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Abstract,

After introducing basic notation and results
in chapter one, we begin studying the model
theory of the Peano axioms, P, propér in the
second chapter where we give a proof of Rabin's
theorem t= that P 1s not axiomatizable by any
consistent set of 3, sentences for any n € w,
and also answer a question of Gaifman raised in
[7] p. 141,

Another problem, from the same article, is
partially answered in chapter three, where we show
every countable non-standard model, M, 'of P has
an elementary equivalent end extension solving a
Diophantine equation with coefficients in N,
that was not solvable in M.

In chapter four we investigate substructures
of countable non-standard models of P, and show
that every such. model M, contains 2”6 substructures
all isomorphic to M. Other related results are
also proved.

. Chapter five contains theorems on indescern-
ibles and omitting certain types in models of P.

Chapter six 1is concerned with the <following
problem : 'If MjP, the set $(M), of eclementary
substructures of M, 1is 1lattice ordered by inclusion.
Which lattices are of the form $(M) for some MFP?'.
We show that the' pentagon 1lattice 1is of this
form (answering a question suggested in [7] p. 280)
and produce a class of non-modular lattices all

of whose members are not of the form $(M) for
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any M = N, the standard model of P.
Elementary cofinzl extensions .of models of
P are also investigated in this chapter.
Finally, chapter seven concludes the thesis
by posing some open problems suggested Dby the

preceding  text,



(L)

Acknowliedgements.

Thanks are due to the Science Research
Council for financiel support over the past three
years,. I am also greatly indebted to my 'supervisor,
Dr. W. A. Hodges, for the constant help and
encouragement he has given me throughout my

research.



(5)

Contents.
AbStI'aCt....--oo-o.....oo.----.-....-o-....oo-..o(Q)
ACKIIOWledgGmentS-...oo---c.--.......-----...-..oo(“—)

Chapter 1. 1Introduction and NotatioD.sesesesee.(6)

Chapter 2. P and Related SystemS.esesssceces(9)

Chapter 3. Diophantine Xguations over

Nlodels- Of P.....Q..I..I'.'..'.C....l'......l...(zo)

Chapter L. Substructures of Models of P....(27)

Chapter 5, Further Applications of the

nethod....'.'....'...l......'.lI......I'II.......(L"6)

Chapter 6, On the Lattice of Elementary

‘substructures of Models of P.................(51)

Chapter 7. Some Open ProblemS..eessceccsccssss(86)

References....'l‘...I.l'.l...'...l....'....‘.'...(SB)



(6)

Chapter One Introduction and Notation,

1.1 Introduction,
There are structures which cannot be dist-

inguished from the natural nunber system by
first order logical properties of addition and
multiplication, but which are otherwise very
different. Such structures\ are Kknown as non-
standard models  of arithmetic and are the objects
of investigation in this thesis.

All first order statements true of the
natural numbers that we shall need 1in proving
results about these models can in fact be deduced
from a suitable first order formulation of the
well-known Peano axioms, P, ([11]) and hence to

obtain more generality we shall for the most
part only assume our models satisfy these axioms.

In chapter two we state the Pecano axioms
and use model theoretic methods to investigate
various equivalent and non-equivalent versions of
them.

Chapter three’ deals Withi the solvability
of cértaih Diophantine equations with cocfficients

possibly in & non-standard model rather than jgst
in N, thé natural‘_number system, While chapters
four and five develop further the model theory .
of P. _ 7

In chapter six we regard a model of ari@h—
metic merély as a universal algebra and investigate
the péséiﬁle arrangements of elementary_ substructures

and extensions of 1it. Finally, in chapter seven
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we make some concluding remarks and suggest
some open problems connected with the preceding

work,

1.2 Notation

e shall assume familiarity with general
mathematical logic and model theory throughout (as
developed in e.g. [1]). In particular we shall
use the following logical symbols :

A - 'and' ;V - 'or' ; © - 'implies' ; — - 'not'
3 - '"there exists' 3 3! - 'there exists a unique' ;
VY- '"for all' .

Other symbols used are :

- - '"(proof theoretically) entails' ; F - 'is

a model of' ; c - 'is a substructure of' or 'is
a subset of', depending on the context ; ~ - 'is
isomorphic to' 3 = - 'is elementarily equivalent to'

£ - 'is an elementary substructure of' ; N - inter-

section (of sets) ;3 U - union (of sets).

If M is an L-structure for some first
order language L, Th(M) denotes the set of all
sentences of L trﬁe in M.. | |

The vectbr symbol ® will denote a sequence
'xo,x;,... of arbitrary finite 1ehgth unless we
specificall& .mention the lehgth. N |

Structures will usually bé identified with
their domains where no confusion can arise. Thus
if M is a structure we write a e M for a is
an element of the domain of ¥, and :ﬁ for the
cardinality of the domain of M, ete, Also, 1if

8greeer8y , € M and ¢(xo,...,xn_1) is a formula
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of L(M), the language of M, with the variables

XgreeesX, , free, we write MF:¢oﬂo’f';’an~1)’ where
we should properly write Mk:¢(xo,...,xn_1)[ao,...,an_1].

Finally, «w will =always denote the set of
natural numbers - i.e., the first transfiﬁite ordinal,
and m, n will The reserved for representing elements
of w.

Other notations and conventions will be
introduced in the sequel as we need then,

As we have already mentioned, we shall re-
gquire some theorems, known to be true 1in N, to
be provable from P. Such proofs of most of the
theorems we need will usually be very casy ;
although there are two exceptions.

' The firast is Matijasevib's theorem (3.1.1.);
and that the usual proof [9], can be converted
to one from P has been checked by A. Pridor ([7]
footnote p. 133). '

The second is some form of an enumeration
theorem (e.g. 3.2.4.) of 3, predicates (see def,
2.3.2.). Since wusual proofs in Th(N) of such
theorems only require a certain elementary coding
defined 'by inducfion, they need only a 1little
extra formalism to be rigorous proofs from P,

and we leave “the details to the reader.
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Chapter 2., P and reclated systems.

2.1. The Peano axioma and their basic model theory.

ILet L be the first-order predicate Ilanguage
having as non-logical symbols two 2-place function
symbols, + (addition) and -+ (multiplication); and one
1-place function symbol, ' (successor); and one
O-place function symbol O (zero).

This thesis 1is concerncd with the model
theory of the following axiom system, denoted by
P, formulated in L :

P.1 (Wx)(x' £ 0),
P.2 (Vx)(VWy)(x' =y'= x =y),
P.3 (i) (¥x)(x + 0 = x),
(11) (x)(Wy)(x + y' = (x + ¥)'),s
P.b (i) (¥x)(x-0 = 0),
(i1) (vx)(Vy)(x'y' = x-¥y + x),
PS5, ((200) A (¥9)(2(3) 2 9(3'))) = (W)¢(¥)),
where ¢(y) is any formula of L having just the
variable y free,

This. chapter 1s concerned with various
equivalent and non-equivelent reformulations of
these exioms, We first, howéver, introducc some
basic wéll-known facﬁs about the model theory of 'P,

‘N will denétg the standard modsl of P,

i.¢. the Lestructurc »<w, +s *y ', O>, wherc the
operations mentioned arc just fhe ordinary  addition,
multiplication and successor functions on the set
of natural numbers, w. -

Any model, M, of P, not isomorphic to N

will be e=zlled iwn-standérd.
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If Ml=P, a subset A of M will be called

definable (in_M) if there is a formula ¢(x) in

L, with Jjust x free, s. th.
a e A ifr M (2).
An element a, of M, will %be called definable
if f{a} is definable (in M), and M is pointwise-
definable 1if a is definable for all a € M.

A subset A of M is an initial segment of

M if ae A, be M and Ml=b<a = b ¢ A, where (x<y)
is the formula in L defined by

| X<y iff (F3z)(x + = =‘y).

ile further define:

X<y iff XSyAX £ Y

It is ecasy to show that if M|E=P, there
is a unique embedding e:N-¥M s. th. e[N] is an
initial segment of M; and we always identifyf N

(or w ) with this initial segment, and call any

glement of M-N ndh-standard or infinite.

The following results are ecasily proved.<

Theorem 2.1,1.

(i) If M =M' and M and M' are pointwise-
definable models of P, then M = M',

(i1) if M|=P, therc is an MN'<Y s, th. N'
is pointwise- definable, and (by (i)) M' is unique

with these properties.

The reason #for our current interest in
pointwise definable models is to prove a syntactic

result about P, namely

Theorem 2.1.2s (Friedman).

Let P' consist of the axioms P.1, P.2,- P.3,
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P.4 and for cach formula ¢(R,y) of L having Just
the variables R, y free,
PS5y WR)((¢(X,0) A 0y)(¢(R,5) = ¢(2.99)) = (W)4(2,5)).
Then P and P' are deductively equivalent,
Proof.

Clearly P'[~P.

Suppose M}”P. It is sufficient to show Ml:P'.
Using thm. 2.1.1., let M'=<XM where M' 1is pointwise
definable. |

Let ¢(R;y) be any formula of L having just
the variables R, y free. It is sufficient to show

M’[::P.5¢.
Suppose @ c M'. Say d = <apse..sqy_y>.
Choose fmls. ¢O(y),...,¢nr1(y) of L s. th.
M =gy () A (G y)e (v) 0 <1i<n-,

which 1is possible since M' 1is pointwise definable.

Let y¥(z) be the formila;

n-1
(35’0,-",5711_1)(‘1-20 ¢L(yi,)/\¢(§9z))-
Then since M'<M[EP we have MN'[FP. 57’[,, from

which it follows that
M'E(¢(3,0) A (V) (¢(2,5) = ¢(2,5")) = V5)e(Z,y)).

But & was an arbitrary n-tuple from M'.

Hence M'|==P.5¢ as required.
o

Perhaps the most well-known variant of P
are the well-ordering axioms, W.0.. It is easy"
to show that P can prove the formula (x < y)
defines a total ordering, but W.O0. gtates .it. is,
in a certain sence, a well-ordering. Morc precisely
the axioms of W.0. are:
P.1, P.2, P.3, P.bh, together with
Woy = ((@y)8(y) = (@) (¢(y) A (V2)(z < v —2~8(2)))),



where ¢{(y) 1is any formula
variable y frec,
It is easy +to show :

Theorem 2,743,

P}-W.o0.

However, we have :

Theorem 2.1,L4,

.0, |4 P,

Proof.

Consider the Lestructure <o® , ORIOF @, 8> =
where O, O (D are just ordinal addition,

cation and successor respectively,

the ordinal ww .

That Ml’-W.O. is clear.

ition is not

Wx)Wy)(x + ¥y = § + x)
The

conmmutative,
can

theorem now followse.

The proof of theorem

simple sentence of L which 1is

not in W.0., and thus ons

is very wmuch weaker than P,

The gap between P and

easily be bridged.

Let @ dencte the

(Vx)(x £ 0 = (Ey)(y' = x)).

Then 1t 1is easy to

Theorem  2.1.5.

of L having

However,

whereas the:

easily Dbe

214
provable
-might think that

(Robinson)

verify
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Just the

multipl-

restricted to

ordinal
sentence
proved in P.
o
exhibits a very
in P Dbut
We O

however, can

sentence 3

P and W.0. U {Q} are deductively equivalent,

.M’

add—
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We can now define W.O0.' in an analagous
way to P' and we leave the reader to check that

W.0.' U {Q} and W.0. U {Q} are deductively equivalent.

2.2 OQOverspill.

The well-ordering axioms imply a very import-
ant model-theoretic result which we shall be using
throughout this and the following two chapters.

It 1is the so—célled overspill lemma, and has many

forms, the most easily stated of which 1is

Theorem  2,2.1. (Robinson).

Suppose M 1is a non-standard model of P,
¢(R,y) any formula of L, and T c M. Suppose further
that for all infinitc b e M, ME(3x)(x < b A ¢(,x)).
Then MlE¢(2,n) for some n € w.

Proof..

Since ME#.0.',; there must be some <-least
element, n of M s, th. MpE¢(Z,n) and such an .n
cannot be infinite by the theorem hypothesis,

n]

There are other variations of 2.2.1. that
we  shall use 1in the sequel and we shall Jjust
refer to them as 'overspill', The most common
will be- 'if MpE(Vx)(3 y)¢(x,y), so that we may
write g(x) =y for ¢(x,y), and if g takes only
finite values for finite arguements, and takes
arbitrary large finite values, then g takes arb;
itrary small infinite values for arbitrary small
infinite arguements,'

This can be proved easily using 2.2.1., and
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we leave the details to the reader.

I -

2,3 Finite axiomctizability,

In [1&] R ¥1¥Nardzewski proves that if S is
any finite consistent set of sentences of L, then
Sk/P. Rabin, in [13], proves a more gecneral result,
but we nesed some definitions before we can state

it.

Def. 2.3.1.

The set B, of bounded formulag of L, is
the smallest set s, th. :

(i) Every atomic formula of L is in B.

(i1) If ¢, ¥ € B, then so are ¢AY, —¢,
and ¢V .

(iii) If ¢ € B, then (¥vx)(x <y —=¢) € B and
(3x)(x < yAa¢p) e B, where x, y do not occur bound

in ¢.

e write (Yx<y)¢ and (3x<y)p for (Vx)(x<y-¢)

and (3x)(x<y~ ¢) respectively, from now on.

Def. 20 3. 2.
The sets :3p, IIp of formulac of L are def-
ined by induction‘ on ne w

(1) 3 =1, = B.

(ii) 2p,4 = ()¢ ¢ ¢ eIy, no member of X
bound in ¢}.
M4 = {(WR)¢ : ¢ e Sns no meuber of X

bound in ¢}.

The following theorem 1is well-known,
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Theorem 2.3.3.

If n>1 and ¢, Y e 3, (O,)s, there are
formulae Yys Yas VYss VYas Ys€ 3y (In), and g € Iy
(2,) s. th. : |

(1) Pl & (§1y),

(i1) Plyz e (gvy),

(ii1) Plys & (3x)¢ (Pl ys e (x)¢),

(iv) Pl ya © (Ix<y)g,

(v) Plys & Wxy)g,

(vi) P| yee o,

where neither x nor y occur bound in ¢ .

Now Rabin's theorem asserts that if n e w
and S8 1s any consistent set of sentences s. th.
S ¢ 2p, then SffP. ffe give here another proof of
Rabin's theorem while answering, en route, a prob-
lem raised by Gaifman in [7]. Gaifman asked whether
a certain semantic property of L-structures forced
them to be models of P. We make this more precise

NOoOW,

Def, 2.3.4.

Let T be any extension of P in L. A fml.
$(X,y) is said to be T-functional if

(1) TRER)(Ey)eR,5), |
and n-T-functional 1if we also have :

(ii)n 3W(R,¥) € 3n s. th., THORy)(WE,y)ed(X,y)).

Def. 2-5.50 -

Let MFP and M' c M. We say that

(i) M' is np-functionally closed in M if

whenever  ¢(X,y) is n~Th(M)-functional, @ c M' and
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ME ¢(2,0) for b e M, then be M',

and (ii) M'sS.M if V¥V ¢(R) € 3,, V3 c M',
MEg(2) iff M'E¢(R).

Now Gaifman's problem is this : "Is there
an n e w, s. th. whenever MEP and M' is an n-
functimnally7 closed 1initial segment of M, then
MR, |

We prove the following :

Theorem 2. 3%.6.

Let M be a non-standard model of P and
ne wo. Then there 1is an initial segment, I, of
M s. th.

(1) I<£L,M.

(1i) I is n+l-functionally closed in M.

(iii) 1k#P.

Proof,
et b be an infinite element of M. The
domain of I is the set f{a e M : ME(3y)(4(b,¥y) A
AY 2 2a), for some n+1=Th(M)-functional <formula,
#(x,y)s of L with just x, y free. }.

+s °*y and ' are defined on I as those
functions induced by K. Clearly I is an initial
segment of M., To show I 1is n4i-functionally closed
in M, suppose 37 = <a0,.;.,am_1> c I, ¢(R,y) 1is any
n+1;Th(M)-function51 formila, and that MES(Z,c)
where c € M. | | |
| | We must show c € i. ‘

Noﬁ by def., of I, there are n+1-Th(M)—funr
ctional wb(gi¥),.;;, wi;1(x,y) s. th.

ME L, G W (e,)Aay 2 a).
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e define y¥(x,y) s. th.
" y(x,y) iff y = .max. {s : ¢(B,8) } ".
t, <z;
s.th. ¥y (%,2 )
O0<1i<m1.
More precisely ¢ 1is defined by @

m-=1
y(x,y) iff (EIzO, ceesZp )(i/__.\oy»,, (%52, YA (Vtogzo). .o

@t 52, 1)(38)(p(t,8)Ay > 8) A (3t g2g)eee (F8] 152, )
(Is")(p(2',8")A s’ =y)).
That y(x,y) satisfies (i) of def. 2.3.L.

is easily checked when T = Th(M), and 2.3.L.L.(ii)n+,l

follows from theorem 2.3.3. Hence ¥(x,y) is n+l-
Th(#)-functional.
So for some de I, ME$F(b.d).
Alse by thoe dof. of %, Mk=d 2 Cc.
-~ Therefore c € 1 as required, by the def,
of TI.
We now show I=SnM.
We prove- by induction on m, that if O <nm
and m € n, then
(#)eveee $(R) € Zn, B I = (ME$(E) = IF#(@)).
For m = 0, (*) follows from the fact that
I is an initial segment of M and classical
preservation theorems (see e.g. [3]).
Suppose (*) is true for some m < n, ¢'(X)
2cI and ME¢'(3). 7
We must show IF$'(3).

€ 2n40
Now ¢'(®) can be supposed to be of the

form (3y)¢(X,y), where ¢(3{’,y) ¢ O,, by using some

standard 2o coding :bf fim‘.te ‘sequences (see e.g.

[7]- for détails),- and erﬁploying theorem 2.3.3.
Define z//(i’,y‘). by 3
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W(i’y) @df‘ ((:’3 Z)¢(X32) /\¢(va) A(Vt<y)"‘¢(x9t)) v

v ((3z2)¢(2,2)A ¥y = 0).
Again it is easy to check that y(R,y) is

an m+2-Th(k)-functional formula.

But m+2 < n+l, and so Mpy(@,c) = ce I,
since 1 1s n+i-functionally <closed in M and 2 c I.
Also, MEW=)((3y)e(2,y) = @) (Y(R,7)A ¢(2,¥))),
from the def. of~bw; and M= (3y)¢(2,y), by suppos-
ition. Hence Ic € I s. th. ME ¢(2,c).

But ¢ € I, 80, by the inductive hypothesis,
Ik¢(2,c). Therefore Ik (3y)e(Z,y); i.e. Ifp'(B),
as required.

Now to prove IKP.

Let S(x,y,z) be a formula of L s. th.

Y ¢(y,2) € 5, mew s th P}-Cdy,z)(S(m,y,z)é9¢(y,z)).

(See chapter one for details about the existencer
of such an 8).

Now - suppose I|=P. |

Then I claim that, for all infinite c € I,

(*#*)..... Ik (¥x)(3y<c)(3z)(S(ysb,2) A z2x A(VE)(S(y,b,t) >

-t =2z)). |

For let ¢ be an infinite element of I,
and X, € I. ‘ ‘ ,

Then there is an n+1-Th(M)-functional ¥(x,y)
and d e M s. th, MEy(b,d) Ad>x,. In fact d e I,
cleérly. “ .

Also there is a X(x;y) € 3,, &nd me w s.th.

Mp=(Vx,y) (¥(x,5) e x(x,5)),
and Mﬂ&Vx,y)(S(m,x,y)G%,x(x,y)). , ..,.,(1)
- It follows that ¢
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MES(m,b,d) A @255 A (Y1) (8(m,b,t) 0t = d)eveeea..(2).
Now from (1), we can find x*(u,x,y) € I, s.th.
Pl (vx,y)(S(m,%x,5,) © (Fu)x*(usX,5)) eeveesea(3).
Define 6(x,y) by :
o(x,y) & 4¢. (3u,3)(z = 2%3% A x*(u,%,5)) A(OReycs)
(2% <z =y (0,x,5)). |
Then 6(x,y) is n+1-Th(M)-functional, and, by
the similar property of x, _it follows that there
is some e e I s. th. Mk:@(b,Zejd).
Thus MfE x#(e,b,d), by the def, of 6.
But x* € In, vancl I=<,M; so IEx*(e,b,d).
Hence If (3u)x*(u,b,d).
Therefors by (3), IES(m,b,d) since IfEP,
Hence ¢ from (2) and the fact that I=_,M,
IEd 2 %0, and IE(Vt)(S(m,b,t) = t = d).
Also, since ¢ 1is infinite and © € w, IF=m<¢.
Putting all this together, and observing  that
Xo Wwas any member of I gives (*#).
Now, by overspill, (*+%) must hold for some
finite ¢, and this 1is clearly impossible because
it implies I has :a <~-largest element,‘ whereas I,
being a model of P, cannot have, Hence I[P,
' o
We\ now have the following immediate consequ-
ences of theorem 2.3.6,

Corollary 2.3.7;A

Gaifman's problem (on p.16) has a negative
answer.

Corollary 2.3.8.

If T is any consistent set of 32, aentences,

then THP.
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Chapter 3 Dicphantine Eguations over Models of P,

and Related Topics,

3.1 Introduction to the problem,

In [12] Rabin shows that if M is any non-

standard model of P, there 1is a diophantine equation,

with coefficients in M, which is unsolvable 1in M,

but solvable in some extension, M', of M so that
M' = M. In the 1light of Matijasecvic's thecrem ([9])
however, (which was not known when Rabin proved
his theorem), Rabin's fesult is rather easily

proved using the existence of a (Post) simple set,
One now naturally asks -~ 'What sort of extension

of M can M' be ?'.

Gaifman has shown ([7]) that M' can always
be chosen to be an end extension of an elementary
cofinal extension of M, and asks whether 1t could
in fact be chosen to be an end extension of M.
In this chapter we prove that it can when M is
countable, and would 1like to take this opp rtunity
of thanking A, Macintyre for first suggesting this
problem to the author and for pointing out that
Friedmen's theorem (3.2.7.) might be helpful in
its solution.

We now state Matijasevic's theorem which will

be required in the proof.

Theorem 3.1.1.

Let ¢(X) be any 34 formula. Then there is
a 3, formula y(R) in prenex normal form, all
of whose quantifiers are existential, s. th,

PF (¥R)(8(R) &> ¥(R)).
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(See chapter one for further comments on

this result).

3.2 Construction of non-%, extensions,

S c————

We now take a non~standard model, M, of P

which will remain fixed throughout this chapter.

Def. _3.2.1.

A formula ¢(X,y), of L, is said to be
uniform _in y, if

(1) ME@E2N(Ey)eR,y) = ()8R, 5)-

Thus wniform formulae define partial fuhctions

in M.
If ¢ satisfies, in additon to (i),
(ii) ¢(?’Y) € 2ns

then we write ¢ ¢ Z,(Z-y).

Lemma 3.2.2. (Uniformisation).

Supposer n=1, ‘and ¢(?,y) € 35. then there
is a formula ¢*(R,y) ¢ 2,(X>y) s. th,
(1) uEOR,5)(¢*(2,5) > ¢(R,5)).
(11) MEO2)((Ay)¢(R,5) » (Fy)e*(2,y)).
Proof,
Suppose ¢(Z,y) = (3z)¢'(X,y5,2) where ¢' e M _ye
Let (s = <u,v>) be a formula in B s. th. Au,Vicu,v>
is a. pairing function.
Let y(%,5,2) &gp. ' (R, y:2) A (3t)(t = <¥s2> A
A (Vsct)((@y',2")(s = <y'hz'> g (R,5',2')))).
‘Now put ¢*(H,y) ¢£?df. 3z )y(R,5,2).
It is easy to check that ¢* has the required

properties.
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Def, 3.2.3.

A formula ¢(x) having just one free variable
is called n-simple iff :

(1) ¢(x) € 3n.

(i1) M (x)(3y>x)e(y).

(i1i) If ¢(x) € 3,, and ME ¥x)(3ysx)y(y),
then ME (3y)@(y) ~ ¢(y)).

To prove the existence of an n-simple formula
we dIntroduce a full form of the enumeration theorem.
(e only required a weak torm in theorem 2.3.6.).

Thus we¢ assume the following :

Lemma _ 3,2.4, (essentially Kleene [8]).

If n, m =21, there 1is a formula '
Tn’m(t,xo,...,xm_1) of L in m41 free variables s.th.
(1) Tn,m € 2ne
(11) V §(xgseeesx ) € Zny, Tk € @ 5. the
i W2 (Ty o (k,3) © y(2)).

It will bYe convenient to use set-theoretic
notation from now on. In particular we shall write

X € Wy

for Tn’m(t,'}?) , and if A 1is a definable
subset of M 'A infinite' means (Vx)(3y>x)(y € A)
-i.e. A 1is wunbounded in M or A 1is M-infinite.

We shall also identify formulac of m free variables

with the sets they define in M, &and use finite

intersection (igx) and union (,

lgx) signs etc. It

will be clear that such 'formulue' can be naturally

translated back into- proper expressions in L.

Lemma %.2.5. (Post).

If n=>1, there is an n-simple formula.
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Proof.

Let y(x,y) (t::}df. v € w;l” AT > 2X.

Let y*(x,y) be the uniformisation of y(x,y)
for y given by 1lemma 3.2.2.

Then 6(y) & ar, (Ax)y*(x,y) is n-
simple, See [15] p.106 for the easy details).

O

Lemma_ 3.2,6.

et ¢ be an n-simple formula, where n 2> 1,
then there are elements a, b e M s. th.
(1) upE=-¢(a) and ME(b),
and (ii) V¢ ¢ 2, having just one freec variable,
MEy(a) = uEy(d).
Proof.
e define (in P), sets RpsRisese S. th,
(y € Rx) € L, by induction as follows

Ry = x: ¢p(x)Axew! ]

if this 1is
infinite,

fIx ¢ ¢(x) A x g wg’1 } otherwise.

R, = R_n w2l ir this is infinite,
X+ X X+1
n+1 .
RX N wa+1 otherwise.

(CA = complement of A),

This can be shown to be a good definition
in P, and the following results follow from the
induction schema in P - which 1is true in M. .

ME Ux)(x, is infinite) eeeena (1),

MF=UVX)KﬁX c {x : =e¢(x)} ARy 4 © Rx)y.......(Z).

1
MF=0VX)(RX c w2’1 v R, C Cw2’1) ceceeas(3).

Let S, Dbe ix‘e M ME®(x) .

Then since S¢ is an 'n-simple se¢t' we have
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Vp e w Mk:(wg’1 infinite) = (3z)(z € wg’1

Therefore Dby overspill, for some infinite g e M

A Z € S¢).

we have ¢
M#:(v‘s<ﬂ)((w2"1 infinite) = (3z)(z € W2’1/\ Z € S¢)...(*).
Now put g(x) =qp. HY: W #:h{w?’1=1<x1\A(i)}

where A(i) S ar R, ?"1. ‘

Since the conjunction of finitely many 2p
formulae is equivalent in P (and so in Th(M))
to a 2 formulé (by theorem 2.3.3.), g takes only
finite values for finite arguements and can bDe
supposed to take arbitrarily large- finite values.,
It now follows from an overspill argucment that
we can find an infinite o e¢ M s. th, g(la) is
infinite and a, g(a) < B.

Now by (2), MF=R c wo a)’ where y 1is the

largést member of M <o s. th. Ry c w§’1. (y must
exist, cleary).

Hence by (1), M= (wh? (a) is infinite).
so by (*), ME(@3z)(z ¢ ng&) A Z ¢ S¢).

Let b be such a 2z, and let a e any
_ . ‘
) 2 By (1))

Then (1) of the theorem is satisfied by

element of R

such an a and b by their choice and (2).

For (ii) suppose ¥ € 3, and MEY¥(a).

This can be written as Mk=a € wﬁ’1 for
some Kk € w, |
e  show MFR c E1.
Suppose this felse. Then by (3) :
n,

M| =] e © ka 8
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But k <y, 80 it follows from (2) that :

M}:Rg(a) c R .

Honce lMfa € Ow)'' by def. of a, - a
contradiction.

-~ - ¥ n91
Thus we have MFk <y AR, cw’ .

N Ny n,i -
Therefore  Misw ’a) c W’ by def. of g.

So  MpDb W‘E”I

by def. of b.
ice. UEY(p) - hence (ii).

o
Now to complete the proof of the result

mentioned in  scetion 3.1. WwWe require @ goneralisation

of a theorem of ¥ricdman [4], which is :

Theorem  %.2.7.

fBvery non-standard countable model of P is

isomorphic to a proper initial segment of itself,

The generalisition, which is obtained by an

casy modification of PFriedman's proof, is

Theorem 3.2.8.

et n>1 and a, bey be s, th, for all
formulae ¥(x) ¢ 3, with just x free, M Ey(a) =
Mf:t/f(b). Then there 1is a proper initial segment
IcM s, th.

(i) theres 1is an isomorphisn e M—1,

(ii) b e I and e(a) = b, | |

and (1ii) Ién_1 M.

(In fact, this result ie a trivial corollary
of L4.,1.10., proved in the next chapter).

We can now prove the main rcsult of this
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chapter :

Theorem._. 3.2.9.

If n21, M contains a proper 1initial segment

I, s. th.
(i) I =¥,
and (ii) I~één~1 M but I :#énM‘
Proof.

et n>1, Chcose a, b, ¢ with the properties
stated in lemma 3.2.6. and I with the properties
in theorem 3.2.8., with this a and D,
I =M and I=_ , i |
Now Mf —¢(a), therefore IE~¢(c(a)), since e

Then

is &n 1isomorphism from M to I.

Also ME¢(b), i.e. MpEg(e(a)).

Thus e(a) =b e I, ¢(x) e 2, and ME¢(e(a)),
but IE=-¢(e(a)). This shows I =£§n M and completes

the proof.

Corollary 3.2.10.

~

There 1is an ond extension M' of M s. th.
M'~ M, and s.”"th. M' solves a Tiophantine equation
with coefficients in M, that 1is not solvable in M.
Proof.

By ‘theorem 3.2.9., with n=1, M may be
regarded as .a non-£$1 end e%tension of itself.
The corollary now follows from _theorém 3.1,

0
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Chapter L Substructures of Models of P,

L.1, The number of substructures.

M will again be a countable non-standard
model of P fixed until further notice.

Theorem 3.2.7. tells that N contains infin-
itely many substructures all isomorphic to M.b
Clearly there can be at most éb% such substructures
and this section 1is devoted to proving that there
arc e¢xactly . 2“21

We require some definitions and lemmas,

Def. L.1.2.

If 8;, B8z ere subsets of M, 84 <. 8, Iiff
MEa <b Vae S;, Ybe ;.. IFf ae M, 8, <a iff
S, < lal.

Def, L.1.3.
© 2 = Dy 3 = PysecasDysees O € M is the enumer-

ation of the primes of M 1in 1increasing order

(this is definable in M), and expt(x) is the

¢xponent of Py in the prime factorisation of x

(waich is also dsfinable in MN).

Lemma_ L.1.h.
Let .o € M be infinite., Then there 1is an

initial segment, I, of M, s. th. I contalns.._

infinite elements of M, I <o and Vk € w,

a
) . ao ai‘.. k-1
XseeesOy 4 € I = 2703 Py € I.

Proof.
Define the function F{x,y) by induction as.

follows :
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F(O,y) = Dy

F(x+1,y) = pi(x,y).

Choose Db € M, infinite, s. th. F(b,b) < a.
(This 1is possible by overspill).
Then I = fa e M ¢ 3k € w, MEa < F(k,b)} can
easily be shown to patisfy the lemma conclusions.
o

Def, UL4.1.5.

For :5;, ac M, we write “B,-ang iff there 1is
a fml. ¢(2,¥) € 3,(2>y), s. th. ME¢(b,a).

g-—;%a means not(ﬁ—-}na).

If ScM, we write C°(S) iff :
(1) 2cs, ¢,y) e 3q and MEEy)(E,y)
imply b ¢ S, M]:q&(é’,b) ,
and (ii) there is an infinite a e M s. *h,
‘v'xeM, x'sa-.-;)xes. ,
We describe (i) by saying S is Zp-closed

(in M).

Lemma L.1.7.

Suppose n =1, Sc M, Ccs), Pcs and aceM

. ,
is s. th. b-;‘)na. then ther¢ is an S_ ¢ S, s. th,

a
n = .
C(s,)s bc 8 and_ a g 8,.
Proof,
t

- Let Op.p denote the fml., with one free
9

variable t, (n.r e w) :
W) (F)(R,y> € W) o @) (>« wp ™)),

where X = €XgseeesXp_y>e

We first show thét it is not the case that
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for all infinitc B e M, 3% ¢ M with o < 8, s. th.
—)
<b,oc>—-—)na.
For suppose it was.
Then for all infinite B ¢ M,
- n,m+2 k
ME (Zk,a<B)(<bsa,a> € W’ A on,m+1)'

pt Y 7 —
where b = <b0”"’bm-1>‘

Hence there must be some finite B s. th.
this fml. holds, 1i.e. there are natural numbers

s, t s. th.

-_)
M= (<B,ys,8> € Wy A O e

, . _ n,m+2
Let W(xo,...xxm“,“g}‘ éﬁii‘. <Xos:~oyxm__‘?’5py> e,\‘\‘lt' .

Then ¢ € S,s since s, t e w, and yY(R,y)

. . . . ] t
is uniform in y since M{:on’mH.

Thus y(X,y) € 3,(R—>y) and M‘:;{;(Tf,a), which
contradicts B a.
It now follows from this contradiction that

there is an infinite c e M s. th. o<e =%‘v<€,oc>-/"na.

Now choose I c S s. the I is an initial segment
of M containing infinite clements, I ¢ c and Vk € w
k-1
Py

V'oco,...,ock__1 e I, o%. .. ;€ I. This is possible

by lemma L.1.4., C°(S), and the def., of c.

Now put S, = {i e 8 : Mlsw(f)’,a,i) for some

o€ I and some Y(XgseeosXpsy) € Zn(EIy).1.

Clearly S, c S, P c Sy 4 5, and (i1) of

uef. L.1.6. are satisfied. To show (i) of def,
L.1.6. suppose T = <tgseeesty 4> S ¢(y‘?z) € 3n
and ME (32)¢(T,z).

Then for some OyseeesOy_y € I and
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wo(xoﬁ’ o e ’Xm__1 ixmhy)z- ae ’Wk—‘] (XO’ e 9Xm_1 mesy) € 2p (?")y)x

Wwe  have
- k—1 -
Vz e U, ME¢(t,z) & ME@Ezg-..0z )0 0 ¥ (0ray,2) A

A ¢(zo!°"’zk_1sz))a
& M}:(Bzo,.., 22y 4 )(Euo,...,uk_1)

( i/;\O '(ui = GXpi(OL) A wi(g’ui’zi)) Al ¢(Zoscv-szk_1yz))n

.o
Oo,..p K-1
2 Piey € L.

where o =
The result now follows by uniformising the
formula :

Vlxgseeosxpoy)  =qp Gzgeeseszy ) (Qugse.on )
k-1 :
( iQO (u; = expi(xm) A z/fi(xo,...,xm__1 ,ui,zi)) A

A B(zgseeeszy_ysY))
for y, observing that ¢ e 2,, and using the‘ above
bi-implications with the fact that Iﬁl:vﬁ(?ya,d) =2

=d e 5.

Lemma L4.41.8.

Suppose ne w and S c M satisfies Cn+1(8).
Suppose further that T c M and ’E’c S are m-termed
sequences s. th. ¥V ¢(2) ¢ 210 M ¢(2) :}M]—‘—’glf (D).
Then : o

(i) for any oce i, 3B e S s. th. Vé(R,y)
¢ 2., MF¢(Z,a) = uF¢(B,B). Further, if T3 0,
we may choose ﬂ s. th. 3-7/—911_‘_1,8.

(ii) For ény BeM s. th. B < max. Ibo,...,bm_1§

(in M), Hot e M s. th. Vo) e 2 45 MP¢(&O¢) =
= 1k 4(5,8), | |
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Proof,

(i) Suppose §~%L+1a. Then there is a formula
o € 3,,4(X2y) s th. MEG(Fa). Thus M= (3y) ¢ (B,5) s
and so by the 1lemma hypothesis we have
ME(3y)¢o (Bsy). In fact, since ¢, ¢ 2n+1(2-%y), we
must have M|z(3'y)¢o(P,y) and so we can choose S
uniquely s. th. MlE¢o(B,8). It is now easy to ,
verify that. ¢(®,y) « 3, and ME¢(8,a) imply M ¢(T,4).

Now suppose 2\%4n+1a. It follows from this
fairly easily that there are infinitely many u e M
(though not necessarily M-infinitely many u € M)
s. th. MEg¢(&,u), whenever ¢(R,y) € 2,4 @and ME¢(Z,0).
Hence for all p e w @

M (3x) (Vt,t'<p) ((t # t' sexp,(x) £ expi(x)) A

A <Bexpy(x)> ¢ wirli™l, NG

where g(x) ‘=df Ly gt temet n{w?+1’m+1:i<x/§A{i)},
. v i

and - A(s) &y <Z,o> € wit1.m+l

Arguing as in the proof of 3.2.6., g(p)
is finite for finite p and takes arbitrary large
finite values. Also by 2.3.3., the formula in (*)
is 3., (z = expy(x) € 2,) and hence by.'the lenna
hypotheses we have, for all p e w @
ME (3x)(Vt,t'<p)((t £ t' > expt(x) # expt.(x)) A

A <5)sexpt(X)> € wg‘(“;’f” Yo ’ , .......(**).k
(Perhaps we should point out here ’that the

definition of g depends on o and 1is probably not

even Zn;1' However, this does not affect the above

deduction since we are only asserting - (*%) when

p, and hence g(p), is finite and therefore the
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manner in which we define g 1is irrelevant).
Now wusing (##), c™1(s) and overspill we

can find a p, € M s. th. both p, and g(p,) are

infinite members of an initial ségmen’c of M

included in S, and s. th. :

ME (3x)(Vt,t'<po ) ((t £ t' = exp (x) # CXPtv(X)) N

A <b,expt(1c)> € sz-;,r)iﬂ ).
0

But S 1is Zm_,l—closed in M (bccause Cn+1(S)),

and 80 there 1is soms B' € S s, th.

M= (Yt,t'spo ) ((t £ t' —>exp, (B') £ exp 1 (£')) A
n+1 ,m+1 ).
g(po)

A <b L,xpt(ﬁ )>e w
But t, p'e s :.-76xpt(/3‘) € S, and txp, >t € S;

so it follows that there are infinitcly many

ue M t(again,. not necessarily M-infinitely many u)

s. th. :

n+1 ym+1

—
— < >
i <B,u>e w i)

A (Btgpo)(u= GXpt(Bl))g X .I.Dl.(***)
and any such u must be 1in 8.

We now show that any u satisfying (%+#%)
has the property : ¥V ¢(R,y) € 310 Ml=g(3,a) =
and ME¢(Z,a).

We can express this as ME<@,a> € WS+1,m+1 ,

¥k ¢(¥si). For suppose ¢(R,y) € 2

for some suitably chosen p' € w.

Thus - MFA(P') A p'<py » and it follows from

S : n4domid o o0+l me]
the defs., ofA A and. g that MFWg(p; it s ,
Therefore, by (%#+), ' M}:<b us € VEH o M+1 ,

i.e. ME@(B,u) as required.

To complete the proof' of (i), it guffices

to find a u satisfying (##%) and B3

‘That we can do this follows from the
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following general claim :
If A(R,y) 1is any formula of L, and &, S cM
are s. th. there infinitely many ue M s, th.
M &(2,u), then there is u, € M, s. th. MFA(Z,u,)

and §+§n+1uo.

Proof of claim.

Suppose it false. Suppose ¥ = <S(seeesBy_y>e

Then for all infinite y e M,
M?(VX)(A(E’,X) - (3k<y)(<§’,x> ¢ WEM s L+ A

(3!z2)(<B,y2> € WE+191+1)).

Now this formula must hold for some finite v.
But then there would be infinitely many x's
satisfying A(T¥,x) (by the claim hypothesis) and
only finitely many satisfying the right hand side
of the implication - a contradiction that proves
the claim, and completes the proof of (i).

(ii)We .first note that the lemma hypotheses

are equivalent to :
Vo) em ., uE¢B) = kg,

Now suppose mt:maxibo,...,bm_1}v= b, .

Let A(s) <$$hf.<3,ﬁ> '3 wgf1§m+1,

and g(x) géf.gy: w§+1’m+1 = in?+1’m+1 si<xaA(i)l.

it follows frbm these definitions that

kfp € W, Mt=(3x<bk)(<ﬁ,x> 4 wgzgjm+1 ), since x = B

satisfies this formula.

Now wusing lemma 2.3.3%., this formula is
(equivalent in P and therefore in Th(M) to) a
1 formula, and thus by the above commgnt;

n+1
we have
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Vo ¢ w, ME(3x<a ) (<, x> ¢ Wgz;3m+1 ).

The. romaincger of the proof is now similar
to that of (i) and we 1leave it to the reader.
a

e now have sufficient leamata to prove

Theorem U.1.9.

\/n e'w, there 1is a set H of substructures
of M s. th, :
— o
(i1) M' e H = 6" =~ M.
PR [] wf ¥ !
(iii) M' e H D =< M and M zgn_MM.

Proof.
Choose a, b e M as given by leana 3.2.6.

with n repla.ced by n+1, and 1lct ao,a1,...,ak,...

(k € w) be an enuaeration of M s. th. a = age

e construct a tree <T,< s. th. \/m € W -

7>
(1) fvery node has either one or two

inmnediate successors - nodes of the sane level

having the same number of successors (the least

th.. level).

element of T being at the O
(2) ®zéh node of T is a :psir <c,S > s.,th.
SC M, 09*1(8) and c € S.

(3) <c',8'> €, <c,8> = c' € S -and st o 8.

T

(4): If <c',8'> and <c,8> are <p-incomparable

and have a common ST—immediate predecessor, then

gither c' £ S or c £ s'.

where <ci,Si> is of 1level i (0 <i € m1), and Iif



(35)
¢ € Zn+1 has only m free wvariables, then

MF:¢(aO,...,am_1) = Mk:¢(co,...,cm_1) .

Firstly, the 1least element of the tree 1is
<b,NM>. The conditions are easily verified for m = 1.
Now supposeT has been defined up to, znd

including, 1level m-1 (m > 1) s. th. conditions

(1)—(5)m hold for all nodes defined so far.

/)

Let wus pick any branch, say <CO’SO> T

S . _—

Sp <CysS,> Spoeee Sp <Cp 458 > thus defined. We
construct the immediate successor(s) to this branch
by cases :

Case 1. @ = <Bgseeesy 4 >—D) 4 8o

Qur inductive hypotheses imply the conditions

of lemma 4.1.8. are satisfied with B =3¢, S =8 .
Applying (i) of +this lemma we obtain B ¢ S

s. th. B;’il::qﬁ(”a’,am) = XEo(3,8) Vo e 210 and we

let <ﬁ,Sm_1> be the one and only imanediate succ-

essor of <c__,,S _,> The conditions (1)-(5)

m- m-1 m+1

are now clearly satisfied for the branch <cO,SO> sT

< < <cm,Sm> where c¢_ = f and

T *** T<%PVSW4><T mn

Case 2. 3-%%+1 a .

m

Again we wuse lemma LU4.1.8. to obtain B € -1
so that <ﬁ,Sm_1> is one immediate successor of

>1f9n+1 B. Now

Q .
<Cm_1,um_1> bllt: S. th. <cogon-’cm_1

we can apply lemma Y.1.7. with B =3, a =8, n = n4
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and S =S to get S, c S s. th. C™(s)), Tcs,

m—1

and B £ S, Now use lemma L.1.8. again with S = S,
B=8, a= a, which gives us a B'e S, s. th.
zs.z[_—_gs(‘at,,,am) = HE#(@,B'), V¢ € Zne

let <ﬁ',Sa> be an immediate successcr of

<°m—1’sm-1> inconparable with <ﬁ,Sm_1>.

The conditions (1)-(5) are again clearly

m+1
satisfiecd by our construction, condition (1) follow-
ing from the fact that whether we alded one or
two successors to any node depended only on a
property of our original enumeration of ¥ and nof
on which branch we e&xtended at any given level.

The construction of T 1is now completed by
inguction,

Now for each branch, B, of T let

By = fc e §f: 3S c #, <c,S> € B},

and e be the mapping K —i

B taking £ to the

B

element c, of K s, th. 35S Cc ¥, <c,5> 1is of 1level

B’
k. eB induces in the obvious way, definitions

cf + and - 1in MB’ so that MB =~ R,

To show mBﬁgnm, suppose @€ C Mg» $(R) € z
and M[E ¢(2). Then for some b c H, e(g) =3, soO
- ->
UE ¢(e(p)). But ¢ e 3 =>¢ ¢ O ,,» S0 by by cond
ition (5)m (for some me w), and the def. cof e,
Ml=¢(v). But e is an isomorphism from ¥ to LA

80 ﬁBf:¢(e(g)), i.e. f-.iBf:fﬁ(E’) as required.

".f ,".*I 8 i 7] 3 i 1
That LB:§§IH4L follows immediately Ifrom our
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initial <choice of a and b,

Now suppose B #£ B' are branches of T. It
follows from (2) and (3) that MB cs Vs s. th.
3c € My, <c,S> € B, and similarly for B'. Hence from
(4) we have My £ M.ye

The theorem 1s thus proven 1if we can show
T has 2‘@o branches. However, 1if this were not
the case we would have, by (1), a 1level m, s. th.
every node of level =1 has only one suUuCC&ssor.
Hence case (2) in our proof would hold only fin-
itely often which implies VYa e M, <ao,...,am_1>—+n+1a?

contradicting the claim proved on p. 33, Wwith

A(R,y) = (y =y) and B = <ao,.;.,al >.

-1

Theorem U.1.9. 1is now proved, where

H = {u; : B a branch of T. i.
a

A natural question generalising theorem L4.1.9.
would be to ask whether H can consist only of
initial segments of M. Unfortunately I can only
prove this when M satisfies certain conditions,
but can show that any non—-standard M 1is element-

N
arily equivalent to 2“0 initial segments of itself.

This I —now do.

Lemma L,1.10.

Vn ¢ w, there a set E, of embeddings of M
into itself s. th. :
(1) fM = o,
(i1) Ve ¢ By e[M] is an initial segment
of M. : .
(iii1) Ve ¢ B, e[M]= ¥ and e[l M.
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Proof,
Let T be the tree of height w which is
(completely) defined Dy : every node in T of level
k, where k =3 (mod 4) (the 1least element of T

th. level), has preciscly two imm-

being at the O
ecdiate successors, and every other node has prec-
isely one 1immediate successor.

wWe take two copiles, <TD’\ > (the .domain tree),
and  <T,<p> (the image tree), of T and 1let ¢

be the natural isomorphism fronm TD to TI' The

idea of the proof 1is to associate one element

of M to easch node of TD and one to each node

of T s. th. given any branch, BDg of TD’ every

I’
clement of M 1is associated with some node in BD;

and given any branch, B of T the set dJ, of

I’ I’

of elements of M sassociated with some node of BI
forms an initial segment of . Further, the nmap
¥ :M—I which takes the element of M associated

with the node v of BD to the element of J

associated with the node f(v) of T; will be an

isomorphism from M to the 1initial scgment, dJ, of M.
We now describe the construction 1in more
detail. The first few steps of it are illustrated
in fig. (i) on p. LDo.
To avolid clumsiness of expression we 1identify

nodes of the trees TD and TI with the elements

we have associated with them, and hence f#% with

frBD, etc.
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Our inductive assumption 1is

(C)m Ir < +++ Sp Cpq &re elements

co < Oy
of T, where c;, is of level i (0 <1i < m-1) and

¢(Xog.v..,x ) € 2 then

n—1 n+1?

MF=¢(CO,...,cm_1) — MF:¢(f(cO),...,f(cm_1)).

Now choose a, b e jfi as given Dby lemma 3.2.6.

with n replaced by n+1, and 1let ao,a1,.,.,ak,...
(k € w) be an enumeration of ¥ s. th. a = age

We associate a4 with the least element of

T, and Db with the least element of T, (C)1 is

easily verified.
Now suppose elements of ¥ have Dbeen assoc-

iated with every node of TD and TI of level

VAN

m-1, s. th. (C), holds (m > 1).

Case 1., m =2 (mod L).

Let wus pick any sub-branch,  say o <D c1 <p

<D e <D cm—1 of 'I‘D of 1length m.

We only have to find one successor to c_,»
and we let it be a_ where k = m-2 + 1. f(ak) can
now be defined so that (C)m+1 is satisfied Dy

using lemna 4.115.(1) with 4 = <CysesesCp_y>s S = 1l
P = <f(co),...,f(cm_1)> and o = 8, . This construction

is repeated for all sub-branches of 1length m with
which elements of M have so far been assoclated.

Note that every node of 1level m in 'I‘D has a

associa.ted with 1it.
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i

ase 2., m=0 (mod L).
Then m-1 = 3 (mod L4) so we must f£ind elements
of M to associate with the two immediate successor

nodes of nodes of 1level m-1 in T Let & consist

:D.
of all elements of M so far associated with nodes

of TD arranged 1in a finite sequence. By the claim

on p. 33 we can find c e M -s. th. aﬂfL%H1c. We

associate ¢ with every node of TD of level m.

Now 1if co

< is any sub-branch of T

>1%9n

since <Cysee.,C 4> C 1. Hence by 4.1.8.(1) (using

D *** D %m-1 D

of 1length m we certainly have <co,...,c C,

m=-1 +7

the inductive hypothesis) 38 € M s. th. V¢ ¢ 3

(#)eunn.. Mk:¢(co,...,cm_1,c) = MF=¢(f(CO)9---9f(Cm_1),ﬁ)a
and .<f(co),...,f(cm_1)>*féh+1ﬁ.

Using a similar technique to that in the
proof of the preceding theorem We can also find
BY € M, B' #PB, s. th. (*) holds with pB' replacing
B. e associate B with one successor node_ of

f(c,_4) in T; and B' with the other. After

repeating this construction for each possible

<CseeesCp 4>s (C)m+1 is easily checked.

m-1
Case 3. m odd.

Here we first extend each sub-branch of TI’
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sQ suppose f(bo),}s‘I eer < f(bm-1) is such a branch

of length m of Tie Let p be the element of M

with the property ME (8 < max{f(bo),...,f(bm_1)3 A
ABE if(bo),...,f(bm_1)}) that occurs first in

our enumeration of #, and associate B with the

node in T; -immediately succeding f(bm—1)' Lemma

L.1.8.(ii) now provides us with an o ¢ M that can

be associated with the node in T

D immediately

succeding b _, so that (C)m+1 holdsf

1

Now for each branch, B, of T let €p be

the map that takes the set BD of elcments

associated with the copy of B in TD to the

corresponding set, BI’ in TI’ in the natural way.

The domain of e is i, since if k € w,

B

is the element of B occuring at the

then a D

Kk
(4k-2)th. level if k 2 1, whereas a, occurs at

the Oth' level, Of course eB is a function since

if ak occurs at two different levels in BD the

corresponding elements in BI nust be e&qual Dbecause

(x =y) is a 3, formula and hence preserved by

That the range of e is an 1initial segment

€ B

B.
of ¥ follows easily by case (3) of the construction,

and that eg is an isomorphism onto this initial

segment follows wusing the same arguement as 1in

the proof ©f the preceding theorem, as do the

facts that eB[M}=£hM and eB[M];£;n+1M.
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<X~ N -
. T s e e P
e ? e T T T~ N T
8 ey --- c87es =T Cg ~P12 IFabis ~. Pis
7 / '7("““'-’"“ Z(
Ce -7 Coy--~ T s¥YDio T Y4y
p*\§_‘ Ny -
6 Bl IR G
aa r" a% i - T oy 'b9
IR Il SRR C
5 Cyp--"""Teg premmT T T TN "4 b,
ST
- Bl i
L" Cs L. - < CS fp o= = ’b5
3 CoNEmmm mm mm e e = -
2 81 prmm s ey e - - P2
1 P T QU | 5
a:ao ————————— }-..-....---.--bo :b
Level, TD TI
) fig. i),
b, = a, where k =piew: aj<b.
by = a, where k =piew: a<maxiby,b,,byia a Zibysb, sb 1
bg-= a, Where k =picw: ag<max{bgy...,bilA agfiboseessb,].
b, = a where k =piew: a <maxiby,bysbysbysbs) A
A 8y #{bosbysbasbssbsde
by, = @, Where k =pgiew: ay<maxibg,... b ,Dgsbgl A

‘i/\ ai‘ﬁ./ibo,...,b‘l_,bsg-bsl.

byy = &

where

k =piew:

aL<maXiboabisbzsbssb59b7:b9} A

A\ aL%ibo’bisbzsbs:bssb7sb9}'

cg= some& CeM

cg= some

celM .

s. the.

s. th.

<ao,ci,a1,cg>1f*n+1c.

<803Cq819C29C39C49829C535C59C7>77 ,Co
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The theorca is now proved if we can show

that B # B' implics e # €ge- But this 1is immediate

from case {(2) of our construction since we have

ensurcd that eB(c) # eB,(c) where ¢ is the element

of M associated with all nodes of the 1level at
which B and B' first differ.
m]

Of course lemma L.1.10. only provides us
with éNB embeddings onto initial segments and does
not guarantes these initial segments are all dis-
tinct., To obtain this one would require a comb=-
ination of the techniques of L4.1.10. and L4.1.9.,
which boils down to proving a stronger version
of lemma L.,1.7. (with an -adapted definition of

3—4na, on the 1lines of 2¢ € %, s. th.

MF:(EX)(¢(31X) A X >a)), the truth of which scems

doubtful. However, we have the following :

Theorem  L.1.11.

Iet ¥ be a non-standard countable model of
P, which is rigid (i.e. has no non-trivial auto-

morphisms), ~nud let EM be the set of embeddings
given by lemma U4.1.10. Then \/e, J e Eﬁ, e £ 3 =

=e[M] £ e[M].

Hence M is isomorphic to éN% initial scgments

of itself (which can be chosen to be £ - but
not :5;n+1_ substructures).

Proof,

Suppose e, J € Bys € £ 3 and e[M] = jlm] = I.



Then j-e is a non-triwial automorphism

But I =~M (e.g. by e), and so M has

automorphism - a contradiction. Thus e[M] £ j[m].

We now show that any non-standard

table or not) is elementarily equivalent

\ls

least 2/'°© initial segments of itself.

two known results, both due to Gaifman,

Lemma_ 4.1.12. (see [5]).

a

We

(b4)

#very non-standard model of P contains

countable non-standard elementary substructure

is rigid.

Lemma  L.1.13. (see [7]).

Suppose M 1s a non-standard modcl

i

i

My c M and My

of I.

non-trivial

o
(coun-
to at
regquire
namely
a
which
off P,

Let My*M = {a e M: Mfga< b for some b e M, {,

and define + and + on Mi*M &s those
induced from M.
Then Mo*M is an initial segment

My =X M, *M. A fortiori M;¥M =M.
e can now prove

Theorem_ L.1.14.

ILet M be any non-standard model
there is a set H of initial segments
= N
(i) H = 2 0-
(ii) M' e H > M= ¥'.

Proof.

Let My be a countable non-standard rigid

elementary substructure of M whose existence

is

functions

of M and
of P. Then
of M s. th.

L3
°
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given by lemma L.1.12. Then H = {eldy]*H s e € B

i, !
has, by theorem L4.1.11. and lemma L4.1.13., the

required properties, where EM is the set of
L4

embueddings given by lemma L4.1.10.
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Chapter 5 Further Appliecations of the Method.

5.1. Introduction.

The preceding results have been proved
using variations of a certain technique - namely
using a function enumerating 3, -sets and then
looking at a non-standard stage of the enumeration.
This method was first wused by Ryll-Nardzewski [14]
and Rabin [12], although, as we have already said the
use 1s unnecessary in the latter. |
This chapter is devoted to proving two
results about' models of P using the same method,
and I should repeat Rabin's comment (in [12])
here - that the method should still have many more

interesting applications.

5.2. On omitting types in models of P.

We filrst introduce some well-known .concepts

from general model theory.

Def. _5.2.1. ‘

o

Let 1* be any first order language and § any

ect "of formulue froo I¥. Then: ¥ i3  caliled an
S-type iff # S and evwery formula in 7 has Just
the variable x free, '

If OU is an L*- structure, we say O realises
T iff 3a ¢ OL s. th. O=¢(a) Vgﬁ(x) € 7; and Ot

omits T if o1 does not realise 7.

Theorem 5.2.2.

Let n e w.and MF:P be non-standard and T
any 3,-type (in L). Then 1f 7 is omitted in

it is' omitted in every elementary end extension
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of M.

Proof.
Suppose M*}M, M* an end extension of M
and that MN* realises 7.
Choose a € M*¥ s. th. M*E¢(a) V¢ e 7.

Define B(xX,y,z), A(x,y) e L by :

A(x,y) EDar, X € w§’1
B(x,y,2) ®df. z'_'wgy Py (where 1@ = 0).

A(x,y)
Then it 1is easy to show that
Pl (Vx,y)(3!2)B(x,5,2) and so we write B(x,y) = z
for B(x,y,z).
Now 1let ¢ be an infinite element of M.

Then  M¥|=( Jde Py S J. p, sl ).

A_(a.,n.)

Now M*>2M, hence if c e M cl

denotes the
same element in M as it does in M*, and since
M* 1is an end extension of M we must have, by

the above, 0. D, €l i.e. B(a,c) e M.

A(asu)
Let d = B(a,c).
Now we may suppose T C {(X € Wg"']):m € w s,th.

Mkzpmld }..;...(*), for if ¢(x) € T, then ¢(x) e 3p

and M*[¢(a). Hence 3m € w s. th.

el (V) (x € wol ey 9(x)).

So M*l=a € anl’1. And therefofe 'M*I:A(a,m)

and MN*Em < c. Hence M¥ |=pm|B(a,,c) =d , from which

it follows that Mlp |d since MLM#, and (*) is

justified.
Also, Vm ¢ w, 1»![*]:(‘9’k<m)(pk|d “ace WEH) (by

def., of d).
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Thus ¥n ¢ w, M !:(Ex)(‘dk<m)(pk|d >X € wﬁ”)-

So, Vnm € w, MF.(BX)CVk<m)(pkldn4>x:e WE’1):

since ML M*,
It now follows from overspill that for some

infinite e ¢ M, M| (Ix)(Whee)(p a >x ¢ W),

Say M]‘:.(Vk<e)(pk|d-%a" € wﬁ”), where a' e M.

But this, together with (*) implies a'
realises T; so M realises 7, and theorem 5.2.2,
is established by contradiction.

u]

Theorem 5.2.2. can bhe strengthened to allow
finitely many (constants representing) elements of
M to occur amongst formulae of 7, and also to

replacing ‘'elementary end extension' by '=éh - end

extension'. We 1leave the proof, which is similar

to the above, to the reader.
5.3. On indescernibles in models of P.

Theorem 5.3.1.

let new and M be any non-standard model

of P. Then there is a set ScM, s. th, § =W
and Vo > 1, h/¢(xo,...,xm_1) € 3, and VB, @ e [s]®

1

= f<tgseeeaty > 2 t; €8 O0<ic<m and M]=-t0< ...<tm_1},

MEg(agr--r8y_4) & MEG(Dgsady ).

(In the jargdn' of model theory this says
that every"non-standard model, M, of P contains

a set, of the same cardinality as ‘M, which is

indescernible for 3, formulae.)
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Proof.

FPirstly we fix a 3, coding of finite
sequences of M, so that any definable subset of
M may be regarded as a set of t-tuples for any
t e M.

Now 1let A, B, D be any definable (without
parameters) subsets of M and t e M.

Then we write D-a(A,B)t iff either
[D]® c an [B]Y or [DI%ccan [B]Y, where A 1is
regarded as a set of t-tuples.

Now Ramsey's theorem [14] asserts that if
M=DN, A, B are 1infinite and t € N, then there
is an infinite D s. th. D-3(4,B)%.

Checking the ;proof of Ramsey's ‘theorem one
segs that it can be proved in P, and that D
can be obtained .uniformly, from 4, B and t; and
hence using the methods of [6] it is easy, but
somewhat fedious, to check, that the following in-
formal definition of the predicate x € Ry (in L)
can be made a sound one in P.

Firstly we éan suppose - our - coding of -
ordered pairs, X = <y,z>, say, has the property
that y and =z are both finite iff «<y,z> 1is finite.

We now define Xx € Ry by induction :

R . = An infinite set Dc R, s. th, if
y+1 y
n,;1 t
y = <s,;t> then D**(WS ,Ry) .
We clearly have MI=(Vx,y)(x <y — R, D Ry)...(*).

Now 1let a be an infinite element of M.
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We claim S = Ra has the property required

in the theoren.

For suppose ¢(XO""’xm—1) € 3,. Then the fml.
¥ defined by : ' _

W(X) & (BXO,...,xm_1)(x = <XgreeesXp 4> A
FaN ¢(XO""’Xm—1))’

is 3, and has Jjust x free.

Hence for some s.e w, ME (Vx)(y(x) e x ¢ W2’1).
Suppose Yy, = <s,m>. Then y, € w by our ass-

umption on the pairing function.

Thus yo + 1 < a; so Ry0+1 ) Ra =S by (#%).

1% w? 1 (R, 1%,

: n;1 m,
But R 0+1~->(ws R Ryo) ; hence, [R o

y Yo+1

1 ]m

[y0+1] cw' N [Ryo

N

1 o
s N [(M]® or

A fortiori, [S]®cw
[s]® ¢ ng’1 n [m]™,

It follows that S 1is 1indescernible for
P(xgreees® 4)

To show S = M, we merely note that S is

a definable (with parameters) subset of M and
ME 'S is infinite'. Hence there is a one-one de-
finable mapping from S onto M. But clearly this
mapping must have these sane proparties in the

—

real world, and so ® = S.
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Chapter 6. _On_the ZIattices of Flementary .

Substructures of Models of P,

6'1‘, The problem and preliminary results,

Throughout sections 6.1.-6.4. of this chapter
we fix an arbitrary complete, consistent theory T
extending P in L, and let M be the pointwise
definable model of T, This 1is Justified by theoren
2.1.1. from which it also follows that N has no
proper' elementary substructures. Our current aim
is to investigate by how much' an arbitrary model
M*, of T, can fail to be pointwise definable,

and the above comment suggests the fcllowing

Def. 6.1.1.

If M#|=T, $(M*) denotes the set {M" : M'<XM]

partially ordered by <.

Now it follows from previous results that
if ¢(%,y) € L, and Tk—C#i)(Ey)¢(§,y), then there
is a total T-functional formula ¢,(R,y) s. th,

T (V2)(Wy) (g6 (Foy) 2¢(R,¥)). Hence if we add to L

a function' Symbol F¢ , for eaéh total T-functional
0

formula ¢g, énd add to T all axioms

V2,y)(¢o(Z,¥) e»F¢§§) = y) the resulting system will
be a conservative extension of T. It follows that
the partial order on $(M#) is in fact a lattice
order, where, for M;, Mz <XM*, the domain of MiA Mz
(the infimum of My and Mz in $(ux)) is  just

the intersection of the domains of My ‘and Mg,

and the domain of MiV Mz (the supremun of M

and, Mz in $(M#)) is the subset of M* generated
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from the wunion of the domaine of M, and M by

all the F, 's.
Po

Our basic problem can now be stated as -
'which lattices are isomorphic to $(M#*) for some
NxE T ',

(This situatioh is analagous to one in
recursion theory, where the non-recursiveness of
a set A of natural numbers is measured as the
upper-seni lattice of sets recursive in A. The
two representation problems, however, are technically
quite different.) | |

Mcst of +the positive vresults cbncerning the
above problem are contéinéd in the following three

theorems :

Theorem 6:1.2. (Gaifman)

There 1is a model M¥ of T s, th.

$(M*) = <w1,e>;

Theorem 6.1.3. (Gaifman)
For every set A; there is a model N# of
T s. th. $(M*#) ~<P(4),c> where P(4) denotes the

set of all subsets of kA.

Theorem 6.1.4. (Paris)

If L 1is any complete, distributive,; w-
compactly generated 1lattice, there 1is a model M*

of T s. th. $(M*) =~ L.

Proofs of the above results can be found in [10].
In view of 6.1.4., weA shall restrict our
attention to non-distributive 1lattices and answer

a question raised in [10], by showing that the
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five-element non-modular lattice P is of the

5’
form §$(M*) for some M#|=T, and we shall also
produce a class of lattices no member of which

is of the form §(M*) for any M#|=T when T = Th(N).

The simplest member of +this class is the hexagon

lattice, H, Dbelow.

P H o

fig., (di).

6.2, Construction of simple extensions of M.

Def. 6.2.1.

(1) we denote by S, the set of all n-place
total T-function symbols (in our extended language).
We do _not distinguish between these symbols and
their interpretations in models of T, and hence
we identify S, with (the! domain of) M.

(ii) If M*ET and A is any subset of N,
M*{A] denotes the elementary substructure of M#

generated from A in M* by (Y S,. If a;5...,2, € M¥,

we write M#[a,,...,8,] for M*[{a ,...,8,}] ; and

call M# simple -if M% = M*[a] for some a e M*.

Now let B be the Boolean algebra of M-
defineble sets and U any ultrafilter over [B. (See
e.g. [1] for definitions of these classical con-

cepts).
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We define an equivalence relation ~y on

S, by :
Try8 & lxeM:lEf(x)=2e(x)]eU
and set fU ={ges ¢ ~y & ! ana MU = { U s £ e 81}.

We turn MU into an L~structure by defining :

£V 4 g¥ = nY &S [ xe M M=r(x) + glx) =n(x)} e U,
and fU°g,.U = nY & [ xeM: Mf(x)-g(x) =h(x)l e U
That- + and + so defined are functions on

M and that ~ is a congruence relation for

U’ U
these functions is easily verified, as 1is the
following theorem, which is a 'definable analogue'

of Los' theorem on ultrapowers (see[1]).

Theorem 6.2.2.

If ¢(xo,...,xn_1) € L and fgse..,f , € Sy s
U U -
then MU]=¢(I"O,...,fn_1) iff {x e M : M|=¢(fo(x),...,fn_1(x))}

is a set in U (it is eclearly in [B).
Further, if for each a € M we denote by
4 +the functicn in S, with constant value a, the

mep e:M-M;, defined by e(a) =VéU (Va ¢ M), is

an elementary embedding of M ‘into MU.

From now on we shall identify M with its
natural image (i.e.' its image under the map e,

above) in» Mg

Theorem  6.2.3.

Let 14 'aenbte' thé idéntity function on M.
Then -id € S4 and we have :

(i) MU[idU] =‘MU" Henée MU is. simple, where
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U 1is any wultrafilter over B B.

(ii) For any simple model M*# of T, there
is an wultrafilter U, over B, s. th. M* = MU'
Proof.

(i) 1is obvious.

For (ii) suppose M* = M*[a], a ¢ M*, and
let U= {Ae®:Mikacal., Then U is an ultra-
filter and the map taking a to idU can clearly

be extended to an isomorphism of M* onto MU.

o
Working towards our aim of constructing

models -of T with presecribed lattices of substructures
we introduce the following notions similar to

those wused by Paris in [10] (p. 253).

For f, g€ S, and  Be€f{B, define
£fegg it BRWxy e B)(g(x) = a(y)21(x) = £(y)

= i ' <, f.
b o _B;g iff f QB g and g 9 T

If U is an ultrafilter over B define

it IBelU T QB g

= i < g Q. f.
g =5 g iff f QU g and g Yy

f a

g & iff ‘f <h g and not T =y &

The point of these definitions Dbecomes

clear with the fqllowing

Lemma 6.2.4.

Let U be any ultrafilter over B, and
Ul iff £ 2 g

o U
f, g€ Sy. Then | MU[f ]41&U[g y

Proof,
Suppose MU[fU] éMU[gU]. Then 3h € Sy, s. th.
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B={xel: MEn(gx)) = £(x) } e U
Clearly f % 85 hence f < 8.
Now suppose f @U g, Then DB e¢ U 8., th.
f e lies HEVxY)(a(x) = g(y) 2 £(x) = £(3))...(1).
Define h e S, by s
h(y) = f(x), where x =put e B : g(t) =y
if 3t e B : g(t) = y.
0 otherwise,
Then I claim B c ix : h(g(x)) = £(x) | = A...(2).
For.. suppose X ¢ E, and let X, = uteB:g(t)=g(x).
Then X,, x € B and g(x,) = g(x). Therefore, by
(1), £(x) = £(x). But h(g(x)) = £(x), by the
def. of h. 8o h(g(x)) = f(x), from which (2)
follows.
Now BcCc A =A e U, since B e U by choice

U

of B. Hence Mulzh(gU)=f (from (2) and 6.2.2.).

Therefore, since h e€ S;, we have MU[fU]$MU[gU]
as required.
o
Now EU is an equivalence relation on 84,
as 1is easily checked, and it 1is also easy to

show that QU induccs von  upper-sual  lettice  ordering

on the -equivalence classes. We denote this upper-

semi lattice by Ly and have the following result,

analagous to Aczel's theorem in [10] (lemma O0).

Lemma 6.2,5. ,
$(MU) ~ The ideals of Ly
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Proof.

It follows from 1lemma 6.2.4. that the
map a:$(MU)‘9 The ideals of L;» given by

e(M') = if/sU : 9 ¢ M' }, where f/z; 1s the =
equivalence class containing f (e S,), is the
required isomorphism.
o

Thus we have reduced our original problem
to one of investigating certain combinatorial or
partition properties of M. Before we do this
however, we require a lemma which reduces the
complexity of partitions we shall have to con-

sider later, and also provides us with the neg-

ative results promised earlier.

6.3, The main lemma and some negative results.

We first require the following definition

and results.

Def 6.3.1.

If M,, MpET and M, c Mg, we say W, is

cofinal in M or that My, is a cofinal extension

of M, Iiff (Vx € Mz)(Ey e My) MpokEy > x.

Lemma 6.3.2.

Suppose My, Mz, M¥[ET, MyLM*¥ and Mp<XH¥,
and MV Mz is cofinal in M#¥. Then either My

or Mg is cofinal in M#,

Lemma.. 6.3.3. (Paris, Gaifman, unpublished).

Suppose M*LiT and that there is a lattice

embedding of Cs (see fig. (ii)) into $(i#) which
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takes the 1least element of C; onto M and the
greatest element. of C;, onto M*, Then M* is a

cofinal extension of M.

The first result is easy to prove vand
is 1left to the reader Whereas. the proof of
6.3.5. below is a generalisation of Paris and
Gaifman's proof of 6.3.3. and we therefore omit
it also. 6,3.3. shows, of course, that 'there is

no model, M*¥ of Th(N) s. th. $(N*) = Cs.

Def; 6.3.4.

If My, MyfET we write M,=<<"M, if M,<<Ms,
M, £ My, and Vu', M <SM'LM, DN' =M, or M' = Mp;
M; is then called a minimal elementary extension

of M.
We can now prove :

Lemma 6.3.5.

Suppose M#[ET and that M* is not a co-
final extension of M. Suppose further that 3M,,
Mg, Mz <XM* s. th.

(1) M=<"M, <M <M,

(ii) Mgw M, = M* and MzAMN; = M.

(1i1) Viu'sm,, M'pM, or M' = M.

(iv)  M'zMy, M'KM; or MN' =M%,

Then V' =i, MWLM, or M' = Mg.

Proof. ’

' We <firat show that \/M'$ ME, N'=<XM; or
M'AM, = M and H'VN, = uf e )
o So suppose M'ff’:M* and M'=KMa.

Now M'AM;=XMg; therefore by (iii) M'AM2ZMs
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or M'AM; = M. But M'AMg 2Ny =M'"ZM,, and thus
by (iv), M'ZXM, or M' = M*¥ which is contrary
to our assumption above., Hence M'AM, = M.

Similarly M'-_gm* and M'=£M, = M'wM, = M*,
and (1) is thus proved. |

Now 1let M'$M*, M' N, . veeneesel(2).

We now claim that M'-M > My (cf. def.b.1.2.)..(3)

For suppose (3) false. Then 3a € M'-M and
b e M; s. th. a<. b, (We work in WM* throughout
this proof unless otherwise stated ).

Now by (1), (2) : M'A Mz = M. Therefore
M'[al]AM;, = M, since M'[a]gM'. But M'[a]?_j\/l,1 by
choice of a, so M'[a];éMQ. Hence By (1) we have
M, : R () 8

M*, o .-ooo--oo(B)o

both  M'[a], AM,

and ' falwv My

Now suppose 3c € Mz=M s. th. c < a (< b).(*).
Then Mg?'Mg[C]?_M. 8o by (iii), Mzlc]PMy. Using
this and (5); we see that there must be some
f e€ S s, th, f(csa) =Db. Define F e S Dby @

F(0) = O.

iF(iM) = i+1+max. {£(j,k) : 3,k < F(i)}.

Then F ia strictly increasing. Hence we
can define 1i,, 15 as follows :

i, = pi: P(i) = b.

iy = pi: F(i) 2 a.

Clearly io € Mz [b]<Mp, and iy e M'[a]l. But
since ¢ < .a < b we have, by the def. of F, that
either io = i1, or io = iz + 1. In either case
io € M'[i,_v]'\<M"[a]. Therefore ..ice M'[alA Mz =M (vy
(4)). Thus we have : '

P(io) e M. and F(io) 2B > a>c,  ceseesal(6)e
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But from (5) and lemma 6.3.2. it follows
that either M'[a]l or M, is dofinal in N*. Let
us first suppose that M'[a]  is.

Choose d € M'[a] 8. th. d > M. (This 1is
possible since M* and thérefore M'[a] is not a
cofinal exténsion of M by the lemma hypotheses).

Let g e 8, be s. th. g(a) = d. Define
g* € 8, by : g*(x) = max.{g(y) :y < F(x)].

Then by (6) : g*(i,) > g(a) = & > M. But
i, e M, sao g#(i,) " M - a contradiction,

Now suppose that My is eofinal in M*,
Choose d e My s. th. d > M. .

Now. Mp[cl=M;. Therefore by (iii} Mplec]lZ>M,
or Mg[c] = M. -In the former cass, choose g € S,
s. th. g(c) = a and proceed to a contradiction
(using (6)) as above. The. latter case 1is impos-
sible by the choice of .c (see  (*)).

Thus we have shown (*) impossible;

Therefore a < Mz-M,  eseccesene(T).

Now choose a4 € My-M and az; € Mg-Nji.

This is possible by (i), from which it also
follows that My = My[ay]. |

Hence, by (5), 3h e Sg s.vth. h(a,a, ) = 8z.
More precisely : M*[=h(a,a;) = az. So by (7) :

Va e Mp-M M*P(Elxgd)(h(x,a_i) = ag). |
Therefore, Vd € Mp-M My | (3x<a) (h(x,2,) = &z)....(8).

Lét Xo = px:h(x,a,) = ap (working in M%),
Then X, € M*[a;,az]={Mz. But from (8) we see
that in fact X, € M = So. Define g by :

‘g(x) = h(%,,x). . Then, since Xo € So, g € S1; and

further M*|[g(ay) = ag, - 80 aze M¥[as]<My - contra-
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dicting the choice of a, and aj.

Thus the supposition that (3) is false is
absurd. So M';M > Mz

We must now show that under the assumption
(2), M' = Mj.

Now we cannot have M'AM; =M and M'vM; =
M*, for this would contradict lemma 6.3.3., since
M#*¥ is not a cofinal extension of M and the
sublattice «<{M,M',M,,M;,N*}, «¢> of $(M*) is iso-
morphic to Cg,. |

Sa say M'A Mz = M ZM and M' # M. If M=
= Mg, then M'ZM;. Also M,V Mg = M* (from (ii)).
Let a € M'-Mg. Then 3f ¢ S, 2, € My and Db e M
8. th. M*fEf(a;,b) = a. Hence from (3) and (1)
it follows.. that : A |
Vd e M'-M  M*|=(3x<d)f(x,b) = a. Therefore :

Va e m'-m M'E (3x<a)f(x,b) = a.

Arguing as before, this implies that
a € M'[b]<LN;, contradicting. the choice of a..

If Mg # My, then MEMs<<Ms; and we get a
contradiction using (3) with "M' = Ms". '

Using a similar method we can show that
M'vM; =M, and MeqéM* and M' # Mz :3g impossible.

;bHence we 'mﬁst have M' = Mz whenever M'

satisfies, (2) and the proof of lemma €.3.5. is

complete.

_ _ o
Now if T is true erithmetic i.e. T = Th(N),
then Mi ig N and no elementary extension of it

can bhe a proper cofinal extension. Hence we have

the following
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Corollary 6.3.6,

If NET, and K is any lattice with dist-
inct top and bottom elements and K' is any
lattice with more than one element, there is
no M*F:Tﬁ.s. the R ~ §$(M*) ; where R is the lattice
represented by the diagram ;

N\

R = K ;!

N

fig, (iii).

In particular, there is no M*ET s. th.

H =~ $(M*). (See rfig (ii)).

6.4. The pentagon 1lattice.

We now show IM*ET a. th. §$(l*) =~ Ps,where
T is, once again, an arbitrary complete extension
of P in L.

By lemma 6.2.5. it is sufficient to find
an ultrafilter U over B s. th. Pg = LU' This,
however, we do not do directly, but lemma 6.3.5.
allows wus to construct U with apparantly weaker
properties (and also gives us some information
about how we should go about it). To wusec lemma
6.3.5. we must first guarantee that our resulting
Mﬁ is notr a cofinal exﬁension of M, for which

we need the following result.

Lemma_ 6.L.1.
Let U be any ultrafilter over B. Then M

is a cofinal extension of M iff U contains an

M-finite set.
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Proof.

Suppose B. is M-finite and B € U. Let fU

(where f e S,), be any element of Mye Let

a = max{f(x): x ¢ B} (working in M). a, of course,
cxists since B is M-finite, and Mykf' < a, by
theorem 6.2.2.. Hence MU is a cofinal extension
of M.

’JU

Conversely id" e My and if MUk~idU < a for

some a e€ M (where we are idéntifying‘ 4 with a),
then 3B e U s, th, B= {xe M : Nfid(x) < a} =
= {x € M : MEx < al, which is MN-finite,

. : .

We now begin the construction of the req-
uired U.

First,’ let Ax,y:<x,;y> € Sz be a <fixed pair-
ing function and @y, w, be the corresponding
projection functions, i.e. my(<x,y>) =x and
-ﬂ§(<x,y>) = ¥. | |

For BeB and <X,y>, <x',¥y'> € B define :
<x,¥> <5 <x',y'> | = ys<sy Ax = x' (mod 2Y), ana

<X, ¥> ~p <x',y'> & ‘<x,y><B <x',y'>sAx',y'> §Bi<x,y>.

Then ~, is a definsble (i.e. T-definable
or M-definable), equivalence relation on B.
Let <x,y>B'= {éx’,y'> : <3',y'§ ~B,<x,y>lg and

CJB = {<x,y>B’: <X,¥> € B}.

< induces a partial ordering on :jB (in

\'B . - _
fact an M-binary- tree-like _ordering) which we
. - A . v
shall also denote Dby SB. Also if B, C EvB and

B c C, then we ‘have %E = <CFB (in ‘both sences of
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<z and sc)f
We shall wusually regard all sets in ®

as sets of ordered pairs, Thus we shall speak

of the horizontal and vertical lines of B; for

B € B, meaning sets of the form ﬂ;1[s] N B and

ﬂ:1[8] N B, for some s e M, respectively.

For A eB, let 1lev(A) = the unique y s. th,

w[A] = {y}, if such a unique y exists, and 1let

lev(A) be undefined otherwise., Note that if

g £ A EUB (for some B ¢ B), then 1lev(A) is de-
fined.

On setting K= 1§ <x,9> : ¥y < x} (e B) we

can make the following ecrucial

Def 6.4,.2,

A set BeB 1is called correct iff
(1) Bck o o
(ii) Every set in ZDB is infinite.
(1ii) 'UB has & <z-least element.

(iv) Every element of :28 hasg precisely two

immediate <;-8uUCCESSOrs (in :ZB)'

(v) If 1, h are horizontal 1lines of B

s. th. lev(l) < lev(h), then wmi[h] c m [1].

(vi) If C, De IJB and lev(C) = lev(D), and

if Cc', D' are immediate < -8uccessors of C, D

respectively, then lev(C') = lev(D').

We first note that if B e B, then each
of ther above‘ conditions can be expressed by a
sentence in L, and hence there is a . sentence

(depending on B) which is true in M iff B is
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a. correct set,
Note K 1is a correct set.

Now let o be any function in S84 which
is constant on each set in :]K but takes different

values on different members of :)K Ce Lo

o(<x,y>) = <rm(x,2Y),y> for <x,y>e X,
% O otherwise,
where rm(s,t) = the remainder when s is divided
by t, will suffice.
We shall now state the main combinatorial
lemma ccncerning correct esets, and show how.: it
implies the maih theorem, as immediate Justific-

ation for these rather obscure definitions.

Lemma.. 6.4, 3,

Let f e 8,, and B (e B) be any correct
set. Then there is a correct set C c B, s. th.
either (i) f is one-one on every horizontal line
of G,

or (ii) ¢t =, Os
or (iii) f =n Tas

or (iv) £ =, & -i.e. f is constant on C.

Lemma 6.4.4, _ o
Lemma . 6.4.3. implies 3an ultrafilter U,

over B, s. th. $(MU) ~ Pg.
Proof, H 7 .
For A € B, define fA € S¢ _by :
£,(a) = %o if x € A

1 if x £ A.
Let ‘B= be any corpect set. | ,
Appiy 6.4.3. with £ ; £, to obtain a correct
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set, C, satisfying (1) or (11) or (1ii) or (iv).
But fA takes only two wvalues, 80, s8ince C 1is
corréct we must have C satisfying (iv). Thus we
have shown that if B is any correct set and
A eB, then 3Ja correct CcB 8. th., Cc A or
C ccA (the complement of 4).

Now enumerate S;XB as follows :

<F13B4>y, <f23Bg>seeepn <FnsBn> seee n € w, n >1.

We can now construct a sequence of sets
from B, Agy Agseeeshpsee.nl € w, 8. th,

(1) 4, = X,

(11) Vi e w) Ay Dby 4s

(ii1) Vi € w) A; is correct,

(iv) (View, 1>1) A cB; or 4 ccBy,

(v) (View 1i21),

either (a) f; 1is one-one on every horiz-

ontal line of Ai’
or (b) f; 5 O

s R

or (c) f; =, g,
i

or (4) £s ;Af 0.

It is clear how the Ai are constructed

using lemma 6.4.3. and the first part of this

proof. - v -
(ii1) and (iii) now imply thap {Ai: i g w;
can be éxtended to an ultrafilter U over B

containing no M-finite sets. (Every correct set

must be M-infinite by 6.&,2.(11) ).
& x th
We clainm $(MU) e Pg, In fact we show  the

2 8
elementary sdbstruptures of M, are arranged a

follows :
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Firstly, we- clearly have : O Gy T g © §K

9 1d ; hence, since K = A, € U, MM, <M, <M, by 6.2.4.

9]

Also MXMg=CMy.

Now, %ty cohstruc,tion, every set in U con-
tains a correct set, so it followas from def.
6.4.2. that

| M=E My S Mp TN veerneena (1),
and MLy, ceeeenaas(2).
Now suppose MN'>M,; and M’7/'M3; Then

WP € M' and 'n‘;J € M'. But the pairing function

: B . N § |
AX,y:<X,y> € S,. Hence <7TP,'ITE> € M' ; i.e, id e M',
' —
so M = MU. |
ThU.S, M1VM3 = MU o-o-oo-aoi(3).
We' now ShOW MQAM3,= M -oo-loooon(l—l-)n .

Suppose T € S; and 'rU € Mé/\Ma. Then T @U o]
and T _éuwi by lemma 6.2.4.. |

Hence 3B € U. s. th, 7 g o and 7 < wi.‘.‘.(y*),
and we may suppose B correct by the construction
of U. Let yo be the J’level of ther éB-leasp, 7
element, D, ‘of JB. (This exists by 6.&.23(111) Ye

B — ] ]
We show <X,¥>, <x',y'> € B=?,"'(<xs.Y>) = 7(<x',y >),
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80 that 7 3R O and thus MyAM; = M.

SO0 suppose <X,y>, <x',y's € B.

Then 171(<X;Y>) = Ty (<xzyo>)

d ! . , . R odoocoot.0(**)'
and my (<x',¥'>) = 7, (<x',¥,5>).

Also <x,¥y>, <x',y,> € B by 6.4.2.(v). There-

fore, by the def., of Dy <X%,¥9>s <x',¥y5> € D,

80 <X,¥o> ™~y <X',¥5>, Wwhich implies o(<x,¥,>) =

= o(<x',¥,>), by the def. of o. Therecfore, by (*),
T(<%,¥0>) = T(<x',¥0>). But by (*) and (#+),
T(<x,¥>) = 7(<x,¥0>) and 7(<x',y'>) = 7( x',¥0>).
Hence T(<x,y>) = 7(<x',y'>), as required;
Now. by the def, of U and lemma 6.2.4.,
M'+4M3=>M' =M, or M' =M B D I
In particular, M=CM, ;- A (-3
Now suppose M'Zﬂh. Choose £V e M'-Ms. We

may suppose ﬂé-QU f; B8say mg gB f = fi and B € U.

Then by the def. of U :

either (1) fi is one-one on every horizontal line

of Ai’

or (ii) f .

i —Ai

But if (i) holds we have, using 7z < Iy,

that f. is one-one on BN A, € U. Hence f =f;, =
i i iU

= L v :
=y idg, and M = MU. |
Suppose for no WfU_e M'-M, do we have (i)

above., Then fU e M'-My, T EU 6, Hence M' = Ma.

Thus M'J; Mg =>M' =Mz or M= My cevonel(7)e
In particular, Mi:smMg:f?MU ceeees(8).

Now since U contains no M-finite sets, MU
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cannot be a cofinal extension of M, by 1lemma

6.4.1.. This, and (1)-(8) now imply the hypotheses
of lemma 6.3.5. with Ny replacing M*.

Hence, VM'stM;, M'ZM, or M' =N,. From this,

(3), (W), (6) and (8) we obtain $(MU) ~ P, as
required.
o

The proof of lemma 6.4.3, is not hard in
principle ; in fact by 'drawing diagrams' it becomes
fairly obvious, although the details, as we shall
see, are rather messy. I should 1like now, however,
to explain why we do not constfuct U directly
with the required properties. For this would re-
quire a proof of lemma 6.4.3. ‘with (i) replaced
by the atronger condition :
d?

egither (ia) f =5 1

or (ib) f =g Tis
and this I could not do.

However, lemma 6.3.5. tells us, essentially,
that in constructing the U of 6.4.4., we only
have to guarantee (i) to ensure that (ia) or (ib)
must eventially occur. |

Now the proof of lemma 6.4.3.. |

Suppose f € Sy and B is any correct set.

We first construct a correct set ’C' CB s. thf 3
Va G:JC” either (1) £ is constant on A, .;.;.(*).
or (ii) f is one-one on A.
We define, by induction, sets lojslisecesligees

(i € M), which will be the ‘horizontal 1lines of

C' in ascending order of 1eye1.
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Thus we will put ¢ = U{1;:1 e M},

We simultaneously define sets: Ag‘,. .‘.,Ai

2t —1
i e My which are elements of ‘jB and are s. th.
3 .
1; N Ay for j§< 2, will be all the elements of

UC’ having the same 1level as 1i.i.
We require the following induction conditions :

(i) 1, c eome horizontal line of B, and
lev(li_1) < lev(li).

: i . i . .
(ii) Aj GUB VJ <27, and 1, C U{,A% : 3 < 2%,

and 1, N p% is infinite Vi< 2%, and £k =

> An4 =2

(1i1); Hither i =0 or V3 < 2!

there are
precisely two numbers Jo, J1 < 2i 8. th,.
i i 1-1 -
. . C nau. .
m (a3, Uay) 0Lyl o Daym n1y gyl
(iv); (V3 < 21) f is either constant on

i i
linA'j or one-one on linAj.

To give thé induction inertia we also
require : |

(v), Vi <2 3D§ eJy, s th 1r1[A§ n1,]n
N m(D'] is infinite VD' €Dy s th. Dy D'

First 1let B*(y,s) be a formula 8. th. as

y runs over M, B} = s e M : MEB#(y,s)} runs over
811 sets in UB’ and y #y' = B§ n Bg‘,v = p.

Def, of 1g.
Let 1 = <Bfleast element of UB’ and to = lev(l).

We define the function g on 1 Dby 3
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g(0) = <x,,t,> where Xy = UXi<X,ty> € 1.

g(y+1) <x',ty> where x

= pX:<X,to> el A

Axe B ] A(Veo)(x £ 7, (2(2)) A

Af(x,t,) # £(g(z))) , 1if there
is such an x.

= g(y), otherwise.

If the range of g 1is M-infinite, 1let
1, =range(g), and A$ = 1, whence DY ='1 will satis-
fy (v)o. Conditions (i),-(iv), areeasily checked -
f being one-one on 1y N A = 1,. |

If the range of g 1is M-finite, there must
be some D eCLs s. th., fli<x,to>:x ¢ 7, [D]}] is

finite, It 1is easy to define, in this case, a

set D €:3B s. th. D <z D and a set D" c D s. th.

f is constant on D¥ = {<x,ty>:x e m, [D"]}, and

s. th. Ve ey, D<y0 2mlox]l nmlel is infinite.

We now put 1o = D*¥, A = 1. Condition (iv),
is satisfied since f 1is constant on D¥ = 1, =
=1N A%, and (v), is satisfied with D§ = D. The

other conditions are +trivial to check.

Now suppose for some 1i; lgseeeslis A%

have heen defined (¢ <2) satisfying (i) -(v);i.
Let D; (V3 < 2*) be the sets given by (v).

We can suppose all the D;, have the same level

and (v)i still holds.

Now consider the elements of :JB which are

immediate sB-successorsu of  the D%. Eaech D; has

two such SB—successors, say G@,.-Gﬂ and all
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k the

have same

(This follows from the

For k <1, J < Zi
x e m [al n 1. 13
1 J i L4

Now each Gﬂ*

of B in a natural

e,

Tj=

Xk {<x,y> ¢ B : vy =

Further, Gg* is

of tJTj. Hence we can

k
on the Ti as we did

of the proof, to obtai

which £

(1),

h !

is either

+1-(v)i+1 hold when

equal to G§,G9?,G%,Gi,...

*Gi k<1
Ai+1
J1

induction

= Uf

E

and :;Lis

—

G

The is

ie M},

(Aetually we have not

being defineble from B
struction was uniform i

uniform in 1.

leaving the reader +tco

We now construct
8. th, either (i) £ is
“in .’JC,, , or (ii) £ i

in gcn'.

level (4

generates

one~one

we have

We conclude
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is " fixed ), say  tg.

correctness of B),

Gj :

let G’J* = k

o= lex,tgs €

a correct subset,

way, hemely :

to A x e m[ol*]1.

the ., (= sTi)—least element.

perform the same construction

for B in the first part

*gd  of Gﬂ*

subsets X

n on

a

constant nd th,

we put A8+1
i

27 -1

s Gy

or Se

i41
ses e 3A§i+1_1
oty

1Gg respectively,

j < 2%}, where 1in (111),

l.e. 3, =23, 3,=23+1.

now complete and, putting

zccomplished (#*).

sz2id eanything about C'

and f - but the &gbove con-
n B and f and the induction
that C' 1is M-definable

check the details).

a correct set C" c C'
ccnstaent on every set
8 one-one on every set

ceeeacsess (¥%).
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First a digression.

Let ) be an M- full binary tree in which
every element has finite level (this ordering is
definable in P). By a strict subtree ' of 7J,
we mean a subtree of ) which is a full binary
tree (we drop the prefix M- from now on), and
8. the if a, be P and a and B have the same
level in ', then they have the same level in 7).

Now the existence of a C" satisfying (**)
is clearly equvalent to the following claim :

If every node of 7 is coloured either
red or blue, then tj has a monochromatic strict
subtree.

To prove the claim, suppose T is coloured
as stated. Then one of the following must occur :
either (1) Va e¢J, 3x, x 2 height of a, s. th.
every level of CJ of height 2 x contains at least
two red nodes, b and ¢, s. the a¢b and a {c.
(Where ( 1is the tree ordering).

or (ii) 3a. € 7} s. th. there are infinitely
many levels, 1l,above a, s. th. 2ll nodes (except
possibly one).. in 1 which are » a, are coloured
blue.

It is easy to checkv that in case (i) there
js a red strict subtree of J, and in case (ii)

a  blue aene. Hence we cean construct C" satisfying
(**).

Suppose C" satisfies (#*%)(ii). I claim we
can find a correct set C c C" s..th. (i) of

lemma 6.4.3, holds.
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Let 10,11,...,11,... i eM;, e the horizontal
Iines of C" in increasing order of 1level.
We define 1J,1{,...,1},... i e M s. th. Vi :
(1), 1 ¢ 1; and wi[l'i] c iri[li’_1] (or i = 0),

(i1)y DeJw, DcI; =5 DN 1! is infinite,
(iii); £ dis. one-one on li,
(iv); D €Jgs Dcly = m[DN 1.i‘] N [D']

is. infinite \/D’ € DC” 8, the D éC" D'.

Let 1 = Lo.

Suppose lé,...,l{ have been constructed for

some i > 0, satisfying (i);-(iv); V3 < i.

Let lev(li ) = tg.

+1

Define a(y) & 1ev(C;*) > tg., (Where the

¥ operator 1is defined as on p. 70 six 1lines from
the Dbottom).

Define g as follows :

g(0) = MX:iX € Wi[li+1] N ”i[lil

g(y+1) = px:(x e ﬂ}[li] N ﬂi{C;*] where
z = (y+1)st. element, t, satisfying G(t)) A ((¥psy)
(f<x,t0>) # f(<g(P)ato>)))-

By the induction hypotheses (i)i-(iv)y, &(¥)
1 since

is alweys defined and range(g) c ﬂl[ﬂi+1

G(z) A x ¢ wi[c;*] = X e w;[li+1], by the correct-

ness of C".

Let 1!

i = f<xyt,> ¢ x e range(g)}.

i ~(iv). can now be verified,
i+l i+l

Put C = Uf1l] : ic¢e M}. That C is correct
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and that f is one-one on every horizontal 1line
of C (i.e. on Zb.]!. Vi ) follows from the construc-
tion. Hence we have (i) of lemma 6.4.3. if C"

satisfies (*#)(ii).

It remains to show that if C" satisfies
(#%)(1) +then there is a correet Cc C" s. th.

(i1) or (iii) or (iw) of 1lemma 6.4.3. holds.

This 1is again equivalent to a partition
theorem on trees, hnamely :

If 7J is any tree as deseribed on p. (73)
and D is coloured in any way whatsoever (possibly
using infinitely many colours) then it has a strict
subtree 7}' s. th.
either (i) every node of ')' has a different
colour,

or (ii) nodes of ' of the same level have
the same colour, %bhut nodes of different levels
have different colours,

or (iii) every node of ' has the same colour.

To prove this, suppose .J is coloured in
any way. Suppose first that the following holds :
(+) Vzeu, VxeD, Flevel, 1 of 'J above x,

s. th. Vilevels 1' ebove 1, 1' N {y €J:yyn xi is
at least z-coloured (i.e. there are 2z colours
appearing in this set).

We "~ .define J' to satisfy (i), by constructing
its levels lpslisees Dby induction as follows.

Let lo = {least element of TJi.

Suppose lo,...,li have %been constructed s. th.

e (1), every element of U{lj :j €£i} nas a
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different colour,
(2); (V3 < 1) IL:j c some level of 1.

(3, (3 < 1) lj containag 29 elements,

(W) <U§1j:j < i},«> is & binary tree of
height 1i.

( < once again denotes the ordering of J ,
and we use the same symbol for its restriction
to subsets of J).

&. th.

We construct 1i‘ satisfy

+1 lozeeesly g
(1 )i+1-()+)1+1.

Teke z = 2°%° in (+) and find a level, 1

i+2

of J s. th. Ni{y eJ:y» x} is. zt least 277°-

1
coloured Vx ¢ 1;. This is possible from (+)

since 1i is finite &and U hes infinitely many

levels. Suppose 1; = {xo,...,xziq}, and let

Aj =y eD:y» xji n1 (Vi< 21).

Then since U{lj:j < i} hss ol elements,

we may pick two elenments, y% znd y’j, from each

by & th. every element of U[lj :j < il v

U {58,55,58,5%,-0.,531_, »¥3i-4] haas = aifferent
colour. Putting 1; , = 158,38.92,9%,---55%1-, 2951 4}

completes the induction. ' = {li :i ¢ ¥} now
sztisfies (i) above.

It (+) is fzlse, then using the szme
method as - that .on p. (73) we czn construct =
strict subtree. 3" of ¥ s. th. every level of
73" has the séme colour. It is then a triviality
to construct a strict subtree J' of J¥ (and
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therefore 7)' is a strict subtree of 7J) s. th.
either (i) or (ii) holds.

The proof of Ilemma 6.4.3. is now complete,

a

Lemmas 6.4.3. and 6.4L.4. now give the main

Theorem 6.4,.5.

3M*ET s, th, $(M*) « P,.

£.5. Cofinal extensions of models of P,

A complete answer to the problem posed on
P. 52 still seems a long way off - even for finite
lattices. To obtein results for the simplest
modular non-distributive lattices, however, lemma
6.3%.3. tells wus that elementary cofinal extensions
of models of P must be investigated, and in this
section we look at minimal cofinal extensions.

We first extend some of our previous defi-

nitions concerning simple extensions.

Def. 6.5.1.

If M 1is any model of P, M*¥ 1is called a

simple extension of M if M*>»M, and 3z ¢ M¥ s. th.

M* = M*[M U {al].

Now if we let By, for MEP, be the
Boolean algebra of M-definable (i.e. definable
using parameters from M) subsets of M, and U

e any ultrafilter over BM’ we can construct MU

in a similar way as in section 6.2. where the
elements of MU are now M-definable total functions
(from M to M) factored modulo U, Theorems

analagous to 6.2.2, and 6.2.3. can now be proved,



(78)
as can one analagous to 6.2.4. when the obvicus
modification of the definition of X is intro-
duced. We leave the details to the reader.

The point of doing all this is the

following

Lemma  6.5.2,

If M is &any mcdel of P 2nd U any ultra-

filter over BM’ then M is a minimal elementary

U
extension of M, i.e. M:g@MU, iff every M~definable
one-place function is either constant or one-one

on a set in U, and U contains no singleton sets.

Further, M is & cofinal extension of M iff U

U
contains an M-finite set.
Proof,

411 is clear from the modified 6.2.4. and
6.4.1..

o

Now Gaifman has shown [6] that given any
MF'P, there is an ultrafilter U over IBM, containing
no M-finite sets s. th. every M-definable one-place
function 1is either constant or one-one on some
set in U. Upon observing the fairly trivial fact
that M<"M* implies MN* is either a cofinal or
an end extension of M, we see that MU is a
minimal elementary end extension of M.

We should 1like to prove an -analagous result

for cofinal extensions bdbut can, unfortunately,

only prove the followihg special cases :

r

Theorem 6.5. 3.

Suppose M is a non-standard model of P
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satisfying one of the following conditions :
either (i) 3a e M s th. {xe MMEx < a} =N,
or (ii) M is saturated.

Then M has a minimal cofinal elementary
extension.,
Proof.

Suppose M satisfies (i). ILet F be the
function in 8, s. th. Pl (¥x)(F(x) is the number
of partitions of (i.e. equivalence relations on)
ly 1y < x}).

By a modified over- spill arguement we can
find a non-standard b e M s. th. MEF(b) < a.

Using (i) this implies there are only countably
many distinct M-definable partitions of the set

{y ¢ M: My < bl. Thus there is a sequence fgo,fy,
eoesfpnsece N € w, of M-definable one-place functions
s, th. given any M-definable one-place function g,
we can find ne w s. th.:

M (Wx,5<0) (£, (%) = £, (¥) € g(x) = g(¥)).

Thus we shall he finished if we can
construct an ultrafilter U over CBM s. th. Vne w
3A ¢ U 8. th. f, is either one-one or constant
on 4, and {x e M :MExX < Db} e U.

We do this by constructing a sequence
NoshyseeesBysee. N € g of sets in [BM s. th, \7’n € w

(1) fyeM M y<bloa,_, oA,
(ii)n A, Nw 1s infinite,
(iii), f, is one-one or constant on Aq.

decreasing sequence of infinite elements of M
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8. th. for all infinite c e M, 3n e w s. th.
MED, < c. Such a sequence exists by (i) of the
theorem hypotheses,
Now suppose AgseesshA, have Dbeen constructed
to sat sfy (i),-(iii),. Suppose, firstly, thet L
is constant on some infinite subset of 4, N w -

taking the wvalue ¢, say.

Let Ay, =lxe M MEx<b ,Axe Ay ATy, (x)=cl.

1 N+

Ir r is constant on no infinite subset

n+1
of Ap N w, 1t must be one-one on some infinite
subset of Ay, N w. Define the function G by :
g(0) = UXIX € Bn,
G(y+1) = px:x € A, A X > G(y) A (Ves<y)

such an Xx exists,

G(y) otherwise.

Then G is an M-definable function. Let

A4 =range(G) N [x e M ME x < bn+1i.
In either case (i)m_1—(:'Lii)m_1 are easily
verified.

Now. extending {4, :n € w}] to a non-principal
ultrafilter over BM completes the proof,.

Note that if ¢ 1is an infinite element of
M, then 34 € U s. th., ME(Kx)(x € A= x < ¢). Hence
{x ¢ M :ME1d(x) <c} € U d.e. Mk 1aY ¢ c. Thus

U

id is an infinite element of MU which 1is

smaller than evéry infinite element of M.
Now suppose M satisfies (ii) of +the theorem
hypotheses and ﬁ = K, Then there are K one—place

¥~Gefinable functions ; 8ay fosfisesesf seee O < Ku .
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is a k-enumeration of then.

We define elements of By C 2¢ DD >

(a < k) s. th. each c, is an N-finite infinite

set and fa is. one-one or constant on ca CV&‘< K).
SUppose CoaeeesCyse.. (@ < Bi< k) have been

so defined. If B =vy + 1, let the number of elements

in ¢, be a. (i.e. there is &an M-definable one-

Y
one map from c,, onto {x e M :MFx < a}). Then fﬁ
must either take one value at least [WNa] times
on ¢, or must take at least [Na] walues on ¢,
([vx] = the integer part of ~x - this is an M-de-
finable function). It is now easy to define a
is one-one or

subset cﬁ of ¢ on which f

y’ B
constant, having ‘'M-cardinality' [~va]. But a must
be infinite, by our inductive hypotheses, hence

go is [NWa] and thus ¢, is M-finite but infinite,

B

Now if B is o 1limit ordinal, consider the
set 7 of formulae

{"x codes a finite set having at least n

elements" : ne w} U {"f is one-one or constant on

the s8et coded by x"} U !"the set coded by xC ca":

& < ﬁf.

A similar arguement to that used above
shows that 7 is <finitely satisfigble in M.
Certainly < k parameters from M are mentioned in
7, and so0, since M 1is saturated, 7T 1is realised
in M by ¢ say. Setting e - the set coded by ¢

complctes our induction, and theorem 6.5.3. follows.

D .
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Def. 6- é‘oh—.
For M, M#[P, M non-standard, we say that

M* 1is a normal extension of M if M*sz and

Ja e M* 8. th. @ < {a] < M-w in M*,

Thus we proved ebove, 1in fact, that every
model of P satisfying 6.5.3.(i) (in particular
every non-syandard countable model) has a minimal
normal extension. We now ask the same question
for models satisfying (ii). It should be fairly
clear that the proof we used for saturated models
above can be adapted .for models satisfying (i),
but would not, in generel, give us a normal
extension. Thus we are essentially asking if the
proof we used for (i) can be adapted for aatur-
ated models., We first make the following definition

due to Choquet [2].

Def., 6.5.5.

A non-principal wultrafilter U over @ (i.e.
on the full power sct of w) is called Ramsey
if given eany partition {ai:i € w}é of w, either

(i) 3i e w s. th. a; € U, or (ii) 3a € U s. th.

a n ai <1 VH.e W.

. We .can now prove

Theorem 6.5.6.
| If M is an w;-saturated model of 7P, the
.following gre equivalent
(i) M has a minimal normal_ extension,

(i1) There exists a Remsey ultrafilter over .,
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Proof.
Suppose U 1is a Ramsey ultrafilter over g,

We show that M* = ?U‘ (the wusuel ulitrapower of

M ower U - see [1]) is the required extension.

Certainly M*2 M and w < idU < M-@w in M*
(where id is here the map taking each n e w to
its copy in M), so M* is a normal extension
of M.

Now suppose f e M. Then by considering the
partition if-1[a] ta ¢ M}, of w and using the fact
that U 1is Ramsey, we see that 34 ¢ U s. th.

f 1is constant on A, 1in which case fU € M, or
f 1is one-one on A. In this 1latter casc we
proceed as follows.

Let T be the following set of formulae ¢
{'x is a finite set of ordered pairs'} y
U §W2)((3t)(<z,t> e x) =(3t)(<z,t> € x))} U
U [(Fzst,t")(<k,3> € X A<t'yz> e x = t=1t")y
U f{<nsa> ¢ x tne A s. th, f(n) =a and a e M} y

U {(3y)(<n,y> € x :n ¢ 4A}.

Clearly T can be written properly as a
set of formulee of L wusing perametecrs from M,
and uses only countably many perameters from M,
It is also finitely satisfiable, and so0, since
M is @, -saturated there is an element ¢ of M
realising T.

Now ¢ codes a one-one function with M-
finite domain, which agrees with f on A. Let
F be the M-definable total function defined Dby :

Fx) = ib, if <b,® e c;

0, otherwise,
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Then Ac {ne w :MEF(£(n)) =n}, and o
M*F:F(fU) =.idU, by the usual form of Los' theorem,
[1]. Thus any elementary substructure of M#% con-
taining M and fU, must contain idU. But it is
1,

easy to show M* = M*[id from which it <follows

that M* is a minimal e¢lementary extension of M.

Now to show (i) implies (ii), suppose M#
is a minimal normal extension of M.

Let a8 e¢ M¥* be 8. th., w< a < M-~w. Then
a € M¥-M and since M* 1is a minimal extension of
M we must have M* = M*¥[M U [al]. Letting

U= {A € B and

q (MFRa € Al we see that M¥ = M

U?®
it follows from lemma 6.5.2., that every M-definable
one-place function 1is either constant or one-one
on some set in U,

Let U' = {ANw A € U}.

Then it follows from the choice c¢f a eand
the fact that M 1is w,-saturated that U' 1is a
non-principal ultrafilter over w.

Suppose iai :i e w} is a partition of w.

Define f:w=>w by f(n) = ui € w:n ¢ a;. Agein using
the fact that M is saturated we can find an
M-definable function P, s. th. F(i) = £(i) for all
i e w, using a simple types arguement similar to
those ahove. Since F 1is one-one or constant on
gsome set A e U, we must have that £ is ong-one
or constant on ANwe U'. It follows that U'

is the rcequired Ramsey ultrafilter.
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Now the existence of a Ramscy ultrafilter
over w is dimplied by +the continuum hypothesis
([2]), but cannot be proved from the axioms of
Zermelo-Fraenkel set theory with choice (ZFC)
(¢.'2¢2ult of Kunen - unpublished). Hence, although
we can prove (in ZFC) that every counteble non~
standard model of P hes &a minimall normal extension,
it follows from theorem 6.5.6. (and thc ¢xistence
of wy-saturated mode¢ls) that we cannot prove in
ZFC that every non-standard model of P has such
an 'extcnsion.

Whether the latter comment holds when we
replace 'normal' by Jjust 'cofinal elementary', or
whether every non-standard model of P does have
a minimal cofinal elementary extension, we do

not know.
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Chapter 7. Some Open Problems.

For the most part, theorems 1in this thesis
apply to all models of P - that is we have never
exhibited model theoretic properties which distin-
guish different complete extensions of P. Thus
our methods are not delicate enough to construct
models which give, say, informative independence
results in Peano arithmetic. We therefore pose
the problem - 'Find .z . property for which there
are complete extensions T,, T,, of P s, th. every
(or some) model of T, has this property, but
no model of T, has it’',

H. Friedman has suggested the property of
having a certain order type of cardinality w,.
(A1l countable non-standard models of P are order
isomorphic).

Chapter 3 suggests the question - 'does every
non-standard model of P have an -elementary non—:éi
end extension. It would be curious if this were
false bDut. I can think of no reasonable way of
attacking the problem. One might think a gener-
elisation of Friedman's ‘theorem would help. However,
we can construct an elementary extension of N,
of cardinality w,s, Wwhich 1is not only non-isomorphic,

but nonslh, w—elementarily equivalent, to all 1its
p A

proper initial segments. (ywi,w is the language
allowing conjunction and disjunction over any
countable set of formulae involving only finitely
many free variables.).

Finally,problems already raised implicitly



(87)
are - 'Is every countable non-standard model of P
isomorphic to 2ﬁ° initial segments of itself ?',
and - 'Does. every non-standard model of P have

a minimal cofinal elementary extension ?'.
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