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Abstract.

After introducing basic notation and results 
in chapter one, we begin studying the model
theory of the Peano axioms, P, proper in the 
second chapter where we give a proof of Rabin*s 
theorem that P is not axiomatizable by any 
consistent set of sentences for any n € w,
and also answer a question of Gaifman raised in
[7] p. 141.

Another problem, from the same article, is
partially answered in chapter three, where we show 
every countable non-standard model, M, "of P has 
an elementary equivalent end extension solving a 
Diophantine equation with coefficients in M, 
that was not solvable in M.

In chapter four we investigate substructures
of countable non-standard models of P, and show

Vthat every such model M, contains 2 ® substructures 
all isomorphic to M. Other related results are 
also proved.

Chapter five contains theorems on indescern- 
ibles and omitting certain types in models of P.

Chapter six is concerned with the following
problem : ’If m {s P, the set $(M), of elementary 
substructures of M, is lattice ordered by inclusion. 
Which lattices are of the form $(M) for some m }=P?'.
We show that the pentagon lattice is of this 
form (answering a question suggested in [?] p. 28o)
and produce a class of non-modular lattices all 
of whose members are not of the form ^(m ) for
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any M = N, the standard model of P.

Elementary cofinal extensions of models of 
P are also investigated in this chapter.

Finally, chapter seven concludes the thesis 
by posing some open problems suggested by the 

preceding text.
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One Introduction and Notation.

1.1 Introduction.
There are structures which cannot he dist­

inguished from the natural number system by 
first order logical properties of addition and 
multiplication, but which are otherwise very 
different. Such structures are known as non­
standard models of arithmetic and are the objects 
of investigation in this thesis.

All first order statements true of the 
natural numbers that we shall need in proving 
results about these models can in fact be deduced 
from a suitable first order formulation of the 
well-known Peano axioms, P, ([11]) and hence to 
obtain more generality we shall for the most 

part only assume our models satisfy these axioms.
In chapter two we state the Peano axioms 

and use model theoretic methods to investigate 
various equivalent and non-equivalent versions of 
them.

Chapter three deals with the solvability 
of certain Diophantine equations with coefficients 
possibly in a non-standard model rather than just 

in N, the natural number system, while chapters 
four and five develop further the model theory 
of P.

In chapter six we regard a model of arith­
metic merely as a universal algebra and investigate 
the possible arrangements of elementary substructures 
and extensions of it. Finally, in chapter seven



(7)
we make some concluding remarks and suggest
some open problems connected with the preceding 
work,

1.2 Notation
We shall assume familiarity with general 

mathematical logic and model theory throughout (as 
developed in e.g. [1]). In particular we shall
use the following logical symbols ;

A  - 'and* ; \/ - 'or* ; - * implies' ; —\- 'not* ;
3 - 'there exists' ; 3.* - 'there exists a unique' ;
y -  'for all' .

Other symbols used are ;
h  ~ '(proof theoretically) entails' ; — 'is

a model of' ; c - 'is a substructure of' or 'is
a subset of', depending on the context ; = - 'is
isomorphic to' ; = - 'is elementarily equivalent to' ; 
^  - 'is an elementary substructure of' ; fi - inter­
section (of sets) ; U - union (of sets).

If M is an L-structure for some first
order language L, Th(M) denotes the set of all
sentences of L true in M.

The vector symbol It will denote a sequence
Xo,Xi,... of arbitrary finite length unless we 

specifically mention the length.
Structures will usually be identified with 

their domains where no confusion can arise. Thus
if M is a structure we write a e M for a is

ssan element of the domain of M, and M for the
cardinality of the domain of M, etc. Also, if
^0****'^n-1  ̂ and 0(xQ,...,x^_^) is a formula
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of L(m ), the language of M, with the variables

^0* " ' " '^n-1 free, we write M|= )f where

we should properly write M^^0(%Q,...,z^_^)[aQ,...,a^_^],

Finally, w will always denote the set of
natural numbers - i.e. the first transfinite ordinal,
and m, n will be reserved for representing elements 
of OJ.

Other notations and conventions will be
introduced in the sequel as we need them.

As v/e have already mentioned, we shall re­
quire some theorems, known to be true in N, to
be provable from P. Such proofs of most of the
theorems we need will usually be very easy ; 
although there are two exceptions.

The first is Matijasevic*s theorem (3^1.1.); 
and that the usual proof [9], can be converted 
to one from P has been checked by A. Pridor ([?]
footnote p. 133)*

The second is some form of an enumeration
theorem (e.g. 3*2.4.) of 2^ predicates (see def,
2.3*2.). Since usual proofs in Th(N) of such 
theorems only require a certain elementary coding
defined by induction, they need only a little
extra formalism to be rigorous proofs from P, 
and we leave the details to the reader.
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Chapter 2. P and related systems.

2.1. The Peano axioms and their basic- model theory.
Let L be the first-order predicate language 

having as non-logical symbols two 2-place function 
symbols, -k (addition) and • (multiplication); and one 
1-place function symbol, ' (successor); and one 
0-place function symboL 0 (zero).

This thesis is concerned with the model 
theory of the following axiom system, denoted by 
P, formulated in L ;
P.1 (Vx)(x* / 0),
P.2 (Vx)(Vy)(x* = y '-4 X = y),
P.3 (i) (Vx)(x -k 0 = x),

(ii) (Vx)(Vy)(x + y' = (x + y)'),
P.4 \(i) ('/x)(x'0 = o),

(ii) (Vx)(Vy)(x‘y ' - x»y + x),
P.5^ ((#(0) A <Yy)(^(y) -4^(y'))) -4(\&)s6(y)),
where 0(y) is any formula of L having just the 
variable y free.

This, chapter is concerned with various 
equivalent and non-equivalent reformulations of 
these axioms. We first, however, introduce some
basic well-known facts about the model theory of P.

N will denote the standard model of P, 
i.e. the L-structure <co, +, , ', 0>, where the
operations mentioned are just the ordinary addition,
multiplication and successor functions on the set 
of natural numbers, co.

Any model, M, of P, not isomorphic to N
will be called non-standard.
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If Mj=P, a subset A of M will be called

definable (in M ) if there is a formula ^(x) in
L, with just X, free, s. th.

a e A iff M̂ «:<̂ (a).
An element a, of M, will be called definable

if [a] is definable (in M), and M is pointwise- 
definable if a. is definable for all a € M.

A subset A of M is an initial segment of 
M if a e A, b e M and M|=b<a b e A, where (x<y)
is the formula in L defined by

x<y iff (3z)(x + z =,y).
vl/e further define :

x<y iff x^y A  x ^ y.
It is easy to show that if m |=P, there

is a unique embedding e:N-^M s. th. e[N] is an 
initial segment of M, and we always identify N
(or CÜ ) with this initial segment, and call any 
element of M-N non-standard or infinite.

The following results are easily proved.

Theorem 2.1.1.
(i) If M = M' and M and M' are pointwise-

definable models of P, then M « M*.
(ii) if m |=P, there is an M ' ^ M  s$ th. M* 

is pointwise- definable, and (by (i)) M* is unique
with these properties.

The reason for our current interest in
pointwise definable models is to prove a syntactic 
result about P, namely

Theorem 2.1.2. (Friedman).
Let P* consist of the axioms P.1, P.2,- P,3,
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P*4 and for each formiila ) of* L having just
the variables It, y free,
P.5^ A 0/y)(ç^(3t,y) 9&(%.y*))) (Vy)f6(3,y)).
Then P and P' are deductively equivalent.
Proof.

Clearly P ’ |—-P.
Suppose Mjï^P. It is sufficient to show m |^P’. 

Using thm. 2.1.1., let where M' is pointwise
definable.

Let ç!)(it,y) be any formula of L having just
the variables it, y free. It is sufficient to show

M ’hP.5^.
Suppose c M*. Say ^ = <Sq , ... ,â __̂  >.
Choose fmls. #Q(y),...,0^_^(y) of L s. th.

a  (3J y)(̂ i, (y) 0 < i <1 n-1,
which is possible since M* is pointwise definable.

Let f{z) be the formula;
n—1

(3yQ,...,yj^_^ )(‘̂Aq 0i, (yi, ) A  0(7,z)).
Then since we have M'|=P.5^j from

which it follows that
M'1=(0(^,O) A  (Vy)(^(^,y) ^(^,y*)) (Vy)0(t,y)).

But Ë was an arbitrary n-tup le from M'.
Hence M' as required.

□

Perhaps the most well-known variant of P 
are the well-ordering axioms, W.0., It is easy 
to show that P can prove the formula (x < y)
defines a total ordering, but W.C. states, it is, 
in a certain sence, a well-ordering. More precisely
the axioms of Vf. 0. are;
P.1, P.2, P.3, P.4, together with
WO^ ; ((3y)^^y)*^»(dy)(0(y) a  (Vz )(z < y -4->9^(z)))),
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where ÿ(y) is any formula of h having just the
variable y free.

It is easy to show ;

Theorem 2.1.3.
pj-w.o.

However, we have :

Theorem 2.1.4.
w.o. |y- p.

Proof.
Consider the L-structure <cû  > (±) s (*) f CD 9 0> = M, 

where ©  > O  > O  are just ordinal addition, multipl- 
cation and successor respectively, restricted to 
the ordinal •

That M|=^W.0. is clear. However, ordinal add­
ition is not commutative, whereas the' sentence 
(V^x)(Vy)(x + y = y + x) can easily be proved in P.
The theorem now follows.

□

The proof of theorem 2.1.4. exhibits a very 
simple sentence of L which is provable in P but 
not in W.C., and thus one might think that W.O. 
is very much weaker than P.

The gap between P and W.Ow, however, can 
easily be bridged.

Let Q denote the (Robinson) sentence :
(Vx)(x / 0 -»(3y)(y' = x)).

Then it is easy to verify ;
Theorem 2.1.5» :

P and W.O. U ÎQÎ are deductively equivalent.
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We can now define W.O.* in an analogous

way to P ’ and we leave the reader to check that 
W.O.' U iQj and W.O. U [Q] are deductively equivalent.

2.2 Overspill.
The well-ordering axioms imply a very import­

ant model-theoretic result which we shall he using 
throughout this and the following two chapters.
It is the so-called overspill lemma, and has many 
forms, the most easily stated of which is ;

Theorem 2.2.1. (Robinson).
Suppose M is a non-standard model of P,

0C^,y) any formula of L, and ^  c M. Suppose further 
that for all infinite b e M, m |==(3x)(x < b A0(^,x)).
Then M |:= ̂ (^,n) for some n € w.
Proof.

Since m 1=-W.O. *, there must be some ^-least
element, n of M. s, th. M|=:^(^,n) and such an n 
cannot be infinite by the theorem hypothesis.

□

'there are other variations of 2.2,1. that
we shall use in the sequel and we shall just
refer to them as 'overspill*. The most common 
will be- * if m |=̂ (Vx )(3Î y)0(x,y), so that we may
write g(x) = y for 0(x,y), and if g takes only 
finite values for finite arguements, and takes 
arbitrary large finite values, then g takes arb­
itrary small infinite values for arbitrary small
infinite arguements.*

This can be proved easily using 2.2.1., and
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we leave the details to the reader,

2.3 Finite axiomctizahility.
In [1 R  ÿllNardzewski proves that if S is

any finite consistent set of sentences of L, then
8 }r/P. Rabin, in [13]> proves a more general result,
but we need some definitions before we can state
it.

Def. 2.3,1.
The set B, of bounded formulae of L, is

the smallest set s, th. ;
(i) Every atomic formula of L is in B.
(ii) If '(j), ^ e B, then so are 0 -•6,

and <py -ijr,

(iii) If 0 £ B, then (Vx)(x < y 0) e B and
(3x)(x < y A 0) £ B, where x, y do not occur bound
in 0.

We write (Vx<y)0 and (3x<y)0 for (Vx)(x<y-*>-0) 
and (3x)(x<yA0) respectively, from now on,

Def. 2.5.2.
The sets of formulae of L are def­

ined by induction on n e w :
(i) 2o = llo = B.
(ii) 2^^^ = 1(3^)0 Î 0 £ Rn, no member of 3̂

b ound in 0 j.
IIn+1 " K^^)0 : 0 E uo member of

bound in 0j.

The following theorem is well-known.
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Theorem 2.5.3.

If n > 1 and 0, f ç. 2^ (hn), there are 
formulae 2^ (Hn), and %  e
(2n) s. th. :

(i) P|— 0-1 (0 /'0'),
(ii) p|~. ̂ 2 (0 V/ 0),
(iii) P|-03 (3x)0 (P |- 03 (V'x)0),
(iv) P|-0^ H  (3x<y)0,
(v) Pp 06 ^Vx<y)0,
(vi) P| 06^-10,

where neither x nor y occur bound in 0 .

Nov/ Rabin's theorem asserts that if n e cu
and S is any consistent set of sentences s. th.
8 c 2n, then 8 ]yp. 'VYe give here another proof of 
Rabin’s theorem while answering, en route, a prob­
lem raised by Gaifman in [?]. Gaifman asked whether
a certain semantic property of L-structures forced 
them to be models of P. We make this more precise 
now.

Def, 2.3.4.
Let T be any extension of P in L. A fml. 

0(5c,y) is said to be T-functlonal if :
(i) Th(V5?)(3iy)0(5?,y),

and n-T-functional if we also have s
(ii)n 30(i^,y) € 2p s. th. T|- (V3,y)(0(ï^,y)m0(î^,y))

Def. 2.3.5.
Let m |==P and M ’ c M. We say that
(i) M* is n-functionally closed in M if 

whenever 0(x,y) is n-Th(M)-functional, cf c M ’ and
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M|=:0(‘̂,Td) for* b € M, then b e M',

and (ii) if V  < p W  € S n , V l t c M * ,
Ml=r0(^) iff M'^:0(a).

Now Gaifman’s problem, is this ; *Is there 
an n e w ,  s. th. whenever m |=P and M* is an n-
functionally ' closed initial segment of M, then

We prove the following :

Theorem 2.3.6.
Let M be a non- standard model of P and

n e w .  Then there is an initial segment, I, of
M s. th.

(1) lïénM.
(ii) I is n+1-f onctionally closed in M.
(iii) I^P.

Proof.
Let b be an infinite element of M. The

domain of I is the set [a € M ; M|=:(3y)(0(b,y) a

A y  ^ a), for some n+1-Th(M)-functional formula,
0(x,y), of L with just x, y free. J.

+ , •, and * are defined on I as those
functions induced by M. ’ Clearly I is an initial 
segment of M. To show I is n+1-functionally closed
in M, suppose = <aQ,...,a^_^> c I, 0(5t,y) is any
n+1-Th(M)-functional formula, and that m [=0('^,c ) 

where c e M.
We must show c e l .
Now by def, of I, there are n+1-Th(M)-fun­

ctional 0q (x ,y ),..., 0Q^i(x,y) s. th. 
m—1

(3y)(ÿi(b,y)A y > ai).



(17)
We define 0(x,y) s. th.

" 0(x,y) iff y = .max. [s : 0 ("t,s) }
h  <ZL s.th. 0L )

0 < i < m-1.
More precisely ijr is defined by :

m-1
^(x,y) iff (3z q ,...,Zjjj_ P (  (x,2|_ )a  (VtQ^Zo)**"
C/tQ_i<ZQ_i)(3B)(ÿ(t,s)Ay > 8) A <Zo)...(3t^_^<z^^i)
(3s')(0(t',s')A s' = y)).

That 0(x,y) satisfies (i) of def. 2.3.4.
is easily checked when T = Th(l), and 2.3.4.(ii)^^^

follows from theorem 2.3.3. Hence 0(x,y) is n+1-
Th(M )-fune t i onal.

So for some d e l ,
Also by the def. of 0, Mjp d ^ cl 

. ' _ Therefore c e l  as required, by the def,
of I.

We now show I^nM.
We prove by induction on m., that if 0 < m

and m < n, then
(*)....  ^(3) e 2m, ■ac I =» (M^=ÿ(9) l|=(6(^)).

For m = 0, (*) follows from the fact that
I is an initial segment of M and classical
preservation theorems (see e.g. [3])*

Suppose (*) is true for some m < n, 0*(3^)
e a c I and M|::0' (#).

We must show l|^0' (a).
Now 0* (3t) can be supposed to be of the

form (3y)0(3?,y), where 0(^,y) e 11̂ , by using some
standard 2q coding of finite sequences (see e.g.
[7] for details), and employing theorem 2.3.3*

Define 0(3t,y) by ;
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0(^,y) ((3z)0(3r,i6) A0(3?,y) A(Vt<y)-i0(:?t,t)) v

V ('»(3z)0(3f,z )a  y = O).
Again it is easy to check that 0(‘3t,y) is

an m+2-Th(Li)-f^i.hctional formula.
But m+2 < n+1, and so M|%0(^,c) c e I, 

since I is n+1-functionally closed in M and # c I.
Also, M|=^(y3t)((3y)0(:e,y) (3y)(0(3t,y)a  0(3t,y))),
from the def. of- 0; and M^=(3y)0(#,y), by suppos­
ition. Hence 3c e I s. th. M|= 0(^,c).

But 0 € Hm, so, by the inductive hypothesis, 
l|=:0(^,c). Therefore I ̂  (3y)0(^,y) ; i.e. l|=0*(s?),
as required.

Now to prove I ĵ P̂.
Let S(x,y,z) be a formula of L s. th.

V0(y>z) € 2^^^ 3m G CD s. th. P[~(yy,z)(s(m,y,z)^^0(y,z)).

(See chapter one for details about the existence 
of such an S).

Now suppose l|=P.
Then I claim that, for all infinite c € I,

(**)....  l|= (Vx)(3y<c) (3z) (S(y,b,z) a  z^x A(Vt) (S(y,b,t)
> t = z ) ).

For let c be an infinite element of I,
and Xq G I.

Then there is an n+1-Th(M)-functional 0(x,y) 
and d g M s . th. M [^0(b,d) a  d^Xo. In fact d g I, 
clearly.

Also there is a %(x,y) g 2^^^ and m G cu s.th.
M|:=-(Vx,y)(0(x,y)^ x(x,y)), 

and M|[-iVx,y)(s(m,x,y)0 x(x,y)). .....(l)
It follows that ;
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m|= SCmjbjd) A d^Xo a (yt ) (sCra,!), t t = d) ...(2).
Now from (l), we can find x*(u,x,y) e 11̂ s.th.
P[-(yx,y)(S(m,x,y,) m  (3u)x*(u,x,y))  (3).
Define 0(x,y) by : 

e(x,y) ^  df. (3u,y)(z = 2^3^ A  x*(^#x,y)) AC3V^y<9)
(2^3^<z -ix*(u,x,y)).

Then 6(x,y) is n+1-Th(M)-functional, and, by
the similar property of x» it follows that there
is some e e l  s. th. M|= 0(b,2^3^)•

Thus M 1= X* ( G ,b, d ), by the def, of 0.
But X* € Iln > and so l|='X*(e,b,d).
Hence 11= (3u)x* (u,b,d).
Therefore by (3), ljrS(m,b,d) since l|s-P.
Hence / from (2) and the fact that
l|=:d > Xq , and I (Vt ) (S(m,b, t) t = d).
Also, since c is infinite and m e w, 1 1= m<c.
Putting all this together, and observing that

Xo was any member of I gives (**).
Now, by overspill, (**) must hold for some 

finite c, and this is clearly impossible because 
it implies I has a ^-largest element, whereas I, 
being a model of P, cannot have. Hence I ĵ P̂#

□

'Nq now have the following immediate consequ­
ences of theorem 2.3.6.
Corollary 2.3.7.

Gaifman's problem (on p.16) has a negative
answer.
Corollary 2.3.8.

If T is any consistent set of 2^ sentences, 
then t (t P̂.
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Chapter_ 5 Diophantine Equations over Models of P,

and Related Topics.

3.1 Introduction the problem.
In [12] Rabin shows that if M is any non­

standard model of P, there is a diophantine equation, 
with coefficients in M, which is unsolvable in M,
but solvable in some extension, M', of M so that
M' = M. In the light of Mati jasevic * s theorem ([9])
however, (which was not known when Rabin proved 

his theorem), Rabin's result is rather easily
proved using the existence of a (Post) simple set.
One now naturally asks - 'What sort of extension
of M can M' be ?

Gaifman has shown ([?]) that M' can always
be chosen to be an end extension of an elementary
cofinal extension of M, and asks whether it could
in fact be chosen to be an end extension of M.
In this chapter we prove that it can when M is
countable, and would like to take this opp ntunity
of thanking A. MacIntyre for first suggesting this
problem to the author and for pointing out that
Friedman's theorem (3.2.7.) might be helpful in
its solution.

We now state Matijasevic's theorem which will
be required in the proof.

Theorem 3.1.1.
Let 0(3̂ ) be any 2^ formula. Then there is

a 2i formula 0(3?) in prenex normal form, all
of whose quantifiers are existential, s. th.

P(-(Vit) (0(3?) 4-̂  0(3?)).
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(See chapter one for further comments on 

this result).

5.2 Construction of non--^» extensions.
We now take a non-standard model, M, of P 

which will remain fixed throughout this chapter,

Def. 5.2.1.
A formula 0(3t,y), of L, is said to he 

uniform in y , if
(i) m[= (V3?)((3y)0(3?,y) (3! y)0(3?,y)).
Thus uniform formulae define partial functions

in M.
If 0 satisfies, in additon to (i),
(ii) 0(3?,y) € 2n, 

then we write c6 e 2n(3^*y).

Lemma 5.2.2. (Uniformisation).
Suppose n ^ 1, and 0(3?,y) e 2^. then there

is a formula 0*(3?,y) e 2^ (^-^y) s.- th.
(i) M|= (V3?,y)(0*(^,y) 0(3?,y)).
(ii) M|=r(V3?)((3y)0(3?,y)-$ (3ly)0*(3?,y)).

Proof.
Suppose 0(3?,y ) = (3z)0'(3,y,z) where 0* e .

Let (8 = <u,v>) he a formula in B s. th. Xu,vî<u,v>
is a pairing function.

Let 0(3?,y,z) <?=^df 0'(5?,y,z) A (3t)(t = <y,z> a
A (Vs<t)((3y',z')(s = <y',z’> a -^0’(5?,y ' ,z* ) ) )).

Now put 0* (3?,y) ^ ^ d f  (3z)0(3?,y,z).
It is easy to check that 0* has the required
properties.

□
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Def. 5.2.3.

A formula ÿ(x) having just one free variable
is called n-simple iff :

(i) 0(x) e 2n"
(ii) (Vx)(3y>x)-j0(y).
(iii) If 0(x) € 2n> and M|= (^^x)(3y>x)0(y), 

then M |r (3y)(0(y) A  0(y)),

To prove the existence of an n-simple formula 
we introduce a full form of the enumeration theorem. 
(iiVe only required a weak form in theorem 2.3.6,), 

Thus we assume the following ;

Lemma 3 .2.4. (essentially Kleene [8]).
If n, m > 1, there is a formula ' I

Tn m(t;XQ,...,x^_^) of L in m+1 free variables s.th. 
(iv Tn m G 2n*

9

(ii) V  l̂ r(xQ,... sX^_P € 2n, 3k £ o) s. th. 
m|=(V'S)(T„

9

It will be convenient to use set-theoretic
notation from now on. In particular we shall write
3? € w?'^ for T (t,3?), and if A is a definable o n J m
subset of M 'A infinite' means (Vx)(3y>x)(y e A)
-i.e. A is unbounded in M or A is M-infinite.
We shall also identify formulae of m free variables 
with the sets they define in M, and use finite
intersection (pQ^) a^d union (^y^) signs etc. It 
will be clear that such 'formulae' can be naturally
translated back into proper expressions in L.

Lemma 3.2.5. (Post),
If n ^ 1, there Is an n-simple formula.
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Proof.

Let 0(x,y) ^?=^df. ^  ̂ a  y > 2x.
Let 0*(x,y) be the uniformisation of 0(x,y) 

for y given by lemma 3.2.2.
Then 6(y) 4 ^  df. (3x)0*(x,y) is n-

simple, (See [I5] p.106 for the easy details).
□

Lemma J.2,6.

Let 0 be an n-simple formula, where n ^ 1. 
then there are elements a, b e M s. th.

(i) M|=^*^0(a) and M |= 0(b),
and (ii) 0 e 2  ̂ having just one free variable,

M |=0(a) M(=0(b).
Proof.

We define (in P), sets Rq ,R^,... s . th.
(y € R^) G L, by induction as follows :

Rq = [x : 0(x) A X G ! if this is
X'

infinite,
}x : 0(x) A  X / ! otherwise.

R .= R n if this is infinite,x+1 X x+1
R^ n Gw^^j otherwise.

(CA = complement of A).
This can be shown to be a good definition

in P, and the following results follow from the
induction schema in P - which is true in M.

m |=(Vx )(R^ is infinite) ....... (l ).
lVx)lk^ c |x :-»0(x)] AR^^^ c R^) /....... (2).

M|= (Vx)(R^ c V  ^ x ' ^  )  ( 3 ) '

Let be Jx g M ; M|= 0(x) j.
Then since S. is an 'n-simple set' we have ;
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Vp € (Al M(=(Wp’  ̂ infinite) (3z)(z 6 /\ z e 8.).
Therefore by overspill, for some infinite yS € M
we have :

m J;: (Vs<yS)((Wg^^ infinite)"* (3z)(z € A  z e S^)...(*).

Now put g(x) /iys Wy^^ — îi<x/s A.(i) Î

v/here A(i) 4=^ ̂ f ^i ^  ̂»

Since the conjunction of finitely many 2^
formulae is equivalent in P (and so in Th(M)) 
to a 2q formula (by theorem 2,3.3. )? g takes only
finite values for finite arguements and can be
supposed to take arbitrarily large finite values.
It now follows from an overspill arguement that 
we can find an infinite a e M s. th, g(oc) is
infinite and a, g(a) < /3.

Now by (2), c where y is the
Î1. *ilargest member of M <ol s, th, R^ c w^' . (y must

exist, deary).
Hence by (1), M|=r(Wg^^^ is infinite).

So by (*), M^(3z)(z € w^^^) a  z € S^).

Let b be such a z, and let a be any
element of Rg/^) (/ 0 by (1)).

Then (l) of the theorem is satisfied by
such an a and b by their choice and (2).

For (ii) suppose 0 g 2^ and M^0(a).
This can be written as M|= a G  ̂ for

some k G CO.
vVe show m |=R^ c w^»'’ .
Suppose this false. Then by (3) :

m1=EjjCT Cw“ ’'' ,
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But ic < y, so it follows from (2) that ;

“ t=\(a) = \  •
Honce M ĵ -a e by dof. of a, - a

contradiction.
Thus we have M |=:k < y ^ c w{

Therefore ^ ^ ^k^^ tiy def. of g.

So Mjtb € by def. of b.

i.e. M }=:^(b) - hence (ii).
□

Now to complete the proof of the result
mentioned in section 3*1 • we require a generalisation 
of a theorem of Friedman [U], which is :

Theorem 3.2.7.
Bvery non-standard countable model of P is 

isomorphic to a proper initial segment of itself.

The generalisition, which is obtained by an
easy modification of Friedman's proof, is %

Theorem 3.2.8.
Let n >  ̂ and a, b % be s. th. for all

formulae ^(x) e 2^ with just x free, M |='V̂ (a)
M 1= ̂ (b). Then there is a proper initial segment
I c M s. th.

(i) there is an isomorphism e: M — * I,
(ii) b 6 I and e(a) = b, 

and (iii) I ̂  M.

(In fact, this result 1*: a trivial corollary
of 4.1.10., proved in the next chapter).

V\fe can now prove the main result of this
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chapter :

If n ^ 1 , M contains a proper initial segment
I, s # th.

(i) I - K , 
and (ii) I M hut I

Proof.
Let n > 1 . Choose a, b, 0 with the properties 

stated in lemma 3.2,6. and I with the properties
in theorem 3.2.8, with this a and b.

Then I = M and I M.
Now MfT—,6(a), therefore I |="^6(o(a) ), since e 

is an isomorphism from M to I.
Also M f i.e. M|=6(e(a)),
Thus e(a) = b e I, 0(x) e 2^ and M^6(e(a)), 

but I |=.-i6(e(a) ). This shows I M and completes
the proof.

□

Corollary j. 2 .1 0._
There is an end extension M* of M s. th.

M' Bd M, and s.*’th. M ' solves a Diophantine equation 
with coefficients in M, that is not solvable in M.
Proof.

By theorem 3.2.9., with n = 1, M may be
regarded as a non- ̂  end extension of itself.
The corollary now follows from theorem 3.1.1.

□
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Chapter k Substructures of Models of P.

4.1, The number of substructures.
M will again be a countable non-standard

model of P fixed until further notice.
Theorem 3.2.7. tells that M contains infin­

itely many substructures all isomorphic to M.
Clearly there can be at most 2 ^ such substructures
and this section is devoted to proving that there 
are exactly .

We require some definitions and lemmas.

Def. 4.1.2.
If Si, are subsets of M, Si_l„.S2 iff

Mt%a < b V a  € Si, V^^ E 8g.. If a e M, Si < a iff
Si < (ai.

‘ 2 = Pq , 3 = ... ct € M is the enumer­
ation of the primes of M in increasing order
(this is definable in m ), and exp^(x) is the 
exponent of p^ in the prime factorisation of x 
(wnich is also definable in M).

Lemma 4.1.4.
Let . a e M be infinite. Then there is an

initial segment. I, of M, s. th. I contains._
infinite elements of M, I < a and V k e cu,

 ̂ ^ € I.

Proof.
Define the function P(x,y) by induction as 

follows :
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F (o ,y )  = Py 

p(x+1,y)  = pF(x,y)^

Choose h € M, infinite, s. th. P(h,h) < a.
(This is possible by overspill).

Then I = ja e M ; 3k e w, M|= a < P(k,b)i can 
easily be shown to satisfy the lemma conclusions,

□

D^fÿ 4,1.5»
For S, a c M, we write b — >̂.̂a iff there is

a fml. 6(3t,y) € 2^ (ït->y), s. th. M]==6(b,a).
^-/^a means not(S—?^a),

Def. 4.1.6.
If S c M, we write C^(S) iff :
(i) g" c S, 9t(3t,y) G 2n and M j=: (3y)0(t,y)

imply 3b g S, m|=6('̂ ?1=>) >

and (ii) there is an infinite a g M s. th.
V x  G M, X < a X G S.

We describe (i) by saying S is 2n-closed
(in M).

Lemma 4 .1.7.
Suppose n ^ 1, S c M, C^(S), ^  c S and a g M

is s. th. by^a. then there is an S^ c S, s. th.
C (8^), t c and a / S^. 
Proof.

4"Let o denote the fml, with one freen, r
variable t, (n.r g cu) :
(V3)((3y)(<2,y> e ) -4 (3:y)(<2,y> e
Where it = <Xq , ... >.

We first shovf that it is not the case that
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for all infinite 0 € M, 3% e M with a < y3, s. th.
<h,a>-.->^a.

For suppose it was.
Then for all infinite /S e M,
M[r (3k,a</5)(<h,a,a> e /\

where S = <bQ,... ,h^_^ >.

Hence there must he some finite /3 s. th.
this fml. holds, i.e. there are natural numbers
s, t s. th.

M|=(<S,s,a> € ^  o2,m+,)'

Let V̂ (x q , *.. <XQ,...,x^_^,s,y> e.w^'

Then i/r e since s, t e w, and
is uniform in y since

Thus T/r(-±,y ) € Sn(^~>y) and M|=^^(1?,a), which 
contradicts ^V^^a.

It now follows from this contradiction that 
there is an infinite c e M s. th. a<c ■=̂ <’Ŝ, a> T^^a,

Now choose I c S s. th. I is an initial segment
of M containing infinite elements, I < c and V k  e œ
VaQ,...,a^_^ € I, 2°"°- € I. This is possible

by lemma 4 . 1 . 4 . ,  C ^ (s ) ,  and the def. of c.
Now put 8^ = {i e 8 : M|2:^(S^,a,i) for some

a e I and some ̂(xq ,... ,x„, ,y ) e 2n(5?-^y). !.
Clearly 8^ c 8, b c 8^, a / 8^ and (ii) of

def. 4 .1 .6 .  are satisfied. To show (i) of def.
4 .1.6 . suppose t  = <tQ,...,t^_^> c 8^, ç̂ (3̂ ,z) e
and M t= (3z)6(ï?z).

Then for some cXq , ... € I and
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 ̂ Sn(^~»y).

we have ;
-> k-1 ^

V z  e M, M^6(t,z) ^  Mt=(3zQ,...,z^_^)( i/r̂ (h,(Xj_,ẑ ) A

/\ 2q , • • • , j z ) ) .

\^/ M }% (3Zq, • • « 5 ) (—^Q, • • •, )
k—1

( (uq = exp^(a) A  ^j_(h,u^,z^)) a  #(zQ,...,z^_^ ,z)),
a,

where a = e I.

The result now follov/s by unif ormising the
formula :

^(xq, • • • fX^^y ) “df, (^^0* • * • ’ ̂ k-1 ̂  ^
k—1

( iOo (̂ 1 = exp̂(Xjjj) A ̂ i(xo'-'''%m-i'̂ i'%i))
/\ ̂(2qj • - • j jy ) )

for y, observing that ^ e 2^, and using the above
bi-implications with the fact that m|t ̂ CS^,a,d)
l ^ d  E S^.

□

Lemma 4.#.!. 8.
Suppose n e CÜ and S c M satisfies C^^^(8).

Suppose further that "â c M and S c 8 are m-termed
sequences s. th. \/0(^) ^n+1 ’ M 1=-
Then :

(i) for any a e M, 3/3 e 8 s. th. V^(3^,y)
E 2^^^ M |=:6(̂ f(%) ^  M|^6(^y/5). Further, if ^
we may choose /3 s. th.

(ii) For any /3 e M s. th. /3 < max. [b^,... ,b^_^ j
(in M), 3a e M s. th. V  6(3t,y) e 2^^^, M]=:9!)(̂ ,a)

M^6(S,/3),
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Proof.

(i) Suppose ^  Then there is a formula

<Po G s. th. M l=:0o ( ^ 5oc). Thus M [» (3y) 60 ('^>y ) »

a n d  so h y  the lemma h y p o thesis we have 

M I-(3y)0o C ^ ?y)‘ la. fact, since 60  ̂ ^n+1 we

must have M };: (3jy)6o(^;y ) and so we can choose /3

uniquely s. th. M |z: (h,/3). It is nov/ easy to

verify that- 6(5t,y) € 2^^^ and M | = 0(s?’, a) imply M |=s 0(S^,/3).

Now suppose a. It follows from this

f airly easily that there are infinitely many u  6 M

(though not necessarily M-infinitely many u  e M) 

s. th. m|=-0 (^,u), whenever 0 (l^,y) e 2^^^ and M | =0 (^,a).

Hence for all p 6 oj î 

M|r (3x)(Vt,t'<p)((t ^ t' - » e x p ^ ( x )  /  exp^,(x) ) /\

A  <^,exp^(x)> e ), ........(*)

where g(x) ^ys = n { w ? ^^'^+1 :i<x/\A(i)i,

an d  A(s) <Ê,a> € .

A r g uing as in the proof of 3.2.6., g(p)

is finite for finite p and takes arbitrary large 

finite values. Also by 2.3.3., the formula in (♦)

is 2^^^ (z = expy(x) € 2i) and hence by*.'the lemma 

h ypotheses we have, for all p e w :

m [= ( 3 x ) ( V t , t ’<p)((t ^  t'- 4  exp^(x) /  exp^,(x)) a

A  <b,exp^(x)> e )« ,..........(**)*

(Perhaps we should point out her e  that the

definition of g depends on a and is probably not

even 2^^^. However, this does not affect the above

d e d u ction since we are only asserting (»*) when

p, and hence g(p), is finite and therefore the



A  <S,exp+(x)> E )•

But S is .-closed in M (because C^^^(s))
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manner in which, we define g is irrelevant).

Now using (**), C^^^(s) and overspill we
can find a Po e M s. th. both p^ and g(pg) are 
infinite members of an initial segment of M
included in S, and s. th. :
M|r(3x)(v't,t'^Po )((t ^ t' ->exp^(x) ^ exp^,(x) ) A  

t'"/> ' ™g(Po)'' '

n+1
and ao there is some /3’ e S s. th.
M|=(yt,t Vpo)((t / t ' -y exp^(/3') / exp^,(#')) /\
A <b,exp^(/3’)>E ).

But t, /3‘€ S =ÿexp^(/3’) e S, and tĵ pg -r̂ t € S;
so it follows that there are infinitely many
u € M ‘ (aggin,. not necessarily M-infinitely many u)
s. th. :
m |=̂ <B',u >€ A  ( 3 t < P o ) ( u =  exp^(y0')), ......(***)

and any such u must be in S.
We now show that any u satisfying (*^*)

has the property : V  0(3^,y) e 2^^^, d|=;0(a4a) -=^

M 1= 0(^,ùi). For suppose 0(î^,y) E 2^^^ and Mjr0(^,a).
We can express this as e ŵ |'̂  ,

for some suitably chosen p' g a>.
Thus m |=‘A(p ') a  p'<Po , and it follows from 

the def s. of A and g that ^h+1,m+1^

Therefore, by (***), M|=.<b,u> e ,
#

i.e. M 1= 0(^,u) as required.
To complete the proof of (i), it suffices 

to find a u satisfying (*4^) and

That we can do this follows from the
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following general claim :

If A(ï^,y) is any formula of L, and ^ c M
are s. th. there infinitely many u e M s. th.
M^=A(Ü/u), then there is. Uq g M, s. th. M ̂ A(Ü,Uo )
and

Proof of claim.
Suppose it false. Suppose # = <Sq ,...,s^_^>.

Then for all infinite y c M,
M[:=(Vx)(A(b',x) (3k<y) (<^,x> g A

(3.’z )(<^,2> G

Novi? this formula must hold for some finite y.
But then there would he infinitely many x*s
satisfying A(Ü,x) (hy the claim hypothesis) and
only finitely many satisfying the right hand side 
of the implication - a contradiction that proves
the claim, and completes the proof of (i).

(ii)We ^first note that the lemma hypotheses 
are equivalent to :

G M|=0(b) =^M|=0(t).

Now suppose M^=maxjhQ,,..,h^_^i = h^^

Let A(s)

and g(x) ~at ^n^1,m+1 _ y ĵ.̂n-i-1 ,m+1 . j_<x;\A(i) Î.

It follows from these definitions that ;
V p  € 0), m|= (3x<h^)(<'?,x> / ), since x = /3

satisfies this formula.
Now using lemma 2.3.3», this formula is

(equivalent in P and therefore in Th(M) to) a
II . formula, and thus hy the above commentn+I
we have ;
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V p  € CO, M|=(3x<a^)(<8,x> / )«

The. remainder of the proof is now similar
to that of (i) and we leave it to the reader.

□

We now have sufficient lemmata to prove ;

Theorem 4.1.9.
V n  € CO, there is a set H of substructures

of M s. th. :
(1) f  = f  0.
(II) M' e H => J<;' =- M.
(III) M' e H and

Proof.
Choose a, b e M as given by lemma 3-2.6.

with n repla.ced by n+1, and let ay,a^,...,a^,...

(k 6 co) be an enumeration of M s. th. a = a^.
We construct a tree <T,<^> s. th. V m  e co

(1 ) iivery node has either one or two
immediate successors - nodes of the same level
having the same number of successors (the least
element of T being at the 0^^* level),

(2) Each node of T is a - pair <c,S > s..th.
SC M, C^t^(s) and c e S.

(3) <c’,S'> <c,S> rr^c' 6 S -and S* 3 S.

(4): If <c’,S'> and <c,S> are ^^-incomparable

and have a common immediate predecessor, then

either c* / 8 or c / 8*.
(5)^ If <CQ,8y> <c^,S^> ... ^°m-1'^m-1^

where <cm,SC> is of level i (O < i < m-1 ), and if
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0 e ^n+1 only m free variables, then

M 1̂  0 ( Sq, .. •, a^_^ ) M ^ 0(oQ,..,,c^_^) .

Firstly, the least element of the tree is 
<b,M>. The conditions are easily verified for m = 1.

Now suppose T has been defined up to, and
including, level m-1 (m ^ 1) s. th. conditions
(l)-(5)^ hold for all nodes defined so far.

Let us pick any branch, say <Cq ,Sq >

<c^,S^> ... thus defined. We
construct the immediate successor(s) to this branch
by cases :
Case_U_ t. = <&Q, -.. ~

Our inductive hypotheses imply the conditions 
of lemma 4.1.8. are satisfied with B = “8, S = •

Applying (i) of this lemma we obtain /? e

s. th. M|=0(^,a^) M|% 0(Ü,/3) V 0 e 2^^^, and we

let ^m-1̂  be the one and only immediate succ­

essor of The conditions )“(5

are now clearly satisfied for the branch <Cq ,Sq >

<T ••• %  h  < = m ' V  ^

= ^m-1•

^-/t+1 % •

Again we use lemma 4.1,8. to obtain (3 e

so that </3,S . > is one immediate successor of m-1
<Cm_1,S%_i> but 6. th.

we can apply lemma 4.1.7. with Ü = ^, a = /3, n = n+1
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and S = S„ . to get El c 8 s. th. C^^ls„), 'S c S_ni“ l a .  a S
and /3 / S^. Now use lemma 4.1.8, again with S = S^,

"8 = a = a^ v/hich gives us a /3' e s. th.

%}=ÿ(3.,,a^) =7 K|=9j(e,/S’). V<t>  ̂ 2^+1"

Let </3',S^> he an immediate successor of

<c_ .,81 . > incomparable with </3,S^ . >.m—1 m—1 m—1
The conditions (l )“ (5)̂ .̂j are again clearly 

satisfied by our construction, condition (l) follow­
ing from the fact that whether we aided one or 
two successors to any node depended only on a
property of our original enumeration of E  and not 
on which branch we extended at any given level.

The construction of T is now completed by
inauction.

Now for each branch, B, of T let
Mg = Jc e M; 3S c M, <c,S> e B 1,

and e_ be the mapping M — taking a^ to the

element c, of s. th. 3S c M, <c,S> is of levelJb
k. 6g induces in the obvious way, definitions 

of + and • in ffig, so that Mg - M.

To show Mg^^M, suppose Ü  c Mg, (̂3̂ ) e 2^

and M|% 0(Ü). Then for some b c M, e(b) = Ü, so
M|=0(e(b)). But 0 G 2 ^ ^  0 g , so by by cond­

ition (5)^ (for some m e w ) ,  and the def. of e, 
Jil=0C?). But e is an isomorphism from M to Mg,
so Mg|=0(e(b)), i.e. Mg|=^0(^) as required.

That M follo'ws immediately from our
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initial choice of a and h.

Now suppose B / B* are branches of T, It
follows from (2) and’ (3) that Mg c 8 \/S s. th.
3c G M, <c,8> G B, and similarly for B*. Hence from
(4 ) we have Mg ^ Mg,.

The theorem is thus proven if we can show
T has 2 ° branches. However, if this were not
the case we would have, by (l), a level m, s. th.
every node of level has only one successor.
Hence case (2) in our proof would hold only fin­
itely often which implies V a  g M, <aQ,...,a^_^>-t^^^a,
contradicting the claim proved on p. 33 , with
A(3?,y) = (y = y) and = <Sq , ... ,a^_^ >.

Theorem 4.1.9. is now proved, where
H = I Mg ; B a branch of T. j.

□

A natural question generalising theorem 4.1.9-
would be to ask whether H can consist only of
initial segments of M. Unfortunately I can only
prove this when M satisfies certain conditions,
but can show that any non-standard M is element­
arily equivalent to 2̂ ° initial segments of itself.
This I •now do.

Lemma 4-1.10.
, V n  G (Ü, there a set of embeddings of M

into itself s. th. :
(i) = 2̂ °.
(ii) V e  G e[M] is an initial segment

of M.
(iii) Ve G e[M]^^M and e[M]^^^^M.
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Proof.

Let T be the tree of height oj which is 
(completely) defined by : every node in T of level 
k, where k = 3 (mod 4) (the least element of T 
being at the 0 ’ level), has precisely two imm­
ediate successors, and every other node has prec­
isely one immediate successor.

We take two copies, (the domain tree),

and <Tg,^j> (the image tree), of T and let f

be the natural isomorphism from Tg to T^. The

idea of the proof is to associate one element
of M to each node of Tg and one to each node

of Tg, s. th. given any branch, Bg, of Tg, every

element of M is associated with some node in Bg|

and given any branch, B^, of T^, the set J, of

of elements of M associated with some node of B^

forms an initial segment of M. Further, the map
f^ :M—>I which takes the element of M associated 
with the node v of Bg to the element of J

associated with the node f(v) of T^ will be an

isomorphism from M to the initial segment, J, of M.
We now describe the construction in more 

detail. The first few steps of it are illustrated
in fig. (i) on p. I4.2.

To avoid clumsiness of expression we identify
nodes of the trees Tg and T^ with the elements

we have associated with them, and hence f * with
fr Bg, etc.
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Our inductive assumption is :

(C)m If °0 S  ^  °m-1 elements

Of Tg where is of level i (O < i ^ m-1 ) and

^(Xo,....x^_l) e 2^^^, then

M[^^(cQj**.y il|=̂ (̂f’(cQ)j.. o > f’( ) ) •

Now choose a, h e if as given hy lemma 3.2.6. 
with n replaced by n+1, and let a.Q,a^,...,a^,...

(k e cü) be an enumeration of M s. th. a. =. a^.

We associate a^ with the least element of

Tg and b with the least element of T^. (c)^ is

easily verified.
Now suppose elements of MI have been assoc­

iated with every node of Tg and of level

< m-1, s. th. (C)^ holds (m > 1 ).

Case 1 . m = 2 (mod 4).
Let us pick any sub-branch, say Cg ^  ĉ  ̂ g

^g ... ^g c^_^ of Tg of length m.

We only have to find one successor to c^_^ ,

and we let it be a^ where k = m-2 + 1. f(a^) can

now be defined so that is satisfied by

using lemma 4.1.8.(i) with "Ê = <Cg,...,c^_^>, S = M,

b = <f(cg),...,f(c^_^)> and a = a^. This construction

is repeated for all sub-branches of length m with
which elements of M have so far been associated.
Note that every node of level m in T,̂  has a,

associa.ted with it.
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Case 2. m e  0 (mod 4).

Then m-1 = 3 (mod 4) so we must find elements 
of M to associate with the two immediate successor 
nodes of nodes of level m-1 in Tg. Let 3 consist

of all elements of M so far associated with nodes 
of Tg arranged in a finite sequence. By the claim

on p. 33 we can find c g M s. thi We

associate c with every node of Tg of level m.

Now if c^ ... c . is any suh-hranch of T_ u jj m m-1 jj
of length m we certainly have <Cg,...,c^_^>-/»^^^ c, 

since <Cg,...,c^_^>C Hence hy 4.i.8.(i) (using 

the inductive hypothesis) g M s. th. V 0 e ^n+1 '

( * ) ..... . M ^ 0 ( C g , . .  . ,C) cr> M ^ 0 ( f ( C g ) , . .  . ,f(c^_i ),fO,

and .<f (cg),... )> 7^n+1^"

Using a similar technique to that in the 
proof of the preceding theorem we can also find
/3* G M, s. th. (*) holds with /3’ replacing

We associate /3 with one successor node of
f(Cm-i) in T^ and /3* with the other. After

repeating this construction for each possible 
<Cg,...,c^_^>, (C)^  ̂ is easily checked.

Case 3. m odd.
Here we first extend each sub-branch of T^,



(41)

ao suppose f(’bg), f (‘b.̂ _̂  ) is such a branch

of length m of T^. Let be the element of M

with the property ll\= {p < max[f (bg),... ,f (b^_^ ) ] A

A  P ^ }f(bg),...,f(b^_^)j) that occurs first in

our enumeration of M, and associate p with the 
node in Tj immediately succeding f(b^_^). Lemma

4.1.8.(ii) now provides us with an a e M that can
be associated with the node in Tg immediately

succeding b^_^ so that (c)^^^ holds.

Now for each branch, B, of T let 6g be

the map that takes the set Bg of elements

associated with the copy of B in Tg to the

corresponding set, B^, in T^, in the natural way.

The domain of e^ is M, since if k e w,

then a^ is the element of Bg occur ing at the

(4k-2)th. level if k ^ 1, whereas Sg occurs at 
"fcÎTthe 0 level. Of course e^ is a function since

if a^ occurs at two different levels in Bg the

corresponding elements, in B^ must be equal because

(x = y) ia a 2  ̂ formula and hence preserve Jt by'
e_. That the range of e is an initial segmentB B
of M follows easily by case (3) of the construction,
and that is an isomorphism onto this initial

segment follows using the same arguement as in 
the proof fcf the preceding theorem, as do the 
facts that 6g[M]=^^M and Cg[M]
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ta '15

'10

Level
fig. (i).

= a|̂ where k =/iieaj: a;̂ <h.
TDq = where k =/iieco: a^^<max|hQ,hj^,hg{/\
h6_= a^ where k =/iieaj: <maxî'bo ,.... ,h^î/\ a^/iho j... jL^Î.
hy = aî where k =/iiecü: a^ <maxîho ,h^ ,hg ,1)3 ] A

A  â  ̂ [b-Q jb^ yb2 jbg ÿbg ] •
b^o = Si where k = iecu; â. <max[bQ,... jb^jbg ,bg î A
A â  ̂  [bg J . . . jb̂  jbg jbg ].
î i 1 — where k =/iie(X)2 a(̂ <max[bo jb.̂  ̂jb2 jbg ̂ b5 jb7 ̂ bg ] A

A â  X î^a yî 3 ?̂ 5 1 •

Cg =- some cgM s. th. 9^± 9^2^

Cg=- some ceM . s* th. <ag , ,a^ » Cg 5 Cg j ,a^ pCg , Cg ̂ c.
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The theorem is now proved if we can show

that B / B' implies e / e ,. But this is immediateÜ B

from case i?.) of our construction since we have 
ensured that Cg(c) jé e^,(c) where c is the element

of M associated with all nodes of the level at
which B and B ’ first differ.

□

Of course lemma 4.1.10. only provides us
itwith 2 ° embeddings onto initial segments and does 

not guarantee these initial segments are all dis­
tinct, To obtain this one would require a comb­
ination of the techniques of 4.1.10. and 4.1.9.,
which boils down to proving a stronger version
of lemma U.1.7. (with an adapted definition of

>^a, on the lines of 3^ e 2^ s. th.

m|= (3x)(0(hjx) A X ^ a)/a the truth of which seems
doubtful. However, we have the following :

Theorem 4.1.11.
Let M be a non-standard countable model of 

P, which is rigid (i.e. has no non-trivial auto­
morphisms), \and let IL be the set of embeddings

given by lemma 4.1.10. Then V e, j e  ^ 3 ^

e[M] e[M].
Hence M is isomorphic to initial segments

of itself (which can be chosen to be but

not ^  substructures).^ n+1
Proof.

Suppose e, d e e ^ j and e[M] = j[m] = I.
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Then j'e is a non-trivial automorphism of I.
But I - M (e.g. hy e), and so M has a non-trivial
automorphism - a contradiction. Thus e[l] ^ j[M],

□

VYe now show that any non-standard M (coun­
table or not) is elementarily equivalent to at
least 2 ° initial segments of itself. We require
two known results, both due to Gaifman, namely :

Lemma____4.1.12. (see [5]).
Every non-standard model of P contains a 

countable non-standard elementary substructure which 
is rigid.

Lemma 4.1.13. (see [?]).
Suppose M is a non-standard model of P,

MjL c M and = M.
Let Mi*M = I a e M : M |= a< h  for some b g M j ,

and define + and • on Mi*M as those functions
induced from M.

Then Mi*M is an initial segment of M and
A fortiori Mi*M = M.

We can now prove :

Theorem 4 .1»14.
Let M be any non-standard model of P. Then

there is a set H of initial segments of M s. th. :
(1) 1 = 2̂ °.
(ii) M' e H ^  M s M'.

Proof.
Let Ml be a countable non-standard rigid

elementary substructur*e of M whose existence is
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given by lemma 4.1.12. Then H = : e e

has, by theorem 4.1.11. and lemma 4.1.13., the 
required properties, where E„ is the set of

embeddings given by lemma 4.1.10.
□
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Chapter 5 Further Applications of the Method.

5.1. Introduction.
The preceding results have been proved 

using variations of a certain technique - namely 
using a function enumerating -sets and then 
looking at a non-standard stage of the enumeration. 
This method was first used by Ryll-Nardzewski [l&] 
and Rabin [12], although, as we have already said the 
use is unnecessary in the latter.

This chapter is devoted to proving two 
results about models of P using the same method, 
and I should repeat Rabin* s comment (in [l2])
here - that the method should still have many more 
interesting applications.

5.2. On omitting types in models of P.
We first introduce some well-known concepts 

from general model theory.

Def. 5.2.1.
Let L* be any first order language and S any 

cet 'of formulae from L^. ThPnj T ii CAljLed an 
S-type iff T c  8 and every formula in r has just 
the variable x  free.

If ÇJL is an L»- structure, we say (SI realises
r iff 3a e <31. s. th. Ol|=:ÿ(a) V^(x) € t; and O X

omits T if 01 does not realise r.

Theorem 5.2.2.
Let n e w . ,  and m |=P be non-standard and t  

any (in L). Then if r is omitted in M
it is omitted in every elementary end extension
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of M.
Proof.

Suppose M*^M, M* an end extension of M
and that M* realises r.

Choose a e M* s. th. M*|:: ̂ (a) e r.
Define B(x,y,z), A(x,y) e L hy :

A(x,y) ^ « T'y'''

B(x.,y,z) z = (where n0 = O).
A(x,y)

Then it is easy to show that
P|— (Vx-,.y)(3 .’z)B(x5y,z) and so we write B(x,y) = z
for B(x,y,z).

Now let c he an infinite element of M.

Then M*l=( P^ < J c  ^
A(a,u)

Now hence if c e M c* denotes the
same element in M as it does in M*, and since
M* is an end extension of M we must have, hy
the above, p^ e M, i.e. B(a,c) e M.

A(a,u)
Let d = B(a,c).

n 1Now we may suppose r e  l(x £ w^* ) :m e (U s.th.

M 1= p^I d }..... (*), for if (p(x) e r, then <^(x) e 2n

and M*^r0(a). Hence 3m e ou s. th.
M*l=(Vx)(x G ^  ^(x)).

So M* 1= a G w^'^. And therefore M*^=A(a,m)

and M*l=m < c. Hence M*}=p^|B(a»c) = d , from which

it follows that M|= p^| d since and (*) is
justified.

Also, V m  £ CÜ, M* |=:(\/k<m)(p^|d a g  ̂) (by 

def. of d).
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ThuSjVm £ OJ, M* |:(3x) (Vk<m) (p^I d x g ).

So, V m  G CÜ, (3x)(Vk<m)(p^|d-^x g ), 

since M^M*.
It now follows .from overspill that for some 

infinite e g M, M|=(3x)(\/k<e)(p^^|d x g ).

Say M|:B(yk<e)(pj^ | d a *  6 w^^^ ), where a* g M.

But this, together with (*) implies a* 
realises r; so M realises r, and theorem 5.2.2. 
is established by contradiction.

□
Theorem 5.2.2. can be strengthened to allow 

finitely many (constants representing) elements of 
M to occur amongst formulae of r, and also to
replacing ’elementary end extension* by ’ - end

extension*. We leave the proof, which is similar
to the above, to the reader.

5.3. On indescernibles in models of P.

Theorem 5*3.1.
Let n e w  and M be any non-standard model 

of P. Then there is a set S c M, s. th. S = M
and V m  ^ 1 , V ç 6(Xq, ... ,x̂ _.j ) g 2  ̂f and V ^ ,  ^ e [s]^

= |<to,...,t^_^> : t^ G S, 0 3 i < m and M|=-t^<

M|=^^(aQ,... ,a^_^ ) M^=0(bQ, ...,b^^^).

(in the jargon of model theory this says
that every non-standard model, M, of P contains 
a set, of the same cardinality as M, which is 
indescernible for 2  ̂ formulae.)
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Proof.

Firstly we fix a 2^ coding of finite
sequences of M, so that any definable subset of
M may be regarded as a set of t-tuples for any
t G M.

Now let A, B, D be any definable (without
parameters) subsets of M and t g M.

Then we write D->(A,B)^ iff either 
[d ]^ c a  n [b ]^ or [d ]^ c CA n [b ]^, where A is
regarded as a set of t-tuples.

Now Ramsey’s theorem [14] asserts that if
M = N, A, B are infinite and t g N, then there
is an infinite D s. th. D-4(A,B)^.

Checking the .proof of Ramsey's theorem one 
sees that it can be proved in P, and that D
can be obtained uniformly from A, B and t; and
hence using the methods of [6] it is easy, but
somewhat tedious, to check, that the following in­
formal definition of the predicate x g R^ (in L)
can be made a sound one in P.

Firstly we can suppose our coding of
ordered pairs, x =  <y,z>, say, has the property
that y and z. are both finite iff <y,z> is finite.

We now define x G R^ by induction i

-RO =  M

R  ̂ = An infinite set D c R̂  ̂ s. th. ify+1 y

y = <s,t> then D«*(w^^^,Ry)^.

We clearly have M |= (Vx,y)(x < y — > R^ D R^)...(*).

Now let a be an infinite element of M.
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We claim S = has the property required 

in the theorem.
For suppose 0(x q ,. . . )  e . Then the fml.

^ defined hy :
^(x) (3Xq, , , , ,X^_^ ) (x = <Xq5 ... s > /\

 ̂^'
is 2  ̂ and has just x free.

Hence for some s.e w, M|= (Vx)(^(x) x e ).

Suppose yo = <s,m>. Then y^ e w hy our ass­

umption on the pairing function.
Thus yo + 1 < a, so Ry^^^ d  R^ = S hy (♦).

By,)": hence, ]“c  ̂ n [R^ ]“ ,

-  n [RyJ“ .

A fortiori, [s]^ c A [m ]° or

[S]“ c CWg’  ̂ A [m ]“ .

It follows that S is indescernihle for 
ÿ(xQ,...,x^_^).

To show 8 = M, we merely note that S is
a definable (with parameters) subset of M and
m [= is infinite*. Hence there is a one-one de­
finable mapping from S onto M. But clearly this 
mapping must have these same properties in the
real world, and so M = S.

□
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Chapter 6« On the T.attlces of Elementary
Substructures of Models of P.

The problem and preliminary results.
Throughout sections 6*1.-6.U, of this chapter 

we fix an arbitrary complete, consistent theory T
extending P in L, and let M be the pointwise
definable model of T. This is justified by theorem
2.1.1. from which it also follows that M ha a no 
proper elementary substructures. Our current aim
is to investigate by how much an arbitrary model 
M * , of T, can fail to be pointwise definable,
and the above comment suggests the following

Def. 6.1.1.
If M* 1=:T, denotes the set {M* ; M * ^ m J

partially ordered by .

Now it follows from previous results that
if e L, and T|- (Vî )(3y)<̂ ('̂ ,y), then there
is a total T-functional formula s. th.
T|- (Vït)(yy)(9^n Hence if we add to L
a function symbol P , , for each total T—functional

yo

formula (po, and add to T all axioms.
= y) the resulting system will 

be a conservative extension of T. It follows that
the partial order on $(M*) is in fact a lattice
order, where, for Mi, Ma , the domain of Mi A  M2
(the infimum of Mi and M& in $(M*)) is just
the intersection of the domains of Mi and M2,
and the domain of Mi V  M2 (the supremum of Mi
and M2 in $(M*)) is the subset of M-̂  generated
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from the union of the domains of and Mg hy
all the F , *s*

YO

Our basic problem can now be stated as - 
* which lattices are isomorphic to for some

(This situation is analogous to one in 
recursion theory, where the non-recursiveness of 
a set A of natural numbers is measured as the 
upper-semi lattice of seta recursive in A. The 
two representation problems, however, are technically 
quite different.)

Most of the positive results concerning the
above problem are contained in the following three 
theorema ;

Theorem 6*1.2. (G-aifman)
There is a model M* of T s. th.

$(M*) « <Wi,€>.

Theorem 6.1.3. (Ga ifman)
For every set A, there is a model M* of

T s. th. ^(M*) = < P(A),c>, where P(A) denotes the 
set of all subsets of A.

Theorem 6.I.U. (Paris)
If L is any complete, distributive, co- 

compactly generated lattice, there is a model M» 
of T s. th. è(M*) - L.

Proofs of the above results can be found in [l0] 
In view of 6.1.U., we shall restrict our 

attention to non-distributive lattices and answer 
a question raised in [10], by showing that the
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five-element non-modular lattice Pg, is of the 
form for some M*jrT, and we shall also
produce a class of lattices no member of which 
is of the form $(M*) for any M*|::T when T = Th(N). 
The simplest member of this class is the hexagon 
lattice, H, below.

5P5 fi
fig. (ii).

6.2. Construction of simple extensions of M.

Def. 6.2.1.
(i) Vi/e denote by the set of all n-place

total T-function symbols (in our extended language). 
We do not distinguish between these symbols and
their interpretations in models of T, and hence
we identify with (thei domain of) M.

(ii) If M*j=T and A is any subset of M*,
M*[a ] denotes the elementary substructure of M*
generated from A in by ai,...,an € M*,

we write M ^ L a * , f o r  M* [ 1 â  ,... ,0̂  i ] ; and 
call M» simple if = M*[a] for some a e M*.

Now let B be the Boolean algebra of M-
de finable sets and U any ultrafilter over £B. (See
e.g. [1] for definitions of these classical con­

cepts).
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We define an equivalence relation on

Si, by :
f ~U 8 ix e M : M|=f(x) =. g(x) } € U,

and set f = i g e S, : f g j and M = [ f^ ! f e. S, !.

We turn My into an L-structure by defining ;

i X e M : M|=.f(x) + g(x) = h(x)l € U,
and f^*g? = ^  } x e M : M^f(x)'g(x) = h(x)j g U.

That + and • so defined are functions on
My, and that ~y is a congruence relation for

these functions is easily verified, as is the
following theorem, which is a 'definable analogue' 
of Los' theorem on ultrapowers (see[l])*

Theorem 6,2.2.

If ^(x q ,. . . )  € L and f^,.,.,f^_^ e S,,

then Iff ix € M ; M |= ̂ Cf^Cx), .,. ,f^_|x))!

is a set in U (it is clearly in IB-).
Further, if for each a g M we denote by 

a the function in Si with constant value a, the
map e:M-^My, defined by e(a) = (Va g m), is

an elementary embedding of M into My.

From now on we shall identify M with its
natural image (i.e. its image under the map e,
above) in My.

Theorem 6.2^5.
Let id denote the identity function on M.

Then id g Si and we have ;
(i) My[id^] = My. Hence My is... simple, where
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U is any ultrafilter over (B.

(ii) For any simple model M* of T, there
is an ultrafilter U, over ©, s. th. M y
Proof.

(i) is obvious.
For (ii) suppose M* = M*[a], a € M-, and

let U = Ja  e B : M*|i: a € A i. Then U is an ultra­
filter and the map taking a to id^ can clearly
be extended to an isomorphism of M* onto My.

□

Working towards our aim of constructing
models of T with prescribed lattices of substructures
we introduce the following, notions similar to
those used by Paris in [10] (p. 253).

For f , g € SjL and: . B  £ (B, define
f g iff ah(yx,y e B)(g(x) = g(y) -^f(x) = f(y)))

f Ey g iff f 3y g and g ̂ y f.

If U is an ultrafilter over (B define 
f ^y g iff 3B £ U f ^y g.

f =y g iff f <!y g and g 3y f.

f 4y g Iff f <iy g and not f =y g.

The point of these definitions becomes 
clear with the following

Lemma 6.2.4.
Let U be any ultrafilter over IB, and

f, g 6 Si. Then iff f «u g-

Proof.
Suppose My[f^] ^  My[g ]• Then 3h € Si, s. th.
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E  = ix e M ; M|=h(g(x)) = f(x) \ e. U.
Clearly f g, hence f ^  g.

Now suppose f g. Then 3B e U s, th.

f  g; i*e. M|-(Vx,y)(g(x) =. g(y) -4 f ( x )  = f ( y ) ) . . . ( l ) .

Define h e hy :
h(y) = / f(x), where x = ^t g B ; g(t) = y

if 3t G B : g(t) = y.
0 otherwise.

Then I claim B c [x : h(g(x)) = f(x) ] = A...(2). 
For., suppose x g E, and let Xq = /^teB;g(t)=g(x). 

Then x ^ x  g B and g(xg ) = g(x). Therefore, hy
(1), f(x) = f(xo). But h(g(x)) = f(xo), hy the 
def. of h. So h(g(x)) = f(x), from which (2) 
follows.

Now B c A A G U, since B g U hy choice
of B. Hence My|=h(g^) = f^ (from (2) and 6.2.2.).

Therefore, since h g Si, we have My[f^] ̂  My[g^]
as required.

Now 5 is an equivalence relation on Si,U
as is easily checked, and it is also easy to 
show that ^y induces :an uppef-sLmi lattice ordering,
on the equivalence classes. We denote this upper-
semi lattice hy Ly and have the following result,

analagous to Aczel's theorem in [10] (lemma O).

Lemma 6.2.5*
^(My) “ The ideals of Ly.
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Proof.

It follows, from lemma 6.2.U. that the 
map 6:^(My) The ideals of Ly, given by

e(M’ ) = |f/=y : f^ E M' Î, where f/=y is the =y

equivalence class containing f (e Si), is the
required isomorphism.

□

Thus we have reduced our original problem
to one of investigating certain combinatorial or
partition properties of M. Before we do this
however, we require a lemma which reduces the 
complexity of partitions we shall have to con­
sider later,, and also provides, us with the neg­
ative results promised earlier.

6.5. The main lemma and some negative results.
We first require the following definition

and results.

Def 6.5.1.
If Ml, Ms ̂  T and Mi c Mg, we say Mi is

cofinal in Mg or that Mg is a cofinal extension
of Ml iff (Vx e Mg)(3y € Mi) Mg j=y > x.

Lemma 6.5.2.
Suppose Ml, Ms, M*|^T, Mi<^M* and M s <  M*, 

and MiVMg is cofinal in M*. Then either Mi 
or Mg is cofinal in M*.

Lemma.. 6.5.5. (Paris, Gaifman, unpublished).
Suppose M*|=T and that there is a lattice 

embedding of Cs (see fig. (ii)) into $(M^) which
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takes the least element of C5 onto M and the 
greatest element of Cg onto M*. Then M* is a
cofinal extension of M.

The first result is easy to prove and
ia left, to the reader whereas the proof of
6.3*5« below is a generalisation of Paris and 
Gaifman's proof of 6,3.3« and we therefore omit
it also. 6.3.3. shows, of course, that there is
no model, of Th(N) s. th. ^(M*) Gg.

Def. 6.5.U.
If Ml ; Mg 1= T we write Mi^^^g if Mi^^Mg,

Ml / Mg, and Vl', Mi^^M’i^Mg =^M* = Mi or M* = Mg;
Mg is then called a minimal elementary extension 
of Ml.

We can now prove :

Lemma 6.3^5.
Suppose M* |=T and that M* Is not a co­

final extension of M. Suppose further that 3Mi,
M g , M3 s. th.

(i) M : : ^ % ^ M 2 4 ^ * .
(ii) Mg V Ml = M* and Mg A Mg = M.
,(iii) V M ’:^Mg, M'-^Mi or M' = M. •
(iv) M'^Mi, M'^Mg or M' = M*.
Then M'z^Mg or M* = M3 .

Proof.
We first, show that \/m ';^M*, M'i<Mg or

M'AMg = M and M V  Mi = MŸ ........ (’\)

So suppose M';^M* and M ' :^^Mg.
Now M'A-Mg^Mg; therefore by (iii) M V M g ^ M i
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or m 'a  Mg = M. But M'AMg , and thus
hy (iv), M Mg or M' = M* which is contrary
to uur assumption above. Hence M'/\Mg = M.

Similarly and M ' Mg M ' v  M^ = M*,
and (1 ) is thus proved.

Now let M'^^M», M ' ^ M g .   (2).
We now claim that M'-M > Mg (cf. def.U.1.2.)..(3)
For suppose (3) false. Then 3a e M'-M and

b € Mg s. th. a < b. (We work in M* throughout
this proof unless otherwise stated ).

Now by (1), (2) : M'a  Mg = M. Therefore
M'[a]AMg = M, since M'[a]^M'. But M ' [ a ] ^ M ,  by
choice of a, so M'[a]^Mg. Hence by (1 ) we have

both M' [a],AMg = M, ....... (4),
and M'[a]vMi = M*, ........ (5).
Now suppose 3c e Mg-M s. th. c < a (< b ).(*).

Then Mg’̂-Mg [c] ̂ M .  So by (iii), Mg[c]]^Mi. Using
this and (3)> we see that there must be some
f € Sg s. th. f(c,a) = b. Define F g Si by :

F(0) = 0.
F(i+1) = i+1+max.if(j,k) : j,k < F(i)J.
Then F is strictly increasing. Hence we

can define i_o, ii as follows :
10 = /Lii: F(i) ^ b.
11 = ^i; F(i) ̂  a.
Clearly io e Mg[b]^Mg, and ii g M'[a]. _ But 

Qince c < .a < b) we have, by the def. of F , that
either io = ii, or io = ii + 1 • Ir.. either case
io E M ’[ii]<M'[a]. Therefore .doe M'[a]/\Mg = M (by 
(4)). Thus we have Î

F(io) e M and F(io) ^ b > a > c ,  .#••...(6).

I;
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But from (5) and lemma 6.3.2. it follows

that either M'[a] or is cofinal, in M*. Let
us first suppose that M*[a] is.

Choose d e M'[a] s. th. d > M. (This is
possible since M* and therefore M'[a] is not a.
cofinal extension of M by the Lemma hypotheses).

Let g e Si be s, th. g(a) = d. Define
g* e Si by : g*(x) = max.[g(y) :y <p(x)j.

Then by (6) ; g*(io) ^ g(a) = d > M. But
1q € M, so g*(io) € M - a contradiction.

Now suppose that Mi is cofinal in M*.
Choose d e Mi s. th. d > M.

NOW', Mg[c]z^Mgé Therefore by (iii) Mg [c]i^Mi 
or Mg[c] = M. In the former case, choose g g Si
s. th. g(c) = d and proceed to a contradiction 
(using (6)) as above. The latter case is impos­
sible by the choice of c (see (»)).

Thus we have shown (* ) impossible.
Therefore a < Mg-M,  .....(7).
Now choose ai g Mi-M and ag g Mg-Mi .

This is possible by (i), from which it also
follows that Ml = Ml [ ai ].

Hence, by (5)* 3hi g Sg s. th. h(a,&i ) = Sg.
More precisely : M* |=h(a,ai ) = ag. So by (7) :
V d  G Mg-M M* 1= (3x<d)(h(x,ai ) = ag).
Therefore, € Mg—M Mjg (3x<d) (h(x,ai ) = ag)....(8).

Let Xo = /^x:h(x,ai) = ag (working, in M*). 
Then Xq e M* [ai ,ag ]t^Mg. But from (8) we see
that in fact %o e M = So. Define g by :
g(x) = h(xo,x). . Then, since Xq g Sq , g e Si ; and 
further M* g(ai ) =- ag, — so ag G M*[ai]s^Mi — contra—
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dieting the choice of and ag.

Thus the supposition that (3) is false is
absurd. So M ’-M > Mg.

We must now show that under the assumption
(2), M ’ = Mg.

Now we cannot have M ’a  Mg = M and M ’v M g  =
M*, for this would contradict lemma 6.3.3., since
M* is not a cofinal extension of M and the
sublattice <{M,M’,M^,Mj,M*!, ^ > of ^(m *) is iso­
morphic to Cg .

80 say M ’A Mg = M ^ ^ M  and M ’ ^ Mg. If M^=
= Mg, then M ’̂ Mg. Also M^V Mg = M* (from (ii)).
Let a G M ’-Mg. Then 3f g Sg, a^ g M^ and b g Mg 
s. th. M* 1= f (a^ ,b) = a. Hence from (3) and (i) 
it follows, that :
Vd G M ’-M M* 1= (3x<d)f(x,b) = a. Therefore :
Vd e M'-M M '1= (31x<a)f(x,ti) = a.

Arguing as before, this implies "that
a G M ’ [bj^^Mg, contradicting the choice of a.

If M4 / M3, then M'^M4'^M3 and we get a.
contradiction using (3) with ”M ’ = M3".

Using a similar method we can show that
M ’v M g  = M4 and %:;<M» and M ’ M3 : ig impossible.

Hence we must have M ’ = M3 whenever M ’
satisfies (2) and the proof of lemma E.3.5. is
complete.

EL

Now if T is true arithmetic i.e. T = Th(N),
then M is N and no elementary extension of it
can be a proper cofinal extension. Hence we have

the following
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Corollary 6.5.6.

If NjsT, and K Is any lattice with dist­
inct top and bottom, elements and K ’ is any 
lattice with more than one element, there is 
no M* (r T s. th. R £« ; where R is the lattice
represented by the diagram ;

R K IC

SlBi L iiiL .

In particular, there is no M*[=T s. th.
H (See fig (ii)).

6.4. The pentagon lattice.
We now show 3M* |= T a. th. $(M») “ Pg,where 

T Is, once again, an arbitrary complete extension
of P in L.

By lemma 6.2.5, it is sufficient to find
an ultrafilter U over 0  s. th. P5 “ Ly. This,
however, we do not do directly, but lemma 6.3.5.
allows us to construct U with apparently weaker 
properties (and also gives us some information 
about how we should go about it). To use lemma
6.3.5. we must first guarantee that our resulting
M tt is not a cofinal extension of Ms for which 
we need the following result.
Lemma 6.4.1.

Let U be any ultrafilter over B. Then My
is a cofinal extension of M iff U contains an 

M-finite set.
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Proof.

USuppose B is M-finite and B e U. Let f
( where f e ), he any element of My. Let
a = maxff(x); x e B.| (working in M). a, of course,
exists since B is M-finite, and My|= f^ ^ a, hy
theorem 6.2.2.. Hence My is a cofinal extension
of M.

Conversely id^ € My and if My|r id^ < a for

some a G M (where we are identifying â with a),
then 3B' g U s. th. B = [x g M : Mjz id(x) ^ a} =
= Îx g M : M|=. X < aj, which is M-finite.

□

We now begin the construction of the req­
uired U.

First, let Xx,y:<x,y> g Sg be a fixed pair­
ing function and , Wg be the corresponding
projection functions, i.e. iTi(<x,y>) = x and 
Wg(<x,y>) = y.

For B G IB and <x,y>, <x’,y’> g B: define :
<x,y> <x*,y’> y < y* A  X = X* (mod 2^), and
<x,y> -y <x’,y’> <=> <x,y><y <x’,y*> A < x ’,y’> <y, <x,y>.

Then '«y is a definable (i.e. T-definable

or M-definable), equivalence relation on B

BLet <x,y>® = (<x’,y’> ; <x’,y’> -y, <x,y>}., and

O y  = {<x,y>® : <x,y> g b J.

< induces a partial ordering on O y  (in

fact an M—binary— tree—like ordering) which we 
shall also denote by Also if B, C g ©  and
B c C, then we have (i^ both sencea of
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^  and

We shall usually regard all sets in B
as sets of ordered pairs. Thus we shall speak
of the horizontal, and vertical lines of B, for
B e IB# meaning sets of the form [s] n B and
7Ti^[s] n B, for some s e M# respectively.

For A € IB, let lev(A) = the unique y s. th,
^2[a] = lyj, if such a unique y exists, and let
lev (a ) be undefined otherwise. Note that if
0 / A € O y  (for some B € B), then lev(A) is de­
fined.

On setting K = | <x,y> : y < x} (e ©) we
can make the following crucial

Def 6.4.2.
A set B e B is called correct iff
(i) B c K.
(ii) Every set in O y  is infinite.
(iii) O y  has a <y-least element.

(iv) Every element of O y  has. precisely two 
immediate ^-successors (in Og)*

(v) If 1, h are horizontal lines of B
s. th. lev(l) ^ lev(h), then %[h] c w^,[l].

(vi) If C, D € I7y and lev(C) = lev(D), and

if C ’, D* are immediate <y-successors of C, D
respectively, then lev(C’) = lev(D*).

V\fe first note that if B € B, then each 
of the above conditions can be expressed by a
sentence in L, and hence there is a. sentence 
(depending on B) which is true in M iff B. is
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a. correct set.

Note K is a correct set.
Now let o be any function in 8  ̂ which 

is constant on each set in but takes different 
values on different members of 0 ^ e.g.

o(<x,y>) =! C<rm(x,2^),y> for <x,y>e K,
( 0 otherwise,

where rm(s,t) =  the remainder when s is divided 
by t, will suffice.

We shall now state the main combinatorial
lemma concerning correct sets, and show, how.; it 
implies the main theorem, as immediate justific­
ation for these rather obscure definitions.

Lemma.. 6.4.3.
Let f E Si, and B. (e (B) be any correct

set. Then there is a correct set C c B, s. th.
either (i) f is one-one on every horizontal line 

of C,
or (ii) f o,
or (iii) f =Q ^2 »
or (iv) f =y 0 -i.e. f is constant on C.

Lemma 6.4.4.
Lemma 6.4.3. implies 3an ultrafilter U,

over B), s. th. $(My) « P5.
Proof.

For A € 0, define f^ € 81 by : 
f^(a.) = (0 if X  6 A,ro 1

iif X i A..
Let B be any correct set.
Apply 6.4.3. with f = f^ to obtain a correct
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set, C, satisfying (i) or (ii) or (iii) or (iv). 
But f^ takes only two values, so, since C is 
correct we must have C satisfying (iv). Thus we 
have shown that if B Is any correct set and
A e (B., then 3a correct C c  B a. th. C c A or 
C c  cA (the complement of A).

Now enumerate S^X B  aa follows ;
8 ^8 8 Bg <f n #Bn ̂ ,... n e  w, n > 1.

We can now construct a sequence of sets
from B , A q , A^ ,...,Ap, «.. n e cu, s. th.

(i) A q = ÏC»
(ii) (Vi e w) 3 .

(iii) (Vi e cu) A^ ia correct,
(iv) (Vi € w, i ̂  1 ) A^ c or A^ c cB^,

(v) (Vi e w, i > 1 ),
either (a) f^ is one-one on every horiz­

ontal line of A^,
or (b) H, a,

1
or (c) 5^ ffa,

or (a) 5„ Ô.

It is clear how the are constructed
using lemma 6.4.3* and the first part of this
proof.

(ii) and (iii) now imply that (A^: i e co}
can he extended to an ultrafilter U over 0
containing, no M-finite sets. (Every correct set
must he M-infinite hy 6.4.2. (ii) ).

We claim $(My) - Ps* ̂  fact we show the
elementary substructures of My are arranged as 

follows :
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^2 =-
I = My[7Ti]

%  =-- MyETTg]

U‘
t i M .  (1y ) .

Firstly, we- clearly have : 0 ^2 %  ° %

%  ; i^ence, since K ^  Aq e JJ, M M g ^ , hy 6.2.4.

Now, hy construction, every set in U con­
tains a correct set, so it follows from def.
6.4.2. that

  (1 ),
and   (2).

Now suppose and M'^Ma. Then
TJ TTTTi € M* and Wg € M %  But the pairing function

\x,y:<x,y> e Sg. Hence <7r^,7T2> € M* ; i.e. id^ e M',
so M' = My.

Thus, Ml V Ma = My  .(3).

We now show Mg A Mg = M ............ (4).
Suppose T € Si and € Mg A M3 • Then T ^  o

and T ^  7Ti hy lemma 6.2.4..

Hence 3B. € U s. th. o and r ^  tTi ... (*),

and we may suppose B correct hy the construction
of U. Let yo Le the level of the <y-least

element, D, of D y  (This exists hy 6^4.2. (iii) ).

We show <x,y>, <x»,y*> € B 4  T (< i,y > ) = r(<x’,y*>).
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so th a t T 6 and thus A Mg = M.

So suppose <z,y>, <x',y’> e B.
Then iTi(<2 ,y> ) = 7Ti(<z,yo>) 

and 7Ti(<x*,y*>) = %  (<x* ,yo>),J 
AIbo <x,y@>, <x’,yo> € B hy 6.4.2.(v). There­

fore, hy the def. of D, <x\yg> e D,
so <x,yo> <x’,yo>, which implies o(<x,yo>) =

= o(<x*,.yo>), hy the def. of o. Therefore, hy (*),
r(<x,yo>) = r(<x*,yo>). But hy (*) and (**), 
r(<x,y>) = r(<x,yo>) and r(<x*,y’>) = r( x*,yo>).
Hence T(<x,y>) = r(<x*,y*>), as required.

Now hy the def. of U and lemma 6.2.4.,
M ’̂ M g  M' = Ml or M* = M   (5).
In particular, M^^Mi  (6).

Now suppose Choose f^ e M*-Mi. We
may suppose Wg- f ; say Wg ^  f = f and B € U.

Then hy the def. of U ; 
either (i) f^ is one-one on every horizontal line

of A^,

or ( i i )  o.

But if (i) holds we have, using Wg 4^ f^,

that f^ is one-one on B 0 A^ € U. Hence f = f =y

Ey id, and M* = My.

Suppose for no f^ € M*-Mi do we have (i)
ahove. Then f^ e M’-Mi, f =y o. Hence M = Mg,

Thus M Ml M * = Mg or M * =• My ......( 7 ) •
In  particular, U± ' ^ ^ 2 ...........

Now since Ü contains no M-finite sets. My
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cannot he a cofinal extension of M, hy lemma

This, and (1)-(8) now imply the hypotheses 
of lemma 6.3»5» with My replacing M*.

Hence, V^^^My, or M* = Mg, From this.,

(3)» (4), (6) and (8) we obtain ^(My) ^ Pg, aa
required.

o
The proof of lemma 6.4.3. is not hard in 

principle ; in fact hy * drawing diagrams* it becomes 
fairly obvious, although the details, as we shall
see, are rather messy. I should like now, however,
to explain why we do not construct U directly 
with the required properties. For this would re­
quire a proof of lemma 6,4.3. with (i) replaced
hy the stronger condition :
either (ia) f =q

or (ih) f =y TTi,

and this I could not do.
However, lemma 6.3*5. tells us, essentially, 

that in constructing the U of 6.4.4., we only
have to guarantee (i) to ensure that (ia) or (ih)
must eventially occur.

Now the proof of lemma 6.4.3..
Suppose f € Si and B is any correct set.

We first construct a correct set C* c  B s. th. .
either (i) f is constant on A,  ̂  ̂

or (ii) f is one-one on A.
We define, hy induction, sets lo,li,...A l ^ . 

(i € M), which will he the horizontal lines of
C* in ascending order of level.
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Thus we will put O' = U[lĵ :i c Mj.
We simultaneously define sets aI",... ,Api

i e M, which are elements of "3 and are s., th.
i ili n for j < 2 j will he all. the elements of

Qy, having the same level as 1̂ .

V/e require the following induction conditions :
(i)l Iĵ c some horizontal line of B, and

lev(l^_^) < lev(l^).

(ii)t Aj e Og yj < 2 ,̂ and 1  ̂c U[Aj ; j < 2^1,

and 1.̂  n Aj is infinite V  j < 2 ,̂ and j ^ k

=3» Aj n A^ = jg.

(iii)l Either i = 0 or Vj <2^ there are

precisely twio numbers jo » ji < 2̂  a. th.

«-1 [ (Aj_̂  u Aj^) n 1 ]̂ c [Aj"'’ n 1̂ ..,].

(iv)i, (Vj < 2 )̂ f is either constant on

1. n A^ or one-one on 1. fl Â .1 J J
To give the induction inertia we also

require ;
(v)i, Vj < 2^ 3Dj € Ug a* th. ^TiUj n 1^] D

n Wi [D'] is infinite VD' e Og s. th. Dj <g D .

First let B<‘(y,s) he a formula s. th.. aa
y runs over M. B* = 1 b € M  : M|=B*(y,s.)! runs over

all sets in ̂ gs and y ^ y ^  H H*i - 0.

Def. of 1q .
Let 1 =- <g-least element of and to = lev(l)

We define the function g on 1 hy :
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g(0) = <Xo,to> where Xq = /ix:<x,tQ> e 1. 
g(y+1 ) = ^  <x',to> where x* = ^x;<x,to> e 1 /s

A x e  ] A (Vz<y)(x / Wi(g(z)) A

Af(x,to) / f ( g ( z ) ) )  f if there 
is such an x.
g(y), otherwise.

If the range of g is M-infinite, let
lo =range(g), and Aq = 1, whence Dg =.’1 will satis­
fy (v)q. Conditions (i)o“(i'̂ )o areeasily checked - 
f being one-one on 1q fl Ag = Iq.

If the range of g is M-finite, there must
be some D € s. th. f[{<x,.to>;x € tTi [d ] !] is.

finite. It is easy to define, in this, case, a
set "D € 0^ 8. th. D D and a set D” c D s. th.

f is constant on D* = {<x,to>:x e [D"] j, and
s. th. \/G € Og, D C n Wi [c] is infinite.

We now put 1q = D*, Ag = 1. Condition (iv)o
is satisfied since f is constant on D* = 1q =
= 1 n Ao, and (v)o is satisfied with Dg = D. The
other conditions are trivial to check.

Now suppose for some i, 1o,...,1l,. Aj

have been defined (Vi <2^) satisfying (i)t~(v)L.
Let (Vj < 2^) be the sets given by (v)̂  .tJ
We can suppose all the Dj have the same level.

and (v )l still holds.
Now consider the elements of which are

i iimmediate suecessorsof the Dj. Each Dj has

two such <^-8ucce88ors, say Gt̂ , • and all
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same level (i is' fixed ), say •

(This follows from the correctness of B).
For k < 1, j < 2^ let = i<x,t^j> e G^ ;

X € Wi[Aj n l^]j.
Now each G^* generates a correct subset,

of B in a natural way, namely :
= (<x,y> e B : y > to A X  e w^LG^*]j.

Further, G^* is the (= )-least element,

of . Hence we can perform the same construction

on the T? as we did for B in the first part

of the proof, to obtain subsets »G^ of G^* on

which f is either one-one or constant and s. th.
(i)i^^-(v)i+1 hold when we put

equal to Gg,Gg,Gj,Gj,...,Gq ,G^ respectively,

and 1^^^ = U}*G^ ; k 4 1, j < 2^j, where in (iii)^^^

= Gg and Aj+^ = g L  i.e. = 2j, = 2j + 1.

The induction is now complete and, putting
C * =1. U[l^ ; i e m], we have accomplished (%).

(Actually we have not said anything about C*
being definable from B and f - but the above con­
struction was uniform in B and f and the induction
uniform in i. We conclude that C' is M-def inable
leaving the reader to check the details).

We now construct a correct set C** c c* 
s. th. either (i) f is constant on every set
in or (ii) f is one-one on every set
in Og„. ..........(**)-
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First a. digression.
Let O  be an M- full binary tree in which

every element has finite level (this ordering is 
definable in P). By a strict subtree g* of O ,
w.e mean a subtree of which is a full binary 
tree (we drop the prefix M- from now on), and
s.* th. if a, b e !%)* and a and b) have the same 
level in Q * , then they have the same level in *3»

Now the existence of a C” satisfying (»*) 
is clearly equvalent to the following claim :

If every node of 'J is coloured either
red or blue, then 3  has a monochromatic strict 
subtree.

To prove the claim, suppose 0  is coloured
as stated. Then one of the following must occur : 
either (i) V a  € Q, 3x, x ^ height of a, s. th.
every level of 0  of height ^ x contains at least 
two red nodes, b and c, s. th. a «  b  and a «  c. 
(Where << is the tree ordering).

or (ii) 3a. e 3  s. th. there are infinitely
many levels, 1,above a, s. th. all nodes (except 
possibly one),, in 1 which are »  a, are coloured

blue.
It is easy to check that in case (i) there

is a red strict subtree of 3 ,  and in case (ii)
a. blue one. Hence we can construct O'* satisfying

(»*).
Suppose C” satisfies (**)(ii). I claim we

can find a correct set C c C" s. .th. (i) of 
lemma 6.4*3. holds.
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Let lo *li *.. • a.ij_5... i 6. M, be the horizontal 

lines of C" in increasing order of level.
We define lg,l^,...,l^,... i e M s. th. Vi :
(i)t 1^ c 1^ and 7ri[l^] c 7Ti[l7__̂ ] (or  i = O),

(ii)i. D e D c 1^ 2=̂  D n 1^ is infinite,

(iii)^ f is. one-one on 1^,

(lv)L D € D e l .  2=̂  7Ti[D n 1 ]̂ n 7Ti[D*]
is.- infinite V d ’ e s. th. D D ’.U O

Let lo = lo.
Suppose lQ,..,,lj^ have been constructed for

some 1 ^ 0 ,  satisfying (i)j-(iv)j Vj 4 i.
Let lev(l^^^) = to.

Define G(y) 4 ^  lev(Cÿ*) ^ to. (YWiere the

* operator is defined as on p. 70 six lines from
the bottom).

Define g as follows ;
'g(O) = //XÎX e n 7Ti[l^l

^g(y+1 ) = fix:(x € 7Ti[l^] n 7Ti[c”*] where

z = (y+1)st. element, t, satisfying G(t)) A  ((Vp^y)
(f(<x,to>) /  f(<g(p),to>))).

By the induction hypotheses (i)L“ (iv)[,, g(y) 
is always defined and range(g) c since

G(z) a X e [Cg*] 2=> X o TTi[l^_^^], by the correct­

ness of C".
Let 1^^^ = J<x,to> : x s. range(g)j.

(l)^_^^-(iv)^^^ can now be verified.

Put G = Ufl^ : i € m }. That C is correct



(75)
and that f Is one-one on every horizontal line 
of C (i.e. on 1^ Vi) follows from the construc­
tion. Hence we have (i) of lemma 6.i+.3. if C"
satisfies (**)(ii).

It remains to show that if C" satisfies
(**)(i) then there is a correct C c C*’ s. th.
(ii) or (iii) or (iv) of lemma 6.U.3. holds.

This is again equivalent to a partition
theorem on trees, namely :

If ^  is any tree as described on p. (73)
and 3  is coloured in any way whatsoever (possibly 
using infinitely many colours) then it has a strict
subtree Q* s. th.
either (i) every node of has a different
colour,

or (ii) nodes of J  of the same level have
the same colour, but nodes of different levels
have different colours,

or (iii) every node of Q* has. the same colour.

To prove this, suppose !J is coloured in
any way. Suppose first that the following holds :
(+■) V € M, V x  € 3, 31evel, 1 of 3  above x,
s. th. Vlevels 1* above 1, 1* H [y ;y »  xj is
at least z-coloured (i.e. there are z. colours 
appearing in this set).

We ■-define 0* to satisfy (i), by constructing
its levels lo»li,... "by induction as follows.

Let lo = {least element of 3J*
Suppose lo;...,l^ have been constructed s, th.

./ (i)t every element of U{1^ ;j < i{ has a
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different colour,

(2)i (\/j < i) Ij c some level of 3 .
(3)1. (Vj < i) Ij contains 2^ elements,

(4)i <u{lj:j < i j ,«> is. a binary tree of
height i.

( «  once again denotes the ordering of 3  ,
and we use the same symbol for its restriction 
to subsets of 3  ).

We construct 1̂ _̂  ̂ s. th. 1^,...,!^^^ satisfy
(1 ) i + i - ( 4 ) i + i "

Take z = 2^^^ in ( + ) and find a level, 1
of 3  s. th. 1 n jy e 3  !y >) x} is^ at least
coloured V x  e 1̂ .̂ This is possible from (+)

since 1^ is finite and 3  has infinitely many
levels. Suppose 1^ = {xq, .. • ,X2i_̂  ̂I , and let

A. = ly € 3  :y »  X .} n 1 (Vj < 2^).J J b .
1+1Then since u{lj:j < i} has 2 -1 elements,

we may pick two elements, y^ and y^, from each
O J

A. a. th. every element of Ufl. < ij U
J J

U |yg,y&,y$,yl,... ,y^i_.; has a different

colour. Putting, ~  1 yp < y o <  ̂g y I
completes the induction. D' —  now
satisfies (i) above.

If (+) is false, then using, the same
method as - that on p. (73) #0 can construct a. 
strict subtree.- 0" of 0  s. th. every level of 
g" has the same colour. It is then a triviality
to construct a strict subtree 3 * of 3 ” (and
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therefore g ’ is a strict subtree of 3  ) s. th. 
either (i) or (ii) holds.

The proof of lemma 6.U.3* is now complete.
□

Lemmas 6.U.3. and 6.4.4. now give the main

Theorem 6.4.5.
3M»^T s. th. $(M*) P5.

6.5. Cofinal extensions of models of P.
A complete answer to the problem posed on

p. 52 still seems a long way off - even for finite 
lattices. To obtain results for the simplest
modular non-distributive lattices, however, lemma
6 .3.3. tells us that elementary cofinal extensions 
of models of P must be investigated, and in this 
section we look at minimal cofinal extensions.

We first extend some of our previous defi­
nitions concerning simple extensions.

Def. 6.5.1.
If M is any model of P, M* is called a

simple extension cf M if M*^M, and 3a e M* s. th. 
M* = M*[M U ia]].

Now if we let for M |= P, be the
Boolean algebra of M-definable (i.e. definable 
using parameters from M) subsets, of M, and U
be any ultrafilter over we can construct My

in a similar way as in section 6.2. where the
elements of My are now M-definable total functions 
(from M to M) factored modulo UV Theorems
analagous to 6.2.2. and 6.2.3. can now be proved.
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as can one analagous to 6.2,4. when the obvious 
modification of the definition of is intro­
duced. We leave the details to the reader.

The point of doing all this is the
following

Lemma 6.5.2.
If M is any model of P and U any ultra­

filter over then My is a minimal elementary
extension of M, i.e. M::^My, iff every M-definable 
one-place function is either constant or one-one
on a set in U, and U contains no singleton sets. 
Further, My is a cofinal extension of M iff U
contains an M-finite set.
Proof.

All is clear from the modified 6.2,4. and
6.4.1..

□

Now. Gaifman has shown [6] that given any
m [̂ P, there is an ultrafilter U over containing
no M-finite sets s. th. every M-definable one-place 
function is either constant or one-one on some 
set in U. Upon observing the fairly trivial fact
that M ^ ^ M *  implies M* is either a cofinal or 
an end extension of M, we see that My is a 
minimal elementary end extension of M.

We should like to prove an analagous result
for cofinal extensions but can, unfortunately, 
only prove the following special cases :

Theorem 6.5.3. . • ■
Suppose M is a non-standard model of P
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satisfying one of the following conditions : 
either (i) 3a g M s. th. jx. g M;m J=x ^ aj — 

or (ii) M is saturated..
Then M has a minimal cofinal elementary

extension.
Proof.

Suppose M satisfies (i). Let F he the
function in s. th. p|— (Vx )(F(x ) is the number
of partitions of (i.e. equivalence relations on)
{y :y < xj).

By a modified over- spill arguement we can
find a non-standard b g M s. th. M|= F(b) < a.
Using (i) this implies there are only countably 
many distinct M-definable partitions of the set
[y G M: M|z:y < b j . Thus there is a sequence fo,fi,
...jfp,... n G w, of M-definable one-place functions
s. th. given any M-definable one-place function g.,
we can find n g co s. th, :

M|c (Vx,y<b)(fn(x) = fp (y) g(x) = g(y)).
Thus we shall be finished if we can

construct an ultrafilter U over Eg s. th. V n  g oj

3A G U s. th. f^ is either one-one or constant 
on A, and [x g  M : M ^ x  bj g U.

We do this by constructing a sequence
lio ,Ai,... ,An ,... n G oi of sets in s. th. V n  G w

(i)n iy € M !«| y g 3 D

(ii)n An n w is infinite,

(iii)n fn is one-one or constant on An.

First, let b = bo,bi,...,bn,... n G w be a.
decreasing sequence of infinite elements of M
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s. th. for ali infinite c e M, 3n € w s. th.
M |=:bn < C. Such a sequence exists by (i) of the
theorem hypotheses.

Now suppose Ao*...;An have been constructed
to sat sfy (i)n-(iii)n. Suppose, firstly, that f^^^
is constant on some infinite subset of A^ fl a> -
taking the value c, say.

^et =  [x G M :M|= X < b̂ _̂  ̂A x g A^ A f̂ _̂  ̂(x)=c]

If f^^^ is constant on no infinite subset
of An n OJ, it must be one-one on some infinite
subset of An n CO, Define the function G by ;

G(0) = /2XÎX G An,
_G(y+1 ) = {2XIX G An A X  > G(y) A (\?^^y)

such an x exists,
G(y) otherwise.

Then G is an M-definable function. Let
Â _̂  ̂ = range(G) n {x g M :M|= x ^ b̂ _̂  ̂[.

In either case (^)n+1 easily
verified.

Now extending {An :n € cti! to a non-principal
ultrafilter over completes the proof.

Note that if c is an infinite element of
M, then 3A g U s. th. (Vx)(x g A x < c). Hence
{x G M :M^id(x) < cj g U. i.e. My|= id^ < c. Thus

TTid is an infinite element of My which is
smaller than every infinite element of M.

Now suppose 1 satisfies (ii) of the theorem
hypotheses and M = /c. Then there are K one-place
M-aefinable functions ; say fo ,f^ ,... ,f^,... a < fc. .
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is a KT-enumeration of them.

We define elements of Cq p 3 • • *d c 3 * • •

(a < /c) s.. th. each c is an M-finite infinite
a

set and f^ is. one-one or constant on c^ (Va < /c).
Suppose Cq ,... ,c^,... (a < /3]< k ) have been

so defined. If /3 = y + i, let the number of elements 
in c^ be a. (l. e. there is an M-definable one- 
one map from c^ onto {x e M :M|tx < aj). Then f^
must either take one value at least [\7a] times 
on c^ or must take at least [*/a] values on c^.
( [Vx] = the integer part of Vx - this is an M-de­
finable function). It is now easy to define a 
subset of c^, on which is one-one or
constant , having 'M-cardinality* [Va]. But. a must 
be infinite, by our inductive hypotheses, hence 
so is [Va] and thus is M-finite but infinite.

Now if is a limit ordinal, consider the 
set r of formulae :

i’*x codes a finite set having at least n 
elements" : n e cj] u [”f is one-one or constant on 
the set coded by x"j U ["the set coded by x c c^" :
QL < fi],

A similar arguement to that used above 
shows that r is finitely satisfiable in M.
Certainly < /c parameters from M are mentioned in
T, and so, since M is saturated, t  is realised 
in M by c say. Setting c^ = the set coded by c 
complotes our induction, and theorem 6.5,3. follows.

□
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Def. 6.5.4.

For M, M* 1= P, M non-standard, we say that
M* is a normal extension of M if and
3a 6 M* s. th, 01 < [aj < M-cu in M*.

Thus we proved above, in fact, that every 
model of P satisfying 6.5.3.(i) (in particular 
every non-syandard countable model) has a minimal
normal extension. We now. ask the same question
for models satisfying (ii). It should be fairly
clear that the proof we used for saturated models 
above can be adapted .for models satisfying (i),
but would not, in general, give us a normal
extension. Thus we are essentially asking if the
proof we used for (i) can be adapted for satur­
ated models. V'/e first make the following definition
due to Choquet [2].

Def. 6.5.5.
A non-principal ultrafilter U over w (i.e. 

on the full power set of cu) is called Ramsey 
if given any partition [a^:i e w} of w, either
(i) 3i € OJ s. th. a_ c U, or (ii) 3a € U s. th.
a n a^ < 1 Vi € cu.

We can now prove ;

Theorem 6.5.6.
If M is an -saturated model of P, the 

following are equivalent ;
(i) M has a. minimal normal extension,
(ii) There exists a Ramsey ultrafilter over
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Proof.

Suppose U is a. Ramsey ultrafilter over
We show that M* = Myy (the usual ultrapower of

M over U.- see [l]) is the required extension.
Certainly M and w < id^ < M-oi in M»

(where id. is here the map taking each n e oa to 
its copy in M), so M* is a normal extension 
of M,

Now suppose f €. M^, Then by considering the
partition [f  ̂[a] :a c M& of co and using the fact
that U is Ramsey, we see that 3A e U s. th,
f is constant on A, in which case f^ € M, or
f is one-one on A. In this latter case we 
proceed as follows.

Let r be the following set of formulae :
{ *x is a finite set of ordered pairs'] u
U K\/z)( (3t)(<z,t> €. x) ->(3.'t)(<z,t> G x))} u 
u  |(VZ;t*t')(<t,3> G X  A < t * , Z >  € X  t = t')j (J

U [<n,a> G X ;n G A a. th, f(n) = a and a g Mj y
U M(3y)(<n,y> g x :n / Aj.

Clearly r can be written properly as a. 
set of formulae of L using parameters from M,
and uses only countably many parameters from M.
It is also finitely satisfiable, and so, since 
M is cü̂ -saturated there is an element c of M
realising r.

Now G codes a one-one function v/ith In­
finité domain, which agrees with f on A. Let 
P be the M-definable total function defined by ;

p(x) = ( b', if <b,x> G'C,
otherwise.

r 1,
CO.
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Then A c [n e eu :Mj=^P(f(n)) = nj, and so
M*|=P(f^) =_ id^, by the usual form of Los’ theorem,
[l].. Thus any elementary substructure of M* con­
taining M and f^, must contain id^. But it is
easy to show M* = M*[id^], from which it follows
that M* is a minimal elementary extension of M.

Now to show (i) implies (ii), suppose M*
is n minimal normal extension of M.

Let a e M* be s. th. w < a < M-w. Then 
a e M*-M and since M* is a minimal extension of 
M we must have M* = M*[M U [aj]. Letting 
U = [A E B^ îM*|ra. € AÎ we see that M* My, and

it follows from lemma 6.5.2. that every M-definable 
one-place function is either constant or one-one 
on some set in U.

Let U* = [a  n OJ :A e uj.
Then it follows from the choice of a and 

the fact that M is -saturated that U ’ is a 
non-principal ultrafilter over co.

Suppose [a^ :i G is a partition of w.

Define f:oj~> oj by f(n) = ^i G oj;n g â .̂ Again using 
the fact that M is saturated we can find an
M-definable function P, a. th. P(i) = f(i) for all 
i G w, using a simple types arguement similar to 
those above. Since P is one-one or constant on 
some set A g U, we must have that f is one-one
or constant on A H cu G U ’. It follows that U ’
is the required Ramsey ultrafilter.

□
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Now the existence of a Ramsey ultrafilter 

over (X) is implied by the continuum hypothesis 
([2]), but cannot be proved, from the axioms of
Zermelo-Fraehkel set theory with choice (ZPC)
(f.’aesult of Kunen - unpublished). Hence, although 
we can prove (in ZFC) that every countable non-­
standard model of P has a minima]! normal extension, 
it follows from theorem 6.5.6. (and the existence 
of -saturated models) that we cannot prove in
ZPC that every non-standard model of P has such
an extension.

IVhether the latter comment holds when we
replace 'normal* by just 'cofinal elementary', or
whether every non-standard model of P does have 
a minimal cofinal elementary extension, we do
not know.
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Chapter 7. Some Open Problems.

For the most part, theorems in this thesis
apply to all models, of* P - that is w.e have never 
exhibited model theoretic properties which distin­
guish different complete extensions of P. Thus 
our methods are not delicate enough to construct 
models which give, say, informative independence 
results in Peano arithmetic. We therefore pose 
the problem - 'Find . a . property for which there 
are complete extensions T^, T^, of P s. th. every
(or some) model of T^ has this property, but
no model of Tg has it'.

H. Friedman has suggested the property of 
having a certain order type of cardinality
(All countable non-standard models of P are order
isomorphic).

Chapter 3. suggests the question - 'does every 
non-standard model of P have an elementary non- 
end extension. It would be curious if this were
false but. I can think of no reasonable way of 
attacking the problem. One might think a gener­
alisation of Friedman's theorem would help. However,
we can construct an elementary extension of N, 
of cardinality , which is not only non-isomorphic, 
but non-L -elementarily equivalent, to all itsfCO

proper initial segments. (L^ ^ is the language
allowing conjunction and disjunction over any 
countable set of formulae involving only finitely 
many free variables.).

Finally,problems already raised implicitly
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are - 'Is every countable non-standard model of P 
isomorphic to initial segments of itself ?',
and - 'Does^ every non-standard model of P have 
a minimal cofinal elementary extension ?'.
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