THESE SUBMITTED FOR THE DENIES OR DOCTOR OF PHTLOSORTY September, 1969

The visual aston of the mimon (Phosimus Piosimals), whtherfic change and behaviour

by

 Bedford Collage

London University

ProQuest Number: 10098164

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098164
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ARSYRACT

The anatony of the retina was studied and counts were made of the rotinal elements. It was found that the rods aingle and double conea deerease in number centrally and the triplo and quadruple cones incrense centrally. The visual acuity colculated from the counts do not agree uith the acuity Pigures givan by other workers. The dorsel or ventrel parts of the retina were renoved surgically or clestroyed by high intensity light. The chromatic beheviour of these fish led to the conclusion that the whole of the retina is important for normal chromatic adaptation to white or bleck beclogrounds.

The anatory of the optie tract, chiasma, geniculate complex, and optic tectum are described. The fibres from the optic troct were tracod into the brain. The ability of the fish to adapt chromatise cally after cutting the optic tract and/or the ablation of tho optic tectum Indicated that the fibres which are important in background adaptation entez the geniculate complex from the retine and fron there sun to the tectum. In the tectum the ifinal interpretation of the background occurs.

The region where the ifbres involved in chromatic adaptation pass out of the tectum was identified and the isbres were treced to the medullary centre. This is deserdbed.

Encephalogrens were recorded from bipolas electroden in the optic tectum. The surface SeC amplitude appears to be correlatod with the retinel injut. Recordings from electrodes Implanted at different depths showed frequency changes assoclated with the tint of the beokground.

A possible hypothosis for the mechenism of the central nervoun control of colour change is proposed.

The pattern of tho loconotory behaviour of nomel, blind, ond tectal dennged fish in conditions os limited confinoment are desertbod and the rolle of the optic tectum in the control of general and motor behaviour are discussed.

It is exporinentally demonstsated that the optic tectum pleys an important rôle in the control of the Meuthner cells of the medulle, and the relationship between the toetum and the Matuthner celle is discussed.

$$
6
$$

CONTENTS

ABstracy

$$
4-5
$$

Section 1. IULRODUCTIOM
I. The Eye $12-19$
II. The visual system in the brain 19-22
III. Blectrical ectivity in the tectum 22
Iv. Blinding and locomotory behaviour 22-23
V. The optic tectum as on integrating centre $23-24$
VI. The optic tectum and notor activity 24-27
VII. Habltuation in teleost Pish $27-29$
VIII. The optic tectum and leoming $29-32$
IX. Conelusion 31. -32
Section 2. Ggugrat Merions ADD HESTC,OCX
I. Source and generel treatment of fish 33-34
II. Botimation of the colour of the fish $34-37$
III. Operative technique 37-40
IV. Histologicel procedures $42-49$
Section 3. THE E2E
I. Goneral anatony $50-55$

| II. Distribution of retinal receptors | $55-65$ |
| :--- | :--- | :--- |
| III. Results and discussion of obsorvations on | |
| | |
| retinal receptors | |$\quad 65-74$

Section 4. THE VTSWA. SYSTEM XI THE BRATN

I. The optice tract $99-104$
II. The optic chrasma

104-109
III. The optic tract in the brain 109-114
IV. The goniculate complex $1214-126$
v. The optic tectum

127-134

Section 5 BLTIDTE

$235-1 / 42$

Section 6 THE ORTC TPCROM AD COLOUR CHACE

I. Removal of the optic tectuan in normal fish
$142-149$
II. Unilateral tectol removal and unilateral blinaing
$149-152$
III. Tectel removal in blind fish $152-253$
IV. Isolation of the tectal region to cause peling in blind minnows

153-162
V. The removal of parts of the optic tectum in normal fish $162-186$
VI. Discussion $186-198$

Section 7 TR E YMDTHWARY CENTRE
I. Method $199-202$
II. Results
$202-211$
2II. Discussion $212-213$

Section 8 WBCTRTCAL ACTIVITY IN THE SECY
Z. Methods and apparatus 217-223
II. The superficial encephalogram pattern

223-230
III. The encephalogram pattern following anaesthetics 230
IV. The Wig pattern in darkness $\quad 230-233$
V. The ESGE and blinding $233-237$
VI. The strike following background reversal.
$23^{77}-253$
VII. Discussion
$254-262$

Section 9 concurs TOMS ON THE CONT ROK OE OHROMAT TC
ADAPtATION TN THE MHO
I. Woricing hypothesis for colour change
$263-270$
II. Comparison of the working hypothesis with other theories on the central nervous control. of colour change
Section 10 THR OPS TC TEGTM AND MOROR BEHAV TOUR
T. The nornal fish $274-279$
II. Tectel removel in nomnel fish $230-282$
TII. Blind eish $282-289$
IV. Blind fish with tectal damoge $290-291$
V. Discussion $292-297$
Section 11 THI OPDTC PECTYM AND HABEXUATION 293
I. Stimulus and response $299-302$
II. Results $302-312$
III. Discussion $312-329$
$320-327$
Section 12 SUMPARY328
ACHOMGEDEMEMS
BIBLTOGRAPHY
$329-346$
347.
ATENDMEMTK

SECIION1: ImPropuction

1. THE EXE

(a) Anatomy

A cons1derable volume of work has been done on the teleostean eye, especially the anatomy of the retina, the more notable contributions being by Franz (1913), Verrier (1923), Nunder (1925, 1930), Molwan (1938), Walla (1942), Lyall (1956, 1957 a,b.), Brett \& Ali (1958), Engatrbm (1960, 1961, 1963 a,b.) Engstrbm \& Ahlbert (1963), 0^{\prime} Connell (1963), and Blexter \& Jones (1967).

The eye of the minnow has been worked on by von Frisch (1925), Wunder (1925, 1930), Drwinner (2935), Lyall (1956, 1957 b) and Engstrdm (1960). They all reported the presence of rods and of single and double cones, but only the work of Lyall and of Engstrbm weported the presence of triple and quedruple cones.

Brunner (1935) mado behovioural studies of the visual acuity of the mimow eye and found that the minimun soparable visual angle was about 31'. Unfortunately, this work was not extended and this figure only applies to one region of the retina.

(b) The eve and colour changes

The eye has been lonom from the time of Listor (1858) to be the primery organ concarned with colour change in chromatic animals. Pouchet (1876,1872) found that if the eyes vere removed the frout, Salmo tratta, could not change colour or adapt to the bacleground. The firgt exporiments to be perforned on the eye, and colour change, the eyes of were by von Frisch (1912), who covered htrout, Salme tryita, evee with a. mixture of lempblack and vasoline. This usually foll off after a period of 15 minutes or less. Covering the whole eye regulted in non-naximel darkoning of the whole body; covering the lower half of the eye reoulted in ereator darkening than that following complete covering of the eye or their romoval ($\mathrm{p}, 18$) ; covering the upper part of the eye had no offect. From this he coneluded that the dork colouring depends on the contrast observed in a daribened background. The main oriticism of this work is that the covers wore not impervious to 1ight and that the observation period was too small.

Sumner (1933), working on Eundulus narvipimnis, perfomed similer experiments to von Priseh but used false corneas made of colloidin which could be fisod ovor the eye and could be made black or transparent. The colour of the fish was always compared to normsl fish aubjected to the same conditions without the blinders. By varying the amount of black and transparent celloidin the dorsal and ventral retina region could be separately darkenod. Darkoning the lower half of the visual field
resulted in pronounced darkening; covering the upper half resulted in no change on a white background, but the fish wore pailer than controls when placed on a darik grey baekground. These results confirmed those of von Frisch (1911) and Sumer concluded that thoy supportod the view that the shade the fish ansume on a given background is determined by the relative Iuninosity of the uppor and Iower portions of the visual fields, the latter acting in a positive sense and the former In a nogative sense. The resulto wero far from conclusive, for he reported that many fish had very badly danaged eyes $_{*}$ and that the fish with transparent comeas gave differont results from nomal fish and seldom became maximally pale on a white background.

Butcher \& Adelmann (1937) also attempted to cover various parts of the oye by using thick paper blinders which were fixed by slipping them under a series of stiches made in a rectangular aree around the eye. They concluded that in Rundulus heteroclitus when nelther hale of the oye is stimulated the skin assunes an intermedsate colour; whon the light is on the upper part of tho retina the skin Iightens; when the lower part of the retina is stimulated, in the absence of stimulis. to the upper, darkening reavits.

In a further series of experiments Butcher (1937 a,b, $1938 \mathrm{a}, \mathrm{b}$, 1939) investigated the different portions of the retina in relation to colour responses. By a series of similar covering experiments on Bundulue coupled with superior and inferior illumination, ho concluded
that atimulation of the upper retina resulted in lightening and of the lowor in darkening and that these form two distinot regions with rogard to colour change control. He rotated the eye by 180° ond also placed the fish in tubes so that illimination could bo reversed and, finally, made cuts to dostroy verious regions of the eye. When the dorsel rogion was destroyed the fish was darik on a white or black background and intermediate in tint in total darimess; and when the out was made In the lowor rogion of the oye the animel was pele on a white and interuadiate on a. black background. Butcher ($1937 \mathrm{a}, \mathrm{b}, 1938 \mathrm{~b}$) studiod the retina of Fundulus, and found that there were sfingle and double cones in the dorsal retina but oniy double cones in the ventral retina, and thet the rods were fairly well distributed. The double cones ahoved a fairly unfform distribution of about 12 per 100μ. He therefore demonstrated that not only are the different regions of the retina physiologically difforent t_{χ} but that thoy also diffor anatomically. Finally Butcher (1939) tested the effect of direct and reflected lifitt by confining the fish in class tubes in crystallizing dishes, the lattor being 1 inod with black papor. The dishes wore illuminated from above and below and it was possible to 11 mit the area of dorsal and ventral inlumination. Some fish poled when the ratio of direct to reflected 13 ght was $50: 10$. He coneluded that the peling depends upon the white area seen by the fish, and that paling is more easily elicitod when the lower region of the eye is not illuminated at the same time as the upper, According to Butchor, the shade of Eymdulus
depends upon the ratio of direct and reflected light entering the aye. As the proportion of reflected light to the upper region of the eye is incroased, there is induced a proportional increase in an inhibitoxy reaclion which couses a reduction in the degroe of darkening of the fish,

Butcher's work is open to numerous criticisms, the first, and perhape the most important, being that no accurate record of the colour was taken. The sequonce of colours recordod by Butchor was lisht-lightish-intemediate-daricishodark. Such a sories has no quantitative meaning. Secondly, the results he did obtain were for from conclusive and at best gave only general indications. In nearly all recorded cases the fish showed two tendencies; for exomple, 77 fish were tested on the black when the light was from below and the upper helf of the eye coverod. Of these 29 paled and 48 were intemediate, hence only 29 poled, and we have no way of estimating how dark intermediate is. Thirdiy, in considering the eye in relationship to colour chenge he did not take into account the optical properties of the oye. Founthly, he made no mention of the sidos of the containers. It was show by Sumner (1911) tainin Rhomboidichthves and Lophopgetta, that the sides of the containers are importent in normal chromatic adaptation.

Butcher was not the only one to propose the ratio hypothesis, for as oerly as 1904. Koeble \& Gamble stated "that on the white and black grounds the animal appoels for pignent-guidance to the amount of light scattored or absorbed from the ground; or, as wo put it previously,
it is the reaction to the ratio direct/reflectod light ${ }^{\beta}$.

Susner \& Keys (1929) usine Hypsopsetts guttulata, by varing the 11lumination, obtoinod reaulte consistent with the ratiop hypothesis, but unlike Butcher stated that the ratio muat not be construed in any strictly quantitative sense. Thoy went on to say that generally speaking the shade assurned by the fish depends directly upon the light reflectod from the substratum and inversely upon tho intensity from above.

Hogbon \& Lendgrebe (1940) el.so considered that tho ratio must not bo construed in ony quantitative sense. They vent further than Butcher in the localisation of the retina involved in chroratic responses. By measuring the refractive index of the lens and oxamining the generel optics of the eye of Gasterosteus acnleatus, as well as by using superior and inferior illuranation on various baekgrounds, they concluded that the photoreceptors concorned with the black baclgeround responsen are located in the floox of the rotina bolou the optic nerve. The photoreceptors concerned with the white background responses are located in a restricted region in the central rotina above and below the optic nerve. With reapect to colour change the dorsal region is noutral. These results present many problens, for all the concepts aro based on theoretically calculated regions of the retina without taking into account light scattered or reflected from the wells. In fact, the colours of the fish were recordod in an apperatus with walls which
both reflocted and scattered the light. The second dipfioulty in this work is that the conclusions regarding those rogions apply only In the experimental conditions; they ignore the fact that the figh will normally be Rwimming at a variety of depths so that the fmage falling on the aye from the backerround will vary.

Not all workers support the ratio hypothesis. Mast (1916) using Parslichthys and Ancylonsotte performed a aeries of oxperiments In an apparatus where the illumation could be varied from above and from below the fish. Using this apparatus he found thet the fish did not become spotted on a apotted background, that they pale moximally even on the grey paper, and that in other conditions where one would oxpect dnrkoning aocording to tho ratio hypothysis if the ilah is already pale they remained so. He concluded that the reaction of colour chenge is not as simple as the ratio hypothesis would indicate. Sinilariy, Danielson (1939, 1943) using Woconis and gomotilus coneluded that although all parts of the eye are not equivalent, the state of the melanophores appear to be deternined not by the atimulation of any particular region of the retina but by the contrest in the visual. Pield as a. whole.

(c) Blindins and colour chance

After complete blinding the majority of fiah that have been atudied go darix p (Pouchot; 1872, 1876; Butendijk, 1912; von Prisch, 1911. Polimanti, 1912; Bray, 1918; Murisier, 1920; Abolin, 1925; Surner, 1911,

1933; Parker, Brom \& Odiome, 1935; Parker, 1939; Osborn, 1939).

Von Prisch found in the mimou that the elah were very darik when first blinded but showed a very varlahle colour within a fou days; in darlness they becane peler. Abolin however in 1925 reported that after the loss of both eyes Phoxinus oxhibited moderately expended chromatophores.

While the logs of one eye does not effect the ability of many fish to change colour, von Prisch (1911) found that in the trout blinding one oye resulted in darkoning one side of the body. Sumner (1933) reported that in the Fundulys if one eye was removed the fish could not adapt fullyy to a white beckground, this effect being general over the whole of the body.

IT. THE VISUAL SYSTEM TH THE BRATH

(a) Anatony

The general anatony of the brain, especially the visual system, has boen atudied in a very vide varlety of fish by Bellonet (1888), Herrick (1991, 1392), Goldstein (1905), Kappers (1906), Cajal (1909), Franz (1.912), Holugren (1920), Burr (1928), Bricloner (1929), Jansen (1929), Jeoner (1930), Neader (1934), Leghissa (1955), Ohta (1959), Tandon \& Shame (1963), Schnitziein (1959, 1964). Experimental woric on the apatomy of the degenerating retino-tectal pethwoy hes been performed by Lubson (1921) on Lenciscus rutilus, Strber (1940), Akert
(1949 b) on Salma Eairdnorit, Schwassian \& Kruger (1965) on Carasstug suratuse Rogeneration studies on the goldfish (Caxassius auratus) vere mado by Attardi \& 8 perry $(1960,1963)$ and Cronlymillon, Sutherland \& Wolfe (1966). Electrophysiological studies were made on the retinal tectal profection by Bursor \& Dussardier (1953) on Amefurus, Gypeinus anenio, Tincs tincs, and Schade \& Weiler (1959) and Jacobson \& Caze (1964) on Gamssius surzatus.

The general conclusion from the work on the retinal-tectal proJection is thet the projection is very regular and, at least in Pish with good vision, very precise, 30 that every point on the retina is representod by an area in the tectum. In general the poriphery of the rotina is represented by the extreme dorsel or ventral tectun, and the contral rotina by the central tectum. The main difficulty is thet the results of Buser \& Dussardier, on the coxp and tench, Attardi and Sperry, Legissa and Cronlymillon, Sutherland and Wolfe on the Goldetah, Iubson on Levciscug and Akert using the Salmo, show that the ventral retina gives fibres, which run in the medial brachitur, to the dorsal tecturn, and that the dorsal retinal fibres zun to give the lateral brachium and end in the ventral tectum. This meang that the projection is essentially reversed so that the ventral retine runs to the dorsal tectum. The work of Jacobson \& Gase, and Schwassman \& Kruger, however, demonstrated that the dorsal retina is relayed to the dorsal toctua in the golafish. This conflioting account in the golafish seoms very diffioult to explain.
(b) Relationghip to Colour ohange

Vory little work has been done on the relation of the central. nervous system to chromatic adaptation and this has been almost wholly confined to the minow.

Von Frisch (2912) performed a sories of eutting experiments on the brein of the minnow and found that if tho brain was out at a level. just anterior to tho medulla the Pish peled. This poling could be induced if the cuts wore made at some levels anterior to this but if the medull a was separated from the spinal cord the Pish daricened. Re also stimulated the brain of the minnow with an induction cofl and found thet if the medulla was stimulated the fish rapidly paled. Stimulation of the tectum or the cerebellum had no effect but stimulation of the dioncephalon produced darkening. Bo coneluded that there was a contre, "Auchellungszentrum", situated in tho medulla which caused the fish to pala and that there was possibly another centro in the dioncepbalon which inhibtod the poling centro and so cnused darkening.

B1jkgraat (1949) found that the darkening which appears in the normal minnow after blinding occurs only slightly or not at all if, instead, the blinding is accomplished by the removal of the optic tectum. If in an eyeless derkenod minnow the tectum is removed on the one side only, there is no change in the tint of the skin, but after removel of the romaining half of the tectum there is a pronouced peling which partially peraists, According to Michors (cited in llealey,
1957), after complete removal of the optic tectum in the nomal. minnoutg or unilateral renoval of the tectum and of the eye on the same side, the fish cannot see, but still oxhibits colour changes modiated. by the other eye. It would seem from this that the paths of the e2bros from the rotina to the autonomic chain avoid the toctum. My, then, does the blinded isish pale when the tectum is renoved?

IIT. WIGCRRICAL ACKIVIXY IN THE TGGRM

A large anount of informetion has been gathered by unit rocording from single electrodes as a rosult of a Mash of light by the work of Buser (1949 a, b, 1950), Schade \& Weiler (1959), Kontahs (1960 a, b), Schade (3962), Jacobson \& Gaze (1964), Gaze, Jacobson \& Sharma (1967). In rolation to light Intensity the tectum hes boon investigated by means of recording oncephalograns. Two spocies of fish have been investigated. Enger (2957) recorded encephalograns from frec swinming codeish Gadug horhua, and Schade \& Veiler (1959) ond Schade (1962) on the goldetsh Caressiug auratugs. Uniortunately the worlc of Karomlen, Vesselkin, Belelchova \& Zagorvilea (1967) did not include a teloost isish.

IV. BLYMDTMG AMD LOCOMOTORY BEHAV TOUR

Very 1ittle work has been done on the locmotory behaviour of blinded fish. Von Frisch (1912) and Dijlggraaf (1949) zeported that blinded minnows foed but that Instead of telcing the food as It falls from the surface, find it by searching on the floor of the aquarium.

Dijkgraif (1949) also reported that blinded fish at first collide with the walla of the aquariun but soon learn, and thene collisions become very infirequent.

Keonloysido (1955) reported tho failure of blinded Phoxinus to sehool.

Harden Jones (1956) has described the activity of blinded minnows In taniss and found that there was no inherent datly rhythm of activity. The fish were in general active during the day and quiet at night but the behaviour was reversed if they vere given air-bricks in which they could
Leen take cover. Woodheed (1956) studied minnows in a light gradient and found that they were restricted in their movoments by light above an intensity which loy between 0.2 and $0.002 \mathrm{~m} \cdot \mathrm{C}$.

No observations have been mado on either blinded or nomal fish in confined spaces which only allou inited isovement.

V. THE OPTIC SGGUM AS AN INYKRGRATMG CEMKE

The importance of the tectum as a correlating contre of other functions than vision was proposed as Iong ago as 1875 by Sir Richard Owen (cited in Dexter, 1966), who wrote concerning the optic lobee of the blind fish Amblyondis spelequg, that since they are both present they camot be exclusively the central ganglion of the optic norve, nor can their sole function be that of receiving the impressions of the
sonse of sieht and making them percoptible, as ideas, by the animel. More recently Charlton (1933), working on the anatomy of the blind fish Troplychtivs xogas and Tymhlichthys efremmand. found that in these forms It is only the optic tract and the layor into wach the optic tract runs, which are lost, and that the layers 4,5 and 6 are very well devoloped (p. 132).

In considering the eeneral. fibre connections of the optic tectum reeentzy Schnitzlein (1964) concluded that the optic tectram has a very important correlating function,

Sperry (1950), working on the goldafish, found that forced eireling produced by visual imversion could be abolished by the ablation of the tectung of the rotated eye and stated that these findings point to the optic lobe as the primary intergrative centre.

In 1864 Boudelot fornd that unilateral lesions in the bese of the midbrain of fishes are followed by rolling novements to the unoperated side. Two years later Vulpian reponted rolling nad cirms movemente following removal of the midbrain roof. Sincecthen a number of workers have roported disturbances in belance following tectal lesion or romoval. (Traube-Mentarini 1884, Loob \& Dethe 1899, Loeb 1891, 1901, Polinnati 1911, 191.2 2, b, Heisinger 191.5, Hizzo 1929, 1932) and others have reported disturbances in breathing movoments (Springer 1929).

Muskena (1930) made lesions in the midbrain of the goldfish and noted the forced movoments whioh folloved. He distinguiched such movemonts as being prodominantly in the horisontal and vertical planes and corrolated those types of novement with specific regions of the midbrain.

More recontly Kirache \& Kirsche (1961) porformed an extensive serles of experimonts on Carasgtus carasstuk, in which they removed progressively larger areas of the optic tectum by means of a rosetipped drill. They reported extensive bending of the body to the unoporated aide, circus movements, and turning on their axes of motion, the more extensive the lesion the greater the disturbance found. In some casos the fish recovered and appoared normal after $30-60$ days but on raising the temperature they showed abnomalitios again; henee the fish were only nomal under constant conditions. Botsch (1960) reportod similar disturbances in motor patterns following tectal damage.

Steiner (1888), Rizzolo (2929) and Diflegraef (1949) did not report any disturbance following the removal of the tectum. Diflgrasaf removed the optic tefctum, including the torns Longitudinalis, on one side and on both aides in the minnow (Phoxinus). As long as the operation is carriod out without damaging the torid simicirulexes, which lie below the tectum, the animals swim nomally, maintain balance and foed uithout hesitation. After the removal of the tectum on one side the fish is blind on the other side, and when swimaing slowly there is a slight
tilting of the fish to the seelng eye. Dijkgraaf stressed the importance of tho tori somicirculares whereas K1rsche \& Kirsche (1961) and Botsch (1960) make no montion of them, and from the photomicrographs presented by these last throo workers onnsiderable injury conld be seen in both the tori and also in the valvula cerebelli. Lesions in the valvulae may also give riso to locomotory disturbances ws woll as impaired viaion and hearing (Karanion 2949).

Chauchard \& Chauchard (1927 a) invectigated the motor eignificance of the tectum by electrical stimulation. They found that if Hugil curatug was atimulated in different perts of the tectum movements of various parts of the body verc elicitod, 0.g. stimulation of the anterior region of the modian aurface of one lobe produced movenents of the tall towerds the opposite side and the spreading out of the caudel fin. Using $2 x i$ in manaring they found that by stimulating various points in the tectum they wore alle to set in action the pectoral fin rays which are used for cravling on the bottom. They coneluded that they were delinite locslised motor areas in the optic tectun. In another paper $(1927 \mathrm{~b})$ they roported chronexie values of the order of 0.0002 sec , These resulta have been confilmed in general by ten Cate (1930), and ten Cate \& ten Gate (1932) on elasmobranchs and more recently by Kirpche \& Kirsche (1961) on the Caxaspius caragsiug.

Akert ($1947,1949 \mathrm{a}, \mathrm{b})$ did not agree with the conclusions of Chauchard \& Chauchard (1927 a) and in a series of experiments on Salmo
gairdnerit, by atimulation of the tectum, he obtained first eye movements, than movements of the peired and unpaired fins, and einally beats of the tail. The whole auccession gave the impression of active movemonts toward some goal. Akert also studied the retinomtectal. projection and correlated this with the results of the stimulation, to find that the projection of the tomporgl visual field gereed well with the area associated with contra-and ipsiversive turning. He concluded that physiologically this aree, excited by a stimulus arising in the corner of the temporal fleld, brings about a position of the eyes and of the body axis so that there is either a turning toward or awey from the object percoived.

As there appear to be differences between the results of Diflgraal, Akert, and the other workers, Healey (1957) has suggested. that it is conceivable that some lesions in the tectur may be followed by positional and motor irregularities rather because they remove certain elements from the total complex modifying system, and throw the output of the romainder into a state of unblance, than bocause they atimulate spectific regions. On the other hand, romoval of the entire teotum or of one complete lobe may not introduce any unbalance modiification by way of the tectompinel tracts.

VIT. HABTMUATON II TKEROST ETSH

Mobius (2873) was the firat to record this typo of learning in teleost fish. He found that when a pike, Egox. Iucius, was kept
separated from a muber of minnows by a glass partition, it ceased snapping at thom through the glass after a while and, when the glass was finoily removed, never attackod thom.

Fear responses have been recorded by a number of workers (Hoar 1958; Norris 1958; Russo11. 1931; Braw 1961; Barlow 1962) but waning of response to a repeatod stinulus, i.0. habituation, has only beon reported a few timos (Breder \& fialpern 1946; Keenloyside 1955; Barlow 1962; Rodgers, Melzack \& Segal 1963; Mussell 1967 a, b), and of these the only detalled studies of responso decrement are by Podgers ot aly (1963), and Russell (1967 a).

Russel1 (1967 a) studiod the fear response of Leblstes to a repented shadow stimulus and Pound that the first and most characterm istic featuro was the "jerk reaponse", which was a multiple tail beat. Frequent repetition of the shadow (2 minute intervals) reaulted in the intonse tail-beat of the early reaponsos giving way to a less intense response, and finelly the only orientation responses were elicited. A significant decrease in the number and intensity of the jerles occurred after 40 stimulis.

Podgor ot nil (1963) found that goldeish, Carssgius aurgtug, rese pondod to a pressure weve and to visual stimuli to give the tail-flip, but that the nost effective stinulus was the pressure wave, and the visurl stimuli alone only gave the rosponse when the fish was swivming
at the surface. They gave the fish ten taps a day at the rate of one a. minute, nnd demonstrated signipicant response decrenent over a pertod of 15 consecutive testing days.

It seons from the work of Retalaff (1957), Grahen \& 0'Leary (1941), Retzinef \& Fontaine (1960), Berkouitz (1956), and Wilson (1959) that this tail-filip is due to the activity of the liauthner colls in the medulla. Each Mouthner coll receives afferent fibres from the efghth cranial nerve (Retzlaff 1957) and also from the optic toctum (Bartelmez, 1915; Kappers et ad, 1936). It seems therofore that the tectur can elicit the tail-filip response but the exact relationship between the tectun and the Mauthnorian apparatus is not know.

VIIT. THE OFSTC TECTUY AD TBSARIMIG

Sears (1934) studicd the effect of lesions of the optic tectum upon purely visual conditioned reßlexas in the goldeish. A jet of water was used as the unconditioned stimulus, and 11 ght as the conditioned. He found that partial ablation of the optic cortex had no effect on either the eye-movement reflex or the start reflex to bright light. Preoperntively loarned responsea were retained without apporent change after the operation, and there was some ovidence that the prom cess of experimentel extinction took place more rapidly following the renoval of the optic cortex. He did not, however, remove the whole of the tectum and left the anterior part untouohed together with large mounts of the lateral parts.

Sonders (1940) performed a series of optic lobe ablations on the goldelsh, training them in a situation with olfactory, and thon optical stimuli. He found that the removel of large areas of the tectum or cuts made at its anterior border canses disturbances in the second order learning. He concluded that there exists in the teleostoan optitio tectum a mechentsm capable of secondmorder olfactorym optic learning.

Diflegraaf (1949) trained minnows to respond to an auditory stimulus and demonstratod thet their mesponse did not depend upon the optic tectrm, the complete removel of the tectum on both sides causing no deterioration in the training to a frequency of $1650 \mathrm{c} \cdot$. 5 .

More recently Botsch (1960) demonstrated the importance of the toctum in learning by a series of exporiments on the carp, Carasitus carassivg, using point and line models. He trained than to go to a particular pattern and them tested their retention and transposition before and after tectel removal. The resulta showed that after extixpetion of $20-75 \%$ of the tectum the fish corld still Iearn visual discrimination but needed on average 36% more training to bring them up to the statistical steady leaming-success of nomnal controls. He also found that the post-operative loss in performance agroes with the extent of the lesion, concluding that the findings confim Lashley's (2931) "role of mass" against locolisation.

Prosser (1965) was unable to show any conclusive results when he tried to analyse the tectum alectrophysiologically follouing the conditioning of the fish to various tomperatuxes.

IX. Conclus fom

This consideration of previoun work on the rolotionohips in teleost fish between the visual aystem, coloux change and certain that
aspects of bohaviour leads to the conclusion /very little information is available and that with regard to all of them what is available is highly inconclusive. The work to be alesertbed is an attempt to analyse the visual system of the minnow by a variety of mothods in order to thow further light on some aspects of these relationships.

A number of experinents were caxried out to try to explain the following problems.

1. No measurements have been made of the mabber of receptor cells In the eye of Phoxinge. The eye of the minnow has not been studfed in relation to colouir ohange. (Section 1 a, b. page 12).

munnaw

2. No accurate record of the colour of blinded has been talten. (Section 1 c. page 18).
3. Except for a few observations by Wichers (cited in Hoeley, 1957), and by Bhargava (1967) the visual system of Phoximas has not
boon situdied. (Section II a. poge 19).
4. Hetther the itbre pethreys to the medullary eentre, nor the brain centres anterior to the medulla which are involved in chromatic acleptation are known. (Section II b. page 21).
5. No recordings have been made of the electrical ectivity of the bxein of the mimow. (Section III. page 22).
6. Ho observations have bean made on either blinded or nowal fish In confinod speces which only ellow 1 inited movement. (Seetion IV. page 22).
7. 至 would appear from the dibcussion in Section VII. pege 27 that the tectum can elloit the tail-2ip response but the exact relationship between the tectum and the Mauthnerian apparatus is not lmown.
8. The rolationship between the tectum, Leeming and motor activity is inconclusive (Section VIII. page 29 , Section VI. page 24) and meny of the results contradictory. Further experimonts are therefore necessary to confim or dony the previous findings.

SECTI OH2. 2 GENERAL METHONS AND HTSTOLOGY

I. SOURCE AND CEUERAL TREATYGNT OF THE FTSB

Fish were collected during the summer months from the river Lea in Hertfordishire. They were used for most of the exporiments, but os they had a very high infestation of the brain parasite Dinlogtomium, they wore not used for the recordings in part 7 pege 214 , or for the retinal. work. Fish for the encephologram recordings and eye work were collected from the river Chess outside Rickmansworth. These had only v very few, if any, parasites in their brains or eyes.

The Pish were kopt in large sinks in the laboratory and supplited with running water and air. These sinks were on intermediate grey colour on the inaide in order to onsure that the fish maintained the ability to show a good range of colour change. The fish were fed about three times a week on mineed ox heart and about once a woek on heart mixad with stabllised wheat germ (Bomax) to provide them with the necessary vitumins.

A11 the fish used were at loast Gem long and of both sexes. Comm paring them with the tables given by Frost (1943) indiceted that they were adults of about three years of age. Before any of the fish were used in experiments thoy were tested to make sure that they perfomed normal colour change and thet they formed a homogeneous group in their extent of chrometic adaptation.

IT. BSTMMATMOL OF THE OOLOUH OF THE ETSH

The ninnow shows a merked degree of excitement-pallor when handled. The mothod whore the colour of the fish is compered by the neked eye with a serfes of nine standard groy tints derived from the Ostwald WhitearaymBlack serios (Healey 1967) was usod therofore. These grey tints are given nunbers ranging from 0 (very light grey), to 8 (very dork erey); the six intermediato greys fom a series where the differonce between each grey appears to bo equel to the experimentor. For the salce of convenience these mubers are reforred to as the Derived Ostwald Index ($D .0, I_{0}$) and they have the following values in terms of white content:

D.0.I.	0	1	2	3	4	5	6	7	8
\% Milte	71	45	28	18	11	7.1	4.5	2.8	1.3

In genoral, the fish kept on a grey beckground do not shov the
whole range within a period of 30 minutes , and for these fish the effoctive acele used in teating was more $14 k 0$ D.O.I. 1 to 7.5 , and in practice it proved very difficult to estimate below 1 or above 7.5.

These standard greys wore made with IIford photographic paper and mounted on both black and white carl sefe to hable won whem with the fish on either beckground. This series is shom in Pig. 1 p. 37 .

To test the colour of the fish they were placed in litre beakers containing 8 cm of water and these wore thon placed in larger containers mede out of metel and peinted white or black. Theae large conteiners contained water and were scm doep. The 471 unination was by moans of a 40 W Oxran frosted bulb, suspended about 18 Ins. above the surface of the water. The background could then be changed by transfarring the boakors with tho minimun disturbance to the Pish. During the experiments there the fish vere kept for long periods on a bleck or white beckground, they were placed in experimental aquaria. These and were made of glass, and measured $35 \times 20 \times 22$ inches, h were painted black or white on the outaide, and partitioned internally into 4 equal compertments by means of black or white perspers.

Unless apecially nentioned, the temperature was not controlled and ranged from 1.5 to $20^{\circ} \mathrm{C}$.

$$
1.3 t 9
$$

, FTos tor fit bmg

Fig. 1

The Derived Ostwald series of greys mounted on white and black card.

Fig. 1

I11. OPERATIVE TVCHMTOUE

During the course of the operations the fish ware anaosthetized using MS. 222 (Tricaine mothane-sulphonate. Sandoz). A wide range of concentrations was tested on the fish and it was found that an 0,008 s solution in tap water wes sufficiont to aneesthetise them fully so that they $d 2 d$ not respond to a cut being made in the body wall. Using this concentration the fish take a somewhat variable time to become deoply anaesthetised, but usually this is about 2 minutos. They showed a very rapid rocovery, and would comence to swim after being roturned to tap water in about 4 minutes. The fish will survive for more than an hour in a 0.008% iss 222 solution, becoming fully dark and showing a slight decrease in the reapiratory rate.

It was reported by the memufacturers (Sandoz), that a solution of 15.222 was fairly stable at roon temperature, the activity only decreasing slightly. In practice, these very dilute solutions were found to be so unstable that within a weolk the solution was no longer effective. It was therefore olways mede up freshly before a serfes of experiments.

Aftor a fish was anaesthetised in a beaker it was placod on the operating board. This consisted of a zinc tray measuring $4 x .5$ inchen filled with paraffin wost. In the wax were ombedded two rows of pins and

In the contre of the wax a groove was cut so that the fish would fit into it. Respiratory water was fod in direct through a tubo in the mouth, and this served to hold the eish still while, in addition, on -lastic band wes attached to the pins and over the efsh to hold it more securely. The fish was prevented from drying by placing moistened ellter paper all round 14 . The reapiratory water was contained in Winchester (uert bottloe on a shelf above the table and syphoned down into the mouthpiece. An additional syphon was placed on this ahelf containing ringer (Young 1933) whose composition was :-
$\mathrm{NaOl}5 .5 .5$ grans
KC1 0.14 grans
$\mathrm{CaOl}_{2} \ldots \ldots0 .11$ grams
made up to a litro in tap water. The ringer ran into a fine glass tube with a fine point and wes used to wash awoy the blood during operations.

The surgical removals were made using very fine lonives manufactured by J. Woiss and Co. In teleost fish, wound closure becomes a problem and in the case of most of the tectel removala the two frontal boness and in meny ceses part of the perletal bones, wore romoved. These are the main roofing bones to the skull. These bones were removed using fine forceps after attompts to use the dental dxill or trephine proved to be unsatisfactory. Malyukina (1962) used a vaseline/paraffin wax mixture and poured it over the skull, whereas Horsch (1936) used a gelatin/paraffin wax mixture to close the skull. Both of those methods
were tried on tho minnow but neither woriked, and the mixture soon fell off to leave the brain exposed. Pinally an acrylic coment was used similer to that used by Enger (1957), and this gave good adhesion provided that certain precautions ware taken. The skin was first scraped off the dorsol surface of the sloull from a point just anterior to the orbit to a point at the back of the parlotals, as woll as being removed laterally to the point of attachnent of the oporculun. The musel.es betweon the anterior part of the operculum and the orbit were removed and cleaned down to the bone. Although these muscles are connected with the operoulum, wen they are renoved the oporcular beat is maintained by the remaining muscles in an apparontly nomal fashion. The perosteum was then scraped from the bone, and the bones woro dried with 50% alcohol, remerraped, and dried with filiter paper. This procodure was performed before the sicull bones ware romoved and at the completion of the operation the remaining bones were dried with filter paper and the coment applied. The coment (Simplez acrylic donture repair material. Dental Fillings Ltd.) would only adhere to the bones provided that the preoperative drying was performed. The alcohol hardened the mucus and periosteve and facilitated their complete romoval. Then dry the coment(15 minutes) was waterproof, and storile and gave good adhesion to tho minnow skoull for as long as reçuired, which was 21 days.

A11 operations were perfomed under a binocular microscope.

VI. HTSTOLCGTCAK PROCEDURES

(a) Eivation and Cmbedding

The fish wore killed by decapitation at the end of the experiment, the cenent beine removed and the head dropped into the fixative. \AA number of fixatives were used, depending on the staining technigue. The ifxative used in the Nauta technique (Guinlery, Shirra \& Webster, 1961). was 10\% formol-seline, which was neutralised with an excess of lithiurs carbonate, together with a few drops of Bromo-thymolmblue. The Bronowthymolmblue is blue when alkaline but orange when acid and is used as en indicator because of the fomol-saline should not be used when acid. The tissuos were fixed for at least four, but usually six, weeks. The same fixative was u®ed in the Klutver \& Barrera method but hore the fixation period wos only two weeks.

For the Holmes technique Formalinmalcoholmecetic was used on the brain.

For the work on the eyes, the latter were removed by cutting the optic norve, and attendant muscles and were dropped into the fixative. In the case of the retinel counts, aqueous Bouin for 48 hours was used, and for Klther \& Barrera 10, formaleseline for two woeks was used. The lens was not removed before fixation as this increased the risk of detaching the retina.

In all the fixntives except Bouin no washing was necessary. Bouinfixed eyes were washed for a period of 12 hours in distilled weter before dehydration.

Alcohol was used for the dohydration and consisted of two changes of $30 \%, 50 \%, 70 \%, 30 \%, 95 \%$, and 100% for two hours in each.

A11 tissues were cleared in cederwood oil.

The brains for the Nauta and Holmes technicues wore ombedded by transforing them to a mixture of:

1 part cedarwood oil
1 part benzene
1 part 45° paraffin wax.
for one hour. The tissues were then transferred to a bath of 54° paraffin wax for one hour and this was followed by two more baths before being blocked out.

In the K1uver \& Berrera technique on the eyes and brain the ombedding was essentially the same as for the Mauta but Paraplast (Brunswick Labormtoriles) was used instead of the parafinn wex. Paraplast is a nixture of paraffin wer, and plastic polymers with a melting point of $56-57^{\circ} \mathrm{C}$. It reduces tisaue shrinkage and ollows easier section cutting.

Sections of breins were out in general at 8μ and of eyes at 4μ.

The sections wore mounted on slides using elycerine albunin. With the Nauta method great care had to be taken in the mounting of the section because of the prolonged treatment with am oniated alcohol. The original method recomends a 20% solution of clycerine albumin but the most consism tent rosults were obtained using a $\mathbf{1 0 \%}$ solution, provided that the sections are blotted firmly with a moist plece of filter paper and dried well.
(b) Staining Techntaves

1. KItver \& Barrera (1953)

This gave good results with both eyes and broin, and as far aa I know, it hes not been used on teleost material before. Slight modilications were made on the besic 1953 method, and, instead of using Luxol. Fast Blue Mes, (GURR) Luxol Fast Blue G (Matheson, Coleman and Be11) as recomended by Salthouse (1964) was useã.

The schedule was as follows:

1. Ronove wax and hydrate to 95\% alcohol.
2. Stain in 0.1\% Luxol Fest Blue made up in 95\% isompropyl alcohol for $18-24$ hours at $58-60^{\circ} \mathrm{C}$.
3. Wash in 95 alcohol for 30 sees.
4. Transfer to 70% alcohol for 60 secs.
5. Differentiate until single fibres sharply defined. a. Hace in lithium carbonate (0.01%) for 1 min. b. Transfer to 70% alcohol (this stage is criticel and the fine differentiation takes place in the alcohol)
```
    c. Return to distilled water.
    Ropeat a,b,c until the desired rosult is obtainod,
6. Countergtein in 0.2% Cresyl Fast Violet (Chrona) for }10\mathrm{ mins.
7. Different in 95% alcohal.
8. Dehydrate, cloar and mount in D.P.X.
```

A 0.01% lit ium caxbonate solution was used instead of the 0.05. reconmended in the original.

The neurons and glial cells stain a reddish violet shade and the fibres a deep blue, and with careful differentiation very clear results coul. be obtained.

In the retinal work Luxol Fast blue NBS (Gurs) was used, but the staining was 1 imited to a period of about 1 hour at about $40^{\circ} \mathrm{C}$. The outer segment stains a dark blue, wherees the lentiform body, myoid and the nucleus of the cones stain a reddish violet.

The technique is based on the findings of Jollver (19/4) that there are naturelly occurring porphyrins in the myelin sheath. Klüver \& Barrora (1953) found that it was possible to stain myelin sheaths with porphyrin derivatives, and Luxol Fast Blue MMS is an alcohol-soluble amine salt of a sulphonoted copper phthelocyanine (a tetrabenzotetraazoporphyrin). Salthouse (1964) recommended the use of Luxol Peat Blue G, which gives bluembeck fibres and atated that a $.1 \%$ solution is isompropenol binds
the dye to the phospholipids more strongly than in a ethanol. It is interesting to note that the 10% formal-aaline which is reconmended for the stain fixes proteif and proteolipids of the myelin sheeths but not the phosphaliplds (Pelckmans, 1964).

Athough the technique gave excellent results in some cases it proved difficult to perform, the oritical point being the dieferentiation of the buxol Fast Blue. The minnow fibres had very little affinity for the stain and although they were over-stained, they world lose stain uniformly in the 70% alcohol. It wes posaible to return the slides to the Lurol Blue after the countorstaining to give a better contrast betweon the fibres and ${ }^{c} \mathrm{ell}$. This staining difficulty may well indicate a difforence in chemical conposition of the teleost fibres compared with other vertebrates and differences may be present with the porphyrins or phospholipids.
2. Cresyl Iast violet (G.R,V.)

This is mede up as a 0.2\% solution and used as by Klifver \& Barrera (1953).
3. Paraffin Neuta (Guillery, Shira \& Webster 1961)

The method usod was essentially that described by the authors and was as followe:

1. Remove wax end hydrate slides
2. Phace for 6 hours in:-

50\% ethyl alcohol

Ammonitum hydroxide (5g.- 0.830)...... 1 part
3. Wesh throroughly in 3 changes of distinled weter and transfor to:
2.5\% Silvon nitrate 90 parts

Collidine......................... 10 parts
This mixture goes cloudy and should be sheken vell. The slides should be left in it for 18 m 24 hours in the daric at room temperature.
4. Transfer to the following solutiont
4.5\% Silver nitrate 20mls.

Bthenol. 10 mls
Amoniun hydroxide. Smls
2.5\% Sadiun hydroxide............... 5mls

Place this solution in a dish end wave on a hotplate so that at the end of three minutes it reaches a temperature of $40-4.45^{\circ} \mathrm{C}$. (The solution can only be used once.)
5. Transfer to reducing solutions-

10\% Ethanol...................... 450 mls
ocurel parts 1\% eitrie acid)
10\% fomalin $\ldots 35 \mathrm{mis}$
6. Nash in distinled weter
7. Treet with 1\% Sodium thiosulphate, wash, dehydrate, cloex and cover.

The dogenerating fibres are shown as black gramules and the nownel. fibres are 1 ight brown in colour. It has been streesed by Glees \& Nauta (1955) that the droplike disintegration is the sole dependeble eriterion
of axomel degeneretion.

The precautions stressed by Wallington (1965) were all taken, namely the proparation of the solution in stage 4 was only done in clean glessware, and immediately before use.

The technique stains axons and is superior to the Marchi technique which only stains dogenerating myelin. However, the mechanism of the Nauta is not fully undergtood. The work of Giolli (1965) sugeests that the chemical groups involved are unsaturated iipids, probably cholesterol. osters.

If the Collitine is left out of stage 3 the technique can be used to atain nomal fibres (K.E. Webster personal conminication). In stage 4 the ammonia concentration can be varied and increased imprognation of degenorating fibres occurs with lower concentrations, with a 2 ml concontration very good stafning of normal fibres was found.

Both with the normal fibres and degenerating methods countersteining can be done with Cresyl Fast Violet.
4. Elirlich's Haematoxylin and Eosin.

This was used in the retinel count work.
5. Holmes Silver technique (1943) The schedule followed was :-

1. Dewax and Hydrato
2. Race in 20% silver nitrate in the dark for 1-2 hours.
3. Remove sections and wash in three changes of distilled water:total time 10 mins .
4. Tmpregnote in uffered silver nitrate at $37^{\circ} \mathrm{C}$ for 18 hrs . The solution was:

$$
\text { Boric acid } m / 5,, \ldots
$$

$$
\text { Borax, } 10 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{~W} / 20 . \ldots
$$

$$
\text { Distilled water } 335 \mathrm{mle}
$$

1\% aq. Silver nitrate. 5mals

$$
\text { Pure Pyridine. } 10 \mathrm{mls}
$$

The ph of the buffered silver nitrate was approximately 8.2.
5. Reduce for $2 \infty 3$ mins. in a solution of:

Hydroquinone........................... . 2.0 grangs
Sodiun sulphite cryst.............. 10 grems
Distilled water...................... 100 ml .
which is beated to $50^{\circ} \mathrm{C}$.
6. Wash in running tap water for 3 mine. Then rinse in two changes of distilled water.
7. Tone in 0.2% gold chloride (yellow) until sections go colourless -- approximately $15-30$ sees.
8. Ringe in distilled water
9. Reduce in 2% oxalic acid until nerve fibres bleckish
10. Wash woll and if the results are not satisfectory, repeat stagea 8,9 and 10 .
12. Fix in 5 if Ilypo, 1 min.
12. Wash, dehydrate, clear and mount,

This gave good steining of the fibrees and cells.

SECYIOM 3:THEEXE

I GENERAL AMATOMX

The general anatony of the eye of the minnow is very typical of teleost fish in generel. Serial sections were cut in two planes, one dorsoventrally and the other rostro-temporally. They were cut at $4 N$ and atained with Klthver \& Barrera or haomatosylin/eosin, the lens being left in the specimen. The general anatomy is shown in fig. 2 page 52.

No retractor lentis muscle could be found and no definite Area could be found. Brthnner (1934) stroncly suspeoted the presence of a speciolised region of the retina, an Area, but did not have any good evidonce for its existance. In the minnows used in this work there was a region in the temporal part of the retina with a slight increase in the number of retinal elements. However, a distinct Area with very thin cones of high density could not be identified.

Fig. 2

Drawing of a dorsowentrally cut section through the eye of the minnow in the midline.

- ya ta moltoon brab taccotalvertiah
 aombe bugs efor io rovad is

 revar ookramo . 8

Elop notiome , Wad
2300 onctorntia , ith amonster ratockt 410 flas lintroatrol siou

 2ntoo ofyent .0 .8 onoe stdiand . Ded

Fig. 3

Section of the retina stained with Klitver \& Barrora
and section at 4μ.
Abbreviations :

1. Pigmented opithelium Loyer
2. Layer of rods and cones
3. External 1imiting membrane
4. Outer muclear or granular layor
5. Outor plexdform Layer
6. Inner nuclear layer
7. Inner plexiform layer
8. Ganglion Layer
9. Nerve fibre Layor
10. Internal limiting membrane

GAN. Genclion cell
AM. Anecrine coll
Bi. Bipolar neuronos
HOR. Rorisontal coll
L.B. Lentiform body of the cone
0.S. Gone outer segment

NUC. Mucleus of the rods and cones
P.E. Projections of the pignento-epithelial cells to surround the pretinal receptors.
S.C. Single cone
D.G. Double cone

Fig. 3

0.05 mm

The retina itself showed the 10 Layers Labolled by Melwan (1938) (Fig. 3 p. 54). The horizontal cells of the inner muclear layer were very well developed and constituted a definite layer of cel.1s. There were also a large number of amacrine cells in the inner plextform layer. This large muber of omacrine cells would allow for a greater degree of varioty in the interactions of the bipolar and ganclion cells and would onable conduction to take place in all directions at this lovel of the retina.

II. DISTRTBUCTON OR RESTMGL BEGEPTODS

The retina was studied more fully by means of counting the retinal receptors. The oyes from a number of fish weve removed and a nylon tie was placed in the extreme dorsal part of each one so that it could be orientated correctly when it was embedded. The right and left eyen were fismed separately. To get an accurate pieture of the retinal receptors it has been strossed by byall (1955,1967 b) and Kngstr8m (1963) that the retina must be cut tangentially. Cutting the eye tangentially results in the rods and cones being cut transversly to their main axes. Fifteen different rogions of the rotina were investigated, sone dorsal and some ventrol. Both Lyall (1956, 2957 b) and Bngstrbm (1963) removed pleces of the retine but found that in order to get good sections it is nocossary to take fairly large pieces. This however introducen the problem of the orientation of the pieces and their position in the retine. In the present work, eyes were cut tangentially, using the whole eye by

A. 止管

- anotaes Lerritor

$$
\text { 2. } 3 \pm 5
$$

Fig. 4

Drawing of the apparatus used to produce the retinel lesions.

Fig. 5

Diagram of the eye mounted in wax with the cutting angle α marised on the outside of the wax.

Fig. 4

PHOTOCOAGULATOR

Fig. 5

utilising the dorsomventral axis and the front of the oye. The eye was mounted in the wex block with just sufficient wax surrounding it to be able to section easily, and arranged so that it lay exactly in the centre of the blook as shown in £ig. 5 page 57. On the outside of the blook the dorsal-ventral axis (AB) could be marised, and providing the rostral-temporal axis is parallel to the front of the block, the cutting anclo can bo measured and scored directly on the block (DC). The block is mounted on the mierotome chuck by the front surpace and orientated so that the lonife cut is parallel to the cutting angle. By verying the cutting angle (α) different parts of the rotina could be cut tangentially. This procedure wes used when the midline regions were investigated, and by mounting the block so that the eye was at 45° to the front of the block it wes possible to cut tangentially in both the rostral and temporal fields of the rotinn. The cutting angles were deterained from scale drawings of the eyes as show in fig. 6 page 60-62.

The regions of the retina are described with reference to their cutting angle; for example, the region 200 is the region with a cutting angle of 20° dorsal. from the dorsomentral axis in the midline. The regions used were as follows:-

201 - 20° from the dorsomentral axis dorsally
LOD $=40^{\circ} \mathrm{frOm}$ the dorso-ventral axds dorsally
DV - Cut parallel to the dorsomentral aris medially
$90 D-90^{\circ}$ to the dorso-ventrel axis dorsally.

$$
\partial .3: \#
$$

NOESFEOCI

Fig. 6

A series of drauings A, B, C to illustrato the different angles used to Investigate the eye.
A. eyo cut dorgowentrally in the midline
B. eye out in the plane $A B$ of drawing A.
C. eye at either of the 45° rostrel or temporal position.

Fig. 6 A

Fig. 6 B

Fig. 6 C

$40 \mathrm{~V}-40^{\circ}$ to the dorsomentrel axis ventrally
$60 \mathrm{~V}=60^{\circ}$ to the dorgomentrel axis ventrally
90 V - 90° to the dorsomentral axis ventrally
//DVR - Parallel to the dorsomentral axis rostrally
//DVT - Parallel to the dorsomentrel axis temporally
$45 R 45 D-45^{\circ}$ rostral and 45° dorsal
45 RDV - 45° rostral and parallel to dorsomentral axis
$45 \mathrm{P} 45 \mathrm{~V}-45^{\circ}$ rostral and 45° ventral
4SIDV - 45° temporel and parallel to dorso-ventrol axis
$45 \mathrm{~T} 450-45^{\circ}$ temporal and 45° dorsal
$45 \mathrm{~T} 45 \mathrm{~V}-45^{\circ}$ temporal and 45° vertrel.

Counts were made from all the retinal regions cut, The counts were made from an area of $0.01 \mathrm{~mm}^{2}$ and from each rogion of the tangental. section there were taken at least $3 \mathbf{m}$ different counts. These counts did not differ from each other by more than about 3 or 4 , in a coumt of 50 for each retinal receptor and, because of this conformity, only the means are given in the table on pege 66 .

With these counts it was possible to calculate the visual acuity for the different regions of the retina. The visual acutiy was cale culated from the equation:

$$
\sin \beta=\frac{1}{2}\left[\frac{[.1(1+0.25) \times 2}{\Gamma}\right]
$$ taken from Tantura \& Wisby (1963)

$\mathrm{f}=$ focal length in min of the lens
$n=$ density of cones per $0.02 \mathrm{mn}^{2}$
$0.25=$ dogree of shrinkage using Bouin Pixative and staining with haematosylin/ oosin.
$\beta=a c u^{i} \mathrm{dy}$ and is the minimum separable angle in minutes. The focol length an be calculated fron Matthiessen's ration which is $f=2.5 \mathrm{r}$, where r is the tedius of the lens. Ton minnous approximatoly 6 cm . Long showed a lens radius of from 0.63 to 0.8 mm , and a meen of 0.7 mm ,

From the equation it cen be seen that so far as the structure of the oye is concomed on Its orm without reference to the dentral norvous visual acuity depends upon two factors, the resolving powor of the lens and that of the rotina. The yesolving power of the leno is related to the reciprocal. of its focal length and is large whon the lens is large. The resolution of the retine depends upon the density of the visual cells (n) and the cross connections between them. If the cross connections are very numberous this mey make a differonce, for they cennot be quantified and do not occur in the equation. Furthemore, details can only be resolved if their fmage on the retine is separated by an unstimulated cone. In calculating the acuity of the fish used in the work of Temura \& Wisby (1963) and Blaxter \& Jones (1967) the double conos vore counted as single cones and the two were equated. The minnow on the other hand, hes both triple and quadruple cones and the question arises as to how these should be counted. On the basis of Lyall's (1957 b) theory that these multiple cone types are formed from the fusion of single
and double oones, all the multiple cone types may be counted as single cones for the purposes of calculating acuity. This nay well introduce a. serious error but so far nothing is lenown about the function of these multiple cone types.

IIT. RESUITS AMD DTSCISS ION OR OBSEIVATIORS

QN RETUMAL RECEPRORS

Abstract

P. 66

The figures in table $1 L$ are marked on a series of diegrams of the retina looked at from the front (fig. $7 \mathrm{p}$.68). Only their approximate positions are markod.

In the retina of the Chess minnows, in general agroement with the results of Lyall (1956,1957 a, B), and Engstrbm (1960,1963), are present rods and sincle, double, triple and quadruple cones.

The rods are very difficult to see and the figures are only very approximate. They have the typical teleost structure with an extremely lone and thin outer segment, lentiform body and ryoid. Thoy show a general distribution characteristic of many other vertebrates in that they oecur in large numbers at the periphery of the retina and the numbers decrease centrally. Wowhere in the retina are they the dominat receptor colls and the retina is predominantly a cone retina,

Gay. Mm

TABLB 1 . The mumber of rods and cones in different regions of the retine and the visuol acuity for each region measured from the cono counts. Also show is the presence (4) or absence (-) of a cone mosaic (p. 72).

Region	Rods			nes		Acuity	Mos
		Single	Double	Triple	Quadruple		
900	21	26	40	0	0	55'	4
400	22	12	22.15	21	3	501	-
20 D	14.7	10.3	11	20.3	4	53°	-
DV	14.2	9	12.5	13.5	6	46^{\prime}	-
40 N	12.3	5.7	27.7	9.3	4	44^{\prime}	\cdots
60V	27	32	45.7	4	1	49°	+
90 V	34	45	63.7	0	0	43^{\prime}	*
4.5R450	22	43	43	2.3	1.3	48^{\prime}	*
45RUV	14.3	2.7	2.6	35.3	7	421	-
$4.51 \mathrm{C} / 5 \mathrm{~V}$	18	28	58	2	0	38^{2}	*
452450	17	43	21.5	10.5	3	42^{\prime}	-
45 T [VV	11	23.7	5.3	35	3.3	33^{\prime}	-
453'45V	17	33	52	2	0	4,0'	+
//DVI	32	37	52.5	0	θ	$40^{\prime \prime}$	+

 muorta oefs ots ofseom aroo B 20

Fig. 7

A series of drawings of the rotina of the minnow looked at from the front of the eye. The numbers and approximste positions of the rods, aingle, double, triple and quadruple cones are marked. The acuity and the presence of a cone mosaic are also shown.

Fig. 7

RODS

DOUBLE CONES

QUADRUPLE CONES

SINGLE CONES

TRIPLE CONES

ACUITY AND MOSAIC [+]

The double cones ore unequal, one usually beine larger and, together with the single cones, show a tendency to become reduced in the contrel regions of the retina. This reduction centrally in the retina is associated with the increase in the number of triple and quadruple cones, which are not found in the peripheral ports but form the dominent cone type in the centrol rogions. Taking couble, triple and quadruple cones as 2,3 and 4 aingle cones respactively, the totel number of cones in a given ares did not vary greatly throughout the retina. This supports the hypothesis that these multiple cone types are formed by the fusion of double and sincle cones (Lyall 1957 b), which is in turn based on the assuaption that the retina grows from its edge as in other forms (Lyall, 1957 a; B1axter \& Jones, 1967).

Triple cones are essontially composed of three normal cones fused together, (for the general structure of the conos see fig. 3 p. 54), and for their appearance in tangentiel section, fig 8 p 71). Engstrbim (1960) , and Lyall (1956,1947 b), both agreed that they were of the linear type and arranged in a straight line with a large centrol cone and two small ones on dither side. The linear type of triple cone was also prosent in the Chess fish but there was also present the trim angular type, genorally seen in Cadids.

The guadruple cones are never very dominant in the retina and are composed of a large central cone surrounded by three smaller cones.

$$
8.35^{2}
$$

To mokjous fsitnogmet a zo stgargoroknoforl

Fig. 8

A. Photomicrograph of the contral region of the retina of a Chess minnow cut tangentially and stalned with hamatoxylin and cosin. It show the absence of any mosaic and the presence of linear triple cones (L.T.C.) triangular triple cones (T.T.C.) and quedruple cones (Q.O.)
B. Photomicrograph of a tancential section of retina of a Choss minnow at the periphery, showing the mosaic of altermating rous of double (D.C.) and single (S.C.) cones.

Fig. 8

B

0.05 mm

The minnow rotina show the general teleostean retinal charecter of a larger number of retinal elements in the temporel field than in the rostrel field.

The ventral resion of the retina, like that of Eundulus (Butcher 1938), differs from the dorsal rection in heving very fow triple and quadruple conos but a large number of double and single cones.

The visual acuity varies slightly throughout the retina and the area of lowest aculty is in tho eartromo dorsel pert of the rotina. This docrease in acuity is to be expected from the regults of Hogben \& Lendgrebe (2940) on Gnsterogteys from which they concluded that this region is not used for fommision and probably can only recoive light intensity. These figuree obtained for the acuity of the minnow using the formula of Tamure \& Wisby (1.963) do not agree very well with those given by Brumner (1934), obteined by behavioural experiments. Using a black strip, Sens. from the Pish, she found the minimum separable angle to be 0.25 mm , Biving a visual angle of around 12 '. It would seem that the eye works more efflciently than would appear from the calculated figures using the formula and this may well be due to the vast number of cross connections found in the teleost retina.

The mosaic found in the minnow oniy occurs in the peripheral regions of the rotina and consists of parallel row of alternate double
and sinele cones. The function of these cone mosaics is obscure. Lyall (1957 b) states that he could not find any functional significarce in the cone pattern in teleost retinee, kut suggested that it might improve the porcoption of movement, and that the pettern provides ε uniforre diatribution of cone types which might be inportant if tho various compom nent cones had different functions. Bngstrbm (1963) found that cone nosaics are very reguiar in eyes or regions of eyes which are adapted Por acute vision and that the most regular mosaies are found in species which are fooding on fast moving objects. According to hin, retinae or regions of rotinae which are not adapted to the same extent for sharp vision have a more loosely organised mosaic or no regular mosaic at all. Engstrbin (1963 b) and Walls (19/2) have further suggested that the parallel rows of single and double cones which constitute the mosaic pattern seen in the Cyprinids is a primative feature. Figstrbm concluded. that the presence of triple and quadruple cones essociatad with the brealciown of the mosaic in the central regions of the minnow retina to be abefrant. The minnow does not fit all. Engstrbm's conditions as it occurs in a wide variety of habitat申s: lakes (Prost 194.3), deep rivers, and shallow, fast-moving streans auch as the Chess, where very acute vision would be nocessary. All the evidence shows that the minnow has falrily good vision and that the mosaic is present at the periphery and not at the central regions. It seems from consideration of the minnow that the breakdown of the mosaic does not reduce the visual ability of the fish. It seems possible that the same effect as a complex cone mosaie could be achieved by the fusing of the cones and that the benefits of a mosaic
would thon be amplified becouse of the close proximity of the individunl cones. This would then imply that instead of the triple end quadruple being aberrant types thoy are highly evolved alturnativee for a cone mosaic. This would elso explein the ovolutionary significonce of thefr occurrence in such numbers in the visually most important parts of the retina.

IV. RETXAL RPMOVAL AND COLOUR CHAMCE

In view of the conflicting resulte from the behavioural experiments by previous workers (p. 13), it was decidod to approach the problem of the rolo ployod by the retina in colour change from another aspect, nemely, by surgicaliy romoving parts of the retina or by dose troying perts of the retine by other moans.

The cutting of the optic tract is a simple operation which consistes of making a mall cut in the conjunotiva and rotating the eye. The optic tract can cloarily be seen and cut with a pair of fine, sharp scissors. The operation does not appear to weaken the Iish vory much and, unlike flshes operated by Hogbon \& Landgrebe (2940), they aurvived for as lons as ${ }^{\text {Lnecessary }}$ to complete the experiment. In the present experiment, some survived for more than a yeer. Regeneration was not observed in these fish because the blood vessele running to the eye were also cut.

Fig. 9

A series of drawings to show the extent of the dorsal retina removed in Pish R21, R12, R27, R24, R25, R26, and R19. The retina is viewed from the front of the eye.

Fig. 9

Fig 16
R. 7.

$$
\text { R } 28
$$

 -ovo ods to Jmor's odt mor's bowolv at
R. 31.

Pig. 10

A series of drawings to show the oxtent of the ventral retinn removed in fish R7, R31, R28, R29, R18. The retina
is viewed from the front of the eye.

Fig. 10

16 minnows were token, and the lef't optic tract was sectionod and thoy were ollowed to recover for at loest 24 hours. Thene fish were then tested for normal colour change on both white and black in order to conflrm that they all could change from D.O.I. 7.5 to 1 well within the normel time (fig. 28 p. 151). The fish were then reanaesthetised and the conjunctive was cut over the dorand pert of the right eye. A cut wes then made in the dorsal pert of the right aye ot the bese of the irls into the vitreous humor. In three of these fish no further danage was done and the comjunctive was reattached to the surmounding skin of the skull by two stitches of fine nylon. In 7 other fish the dorsal part of the rotinn was removed by theans of caroful cutting and screpine, using very fine lnives. During the operation the eyo was leopt bathed in ringer to wash away blood and prevent it from filling the eye, a aituation which would have caused total blindness. The ventral part of the retina was treated in the same way in 5 fish. The extent of the ranovels was determined irom serial sections of the eyes and is ahow in Pig. 9, 10 pege 76,78 .

The fish with retinal romovals were then tested after 7 and 14 days on both a bleck and a white background and their colour recorded, At the end of the 1.4 days the fish vere killed and the eye was examined for any dogenerative changes. In all except one of the dorsal removals the back of the eye, (fundus) could be clearly seon through the pupsil with a binocular mi.eroscope and the lens appeax ed normal. After 14 days,
the wound had completely closed and scar tissue had formed. A section of a 16 day eye is shom in fig. 11 page 82.

8 eontrol fish were treated in exactly the some way as the experimontal. floh but only a smell cut wes made in the right eye. The cut measured 0.75 m . long and was made through all the layers in the oye, in 4 doraslly and in 4 vontrally.

The reaults for all fish are shown in table 23,4.4.

TABLE 2 . The colour of the ventrel retinal removed fish at 7 and 14 days postmoperation, alter having boen placed for 30 mins. on a black or a white beckground. Bapersi fortal. Sis). 2. Vaxixa

Fish	D.O.I. 7-day		D.0.I. 14. day	
	White	Black	White	Black
R7	3	4	2	4
R23	3	5	4	5
R29	5	6	3	5.5
R31	5	6	4	6
R13	1	6.5	1	6.5

$$
11.3 \mathcal{L}^{2}
$$

Fig. 11

Section of fish R'7 showing the complete removal of the ventrel retina while leaving the dorsal retina intact. Stained with Khilver \& Barrera and section at $4 N$.

Fig. 11

DORSAL

TABLE 3 . The colour of the dorkl retinal renoved fish at 7 and 1.4 deys post-operetion, after having been placed for 30 mins , on a bleak or a white background.

Fish	D.0.I. 7eday		D.0.I. 14 day	
	White	P1ack	ihite	Black
R21	7.5	7.5	7.5	7.5
R12	6	7	6.6	7
R24	7	7	6	7
R25	7	7	7	7
R26	7	7	7	7
R27	7	7	6.5	7
R19, 32, 33	7	7	7	7

TABLE 4 . The colour of control fish with a small cut placed in the dorsal or ventral retina. The postmoperative D.0.1. was recorded ofter 7 days, and the period on the black and white backgrounds was 30 mins . Gomach Sivis

Fish	Premoperative D. O.I.		$\begin{gathered} \text { Post-operative } \\ \text { D.0.I. } \end{gathered}$		Treatment
	Black	White	Black	Whate	
1	6	0.5	6	1	
2	6	0	6	0	dorsal
3	6	0.5	6	0.5	lesion
4	6	0	6	0	
5	5	0.5	4	0.5	ventrel
6	6	2.5	6	2.5	lesion
7	5.5	0.5	5.5	1	
3	5.5	0.5	5.5	1	

The D.O.I. values were recorded after 14 days because this time corresponds to stage 2 degeneration of the optic tract (2 sig. $14 \mathrm{p}, 102$). The degenerating fibres from the regions of retinol removal could then be easily traced.

The PIsh were 027 owed to remain on a black or a white background for 30 mins , because oftor this time for normal fish would have become almost completely adapted (fig. $28 \mathrm{p} .|\mathrm{s}|$).

Serial sections of the whale eye showed that in every case there was no evidence of hoomorriage and that the retina appeared normal, was not detached and had normal nerve comections.

The control fIsh show that the operation has no, or only very slight $(1,5,7,8)$ effect on the normal colour change. It world therefore appear that the effect on colour change of the experimental operations were due to the actual depletion of retina.

The results from the experimental. fish show that fairly large cuts in the ventral retina have very little effect on colour change, as seen in 12.8 which had loot 1 ts ability to darien by 2.5 on the D. O.I. scale. The larger ventral removals assume an intermediate colour, when they can only darken to volnoss of from 4 m- Wot only can they not darken fully but they cannot lighten fully, and in no case did the colour exceed a value of 2 on the D.O.L. scale. The overall ability of the fish to adapt to 2 te background ranged from 1 to 2 degrees.

None of the dorsal removed Pish showed any ability to colowx over 1. degree soen in R24. In all oxcept 711 the coloure was not moximal black.

In only 2 fish was there any partial recovery in the 1\%-day test; these were R'7 and R31 both showing a l-degree improvomont in their ability to Lighten from tho 7 to 14 -day tost.

Direct aurgical removal of parts of the retina noy well damage other properties of the eye which are not easily soen. Fore exomple, It may disrupt the ability of tho lens to acconodate. Also, the ringer may well dilute the vitreous humor altering its optical properties. Other methods were therefore tried to confim the surgieal renovels. Themocautery and electrocoagulation were triod but they both proved to be unreliable and involved extensive surgery. Further, in most cases, It wes not possible to ascartain what danage hed been done untis after the eye had been sectioned. The method of photocoegulation, howover, did prove to be highly successful. Recentiy, Ceeraets \& lidgeway (1963) reviewed. the factors Involved in the damage done by a prised Light source on the retina and conaluded that the damage is dosemate dopondent. They constructed a model where the radiation is absorbed by the retine so that the temperatuse of the pignent epthelium ia raised, and danage then reaults. This would mean that a short exposure to high intensity light results in a raptd heat wave and Iess demage and a long oxposure
 themal doncego incmonsot trith titwo
 Konon aro and the haner bom, tut notther of then wn avellakio.
 covored with alwatrum foll ergept for a arnell opmang whech aziociod the 2 leht to paos out. The projector lemp wa boused in a etryminted Sron ahseld uith a bole bored in it and in this bole was attachod a 4m

 auceficient boet is gomamated to damoge the wotima.
 and the lens of the pistonogethatoe web phood very diose to tio oomen and errenged so thet the light wos doforunod anto the lers of the efth and the loms of tho fimh shon flomsad the benm orto the ruting. The

$$
\text { S1. } 5
$$
Lanttor ads woila of eve onts Io digargorbkotond

 anoleof odt voris

Fig. 12

A. Photomicrograph of the oye to show the retinel

Iesion, stained with Kltiver \& Barrera
B. High power photomicrograph of the retina to show the lesion.

Fig. 12

A

B

the nucles of the rods and cones, are small and pylmotic. Up to the level of the end of the bipoler cell.s there is complete disruption but in the inner plexiform layer of the retine the damage is not so noticeable. This is consistent with the tormal enfect theory proposed by Cecraets \& Ridgoway (1963), for in the case of the minnow a large pigment epitholium would absorb the light and heat but because of the Iow Intensity of the IIght Insufficient heat is produced to damage more than the layers imediately adjacent to the pigment epithelium.

The lesion wes circular and approximately 0.94 mm in diometer. Using this technique it was possible to destroy large areas of the wotina and to utilise the optical properties of the eye in doing so.

A series of six leaions was placed in the dorsal. and ventrel retina, in two ares of three in the right aye, the left optic tract having been out previously. The ares were in the approydmate direction of light coming from the fmmediate background and of 11 ght coming from overhead. The positions of these lesions are shown in fig. 13 page 91 .

The resulta of oniy two fish wore obtained.
a. 120 - The six lesions vere pleced in the dorsel retina of the right oye and showed D.O.I. values, after 7 days, of 7 on black and 5 on white.
B. R21-The aix lesions were placed in the ventrel retina of the right oye and showed D.O.I. valuos, after 7 days, of 5.5

$$
E!, 3:=
$$

, ant tox

Fig. 13

The position of the lesions placed in the oye of fish P20 and R21 to destroy ofther the dorsel or ventral retina.

Fig. 13
R. 20

R. 21


```
on black and 3.5 on white.
```

Control fish were tested with a single lesion, and they showed normal colour change in both rate and direction.

The area destroyed by a sincle lesion is about $0.73266 \mathrm{sc} . \mathrm{mm}$. which means that the total area destroyed by the $s i x$ lesions would be about $4.396 \mathrm{sq} . \mathrm{mm}$. The totel retinal area was found to be approxinately $12.76 \mathrm{sq} . \mathrm{mm}$. which gives the aree destroyed by the six retinal lesions at very slightly over one third of the total retinel area.

The reasons why more results were not produced are twofold. Firstly, and most importent, was the technical difficulty involved in plecing the loaion without a cloer picture of the fundus. It was not possible to arrange the apparatus so that the bean could be aecurately focused on the retina by defocusing on the lens. Sccondly, the apparatus was limited by the absence of a cooling device and hence there was no means of reducing the beat transmitted with the light beam. The two resulta largely confinm those of the surgical removal. To obtoin them a lerge number of fish wore used but all excepting these two wore dism carded because of the failure to produce lesions or because the heating of the cornoa caused it to become cloudy.

The rosults of the experdments do show that destruction of the dorsel retina prevents the liah from becoming pale on a white background and that
the destruction of the ventral retina prevents the animal from darkening but also from fully peling.

One must consider whether these reaults are due to the background response or whother they can be explained in other ways. In all the dorsal retinal reaovals the fish becane dark and in most cases did not show any adaptation to beckground. However, there is a possibility that theso fish were totelly blind in which case they would have gone dark for this reason alone (p .135). 䵟is, however, seems unlikely from the histological observationg, and from the fact that thay all went dark, for if they were totally blind then approximately half would have begus the second lightening stage ($p, 139$). In the case of the ventral. retinal removals, the fish showed a limited ability to change colour, apparently to en attompt by the fish to adapt to the background, for this could not be produced by vaxying the light intensity.

The oxtent of the lesion apponss to be an important considerotion, for the amall lesions in the retina, whether in the periphery or in the control regions, had no offect on colour change. The larger lesions had a mariced effect and range from the small ventrol cut R18 after the fish could change colour from $1-6.5$ to the large removal of the dorsal
retina where the fiah conld not show any change in colour.

When the dorsel retine reetion was romoved by aurcery or by photocoagulation, loaving the ventral retina, the fish assumed a dark colour on the black backeground, and it was only 124 of tho surgicel removels which ahowed any lightening on the white backeround (table 3 p. 83). 122 did show a certain ability to change colour and could pelo down to 5 giving the Plah the chronatic edaptation of 2 degroes. The photocoagulation fish, R2O, had only the extreme dorsal. part of the retina renoted, unlike tha surgical romovels where the whole of the corgel pect of the retina wes ranovod. It would therefore appear that active peling in response to an illuminated white baclground can only occur whon the dorsal retina above the optic tract ia present, and tiat the more rotina prosont the groeter the ability to pale. In considering the action of the dorsal retina the resulte of R19, 32 and 33 do not ilt with the other results. This apparent anomaly may be due to blood in the vitroous bumor screening the rotins. Although this was not clear from the sections it proved very difficult to provent bleeding in these fish with cut retinse and they continue to soep blood into the vitreous humor. When the retina is completely removed the residual blood is negligible.

The removal of the ventral retine leaving the doraal intact resulte in the fish asauming an intemodiate colour on the black ranging from 4 to $6-5$. One the white none of the fish became peler than a value of 2 ; the fish not only have a waduced ability to dariken on a black
background, they aloo do not have the ability to lighton fully on the white. It must also be noted that the fish which darikeral most was R31, and it wes this fish which showed the largest ventrel retinal removal, and also had the least abllity to pale.

The general conclusions from these results seem to be that illumination of the dorsal retina is followed by peling and of the ventrol rotina by derkening. This situntion is further complicated by the fact that for complete peling the vontral rotina must be prosent. With the progreasive romoval of the ventral retina dorsaluards, an incressed inability to pole is Sound, togethor with an increased ability to darken. If these facts ane taken into consideration with the fact that in the absence of reting imput (removel of both eyes) the fish darkens, it would appear that in the case of the ventral retinal renovals the ilah is responding to the beckground vith all the retina aveilable, the part removed always inducing derkening. This leads to the conclusion thet the whole of the rotina is important in colour change, and that it is the whole of the visual field which is necessary, and that no area of the retina is any more important than any other.

Such conclugions do not agree with those of previous workers in this Picld. Rotinal differentiation was proposed by Sumer (1933) for Eunculus rarvininuia, Butcher ($1.937 \mathrm{a}, \mathrm{b}, 1935 \mathrm{a}, \mathrm{b}$ 1939) Eungulus heteroclitue, and Hogben \& Landgrebe (2940) Geatorgstoug aculeatus. Sumer and Butcher considered that the doraal retina controls peling
and the ventral retinn derkening. From the work on the minnow it is scen that the gituation is more complex than this because the preeence of the ventrel retina is necessary for paling. llogben \& Landgrobe (1940) further divided the retine of Gastonosteus in relat on to colour change. They considered the region concomnod with black adaptation is confined to the floor of the retine below the optic trect and the wite bacleground response is associated with a restricted region of the central retina. They considered the extrome dorsal retina to be escentially neutral with regard to colour change.

On the basis of Hogben \& Landgrebe's (1940) work one would expect the fish R21 with the floor of the retine dectroyed to have been completely white. In fact, it showed on intermediate colour. The destruction of the more extreme dorsal retina (Table 3 p, 83) which Hogben \& Landgrebe considered is neutral to colour change, resulted in the inability of the fish to change colour. Fish f20 with a doraal retinel lesion could not pele further then D.O.I.5. It may be that the eyes of Gggtengsteus and Phoxinus differ in relation to chrowatic adoptation, but they do show a similarity in visuel acuity ($p, 72$), and it aeoms possible that theix eyes may have a similar function in colour change. Hogben \& Landgrebe (19/0) using measuroments of the refractive Index of the lens ealoulated that in a container with the top and sides painted black, and the 1ight inforior, the fish would show the darknesa response if the dorsel peripheral part of the retina was neutral to colour change, They tested fish under these conditions and found that
the fish poled but not to the same extent as the nozmal backeround pellor. The moin criticism of this work is the retinal regions are based on theoretical considerations in the absence of lifht acattering, wherees the testing was perfomed under conditions which would allow considero able light scattering. If, however, the light in this experiment is reatricted to a certain retinal aren the results obtained conld be explainod as partial beckground poling, and not derkness peling. In the minnow, derlmess peling only occurs in the complete absence of light.

The 'ratio' hypothesi proposed that the colour the ifsh assuacs depends upon the ratio of the direct and reflected light, In view of the lack of rigid retinn differentiation as show by surgical operations, this hypothesis becomes untenable for in the mimow the ventrol retins is important for paling, yet receives light from ovorhead. In the minnow, and probably in other fish, the retina acts as a unit, releying the total visuni ifeld to the brein, where it is interpreted in toms of the rolative mount of light roflected from the background. The effect of the retinal removals can then be looked upon os modifying the total visual complex, and the resulis are wat would be expocted for a limited visunl fiold. The idea that the eye acts as a unit in colour change was firgt hinted at by Magt (1916) when he concluded that the colour change reaction is not as simple as would appear from the ratio hypothesis. A similar iden was expressed by Danielson (1939, 2942) who considered that the state of the melanophores is detemined by the
degree of contrast in the visual field as a whole.

The relationship therefore of the eye to colour change is one of the interpretation of the brightness of the viavel field by the brain, and ideas concernin retinal difforentiation and the retion: of the direct/reflected light are far too simple to be considered as applicable.

SECTIOH4

THE VRSUAL STSTEM IN THE BRATH

I. THE OPITC TMACT

In order to deterning which fibres of the optic nerve are afferent क" degeneration studios were mede using the Nauta technique. To detemine the optimm time for Nauta technique following nerve soction 12 fish hod the right optic tract cut and were left in the aquardum at $18^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Two of those fish ware then romoved at $2,4,7,10,14$ and 21. day Intervals and their brains were flxod, and sectioned, and expmined for degeneration.

The two-day fioh did not show any brealedow of the Pibres. The four-doy fish showed the charecteristic signs of the first stage of Wellerian degoneration (Johnson, Rossiter, \& Moliabb 1950; Young, 1942; Noback \& Roilly, 1956). This efrst stege is typified by the large frapmentation products found in the form of ovoids and ollipsoids. This fragmentation of the Ifbres $^{\text {is the period of axon destruction, }}$
and tho physical distruction of the myelin. The sevonth and tanth doys show the socond stage of deponerution in which the yelin and exons are being destroyod ahomically. The myelin disappoars and there is the formo ation of cholosterol ester, and unliko the first stace it stains as moll droplets. On both the 7th day and 10th day fibres in stage 1 are stil1 present but on day 14 all the fibres in tho optic tract show stage 2 degeneration. From the 14th to the 2lat day the onzymatic digestion which also characterizes the 2nd stage is seen and considerably lens droplets are present. Finelly the $3 x d$ merges onto the second, and $4 s$ seen very clearily in the bweek fish, and is where the myelin hes disappeared, the enionourium and neurilemme becoming thickened to forn the schwenn tube P102-103
and the collagen content of the nerve increasos. Fig. 14 shows all 3 atages in the degeneration of the nerve.

In ghort, the time course for the degeneration of the optic tract of the tinnow at $18^{\circ} \mathrm{C}$ is none ot 2 days, stoge 1 at 4 to 10 doys, atage 2 begins at 7 days and increases to 14 -dey where it is best seen, and this merges into the 3 rd stage in excess of two weeks.

Previous worikers have used the Marchi technicque which only staing degenerating myelin whoreas the Nauta technique will stain degenerating axons so that one can be reasonabley aure that all the afforents of the optic tract ere stained.

The optic tract is ofrcular in a large number of fishes but Rappers,

*)

- คotyarenazeb out ogzt 40 asaltacts

$$
\text { 1g. } 14
$$

Photomicrographs to show the stages in the degeneration of the optic nerve using the Nauta technique.
A. Tao day degeneration showing no change in the nerves.
B. Seven day degeneration showing both the large ovoids and ellipsoids of stage one and the droplets of stage two.
C. Pourteen day degeneration showing the characteristic droplets of stage two dogeneration.
D. Six week degeneration showing only the thickened endoneuriun and nourilema of stage three.

Fig. 14

A

0.01 mm

Fig. 14
C

D

0.01 mm

Huber \& Crosby (1936) have roported flattening in the plaice (Pleuranectes platassa), Moader (1934) reported thet pleating of the optio tract is comon in teloost fishes. The optic tract of the minnow is composed of what eppears to be a sheet of nerve fibres which has become folded to give 4 or core lamellae and in genorul appearance seons to be roctangular in cross section. The lamellae are further dividod because the fibros are not distributed evenly but grouped into bundles, shown in fig. 15 p. 106 .

From degeneration studies it appears thet the organisation of the retina is essentially preserved in the optic tract. It was difficult to perform accurato work becauge of this complexity of structure but the dorsel retina is dorsel, and the periphery of the retina is pertphorel in the optic trect. These results therepore agree with the findings of Akert (1949 b) on the trout.

II. THE ORITC CETASMA

The optic chiasme shows a wide veriety of structures in teleost fishes but it is always complete. The most comon condition is where the right tract pesses under the lePt, but in the herring one nerve pessea through a hole in the other (Kappors ot gis 2936). Lubsen (1921) roported intermingling of the optic fibres at the chiasme in Leuciscus and vieader (2934) found interdigitation at the chiame in Holocentrotus.

The two groups of minnoss used in the experiments showed a

2 $1 \cdot 10$

－240\％て5

19. 15

Transverse section of the optic tract stained with Kluver \& Barrera.

P1g. 16

Diagram of condition 7 and 9 of the optic chiasma.

Fig. 15

Fig. 16

7

9

number of different types of chlamate. There appear to be no less then 9 differont condltions of the chiama, and thoy are se follows:

1. Richt pessos undor lent
2. Left possos under right
3. Right pasnes through a hole in the left
4. Left passea through a hole in the right
5. Roth tracts divide into two and then the left runs over and through the right
6. Both trects divide into two and the right muns over and through the loft.
7. Right devides into three and the left into two and then two divisions of the left run through the right.
8. Left divides into three and the right into two and tien the two divisions of the right run through the ieft.
9. Both of the tracts divide into three and they interdigitate with each other.

Typos 7 and 9 are inlustrated by simple drawinge on page 106 . IIg. 16 .

In the case of conditions 3 and 4 , generaliy in the one which was pierced, the amount below the hole was about $3 / 4$ of the optic tract or 3 lamellae. In the more complex types the proportions of the optic tract in eech division varied from fish to fish. In one case of condition 5 the upper division of the left was largest, and the right was equal, but that in a cese of 6 the right divides unequaliy and the lowest
deviation was the largest. In the case where the optic tract divides into 3 as in condition 9, one of these divisions was often vory small and only composed of a fow fibros.

Types 1 and 2 were the dominant typer in the Lea fish, type I formed about 60-70\% of the populetion. Type 2 formed $25-30 \%$ and types 3 and 4 about 10%. Types 5 and 6 were very rare and only amounted to gome 2 .

Pewer Chess were examined but in about 20 Iish oll the 9 types occurrod at approximetely the emo frequoncy.

Why there should be so meny diferent types of chiaomata in this apecies is difficult to explain. Proviously no one has raported more than any one type in each species and it acoms unlikely that the minnow is unicque. These resulta are from more than 80 dissections of the chiama. They are not aesily scen in sections. Insurficiont ombryological. knowledge is available to explain this condition but interosting poasibilities stom fron the work of Sperry (1946), and Attardi \& Sperry (1960, 1963). These two workers, in an excellent plece of work, showed that rogenerating retinal ganelion neurons will grow back into the tectum and have produced strong histological evidence of a chemomefinity in these regenerating optic Pibres. Nore recently, Sperry (1967) hos concluded that the complicated nerve Pibre ciruits of the brain grow, assemble, and organise thembelvos through the use of intricate chemical
codes under genetic control. It would be interesting to perform regeneration experiments similor to those of Atteri \& Sperry $(1960,1963)$ on the minnow to see if the chiamn would form in the same way gain, and would henco be genoticelly dotomined. If it did not fom in the some way this poculiar configuration may be the result of emviromental foeture aoting at a very bensitive period of embyonic developnent. However in that casc, why are they all not the same from each stream? If the development of the chinsme is not environsentally deternined it rust be random. Hork on the chinema of the minow would certainly throw considerable light on itt formation.

ITX TAS OPITC TRACA OE TVE BRAN

At about the level of the chiame the optic tract rotates so that the dorsel ifbres bocone ventrel and the ventral, dorsel. At a level Just posterior to the chiesma a small bundle of Pibres soparates from the sain part of the optie tract and runs dorsally to form the mediel Lamella of Veador (2934), homologons with the fasciculus modialis tractus optici of Bellonci (1s38), Kappers (2906), Prenz (1912) and Jansen (1929). The reet of the optic tract runs dorsocaudalverd along the externel wall of the diencepholon. The optic trect thon divides into two approximately equal divisions, a domel bundle, the fasciculus dorsalis, and a latorel bundle, the fasciculus lateralis. A further group of eibres leave the optic tract modial to the Pasciculus dorgelis but theae fibres are highly variable in number and rojoin the fasciculus dorgalis more dorsally.

$\therefore 2,3,3$

.2 .2 .3

$+8.7+2$

Three transverse sections of the brain of the minnow stained with the Holmes method. The sections show the optic tract and its relationship to the tectum and geniculate complex and its position relative to the rest of the brain. Iig. 17 is the most anterior and 19 the most posterior.

Abbreviations:
T. Optic tectun
C.G.L. Corpus geniculatum mediale
C.G.P. Corpus geniculetum posterius
N. HAB. Nucleus habenularis

PIIN. Eminentia medialis
FASC. RET. Fasciculus retroflexus
FASC. DOR. Fasciculus dorsalis
FASC. LAT. Fasciculus lateralis
N. PRE. Nucleus preopticus

NED. LAM Nedial lamella
COHA. TRANS. Commissura transversa
COMA. MIN. Commissure minor of Herrick
L. .3. Lateral forebrain bundle

BRA. T. MED. Brachia tecti medialis
BRA. T. LAT. Brachia tecti lateralis.

Fig. 17

Fig. 18

0.3 mm

Fig. 19

0.3 mm

The medial lamelle entera the fascioulus dorselis whout giving off any fibres at ebout tho level of Hervely commanure. "hose divisions of the optic tract are cloorly seen in f18. 17, 18, 19 $2, b, c_{5}, 4(p, 11-3)$.

Not all the pibres from the optic tract end in the tectum. A number end in the geniculate complex and have been labelled by Veader (1934) the fasciculus cenlculatus. The do not form a distinct bundle in the minnow,

The only tracts to be positively identified in the minnow are the medial Iamellas, fasciculus dorsalis, fasciculus Iateralis, and connections to the coniculate complex. Other fibres which were not found, and are probably not prosent, were the fasciculus dorsomodiolis, which wes traced to the tegmentum of the midbrain (Jansen 1929), fibres to the torus semicircularis reported by Van der Horst (Meeder 1934), and fibres to the ventral thelamus reported by Imbsen and by Kappers et al. (1936).

Between the forks of the optic tract lies a group of neurone masses which have been cinlled the goniculate complez, of which a number of conflicting and confosing accounts heve been given in the iiterature.

In the minnow, the geniculate complex appears to be composed of 3 perts, lateral, medial and dorsal.
(a) Corous ceniculatum 1atorale (C.C.L.)

This is a large nucloar bo y lying in the lateral part of the dorsal thelarus. It has been callod the corpas geniculatum Interale Ipaun by Meader (1734) and corropponds to the geniculate of most other authors. It is the cont anterior of the 3 perts of the geniculate complex In the minnow and in transverse section appears to be half-soon shaped, but while in longitudinal section it is essentially ' U '-shaped. The nourones in this body are both large and amall and aro arranged in a complex pattern (1ig. 20 p. 118). The larger neurons occur nainly at the periphery and in a region in the dorsel part of the body. The diem tribution of these larger nourones matched that of the incoming optic tract fibrea. Although synapses were not clearly seen betwoen these large neurons and the optic tract, it seoms probshle that they do in fact synapse with the optic tract.

The amell neurones occur in the greatest numbers in the central and more medisl perts of the body. In the medial region of the body there are no direct fibres from the optic tract but there are efferent fibres running to the Coanissure of Berrick and to the medisl and dorsal bodies. Thase smell neurones may well sive rise to the efferent fibres and provice for the interconnections necessary for the woricing of the gendeulate complex.

(b) Compsententativinedishe (C.G.M.)

This is a large aphericel body aitunted directly medial to the cal
and although it does not extend so far anteriorally it doen axtend much further posteriorly. Like the GGH, it is composed of 2 types of neurones, large and small, (fig. 20 p .118), but there arc fewer swall nourones and the large neurones are larger than in the col. The dintribution bhow the same porttern as the COJ. with the Iarge neronos lying adjecent to the optic tract.

The question of honalogy of this group is complex. In general gize and structure it appears to correspond to the nucleus anterior thalemi of Goldstein (1905), Gharlton (1933) and Holmgren (1920) but not to the muclous anterlor thalani of Kappers (1906). It also appears to be homolom gous with the corpus glomerviosum pars anterior of Brickner (1929) and with the nucleus rotundus of Sohnitzlein (1959). Vuch of the confusion lieg In the fact that many of the workers prosent their results in the form of drawings and not photomicrogrephs of the specinens. The second reason Which may have led to so much confucion steme from the fact thet they all use a very vide varioty of technicues and the sane structure can appear very dieferent when etsined by a variety of methods.

In the minnow the fact that there is dixect coll contact between the GGI. and the CM, throughout the moat of their Ienetha wonld indicate that they are intimately rolated (918.20 p .118). Tho eilre connections betwoen the C.M, to thoCH, are very well developod (fig. $21 a \mathrm{p}, 123$) and they both receive fibres from the optic trect and tectum and eive Pibres to the toctus (fig. $21,22 \mathrm{p}, 123,12$). In viow of their nourone enatomy, fibre

Bifacqob guturksas 3 Lfokndof autualoan?

- Fontor vervas stame?
.4 .3 .5
$+4.20$
. 8.0

$.9 A 2.2 B A$

1g. 20

Series of sections anterior to posterior along the geniculate complex stained with C.F.V. to show the distribution of the cells.

A is the most anterior and is at a level where the C.G.M. is only just present.

Abbreviations:

C.G.L.	Corpus geniculatum laterale
C.G.P.	Corpus geniculatum posterius
C.G.N.	Corpus geniculatum mediale
FASC. DOR.	Fasciculus dorsalis
FASC. LAT.	Fasciculus lateralis
COMM. WTN.	Comoissure minor.

A

Fig. 20

0.1 mm

D

connections and general anatony, it seems justifiable to considor that they are essentially different perts of functionally the same body. In viow of these conclusion it scems then the C.C.l. may woll be honologous with the muclous intermedius of Goldstein (1905) and of Holmgren (1920), out very well developed in the minnow, and not homologous with the muelous anterior thalam of these two authors. It doos however appear to be the corpue geniculetwn pars ventrelis of Header (1934). The most recont work on teloost brains concormed with this region was porformed by chnitzlein (1959) end from his 111 ustrations the C.G.M. would appear to heve the same size, genoral position and nourone structure as his melous rotundus. Sohnitzlein failed to ind ifbre connections that are present in the minnow and ooncluded thet the C.G.K. was not part of the visual system. He did make the obeervation that it is very variable and not present in the Cetfish, very large in tho Coldfish, and reduced in the Darter, but that in this last fish, the C.C.L. is very large and Solded. Fron this it could be said that his mucleus rotundus is pogsibly related to the vianal system, for the CatPish has a pooily doveloped sense of vision, and althouch tho Darter has very good vieion the other parts of the goniculate comploss are very well developed.

(c) Gorove ganiculatum postoriva

This is composed of a few large nourons diffusely arranged and lying dorsomedially and caudelly to the rest of the complex. It is homologous with the corpras geniculatun posterius of Meader (1934) with the nucleus pretectelis of Schnitzlein (1959) > 9 1dstein (1905) and Kappers (1906)

In view of its fibre connoctions and general position, it seemed best to include it with the rest of the complox.

(d) Pibre connestion of the Goniculate cornaley

Bellonci (1888) thought that the leterel geniculate mucleus only received collateral of the rotinotectal. fibres and the work of Schnitzlein (1959) Eailed either to confirm or to deny this and Kapper of ald (1936) seam to agree that thoy are only collaterale. The optic fibres which supply the Interal geniculate body wero believed by Zoeman and Lribsen (Kappors et 27 1936) to originate in rostral quadronts of the rotina.

In the minnow there is definite evidence th slow that they ere retinogeniculate flbros and not collaterals of the optic tract. These direct fibros are show on Pig. 22 p. 125 , stained by the Holmes method and they were also visible in the deceneration studies. Fibres from all parts of the optic tract run to the geniculate complex and the latter appears to recoive a fairly uniform projection from the reting. This has also been demonstrated in a series of experirents involving ablation of various parts of tho aptic toctum combined with unilateral blinding. (Section 6 p. 186).

The different parts of the geniculate complex give fibres to the other perts of the complex (fig. $21 \mathrm{p}, 123$). The geniculate complex also gives rise to fibres to the teotum and this is aspecially well seen in

.0verer

P4g. 21
A. Section of C.G.M. where it makes contact with the C.G.i. Stained by the Holmes method.
B. Section of the C.G.M. Whers it is contact with the optic nerve.

Stained by the Holmes method.

B

the COMM.MIN.

SS. 4

18. 22

Section of the C.G.L., stained by the Holmes teohnique, showing its relationship to the optic tract and toctum.

Abbreviations:

BRA. F. LAT.	Brachia testi lateralis
BRA. T. MED.	Brachi tecti medialis
C.G.L.	Corpus geniculatua lateralis
PASC. DOR.	Fesciculus dorsalis.

Fig. 22

C.C.L. In the more ant rior sections these fibres form o diffuse fanm 1:ke distribution to the tectum, but more poateriorly two definite tracts are present, s modial tract and 0 latemi tract. These tracts wara very well described by Cherlton (1933) and nomed the brechis tecti laterelis and medialis which correspond to the tractus geniculo-lobaris and tectalis of Holmgren (1920). A large number of fibres mun from the tectum to the geniculate complex.
the geniculate complex on each side is joined to that on the other side by a large and well developod comassure, the comissure minor of Herrick. Pibres fram the whole of the complex with the possible exception of the C.G.P., are found in it (fig. 21, p. 123). Fibres from the complex also run in the transverse comissuze wich runs belou and more caudal to Herrick's commissure.

Fibres from the geniculate complex also run to a wide variety of other regions in the brain, well developed fibre bundles running to the eminentia medialis, hypothalamus, and ventral thalanic nuclei. The spinomgeniculate connections could not be seon, nor could the connections to the ganglion isthni reported by Kudo (1923).

V. THE OPIC TECTY

The optic toctum is a largo bilobed plate of tissue which forms the roof of the optic ventricle and covers the rest of the mesenceptinlon dorselly ond, to a certain extent, laterally. Fecause of the optic ventricle the optic toctum is only connected to the rest of the brain at cortain points and n largo anount of its structure is determined by this. The connections are in the extrome anterior recion and in the leterel regions extendine from a point just ontorior to the middle of the tectum to the posterior of the tectum.

The two bundlen comprising oach optic tract min into the toctun. The fasciculus dorselis runs elong the dorsal midine of the tectum and given fibres to its dorael regions. The other bundle, the fasciculus laterlis, runa along the extreme lateral margin of the tectun giving off Plbros to 1 ts lateral regions.

The optic tectun has been examined by a number of workers and the work by Iluber \& Crosby (Kappers of gil 1936) has divided into into 6 prinary layern, using the same terminology as that used for higher vertem brates. Leghissa (1955) has divided it into seven primary layers and considerable egreement with this is show in the work of Tendon \& Shama (1963) who elso divided it Into 7 Ieyers.

In the minnow the ' primary layars labelled by Legissa fit very trell

$E \Xi$

. 48

ig. 23

[^0]Fig. 23
A

B
0.1 mm

$$
+5 .
$$

ig. 24

Section of the tectum in the midline steined with C.F.V.

Fig, 24

with the hivtologicnl picture. Recause of the difficulty of staining both colls and fibres with the samo stain, aoparate stolne for the same resion are show in fle. 23 (p.129).

The layer are as follows:

1. Stratuo fibromur maxsinale

This congista of a fe rly thick layer of nonmyelinated fibres, and from it s conspicuous bundle of fibres rums across the tectum to the torus longitudinalis. The nourones in this layor aro few in mumber and cenerally have only two clendrites.
2. Stratum niexiformo et fibergu extormus.

This contains fibres from the optic tract as they make synapes with the dondritea of the next layer down. Evidence that it also conteins Pibroa from the geniculate complex is provided by the appoarance of nomal fibres in this layer following tho complete section of the optic tract. This thiclmess of this layer vaxies considerably throughout the tecturs. It is thickest at the anterior part of the tectum and in the extreno dorsel and ventral regions where the main bundles of the optic trect run. As the tracts run across the teotum they give off fibres so that the latorodoraal regions are vory thin. There are also a few small to modium aized neurones peesent.
3. 3tratur grigey externum

Here the temninations of the optic tract run and form a vory 111 defined layer. There are numorous large bipolar neurones, iusifom in shape, and several small pyramidal neurones. This layer is very reduced In stze associsted with the large size of layess 2 and 4 , at the antertor
and extrome dorrel and ventral extremities (fig. 24 p .131).
4. Stwatum_2doxiformanintorsum
-his loyor contalns fibres running in foost directions and is the recion where most of the other afleronts mun into the tectun. It contains flbrea from the eoniculato complex, spinal cord and medulia, corebellum, ranglion isthmi, hypothelouss, and the thalamic nuclei, ospecially the eminentis tholami.

5. Stratam exiaeur internum

This is a leyer of fibres and cells with most of the fibres running from layer 6 to layers 2, 3 and 4. Fibres run in other directions and It appeare to be the main correlating layer of the tectum. The nourong are both pyramidal and fustform, large and amoll, and monom, bi- and multimpoler. This layer is reduced where layers 2 and 4 are thickened, it is howevor, the thicloest layer, constituting one thim of the total tectel thickness in the laterel regiong.

6. Stretur if brown profundum

Being composed of the main tectai efferent fibres, it is thickened at the laterel and anterior regions of the tectum. Fibres fron this layos run to the thalanus, hypothalams, cerebellum, medulla, spinal cord and mesencephelon.

7. Stratum acireum rapiventriculare

This is a layer of mall spherical nourones shich give rise to meny offerent fibres and send fibres to most of the othor lnyers of the tectun, expecielly Iayor 3 .

The torus longitudinalis is well developed and appears as a bilobed structure in the midine of the tectum (fig. 24 p .131). Ohta (1959)
hes concluded that tho developnent of the torus longitudnalis in telconts is rolated to the dovelopment of tho tectum and viaion.

The main fibre comnections as observed in the present work on the minnow acruo well with the previou description of other pecies, furw (1923), Schnitzlein (1964), Kappers et 9] (1936) and Poarson (2936). In Phoximas, fibres run to the eminontio medialis, eniculato, preoptic nucleus, cerobellum, mesencephalon, hypothalemus, oculamotor reaton, 9 habenuler nucleus, modulla, spinal cord, ganlion isthmi, and probably others not definitely identified. The tectum of Phoximus receives fibred from the thalams, spinsl cord, ganclion isthmi, medulla, hypothalemes, and cerel:ellun (as found by Tuge 1934 in the Goldfish). The aecondary trigominal tract, firgt identified in fish by Peareon (1936), was found.

Tho comissurel systems in Phoxipus, are also very well developed, especially the postorior commisure which has tectal and pretoctal fibros, and the comissure horizontelis of Franz (2912) which connects the torvs gonicuroularis and the posterior tectum from one side to the other, and Which crosses vory far antorior just bohind the chiasma.

The optic tectun resembdis that of other teloosts in appearing to be one of the mein correlating and comordinfating centrejof the brain.

No precise worle was done on the rotinomtectal projection so that nothing noed be added to the conclusions presented on page 20 .

S_CTM 2.5 BLTMDTMG

Throukhout these oxpariments on the minnow a very large namber of complete blindings were performed on both Chess and Lee fish. Theme blindiags were all performad by cutting the optic nerve on both sides. On recovery from the oporation the fish comenced to darken within 3 . $w i n g$. after the effects of the annesthetic had worn off. At 30 mins . thay wore still quite pale, usually D.O.I. of 2 or 3 , but this pale condition dict not last long and within the noxt hour the fish had gone noticeably dark to a D. O.I. of 4 or 5, and this slow darkening contirued for the next 24 ho Ps , Inally reaching a velue of $6.5-7.5$. Most of these Ilish were used for other experimentg ($p .153$) but 14 of these fish had their oolour reconded for a period of time. The resulta are given in talle 5 po 136 .

These fiah ware tented on both black and white baekgrounds but they remained the same colour. Two fish not show in this table reeched a value of 2.5 within aix weeks post operetion.

The results of Ploh 2 to 6 are shown graphically in 2 ig. 25 p. 138 . They show that there is a wide veriation in this poling responee not only In eatent but also in time. The paling, when it does occur, is steprise.

TABLE 5 . The colour of 14 mimons following complete blindius: expressed as D.O.I values.

Fish			Time in Days				
1.	1.	2	4	9	16	42	59
1	6.5	5	5	5	5	3	3
2	6.7	6	6	6	6	4	3
3	7	6	5	4.5	4		2
4	7	6	6	5.5	5		3
5	7	6	6	6	6	4	4
6	7	7	7	7	7	5	4
7	7	7	7	7	7	6	5
9	7	7	7	7	7	6	5
10	7	7	7	7	7	7	7
11	7	7	7	7	7	7	7
12	7	7	7	7	7	7	7
13	7	7	7	7	7	7	7
14	7.5	7.5	7.5	7.5	7	7	7
1.5	7.5	7.5	7.5	7	7	7	

cS.3t

$$
\text { art walworlo d at } I \text { dath te anderis } 30 \text { testra }
$$

Fic. 25

A serics of eraphe of fish 1 to 6 showing the relationship between colour and time aftor blinding. The blinding betnig performed by outting the optic norve.

Fig. 25

The temporeture wes controlled at $18^{\circ} \pm 2^{\circ}$. With the exception of 6 , 7 and 3, there is an initial feirly rapid lightening for the second doy and this corresponds in tive with the absence of any degoneration stainable in the optic tract (p. 99 t. In Cish $1,2,5,6,7$ and 3 , this is Lollowed by a period of n chonge, and this correoponds to the period of stege 1 and the early part of atage 2 in the degeneration of the opt1c nerve. From the 16th day onwards there is \vec{e} distinct peling and this correaponds to the time of the advanced stage morgine into atage 3.

The roults do show that there are two groups of minnows thooe that remtin dork aftor blinding and those that lighten apter a variable period of time. Purther it appears that in the popaiation about hale pole and hale remain dark.

Experiments were carried out to see if the external conditions of 111 wimination intensity had any effect on the colour of the blind fish. Figh were piaced in the dork for a variable period of time up to 24 houre and thoy were aubjected to a considorable range of 11ght intonsities. The 1ight intenaities were produced by smenging for a 20 N , or 40 W or 300 W bulb to be pleced at 1 ft and 2 ft . above the surface of the woter; together with a 60% placed 10 ft . above the surface of the figh. In no asse 412 the flsh show ony dirferent colour to that at the beginining of the experiment. From this it would appear that the shade ansunod by the fish was not affected by external conditions of illumingtion.

To try to explain the differences in the colour of blind fish a series of anetomical investigations were carried out. Two fish which had romainod dark for six woeks and two fish wich hed 14 hhtonod to waluos of 1.5 on the 0.0. . cell, were killed, fixed and atoined ond then compored with normal. [ish thet had bean killed and atained et the same time and in the same way. The main atcerences in the Bming of the biand eish and the normole wore in the a sunce of the optic tract in the formor. In the other structures of the brain the blind end normal fish appoerod to be identioal and, that is very intorosting, no difforences could bo found betwoen the two groupe of blind fich. This is only taking into acoount the eross anatony of the neurones and fibree connections lai since the stain usod vould not indicste any differences in degree of activity of the brain atructures. This will beftrther discusned on page 233.

Theso reaults heve confiriod that blinding of the minnow vesults in the fish darisening and that after a period of time the colour of the fish is varioble. This essentially confirws the reaules of von Frisch (1911) but sthough he did not stualy this rosponse in datail. The peling response of minnous in derloness, reported by von Trish (1911), Scharrer(1928) and Shefer (1964), was not observed in the Chess or Lea ninnows follorinc blinding but it has been reported by Beeley (1945) that this rasponse is vory variable in minnows from differont locnlitios and that fish eron Latoen In Wales did not show tit and neither did Munich minnows, olthouph he corm Pirnod thet the peling was show In minnows from Viemna.

In general it can be seld that blindine of the ninnow results In darkenine only for a hort period in some Iish and that the popilation nppears to be composed of two distinct typesy the colour of which is detormined y the intornal physiologion condition of the central nervous syetom or pituitary complex.

SECTION6

THE OPIC IC CMUR AID COL UNE CHACE

15 minnows were taken and the optic tectum vas completoly removed, the sleull sealed, and the f1sh placed in exporimentel aquaria, The colour was then recorded at intervals of time on both bleck end white backerounds for a period of 11 days, after which the fish wore killed ond fixed, ond the brains were sectioned and stained, 4 Fish were killed after 3 hours to compare them with the fish left for 11 days.

Of the 11 fish kept for 11 doys, only 3 showed useful results and the rest showed various degrees of degeneration. This degenoration resulted in large anounts of necrotic tissues in the mesencephaion and diencephelon in which no definite structures were clearly visible. In some fish the "lace-like" necrotic tissue had been walled off and biow this normel tissue was present. This degenoration could possibly have been due to the entry of water under the cemont, but one would have

∂S.at's

aplazefor	[ntutisidohros uny	e
-35 Enathom		, M, 3, 2
		- 8017.4
		- . \%og.38a年
	3iforatat mastsaforav	
	altasini Satbout	- sMal . 60 Cl

Fig. 26

ransverse section through the brain of the minnowat the geniculate complex to show removel of the tectumwithout damage to other brain structures. Stained by Kluver\& Barrera technique and sectioned at 8j .
Abbrevintions:
G.O.L. - Corpus geniculatun latervis
C.G.M. - Corpue geniculatum medialis
N. HAB. - Nuclius hoberularls
FASC, DOR, * Pasciculus dorgelis
FASC. LAT *- Fascieulus Iateralis
MED. LAM * - Modtal lamolla

Fig. 26

expected it to be more extensive, and in which case the Pish would not be expected to live long. It seams move Ifkely that the blood supply had been disxupted and that in the 3 fish in which there was no decenoration, the lood ouprly was adequate.

Bocause of the deconeretion, the resulis are conilned to 4 fish which wore killed after 3 hours and 3 flsh which survived for 11 deys.

In those 7 fish , the tectum was completely romoved and, an far as could be soen, the rest of the brein was intact. The goniculate complex was present and intact in 811 of those 7 cases. (Fis. 26 p. 144). AII 7 fish peled within two hours after the operati n and the degree of peling variod from 1 to 4.5 on the D.O.I. scale, giving a mean of 2.7. The pallor wes meintained for at least 24 houra without change the fish wore tested for normal colour change on black and thite backgrounds and in no case could any show any adaptation to tho backerround. A very alight change was noticed in a few fish but this was only due to the light intensity; fish on black could be induced to peld by 1 or 2 degrees by placing the light at a distance of 6 inches from the water as compered to the normal 18 Inches.

The results of the 3 fish for 11 days are given in Table 6p.du6

In these long-torm tectal removals there is no recovery of colour

TABLE . The colour of ilsh 15,16 and 18 following totel toctel removel on black and white backgrounds.

Fish	White				Bleck			White	
	24hes	43 hrg	96 hrs	24hra	48hrs	72 hrs	24hrs	43hrs	Ghrs
15	1.5	3.5	5	6	6.5	7	6	6	5
16	1.5	2	2	4	3.5	3.5	3	3.5	3.5
18	3	3.5	4	5	5	6	6	5	5

These figures were plottod on a graph (fig. 27 p .148).

「S.

5obergi

$$
4-2 A
$$

$$
0-82485
$$

$$
\begin{aligned}
& \text { asf ca han fond } \\
& \text {, ix tore ginas: }
\end{aligned}
$$

P8. 27

The colour of three eish after the removel of the tectum, the fish being placed on both slack and whte baelogroind.

Syabols used:
P4sh 25 - -
Fish 16 -
Figh 18 - 0

change and the initial paling is not maintained. The 11 day tectal removed fish underwent darkening regardless of the background, this ocourrod while stil1 on white in the case of fish 18 and contimued on black. In no case was there moro than doubtrul lightening on white and the fish retained the generel colour that was present on the black. The final colour wes highly variable, all three fish showing different coloura and none being near the extremes of the colour renge possible. However, there are too few results to allow any defintte conclusions. Although the rosulta of the other Iish have not been presented here, thoy all ahow the same aproad of tint and no extremes were found.

II. UNIFAXERAL TECTAL REMOVAL AND UNTHATERAL HLTIDTMG

The optic tectua was completely removed on the right side in 5 fish (later checked histologically). These fish vere allowed to recover and then tested after one hour. In overy case the IIsh could perform normal colous change in both extent and direction.

In 10 fish the left optic tract was cut and the animal allowed to recover. On the following dey 5 of the fish had the tectum removed on the left side. All of these fish could perform normal colour change In extent and direction (fig. 28 p .151). The other 5 had the right half of the tectum removed and similarly showed nomal colour change.

In the case whore the optic tract was cut on the left and the optic tectum removed from the same side, the fish was essentinily
[. A8S.an28
the 'qiat lo

. 2

$$
\begin{aligned}
& \text { M85 } \\
& \text { ABS }
\end{aligned}
$$

```
Figs. 28A,B .
```

Colour change of nommel fish - , and of fish with the left optic nerve cut and the left lobe of the tectum removed

28 A is from white to black and 28 B from black to white.

Fig. 28
A

B

blind because of the complete chissma.

Control fish were tested with no tectal removals, but with the skull bone removed and the skull cemented over and in all cases they could perform normal colour change.

III. TEGRAL REMONAL IN BLIND ETSH

Pive minnows were blinded by cutting the optic tract and allowed to recover and darken for 24 to 48 hours, by which time they had reached a value of 7 to 7.5. These darkened blind fish then had the tectum completely removed. A few other blind fish actod as contrals, having the skull bones removed but the tectum left intact.

In all the fish with the teetum romoved and in none of the controls markod paling occurred to a value of I to 1.5 D.0.I. within 2 hours.

In a group of 34 Ifsh which had been blinded for 24 to 48 hours the left lobe of the tectum was removed. On recovery a fow of the fish showed a slight paling but the majority did not show any difference to the preoperative condition. In the Iish which did pale slightly the preoperative colour exactly matched the postoperative colour within one hour.
performed. The renovals aro shown in ilg. 3la page. $164, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$.

A - this fish had the anterior part of the tectum removed. The fish stayed fully dark throughout the whole of the obsearvation period of 3 hours and maintained a constant D.O.I. of 7.

B - this fish had the posterior part of the tectum reaoved and 2 hourg after operation had reached a D.O.1. velue of 1.5. The initial D.O.I. was 7 so that the Iish had almost fully poled. Examination of the brain shoved that the doraal part of the tectur had been renoved but that there was still present a small part of the leteroventral tectum with intact efibre connections to the torus semicircularis.

C - the dorsal pert of the tectum in the posterior region was romovod leaving the lateral part intact. The ifsh had an initial D.O.I. of 7 and a final Pigure of 2.5.

D - this fish had the dorsolateral part of the tectun removed in the pooterior rogion. The fish had an initial D.O.I. of 7 and a final D.0.1. of 2.5.

The findings from this experiment show that the removal of the dorsal part of the posterior part of the tectum results in conplete poling of the blind minnow.

IV. TSOLARTON OF FHE TECTAL REGTON TO CAUSE PALLOR TIN RLTND MINNOUS

A lesion was placed in the dorsal posterior part of the tectur of 23 minnows blinded 24 hours proviously.

(a) Method

Normal blinded minnows were anaesthetised and the left lobe of the tectum was romoved. The wound was not closed and the fish wore allowed to recover in ringer for at least an hour. The initial removal did not affect the D.O.I. of most of the fish but three fish did shove slight paling down to 5 , these fish aloo eppenred agitated and vere discerded.

The fish were then remennesthetised and the right posterior pert of the tectum oxposed. The lesion was then placed in the right tectur, the position being deteroined by an eyempiece gratieule in the upper lens of a binocular microscope. The greticule was a simple grid that onabled the position to be mariced on a drawing of the brain on squared paper. The lesion was placed directiy, using the hand, and with prectice it could be pleced to within 0.06 mm of the required position. It was not nocessary to place them more accurately because the exact position wes determined from the sections eut of each Iesion and because it was only necessary to cover the area adequately.

In making the lesions the apox of the cerebellum was taken as the referonce point. This was very easy to see in the sections and was relatively constant in position with reference to the rest of the tectum. The anterio-posterior axis is called the X axis and the lateral axis the Y axis. The apox of the cerabellum forms the zero point on both axie and the losions which are nore anterior to this are given
positive valuon while those that aro posterior to it are given nogetive valuos.

The lesions were made by the technique of micromenomicel cautery devised by Clark \& Scott (1962) for the diencephalon of tho frog. Because the tectum is a large, fairly thin structure it was decided to make large Losions complotely through it. Micro-pipettes were made by drawing out ilne gloss tubing and attaching a smoll rubber bulb at the other end. The tipe of the pipettes wore cut os an acute angle to aid in the noving through the tectum. The outer tip dianeter wes $0.24 \pi m$ and the immer tip diameter 0.12 mm .

A band mariked at one centimoter from the tip enabled a standaxd amount of acid to be used in each lesion, nemely $0.112 \mathrm{~mm}^{3}$. The pipotte wos filled by capillery action with dichloracetic acid (CHOL_COOH), and the pipette was pushed through the tectum slouly, injecting the acid all the time. Waing this method very diserete lesions could be produced which were circular in outline and hed a diancter of $0.2 \pi n+0.04 \pi m$. Tho larger lesiore aid not give any greater pallor than the amallor.

The IInol D.0.I. was recorded at least two hours after recovery from the anoesthotic. Bach result is experessed in terms of the ramber of degrees of peling (D,O.P.) and is the final D,O.I. subtrmeted from the original. B.O.7. The D.O.P. is used because there aro alight dipferences in the initial D.O.I. Pigures.

$$
\begin{aligned}
& \text { PS. HT }
\end{aligned}
$$

Fig. 29

Is a summary of the tectal leeion placed in right tectal lobe of blind fish after the complete romoval of the left lobe. The degrees of paling is the difference between the initial and the final D.O.I. values.

Fig. 29

SUMMARY OF LESIONS

DEGREES OF PALING

$$
\begin{aligned}
& 0-0 \\
& 1-0 \\
& 2-0 \\
& 3-0 \\
& 4-0
\end{aligned}
$$

(b) Regulta

The positions of the lesions and the D.O.P. are sumarised on page 157 fig. 29.

To test the effect of the acid, three lesions were performed without it. They yielded the same results as lesions with the acid but It was difeicult to see just whet had been removed. The question as to whether the acid destroys more than is imnediately visible is one that applios to all methods of lesion making. In the present case, the lesion was constantly washed with ringer to prevent the spread of the acid. In the Pish used for the medullery centre experiment (p .199) the tectal lesion was fully healed and composed entiroly of glial colls after 16 days and no damage could be seen in the surrounding tissue. It therefore seems $14 k e l y$ also in the lesions described in this section that the dichloroacetic acid did not do any danage to the surrounding nervous tissue and that the results are due to the part removed and not the effect of the acid.

A muber of leaions were repeated to verify the original results and in all oases the rosults were identical. Tho lesions repeated were

In a few casos the lesioned fish paled immediately after recovery from the anaesthetic $(X+0.35 \mathrm{~mm} \mathrm{KI} .6 \mathrm{~mm}, \mathrm{X}+0.64 \mathrm{~mm} \mathrm{XI} .66 \mathrm{~mm}, \mathrm{X}=0.36 \mathrm{~mm} \mathrm{~V} 2 \mathrm{nem}$,

Fig. 30

Photonicrographs of 4 teetal lesions stalned with Iousol Fest Blue and Cresyl Fast Violet, and sectioned at 8 N

A - X $\%$. 30 mm . XI. 3inn.
B - XO YImen.
$\mathrm{c}-\mathrm{xO} \mathrm{K} .33 \mathrm{~m}$
D - XO Y2mm.

Fig, 30

B
0.5 mm

$\stackrel{0.5 \mathrm{~mm}}{ }$

D

the end of the 2 houre had reached the same colour as the original, Only the persiatent change in colour brought about by the lesion is recorded.

Four degrees of pellor represents a change of D.D.I. of approximataly from 6 to 2. The fish used in this exporiment were kept In stock tanks of en internediate colour, and the effective range inr these fish was from D.O.I. 7 to Ig a D.O.P. of 6. The D.O. P. recorded in Pish $X 0$ Ylm was 4 and this is essentially oniy 2 degrees below the neximun of any given fish in this group.

A group of lesions is illustrated on fig. 30 (p. 160). The results show (fig. 29 P .157) that there is a mall discrete region in the dorgal posterior part of the tectum whose removal results in almost maximal poling of a blind Pish. The region is represented at the centre by lesions XO Ylmin and XO Y 1. 33 mm (${ }^{(1 g}$. $30 \mathrm{p}, 160$) giving veluea of D.0.P. 4 and 3 respectively. These two lesions are bordered by a group of lesions giving values of only 2 D. O.P. these being $X O Y O .66 \mathrm{~mm}_{\mathrm{m}}, X * 0.33 \mathrm{~mm}$ $Y 1 M M, X+0.3 \mathrm{~mm}, Y 1.33 \mathrm{~mm}, X=0.25 \mathrm{~mm}, X 1.33 \mathrm{~mm}, X+0.1 \mathrm{~mm} . Y 1.66 \mathrm{~mm}, X O X 2 \mathrm{~min}$. Apart from these lesions none of the other lesions gave any dogrees of paling.

The Itsh in this group were treated differently to those in the groupa previously mentioned. Parts of the tectum were removed and the

$$
0 \text {, }
$$


```
auctoct o&むc! - .T
    mallodero0 - .?
    Whod imsest9 - .q
```


Joast oztaco - . T. 0

 ascoli oct botntagon To begnmab moldersocg oft tud troaerg

Fig. 31 a, b, c, d, e, f, g, h.

Show the dorsal and the right and left lateral views of the tectur and adjacent brain aress.

Abbreviations:
T. - Optic tectum
C. - Cerobellum
P. - Pineal body
0.L. - Olfactory lobe of the forebrain
0.I. - Optic tract
V. - Vagol lobe of the medulla

In all these figures the shaded areas are the areas removed and the stippled areas are the regions which are present but the operation danaged or separated the Pibres running from these areas to the torus semicircularin.
a - Fish A, B, C, D
b-Fish 67, 35, 34, 27
c - Fish 31, 65, 37, 64, 36
d. Fish 33, 40, 47, 56, 60
e - Fish 49, 57, 45, 41
P-Pish 61, 55, 43, 54
g - Fish 73, 74, 75, 76
$\mathrm{h}=$ Fish $68,69,70,71,72$

Fig, 3la

RIGHT
LEF T

B

c

D

Fig. 31 b

Fig. 3lc
DORSAL

31

2 mm

Fig. 31 d
DORSAL

60

$$
2 \mathrm{~mm}
$$

Fig. $31 e$

Right

LEFT

$\overline{2 \times}$

Fig. 31%
DORSAL
RIGHT
LEFT

61

54

2"

Fig. ${ }^{31}$

Fig. 31h
DORSAL

RIGHT

sloull was sealed with the cement. After 24 hours the ifsh were tested on black and white for 30 minutes. Of tho 51 operated fish only 31. were of use, 20 fish had some damage to other parta of the brain, especislly the torus semicircularis and the geniculate complex, and ware therafore discarded, and 10 ish died immediately after operation.

(a) Hemoval of the anterior tactum

The anterior tectum was removed from $4 P 1$ ah in order to observe the effect of the presence of the posterior tectum along. The removals are show on Pig. 316 (p 165). The rosults for colour adaptation are given in table 7 .

TABLE 7 . The colour of minpoys following the removal of the anterior tectuma

TETK	Black	Wh2te	\% Wectum present
27	3	2.5	46
34	4	3	53
35	1.5	1.5	57
67	4	4	25

There was a considerable variation in the colour of the fish in this group. All the fish showed some degree of pallor and none of the fish showed any tendency to change colour with the bacleground. The mean D.O.I. value of 2.9 for the group was very nearly the same as the
2.6 mean seen 24 hours after complete tectal renoval (p.145). There does not appear to be any correlation between the amount of tectum romoved and the D.O.I. velues. In all cases the posterior tectum was not in contact with the geniculate complex, or the optic tract, and in all cases the geniculate complex wos intact. In two fish, 34 and 35, the region identified as the active rogion in blind fish by means of lesions ($p .162$) was present and intact on both sides.
(b) Removal of the postoxior tectum

7 fish were used in this experiment. The removals are shown in fig. $31 \mathrm{c}, \mathrm{d}(\mathrm{p}, 166-7)$, and the rosults for background reversal are show in table 8.

TABLE. 8. The calour of minnous follouing ronovel of the posterior tectum

Fish	Black	White	\& tectum present
31	2.5	1	45
33	2	2	47
36	1.5	1	74
37	1.5	1	72
40	2	1	44
65	3	2	65
64	3	2	52

The variation in this group is very big but, as with the
anterior romovale, the fish had a coneral tendency to pale. The mean D.O. I. for tho group was 1.8, the mean being taken from the black and white record. This is one degroe liphter than the colour following total toctal romovel, but it is too slight to be important.

Both 36 and 37 are interesting because very littie tectum was ronoved but the fibres possing out of this region to the torus semfcirm eularis were destroyed.
(c) Left pogtorior tectum only pmosent.

4 fish wore usod in this group, the romovals show in fig. 3le (P. 168). The reaults on the different backgrounds are given in table 9.

TABLE 9 . The coloux of minnows with only the left posternor part of the tectum remaining

Pish	Black	White	\% tectum prosent
42	6	5	30
45	4	2	31
49	4	4	13
57	3	3	25

The moon D.O.I. for this group was 3.8 , which is mtuch higher
than the D.O.I. Collorine either the anterior or the posterior removals. Although the anterior tectum was removed the toctum was unually in contact With the fasciculus lateralis manning from the dorsal part of the eye to the tectum.
(d) Left anterior tectum only present

7 ilsh were used in this experiment. The removals ore show in eig. 31 df $(-16,167,169)$. The results for the beckground reverael are given in table 10 .

TABLE 10 . The colors of minnowe with only the left anterior part of the tectum rengining.

Fish	Black	White	\% tectum present
47	6	3	27
48	6	3	36
55	4	3	36
54	2	2	27
56	44	2	31
60	2	1	20
61	4	2	34

This gives a mean of 3.1 degrees, similar to that found in the group in which only the left posterior portion of the tectum remained.

In all the fish tosted thore was a slight change in shade whon the animals were transforred from black to white. This was espoelally marked in 47 and 48. In all the cases this could be brought about on either background by changine the light intensity. In the case of the fish 47 ond 48 the change from 6 to 3 occurred in about a minute, which is much too fast for a normal colour change. It would appear then that this slight change from black to white is not due to a change in the background but to a change in the total light intensfity and that the mechanism involvod does not include the normal visual systen.
(e) Removal of the anterion left and the posterior witht tectur The removal resuts irom 4 fish after this oporation are shown in fisg. 31 g (p. 170). The results for background roversal are show in table 11 .

TABLE 11 . The colour of minnous on black and white bsolkgrounds folloulng the removal of the anterior left and the pogtertor cicht parda of the tecting

BTACK TO WHITS

Pish	0 mins	3 mins	5 ming	9 mins	12 mins	20 mins
73	5	2	1.5	1	1	1
74	6	2.5	2.5	2	2	2
75	7	4	3	2.5	2	2.5
76	3	2	1.5	1	1	1

WHITE TO BLACK

Pish	0 mins	3 mins	6 mins	9 mins	12 mins	20 mins
73	1	3	5	5	5	5
74	2	4	6	6	6	6
75	1.5	4	6	6	6.5	7
76	1	3	3	3	3	3

The results are shown in the graphs on $\operatorname{fig}{ }^{32} 33(\mathrm{p} \cdot 180)$.
These results were not due to any intengity effect for when they were teated over a variable range of intensities none of them showed any change of tint. The second important feature is thet the time for this change is within the normal time for colour change.

The results do show that the fish attempt to adapt to the bacikground. In the ease of fish 75 there was alreest normal colour change in both extent and pattern and 74 was almost normal, only lecking tho ability to pele by 0.5 of a degree. Neither 73 nor 76 could change colour over the nomal range but the rate of change was the same as that of normal fish.

The amount of tectum prosont in all these fish was approximately equal to just over 50%.

$$
\text { OR, } 15 \text { e }
$$

$$
+20 \text { Inema }
$$

$$
\begin{aligned}
& \text { 漛 }-8 \\
& x-\infty \\
& \text { 零 } \rightarrow \\
& \text { A } \quad=0
\end{aligned}
$$

PIG6. 32 and 33.

Reaults of changing the background: fish 73, 74, 75 and 76 .

Syabol.s usediz

$$
\begin{aligned}
& 73-\square \\
& 74-\boldsymbol{x} \\
& 75-\boldsymbol{\square} \\
& 76-\boldsymbol{\Delta}
\end{aligned}
$$

Pig. 32 is from white to black and 33 black to whito.

(f) Removals from the dorsal tectum

To investigate the activity of the tectum by mall removals prosents certain problems. Firstly, lesions in the midline will remove or disrupt the incoming optic tract fibres. The effective aree put out of action is far in exceess of the lesion, and there is no way of estimeting the extent of this. Secondly, the removal must not effect the active region in the posterior part of the tectum, for damage to this results in no colour change, and a permanent pale tint regardless of background. The anterior dorsal region betwoen the positions YO. $3 \mathrm{am}-2.33 \mathrm{~mm}$ is the only region that is easy to operate on and the results bear some relationship to the amount of the tectum.

5 fish were used in this group. The details of the removals are shown in fig. $31 \mathrm{~h}(\mathrm{p}, 171)$.

The results for the background reversel are given in Table 12.

TABLE 12 . The colour of minnows on black and white backrround following the remoyal of mall paxts of the dorgal tectum.

Fish	BLACK TO WHITE						\% tectum present.
	0 mins	3 mins	6 mins	8 mins	12 mins	20 mins	
68	6	3	2	2	2	2	96
71	7	2.5	1.5	1.5	2.5	1.5	95
70	6	4.5	4	4	4	4	91
72	5	3	3	3	3	3	86
69	4	2	2	1.5	1. 5	1.5	84

Fish	WHITE TO BLACK						\% tectum
	0 mins	3 mins	6 mins	8 mins	12 mins	20 mins	
68	2	4.5	5	5.5	6	6	
71	1.5	5.5	7	7	7	7	
70	4	5.5	6	6.5	6.5	6.5	
72	3	5	5	5	5.5	5.5	
69	1.5	2	3	3	3.5	4	

These results are plotted as graphs in figs. 34,35 (p. 184-5). The colour changes were responses to the background and could not be Induced by changes in light intensity.

The removals fall into three groups:

1. Small removals confined to the region between YO. 3nm and Y1. 3 mm and not involving the active region ($p .162$). Both fish $(63,72)$ shors more or loss normal colour change in extent and direction. 2. Larger removals which did not seriously affect the active region. Fish 70 shows a removal of only 9 of the tectum but the ability of the fish to change colour is greatly reduced. The fish has an inability to pale below a value of 4 and shows a range of only 2.5 . 3. Large removals where the active region is effected on at least one aide. Fishes 69 and 72 show an inability to change colour by more than 2.5 as in Cish 70 but in the former two Pish thare is a progressive shift of the curves to the white end of the chrometic range.

$$
\begin{aligned}
& \text {. 己ESNe \& E. Bot }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \quad 4=5 \\
& \text { * Qufarim } \\
& \text { 3 } \\
& +-5 \\
& 39 \\
& \text { A - T } \\
& 0-\infty
\end{aligned}
$$

Pige. 34 and 35 .

Results of chenging the background of pish 68,71 , 70, 72, 69.

Symbols:

Pig. 34 is from white to black and Pig. 35 from black to white.
Fig. 35

With 70 the range is from 4 to 6.5 (91% tectum), 72 is from 3 to 5.5 (86% tectum), and 69 is from 1.5 to 4 ($34 \%^{\circ}$). These last figures approach the very pale state of the total tectal removals.

VI. DISCUSSION.

(a) Eibre nathog between the retina, reniculate complex and the toctum.

Minnows change colour nornally when blind on one side regardleas of whether the blinding is eccomplished by a removal of the optic tectum or by cutting the optic tract. In this respect the minnow differs from the trout which, aecording to von Frish (1911), when one eye is removed, goes dark on the opposite side of the body, a condition which he associated with the complete chlasma. Sunner (1912) reportod in flatfish thet the blinding of one eye resulted in the fish assuning an Interneditate shade on a white background.

Follouing the removal of the optic toctum, the fish went pale, as reported by Dijgraef (1949), but unilike the fish used by Dijegreaf they could not perform colour change. The fish without tectum did not ahow any abllity to adapt to its background, from which it nust bo concluded that the tectum is easential for chromatic adaptation. The observation by Wichers reported by Healey (1957) that the minnow with one eye removed and the optic tectum removed from the same side could
change colour was confirmed. Further observations of the preparation showed that this colour change was normal in rate and oxtent. The removal. of the eye on one side and the toctum on the same side means that the Pish is essentially blind in regard to tho direct retfonotectal ifbres. There is thus the problem that the fish cannot perform colour change Without the tectum but that direct retino-tectal fibres are not involved. What is necessary is for some internediate body to be present which could relay a lange amount of information. From the anatomical study of the optic system in the minnou the only body which could periorm this function is the genioulate complex. It is ideally suited to its function as it received numerous connections from sill parts of the retina and sends great numbers of considering eibres to the tectum. Thus It should be able to relay a considerable volune of infomation from the retina to the tectua. The geniculate has the size and compleacity which would be necessary to convey all the information necassary,

Bach geniculate complex is connected to that on the opposite side by means of a large fibre bundle, the comissure minor of Herrick. The presence of this lange fibre bundle could explain how the fish with the optic tract cut on ono side and the tectum removed from the same side can change colour nornally, the information being relayed through it to the goniculate complex on the opposite side, and hence to the tectum, It is alao possible that the fibres froil one geniculate are relayed directly to the tectum on the other side by means of the transvorse commissure which contains fibres from the geniculate and gives fibres
to the optic tectum,

The proposel that the eniculate complex in fish plays a rôle in the perception of light intensity hes nover before been made and, in fact, no specific function has been suggested for the teleostean genim culate. The present experiment would appear to establish this and so raiso interesting problens of homology. Prans (1912) reported that the geniculate necleus of fish is the homologue of the mamallian corpus geniculatum laterelis, but Schnitzlein (1959) considers that this remains open to question. Functionally the geniculate complex in Pish prosumably serves the same function in relation to light intensity as the manmallian corpus geniculatun lateralis, and it may well be that the geniculate has similar functions throughout the whole vertebrate series. This would augeest that this amrangoment is very basic to the mechanism of vision and that the muleus geniculatum laterelis is directly homolgous throughout the vertebrate series.

(b) The possible mode of action of the soniculate complex.

Most of the present work concerns the mode of action of the tectum with regard to colour change and, in this connection, one may briefly consider the possible mode of action of the geniculate complex. Granit (1955), mainly from work on the frog, proposed that in viow of the lock of a omo-tomene correspondence between the discharge characteristics of individual afforents and psychophysical bwightness function,
that the perception of brightnoss is probably besed on a statistical average of the frecuency responses of a whole assembly of visual fibres. This frequency anslysis has been investigated on the cet by a series of experiments by hoduini \& Pimeo ($1962 \mathrm{a}, \mathrm{b}, 1963 \mathrm{a}, \mathrm{b}$). These two Investlgators usod vory large electrodes and recorded from the optic iract, optic chlasme and reniculate meleus, and by a mathenatical analysis of the reaults gave figuros for the eneral tonic activity of a. large mumer of units. They proposed that in the retina, in a steady state of doric or light odaptation, all types of inhibitory and excitatory units fire randonly. The level of tonic activity represents a mearure of balance botwoen the two antagonistic systems. When the level is high a greater muber of randon oxcitatory interactions take place than rendom inhibitory reactions. The effect of the steady light upon the retina will depend upon the relative balance between the two systems. This oomplex excitatoryminhibitory system proposed by Arcuini \& Pinnoo may woll oxplain the eatiure of the ration hypothysis when applied in any rigid mannor to colour change (p. 98) . Arduini \& Pinneo (1963 a) further studied the geniculate meleus in relation to changes in illum mination of the rotina and found that the level of activity in the latemal geniculate maclous was inversly related to the level of illumination. They went on to \quad tate that it is the mumber of impulses per unit time which characterizes the activity during maintained states.

Brooles (1956) considers thet a worlcing hypothesis is that the
amount of impulse activity in the visual system as a whole is ascociated With the perception of diffuse brightness and brightness differences.

De Valous, Jacobs 6 Jones (1962) and Jacobs (1966) have approached the problem from a difforent angle and have studied the recondings from the activity of the single cells of the lateral geniculate meleus of the monkoy. De Velous et 21. (1962) found thet the neurones discharged periodically under both conditions of light and dark adaptation. Brief intensity changes in onc direction produce etther a decrease or increase In the efring rate, dopending on the direction, and this inorease is proportional to the log. of the intonsity. Jacohs (1966) proposes that tho steadymstate firine of the oxcettatory colls and the inhibitory cells of the geniculate molous provide the information as to the terninel brightness function. This has been taken further by the work of Maffoi \& Rizzolatti (2967) who have specrlated that the operation of integration observed at the geniculate level could be due to the geniculate synapse acting as a docoding dovice.

It would appoar therefore that the geniculate receives infomation as to the brightness of objects by means of the ovarall activity of the rotinal output, and the geniculate indexes the brightnoss input in terns of the firing rate of the excitatory and inhibitory neuronea, as indicated by their tonic activity. The function of the geniculate maleus would be to decode this tonic activity from the wotina and relay the
integrated function to the other brain centros. What relationship these findings have to teleost fish remains to be determinod but the work on recordings ixom the tectum, ection $8(p, 214)$ indicates that the problem of gleady atate brightness perception is deellt with In a similar manner; i.e. in termg of tonic activity as in marmals. It is also intorestins to note that the overall rotinal output of the minnow is important for the correct interpretation of the background, and this would further augeest that the mechanism may woll be similar to that in mamals.

(e) Coloux change and lieht Intengity

In many of the obeervations of the efsh under different light intensities the animals would tend to darken in the lower intensitios and iighten in the higher intensities. This wes discussed on page 176 , and is not due to the background but due to the overall light intensity. Reoley (1945) has reported that minnows show a primery locol darkening rosponse to increase in the iight intensity. This can be shown in small arees of skin. The results from the minnow are therefore opposite to those associated with a primary response. The answer mey lie in the functioning of the pineal organ. Von Frisich (1911) firat roported that this could affect the colour of minnows but the work of Heeley hos shown that this is very veriable in minnows from different sources. The ifsh used in these experiments did not show any pinool aotivity with regard to daricening on illumination, and bind
fish did not show my change of colour on being pleced in darkenss. This leads to two conclusions: either the pineel is not active or its activity is roduced and it is completely dominated by the tectum. The second of these poasibilities goes arainst the behavtour of the minnows with toctal renovel, for in this caso, iliumination aauses peling.
(d) The pogstble mode of action of the tecturg relations with the modullary meline contrea Blinding affects the colour of the minnow in different ways depending on the method of blinding. The fish darkens if the blinding is by cutting the optio tracts but lightens if the blinding is accomplished by the completo removal of the tectum. The colour both after section of the optic tract and after the tectal romoval is highly variable, but the fish without teetum never shows the oxtrones found in the flah with optic nerve section. Von Friach (1921) found that section of the brain above the level of the medulla alvays resulted in paling and ho concluded that there was a paling centre present in the medulla which worked through the automonic nervous system. The renoval of the tectum has the same final effect as the cutting of the brain above the medulla in cousing paling. One could therefore think that the tectum can act on the medulla inhibiting $4 t$, with resulting daricening. The poling of a blind or noran fish following tectel romoval is not at the same rete as the peling to a whte background and requires more than 2 hours. This pellor following toctel removal is not meximal
and is not maintained for periods of longer then a few hours, nind by 24 hourg the Pish hes darkened noticeably. Prom those considerations it would appear that tho tectum not only inhibite tho paling centre but also excitos $4 t$, and that tho chromatic adaptation of the fish is due to the excitatory-inhibitory action of the tectur on the medullary centre. In a group of fish which aro blindedp by the cutting of the optic tract, thore are extremes of colour (p. 139) and these would, on the present argument, be due to the action of the tectur and not to that of the medullary centre.

The darkening which occurs in the fish with complete tectel removal mey well be due to the medullery centre no longer functioning and no longer maintaining the pele state. This begins on the first day after the removal of the tectum but is highly variahle and many fish atill maintain an intemeditate colour. It would therefore appeas thet not only does the tectun stimilate the medulle but thet this stimulation is necessery for the continued activity of the centre.

Healey (1951,1954) has shown that in the absence of nervous control of the chronatophores produced by spinal section the flsh could still change colour by means of homones. No hormonal colour chenge was seen in the isis with the tectum renoved, so that the tectum appears to control hornonal colour change as well as the nervous colour change. There are mumerous fibre connections between the tectur and the
hypothalams and preoptic nucleus which cold result in the control of the hormones released from the pituitary.

The removal of the tectum in blind minnows leads to paling because of the freeing of the medullary centre from the control. by the toctum. This would imply that in the blinded state the tectum completely inhibits the centre. It has been found that this inhibition is not removed by the removal of one lobe of the tectum which means that the toctun on one side can control the medullary centre on both sides. How this " could come about remains to be determined and no evidence for the fibre could
connections be found, (Section $7 \mathrm{p}, 199$). The inhibition cannot be removed by the removal of the anterior region of the tectum in both lobes but it is removed by the removal of the posterior tectum on both lobes. This inhibitory region has been further localised by a series of lesion experiments (fig. 29 p .157) to a small region in the dorsal posterior tectum. The question arises as to whether this tectal region represents a definite medullary controlling region, or whether the removals and lesions have destroyed the fibre connections as they pass out of the tectum. Most of the evidence points to the conclusion that the pallor is due to an interruption of the fibre connections coming from the tectum to the medulla. Firstly, in view of the results of the tectal removal and the varied degrees of colour obtained, the pallor from lesions XO YIn and XO Y1. 33 could be regarded as almost maximal. pallor, because it falls well within the variation found in the normal
fish. In view of the results of the retinal experiments where the whole of the rotine was fraportant in chronatic adaptation and lesions had to be over a oriticel gize before they affocted colour chenge in the normal ifish, it coems most unlikely thnt the single tectal lesion could have such a dramatic effect on the paling centre if this region did not in fact control the centre. It soems more likely that these singlo lesions did destroy the pibre pathway as it leaves the tectum to run to the medulla. Romovil of the anterior tectum resulted in pallor in the nomal fish similar to that following posterior romovels. If the dorsel posterior region is the active inhibitory region then there should be darkening when the anterior tectum is removed for this would rasult in a similar condition to blinding by optio nerve section in which the posterior tectum is without any sencory input from the eye. Ihis leads to the concluaion that the ri infation of the darkening in the blinied fish depends upon the whole of the tectum, but that its continued maintainence only needs the posterior dorsel part of the tectun. Therefore, to inhibit the poling centre the initial inhibition needs to be very lerge, but once this has occurred the poling centre no longer fires at the same rate and the contimued maintonence of the darkening only requires very 11 ttie tectel. reinforeement.

The final piece of evidence to indicate that it is the destruction of fibre comections which is important rather than the destruc-
tion of an active region in the tectum is shown by the two fiah with posterior removals, 36 and 37. The active rogion was present but the fish conld not porform colour change. In these fish the fibres to the medulla had been destroyed. In conclusion, it soems that the lesions which produce paling in bilind ilsh do so by destroying the fibres which inhibit tho modullary contre, and do not danage a definite darkening centre in the tectum.

Very little can be doduced about the activity within tectum in response to background tint, but would appear that at least one lobo is neceasnry. The lobe need not be intact, and combinations of the remaindor of two dannged lobes was also effective. In the fish with the antorior tectum removed from one lobe and the posterior fion the other, at lesst two of the fish, 75 and 74 , could adapt normally.

The removal of the antorior and posterior tectum in both lobes resultod in peling, indicating thet the onterior tectum has no separate connections with the chromatophore system and that the posterior tectum doos not influonce the peling contre in the absence of the totel anterior tectum in the normal fish.

These results lead to the general concluglon that the tectum acta as a single unit as rogards colour ehange, and that both the anterior and the posterior parts of the teotum are nocessary.

The amaller tectal removal did yield some interesting resul.ts. Fish 71. showed nomal eolour change and fish 68 was alroot nomal chenge exceptine that it did not pale fully (p.181). Fish 70 could only reach a value of 4 and could not pele further, and 72 with only 34 fi tectum could only adant from 5 to 3 . In all cases the rate of change was normel and only the estent was defective. Tho resul.t from 72 corresponds fairly well. with the results from the retinal removals R28 and 1229. ($p .80$). Pish 69 ahows the tendency to be unable to darken and ranges from 1.5 to 4 which agrees woll with the retinal removal fish R7. The results for '72 and 69 may be due to the fact that there was oxtensive tectal removal analogous to the anterior removals. However, the fish still retained a inmited ability to change colour, The other explanetion is that these resulta are due solely to the removal of the perticular retingl fiold from the tectum. The extent of the romovel of the tectun does not compere with that of the retine removed to obtain the same result, but this may be due to the destruction of the P ibres to other perts of the tectun. In fish 70 the area of tectum present was 91%. The aree of retine removed in R31, with a similer pettern of backround response as 70, wes in excess of 50%. In the case of 70 the tectur was not destroyed in tho midline, and hence the area placed out of action was not much in excess of that shown \fig. $31 \mathrm{hp}$.171). It would appear that, like the retina, the tectum can sustain slight damage without any impaimont of the ability of the Iish to adapt to Its background, but that when damage exceeds the order
of 9% of the tectum the animal can no longer adapt. The rore this threshold is exceeded the leas able is the flsh to adept until it finally ansumes the shade of a total tectal removed flah at 74, tectum present.

Further consideration of his work will be presented in the general conclusion to Section 9 (p. 263).

The resul.ts from the losion experimonts on the tectum demonstrated that a sincle lesion could produce almost complete pallor in a 1 ind P1sh, and it has been reasoned (p.194) that this lesion destroyed the nerves controlling colour change as they pass out of the toctum. Degeneration studies were then performed to trace the psores destroyed by this lesion to the other contres in the brain.
I. YGTROD

10 normal minnows were tolson and lesions were placed in the tectum in position $X 0,71 \mathrm{~mm}$ as described on page 154. After comenting ovor the wound the fish were placed in exporimentel aquaria. Thoy wore kept at $18^{\circ} \mathrm{C}$ and two fish were removed on the 10 th , 16 th, 19th and 21 st days efter operation. The fish were killed by decapitation and PIxed in formalabeline for a poriod of 5 weela. The broins were diseected out, embedded, and cut transversly, and longitudinally (dorsomventrally) for each survival time. They wore then stained using the paraffin noute, and in many cases counter stainod using C.F.V.

, "9ve batnembe brusu

「E. s^{5} 후

* 48 ts berwhtees bres JeLoIV

Fig. 36

Photograph of a minnow with a tectal lesion and the wound cemented over.

Fig. 37

Section of a 16may tectal lesion showing the glial cells filling the lesion. Stained with Nauta and Cresyl Fast Violet and sectioned ot 8μ.

Fig. 36

Fig. 37

0.25 mm

The optimun survival time for the tectal fibros was 16 days, silightly longer than for the optic tract f1bres.

II. RGUUTS

In a few cases the lesion spread and becane quito large but In the majority of cases the lesion was discretc and there wes complete wound hooling. In fig. 37 (p. 201) the lesion can be clearly seen to be full of dividine glial cells. Only the fis with discrete leaions were uoed in the histologicel investigation of the degeneration of the fibre tracts.

Considereble degeneration was geen to occur in both the stratum plexiforme et fibrosum ertermun and the stratua fibrosum profundum throughout the tectum. A distinct bundle of fibres was observed to run out of the tectum laterally and then ventrally through the torus semicircularis to become part of the tractus tectobulbaris vontrelis rectus (Rappers et al 1936) (fig. 38 p. 205). Isolated eibres were also found to run anteriorly to the geniculate complex, and to the preoptic nueleus (the tractus tecto-preopticus). A few fibres were slso observed running to the hypothelamus. These estbres to the hypotholamus and preoptic macleus mey or may not be important in hormonal colour change. A few fibres were also noticed to run to the ganglion isthris. These
isolated fibies were however only very few and the vast majority were seen in the bundle of the tractus tect-bulbaris ventrolis rectus.

The degenerating fibre bundle is not clear in trensverse section but in longitudingl soction il appenrs to courge cewdolly with the rest of the tectombulbar tract until it reaches a point at the anterior end of the medulla. A few of the eibres do not end here but contime through the medulla and are seen in the spinal cord constituting part of the tractus tecto-spinalis. Some of the fibres do not roach the spinal cord but end in the modulla, where they could not be clearly seen to onter any definite neuron group. Howevor, the majority of degenereting ifibres end in a amall group of neurones. This small group of neurones contains both large and scall cells, there being approtmately 24 lerge and 100 smell. The neurone group is show in P4g. 39 (p. 207) together with the degenerating Pibres. Both the large and smoll neurones are arranged along the entire length of the centre and there doea not appear to be any definative organisation. The epproximate position of this group of neurones is $1,4 m$ from the apex of the cerebellum caudally, 2.75 mm, ventrolly from the upper surface of the cerebellum and Inm from the midine in a 6.5 cm fish. Its strueture is shown in figs. 40.41 (p. 209).

```
    8E.325
```



```
                                    Lauctsalvgerids
        at Lanksuylymol mero? - NT.F
```



```
        atlatostum\fut actoant - .T.L."T
```



```
        axcos:
```



```
        lecisat moifgman - .I.D
```



```
            enrotwoint LGowt - .I.u
```



```
    alraffodesoomoLarlgoonemom anjogzT - .T.O.M.zT
        *Tolrojeog
```


Fig. 38

```
Section of the brain at the level of the apex of the corebellun stained with Holmes technique.
```

Abbreviations:

T.L.	- Torus Long itudinelis
V.C.	- Volvula cerebelli
T.	- Optic tectram
T. S.	- Torus somicircularis
Tr.I.T.	- Tractus isthmowtectalis
Tr.T.E.V.R.	Tractus tecto-bulberis ventralis rectus
Tres.I.	- Tractus tectomisthnelis
G.I.	- Ganglion isthmi
F.L.L.	- Fasciculus Longitudinalis Lateralis
F.L.M.	- Fascisulus Longitudinalis medialis
L. I.	- Lobi Inferiores
Tr.T. S.	- Tractus tectoospinelis
Tr.T.B.C.	- Tractus tectombulbaris exueiatus
Tr.M.C.P.	- Tractus mesencephalomcorebellaris posterior.

Fig. 38

PE.

-. 2.

semoktatworsion
2uryiesoro - . 3
SLfisfoer ady 30 odol IogeV - si.W stafiorts evaroltano - A, 3

Woup arodlebres-abonpeneaens ciburt-9.D.M. IT

Rig. 39

Vertical longitudinal section of the anterior medulla stained with the Nauta and countor stained with C.F.V.

Abbreviations:
C. - Cerebellum
V.L. - Vagal lobe of the medulla
C.A. - Gommisaure ansulata

Tr.T.S. - Tractug tecto-spinalis
M.C. - Modullary poling contre.

Tr.M.C.P. - Tractus wesencephalo-eaebellaris pasteriar

Fíg. 39

0.5 mm

Fig． 48

A

foberest

36 3abrin
をーいと
B

Deganaratien
draplets

$$
\text { Fig. } 40
$$

A. Longitudinal section through the modullery peling centre. Stained with Neuta and C.F.V.
B. ligh pover photomicrograph of a single paling centre neurone showing the degeneration droplets surrounding the coll.

Fig. 40
A

$$
0.05 \mathrm{~mm}
$$

B

Degeneration
droplets

1A. Bi

 - efolcyorm

Fig. 41

A series of drewing through the medullary centre to show the cells and the distribution of the degeneration droplets.
' A ' is the most lateral of the drawings. ' B ' is 32μ medial to A and 'C' is 32μ medial to B. 'D' is 16μ medial to 'C' and no structures were visable 16μ medial to 'D'.

A

C

D

III. DISCUSSION

Although these degenerating fibres and associated group of neurons were found, it is not certain that the latter constitute the medullary poling centre. Further experiments need to be carried out to prove conclusively that it is the colour change control centre of the medulla. The evidence that this can be provisionally accepted as the centre is threefold. Firstly, von Frisch(1911) found that cutting tho brain anterior to the medulla resulted in pallor and that stimulation of the medulla electrically resulted in poling. He therefore postulated an "Aufhellungzentrum" that induced the fish to pele. The world presented in this thesis has shown that the romovel of the toctun has the same effect as von Frisch's cut anterior to the medulla and that in normal colour change the optic tectun appears to control the medullary centre. It has also been show that a small lesion in the tectum in position $X O Y 1 m m$ will remove the control of the tectum on the medullary centre. Secondly, the fibre bundle from this region passes to a discrete region of the anterior medulla, and terminates in a small group of neurons. Thirdly, fibres from the centre run Into the spinal cord. This neuron group has so Ear not boon identified and not related to any other brain structure; it seems likely that it is the medullary paling centre.
are necessary.

1. To show that darkoning follows the destruction of these specific colls but not following the destruction of neiphbouring nervous tissue.
2. To take oxtracellulax recordings from the whole group of cells.

The possible mode of action of the centro will be discussed in Section 9 (p. 264).

I. METHODS AID APPARATTS.

Two tungsten electrodes were placed on or in the tectum and the electricel activity was recorded between them. A third reference electrode, which was aade of silver, was placed on the dorsal skin about two thirds along the body from the brain. The tungsten elecm trodes were made from 0.001 in (25μ) diameter wire. A small piece of wire about 1 cm , long wes cut from the roll, cleaned using toepol, dried, and attached to the end of an aight inch piece of minature, P.V.C. insulated, copper wire (Badiosperes LTD). The P.V.C. was cleaned off the lest 4 mm of the wire and the attechement was made by forcing the P.V.C. covering apart with a fine pin. When the pin was withdraw the streched P.V.C. did not rotum to its original position for a short time and the tungsten wire could then be inserted into the hole made by the pin. The P.V.C. Pinnlly closed and this fised the tungeten. The union was completed by soldering the protruding copper to the tungsten.

The tungsten electrode, and the soldered tungsten/copper

Soint were insulated by dipping them in Araldsto PZ320 oposy resin with herdener and cured ot $100^{\circ} \mathrm{C}$. When the araldite was dxy they were dipped again and re-cured. To tost the inaulation the cloctrode was attached to the negative teminal of a 1.5 v dry cell bettery and imersed in 10% hydrochloric acid; the positivo terminal of the bettery was connected to a silver electrode and pleced in the acid. Bubhling with the release of hydrogen will occur at the uninsulated parts of the electrode. The electrodea vere then washed and dried. Using a pair of fine acissors the wire was cut so thet the length of tungetion protruding was only 1 nun. Using this method, straight electrodes, Imm long and insulated except for the very tip could be produced in very large numbers without variation in shape or size.

The resistance of these tungsten alectrodes was very 10 and was moasured by a very stmple technique using a Grass SD5 stimulator, which gave a square wave pulse, and an Oscilloscope. The apparatus was arranged as in the diagrem fig. $44(p, 220)$.

The rosistance of the tungaten electrode is Re, and Ri that of the ringer, wich is relatively so low that it can be neglected. R is a calibrated movable resistance made by uging a aories of knorm rosistances. The height of the square wave on the oscilloscope, Vos is whan the ley is open and hence only R_{0} is in the circuit. Vi is the helght, and hence the voltage, of the square wave then the loy is closed and represents the voltege when both Fe and \mathbb{R} are in the eircuit.

Fig. 42

APPARATUS USED TO POSITION THE ELECTRODES

Now applying Onm's law to this condition we have:-

$$
R_{e}=R \frac{V_{0}-V_{i}}{V_{1}}
$$

The rasistances ranged from 3 to $4.7 \mathbb{N}$ ohras, with a general. nean of 3.64 K . With these very low resistances the noise levels of the electrodes were very low and onebled recordings to be made et very high amplification.

The electrodes were positioned using a Lefitz mioromenipulator and the fish were firod by two paim of clamps which were attachod to two rods, which were in turn fised to the same base plate as the menipulator. The apparatus is show on fig. 42 (p. 216).

The respiratory water was fod into the mouth directly, and was collected in a trough placed under the fish. The mouth piece consisted of a glass tube onto which was stuck ecrylic coment modeled on a dead ifsh in order to fimaly hold the heed on three gides. These mouth pieces, when made, were polished with a dental drill, in order not to demage the fish. These mouth piecen prevented the head from moving when the fish was mounted in the apparatus. The Iish was clamped by two paira of clampes, one pair fitting at the level of the peotorel fin and the other at the level of the anal fin. When the fish were mounted it could not move and the opercular mopoments were preventod from affecting the whole head. A piece of filtor papor pleced on the fish botween the clanps served both to colloct the water as it
pessed out of the opercular cavity, and to kcop the fish moist.

Why of the records ware made with the Pish clamped. The animals did not appear to bo distrossed whon not anaesthetised. In many of the experiments the fish had the eloctrodes comented on the skull after being embedded in the brain. The method of drying the slazll was that doscribed on page 40 . The eneral erid using the oyepiece graticule in a binocular microscope, as described on pace 154, was used to place the electrodes, and the depth covld be mensured directly from the manipulator. After tho cement had dried the fish wes removed from the apperatus and ereat care had to be taken not to detach the implanted electrodes. The fish were then placed in the apparatus shom in fig. 43 pege 220, which onabled the backeround to be ehanged without disturbing the fish.

The apparatus consiated essentialiy of a rectenguler box made of black perapex, (unshaded in the diacram). The fish was held by means of the tube carrying respiratory water into the mouth and two V. shoped piccos of cleer perepex (A). This holding dovice we fixed onto onother piece of clear perspex, C, which was raised from the floor of the box by ledgos on throe sides. Attached to the free odge of C was an upright plate of black poropex. 'B' was a plece of white perspex which could be slid between C and the bottom of the box B to present the fish with a white beolground, If B was siid out the fish was

$$
E \& \cdot H^{E}
$$


```
Befrafone zalorzoolo dflu ewommiar 'lo ogs alo brooez of
```



```
    **ogeraq
```


off stafuriss of Doas throwto sitt To mangote
, aebentoole oft so gostataleoz

$$
\text { Fig. } 43
$$

Diagran of the beckground roversal apperatus used to record the EEG of minnows with electrodes implanted in the tectum. The clear areas were made out of black perspex.

Fig. 44

Diagram of the circuit used to calculate the resistance of the electrodos.

Fig. 43

U CLEAR PERSPEX
III/ white PERSPEX

Fig. 44

presonted with a black becleground produced by E. Two platos of white perapers D were made so as to form the two sides of a box and whon two of these were put together they formed the wells. When D wos romoved the siden of the bleck box sommed the bleck walls.

Before the flsh was allowed to recover from the anaesthotic, following the implantation, it was injected with turbocuresino ehloxide (Burroughs Welleone). A number of preliminary teats were camsed out to deternine the most satisfectory concentration. Tested concontretions ranged from 0.33 to $0.033 \mathrm{gg} / 100 \mathrm{gm}$ body weigint. A concontration of $0.166 \mathrm{ng} / 100 \mathrm{gm}$ body weight wes found to bo most satlafactory and this concentration Inhibited all musculaz novergent except that of the heart and prevented the vory atrong opercular beat from masking the onco phalogrem pettem. The action of the curare on the colour change of the Sish wos complex. Tuxbocurarine chloride blocks the nourompsculey Junction by competing for the reeeptor sites on the poet symaptic membrane. The effect on colour change depends upon the dose and in the rogion of $0.033 \mathrm{mg} / 100 \mathrm{gm}$ body weight the eurawe blocked the loconotory auscles but not the branchial musoles, thore was normel oparcular beat. In these I Ish colour change wes nomal in both oartent and divection. However, if the dose ms increased alightiy the branchial muaclee wore affected and nomal colour no longer oecursed. The fish with the slightiy higher doae essumed an internediate tint, with the macronolonom phores in the lateral streak dispersed. The action of the crurere in this case is probably not on the chronatophoresdirectlybut on the sympathotic genglia. It is also possible that the inability of the
fish to change colour following thfinjoction of curare is due to a similar mechanism to the learnod inhibition proposed by Cray (1956). The second importent obsorvation on the action of curare was that if it was injocted intramuscularly into the doreel myotomas in the tasi just posterior to the anves the $\int 1$ sh took about one mimite to becone morelysed. If the curare was injected more anteriorly, then the fish wes affected more quicldy. The mortality rate was higher the more anterior the injection. At the end of the experinent the fin of the fish wars exomined for elrculating blood to conflum that the fish was alive.

The experimenta were performed in on earthed cage moasuring 2ft x 2ft x 3ft and made of perforatod aluminium, The wires from the electrodes were fed into a Tektronsx Type A Dualaileen Orcilloscope. The picture from the oscilloseope sereen was photographed using a Coasor camera looded with Ilford Pan \mathbb{P} negative Pilm.

The high frequency of the proanplifier wass fized at an upper limit of $50 \mathrm{oy} / \mathrm{sec}$. because no recordable information could be found above this frequenoy that could be discerned above the ellodrede notse. The preanplifier was used at its moximum gein of 1000 K .

Dusing the experiments the Pish wexe fod with water directly into the mouth by means of a large 25lu. container placed above the cege. In the experiments where the fish were contefned in the beckground
reversel. box not only was the water in the mein storage container earthed, but also the water surrounding the fish, and the waste water container. To provint earthine loops Irom being fomed, and hence amplifying the $50 \mathrm{cy} / \mathrm{sec}$, maino interforence, the most satisfactory condition was whon the cage and the water surrounding the fish vas earthed to the oscilloscope, and the Presh and waste water earthed to the water pipes of the roon.

IT. TIE BUP RFICIAL EYCEPHALOGRAM BATRER

Theso recording were mode with the fish clamped and no curare was used. The fish wore not anaesthetised during the recordings, During the recordings the fish were in dinmed light and no. attempt wes made to control noise. Because of the situation of the apparatus the noise was almost limited to that made by the eletromic apparatus used.

The dectrodes were mounted in the monipulator and the tips were soparated by 0.8 mm ; they were then lowered onto the tectum so that they Just penetrated the surface. S fish were used, and the positions of the electrodes are shown in Iig. $45(\mathrm{p}, 225)$. The recordings were made at 2.5 cm per second.

The recordings are presented in Pig. $46(p, 227)$ and show whet

己今，验

．Embrg

Fig, 45

The positions used for recording surface encephalo grams.

Fig. 45

$$
\partial A \cdot
$$

$$
\text { Fig. } 46
$$

Surface encephalograms recorded from positions A, B, C, G, E, H, I. (fig. 45 page 225).

NCE PHALOGRAMS
山
NORMAL SURFACE

100 $\mathrm{\mu}$
scomos

appear to be two bosic rythms, a slow rythu of $6-148 y / s e c$, and a faster rythm of $18-24 \mathrm{cy} / \mathrm{sec}$. The amplitude of the slower 19 thm was 112 m 20 v and that of the faster $18-6$ v. he genoral pattorn was synchronisod over the whole of the toctum.

Not all the regions showed the same recordings, seen clearly in Sic. 46 . The amplitude veried considerably ovor the tectum and, in genoral, the amplitude of the recordings when the electrodes were alignod ontero-postoriorly was greater thon when they were alignod laterally. This does not correspond to the position of the optic tract fibres, however, for in recording A the optic tract fibres are running directly anteriompesteriorly whon the recordings aro Interel. In recordings \mathbb{P} and H the electrodes are along the main axes of the incoming nerve Pibres, but in G and I the recordings weive anteromposterior and the fibres wore zuning laterally. The optic tract layer of the tectun is thickest in A and thinest in both B and $C ;$ aimilar conditions apply to the recordings in G and I .

It would therefore appear that the encephalogran pottern is primarily in the anterio-posterior axis.

A second difforence was noticod in that the patterns from different regions of the tectum aiffer slightly in frequency. Position A showe a variation of $6-12 \mathrm{cy} / \mathrm{sec}$, in the wis, with a mean of 7.5 , B

With a Tr variation of $8-3.4$ cy/sec and a mean of 10.5 , P with a variation of $6-1 \mathrm{Lacy} / \mathrm{boc}$, and a mean of 9.6 , and $G, 11$, and I w^{4} th a variation of 3-11cy/sec. with a moan of 8.9. The Hi rythen recordincs shou the same varlation of $18-24 \mathrm{cy} / \mathrm{Boc}$. but the means do not diefer from each othor very much, the values being: $A 19.5, B 20.5, F 20.6$ and $\mathrm{C}, \mathrm{H}, \mathrm{I}, 21 \mathrm{cy} / \mathrm{sec}$.

Finally, in rocording C a marked periodicity wos found, with definite cycles of high and low activity. The LP and MF activity were both present but there were periods in the record where the HF wes apparently absent, and only the LT was seen. Theso periods were very short.

To test whether the patterns recorded were from the fish and not aptifacts, the fish wore killed by turning off the wator for at least 30 minutes. In all cases no activity could be recorded from these dead Pish. On turning on the water supply there wes still no recordable activity.

In conclusion, it appears that the activity recorded iron the fish is produced by the fish and is in no wey an artifect produced by the apperatus.

III. THE ENCEPHALOCRMM PATT RN FOLLOHXIG ANASSTHIET TCS

The MS222 solution used to give deop anaosthesio very greatly reduced the amplitude of the $E E G$ pettern. In all 1 ish tested there was only preaent a small mount of very low lovel activity, which could not be discerned above the general noise level of the electrodes. When a rocording was talon the fish wes always dark because of the 1 15222.

IV. THE EEG PATYERN IN DARKNESS

The Itsh was clamped throughout the experiment. Darkness was simulated by covering the eyes with a lightproof shield which was sufficientiy extensive to cover not only the oye but also most of the alde of the head. These shields were made out of a mixture of Acrylic cement and finoly powdered charcosl. While the cement was still soft it was poured on to a dead fish which acted as a mould and then allowed to harden. When the cement was fully hard it was removed and could be atteched to a live fish, providing the fish was of the same size. The shield iftted very well and, as far as could be ascertainod, it coverod the eye and was completely lightproof.

The resulta are from three Pish and the recording position is

$$
\text { TA. } 28
$$

ancortan' bris frombe

Fig. 47

The BEG patterm in light and darkness. Darkness was produced by covering the eye with a mixture of Acrylic cement and Chareoal.

Fig. 47

2

3

4

5

6

1. IN LIGHT
2. TRANSFERED TO DARKNESS
3. DARKNESS 5 MINUTES
4. DARKNESS 15 MINUTES

5 DARKNESS 30 MINUTES
6. RETURNED TO LIGHT
alwaye G, because it always gave good results. The first record was taken in the light. The eye was then coverad and records were taken immadiately after covering and 15 mins , and 30 mins after covoring. The eye covers were thon removed and recordings were taken. The results of one of the fish are shown on fig .42 (p. 232).

The noticeable change in the petterne is in the amplitude. The initial offect of covoring the eyes was that the amplitucie in creased to a higher level and that this persisted for 15 mins. The amplitude then dropped at the 30 min . record to a very low level and finolly, when the covers were removed, the amplitude increased ogaing, but not to the same level as that whon the light was turnod off.

The fish was fully white at the beginning of the period of the test whon the eyes were not covered, but by the ond of the 30 mins. covering period the fish assumed an internodiate shade of about a D.O.I. value of 4. All the fish used shoved exactly the sane reault.

V. TIE EEG AID BHIVDING

A series of recordings were made from the toctum of 13 blind. fish which were clanpod in the apparatus used for the provious records.

As in the provious rocords, no curare was used.

One fish was recorded before end after blinding. Blinding was accomplished by euttine both optic tractis under onaesthetic and the BEG wos recorded ot 10 mins , and 30 mins , after recovery, (those times were choson because tectal activity in a normal minnow beging to ro-appoar about 5 mins . after the anaesthetic has been renlaced by normal water.

BEC patterms were recorded from fish which had been blinded for intervals of 5 hours, 24 hours, 48 hourg and 5 days, and for each record a separnte fish was used because it was not possible to record. from the ame fish on more than one occasion. A group of eight fish hed the EEG recorded after having been blinded for four months. All. the records are show in 94g. 48 (p.236).

The amplitude was greatly affected by the blinding and a comparison of the 10 min , and 30 min , recorls with those from a normal fish showod that there was almost no activity present. The HF and LIP cyeles could only Just be seen and it was not possible to compare the frequencles. A partial increase in amplitude was seen in the 5 hour Pish but this did not increase any further in the 24 hour record. Both the 2 day and the 5 day Pish showed increases in amplitude. All the records were taken from the G aite. A1.1 the fish were fully dark except the 5 day P ish which had bogun the postoblinding peling and

BA. 82

. Foert oljqo odt raltsoro vi zow gut

Fig. 48

The EEG of the minnow and biinding. The normal pattern and the 10 and 30 mimute blind records are from the same fish and other records are from different fish. Blindm ing was by cutting the optic tract.

Fig. 48

$\because C D M A L L$

BLIND IO MINUTES

BLIND 30 MINUTES

BLIND 24 HOURS

BLIND 2 DAYS

BLIND 5 DAYS

BLIND 4 MONTHS D.O.I. 7

BLIND 4 MONTHS D.O.I. 3

had reached a valuo of 6.5 .

The four month records wore taken to see if the BGC patterm had been regained fully and to see if any difierences were present between the dark and 1 i cht Pish at this time intervel. The amplitude of the EEG pattern is never that of the normol fish but it doos risc to a much higher level than it has whon Cirst blinded.

The results from the hlinded fish verv not sufficiently manerous to allow an accurate assesment of the pattern and so enable comparison of the pele and daric fish. They did, however, eppear to be a very slight increase in amplitude in the records from the fish which had Iightened to values of 3 . The Ifsh which remained dark (7.5) tonded to have rather madler EEC reconds. More work needs to be done to conPlra theae observations.

The EEG of the minnow therefore is intimately related to the visual input and in the absence of this input the animal does not show the normal BEC pattern.

VI. THI REO FOLZOWTMG BACKGROUND REVETSAL

(a) Method

To atudy the effect of changing the background on the $\mathbb{E E C}$

5 regions of the tectum were selected and labelled R, P, Z, T, and V. Region 2 is the active region of soction 5 (p. 162), and the others serve as controls of this region. No rocords were taken laterally to those show becauge of the difficulty of implantation presunted by the operculum. The positione are shown in Pig. $49(\mathrm{p} .239)$, and the grid roferences are:-

$$
\begin{aligned}
& 2 \mathrm{XO} \mathrm{YO} .66 \mathrm{~mm}-\mathrm{I}_{\mathrm{E}} 33 \mathrm{~m} \\
& \text { P } X+0.66 \mathrm{~mm} Y 0.66 \mathrm{~mm}-1.33 \mathrm{~mm} \\
& \text { A } X * 1.33 \mathrm{~mm} \text { Y0.66mm }-1.33 \mathrm{ma} \\
& { }_{x} \mathrm{X}+1.0 \mathrm{~mm} \text { Y1. } 66 \mathrm{~mm}-2.33 \mathrm{~mm} \\
& V / 40.33 \mathrm{~mm} \text { Y } 2.66 \mathrm{~mm}-2.33 \mathrm{~mm}
\end{aligned}
$$

Recordings were made at iive depths in each region, as follows :-

1. Stratum pleaciforme ot Pibrosun extermun.
2. Stratun plexiforme intermun.
3. Stratum griseum Inteanum
4. Stratum fibrosum profundun.
5. Stratum griseum poriventriculare.

These layers wore chosen because of their distinctnens and because of their rolationship to the functions of the tecturn. The eleotroden were lowered the following depths for each layer: $1=0.04 \mathrm{ran}$, $2=0.13 \mathrm{~mm}, 3=0.2 \mathrm{~mm}, 4=0.27 \mathrm{~mm}, 5=0.33 \mathrm{~mm}$ from the surfece of the

Fig. 49

POSITION OF THE ELECTRODES IN THE BACKGROUND REVERSAL RECORDINGS

tectum. The positions of the electrodes were confirmed by sectioning and staining the brains after the recordings were iinished. To clarify the position of the ele ctrodes thoy were marked by passing a currant of 5 micro amps. for 10 seconds through them. The sections were stifained with G.F.V.

A11 the fish used were exectly 5.5 cm long to ensure a conformity In the tectal aize. It the ond of an experiment the fish wes alweys examined to confims that it was atill alive.

The apparatus used for the background reversal was that deseribed on page 218. The coll used to hold the P1sh hed tho adventege that there were no sides and the fish had an unrestricted view of the sides and bottom of the container.

After the injoction of curare the fish was allowed to recover from the anaestheticy on a black background. When the fish had fully recovored chromatically (about 20 to 30 mins) recordings were made (A). The background wes then changed to white and another reconding was taken (E). Further recordings wore made on white at intervals of 5 mins. (C), 10 mine . (D), and 20 mins . (E). The becloground was then returned to black and recordings were taken inmediately (c), after 5 mins (H), 20 ming. (I), and 20 ming . (J). The beckground was then changed to white, and recordings again taken to act as a control to
record B. The recordine consisted of about 15 seconds of film at I inch per second.

The analysis of the results consistod of the selection of certain amplitude 1 imits and a count of the number of cycles $/ \mathrm{sec}$. wich fitted. these mplitude limits, for 1.0 seconds, for ach record. It was found that both D and I did not diffor from C and H and they are therefore not included in the results.

The reaults are oxpressed in terms of the variation (Va) and the mean (M) muber of cyeles in each second for the 20 second count.

(b) Results

Recordings from region 2 were repeated on different fish and they agree very well. The results are complicated by the amplitude variam tion found from fish to $\mathrm{fl} \mathrm{Ish}^{\text {. In }}$. Ine results very little importance has boen given to the mplitude and it may well be that this amplitude variation may be significent. Howevor, in ordor to test for its aignificance a much larger number of sish would bo needed than were available in the prasent study. This report on the changes of Irequency which occur in the tectum when the background is ehenged can therefore only be regarded as preliminary.

Denth_
TABLE 13 . Anelysis of the records inom region P and Z at denth 1.

Recording					<20.jv	
	VA	M	Ve	M	Va	M
B	1-3	2.4	6 m	6.8	29.24	20.2
c	1-3	2.2	$5-8$	6.4	19-24	20.8
\mathbb{E}	2-3	2.3	5-8	6.2	13 m 24	21
G	1-3	2	78	7.5	18-20	19
H	1-3	2	5-8	6.5	18 m 24	20
J	0 m 3	2	5-88	6.6	18.24	21.4

2

B	0.2	1.1	$5-7$	5.4	$19-23$	20.7
C	$1-2$	1.5	$4-6$	5.8	19.22	21.1
D	0.03	1.3	306	5	$20-24$	21.2
G	0.2	1.2	$4-7$	5.4	$20-23$	21
H	$0-3$	1.4	406	5.2	$19-24$	21
J	0.3	1.6	$4-7$	5.1	20.24	21.5

The records from the regions R, T, and V are the same as those presented here but the amiltude difcers and the recordings from R_{9} T and V ahow an uppor amplitude of only 10 v ; it was not possible to

TABLE 14 . Analysis of recordia exom ceaton I and V at depth 2
T

	${ }^{20} \mathrm{NV}$		$20_{\mu v}$		<10NV	
	Ve	M	Va	M	Va	M
B			$6-12$	8.2	26-31	28.1
0			6-10	7.3	25-32	25.3
B			78	7.5	24-28	26
G	0.4	2.5	$5-9$	8	21-29	25
H	$0-2$	1.3	6-11	7.3	20.29	25.9
J			$7-9$	7.9	$25-29$	26.4

V

B	0.03	1.3	$6-14$	8.2	$21-32$	25
C			$6+11$	8.3	$23-29$	26.7
E			$7-11$	9	$22-26$	24.9
G			$20-13$	11.1	$24-27$	2506
H			$6-10$	8.4	$22-29$	25
J		$5-12$	8.1	$25-27$	25.9	

divide LE into two different cycles.

Depth I records have the same pattern en the superilicial recordings, showing the LF of $6 \mathrm{~m} .3 \mathrm{cy} / \mathrm{sec}$, and the Hf of 18 m 2 k cy/sec. The amplitude of these records was loss than that recorded from the superPicial work (p.223) It can be seen irom those records thet the Erequencies do not differ from the black to the white and that the aane pattern is seen in a.ll the recording sites. Depth 2

The records from the other regions show the same regults as T and V, shoum in table $14(p, 243)$. The recordings from iepth 2 do not differ very much ?rou those of depth 1 but there is an inorease In the amount of H activity so that the variation is now from 20 to $32 \mathrm{cy} / \mathrm{sec}$, and the means are 111 at loast $4 \mathrm{cy} / \mathrm{sec}$. more thon in depth 1. The moans of the LF also show a slight rise. In both of these records (T and V) there is a slight incrense in the LP following the change to the black beckground.

Depth 3

More variation was found from region to region in this layer than in the othere, and this is esmociated with a very lavge amount of Low frocquoncy activity and amplitude variation, so that the picture beconos confused. In general the characteristic Ioature in this rogion is the HP Increase with means around the $40 \mathrm{cy} / \mathrm{sec}$. figure. The LP
response showe a slight reduction so that velues in the region of $4 \mathrm{~m} 5 \mathrm{cy} / \mathrm{sec}$. are the most dominant. None of the records shows any change from black to white and the somo goneral pettern is found in all the records. Region 2 shows a marleod cyclic activity.

TABLE 15 . Analvaig of recorde from ropion Z and P at denth 3a 2

	$20 \mu v$		10μ		$\langle 10 \sim\rangle$	
	Va	M	Va	M	Va	M
B			407	5.5	38-42	40.5
c	0.3	1.5	$4-5$	4.3	42045	42.5
E	0-4	1	4007	5	3901/3	40.7
G	0-4	2	$3-77$	4.5	$37-43$	42.3
H	2-3	2	306	5	38 m 41	40
J	0.4	1.5	$3-6$	5	$38-42$	42

P				
B	$2-5$	4	$39-42$	40.2
C	$3-6$	4.5	$34-43$	39
B	$3-5$	4.2	$38-41$	39
G	$2-5$	4	$37-43$	40
H	$3-5$	4	$39-41$	40.5
J	$3-6$	4	$38-41$	40.7

Denth 4

In this there is a reduction in the H activity to g ive Iiguros in the region of $16-30 \mathrm{cy} / \mathrm{soc}$. and, as with the other regions, changes in amplitude confuse the picture. $/ 111$ the roglons show the same pattom and at this dopth there were changes observed when the background was changed. Whon the fish was placed on the black bacigground from the whitto, a dieference of $10 \mathrm{cy} / \mathrm{sec}$. was observod in the H ry rym and the rythn changed in P from about 17 cy/sec. to $28 \mathrm{cy} /$ sec. This higher frequency on the black occurs directly the background is changod and persists for the whole of the 20 mins , observod. It is found throughout tho wiole of the tectum. Directly the fish was placed on white the IIP rythm was reduced to the $15-25$ cy / sec, thet it was before the change. The records of LiP cyclos are not very different from those at the other depths but in region z when the fish was placed on the white there was an increase in the number of cyclos. After 20 mins, on witto this frequency decreesed (Table. 16 p. 247). These high LF cycles do not appear on the black and when the iish is agoin on the white they romppear. This result wes not found to occur in the other regions except P and, considering the fact thet this is the main efferent layor of the tectum, this result may be sientipcont in colous change.

TABLE 16 . Analvgis of racaide from recion Z and P at depth 4

2

	$100 \mu \mathrm{~V}$		50-100 $/ 7$		$\angle 50 \mathrm{NV}$	
	V_{8}	M	Ve	M	Va	M
B	404	6	$3-7$	4	11-2.5	12
c	5-6	5.3	407	4.7	12016	12.5
E	$1-6$	3.2	$3-7$	5.6	12-16	14.9
G	$3-6$	3.9	$3-7$	4.7	17-23	19.9
H		3	$4 m^{7}$	5.9	20-26	22.2
J	1-2	1.5	5-7	6.3	19-25	22.3

P

	$10 \mu \mathrm{~V}$		$\angle 10 \mathrm{NT}$	
	Va	M	Va	M
B	$3-7$	4.3	$1.5-25$	22
c	$4 m$	6	15-25	16
E	$5-7$	6.4	13-21	17.5
G	3-4	3.8	25-31	28
H	3-5	3.3	20-30	25
J	3-5	4	23-30	27

The record from P was of much lowor annlitude than that from Z, but it an be sean that if the Piguros from the 50 v to 100 v are added to the 50 v the results are essentially the same. In P however,

```
O2,B%登
```


- Saungver

$$
\text { Fig. } 50
$$

The EEG of depth 4 position 2 during backeround reversal.

Fig. 50

ADIT IT ZERO TIME

WHITE 5 MINUTES

WHITE 20 MINUTES

BLACK AT ZERO TIME

BLACK 5 MINUTES

BLACK 20 MINUTES

CYCLIC ACTIVITY

the increase in the LF on the whito is persistent for as long as the fish is on the white beckground.

2 shows a marked cyclic activity which is scen in the upper throe depths but not to zuch a marled extont. The EEG is suddenly cut off and this is followed by a period of elnost no activity, lesting about 1. 5 socs. and followod by a gradual roturn of the normal activity, this return poriod teking about 3.5 secs. The EGG of 24 is shom on 24. 50 (p. 249).

Depth 5

The LF does not change with becloground reversul, and ahows a 6-10 cy/sec, pattorn. The HF activity, howover, like depth 4 , shows an Increase when the fith is on the black and one again the change is in the region of $10 \mathrm{cy} / \mathrm{sec}$. In general, however, the $H F$ activity shows a greater increase in the number of cycles per aecond that occurs in dopth 4.

The records for all the regions are the same and no regional change was seen. Position z did not in this rocord show the cyclic activity that was seen in dopth 4 . Depths 1,2 and 3 are shown in fig. 51 (p. 253), together with the record of depth 5 on both the black and white beclogrounds.

TABLE 17 . Analysis of recozds from repion Z and R at depth 5

Z

	$10 \mu v$		$\left\langle 10_{\mu v}\right.$	
	Va	M	$V a$	M
B	$6-10$	7.9	$20-29$	24.8
C	$7-10$	8	$23-26$	24
E	$9-11$	10	$18-22$	20.2
G	$6-8$	7.5	$31-26$	34.2
H	$6=10$	8.5	$30-34$	32.2
J	$6-10$	7.4	$29-39$	34.8

R

B	$4-9$	6.4	$24-29$	26.4
C	$7-10$	8.1	$19-23$	20.5
E	$8-9$	8.4	$19-25$	21.1
G	$7-9$	8	$30-21$	30.4
H	$7-9$	8.2	$30-36$	33
J	$7-10$	8.6	$30-34$	32.4

$$
1 \mathrm{c}, \mathrm{za}
$$

Fig. 51

The EEG of depth 1, 2 and 3 in all positions, and the ECG of dopth 5 position Z on background reversal.

Fig. 51

DEPTH

DEPTH 2

DEPTH 3

DEPTH 5 ON WHITE

DEPTH 5 ON BLACK

VIIT. DISCUSSTON

The superficial $\mathbb{E C O}$ pattem in the minnow agrees well with that of the Codeish (Enger 1957), and the Coldeish (Schadof Weiler 1959; Schadé, 1962; Oshime \& Gorbman, 2968). The two rdythne in the minnow are the $6-14 \mathrm{cy} / \mathrm{sec}$, and on $18 \mathrm{~m} 2 \mathrm{cy} / \mathrm{sec}$., the codeish being $8 \mathrm{~m}-13 \mathrm{cy} / \mathrm{goc}$. and $14 \mathrm{~m} 32 \mathrm{cy} / \mathrm{sec} .$, and the Goldrish $7 \mathrm{~m} 14 \mathrm{cy} / \mathrm{sec}$. and $18 \mathrm{~m} 2.4 \mathrm{cy} / \mathrm{sec}$. The pattern in olasmobrancha is only the 5 mll cy/sec. 4 my thm demontrom tod by G11bert, Hodgcon \& Mathewson (1964).

The initiel effect of blinding was to reduce tho EGC pattern throughout the whole of the tectum. A similer finding was reported in the goldfish (Schade \& Weller 1959; Schadé 1962), but unfortunately, they did not report the time after blinding when they recorded the EEG. In the minnow the $E E C$ is elmost lost after the eirst 30 mins. following blinding but it reaspears in a reduced form after 5 hours and this improvement continues Sor several months. In no case did the normal EGG re-appear in blindod Pish. Schadé \& Weller (1959) concluded thet the reduction of the spontanoous activity following nonculor blinding is probably not due to a simple cessation of fmpulses from the optic troct. It soems posatble that the lowered amplitude of the activity observed is due to a spontaneous discharge froa the injured ends of the nerve fibres. An unsynchronized bombardment from this source might
cause a decrease in ampliturde of the apontancous octivity of the tectum and tho suppression of tho low-froquency activity. This hypothysis by Schade \& Weilor is escentially that proposed. by Paricer to oxplain the action of caudal bands diecuased on page 268. In vier of the results from the minnow in darimess and the leck of evidence for the preaence of parsistent injury discharge it seems much more likely that the lowered BEG is due to the reduced retinal input. What is not easy to explain is the resumption of the $\mathbb{E C}$ aftor a periad time. Claes (1939) worked on the cat and found that after severence of the optic nerves, and cauterization of the papilia of the optic nerve, there were long periods of almoat central inactivity lasting for 10 m 15 secs. in the striate area. These wore intorrupted by groups of activity of hicher voltage but of lower frequency than before. A siailer pattern of periods of no activity followed by activity is seen in position Z in the normel ninnow. Clees's work on the cet did show that the $E E G$ could not be maintained at the normel level following blinding. Besults from the minnow agree with this.

The resumption of activity in the blinded minnow is difficult to explain but it may depend upon the relationghip between the geniculate complex and the tectum, It seems from the work of Arduini \& Pimeo (1962 a, b, $1963 \mathrm{a}, \mathrm{b}$) and Maffei \& Rizzolatti (1967) that the latoral geniculate moieus of the cat show similar changes to those shown by
the retina in relation to light intensity. It follows rrom this that if these conditions apply to the minnow, then, after the cutting of the optic tract, there would be no activ'ty in the geniculete complex. It aecms posaible that the geniculate complez would after a period of tíme resume some activity and that this would be fed on to the recturn, which might result in the activity seen in the 5 hour blinding. The goniculate activity may then incroase so that the tectal activity Increases or the activity of the tectum exerts an influence on the goniculate complex and this increases the geniculate output. A tectalgeniculate system is cortainly woll developed anatomically ond, if it could be demonstrated by recording techniques, it soems possible thet such 0 Peed-beck syatem could well be responsible for the increase in spontanoous activity of the blinded minnow.

The rosults of the EEC on the mimnow in darkness lead to some interesting considorations. Schade \& Weller (1959) reported that the goldfish in darkness showed an increase in amplitude of brain activity over that in the light, but they did not report the time the fish were In the derk before recording were taken. In the minnow, changing from the lifht to darkness roaulis in an increase in activity possibly corresponding to the '0FF' discharge from the retina, which has been reported froa the optie tract and the geniculate necleus of the eat by Arduini \& Pinneo $(1962 \mathrm{~b}, 1963 \mathrm{a}, \mathrm{b})$. The activity of the mimow
tectum in the dark still maintains a high cegree of activity after 15 mins., which is higher than that scen in the nomal fish in the light. This may woll be duo to the spontenoous discherge of the retina reported by Grenit (1955) in the Irog and by Kupfler, Fitzhugh \& Barlow (1957) in the genglion colls of the unanaosthetizod cat. A high degree of activity in darloness is also seen in the lateral genm iculate nuclous of the cat (Maffer \& Mizzolatti, 1967) and in the optic tract and lateral geniculate maclous of the cat 0 seen by the work of Axduini \& Pinneo.

The activity of the minnow tectum deoreasos ofter $30 \mathrm{mins} \mathrm{ws}^{3}$ unlike the cat where it is maintained. This reault agrees with the work of Adrian \& Kathews ($1927,1928 \mathrm{a}, \mathrm{b}$) on the optic tract of the conger ool, Congex vularil. They found that the inpolses of the optic trect of this fish increased rapidly in frequency when the 1 ight was turned off. The rate thon declined, at firet rapldly, and then more slouly. Finally, in the dark the optic norve lost all activity. This courge of events is exactiy what is seen in the EGG of the minnow.

Finally, when the light is turned on the BEC pattern shows a burst of activity cormesponding to the 'OIV' response of the retine.

In view of the close simslarity between the REC of the tectum and the probable visuel input from the optic tract and geniculate, complex,

It is interesting to note the observetion made by Adrian \& Mathews (1925 b). These authore found that when the ontire motina of the conger eel wos exponed to unffor illumination the action ourrent discharge in the optic trect conld lose its urval irregular character and consist of a series of reguler waves of $a 5-25 /$ sec. frequency. Such vaver in the optic norve are coused by the rythmic waxing and waning in the maber of impulses in the norve fibres. They furthor suegeated that the regular weves are due to rythole discharges of the cangiton cells, which In their tum are due to the norvous connections between the canclion cells of the retina. The Irequency of these weven corresponds fairly well to the IF of the BEO of the minnow, eapocially whon the lattor Pish is under untform conditions of illumination. Inger (1957) hos compared the hy rythm with the olpha rythm in man, and as speculated that the $8-13 \mathrm{cy} / \mathrm{sec}$. rythe is associated with the thalamowroticular system, which he congiders to be present in the P ish, through reverbrating cortico-thalamic oircuites. It may well be that a much simpler situntion is present and thet the LF is more diroctly related to the visual outprt.

The recordings from Amplanpted electrodes showed that the HF and the Lp activity varies th oughout the tectum and it at the region where the highest number of if eycles oceur is in depths 3, and, to a leseer extont, depth 5. At the seme time os the HF is ineroasing the LP is deoreasing so that the highent LP valuss are in depths 2, 2 and 4 e If
the frequencies are compered with the structure of the tectun, it is 3. an that the HF becomes increased where the celle predominate and the Lif where the fibres predominate. It seems possible that the lerge collection of small neurons gives rise to the MP activity and the fibrea to the LF activity in the EEG recordinge of the minnow.

In depths I, 2 and 3 no difference was found with beck-ground reversal. This can be oxplained by the fact that this region correbe ponds to the ventrel retinal projection area and it would be expected that backeround reversol would not affect the illumination of the ventral retina. These layers therefore seem to be both functionally and correspondingly anatonically distinct, namely, they recoive the fibres Prom the optic tract and interpret the visual input. In depths 4 and 5 the number of the IF cycles increases by $10 \mathrm{ey} / \mathrm{soc}$ on the black. Depth 4 is the main efferent fibre layer of the tectum and depth 5 is a thick layer of neurones which give rise to the tectal efferents,

The significence of the 1 activity in terms of the control of the paling centre is dieficult to envisage. Young ($1963,2965,1966$) has demonstrated that the vertical lobes of the octopus brein hav an Important Inhibitory function and that these lobes have a large number of amall cells. He coneludes that Inhibition may be one function of these small neurones. In the tectum of the minnow the periventricules layer is composed of a large number of small. neurones and these ney have
a cenorel inhibitory function. The increase of tho IF activity in dopth 5 on the black would then Indicate the invilution of the peline centre. In connection with this it was also soon in region P and Z there was an incpease in the 5 ectivity on the wifte background.

To conclude on the \mathbb{E} pattern and 1 ts rolationship to colour change, several of the inndines an very importent.

Firatly, in all conditioas whore the \mathbb{E} (is vory recuced the fish darkens, ond this is seen whon the fishis icillod, aneethestizod or blindod. To a ourtain extont the level of the $B E G$ can be corrolated with the colour of the fish. Por example, in darloness the $E G$ is lower and the animol asaumes an intermodiats shade,

Secondly, it soons thet the $E E G$, especially the suporifeial LF eyclea, is rolatod to the retinal input.

Thirdiy, in layer 7 of the tectum there is an increase in the HF activity which is porsistont on black, and in the region where the fibres pass out of the tectum to the paling contre there is an increase in the LF activity associated with the white beckground.

In viow of these conclusions a possible hypothesis for the action of the tectum in relation to chromatic adaptation con be prot forverd.

In the obsence of the visual input the calls of the deepest layos. tho periventricular layer, exort a goneral inhisitory incluence on the paling centre. Thin is modified by the retirnai input which ezezta a gene eral oxcitetory inmpence. It vould therefore secm that the bolance botween the excitation and the inlibition would determine the action of the toctum on the modullar contro. One could envisage thet the regions of the retins where the light was less intonse had locs of on excitatory offoct than recion where the retina was well $12 l u m i n a t e d$. From this there would be an everaging ont process botwoon the rectinoi inputs and the general tectal inhibition. On the white backeround the toctum would be fully oxoited and the 震 activity roduced (e.g. in position z it is only $12 \mathrm{cy} / \mathrm{sece}_{0}$). Lt the seme time the LF becomes more prominant. This high level of LP activity is associated with the dominance of the excitation of the retinal input and manifests itself In the excitetion of the peling centre.

On the black background the retinal input is ingufsiciont to reduce the inhibitory action of the tectum so that the HF inhibitory activity predominates and the tectum inhibits the paling centre.

This hypothesis is very tentative, for no work wes done on the lateral perts of the tectum which receives the dorael. reflected light. It would also be interesting to extend this worle not only on recordings from the lateral aspects of the tectum but also to record from the meduliary contre and the gontculate complex to conftrm the functions
attributed to them in this hypothenis.

SECTIOM. 2

anctay Manow.

Although nost of the results presented in this thesis have been discussed fully,much work would be nocessary to verify many of the suggestions put fomard. However, by using the results presented here It is possible to suggest a working hypothesis for the mechanisn of the control of chromatic adaptation in the minnow.

Hiaving decided in Section 3 ($p, 93$) that there is no rigid rotinal differentiation in the minnow and that the hypothesis regarding the significance of the ratio of dorsal to roflected light is untenable, the relationsh1p betwoen the rotina and coloup change becomos comples. This does not mean that the relationship betwoon the Airect and renlected 14 ght is not inportant but thet its saportance 11 es in its relationship to the total rotinel output to the brain. It appears that brightnoss disorimination is anolysed in temas of the totel tonic
activity of the rotinal output. Arcuini \& Pinneo (1936 a) proposed that in steady licht or darkness all types of inhibitory and oxcitatory units fire randomiy in the retim, thet they give rise to tonic activity, and that this tonic activity is invorsely related to the light intensity.

Those levols of tonic activity are relayed to the geniculate. This body may function to integratc the activity from the dieferent regions of the retins and relay it to the tectum. It is in the tectum thet the final interpretation of the brightness of the background is carried out. It has been sugeested on page 193 that the tecturn functions as a. complox excitatory-inhibitory system. One could envisage that the incoming fibres from the genimulate complex are of a genoral excitatory nature and that those act against the inhibitory tondencies of the periventricular neurones, Whichover dominatea determines the colour of the fish. When the Pish is on a white back round tho excitetory tendency would be greater than when it is on the bleck, so that the overall effect would be one of exilitation resulting in peling.

The poling centre in the anterior part of th申nedulle consists of a group of neurones thet can spontaneously, without any control from the tectum, cause peling which is never meximal and never at the same rate as nomal backround peling. However, in general the medullory neurones are under the control of the tectum and the tectum can excite and inhibit thom. On a whito beciground the tectum excites the centro
resulting in an increase in its rate of firing and so causine the molanin of the chromatophores to aggregate. On a black background the tectum inhibits the centre and it no longer firee, oo the melenin disperses.

Finally, fibres from the neurones of the peling centro run in the spinal cord, pass to tho sympathetic chain and reach the melanom phores. A diagram of the pathways in the brain is shown in fis. 52 page 267.

Homonal colour change is controlled by the tectum and fibres from the tectum cause the rolease of the homones from the pituitery.

The main difeiculty in this hypothesis is the question of the Innervation of the chromatophores. The thoory that the chromatophores are innervated from the sympathetic systom causing ageregation and that dispersion is essentially pansive stems from the work of von Frisch (2911). Von Fridh (1911) wes aware of the thooretical possibility of dispersing fibres but did not test for their existence. In 1931 Giersbore tested a number of minnows using the sympathetic blocking agent ergotemine followed by olectrical atimulation and Pound darkening to occur. He also teated with acetylocholine and concluded that there were present parasynapathetic "disperging" iibres. Von Gelei, (2942) oxtended this work of Giergberg using the technique of electrical atimulation and the injection of ergotemine and acetylocholine. On stimulation he found

S. . 3 䭪

\% argoitaivocddA
exa $=0$.
Kelunges atalossime2-.3.3
mardoest olitg 0 - . C. 0
紋LIocloss5 - . 2

Fig. 52

Diggram of the brein to show the fibre pethways In the brain controlling chromatic adaptation.

Abbreviations:
E. - Bye
G.C. - Geniculate complex
$0 . T$. - Optic tectum
C. Cerebellum
M.C. - Medullary centre

darkening, and produced a map of dispersing fibres passing out of the spinel cord to the autoninic chein with the first and second spinel nerves; from which point he supposed that they mun baclowards to pass to the melanophores. However, von Frish's (1911) earlier observation that the anterior section of the autonomic chain does not appear to rosult in abnomel. colour chenges in the posterior region of the minnow would indicate that such dispersine elbres pley no significant part in the intact minnow.

Pye ($1964 \mathrm{a}, \mathrm{b}, \mathrm{e}$) confirmed the observation made by von Gelei that the fish injected with ergotamine and stimulated daricen, but he did not find darlcening followinc the injection of ergotamine. Pye found that the arguments put forward by von Gelef for the mapping of the melanom phore-dispersing fibros were unsupportable and that his experiments provided no evidence for double innervation. Recently Healey \& Roos (1967) and Grove (1967) presented a wide variety of drugs to the minnons, and could not show any real ovidence for the presence of cholinergic Pibres responsible for dorisening.

Parker (1934) claimed to have provided evidence for double innervation. He extended the work of M111s (1932 a, b) on the formation of caudel bands by means of cutting the chromatic fibres in the tail of Bundulug. This cut in the tail produces a dark band of diopersed melenoe
phores which finally fade in a fow days. Later, Porker (1948) showad that in a previously faded band a further band can be induced by a out within the originel band. Parker also found that the presence of a cold block will provent the developmont of the band poaterior to the block. He considered that the cutting induces persistont injury discharges to oceur only in the diaporsing fibrea, the cold blook prevontiog their aproad and a further out Inducing a further developnont of the discharges. Sand (1935), Youne (1962), and Vering (1942, 1963) have callod attention to the difficultios to Parlor's hypothesis and atress that this evidonce is very inconclusive. Gray (1956) performed a series of tail cutting exporiments on the minnow sinilar to those performed by Parker. He auggested that the development of the caudal. bands might result from the removal of centrel nervous control through nerve section so that some Inherent disperaing mechanism of the melanophores could cone into play. Later the melanophres might lase their refractoriness to diffusing nourohumours and beoome hyporsensitive. The results are far from being conclusive, for when he performed beckground reversals after the band had faded, the tail showed a uniform colour.

According to Porlcor \& Rosenbluoth (194,) direct stimmation of the chronetophore nerves in Amelurug resulted in pallor when the stimulation was $8 v$, at a rete of $15 \mathrm{~m} 25 / \mathrm{sec}$, and darisening when stirulating at 6 mbv at $1 \mathrm{~m} / \mathrm{sec}$. for a period of $15-25 \mathrm{ming}$. At best these experi-
ments were crude in extreme and Pye (1964 a) failod to get any daricening when he stimulated the superificlal opt olamic nerve of phoxims. He hes criticizod the experiment of Poricer \& Rosenblueth (19/1) on the grounds thet they used un-polerized electrodos and thet the respone times wore far too long.

In general there is no conclusive evidence for the presence of disperaing eibres and this sugeostena strong possibility that they do not oxist. If double inervation is prosent the worls of Healey (2954) Gray (1.956) and Pye ($1965 \mathrm{a}, \mathrm{b}$) augeests that diapersing etbros may follow the same poth as the poling fibres.

If double innervation is presont their origin presents a problen. It seema unlikely that they run directly from the tectum because the latter may excite and inhlbit the medullary centre. The other possibilitty is that dispersing Pibres arise in the medullary centre and thet in the minnow the action of the latter is predominantly excitatony. It would be interosting to see if the medullary centre playod the aeme role in other teleoet fish.

I2. COYPARTSON OF THE: OUNTWG HYPOIHS IS EOR THE

MINYO NHEH OTHER WHORIS OF THE CEML ML MERVOUS
COMTOL OF COLOUR CLALGE.

Vilter $(1939,1941)$ has developed a plan of the chronatie organisation that is based on the antogonism between the dark colour phese and the pole one. These two phases are polarised dorsowventrally; the dark phage is at its maximus on the dorsal surface of the animal and becones reduced as we pass vontrally while the pale phase, which is maximum ventrally, decroasos as we poss dorsally. He further belifeves that the retinee of chronatic vertobrates are polarised and that thoir ventral portions are essociated particularly with the ventrally centralised skin changes and their dorsol parts with those dorselly centralized.

From the work on the minnow there is no evidence for any part of this scheme being applicable.

Pariker (1948) consider號 the mechanism for colour change in Anguthla to be composed of four reflex aros show in fig. $53 \mathrm{p} \cdot 272$, and that for Phoxims to be essentially similar. These ares are 1abolled 1-4 and are as follows :

1. From the ventral reting to the intermediste lobe of the pituitery to release dispersing hormone - rotinompituitary axc.

Fig. 53

2. Nervous roflex arc where the teminations release acetylcholine and cause pigment dispersion - retin-cholinergic arc. 3. Dorsel retinn to the chromatophores causing the release of adrenalin and is a nervous arc - retinomadrenergic arc. 4. From the doroal rotine to the part of the pituitary where it may excite the production of W - substance described by logben (Waring 1940).

Parker supposed that the control is brought about by simple reflex arcs but the system is clearly very much more complex.

The plan proposed by Parkar depends upon the existence of rigid retinal differentatition and from this comes the false concept of colour change ilbres originating from the retine.

The hypothesis presented here differs from that presented by von Prisch (1911) because he suggeated the possible presence of a diencephalic darkoning centre. This difference mey be more opperont than real, but no electrioal stimulation was performed on the brain. It may be that stimulation of the tectun would excite it and cause paling and not daricening of tho fish. Stimulation of the diencephalon performed by von Prisch could well have effected the geniculate complex and, it, in its turn, could heve affected the tectum and so eaused darkening.

Motor activity and the tectum was reviewed in the introduction (p. 27). Some workers (Rizzolo, 1929; D1.jlkgraef, 1949) did not report any disturbonces following the removal of the tectum. However, othors (Reisinger, 1915; Muskens, 1930; Botsch, 1960; Kirsche \& Kirsche, 1961) have reported extonsive motor disturbences following tectal donage. In order to rosolve those conflicting accounts furthor study of this problom was undertaken.

3. NOPMAL ETSH.

No study appears to have been made of the behaviour of fish in a limited confined space. The tish were studied in litre beakers under the sane conditions used for the colour change tests, with the addition of fine netting over the top of the beaker to limit their vision dorsally. This confinonent in beakers essentially provides the fish with a 1 imited enviroment, whose $2 i m i t s$ can only be perceived by the fish by touch. As far ss possible, all other stimuli were unform throughout the experiment. The bealcer allowed the fish to swim normally
within linita so that it could only move in a straight line for one or two beats of the tail in any dfrection.

Under the experimental. conditions the fish ghow three types
of behavioural petterns.
(a) Besting

The fish rests on the bottom in a characteristic posture, lying parallel to the bottom on its spreadmout pectoral fins and its pelvie fins. This poriod of rest may last for as long as thirty minutes.

(b) Low-level exploratory

This is essentially a slow awiming around the bottoa of the beaker, Although the fish remains primarily on the bottom it occasionally makes upward movements, but these do not usually take the fish further than the middle of the beaker. The pattem of beheviour usually consists of one or two beats of the tail which propel the fish forward, followed by a glide period. The next beat of the tail usually propels the fish in another direction and the overall appearance is that of slowly searching the enviroment.

(c) Escane resnonse

This consists of a series of rapid body movements from side to side at the botton of the beaker next to the wall. Together with this
side to side movement, the fish swins rapidyy up and dow the well of the biaker and zives the impression of attempting to escapes finally the ilsh may or may not loap out of the water.

To quantify the behaviour of the fish the dominent pattern was recorded evory 15 sec . for 8 period of 15 mi mutes and this allowed the comparison of Individual Pish. The type of reault obtained by this method is show in PLg . 54 page 279. This shows that the soquence of behaviour was very variable and that no definite pattern was present. The escape response may follow a period of exploratory behaviour but it can also occur direotly from rest. The eacape response may or may not be followed by a period of reat.

Using these records it is possible to calculate the percentage of the total time the animels spend in each activity. The results for 15 normal Iish are shom in table 18 p. 277

These gave the mean values of 48% for the rest period, $2 t_{6}$ lou level activity, and $2 弓$ gor the up-down escape behaviour. The very great variation in these figures limits the conelusions which can be dram from thom. Howevor, it does appear that the resting poriod in 9 of the fish is dominant, the Low-level activity is clearly dominent in none of the fish, and the up-dom escape response is dominant in only two. Although it is not shoun in these records, 0.11 the fish showed all types of behavious.

TABLE 18 . The cenergl behnviour of 25 confined norned ninnous

Fish	Rest	Low-level	Up-down escape.
1	56.7	12.7	31.6
2	33.3	20	46.7
3	23.3	43.3	33.3
4	47.6	30	28.3
5	50	28.3	21.6
6	100	0	0
7	63.6	5	33.3
8	40	50	10
9	3.3	21.6	85
10	61.6	36.6	1.6
11	56.7	25	1.8 .3
12	76.6	10	13.3
13	12.6	43.3	40
1.4	100	0	0
15	11.6	45.6	42.6

$$
+2 \cdot 32.9
$$

4 arrosthisvardo a

$$
. \pm 201 \text {. }
$$

Fig. 54

Diagram of the activity pattern of normal minnows.

Abbreviations:
UD. - Up-down escape behaviour
LL. - Low-level exploratory behaviour
R. - Rest.

(a) Removal of the loft lobe

5 IIsh wore used in this group. The locomotory behaviour of these fish appeared normal, they did not appear agitated, and they showed all the behevioural petteme scen in nomel fish.
(b) Removal of the antertion tectum

4 fish were used in this group. The position and extont of the removals are show on IIg. 316 p. 165 . In all 4 24sh the locomotion was normal and so was the general balance. The behavioural patterm did show gross abnomalities and in all cases the fish tonded to swim close to the surface. This type of behaviour is only seen in nomal fish when the oxygon concentration of the water has dropped very low and the Pish use the surface water which is richer in oxygen.

None of the figh appeared to be excited and in no case were there observed any rest periods or upmdom escape responses.

(c) Removal of the pogterior tectum

7 fish wore treated in this group, the extent and postion of romovals boing shown on Iig. 31 edp .167 .

4 of these fish $(33,36,37,64)$ remained at rest on the botton for all of the time and only moved when stimulated, and thon only for a
very short period of time, usually a few seconds. Fish 31, 40 and 65 swam slowiy around the beaker and showed periods of high and low activity. In all 7 fish rest periods vere present and there were no up-down escape responses.
(d) The lact ponterior nart only pregent

4 fish were used. The extent and position of romovols are given in 9ig. 3le p. 168.

No up-dow escepe response was observed in this eroup. Fish 45 swam around the beaker and did not show any rest period. 41 swam close to the surface at about a 45° angle and a similar pattern was seen in 49. 57 showed the most extrome suxface tendency. None of the fish showed any rest periods.
(e) The left anterior part oniy prosent

7 Pish wore used in this group and the removels are shom on fig. 3ldt. 167
P. 169^{*}

One of the fish, 55, rested for long periods and swam oniy fos short periods and the othors; $47,56,60,61,43$ and 54, all swon slowiy around the bottom or at an Intemediate depth.

(s) Poatorior wight and anterior left renoved

4 fish were used in this group and the renovels are show on

Pig. $31 \mathrm{~g} \mathrm{p}$.170 . All these fish showed the normal behavioural patterns Including the up-dom escape response, but they all showed a reluctance to move and when stimulated only moved for a short period of time.
(g) Removal of the complete tectum

10 fish were used in this group. They showed rest and activity periods; the periods of rest are very reduced and only constituted a few seconds in every minute. Mono of the fish showed the up-dow escape response.
(h) Small 27 removal of the anterior tectum

5 Pash were used and the removals are show on Pig. 31 h p.171. 411 behavioural patterns are seen in this group. Two fish in this group; 70 and 69, showed a high degree of agitation and made frantic movements to jump out of the bealcor at the presentation of any stimulus.

None of those operated fish showed any postural or locomotory defects and it was only in their behaviour that any were noticed.

LX. BLT PISH

If fish were tested in the same way as the normal Pish 24 hours after blinding and then $20,20,30$ end 40 days after blinding. The results for the tests are given in Tables $19,20,21,22,23$.

TABLe 19 . The values for the general boheviour of minnows 24 hours ofter blinding.

Pish	Rest	Up-down escape	Low-level
1	0	40	60
2	20	6.66	73.34
3	25	0	75
4	0	70	30
7	33.34	6.66	60
7	0	78.34	21.66
8	11.67	0	88.33

TABLE 20. The values for the general behaviour of minnows 10 days after blinding.

Fish	Rest	Upmanm escape	Loum-level
1	0	75	25
2	5	45	50
3	33.3	7.0	66.66
4	0	70	30
7	63.34	0	36.66
8	0	48.34	51.66
	0	13.34	86.66

TARLE 21 . The values for the generel bohaviour of minnous 20 days after blinding.

Fish	Rest	Up-iown Escope	Low-level
1	0	35	65
2	0	36.66	63.34
3	0	30	70
4	0	63.34	31.66
5	3.34	1.66	95
7	0	12.67	$\$ 8.33$
8	6.66	41.67	51.67

TABLE 22. The values for the general behoviour of minnows 30 days after blinding.

Pish	Rest	Upmown Escape	Low-level
1	0	15	85
2	53.34	0	46.66
3	21.66	18.34	70
4	0	30	70
5	45	0	55
8	16.66	0	83.34

TABLE 23. The velues for the genoral behaviour of minnows

40 deys after blinding.			
Fish	Rest	Up-down Escape	Low-level
1	0	65	35
3	0	10	90
4	0	6.67	93.33
5	0	16.67	83.33
7	40	0	60
8	0	45.67	53.33

The meen values for the surviving fish are given in table

TABLB 24 . The mean values for the behaviour of 6 fish from 1 to 40 days after blinding.

Group	Rest	Up-down Escape	Low-level
24 hour	14.44	20	65.56
10 day	16.11	33.61	50.28
20 day	1.7	31.5	66.8
30 doy	12.22	22.22	65.56
40 doy	6.67	24.16	69.17

Fig. 55

The mean activity of a group of blinded fish taken for 40 days after operation.

Rest -
Up-down escape -
Low-level exploratory -X

$$
\partial \bar{\partial} \cdot y^{1}
$$

.awonalia
a anożまaivortoda
Esrotvaled oçsoae mob-qV - .GU
whotvertod rroferolque Lovelewod - sult
.tan - , A

Fig. 56

Diagrem of the activity pattern of 24 mhour blinded minnows.

Abbreviations:
UD. - Up-down eacape behaviour
LL. - Low-level exploratory behaviour
R. - Rest.

Fig. 56
24 HOUR BLINDED MINNOWS

These mean figures are plotted on a graph, fig. 55 . pege 286 . The eoneral activity of the fish after 24 hours is show in 9 ig. 56 p. 288.

The first foature of those results is the consistency of the mean figures which do not vary very much throughout the whole of the 40 days. In the blind fish the low-level activity becomes the dominant petterm and the rest poriod is very reduced. The up-dow escape response ranges from 20 to 33 of the total activity, a figure that does not diffor aignificantiy from that found in the normal fish.

Further coment must be made sbout the results because by themsclvos they do not give an adequate picture of the behaviour of the fish. Pirgtly, the blinded fish swim at a variety of depths, but they always show the exploratory behaviour thet is generally seen near the bottom. Secondly, the blinded Pish show a steady up and dow awiming pattern but this does not constitute the escape reaponse. Thirdly, although the dopth varics the diroction of each individuel novement of the fish is such that the onimel appears to be showing a constant exploratory pattern. They thus diffor from minnows with tectai remevnis which, although they show a constant movenent, do not show the persistent changes in diroction characteristic of the exploratory pettorn.

A total of 33 fish had small lesions placod in the optic tectuin. They are the fish used for the identification of the active region of the tectum in section G pert IV ($p, 153$). The eish were blind for 24 hours, after which time the left lobe of the tectum was removed and a lesion was placed in the dorsal part of the right lobe. The results show a wide variability of response and no distinct patterm could be found. Of the 33 fish , sixteen appeared to behave nomally, and all the others showed some degree of abnormal behaviour.

(a) Bolling

4 of the fish showed persistent rolling on recovery from the anaesthetic and in aome cases this was coupled with more complex motor defects.

Fish $\chi+0.6 \mathrm{~mm}$ Y0.65m on recovery began to swim on ite side, and upside down but shortly aftemvards it could not maintain this degree equilitbrium and undervent pronounced rapid clockwise rolling.

Fish $X+0.3$ man $Z 2 m$ underwent violent rolling only when stimulated by a shock, Othemise it lay on the botton, on its. right side. The ifish rolled clockuise in all parts of the beaker, the period of activity
lasting about 20 minutes. The poriod of activity following further stimuli becane reduced until the izsh did not show any activity to the stimulus.

Fish X 40.33 mm YI. 3 ms showd a further variant. It swam continuously with ita snout inclined upwards clockwise and anti-clockwise around the beaker and rolled anti-clockrise.

Fish X 0.12 Y1. 6 min showed a clockwise roll an was inclined at a 45° angle to the surface for about two hours efter the losion, after which it ceased to roll but swam with its body inclined at nearily 90° to the surface.

(b) Swimning at the surface.

Three of the Pish showod this tendency. Fish $X+0.6 / \mathrm{mm}$ Y . 2 mm was normally orientated and XOY1.1nm and $X+0.18 \mathrm{~mm} Y 0.66$ were both inclined at a 45° angle to the surface.

(c) Invorted suluming

Pish X 40.33 XImun showed periods of rest and activity, the rest periods excooding the activity. The fish could swin nomelly but only for short poriods, after which it swan in a serlos of loops and finally Inverted. Λ lthough it generally followed this sequence of events it could comence to swim inverted immediately following the rest period and show no looping.

V. DTSCUSSTON

In comparing normal and blind fish the most noticeable difference 1.s in the resting period, for in normal f 4 sh it is dominant but in blind fish it forms the mallest component of the behavioural complex of the antmal. This roating poriod is essentially the habituation of the aninel to ite environnent, so that the blind Pish falls to habituate within the test period to tie enviromontal conditions in the beaker. These results largely agree with the observations of Breder ic Gresser (1941 8,8) who found thet fully blind Characins show very different behnvioural pattems to the normal itsh. The blind fish do not have any schooling inatinct and continually wonder in an apparently simless manner. They concluded that there is apparently no subetitute mechanism developed to function for the loot vision. The minnow sinilarly does not appear to be able to habituate within 40 days to a confinod environ mont devold of any cluen except the sides of the beaker. It would therefore appear that the minnow is esmentially a visual animal in in relation to its ability to habituate to such a confinod envirominent. It would be interesting to contime to test more minnows for a longar period. The results from two isoleted fish after 4 months geve mean values of 77. SF for the rest pertod, which is in excess of the normal Ifsh, and may indicate changes in the sense organs, or in the mode of action of the central nexvous syatem.

Before considering the motor and behavioural defects following tootol damage further there is the question of whether the results con be expleined by parely supposing thet they are due to defecte in the visual field. Sperry (1950) following visual inversion in the Coldeish. In the large number of experiments performed here on the rotins various perts of the eye were renoved and in no case were there observed any defecta in beheviour, or in the motor pattern of the eish. It is therefore concluded that the dofects produced by tectel damege are due to the tectel damnge, and not to any offect they might have on the visual ixeld.

In all the fish presented here none of them appeared to have any damage to any part of the brain other then the tectum.

In the rosults one of the most noticeable foatures was the absence of any body Mexuro due to the unoqual contraction of the myotomos. Such a Elesure was reported by Tuge (1934 a) following cerobollaw Lesions and hes been subsequently reported by Kirsche \& Kirsche (1961) and by Botsch (1960) following teetol. Lesions. Although no body floxure was noted in the fish with tectel lesions, it was noticed in the minnow when the lesions had been more extensive, and domage had been present In the valvulae and the toins somicircularis. Clase examinntion of the photomicrographs shown by Kirsche \& Kirache and by Botsch did show definito domage to the valvula and to the tegnentrun. It may well be thet this danage resulted in the Mlesure and, in gonerol agreoment with

Dijlegrap? (1949), it would seem that this particular motor disturbance only occurs as a result of demsege to the velvalee and the torus semfoircularis.

The fish appeared to show normal locomotory behaviour following the removal of one lobe of the tectum, in agreement with the findings of Dijlgraei (1949), Rizzolo (1929) and Steiner (1388). The normal behaviour only seemed to occur if both the anterior and the posterior parts of the tectum were present but they did not necessarily have to be present on the same side. Anterior or posterior removals alone show od defective behaviour but in the 4 Pish where the anterior was removed from one side and the posterior from the other, (maintaining the torus longitudinalis intact), the fish showed norms behaviour. Fish with the large tectel removals did not show the gross motor disturbances which occur following gall more discrete lesions. The small tectel lesions resulted in most of the disturbances reported by previous workers and included rolling, incorrect horizontal orientation, circus movements, inverted swimming and finnily respiratory defects (fish $\mathrm{X}+0.33 \mathrm{mn} \mathrm{K} 1 \mathrm{~mm}$ showed a very rapid opercular beat). The disturbances are essentially disturbances in the locomotor coordination as a whole and they do not show any tendency toward localisation. These results do not support the view that there is definite localisation of motor areas in the tectum put Pommard by Chauchard \& Chauchand (1929 a). The results from the minnow do support the conclusions put forward by HeNley (2957) in that
these positional and motor irregularit es occur because they remove certain elements from the total complex modifying system and that thoy throw the output of the remainder into a state of unbalance. On the other hand, removal of the ontire tectum or a complete lobe, ney not introduce any unbalance modification by way of the tecto-apinal or the toctomcerebeller peth.

One of the feetures which wew common in all the fish with antorior tectal renovals which loft the posterior tectum intact was that they all sworn with the snout protruding or very close to the surface. This type of behaviour is only seen in fish which are in water where the oxygen tonsion is very low. Normal fish never swim steadily close to the surface. There are several possible explanations for this. The most liksly one is that the Pish cannot orientate horizontally so that It constantly swims with its snout protruding. It is also possible that the behaviour iss due to an intermption of the blood supniy as a result of the operation and the resulting anoxia in various parts of the brein.

One of the most cormon features of the larger tectel renovale was the loss of one or more of the 3 nomel behavioural patterns. The fish with one Lobe of the tectun or the components of one Iobe present (i.e. contributions from the right and left sides) all showed the up-dom eacape reaponse. This was not seen in any of the group where either the anterior or the posterlor tectum hed been removed. A number of fish only movod when stimulated, $33,36,37$ and 64 , and then only for a short
period. A large number of fish did not ahow ony rest periods; 47, 56, $60,61,43$ and 54 and swem continously. The swiming of the fish without rest periods was not nomal, and consisted of slow swiming movements contimousiy around the beaker with no chenge in direction and no change in dopth. They appear to have been more in the nature of e roflex then the nomal exploratory movoments seen in confined minnows. Those reaults seen to suggeat that the tectum not only acts to comordinate and intergrate behavioural patterns but also to initiate and maintain the behaviour of the fish, possibly playing a major role in motivation and drive. Besides initiating the behviour of the fish it may play an inportant rale in the inhibition of behaviour, but this is dipficult to demonstrate, Although the rosting pattern is cominont in the normal Pish it is absent in the toctal romoved insh and is reducod in the bind fish. Considerably more work is necessary before it becomes possible to understend the conplex and vory interesting functions of the optic tectum.

Finelly, the last abnornality to be observed wos the rosponse of the Pish to stimuli. This was obsorved in fish 70, 69 and the lesions $X * 0.18 \mathrm{~mm} Y 0.66 \mathrm{~m}, X+0.33 \mathrm{~mm} Y 1 \mathrm{~mm}, X+0.18 \mathrm{~mm} Y 2.6 \mathrm{~mm}, X+0.35 \mathrm{~mm} Y 1.6 \mathrm{~mm}$, In all these fish instead of hibituating to a series of shock atimuli, discussed in Section $11(p, 298)$, the response to each successive stimulus becomes increased. The firat two or three stimuli result in the tell. flip response but the subsequent stimuli result in this rosponse becoming more pronounced so that finally the fish leaps out of the water with
each stimulus. It would therefore seem that the balance between the stimulus and response has been disuupted so that the reaponse is far in arcess of the rolative strength of the stimulus.

3.ECTION11

THE OPT IC TECTOH AID HAB MUAT ION.

The term 'habituation' has been given a wide variety of meanings, but is used here in the sonse defined by Thorpe (1963), as the permanent waning of a response as a result of repeated stimulation which is not followed by any kind of reinforcement. It is specific to the stimulus and is relatively enduring. In this sense it is applied to the whole animal and its relationship to its environnent. Used in this sense it differs from the definition usod by Forn (1967): the attemution of response associated with the repeated presentation of a stimulus and the recovery of the response which may afterwards be indueed. Under this definition of Horn's there is no reference to the pemanence of habituation, neither does it distinguish it from sensory accomodation. The use of the tem 'habituation' is also not the same as the extinction of the orienting reflex of Pavlov (Solcolov 1960), for the orienting rellex is essentially unmpecific, and is initiated by increase, deerense or other quantitative changes in the stimulus, and is independant of the modolity of the stimulating agent.

I. STDUUTS AID ROSPONEE

The minnow, unlike the goldeish, does not respond to visual stimuli by giving the tail-ilip response under nomel experimentel conditions. The most successful stimulus was found to be a simple shock wave, produced by a single blow of a wooden mallet on a pad of foam rubber, the pad of rubber being pleced next to the fish container. The testing conditions were the same as those described for the colour change reversal tests (p.35). Care was taken to ensure thet the anount of water in the container and the beaker were always the same and that the positions of the boaker and the container were always constant in relation to the atimulus.

The main difficulty was that the stimulus wes not the same intensity throughout the tests. The fish were, however, very sensitive to vibrations of the table and even the slightest tap on the table resulted in the jerk response so that the intensity for the stimulus was always above the threshold for the response. Fish were givon very low strength stimuli which were repeated at intervals (one every 3 seconds) urtil no further response could be obtained. If the atimulus strength was increased further responses were obtained. Pinally there was a point were no further reaponses were obtained regardless of the intensity of stimulus. The sti-ulus intensity would therefore seem to be importent at low intonsities, but above a certain throshold it ceases to be im-
portant and the stimulus used in this experiment was above this throshold. In no cose did the fish give any further response aiter it had habituatod, oven when the stimulus strength was increased.

The stimulus was presented at a frequency of one overy 3 seconds for a period of 3 minutes, which moans that the fish received a series of 60 stimuli. If the stimulus frequency was increased the fish did not initially respond to each stimulus but only in a very irregular pattern. At a frequency of 2 a second or more, the fish age a single response to the first stimulus and then no further reaponse. Decrease in the stimulus frequency resulted in a longer time to show any waning of response and produced a less clear result. The habituation was not due to the muber of stimuli. The number of stimuli within a given time is the important consideretion.

Foll wing the atimulus, the fish exhibits a sudden violent tailflip, the latency period being too short to be measured. The tail-Mip was brought about by a single movement of the tail and most of the body to produce a single messive beat which resulted in the fish being propelled through the water for a distance of at least its own length (6ems.). The direction in which the fish moved depended on the position of the fish at the time of the stimulus. After the tail-ilip the fish did not move for a short period, the freezing period of fussell (1967), and no record was taken of the time of this freezing period. The freezing poriod may or may not be followed by a period of aftermexcitement which, if it occured, could last for 2 to 20 scconds and consisted of rapid swimning

Fig. 60

Fish	Stimulus
	$\begin{array}{lllllll}1 & 10 & 20 & 30 & 40 & 50 & 60\end{array}$
5	+4+4 -
2	
1	
74	
38	
61	
48	
41	
55	
56	$1+4+4+4+4+\cdots-2$
60	
64	
76	

The response pattem of a number of Pish. * is the tailunilp, and - is a nogative rosponse to the otimulus. The arrengement of the Pigure show the gradual increase in complexity of pattern.
on the bottom or et intermediate dopths.

Records of the presence or absence of the tailmflip are ahown in (p.301)

Pig. 60 with positive or negetive sienes. Orientation phenomene recorded by Mussell (1967) and by lodgers et el (1963)were observed.

II. RESUTTS

The waning of reaponse was maxiced in all those fish which had aome tectum present. The results are shown in tables 25 page 304-6 and graphs were plotted to show the relationship between the stimulus to habituate and the percentage of the tectum present (fig. 57 p. 308). The stimulus to habitunte is token as the last stimulus to give the tail-Rlip and if the fish did not show this by the 60th stimulus it was given 20 additional atimuli to test whether it could show a complete absence of the tail-M2ip. A second set of eigures is shown plotted on fig. 58 Page 310 , to show the muber of responses in relation to the percentage of the tectum present.

The stinulus response pattern is show on Pig. 60 poge 301 . The most comon type of pattern is seen in the fish 2 and 5, where the figh responds to the firat stinuli, but after a certain munber ceases to respond further. Over no period was the response reduced in intensity nor was there any period giving positive and negative responses. A leage muber

TABLE $25 \mathrm{a}, \mathrm{b}, \mathrm{c}$.

The relationship between the tectum and a shock
stimulus. Habituation is scored as positive only when the fis shows a dofinite stimolus to habituate.
(e)

Fish	Treatnent	Percentage tecturn Present	Habituation	Stimulus to habituate		esponse	
				No.	Mean	No.	Mean.
$\begin{aligned} & I \\ & I \end{aligned}$			*	5		6	
2			+	3		3	
3			+	10		10	
4			*	1		1	
5	Normal	100\%	+	23	8.2	20	7.7
6	Pish		+	12		14	
7			+	11.		9	
8			*	4		3	
9			*	9		7	
10			*	4		4	
11			+	10		5	
$12=$			*	13		10	
13	Blinded	100\%	*	4	8	5	6.6
14	fish		*	8		4	
15			4	5		8	
68		96	+	6		9	
69	Small part	84	-	-		60	
70	of dorsal	91	-	-		60	
7	tectum rem	95	+	7		8	
72	moved	86	+	12		15	

Fish	Troatrnent	Percentage tectun Present	Habitua tion	stimulus to habituate		Response	
				No.	Monn	No.	Meon
20		50	+	30		30	
21	Loft belf	50	+	40		40	
22	of tectum	50	4	1.0	24	10	23.4
23	Temoved	50	+	20		15	
24		50	+	20		22	
29		0	-	-		60	
34	Antorior	53	+	30	30	30	
355	tectua	57	*	30		30	
67	removed	25	-	-		60	
33.		45	-	-		-	
33		47	-	-		\cdots	
36	Posterior	74	+	12		13	
37	tectum	72	4	10		10	
40	removed	44	-	-		45	
65		65	*	27		24	
64		52	-	-		35	
58	.	52	4	39		27	
59		54.	+	53		44	
73	Pogterior	53	+	33		28	
74	right and	55	4	56	43.6	46	36
75	enterior	53	4	38		25	
76	left rem moved	56	-	-		46	

(c)

Pish	Treatment	Percentage tectum Present	Habituam tion	Stimulus to habituate		Response	
				No.	Mean	No.	Mean
55		36	-	-		39	
54		27	4	48		47	
56	Al1 tectum	31.	-	-		39	
61	renoved	34	4	49		49	
60	except left	20	-	-		37	
47	antorior	27	+	57		56	
48		36	-	-		53	
499	A1. 1 tectum	18	*	55		43	
41	removed	30	-	*		55	
57	except lest	25	+	46		22	
45	posteriorer	37	4	55		55	
T1		0	-	-		60	
22		-	*	-		60	
T3	Complete	-	\cdots	\cdots		60	
T4	tectel.	0	-	-		60	60
T15	removal.	0	\cdots	-		60	
T14		-	-	-		60	

$$
\begin{aligned}
& \text { [ë, }
\end{aligned}
$$

Fig. 57

The effect of tectal removal on the ability of the minnow to habituate to a shock stimulus.
Fig. 57

$\operatorname{se}^{2} \cdot{ }^{3}$

Fig. 58

The number of positive tail-flip responses given by minnows with varying degrees of tectal damage.
Fig. 58

show a more variod waning patterm, 74 show a similar pettern to 5 but there wero several negative reaponges bofore the innal positive reaponse. In 91 sh 1 and, to a greater extent, 33, the final habituation occurved after a period of positive and negetive responses. The difforence between the response value and the stimulus to habituate value inilcates the type of resporse wening. Fish which do not alow a definite habituntion are also included in this table and it on bo seen that the rosponse waning pattern is ossontially that of the other fish. Many of the fish winch do not habituate do, however, show similar values to the ilsh which do habituate when the mubler of responses are compared. The only dieference in the ifsh which do or do not babituate is in that in one group the fish are unablo to suppress completely the tail-2lip response.

The graphs show that there appoars to be a definite relationship between the amount of the tectum removed, and the obility of the fish to suppress the tall-flip response to a shook wave. The number of responses shows an inersase with the amount of the teetrm removed. The stimulus to habituate curve show cleariy that this rolationship is iar eron being Innoar for the fish with so\% tectum present have the game ability to habituate as do normel. Pish. That the curves do show is that there appears to be a threshold over which the removel of the tectuns affocts the responee waning of the fish.

A fow PIsh were tested for their retention ability, They wese given the some stimuli 12 hour after the first test and they all showed at least a 50% improvement on their previous porformance and in some
casos considerably more. Fish 21 showed a complete habituation in the plrgt test after 40 stimuli but in the second test it had almost completely habitwated by the 10th stimulus and only gave one more response in the next 50 stimuls.

The relationship between the tectum and habituation is far from being simple. Fish with the anterior tectum present show an incidence of partial habituation of 50% ogainst 20% in those with the posterior tectum present. Also in the group which heve 50% removal by means of the removal of the left lobe the mean stimulus to habituate was 24 . The Pish where the posterior right, and the anterior left wore removed, and with 50% present, showed a mean of 43.6 wich is elrost donble the velue for the renovel of a single lobe.

III. DESCDSSIOH

The quention axises as to whether these results could be due to Patigue or sensory accomodation. The fish wore testod for a further one or two minutes, and the total tectel removed isish did continue to react positively to each stinulus, rvling out the posaibility of fatigue. There are two reasons why it is probebly not sensory accomadation; the f4rat is that the rosults did last for a period of one hour and on the second test there wes a 50% improvement. The second point is that removal of the tectum prevent hebstintion under these conditions whereas
the blinding has no offoct. It would therefore seen that the response waning in the minnow is a dofinite exarple of habituation learning and that it is medietod by the optic toctum. Eurthermore, this leaming is second-order leaming, for the stimulus is by way of the acusticomaterm alis system and from this system it is relayed on to the toctum.

Russcll (1967) failed to get complete 1nhitition of tho jerk response using visual stimuli, but did report a two-thirds docline in the response to 40 stimuli with a 60% re overy in 2 hourg and a complete recovery in 48 hours. Rodgers at $\mathbf{s l}$.(1963) tested 10 figh giving thom 10 taps a doy at the rate of one per minute for 15 days. They found that the fish showed n score of 5 flipe on the first stimulus series and on the following daya showed a variation of from 0.8 - L. 1 per dey. Unfortunately, the results for the minnow ore only from a single test go that thoy could not be compaired with those of Rodgers ot s1.

Both Russell (1967) and Rodgers ot 01. (1963) discuss the compensatory fin moverents following the presentation of the stimulus, after the fish no longer show the tailmilip. Rodgors ot at.concluded "they continue to maintain a stato of vigilance toward the stimuli, in which the disruptive behaviour of the tafl-flip response is replaced by more organizod orienting responses ${ }^{n}$. This orienting behaviour is capable of alternative explanations, for in the minnow the orientation rasembles the righting roflex doseribed by Lowenstein (1932), showing the charecter-

$$
2 己
$$

Fig. 59

Transverse section of the medulla at the level of the entrance of the VIII nerve, stained with C.F.V.
M.C. - Mauthner cell
\mathbb{N}. MED. - Nucleus medialis
Tr.T.B. - Tractus tecto-bulbaris

Fig. 59

istic positions of the fins. It would therefore appoar that in the minnow the orienting responses to the stimulus, after the Iish no longer shows the tail-flip, are solely intended to maintain the balance of the fish following the water diaturbence, as a result of the shock wave, and are not any attempt on the part of the fish to maintain a state of vigilance toward the stimulus.

Anatomically the tectum is connected to the Meuthnerian apparatus by means of fibres in the tectoubulber tracts identtified by Bartelmez (1915) and Kappers at as (1936) and these have been confirmed in the minnow in the present work. The position of the Mauther nourone is show in Pig. 59 page 315. Retzlaff (1957) and Retzlapf \& Fontaine (1960) found that the mathnor neurons recelve afferent fibres from the 8th craniel nerve and that they show reciprocal inhibition so that one of the neurons inhibits the other and an inhibitory feedback is set up. More recent work by Furkewa \& Fursohpen (2963,1962) and by Furukawa, Fukams
 tion present. The position of the tectel control in this complex picture remeins to be elucidated. What can be said however is that the experiments on the minnos show that the teotun plays an fmportant part in the learned inhibition of the mauthner neurons. The fibre pathway involved possibly begins with the incoming 8th nerve to the acoustico-lateral regions of the medulla, and from there a bundle of fibres, the secondery trigeminel tract, runs to the tectum. From the tectuli inhibitory fibros pass out in the tectombulbar tracts which run to the meuthner neurons.

It would seem that the inhibitory action would be required to reach a threshold before it could affect the mauthner neurons, and the response of the mauthner neuron being essentially an all or nothing phenomina, the tail-flip is either prosent or not. Posibly the successive stimuli build. up this inhibition, in which sase the renoval of the tectun would result in pore etimuli being necessary to reach the threshold. Once the inhim bition has been built up it is maintained, but in some of the romovals the level of inhibition could not be maintained for long periods and positive responses could be found. The prosence of these positive and negative responses alternating would suggent thet the hypothesis proposed by Horm is only part of the poselble mechanlsm. Horn (1967) proposes that the gradual wanlng of response of a system of neurones to a stimulus which is slowly and reploatedly applied is a result of a self-conorated depression of senaitivity at one or more points in the system. The other part of the mechaniam could be explained by the work of Solcolov (2960) who supposes that the rosponse decromont is oaused by an active blocking mechanism. On a ropeated presentation of a stimulus two processes take place; one the elaboration of the neuronal model of the stimulus aitustion, and the other the elaboration of the conditioned ininibitory reflex which mekes it possible to block these impolaes. If there is a change in the stimulus, non coincidence between the reflez and the neuronsl model results in the response. Therefore, in the minnou the persistence of the habituation could be explainod by the presence of a model of the stimulus situation, and the active blocking of the response, the blocking being carricd out by a self-gonerated depression at one or more points in tho system. It would be very interosting to continue those experimonts,
to test the Iish for long periods of time and to test fish which show the response to visunal stimuli so that the stimulus situation could then be varled.

The relationship between cerebral mass and learaing in mammels, ospecinlly in wats, has been worked on by Lashley (1922, 1924, 1926, $1931,1934,2937,1939$). The main work was conoerned with the study of maze performance in the rat following cerobrel excisions. The findings led $h 3 n$ to propose three mein conclusions. Firstly, the formation of maze habits is impeired by cerebrol lesions, the degree of impoirment beirg closely related to the extent of the lesion, and is independent of its locus. Secondly, the retention of maze habits learned prior to operation ia impatred by cerebrell lesions, the dogree of inpairment being again proportional to the extent of the lesion and independent of its locus. Thirdly, the de?ect in performence produced by any given lesion is a function of the complexity of the task. Leahley considered that locelisation in the cerebral cortex must be considered in relation to taess action, for his results show that maze habits besed on detailed vision are lont following the excision of a small aroa of the lateral part of the area atriata. Habits based on brightness discrimination axd lost only after the dostruction of the entire striste area, so that at loast brightnoss diserinination is locnlised in the atriate apea. In a recent review of Leshloys work, Zancwill (1961) hes shom that the more recont worl favoums the differontial localisation of specific behavioural petterns but thet new evidence does not warment the abandonment of Leshley's
position. Work by Botsch (1.960) has show that a stmilar relationship occurn (mass action) in tho relationship betwoen visual discrimination and the romoval of the tectun in the carp, Cagrassiug. The results show here on the minnow agree very closely with the mass action concept of Lashley. This close agroonent would be expected because of the absence of any definite loorlisation in the tectum and because of the egsential simplicity of the tosk. In general it can be said that the more tecturn removed the longer the fish takes to habituste to a shook stimulus and this is Independent of the locetion of the removel. This is further complisated by the fact that the more the tectun is disruyted the more stinuli are needed before the fish cease to reapond. In the group of fish where the posterior right and the anterior left part of the tectur was removed, the mean number of responses were 36 whereas, the meen for the habituation atimulus was 43.6. The fish with the lect lobe removed gate the correaponding figures of 24 and $23 . b_{s}$ reapectively. Both groupes had at least 50% of the tectum present. If this is taken with the evidence of the high incidence of partisi. habituation in the fish with the antertion tectum only present (50\%) it would suggest that the tectum acts as a unit. If nocessary, os in the cose of removal, the part romaining ean assura the roles of that removed. However, the more it is dismupted the loss it can function normelly.

SMAMAR

Oniy the now eindings are listed in this sumnary.

Section 2

1. It was found that a 0.000% solution of 1/3222 fully annosthotised Gan Pish but this dilution was unsteble. The Pish could survive for more than an hour in this concentration (p. 38).
2. A mothod for the closuse of the skill after suxgery was described (p. 39).
3. The firat use of the ataining technique of KItiver and Barrera on Bhoxivise showed that the Pibres hed very 14 ttle afrintity for the lascol. Fast Blue. This may indicate differencea in the chemical composition of these flbres (p. 44).

Section 3

4. No spoeielised 'Aroa' could be found in the retine (p. 50).
5. A mothod for cutting the reting tangentially without ronoving piecea was described (p. 55).
6. Triangular triple cones as well as the innour type appear to be prosent in the rotina of the minnow (p. 69).
7. Cornta wore made of the retinol receptors and it wan found that the rods asngle and double conee were more monewous perdpherally than centrally, and that the triple and quadruple cones wore more numorous controlly (ps. 65, 69, '72).
8. The retina is predominantiy a cone retina (p. 65).
was
9. In common with other teleoot fish there were a greater manbor of receptore in the temporal field thon in the roetrel. fiold of the rotina (p. 72).
10. The vontral region of the retina differs fron the doreal in heving very fow triple and quadruple cones but a. lange number of double and single cones (p. 72).
11. The visual deutty of varlous regions of the retina wore celculeted and the oxtreme dorsal region was found to be lowogt (p. 72).
12. The cone mosaite of the reting wes discussed and it was engeested that the quadruple and triple concs possibly function to replece this simple mosaic. The clone proxinity of the indivicturat cones would seave to amplify the beneftits of a complex mosate (p. 73).
13. A sinple apparatus for the production of retinal lesions wes Cescribed (p. \$6).
14. Lesions produced by high intensity Light wexo describod (p. 36).
e
1.5. The surgicel renoval of the distruction of the dorsel retina rooulted in the fish being fully dark on a black and Intermediate on a white background. Similar dostruction or removal of the vontral retino resulted in the fish boing intermepale
diate on the bleck and alee on a white background. From these results it was arguod (p. 95) that the thole of the retina is ine portant in chromatic adaptation and there wes no evidence for any regid retinal differentiation (pa. 93m96).

$\operatorname{section} 4$

16. The structure of the optic troet of the minnow was dosertbod (p. 10\%).
17. The optimum survival time for the dogeneration of the optic tract using the Nauta tochnique ves 14 days at $18^{\circ} \mathrm{C}$ (p. 200).
18. The structure of the optic chfasma was doseribed and 9 different conditions wore found (p, 107).
19. It was found that fibres from the optic tract either ond in the optie tectum os in the geniculate complex and no othes fibres could be found ($\mathrm{pe}, 114 \mathrm{~m} 126$).
20. The stincture and Ifbre comnections of the geniculate complas wos doscribed and wem homologised with othor teleosts and othor
higher vertobrates (pe. 12L-126).
21. The onatory of the optic tectum was described together with its Plbre connoctions (ps. 127m134).

Sections 5

22. An accurate account of the colour of blinded minnows wes prosented ahouing after the initiol darkoning helf of the CIsh pole and the othor hale romain deris (ps. 135m139).
23. The colour of blinded floh could not be affeotod by estermal conditions (p. 139).
24. Attonpts to find enatomicel differences between the dask and pale blinded fish proved unsuccosafill ($p, 2,0$).

Section 6

25. Following complete ronovel of the optic tectum the fish at first paled to a mean $0.0 . I_{0}$ of $2: 7$ but after 24 hours they dartion to very varlable tints (pa, 1/2-1/49).
26. Unilateral section of the opitic tract coupled with uniletoral teetal renoral on the same or opposite side did not affect the ability of the ESah to chenge coloux (p. 14.9).
27. The bilaterol removal of the anterior toctum from a blinded dericoned eish did not affect its colour (p. 253).
28. The bilateral renovel of the posterior tecturn of a dexpened blinded flah cauged maximal pailior (p. 153).
29. By a series of lecions an aroa in the dorsel pogtorior part of tho optic tactum was isolated and found to cause darkoning in a blinded minnow beceuse following its removal the fish pelod (ps. 153-162).
30. The presence of the antrrior or posterior tectum alone on one or both sides canxod pergistent pelilor in normal eish (po. $172 \mathrm{~m} / 76$).
31. The presence of the anterios toetum on one stde and the posterior on the other onabled the fish to adagt chromatically to Its background (pa. 276-180).
32. Small renovals Prom the tectum did not effect colour change provided they wero below 9\% of the total toctum. Larger semovala In the dorsel tectum reduced the oxtent of change until fairly large removale (16% tectum) comped the Itsh to be pelle on all backgrounds (ps, 182-136).
33. The mode of sotion of the geniculate complex and the tectum in relation to colour change was discussed (ps. 286m198).

Segtion. 7

34. The optinum curvival tine for tectal efferent fibres to
degonorate for the Naute teohnique was 16 days at $18^{\circ} \mathrm{C} .(\mathrm{p}, 199)$.
35. A possible nedullery peling contre wes identified and its structure deseribod (ps. 202m03).

Soction 8

36. The apparatus for implentation of alectrodes into the optic tecturn was described (p. 227).
37. The apparatus for conth.nuous recording during bacigground reversal wes described (p. 218).
38. The offect of curare on colour change and on the mortolity of the fish waa discussea (p. 222).
39. The EEC was reconded from the surface and that it consiated
 (p. 223).
40. EEC recorlings from fish in dexiness, under anaosthetio and folloring bliuding showed that the activity of the tectum was disectly related to the retinal input and that in all condstions where the anplitude of the EEC was reduced the fish derkeoned (p. 230.237).
41. Eel patterns wore recorded and annlysed from variova dopths and positions in the optio tectum during baelground revorsal. It was found that in dopths 1, 2, and 3 no changes were procent but in
dopths 4 and 5 changes in the order of $10 \mathrm{cy} /$ see wore found in the WIF whythm, (pe.237me253).
42. The BEG pettems wore discussed and a possible hypothysis for the ection of the tectum in chromatic adaptation proposed (p6. 254-262).

Sention 2

43. A working hypothesis was proposed for the control of chromatie adaptation in the mimow ($263-2 \%$).
44. The hypothesis was discussed in relation to other theories on colour change in toleost fish (271-273).

Section 10

45. The behaviour of nomal minnovs in a bealcer was desertbod and analysed. It was composed of three patterns, a rest poriod, an upmam escape response ond a lovmlovel exploratory rosponce. The rest period wes dominent (pe. 274-279).
46. Nomel mimons in a beakor after tectal renovalos show veritous modiefications in behaviour (ps, 280-232).
47. Blind ifsh in beakers show a different behaviourel pettoxn to nomol Pish end the lowalevel activity prodominates (pa. 232-289).
48. Blind fish with toctal lesiom showed varion defects in motor beheviorx (ps. 290m291).
49. The reoults from the anelyais of 21. the fish wore (ps. 292297) discussed in relation to other workers and it was suggested that the optic tectron may be imporiont in motivation and drive as well as being an importont corralating centre (p. 296).

Section 21

50. The talluclip reaponse in the minnow was doscribod (pa. 299e 300), and the orientation moverents following the extinetion of the tailunlip, os a rosult of repoated propentation of the stismius, ere simple rellex balance responses due to the shoek wevo (2. 32,3).
51. The tectum wes shown to inhibit the Mauthnesion nouronos and represents second-order acousticomoptic leexning (p. 3i3).
52. A doacription of the response decrenent of momel, blind and tectal romoved flsh was presented (pe. 302-312).
53. The rolationghip botwoon teotel, mass and the Mouthnerian neurones was discussed os well as a ponsible tectel. mechanfon (p. 316).

ACKNOWLEDGEMENTS.

The Author wishes to express his thanks to Professor N. Millott of the Department of Zoology, Bedford College, London, who kindly provided laborgtory facilities. My sincerest thanks are due to Dr. E.G. Healey who suggested the topic, supervised the work, and offered much encouragement and advice. I should also like to express my thanks to Dr . Webster who sugested the use of the Nauta technique, and to Dr. Okumura who provided much invaluable help in the electrophysiology. Yuch encouragement and helpful exiticism were continuously supplied by my wlfe, Maureen.

Finally, I am ondebted to S.R.C. for financial support during the tenure of their Studentship.

```
    BIBLIOCHAPHY
* (not consulted in orifinsl)
```

Abolin, L. (1925). Beeinflussung des Fisohfarbwechsels durch Chemikalien. I. Infundin- und drenalinwiricuns auf die Nelano- und Xanthophoren der Elritze (Phoxinus laevis). Aroh. Mike. Inat. 104, 667-697.

Adrian E.D. \& Matthews, R. (2927). The aotion of light on the eye. I. The discharge of impulaes in the optic nerve and its relation to electric changes in the retins.
J. Fhysiol. 63, 378-414.
the eye. II. The processes involved in retinal excitation.
J. Physiol. 6\&, 279-301. - (1928 b). The action of light on
the eye. III. The interaction of retinal neurons. J. Thyaiol. 65, 273-298.

Akert, K. (1947). Demonstration tber die Tectalfunktion bein Raubfisch.

Helv. Physiol et Phamacol. Acta. 5, C27.
\qquad - (1949 a). Der vibuille Greffreflex.

Helv. Physiol. et. Phamamol. Aota. 7, 112-134.
\qquad - (1949 b). Experimenteller Beitrag betr. die zentrale

Netzhaut- Reprasentation in Tecturn Opticum.
Schveiz. Arch. Neurol. Psychiat. 64, 1-16.
Arduini, A. \& Pinneo, L.R. (1962 a). A method for the quantification of the tonic activity in the nervous system. Aroh. ital. Hiol. 100, 415-424.

- (1962 b). Properties of the retina
in response to steady illumination. Arch. ital. B1ol. 100, 425-448.

Arduini, A. de Pinneo, L. R. (1963 b). Pffects of iliaker and steedy illumination on the activity of the oat visuei bystem. Aroh. ital. Biol. 101, 508-529.

Attandi, D. . Se Sperry, R.W. (1960). Central routes taken by reenerating optic fibres. Physiolofist. 2, 12.
\qquad - (2963). Freferential selection of eentral
pathways by zegeneratinc optio fibres. Exp. Neurol. I, 46-64.

Berlow, u.W. (1962). Ethology of the Asian teleost Badis Badis.
I. Locomotion, maintainanoe, Akisregation and fright.

Trans. III. Aoad. Sci. 54, 175-188.
Bartelmoz. (1915). Mauthnor's oell and the nucleus motorius togmenti. J. comp. Neurol. 25, 87-128.

* Beadelot, M. $\overline{\text { * }}$. (1864). Reanerohes expérimentsles sur les fonotions de I'encépiale des poissons.

Ann, sci. nat. Zool. 1, 105-112.
Bellonoi, G. (1888). Hoer die Centrale Mdigung des Nervus opticus bei den Vertebraten.
Z. wiss. Zool. 47, 1-46.

Berkowitz, ․C. (1956). Functional properties of spinal pathrays in the oarp, Cyprinus carpio I.
J. comp. Neurol. 106, 269-289.

Bhargava, H.H. (2966). Ph.D. Thesis, University of Landon.
Blaxter, J.H.S. E. Jones, M.P. (2967). The development of the retina and retinomotor responses in the herring.
J. Mar. bíol. Ass. U.K. 47, 677-697.

Botsch, D. (1960). Dreasur-und Trenspositionsversuche bei. Karauschen nach partieller Bxtirpation des Tectum optioum.
Z. vergl. Physiol. 43, 173-230.

Bray, A.W.L. (1918). Renotions of melanophorea of Ameurus to light and to sdrenalin.

Proc. Nat. Noad. Sei. Wash. 4, 56-60.
Brawn, V.M. (2961). Ageresaive behaviour in the cod (Gadus callarias L.) Behaviour 18, 107-147.

Breder, C.M. \& Gresser, E.B. (1941 a) Correlations between structural defects and behaviour in mexican blind characin. Zoologioa, NY. 26, 121-131.

Breder,C.M. 2 liresser, B.B. (1941 b). Further studies on the licht semsitivity and behaviour of mexican blind characin. Zoologica, N.Y. 26, 289-296.

Breder, C.M.(Jnr.) \& H-1pern. (1946). Innate and acquired behaviour affecting the aggregetion of fishes. Fhygio. z o1. 12, 154-190.

Brett, (R. \& Ali, M.A. (195B). Sone observations on the structure and photomecimion reaponses of the Pacific salmon retina. J. Fish. Ree. Md. Canada. 15, 815-829.

Brickner, R.M. (1929). A description and interpretation of certain parts of the teleostean midbrain and thalamus.
J. Comp. Neurol. 47, 225-282.

Brooks, 3,A. (1966). Neuzophysiological correlates of brightness discrimination in the lateral geniculate nucleus of the squirrel monkey.

Mxp. Brain. Res. 2, 1-17.
Brunner, G. (1935). ther die Sehsohtrfe der Mritze bei verschiedenen Helligkeiten.

Z vergl. Ph siol. 21, 296-316.
Burr, H.S. (1928). The central nervous syster of Othasoxiscus mola J. comp. Heurol. 45, 33-127.

Buser, P. (1949a). Analyse de la réponse mésencéphalique à la stiruulation du nerf optique chez le poisson-ohat.
C.R. soc. biol. 143,817-819.

- (1949 b). Contribution à I'étude des potentiels lents centraux. Analyse de l'aotivité électrique du lobe optique de deux vértebres inférieurs. Arch. sci. physiol. 3, 471-488.
\qquad - (2950). Charactériatiques spatialea d'une réponse lente arntrale.
J. Physiol. Paria. 42, 557-559.

Buser, P. \& Dussardier, K. (1953). Oreanisation des projections de la rétine sur le lobe optique, étudiée chez quelques Tééeostéens.
J. Physiol. Paris, 45, 57-60.

Butcher, E.0. (1937 a). The structure and diasribution of the rods and cones in the eye of Fundulus heteroclitus. Bull. Mt. Desert. Isl. Biol. Lab. 18-19.

Butcher, E.0. (1937 b). Hods and cones in the retina of fundulus heteroolitus, and the recions of the retina related to the different ohromatophoric responsea.

Anat. Ree. 70,56.
\qquad - (1938). Structure of the retina of Fundulus heteroclitus and regions of the retine associated with different chromatic тевропеня.
J. $\exp .2001 .72,275-297$.

- (1939). The illunination of the eye necessary for different melanophorio responses of pundulus heteroolitus. Biol. Bull. Woods. Hole. 77, 258-67.

Butcher, E.O. \& Adelmann, H.3. (1937). The effects of covering and rotating the eye on the melanophoric responses in Fundulus heteroclitug.

Bull. Mt. Desert. Inl. Biol. Lab. 16-18.
Buytendijk, P.S.S. (1911). \#her die Parbe der Tarbulten nach Foxtirpation der Augen.

Biol. 2bl. 31, 593-596.

* CajaI Ramon, Y.S. (1909-21). Histologie du gys teme neuveux de I'homme et des vertebrés.
A. Maloine. París.
ten Cate, J. (1931). Beitrald zur Prange der Punktion der Corpora begemina bei den Haifischen. Mota brev. neerl. Physiol. 1, 97-98.
ten Cate, J. \& ten Cate, B. (1931). Recerche sulla funzione del tetto ottioo dei Selaci. Pubbl. staz, zool. Napoli. 11, 263-270. H.2.

Chauchard, A. \& Chauchard, B. (1927 a). Recherches sux les locelisations cérébralea ohez les poismons. Compt. renâ. 184, 696-698.
\qquad - (1927 b). Les Loaslisations cérébrales
motrices ohez les vertébres inferieurs. Comp. rend. 185, 667-669.

Charlton, H.H. (2933). The optic tectum and its related fibre tracts in the blind fishes Trogliohthys rosse and Typhlichthys eikenmanni.
J. comp. Neurol. 57, 285-325.

Claes, E. (1939). Contribution a I'étude physiologique de la fonction visuelle. I. Analyse oscillographique de l'activité spontanée et-sensorielle de l'aire visuelle corticale chez le chat non snesthégié.

```
- Arch. Int. Physiol. 48, 181-237
```

Clark, R.L. \& Soott, G.T. (1962). Influence of brain Lesjons on melanocyte dispersion.

Biol. Bull. 123, 491.
Gronly-Dilion, J.F., Sutherland, N.S. to Wolfe, J. (1966). Intraretinal trensfer of a learned visual shape discrimination in eoldrish after meotion and regeneration of the optic norve brachia. 1xp. Neurol. 22, 455-462.

* Crosby, E.C. \& Showers, M.J.C. (1964). Compazative anatomy of the preoptio ares and hypothalemus. In "Hypothalemusanatomical, functional and clinical espocts." Ede
W. Hrymaker and W. Nauta.

Denielson, R. $\%$ (1939). Contrast and melanophore response in fishes. Anat. Rec. 75, 61.

- (1941). The melanophore response of flishes in relation
\qquad ontrast in the visual field. Physiol. Zool. 14, 96-102.

Dextex, R.W. (2966). Six Fichard Owne's intexpretation of the optic lobes in blind fishes. Amer. Hatue 100, 271-272.

Dijkgracif, S. (1949). Loknlisationsvorauche am Pischgehim. Fxperientis. 5, 44-48.

Inger, P.B. (1957). The eleotroencephalogram of the codfish (Gadus osllarias). Spontaneous electrical activity and reaotions to photic and acoustic stimulation. Acta. Physiol. Scand. 32, 35-72.

Mgetrim, K. (2960). Cone types and oone arrangement in the retina of aome Cypcinide. Aota. Zool. 4I, 275-295.

- (1961). Cone types and cons arrangement in the retina. of some Gadids. Acta. Zool. 42, 227-243.
- (1963 a). Struoture, organization and ultrastructure of visual colls in the teleost family Labridae. Acta. Zool. 44, 1-41.
- (1963 b). Cone types and cone arrangements in teleost retinae. Acta. 2ool. 44, 279-243.

Fingstrym, K. \& Ahlbert. (2963). Cone type and arrangements in Matfish. Aote. Zool. 44, 42.

* Franz, V. (1912). BeitrHge zur Kenntnis des Mittellirns und Zwischenhirns der Knochenfischa. 1021. Neurobiol. 6, 402-441.

Franz, V. (1913). Sehorgan.
Lehrb.d.vergl.mikroskop.Anat.d.Wírbeltiere(Oppel) Teil 7.

Von Frisch, K. (2511 a). Beitridge zur physiologie dor Pigmentzellen in der Fischheut. Pflig. Arch. ges. Physiol. 138, 319-387.

- (1911 b). ther das Parietalorgan dex Fische als funktionierendes Organ.

Sitzber. Ces. Morphol. Physiol. Nünchen. 27. 16-18.
\qquad - (1925). Farbensinn der Pische und Duplizitatatheorie. Z. vergl. Physiol. 2, 393-452.

Frost, W.E. (2943). The natural history of the minnow, Phoxinus phoxinus L. J. Anim. Ncol. 12, 139-162.

Furshpen, Y. \&urkawa, T. (1962). Intracellular and extracellular responses of the seversl regions of Mauthner cell in Goldfish. J. Neurophysiol. 25, 732-771.

Furukawa, T., Fukami, Y. \& Asada, Y. (1963). A third type of inhibition in the Mauthner cells of goldfish. J. Meurophysiol. 26, 759-774.

Gaze, R.M. \& Jacobson, M. (1964). Types of single-unit visual responses from different depths in the optic tectum of the goldfish. J. Phyaiol. London. 162, 92P-93P.

Gaze, R.M., Jacobson, M. \& Sharra, S.C. (1967). Visual responses from goldfish brain following exoision and reimplantation of the optic tecturn. J. Physiol. London 283, 38P.

Geeraets, U.J. \& Ridgeway, D. (1964). Retinal damage from high intensity light.

Acta. Opthalmol. Suppl. 76, 59.
Von Gelei, G. (1942). Zur Prange der Dopplinnervation der Chromatohoren.
2. vergl. Piyaiol. 29, 532-540.

Giersberg, H. (1931). Der Farbweohsel der Fische. 2. vergl. Physiol. 13, 258-279.

Gilbert, P.W., Hodeson, E.S. \& Mathewson, R.F. (1964). Lecroencephalograms of sharke.

Soienoe 145, 949-951.
Giolli, R.A. (1965). A note on the chemicel mechenism of the NauteGygex technique.
J. Histochem. Gytochem. 13, 206-210.

Glees, F. A Nauta, W.J.H. (1955). A aritical review of atudies on axonal and terminal degeneration.

Mschr. Phychiat. Neurol. 122, 74-91.
Goldstein, K. (1905). Untersuchungen ther das Vorderhirn und Zwischenhirn einger Knochenfische (nebst einigen Beitragen Mittelhirn und Meinhim derselben). Arch. Mikr. Anat. 66, 135-219.

Graham, H.T. \& O'Leary, J.L. (1941). Fast central fibrea in fish. Propertios of Nauthner and Miller fibres of medullospinal system.
J. Neurophysiol. 4, 224-242.

Granit, R. (1955). "Receptors and sensory perception." Yale University Press. New Haven.

Gray, E.G. (1955). Ph.D. thesic, Tniversity of Walea.

- (1956). Abnornal colour responses of the minnow resulting from inhibition of movement.

Nature 177, 91.
. (1956). Control of the melanophores of the minnow, (Phoxinus phoximus).
J. exp , Biol. 33, 448-459.

Grove, D.J. (1967). Ph.D. thesis, University of London.
Guillery, R.W. Bhirra, B. \& Webster, K.E. (1961). Differential impregnation of degenerating nerve flbres in paraffin embedded meterial.

Stain Tech. 36, 1.
Hamond, P. (1968). Spectral properties of Dark - adapted retinal eanglion cella in the plaice (pleuronectes platessa $L_{\text {e }}$). J. Physiol. 195, 535-556

Haxden-Jones, F.R. (1956). The beheviour of minnows in relation to light intensity.
J. exp. Biol. 32, 271-281.

Healey, E.G. (1948). The colour change of the minnow, (Phoxinus Laevis) Bull. nim. Behav. 6, 5-15.

- (1951). The colour change of the minnow, (fnoximus laevis) 1. Effecta of apinal section between vertebrae 5 and 12 on the responses of the melanophores. J. exp. B101. 28, 297.
\qquad - (1954). The colour change of the minnow (Phoxinus leevis A..) 11. Iffects of spinal geotions between vertelscae 1 and 15 and of the anterior autonomic section on the responses of the melanophores.
J. exp. B101. 31, 473-490.
\qquad - (1957). The Hervous Syatem. In "the Physiology of Fiahes." Bd. M.P. Brown. icedemic Press. N.X.
\qquad - (1967). Exporimental evidence of regeneration of nexve fibres controlling colour changes arter anterios spinal section in the minnow (Phoxinus phoxinus L.). Proe. Roy. Soc. B. 168, 57-81.

Lealey, E.G. A Ross, D.M. (1966). The effects of drugs on the background colour xesponse of the minnow (Phoxirus phoxinus L.). Comp, Bioohem. Physiol. 22, 545-580.

Herrick, C.J. (1891). The commasures and hiatology of the teleost brain.

Anat. Anz. 6, 676-681.

- (1892). Contribution to the morphology of the brain of bony fishes. Part 2. Studies on the brain of some American fresh water fishes (cont.) e. Histoljgy of the diencephalon and mesencophalon. J. comp. Meurol. 2, 21~72.

Hoar, W.s. (1959). The evolution of migratory behaviour among Juvenile salmon of the genus Onoorhynchus. J. Fish. Res. Bt. Canada. 25, 391-428.

Hogben, L. \& Landgrebe, F. (1940). The pigmentary effector syatem. IX. Receptor fields of the Teleoatean visual response. Proe. Roy. Soc. B. 128, 317-342.

Holmes. O.W. (1943). Silver staining of nerve sxons in paraffin sections. Anst. Rec. 86, 157.

Holmgren, N. (2920). Zur Anatomie und Histologie des Vorder- und Zwischenhims der Knochenfische. Acta. Zool. 1, 137-315.

```
Horn, G. (1967). Neuronal mechanisme of habituation.
    Nature 215, 707-711.
    Horsch, L. (1936). Untersuchungen ther dio Grossiimfunkionen der
        Elritze (hoxinus laevis) und dea Grfindlings (Gobio
    fluviatilum).
    Zool. Jb. Abt. AllE. Zool. U. Physiol. 57. 57-98.
```

Jacobs, G. H . (1966). Reaponses of the Lateral Cenioulate Nucleus to
light increvent and deccoment and the encoding of brightness.
Vision Res. 6, 83-87.
Jroobson, M. \& Gaze, R.M. (1964). Typen of Visual response from
single units in the optic tectum and the optio nerve of
goldrish.
quart. J. Thxp. Physiol. 42, 199-209.
Jansen, J. (1929). Note on the optic tract in teleosts.
Proc. Kon. Akad. Wetensch te Amsterdan. 32, 1104.
Jeener, P.R. (1930). Evolution les centres diencéphaliques periven-
triculires des léléstomes.
Proo. Kon. Akad. Wetensch te Ameterdam. 33, 755-770.
Johnson; A.C., Mallabb, A.R. \& Rossiter, R.J. (1950.) Wellerian
degeneration.
Aroh. Neurol. Psychiat. 64, 105-121.
Kappers, C. V. Aribns. (1906). The structure of the teleostean and
selachian brain.
J. comp. Neucol. 16, 1.
Keppers, C.V. Ariens, Huber, G.C., \& Crosby, E.C. (1936).
"The comparative anatomy of the nervous system of vertebrates
including man."
Hafner Publishine Co. N. Y.

Karamian, A.I. (1949). Evolution or the functional relationships of the cerebellum and of the cerebral hemispheres. I. On the fonctional relations of the cerebellum and the anterior part of the brain of bony fishes.

Tiziol. Thus. S.S.S.R. Ko. 2, 167-181.
Karomian, A.L., Vessenlkin, N.P., Belekhova, M.G. \& Zagorulka, T. M. (1967). Kleotrophysiological chacacteristios of tectal and thalamooortical division of the visual system in lower vertebrates.
J. comp. Neurol. 127, 559-576.

Keenleyside, M.ll.A. (1955). Some aspects of shooling behaviour of fish. Behaviour. 8, 183-248.

Kirsche, W. \& Kirsche, E. (1961). Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius.
Z. Tikr. -anat. Forsch. 67, 140-182.

KItiver, H . (1944). On the naturally occuring porphyrins in the central nervous aystem.

Soience. 22.
Klüver, H. \& Barrera, E. (1953). A method for the combined staining of cells and fibres in the nerous system. J. Newrophath. Mox. Meur. 12, 400-3.

Konishi, J. (1960 e). Electric response of tie visuel centre in fish, espeoislly to coloured light flash. Jap. J. Physiol. 10, 13-27.
Kudo, K. (1923). Contributions to the knôledge of the brain of bony fishes.

Proc.Kon.Akad.V.Wetensch Arasterdan. 26, 65-78.
Kuffler, S.W. Fitzhugh, R. \& Barlow, H.B. (1957). Maintoined aotivity in the cat's retina in light and darkness. J. gen. Physiol. 40, 683-702.

LaBhley, K.S. (1922). Studies of cerebral function in learning. IV. Viosrious function after destruction of the visusl areas. Aver. J. Phyaiol. 52, 44-71.

- (1924). Studies of cerebral function in learning. V. The retention of motor habits after destruction of the so-called motor areas in primates. Arch. Neurol. Psychiat. 12, 249-276.
- (1926). Studies of cerebzal funotion in learning. VII. The relation between cerebral mass, learning, and retention. J. comp. Neurol. 42, 1-58.
- (1931). Mass action in cevebral function. Soience 73, 245-254.
- (1934). Learning III. Kervous meahanisms in learning. In C.A. Merchison (Bdt.) "A handbook of General and Experimental Paycholosy." Oxford.
- (1937). The meohanism of vision XIII. Cerebcal function in discrimination of brightness when detailed vision is controlled. J. comp. Neurol. 66, 471-482.

Lashley, K.S. (1939). The mechanism of vision XVI, The funcioning of small remnants of the visual cortex. J. comp. Neurol. 70, 45-67.

Leshissa, S. (1955). La atruttura mioroscopia a la citoarchitettonica del tetto ottico des pesci teleostei. Z. inat. Bhtwioklungseseschiohte. 118, 427-463.

Lister, J. (1858). On the cutaneous pismentary system of the frog. Phil. Irans. Boy. Soc. 148, 627-643.

Loeb, J. (1891). Hour den Anteil des Hornezven an den nach Gehirnverletzung auftrotenden Zwangsbewegungen, Zwangslagen und assozilerten Stellungsallnderungen dor Pulbi und Extremitaten. Pflitg. Aroh. Ees. Physiol. 50, 66-83.

Loeb, J. (1901). "Comparative physiology of the brain and comparative psyoholosy."

John Mazray. London.
Lowenstein. 0. (1932). Experimentelile Untersuchungen Uber der Gleiohgowiohtssinn der Blritze (Phoxinus leevis. L.). Z. vergl. Phyaiol. 17, 806-854.

Lubsen, J. (1921). Over de projectie van net retulies op bet tectum opticum by een beenvisch.

Neder1. Tyds.V. Geneesk. II, 1258-1262.
Lyell, A.I. (1956). Oocurrence of triple and quadruple cones in the retina of the minnow, (Phoximus laevis).

Nature 177, 1086-1087.

- (1957 a). The growth of the trout retina. Guart, J. micr. Sci. 22, 101-110.
- (2957 b). Cone arrangements in Teleost retinae. Quart. J. micr. Soi. 28, 189-201.

Maffei, L. \& Rizzolatti, G. (1967). Transfer properties of the laterel genioulate body. J. Neurophysiol, 30, 333-341.

Malyukina, G.A. (2962). "Toohniques for Investiggtion of Fish Phyaiology."

Acadery of Sciences of U.S.S.R. Published by Israel Program for Seientific Translations.

Mast, S.O. (1916). Changes in shade, colour and pattern in fishes, and their bearing on the problems of adaptation and behaviour, with apecial reference to the flounders, Parallchthys and Anoylopsetta.
Buin. U.S.Bur. Fisheries (Washington). 34, 173-238.

Moliwan, M.R. (1938). A comparison of tho retina of the momayrids with that of vaxious other teleostr. Aota. Zool. 12, 427-465.

Meader, R.G. (1934). Optic system in teleost Eolocentrus. I. Primaxy optic pathways and corpas geniculatum complex.
J. comp. Neurol. 60

Nills, S. . (1932 e). The double imnervation of fish melanophores. J. exp. Zool. 64, 231-244.

- (1932 b). The evidenco for the neurohunoral control of fish melanophores. J. exp. Zool. 64, 245-255.

Mobius, K. (1873). Schr. Naturw. Ver. Schl. Holst. $1,113$.
Morris, D. (1958). The reproductive behaviour of he ten-spined stiaklebsok. (Eygosteus pungitius L_{*}). Behaviour. Suppl. 6.

* Murisier, P. (1920-21). Le pigment mólanique de la truite (Salmo Lacustris L.) et le meoanisme de sa variation juantitative soub l'influence do la lumière. Rev. suisse Zool. 28, 45-97, 149-195, 243-299.

Muakens, L.J.J. (1930). Proeven op. den achtersten lengtbundel en verwante hersenstam-banen in Teleostiers, (Goudolsschen). Paychiat. neurol. bladen. Amstexdar. 44, 540-569.

Noback, C.R. \& Rellly, J.A. (1956). Nyelin aheath during dogeneration and regeneration. II. Histooheraistry.
J. comp. Neurol. 105, 333-353.

O'Connel1, C.P. (1963). The structure of the eye in Sardinops vaerlea,
 J. Noxph. 113, 287-329.

Ohta, T. (1959). Contributions to the neurobiological atudy of the structure and relations of the torus longitudinalis in teleost brains.

Okajimas Polia. Anat. Japan. 32, 45-61.
Osborn, C.M. (1939). The physiology of colour chnnges in flatrishes. J. exp. Zool. 81, 479-515.

Oshima, K. \&Gorbman, A. (1968). Nodificetion by sex homones of the apontaneous and evoked bulbar eleotrical sotivity in Goldfish. J. Endoox. 40, 409-420.

```
Parker, G.i. (1934). The pxolonged activity of momentarily
    stinulated nerves.
        Proc. Nat. Acad. Sci. U.S.A. 20, 306-310.
```

 - (1939). The eye in relation to chromatophoral oolour
 changes in animals.
 Soience 89, 411.
 \qquad - (1948). "Aninal colour chences and their neurohumoure." Cambridge University Preas.

Parker, G.ll., Brown, F.A. (Jnx.) \& Odiorne, J.M. (1935) The relation of the eyes to chromatophoral aotivites. Proc. Amer. Acad. Arts. Sci. 69, 439-462.

Parker, G.H. \& Rosenblueth, A. (1942). The elotrical atimulation of the concentrating (adxenergic) and disperadng (cholinergio) nerve-fibres of the melanophores in the catfish. Proc.Mat. Soi. Wash. 27, 198-294.

Pelckwans, A.J.M. (1964). The influence of fixation upon staining aocording to Kiltver and Barrera. Note, Histochen. 22, 329-336.

Pearson, A.A. (1936). The acustico-lateral centres and the cerebellum, with fibre connections, of fishes.
J. comp. Neurol. G.C. Huber Memorial Vol., 201-294.

* Polimanti, 0. (1911). Contributi alla fisiologia del siateme nervoso centrale e del movimento dei pesci. I Selacoidei. Zool. Jahrb. Abt. allgem. Zool. Physiol. 30, 473-716.
\qquad - (1912 a). II. Batoidel.. Ibid. 32, 311-366.
\qquad - (1912 b). III. Teleostei. Ibid. 32, 367-584.
\qquad - (1912 c). Kinfluss der Augen und der Bodenbeschaffenheit auf die Parbe der Pleuronectiden. Biol. Zal. 32, 296-307.

Pouchet, G.(1872). Du role des nerfs dans les changements de coloration des poissons.
J. Anst. Physiol. E, 71-74.
.(2876). Des changements de coloration sous 2'influence
des nerfs.
J. Anat. Physiol. 12, 1-90, 113-165.

Prosser, C.L. (1965). Rlectrical responses of fish optic tectum to visual stimulation; modification by cooling and conditioning. Z. vergl. Physiol. 50, 102-118.

Pye, J.D. (1964). Nervous control of chromatophores in teleost fishes. I. Blectrioal stimulation of the minnow, (Phoxinus phoxinus). J. exp. Riol. 42, 525-534.

- (1964 b). Nervous control of chromatopuore in teleast fishes. II. The influenoe of certain drugs in the minnow, (hoxinus phoxinus.)
J. exp. Biol. 41, 535-541.
\qquad - (1964 c). Nervous control of chromatophores in teleost fishes. III. Local temperature responses in the minnow, (Phoxinus phoximus).
J. axp. Biol. 41, 543-551.

Reisinger, L. (1915). Die zentrale Lookalisation des dleichgewichtssimes der Fische. Biol. Z61. 35, 472-275.

Retzlaff, 8. (1957). A mechanism for excitation and inhibition of Mauthner's cells in teleost: A histological and neurophysiological study.
J. comp. Nourol. 107, 209-225.

Retzlaff, E., \& Fontaine, J. (1960). Reoiprooal inhibition as indicated by differential staining reaction. Soience 132, 104-105.

Rizzo, C. (1929). Perite dell'encefalo e disturbi di moto nei teleortei. Boll. soc. ital. biol. sper. 4, 1055-1058.
\qquad - (1932). Sopro i disturbi di moto nei teleostel encefalolesi. Axoh. fisiol. 31, 395-426.

Rizzolo, A. (2929). A study of equilibrium in the smooth dogfish, (Galous conis) after removel of different parts of the brain.

Biol. Buil. 57, 245-249.
Rodgexs, W.L., Melzack, R. \& Segal, J.R. (1963). Tail-illip response in the goldfish.
J. comp. physiol. Psychol. 56, 915-923.

Russell, F.M. (1967 a). Changea in the behaviour of Lebistes reticulatus upon repeated shadow stimulus. Anim. Behav. 25, 574-585.

Fussell, E.M. (1967 b). The effects of experience of surroundings on the reaponse of Lebister reticulatus to strange object. Anim. Behav. 15, 586-594.

Selthouse, T. . (1964), Luxol fast blue aa a myelin stain. Stain Tech. 32, 123.

Sand, A. (1935). The omparative physlology of colour response in reptilea and fishem.
$3101 . \mathrm{Kev} .10,361-382$.
Sanders, F.K. (1940). Second-order olfaotory and visual learning in the optic tectum of the goldfish.
J. exp. Biol. 17, 416-433.

Schade, J.P. \& Weiler, I.J. (1959). Electroencephalographic patterns of the goldfish. (Carassius auratus. L.).
J. exp. Biol. 36, 435-452.

Schade, J.P. (1962). Rlectrieal patterns to photic stimulation in the midbrain of fish.

Axch. neerl. Zool. 14, 604-605.
Scharrer, \mathbb{E}. (1928). Die Lichtempfindlichkeit blindex Mritzen. (Undersuchungen ther das Zwischenhirn der Fische.)
Z. verel. Fhysiol. 7, 1-38.

Sohnitzlein, H.N. (1959). The habenula and dorsal thalamus of some teleasts. J . ll .
J. comp. Feurol. 118, 225-268.
\qquad - (1964). Correlation of habit and atructure in the fish brain.

As. Zoologiat. 4, 2l-32.
Schwassman, H.O. \& Kruger, L. (1965). Organisation of the visual projection upon the optio tectum (mesencephalon) of some freshwater fish.
J. comp. Neurol. 124, 213-126.

Sears, R.R. (1934). Hffects of optic lobe ablation on the visuo-motor behaviour of the goldfish.
J. comp. Psychol. 27, 233-265.

Shafer, 0. (2964). Sensitivity to the apectrum and absolute threshold of colour change of the blinded minnow, (Phoxinus phoxinus). Biol. 2bl. 奛, 47-66.

Sokolov, 1.I. (1960). Mewronal models and the oxienting roflex. In "phe central norvous ayater and behavioux"
B. M,A.B. Brazies. Jobiah Necy Jw. Poundetion, in.

Sperry, R.W. (1948). Patterning of central symapses in regeneration of the optic nerve in teleosts. Physiol. Zobl. 21, 351-361. - (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion.
J. oomp. physiol. Psychol. 43, 482-489.
\qquad - (1967). Fabryogenesis and behavioural nerve nets. In "Organozeneais", edited by R. De liam and H. Uraprung. Holt, Risehart, \& Winston.

Steiner, M.J. (1888). "Die Funotionen dos Centralnervensysters und thre Phyloкenese." Part 2 Vieweg, Braunschweig.

StrPer, W.F.H. (1940). Des optische Syatem beim Wassermolch (sriturus taenlatus)

Acts, neerl. Morph. 2, 178-195.
Sumer, P.B. (1911). The adjustment of flatfishes to various backgrounds: A study of adaptive colour change. J. \exp. Zool. 20, 409. - (1933). The differing effects of different perts of the visual field upon the chromatophore responses of fishes. Biol. Bull 65, 266-282.

Sumer, F.B. \& Keys, A.B. (1929). The offects of differences in the apparent source of illumination upon the shade assumed by flatrish on a given background. Physiol. Zool. 2, 495-504.

Tamuxa, T. \& Wisby, W.S. (1963). The Visual sense of pelagic fiahes especially the visual axis and accomodation. Bull.mar. Sel. Gull. Caribb. 13, 433-438.

Tandon, K.K. \& Scharma, S.C. (1963). Gyto-architecture of the optic tectun of four oyprinoid fishes. Res. Bull. Panjab. Univ. Sci. 24,219-126.

Thorpe, W.H. (1963). "Learning and Instinct in Animale." Methuen and Co., London.

Traube~Mengarini, M. (1884). Expeximentelle Beitrlage zur Mhysiologie des Fischgehirns.

Arch. Anat. Physiol. Abt. Physiol. 553-565.

Tuge, H. (1934 a). Studies on cerebellar fmetion in the teleost. I. Reactions resulting from cerebellar ablation.
J. comp. Neurol. 60, 201-224.
\qquad - (2934 b). Studies on cerebellar function in the teleost. 1I. Is there a oerebello-teotal path? Marchi method. J. comp. Neurol. 60, 225-236.

DeValois, R.L., Jacobe, G.H. K Jones, A.E. (1962). Rfeets of inorement and decrement of light on neural disoharge rate. Science N. Y. 136, 986-988.

* Verrier, K.L. (192B). Recherche日 sur les yeux et la vision des poissona. Bull. biol. France. Belg. Suppl. 21.

Vilter, V. (1939). Mrolution des bendes sombres provoquees par la seotion de neris pigmentomoteurs chez les teleosteens. Intervention de la ciroulation en tant que vecteur des hormones pigmentomotrices.
C. R. Soc. B1ol. Paris, 130, 391-393.
\qquad - (1941). Polarisation dorso-ventrale de la livree pigmentaire, sa physiologie et ses origines.

Bull. Mus. Hist. nat. Marseille. 1, 157-187, 259-271.
Vulpian, A. (1866). "Leoons sur la physiologie generale ot comparee du systeme nerveux."

Germer-Bailliere. Paris.
Wallington, R.A. (1965) * Explosive properties of amoniacel-silver golutions. J. med. Lab. Tech. 22, 220-223.

Walls, G.L. (1942). "The vertebrate eve and its adaptive radiation." Cranbrook Institute of Seience. Bull. No.19.

Waring, H. (1942). The comordination of vertebrate melenophore responses. Bio. Rev. 17, 120-150.
-. (1963). "Colour chanze meohaniams of cold-blooded vertebretes." Academic press. London.

Wilson, D.M. (1959). Punction of giant Mauthner's neurons in the lungfish. Soiance, 122, 841-842.

Woodhead, P.M.J. (1956). The behaviour of mimows (Phoxinus phoxinus. L.) in a light gradient.
J. exp. Biol. 32, 257-270.

Wunder, W. (1925). Fhysiologisohe und vergleichend-anatomische Untersuohungen an dor Knochenfischnetzhaut.
Z. vexgl. Fhysiol. 2, 1-61.

- (1926). Die bedeutunc des Adaptationszuatandes fill das Verhalten der Sehelemente und des Plementes in der lletzhaut: von Knoohenfischen.
Z. verg1. Physiol. 2, 1-61.
- (2930). Bau und Funcktion $11 x$ Netzhaut beim Zamder (Luoioperca sandra) und einisen anderen im Balatonsee hiluef.con Fiacharten.
Z. verg1. Physiol. 11, 749-766.

Young, J.Z. (1933). The proparation of isotonic solutions for use in experiments with fish. Publ. Stag. Zool. Napoli, 12, 1-7.

- (1942). The functional repair of nervous tissue. Physiol. Rev. 22, 318-374.
\qquad - (1962). "The life of Vertebrates." - (1963). Some essentials of noural memory centres. Paired centres that regulate and address the oignals of the results of aetion.

Hature. Lond. 198, 626-628.
\qquad - (1965). The organization of a memory system. Proc, Roy1 Soc. 3. 163, 285-320.
\qquad - (1966). Memory mechanisin of the brain. 278-290.

In: "Pattern recountion: theory, experiment, computor gifmulations, and dynsmic models of form perception and discovery."

Leonard Uhr. John Wiley and Sons Inc., N.Y.
Zangwill, 0.L. (1961). Lashley's concept of cerebral masa action. Int "Current problems in animal behaviour". Fdt. Thoxpe, W.H. \& Zangwill, 0.L. Cembridge University Press.

AMENDMENTS

1. Rublications onitted from the bibliography.

> Furvikewa, I. \& Fursehpan, Y. (1063). Two inhibitory mechanisme in the Meuthner neuron of goldeish. J. Neurophysiol. 26 . $1: / 0-17$.

Konishi, J. (1960 b). Rlectrie reaponse of the visual centre to optic norve stimmiation in Ptah. Jap. J. Fhysiol. 10, 28m42.
2. The publication by Hamond (1968) doos not appear in the text and is a recent study on the spectral properties of dorismedapted rotinal ganglion cells in the plaice, Rleuwanoctige nlatesse L . by meane of recordings from the optic teetume

[^0]: Transverse sections of the optic tectum to show the arrangement of the cells and ifibres.

 A stained with C. . .V. to show the cells;
 B stained with unsupressed Nauta to show the Sibres. Both were out at 8μ.

 1. Stratum fibrosum marginale
 2. Stratur plexiforme ot fibrosum oxternum
 3. Stratum griseum externum
 4. Stratum plexiforme internum
 5. Stratum griseum internum
 6. Stratum fibrosum profundum
 7. Stratum griseum periventriculare.
