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Abstract

This thesis falls naturally into two parts, each concerned with 

the model theory of a different variety of groups. The algebraist 

will find, in the preliminary chapter, a survey of the necessary model 

theory.

A classification of abelian groups by their stability 

properties has been obtained from results of Eklof and Fisher on 

saturated abelian groups using Shelah's theorem relating saturation 

and stability. In Chapter two we develop a direct approach to this 

problem. We obtain a simple formula for calculating the exact 

cardinality of the Stone space of a given abelian group. We are 

then able to distinguish between the various stable classes giving 

new necessary and sufficient conditions for an abelian group to be 

superstable. Our method generalises easily to modules over Dedekind 

domains.

The third chapter contains answers to the question of how 

much saturation or stability is preserved by the free product, * , 

in the variety of all nil-2 groups. First we consider the nil-2 

free product of groups, one factor being finite. The elements of 

such a product are shown to possess a unique normal form which we 

use to prove, under certain conditions, a "Feferman-Vaught style" 

theorem for * . As a consequence we obtain a condition sufficient 

for * to preserve both saturation and stability. In the case of 

saturation, this condition is shown also to be necessary. These 

results are extended to products of bounded nil-2 groups, the key 

being a restricted distributive law for * over the direct product. 

Finally, we classify numerous nil-2 groups by their stability 

properties. Some questions are left open, the most interesting



of which is whether * preserves u)-stability. Results on the 

absolutely free product of groups, showing it preserves neither 

model-theoretic property, are also included in this chapter.
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Chapter 1; Preliminaries

1. Outline

In recent years the ideas and techniques of model theory have 

been successfully applied to the study of various branches of algebra. 

We are concerned here with the study of the theory of groups. The 

thesis falls naturally into two parts, each dealing with a different 

variety of groups, and for this reason we have departed from the 

normal practice of introducing results in the first chapter. This 

section, then, gives only a bare outline of the structure of the thesis. 

Detailed descriptions of the problems we tackle and brief surveys of 

the literature on the subject are given in the introductions to each 

chapter.

Shelah has classified all complete theories by their stability 

properties (see [37]) and it has been suggested (see [l]) that the 

notion of stability may be used to classify all groups. Such has 

already been achieved in the case of abelian groups (see section 2.1), 

but in an indirect manner using results of Eklof and Fisher [8] on

saturated abelian groups. In Chapter 2 we develop a direct approach to

this problem, obtaining a simple formula for calculating the exact 

cardinality of the Stone space of a given abelian group and new

necessary and sufficient conditions for an abelian group to be

superstable.

In Chapter 3 we investigate the model theory of one of the 

simplest non-abelian varieties of groups: the variety of all nilpotent

groups of class at most 2 (nil-2 groups). We ask questions of the 

following kind: if P is a given model-theoretic property, under

what conditions does the nil-2 free product operation, * , preserve 

P ? Now, if one factor in a given nil-2 free product of groups is 

finite, the elements possess a convenient unique normal form which can
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be used to prove a Feferman-Vaught style (see [ll]) theorem for the 

product * . As a consequence, we give preservation theorems in 

restricted situations for each of the following model-theoretic 

properties; elementary equivalence, saturation and stability. In 

addition, we classify numerous nil-2 groups according to their stability 

properties. We do leave some questions on stability open and these are 

enumerated in section 3.6; the most interesting of these is whether * 

preserves uj-stability.

We have attempted to make this thesis accessible to both the 

model theorist and the algebraist with a smattering of logic. Thus, 

aside from sparing none of the algebraic details in our proofs, we 

have included in this chapter a section (section 3) summarising the 

definitions and results on saturation and stability which we need.

Our logical terminology is described in the following section. Details 

of the algebraic notation, definitions and elementary lemmas required 

are reserved for the second section in each chapter.

2. Logical Terminology 

Set-theoretic

We shall assume familiarity with the fundamentals of naive set 

theory as developed, for example, in Rotman and Kneebone [26]. (For 

a good summary of all that is required, see Appendix A of Chang and 

Keisler [7].)

The symbols U , fl , - , X denote, respectively, the union, 

intersection, difference and cartesian product of sets and C  is the 

subset relation.

An ordinal is conceived of as the set of all smaller ordinals, 

finite ordinals being identical with the natural numbers. As a rule 

we shall use lower case Greek letters to denote ordinals; integers are 

normally denoted by the letters d, e, i, j, k, 1, m, n, p, q and r.



with p being reserved for prime numbers.

If o , P are ordinals, then Of < P is equivalent to Of ^ P

and we shall use whichever notation seems more appropriate at the

time.

The power, or cardinality, of a set X is denoted by |x| .

Cardinals are identical with initial ordinals, that is, a is a

cardinal if and only if |oj = # .

The of-th infinite cardinal is denoted by , or alternatively

by ; we use u) in place of or u)̂

If K and X are cardinals, then N-X , and ^  denote,

respectively cardinal sum, product and exponentiation. (We use

ordinal sum only in the definition of concatenation; see below.) 2^

is thus the cardinal of the set of all subsets of the cardinal % .

The symbols 51 ,  ̂ 1 are used to denote, respectively, the cardinal

sum and product of a family of cardinals.

If A and B are sets, then f; A B denotes a mapping with

domain A and range a subset of B . The restriction of f to a

subset C of A is denoted by fPc . ^  denotes the set of all

mappings f: A B ,

If a is an ordinal and X a set, then an of-termed sequence

of elements of X (or, from X) is a member of %  . Such a sequence

will be written, variously, as (x : p < of) , (x ) or, when a isP p P<Of
clear from the context or is relatively unimportant, (x^, x^, ...) or

X . When of = 1 , we write x^ instead of (x^) . If x € ^X , # is

called the length of x , and we write j6(x) = a , The set

denotes the set of all sequences from X having length < Œ . In

particular, is the set of all finite sequences (that is,

sequences of finite length) from X ,

Let X be an a-termed sequence and y a p-termed sequence.



then the concatenation, x'̂ y , of x and y is the (cv-+p )-termed

(ordinal sum intended) sequence defined by

x'^y(y) = x(y) if y < a

x^(Œfy) = y(v) if Y < P .
Thus, intuitively, x'^ is obtained by writing down all the elements 

of the sequence x followed by the elements of y ,

Model-theoretic

We assume the reader is familiar with the elements of first- 

order predicate logic and the classical definitions and results of 

its model theory; in other words, the contents of Chapters 1 to 4 of 

Bell and Slomson [4]. An excellent model-theoretic source for the 

entire thesis is the book by Chang and Keisler [7],

The letter L always denotes a first-order language with 

equality which, it is convenient to assume, contains denumerably 

many variables which we shall denote by u^, v^ . L may, or may 

not be denumerable. Most of the time L shall be the language of 

groups and so it contains a binary function symbol + (or, »), for 

the group operation, and a constant symbol 0 (or, 1) for the group 

identity. (The symbol - (or, "^) for group inverse is then 

introduced by definition.)

We shall frequently identify L with the set of all formulae 

in the symbols of L , the Greek letters 0, cp, \jf, % ^nd a being 

used to denote formulae. If cp is a formula with the variables 

UQ,u^...,u^_^ free we shall write 9 (uq, ... ,u^ _̂ ) or cp(u) , where

u = <u ,.o.,u ) .0 n-1
A first-order theory T in a language L is a consistent set 

of sentences of L . The language of T is sometimes denoted by 

L(T) , and its cardinality by |l (T)| , or It | , Normally, T will

be a theory of groups in which case the axioms of T include the



group axioms :

(1) Vu u u (u +(u +u ) = (u +u )+u ) :1 2 3 1 2 3 1 2 3 '

(2) Vu^(u^+0 = u^ A 0+u^ = u^) ;

(3) Vu 3u (u +u = 0 A u +u = 0) ,1 2 ^ 1 2  2 1  ^

A theory T is said to be complete if and only if, for each 

sentence a € L(T) , either a or ^  belongs to T .

Structures for L , or L-structures are denoted by capital 

letters A, B, G, and H, and we shall not distinguish between a

structure A and its domain : thus a € A means that a is an

element of the domain of A and |a | denotes the cardinality of

the domain of A ,

We use the notation A -z: B , A C  B , A "K B and A = B , 

respectively, for A is isomorphic to B , A is a substructure of 

B , A is an elementary substructure of B and A is elementarily 

equivalent to B .

The symbol M  denotes the usual satisfaction predicate. So, 

if 9(u^ , o.. ,u^_-) is a formula of L and â = (aQ,...,a^_^) a 
sequence from the L-structure A, we write

A 1= ? [ % ....

if cp(u) is satisfied in A by the sequence â . When the number 

of free variables in cp(u) is not specified, it is understood that 

the sequence a. matches ü .

If T is a theory, we say that A is a model of T , and 

write A N  T , if, for every sentence a of T , A 1= a . The 

theory of A , denoted ThA , is the set of all sentences which hold 

in A :

ThA = ja € L ; a is a sentence and A 1= a| .

Clearly, ThA is a complete theory.

Let A be an L-structure and X a subset of A . Then the
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expansion of L by X is the new language, denoted L(X) , obtained 

from L by adding one new constant symbol c^ for each a Ç A ;

L(X) = L U !c^ ; a 6 A| .

It is understood that if a ^ b , then the symbols and C], are

distinct. Associated with the language L(X) is the expanded

structure, (A , a)^^^ , obtained by interpreting each new constant 

c^ by the element a . In fact we shall not normally distinguish 

between the constant symbol and its intended interpretation, allowing 

a to denote both constant symbol and element of A . When X = A , 

we shall write A^ instead of (A , a)^^^ and when X is a sequence

â from A we shall write (A , a) „ The elements of X in such an

expansion of the language are called parameters.

The notion of a definable subset of an L-structure A is used

throughout the thesis. Let X be a subset of A . Then, X is said

to be definable in A if and only if there exists a formula 

cp(û  ,u^ ,... ,u^) of L and a sequence b € ^A such that

X = {a € A : A i= cp[a,b] | .

In such a case we also say that X is definable in A with n parameters

from A ; or, the formula cp(u^,B) of L(b) defines X in (A,B) ,

A substructure B of A is said to be definable in A if the domain

of B is a definable subset of A .

Finally, a notion needed in Chapter 2. Let T be a first-

order theory, L its language and A a subset of the formulae of L ,

Then, T is said to admit elimination of quantifiers modulo A , if 

every formula of L is equivalent, relative to T , to a disjunction 

of conjunctions of formulae in A or their negations. The set A is 

called the set of basic formulae for the elimination of quantifiers 

in T .

In conclusion, we should point out that, whenever it makes our
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exposition clearer, we shall use the symbol for "implies", and 

the symbol « or the standard abbreviation "iff" for "if and only if". 

All further terminology and notation will be introduced when required.

3. Survey of Saturation and Stability

• In this section we survey some of the basic facts about the 

properties of saturation and stability which we shall use throughout 

this thesis. Any unexplained algebraic notation may be found in 

sections 2.2 and 3.2 of the following chapters. The notation and 

definitions given here are, for the most part, consistent with [37].

Let A be a set of formulae in a language L , A an arbitrary

L-structure, X a subset of A and m a positive integer. Then,

a A-m-type over (A , a )^ç^ is a set, t , of formulae cp(u,x) of

L(X) such that

(1) Û = (Ug,u^,...,u^_^) , X € and either cp(u,v) or its 

negation belongs to A ; and

(2) for every finite subset s of t , (A,a)^g^ |= 3Û / \  cp .
cp̂ s

The elements of X are called the parameters of t . Types will

usually be denoted by s , t . When A is the set of all formulae of

L we shall omit it; when m=l, we shall omit it too. If we wish to

display the free variables of t we shall write t(u) . When m=l ,

we shall write t(u) , u being the free variable in this case.

Let r be a subset of A , and t a A-m-type over (A , a) _ .a CA.
Then, the restriction, t|r , of t to T is the F-m-type over

(A , defined by

tir = Jcp(u,x) € t : either cp(u,v) or its negation belongs to F) .

A A-m-type t over (A , a)^^^ is said to be complete if and

only if for every formula cp(u,v) in A and sequence x from X of

suitable length, either cp(u,x) € t or ^(u,x) € t . If t Is 

complete, then so is t|F , for every subset, F , of A . An
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application of Zorn’s Lemma shows that every A-m-type can be extended 

to some complete A-m-type, We shall denote the set of all complete 

A-m-types over (A , a)^^^ by S^(A , a)^^x where, as before, A is

omitted if it is the set of all formulae of L and m is omitted if

m=l o When X=A we shall write S™(A) instead of S^(A , a ) ^ ^  .

S^(A , a)^^^ is the Stone space of the Boolean algebra of all

equivalence classes of formulae of L(X) with free variables 

Uq,..o,u^  ̂ under the equivalence relation, ^  , defined by

cp ~  \j; if and only if ^  Vu (cp 4-9 ) .

By the Stone space of A we mean the set S(A) .

It will often be convenient, from the point of view of notation, 

to assume that the set X is well-ordered as a sequence â . We say 

that a A-m-type, t , over (A , a) is realised in A if there exists 

a sequence B € ™A such that, for every formula cp(u,x) in t ,

(A , â) 1= cp[B] .

If there is no such sequence in A , then we say that t is omitted by

A , or, A omits t . The following definitions are important,

3.1 Definitions

Let H be a cardinal, finite or infinite. Then, a structure,

A , is said to be %-saturated if, for every sequence a from A of

length <K , every type t 6 S(A , â) is realised in A , A is said

to be saturated if it is |a |-saturated.

Most of the following Theorems are, by now, part of the folklore 

of saturated structures. For more details see [4], Chapter 11 or [7], 

Chapter 5.

3.2 Theorem

Let K be a cardinal. Then,

(i) every finite structure is %-saturated; and

(ii) every structure has a %-saturated elementary extension.
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The next two theorems show that saturated structures also realise 

complete m-types for certain m>l , The proof of Theorem 3,4 is 

omitted because it is similar to that given for Theorem 3,3.

3.3 Theorem

. Let K be a finite cardinal. Then, a structure A is %-

saturated if and only if it realises every complete m-type with r 

parameters from A , where m+r does not exceed x, .

Proof

Let H be a finite cardinal and A a %-saturated structure .

We prove, by induction on m, that A realises every complete m-type 

with r parameters., provided m+r=x . This follows immediately 

from our initial assumption if m=l . So let a be a sequence from 

A of length r and t € S^(A , â) , where n4-r=x , and assume, as 

inductive hypothesis, that the result is proved for all m<n and k 

such that m + k ^  .

First, we define an (n-1)-type, t^ , over (A , a) by 

t* = l3u^cp(u^,u^,...,u^_^,a) : cp(û,â) € t} .

Then, by the inductive hypothesis, since (n-l)+r = n+r-l^ , A 

realises every type in ^(A , a) and hence, the type t ̂ is also 

realised in A , say by B = (b^,...,b^ ^) . Next, set

t" = [cp(u^,B,a) : cp(ü,â) 6 t} ,

Then, t" is a type with (n-l)+r = n+r-1 < h parameters from A and

hence, since A is %-saturated, A realises t"' . It is clear that

if t" is realised in A by b^, then the complete n-type t is

realised in A by (bg,b^,...,b^_^) . This completes the proof for

m = n and the result follows by induction.

The other direction of the proof is trivial. //

3.4 Theorem

Let H be an infinite cardinal, then a structure A is
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H -saturated if and only if, for every positive integer m and every 

sequence a. from A of length Ot , every m-type t € S^(A , a) is 

realised in A ,

3,5 Theorem

■ Let H be a cardinal, A a K-saturated structure and B a 

substructure of A which is definable in A using r < k parameters. 

Then B is x,ir saturated, where,

H-r H < u)

H ^ UD

3o6 Theorem (Waszkiewicz and Weglorz [39], Theorem 1,5)

If A and B are %-structures for a countable language, 

then AXB is also K-saturated.

The concept of a totally transcendental complete theory originated 

in 1965 in a paper by Morley [23], and was later generalised, by 

Shelah [35], to the notion of a stable theory. For a thorough analysis 

of the properties of stable and unstable theories see [37] ,

The notion of a stable theory involves the size of the Stone

space of any model of the theory. Suppose A is an arbitrary structure. 

Then, |S(A)| = |a | , for every element, a , of A determines a 

unique type t € S(A), called the principal type generated by a, and 

defined by

t = Jcp(u,x) : A"̂  M  cp[a] | ,

If A happens to be finite, then we also have |s(A)| ^ |a| since

each t € S(A) must include the formula u = a for exactly one a in

A and hence each complete type over A is principal. It follows 

that, for finite structures A , |s(A)| = |a| and so the cardinality

of the Stone space is only ever in doubt for infinite structures.

3,7 Definitions

Let H be an infinite cardinal and T a complete, first-order
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theory. Then T is said to be H-stable (or, stable in power h ) if,

for every model A of T , Ia | ^ h im[)lies | S (A) | = K , If T is

not H-stable, then we say that T is H-unstable. T is said to be 

stable if T is H-stable for some infinite cardinal h  . T is 

unstable if T is H-unstable for every infinite cardinal h  . Let A 

be an arbitrary structure, then A is H-stable (stable, or unstable)

if and only if ThA is H-stable (stable, or unstable),

3.8 Theorem

Every finite structure is stable in every infinite power,

3.9 Theorem (Morley, [23])

Let T be a complete first order theory in a countable language. 

Then, T is tu-stable if and only if T is H-stable for every

infinite cardinal H ,

The following theorem, due to Shelah, gives a classification 

of complete theories by the cardinals in which they are stable,

3.10 Theorem (Shelah, [37])

For every complete theory T exactly one of the following 

alternatives occurs ;
IT I(i) T is stable in every cardinal h  ^ 2‘ ' ;

(ii) for every model A |= T , |a |^ - | S (A) | ^ |a |^^^ ;

(iii) T is unstable.

We make the following distinctions,

3.11 Definitions

Let T be a complete first-order theory. Then, we say that

hi .
TT is superstable if T is H-stable for every h ^ 2‘ ' ;

T is strictly-superstable if T is H-stable if and only if h  ^ 2

T is merely-stable if T is stable but not superstable.

Notice that the merely-stable theories are the ones for which

alternative (ii) above holds. In the case of a countable language
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this is equivalent to being H-stable in all powers h  for which 

H = H^ . By Tlieorera 3.9, it is evident that a countable (U-stable 

theory is also superstable. Furthermore, it follows from the proof 

of that theorem that a countable theory is strictly-superstable if 

and only if it is superstable but not uj-stable. There are numerous 

examples, in this thesis, of theories which are unstable, merely-stable, 

strictly-superstable and uo-stable. The next theorem shows that, for 

a stable structure A, the cardinality of the Stone space S™(A) , for 

each m > 1, is also bounded by |a( .

3.12 Theorem (Shelah [37], Lemma 2,10)

A complete theory T is H-stable if and only if for every 

m ^ 1 and every model A 1= T , |a| ^ h  implies | S^(A) | = h  .

The following characterisation of unstable theories does not 

involve counting types and we rely heavily upon it, or its Corollary, 

in Chapter 3,

3.13 Theorem (Shelah [37], Theorem 2,13)

A complete theory T is unstable if and only if there is a

formula cp(u,v) = cp(û  ,,., ,û ,̂v̂  ,.,. ,v̂ )' , a model A |= T and 
_ k

sequences € A , for each n 6 cü , such that

A cp[a^,a^] if and only if m < n ,

3.14 Corollary

A complete theory T is unstable if and only if there is a 

model A 1=: T , a formula cp(u,v) = 9 (u^,,,,,u^^,v^,...,v^.) which may 

involve parameters from A and sequences a^^B^ € A for each n 6: w , 

such that

(i) the sequences n 6 cu , are all distinct; and

(ii) A 1= 9[â^,'B^] if and only if m ^ n .

Proof

First we assume that T is unstable and let cp(u,v) be the
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formula, A the model and the sequences, given by Theorem 3,13,

satisfying

A 1= cp[a ,a ] if and only if m < n . ^ m ’ n
It is clear that the sequences are all distinct for, if m < n ,

then we have

A 1= A .

Thus, the sequences a^, n € m , are all distinct giving (i) with 

. Then, defining il/(u,v) by

\|f(u,v) B cp(h,v) V / \  u. = V. ,

we have

A t= « A 1= . o r  5^ = 5^

« m < n or m  = n 

<=> m = n ,

giving (ii) for \l/(u,v) and the sequences â^^B^ with B^ = .

Conversely, let A T and cp(u,v,x) be a formula involving

parameters x = (x^,...,x^) from A for which there exist sequences 
kâ ,B C A with conditions (i) and (ii) holding. Let u ,,..,u ^ ^ k+1 2k+r

V ,.. o ,v be variables new to cp(u,v,x) andk+1 2k+r ^
9(u^,,.,)^k'^k+l'''"»^2k+r) formula-obtained from cp by replacing each 
occurrence of the variables v^,...,v^^ by new variables = » » )^2k

respectively, and each occurrence of the parameters x^,...,x^ by net? 

variables ^2k+l’“ " “’̂ 2k+r respectively. Define a formula ijr , with 

no parameters, by

’l'(ui>” ->U2k+r’''l’*“ ’V2k+r) “ ‘ " *’̂ 2k+r^

A V /  "i ^ V, ' l@i#2k  ̂ ^
Then, setting c^ = â  ̂B̂  ̂x , for each n 6 u) , we have by (i) and (ii)

above.

« A h= 9[am'bn] m ^ n
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<=> m Ë; n and m ^ n 

c* m < n

Thus, by Theorem 3.13, T is unstable. //

3.15 Theorem (Sabbagh [27], Proposition 3 bis)

• Every definable substructure of a H-stable structure is 

H-stable; the quotient of a H-stable structure by a definable congruence 

is H-stable.

The next theorem is usually attributed to Macintyre [l9], who 

claims it for the case h = u) . A proof, for all h ^ |l| , is given 

in the introduction to Eklof and Fisher [8], However, this result 

is implicit in an earlier paper by Waszkiewicz and Wgglorz [39] and 

it is that proof we give here.

3.16 Theorem (Waszkiewicz and Weglorz)

If A and B are H-stable structures for a countable language, 

then A X B is also H-stable.

Proof

Let t € S(AxB) . Then, by [39] Lemma 1.2,there are t^ E S(A) ,

tg ^ S(B) such that if A^^ A and B^V" B with a realising t^ in

A^ and b realising t^ in A^ , then (a,b) realises t in A^xB^ . 

Choosing one such pair (t^,t2 ) for each t determines a mapping 0 

from S(AxB) into S(A)xS(B) . Furthermore, 0 is one-one for suppose 

0(t) = 0(t') = (t^,t^) . Now, elementary extensions A^ of A and B^

of B exist with a € A^ realising t^ and b € B^ realising t^ . 

Hence, (a,b) realises both t and t' in A^XB^ . Since this is 

impossible unless t = t' we conclude that 0 is one-one. Thus,

I s (AXB) I g |s(A )| |s(B )| 

and from this the result follows immediately, //

We see from the proof above that, whether A and B are stable

or not, |s(AxB)| Ê |S(A)| |S(B)| . In [l] (proof of Theorem 1.5),
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Baldwin and Saxl credit Macintyre with proving | s ( A x B ) |  = |s(A)| ] s ( B ) j  . 

Were this the case, then the converse of Theorem 3.16 would follow 

immediately. However, in a private communication to P, Olin (21,

January, 1977), Macintyre denied any claim to this result and stated 

that he believed it to be an open question. Of course, using Theorem 

3,15, it is easy to see that the converse of 3.16 will hold for any 

pair A , B of structures which are definable in A X B , We also

have the following partial converse which is a special case of a result 

due to Berthier.

3.17 Theorem (Berthier [6], Theorem II. 4)

If A and B are groups and A x B is stable, then A and B

are stable.

In the case of abelian groups we can be more precise.

3.18 Theorem

If A and B are abelian groups, then A X B is H-stable if

and only if A and B are H-stable.

Proof

For the notation and details of the terms used in this proof

the reader is referred to Chapter 2 of this thesis.

It is easily verified that, for each prime p and integer k ê 0 ,

and, hence

Ic Ic Icp ( A X B ) = p A x p B ,

k^ , , k+1, _  k k+1 k  ̂k+1p (AxB)/p (AxB) —  p A/p A X p B/p B .

Thus,

tf(p,k;AxB) = tf(p,k;A) tf(p,k;B) .

From this and Theorems 2.4,4 and 2.4,7 it follows that AxB is w-stable 

(superstable) if and only if A and B are m-stable (superstable).

Now it follows from the results in section 2.4 that every 

abelian group is either (u-stable, strictly-superstable or merely-stable.
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Suppose AxB is H-stable. We show that A and B are both H-stable. 

There are three possibilities:

(a) AXB is w-stable. Then, by what we have proved above A 

and B are u)-stable and hence, by Theorem 3.9, also H-stable.

(b) AxB is strictly-superstable. Tlien, since AxB is H-stable,
wwe must have h ^ 2 , Thus, since A and B are supers table, they

must be H-stable.

(c) AxB is merely-stable. Then (see the remarks after 

Definitions 3.11), since AXB is H-stable, we must have h = h^ ,

But, by Theorem 2.4.1, every abelian group is stable in such powers, 

and so A and B are H-stable. //

The following theorem has been proved independently by Sabbagh 

and by Baldwin and Saxl; the proof we give here is our own,

3.19 Theorem (Sabbagh [28]; Baldwin and Saxl [l])

Let be a family of groups, infinitely many of which

are non-abelian. Then, both the cartesian product ( and the

direct product (7 |G^) of the family are unstable.

Proof

Without loss of generality, we shall assume that I is an

belonging to both products 1 T G
c£l

Xn(o^) =

So, with G = 1 [ Ĝ , or 1 f G

group G is non-abelian.O' Choose

and let e denote the identity

n < u) , we define elements ^ > y n

'a I T ”» •

..t-
O' = n ,

je O' > n

Œ < n .

r
Œ = n

Le O' > n

, cp(ü,v) defined by
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cp(û,U2,v̂,V2> 

and = (%n,yn) > have

G t= 'pCSm.Sn^ « G+k = y f m
« m <  n .

Thus, by Theorem 3,13, G is unstable, //

4. Acknowledgements.

I wish to express my warm thanks to my supervisor. Dr.

Wilfrid Hodges, for his continued support and encouragement 

throughout the period of my research and for his invaluable 

assistance in overcoming the hurdles of submitting my thesis 

from another country.

Special thanks go to Professor Philip Olin of York University 

Toronto for recommending to me the study of nilpotent groups and 

for kindly supervising my research on Chapter 3 , I am also grateful 

for his painstaking reading of the entire thesis and his many 

helpful suggestions for its improvement.

Finally, I thank Mrs. Linda Herskowitz for her excellent 

typing of the manuscript.



22

Chapter 2; The Stability of Abelian Groups

1. Introduction

Any investigation of the stability properties of groups would 

naturally begin with a study of abelian groups. In this section 

we survey previous work on this instance of the problem and explain 

our own contribution to its solution,

A partial answer was provided in 1970 by Macintyre [19], who 

gave a simple algebraic characterisation of the w-stable abelian 

groups,

1.1 Theorem (Macintyre)

An abelian group is w-stable if and only if it can be written 

as the direct sum of a divisible group and a bounded group.

However, the proof of this theorem uses two direct sum 

decompositions for divisible and bounded abelian groups. These 

decomposition results have, at present, no generalisation covering 

all abelian groups and thus, there is no obvious way of extending 

Macintyre's method. The situation for non-oj-stable abelian groups 

has been handled in a quite different (and more indirect) way.

In 1972, Eklof and Fisher [8] gave new model-theoretic proofs 

of the results of Szmielew [38] by determining invariants which 

characterise saturated abelian groups up to isomorphism. In doing 

so, they were also able to show that every complete theory of abelian 

groups has a saturated model. Indeed, they established precisely the 

cardinals in which such models exist. Using this information, together 

with some highly non-trivial results of Shelah, a complete solution 

to the problem of stability can be given, (This fact has already been 

observed by a number of people, among them Baldwin and Saxl [l]). In 

the next few paragraphs we explain how this is achieved.
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Let A be an arbitrary abelian group. Denote by (*) the 

following pair of conditions:

(a) Tf(p;A) < ® , for all primes p ; and ^

(b) there exist only finitely many primes p (*)

such that, for some n , U(p,n;A) = . J

Both Tf(p;A) and U(p,n;A) are invariants of A ; we define 

Tf(p;A) in section 2 and U(p,n;A) is one of the Ulm invariants 

(see Kaplansky [l8],or. Eklof and Fisher [8], for details). In fact,

from the point of view of understanding the present discussion the

definitions of these terms are irrelevant. Conditions (*) are those 

appearing (under II (b) (i)) in the table on page 146 of Eklof and 

Fisher's paper. From this table, we extract the following theorem,

1.2 Theorem (Eklof and Fisher)

Let A be an cu-stable abelian group. Then,

(i) if A satisfies (*) , TliA has a saturated model of power

H if and only if % = 2^; and

(ii) if A does not satisfy (*) , ThA has a saturated model
(Uof power H if and only if H = % ,

The link between stability and saturation is provided by the next

two results,

1.3 Theorem (Shelah, Wierzejewski)

Let T be a countable stable theory and H > uj . Then, T is

H-stable if and only if T has a saturated model of power H .

The "only if" direction of this theorem was stated, without 

proof, by Shelah in [37], A proof of both directions is given by 

Wierzejewski in [40],

1.4 Theorem (Shelah [36])

Let T be a countable unstable theory and h > uj , Then T

has a saturated model of power h if and only if h^ = H  ,\<H
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The complete solution to the problem of stability of abelian 

groups is now easily obtained.

1.5 Theorem (Eklof and Fisher, Macintyre, Shelah, Wierzejewski)

Let A be an arbitrary abelian group,

. (i) A has a stable theory,

(ii) A is w-stable if and only if it is the direct sum of

a divisible group and a bounded group,

(iii) A is superstable if and only if it satisfies (*) ,

Proof

(ii) is of course Macintyre's result; Eklof and Fisher prove 

it too, (A word of caution here; for Eklof and Fisher -stable” is 

what we mean by "uj-stable", )

(iii) Suppose first that A is superstable. By definition, A

is H-stable for all h  ^ 2^ and hence, by Theorem 1.3, ThA has

saturated models in these powers. Theorem 1.2 and the fact that

(b< )̂" > N , together imply that A satisfies (*) ,a+U) O’+U) to r

Conversely, if A satisfies (*), then either A is w-stable 

and hence also superstable, or, using Theorem 1.2(i), ThA has saturated

models of power h  for all h  g 2^ , The rest will follow from

Theorem 1,3 provided we can show that A is stable. But this is 

immediate from Theorem 1.4 since, for any singular cardinal H  , we

have > K .
(i) Let A be an unsuperstable group. Then, by (iii) A does

not satisfy (*) and so, by Theorem 1.2 (ii), ThA has a saturated 

model of power H if and only if h ^  = h  , Tlius, by Theorem 1.4, 

to be able to deduce that A is stable we need only produce a cardinal

H^ >  H .
UJ

H for which H  = h  but X —  h  > h  , There are plenty of these
\ < H

cardinals: for example, H  , //UJl



25
In this chapter we give a completely new and, we believe, a 

more natural approach to this whole question. Our method is a 

direct attack upon the problem. Furthermore, apart from the more 

elementary facts of algebra and logic, the only deep result we need 

borrow from elsewhere is Szmielew's elimination of quantifiers theorem 

(see Theorem 3.1),

Recall, from Chapter 1, that a theory is % -stable if and only 

if every model of the theory of power k has at most k complete 

types, Thus, stability is defined in terms of counting types and 

this is precisely what we do. Indeed, we give an exact formula 

(Theorem 3,18) for calculating the size of the Stone Space, S(A) , of 

a given infinite abelian group A , This formula is a very simple one 

involving only the cardinalities of A and certain quotient groups 

of subgroups of A (see section 2 for the definitions):

P O m c  .
Using our formula we deduce immediately that every abelian group 

has a stable theory (Theorem 4,1), Furthermore, we are able to 

distinguish between the w-stable, strictly-superstable, and merely-stable 

abelian groups (Theorems 4,4, 4,7 and Corollary 4,8), The invariants 

we give for characterising the superstable groups are, we think, somewhat 

simpler than those which follow from Eklof and Fisher's work.

This work was carried out independently of Eklof and Fisher [8], 

and was completed in March 1973 before we realised its connection with 

that paper. Shortly afterwards, Berthier announced in [5] that the 

theory of abelian groups is stable. His proof [6] also depends on 

the elimination of quantifiers result of Szmielew, However, his 

method is not of the "counting types" variety and does not allow him 

to separate the stable classes as we do.

We end-this section by giving an outline of the structure of
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Chapter 1. In section 2 we review the algebraic definitions and 

results we shall need. Our invariants for characterising the superstable 

abelian groups are defined there too. Section 3 is devoted to the 

derivation of our formula for counting types, and, in section 4, 

we use it to give our version of Theorem 1,5, Finally, in section 5, 

we discuss how to generalise these results to modules over Dedekind 

domains,

2, Preliminaries

All groups in this chapter are infinite abelian, and so, for 

the time being, "group" will mean infinite abelian group. We shall 

need very few purely algebraic results and it is the purpose of this 

section to review those definitions and theorems we shall use.

Further details of anything left unexplained may be found in Hall [l4]

or Kaplansky [18],

Let A be an arbitrary group and n an integer.

The subgroup of A consisting of all elements na , with 

a E A , is denoted by nA ,

An integer n is said to divide the element a of A if

there exists an element b in A , not necessarily unique, with a = nb ;

we shall write n| a if n divides a „

A is said to be divisible if every non-zero integer divides

every element of A ; equivalently, A is divisible if nA = A ,

It is well-known that a divisible subgroup of A is a direct summand 

of A , ([18], Theorem 2)

If nA = 0 , the trivial group, for some integer n , then A 

is said to be bounded.

Now let B be an arbitrary subgroup of A , Then, A/B denotes

the quotient, or factor, group of A by B , The elements of A/B

are cosets a + B ,  a € A ,
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A transversal for B in A is any subset of A containing 

exactly one element from each coset of B in A .

If C is a subset of A , then B induces an equivalence 

relation, ~  , on C defined by

a ~  b if and only if a-b € B .

The set of all equivalence classes of ~  on C is called the

quotient set of C modulo ~  and is denoted by , or by C/B .

The dual usage of the quotient symbol should cause no confusion; 

indeed, when C is also a subgroup of A containing B , then the

quotient set C/B coincides with the quotient group of C by B ,

In the sequel we shall show that the number of complete types 

over a group A is completely determined by the cardinalities of

A and the successive quotient groups p^A/p^^^A , where n is a

non-negative integer and p is prime. For this reason we make the 

following definition; we shall comment on our notation after proving 

Lemma 2.2.

2.1 Definition

If A is a group, p a prime and n a non-negative integer,

then tf(p,n;A) = | p^A/p"^^A| . We shall not refer to A , writing 

tf(p,n) instead, whenever it is clear from the context to do so.

The following lemma is straight-forward and so we give only a 

sketch of its proof.

2.2 Lemma

For any group A , integer n 5 0 and prime p , we have:

(i) tf(p,n+l) g tf(p,n) ;

(ii) every coset C of A by p^A is the union of exactly

tf(p,n) cosets of p"^^A in A ; and

(iii) A is the union of II tf(p,k) cosets of p^A .k^n
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Proof

Let A be a group, n = 0 an integer, p a prime.

(i) If < tf(p,n)j is a transversal of p"^^A in

p "a  then |p"+^A/p"+^A| S [ jpa^+ p"+^A.; a < tf(p,n)|l .

(ii) Let a € A and C be the coset a + p^A of p^A in A .

If Ip^a^ : # < tf(p,n)) is a transversal of p^^^A in p^A , then

the cosets a + p^a^, + p^^^A , a < tf(p,n) , are all distinct and C

is their union.

(iii) Use (ii) and induction on n . //

Now, the conditions we give for characterising the w-stable and

strictly-superstable groups involve the cardinals tf(p,k): for example,

(Theorem 4.4) a group A is w-stable if and only if tf(p,k;A) = 1 

almost everywhere. In general, the statement tf(p,k;A) = K is not 

an elementary one. However, we can say elementarily that tf(p,k;A) = n , 

for 0 < n < u) ; and that tf(p,k;A) ^ cu . Thus, if B = A then

tf(p,k;B) = tf(p,k;A) when this value is finite, and otherwise,

both tf(p,k;A) and tf(p,k;B) are infinite. Such expressive 

power is sufficient for our characterisations.

We have borrowed our notation from the Eklof-Fisher invariant 

Tf(p;A), [8]. Regarding p^A/p^^^A as a vector space over the field 

of integers mod p , Tf(p;A) is defined by:

Tf(p;A) = lim dim (p^A/p A) . n-»o°
It is clear that dim (p"A/p"^^A) = 0 if and only if | p"A/p""^^A| = 1 

and, furthermore, since the field is finite, dim (p^A/p^^^A) < « 

if and only if tf(p,n;A) < uj , Thus, in particular, Tf(p;A) < ® if 

and only if the sequence tf(p,n;A) , n € u) , is eventually finite.

The invariants tf(p,k;A) are sufficient for our purposes since we shall 

not be interested in the exact infinite value of Tf(p;A) .
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3. Derivation of the Formula

The main theorem proved in this section is that the number of 

complete types, | s ( A ) |  , over a group A is given by

S(A)| = |a| / I Y l  tf(p,n;A) 
pEP n€u)

where P is the set of all primes. The basis for our proof is that 

the theory of abelian groups admits elimination of quantifiers. This 

result was first proved in 1955, by Szmielew ([38], Theorem 4,22), and 

a new model-theoretic proof was given in 1972 by Eklof and Fisher 

([8], Corollary 4,11). It is Eklof and Fisher’s formulation of her 

result which we give below. The definition of core sentences is given

in section 2 of [8]: roughly speaking, they are sentences which define

the elementary invariants; thus, two groups are elementarily equivalent 

if and only if they satisfy the same core sentences. In the following 

theorem, "n|u" is an abbreviation for the formula "3v(u = nv)".

3,1 Theorem (Szmielew)

Every formula in the language of the theory of abelian groups 

is equivalent, relative to that theory, to a formula which is a 

disjunction of conjunctions of core sentences and formulae of the form

"p''| H  r.v." , " X  r.v. = 0"
ISiSn ^ ^ l^iSn ^

and their negations. (p,k,n and r^ are all integers, with p a

prime and n,k > 0 ,)

Recall, from Chapter 1, that the formulae referred to in an

elimination of quantifiers theorem are called basic formulae. Let A

be an arbitrary group. Our procedure is to reduce the calculation of

the size of the Stone space of A to the enumeration of all complete

types restricted to formulae of a particularly simple kind. The first

stage in this reduction is to show that a certain subset of the basic

formulae will suffice.
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klLet A be the set of all formulae of the form "p |(nu-v)" 

and "nu = v" , where p is a prime, and n and k are positive 

integers. Then, if A is any group,

I S(A) I = I S^(A)|

Proof

Let A be a group. Since each complete type over A contains 

a complete A-type over A , and since distinct complete A-types 

extend to distinct complete types, it suffices to show that the extension 

of each complete A-type is unique. So, let t^,tg G S(A) and

t^|A = tglA . We must show that t^ = tg .

We argue by contradiction. If ^ tg , then there is a

formula ,cp(u,v) and a sequence â from A such that cp(u,a) 6

but -tp(u,a) € tp . Using Theorem 3.1, there are formulae .(u,v) ,11
each a basic formula or its negation, such that cp(u,v) may be assumed 

to have the form

V  A t . x u . v ) .
1 3 ^

Now, cp(u,a) 6 t^ and so there exists i^ such that, for all j ,

^^/j(u,a) 6 t^ , But --cp(u,a) € t£ and so there is j^ such that

-4^/j/(u,a) € t^ . Since every complete type over A must contain 

the same sentences, it is clear that either ^./j/(u,v) its

negation must have the form "p^| (r^u -Zr^^v^)" or "r^u =rr^v^" . 

Let ^(u,v) be the formula obtained from $^yj/(u,v) by replacing 

^ i ^ i  the single new variable v , Then, either or its 

negation belongs to A and, putting a = Xr^^a^ , we have ^(u,a) € 

and ~\|f(u,a) 6 tg . But this is a contradiction, for we assumed

t^|A = tgjA . Thus, t^ = tg . //

We have stated the above Proposition in the context of abelian 

groups, but a similar proof yields the corresponding result for any
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theory with elimination of quantifiers,

3.3 Proposition

If T is a theory with elimination of quantifiers modulo a

set F of basic formulae, then there is a subset F^ of F such

that for all models M of T ,

|s(M)j = |S (M)| .r
The next lemma enables us to show that the key formulae in the 

count are those of the form "p^((nu - v)" ,

3.4 Lemma

Let t € S^(A) and n be the least positive integer, if one

exists, such that nu = a € t , for some a € A . Then, for all’ o ’ o ’
positive integers m and for all a € A , we have mu = a € t iff 

n|m and a = (m/n)a^ ,

Proof

Let t C S^(A) and suppose that there exist n and a^ satisfying 

the hypothesis. Let B be an elementary extension of A with b € B 

realising t .

First, suppose that m = dn and a = da^ . Since b realises 

t and nu = a^ 6 t , we have nb = a^ . Thus, dnb = da^ and so,

mb = a . It follows that mu = a E t .

Conversely, suppose mu = a E t . By the Euclidean algorithm,

we can find integers d and r with m = dn + r and 0 ^ r < n .

Since, nb = a^ and mb = a , we have rb = (m - dn)b = a - da^ .

Thus, ru = (a - da^) 6 t . This, contradicts the definition of n , unless

r = 0 . Thus, r = 0 and a = da^ . So, n|m and a = (m/n)a^ . //

3.5 Proposition

Let n denote the set of all formulae of the form "p^| (nu-v)" ,

where p is a prime and n and k are positive integers. Then, if

A is any infinite group,
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|S(A)| = |a ! |s ^(A)|

Proof

Clearly, |s(A)| ^ |a | and |s(A)| ^ |s^(A)| . Since at least

|a | is infinite, it follows that |s(A)| ^ |a | |s^(A)| . Thus, using 

Proposition 3,3, it suffices to show that each type in S^(A) 

extends to at most |a | types in S^^A) .

Consider t € S^(A) and let t' be any extension of t to

a type in S^^A) , Now, either (a) t' is the unique extension

containing nu ^ a , for every n > 0 and every a € A ; o£ (b) there

is an integer n > 0 and element a^ of A with nu = a^ E t' .

In case (b), let n be the least such integer. Lemma 3.4 shows that

the remaining formulae in t'-t are uniquely determined by the pair 

(n,ag) : that is to say, mu = a € t' if n|m and a = (m/n)aQ ,

and mu ^ a € t' , otherwise. Thus, there are at most ü){a | such

extensions of t , and hence, at most uj|a | -f 1 extensions altogether.

Since A is an infinite group, uj|a | + 1 = |a | , and so we have 

|s^(A)| ^ (u)|a | + l)|s^(A)| = |a ||s^(A)| , from which the result now 

follows, //

Let p be a fixed prime and II (p) denote the set of all 
Ic Iformulae of the form "p | (nu-v)*' , where n and k are positive 

integers . With a slight abuse of notation we shall write S^(A)

instead of . Let P denote the set of all prime numbers.

The proof of the next lemma is obvious; we shall show later on that 

the inequality may be removed.

3.6 Lemma

|s (A)l g I I |s (A)| .
B pGP ^

From now on we focus on an arbitrary, but fixed, prime p and 

concentrate on determining the cardinality of (A) . Tlie following
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two lemmas are basic to our needs and we shall use them often without 

necessarily referring to them explicitly.

3,7 Lemma

Let t € Sp(A) and n,k > 0 . Then, if p^j (nu-a) belongs 

to t for some a E A , we have:

(i) p^l (nu-a') € t if and only if a' Ç a + p'̂ A ;

(ii) p^l (nu-a) € t for all i with 0 < i ^ k ;

(iii) p^l (dnu-da) € t for all d E w ; and
(iv) (pnu-pa) € t ,

Proof

This is easy and we leave it as an exercise, //

3.8 Lemma

Let t € S (A) , k > 0 , and let n be the least positive
Ic Iinteger for which we have p | (nu-a^) 6 t for some a^ E A . Then, 

for all m > 0 and a G A ,

p^l (mu-a) G t iff n|m and a € (m/n)ag + p^A .

Proof

First we observe that n , satisfying the hypothesis, must 

exist since p^| (p^u-p^a) € t , for all a 6 A „ The proof of this 

Lemma is similar to that of Lemma 3,4, so we omit it. //

3.9 Definitions

(i) Consider the set, S , of all sequences 0)

of pairs ’ with n^ > 0 and a^ € A , Now, associated with

each type t 6 S^CA) there are sequences a = ((n^,a^):k > 0) € S such 

that p̂ l̂ (n^u-a^) € t for all k > 0 , and n^ is the least integer 

n > 0 for which there is a € A with p^| (nu-a) € t . We shall call 

any such sequence a an abbreviation for t . (We may also say that 

g abbreviates t , or that t is abbreviated by a ) .

(ii) Let g = <(nj^,a^):k > 0 )  and g' = ((n^,a^):k > 0) be
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two sequences in S , Then, it is easy to verify that the relation

defined on S by

F n T  rT.11 I f ^ O  n  = r » ^  n-n/1 a F-a ~  a' iff for all k > 0 , n = n ' and a 6 a ' 4- p^A ,

is an equivalence relation.

Now, clearly, every type t € Sp(A) has many abbreviations. 

However, it follows from the definitions and Lemma 3.7 that, if a

and o' both abbreviate the same type t , then ct-mj' . Furthermore,

Lemma 3.8 shows that if o is an abbreviation for t , then t is 

uniquely determined by o . Indeed, given o = ((n^,a^):k > 0) , the

formulae in t can be written down:

c = t~^k,n,a) (nu-a) : k > 0 , n > 0 , a € A |  ,

where,
I kif n^|n and a € (n/n^)a^ + p A ;

'^(k,n,a) "I
otherwise ,

Thus, if a and o' are abbreviations for t and t' respectively, 

then g~a' if and only if t = t' . What this proves is that if T 

is the subset of S consisting of all abbreviations for types in Sp(A) , 

then there is a one-one correspondence between Sp(A) and the set T/^ 

of all equivalence classes of ~  on T . Hence, to enumerate Sp(A) 

it suffices to count inequivalent abbreviations. The preceding comments 

prove the following theorem.

3.10 Theorem

|Sp(A)| = |t/~| .

Now, using Lemma 2.2, it follows that

|t A-| s

^ 2^n(tf(p,n))^ ntw

However, this bound is not fine enough for our purposes, and a closer
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look at the structure of an abbreviation enables us to lower it.

3.11 Lemma

Let ((n^^,a^):k > 0) be an abbreviation for some type t 6 S^(A) 

and suppose that tf(p,k-l;A) is finite for some k > 0 . Then, (i) if

k = 1 ., n^ =  1 ; and (ii) if k >  1 , then n^ = n^  ̂ and -

" ^k-i+ .

Proof

Let tf(p,krl) = N < u) and ((n^^,a^):k > 0) be an abbreviation

for the type t € S^(A) . Let B be any elementary extension of A

with b € B realising t .

(i) k = 1 : Since |A/pA| = tf(p,0) = N ,

ThA h  au^.o.u Vu V  p| (u-u.) ,
l^iâî

Thus, there are elements b^^...,b^ in A such that

ThA'^hVu V  p| (u-b.) . 
l ^i^

Since B W  ThAj^ , it follows that for some i , B [= p | (b-b^) ,

Hence, p| (u-b^) E t and so, n^ = 1 .

(ii) k > 1 : By Lemma 2.2, for any a € A , we have

I (a+p^“^A)/p\| = tf(p,k-l) = N , Thus,,.

ThA h  Vu Su. ...u j A  -%)
°  ̂ l^igN

A Vu(p^~^l (u-u^) V  P^l (u-u.))} .
l^i^N

It follows that there are elements b^ € a^_^+ p^"^A , 1  =. i = N ,

such that

a' * * V u(p^ (u-a^_^) -* \/ p^l (u-b^) (1)

Now, P^"^l ^ C and so • Using the

fact that B'̂  also satisfies (1) we must have p^| (\_]^U-b^) for some 

i , 1 ^ 1 ^ N . Thus, p^l (nj^_^u-b^) € t . So by definition of
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and Lemma 3.8, n^jn^_.^ . For the same reasons, since

(n u-a ) € t implies p^-lj (n u-a ) € t , we also have n |n .^ K, k k k-1 k

Thus, n = n . But now, using Lemma 3.7, we must have k k-1
^ ("hc-i + • //

3ol2 Lemma

Suppose that ( : k > 0) is an abbreviation for some

type t 6 Sp(A) „ Then, either

(i) n^ = 1 and a^^^ € â  ̂+ p^A , for all k > 0 ; or

(ii) there exists k > 0 such that n^ > 1 .

(a) n^ =

In case (ii), if k is the least such integer, then we have 

~1 r < k

P r = k
e

P r > k

where = 0 or* 1 , and must be 0 if tf(p,r-l) is finite ;

(t>) \  ̂  Pr-l P^ A 1 < r < k or r > k and = 0

P \ - l  + P ^ r = k or r > k and = 1 * 

Proof

Let ( (n^^a^) : k > 0) be an abbreviation for the type 

t e Sp(A) .
(i) If n^ = 1 for all k > 0 , then since p | (u-a^^^) 6 t 

implies p^| (n-a^^^j) € t , we must have a^^^ ^ \  P^^ .

(ii) Let k be the least positive integer for which n^ > 1 . 

Then, as in case (i), we have n^ = 1 and a^ € a^_^ + p^ ^A , 

for 0 < r < k (setting a^ = 0) . We now evaluate n̂ ^̂  ̂ , by

induction on i € (Jü , pinning down a^^^ at the same time.

Consider i = 0 . If k = 1 , then p^| (pu-pa) € t for all 

a e A . Otherwise, since p^"l|(u-a^_^) € t , we have p^|(pu-pa^_^€ t .
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î k = 1 is impossible, n^ = p , Furthermore, by Lemma 3.7,

\  ^ p \ - i  + p’'A • '

Now let i = r + 1 . Using Lemmas 3.7, 3,8 and the fact that
k+ri f \ k+r+li , . ^

P I ("k+r"-^k+r)'P I("k+r+l"-^k+r+l) ^ ^ , it follows that

"k+r+llP"k+r "k+rl"k+r+l * "k+r+1 = P

^k+r+1 = 0 or 1 . By Lemma 3.11, if tf(p,k + r) is finite, then

"k+r+l = "k+r ' \+r+l= ° ^k+r+F ^k+r+P^^^A . If 1 .

then pn^^^ , and since pk+r+l| (pn^^^u-pa^^^) 6 t we have . ,

]̂̂ +2r+l^ . This completes the proof of the Lemma. //

3.13 Lemma

Every sequence ((l,a^) : k > 0) with a^^^ 6 a^ + p^A 

is an abbreviation for some type in Ŝ  (A) .

Proof

If a^^^ € a^ + p^A , then the set jp^| (u-a^^ : k > O} is

finitely satisfied in A (by the elements a^ ) . //

We now have enough Lemmas to count Sp(A) .

3.14 Theorem

Proof

Is (A)I = ]~| tf(p,k;A) . 
P k€u)

To count Sp(A) , remember that it suffices to count inequivalent 

abbrevations. By the preceding lemma we have immediately that

|S (A)| ^ 7~î tf(p,k) .
^ k€w

Suppose first that tf(p,0) is finite. By Lemma 2.2 (i), 

tf(p,k) is finite for all k 6 üj . Thus, using Lemma 3.11, we see 

that every abbreviation is of the kind already enumerated. So, for 

finite tf(p,0) the result follows immediately.
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If tf(p,0) is infinite then we have two kinds of abbreviations

to consider; those described under (i) and (ii) in Lemma 3.12. Since

the number of abbreviations of the former kind is / ] tf(p,k) ,
k€m

and since this cardinal is infinite, it suffices to show that there

are at most this number satisfying (ii).

Recall the definition (see 3.9 (ii)) of the equivalence 

relation ~  . Then, using the characterisation of abbreviations 

satisfying (ii) given under (a) and (b) in Lemma 3.12, we see that their 

number is at most

n  tf (p,r) r 1 • M  tf (p,r)
0^r<k-l r^k

= K , say,

(Note that for r > k there are two cases; (1) tf(p,r-l) is finite, 

in which case = 0 and so there are tf(p,r-l) possibilities for

a^ ; or (2) tf(p,r-l) is infinite, in which case = 0 or 1 and

so there are tf(p,r-l) + 1 = tf(p,r-l) possibilities for a^ ,)

But now we see immediately that k ^ |^tf(p,r) as required, //

The following Corollary now follows using Lemma 3,6,

3.15 Corollary

|s (A)l ^ ( 1 11 tf(p,k;A) , 
p6P kcuj

Before stating Lemma 3.6 we promised that the inequality 

there could be removed. We shall prove this using Lemma 3,13 and 

the following version of the Chinese Remainder theorem. Its proof 

is similar to the one usually given for an integral domain (see, for 

example. Hardy and Wright [15], page 95, Theorem 121).

3.16 Proposition (Chinese Remainder Tlieorem for Abelian Groups)

If q^^..q^ are mutually prime integers and A is an abelian 

group, then
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qj (u-u..)
l^i^n

3.17 Proposition •

|s (A)| § I 1 I i tf(p,k,A)
p€P k€u)

Proof•

Let p^ , m € u) , be some enumeration, without repetitions, of the

primes. For each m € w , let t^ be a type in S (A) abbreviated by

some sequence ((l,a ) : k > 0) , where for k > 0 , a , , € a ,+p A .mk ’ mk+1 mk ^m
(Here we are using Lemma 3.13) If we can show that every finite subset

of t = t is satisfied in A*̂  , then t E S (A) and we are finishec 
m6o3 n

Let r be any finite subset of t . Then, there is N € œ with
r C  t^ . In fact, since F is finite, there is also an integer 

m ^
K > 0 such that

U ^  i 1 \ P^l (nu-a) : a 6 A , n > 0 , 0 < k ^ K , m ^ N l  ,' (m,k,n,a) m' ' » j >
where, we recall from the comments preceding Theorem 3.10,

kr i f  a 6 na + p A : and I mk m

~(m,k,n,a) =|
otherwise ,

(Note that n^^ = 1 for all m 6 œ and k > 0 .) Call the larger set 

. Now, using the Chinese Remainder Theorem, there is b E A such 

that

néN

Suppose m = N and k Ê K . Then, P^| (b-a^^^) . But, it follows from
kour hypothesis on the elements a^^ that, € a^^4- p^A . Hence,

p I (b-a , ) and thus, for all n > 0 , p | (nb-na ) . From this m mk m iukm
it now follows immediately that p^j (nb-a) if and only if

k'^ A
we have

a 6 na 4- p A . Thus, for all m = N ,  k = K ,  n > 0  and a € A mk m
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I (nb-a) iff a e na , + p^ A . m mk

This shows that b realises r' and hence T . Thus, t is a II-type 

as required. //

The following theorem is now immediate from Propositions 3.5,

3.17 and Corollary 3.15.

3.18 Theorem

For every infinite abelian group A ,

|s(A)| = |a | ( 1 1 1  tf(p,k;A) 
pep k€K

In the next section we exploit this formula, and classify 

abelian groups by their stability properties.

4. Exploitation of the Formula

It is an immediate corollary of the main theorem of the 

previous section that every abelian group has a stable theory (Theorem 

4.1, below). By a careful analysis of the exact values of the various

invariants involved in the formula, we are able to distinguish between

those groups which are w-stable, strictly-superstable and merely-stable 

(Theorems 4.4, 4.7 and Corollary 4.8, below).

4.1 Theorem (Berthier [6], Theorem III. 1.1)

Every abelian group has a stable theory.

Proof

Let A be an arbitrary group. Since all finite structures 

are stable we shall assume that A is infinite. For all k 6 u) and

p E P , tf(p,k) ^ |a | and hence, using the formula of Theorem 3.18,

we have

|S(A)| ^ 1a1 I \ I 1 |a| = IA|^ .
p€P kEu)

Thus, ThA is stable in power h , where h = h . //

Before stating the next theorem we make the following convention.

4.2 Convention
The phrase "almost everywhere" means "for all except, possibly.
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finitely many pairs (p,k) , p t P , k € uo" .

4.3 Theorem

For every infinite abelian group A we have

(i) tf(p,k) = 1 almost everywhere if and only if A is u)-stable;

and

(ii) if tf(p,k) < u) almost everywhere then A is superstable.

Let A be an infinite abelian group and define

?! = }p E P : for some k 6 œ , tf(p,k) ^ w} ,

^ 2  = |p € P-P^ : for some k € m , tf(p,k) > l) .

It is clear that for p # P U P , tf(p,k) = 1 . Thus, setting
kSw

I I tf(p,k) = \k for p E P ; 
kOu P 1

Proof

\ for p S P , P 2

we have, from Theorem 3.18,

|s(A)| = |a| n  %  / I K -  (1)
p6p^ P pep.

Observe that § u) and Xp < 1 . (2)

(i) First assume that tf(p,k) = 1 almost everywhere, so

that both P^, and Pg are finite. Since we also have

K = IaI and X < tu
^ , ,|Pii+i

in this case, it follows from (1) that | S (A) | =|A| • u) = |a | ,

Thus, A is (ju-s table.

Now suppose that the condition on the tf(p,k) fails. Then,

either some % ^ 2^ ; some X ^ 2^ ; P. is infinite, or P isP P J- 2
infinite. Using (1) and (2), any one of these four possibilities leads

to |S(A)| ^ |A|" 2^ . Consequently, A is unstable in any power h

for which u) ^ H < 2^ . This proves that A is not œ-stable.
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(ii) If tf(p,k) < 0) almost everywhere, then P is finite1

and Kp ^ |a | • 2 , = 2^ . So, from (1) we have

1S(A)| S |a |-(|a |-2“ )'^^'-(2“ )'^2I g |A|.2«) ,

Thus, A is H-stable for all % ^ 2^ . In other words A is

superstable. //

For ease of reference we isolate (i) of the theorem above.

4.4 Theorem

An infinite abelian group A is œ-stable if and only if 

tf(p,k;A) = 1 almost everywhere.

The hypothesis of (ii) in Theorem 4.3 is also necessary for

a superstable group. To prove this we shall use the following siitple

criterion under which a group is not superstable,

4.5 Theorem (Baldwin and Saxl [1], Theorem 1.2)

If there is a sequence of definable subgroups B^ , n 6 œ ,

of a group A with B^ =) ^n+1 ’ such that Un/^n+ll infinite,

then A is not superstable.

4.6 Corollary

If A is superstable, then tf(p,k;A) < œ almost everywhere.

Proof

Let A be an abelian group for which tf(p,k) ^ œ for 

infinitely many pairs (p,k) . There are two ways in which this may 

happen; (i) for some p € P , tf(p,k) = œ for all k Ç œ ; or (ii) 

there are infinitely many distinct primes > n € œ ,with tf(p^,kj^) = o)

for some k^ € œ . In each case we exhibit a descending chain of 

definable subgroups of A satisfying the hypothesis of Theorem 4.5.

It will then follow that A is not superstable.

(i) The subgroups p^A , k € œ , form a sequence of the

desired kind.



(ii) By Lemma 2.2 it follows that tf(p^,0) ^ uj , for all

n e œ . Tlie sequence , n 6 œ , defined by Bq = A , B^+i = p^B^

is a descending chain of definable subgroups of A . It remains to 

check that iB^/Bn+il infinite.

Now IUq /B^I = |a /p^a | = tf(pg,0) which is infinite.

For n > 0 , let [a^ : of < tf(p^,0)j be a transversal for p^A in ' 

A .. Let a ^ p and Pq-•-Pn-i^â ̂ 0 ”’’̂ n-l^p ^ P^-'-P^A , with a view 

to finding a contradiction. There exists a E A with 

PQ°'*Pn_l(&a-ap) = pQ°"'Pn^ * ^ow, p^^..p^_^ and p^ are co-prime

and so there are integers r and s such that rp .. .p .+ sp = 1Q n-i ^n
Thus,

= Pn(rPo°'"Pn-l* + •

Hence, a^-a^ 6 p^A which contradicts the definition of a transversal. 

So, the elements PQ'°°Pn_i&# '» ^ ^ tf(p^,0) must all lie in distinct 

cosets of B^^^ in B^ and hence [B^yB^^^I ^ tf(p^,0) ^ œ . //

Combining this Corollary with (ii) of Theorem 4.3 we have the

following result,

4.^ Theorem

An infinite abelian group A is superstable if and only if 

tf(p,k;A) < UJ almost everywhere.

4.8 Corollary (of Theorems 4.3 and 4.7)

An infinite abelian group A is strictly superstable if and

only if

(i) tf(p,k;A) < UJ almost everywhere; and

(ii) tf(p,k;A) > 1 for infinitely many pairs (p,k) .

Proof

This follows immediately from the fact that an abelian group
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is strictly-superstable if and only if it is superstable but not 

œ-stable. //

We conclude this section by commenting on the equivalence 

between our criteria for œ-stability and superstability and those 

(obtained by other means) which we have discussed in the introduction 

to this chapter.

The necessary and sufficient conditions for superstability 

which may be obtained from Eklof and Fisher's work, [8], are

(i) Tf(p;A) < 00 for all p ^ P ; and

(ii) there exist only finitely many p € P such that for 

some n , U(p,n;A) = " .

We have already discussed Tf(p;A) (in section 2) and remarked that 

Tf(p;A) < 0 0  if and only if the sequence tf(p,k;A) , k E œ , is 

eventually finite. It is an elementary algebraic exercise to show 

directly that U(p,n;A) < oo for all n E œ if and only if tf(p,0;A) < œ .

The more familiar necessary and sufficient conditions for 

œ-stability are those discovered by Macintyre [l9]. We indicate, 

briefly, the direct proof of their equivalence to our conditions.

4.9 Theorem (Macintyre)

A is w-stable if and only if A is the direct sum of a 

divisible group and a bounded group.

Proof

If A is œ-stable, then by Corollary 4,4 there are an 

enumeration p^, i E œ, of P and integers N 6 œ , kĵ  ̂> 0 for 

i < N such that for i § N , tf(p^,0) =1 and for i < N , k^ is 

the least positive integer with tf(p^,k^) = 1 , Setting n = I Ip^* ,

it can be shown that nA is a divisible subgroup of A . Thus, nA 

is a direct summand of A , Writing A = nA + B , it follows that 

nA = n A 4- nB = nA 4- nB , since nA is divisible. Hence nB - 0 ,
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Conversely, if A = D + B , where D is divisible and B is 

bounded, and if n is the least positive integer such that nB = 0 ,

it follows that nA = nD + nB = D . From this it can be shown that if
^0 Sl-1n = P q o..p^  ̂ , then tf(p,0) = 1 for all p r p^ , i < N and

tf(p^,k_) = 1 , for all i < N , From this we conclude, via Corollary

4.4, that A is œ-stable. //

5. Modules over Dedekind Domains

The theory of abelian groups is a special case of the theory 

of modules over a principal ideal domain. So, the natural question 

to ask is whether our results generalise. To attcnçt such a generalisation 

we shall need an elimination of quantifiers theorem and Eklof and Fisher 

have proved one (see [8], Theorem 5.5) for the case of modules over a 

Dedekind domain. Hence, all the results of the previous sections have 

analogues for such modules and we propose to give here a brief sketch

of how this may be achieved, pointing out the main differences with

the case of Z-modules. We should, of course, remark that, as for 

abelian groups, all our results may be obtained from Eklof and Fisher's 

work via Shelah's theorems relating stability and saturation.

A good source for the definitions and properties of Dedekind 

domains is Zariski and Samuel [41]. For our part, the main facts 

we use are the following:

(i) every ideal is a product of prime ideals;

(ii) a non-zero ideal is prime if and only if it is maximal;

(iii) every ideal has a finite basis: for each ideal E in a

Dedekind domain D there are elements ^ B , for some n ^ œ ,

such that E = Dor + ... + D% .1 "
Let D be a fixed Dedekind domain, T the theory of muddles 

over D (for a list of the axioms of T see [8], page 161) and
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M an arbitrary, but fixed, model of ï . if e is an ideal in D ,

then ”e|u" abbreviates the formula u € EM (Notice, that since E has

a finite basis this can be said in L(T).) Now, using Eklof and 

Fisher's elimination of quantifiers theorem, we obtain the analogue of 

Theorem 3.2. In this situation, A is now the set of all formulae of 

the form

"P̂ l̂ (du-v)" and "du = v" , 

where P is a prime ideal in D , d € D and k > 0 . From now on

we fix X = [ d| + 0) = |l(T)| . We shall give the proof of the analogue

of Theorem 3.5 since it shows clearly the part played by the cardinal X .

5.1 Theorem

Let n denote the set of all formulae of the form "P^|(du-v)" , 

where P is a prime ideal, d E D and k > 0 . Then if M is an 

infinite D-module,

|m| |^(M)| s  |s(M)| si|m1 |Sp(M)| .

Thus, for M with |m| ë X. , we have |s(M)| = |m| |s^(M)| . //

Proof

Clearly it suffices to show that each t € (M) has at most

x |m | extensions in S^^M) . Fix t € S^(M) and let t ' € S^(M) 

extend t .

First we observe that the set E = |d € D : du = m € t', some m 6 m) 

is an ideal in D . Remembering that ideals, in D are finitely generated, 

it follows that those pairs (d,m) 6 D X M for which du = m 6 t' are

completely determined by the pairs (ĉ ,̂nî ) , 1 = i = n , where

is some basis for E and a^u = mu G t' . Since there are at most X

possibilities for the ideal E and at most |m | possibilities for

once a basis for E is fixed, it follows that there are at most x |m | 

possibilities for t^ . Thus, |s(M)| = js (̂M)| = x |m | |s^(M)| . //
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Let (P denote the set of all prime ideals in D . Then, with 

obvious notation, it is clear that |S (M)| ^ | j j s (M)| . Thus, as
% P

before, we concentrate on determining |Sp(M)| for an arbitrary, 

but fixed, prime ideal P „ Defining tf (P,k;M) = | P^/P^"*'^m | , all 

the definitions and lemmas numbered 2,2, 3.7-3.17 go through with 

appropriate notational changes and a minimum of difficulty. To aid 

the reader interested in working through the details we shall give 

the statements, without proof, of the major changes.

5.2 Lemma (compare with 3.8)

Let t 6 Sp(M) and k > 0 . Then the set
kiE = |d 6 D : P I(du-m) € t , for some m € m }

is an ideal. Let be any basis for E and m^ € M satisfy

P^l(g^u-m^) € t , 1 ^ i ^ n . Then,

P I (du-m) € t iff f d 6 E , s o  d =  d.(X. , some d. G D ; and
' l^i^n  ̂ ^

m G d.m. + P ^  .
l^i^n  ̂ ^

5.3 Definitions (compare with 3.9)

(i) Let S be the set of all sequences a = (a^ : k > 0) , where

for k > 0 , = (&^,m^) and for some n^ > 0 , ^
k

and m = (m ,...,m ) are sequences from D and M respectively,k kl knk

An abbreviation for t G S^^M) is any sequence a G S such that for 

each k > 0 ,

(a) P^l G t , 1 ^ i g n^ ; and

(b) is a basis for the ideal (5^) associated 

with t in the sense of Lemma 5.2, above.

(ii) If a , a' are two sequences from S then, using Lemma 5,2, 

it can be verified that the relation, ^  , defined on S by
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a ~  a' if and only if, for all k > 0 , .

(a) = ;

(b) “ki “ ^j^'kij then

”l.i ^ ^j'^kij 4- P ^

(c) if a'. = I  d' a thenki j kij kj

“ki ^ ̂ j ' ‘kij "Vj 4- p \

and

is an equivalence relation.

It is now easily shown that, if a and o' abbreviate t and t' 

respectively, then o ^  o' if and only if t = t' . The following 

Lemmas are the analogues of Lemmas 3,11 and 3,12,

5.4 Lemma

Let t G S^(M) and suppose that tf(P,k-l;M) is finite for

some k > 0 . Then, t is abbreviated by a sequence

a  = <(a ,m ) : k > 0) in s wherek k
(i) if k = 1 , then (o' ) = D and so we may take a = 1 ,k k

the unit of D J and

(ii) if k > 1 , then ^   ̂ and ni G m 4- P^”^M .k k-1 ki k-1,1

5.5 Lemma

Let t G Sp(M) and be a fixed basis for P . Then

t is abbreviated by a sequence o = (  ̂ ^ > 0) in S of one

of the following forms:

(i) a = ( (l,m^) : k > 0) where m^^^ G m^ 4- P^M ;

(ii) there exists k > 0 such that 0( ^ 1 .k
In case (ii), if k is the least positive integer such that 7̂ 1 »
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(a) 1 for r < k

6r_3 •a . for r > k r-1

where = 0 or 1 , and must be 0 if tf(P,r-l) is finite, and 

"P. is defined to be the sequence ’

(b) m 6 m + P^^^M 1 < r < k ̂  ̂ r r-1
r = k

”ri ^ ”r-li + r > k , = 0

™rij ^ ^i™r-lj r > k , = 1 .

The Chinese Remainder theorem (Proposition 3.16) can also be 

generalised to the present situation.

5,6 Proposition (Chinese Remainder Theorem for D-Modules)

If Q^,o,,,Q^ are comaximal ideals in a Dedekind domain D and 

if M is an arbitrary D-module, then

Vu^, o, ou^au A  Q^l^ 1 '  " l=i^n

We are now able to state the analogue of the main theorem of 

section 3,

5,7 Theorem

For every D-module M ,

ImI ( 1 I 1. tf(P,k;M) ^ |s(M)| ^ X,|m| I 1 I 1 tf(P,k;M) ,
PG(P kGu) PG(P kGœ

Thus, for |m | ^ X ,

|s(M)| = 1m| M  I l t f (P ,k ;M )  .
PG(P kGo)

It follows immediately from this that every D-module is stable, 

(But see also W.Baur's Theorem 2,1 in [3]; or, the abstract of E,R, 

Fisher [12], in conjunction with Theorems 1,3, 1,4.) A closer look 

at the values assumed by tf(P,k) gives more precise information
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about the cardinals h ^ y in which a given D-module is h -s table» 

First some notation:

6^ = jp 6 (P : for some k € u) , tf(P,k) ^ w} ,

(? = |p 6(9— 6^; for some k € u) , tf(P,k) > l} .

= 1^1 .

5.8 Theorem

Let M be an infinite D-module. Then,
(JÜ+1I2

(i) M is H-stable for all % = ^"2 for which H = h

(ii) if tf(P,k) = 1 almost everywhere, then M is m,-stable

for all % S X ;

(iii) if the hypothesis of (ii) fails, then M is unstable in

all powers h for which tu = h < 2 ; and

(iv) if tf(P,k) < (D almost everywhere, then M is %-stable
px-hu

for all % a X'2 

Proof

First set

for P ^(9^ ; and

tf(P,k) =
kGu)

Then, from Theorem 5»7, we have

1m| M  h T T  - |s(M)| S x *|m | I I % I I X , (1)
p€6^ pe& pe(p p €(P

1 2  1 2

where = 1  if(?. = 0 ,  1 = 1 , 2 »

Furthermore, 5 u) and \^ > 1 , (2)

(i) Since ^ | M|^ and ^ 2^ , we have from (1),
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Pg Uhtp^ (Ju4p2

|s(M)| g X-lMi-Cpr) •(2‘“) S \-|m| *2 ,

from which the result follows.

(ii) If tf(P,k) = 1 almost everywhere, then p^gPg < cjü and

^ I m | , Xp < oj , Tlius from (1) and (2),
M-p+1

|m1 g I s(M)i s x-|m| .01 s x|m| ,

SO, M is H-stable for all h  ^  X .

(iii) If the hypothesis of (ii) fails then either some Hp ^ 2^ ;

or some Xp ^ 2^ ; p w , or p _ s  ^ . Using (1) and (2) any one
uHpi +p

of these possibilities implies that |s(M)| 5 |m |*2 and hence,
uHp 4p

M is u n s t a b l e  in p o w e r  h  w h e r e  cu =  h  < 2 .

(iv) If tf(P,k) < ID almost everywhere, then p^ < w and

Hp ^ |m| ®2 , Xp = 2^ . From (1) again, we have

|s(M)| g X.pl "(ImI •2‘“)'̂ .’-(2“ /^  g \.|m| .2  ̂ .

Thus, M is H-stable for all h ^ X "2 . //

We conclude this section by making two observations on the 

consequences of Theorem 5.8.
uHtL̂ 4p,2

First, if X , Pp and p^ satisfy X < 2 (in

particular, this will be the case if X = o)), then by (iii), if 

the hypothesis of (ii) fails, M is X-unstable. Thus, for such 

modules the converse of (ii) holds. This proves the following 

corollary.

5.9 Corollary
uHp^tPg

If M is any infinite module for which X < 2 then, M

is H-stable for all h ^ X if and only if tf(P,k;M) = 1 almost 

everywhere.

Our second observation is that since p^ + u) = X = |L(T)| ,

(iv) of Theorem 5.8 shows that if tf(P,k) < cu almost everywhere.
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I Jj (t ) Ithen M is superstable (%-stable for all h ^ 2 ) . Using the

obvious generalisation of Tlieorem 4.5 for modules, or Shelah's 

Corollary 6.10 in [37], it is possible to prove the converse.

Thus, we have also obtained necessary and sufficient conditions for 

superstable D-modules.

5.10 Corollary

An infinite D-module M is superstable if and only if 

tf(P,k;M) < u) almost everywhere.
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Chapter 3: The Model Theory of Nil-2 Groups

lo Introduction

In Chapter 2, we saw that either of the concepts of saturation 

or stability may be applied to give a complete classification of 

abelian groups. The study of the classification for non-abelian 

groups has been initiated by Baldwin and Saxl in [l], and by Sabbagh 

in [28].

Quoting results of Mal'cev (from [22], pages 244-6), Sabbagh 

claims that each of the linear groups GL^(K) , SL^(K) and PSL^(K) ,

where K is a field and n a positive integer, is stable if K is 

stable and cr-stable if K is algebraically closed. Both papers 

provide examples of unstable non-abelian groups, notably, any group 

which contains an isomorphic copy of each finite group. And, as a 

consequence, the following groups are unstable: any group containing

the restricted symmetric group on an infinite set, and every existentially 

closed (hence, algebraically closed) group.

One theorem, common to both papers, asserts that every non-abelian 

variety of groups contains an unstable group. A variety of groups is 

a class of groups defined by a set of equations. Yet very little 

is known about the model theory of one of the simplest non-abelian 

varieties, namely, the variety of all nilpotent groups of class

at most 2 . In the remainder of this thesis we shall be concerned 

with this topic. Before outlining the structure of this chapter we 

shall briefly review the existing literature on the subject. Definitions 

of the terminology we use here will be given in section 2 or may be 

found in the references.

The nil-2 variety is important for another reason, .it Is 

well-known (see, for example, [lO] Proposition 1) that every variety
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containing a finite non-abelian group includes as a sub-variety either 

the variety generated by some Frobenius group (see [lO], page 261)
por one of the following nil-2 varieties: the variety, , of all

nil-2 and exponent p groups where p is an odd prime; the variety 
4 2N ’ of all nil-2 and exponent 4 groups with derived group of 
2

exponent 2, In [10], Ersov shows that each of these nil-2 varieties, 

and hence also the variety , has an undecidable theory. In 

contrast, he also proves that the class of free groups in has a

decidable theory.

Questions, of decidability had been considered earlier in a 

paper by Mal|cev (see [21]). Mal'cev showed that, for each n § 2 , 

every free nilpotent group of class at most n has an undecidable 

theory. Furthermore, as Sabbagh has observed, in [29], the techniques 

developed in that paper may also be used to show that these groups 

are unstable. We have generalised this result (Tlieorem 6.13) 

obtaining as a special case that the nil-2 free product of torsion-free 

groups, one of which has a basis (see Definition 3,1), is unstable.

Recently, progress has been made in the study of model companions 

and existentially closed structures for nilpotent groups. In a talk 

given at the Abraham Robinson Memorial Conference (see [30] and [31]) 

and in a later paper (see [32] and [33]) Saracino has shown that, for 

n ^ 2 , neither of the theories , of all nil-n groups, or ,

of all torsion-free nil-n groups has a model companion. When n = 2 , 

he gives a stronger result showing that, for each theory, the classes of 

existentially closed finitely generic and infinitely generic models 

are distinct. Of course, for n = 1 it is already known (see [9]) 

that , the theory of abelian groups, has a model companion.

Problems of a different flavour, for algebraically closed 

torsion-free nil-2 groups, are discussed in [2] by B, Baumslag and
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F. Levin, For example: a torsion-free nil-2 group (T^-group)

can be embedded in an algebraically closed T^-group.of the same

cardinality without increasing the rank (as a vector space over the

rationals) of the derived group; a T^-group G is algebraically

closed if and only if it is one-unknown closed and G/c' has infinite

rank; countable algebraically closed T^-groups are isomorphic if

and only if their centres are isomorphic.

The only other paper we know of which deals with the model

theory of nil-2 groups is that of P. Olin [25]. As part of a wider

investigation of free products and elementary equivalence, Olin

has considered the case of groups. He attributes to B, Jonsson
3the suggestion of the variety , of nil-2 and exponent 3 groups

as the place to begin this investigation for groups. One result, 

of particular interest to us, is the following.

1.1 Theorem (Olin [25], Theorem 2)

Let V be any variety of groups containing the variety of all 

nil-2 and exponent 3 groups and contained in the variety of all nil-2 

groups, and let * denote the V-free product. Then, there exist 

denumerable groups A , B in V , with A V B  , such that if C Is 

the cyclic group of order 3, then C*A ^ C*B ,

Consequently, the nil-2 free product does not preserve 

elementary equivalence. By contrast, our results (see Theorem 4.4 

and its corollaries) show that a certain degree .of preservation does 

take place. In particular, if A and B are both either abelian, 

free nil-2 or existentially closed nil-2 groups and if A = B , then 

C*A = Ĉ <B , for all finite nil-2 groups C .

All our results or nil-2 groups were obtained after seeing a 

preliminary version of Olin's paper, and, indeed, as we have already 

mentioned in the acknowledgements, we are indebted to him for having
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recommended to us such a study,

Tliese are the questions we shall attempt to answer in this 

chapter of the thesis:

(1) How much saturation is preserved by the nil-2 free 

product in the variety ?

(2) How much stability is preserved by the nil-2 free product 

in the variety ?

Theorems relating to question (1) are to be found in section 

5, As a consequence of our answers, in section 6, to question (2) 

we have classified numerous nil-2 groups according to their stability 

properties. While we hope that the theorems of both these sections 

may, ultimately, be useful in classifying nil-2 groups, nevertheless, 

we believe that each of the questions raised above is interesting 

for its own sake.

The problem of how much saturation or stability is preserved 

by the various products in group theory has received some attention 

already. It is well-loiown that the direct product preserves both 

saturation (see Waszkiewicz and Weglorz [39]) and stability (see 

Waszkiewicz and Weglorz [39]; Macintyre [l9] ; Eklof and Fisher [8]).

On the other hand, in [l], Baldwin and Saxl give an example of an 

unstable group which is the semi-direct product of two w-stable 

abelian groups. ' . -'

Now, the V-free product is associated with a given variety V 

in the same way as the direct product is associated with the variety 

of abelian groups. The results of section 7 show that the full free 

product preserves neither saturation nor stability. In the case of 

saturation this failure is extremely bad, for we show (Theorem 7,2) 

that the free product of every pair of non-trivial groups is 2-unsaturated.

Our results show that the nil-2 free product falls between the
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two extremes of absolute preservation and the total lack of it. We 

conclude by giving a brief outline of the remaining sections of this 

chapter.

Section 2 contains definitions of most of the algebraic terms 

we shall use, proofs of basic lemmas on commutators, and, for the model- 

theorist, a survey of the combinatorial group-theoretic notions required. 

Most nil-2 products we shall form will involve at least one factor 

having a basis. This concept is defined, in section 3, in terms of the 

corresponding notion for abelian groups. It turns out that the 

elements of a nil-2 free product of groups, at least one of which 

has a basis, have a unique normal form (Theorems 3.7 and 3.9). The 

existence of these normal forms is the key to many of our theorems.

Another key result is Theorem 4,1, a restricted analogue, for 

the nil-2 free product, of the well-known Feferman-Vaught Theorem 

for generalised products (see [11]), As an application we prove 

the preservation result for elementary equivalence (Theorem 4,4) 

which should be con^ared with Theorem 1.1 above.

There are two main theorems in section 5, each giving a 

necessary and sufficient condition for the preservation of saturation 

in a restricted situation. In the first (Theorem 5,16) one factor 

in the nil-2 free product is assumed finite, while in the second 

(Theorem 5.23) both factors are bounded. In each case the hard part 

is showing that the condition is necessary. The proof of sufficiency 

in the first theorem follows from an application of the "Feferman- 

Vaught" theorem of section 4, We show (Theorem 5,1) that each type 

over C’’<G , where C is finite, determines another type over G whose 

satisfaction in G entails the satisfaction of the original type in 

C*G . (Here * denotes the nil-2 free product.) For Theorem 5.23, 

the proof of sufficiency is then a corollary of Theorem 5,16 and a
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restricted distributive law for the nil-2 free product over the direct 

product (Theorem 5.19).

Section 6 contains a number of positive and negative results 

in answer to the question on preservation of stability. On the 

positive side, we show that the conditions of Theorems 5.16 and 5,23 

are sufficient, in each case, to give preservation of stability 

(Theorem 6,1 and Corollary 6.4), In fact we are able to strengthen 

the latter result, under certain conditions to torsion factors 

(Tlieorem 6.3), On the negative side, we show that the nil-2 free 

product of groups is unstable in certain cases where one or both 

factors are non-torsion (Theorems6.10, 6.13, Corollaries 6.14, 6,15),

These results enable us to produce examples which show that the nil-2 free 

product can fail to preserve mere-stability and strict-superstability.

As far as cd-stability is concerned, although we can produce numerous 

instances of its preservation (Corollaries 6,2, 6.5, 6,7 and 6,8), 

the answer to the question of whether u)-stability is always 

preserved eludes us. Corollary 6.11 and Proposition 6,12 provide 

examples of unstable nil-2 free products where one factor is œ-stable 

and the other is superstable.

We have already discussed the content of section 7, We 

include these results in this chapter, although they have nothing to 

do with nil-2 groups, because they do relate to the general questions 

raised here.

2, Preliminaries

Most groups studied in this chapter of the thesis are nilpotent 

of class 2 (See Definition 2.2, below). However, when we know that a 

particular result holds in general we shall prove it for all groups.

Thus, we shall normally qualify the term "group" unless it is very 

clear from the context not to do so. All groups, including abelian



59
groups, shall normally be written multiplicatively. Hie following 

is an account of some of the notation, definitions and elementary 

algebraic results we shall need; anything we leave unexplained may 

be found in the books of M. Hall [l4], H, Neumann [24], or Magnus, 

Harass and Solitar [20] ,

Let G be an arbitrary group and X a subset of G , Then 

gp(X) denotes the subgroup of G consisting of all finite products 

of elements of X and their inverses; we say that gp(X) is generated 

by X . G is said to be finitely generated if, for some finite subset 

X of G , gp(X) = G ; otherwise G is infinitely generated.

A group is said to be torsion, or periodic, if all its elements 

have finite order. A group is non-torsion if it possesses at least 

one element of infinite order, and torsion-free if all its elements 

have infinite order. A torsion group G is bounded if there is a 

positive integer n for which g^ = 1, for all g € G „ The least 

positive integer with this property is called the exponent of G and 

we write expG = n ,

The centre of a group G is denoted by Z(G) ; the centraliser 

of an element g € G is the set of all elements of G which commute 

with g .

If N is a normal subgroup of a group G , then we shall write 

N <Z] G . G/N denotes the quotient, or factor, group of G by N ,

Let G be a group and X a subset of G . Then, the normal 

subgroup of G generated by X (or, normal closure in G of gp(X)) 

is defined to be the intersection of all the normal subgroups of G 
which contain X . Equivalently, the normal closure in G of gp(X) 

is the subgroup of G generated by all elements g ”  ̂x g , where 

g e G , X e X .
If H is a subgroup of G , then for all a , b € G , we shall
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write a = b modulo H in case ab"^ G H . If K is another

subgroup of G , then we shall write g G K modulo H in case g = kh , 

for some k 6 K , h € H .

For integers m , n we write m|n if m is a divisor of n .

The congruence relation, ^ mod k , for a positive integer k ,

is defined as usual by m = n mod k if and only if k| (m-n) . n mod k 

will be used to denote the unique integer m such that 0 = m < k and 

m s n mod k . We shall often have occasion to interpret = mod as 

equality ,

The following standard abbreviations for abelian groups will be 

used (in these special cases we shall depart from our stated intention 

and write them additively):

Z the additive group of integers;

Q the additive group of rational numbers ;

Z^ the group of integers under addition

mod n , where n is a positive integer;

Z(p°°) , the group of all rationals r such that

p a prime 0 g r < 1 and r = i/p^ for some integers

i = 0 ,  n = 0 ,  under addition mod 1 .

The commutators [gQ,g^,,..g^] of elements g^ of a group G are 

defined recursively by;

[ggl = So :

[go.g^] = ;

If H qs are subgroups of G , then . ,H^] denotes

the subgroup of G generated by all commutators [h Q,h^,..„,hJ with 

hf € Hf , i ^ n , In particular, [G,G] is the commutator subgroup, 

or derived group, of G and is usually denoted by G^ .

Tlie following lemma can be derived immediately from the
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definitions.

2 . 1 Lemma

For any elements a, b, c of a group G ;

(i) ba = ab [b, a] ;

(ii) [b,a] = [a, b ] ;

(iii) [ab, c] = [a, c][a,c,b][b,c] ;

(iv) [a, be] = [a, c][a,b][a,b,c] .

2.2 Definition

A group G is said to be nilpotent of class g n , or nil-n ,

if G VUqU^..oU^ [u ,u^,..o,u^] = 1 ,

We are interested in the nil-2 groups; those groups G for

which [a,b,c] = 1 , for all a,b,c 6 G , Thus, G is nil-2 if 

and only if G^ C  Z(G) . The following lemma is easily deduced from 

Lemma 2.1. We use it constantly throughout this chapter and are sure

to do so often without explicit reference,

2.3 Lemma

If G is nil-2, then for all a,b,c G G ,

(i) [ab,c] = [a,c][b,c] = [b,c][a,c] = [ba,c] ;

(ii) [a,be] = [a,b][a,c] = [a,c][a,b] = [a,cb] ;

(iii) if g G G' then [a,g] = [g,a] = 1 ;

(iv) [a,b] = [a ^,b] = [a,b ^] ;

(v) for any integer n , [a,b]^ = [a^,b] = [a,b"3 ;

(vi) for any integer n , a ^ ^  = (ab)^[a,b] .

Proof

(i) and (ii) follow immediately from Lemma 2,1 (iii) and (iv).

(iii) follows from (i) and (ii) and the definition of nil-2 .

(iv) Using (i),

1 = [l,b] = [aa"l,b] = [a,b][a”^,b] ,

and hence, [a,b] [a ^,b] . Similarly using (ii), [a,b] = [a,b~^] .
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(v) We prove [a,b]^ = [a^\b] ; the other equality will then 

follow using Lemma 2.1 (ii). First assume that n Ë 0 and use 

induction. The result is obvious for n = 0 and, assuming it holds 

for n = k , it follows from (i) that

[a,b]k+l = [a,b]k[a,b] = [&k,b][a,b] = [ak+l,b] .

Hence, by induction, [a,b]^ = [a^,b] for all n ^ 0 „ The result

for negative n follows from this using (iv),

(vi) First assume that n = 0 „ Clearly the result holds for

n = 0 , Assume it holds for n = k , Then, by Lemma 2.1 (i),

a^^^b^^^ = a^(ab^)b = a^^a[a,b^]b = a^^ab[a,b^] ,
Thus, by our assumption and (v),

^k+lbk+l ^ (ab)k[a,b]%k(k-l)ab[a,b]k = (ab)k+l[a,b]%(k+l)k ^

Thus, by induction, (vi) holds for all n > 0 . Again, the result 

for negative n follows from (iv) ,

The next lemma is also used often, frequently in conjunction

with the second normal form theorem (Theorem 3.9), ..But 

first we need a definition,

2.4 Definition

The pseudo-order, o(g) , of an element g in a group G is 

the least positive integer n , if one exists, such that g* G G' .

If no such integer exists, then we write o(g) = <» .

2.5 Lemma

Let G be a nil-2 group and a , b elements of G with

finite pseudo-orders m , n respectively. Then,

(i) for all integers k , a^ G G' if and only if m|k ;

(ii) o(ab) I o(a)o(b) ;

(iii) for all g G G , [a,g]^ = 1 ;

(iv) if d = gcd(m,n) , the greatest conmon divisor of m  and n, 

then [a,b]^ = 1 ; in particular, if o(a) and o(b) are coprime, then



63
a and b commute;

(v) if d = gcd(m,n) , then for all integers k , there exists

an integer r with 0 ^ r < d , such that [a,b]^ = [a,b]^ ,

Proof

First we observe that the pseudo-order of a G G is equal 

to the order, in the usual sense, of the element aG^ of the abelian 

group G/g ' „ Thus (i) and (ii) follow from the corresponding results 

in abelian group theory. For (i), a^ G G' iff (aG')^ = G  ̂ iff

order (aG')|k iff m| k . For (i,i) , o(ab) = order(abG') , and since

abG' = (aG')(bG') , it follows that o(ab)|order(aG^)'order(bG^) and 

hence, o(ab)|o(a)o(b) .

(iii) Since a^ G G' , Lemmas 2.3 (iii) and (v) show that 

[a,g]" = [a"̂ ,g]. = 1 .
(iv) If d = gcd(m,n) , then there exist integers Of , p with

om+pn = d . So [a,b]^ = [a,b]°^[a,b]^” = 1 , by (iii).

(v) Let k be an integer. By the Euclidean algorithm there

exist integers q and r with k = qd + r and 0 ^ r < d .
Thus, by (iv), [a,b]^ = [a,b]^^[a,b]^ = [a,b]^ . //

For the remainder of this section we shall survey the basic

ideas from combinatorial group theory which are essential to an 

understanding of the material in this chapter,

A group F is said to be free on the set S<= F , if S

generates F and for every group G and mapping f : S -» G there

exists a unique homomorphism f ̂ : F -» G extending f . We have the 

following picture:

f
S -----------------------> G

n

f'
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Given such an F , the cardinality of S is known to be unique and 

is called the rank of F » It can be shown that free groups of each 

rank exist and are unique up to isomorphism.

Perhaps a more intuitive idea of what a free group is may 

be obtained from its construction. Let X be a non-empty (finite 

or infinite) set of symbols x . We shall denote these symbols also 

by x^^ and for each x G X construct another symbol x"^ , Then, 

any finite sequence

w = ..x^^ (1 )

where = ± 1  j 1 = i = n , and repetitions of the symbols involved 

are allowed, is called a word on X . If, in (1), no symbol x^^ is 

adjacent to its associated symbol x7^ , then w is called a reduced 

word. It can be shown that the set of all reduced words on X forms

a group: the group operation is concatenation followed by the
e.i -e.

successive deletion of all adjacent pairs x^^,x_. ; the group identity

is the empty word with no symbols. It is known that the free group F

on the set S C  F is (isomorphic to) the group of all reduced words

on S constructed in this manner.

In general, when speaking of words we shall normally mean 

reduced words on a fixed countable set X = |x^:n G w} . If w is 

a reduced word which involves at most the symbols x^,o.o,x^ then 

we shall write w(x^,...,x^) . Let F^ denote the free group on X , 

Let G be an arbitrary group and w a reduced word (w G F^) .

Then, w is said to be a law in G if and only if for every

homomorphism f : F^ G , f(w) = 1 . Equivalently, w is a law in

G if and only if, with the obvious notation, w(g) = 1 , for every

sequence g from G of the appropriate length.

Let W be a set of (reduced) words. Then, the verbal subgroup,

W(G), of a group G associated with W  is defined by



<mW(G) = gp(lw(g) : w G W , g G ,

As an illustration, the derived group g ' of G is the verbal 

subgroup of G associated with the set j[x^,x^]j of words.

Let V be a set of words. Then the variety of groups defined 

by V is the class of all groups for which each word in V is a law.

We shall often use V to denote both the set of words and the variety

it defines. Furthermore, if V is a variety and v a word in V , 

then we shall call "v = 1" a law of the variety. The empty set 

defines the variety of all groups and the variety of all abelian groups

is defined by the law [x q ,x ^] = 1 . The variety of all nil-n groups

is defined by the law [Xq ,o..,x^]= 1 and we denote it by . We

are primarily interested in the variety N 2 » (A characterisation of 

all the distinct sub-varieties of N 2 has been given by B. Jonsson in

[17]. These are the varieties B(m,n) defined by the laws

Xg = 1 , [Xg,x^]^ = 1 where n»gcd(2 ,m)|m,.)

Clearly, a variety is closed under the taking of subgroups, 

quotient groups and cartesian product groups. By a classical result 

of Birkhoff (see [24], section 1,5, for the proof in the case of groups) 

the converse is also valid, and this provides an alternative definition 

of a variety.

Let V be an arbitrary variety of groups, F a group in V 

and S a subset of F , Then, F is said to be free in the variety

V on S , or V-free on S , if and only if S generates F and, for

every group G in V and mapping f: S -> G , there exists a unique

homomorphism f^; F G extending f . If V is the variety of all 

groups then this definition coincides with the one, previously given, 

of a free group. Given such an F in V , the cardinality of S is

known to be unique and is called the rank of F , V-free groups of

each rank exist and are unique up to isomorphism. Indeed, if F is
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the (absolutely) free group on S , then the V-free group on S is 

(isomorphic to) the group F/v (f ) .

Finally, we describe the V-free product of groups in a given 

variety V » This product may be seen as one way to generalise the 

direct product operation in the variety of abelian groups. First we

should mention that we reserve the notation I I A. for the direct product
i€l ^ ------- -------
H a .
i€l ^

of groups. , i.G I . Elements of this group will be denoted by

I l^i(or I la(i)) , where for each i € I , a. E A. (a(i) € A.) andici ici X L  X
it is understood that at most finitely many a. (a(i)) are different

from 1 . The full cartesian product of the groups i € I , will

be denoted by 1 ! A. and its elements by ] [ a. or, I 1 a(i) .
1 6 1  ^ i6 l 1 6 I

Of course, the direct product is a subgroup of the cartesian product

and when the index set is finite, they coincide, (We shall choose the

direct product notation or A^x...xA^ , for both products in this case,)

If A_ = A , for every i E I, then we shall denote by A^^^(A^) the 

direct (cartesian) power of A ,

2,6 Definition

A group A is called the free product of its subgroups A^gA^

(A^ n A^ = 1 ) if and only if

(i) A is generated by A^ U A^ ; and

(ii) for every pair of homomorphisms, f^: A^ -> G , of A^

into a given group G , i = 1, 2 , there exists a unique homomorphism 

f: A -» G whose restriction to A^ is f^ ,

A.

A
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It can be shown that free-products exist and are unique up to

isomorphism, so we denote the free product of and A^ by A^ * Ag

In a similar way, we niay define the free product of a collection

{a. : i 6 ij of groups which we denote I *A- , Tlie following result
^ i€l 1

gives a normal form for the elements of | | * A ,
i€l ^

2.7 Lemma (Normal form for the elements of a free product)

Every element a ^ 1 of ] \ A. may be written, uniquely, in
i€l ^

the form

^1 * 2

with each a^ 1 belonging to some group A^ and i^ ^ ^k+ 1  “

Let V be an arbitrary variety of groups. Then the V-free 

product is defined in the obvious way as follows,

2.8 Definition

The group A in V is called the V-free product (or, the 

free product in the variety V ; verbal product; varietal product) 

of its subgroups A^ and A^ (A^ fl A^ = 1 ) if and only if

(i) A is generated by A^ U A^ ; and

(ii) for every pair of homomorphisms, f^: G , of A^ into

a group G € V , i = 1 , 2 , there exists a unique homomorphism

f : A -» G whose restriction to A is fi i
Again, V-free products can be shown to exist in every variety

and are unique up to isomorphism. We denote the V-free product of

A^,A^ € V by A^*^A^ and shall drop the V when it is clear from the

context to do so. Indeed, for most of this chapter A^* A^ denotes

the , or nil-2, free product of groups A^^,Ag € N 2 . (We

deviate from this only in Theorem 5,19 and in section 7.) As for
TT*V

the free product, | 1 Â  ̂ denotes the V-free product of groups
i6 l
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€ V , i 6 I , and is defined in the obvious way.

The actual construction of the V-free product shows

that, within isomorphism, A ^ * ^ ^  = A^ /V(A^ ) .

Hence, the elements of ^^*V^2 he construed as words

on the symbols of A^ and A^ (where we may assume that A^ fl A^ = 1 )

with concatenation for multiplication and with words identified only 

if the group axioms and the laws of V permit it.

3. The Normal Form Theorems

Consider two groups G and H belonging to the variety, N^ , 

of all nilpotent groups of class at most 2. The aim of this section 

is to show that, in certain cases, the elements of the N 2 -free product 

G*H may be represented, uniquely, in a particularly simple form. As we 

have already mentioned in the introduction to this chapter, the results 

here were obtained after seeing a preliminary version of [25].

Repeated applications of the laws vu = uv[v,u] , [u,v,w] = 1 and

[v,u] = [u,v holding in N 2 , enables one to show that an arbitrary

element x 6 G*H may be written in the form x = ghc , where

g € G , h € H , and c is a product of mixed commutators [g',h'] 

with g/ € G and h^ € H . We can be more precise about the composition 

of the element c in such a representation of x , if we fix a set of 

generators for one of the factors G or H . Suppose that G is 

generated by elements > i € I . Then, using the additional law 

[uv,w] = [n,w][v,w] , we may write x € G*H in the form

X  = gh 7T [g . ,h.] (1)
i€l ^ 1

where g 6 G , h , h ^ € H  and only finitely many h^ are different 

from 1 .

In general, such a representation of x € G*H is not unique.

For example, if some generator, say g^ , has finite order n , then



69
the elements [g^jh] and [gg,h^^^] are equal but have different

representations in the form (1), Perhaps a more subtle way in which 

uniqueness might be destroyed is if there are relations holding 

amongst the generators. Consider, for example, any nil-2 groups G 

generated by two elements g^ and g^ . Then G is also generated by

elements g^jg^jg^ where g^ = g^g^ • Thus, for all H G , the

elements [g^,h][g^,h] and [g^^h] are equal.

These considerations lead us to restrict our attention to those

G G Ng which possess, what we shall call, a basis modulo G* .

This idea is defined for all groups in terms of the corresponding

notion for abelian groups (see Hall [14],page 37). We recall that

definition first,

A set of elements {â  ̂: i G l} in an abelian group A is said

to be independent if and only if a finite product a. ...a. = 1  only
\  \

n.only when a.J = 1 , for all j = l,...,k . (Remember that we are
h

now writing abelian groups multiplicatively.) The set jâ  : i G l) is 

a basis for A if, in addition to being independent, it also generates 

A . Clearly, a set ja^ : i G ij is a basis for A if and only if 

A is the direct product of the cyclic groups gp(a,) generated by 

the a^ , i G I . Finitely generated, hence also finite, abelian 

groups (see [l4]. Theorem 3.2.2) and bounded abelian groups (see [18], 

Theorem 6 ) are all examples of abelian groups with a basis. Of course, 

we do not claim that such a basis is unique,

3.1 Definition

A set ja^ : i G ij of elements in an arbitrary group G is 

said to form a basis for G modulo G^ if and only if the set 

|a^G' : i G ij forms a basis for the abelian group G/G' . (In future.
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we shall suppress the "modulo G^" and refer, simply, to a basis for G .)

Clearly, all finitely generated and all bounded groups possess 

a basis. Our first lemma shows that the elements of a group with a basis

may be written, uniquely modulo G ' , as a finite product of the

generators. First we recall the following definition from section 2.

3.2 Definition

Tlie pseudo-order, o(g) , of an element g in a group G is

the least positive integer n , if one exists, such that g^ G G' .

If no such integer exists we write o(g) = .

Clearly, the pseudo-order of an element g G G is equal to 

the order, in the usual sense, of the element gG^ of G/G' .

3.3 Lemma

Let ja^ ; i G ij be a basis for a group G . Then, every

element of G can be written, uniquely, in the form
-j— r 01.
I 1 a, -a' (2 )
lei

where a/ G G'  ̂ the are integers, only finitely many of which are

non-zero, and 0 ^ < o(a^) when o(a^) < qo  ̂ Furthermore, if

G G N 2 , then g ' is generated by the elements of the basis.

Proof

Let G be a group with a basis [a^ : i G l} . Then,

|a^G' ; i G ij is a basis for G/g ' , and so, for each g G G , there

exist unique integers , only finitely many of which are non-zero,

with 0 ^ < o(a^) when o(a^) is finite, such that

gG' = I I (a.G') ^ = TT a.^oG' ,
i€l iGl

T T  ^It follows that there is a/ G G' with g = / I a. *a/ . The
iGl "■

uniqueness of a' follows from the uniqueness of the •

Now assume that G G N 2 . To prove that g ' is generated by
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the elements of the basis, it suffices to show that each commutator 

of G is so generated. Let g^ G G . Since each of g^ , g^

can be written in the form (2 ), it follows, with obvious notation, 

that

[g^.gg] = , n  a^’-.a"] = / | [a^.aj] .
i£l lei i,j6l

This shows that the basis generates [g ,g ] , for all g ,g G G
1 2  1 z / /

It follows from this lemma that, for a nil-2 group G , a

set |a^ : i G l| is a basis for G if and only if it generates G and
TT n .

is independent modulo G  ̂(that is, a finite product I 1 a^ belongs

to G^ only when each a^ belongs to G'). There is a temptation to

carry the analogy with abelian groups even further and hope to prove 

that jâ  ̂ : i G l| is a basis for G if and only if G is the N^-free 

product of the cyclic subgroups generated by the a^ .

This temptation is even greater when we compare the conclusion of 

Lemma 3.3 and the form the commutators take for G G Ng with the 

expression (4) in the second normal form theorem (Theorem 3.9, below). 

Indeed,using this theorem, it is easy to see that one direction of 

the assertion does hold: if G is the N^-free product of cyclic

groups gp(a^) , i G I , then {a^ : i G ij forms a basis for G . 

However, the converse is false as the following example shows.

Let G be the nil-2 group Z^*(Z^xZ^) . Using the second

normal form theorem (Theorem 3.9, below), or by direct calculation,

it can be shown that the set ja,b,c) , where a generates Z^ 

and [b,c| is a basis for Z ^ Z ^  , is a basis for G . The elements of

G can then be written, uniquely, in the form

a^b^c\a,b]^ [a,c]™ , 

where i, j, k, 1 and m G |0,l} . However, Gr^ gp(a)*gp(b)*gp(c)

for, in G , the elements b and c commute whilst in the latter
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group they do not. Observe that G has cardinality 2^ and its 

elements all have order 1, 2 or 4 . Using the second normal form 

theorem and considering all the possibilities, it can be seen that

there is no nil- 2 group of cardinality 2  ̂ which is the N^-free

product of cyclic groups of order 2 or 4 . Thus, G has no basis 

for which it is the Ngi-free product of the corresponding cyclic 

subgroups.

In the normal form theorems and, indeed, throughout this chapter, 

an important role is played by certain subgroups of G G N g  « For this

reason, we single out their definition.

3.4 Definition

For each group G , the subsets Ho,(G) and H^(G) , n G u) , 

of G are defined by I1»(G) = Hq(G) = G' and

H^(G) = [g"g' : g 6 G , g' e G'l.

3.5 Lemma

For every group G and each n ^ O ,  H^(G) is a subgroup of G

Proof

A straightforward argument by induction using the law 

xy = yx[x,y] yields: x^y" = (xy)" modulo G^ , for all x , y G G

and n G uj . From this the Lemma follows immediately. //

We shall often have occasion to use the following simple 

property of these subgroups,

3 o 6 Lemma

Let G , K G with G a subgroup of K . Then, for all 

k G K and for all g G , we have [k,g] = 1 .

Proof

Let G , K G N 2 , G be a subgroup of K and let k G K with 

o(k) = n ^ . If o(k) = “ , then Ho(k)(G) = and so, since K
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is nil-2, [k,g] = 1 for all g G . Suppose that n < # ,

If g G H^(G) , then g = g^g^ , for some g^ G G , g^ G G' ,

Tlius, [k,g] = [k,g^g^] = [k",g^] , by Lemma 2,3. But o(k) = n

and so k" G x/ . Hence [k,g] = [k^,g] = 1 . //

3.7 Theorem (Hie first normal form theorem)

Let C , G G ^ 2  and C have a basis ja^ : i G l} ,

where o(a^) = m u ( =  °°) , (For notational convenience it is assumed 

that 0 G I .) Then, the elements of Ĉ <G can be written in the form

eg» r r  [a.,g.] (3)
•0 ig]. 1 1

where c G C , g^, g^ G G and only finitely many g^ ^ H^ (G) . 

Furthermore,

(i) c^g^Q T 1  [a^,g^^] = Cgggg! I[&i)8 2 i] only H
iGl iGl

-1
= Cg , g^Q = 8 2 0  and, for each i G l ,  g^^ 8 2 .̂ ^ (G) ;

(ii) ^2.^10  ̂  ̂[a^,g^^] ® ^2^20^  ̂ ^^i’̂ 2i^
iGl iGl

= V 2 h 0 h 0  n

T Twhere, for j = 1 , 2 , c . =  ( I a. modulo G ;
 ̂ 1 6 1  "•

(iii) eg I I [a.,g.] = 1 if and only if c = 1 , g = 1 andU igl 1 1 u

g G H (G) , for every i G l ;  i

(iv) (cg^ M  [ai,gi])-l = e-ig-ljl [ a ^ g j ^ g p ]  .

where c

iGl ^ iGl
T T

= I > a^ modulo . 
iGl ^

Proof

Let W be the set of all words in the symbols of the set
y\

C U G (see section 2 for the definition of a word) and W the 

subset of W of all words of the form (3) above. We define two
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words I , k = 1 , 2 , to be equivalent if and only

iGl
-1

if = Cg , g^o= ggQ and, for each i G l  , g^ggi ^ \  (G) »
/\

It is easy to see that this defines an equivalence relation, ^  , on W ,

Let |wj denote the equivalence class of w G W and let K be the

set of all such equivalence classes. The bulk of the proof of this

theorem is the verification that K forms a nil-2 group under a

multiplication given by |w^^°|w2 ) = (w^'w^l , with w^'W^ defined by

(ii); identity jl*l* I I [a.,l]j , and jwj = |w , with w
1 6 1

given by (iv) .

Let us assume, for the moment, that K does form a nil-2 group.

We show that C*G is isomorphic to K . Now, the mappings f^: C -» K ,

f„; G K defined by f̂  (c) = |cl°! I [a ,l]j , f.(g) = {l-g-I I [a ,l])
iGl iGl

are group isomorphisms, and it is clear that their images generate K . 

Thus, the homomorphism, f: C*G -> K , extending f^ and f^ , given

by the definition (see Definition 2.8) of * , is onto K . From

the preceeding discussion (see (1)), we know that the elements of C*G

can be written in the form cg^ I 1 [a^,g^] with only finitely many g^
iGl

different from 1 . Suppose that

f(cgQ I l[a. ,g.]) = ll-l" I I [a. >1]} , 
" 1 6 1  ^ ^ 1 6 1  ^

the identity in K . Then,

tes.! I[aj,8i]| = ll-l- I 1 [*1,1]I
U 6 I 161

because f extends f^ and f^ . Hence, by the definition of ~  ,

0 = 1 ,  gg = 1 and g^ G H^ (G) . But then, using Lemma 3.6, we

have, eg I 1 [a ,g] = 1 . This shows that f is an isomorphism 
iGl ^ ^
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and hence, C’'«G —  K , From this, and the definition of ~  , it follows 

that (i)-(iv) hold in Ci<G .

Finally we give the verification that K is a nil-2 group.

First we check that multiplication and inverses are well-defined.

For each k = 1 , 2 , let

\  = \® k o  ! ' [ " i 'S k i ]  ~  V k  ^  \iti iti

Then,

\  \  ’ \ o  = S o  S i S i ' ^  ^ S/'') , k = 1 . 2 .

Since c^ = ĉ  ̂ , it follows from Lemma 3.3, that there exist unique 

cv, . , such that
TT “ •c = c = I I a modulo .
lei ^

So,

S S  = V 2 ' S o S o  = S o S o - "  ^ =

C') = S '  s : =s :   ̂ •
Now, (a) implies that w^w^ ~  w^w^ and hence multiplication is

well-defined; (b) implies that w^^ w^^ and hence inverses are

well defined.

The verifications that jl-1- ( 1 [a.,l]j acts as identity,
iei "■

and that jw} = |w"l} for w 6 K , are easy and so we omit them.

For the associative law: let w = c g I 1 [a ,g ] ,k k kO i klicl

k = 1, 2, 3 and c = I  ̂a.^^ modulo G  ̂ . In the following we
^ i d  "

use the definition of ~  and Lemma 2.3 constantly.



76

' ^ S ’ SO S o  S l S i S i ^  '
i€l

-r-T (a -Kŷ . )modm, 
since c c = | 1 ^  ̂ ^ modulo C^ . (Note that =. mod «>

lei

must be interpreted as equality.) Thus, using the definition of ~  

and the associative law in C and G ,

7 7  '^3i "^2iw , ( w  W 3) ~  ( C ^ c ^ ) c ^ ( g ^ ^ g ^ ^ ) g ^ ^  I I [ a u , (830820) 830 SiiSgiSi^
i€l

~  S S S o S o  I ' ["i' 8 3 0 '8 1 ^8 2 ^ - 3 2 3 0  I '
i6 l 1 6 1

Hence, jw^î({w^jjw^))= ( 1 jw^i)jw^| , proving the associative,law.

Finally, with w^, w^, w^ as above, we verify the nil-2 law.

Now Cw^,w^,w^] = [[w^,w^], w^] by definition. But,

r 1 - I d  [w^,w^J = w^ w^ w^w^

-1 -1 T-T . -1 -1 "I -r-T “0̂ 21 "1
®10 ' ^^i’̂ 10 ^li^“̂ 2 ^20 ' ' La-,820 ^21^i6 l i€l

'̂ l‘̂2® 1 0 ® 2 0   ̂  ̂ ®li®2i^
1 6 1

-1 -1 -1 -X ^ 2 1  ^ 1 1  " S i
~  ^ 2  ^1 0 ® 2 0  l ’® 1 0  ^ 1 0  ^ 2 0  ®1 1 ^ 2 1

  -O'

■ S S S o S o  / I ^ S ’S o ' "  S i S i ^i€l

1 r r  r '̂ ii' ^ 2 1  “ii’'^2i ’“ii'^Si ‘“ 2 1 -,
~  ^^1 ’^2^L8 jlo»§2 0  ̂ ; 8 2 0  § 1 0  ^ 2 0iGI

~  ^ S ' S ^ ^ S o ’S o ^  I I [a.,g3 o ' S 2j h  .
i d

So, using this equivalence with [w^/Wg] in place of w^ and w^
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in place of w , we have 

2
-Of,

[w^jW^jW^] -  ^^i’̂ 2 ’̂ 3^^^10’̂ 20’®30^ !^| ^^i’̂ ^1 0 ’̂ 2 0  ̂ ^icl

i6 l

- 1 ,
using the nil-2 law for C and G . Hence, [|w^{, (w^j, }w^j] is

the identity in K and so K is nil-2 . This completes the proof. // 

Our second normal form theorem treats the case where both 

factors in the free product have a basis. Let A and B be nil-2

groups with basis (x^ ; i € ij , |y^ : j € jj respectively.

We show that every element g € A*B can be written uniquely in the 

form

ab I ^
(i,j) e ixJ  J

where a 6 A , b 6 B and the are integers. In the case where

o(x_) = m^ and o(yj) = n^ are both finite, the y.^ will be unique

modulo the greatest common divisor of m^ and n ̂ . First we make

a definition extending the concept of greatest common divisor to

include infinity.

3.8 Definition

Let m and n be positive integers or “ . Then, we define

gcd(m,n) “ <» by:

the greatest common divisor of M  and n if m , n < co ;

gcd(m,n) = <

the minimum of m , n otherwise .

3.9 Theorem (The second normal form theorem)

Let A and B be nil-2 groups such that

(i) A  has a basis jx^: i E l{ , with o(x_) = m^(^) ; and
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(ii) B has a basis jy^ : j 6 jj, with o(y ) = n , o°) ,

Then, for each element g of A*B there are unique a E A , b E B

and integers  ̂ , only finitely many of which are non-zero,

with 0 ^ y. . < gcd(m.,n.) = d. . when d. . is finite, such that d j  i' J ij ij ’

g = ab I  ̂ [x^,yJ (4)
(i,j) € ixJ ^

Proof

The fact that every g E A*B can be represented in the form 

(4) follows from (i) and (ii), the first normal form theorem 

(Tlieorem 3.7), Lemma 3.3 and Lemmas 2.3 and 2.5. To show uniqueness 

we first show that g = 1 if and only if a = b = 1 and y.^ = 0 

for all i E I , j E J , (5)

Let g be an arbitrary element of A*B written in the form

(4): g = ab I I [x ,y ] ^‘̂ , with a E A , b E B , y integers
" ij

with only finitely many y^^ ^ 0 and 0 g y^^ < d^^ if d^^ < <» .

Clearly, if a = b = 1 and y^^ = 0 for all i E I , j E J

then g = 1 . For the converse, we first observe that

I 1 [x^.y.] ^ ^ = 1 1  [x , = / 1 [x , M  y 4 ^ ]  .
i.j  ̂ i,j J i€I j6 J ^

Thus, using Theorem 3,7 (iii) with A in place of C and B in

place of G we have that if g = 1 , then

a = b = 1 and 1 [ y .  ̂ E (B ) •
j€J ^

Hence, by Lemma 3.6,

g = T = * a = b  = l and [x , / 1 y.^^] = 1 , for all i E I .
i jEj j

But, for each i E I ,
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[ x ^ J  \ = I ! [x^.Yj] / I [yj,%3

' jGj j6j  ̂ j€j ^

and so, using 3.7 (iii) with the roles of A and B reversed 

we have,

[x.,/ 1 7 ]̂ = 1 - 1 1  [y.,x^^h = 1
 ̂ jEJ  ̂ jEJ j 1

- y . .
=> for each j E J , x. ^ J E H  (A) .

To summarise, since H (A) is a subgroup of A , we have shoxm (*) :
j Y . ,

g = l = > a = b  = l and x.^J E (A) , for every i E I , j E J •

Consider a fixed pair (i,j) E IXJ , and let y = y,, . We have

two cases to consider: n = °° , n < ° ° .  In each case we show that
j j

yx^ E (A) implies that y = 0 ,

Case 1: n = “ . In this case H (A) = A' and so, by Lemma 2,5
3 "j

and the definition of pseudo-order, x^ E A' implies that

m.ly if m. < <» and y = 0 if m. = “ , But, if m. < ™ , thenI'T 1 ’ 1 1

0 ^ y < gcd(mu,nj) = m^ and so, in either case we have y = 0 ,

Case 2: nu < « . In this case gcd(m^,n^) ^ n^ < °° and so
y

0 ^ y < gcd(m,,n,) . Suppose x, E H (A) . Then, there are 

elements a 6 A , a' 6 A' such that x^ = a ^a' . But A has

a basis and so by Lemma 3.3, there are integers a for each k E I ,
7 7  °̂ k ^and a" E A' with a = I 1 x *a" . Thus, using Lemma 2.3,
kEl

Y T T  Of, n .
X. = ( / 1 X .a")J.a' 

k€l k

= M  x“‘' " . a " '  ,
k6 l ^
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for some a/'' E A/ . For each k E I such that m^ < «• ,

let B be the integer such that B = cy n mod m and 0 = P < mk k k j k k k

For m^ = 00 , set = c/̂ n̂  , Then,

x! = / 1 , (**)
k6 l

with a'' ' ‘ E k' and 0 = 3 < m  if m < # , Hence, by Lemma 3.3,k k k

since (**) yields two representations in the form (2 ) of the same 

element of A , we must have, in particular, 3^ = y • If mu = # , 

this means that y = o^n^ , But since 0 ^ y < gcd(m^,n^) = ,

it follows that cy. = 0 and hence y = 0 . If m, < ^  ̂ then since

y = 3 .  = cy.n. mod m. it follows that gcd(m^ ,n^ ) | X . But

0 ^ y < gcd(m.,n^) and so, again, y = 0 . So either way 6 = 0 .

Now combining what we have just proved in cases 1 and 2 with 

(*) above, we have shown that

g = l = > a = b  = l and y.^ = 0 for all i E I , j E J .

Finally, we show that (5) implies uniqueness.

Now, I 1 [x^,yJ ’■3 = [ | [x^.y^] ^3
i,3 1,3

if and only if

“1 -1---- y . .-6. .
8 = â b̂ b̂  j | [x^yJ = 1 .

1, j

But,
-1 -1 -1 -1 -pr

g = a^a^ b^b^ [b^b^ ,a^ ] [x.,y^]

= a^a, b^b^ I 1 [x.,yj]
^ ? J
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where for each k = 1 , 2 , using Lemma 3.8, , 3^^ are the

unique integers such that
  cy __ _ 3I I ki , f I kj ,a =1 1 X modulo A and b =1 ly modulo Bk 3 i k j j

Thus, by (5),

g = 1 iff = 1 , = 1 and

h j - h j  = . 1 e I , j 6 J .

But, b^ = b^ implies that 3^j “ ̂ 2j all j , and hence,

g = 1 iff ~ ^2 ’ ^1 ~ L»2 YjLj “ j » all i E I , j E J .

Thus we have shown that
Y. ._______ __ Ô

a b I 1 [x.,y.]  ̂ = a b ( 1 [x.,yj1 1 . .  1 J 2 2  1 1 ̂> J a 9 J
iff a = a , b = b and y . . = Ô.., for all i E l , j E J ,

1 2  1 2  ij ij
Tills completes the proof of the theorem, //

4. A ’’Feferman-Vaught Style" Theorem

It is known, from the work of Feferman and Vaught [ll], that

the truth of a formula in the direct product AxB , of structures

A , B is effectively determined by the truth of a finite set of

formulae in the individual factors A , B , As a consequence of this,

the direct product operation preserves elementary equivalence.

Indeed, it can also be deduced that X preserves saturation (see

Waszkiewicz and Weglorz [39]) and stability (see Wierzejewski [40];

MacIntyre [l9] ; Eklof and Fisher [8]),

In this section we use the first normal form theorem to

give our own version of a Feferman-Vaught style theorem for the N 2 »free

product, CY(G , of a finite C E , and an arbitrary G E subject

to certain conditions imposed on G by C (see Theorem 4.1, below).

We also give an application of this result to the problem of the
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preservation by , of elementary equivalence (see Theorem 4.4). In 

later sections we apply it to the problems of preservation of saturation 

and of stability.

Before stating Theorem 4.1, we make certain notational 

conventions which we shall generally adhere to throughout this section. 

Suppose that C is a fixed, finite, nil-2 group and G an arbitrary 

nil-2 group. Since C is finite, it has a basis, say ja^ : 1 ^ i ^ n| 

where o(a^) =m_ < ™ . Now, by the first normal form theorem

(Theorem 3.7), an element h € C/'cG can be written in the form

h = cgQ ( I [â . ,gj ,

where c E C and g^ E G are uniquely determined by h , and for 

each i = 1 ,.,.,n , the elements g^ of G are unique modulo the

subgroup (G) of G , With every element h E CYcG , written in
w n+ 1the above way, we shall associate the sequence g = (gQ,g^,...,g^) E G

Correspondingly, with every variable u^ of L , the language of 

groups we associate a sequence of variables, u^ = (u ^q ,u ^^,...,u ,

from L . Let L ' be the language obtained from L by adding a set, 

jx^: n E , of new constant symbols, and x = (x q ,x ^,.,.,x^_^) for

some r E u) .

4.1 Theorem

Let i|f̂ (u,x) be formulae of L^ for each i = l,...,n and

call a group G pertinent if there exists a sequence d E ^G with

ijf (u,x) defining H (G) in (G,d) . i m^

Then, for every formula cp(u ,...,u ) ^ L there existu k-l
/ Icformulae e_(uQ,...,u^ ^,x) E l for each c E C , such that for all

pertinent G E Ng and all c^ E C , gj^ E G  (0 = j ^ k-l , 0 ^ i ^ n) ,

C-i<G 1= cp[Ti] if and only if (G,d) )= 0-[g] ,
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g = So 8 3  ..r \ _ 3  , g. = <8 j0 ,''"'8 jn> •>

C - (Cq , . o . 3C%_l)

Proof

Let \|f.(u,x) be given formulae of L^ , i = l,...,n .

If cp(u) is a formula of L for which the theorem holds with a 
k

set |0_ : c E Cj , then we shall say that cp is determined by the

set |0p : c E c) Let D be the set of all determined formulae

of L . We show, by induction on the complexity of cp , that every

formula cp E L belongs to D .

cp atomic: Consider cp(u ,u ,u ) = u u_ = u_ .^ ^  1 2 3 1 2  3
3

Let c = E C . By Lemma 3.3, for each j = 1, 2, 3,

there exist unique integers , 0 ^ c y . . < m .  , i = l , . „ . , n ,  such
-j— p ^

that c . = I ' a.^^ modulo • For each c 6 we define
 ̂ ISiSn ^

u u = u 10 20 30

A ■^2i -1

1 A / \ 3v(v = u^Q "li"2i"3iA c^c^ = c^ ;
l=f=n

^ 1 0  ^ ^ 1 0  otherwise .
r _ 3 _Then, with appropriate G E , d  in G , c in C , g^ ,

■§2 and g^ in ^^j"G and appropriate h in ^(C*G) , we have,

using the first normal form theorem, the following sequence of

equivalent statements:

(i) C*G )= cp[Ti] ;
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=  c ^ S a o  I 1 [ « 3 , 8 3 3 ]  :

l^i^n

(lii) I I [3j,g^Q ^3^30  ̂  ̂ ’
l^i^n

(iv) = g^^ and ^ (G) ,
1

for each i = l,...,n ;

(V) C3 C2 = C3 , 8 3 0 8 3 0 = 8 3 0  and

~^2i
(G,d) f= \lf.[g g g g ] » for each i = l,...,n ;

1 10 li 21 31

(vi) (G,d) ^  e_[g ,g ,g ] o c 1 2 3

Thus,

C*G M= cp[h] if and only if (G,d) 8^[g] .

Hence, all atomic formulae are determined.

cp = and cp' E D : Assume cp =̂ ~cp̂  and that cp̂  is determined by

the set IoJ : c E ^cj . Then, it is clear that cp is determined by

the set }0_ : c E cj , where 0_ = ~0_ , Thus, cp E D .C C O

cp = cp̂  A cp̂  ̂ and cp', cp̂  ̂ E D : Assume that cp = cp̂  a 9"̂ , and that both

cp̂  and 9 '̂ are determined. By adding redundant variables, if

necessary, we may assume that both 9  ̂ and 9 '̂' have free variables

u , o o. ,u . Let 9 ,̂ 9 '''' be determined by the sets
0 k-l

k k|0' : c E cj , }0" : c E cj , respectively. Then if 0_ s ej 0^ ,C C C G C

it is clear that 9  is determined by the set |0_: c E ^c| and hence 9  E D ,

9  = Suç/ and 9 ' E D : By relabelling the variables, if necessary, we

may assume that 9  = 3 u^9 7 u^,... ,u^ ^,u^) and that 9 '(u^,... ,u^)

is determined by the set }0^(u^,...,u^,x) : c E c} . For each 

kc E C , we define
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^ ( u q j  • • o =  ^ ^ k O " ° ° ^ k n  ^0*^0 ^ 0 ’ ” ° *cEC
Then, with appropriate G E 3 ^ in ^G , c E , gQ,.».,g^ ^

n+ 1  k
in G and Ti in (Cv<G) , we have the following sequence of

equivalent statements:

(i) CvcG t= cp[h] ;

(ii) there exists h = cg^ I \ [a.,g.] E C*G , such
l^ i ^  ^ 1

that CiiG 1= cp̂ [Ti,h] ;

(iii) there exist c E C and g = (g„,..o,g ) in G suchu n

that (G,‘a) N  [g^ ;

(iv) (G,a> 1= [ 8 0 " " ' 8 k . d  ;

(v) (G.-a) 1= 6_[g ] .c 0 k-l

(The equivalence ( i i ) O  (iii) is proved using the inductive hypothesis.) 

Thus,

C*G \= cp[Ti] if and only if (G,"d) *= 0^[g] ,

and hence, cp E D .

Tlie theorem now follows by induction, //

We conclude this section by making some observations on the theorem

above and deducing some immediate corollaries.

First we remark that the full strength of the hypothesis that 

C be finite is used. The formulae determining an existential formulae 

3 ucp are defined by forming a disjunction over the determining 

formulae for cp . Hence, we require that the determining set for a 

given formula be finite and we can see from the atomic case in the

proof above that this will not be so if C is infinite.

The theorem also holds under the stronger, but simpler.



hypothesis that is definable. For suppose that \|f(u,x)

defines G  ̂ in (G,H) , with cl in G . Then, for each n > 0 , 

H^^(G) is defined by the formula

i|; (u,x) = 3 vw(u = v %  A \jf(w,x)) . n

This remark leads to the following corollary,

4.2 Corollary

Theorem 4.1 also holds for every nil-2 G with a definable 

derived group.

There are numerous examples of nil-2 groups G satisfying the 

hypothesis of the preceding corollary: obvious ones are the

abelian groups. Recently, (see [31], Proposition 11) Saracino 

has proved that for every existentially complete, nil-2 group G , 

Z(G) = g ' , and hence the derived group of such a G is definable. 

Other examples are afforded by the free nil-2 groups. Let F be 

free nil-2 on {x. : i E l) . Then, using the second normal form
T T  "Yijtheorem, the elements of F have the form ' ' x • ' ' [x.,x.] ,

i 1 i.j 1 J

where the cy., y. . are integers. Lemma 5.20 below yields a i i J
characterisation of the elements of the centre of F and it is 

easy to see that Z(F) = F^ , so F^ is definable.

The following corollary is used in the proof of the promised 

preservation result for elementary equivalence.

4.3 Corollary

For each sentence a of L , the determining set for a 

obtained in Theorem 4.1 consists of a single sentence of L^ .

Thus, given formulae i);, (u,x) E L^ , 1 ^ i ^ n , for every sentence

a E L , there exists a sentence 8 E L' such that for all
<d)appropriate G E and cl in G ,

86
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a if and only if (G,ïï) k= 0 .

Proof

The following observation suffices to prove the corollary: 

if 9 is a formula of L having k ^ 0 free variables, then
I I kthe determining set for 9  consists of at most |C| formulae

of L ' each having at most k(n+l) free variables, //

4.4 Theorem

Let G^, Gg be nil-2 groups for which there exist formulae 

(u,x) , 1 = i ^ n , of and sequences from G^ , k = 1 , 2 ,

with \|r (u,x) defining H (G ) in (G ,"d) . Then, i m^ k k

(G^,H^) = (G^,"a^) implies C*G^ b C*G^ .

Proof

Assume that G^ , G^ are given nil-2 groups satisfying the

hypotheses of the theorem. For each sentence a E L , let 0^ be

the sentence of L^ obtained above in Corollary 4.3, Then, if

(G ,*3 ) = (G jcl ) we have, for each sentence a of L :1 1  2 2

C % ^  1= a o (G^,3^) 0^

« C*G 1= a .

Hence, C*G^= C^Gg , proving the theorem. //

4.5 Corollary

If G^, G^ E and if there is a formula \j;(u,x) E L^ and 

sequences 3^ from G with i]f (u,x) defining G^ in

(G^,3^) , i = 1 , 2 , then for every finite C E ,

(G ,3 ) = (G ,3 ) implies C*G = C*G .
1’ 1 2 2 1 2



Proof

This is immediate from Corollary 4,2 and Theorem 4,4 . //

Po Olin (see Tlieorem 1.1) has an example which shows that

Corollary 4.5 fails when the definability hypothesis is removed.

His example comprises denumerable nil-2 (and exponent 3) groups 

A , B such that B X  A but C*B ^ C*A , where C is the cyclic 

group of order 3. The fact that B^ is the centre of B but

a ' is not the centre of A plays an important part in the proof

of his result.

The comments preceding Corollary 4.3 yield the following 

special case of 4.5.

4.6 Corollary

Let C be a finite nil-2 group. Then, for all nil-2 groups

A , B which are i) abelian; ii) free; or iii) existentially

complete, A = B implies that C*A = G*B ,

5. Preservation of Saturation

In this section we shall exploit the "Feferman-Vaught" theorem

of the previous section to show that saturation is preserved by

the Ng-ftee product operation when one factor is finite and the

other obeys certain definability conditions (Theorem 5,2). We also

show that this result is best possible for products with one finite

factor (Theorem 5.15). Finally, in Theorem 5.23, we extend both

results to the class of all bounded nil-2 groups.

One first theorem shows that each type t over C*G ,

where C is finite and G has the appropriate definable subgroups

(C and G belonging to ^ 2 ), determines a type t over G such

that, whenever T is realised in G , so is t realised in C*G . 
Theorem 5.2 is an immediate corollary of this result. With a little

more work we are also able to show that, subject to the same

88



89definability conditions, stability, too, is preserved, but we 

shall reserve this for the next section.

We shall continue to observe the notational conventions 

noted in the third paragraph of section 4 .

5,1 Theorem

Let C be a finite nil-2 group with basis ja^ : 1 ^ i ̂  n)

and o(a^) = m_(< “ ) , and G an arbitrary nil-2 group for which there

exist formulae \{f .(u,x) € L^ and a sequence 3 from G with

Ifj_(u,x) defining (G) in (G,3) , 1 ^ i ^ n „ Then, for
i

every k-type t(u3 ,...,u^) over (C*G = \ y ^ g  I 1
ISiën

with b E C and y ^,y . E G ,  there exist c = <c-,..,,c. ) E C and V 1 ’ k

a k(n+l)-type T_ (û ,. over ( G , 3 , y ^ ) ^  , where * *’^vn^ ’

^  ., r  , with gj = (gjQ,...)gj^> , 1 ^ j ^ k ,such that for all g = g

g realises t_ in G if and only if h realises t in C*G ,

where Ti = > , with h. = e g .  I 1 [a ,g ] , 1 g j S k^ k J ] I

Proof

Although we have stated this theorem in all generality, 

we shall prove it only for the case k= 1 , We hope it shall

be clear from the proof we give that the generalisation to k > 1

is straightforward.

Let C and G satisfy the hypothesis and let t(u) be

a 1 -type over (C*G , with = b^y^g I \
l^d=h

6 C , y^o . Yvi E G .

Consider an arbitrary formula cp(u) of t „ Then, 

cp(u) E L(CVvG) , so we let be a list of the constants

from CVfG appearing in cp , Let u^,,,,,u^ be variables new to
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cp(u) and denote by Cp(u,u^,,,. ,û )̂ the formula of L obtained from 

cp by replacing each occurrence of a constant z^ by the variable 

uj , 1 ^ j g m . Now let | 0^ (ü,ü^,,. ojû^,x) : c E be a

determining set for cp obtained using Theorem 4.1. Then, for all 

c E C and g = (gQ,g^,...,g^> from G , we have

C*G t= 7[h,z ,zj iff (G,-a) 1=

where h = eg I ' [a ,g ] and the B and y are appropriate for 
“iSiSn b i j

Zj 3 1 = j ^ m .

Let 0^(u,x) , c E C , be the formula of L'(G) obtained

from 0 /̂̂ -̂  (ü,ü^,.,. ,u^,x) by replacing each occurrence of the sequence

of variables ü  ̂ by the sequence yj of constants from G , l = j = m .

(Strictly speaking these formulae should be indexed by cTB , c E C .

But, since B is the same for each formula and, in any case, it is

fixed by the constants in cp(u) , we shall suppress it.) Thus,

from (1), for all c E C and g = (g ,...,g ) from G , we haveu n

(C*G,z ) cp[h] iff (G,3,y ) k  8 [g] ,
V v<X V v<k c

where h = eg I 1 [a.,g ] . (2)
ISiSn

For each cp(u) E t(u) , denote the formulae obtained in

this way by 0^(u,x) , c E C . Then, for each c E C let D bec Q

the set defined by:

^c ^ : 9 ^ t(u)i .
Claim: there exists c E C such that is finitely satisfiable

in (G,cl,y^)^^ .

Proof of Claim: Suppose the claim were false. Then for all c E C ,

there exists a finite subset A of D such thatc c
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;û A  e .(G,d,ÿ ) 1= / \ 0 . (3)

C

= icp :Set r = W  jcp ; 0*̂  E A i . Note F Is finite because G is. 
cEC '

Then F is a finite subset of the type t(u) and so is realised in

(C*G,Zv)u€X > by hg = Cgggg l  ̂ [«.,gg.] • .Thus,
l^i=n .

^  ^  'Ptkg] .
cpEF

Hence, by (2),

cpEF

with gg = (gQQ,oo.,gQ^> , So, in particular, by the definition of 

F , we have

'''eg

But this contradicts (3), thus proving the claim.

Using the claim, let c be an element of C for which

is finitely satisfiable in (G,3,y^)^^ . Then, T^(u) =

is an (n+l)-type over ( G , 3 , y ^ t h e  rest follows from (2). //

Now consider two nil-2 groups C and G for which Theorem 5.1

holds, and let r be the total number of constants needed to define

the subgroups H (G) , 1 ^ i = n . Then, if t is a type over C*G m^
with |jL parameters, it is clear that the associated type t- over G

has at most r+(n+l)p, parameters. The following theorem now 

follows immediately from 5.1. (Remember that, by Theorem 1.3.2, 

every finite structure is % -saturated, for all cardinals H ,)

5.2 Theorem

Let G be any nil-2 group and C a finite nil-2 group with 

a basis ja^ : l^i^nj for which the subgroups Ho(a.)(G) are
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definable in G . Let r be the total number of constants needed 

in the definition of these subgroups. Then, for all cardinals 

X > r , if G is X-saturated it follows that d<G is %-saturated,

where h = X if X is infinite and where, if X is finite, H

is any cardinal satisfying r+(n+l)H ^ X •

Proof

Let C and G satisfy the hypotheses, X > r be a cardinal

such that G is X-saturated and let k be a cardinal satisfying 

the given conditions with respect to X , Suppose that t is any 

1-type over C:%G having jji < h parameters from C*G , Then,

appealing to Theorem 5.1, there is a sequence c from C and an

(ndi)-type T_ over G such that any sequence from G realising T_ 

can be combined with c in the correct way to give a member from

C*G realising t , By our previous results, T_ has at most

r+(n+l)|i parameters from G .

If X is infinite, then h = X and so r+(n+l)|i < X . Thus,

by Theorem 1.3,4, G realises T_ .
If X is finite, then

(n+ 1  )+r+(n+l)pi = r+(n+l) (|jl+1 ) = r+(n+l)H = X ,

Thus, by Theorem 1,3.3, it follows that t - is realised in G , 

Consequently, t is realised in C*G and, since t was 

arbitrary, it follows that Cv<G is H-saturated. //

In Theorem 5,15 we shall show that the definability hypothesis

of the above theorem is essential to its validity. Indeed, we 

show that when this hypotheses is relaxed, C*G may not even be 

1-saturated, regardless of the degree of saturation possessed by G , 

(See the remarks following Theorem 5,16.) The proof of this fact 

emerges after a series of technical lemmas, but first we make a 

definition capturing the definability hypothesis.
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5.3 Definition

Let C and G be nil-2 groups, C having a basis. Then, 

a basis |a^ : i E l| for C is said to be G-suitable if the 

subgroups H , .(G) of G are all definable in G .

We shall show that if C , G E N 2 , C is finite but has 

no G-suitable basis, then C-jVG is not 1-saturated.

Let G be an arbitrary group and m a positive integer.

Our first lemma gives a condition which, provided G is 1-saturated, 

is equivalent to H^(G) being definable in G . We shall use only

one direction of this result, and the proof for it does not use the 

fact that G is 1-saturated. Roughly speaking, for a 1-saturated 

group G , H^(G) is definable if and only if there is a bound on

the number of commutators required to represent each of its elements.

First we define, for each k E u) , a formula of L which, if

satisfied by an element g E H (G), expresses the fact that gm
cannot be written down using less than k commutators.

5.4 Definition

For each m , k E æ , the formula %^(u) is defined by

\ ( u )

5.5 Lemma

If G is a 1-saturated group and m E cu , then the following 

are equivalent :

(i) H^(G) is definable (without parameters) in G ;

(ii) there is K E uu such that for all g E H^(G) ,

G t= ~)ÇCg] .
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(1) => (ii) : Suppose that \|i(u) defines H^(G) in G ,
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but that for all k E m , there exist E H^(G) with 

G N  X^Lg^J . Define a set of formulae, t(u) , of L by

t(u) = i\li(u)! U Ix^(u) : k E u)| .

Til en t(u) is a type over G being finitely satisfied in G by 

the g^ , k E u) . However, t(u) is not realised in G since

every element g which satisfies ^(u) belongs to H^(G) and 

hence can be written in the form g^g^ with g^ E G , g^ ^ G^ ;

if k is the number of commutators comprising g^ , then g will 

satisfy the formula ~)(^(u) . This contradicts the fact that G is

1 -saturated.

(ii) => (i) : If there exists such a K E w , then clearly 

H^(G) is defined in G by /^^(u) . //

The following is a corollary of the proof of Lemma 5.5.

5 .6 Corollary

If G is a group and m a non-negative integer for which

H (G) is not definable in G (with or without parameters), then m

for all k E u) , there exist g, E H (G) such thatk m

G x“[g ] .k k
5.7 Remark

If we strengthen the hypothesis of Lemma 5.5 to read that

G is (r+1)-saturated, then the result still holds when we allow r

parameters to be used in defining H^(G) .

The idea behind the proof of the converse of Theorem 5.2

(Theorem 5.15, below) is now quite easy to describe. If G , C E
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and C is finite but has no G-suitable basis, then no matter 
what basis we choose for C , there will always be at least one

generator, say a , such that H (G) is not definable in G .o(a)

Suppose o(a) = m . Tlien, we exhibit elements h^ E Z(C*G) , k E u) ,

such that N  x^[h ] . Of course, it would be very convenient ifk k
we could take h = g , the elements obtained using Corollary 5,6, k k

But these elements do not necessarily belong to the centre of Ci<G ,

So first we show that g^ may be chosen to lie in g ' (and, therefore

also in Z(CVcG)) . This is the content of Lemma 5,10, Next, in 

Lemma 5.11, we show that not only does g^ satisfy x^(u) in G ,

it also satisfies this formula in C*G . Then we are able to define 

a type over C*G , with no parameters, in the same way that we did 

in the proof of Lemma 5.5, (i) => (ii) , Finally, and this is the 

hard part, we show that C*G omits this type. On the way, we shall 

require some information about the precise nature of the elements of 

Z(C*G) and (C*G)^ . This we shall obtain first.

For the moment, let C be an arbitrary, but fixed, finite, 

nil-2 group with a basis ja. : l^i&n} , o(a^) = m^ , and let G be

any nil-2 group,

5 .8 Lemma

h E Z(C*G) if and only if h = egg I I [a.,g.] , for some
l^iâi

c E G , g , g E G ,  where c = I I a ^ modulo C^ , 0 ^ of. < m. and 
0 i i 1 1l^i^n

(i) c E Z(C) ;

(ii) g^ E (G) n Z(G) ; and
l^i^n "'i

(iii) H (G) C  H (G) , 1 ^ i ^ n .Oi m^
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Proof

Let h E C'j'fG „ Then, by the first normal form theorem 

(Theorem 3.7) there exist cŷ  < m^ , and E G , 1 = i ^ n ,

such that h = cg„ I I [a.,g.] , with c = ! I a. modulo C' .
l ^ i ^   ̂ ^ l^i^n ^

Since C*G is generated by the set |a^ : i = l,...,nj U G ,

h E Z(C'^) o a) [h,a^] = 1 , for each i = l,.oo,n ; and

b) [h,g] = 1 , for all g E G .

Now, using Lemma 2.3 and Theorem 3.7,

a) holds « [c,aj[g ,a ] = 1 , i = l,...,n
1 U 1

^ [c,a ] = 1 and g E H (G) , i = l,...,ni 0

o c E Z(C) and g^ E O  (G) .
l^i^n 1

Similarly,

Thus,

b) holds » [c,g][gg,g] = 1 , for all g E G
T T« [gg,g] I I [a^,g ] = 1 , for all g E G 

l ^ i ^  ^
cy.

^ [gg,g] = 1 and g 1 E (G) , for each i =
and all g 6 G

« g^ E Z(G) and H (G) C  H (G) , i = l,...,n .
^i

h € Z(C*G) o c 6 Z(C) , g € O h  (G) n Z(G) and
" ISi^n “i

for each x = (G) C  (G) . //

5.9 Lemma

h E (C-aG)' if and only if h = cg^ I 1 > where
l^i^n

c E C' and gQ E g ' . Furthermore, if h is a commutator, so
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are c and .

Proof

Let h = cg^ I I [a ,g ] be an element of C*G . Clearly,
l^i^n ^

if c E C' and g E C' , then h E (CvÆ)  ̂ . The rest of the0
Lemma will follow if we can show that, if h is a commutator,

then so are c and g^ .

Consider two elements h. = e.g. j | [a.,g..] , j = 1  , 2 , ofJ J 10 t Jl
lÊdÊn

  Of
C*G , where c, = ! ! a .  ̂modulo c' . Then, by Lemma 2.3

 ̂ ISiSn ^

= ^ Y ® 1 0 ’"2® 2 0^

= [c3.c^][glO,g2o][Ci,g2o][c2.g‘J] •

Thus, substituting for c^ , c^ in the third and fourth commutators,

^^l’̂ 2  ̂ - I^^i»^2^^^1 0 ’̂ 2 0  ̂ ^^i’^ 2 0  ^ 1 0  ^
l=i=n

showing that can be written in the required form, //

5 . 1 0  Lemma

If G E N  , m E U) and H (G) is not definable in G
2 m

then for all k E uu , there exist g E G^ such that G X^ 8  ] .k k k

Proof

Suppose there is K E u) such that for all g E G' ,

G 1= -^X™[g] • Then, for all g E c/ , there exist

g »g J o, o ,g ,h ,,., ,h E G  such that
0 1 K 1 K

g = ggEg^.h^l.-.Cg^.h^] (1 )

Now let X  be an arbitrary element of H (G) . Then, therem
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exists an integer r and elements x ,x ,...,x ,y ,...,y E G

0 1 r 1 r

such that

X = x^[x^,y^]o„o[x^,y^] .

But setting g' = [x,,y^].,.[x^,y^] we have g' E G' and hence we

can write g ̂ in the form (1) above. So,

m / m mr , -i r , -i
=  V o K ’V ' - ^ V V -

By Lemma 2.3, Xgg™ = (Xogg)™ and so

m %m(m-l)
"  = (=cfo) [=0'%0 '

showing that G #= [%] , Thus, by Corollary 5.6, H (G) isis+i m
definable, //

5 oil Lemma

Let G E and C be a finite nil-2 group. Then, for all

g E G and m, k E o)

Proof

G N  X™[g] implies C*G x"tg] . k k

Let C, G E N with C finite, and let ja. : l=i=n| be 9 2 ' 1 '

a basis for C . Let g E G and m, k E u) . We show that if
m m

C*G (=: ~Xj^[g] 9 then G k= /-X^Cg] »

Now, if C*G (= ~X™[g] 9 then there exist h E C*G and
k 0

h,,o.o,h, , each a commutator of C*G such that
1 k

® = •

Suppose that h^ = c^g^ modulo (CvcG)^ . Then, there exist

g E G  such that h^ = c % ™  II [a ,g ] . By Lemma 5.9 above, 

for each j = l,o..,k, there exist g ,,o,,g E G  and commutators
jl jn
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Cj in C and in G such that h^ = c^g^^ | | L^isSjil*

l^iËn

Substituting in the equation above for g and using the fact that 

Cj and gjQ are central in C-»VG we have

® = Vo (CjSjOl^i^n l^i^k l^i^n

l^i^n

But g E G and hence by the first normal form theorem we have, 

in particular.

But, each g^^ is a commutator in G , So,
m_ _

G N  ~ x  [g] ,k

completing the proof of the theorem. //

We are now almost ready to prove the promised converse of 

Theorem 5.2. Defining the type we need now poses no problems but 

there are still difficulties in showing that it is omitted in G*G , 

The following lemmas are required to remove them.

5.12 Lemma

If C is a finite group, then a basis for C modulo may

always be chosen so that the pseudo-order of each basis element 

is a power of a prime.

Proof

This follows from the definition (see 3.1) of a basis and 

the well-known fact that such a basis may always be chosen for a 

finite abelian group (See, for example, Hall [14], page 40,

Theorem 3.3.1.) //
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5,13 Leinnui

Let G 6 and r, s be positive integers.

(i) If r|s then H^(G)Cll^(G) .

(ii) If Hg(G) C  H^(G) and H^(G) is definable in G ,

then H (G) is also definable in G .r

Proof

Let G 6 and r, s positive integers with r|s ,

Then for some integer k , s = kr , and so, if g € H^(G) ,

there exist g^ € G , ^ G' such that g = gjg^ = (s^)^ gg •

This shows that g € H^(G) and hence H^(G) C  H^(G) . Furthermore,

if \|f (u,x) defines H^(G) and Hg(G) C  H^(G) , then it is clear

that H^(G) is defined by the formula
_ rcp(u,x) = 3vw(u = V w A ijf(w,x)) , //

5 o 14 Lemma

Let G 6 N^, p be a prime, e a positive integer and let

M e be the set {a < p^ : H (G) C  H ^(0)} . Then,
P ^ P

(i) M is a subgroup of the integers mod p® generated
P^

by some integer p^ , with 0 < d = e ;

(ii) if e > e > 0 , then M ^ C  M ^ and Œ € M
P ^  P®1 P%

e eimplies a mod p  ̂ 6 M p (that is, M ^ = M ^ mod p i ) .
p ^  p i  p 3

Proof

(i) With G, p, e and M ^ as defined in the Lemma, we

assume that p € M _ , so that H (G), IL (G) C  H ^(G) ,p P p
Let cy-P mod p^ = k . Then for some integer À, k = Ck'-p+Xp® and

so, for all g € G, we have g^ = g°̂ g ^g^^ € H^^(G) . Thus,



101
k 6 M and so M is a subgroup. The rest follows by 

P P^ '
elementary group theory.

(ii) Assume that G, p , e , e , M g , M g  satisfy the
1 2 p 1 p 2

hypotheses of the lemma.

First assume that a € M ^ . Then, H^(G) c  H ^ (G) .
p 2 p 2

But by Lemma 5.13 (i), H ^ (G) C  h ^ (G) and so H^OG) C  H ^ (G) .
p 2 p i  p i
e e

Suppose that k = a mod p  ̂ . Then, for some integer A., k = cy+\p  ̂ .ê
Thus, for all g 6 G, g^ = g^g^^ € H ^ (G) . This shows that

P ^
e e

k = Œ mod p  ̂ € M ^ . Hence, cy € M implies a mod p  ̂ € M ,
p i  P 3 p^i

Next we show that M G: M . Using (i) of this lemma
p i  P «

we assume that M ^ = gp(p^) , with 0 < d ^ e . If d = e
p i  1 1

then M g  is the trivial group and hence M ^ C  M ^ is 
p i  p  ̂ p 3

immediate. So we assume that d < e . Let € M , then
 ̂ P ^

d e.there exist integers A., p, with o' = A.p +pp and so, for all
e: -d d

. Hence, to prove
p i  p 2

d
suffices to prove that g^ € H ^-(G), for all g € G , Now,

p 2

p € M and so, for all g 6 G, gP = gP g = (gP )Pg , fore 1 2  1 2
P e -1 d

g € G , = (g^'^P )P . Hence, to prove M ^ C  m ^ , it

some g € G, g € G' . But d ^ e -1 and so p  ̂ € gp(p ) = M
1 2  1 p^l

Thus , H ^ _^(G) C  H ^(G) . Hence, there exist
P e -11 1

g^ € G, g^ € g ' with gP = gP g^ , and so, for some
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d e^ + 1  d c^ - 1  2

€ G', gP = gP g E H  ,-1 (G) o Now, writing gP = (gP )P g b o c e Tl 3 5
-

d
and repeating the above argument, we have gP E H „ 4.9 (G) . A

p i
further e -e -2 repetitions yields gP E H ^ (G) as required,

 ̂ p 2

proving that M ^ C  M ^ . //
P  ̂ P ^

5.15 Theorem

Let G be a nil-2 group and C a finite nil-2 group having no

G -suitable basis. Thus, C*G is 1-unsaturated.

Proof

Let C and G satisfy the hypotheses of the theorem. Then,

if ja^ : 1 ^i^nj is a basis for C , it is not G-suitable. So,

for some i , H , x(G) is not definable in G . Set o(a. ) = m .o o^a^ ) ig

Now, by Lemma 5.13 (ii), for o' = m with H^(G) C  H^(G) it

follows that Hg^G) is not definable in G . But then, using

Lemmas 5.10 and 5.11, there exist, for each k E (i) , g^ E G'

with C*G t= X^[g^] . Using the nil-2 law we have g ' C  Z(C*G) and

hence, the existence of these g^ shows that the following subset 

of L is a type, with no parameters, over C*G :

t^(u) = |Vv[u,v] = 1 } U Ix^(u) ; k E u)j .

We shall show that there exists o' = m

with Hg^G) ^  H^(G) such that C*G omits t^^u) «

Now, any h E C*G which realises t^^u) in C*G must

be central. So suppose h E Z(C^cG) . Then, by Lemma 5.8, with



o(a ) = , we have h = cg^ I 1 [a^,g^] where, in particular,
l^i^.n

gp, E H (G) , and c = f 1 a.^ modulo c' with 0 ^ #. < m.
0 "io lë^ëh " " "

and (G) C  (G) . Thus, for some b E G , and remembering 
i i

that m = m. , we have 
o
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I 1 "^ih = ' I a. °b modulo(C*G)^ ,
l^i^n ^

(1)

We shall have finished if we can show how to express h as an 

Œ-th power modulo(CvcG) ̂ for some cy = m with h^(G) H^(G) ;

for then it would follow that Ĉ <G h= ~X^[h] , for some k E U) .
e.Using Lemma 5.12, we may assume that mu = p^ , where p^ 

is a prime and e. > 0 , Now the primes p. are not necessarily

distinct. However, by Lemma 5.13, we may assume that if

m. = m(= p^ , say) and if p. = p , then e. ^ e . Thus we may
o

make the assumptions:
e. e

(i) m. = p.^ and m. = m = p ; and
o

(ii) if = p then eu ^ e . (2 )

Consider an arbitrary i , 1 ^ i ^ n . Let M. = M be

' p : '

the set defined in Lemma 5.14 and suppose that it is generated by 
d.

p.^ . (M. = M and d. = d) With h in the form (1), above,
^ ^o ^o

we have cŷ  E . There are two possibilities.

Case 1 : p^ = p . In this case, by (2), we have C  M .

d eSo cŷ  E M and hence for some integer cŷ  = X^p mod p
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Case 2: P. ^ p . Then, since p , p are distinct primes,

d d e.
gcd(p. ,p ) = 1 and so for some integer X , 1 = Xp mod p

d e.
Thus, = o\Xp mod p^ *

So in either case, there exists an integer X. such that,

^i %iP^since o(a^) = p^ , a^ ” ̂ i modulo C ; Hence, from (1)

we have, working modulo (Ĉ ĉG)̂  :

h = n
l^i^n ^
T-r ^ . e-d d 

= ( I I a. i.bP )P ,
l^i^n ^

Thus, for all h € Z(Cî’cG) , 3 h^ E d<G , h^ E (Cv<G)^ such that 
dph = h^ h^ o Let k be the number of commutators comprising h^

d
Then, C*G ~  [h] . It follows that the type t°^(u) ,

e dwith m = p and cy = p is omitted by C*G , proving that C*G

is 1 -unsaturated, //

Combining Theorems 5,2 and 5.15 and forfeiting some of the 

strength of the latter, we obtain the following result.

5.16 Theorem

Let C and G be nil-2 groups with C finite and G

K-saturated, where k is an infinite cardinal. Then, C*G

is H,-saturated if and only if C has a G-suitable basis.

The following remarks show that the above Theorem does 

not hold vacuously. In [8], Eklof and Fisher prove the existence 

of H-saturated abelian groups, for every infinite cardinal k , 

Furthermore, for an abelian group G , we have c' = 1 and hence
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every subgroup , m ^ 0 , is definable in G . So there

exist H-saturated nil-2 groups G for which every finite nil-2 

group has a G-suitable basis.

For the other direction we need a h -saturated nil-2 group 

G for which some finite nil-2 group has no G-suitable basis.

The following example arose from a conversation with A. Mekler.

There certainly exist nil-2 groups G such that for any m E u) ,

H^^(G) possesses elements g^ , k E oj , with G 1= »

(For instance, let G be the free nil-2 group of countable rank 

on the set (x^ : n E w} . Set g^ = .. "[^2k+l'^2k+2^ "

Then, an argument similar to that given in the proof of Claim (a).

Theorem 5.23 below, shows that G *= %™[g ] .) Let G be such
k k

a group, then if 'G is any elementary extension of G we also 

have g^ E H (g) and 'S |= y ^ g  ] . Thus, choosing a k-saturated

G we also have, by Remark 5.7, that R^(G) is not definable in G .

Before discussing the possibility of extending Theorem

5.16 we consider the problem of the existence of saturated models 

in the variety . For a given theory T , saturated models of 

T need not always exist and, in general, we can be sure of their 

existence only by assuming the GCH or the existence of inaccessible 

cardinals. (See, for example Chang and Keisler [7], Proposition 

5.1,5.) The results of Eklof and Fisher [8] show that the theory 

of abelian groups has saturated models in all infinite cardinals.

We now use this fact to show that the same is true of the theory of all

non-abelian, nil-2 groups.

5.17 Theorem

The theory of nil-2 groups has non-abelian saturated models 

in every infinite cardinality.
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Proof

Let C be any non-abelian, finite, nil-2 group. (The 

smallest one has order 8 and is , where is the cyclic

group of order 2.) Let A be a saturated abelian group of cardinality 

H = (JÜ . Since C is finite and A is infinite, the nil-2 

free product preserves the cardinality of A : to see this,

consult the first normal form theorem and count. So, |C*A| = |a | = h .

But, since A/ = 1 , every basis for C is A-suitable and hence, 

by Tlieorem 5.16, CM. is %-saturated. Thus, C M  is a saturated, 

non-abelian (since C is non-abelian), nil-2 group of cardinality H . //

The following proposition shows that there is no point in 

seeking to extend Theorem 5.16 to the case where C is infinite 

but still finitely generated,

5.18 Proposition

No infinite, finitely generated group is w-saturated.

Indeed, if an infinite group G can be generated by n elements 

then G is (n+1)-unsaturated.

Proof

Let G be infinite and G = gp|a ,...,a ) . Then,
0 n -1

the elements of G are all finite products g ...g where
0 k -1

each g^ is either a generator or the inverse of some generator.

The type omitted by G is, roughly speaking, the set [u ^ g : g E g ( 

and we need use only the generators to describe it.

For each s 6 n and t E j-l,+l| , where = #(t) = k

and k > 0 , define

/ \ j. t(0 ) t(l) t(k-l)

Then, with a = (aQ,...,a^_^) ,
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r(u) = |cp (u,â) : s E , t E ^^{-l,+l| , 4 (s) = 4 (t)|s , L

is a type over G (since G is infinite) with n parameters, 

which is omitted by G „ Hence, G is (n+1)-unsaturated. //

Now consider an infinitely generated, torsion group C .

(Recall that C is torsion if every element of C has finite 

order. This restriction is important if we wish to use our previous 

results.) If C is unbounded, then it possesses elements of 

increasing finite order and hence the set |u^ ^ 1 : n > 0 | is a 

type, with no parameters, which C omits. It follows that no 

unbounded torsion group is 1-saturated. On the other hand, from 

the work of Eklof and Fisher [81, we know that there are h-saturated, 

bounded, infinite abelian groups for every infinite cardinal k ,

We conclude this section with a preservation result for the nil-2 

free product restricted to the class, % , of all bounded nil-2 groups.

We have already observed, in section 3, that every group 

G belonging to S3 possesses a basis. We shall prove (see Theorem 

5.23, below) that a necessary and sufficient condition for the nil-2 

free product of groups A, B E S3 to preserve saturation is that A

and B possess ’’suitable” bases. The proof of the sufficiency of

this condition relies heavily on the following distributive law 

for the V-free product operation, in an arbitrary variety V ,

over the direct product operation. We do not know whether this

result holds for the cartesian product.

5.19 Theorem (Distributive law for over ' • )

Let V be an arbitrary variety of groups and denote

the V-free product operation. Let A^, be groups in V for

each i E I which, when identified as subgroups of



( ("Ta  )* (] T  ) in the obvious way, satisfy [A ,B ] = 1  for i ^ j . iEl i V lei i i j
Then,

(I 1a.)* (TTb.) ~ l  1(a.*b.) .
i€l  ̂ V 1 i€l ^ V 1

Proof •

Let V be an arbitrary variety of groups, * the full

free product operation and the V-free product operation.

Let A^, B^ be groups in V for each i E I satisfying the

hypothesis of the theorem. We make the following definitions and

identifications :

A = f I A. , with A, identified as a subgroup of A ;
iEl ^ ^

B = I 1b.;, with B. identified as a subgroup of B ; 
iEl ^

G = A*® , with A and B identified as subgroups of G ;

G^= gp(A_ U B^) , i E I ;

K = normal closure (in G) of gp (\^J[A. ,B .] ) ;

Hi= A^*B^ , i € I ;

H = I 1h. , with H. identified as a subgroup of H .
i€l  ̂ ^

Now, we recall from section 2 that, up to isomorphism, the

V-free product j of groups and is /V ( M ^ ) .

Thus, within the present framework, the hypothesis on the groups 

[A^,B^] , i ^ j , becomes K C  V(A*B) . Indeed, since K is normal

in A*B , we also have

K 0 V(A*B) . (1)

The result we wish to prove is:

G/V(G) =  I 1 H /V(H ) , (2 )
i€l ^ ^
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The proof of (2) is quickly deduced from the following claims.

Claim 1 G/K %  H

Claim 2 H/V(H) ~  I lit/V(H.)
iël ^ ^

We shall assume, for the moment, that the claims are justified 

and show how to derive (2 ).

It is easily verified (or see [20], page 79, Theorem 2.5)

that for all groups M^,

Thus, by Claim 1 ,

(G/K)/V(G/K) -  H/V(H) (3)

Suppose that w(x ,...,x ) is a word in V and g ,... ,g E G .I n  I n

Then, since K is normal in G , it follows that

w(g K,... ,g K) = w(g , ...,g )K .i n  i n

Hence,

V(G/K) = jgK : g 6  V(G)i 

But, since by (1), K <  V(G) , the set on the right is the group 

V(G)/K . Thus,

V(G/K) = V(G)/K . (4)

So, (3) and (4) together with some elementary group theory yield 

G/V(G) (G/K)/(V(G)/K) = (G/K)/V(G/K) H/V(H) .

The result we require, namely (2), now follows immediately from 

Claim 2. It remains only to prove the claims.

Proof of Claim 1

Let Œ. : A . A . * B .  , P. : B.-» A.*B. be the natural
1 1 i i ’ i 1 1 1

embeddings from A^, B^ respectively into A^*B^ , for each i E l .

Set cy = I I cy. , p = I 1 p. , so that cy, p are embeddings of
i€l ^ i€l ^
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A, B respectively into I |A.*B. = H . Let 0 : A*B -* H be

■ i6 l

the homomorphism extending a and p given by the definition 

(see 2.6) of * , Since H is generated by e(A) U P(B) it 

is clear that 0 is onto H . The claim follows at once if we 

can prove that KerG = K .

First we verify that K c  Ker0 . Now, K is generated by 

all elements of the form g ^[a^,b^]g , where g E G , a^ € A^ ,

b^ E B^ and j 7  ̂k . It suffices to prove that these generators

lie in the kernel of 9 . Suppose 9(g) = I Ih. and
iEl 1

(g’^Ca.jb ]g) = I 1 c . Then, 
J ^ iEl 1

Ci =

 ̂  ̂̂  | j , k }  ;

-1 -1h j  o \ ( a j  ) O j ( a j ) h j  i =  J ;

i = k .

In all cases, c. = 1 and hence 9(g"^[a.,b,]g) = 1 . Thus, K C  KerG . 
1 ] K

To prove that KerG C  K we first show that each member

g 6 A*B may be expressed in the form

g^gg.'.gnk (5)

where k E K and, for each j = l,...,n, g^ E G^ for some

i. E I where i ,i ,...,i are pairwise distinct,j 2 ' 2 H

Now, G is generated by L_Jg . and hence each g E G
iEl ^

is a product of finitely many elements from the subgroups G^ .

Using the commutator laws
_1

[a,bc] = [a,c]c [a,b]c ,

[ab,c] = b ^[a,c]b[b,c]



and the fact that [A^,A^] = = 1 for all i j , it is

easy to see that each commutator in [Ch,Gj] , i ^ j , can be

written as a product of finitely many elements from K , Thus,

modulo K , the elements bf G. and G. commute;1 J

[G^,Gj] c  K , for all i ^ j . (6 )

We may now use (6 ) to rearrange the component parts of an element of 

G . Each application of (6 ) produces an element of K. However,

K is normal in G and so for all k E K , g E G there is k' E K

such that kg = gk^ . Thus, in such a rearrangement of an element

g E G , the elements of K so produced may be collected on the 

right yielding an expression for g in the required form.

Now, let g E Ker0 and write g in the form (5) above.

Then, since K C  KerG ,

8 (g) = G(g^.oog^k) = G(g^)...G(g^) .

Since G(g.) all belong to different groups H. and G(g) = 1 ,
 ̂ "-j

it follows that G(gj) = 1 for all j = l,...,n . Notice that

G(GL) = A^*B^ . But, (see [20], page 186, Corollary 4.1,2)

G^ ~  A^*B^ . Hence, G T G^ is an isomorphism. Thus, g^ = 1 ,

for all j = l,,o,,n and so g = k . This shows that KerG C  K

and completes the proof of Claim 1 .

Proof of Claim 2

This claim holds for any group H which is the direct 

product of subgroups H^ , i E I „ By considering the obvious

mapping it is easily verified that

H / ( T T v (H.)) ^  ( 1(H./V(H )) (7)
i6 i  ̂ lei 1 1

111



112But I I V(H ■) Is generated by the subgroups V(H ) , each of
161 ' i

which Is a subgroup of V(H) . Hence, f 1 V(H.) C  V(H) .
161 ^

Furthermore, if w(x^,o..,x^) E V and h^,..,,h^ E H , then 

it is clear that

w(h ,.oo,h^) = I I w(h (i),.oo,h^(i)) ,
iEl

Thus, V(H) C  I 1 V(H.) . Consequently, V(H) = I 1 ?(H.) and 
161  ̂ 161 ^

the claim follows immediately from (7)„ This completes the

proof of the theorem, //

Before stating and proving Theorem 5,23, we need two

Lemmas. The first characterises the elements of the centre of

the nil-2 free product of the groups in which we are interested.

For the notation we refer the reader to Definition 3.8 and the

second normal form theorem (Theorem 3.9). * denotes, as usual,

the nil-2 free product,

5.20 Lemma

Let A and B be nil-2 groups with bases |x^ : i E l} , 

o(x_) = m^ , and jy^ : j E j} , o CYj ) = respectively. Then

TTan element ab I 1 [x^,y^] belongs to the centre Z(A*B) ,

of A*B if and only if

(i) a Ç Z(A) and b 6 Z(B) ; and
T~T TT  ̂1(ii) if a = I Ix.^ modulo A' , b = I ly. modulo B^ , withi  j  V

0 = cy. < m. and 0 ^ 8 . < n. when m. and n. are finite, then1 1 . J J 1 J

0^ = Pj 5  0 mod gcd(m_,nj) , for all i E I , j E J , (As usual,

5  mod 00 is interpreted as equality.)



Proof

Let A and B satisfy the hypotheses and g = ab modulo (A*B)  ̂

be an arbitrary element of A*B . Using Lemma 3,3 we may write
7 I Oi,  ̂ T~\ P 4 ^

a = / Ix  ̂modulo A^ and b = / ly. modulo B^ , where if m
1 i i l  i

and n. are finite, 0 ^ cy. < m. and 0 ^ p. < n. .J ’ 1 1 J J

First assume that (i) and (ii) hold. To prove that

g E Z(A*B) it suffices to show that g commutes with each of

the generators x^, y^ . Let i E l .  Then, since a E z(A)

and A'«B is nil-2, [x.,g] = [x. ,b] , Thus, using Lemma 2,5,

TTsince p. = 0 mod gcd(m. ,n.) , [x ,g] = f I [x ,y.] = 1 ,J 1- J 1 j 1 J

Similarly, [y.,g] = 1 for all j E J and hence, g E Z(A*B) , 

Conversely, suppose g E Z(A*B) . Then, for all i E l ,

1 = [x.,g] = [x.,a] I I [x.,y.] j , So, by the second normal
^ jEJ 1 j

form theorem and Lemma 2.5, for each i E I , we have [x_,a] = 1

and Pj H 0 mod gcd(m^,n^) , for all j E J ,  Thus, a E Z(A)

and pj = 0 mod gcd(m^,n^) , for all i E l  , j E J  . The

remaining parts of (i) and (ii) follow from the fact that 

[y^jg] = 1 , for all j E J .  //

Let G be an arbitrary group, and p a prime. Then G is

said to be a p-group if the order of every element of G is a 

power of p , A p-subgroup of G is a subgroup of G which 

is also a p-group. A Sylow p-subgroup is a maximal p-subgroup

of G . The following lemma is well-known (see, for example,

Scott [34], page 144, 6.4.13).



5.21 Lemma _

Every torsion nilpotent group is the direct product of its 

Sylow subgroups.

Proof

Let A be a torsion nilpotent group. Since A is nilpotent, 

each Sylow subgroup is a normal subgroup. These subgroups form a 

direct product in A consisting precisely of all elements of 

finite order. Since A is torsion, this direct product must 

coincide with A , //

5.22 Definitions

Let A and B be arbitrary nil-2 groups and let A^ , B^

denote the Sylow p-subgroups of A and B respectively.

We say that A is inclined to B if and only if, for each

prime p ,

(i) whenever A^ is infinite, B^ is finite; and

(ii) whenever A^ is finite, A^ has a B^-suitable basis

(see definition 5,3).

A and B are said to be compatible if and only if A is

inclined to B and B is inclined to A .

5.23 Theorem

Let A and B be bounded, nil-2 groups and k an infinite

cardinal such that A and B are both k -saturated. Then,

A*B is K-saturated if and only if A and B are compatible.

Proof

Let A and B be bounded, nil-2 groups. Thus, with the

notation of 5,22 and using Lemma 5.21, there is a positive 

integer k and distinct primes Pj^,»,,,Pj^ such that

A ~ A ^  X,,,X A_ and B -  B„ X.,,X B_ , (1)
Pi Pk Pi Pk



115
where A and B are the Sylow p^-subgroups (possibly

Pi Pi

degenerate) of A and B respectively. Now, since elements of 

coprime (pseudo-)orders in a nil-2 group commute (Lemma 2.5) we 

have, for i ^ j , [A ,B ] = 1 , where these groups are thought

of as subgroups of A*B , Thus, by the Distributive law (Theorem 5,19),

A*B ^  H a , *B„ . (2)
ISiSk^i

Let H, be an infinite cardinal and A and B be % -saturated.

First we suppose that A and B are compatible with the

intent of showing that A*B is K-saturated,

Since the direct product operation preserves saturation 

(Theorem 1,3,6) we are finished if we can show that each summand,

Ap *Bp , in the expression (2) above is K-saturated.t'i ^ 2

Consider a fixed i ,  l = i = k .  We show first that both 

A^ and B are K-saturated. Since A is bounded, so is A_
Pi Pi Pi

and hence if m = exp A we have x E A_ if and only if x^ = 1
Pi Pi

(Note that if x does not belong to Ap^ then the order of x will 
rbe of the form p^°q where r ^ 0 and q > 1 with gcd(p^,q) = 1 ,

So, x^ ^ 1 since pf*q/m ,) Thus, A is a definable subgroupi Pi
of A and hence by Theorem 1.3.5, Ap is K-saturated, Similarly,

B is K-saturated,
Pi

Now if both A^ and B are finite, A^ *B is also 
i Pi Pi Pi

finite (consult the second normal form theorem and count).

Hence, A^ *Bp is K-saturated for all k , Otherwise, since

A and B are compatible, it follows from (i) of the definition

of inclination that one of A_ and B_ must be finite.
Pi Pi
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Suppose Ap is finite. Tlien, by (ii) of the definition of inclination, 

A has a B -suitable basis, and thus, since B is K-saturated,
Pi Pi Pi

it follows, from Theorem 3.16, that A *B is K-saturated. This
L. Pi

proves that A*B is K-saturated as explained above.

For the converse assume that A and B are not compatible; 

suppose A is not inclined to B . There are two possibilities;

1 ) for some i^ , both A^ and B are infinite; or

2 ) for some i^ , A_ is finite, but has no B -suitable basis.

Case 1: Suppose both A and B are infinite and------  P. P.
"o

set p. = p o Use the expression (1) above to choose a basis 
^o

jx^ ; i El} for A with o(x^) a power of one of the primes

p ,...,p for each i E l .  Since A is infinite, there are 
1 k P

infinitely many i E l  for which o(x^) is a power of p , But 

Ap is bounded and so, by the pigeon-hole principle, there is an 

a > 0 such that o(x^) = p for infinitely many values of i E l .

So, without loss of generality, we shall assume that I = ,

for some cardinal and that for each n , 0 < n < u ) ,

o(x^) = p = r , say. In the same way, we may choose a basis

iy^ ; j E j| for B , with J = Tig -|0} , for some cardinal T|̂  ,

such that for each n, 0 < n < (ju , o(y^) = p^ = s , say. Assume

further that cy = ^ and so r| s . (The proof for 3 < cy is

similar.) Our objective is to show that the element
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[x^,y^].o ,y^^l cannot be written in a certain form (see (3 ),

below) using <n coiramitators from A*B , This will enable us to 

define a type omitted by A*B ,

Let m^ = o(x^) and n^ = o CYj ) usual, and g E Z(A*B) .

Then, by Lemma 5.20, working modulo (A*B)^ ,
r cy. T-T P .

g = I I I y J
1 6 I j6 j J

where cŷ  = = 0 mod gcd(m^,n^) for all i E I , j E J , Thus, in

particular, cŷ  = 0 mod gcd(mu,s) and = 0 mod gcd(r,n^) .

So there exist integers X^, p^ with cŷ  = X^s mod m^ and

= pj]: mod nj . So, still working modulo (A*B) ̂ ;

g = M  x ' "  M  y'j"
iEl jEJ

= <n 4 ' " " '  n  4 b '.
iEl jEJ

since r|s , Thus, for all g E Z(A*B) , there is h E A*B with

g = h^ modulo (A*B) *, (3)

Now, for each n , 0 < n < cu , let c^ = [x^,y^].,.[x2n»y2n^ '

Claim (a): c^ cannot be written in the from (3) above using

<n commutatorso

Proof of Claim (a); Suppose that c^ can be written in this way, so

that, for some h,g ,...,g ,h ,...,h E A*3 ,
1 n -1 1 n -1

= hTgi,hp...[g^_^,h^.p . (4)

Consider h first and suppose, using the second normal form theorem,

that h = ab I I [x.,y.] , for some a E A , b E B and suitable
i,j J
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rs
since if 0 < i < u) , o(x^) = r and hence [x^,y^] ^ = 1 .

Now consider [g^,h^] , 1 ^ 1 =  n-1 , letting g^ = a^b^ , and

h^ modulo (A*B)^ • Then,

= a;b;[a^,b,][i:^,b;h . (6>

where a^ and b^ are commutators of A and B respectively.

Now substituting from (5) and (6 ) in (4) above we have that c^ 

can be written in the form

(a^b^a'..,a' b{...b' )1 n -1 1 n -1

" ( 2n -1 ) commutators of the form [a','B]

• commutators of the form [x^,y^] , i  = ( J U , j E J .

Hence we may write

= a^a'b^b' I 1 [â ] «c , (7)
m ^ 2n-l

where, a' E A/, b' E B', a E A ,  î. E B and c is a product of

commutators of the form [x^,y^] involving x^ only for i ^ w

Suppose that = / | xT-^modulo A^ and b^ = / I y Tîmodulo B^
iEl jEJ

(using Lemma 3.3), then

= 1 1 •J J



Thus, from (7) we have

c = a^a'b^b' I I (| l[x.,y.] ^^)°c
i,j

= a^a'b^b'cl I [ x . , y . ] l - T s 2 n - 1  “i A j

Thus, we have two expressions, in the correct form, for the same

element c = / | [x.,y.] of A*B , Hence using Lemma 2.5
" lSiS2n  ̂ ^

and the second normal form theorem, and remembering that c

involves only if i ë u) we have, in particular, since

gcd(r,s) = r , that

1 if i = j = l,...,2n ;

. 0  if 1 M j , 1 g i,j g 2n .

Now let X denote the 2nx(2n-l) matrix (o\^) and Y the

(2n-l)x2n matrix , both over the ring of integers modulo r ,

Then (8 ) expresses the fact that

X.Y = I

where 2  is the identity matrix of order 2n over the given ring. 

Now let r(M) denote the rank of a matrix M . Then, since 

r(X*Y) ^ min {r(X), r(Y)} (see Herstein [16], page 222, Lemma 6,3) 

it follows that r(X*Y) ^ 2n-l and hence r(^) < 2n , This, of 

course, is a contradiction and hence we have proved the claim.

Now, using claim (a) and the fact that since c^ E (A*B)^

we also have c^ E Z(A*B) , the following set is a type over A*B :

t(u) = |w[u,v] = l} U Ix^(u) : n E (juj .
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(For the definition of y (u) , see 5.4.) But (3) shows that A*B

omits t(u) , It follows that A*B is 1-unsaturated, (We

actually prove a stronger result than we need, see Corollary

5.24 below.) This completes the proof in Case 1 .

Case 2: Assume that A is finite but has no B -suitable
------

basis. Set p = p «

Using (1) above, choose a basis jx^ : i 6 ij for A and 

I y , : j E J }  for B , where, for each i, j, o(x^), o(y^) is

a power of one of the primes p ,...,p . Now, |x : x € A^}

is a basis for A and hence is not B -suitable. Thus, for some P P
X. 6 A we have that H , .(B) is not definable in B .1 P o(x_) P P

There are two consequences of this. The first is that, if

p® = max jo(x.) : x. E A j  , then, by Lemma 5.13, H gXB ) is
p p

not definable in B . The second is that, if
P

p^ = max lo(yJ : y^ E Bp} , then H ^(Bp) = B' and so,

H ^(B ) is not definable in B . (Otherwise, by the comments
p P P

preceding Corollary 4.2, we could define H ^(B_) in B .)p^ P P

Now if H^(Bp) is not definable in Bp , then since Ap

is finite, we may use Lemmas 5.10 and 5.11 obtaining, for each n ^ u) , 

g^ E B^ such that A^*B^ *=z <• But ^ “ (u) is a positive

existential formula and hence, from (2), A*B t= X^-^n^ “ Thus,
G dfor each m = p ,p , the following set is a type over A*B :
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t̂ ^(u) = |Vv[u,v] = 1 } U ix^(u) : n E u)l .

It will follow that A*B is 1 -saturated once we have proved the 

next claim.

Claim (b) ; for some m = p^ or p^ , A*B omits t^(u) .

Proof of Claim (b): Let g E Z(A*B) . Then, by Lemma 5.20, 

we may write
cy. T T  3.

g = / 1 x.ij lyH modulo (A*B)^ , 
iEl jEJ

where, cy. = 3 . = 0 mod gcd(m. ,n.) and m. = o(x.) and n. = o(y.)i j  1 1  J J
as usual. Thus, in particular

cŷ  = 0 mod gcd(m_,p^) and 3^ = 0 mod gcd(p^,n^) . There are

two possibilities: e < d , e = d .

Assume e < d . Then,

1 if gcd(mu,p) = 1 ;

gcd(m^,p^) = ^
0^m^ otherwise, by the definition of p .

If gcd(mu,p^) = 1 , then there exist integers s, t with

sm.+tp^ = 1 , and so, cy. = cy, sm.+cy. tp® .
1 1. I l l

ô i o\CpC
Thus, x^ = x^ modulo A^ . If gcd(m^,p ) ^ 1 , then

cy. = 0 mod m. , and m. p^ . Thus, in this case 1 1 i'
^i ^x . ^  =  X ?  = 1  modulo A^ , Hence for some X. ,

% 2  if gcd(m^,p) = 1 ;

^i modulo A'
e

x^ = 1  otherwise .
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Similarly, since

gcd(p®,n^) = {

we have, for some |j,̂ ,

1 if gcd(p,r_) = 1 ;

n^ if gcd(p,n^) ^ 1 and n^ < p® ;

p^ if gcd(p,n.) ^ 1 and n^ g p^ ,

"j if gcd(p,n^) = 1 ;

y =j modulo B / S y? = 1  if gcd(p,n.) ^ 1 and n . < p® ;

P'jP if gcd(p,n^) i=- 1 and n_ p

Thus, in all cases, there are integers X^, p^ such that

•jTT X.p^*^ ■■
= I I I modulo(A*B)'

i " j J

iH-
i

= ( I I x ^ i /  1 yjj)P modulo(A*B)^ •

Such a g cannot realise t gXu) and hence A*B omits t g(u) ,
P P

Now assume e ^ d , Then, in exactly the same way we are able 

to show that every g E Z(A*B) has the form h^ modulo (A*B) '

with h E A*B , and hence, g cannot realise t ,(u) . Thus, in
P*̂

this case, A*B omits t ^(u) .

This completes the proof in Case 2, and hence also the proof 

of the theorem, //

In the course of proving Theorem 5.23 we actually proved a 

stronger result than stated,

5,24 Corollary

If A and B are incompatible, bounded, nil-2 groups 

then A*B is 1-unsaturated.
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5.25 Examples

Tlie following examples show that Theorem 5.23 does not 

hold vacuously. It is well-known (see, for example, [7], page 

101, Theorem 2,3,13) that the unique denumerable model of an 

CJÜ-categorical, complete theory is saturated. Hence, since every 

bounded, abelian group has an w-categorical theory (see [8], 

page 146), it follows that every denumerable, bounded abelian 

group is saturated. We shall use this fact frequently to construct 

our examples.

Example (i)

Let A = ZgX Z^fw) and B = Z^X Z^^^T Then, A and B

are compatible, bounded, denumerable, saturated, abelian groups.

Indeed, there are pairs of compatible, bounded, K-saturated, 

abelian groups for every cardinal k , (See [8], page 146) .

Example (ii)

Clearly, if A = B = Zg,^^^ , then A and B are both 

w-saturated, but they are also incompatible since they fail to 

satisfy clause (i) of the definition of inclination.

Example (iii)

Let A = Z X Z and B = [ | Z , (the nil-2 free
^ nEuj

product of w copies of Z^) • A is w-saturated but B is

1-unsaturated. To see the latter observe first, using the second

normal form theorem, that Z(B) = B^ , Hence B ̂ is definable in B .

However, since there also exist in B products of commutators

of unbounded length whose length cannot be "reduced", it follows,

from Lemma 5,5, that B must be 1-unsaturated. So consider

instead an w-saturated elementary extension B of B . Since

B has exponent 4, the same is true of ^  . So, B is a bounded.
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UJ-saturated, nil-2 group. Furthermore, clause (i) of the definition 

of inclination holds for the pair A, B , But H^CB) = B ̂ and,

as we have already remarked, it can be shown that there exist 

b^ E B' , for k E u) , such that B (= %^[b^] . Hence,

B N  and so, by Lemma 5,5 again, H^CB) is not definable

in B o Thus, A and B are incompatible through failure to 

satisfy clause (ii) of the definition of inclination,

6 , Preservation of Stability

The first theorem in this section is the analogue for 

stability of the corresponding result for saturation in section 5 

(see Theorem 5,2), Before reading the proof the following should

be recalled: the definition of a G-suitable basis (Definition 5,3),

the construction of a determining set given in the proof of Theorem

4.1 and the notational conventions outlined in the paragraph 

preceding that theorem.

6.1 Theorem

Let H be an infinite cardinal, G a nil-2 group and C any

finite nil-2 group possessing a G-suitable basis. Then, if G  is

K-stable so is Cv<G ,

Proof

Let C, G and k satisfy the hypotheses and assume that G  
is K-stable. Of course, if G is finite then so is and

hence there is nothing to prove since every finite structure is

stable in every infinite power. Thus we may also assume that G  
is infinite. Let {a^ : l=i=n} be any G-suitable basis for C . 

Then each subgroup H . v ( G )  of G  is definable in G  , possibly

with parameters: let "H be a (finite) sequence consisting of all
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the parameters used In the defining formulae of these subgroups.

Let z = (z) be a sequence from Ĉ «G of length X = k andV v^A.

ÿ  - (y ) ^  the corresponding sequence of length (n+l)X ^ K from G ,

(In other words, if I 1 . then = <y^o,...,y^^>) .
l=i=n

Then, since G is k -stable we have ] S (G,"d,y) | = h .

We wish to prove that |s(C*G,z)| ^ k

For each type t(u) € S(C'<G,z) let » where

c^ € C and T^(u) is an (n+l)-type over (G,’3,y) , be some

pair associated with t in the sense of Theorem 5.1 , For each

c € C define

T^(CYcG,z) = Jt 6 S(C:'(G,z) : c^ = cj ,

Then, since C is finite and |s(C*G,z)| is infinite, there must be 

some Cq 6 C with

| t  ( C * G , z )| =  | S ( C * G , Z ) |  (1)

We show that distinct types t^, t« € T (C*G,z) are associatedi z «-Q

with distinct types T , T over (G,d,y) .

Suppose that t^, t^ ^ T^ (C*G,z) and ^ tg . Then, 

there is some formula cp(u) € t^ such that rxXp(u) € t^.

Now, if |0^(u) : c € cj is a determining set for cp(u) , it

follows from the proof of Theorem 4.1 that : c 6 C| is

a determining set for ~cp(u) . Hence, by the construction of the 

type t (u ) corresponding to t(u) given in the proof of Theorem

5.1 , we have

0 (u) € T and ~ 0  (u) € T .
"=0 '^1 %  '^2
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Hance, T ^ T . Thus, the complete t̂ ^pes over (G,‘3,y)

1 ^2

determined by T and T will also differ, giving 
1 2

|s(G/a,ÿ)| S I'lg (Ĉ <G,z)j . o

Thus, from (1),

|s(C*G,z)| S |s(G,a,y)| ë H ,

proving that CvcG is %-stable . //

The following corollary is a consequence of the above theorem 

and the results of Chapter 2 of this thesis* It also provides a 

contrast with Baldwin and Saxl's Theorem 4.1 in [l] and Sabbagh's 

Remarques 2 (iii) in [28] .

6.2 Corollary

(i) Every nil-2 group of the form C*A , where C is

finite and A is abelian is stable,

(ii) There exist w-stable, strictly-superstable and also

merely-stable, non-abelian nil-2 groups.

Proof

(i) follows from the fact that every abelian group is 

stable and that C will possess an A-suitable basis.

For (ii) we first observe that Cv<A will be at least as

stable as A is. Thus, examples of w-stable, non-abelian groups 

in Ng are easily constructed by forming the nil- 2 free product

of a finite, non-abelian, nil- 2 group with an w-stable, abelian 

group.

Consider the group G = Z *Z . Since Z is superstable it2

follows that G is superstable; we shall show that G is strictly-

superstable* By Theorem 3,9, if a generates Z^ and b
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generates Z , then the elements of G can be written, uniquely, 

in the form

a“b'"[a,b]^ ,

where 0 = ^ < 2  and k is an integer. From this it follows

that G is a non-abelian group in which the elements of order 2 , 

namely those for which k = 0 , form a definable normal subgroup H . 

Thus, appealing to Tlieorem 1.3,15, G/H is m,-stable whenever G is 

K-stable. But,

G/H = j b ^  : k is an integer) —  Z

and hence G/H is strictly-superstable. This means that G is

%-unstable for all k < 2^ and completes the proof that G is

a strictly-superstable, non-abelian, nil-2 group, A similar argument

will show that the non-abelian, nil-2 group Z * Z is
^ n&u 2

merely-stable. //

We may now use Theorem 6.1 to give the analogue for stability 

of the positive direction of Theorem 5.23, We obtain this as 

a corollary of a more general result concerning stable, compatible 

(see Definition 5.22), torsion, nil-2 groups.

Consider two torsion groups A, B . Using Lemma 5,21

we may write k -\ 1Ap , B =/ Ib^ , where A^ , Bp denote the

Sylow p-subgroups of A , B respectively. Then, by the distributive

law (Theorem 5.19), A*B =! lA *B . If A *B is non-abelian’ p p p p p

for infinitely many values of p , it follows from Theorem 1,3,19 

that A*B is unstable. Of course, if Ap*Bp is abelian, then

so are Ap and Bp and, furthermore, Ap*Bp = ApXBp , So, 

on the other hand, if only finitely many factors A^^B^ are
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noil-abelian, we may write

A*B = n  (Ap *Bp ) X / 1 (ApxBp)
l^i^n i i

= / I (Ap *Bp ) X 'X X 'B , (1)
lêi^n i i

where "X = I I and "X = ' ' are both abelian. Since %  x ̂
Pî P̂

is an abelian group it is also stable. If we assume that A is

stable, then since A = I 1 A^ x X  , Theorem 1,3,17 implies that
lâi^n i

each subgroup A^ is stable. Similarly, if B is stable, 

then so are the subgroups B^^ . Thus, on the further assumption

that I I A and I I B are compatible, Theorem 6 , 1 yieldslêi^n ^i l^ign ^i
that each factor A^ *B is stable. Since by Theorem 1,3.16,

i i
X preserves stability, we see at once from (1) that, under the above 

assumptions, A*B is stable. Suppose that A and B are h-stable. 

Then, we can be more precise about the stability of A*B if we 

assume that the groups , 7C (respectively, B , 'B) arePi Pji
definable subgroups of A (respectively, B), For then, by 

Theorem 1,3,15, it follows that these subgroups are also % -stable 

and hence so is A*B .
These remarks prove the following Theorem,

6.3 Theorem

Let A and B be nil-2 torsion groups and, for each prime 

p , let Ap, Bp denote their Sylow p-subgroups,

(i) If A*B is stable, then Ap*Bp is abelian for all but, 

possibly, finitely many values of p ,

(ii) If A and B are stable, Ap*Bp is abelian for all
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P '-f- Pi ,...,p and the groups I I A , I I B_ are compatible,

1 ^ l^i^ ̂ i l^i^u Pi
then A''(B is stable; if, in addition, the subgroups Ap^ and

I 1 A^ (respectively, B , f I B ) are definable in A (respectively, B), 
P^Pi i P^Pi

then A*B is h -stable whenever both A and B are % -stable.

6.4 Corollary

Let A and B be bounded, compatible, nil-2 groups. Then

if A and B are H-stable, so is A*B .

Proof

Under the hypotheses of the Corollary, there exist Pi/'-P^

such that A = ' ' A _ , B =  ' ' B_ , and each A_ B_ is
ISiSn Pi ISiSn ^1

bounded. Furthermore, as we proved in Theorem 5.23, each subgroup

A^ (respectively, B ) is definable in A (respectively, B),Pi ^i

The Corollary now follows immediately from Theorem 6.3(ii). //

It is now a simple matter to produce examples which show that

the nil-2 free product operation fails to preserve either strict-

superstability or mere-stability even when the free factors

involved are also abelian. For instance, consider the groups

A =/ Iz and I \l \ z  , From the characterisations given in P P P n pn

Chapter 2 (see Theorems 2.4,4 and 2,4.7) it is easy to check that

A is strictly-superstable and B is merely-stable. However, for

each prime p , both Z_*Z and I IZ _ * N z  _ are non-abelian andP P  ^ P P

hence, by Theorem 6.3 (i), neither Av<A nor B*B is stable.

The situation for œ-stability is not so clear even if we

restrict attention to abelian free factors. Of course we do have

some preservation of co-stability. Corollary 6.5, belo\7, may be
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obtained from the above Corollary using the fact that every bounded 

abelian group is w-stable. The hypothesis on the Sylow subgroups 

ensures that the free factors are compatible,

6o5 Corollary

If A  and B are bounded abelian groups and there is no 

prime p for which the Sylow p-subgroups of A and B are 

both infinite, then A*B is (jo-stable.

The simplest example of a nil-2 free product of bounded 

abelian groups not covered by the Corollary above is .

Proposition 6.9, below, gives a necessary and sufficient condition 

for * , restricted to abelian groups, to preserve uj-stability.

It also shows that if we are to resolve this problem at all it is 

essential that we solve it first for groups like the one just 

mentioned. The next lemma is used in the proof of this proposition 

and as a by-product gives us one more preservation result.

6 . 6 Lemma

If D, T are subgroups of some nil-2 group with D divisible

and T torsion, then [d ,T] = 1 ,

Proof

Clearly it suffices to show that [d,t] = 1 for all d € D, t Ç T .

So let d € D, t € T . Since T is torsion, t^ = 1 for some
ninteger n ; since D is divisible, d = d^, for some d^ € D .

Thus, by Lemma 2,3, [d,t] = [d^,t] = [d^,t]”= [d^,t”] = 1 , //

6.7 Corollary

If D, T 6 with D divisible and T torsion, then

D'fT is H-stable whenever both D and T are % -stable.

Proof

By the lemma above, D*T = DxT and so the result follows from
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Theorem 1,3,16, //

Since the abelian group Z(p™) is both divisible and torsion, 

we have the following corollary of 6.7,

6.8 Corollary

• Let p and q denote distinct primes. Then the following

nil-2 groups are m-stable:

Z(p” )*Z(p” ), Z(p” )*Z(q‘”), Z(p“ )*Q .

6.9 Proposition

The nil-2 free product of w-stable abelian groups is 

w-stable if and only if 
(K) (X)

(i) Q is tu-stable, for all cardinals K, X ; and
(ii) P *P is (jb-stable, where P and P are both1 2  1 2

bounded abelian p-groups for the same prime p ,

Proof

The necessity of conditions (i) and (ii) is obvious.

For the sufficiency, let G^, G 2 be two w-stable abelian

groups and assume that both (i) and (ii) hold. By Theorem 2.4.8, 

there exist bounded groups B^ and divisible groups with

Gi = B^X Du, i = 1, 2 . Using the lemma above and the distributive 

law (Theorem 5.19) we have

X (D^*Dg) (1)

We consider each direct factor separately.

By Lemma 5,21, there exist primes P^p<>,,,p^ such that

B. = p. iX..,X P., , where each P.. is the Sylow p.-subgroup1 1 1 tic t j j

of B ^ , i - 1 , 2 ,  Now, using the fact that elements of coprime

order in a nil-2 group commute (Lemma 2.5), a further use of the 

distributive law yields



- = ' I • (2)ISiSk

It is well-known (see [l8 ], Theorem 4) that a divisible 

abelian group D can be written in the form

(^) N/ / 1 7 (^P)D = Q""/ xfplZ(p=)

for some cardinals k , . Suppose that for each i = 1, 2 ,

T T  /%.
D = xi lz(p*)(

P

then, by Lemma 6 , 6 and the distributive law,

D *D = 2p) (3)

Writing = ^^p^2p * (1)» (2) and (3) give

G *G = I 1 (P *P ) X x/ lz(p")( .1 2 igigk li 2x p

Now, by hypothesis ^Fi*^2i  ̂  ̂) are u)-stable

and since M z ( p ® ) ^  is a divisible abelian group, it, too, is 

uo-stable. Hence, since the direct product operation preserves 

stability (Tlieorem 1.3,16), is oj-stable, //

Although we cannot give an example where * fails to 

preserve o)-stability, our next result yields an instance of an 

unstable, nil-2 free product with one w-stable factor and one 

strictly-superstable factor: the group Z*Z(p“ ) . Further

examples of such a product are afforded by Proposition 6.12 and 

Theorem 6.13. For the definition of pseudo-order see Definitions 2.4 

6 olO Theorem

If A is a non-torsion nil-2 group with a basis and B is a 

nil- 2 group possessing elements of increasing and unbounded finite 

pseudo-order, then A*B is unstable.
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Proof

Let A be a nil-2 group with a basis. By Lemmas 2,5 and

3,3 it follows easily that if every generator of A has finite 

pseudo-order, then A must be torsion. Thus, if A is non-torsion, 

the basis for A must include at least one generator, say a, with 

o(a) = 00 . Let B be a nil-2 group possessing elements of increasing, 

unbounded finite pseudo-order. Then, there exist b^ in B ,

with o(bj^) = .< CO and kQ,,,k^ < k^^^ » each n ^ w ,

Set = kQ.,,k^ o We shall show that [a ™,b^] = 1  if and

only if n ^ m and hence, by Corollary 1,3.14 it will follow that 

A*B is unstable.

Now, if = 1 then [a.,b^^ = 1 and hence, by
I

the first normal form theorem (Theorem 3,7), b^^ 6 B' , since 

o(a) = 0 0 . But, by Lemma 2.5, this implies that

equivalently, k |k^.,.k , Since for n >  m we have k ^ k > &n' U m n riH-1 m
ait follows that n ^ m . Thus, [a ™,b^] = 1 implies n ^ m . 

Conversely, if n ^ m , then ^nd hence by Lemmas
a  i

2.3 and 2.5, [a ™,b^] = [a,b^"^ = 1 . //

6.11 Corollary

The nil-2 free product of an cjo-stable and a strictly- 

superstable group can be unstable.

Proof

Let A  = Z and B = Z(p°°) in Theorem 6.10 . //

Theorem 6.10 above shows that * can fail to preserve 

stability when one factor is not torsion. We next consider what 

happens when both factors possess elements of infinite order. We 

shall show, in Theorem 6,13, that when one factor in such a free
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product also possesses a basis and satisfies a simple condition, 

then the group is unstable. The proof of this result was motivated 

by the following considerations.

By a classical result of Mal’cev, the elementary theory of 

the free nil-2 group, ZvcZ , of rank 2 is undecidable, A proof 

of this is given in [21], section 15.3. Mal'cev shows how to 

introduce operations of addition and multiplication on the centre of 

Z-kZ thereby obtaining an interpretation in Z*Z of the ring of 

integers. G. Sabbagh has observed ([29]) that this enables one to 

show that Z*Z is unstable and we thank him for bringing this to 

our attention.

To make the key idea in our generalisation of this result 

as clear as possible we propose to prove first that the group Z*Q 

is unstable. This group is also of independent interest since it 

is yet another instance of Corollary 6,11, this time with both 

free factors being torsion-free.

Let a be a fixed generator of Z and b any fixed element of 

Q-JO) . The first normal form theorem (Theorem 3.7) yields a 

unique representation of the elements of Z ^  in the form 

a^q^[a,q^] , with k an integer and q^gq^ belonging to Q ,

Furthermore, it is easy to verify that for g 6 Z*Q ;

[a,g] = 1  if and only if g C Z modulo(Z*Q)' (1)

Let L deonte the language of groups and define formulae 

cp(u^,U2,u^,a,b), \|i(u,v,a,b) Ç L(Z^) by ;

(p(u ,u ,u ,a,b) = A  3v (u =[v ,b] a [a.v.] = 1)
 ̂ lâiâ3 ^ ^ ^ ^

A Vv ^V2((u^=[a,v^], A  '

^(u,v,a,b) = 3wp(u,w,v,a,b) .
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all elements of ZvcQ of the form [a,b]^ by

[a,b]” .[a,b]" = [a",b™] = [a,b]™" ; 

and \Jf (u,v) says that "u divides v" : that is,

 ̂(u,v) = 3 w(u*w = v) .

For each n E uj , set c^ = [a,b] . Then, we shall show that

(Z:?cQ) (= ^nd only if m  ̂  n .

This, together with Corollary 1.3.14, then yields that Z*Q is unstable, 

First assume that (Ẑ ^̂Q)"*" • Then, by (1) above,

there exists h = [a^,b] in Zi^ such that for all x, y satisfying

(a) = [a,x] ; and

(b) h = [y,b] with [a,y] = 1  ,
9^ kwe have c^ = [y,x] . But x = b and y = a satisfy (a) and (b)

m m  n m
and so, c^ = [a^,b^ ] = [a,b]^ ^ . Thus, [a,b]^ = [a,b]^ ^

and so, by the uniqueness of the representation of the elements

of Z'«Q , we have 2^ = k'2™ . It follows that m ̂  n .

Conversely, if m  ̂  n , then setting k = 2^ and h = [a,b]^ 
it is easily verified, using (1 ) above that

(ZvcQ)'̂ t= cp[c^,h,c^] . Hence, (ZvcQ)‘̂ |= \lr[ĉ ,ĉ ] .

This proves the following special case of our result,

6.12 Proposition

The nil-2 group Zî'cQ is unstable.

6.13 Theorem

Let A and B be non-torsion nil-2 groups such that A has 

a basis and an element of infinite pseudo-order with an abelian 

centraliser. Then, A*B is unstable.
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Proof

Let A and B satisfy the hypotheses. Then we may assume 

that A  has a basis |a^ : i 6 l) with o(a^) = m^ and m^ = #  ,

such that the centraliser |x 6 A : [Xga^] = l) of a^ is abelian.

We may also assume, as we did for A in the proof of Theorem 6.10, 

that B possesses at least one element, call it b^ , with o(bg) = oo ,

Using the first normal form theorem, the elements of A*B may

be written in the form ab I 1 [a.,b.] , with a ^ A , and
iei ^

b, b. € B satisfying

ab I 1 [a^^jbJ = 1 iff a = b = 1 and b^ € (B) . (1)
161 ^

First we obtain more information about the elements of A*B commuting

with aQ .

Let g = ab modulo(A*B)^ . If [a^gg] = 1 , then

[aQ,a][aQ,b] = 1 and so, by (1), [a^,a] = 1 and b € % ( B )  .

Thus, since Hœ(B) = B^ we have b 6 B' . It follows that

g = a modulo(A*B)' with a commuting with a^ , Since every

g of this form clearly commutes with a^ we have

[ag,g] = 1 iff g = a modulo(A*B)' with [a,a^ = 1 . (2),

Now we define the formulae which show that A*B is unstable:

cp(u^,U2 ,U3 ,ao,bo> = _ 3Vj^(Uj^= [v^.b^ A = 1 )
l=i=3

(I (UjV,aQ,bg) = awp(u,w,v,aQ,bQ> .
For each n C m , set

2"
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From the definitions and (1 ) and (2) above, we have that 

M  only if there exists a € A commuting

with a^ , such that for g = [a,b^ any pair x, y 6 A*B satisfying

(i) = [a^,x] ; and

(ii) g = [y,b^] with [a^,y] = 1 ,

also satisfies c^ = [y,x] .

First assume that (A*B)'^h= • Then, there exists

g = [a,b^] in A*B , for some a 6 A with [a^,a] = 1 such that 

any pair x, y satisfying (i) and (ii) also satisfies c^ = [y,x] .
gin

But X = bg and y = a satisfy (i) and (ii). Hence, c^ = [a,bQ ] ,

2* r . T T  ^or, [aQ,bQ ] = [a,bg ] . Then, if a =1 J a^^modulo A' we have,

2 \ - 2 -  ^  2 \
" i l l  [.i.bo ‘1 - 1 .

iÿ̂ O
2™a -2"

So, in particular, using (1) above, b^ € % ( B )  . But

Hpo(B) = B' and o(b^) = œ , so 2™#^ = 2^ from which it follows that

m # n . So (A*B)^(= implies that m  ̂  n ,

For the converse, assume that m  ̂  n and set k = 2^ ^ .
k kIt is obvious that a^ commutes with a^ so let g = [a^jb^ .

Assume that x, y E A*B satisfy conditions (i) and (ii) .

If X = ab modulo(A*B)' then (i) implies that 

[aq.bg ] = [ag,a][a^,b] and so, [a^,a][a^,bb^ ] = 1 . Thus,

_2™by (1), [ag,a] = 1 and bbg C B' , The latter implies that

b = bg modulo(A*B)' and so
2^

X = ab^ modulo(A^<B)' , where [a,a^] = 1 . (3)
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Using (2), (ii) Implies that = [y,b^ ,

where y |a,^ modulo(A*B)^ and [Ï la ^,a^] = 1 ,

# n - k  7— p a.
So, [a ,b ] I 1 [a ,b 1] = 1 and hence by (1 ), k = a  and 0 0 1 0 0

•b € lU (B) , for each i 0 . Thus,0

y = a^ I 1 a .̂  modulo(A*B) ' ̂ (4)
^ i^O

n
i/o

where b^^ € H (B) and [ I 1 a,^,a 1 = 1 • 
0 m. ' L 1 O'"

Now, (3) and (4) together with (1) and the fact that
1 _n -m . .k = 2 imply:

k T-T a. 2""
[y,x] = [a I 1 a i,ab_ ]

° i/o  ̂ °
  , m    «m

= [( 1 a“ i,a][a b 1 | l[a.,b “ ’’I
0 1̂ 0 1 ° ̂  i/o  ̂ °

FT “i 2"= [ I U . \ a ] [ a  b ]  .
i/o  ̂ 0 0
TT “iBut both a and I 1 a. belong to the centraliser of a^ which.
i/o ^

by hypothesis, is abelian. Hence [ I  1 a.^,a] = 1  and so,
i/o ^

2"[y.x] = [ag.bg] = , as required.

Thus, we have shown that (A*B) ^  4̂  ̂̂ m'^n^ and only

if m  ̂  n . By Corollary 1.3.14, it follows that A*B is unstable. //

6.14 Corollary (of the proof of Theorem 6.13)

If A is a torsion-free nil-2 group with a basis and B is 

a non-torsion nil-2 group, then A*B is unstable.
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Proof

Let A and B satisfy the hypothesis and ja^ : i C l)

be a basis for A with o(a ) = m . Now, since A is torsion-free,i i

if < 00 then a^ must belong to the centre of A ; otherwise,
m.

picking a Ç A with [a,a^] ^ 1 , we have [a,a^]  ̂ = 1 which is

a contradiction. Furthermore, if every m^ were finite then it

would follow that A was torsion. Thus, we may assume that m^ = oo , 

and for i 0 , either m^ = oo or if not, a^ E Z (A) .

As before, we choose b^ E B with o(bg) = œ ,

The additional hypothesis (namely, that a^ has an abelian

centraliser) in the statement of the theorem is used only in the 

proof that m = n implies (A*B)^ ^^^m’̂ n^ * Examining the

equation for y (see (4), above) we see that we now have
k T T  cy Off

y = a_ I I a.i modulo(A*B) , where if m. = œ , then b«^ E B and
" i^O 1

Off
and so = 0 and if m. < #  , then bg E H  (B) and a. E Z (A) .

i

Thus, with X  given by equation (3) we have, 

k T T  a, 2“/I 1[y,x] = [&Q I I ,abg ]
a^6Z(A)

k T T  <Ht k'2™ Tl" a. 2™
= [ a Q , a ]  I I [ a j ^ . a ]  [ a g . b ^  | | [ a ^ . b ^  ^ ]

aj^£Z(A) a,€Z(A)

= cn

as required. //
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6.15 Corollary (of 6.14)

Tlie nil-2 free product of two torsion-free nil-2 groups 

where one group has a basis is unstable.

6 ol6 Corollary (Sabbagh [29])

Every free nil-2 group of rank greater than 1 is unstable.

6.17 Corollary (of 6.16) (Sabbagh [29])

For each n ̂  2 , any free nilpotent group of class n and

rank greater than 1 is unstable.

Proof

Let F be a free nil-n group of rank s 2 with n s 2 .

We use induction on n . For n = 2 , this is just Corollary 6.16,

For n > 2 , set G = F/Z(F) and assume the Corollary is valid 

for all k with 2 ^ k < n . Since Z(F) is a definable subgroup 

of F , if F is % -stable then so is G (see Theorem 1.3.15).

But G is the nil-(n-l) group of rank = rank F and so by the

inductive hypothesis, G is unstable. Thus, F is unstable. //

This concludes the results which we have on the power of 

the nil-2 free product operation to preserve stability. A list of 

the questions we leave open is given at the end of this section.

The theorems we have proved here provide numerous examples 

of both stable and unstable nil-2 groups. Of course, our ultimate 

goal is to give a complete classification of all the stable nil- 2 

groups as we have already accomplished for abelian groups. The final 

proposition in this section is a first step in that direction.

Consider an arbitrary nil-2 group G and let A denote its 

associated abelian group G/G'. We recall that the subgroup 

H (G) , for n E w is defined byn

\ ( G )  = ( g V  : g 6 G , g' 6  G'i ,
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and it is easily verified that (G) is a normal subgroup of G .

Tlius, we may form the quotient group G/H^(G) . Indeed it is

evident that for m, n E uo with m| n , H^(G) is a normal subgroup

of H^(G) and so the group H ^ ( G ) ( G )  may also be formed. Since

A is abelian, (A) is just the group of all a^ , with a E A .

To maintain consistency with Chapter 2 we shall denote this group 

by nA . Then, the following lemma is easily verified by elementary 

group theoretic means. For the definition of tf(p,n;A) consult 

Definition 2.2.1.

6 . 1 8  Lemma

Let G be an arbitrary nil-2 group and A the abelian group 

G/G' . Then, for each prime p and integer n s 0 ,

H n(G)/H n+i(G)j = tf(p,n;A) , 
P P

Proof (Sketch)

For each g E G we denote the corresponding element gG^

of A by 'g . Then, the elements of p^A have the form g^ ,

with g E G . Setting H (G) = X and p^^^A = Y we define an
P

isomorphism 0 of H (G)/X onto p^A/Y by
P

n n
e (g^ X) = 'gP Y ,

The result now follows from the definition of tf(p,n;A) . //

The definition following gives the natural generalisation

of the term tf(p,n;A) to the variety of all nil-2 groups; the

lemma above justifies it,

6.19 Definition

If G is a nil-2 group and n a non-negative integer, then

tf(p,n;G) = tf(p,n;G/G') .
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Now, under the hypothesis that G' be definable, Theorem

1.3.15 shows that any stability possessed by G is passed on to 

the abelian group G/G' . So, using Theorem 2.4.4 and Corollary

2.4.6 we obtain the following necessary conditions for G to be 

(i) w-stable, and (ii) superstable.

6.20 Proposition

If G is a nil-2 group with a definable derived group then

(i) G is (jj-stable only if tf(p,n;G) = 1 almost everywhere;

(ii) G is superstable only if tf(p,n;G) is finite almost

everywhere.

6 .21 Counterexample

The example we give here shows that the converse of part (ii)

above is false. Let G = Z*Q . Then, by Proposition 6.12,

G is unstable. From Lemma 5.8, it is easy to see that G^ = Z(G)

and hence G' is definable. But for each prime p and integer n ̂  0

we have | H ^(G)/H (G)| = p and so, tf(p,n;G) is finite everywhere.
P P

6.22 Open Questions

I : Does Theorem 6.1 remain valid when we remove the hypothesis 

that C posess a G-suitable basis?

II : What happens in Theorem 6.3 (ii) if we do not make the assumption

on compatibility?

We can give a partial answer to this question in the case 

where the failure to be compatible results from both A and B 

possessing infinite Sylow p-subgroups for the same prime p .

6.23 Proposition

If A and B are nil-2 groups both possessing a basis and,

for some prime p , elements of increasing and unbounded finite

pseudo-order equal to a power of p , then A*B is unstable.
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Proof

Let A and B satisfy the hypotheses, Tlien, using Lemma 2.5

(ii), we may assume that the bases for A and B include generators 

of increasing and unbounded finite pseudo-order equal to a power of 

p . Choose generators a^, b^, n E uo , from these bases with

0 (3%) = P ", o(bn) = p^" and

0 < “ l < e i < “ 2 < P 2 < - " < “n < P n < “ n + l < ^ - H < -  '
n^n-lClearly, this may be done. Set = a^ and y^ = b^P .

Then, using the second normal form theorem, we have

&n"l

« gcd(p ,p )|p

Now, if m ̂  n , then and so gcd(p ™,p ^) = p

which divides p , since = &^-l . Conversely, if m >  n

then and so gcd(p °^,p^") = p^^ which clearly does not

9^-1divide p . Hence, [x^,y^] = 1  if and only if m  ̂  n , which

fact, together with Corollary 1.3.14, shows that A*B is unstable, //

III : Does the nil-2 free product operation preserve uo-stability?

In particular, are Q*Q and stable? (See Proposition 6.9)

IV : Is the converse of Proposition 6.20 (i) valid?

If open question III has a negative answer in the case of the group 

Z ^ t h e n  we are able to show that this question also has a negative

answer. Let G be the nil-2 group A*B , where A = B = and let

|a^ : n E uo) , |b^ : n E uo) be bases for A, B respectively. Then,

by Lemma 3.3 and Theorem 3.9, the elements of G can be written in



144
the form

n  [a ,bn  n  n  n  m , n  m ’ n-*
where 0 ^ o j8 ,v < 2 . Now, using Lemma 5,20 one easilyn ’̂ n’’m,n ’

shows that G' = Z(G) and hence is definable.

Furthermore, since

G* n even ;

H ^ ( G )  =  <

 ̂G is odd ,

it is clear that tf(p,n;G) = 1 almost everywhere. Thus, if the

group is not uj-stable it provides a counterexample

to the converse of Proposition 6.20 (i).

7. The Full Free Product

In this section we prove two theorems we obtained whilst 

working on the nil-2 free products and of relevance to the central 

questions raised in this chapter. Our first theorem shows that, 

unlike the direct product and the nil-2 free product, the full 

free product never preserves saturation; our second gives an 

analogous result for stability. As a consequence of the latter we 

prove that no free group is uj-stable, a result since superseded by 

Gibone [13], who has shown that no non-abelian free group is 

superstable. The question of whether they are stable at all remains 

open.

The proofs of both results are similar and derive from the 

observation that the abelian group Z is definable in every free 

product, A*B , with non-trivial factors. To see this we need the 

following well-known result from combinatorial group theory (see

[20], page 187, Corollary 4.1.6). Throughout this section,

* denotes the full free product.
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7.1 Lemma

Let A and B be non-trivial groups with a E A, b E B

and a, b different from 1 , Then, an element x in A*B

commutes with ab if and only if x E gpjab) ,

7.2 Theorem

If A and B are non-trivial groups, then A*B is not

even 2-saturated.

Proof

Let A and B be non-trivial and a E A, b E B any

elements different from 1 , Then, by the lemma, [x,ab] = 1 

if and only if x = (ab)^ , for some integer n , This shows that

the following type with one parameter is not realised in A*B :

p(u) = |u;/ (ab)^ : n E Z] U j[u,ab] = ij . //

7.3 Theorem

If A and B are non-trivial groups, then A*B is oj - unstable.

Proof

Let A and B be non-trivial and a E A , b E B be

different from 1 . Then, using the lemma, we see that the subgroup 

gpjab) is defined in A*B by the formula [u,ab] = 1 . Thus,

A*B contains a definable subgroup isomorphic to the integers 

which, as we know from Chapter 2, is strictly-superstable. It 

follows, from Theorem 1.3.15, that A*B is uj-unstable. //

7.4 Corollary (see also Gibone [13])

Every free group is u)-unstable.
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