5} ...J X. n ] ; [ x . , x. , x . 4]]If Ig Ig Ig 1 Ig
I

e . e .■ e . - e .
- [ [ X'. J X. 3 , X. J X. 5j . . . 5  X. ri]j [ x . 4 , x. jX.]]j

^1 ^3 ^2 ^5 ^n ^4 ^2  ̂ ■

c . e . e . - e .
[[x. 5 X. 3 J X. J X. 5j . . . 5  X. r ]J [x.j x. 4j x . ]]

^1 ^3 ^2 ^5 ^n 1 I4 2̂. :

= de say. i
■ 'iC . £. Eg^ _g^ - E . i

d = [ [ x .  j X .  3 J X . j X .  3, ...J X. n,x. ]j[x.  ̂? x . j ]|
^1 ^3 ^2 ^5 ^n • iq , ig i

E f  . Eg^ Eg^ _g^ - E .
— [[x. 3) X- J X..J X. 5} ...J X. n , x . [ x . 4 j x . ] ] i

^3 ^2 . 1  ^5 ^n  ̂ ^4 ,^2 |

^i ^i ^i -1 - ![[X . 5 X. J X . 3 J X . 5 j ...J X. Uj X» ]j [X « 4 J X « 1 ]]
^1  ^2 ^3 ^5 ^ n  .  ^  ,  ^4 .  ^2 I



—  1= q p say.
Apply (A) and Lemma 4.6 to p and q to express them as products 
of commutators satisfying (i), (ii), (iii) and (iv).

Ep E- E' -E '
a “ [[^,* Î X. 3, X. , X. ) X. 5, ..., X. n],^x.,x. 41

1 3 .2 -̂ 2 ^5 ^n 1 I 4

Ei . Eĝ E . - E . -1
" [[Xg Î ^ g 3, X. , X. 5, ••., X. n ], [x., x. 4]]

1 3 2 ^ 5  ^n ^4

Ei -1 E. E- -E* -1
[[x. , x .  3, X. ) X . 4, ...,x. n ], [x.,x. 4ii

1 -̂ 3 ^2 ^5 ^n 1 .
-1 -1= s t say.

-1 ^i ^i ^i - Xs =[[x. ,jc. , x .  3 , X . 5 , . . . , X . nl, fx.,x. 4 1 1
1 ^2 ^3 ^5 ^n /  I4

cp Gp Gp -Gp[[x. 3, X. , X. , X. 5, ..., X. n], [X., X. 4]]
^3 2 ^1 ^5 ^n  ̂ 4

and we apply Lemma 4.6 again to these to express them as 

products of commutators satisfying (i), (ii), (iii) and (iv) 

since ig ^ ig.

-1 "^i "^i "^i ^it = [[X ., X. 4, X. , X. 5, ..., X. nl , r x . , x . 3]]
 ̂ ^4 ^2 ^5 ^n ^1 I3

and proceed as with s  ̂ just above to show t  ̂ is a product of

commutators satisfying (i), (ii), (iii) and (iv). We shall

refer to this process of dealing with e as ’amalgamating’ x . .
^2
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"in "iL s t a  [[x- ) X . ) X . 3, '*') X. n], [x.jX.. j]
1 2 3 2

ij i  j, > ig, and suppose ig is not a repeated entry.

By the same argument as that for the case of ig repeated we 

can take iĝ  _< i^. Suppose i^ < i. Then

"i "i ^ia -  [[x. 3, X. ,x. ,x. 4, ...,x. n ], [x.,x. ]]
I3 ig 1  ̂ I4 ^n  ̂ . ^2

"i ■ "i ^i[[x. , X. 3, X. , X. 4, ..., X. n ], [x-, x. ]]
^3 ^2 ^4 ^n 1 ^2

= be say.

Apply Lemma 4.6 and (A) to b to express it as a product of

commutators of the correct form.

Ef Eĝ  Eĝ  _ • ' Eĝ
c = [ [ x .  ,x. 3, X. , X. 5, ...,x. n], [x.,x. ,x. 4.11

^1 ^3 ^2 ^5 ^n  ̂ ^2 ^4

H  ^i ^i "^i[[x- , X . 3, X. ) X . 5, ...,x. r i ] ,  [ x . 4,x. 5 . x.j]
. ^1 ^3 ^2 ^5 ^n ^4 ^2 ^

Ep £p Gp ■ - G ^
[[x. 3, X. , X. , X. 5, •••, X. n],[x.,x. 4, x. ]]

^3 ^2 ^1 ^5 ^n  ̂ I4 ^2

= de say.

d - [[x. ; X. 3, X. , X. 5, ..., X. n, x. ]j[x. 4,x. ]]
^3 ^2 ^5 U n   ̂ . ^2
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H ,  U  -1 , ; -Ei,[[x. , X. ,.x. 3, X. 5, X. u , X. ]j [x. 4,x. ]]
/2 ^3 ^5  ̂ ^4 ^2

r " i  "i -1 - E -[[x« 3jX. ^x# ) X " 5 ) # e . ̂ X . ïijX- ]j [ X . 4^X- 1]
• 3 ^2 ^5 ^4 ^2

Apply Lemma 4.6 and (A) to these to express them as products

of commutators satisfying (i), (ii), (iii) and (iv).

e can be dealt with by amalgamating x. .
^2

Hence we have in

E' G-
a = [[x. , X. , X. 3, X. , n], [x., x. ]], (i, i  i )

. l l  i j  I 3  ijj ^  ^ 2

either i-, <_ in or else in < i-, j< i £ iq* Suppose in a1 - 3 ^ 3 ■ 1
3 ' -1 £ i £ i^ and e.in < in < i < ii. and e = -1. Then

3

Ep Eĝ  -1
a = [[x. , X. , X. , X. 4, ..., X. n],[x.,  X. ]]

ip ig I 3 ^4 ^n  ̂ ^2

—1 ^i ^i —1[[x. ,'X.-,x. , X. , X . 4, ..., X- u], [ X . , X. ]]
^ 1  ^ 2  ^ 3 '̂ 3 4  ̂ ^2

. -1 -1 = b c say.

b ^ is okay.

-1 ■ ^i ^ic = [[x. , X. , X. , X. 4, ..., X. n] , [x., x. , x. ]]
. i p  i g  I 3  I 4  1  I g  I 3

Gp G ̂
-[[x. 5X. ) X . , X ' ...5 X. n]3 [x. , X ' ) X. ]]

l l  I j  1 3  1 „  1 3  I j  1



Gp G^
[[X. , X. , X. , X. 4, X. n], [X., X. , x. ]i

1 -̂2 ^3 4 ■ ^3 2

and proceed as for the case above when ig is a repeated entry 

We now show (iv) (3). Suppose

Gp
a = [[x. , X. , X. 3, X. n], [x., x . 1]

^1 ^ 2  ^3 ^n .  ̂ ^2

with i^ = ig < i = i^ and = -1. Then
3

Ep E^
a = [[x. , X. , X. 4, X. .n], [x., x. , x ]]

i p  ig iq 1 ig ,^1

Gp Gp
= [[x. , X. , X. -4, X. n], [x. 5 X. , x.ll

^2 . ^4 ^n ^2 ^

Gp Ep
[[x. 5 X. , X. 4j X. n], [Xj, X- 5 X. ]]I p  I g I q   ̂ 1 I p   ̂ Ig

= be say. • .

b can be expressed as a product of commutators of the 

required type as before.

G p G p  E p
c = [[x. 4, X. 5 X. , X. 5, • • • 5  X. u ], [X .)X . )X . ]]

^4 2 5 ^n  ̂ ^2

■Gp G p E p
[ [ X . 4, X . 5 X . 5 X . 5, •• • 5 X . n ] 5 [%., x . , x . ] ]

^4. ^2 ^5 ^n  ̂ ^2

-1= d e say.
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_1 ■ • . ■

e can be dealt with by a m a l g a m a t i n g  x. .
■ • U 2 -

' Ep Ep Ep
d -  [[x. ^ ) X. , X. , X. 5, X. n ], [x., x. , x. ]]

^4 ^2, ,^1 5̂ ^ n  ^ ^2 ^1

Ep Ep Ep -1
[[x. 4, X. , X. 5 X. -5, X. u], [x. , X. , X . ] ]

4 ^2 . 1  ^ 5  ^n • ^1 2̂ 1

-1= f g say.
*

g is a product of commutators of the required type by a 

similar argument as before.

Ep Ep Ep -1
f - [[x. 4j X. , X. 5 X. 5, ..., X. u ], [ x . , x .  ]]

^4 ^2 ^1 5̂ ^n ^ =̂ 2

-Ep -Ep. ep
[[x., X. , X. , X. 5, ..., X. n], [X. 4 , x, ]]1 Ig Ip Ig Ig 1 Ig

and these are products of commutators of the r e q uired type 

(note i = iq)* This completes the p r o o f . ‘

Lemma 4.8: If a and b e F, c e F ’ then

(a-1) (b-l) (c-1) 5 (a-l)([c, b ^ ] - 1) mod

Proof : ( a - l ) ( [ c , b  ] - l )

= (a - l)(c ^b(cb ^ - b ^c)}

= (adl){c"^b((c-l)(b"^-l) - (b"^-l)(c-I))}

E - (a-l)c"^b(b"^ - I)(c-I) mod ■

= — (a— l)c ^ (1—b ) ( c — 1)

= (a-l)c"l(b-l)(c-I)

E (a-1) (b-l) (c-1) mod
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Lemma 4.9: a^,ag, •••, a^ e F then

[ a ^  5 ag , . . . , a ^  ] — 1 e { ( a ^ — l ) ( a g - l )  — ( a g - D C a ^  — 1 ) }

{(a.g — 1 ) ... ( — 1 ) } ' mod .

—  1 —  1Proof : [up, ag] — 1 - ap a g (apag — agap)

- apag - agap mod ■ ^< 3 rv

- (a g — l)(ag — 1 ) — (a g — l)(ap — 1)

Hence it as true for n .= 2.

We now proceed by induction on n. •
“  1 ”  1[ap,a25 . , a^] -1 = [ap,ag, a^_p] a^

{( [ap 5ag , . . . 5a^_P] -l) (a^-l) - (a^-1) ( [,ap ,ag , . . . ,a^_P ]-l) }

= ( [ a p , a g , . . . , a ^ _  p ] - l ) ( a ^ - 1 ) - ( a ^ - l ) ( [ a p , a g , . . . , a ^ _ p ] - 1 )

= { ( a p — l ) ( a g  — 1) — (ag — l ) ( a g — l ) } ( a g  — 1) ... (a ^ — 1)

by the inductive hypothesis./
Ep Ep .

Let a - [[x. , X- , x. 3, ..., x. n ], [x.jX.j]
^2 I3 ^n ^ ]

be a generator of F"/[F", F] as in Proposition 4.7. Call

[x. -, X. ] and [x., x.] the heads of a and call [x. , x. ]l l  ig 1 ] I p  Ig

the leading head of a. For the following proposition a 

’generator’, with inverted commas, will mean a generator as 

in Proposition 4.7 in order to distinguish it from the terms 

free generator's of A  , OL, , or ^ 01% .
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Proposition 4.10: (1 + T = [F", F].
Proof. First of all we show [F", F] _< (1 + ) n F.
Now F” _< 1 + CTl?'r Let a e F", b e F then ^

[a, b] = 1 t a b {(a—l)(b—1) — (b—1)( a— 1 ) } e 1 + q

since a-1 e Ol? and b - 1 e .
Suppose d E (1 + y^crt^) r\ F. Then d e F” by Theorem 1.6.
Suppose d j: [F" , F ].

E . E . a ■
d=n[[x. ,x. ,x. 3, ...,x. n], [x.,x.]]ll ig I3 In 1 3

mod[F", F], »p E Z  - {Q}, (by Proposition 4.7) where'the 
commutators of the product are as in the Proposition.
Call this product (A). .
Since [P'% P] ^ 1 + and d e 1 + j

E. - Ep Up
^  n [[x. , X. , X. 3, ..., X. n], [x., X.]]ll ig I3 :-n  ̂ J

£ 1 + ^OrX^
E . E.

■==̂  Z a.([[x. , X. , X. 3,..., X. n̂] , [x., x . ] J - 1)
1 ^1 ^2 3̂ ^n ' J

£ . E .
Let a = [x. , X. , X. ^3, ..., x. n] and b = [x., x .].

^1 2̂ I3 ■ "-n  ̂ ]
All congruences, unless otherwise stated, will be mod ^  
[a, bl — 1 - a b {(a—l)(b—1) — (b-l)(a—1)}

5 (a-1)(b-l) - (b-l)(a-1)
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E;
E {(x. -l)(x. -1) - (x. -l)(x. -l)}{(x. ^3 - 1 ) ...

E;
(x. n — l)}([x., X .] —1) — {(x.—l)(x.—1) — (x.—l)(x.—1)}

 ̂ J 1 3 3 1

E p Ep
( [ x . j X . j X .  3, . . . , X . n] — 3.) '

^1 ^2 ^3

by Lemma 4.9.
- Ep - Ep _p

e (x . -l)([x.,x.,x. 3,...,x. n, X. ] - l )ip . 1 3 I3 ^2

- Ep -Ep _p
- (x. - l ) ( [ x . ,  X., X. 3, X. n, X. ] - 1)

^2 1 ] I3 ^1

Ep Ep _p ,
-(x.-l)([x. , x . ,  X. 3, ...,x. n, X. 1 - 1 )

U  U 2 ^3 ]

i ' i ”1+ (x.-l)([x. , X. , X. 3, ..., X. n, X. 1 - 1 )] Ip Ig' ^ 3  1

= gp say (by Lemmas 4.8 and 4.9).

We can now express the commutators in the expression for gp 

as a product of free generators of F ’ modulo F” using 

Lemmas 4.1 and 4.5, and hence we can express gp as the sum' of 

free generators of m o d u l o . ■ (We note that

is free abelian on (X-D(W-l) by previous remarks.) We 

indicate how this is done for
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- E p  - Ep _ p
s = (x. -l)([x., X., X. 3, X. n, X. ,] -1).

] .̂3 ^2

The others are similar.

Case (a): i ^ <  j.. Then

- Ep - Ep _ p
[x»5 X., X- 3, ..., X. n , X . 11 ] I3 1^ Ig .

-1 "Ep -Ep
e [x . , x . , x . , x . 3, .... X . n l .1' Ig ] I3

-1 -Cp -Ep -1[x.,x. , x . , x .  3, ...,x. u]
J. ^2  ̂ ^3 ^n

modulo F", by Lemma 4.1.

We can now apply Lemma 4.5 to express the commutators on the 

right hand side as products of free generators of F ' (mod F") 

and hence we can express s as a sum of free generators of ^ C U  

modulo There are a few things to note about this

expression for s as a sum of free generators of ^ c r u  /

(i) No index is lost, i.e., the free generators of 

produced involve i^, i^, ..., i^, i, j. (ii) The length

of the commutator part of the free generator of does not

exceed n+1. (iii) Distinct free generators of y ^ e ^ a r e  

produced. (iv) The only time it is possible for the sign

of X. or X. to be -1 in the commutator part of the free
1 ] ' ■ . •
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generator of Aovis when an amalgamation (i.e., a reduction

of the length ) of x. or x. is necessary in s to order
■ ̂  3 . •

to express it as the sum of free generators of .

(v) We shall be interested in the free generators of 

greatest length produced from s and we note that the 

commutator part of these have length at least n - 2 .*

(In this particular case at least n - 1 but for.general 

purposes at least n - 2, e.g., for t = (x. - 1).

- Ep - E p  __p
([x., X. , X. 3 X . n, X. ] - 1); amalgamations 

J 3 ^n ^1 '

of X., X. and x. may be necessary. ■ Note also for t that 
1 3 .  i p

the commutator part of the free generators of produced

from t have x . with a minus sign except when an amalgamation 
^1

of X. is necessary.) (vi) The non-commutator part of the 
^1

free generators of come from entries of the heads of the 

'generators’ of (A). (vii) The entries of the head of the 

commutator part of, the free generators of produced also 

come from the heads of the ’generators’ of (A), and the first 

entry comes from a different head than x . does.
b

Case (b): . ig = 3. We need only apply Lemma 4.5. Notes 

(i) to (vii) hold in this case also.

Since ^ c n / ^ o i - ^  is free abelian on (X-D(W-l), for every free 

generator a of produced from the ’generators’ of the
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product (A) we must have its inverse produced from (A) as

well. When we shall say ’look for an inverse for a’ we

mean try to find a ’generator’ from (A) which will produce

an inverse for a» What we are going to do is choose a

’generator’/of greatest length from (A) and we look at the

free generators it produces. We shall be particularly

interested in the free generators of greatest length that

it produces. We shall show that there is at least one free

generator which does not have an inverse for it produced,

thereby getting a contradiction and hence showing that our

original assumption that d  ̂ 1 mod [F", F] is incorrect.

We have four cases to consider: (a), (3), (y) and (5) below
vlk e us tr c o-y^ s l'ci & -r- eas'e ( Y  ) f i v- b".
(a). Suppose we can choose a ’generator’

e . E .
p - [ [ x .  ,x. ,x. 3, ...,x. n ], [x. , x . ] ] o f

^2 3 . b  ^

greatest length with ig < j .' If no amalgamation of x. or
- E . - E .

X . is necessary in t =. (x. -1)([x .,x .,x . 3,..., x. n,
]  ̂ J ^3

X. 1 - 1 )  then look for an inverse for 
'̂ 2 -1 - Ep - Ep
q — (X . —l)([x*, X. ; X-, X. 3, ..., X. n ] 1). ̂ If , 1 Ig 3 -Lg

By (vi) apd (vii) x. and x . must be entries of distinctIf 1
heads of the’generator'that produces an inverse for q;

X. must be the second entry of the leading head by the
^2
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ordering but it cannot occur in the same head as Xp in

order to produce an inverse for q. Hence the heads must

be [x. , X. 1 and [x., x .1 with fx. , x . 1 the leading head
^1 ^2 1 3 • ip ig

and (see the ordering of the indices) thus we see. that there

is no inverse for q. If an amalgamation of x. but not Xp

is necessary in t then look for an inverse for

-1 -1 ”^i ~"iq = (x. - I)(rx., X. , X. , X. 4, X. ni - 1)
ll  ̂ 1 ^2 ] H  ^n ^

and noting (v) above we see as before there is no inverse

for q . If an amalgamation of x . but not x. is necessary in1 3
t (suppose i = i, ) then look for an inverse for q = (x. -1)

If
-1 -1 - Ep -Ep

([X. , X. 5 X., X . 3, X. n] - 1) and again we
 ̂ ^2 ] . b ________in

missing î ^

find (see (v)) there is no inverse for q. If 

amalgamations of both Xp and x^ are necessary in t then look 

for an inverse for

q = (x. -1 ) ([x

missing 1k

(where i = i,) and as before find there is no inverse for q. 

Hence we have no ’generators' of greatest length of form p 

with ig < j.

(3 ) .  Suppose- we can choose"generators*of greatest length of
E p  E p

the form p - [ [ x . , x. , x. 3, x. u],-[x., x*]]
ll I2 ^3 ^n  ̂ J
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with ig = j , ig = ig and ,n >_ '3. . •

If an amalgamation of x . is not necessary in

- E . -E. _ 1
t = (x. -l)([x., X. , X. 3, X. n, X. ] - 1)

 ̂ ^2 ^3 ^n. . ^2

and if £. = +1 then look for an inverse for

-1 " b  " ba = (x. - l)([x., X. , X. 3, X. nl - 1).
^1 ^2 ^ 3. . ^n

X . and' X. must be entries of distinct heads by (vi). and 
^1 ^

(vii) and since the index ig occurs more than once in q 

(note ig = ig) then the heads must be [x. , x. ] andIp Ig
[X., X. 1. If i. < i then [x. , x. 1 is the leading head

1 1 b  e b 2 '  eq
and noting that [[x. , x .  , x. 4 , . . . , x .  n ] , [ x . , x .  ]]

^1 ^2 ^  ^n  ̂ 2
does not give an inverse for q we find there is no inverse 

for q produced from any other generator. If ip = i then

E i E p
noting that [[x. , x. , x. 3, ..., x. n ] , [x. » x. ]]

If ig ig In ^1 -"2

is not a generator when e- = -I,(see condition (iii) of
^3 Ep Ep

proposition 4.7) and that [[x. , x .  , x . 4, ..., x. n],
^1 ^2 ^4 ^n

[X. , X. ]] does not give an inverse for q, we find there is
^1 ^2

no inverse for q. If an amalgamation of Xp is not necessary

in t and if e • = -1 look for an inverse for (x. - 1)
^3 1
-Ci -e^

([X., X. , X. 3, ..., X. n] - 1) and again get a
1 ^2 ^3 ^n
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contradiction. If an amalgamation of Xp is necessary in t 

and if e. = +1 look for an inverse for (x. - 1 )
, . b  . . b  .

([x. ^, X. ^, X. ^3, ...,,x. ^n ] - 1) (where i = i.);
1 ig I3 In ^

missing i^

if an amalgamation of x. is necessary and if £. = -1 , look1 1 o-1 - Ep J -epfoîr an inverse for (x. - l)([x. , x . , x . 3, ..., x. ,n]
. ^1  ̂ ^1 ^3 , ■ ^n. b_____   /

missing i^

- 1) (where i = i^J. In both cases we get a contradiction.

Hence we may suppose there are no, 'generators’ of greatest
• ■ ' - ' \  length in the product (A) of.the forms (%) or (3).

(y). Suppose we can choose a ’generator’ of greatest length
e . e .

of the form p. = [[x. , x. , x . 3, . . . ,• x . n] , [x. , x . ] ] ,
^1 ^2 ^3 ^n  ̂ J

with ig = i and ig i î  and ip < i. If n = 2 look for an
_ 1inverse for (x. - l)([x., x . , x. ] - 1 ) and get aI2 ' 1 Ig ip

contradiction. We take three sub-cases.

(1) Suppose further ig is a repeated entry of p.

This implies by condition (iv) of proposition that ip - ig.

If an amalgamation of neither x. nor x . is necessary in
ip ■ ^

— E p — E p _p
t = (x. -l)([x., X. , X. 3, X. n, X. ] - 1, look

^2  ̂ ^2 ^3 ^1
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-1 "'"ifor an inverse for (x. -l)([x-.,x. ,x. ,x- 3,...,x. n]-l;
^2 1  ^2 ^3

if an amalgamation of x . but not x. is necessary in t and if
'̂ 1

i-l = iq (or n = 3) look for an inverse for (x. - 1)
-Ei -E. ^2

([%., X. , X. , X. H, X. n] - 1); if an
 ̂ 2 ^1 ^4 ■ ^n

amalgamation of Xp but not Xp is necessary in t look for
1 _ p  ~ e ^

an inverse for (x. -l)([x. , x . , x. , x.. 3 ,. . . ,x. nl-1)lo '-I 1^ 1. ’ , 1 J
—  1 —  1

2 2 "1 3 -"n-V.
missing iĵ

(where i^ = i); if amalgamations of both Xp and Xp are

necessary in t and if ip = i^ (or n = 3) look for an
■ 1 ~"i "Epinverse for (x. -l)([x. , x . , x. , x. 4, x. n]-l)

^2 ^ ^2 .^4 ^n
t , , . .  , '

missing i^

(where i =, î .)* In all these cases we get â contradiction.
If further in p, ip = ig Ep = -1 , ig  ̂iq and i  ̂ i^

(Case ip = ig,ep = -I  ̂ig i i^ and i = i^ does not arise by

condition (iv) (g) of Proposition 4.7) look for an inverse
_1 ■ _1 Ep Ep

for (X . -l)([x. 5 X. , X. 5 X. 4, ..., X. n] - 1) if
^2 ^1 ig 1 iq _ ^n

i < i|̂  so that we can assume we can choose a ’generator' of 

the .same form as p of greatest length for which i^ < i or else
-E p -Ep

Ip I2 1 I4 In -"1 . 2

a ’generator’ of greatest length; now look for an inverse for
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-1 "Ep "Ep(x. -l)([x. ,x. , x . , x .  4, ...,x. ni - 1 ) and weig ip ig 1 In

see that the only possibility is a 'generator* of the same 

form as p but with i' > iĵ . So we can assume we can choose 

a 'generator* of greatest length of the same form as p with

i > i. . Now look for an inverse for (x. - 1)- i2
-Ep -Ep

([x.,x. ,x. ,x. 4, ...,x. nl - 1) if an

amalgamation of x. is not necessary in t or look for an
-1 " Ep ^^pinverse for (x. -l)(fx. x. , x. , x. 4, . , x. ni-1) '

^2  ̂ ^2 ^1 ^^4 ^n —  -----
missing î ,

(where i = i^) if an amalgamation of Xp is necessary in t.

We now get our contradiction on noting carefully condition

(iv) of Proposition 4.7.

(2) Suppose further in p, ip < ig. Look for an
-1 ~"i -Epinverse for (x. - l)([x., x. , x. , x . 3, ..., x. n]-l

^2  ̂ ^2 ^1 ^3 ^n
if an amalgamation of Xp is not necessary in

• " E p  " E p  _ p
t = (X . -l)([x., X. , X. 3, ..., X. n, X . ] - 1 )  andl2 1 Ig Ig ^1

look for an inverse for (x. - 1)
- ,  b 2

-1 -1 " E p  " E p([X. , X. , X. , X. 3, ..., X. n] - 1 (where i = i,)
^  ^ 2  ^ 1  I ^ 3  ^ n  « ̂ \ ^

missing 1k
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if an amalgamation of Xp is necessary in t. The only

possibility, in both these cases, is the generator
"i "iq = [[%. , X. , X. , X. 4, X. n], [x., X. ]]

^ 3  ^2 ^1 ^4 ^n  ̂ ^2

with ip < ip £ i £  ^4* if an amalgamation of neither Xp

nor i is necessary in u = (x. -1)
^2Ep Ep . _p

([X . , X . , X . , X . 4, ..., X . n, X. 1 - 1 )  ■ we must
^3 ^2 . ^1' ^4 ^n ^

now look for an inverse for (x. - 1)
^2 -

-1 Ep Ep
([x. , X. , X. , X. , X. 4, ..., X. nl - 1) and look

I 3 ^2 ^1  ̂ ^4 ^n

for the appropriate inverses when amalgamations are necessary 

and we see that we have a contradiction.

(3) Suppose further in p, ig < ip £  i £ iq • This 

can be dealt with in a similar manner as (2).

(5). We can now suppose that the only generators of greatest
E p  Ep

length are of the form p = [[x . ,x. ,x. 3 , • •• , x . n] ,
^1 ^2 ^3 ^n

[x.-, X.]'] with ig = j ig and i, = i. ( e- = +1).
 ̂  ̂ —1 3— E p

Look for an inverse for (x. -l)([x. , x . , x . 3, . . .I2 - ip ig , I3
- E p

X. . n] - 1). The only possibility is

^ -1 "^i “"iq = [ [ x .  , x .  ,x. ) X . 3, ...,x, n],[x. ,x. ]]
^1 ^2 ^1  ̂  ̂ . k -̂2

missing i^
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with i, i  i. (we must of course have had e. = +1). But q1]̂
is of the same length as p and is of a different form to p.

Hence we have no such q in our product (A).

This completes the proof.

Corollary. F”/[F", F] —  GL and hence is free

abelian (being a subgroup of where

= Ker 2-F ->2(F/F"). Further the free generators of 

F’'/[F", F] are as in Proposition 4.7.

Proof : The isomorphism is given by a  ̂a-1 and We note

that what proposition 4.10 does exactly is prove the

generators of proposition 4.7 are linearly independent 

modulo

Note F"/[F”, F] is the Schur Multiplier of F/F" (Hg(F/F", 2-)) 

(see, e.g., Gruenberg [6] Chapter 3, Proposition 7), and so we 

have F"/[F", F] ^   ̂̂ ]
■ t)  ̂̂ + a riS  ^

Theorem 4.11: Let P̂   ̂ be the power series ring in X over—^ 1 , -L
subiect to x. (x. x. - x . x . )x. = 0 then subgroup G ofIf 1 g I3 I3 Ig ^4
U(P-, ) generated by 1+X is isomorphic to F/[F", F] .1)1
Proof : Immediate from Lemma'2.19 Corollary and Proposition

4.10.

Theorem 4.12: F/[F", F] is residually torsion-free nilpotent.
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Proof; Use Theorem 4.8 with minor alterations.to Theorem 3.5 -----  i

Corollary ; F”/[F", F] is residually- a finite p-group for

all primes p.

This theorem has been proved by Ridley [13], for the case 

where F .has rank 2.

Section 2: F will again denote the free group of X. Let S

denote the set of free generators of F"/[F", F] derived in 

Proposition 4.7.

Lemma 4.13: [F", F]/[F", F , F] is generated by

{ [ s , x . ] / s e S , x .  eX},.

Proof : Follows easily from [ab, c] = [a, c][a, c, b][b, c ].

Proposition 4.14:

. (1 + ^ F = [F", F, F].
Proof: [F", F] < 1 + A o J  +

Let a £ [F"., F], b e F then

[a, b] = 1 + a'^b“^{(a-l)(b-l) - (b-l)(a-1))

E 1 + ^  ^  + oi?^)

Hence [F", F, F] ^ (1 + ^ 0 1 ^ )  ^  F. (Note also

[F", F, F] £ (1 + ^  n  F) . Suppose a e (1 + F

Then a e [F", F] by Proposition 4.10. Suppose a i [F",F,F]

Then
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“i j .a - n modulo [F", F, F] with £ S ,
1 ) ]

^i " "‘i, j " if x^ = x^ j (i)  ̂ (k) (by
Lemma 4.13).

■ Since a E 1 + and [F” , F, F] £ 1 + 2
a

, n [ Sj ( i ) , Xi ] E 1 + 'y •

b j ( i ) ’ ^ii = 1 + b(i) -
(Xi - - 1) }.

= 1 +  ̂̂ j ( i ) ~ — 1 ) — ( X — 1) (i) ~ d)p

modulo, since ^j(p) - l e

E 1 +  - l)(x^ - 1) modulo

Hence . b “i,j^®j(i) ' ^^^^1 ‘ ^
1)3

■=> a  t .  “ i , j ^ ^ j ( i )  - ^1,3
for ail k by Theorem 1.7.

^  ? ^k,](^i(k) " 1) c for ail k => = 0 for ail k

by Proposition 4.10. Hence a e [F", F, F].

Corollary 1 : [F", F]/[F” , F, where

t-P = -Ker i^F -^21(F/[F", F]) and hence is free abelian with free 

generators given by Lemma 4.13. (Note [F"/F]/[F", F, F] 

is also the Schur Multiplier of F/[F", F].)



Proof : See proof of Corollary to Proposition 4.10.

Corollary 2 : Let,P^ 2 )̂e the power series ring in X over Z

subject to the relations x . (x. x. - x . x . )x. x. = 0,
. ^1 ^2 ^3 ^3 ^2 ^4 ^5

then subgroup of U(P^ „) generated by 1 + X is isomorphic

to '?/ [F", F, F].

Proof : From Lemma 2.19.

Theorem 4.15: F/[F", F, F] is residually torsion-free

nilpotent.

Proof : See proof of Theorem. 3.5.

Corollary : F/[F" , F, F] is residually a finite p-group

for all primes p. '

Section 3 :
i

Lemma 4.16: ■ If a e F” , b and c e F then

[a, b, c] 5 [a, c, b] modulo (F')^.

Proof : [a, be] = [a, c][a, b][a, b, c]

= [a, cb[b, c]]

E [a, cb]

= [a, b ] [ a , c ] [ a , c , b ]

Hence result.

Lemma 4.17: [F", F, F ] modulo [F", F, F, FjCF’)^ is generated

by {[s» , Xj]/s e S, x^ and x^ £ X, and i £ j}.

Proof : Apply Lemma 4.16 for the condition i _< j.
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Proposition 4.18: (1 + ^ ^ 0 1 ^ - )  ^  F = [F", F, F, FjCF')^.

Proof: (F')g £ (1 +(%^) n F £ (1 + ^ F ,

[F" , F, F] < {(1 n  F} /n {(1 + n F} (see

Proposition 4.14).

Let a e [F” , F, F ]  ̂b. e F then

[a, b ] = 1 + a ^b ^{(a-D(b-l) - (b-D(a-l)}

£ 1 + since a - 1 e *

Hence [F” , F, F, F] < (1 + F. ‘ Suppose

a E (1 + r \  F. Then a e [F” , F, F] by Proposition

4.14. Suppose a { [F", F, F, F] (F')g then by Lemma 4.17 

a E n [s... X., X. modulo [F", F, F, F] (F')± J O
1 î J 5 ■

with s^^^ . ̂  E S and x^ e X , i i)^k,i,j  ̂ } and

if X. = x^ a n d  X. = Xu- t h e n  ^

- 1 - 1
f ® k ( i , j ) ’ x p  = 1 + X.] Xj

- n<x.-l) - (Xj-l)([s^(i^j),Xj] - 1)}

E 1 + j ̂ , 'X-j_] - i)(Xj - 1) - (xj - 1) '

([Srci Xj ] - 1), modulo since [F", F] £ 1 +

Now x^] = 1 + ^i/^^^k(i,j) “ l)(*i "

(x^ - -1)}. Hence
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(Xj-1) - (X.-1){(S^(.^.j-D(x^-l) - - 1)},

modulo ^  since F" < 1 + 01^ .

E 1 - (x^ - - l)(x. - 1)

(Xj-l)(s^^^ - l)(x^ - 1) modulo

= l ^ n ' , j , k  say-
=iî> 7 I 7_\f2— Z a.- 1.Y-  ̂ I £

^   ̂ “i,j,k ^i,i,k)^u -p™-

for all t and u by Theorem 1.7. If u <■ t ^>z - a . •-,■ u ,T ,K
(Sk(u,t) - ' W  if u = t =^E - 2»t,t,k(Sk(t,t) - 1) c

•̂ CTL̂  • In any case this implies that ^ ^ = 0 for all 

u,t,k by Proposition 4.10.

=$> a £ [F" , F, F, F] (F' )g.

Corollary 1: fF", F, F1/[F", F, F, F1(F')^=- ^  ̂ ^

and hence is free abelian with free generators given by 
Lemma 4.15, w L e r e  tT =  K e m  ̂  F -> Z ( F / C F " ,  ^ P j )

Proofi ■ See proof of Corollary to Proposition 4.10.
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Corollary 2 : Let o be the power series ring in X over

subject to the relations

X. X. (x. X. - X. X. )x. X. then■subgroup of U(P) generatedIf Ig Ig 1^ Ig Ig Ug

by 1 + X is isomorphic to F/[F", F, F, F](F’)g.

Theorem 4.19: F/[F” , F, F, F](F')g is residually torsion-free

nilpotent.

Proof : See proof of Theorem 3.5.

Corollary : F/[F", F, F, F ] ( F ’)g is residually a finite

p-group for all primes p.
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CHAPTER 5

Section 1 : In this section we prove analogues of

Magnus’ Theorem (Theorem 1.5) for the groups

F/F", F/(F’)g(Fg)’ and F/(F’)g(Fg)’ and F/Cr’)g(F^)’and

compute the structure of thé lower central factors, of 

these groups. It seems probable that the methods 

devised here can be used to obtain the structure of 

the lower central factors of F/[f ",f] and F/[f ” ,F,f3 

but a Theorem like Theorems 5.3, 5.8 and 5.13 below 

is not true for F/[F",F] since Ridley fl3j . has shown 

that the lower central factors of F/(f ",f] contain 

torsion elements.

Let Q - Pĝ  Q , i.e. the power series ring in X over 

Z subject to X. (X . x. - x . x . ) = 0. Identify
^1 ^2 ^3 . ^3 ^o

F/F" with its (isomorphic) image G in Q. This

representation of F/F" is very similar to that obtained

by Baumslag [l] . Compare Theorem 5.3 below with

Theorem 2 in p] . In fact %£ ^ *2'i ^ ^1 i ë^ves
a homomorphism from Q to Baumslag’s power series.

Every element s in the multiplicative semigroup of Q

generated by X can be. written uniquely in the form

S — X . x .  ( 1 )i2 In 2 -  3 -  -  n

Let be the ideal of elements in Q of order £ i.



Lemma 5.1: In Q, |_l + x. , 1  + x. ,...,l + x. 1
^1 ^2

= 1 + (x. X. -X. X. )x. ...X. for n > 2.
il ^2 ^3

Proof: f l + x .  ,1 + x. “1 = 1 +  (1 + x. )“^(l + x.)^^
^ ^1 ^2 . :̂ 1 ^2

{(x. X. - X. X. )}.
1 ^2 ^2 ^1

= 1  + {l-(l+x. ) ^ X . }{ l-(l+x. ) ^x. }{ (x. X. -X. X. )) 
1 1 . 2 ^2 ^1 ^2 ^2 ^1

= 1 + X .  X. - X .  X.il ig +2 ^1

Hence we have result for n = 2. Let r >_ 3. Then '

f l + x .  ,1 + X. ,...,1 + X. 1 = 1 + n + X. , 1 + x .  ,...
1 2 ^r~^ ^ 1  ^2

...,1 + X. ~1“^(1 + X. ) ^ {( ri + X : ,1 + x. ,...,l + X. 1-1
^r-1 -̂ ^r ^1 ^2 ^r-l-*

X. - X. (FI + X. ,1 + x. , ...,1 + X. 1-1) }
r ^r ^1 ^2 ^r-1

= 1 + {1 +(x. X. - X. X. )x. ...X. } {l-Cl+x. ) ^^x. }
■ ^2 ^1 ^1 ^2 ^3 ^r-1 ^r . ^r

...X. } by an inductive argument.
■ ^r-l

= 1 + (X . X. - X. X. )x. ... X. .
^1.^2 ^2 ^1 ^3 ^r

Theorem 5.2: The basic commutators of G weight n

freely generate modulo a free^abelian group.
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Proof : A basic commutator' of G weight n is of the

form a = [l + , 1 + + x^ ], i^ > i^,

ip £ iq £ ... £ i . By Lemma 5.1, a = 1 + (x. x.
• ^1 ^2

X. X. ) X. .t.x. and result follows from (1) .
2 ^1 ^3 ^n

Corollary : (a theorem of Magnus, see Neumann (Chap. 3)

p2j ). The basic commutators in the free metabelian

group are linearly independent.

Theorem 5.3: (1 + K^)/^G = G^

Proof : Clearly G^ £ (1 + K^) o G and (1 + n G =

G^ = G. We proceed by induction on i . Suppose 

a E ( 1 + K^_|_^)oG and a k + By induction

a E G. 4>a = be, c e G.., b ( / 1) e G . , and is a1 - 1 T" J. • 1
product of basic commutators weight i. a-1 e ^p + p 

b-1 £ Kp4.pî since GL^^ #  1 + ^p + p ’ This contradicts

Theorem 5.2.

Corollary : (1 + G = G^ where is the

augmentation ideal of'G.

Proof : Clearly G^ £ (1 + g ^ ) n G . The map cj)’:F/F"

U(Q) given by y^ 1 + x^ can be extended (uniquely) 

to a map (j): Z (F/F") Q. Then «{j : ^ K^. If

a E (1 + g^) o F => (a-l)^ = a^-1 = a^'-l e K^. =>

by the theorem. /
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Let P = Pg Q, the power series ring in X over IL

subject to X. X. X. (x. x. - x. x. ) = 0. Every 
^1 ^2 ^3 ^4 ^5 ^5 ^4

element s in the multiplicative semigroup of P

generated by X can be written uniquely in the form

s — X. X, X, X, •■•X. ji| < i r < « .. < i (2)Il Xj I; In  ̂ - S - - n
By Lemma 3.2 Corollary F / ( F ’)g(Fg)' is embedded in P

and we identify F/(F’) g(Fg)' with its image H in P.

Let R 4 be the ideal of elements in P of order > i and 1 . —
let }p be the natural homomorphism from P to Q.

When 1 + x^ occurs as an entry of a commutator we

shall write x^ instead of 1 + x ., it being clear that

1 + X. is meant. (We shall continue to use this ]_
convention from now on). What do the basics of H 

look like?

Lemma 5.4: modulo is generated by the basics

of the forms either

( 1 ) ^ ) X  ̂  j . . . j X ^  > I p )  1 2 £  i g £ ... £ l  ̂

or

(ii) 5 1 -, >  1 ,

ig £ ig £ ... £ i^^2 , i > i) n £ 4 and when n = 4

X. ,x. > x.,x. in the ordering of the basicIf i2 1 3
2-commutators.

Proof : Is clear since [bg,HgP= 1 and Qig

i.e. the basics of any other type vanish.
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We shall'call the basics in the statement of the Lemma 

basics of type (i) and type (ii) respectively.

Lemma 5.5; The nth homogeneous component (in- P) of

-1 is

(a) ( X . X- - X. x. ),(x.x. - x.x.) - (x.x. - x x . )
1 -, 11 -"2 "2 "1lo In 1 3  3 1 13' 3 1

(x. X. - X. X. ),for n = 4..
:-2 ^2 U  ^

(b) -(x.x. - x.x.)(x. X. - X. X . )X ....... X. for n > 4
1 ] ] 1 i2 I2 U  I3 in-2 ’

Proof; (a) is clear. The nth homogeneous component

of -, ) X-T J • • • 5
1 ^2 n

= ((x. jX. ,...,x. ),(x.,x.))
^1 ^2 n-2 1 3

= (X; ,Xj. ,... ,x̂ . )(X;,X^)-(X;,X^)(X^ ,X; , ...,x^ )Il Ip in-2 .1 1 ]- il I2

= -(x.,x.)(x. ,x. ,...,x. ).when n > 41 3 ip ip 1 - )n-2

n-2

=-(x.x.-x.x.){(x. ,x. ,...,x. )x1 3  3 1  I p  Ip ^n-3 ^n-2

X . ( X . ) X . , . . . ) X . )}•
^n-2 ^1 ^2 ^n-3

— —(x.x. — x.x.)(x. )X . ,...,X . )X . , since
.  ̂  ̂ ^ ^1 ^2 ^n-3 ^n-2

(x. ,x. ,...,x. ) involves (x.-x. - x . x. ) implicitly
^1 ^2 :n-3 il ip ip ip
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= -(X .X .- X .X .)(X . x. -X. X. )x. ...X. by an
1 ] J 1 1 1  1; i2 1 1  I 3 i n - 2 '

inductive argument.

Theorem 5.6: The basic commutators of H, of weight n,

types (i) and (ii), free generate modulo a free

abelian- group.

Proof : Need only prove linear independence. By

taking the map ip from P to 0 we see that it suffices

to prove that the basic commutators type (ii) are

linearly independent (by Theorem 5.2).

By Lemma 5.5, the leading term of a = 0X • } X . ,If ip

IS

( x . X. - X. X. ) ( x .X .- X .X . ) - ( X .X .- X .X .) ( x . X. -X. X. )
Ip Ip ^2.^1 ] 1 1  1 3 J 1 ip ^2 ^2 ^1

for n = 4 and -(x .x .-x.x .)(x. x . -x. x. )x. ...x.
1 3 3 1  ip ^2 ^2 ^1 ^3 ^n-2

for n > 4.

The proof for the case n = 4 follows from (2) and 

Theorem. 1.9 (i.e. for case n = '4 We have the same 

situation as for the absolutely free case). So 

need only consider n > 4. If not linearly independent 

we must try to find a commutator not a which will

give an inverse for p = x.x.x. x . ...x. . By (2)
 ̂ 3 ^1 ^2 ^n-2

the 2-commutator part of this basic (which is to give



an inverse for p) must be flc. ,x. 1. Also by (2) x . mustu 1 3

be an entry of the head of the other part of this basic 

and X: ,x. ,...,x. must be the other entries of this
m 2  ^3 ^n-2

basic. By the ordering of the indices we get a 

contradiction.

As corollaries to this we get the following theorems. 

Theorem 5.7; modulo is free abelian^ freely

generated by the basics type (i) and type (ii).

Theorem 5.8: (1 + B ^ ) n H  =

Proof : . See proof of Theorem 5 .3.

Corollary : (1 where is the augmentation

ideal of H.

Proof : See proof of Corollary to Theorem 5.3./

Let S = P^ Q be the power series ring in X over Z  

subject to X. X. x. x. (x. x . - x . x . ) = 0. Thenll Ip Ig Ijg Ig Ig Ig Ig

F/(F')g(F^)' is embedded in S by Lemma 3.3 Corollary,

and we identify FV(F’)g(F^)' with its image L in S.

Every element w in the multiplicative semigroup of S

generated by X can be written uniquely in the form

w = X. X. X. X. X. ...X. , ir < ir < ... < i (3)
^2 I3 I4 I5 ’-n ’ 5 -  S -  -  n

Let Tĵ  be the ideal of elements in S of order £ i and 

let e be the natural homomorphism from S to P.



Lemma 5.9: L^ modulo is.generated by the basic

commutators of the forms either

(i) fx. ,x.
L  -*-1

5 . » . J X .
■1 ^2 ^n 1 " "2 

or
n

(ii) }X ' }•••}
1 2 "n-2

I n -  >  1 ,

ip _< ig £...£i^_p, i > j, n 2 4 and for n = 4

0i ’̂ i 3  ̂ ordering of the basic 2-
commutators.

or

(iii) • jx* ^*#* )X «
_ L ^ l  ^2 \n-3

ll > ip 5 ip £ ip £ • • • £ i
for n- =.6, >

of the basic 3-commutators

Proof : Is clear since Pl^

n-3

Vl.e shall call the basics in the statement of the' Lemma 

basics of type (i), type (iD and type (iii) respectively. 

Lemma 5.10: In S, the nth homogeneous component.of

,x. ,...,x. IjITc. 5 X . 5 X ,

If Ip i-n-3-' L l  3 k]-1 is

© ( x .  ,x. ,x. )(x.x. - x.x.)x. - (X£,X.,X.)(x. X. -X. X. )x.
2 3 J J ^ J ^  1 2  2 1  3

for n = 6.

(^)-(x%,x. ,x^)(x^ Xĝ  -Xg^ Xĝ  ) X ĝ . . . X ĝ ^for n > 6.
1 "2 "2 "1 "3 n- 3
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Proof : - the 6th homogeneous component of

((x. ,x. ,x. ) ,(x.,x.,x, ))
Ip Ip. 13 J

= (x. ,x. ,x. )Cx. ,x. ,x,) - (x. ,x. ,x. ) (x. ,x. ,x. )-L 2̂ 2 3 -L J 1 2 3

= (x. ,x. ,x. ){(x.x.-x.x.)x, -X, (x.x.-x.x . ) }Ip Ip I 3 1 ] ] 1 k k ]_ ] ] 1

- (x . :,x . ,x, ) {( X . X. -X. X. ) X . -X. (x. x . -x. x . )}i> 3 k ll I2 ll. I 3 I 3 ll I2 I2 ll ' '

= (x. ,X. ,x.) (x.x.-x.x.)x. - (x.,x.,x.)(x, X. -X. X. )x.
1 2 3 J J J  ̂ 1 2  2 1  3

(J): - nth homogeneous component of

((x. )X . j..,,x. ) ,(x.,x.5X, ) )
^2 ^n-3 1 D K .

- ( X . }X. 5...5X. )(x. jX.jX,) — (x. 5X.,X,)(x. ) X . ,.«.,x. .
If Ip. in-3 ^ ^ 1 ] k ip in-3 ^

= -(x.ix.,X, )(x. ,x. ,...,x. ), since n > 6 and1 J K lg_ Ip . 1^-3

(x^,Xj,x^) contains (x^x^-x.x^) implicitly.

“ ~(x. , X . , Xn ){(x. ) X . j...jX. ) X . — X. ( X . , X .
] ^2 ^n-4 ^n-3- -n-3 ^2

••.jX« )}.
n-4

- —(x. ,x.,x. )(x. ) X . ÿ . . . , X . ) X . «
m   ̂ 2 ^n-4 ^n-3

=. -(X . ,x.,X, )(X . X. -X. X. ) X. ...X. by an inductive1 J K ip ip ig -n-3^
argument.
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For basic's type (iii) call |x. ,x. ,...,x. ~] the
L ll I2 ^n-3-"

leading part of the double commutator

7X. }X.
^2

Theorem 5.11: The basic commutators of L of weight n,

types (i), (ii) and (iii);freely generate modulo Tn+1
a .free abelian group.

Proof : Need only prove linear independence. By

taking the map 0 from S to P we need only show that 

the basics type (iii) are linearly independent, by 

Theorem 5.6. By Lemma 5.10, the leading term, t of

a = IS[x* )X . , . . . ,x. "1) .[x ' )X . }X. ~j
y ^1 ^2 ^n-3^ L l  ] K-i

(a) (Xĝ  ,Xĝ  ,Xĝ  ) ( X ĝ X ̂ ~ X j X ĝ ) X ̂ ~ (x^,x. ,x^)(x^ x^ -x^ X,. ) X,.
1 "2 "3

for n=6,

l l  I g  I g  l g _  I 3

-(x.,x.,x. )(x. x.’ -x. X. )x. ...X. for n > 6.
 ̂ ] / l  ^2 ^2 ^1 ^3 ^n-3

First of all we shall take case n=6.

t = {(x. X. -X. X. ) x . -X. ( x . X. -X. X. )}
l l  I g  I p  1 ^  I 3  I 3  I g ^  I p  I p  I g ^

(x^Xj-XjX^)x^ - {(XpXj-XjX^)x^ - Xj^(Xg^X^-XjXg. ) }

(X . X. -X. X. )X . .
^1 ^2 ^2 ^1 ^3

If not linearly independent, then there exists a basic
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type (iii) (length 6) not a which gives an inverse for 

p = X. X. X. x.x.x, . By (3) x. ,x . and x. must be
. ^2 ^1 ^3 t  3 k 1; I3

entries of the same part of this basic (which is to

give an inverse for p ). Thus one part must be either

rX. ,x. ,x. 1 or fx. ,x. ,x. 1. For i„ i  i. (x. ,x. ,L u  U  '•3-1 L 13’ U  iiJ 3 1 I3’ I2

X. ) does not involve x. ,x. ,x. in the sequence i^,
ll ^3 • ^2 ^1

i-, , ig. =p> one part of the basic must be x . ,x. ,x.
^1 ^2 ^3

i'By *(3) Xĝ  must be an entry of the head of another part 

and X. and x . must also be entries of this part. =/>I2 I3
The other part must be jxg-,Xj,x^^. Hence there is no

inverse for p. ( fx. ,x. ,x. 1 > fx.,x.,x,~| in the
l_  i p  i p  ^ g—1 I— 1 ]  k_J

ordering of the basic 3-commutators).

We now consider case n > 6.

(x. ,x. ,x, ) = (x.x.-x.x.)x, - X, (x.x. - x.x,). If not1 J J < ,  I J J I  K K I J  J I
linearly independent, then there exists a basic 

commutator type (iii) (length n)^not a^which gives an 

inverse for p = x.x.x,x. x . x . ...x. . By (3) x.,x.- : i k i3_ 3.2 I3 i^_3 ,  ̂ 1
and X, must be the entries of the last part of this 

basic (which is to give an inverse for p). Hence last 

part must be either |xĝ ,x̂  or [x^,Xj For

i X k' (x, ,x. ,x.) does not involve x, ,x.,x. in theJx J 1 K g 1



sequence j ,i ,k.

^  last part must be By ( 3 ) Xĝ  must

be an entry of the head of the other part and x.ip
X . must be the other entries of this part.
^n-2

^  other part must be fx. ,x. ,...,x. ”)• Hence we
L  ip ip ^n-3J

have no inverse for p which is a contradiction.

As corollaries to this we get the following:

Theorem 5.12: L modulo L . , is free abelian freely-------------  • n n+1 . . ■
generated by the basic types (i), (ii) and (iii).

Theorem 5.13 : (l + T ^ ) o L = L ^

Proof : See proof of Theorem 5.3.-

Corollary : (1 + ^  )^ L = Lĝ  where is the augmentation

ideal of L.

Proof : See proof of corollary to Theorem 5.3.

Section 2 :

An old problem of Fox [4] is the determination of ■

i.e. to give an explicit form for (1 + )o F .

Theorem 1.6 shows (1 +^^f)^F = R ’ and in this section

we make a small contribution by showing (1 + r\ F =

[RfyF' , R n T ' 2  Rg. .

Proposition 5.14 : ( 1 + ^  ) o F = n F ’ , R n F 'J R.

Proof : Now Rg <_ 1 + £ 1 +^^^MN

Hence Rg £ (1 + ) n F .
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Let a e R n F ’ and b e R n F ' then

Qa, b^ = 1 + a b {(a—l)(b—1)—(b—l)(a—1 )}

c 1 +

■Suppose a e (1 Â  l ^ )  n  F. Then by Theorem l.S

a e R ’.. Let R be free on W (F is free on X). Then

a = n [yp niod Rg. Call this product (1 ).

We use induction on the number of distinct free . 

generators w that occur in.the product (1} to show 

that a E 1 mod fR o F' , R n Fj] Rg . If there is no free 

generator in the product we are Through. Let w be a 

particular free generator of R occuring in the 

product. 'We can now collect in one commutator mod Rg 

all the commutators involving w thus:-
op Op ap

0. % I W • _ W • • • • W •  ̂ W **| JT ÎW • 5 W • I
L  ^1 ^2 ^n J ' U 1 3 J

where the ̂  ' s in' the product do not involve w, and 

■il < ig <...< i^ (This latter condition is not- 

necessary for the argument). If b and c e R then

[b, cQ E 1 + (b-l)(c-l)-(c-l)(b-l) m o d . Hence
2 2 •since a-1 £ ^  and Rg £ 1 + 'P ^  this' implies

that
-il(w. w. ... w. — l)(w—1 )—(w—l)(w. w. ...w. —1)
'■1 '■2 'n y - l  ’-2 'n

+ ^{(Wj—l)(w.—1)—(w.—l)(w.—1)}= f e A  . This
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implies by Theorem 1.7' that f e for all k .

“i " k
=> ( w . w . ... w. -l)d, (w-1)ll ig- 1^

" u  % .  %- (w-l)d, (w. w . ... w. -1) + y{.(w.-l)d, (w.-l) -K 1; I? 1 K g]

( w . -1) d, ( w . -1 ) .},] K 1

We note that q =. q e mod ^  for any q e ZF (where e =' 

the augmentation) and hence since is free

abelian on W-1 by Lemma 1.4,

“il “ig “i^
••• £. f

for all k => by theorem 1.7 that
a- a- a- a- a- a- ■

1 / n 2 1 2 nw. w. ”■ ... w. -1 c A  =>W. W . . . . W. E F ’
ll Ig In ^  -1 ^2 ■ ^n

by Magnus’' Theorem 1.5. In a similar manner we can

collect in one commutator all the commutators of the

product (1) involving Wĝ  for 1 £ j £ n and by a similar
j

argument we get that ' •

“i .
w  ̂ t . e F ’ for some t. which is a product of

h  . h  ^

which are involved in the product (1), ŵ . / w (and

w, / w. ).' Let d be the highest common factor of
j  ■ ' ■ .

a. , a. ,..., a. . Then there exist integers 
1 '-2 'n
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s« 5 s» si-ich "tlntsii (X* s* "̂ ot* s«  ̂ * # #
u  u  • u  u  u  u  u

. “q
...+ a. s. = d. Since w t. e F'

^n
a- s. s. a- a- a*X* J. - X *  X -| o

=> w  ̂  ̂ t. J E F ’. Also since w. w. . .. w. ^ eF'
^1 ^2 ^n

ap /d ap /d ap /d
^  (w. ^ w.  ̂ ... w. ^ E F ’ but since F/F’ is

^1 ^2 ^n
a * / d  a * / d  /d.

1 2 • ntorsion free =>w. w . . .. w. e F ’ . All
^1 ^2 _ ^n

congruences from here on are mod n F ’ , RnF[|Rg.

ll ^2 • • • wWp 5
n

w ^ .

a • / d
w“b
^2

/d °̂ i 
w .

a _ * / d  a _ * / d  a * / d
,

a - /d a> /d a* /d a* s. +...+a- s. _
r  1 ^2 n 1 ^1 ^n ^n I= w . w . ...w. , w
L ^ l  ■ ^2 - n̂.

n

=- 1 1

a. /d 

[ - 1

ou /d
2w .

^2

ap /d
_ n* # W  • )

n

i n '
0. /d a • / d 

2w .
^2

/d
,, n • • • w *u -s . '£]

This implies, that a E n ’ jwg^,Wj"jwhere now the product 

involves one less distinct free generator of R. Since
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[r ̂  F' , R n f O R j  1 1 + => n' [w^,w.ge 1 +

and hence by inductive hypothesis n ’ fw. ,w. 1 5 1k 1 3 -1
a E 1. Qgjj 2-
Corollary: R ’/ [ r ^ F ’, R ̂  F ^  R.' = ^  .

-J J A ^ ) - r
r?~i(where PÇ = Ker ZF ^ £ ( F / R ’)), and hence is free 

abelian^ being a subgroup of , .(See Lemma 1.4)
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