
rnn^trurkion .nd Use of Re^parrh Tools for TmafR Processing.

A Thesis submitted for the degree of 

Doctor of Philosophy 

of the University of London

by

R H C .  L I B R A R Y

CLASS A m OCT
No

C o o
ACC. Co. , (od.zcpz
bate AeC. 1

Barry Michael Cook

Physics Department 

Royal Holloway College 

University of London

June 19^3

RHC L113LE  t,

302 1% 0961 i 3 6 2 6 b



ProQuest Number: 10097524

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10097524

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition ©  ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



B.M.COOK

Construction and use of Research Tools for Image Processing

ABSTRACT

Image processing now has a wide variety of applications and a 
large amount of algorithm development is required. Clearly, a 
convenient and easily used development system is a great advantage. 
Some preliminary work with an existing machine indicated that a 
carefully tailored interactive facility could provide such an 
environment.

An image storage unit containing a novel, fast, method of 
accessing the window to be processed has been constructed. By 
delegating to the storage unit some of the tasks normally performed by 
image processing software a considerable increase in processing speed 
has been achieved. While the improvement is not sufficient for an 
industrial system, it does allow for the convenient investigation of 
algorithms of considerably greater complexity than has hitherto been 
found possible on a moderately priced machine.

To make full use of the hardware and to provide a concise notation 
for the description of processing algorithms, a versatile computer 
language, PPL2, has been developed. PPL2 provides, in addition to an 
extensive range of operators, a very concise yet very efficient method 
of denoting image operations. A compiler for this language has been 
incorporated into a complete image processing system for fast 
interactive development and testing of programs.

Use has been made of the system to investigate the possible 
application of the quadtree in image processing and also for the 
formation of the skeleton description of an object. In the latter 
application interest centered around the possible advantages of a 5 x 5 
over a 3 X 3 pixel window.

Awareness of the potential industrial applications of image 
processing has led to observations and comments on the hardware and 
software required for image processing. Conclusions are reached 
concerning the relative merits of parallel versus sequential algorithms 
and of various types of processors.



CONTENTS

1. Introduction.

2. Some Architectural Considerations in Digital Image Processing.

3. A Language for Image Processing.

4. An Implementation of PPL2 on a PDP11/34A.

5. Image Storage and Access Logic.

6. An Application of the Grey Scale Quadtree in Small Part Location

7. Skeletonisation.

8. Conclusion.

Appendices

A. Benchmark Tests.

B. An Example Terminal Session.

C. PPL2 User Guide.



CHAPTER 1

INTRODUCTION ‘ 14

1.1 Applications of Image Processing ........................ 15

1.1.1 Image Enhancement .................................. 16

1.1.2 Object Reconstruction ............................. 16

1.1.3 Communications ..................................... 16

1.1.4 Segmentation and Description ...................... 16

1.1.5 Scene Matching and Recognition  ...............17

1.2 Industrial Applications................................. 19

1.2.1 Automatic Inspection ............................... 19

1.2.2 Automatic Assembly ................................. 20

1.3 Image Sources ........................................... 20

1.3.1 Television Cameras ................................. 21

1.3.2 Charge Coupled Devices .......... '................. 21

1 .3 . 3  Other Sources .........   22

1.4 Digitisation ..................................   22

1.4.1 Connectivity ....................................... 23

1.5 Image Processing ........................................ 23

1.5.1 Parallel and Sequential Algorithms ......   25

1.6 System Requirements ..................................... 26

1 . 7 Past and Present ........................................ 27

CHAPTER 2

SOME ARCHITECTURAL CONSIDERATIONS IN DIGITAL IMAGE PROCESSING

2.1 Introduction ............................................ 29

2.2 Sequential Processors .................................. 30

2.2.1 Main-frame Computers  .............................30

' 2.2.2 Minicomputers .................  31

, 2 .2 . 3  Microprocessors ................................. ...31



2.2.4 Bit-slice Processors ............................... 32

2.2.5 Shift Register Processors ..........................32

2.2.6 Hard Wired Logic ................................... 34

2.3 Parallel Processors ..................................... 35

2.4 The Programming Language  ..............................36

2.4.1 High or Low Level ............................   36

2.4.2 Program Structures ................................. 38

2.4.3 Data Structures .................................... 40

2.4.4 Operators .................... ..................... 41

2.4.5 Subroutines ...................................... ..42

2.5 Efficient Programming Techniques .........................43

2.5.1 Minimal Loop Contents ..............................44

2.5.2 Common Sub-Expressions .............................44

2.5.3 Conditional Statements .............................45

2.5.4 Window Access ...................................... 46

2.5.5 Edge Detection ..................................... 48

2.5.6 Register Use ....................................... 49

2.5.7 Addressing Modes ................................... 50

2.5.8 Loop Counters ...................................... 50

2.6 Conclusion .............................................. 52

CHAPTER 3

A LANGUAGE FOR IMAGE PROCESSING.

3.1 Introduction ........   54

3.2 A Suitable Notation ..................................... 55

3.3 PPL2 .................................................... 57

3 .3 . 1 Keywords .......  58

3 .3 . 2  Variables .......................................... 59

3 .3 . 3  Comments ........................................... 59



3.3.4 Images ............................................. 59

3 .3 . 5  Assignment ......................................... 60

3 .3 . 6  Operators ....................... 61

3 .3 . 7  Constants .......................................... 62

3 .3 . 8  Image Operations ..........................  63

3 .3 . 9  Edges .............................................. 65

3 .3 . 1 0 Indexing ........................................... 65

3 .3 . 1 1 Conditionals ....................................... 66

3 .3 . 1 2 Loops ............................ 67

3 .3 . 1 3 Statement Separators ...............................69

3 .3 . 1 4 Sub-programs ....................................... 70

3 .3 . 1 5  Input and Output ................................... 71

3 .3 . 1 6 Spaces .................................   72

3 .3 . 1 7 Special Hardware ................................... 72

CHAPTER 4

AN IMPLEMENTATION OF PPL2 ON A PDP11/34A

4.1 Introduction ............................................ 73

4.2 Overview ................................................ 73

4 . 3  The Functions of a Compiler .............................75

4 .3 . 1 Lexical Analysis ...................... 76

4 .3 . 2  Syntactic Analysis ................................. 76

4 .3 . 3  Code Generation and Direct Execution ................76

4.4 The PPL2 Approach ....................................... 76

4.5 Mathematical Expressions ................................78

4 .5 . 1 Compiling Mathematical Expressions  .....  ...81

4.6 Other Elements of the Language ..........................83
I

4.6.1 Value Assignment ..........   84

4.6.2 Statement Separation ...............................84



4.6.3 Item Separation ......   '.................. 84

4.6.4 Control Structures .................................85

4.6.5 Image Scan ......................................... 86

4.6.6 Conditional Statements  ........................87

4.6.7 Other Statements .................................. 88

4.7 Concluding Remarks ......................................89

CHAPTER 5

IMAGE STORAGE AND ACCESS LOGIC

5.1 Introduction ............................................ 93

5.2 The Digitisation Scheme .................................. 95

5.3 Timing ................................................. ,96

5.4 Image Processing......................................... 98

5.5 Accessing Window Points ................................. 99

5.6 A Fast Solution ...................................... 101

5.7 Circuit Description ................   103

5.8 Other Facilities........................................ 105

5-9 As the User Sees It .................................... 105

5.9.1 The Window ............................  105

5.9.2 The Centre Point .................................. 106

5.9.3 Mode .............................................. 108

5.9.4 Input Image Number  ........................... 109

5.9.5 Output Image Number ............................... 109

5.9.6 Edge Value ..........  109

5.10 Construction ....................................   109

5.10.1 Timing and Control ................................ 109

5.10.2 Display ........................................... 109

5.10.3 Colour Display  ........................  109

5.10.4 Input ..................................   111



5.10.5 Memory .......... .

5.10.6 Computer Interface

5.10.7 Registers ........

5.10.8 Front Panel ..... .

5.11 PDP11 Interface ...... .

11 

11 

11 

11 

13

CHAPTER 6

AN APPLICATION OF THE GREY SCALE QUADTREE IN SMALL PART LOCATION

6.1 Introduction ............................   114

6.2 The Quadtree ........................................... 115

6.3 A Binary Quadtree Implementation .................. '....115

6.4 A Grey Scale Quadtree Implementation ...................117

6.5 Immediately Available Useful Information .............. 124

6.6 Background Extraction .................................. 125

6.7 Small Part Detection ................................... 125

6.8 A Small Part Detection Program ...............   126

6.8.1 Background Detection .......   126

6.8.2 Background Interpolation ...........................128

6.8.3 Part Separation ....................................132

6.9 Uniform Threshold Comparison ...........................133

6.10 Parameter Selection ..........   133

6.11 Conclusion ............................................. 137

CHAPTER 7

SKELETONISATION

7.1 Introduction ........................................... 138

7.2 Skeleton Finding Algorithms ............................ 138

7 . 3  PPL2 Implementation of the Davies-Plummer Algorithm ...140

7 . 3 . 1  Propagation of the Distance Function ...............140



7.3.2 Marking of Local Maxima ......................... 141

7.3.3 Slimming to a Connected Shape ...................... 144

7.3.3.1 3 x 3  Window .................................... 144

7.3.3.2 5 x 5  Window .................................... 146

7.3.3.3 Performance Comparison ...............   151

7.3.4 Thinning to a Skeleton ............................. 155

7.3.5 Removal of Noise Spurs ............................ 161

7.4 Conclusion ............................................. I6l

CHAPTER 8

CONCLUSIONS

8.1 Introduction ........................................... 171

8.2 The Development System ................................. 171

8.2.1 PPL2 Language ..................................... 172

8.2.2 The Image Storage System ........................... 173

8.3 Improvements to PPL2 ................................... 173

8.3.1 Data Type Definitions .............................174

813.2 Overflow........................................... 176

8.3.3 PPL3 .............................................. 176

8.4 Industrial Systems ..................................... 177

8.4.1 The Shift Register Processor .......................179

8.5 Algorithm Development .................................. 179

8.5.1 Window Size ..........   180

8.6 Future .................................................181



10

ACKNOWLEDGEMENTS ............................................... 163

REFERENCES...........   184

APPENDIX A Benchmark Tests ................................... 193

APPENDIX B An Example Terminal Session ...................... 204

APPENDIX C PPL2 User Guide ................................... 206



11

LIST OF FIGURES

1.1 Part of Scene in Figure 1.2.

1.2 Biscuits.

1.3 Connectedness.

2.1 Shift Register Processor.

2.2 Array Storage Comparison.

2.3 Window Re-mapping.

4.1 A Comparison of an Interpreter and a Compiler.

4.2 Mathematical Operators and their Priorities.

4.3 Flowchart of a Mathematical Expression Interpreter

4.4 Image Scan Expansion and Result.

4.5 "IF" Statement Expansion and Result.

4.6 Keyword Conversions.

4.7 Actions of the Operators.

5.1 Approximation of a Hexagonal Array.

5.2 Subscript Values (Rectangular Tessellation).

5.3 Neighbouring Subscripts (Rectangular).

5.4 Subscript Values (Hexagonal Tessellation).

5.5 Neighbouring Subscripts (Hexagonal).

5.6 Example Image Processing Program in FORTRAN.

5.7 Address Mapper - Block diagram.

5.8 Address Map.

5.9 Windoe Point Addresses.

5.10 The Video Interface - Main Units.

5.11 The Front Panel.



12

6.1 Example quadtree.

6.2 Quadtree Generation Program.

6.3 Binary Image and Its Quadtree Representation.

6.4 Selected Levels from the Quadtree.

6.5 Grey Scale Quadtree generation Program.

6.6 Grey Image and its Quadtree Representation.

6.7 Small Parts Scene.

6.6 Parts of Image at Quadtree Levels <=4.

6.9 Quadtree Derived Background Extraction Program.

6.10 Background Interpolation Program.

6.11 Background Interpolated from Figure 6.8.

6.12 Objects Discovered in the Scene.

6.13 Object Location and Display with Overall Program.

6.14 Unevenly Illuminated Scene.

6.15 Uniformly Thresholded Result.

6.16 Uniform Threshold to Detect wires on Left.

6.17 Objects Detected by the New Technique.

7.1 A Two Pixel Object.

7.2 Distance Function Propagation - Sequential Algorithm,

7.3 Distance Function Propagation - Parallel Algorithm.

7.4 Original Shape.

7.5 Propagated Distance Function on Figure 7.4.

7.6 Mark the Local Maxima.

7.7 Local Maxima of the Distance Function.
: ■ I

7.8 NSEW Slimming Program. |
I ' ;

7.9 Slimmed shape - 3 x 3  Window.
'  ' , ■ i  .

7.10 5 x 5  Window Parallel Slim.

7.11 Slimmed Shape - 5 x 5  Window.

7.12 Performance comparison of Slimming Algorithms.



13

7.13 Comparison of Slimmed Shapes.

7.14 Programs for the Final Thinning Stage.

7.15 Thinned Skeleton. '

7.16 Re-created Shape.

7.17 Shape Re-construction from Thinned Skeleton

7.18 Noise Spur Removal Program.

7.19 Skeleton After Removal of Noise Spurs.

7.20 Images for Speed Comparison.



14

1 . INTRODUCTION

Humans make very extensive use of vision and have built their 

environment on this basis. It is estimated that as much as 75? of the 

information received by humans is visual in origin, they are well 

adapted to using it in this form. Children very soon learn to 

recognise objects they see and analyse their surrou/idings using this 

advanced visual capacity.

For tasks in which people are less capable, machinery has been 

built to help them. These machines provide mechanical aids to the 

performance of duties not normally possible, for example handling very 

large or small loads or working in hostile environments. Assistance in 

numerical fields has been given by the electronic computer which can 

perform mathematical operations at a speed and precision far beyond 

human capabilities. The supremecy of the computer in this field has 

led to its being regarded as a mechanical brain which can be used to 

tirelessly perform the same tasks as humans. In many areas this has 

been achieved and computers can be found controlling complex operations 

as well as any person could.

Despite their high speed, complexity and apparent thinking ability 

computers are still very poor at communicating with the world in which 

people live. Advances have been made since the time when binary 

numbers had to be laboriously produced to feed the machine and the 

results, again in binary form, had to be carefully decoded to reveal 

the required answer. It is now possible to feed the machine 

instructions in a form not dissimilar to normal language and to receive 

results in printed or graphical form.

Vision is a sense still not truly available to a computer in that 

it is impossible to present a scene to a machine and expect it to



15

interpret what it sees in a manner even remotely as complex as a human 

can do without conscious effort. The old adage that "a picture is 

worth a thousand words" becomes painfully obvious when describing even 

extremely simple scenes to a computer. It is not surprising that a 

great deal of effort has been and still is being expended on the 

problem of giving computers sight.

1.1 APPLICATIONS OF IMAGE PROCESSING

Given a machine capable of receiving and processing images there 

are many possible applications. Hall [1] has identified five major 

areas -

1. Image enhancement.

2. Object Reconstruction.

3. Communications.

4. Segmentation and description.

5. Scene matching and recognition.

1.1.1 Image Enhancement

Images that have been in some way degraded may need to be improved 

if they are to be useful. In cases where it is not possible to re-take 

a poor photograph or a clean signal is unobtainable, it is essential 

that enhancement be applied. A major example of this work is seen in 

the images produced by the Jet Propulsion Laboratory from satellite 

mounted cameras flown through the solar system photographing planets 

and their moons in passing. It has been possible to compensate for 

such image degradations as random noise, interference (non-random 

noise), geometrical distortion, field nonuniformity, contrast loss and
I , ■

blurring. Further application areas include imaging through the
I ' ' ' ' .atmosphere where blurring |due to air turbulence takes place and in



16

criminal investigations where photographs are hastily taken and can be 

of very poor quality.

1.1.2 Object Reconstruction

Most physical objects are three-dimensional but cameras produce 

only two-dimensional images of them. The ability to extract i n f o r m a t i o n  . 

about the third limtAjfort is invaluable. It is found in medical

computer tomography which, using X-rays, provides information about 

concealed organs without the need for surgery. Industrially it is 

useful to determine such information as when objects are partially or 

completely occluded by others.

1.1.3 Communications

Image transmission of even moderate resolution requires a large 

bandwidth for moving scenes, the 625-line television standard needing 

some 6MHz. It is often found, however, that much of the information 

transmitted is redundant and could be removed to considerably reduce 

the bandwidth required. Processing capable of removing the redundant 

information and of reconstructing the image from what is left would be 

very useful in making feasible such devices as video-telephones using 

voice channel bandwidths.

1.1.4 Segmentation and Description

Verbal description of a scene requires the use of a very great 

deal of intelligence in the choice of features that are significant, 

and whilst occurring without much conscious effort in humans proves a 

difficult task for machines. Since much of our experience of the world 

comes from observation, the faculty of sight would be invaluable to a 

computer. The potential number of applications of seeing machines is



17

immense. It has been recognised that the problem can be usefully

divided into two parts, segmentation and description.

Segmentation of a scene into regions of similar properties can be 

treated as a two- or three-dimensional clustering problem in which 

clusters of points having similar properties can be grouped together. 

The property chosen to cluster points will depend on the application - 

for example regions of similar grey intensity or similar texture might 

be suitable in different problems.

Description of a scene relies on both the relationships of the

segments of the scene to one another and the absolute properties of 

each segment. Structural descriptions are of particular interest in

that they often approach the human description of the objects seen; for 

example a pencil can be described as a cylindrical object with one flat 

and one conical end.

In some cases it is better not to separate segmentation and

description too fully as a partial description may be of use in the 

segmentation process. Figure 1.1 shows a part of a scene which appears 

fairly homogenous and might, reasonably, be considered a segment of the 

scene. Figure 1.2 shows the scene from which figure 1.1 was taken, the 

dotted box enclosing figure 1.1. In this case a region boundary can be 

seen; it is rather more obvious here because the easily identified part 

of the object at the top has been determined to be part of a circle - 

extrapolation of the expected edge into the unclear region makes it 

more visible.

1.1.5 Scene Matching and Recognition

Rather than having a detailed description of an object of interest 

it would be convenient to present one or more examples and to be able 

to recognise similar objects. This learning ability is such a natural



18

'Fiflure 1VI of#Scene in





19

procedure for humans that it has been suggested that it is an inherent 

function of the eye-brain system. Computer programs capable of

learning have been devised, some being based on the human vision

system; see, for example [2].

1.2 INDUSTRIAL APPLICATIONS

Industrialists are showing increasing interest in image processing 

and pattern recognition for production applications. Most large 

factories are now highly mechanized in order to improve rate of output 

and consistency of product. There are, however, parts of the

production cycle that can be satisfactorily performed by human

operators. Many such jobs are highly repetitive and very boring with

the result that by the end of a shift the error rate often rises to 

intolerable levels. There is considerable interest in mechanizing 

these functions to avoid the need to employ people in such mindless 

jobs and to improve output by reducing errors. There are two broad 

categories of requirements for such machinery, inspection and 

assembly.

1.2.1 Automatic Inspection

In order to ensure that a product meets the quality requirements 

it must be inspected before being passed to the customer. Most

products undergo a number of steps in their manufacturing process, each 

step adding to the value of that part. It is obviously pointless to
I

process further an already damaged part - it should be rejected as soon 

as possible. Unfortunately it is not usually possible to accommodate 

human inspectors at all stages in the production as many of them take

place in unpleasant or dangerous surroundings, for example within fast

moving machinery or at high temperatures. As a result the inspection



20

often takes place at a very late stage in production after expensive 

processing of reject parts!

Availability of a mechanical inspection system would mean that 

much more inspection would be possible and soon pay for itself in saved 

processing of faulty parts. A further benefit of detailed inspection 

is the possibility of performing careful statistical tests on the

products to predict the oncoming failure of a production machine to 

enable routine maintenance to take place and avoid a costly break in

production.

1.2.2 Automatic Assemblv

Another tedious job in the manufacture of a product is the

assembly of its component parts. Careful presentation of the 

components with regard to their position and orientation can make 

mechanical assembly possible but the accuracy of location required 

implies a higher cost before assembly. An ideal assembler would take 

the required part from a mixed pile of parts so that there would be no 

need for elaborate packaging techniques but simply a method of tipping 

parts into a convenient area. The identification of single isolated 

parts is a problem that has been only partially solved: that of a "pile 

of parts" is significantly more difficult and no general solution 

exists, although in some particular applications a satisfactory 

performance has been achieved.

1.3 IMAGE SOURCES

Before a computer can attempt to extract information from a scene 

it must be presented with the information contained therein in a 

suitable format. Computers deal with numeric values represented by 

electrical signals and some form of transducer must be used to convert



21

optical data to this form. There are many devices available for this 

purpose but most provide an analogue signal which must be further 

processed to digital form.

1.3.1 Television Cameras

Conversion of optical information to electrical signals was first 

employed for the transmission of scenes in the form of television. 

Much effort has been put into developing suitable cameras for this 

purpose and all produce signals to one of a few common standards. It 

is thus possible to choose a camera well suited to a particular 

application; very many different types exist for a great number of 

special purposes. The long period of development has resulted in a 

range of cheap and reliable signal sources which may be used for input 

of image information.

1.3.2 Charge Coupled Devices

Solid-state cameras using charge coupled device technology to 

produce moderate resolution images are now available. Current 

development work promises high resolution devices in the not too 

distant future. The sensor can be either a single line or an array of 

photocells, the former being known as a line scan camera and the latter 

producing a standard television signal. To produce a distortion free 

image from a standard television system camera the subject has to be 

stationary for a complete frame scan. This is not always convenient in 

applications involving, for example, objects on a production line which 

is continuously moving. The line scan camera, however, relies on the 

subject moving across its line of view to produce . a complete raster 

scan and is more suited to the type of application mentioned above.



22

1.3.3 Other Sources

Data for the image processor may not have come directly from a 

camera but possibly via a communications link (as for satellite 

pictures), or from a non-optical sensor, or an X-ray detector in a 

medical application. Provided the signals can be converted into a form 

that can be interpreted by the image processor (generally, a set of 

digital values) the exact source is unimportant.

1.4 DIGITISATION

Before it can be processed the signal representing the image must 

be converted into a form that the computer can use; this is generally a 

set of digital values. The image is, initially, a continuous field of 

values and must be sampled at intervals and the samples digitised to 

yield actual values. At each sampled point a characteristic of the 

signal is measured and represented by a digital value; the most usual 

characteristic of interest in an image is the brightness of the point. 

The resolution to which the characteristic is digitised depends upon 

the image source and the application; for television signals between 1- 

and 8-bits resolution are employed, corresponding to 2- (binary) to 

256-levels of brightness.

. Sampling must occur at regular intervals over the image to provide 

meaningful data. It is usual to consider the image as being covered by 

a regular tessellation of one shape with the sampling occurring at the 

centre point of that shape. There are only three basic shapes that can 

be used to cover an area, triangles, rectangles and hexagons []]. 

Triangles are rarely used for image processing but both rectangles and 

hexagons are seen, rectangles being the most common.



23

1.4.1 Connectivity

Each image point has a number of neighbours and may be considered 

as connected to some or all of them, this is known as the connectedness 

of the point. An image digitised on a hexagonal grid is 6-connected, 

that is each image point is connected to 6 neighbours; a rectangularly 

digitised image can be considered as either 4- or 8-connected, see

figure 1.3 and [3 ].

Choice of 4- or 8-connected pixels (in the case of rectangularly 

digitised images) is not arbitrary. Consider the following arrangement 

of pixels -

0 1 
1 0

Considering the pixels as 4-connected means that the 1 ' s  are connected 

to form a line but so are the O's; this causes a conflict in 

interpretation of the scene. To overcome this paradox it is usual to 

consider either foreground or background to be 4-connected and the

other to be 8-connected. By defining the background to be 8-connected 

and the foreground to be 4-connected objects that meet only at corners

are not considered to be touching.

1.5 IMAGE PROCESSING

Data as input is not generally in the required format for the 

application. For example it may be that the number and positions of 

certain objects are wanted and the data available is an array of 

values. It is necessary to convert the information from the input 

device into another format for subsequent use: it may be another image

or, as in the example above, into a completely new form.

Generally the value of an output pixel can be define^ as a 

function of the input pixels. A complete definition in this form would



24

Hexagonal Digitisation Rectangular Digitisation

1
I

.—
1

X

6-connected 4-conneoted 8-connected

Figure 1.1 Connectedness

be impossibly large, there being as many functions as pixels in the 

output image, each taking the total number of input image pixels as 

parameters. For a 128 x 128 pixel image there would be 16 000 

functions each with 16 000 parameters! Fortunately it is possible to 

use more local functions and to apply them to all points in the image, 

thus requiring fewer functions with fewer parameters. The price to be 

paid is that the desired output may not be obtained with a single 

function but several may need to be applied one after another.

Single parameter functions are the simplest that can usefully 

applied; for these the value of the output pixel is a function only ■ of 

the corresponding input pixel. (Parameterless functions may only 

produce a fixed value and are only useful for setting the whole image 

to a single value.) The function may be linear or non-linear. This 

simple type of function is useful for such operations as adjusting grey 

levels and contrast within an image, often in conjunction with data 

obtained from a histogram of the brightness distributions within the 

image.

More useful functions take a number of parameters, usually small,



25

from a region around a central point. Repeated application can spread 

information through the image so that the final result is a function of 

all pixels in the image. The small region from which parameters are 

derived is known as a window on the image since only those pixels 

within it can be "seen" by the function. A commonly used window is 

3 x 3  pixels from which 5 (4-connected) or 9 (8-connected) parameters 

may be taken. A very large number of functions with 5 or 9 parameters 

may be derived and a much larger set constructed by concatenating 

them. Windows larger than 3 x 3  are much less frequently seen as the 

difficulties in designing them rapidly increase. An exception in which 

much larger windows are found is the case of functions derived by sound 

mathematical techniques such as Fourier transforms. One application in 

which the 3 x 3  window provides less than the ideal amount of 

information is that of finding the skeleton of a shape, although most 

work has used this size. Chapter 7 implements one skeleton finding 

method and investigates the advantage of a larger ( 5 x 5 )  window.

1.5.1 Parallel and Sequential Algorithms

Window functions must be applied at all points on the image to 

produce a complete output image. It is possible to consider the 

function as being performed by as many processors as there are output 

pixels working in parallel or by a single processor operating on each 

point in turn. In the case of a complete set of parallel processors 

the result is a function of only the window elements. In the case of a 

single processor a window function is derived and the processor moved 

to the next pixel in an ordered scan of the image. The values obtained 

may be placed into a separate output image producing the same output as 

a parallel array of processors. Alternatively they may be returned to 

the input image so that the next application of the function uses the



26

result of the previous applications: this is known as a sequential

procedure.

1.6 SYSTEM REQUIREMENTS

Image processing, like most practical subjects, can be categorised 

into two different areas of use each with different requirements. 

Initially a system for research and development is required, the 

results from which are used to construct a production system. Whilst 

both systems have a common requirement, in this case to process images, 

there are many differences between them. The production system must be 

as simple as possible to aid reliability and serviceability, have as 

few controls as possible to prevent mal-adjustment, and be adequately 

fast. A research machine, while sharing the requirements of

reliability, must yield a vast quantity of detailed information

concerning the processes it is performing to allow careful study; it 

must be flexible to allow changes to be made and tested and easy enough 

use that research is not an uphill struggle. Research is, 

clearly, the first step in the process and this thesis describes a 

system designed to facilitate investigations into image processing

problems and their solutions.

Central to the task of image processing is the description to the 

computer doing the calculation of the actions required. A number of 

languages exist that may be used for this purpose but none in common 

use provides a clear efficient method of coding window operations that 

must be performed over the image. A short-hand notation for the pixels

in the window not only makes the program clearer but also simplifies
•I

writing and, in turn, reduces errors. A simple method of indicating
■ ! , ■ ' I ,

1 ' I ; ■■ !
that the : operation is to be performed over the whole image is of 

immense value in uncluttering programs, as will be demonstrated in



27

chapter 3. A further benefit gained from the use of a clear

programming language is that the program itself can be used as a 

description of the task, thus avoiding transcription errors. A

disadvantage of subroutine or macro libraries, such as those used in 

[4], is that the actual processing taking place is hidden from view and 

a fairly large effort is involved in understanding it and in making any 

changes that may be required.

Greatest interaction can be obtained from an interpretive language 

(cf BASIC) but, unfortunately, such languages are relatively slow in 

execution. When an operation is to be performed over a whole image it 

must be repeated a large number of times (16 384 for a 128 x 128 image) 

and execution speed is highly relevant. A complete program is composed 

of not only image operations but also structures to control the flow of 

these operations. PPL2 was designed to adopt a middle course in that 

the control statements are interpreted while the image operations are 

locally compiled and executed. Thus, except when actually operating on 

an image, full interaction is maintained and short programs may be

entered from the keyboard for immediate execution. Many people have 

noted that the writing of software can form a notably expensive part of 

the project whilst actually being only a small fraction of the total 

design. It is therefore particularly important that an easy to use 

design system be available to reduce the disproportionate time and

costs involved.

1.7 PAST AND PRESENT

PPL was first conceived in 1977 for use on a small microprocessor 

based system [5] and saw extensive use on this machine. When a larger 

machine became available it was reviewed in the light of past 

experience and future requirements and a new language, PPL2, designed.



28

A language is of little use without supporting facilities and these 

were provided by calling upon existing systems programs and by writing 

a sub-system for image processing.

In this thesis chapter 2 looks (briefly) at the architectural 

considerations that coloured the design of PPL2 both in terms of the 

computers used for image processing and of the software structures 

required. Chapter 3 discusses some wider issues affecting the language 

and describes PPL2. The implementation of PPL2 as a 

compiler/interpreter is described in chapter 4, and a user guide to the 

complete sub-system appears as appendix C. In order to improve the 

execution speed and image storage capability of the system a special 

image storage unit was constructed and its features are described in 

chapter 5.

The system developed contains many of the features required by a 

general purpose computer vision system [6]. Chapters 6 and 7 describe 

two of the very many investigations into image processing algorithms 

performed on this system. Some tasks were very small, as simple as one 

or two line programs (when written in PPL2) whilst others required 

several different files of programs to be used.

Finally, chapter 8 highlights some of the problems encountered in 

image processing algorithms, the languages used to program them and 

also in the computers used for their execution, suggesting possible 

improvements for future implementations.



29

2. SOME ARCHITECTURAL CONSIDERATIONS IN DIGITAL IMAGE PROCESSING

2.1 Introduction

Image processing is a highly practical subject in which it is not 

possible to progress very far without testing ideas on real scenes. 

There is a difference between the requirements of a researcher and an 

engineer when processing images. The researcher is relatively

unconstrained by time but requires detailed results for further study. 

However, a long execution time will limit the quantity of test data 

investigated. The engineer may be severely limited in the time 

available to perform a function when applied, for example, to a 

production line in a factory.

Trends in computing have been away from the use of low-level

languages toward higher-level languages that can be written more

quickly and are more machine independent for portability. An

unfortunate disadvantage of the use of higher level languages is the 

programmer's inability to fully utilize special conditions to provide 

faster programs. This has not been a problem in commercial programming 

where the computer has spare capacity for the job and the programmer's 

time is very expensive. Image processing has seen a change in 

conditions where the computer is rarely fast enough and effort has to 

be placed in producing highly efficient programs.

Comments in this chapter are intended to give some ideas of ways 

in which the image processing task can be performed faster. Sections

2.2 and 2.3 briefly describe some of the machinery that may be used for 

image processing. Section 2.4 looks at some of the considerations that 

may be applied when choosing a programming language. Some techniques 

that may be incorporated into programs to improve their speed are 

described in section 2.5. .



30

2.2 SEQUENTIAL PROCESSORS

A wide range of sequential processors is available; many are not 

specifically designed for image processing but, being general purpose, 

can be used for this application. Where there are good reasons for 

doing so, such as high speed, specially designed sequential image 

processors are found.

2.2.1 Main-Frame Computers

Main-frame computers have been the traditional tool for research 

into image processing - often because these were the only machines 

available. Such machines usually provide for large amounts of data 

handling and storage with a high speed processing capability. Some 

recent machines can provide an extremely fast processing capability for 

the type of data found in image processing [?].

It would seem that this type of computer is ideally suited to the 

task; however there are many disadvantages which make its usefulness 

rather dubious. Most of these problems stem from the fact that such a 

computer is very expensive and can therefore only be justified if it is 

to serve a number of users. The large space these machines occupy and 

the services they require, effectively rule out their use in a factory 

environment. Even if such a machine could be justified on the grounds 

that it could service several processes, the effect of a single 

breakdown on the whole of the factory output should be compared with 

the more localised effect when using several smaller computers.

Operating systems for these machines usually provide either batch 

processing or time sharing between users. The former is not conducive 

to the writing of efficient algorithms or to real time use, as the 

results of a run may take many hours or even days to become available.



31

The latter type of system slows down the response to each individual 

user so that it may take several minutes to get a few seconds of 

processing time, again precluding serious real time work.

Perhaps the worst problem in image processing is the quantity of 

data involved. This has to be transferred to storage within the 

computer system before it can be used. An image of 128 by 128 pixels 

digitised to 8-bit resolution occupies 16 384 bytes which, transferred 

over a 1200 baud line, requires more than 2 minutes of transmission 

time. At this speed interactive programming is very tedious and not at 

all conducive to development work.

2.2.2 Minicomputers

Although relatively short of memory and slower than the main frame 

computer, a 'mini' has distinct advantages which make it very suitable 

for image processing. Usually it is possible to gain complete control 

of the machine and use the whole of the processing time available. The 

machine can be opened up without incurring the wrath of the computer 

centre staff and special interfaces can be installed for high speed 

data transfer. Despite the relative lack of processing speed these 

other advantages result in faster program execution than the main

frame. Most of the memory requirement is for image storage and can be

placed outside the computer with an appropriate access system (see, for 

example, chapter 5).

2.2.3 Microprocessors

Since they are available at very little cost microprocessors have 

aroused considerable interest. Unfortunately, when compared with 

main-frame and mini computers, they have been rather slow - a factor

which could limit their effectiveness for image processing. The



32

cheapness of these devices means that the use of multi-processor

techniques is quite feasible and leads to a considerable increase in

speed. Early processors were also limited in their lack of certain

basic functions, such as multiply and divide, which incurred a time 

penalty in the software required to perform the functions. Recent

additions to the microprocessor range (such as the Motorola 68000, 

National Semiconductor 16032, etc.) provide these functions and speed 

improvements to the same order as those of mini-computers.

2.2.4 Bit Slice Processors

Bit slice processors are special forms of microprocessors which

are very fast and can be microprogrammed. Generally they are available 

in the form of a 4-bit processor per package, but with the provision 

for connecting several together for long data words. The ability to 

micro-program them means that any special instructions required for 

image processing can be provided, which, when compared with the fixed 

set of a microprocessor gives a distinct speed advantage.

2.2.5 Shift Register Processors

Image data for the above mentioned processors is stored as a 

static array of values with access restricted to one value at a time. 

As many accesses are required as there are points in the window in 

order to extract data for each window operation.

The shift register processor provides an architecture whereby the 

data is dynamic and all pixels in a window are available at one time - 

see figure 2.1. (The immediate availability of all pixels in the 

window has led to its use for the simulation of a parallel processor

[8].)

Each of the long registers holds one line of image data to provide



33

Serial Data In

Processor

Shift registers 
 >

H—  +

+- "

+ •“ + “ + “ +

+  - +-

•f

Serial Data Out

Figure 2.1 Shift Register Processor



34

the delay required to present all window points in parallel to the 

processor; the latter then produces a serial data stream as output. 

The processed data stream can be passed to a further shift register

processor. Cascading processors in this way does not reduce the speed

at which images can be handled but merely increases the propagation 

delay in handling data.

The processor has to handle the data in real time. For a standard 

625 line (COIR) video signal digitised to 128 by 128 pixels, a

processing time of at most 400nS is required - too fast for most

microcomputers. In the particular, case of a 3 x 3 window processing a

binary image there are only 2̂  = 512 possible combinations of input

data which may be processed by simply looking up the result in a 

table. Memories with access times of better than 50nS are available 

making this type of processing quite feasible.

Data from a slower device, such as a CCD camera, could probably be 

processed with a small computer, or maybe a set of such devices.

2.2.6 Hard Wired Logic

Undoubtedly the fastest solution to image processing is the 

construction of special dedicated circuitry. Unfortunately this is 

very inflexible and any changes, however minor, to the algorithm 

require a major reconstruction. Some standard operations that will

remain invariant may beneficially be implemented in this way,

particularly in conjunction with the shift register processor described 

above.



35

2.3 PARALLEL PROCESSORS

The ability to process all the points of an image together in a 

suitable parallel processor was considered desirable and designed as 

long ago as 1958 [9] but technology had not, then, advanced to the

point that implementation was practical and worthwhile. A small 

(36 X 3 6 ) array of this form was later simulated in 1959 by Unger [10], 

producing results that caused that author to suggest that character 

recognition at the rate of 2500 characters per second would be achieved 

within five years.

Later developments led to such parallel processors as the ILLIAC 

III with 1024 processors [11] and the ILLIAC IV, with an array of 256 

processors [12]. A later (1973) machine, described as parallel but, in 

fact, a shift register processor implementation for images of 64 x 64 

pixels was constructed by Kruse [8]. At about this time a truly 

parallel processor aimed specifically at image processing emerged from 

Duff [1 3] with an array size of 12 x 16 pixels.

Other application areas for parallel processors had, by the early 

1 9 7 0's, arisen and main-frame manufacturers started introducing them as 

integral parts of their machines. One recent example of this being the 

Distributed Array Processor (DAP) of the ICL 2980 series machines 

[14,15]. (The cells of the DAP are only 4-connected but it is possible 

to simulate 8-connectedness without too large an overhead [15].) 

Meanwhile, Duff had been developing large scale integrated circuits for 

a more powerful image processing machine, CLIP 4 [16,17].

CLIP 4 has brought the ability to process quite large (96 x 96 

pixel) images at very high speed and is now available complete with 

mini-computer controller and high-level language [18]. This is 

undoubtedly a powerful machine but is, unfortunately, also rather 

expensive and has some problems with the availability of components



36

[19]. Since the design of CLIP other parallel machines have been 

produced, for example [20].

2.4 THE PROGRAMMING LANGUAGE

Writing instructions for a computer by feeding it series of 

numeric instructions via a set of switches is no longer considered a 

sensible method of programming. Some method of writing the 

instructions in a manner more easily understood is required.

Early in the life of computing a simple mnemonic code was used to 

write programs in the machine's internal code, but with the advantage 

of increased readability. As programs became more complicated it was 

evident that rather more powerful constructions had to be simply 

described.

Languages which described particularly useful ideas in the field 

of application were evolved. Perhaps the earliest well known such 

language is FORTRAN, intended to be used for describing numerical 

operations. A vast number of special languages have been devised for 

particular applications. There is not, as yet, a universal language 

for all applications (although there have been attempts to produce 

them). When programming for a particular application a language 

providing the type of facilities most often required must be chosen.

2.4.1 High or Low Level

Languages closely linked to the architecture of the computer are 

known as low-level. Those which provide a program description which is 

(relatively) independent of the machine are known as high-level 

languages.

Using a high level language to write programs can bring 

significant advantages for the user. Concepts rather than specific



37

instructions are written and a compiler used to generate the actual 

instructions needed by the computer to carry out the task. Only a few 

such commands are required to specify a large number of machine 

operations. It has been found that programmers tend to produce code at 

a constant rate, regardless of language, so that writing at a high 

level produces more in a given time [21]. Since the instructions that 

are written are relatively easy to understand, the program is less 

likely to include errors; those that do creep in are generally easier 

to find and correct. The lack of machine dependence provides for the 

easy transportation of programs to different computers; this has been 

considered one of the major advantages of using high level languages. 

Unfortunately, even at the best of times, transportation is not as easy 

as it should be. There is often a dependence upon, for example, the 

word length of the computer which affects the precision to which values 

can be stored. The problem is compounded in image processing by the 

lack of standard image storage and access machinery resulting in 

considerable program tailoring before use. This is a problem even with 

FORTRAN. No doubt this will become less troublesome as standard units 

become available.

Low-level languages, on the other hand, tend to be long and rather 

obscure in their detailed operation. To counteract this it is very 

easy to make use of any special features provided by the computer or 

image storage system. Careful programming in assembly language can 

produce highly efficient and fast programs that even the best of 

compilers cannot match. The provision of 'macro' facilities can 

greatly assist in the writing of clear programs without sacrificing 

speed in execution. Assembly language programs can only be transferred 

to other computers of the same type and are not at all suitable for the 

wide distribution of programs.



38

Perhaps a compromise should be sought for image processing; the 

major flow of the program can be controlled by a high-level language 

program with small subroutines at low-level to provide high speed 

operation and interfaces to special devices.

2.4.2 Program Structures

Much of the development in high level languages has been in 

program and data structures. Clearer methods of representing the 

required program flow not only make programming easier but also lead to 

fewer errors.

Very few basic instructions are needed to control the flow of a

program. All languages eventually use those provided by the computer

itself - conditional and unconditional jumps to new sections of machine 

code. As anyone who has looked at a complex machine code program will

know, these basic instructions do not produce easily understood

programs. To combat this problem higher level structures are usually 

provided and the compiler is left to generate the low-level 

structures.

Early languages often reflected the machine architecture in its 

provision of high-level structures - the IF statement of FORTRAN 4, for 

example. It is now recognised that to be genuinely useful rather more 

complex structures are required.

Conditional statements, as typified by the occurrence of the word 

IF somewhere in them, have changed considerably in the history of 

computing. Early languages strongly reflected the computer's own 

machine code in providing only a jump to a new section of the program - 

for example in early versions of BASIC. This was soon found to be too 

restrictive and conditional statements which caused a general action to 

be taken upon the result of a test were included, c.f. later versions



39

of BASIC and the logical-IF of FORTRAN 4. Action often has to be taken 

when the condition is found to be false as well as when it is true and

a clear method of doing so provided in languages such as ALG0L60,

ALGOL68 and, lately FORTRAN 77- The final form, as typified in the 

ALGOL68 implementation, not only provides a clear description of the

actions required but also encourages good programming. A speed

improvement, at the expense of clarity, can be obtained in some 

circumstances by returning to a low level implementation (see section 

2.6)
Controlled program repetition can be achieved with a conditional

statement and an unconditional loop back to the start of the program

section to be repeated. Machine code can only use this method, with

the result that programs are rarely clearly understood. Higher level 

notation for such repetition is generally provided. Mathematical 

languages, especially those requiring the use of matrices, generally 

employ a simple repeating structure with an index variable taking on 

successive values. The DO loop of FORTRAN is an example of such a 

structure, the index variable taking a range of positive values,

perfectly adequate for array indexing. As computers were required ' to 

be used for more general purposes this loop proved inadequate, the lack 

of negative values or negative increments requiring extra programming. 

A far more general looping command is provided in ALG0L60 which allows 

the variable to take values from a list of sub-ranges. As well as 

needing an indexing loop, a control structure that repeats a section of 

program until a condition is met or while a condition is true is 

required, these have been provided as extensions of the DO loop in 

PASCAL and ALGOL68 respectively. The REPEAT ... UNTIL ... of PASCAL 

can be implemented within ALGOL68s WHILE ... DO ... OD if required. 

Again some speed improvements can be achieved by re-coding in machine



40

code - see section 2.11.

Definition of an operation to be performed over the whole image 

array is a structure peculiar to image processing and not to be found 

in the well known high-level languages. The simplest structure is a 

pair of nested loops to scan the image with a processing operation 

within them. A simple notation for this ( [[ ... ]] ) is employed in

PPL2, see chapter 3, which uses information about the image storage 

hardware to implement an efficient loop.

2.4.3 Data Structures

Data structuring is extremely useful for dealing with complex 

inter-relationships between data items, especially when they are 

dynamically changing. This structuring is very useful for re-ordering 

data in pattern recognition but is not often required for image

processing as such. In order to allow the description of 

relationships, extra information must be appended to the data. As yet 

there are no computers available that automatically deal with this 

extra information and extra programming (and hence, time) is required 

to make use of it.

Data may, very usefully, be given a data type.(integer, real,

etc.) and the compiler be required to check that valid combinations of

data types are being used. Such typing can allow the shortest required

data representation to be used, and hence the fastest execution time to 

be obtained.

Languages such as ALGOL68, which allow dynamic type changing and 

expect execution time type checking, also incur a time penalty (until 

such time as a computer with hardware for this purpose is available).

Pyramidal image descriptions (see Chapter 6) do require the use of 

structured data as the new image description and a language



41

incorporating these features must be used. For those applications 

where images are processed to form other images, data structuring is 

not generally required.

2.4.4 Operators

Image processing is unusual in computing terms in requiring not 

only the standard set of mathematical operators but also a 

comprehensive range of bit-level operators, such as boolean AND, OR and 

NOT. Of the languages that do provide such bit-level operators most

require the use of special words rather than symbols for their 

inclusion in a program. This is inconvenient when such operators are 

used often. PPL2 (chapter 3) assigns single character symbols to the 

set of boolean operators for ease of use.

The ability to define new operators if they are found to be 

frequently required is useful. FORTRAN allows both one line

definitions and complete routines to perform this function; 

unfortunately, alphanumeric names must be chosen. ALGOL68, on the 

other hand, does allow such symbolic operators to be defined. Whenever 

possible the function should be written in machine code using any basic 

instructions that are available for speed in execution.

Years of programming for mathematical and commercial data 

processing have shown computer designers what types of basic operations

should be provided by the machine. There is not as much experience

available to call upon in the programming of image processing 

algorithms with the result that some operations may have to be 

implemented relatively slowly in software. Examples of such operators 

that I have found are needed often are the maximum and minimum of two 

values: these could be incorporated into a computer's instruction set 

but instead a sequence of operations is required. One advantage of



42

using a bit slice processor is the ability to micro-program it to 

perform such functions at high speed.

2.4.5 Subroutines

Groups of instructions that perform a function required in several 

places in the program need not be duplicated but instead a method of 

accessing them from each place is used. Such groups of instructions 

are known as subroutines: -they are started by calling them and upon 

completion they return to the calling program. If the subroutine has

to operate on different data each time it is called then some method of 

passing the data to the subroutine is required. Unfortunately, passing

data to and from the subroutine results in a time overhead which would

not occur if the group of instructions were rewritten each time they 

were required with explicit references to the data. This reduction of 

size in the program can hence cause an increase in the time taken to 

execute it.

The method chosen for data passing is dependant upon the

facilities provided by the language. Those, such as ALGOL68, that

provide for recursive subroutine calling need to pass data on a stack,

whilst those, such as FORTRAN which do not provide this facility can 

use a pre-determined data area. The fastest method of data transfer is 

to use the machine's registers, but this is only workable if there are

only a few items to be passed. Since the compiler has to be general

purpose, this method cannot be implemented in a high-level language. 

Most compilers for non-recursive languages, however, put the result of 

the subroutine execution in a register as there is, generally, only a

limited amount of data that can be returned.

Overheads incurred in calling a subroutine will extend the

execution time of the program by a proportion that will depend on the



43

amount of processing performed in the routine. Sections of program 

that are short would be better not called as subroutines but repeated 

as necessary. It is important to note that any code repeated a large

number of times, for example a window operator to be performed at each

point in the image, will see any overheads multiplied by the same 

number. As a general rule subroutines should be avoided in window 

operations.

2.5 EFFICIENT PROGRAMMING TECHNIQUES

Programs must accurately describe the operation to be performed in 

as clear a way as possible. For anything but the very simplest of

algorithms there will be a large number of possible solutions. Each of

the solutions will require a certain amount of time to execute, and not 

all will be the same. For image processing there is a great need for 

fast programs.

Optimisation for speed can be performed, to some extent, by the 

compiler of a high level language but even the best cannot quite match 

a good programmer. Some possible speed improvements cannot be left to 

a compiler as they require knowledge that is not available to it (see, 

for example section 2.5.3)*

Improvements can be made to both high- and low-level language 

programs. Unfortunately, some of the more cunning tricks are not 

possible at a high level and recourse has to be made to a low-level 

language to squeeze out the last ounce of speed.

Some of the techniques that I have found useful for speeding up 

programs are presented here. Some are applicable to both high- and 

low-level languages, others only to low-level programs.



44

2.5.1 Minimal Loop Contents

Any instructions contained within a loop are executed each time

round the loop. Care should be taken not to waste time by repeating

the same calculation unnecessarily. For example the section of program

FOR I FROM 0 TO 255 DO
IF ARRAY[I] > N/2 THEN COUNT :=C0UNT+1 FI 

OD

calculates N/2 some 256 times; once would have been enough. A better 

program would be 

HALFN:=N/2;
FOR I FROM 0 TO 255 DO

IF ARRAY[I] < HALFN THEN COUNT :=C0UNT+1 FI 
OD

Advanced optimising compilers may notice the repetition and remove 

it, however it is better to write the latter version to be sure of

wasting no time. If hand compilation and optimisation is intended to

take place the second version is far easier to deal with.

2.5.2 Common Sub-Expressions

Occasionally a sub-expression is repeated in different places so 

that the same expression is calculated several times. This is a milder

form of the repetition above but nevertheless should be eliminated.

Thus the command

ARRAY[I+J-4]:=ARRAY[l+J-4]*3+ARRAY[I+J-3] 

should be re-written as 

IJ:=I+J-4;
ARRAY[IJ]:=ARRAY[UJ*3+ARRAY[IJ+1]

Most good compilers will notice this, at least locally, and 

implement the improved version.

If a good common expression eliminator is built into the compiler 

the second form of the program may be less efficient than the first. 

The use of an explicit variable, IJ, forces the compiler to store the



45

result of the sub-expression rather than simply using a register 

temporarily. The only way of checking this is to dump the machine code 

produced by the compiler and study it carefully!

2.5.3 Conditional Statements

Conditional or IF' statements occur frequently in any decision 

making process. The basic statement is easily compiled but compound 

statements can often be improved.

Consider the statement

IF A=B ! C=D THEN [then part) ... ELSE [else part} ...FI

It would be normal to compare A with B to produce a boolean result, then

compare C with D to produce a second boolean result, OR these together 

and test the final value to determine which of the THEN or ELSE parts 

is to be executed.

If A is found to be equal to B it is immediately possible to

proceed to the THEN part without ever testing whether C is equal to D

or not. This gives, at worst the same execution time as the normal

scheme above, and at best requires only a single test. The assembly

code implementation of such a scheme might look something like this-

CMP A ,B
BEQ THEN
CMP C,D
BNE ELSE

THEN: ... ... ; then part

BR END
ELSE: ... ... ; else part

END:

To make the fullest use of this scheme the condition most likely 

to be true is placed first in the sequence of tests.

A similar method is applicable when the conditions tested are 

ANDed ' together, the first false value to be found forcing control to



46

proceed to the else part. In this case the test most likely to be 

false is placed first in the sequence.

Execution can be considerably speeded up in this way, especially 

if the different parts of the conditional occur with differing 

probabilities.

While a good compiler can employ this basic scheme it cannot 

appropriately order the tests for the best results as it does not know 

the relative probabilities of the terms. It is not always certain that

the terms will be tested in the order in which they are written down

and care should be exercised when using high level languages in this

way. If at all possible the machine code produced by the compiler

should be checked. This ambiguity does not occur when statements are 

hand compiled or the program is written in a low level language.

2.5.4 Window Access

By far the largest number of data accesses occur to pixels within 

the image. Any unnecessary overheads here will drastically extend the

execution time of the algorithm.

Images are two-dimensional arrays of pixels, any particular pixel

being referenced by a pair of index values, one for each dimension.

When a pixel is referenced in this way the two index values must be

combined with the start address of the image to produce the address of

the required pixel.

Arrays are stored in memory as a set of contiguous locations. 

Storage may be allocated on a row by row or a column by column basis, 

FORTRAN employs the row convention and ALGOL the column convention

(hence their incompatability). This is illustrated in figure 2.2.

Given an N by M array the offset of a general point with indices X,Y

can be calculated as X+N*Y in FORTRAN and X*M+Y in ALGOL.



Language

Array Declaration : 

Memory address

47

FORTRAN 

INTEGER A(2,4)

ALG0L68 

[2,4] INT A;

A+0 A(1,1) A[1,1]
A+1 A(2,1) A[l,2]
A+2 A(1,2) A[1,3]
A+3 A(2,2) A[1,4]
A+4 A(1,3) A[2,1]
A+5 A(2,3) A[2,2]
A+6 A(1,4) A[2,3]
A+7 A(2,4) A[2,4]

Figure 2.2 Array Storage Comparison

It is seen that for each pixel access a multiplication and an 

addition are required. Both these operations take time, the 

multiplication may be quite slow on machines without hardware 

multiplication (most of the earlier microprocessors). If the machine 

does not have a suitable indexing arrangement a further addition is 

required to add the base address of the image to the offset to form the 

actual address of the pixel. In the case of fixed offsets (i.e. X and 

Y above are constants) a compile time calculation can be performed to 

alleviate this overhead.

Pixels within a window are referenced by the address of the centre 

point of the pixel and an offset relative to this point. Thus, for 

example, to access the window point defined as IMAGE(X+1,Y-2), where 

IMAGE is a 128 by 128 pixel array, the following sequence of 

instructions would be required -

MOV Y,R1 ; R1:=Y
ADD #-2,R1 ; R1:zY-2
MUL R1,#128. ; R1:=(Y-2)*128
ADD X,R1 ; R1:=(Y-2)*128+X
INC R1 ; R1:=(Y-2)*128+X+1
MOV IMAGE(RI),R0 ; R0:=IMAGE(X+1,Y-2)

This calculation must be performed for each pixel within the 

window for each position of the window. If any pixel is accessed more



48

than once for any given position of the window the calculation is 

repeated as an overhead. One possible solution is to transfer all the 

pixel values within the window to known locations from which they may 

be used any number of times without any overhead. Any resulting values 

must be written back into the image array before moving the window to

its next position. It is useful for such operations as averaging to

place the pixels in contiguous locations so that they may be accessed 

as a one-dimensional array of window points. See figure 2.3.

Using external memory to store the images allows this re-mapping

to be performed by fast hardware so that the overhead is minimised. 

The hardware described in chapter 5 performs the mapping in very little 

more than the normal memory access time so that the overhead virtually 

disappears.

2.5.5 Edge Detection

When a window is near the edge of the image some of the points 

within it are off the edge of the image and have no defined values. 

The result of processing such an undefined value is meaningless. In 

order to take some sensible action in such cases the fact that the 

pixel is not on the image must be detected. After detection suitable

action must be taken - often the substitution of a constant value which

is considered to form a border around the image. Detection of an out 

of range value can result in a large program overhead considerably 

extending the execution time. Testing must be performed each time the 

address of a pixel is calculated by checking for validity in both the X 

and Y axes. For most of the image scan the pixel addresses generated 

will be well within the image. For a small fraction of the time (only 

4^ for a 3 by 3 window on a 128 by 128 image) an out of range condition

exists and must be dealt with.



49

Original Mapping

IMAGE(X-1,Y-1)
IMAGE(X-1,Y)
IMAGE(X-1,Y+1)

Re-mapped Window

IM+0 z IMAGE(X,Y)
IM+1 = IMAGE(X+1,Y) 
IM+2 z IMAGE(X+1,Y-1) 
IM+3 = IMAGE(X,Y-1) 
IM+4 z IMAGE(X-1,Y-1) 
IM+5 = IMAGE(X-1,Y) 
IM+6 z IMAcE(X-1,Y+1) 
IM+7 = IMAGE(X,Y+1) 
IM+8 z IMAGE(X+1,Y+1)

IMAGE(X,Y-1)
IMAGE(X,Y)
IMAGE(X,Y+1)

IMAGE(X+1,Y-1) 
IMAGE(X+1,Y) 
IMAGE(X+1,Y+1)

IM+4 IM+3 IM+2
IM+5 IM+0 IM+1
IM+6 IM+7 IM+8

Figure 2.3 Window Re-mapping

Fortunately this overhead can be removed if a hardware re-mapping 

scheme such as that described above is in use, since it can detect 

these conditions at very high speed and return an edge value from a 

table (see chapter 5).

2.5.6 Register Use

Generally, it is quicker to access a value in one of the machine's 

registers than to retrieve it from memory. It is a good idea to leave

as many variables in registers as possible. Obviously it is impossible

to keep all the variables used by the program in registers so

preference should be given to those used most frequently. A particular

section may use a variable extensively and then not need it for a
! 1

considerable time; thus the variable can be placed in a register for 

the duration of its use and returned to memory to free the register 

until it is required again.



50

Typical common uses of registers are for temporary storage in a 

long arithmetic expression or for loop counters which can be forgotten 

at the end of the loop.

2.5.7 Addressing Modes

Most computers provide a choice of addressing modes for different 

types of data access. It is often found that any one of a number of 

modes would be suitable in a given case. Care in the choice of the

mode used can provide a worthwhile increase in speed.

For example, it is normal practice to use relative addressing when

possible as this makes programs relocatable and requires no address

calculations at load time. In practice the load time is a small

fraction of the total run time and overheads here matter little. 

However, relative instructions require a run time address calculation 

which is performed a large number of times. Using absolute addresses 

would provide a considerable time saving.

Each computer has its own fastest and slowest addressing mode and 

reference must be made to the appropriate manual to determine the best

mode for the machine in use.

2.5.8 Loop Counters

A great deal of image processing takes place in loops which must

incorporate tests for completion. The test must occur within the loop

so that any time saving in making the test is multiplied by the number

of times the loop is executed.

It is normal to think of a loop running from one value, often 1, 

to another, larger, value. Less often the loop is required to run 

downwards from a large to a small value. A general loop such as that 

in PPL2 will allow both positive and negative increments; this



51

introduces another overhead.

Consider the steps required in a loop of the form 

FOR I FROM A BY B TO C DO ... OD 

At the start of the loop it is necessary to set 1 to the initial 

value, A. At the end the increment, B, must be added to I and the 

result compared to the final value, C. If the increment is positive 

then I must be less than or equal to C to repeat the loop; if B is 

negative then I must be greater than or equal to C to repeat it.

The machine code produced by the PPL2 compiler for such a 

statement is as follows

FOR I table entry only
MOV A,INIT FROM A save values so that they
MOV B,STEP BY B cannot be changed in the
MOV C,F1NI TO C 

DO
loop

MOV #BGT 2,2$ to test I > C at end
TST STEP is B < 0 ?
BGE 1$
MOV #BLT 2,2$ yes, test I < C at end
MOV INIT,I give I its value
• • • the loop

OD
ADD STEP,INIT increment value
CMP IN1T,FIN1 compare with final value
0 test condition from above

JMP 1$ go round again if OK
2$:

Determination of the terminating test has been moved outside the 

loop to save time.

Testing whether the loop is finished involves comparing the loop 

variable with the final value. Computers without the compare 

instruction would have to subtract the final value and test the result 

relative to zero. It is almost always faster to compare with zero as 

this is implemented in hardware within the processor.

; In many cases it is possible to arrange that the loop runs from
i

some value towards zero to reduce time. If it is only required to 

repeat a section of program a number of times the program below would



52

be sufficient -

MOV TIMES,RO ; use register for speed
1$:
; ... the loop

DEC RO ; decrement
BNE 1$ ; repeat if not yet zero

A further improvement could be affected if the machine provides an 

instruction such as SOB "subtract one and branch if non-zero" 

(PDP11/34A) or DJNZ "decrement and jump if non-zero" (280). This 

results in the compact program - 

MOV TIMES,RO
1$:
; ... the loop

SOB R0,1$

It is quite permissible to run the counter from a negative value 

toward zero, although highly compact test instructions such as those 

above are rarely provided for such a purpose.

2.6 CONCLUSION

Choosing hardware and software for image processing is not easy 

and the relative merits of the different systems available are not easy 

to compare. Whilst a parallel processor (e.g. CLIP 4) seems to be the 

most suited to the task it is not obvious whether a string of shift

register processors or a multiple micro-processor system would be more 

economic. Programming, it would seem, should be in a high-level 

language to allow the expression of essential concepts but the required 

speed may only be obtainable by the careful writing of low-level 

routines. The choice of system is very likely to affect or be affected

by the method chosen to solve the problem, the ramifications of a

particular choice may be extensive [22].

At present each task has to taken on its individual merits and the 

system chosen accordingly. When specialised hardware is more cheaply



53

available and special image processing languages designed a more 

suitable system seems certain to emerge.



54

3. A LANGUAGE FOR IMAGE PROCESSING

'3.1 INTRODUCTION

A great number of algorithms and ■ techniques for image processing 

have been and continue to be developed. Unfortunately each researcher 

has used his own notation for setting down the procedures involved. It 

is thus difficult to compare published techniques to select the one 

most appropriate to the problem in hand. For a comparison to be made 

it is necessary to translate from the notation used in publication to 

that required by the researcher before he can assess the value of the 

technique. A great deal of time may be required to understand the 

original notation, translate it into the required form and then check 

that the new form does actually produce the same result as the 

original.

Comprehending the published algorithm may be easy or difficult 

depending on whether the user is familiar with the notation used and 

whether the notation is suitable for clearly describing the actions to 

be taken. A notation normally known to the scientist is that used to 

describe mathematical formulae. Many of the commonly used procedures 

in image processing can only be clumsily described in the standard 

mathematical notation. For this reason the technique being described 

may be obscured amongst notational detail. Some of the more 

straightforward techniques have been described in plain English, which 

cuts through the notational jungle to present the heart of the matter. 

English, unless very carefully written, can be ambiguous and open to a 

degree of personal misinterpretation and can only be used for the 

simplest of technical ideas.

Translation from the original to the final notation can be a 

source of error, particularly if the translator is not fully conversant



55

with the notations used. In the course of transmitting algorithms and

. techniques from one researcher to another the notation used in 

development will often be translated into another form more suitable 

for publication and then translated again before use. There are two 

possible sources of error here which could result in the condemnation

of a technique as unfit as a result of inaccurate implementation.

Ideally the notation used for development would be the same as 

that used for publication and implementation by another user. Errors 

are less likely to occur this way as checking against the original is

straightforward and easy.

This chapter gives the reasoning behind the choice of a language 

and a description of the language designed. Chapter 4 gives details of 

its implementation on a mini-computer system.

3.2 A SUITABLE NOTATION

The need to find a notation suitable for communicating information 

between two or more people is not new. It was first apparent when 

early man recognized the advantages of group effort over individualism, 

for example when planning a hunting expedition. The notation that 

evolved is, of course, known as language.

Human language has developed over a very long period to the form 

we find it in today, in such a way that commonly used concepts have 

simple representations. When we breathe, for example, we require a 

substance called simply "air"; it is unnecessary to speak of "a gaseous 

mixture consisting of 78% Nitrogen, 21% Oxygen, .... etc.". Natural 

language has evolved to become an ideal method of communicating 

concepts found in our normal lives but is not well suited to some 

purposes.

Early mathematicians recognized the need for a more precise and



56

more compact notation than than their natural language provided. 

Scholars developed a collection of symbols, and rules to manipulate 

them which were well suited to their needs. The mathematical language 

has also developed over a period of time to embrace the needs of 

today's mathematicians.

Automatic manipulation of formulae by machine has long been an 

attractive idea. Many ingenious mechanisms have been devised for this 

purpose but it was not until the advent of the electronic computer that 

a truly useful machine could be said to have been built. The 

characteristics of the computer are such that it was found that the 

languages previously developed were inadequate for man-machine 

communication.

Initially computers were instructed, or programmed, to perform 

their tasks in a very basic language that corresponded closely with the 

machine's electronic design. The construction of different models of 

computer led to a variety of languages and resulted in the need to 

translate one machine's programs into the language of another. It was 

difficult to use on one computer techniques developed on another and 

errors occurred in translation. Much the same situation is seen today 

in image processing machines.

Scientists recognized the need for a standard language in which 

algorithms and techniques could be clearly written and transferred from 

machine to machine. The languages devised were written in such a way 

as to be close enough to natural language to be readily understood by 

people, yet precise enough to be unambiguous to the machine. A number 

of languages have been devised, each with particular short-hand 

notations for commonly used elements in the class of problem the 

language was intended to describe. One of the earliest languages 

devised was FORTRAN, its name, a contraction of "FORmula TRANslation",



57

reflecting the intention of using it to describe mathematical 

formulae. The idea of a standard descriptive language was found to be 

so powerful that a new all embracing language for problem description 

and solution was devised some fourteen years ago, viz ALGOL68.

Languages such as FORTRAN and ALGOL68 share the common feature of 

generality: the language is not peculiar to one computer only but

programs may be transported, without change, from one machine to 

another. The absence of the need to laboriously translate algorithms 

has led to a much easier exchange of problem solving ability to the 

profit of all concerned.

Unfortunately none of the common computer languages has all the

features required to compactly describe image processing algorithms. 

Although some languages have been designed for particular machines

[23,24,25] none, at the time of commencing this project, appears 

particularly well suited to the system described in chapter 2.

3.3 PPL2

The need for a language better suited to image processing than

those commonly available was recognized several years ago and led to

the development of PPL [5]. PPL, a Picture Processing Language,

contains many features which make it particularly suited to the

description of image processing techniques. After using this language 

for a while it became apparent that some features such as the

conditional statements were too compact for easy reading and that some 

facilities such as a simple loop structure were lacking. In order to

correct these shortcomings a new language was developed, based on the
I .

original PPL, and known as PPL2.

PPL2 is designed to be a descriptive language for image

processing. It contains features that are of particular use when



58

dealing with operations on one or more pictures. The language is "high 

level" which means that it describes operations in a machine 

independent manner. The programmer need not know the details of the 

particular computer or image storage hardware that he is using. 

Provision exists for specifying that an algorithm be performed 

sequentially or in parallel but the user need not know whether the 

machine is actually doing what it is told or merely simulating it.

Some of the constructs used in PPL2 are based on those found in 

ALGOL68, in particular the version known as ALGOL68-R and described in 

[26]. It is a block structured language which has been found to be 

very convenient in use.

Variables are given no particular type; they are simply used as 

words and may be treated as integers or logical variables as 

required.

3.3.1 Kevwords

Keywords used by constructs are not marked in any special way but 

are simply used as written. For this reason the programmer must not 

use them for variable names, as they are reserved words. In practice 

this is not a disadvantage but makes the program more readable by 

people. Since there is only a handful of keywords to be avoided these 

are quickly learnt.

An interesting, though controversial and fallible, measure of the 

sophistication of a language is the number of reserved words it 

contains (a very small number may indicate a language with few useful 

facilities while a very large number may indicate a needlessly complex 

structure). There are 35 reserved words for PPL2, which may be 

compared with 30 for ALGOL68, 31 for PASCAL, 64 for ADA and 38 for 

FORTRAN.



59

3.3.2 Variables

A variable name may be between one and six characters long. The 

first character must be a letter and the remainder letters or digits. 

A variable name may not be the same as a keyword.

3.3.3 Comments

If a program is to be understood clearly it is valuable to be able 

to add comments which do not form part of the program. The comment 

may, for example, be a plain English description of the program. 

Comments in PPL2 may be placed anywhere in the program by enclosing 

them within curly brackets, 

e.g. { this is a comment in PPL2 }

Here, as elsewhere, the choice of symbols used to indicate a 

particular function within PPL2 is dictated partly by convenience and 

partly by the need to use characters available on a standard ASCII 

keyboard.

3.3.4 Images

Operations on images are generally such that the pixel value at 

each point on the new image is some function of pixels on the same or 

other images. Algorithms utilise a point on an image and its near

neighbours together with corresponding areas on other images to form a 

pixel value for the new image. The point and its near neighbours are

known as a window on the image. How near the near neighbours are

depends on the algorithm in use. The bulk of the existing work in

image processing uses only the adjacent cells giving a window of 3 

cells by 3 cells. It might be that "less near" neighbours are 

required; this ought, at least, not to be precluded.



60

Images are normally stored as an array of pixels and access to a 

particular point made by the use of indices. If a neighbour is 

required its position relative to the centre point must be calculated 

and explicitly written as an index.

For example, if the centre point of image P is P(x,y) the 

neighbour to its left is P(x-1,y) and that above it P(x,y-1).

This method of specification becomes extremely tedious if the 

algorithm in use is any more than very short. Since it is inconvenient 

to specify the indices each time, PPL2 assigns a name to the centre 

point and to each of the neighbours so that the program becomes much 

easier to follow.

The centre point of image P is called PO and its neighbours PI, 

P2, P3, ......., Pn; by the following convention :

P4 P3 P2

P5 PO PI etc., continuing in an anti-clockwise spiral.

P6 P7 P8 P9

Thus the centre point is always PO and its left-hand neighbour 

always P5, regardless of where PO is on the image. A complete list of 

the point numbers in a 15 x 15 window is given in Figure 5.9.

Up to 26 images may be specified, their centre points being AO,

BO, CO, ..... ., ZO with corresponding neighbours following the

convention above.

3.3.5 Assignment

The assignment indicator for giving variables a value follows the 

ALGOL convention and uses the symbol

e.g. THREE:=3 assigns the value 3 to the variable THREE.

Multiple assignments may be performed, the assignment proceeding 

from right to left.



61

e.g. A:=B:=C:=10 assigns the value 10 to all three variables "A", "B" 

and "C".

3.3.6 Operators

To perform anything useful operators must be available to generate

new values as a function of one or more given values.

The normal range of arithmetic operators is provided:

+ Addition 
Subtraction

* Multiplication 
/ Division

And the logical operations so that "bit level" operations may be 
performed :

& And 
! Or
$ Exclusive or

Not (ones complement)

The symbols chosen are those found on a standard ASCII keyboard

looking similar to symbols normally used to represent the functions.

With the normal comparison operators:

> Greater than 
< Less than 
= Equal to
# Not equal (c.f. crossed through =, normally used in mathematics)
>= Greater than or equal to
<= Less than or equal to

The comparison operators return a True or False value. True is 

defined as a word full of one bits (-1) and False a word full of zero 

bits (0).

A few other operations have been found to occur quite frequently 

in image processing: these are fairly lengthy to write out normally. 

Operators which take much space to set out often obscure the effect 

they are intended to have and therefore simpler notation for them has 

been used.

; Since these operators all ask a question, i.e. could be written



62

with an "IF" statement, the symbols chosen for them begin with a

question mark. By doing this a second symbol can be appropriately

chosen rather than looking for an otherwise unused character on the

keyboard. This two character representation is much shorter than the

notation found in other languages which prevents the program detail

being obscured by it.

The operators found most useful are:

?> Whichever is the greater of two operands.
e.g. A?>B will return the greater of A and B.

i.e. IF A>B THEN A ELSE B FI
A?>B?>C?>D returns the largest value.

?< Whichever is the smaller of the two operands, 
c.f. ?>

?+ Absolute value of the operand.
i.e. ?+A is equivalent to IF A>0 THEN A ELSE -A FI

? I In range. This checks that the operand has a value between 
black and white, if not it returns the appropriate 
limiting value, 

i.e. ? IA is equivalent to IF A<0 THEN 0
ELSE A>255 THEN 255

ELSE A FI

A complete list of operators and their priorities is given in the 

User Guide, appendix C.

Subexpressions may be grouped within round brackets to change the 

order of evaluation from that dictated by the priorities of the 

operators used.

3.3.7 Constants

A constant value in an expression may be decimal, octal or the 

ASCII value of a character.

A decimal constant is a string of digits, each one in the range 0

to 9:

e.g. 9101

An octal constant is a string of digits in the range 0 to 7



63

preceeded by the character 

e.g. "240 (=160)

A character constant is any character between two prime symbols, 

the 7 bit ASCII value of the character is used: 

e.g. 'a ' (="101 =65)

3.3.8 Image Operations

To process the whole image the operation specified for the window 

must be performed with the window occupying each of its possible

positions. Parallel processing involves applying the window operator 

at all points on the image at the same time, whilst sequential

processing involves scanning the window in a particular direction. A 

characteristic of parallel processing is that data for the window 

operation has not been changed by a previous application of the 

operation. The effect of parallel processing can be achieved even on a 

serial machine if the result of the operation is placed into a

different picture space and does not overwrite the original

information.

Conventional languages would require that the picture scan be

explicitly written with a pair of nested loops, one for the X direction

and one for Y.

In FORTRAN, for example:
DO 200 J=1,128 
Y=J-1
DO 100 1=1,128 
X=I-1

C Window operation applied 16 384 times in a 
C forward raster scan.
100 CONTINUE 
200 CONTINUE



64

Or in ALGOL68:
'FOR' Y 'FROM' 0 'TO' 127 'DO'
'FOR' X 'FROM' 0 'TO' 127 'DO'

'c o m m e n t' Window operation applied 16 384 times 
in a forward raster scan.

'COMMENT'
'OD'
'OD';

This long winded loop specification can obscure the real 

processing going on by losing it amongst repetitive control

statements. Indeed, many of the window operations are very simple, if

not trivial (for example adding two pictures together) and the control 

statements are many times their length.

PPL2 provides a succinct method of expressing the desire to 

perform the window operation over the whole picture. The window 

operation is enclosed within pairs of square brackets:

[[ { Window operation } ]]

This clearly shows the detail of the operation without cluttering 

the page with clumsy control structures.

For example, to generate picture A as the average of the two 

pictures B and C in FORTRAN we would write:

DO 200 Y=1,128
DO 100 X=1,128
A(X,Y)=(B(X,Y)+C(X,Y))/2

100 CONTINUE 
200 CONTINUE

whilst in PPL2 this would appear as:

[[ A0:=(B0+C0)/2 ]]

Notice that in FORTRAN and ALGOL68 etc. the size of the picture 

must be known to define limits for the loops, whilst in PPL2 the 

operation is simply specified over the whole picture, whatever its size 

may be. Thus PPL2 algorithms may be applied without change to any size 

of picture.

The examples given above specify parallel processing of the



65

picture, if sequential processing is required it becomes necessary to 

specify the direction, forward or reverse scan. A simple extension to 

the above notation achieves this:

[[+ { Window operation, forward scan } +]]

[[- { Window operation, reverse scan } -]]

The position of the centre of the window is available, if

required, by reference to the variables 'X' for the x co-ordinate and 

'Y' for the y co-ordinate.

3.3.9 Edges

When the centre point of the window is on or near the edge of the 

picture some of the neighbours may be outside the defined picture. To 

perform meaningful processing these neighbours must acquire a sensible 

value, so they are given what is known as the edge value. A picture is 

considered to be completely surrounded by an infinite border of points 

all having the edge value. Each picture has its own edge value which 

is set by assigning a value to the appropriate variable of EDGEA, 

EDGES, ..., EDGEZ.

For example, to surround picture A by a black border we would

write, simply:

EDGEA:=0

3.3.10 Indexing

Some programs require the acquisition of tables of values, to 

produce a histogram, for example; this is conveniently done in an 

array. An array in PPL2 is given a name following the convention given 

in section 3.3*2, and its elements referred to by indexing. Indices 

are written in square brackets after the variable name.

For example to access the third element of array "FRED", whose



66

index values start at zero, we would write:

FRED[2]

An index value of zero may be omitted, 

i.e. FRED[0] refers to the same location as FRED.

3.3.11 Conditionals

The conditional statement directs the flow of a program depending 

on the states of variables within it. This statement is characterised

in English and computer languages by the word "IF". It is commonly

known as an IF-statement.

The form of conditional statement used for PPL2 is the same as 

that used in ALGOL68 ([2]). This is a particularly general purpose and 

clear form.

The simplest version is simply:

IF A THEN B FI

"A" may be a simple variable or a complex statement returning a 

value , if the value of "A" is logically True then the expression "B" 

is performed.

For example, scan the picture P and change any pixels with value 

less than 100 to have value 0 (this is a form of thresholding):

[[ IF PO < 100 THEN P0:=0 FI ]]

It is often useful to be able to specify an alternative course of

action if "A" returns a value logically False, for this the form

including an "ELSE" clause is used:

IF A THEN B ELSE C FI

Only one of "B" or "C" is performed depending on the outcome of

"A".

The inclusion of "FI" as a delimiter removes ambiguity that may 

occur when statements are nested.



67

For example, without using FI's the statement below is ambiguous:

IF A THEN IF B THEN C ELSE D

It is not clear which IF the ELSE belongs to. Using FI's the two 

possible forms would be:

IF A THEN IF B THEN C ELSE D FI FI

IF A THEN IF B THEN C FI ELSE D FI ,

clarifying the situation.

It may be required to test a number of conditions such that a

statement like the following may occur:

IF A < 10 THEN B ELSE 
IF A > 20 THEN C ELSE 
IF A = 15 THEN D ELSE 
E 

FI 
FI 

FI

In this type of statement the pair of words "ELSE IF" may be

reduced to the word "ELSF" and also the corresponding "FI" be removed

to give:

IF A < 10 THEN B
ELSF A > 20 THEN C
ELSF A = 15 THEN D

ELSE E
FI

An IF-statement with both a THEN and an ELSE part returns a value 

which is the value of the part performed; the whole "IF ..... FI" 

expression has a value and may be used in, for example:

A:=IF B < 10 THEN 4 ELSE 5 FI

in which A takes the value 4 if B is less than 10 and 5 if it is not.

3.3.12 Loo ps

It is often useful to be able to perform a section of program a 

number of times, the precise number of times may not be known when the 

program is written and so a mechanism for providing this function under



68

program control is useful. The mechanism provided is one whereby the 

program loops back from the end of a section to the beginning,

repeating the section a number of times or until a specified condition

exists.

This facility is provided in FORTRAN by the DO-loop and in ALGOL68 

by the FOR-loop. The ALGOL68 ([26]) version has been adopted in PPL2 

as it provides a highly versatile method of program section

repetition.

The complete form of the loop is:

FOR A FROM B BY C TO D WHILE E DO {program section] OD

In this case A is a variable which is initially given the value B; 

providing E returns a logical True the program section is executed.

After execution the value C is added to A and the result compared to D; 

If C is positive and A is greater than D or if 0 is negative and A is 

less than D then the loop terminates and execution continues from the 

statement following the OD. If the new value of A is acceptable then 

condition E is checked, and if still True the program section is

repeated. If E is found to be False the loop terminates as above.

In the example above A must be a variable but B, C, D and E can be 

complex statements provided they return suitable values. B, C and D

will only be calculated once, on the first time through the loop so

that changing them within the program section will not affect the 

number of times the loop is performed. E is executed each time 

round.

In most cases the full form given above is not required; at such

times it may be abbreviated. The only parts of the statement which

must occur at all times are the DO and OD, all other parts may be

omitted when not required. Those parts which do appear must do so in

the order FOR FROM BY TO WHILE DO OD. Those parts omitted are given



69

default values:

Part Default Comments

FOR -none- No variable is given values
FROM 1
BY 1
TO infinity There is no final value
WHILE -none- No condition is tested

Examples:
TO 20 DO {program section} OD

The program section is performed 20 times.

WHILE Z < 6 DO {program section} OD
The program section is repeated until Z >= 6.

DO {program section} OD
The program section is repeated ad infinitum!.

A statement of the form containing a WHILE clause may execute the 

program section a minimum of no times if the conditional is False on 

the first time through. The form having only a FOR part is executed a

minimum of once as checking against the final value does not occur on

the first pass.

Statements such as REPEAT ... UNTIL found in, for example, PASCAL 

[27] may be implemented by remembering that the WHILE clause may 

contain a complex statement:

REPEAT A UNTIL B can be written in PPL2 as:

WHILE A; B DO SKIP OD so that A is performed before testing B; the dummy

statement SKIP is inserted between DO and OD for syntactic accuracy, it 

does nothing.

3.3.13 Statement Separators

Statements in PPL2 are separated by semicolons, as in ALGOL68 and 

not by newlines as in FORTRAN. In this way statements may be split 

over more than one line or several statements may occur on the same 

line; the user is left to set out his program in the most readable 

way.



70

In common with ALGOL68 dummy statements may not appear; 

consecutive semi-colons are forbidden, as are semi-colons before THEN, 

ELSE, FI, OD etc.. Semi-colons are thus statement separators and not 

terminators. A series of statements separated by semi-colons may be 

considered as one longer statement.

3.3.14 Sub-Programs

Common sequences of expressions may be required to be executed at 

several places in a program. To avoid the need to retype these 

sequences each time they are required they may be grouped together into 

sub-programs and called when required.

Each sub-program is given a name by proceeding the sequence of 

expressions in the sub-program by the name and a colon. The end of the 

sequence is indicated by the word RETURN appearing.

For example:

SUBONE: {sequence of expressions in the sub-program} RETURN;

At the point in the program at which the sub-program is to be

performed its name, preceeded by the sign, should be written.

i.e. as:

eSUBONE

For example:

P: êA; êB; ë k  RETURN;
A: {sub-program A} RETURN;
B: {sub-program B} RETURN;

is equivalent to:

P: {sub-program A};{sub-program B};{sub-program A} RETURN;



71

3.3.15 Input and Output

Communication between the program and the user is necessary for 

the program to give information about what it is doing or has 

discovered and for the user to provide input to it.

The type of input and output provided by FORTRAN has been adopted

for PPL2 as it is perfectly adequate for the job and is well 

established. This provides both free format I/O and comprehensive 

formatting when required for clear tabulation.

Free format input is of the form:

READ A,B,C, ;

Where A,B,C,  is a list of variables whose values are to be

taken from the terminal. The list must contain at least one item.

Free format output is of the form:

WRITE A,B,C, ;

Again A,B,C,  is a list of items to be printed on the

terminal, there must be at least one item. These items may be 

constants, variables or expressions.

When formatted input or output is required the READ or WRITE must 

be followed by a normal FORTRAN style format enclosed within double 

quote symbols.

For example:
READ "(213)",A,B; I to read A and B in 13 format }
WRITE "(10X,'FRED=',I6)",FRED ;
WRITE "(' Message to the user')";

A read statement must have at least one variable to be assigned a 

value, but the formatted write need not have any.



72

3.3.16 Spaces

In general PPL2 disregards any spaces it finds in the program;

however, there are some places where they must and some where they must

not occur.

Spaces MUST occur:

To separate keywords from variable names.

Spaces MUST NOT occur:

Within a keyword or variable name,
Within a decimal or octal constant,
Within the primes of an ASCII constant, unless it 

is the character required.
Between the " and digits of an octal number,
Between the § symbol and sub-program name.
Between the characters of a multi-character symbol 

( e.g. [[+ ?> <= etc. ).

3.3.17 Special Hardware

It is quite likely that the image processing system will have some

special hardware that the program will want to access. Given the

computers' address of this hardware PPL2 is easily able to access it.

The indexing mechanism performs an address calculation; in the 

case of A[B] the value of B is added to the address of A to form the

new address. If the address of A is known it is a simple matter to

access any particular memory address. A special variable, MEMORY which 

has address 0 is provided for this purpose.

For example to set the variable MEM to contain the value at

address 1000 octal we would write:

MEM:=MEMORY["1000]

Similarly values can be written to memory.



73

4. AN IMPLEMENTATION OF PPL2 ON A PDP1134/A

4.1 INTRODUCTION

Algorithms must be translated from the notation used for their 

description into a notation that can be understood by the computer 

processing the image. A great deal of time may be spent in the 

translation and checking of algorithms composing the user's library of 

routines. Adding new routines to the library can be time consuming, as 

can making changes to existing routines. This will still apply even 

for small changes, such as changing a threshold value or test 

condition.

Notations that can be used both to describe image processing 

algorithms clearly and to program a computer would save time that could 

be better spent studying the technique described. So that PPL2 would 

fall into this category of notations a program was written that would 

interpret the language to perform image processing algorithms 

directly.

4.2 OVERVIEW

Source code statements may be either interpreted to directly 

produce actions in the computer or used to compile machine code which 

is later run, producing the required actions. The major blocks of 

actions required are compared in figure 4.1.

From this figure it can be seen that the compiler does more work 

before producing any action. However, if it is desired to run the 

program more than once there is no need to look at the source code 

repeatedly. The interpreter is well suited to programs that run once 

only, for example setting up initial values. A feature of image 

processing is that an action to be performed on a window operation has



74

Interpreter

Source code

Divide source code into 

basic actions

Compiler

Perform the actions Generate machine code

directly for the actions required

Execute the machine code

Figure 4.1 A Comparison of an Interpreter and a Compiler

to be repeated once for each pixel in the image; this would be 

horrendously slow with an interpreter though a compiler is ideally 

suited to this task.

Complete algorithms will contain a mixture of control statements 

and image operations which makes the choice between compilation and 

interpretation less than obvious. The case is further confused in a 

research environment (where algorithms are being developed) by the need 

to make many minor changes, for example to threshold values; such needs 

are ideally met by an interpreter.

Since a great deal of the work to be done by an interpreter or 

compiler is common to both (see fig 4.1) it was considered practical to 

implement both within the same program. By this means the control 

structures could be interpreted and image operations compiled. The 

image operations have to be compiled each time they are called upon to



75

be executed but are then run some 16 000 times over the whole image. 

Because only one image operation is compiled at a time, a small area 

for compiled code is sufficient; 1000 (decimal) words are at present 

allocated for this purpose although most basic image processing 

operations require less than 500 (decimal) words. The interpret mode 

allows variables to be quickly and easily accessible for modification 

or verification.

Interaction between the user and computer has been further 

enhanced by the provision of a number of extra facilities, including:

(a) Text editing 'on-screen' for the rapid modification of 

programs. Programs may be stored on or retrieved from disc.

(b) Storage and retrieval of images on disc to allow standard

inputs for comparing algorithms.

(c) Detailed examination of an image by displaying a movable 

window as numeric values on a visual display unit.

(d) Copying the image to the printer for detailed examination away 

from the computer.

These facilities are fully described in the user manual.

Appendix C.

4.1 THE FUNCTIONS OF A COMPILER

Source code is presented as a string of characters which must be 

interpreted as a program, and the specified actions performed. The 

processing may conveniently be divided into three fairly independent 

sections: lexical analysis, syntactic analysis and code generation

(when compiling) or direct execution (when interpreting).



76

4.1.1 Lexical Analysis

Lexical analysis divides the source text into groups of characters 

that each have a particular syntactic meaning; for example, groups of 

digits are constants, groups of letters are variable names or keywords, 

while other symbols may be brackets or operators. Once a syntactic 

unit has been identified the source characters are no longer required 

and the unit in passed through the rest of the compiler/interpreter as 

a compact internal representation.

Information at this stage may be used to build tables for use by

the lexical analyser or other stages in the compiler/interpreter: such

tables include, for example, variable names and program labels.

4.1.2 Syntactic Analysis

Syntactic analysis determines the meaning of groups of syntactic 

units, for example recognizing specific groups of variables and 

operators as arithmetic statements. This phase further breaks down its 

data into very simple operations which can be handled by the final 

phase of compilation.

4.1.1 Code Generation and Direct Execution

Commands generated by the syntax analyser are simple enough to be 

used either to generate machine code (in a compiler) or to cause the

specified operations to be performed directly (in an interpreter). Use

is made of tables generated earlier in the compilation process.

4.4 THE PPL2 APPROACH

Bottom up parsing is employed by PPL2, i.e. the input characters 

are interpreted as small program elements which • are combined to form 

larger program structures. Lexical analysis of PPL2 source code has to



77

identify only four syntactic groups to pass to the syntax analyser:

Group 1 - Keywords are recognised and converted, via a look-up table, to 

one or more operators or constants.

Group 2 - Constants, such as strings of characters or digits, are 

converted into single values.

Group 3 - Variable names are looked up in the symbol table; if they 

exist their address is passed on: if not, the name is entered into the 

table, an address assigned and passed on.

Group 4 - Special symbols such as brackets and operators. Some

operators are represented by a group of symbols because of the 

restricted character set available. Certain symbols need to be

converted, via a look-up table into strings of operators and 

constants.

Superfluous information (comments, spaces, indicators such as '') 

is removed at this stage. Special conditions, such as the existence of 

unary operators, are trapped and replaced by a suitable sequence of 

operators and operands. Certain errors such as consecutive operators 

or operands are detected in this phase, an error message issued and

compilation aborted.

Syntax analysis is made relatively easy by forcing the output of 

the lexical stage to obey the syntax of a mathematical expression. 

This allows the use of a very simple compiling technique, the most

basic of the class of operator precedence compilers [28]. Section 4.5 

describes the processing of a mathematical expression and section 4.6 

illustrates the advantage of coercing other elements of the language to 

behave in the same way.

Ultimately the functions described in the source language must be 

used either to cause actions to be taken (interpreted) or to cause 

machine code to be produced (compiled). By this final stage in the



78

process the source code has been divided into many very simple 

operations in the form of an operator taking two operands and producing 

a result. When it is best to do so (for operations not involving an 

image scan) these operations are directly performed by the 

interpreter. When dealing with image operations machine code is 

produced and stored for subsequent execution. It is quite 

straightforward to convert the simple operations demanded by the syntax 

analyser into basic machine operations. Section 4.7 discusses some

other techniques required when generating machine code.

4.5 MATHEMATICAL EXPRESSIONS

Mathematical expressions may vary in complexity from simply a

single value to something requiring many lines to write. All

expressions are characterised by having one or more items having

values, called operands, and zero or more items that combine them in

defined ways, called operators.

For example :

1 is simply an operand with value one,

1+2 has two operands "1” and "2" combined by the operator "+" which is

defined as an addition operation; the result of this expression is the 

simple operand "3".

Most operators perform some function with two operands to yield a 

single result, they are called binary operators; some take only a 

single operand and are called unary operators (e.g. in -3 is a

unary operator).

Operators with their operands yield, after evaluation, a single
I .

result which may then become an operand for another operator. By this

means a long, complex expression will eventually yield a single

result.



79

Rules must exist to specify the order of evaluation of operators 

in a complex expression or the result will be unpredictable. Such a 

set of rules has been evolved by mathematicians and is well known. (It 

is taught to everyone at school!) This set of rules has been formalised 

for computer use by assigning a priority ordering to the operators 

being used. The highest priority operators are performed first, 

followed by those of a lower priority. Thus, for example, all 

multiplications and divisions are performed before additions and 

subtractions. When two operators of the same priority occur in an 

expression the rule for most operators is that they are performed 

leftmost first. Some, however, are performed rightmost first - notably 

exponentiation and assignment (:=).

These rules can be illustrated by the following example : 

Expression : 4+3*7*10/15-9

evaluate 3*7 to give 21 and the expression becomes 

4+21*10/15-9

21*10 to give 210 and it becomes 

4+210/15-9 

210/15 to give 14 and it becomes 

4+14-9

evaluate 4+14 to give 18 and it becomes

18-9 which is evaluated to give the final result of 

9.

This order of evaluation may not always be convenient, so a 

technique for changing the order is required. Subexpressions are 

enclosed within brackets to indicate that they must be evaluated 

first. The subexpressions are evaluated according to the rules above 

although brackets may again be used around sub-subexpressions.

evaluate

evaluate



80

For example :

Expression : 3*(4+5)

evaluate 4+5 to give 9 and the expression becomes

3*9 which is evaluated to give the result 27.

Operators need not return results which are a linear function of 

the operands; they may, for example, return one of two values only, 

i.e. a binary result. Such results are returned by the comparison 

operators, the values returned being one of the logical values TRUE or 

FALSE. These operators are found within conditional statements and may 

be treated in the same way as any other operator.

PPL2 has also to allow bit-level manipulation and is therefore 

provided with a range of logical operators.

A list of these mathematical operators and their priorities is 

given in figure 4.2.

OP Priority Result of A OP B

* 11 A
/ 11 B
+ 10 A
- 10 B

8 A
# 8 A
> 8 A
< 8 A

>= 8 A
<= 8 A
& 7 A
! 6 A
$ 5 A

Figure 4.2 Mathematical Operators and Their Priorities



81

4.5.1 Compiling Mathematical Expressions

As was illustrated in the last section, expressions are not always 

calculated from left to right as they are written down. A technique

for re-ordering the expression has to be employed to produce a simple

sequence of instructions that may be performed on a computer. The 

method employed in PPL2 is described in [29] and involves scanning the 

input stream, storing items found on one of two stacks, until an 

operator may be executed; in this method the result is placed on one of 

the stacks for future use.

The sequence of events is shown in the flowchart in figure 4.3 and

may be illustrated with a simple example :

Expression : 1+2*3- ... etc.

Step Action Comment
1: Get "1" The first item in the expression.
2: Push onto stack B We can do nothing with it for now, store

it on the stack.
3: Get " + " The next item is an operator.
4: Push onto stack A The next operator may have higher priority

so store this one until we know.
5
6 
7

Get "2" As in step 1.
Push onto stack B As in step 2.
Get "*" Operator.
Push onto A As in step 4.

9 : Get "3" As in step 1.
10: Push onto B As in step 2.
11: Get Operator.
12: Remove "3" and "2" Now we can do the "*" as it has higher

from stack B; priority than .
Remove "*" from A;
Calculate 2*3;
Push the result (6) 
onto stack B.

13 : Remove "6" and "1" Since "+" and are the same priority
from stack B; we proceed from left to right.

Remove "+" from A;
Calculate 1+6;
Push the result (7) 
onto stack B.

14: Push onto A As in step 4.
15: etc. etc. etc.

For clarity this example has actually performed the calculations,

whereas in practice a compiler would generate code to implement them.



82

Get AA

/is AA '(' ?y Put AA onto A
No Yes

Put AA onto B

{ BE is ) or operator }Get BB

No
empty T >  
, No

Put BB onto A
Yes Yes

No Yes

Yes/ Is Priority(BB)
(— / less than

\Priority(top of A) ?
No

Are priorities = 
AND

No
Yes

Remove operator from A 
Perform using top 2 
operands from B, put 
the result on B_______ ,

(is top of A T~~?y 
. Yes

 I__________
^Remove I* from A

Remove operator from A 
Perform using top 2 
operands from B, put 
the result on B

No

Figure 4.8 Flowchart of Mathematical Expression Interpreter



83

For example, for "Calculate 2*3" read "Generate the code to calculate 

2*3". Also, where constants appear above it is more likely that 

variable names would appear; if constants appear there is no need to 

generate code, PPL2 detects such occurrences so as not to produce 

redundant code.

The scheme discussed above can only deal with binary operators, 

i.e. operators having two arguments or operands. Most mathematical 

operators are binary but a few are unary, requiring only one operand; 

for example as in A*-B. Since only a very few such operators occur 

(four in PPL2) it is possible to detect them and make some special 

provision for dealing with them. The simplest thing to do is simply to

introduce a dummy operand in front of the operator so that it can be

processed as though it were binary. When the time comes to generate 

code the dummy operand is simply ignored.

4.6 OTHER ELEMENTS OF THE LANGUAGE

Programs usually consist of more than just a mathematical

expression whose value is to be calculated. The result of an

expression is usually stored in a location known by name (a variable)

and re-used later in some other expression. In addition the flow of

the program is directed by control structures.

Symbols used to specify value assignment or to separate

expressions may be interpreted directly as operators whilst control 

structures, by suitable interpretation of keywords, may also be forced 

to fit this scheme.



64

4.6.1 Value Assignment

The assignment operator, is a straightforward binary

operator where the value of the right-hand operand is placed in the 

location specified by the left-hand operand, the left-hand operand 

must indicate a place to put the value, i.e. it must be a variable 

name; an expression such as 6:=A is meaningless.

The value resulting from this operator is simply the value of the 

right-hand operand.

When a sequence of assignment operators occurs in an expression 

they must be evaluated from the rightmost first so that an expression 

such as A:=B:=C:=6 can have meaning.

This operator has a lower priority than any other mathematical 

operator to ensure that it is performed last.

4.6.2 Statement Separation

Statements are separated by a semi-colon (";") which indicates 

that the expression to its left is complete and should be fully 

evaluated before the expression to its right is started. It is simply 

a binary operator with a very low priority which guarantees the 

required ordering. The result returned is that of its right-hand 

operand so that even a long series of expressions produces only a 

single value at the end (clearly, it must have a lower priority than 

the assignment operator to do this).

4.6.3 Item Separation

The comma (",") is used to separate items in a list; for PPL2 such 

lists are required only for input or output. This is also a binary 

operator, its priority lies between those of the statement separator 

and value assignment operators. When performed this operator



85

constructs a list with the two operands which is returned as the 

result.

4.6.4 Control Structures

The order in which operators are performed is determined solely by 

their priorities and the use of brackets. This feature can be used to 

advantage when considering how to deal with control structures.

In many languages the processing in the compiler revolves around 

the keywords and control structures with occasional lapses into 

expression interpretation. By converting the keywords into suitable 

sequences of operators, operands and brackets the whole of a program in 

a block structured language such as ALGOL68 or PPL2 can be interpreted 

as a single (long) mathematical expression. Using this method the 

compiler does not need to keep a long list of "exceptions to the rules" 

and may thus be vastly simplified.

Keywords, when they are encountered, often signify an action that

must take place at that point in the program, after finishing all

operations before them and prior to starting any operations that come 

after them. This can be achieved by replacing the keyword with a 

sequence such as:

) 'A' o 'B' (

Where ' k '  is an operator with high priority,

o is a dummy operand for syntactic correctness 

and 'B' is an operator with the same priority as ' k ' .

The close bracket ensures completion of proceeding operators

before ' k ' .  When "B' is encountered ' k '  will be performed by the "left

to right" rule for operators with the same priorities. Execution of 

'A' causes the required action for the keyword it replaces. Operator



66

'b ' is a dummy causing no action to take place. There is no need to 

generate any code if this is not required (when building a table). The 

final open bracket marks the beginning of the function to the right of 

the keyword. Some keywords employ variants on this scheme.

Rather than discuss this further in an abstract manner two 

examples from the implementation of PPL2 are given in figures 4.4 and

4.5 which illustrate the technique. Operators will be indicated by 

enclosing a symbol or symbols in quotes, operands by a numeric value or 

string of one or more symbols. Round brackets have their usual 

meaning.

4.6.5 Image Scan

Execution of an operation over the whole image requires a loop to 

be set up around the operation. This is indicated in PPL2 by the 

double square bracket notation.

Double open square brackets set up the initial loop values and 

notes addresses to loop back to at the end. Any program between the 

open and close double brackets then has to be completely compiled and

the close brackets indicate the end of the loop, jumping back to the

addresses noted earlier.

Source text expansion and subsequent evaluation order is shown in 

fig 4.4. Operator 'FORWARD' is given a high priority to ensure its

early execution to start the loop; the image processing is contained in

brackets to ensure its complete compilation before the FEND operator 

is executed to end the loop. The dummy operand 0 and operator 'O' 

ensure that 'FORWARD' is not deferred until after the bracketed 

section.



87

[[ PO:=QO ]] — > ( 0  'FORWARD' 0 'O' ( PO := QO ) 'FEND' 0 )

SEQ OPERAND OPERATOR OPERANDS — > RESULT COMMENTS

1 0 FORWARD' 0 — > Q Code, start of loop
2 PO := QO — > QO Code, PO:=QO
3 0 '0' QO — > QO do nothing
4 QO 'f e n d ' 0 — > 0 Code, end of loop

Figure 4.4 Image Scan Expansion and Result

4.6.6 Conditional Statements

Similar reasoning to that above is used to implement the 

conditional statement. A simple example with its expansion and 

subsequent order of evaluation is given in figure 4.5.

The first operator 'IF' is required to store details of any outer 

conditional statements that may be in progress; it generates no run 

time code. A dummy operator 'O' is included for correct sequencing and 

then the bracketed conditional expression is compiled. The 'THEN' 

operator indicates that the logical value generated must be tested to 

determine whether the next section of program is to be run. The 

conditionally run program section is then compiled. Lastly the 'FI' 

operator is executed to fill in the jump address of the 'THEN' and to 

return to any outer conditionals in progress.



88

IF A=B THEN C:=5 FI
— > ( 0 'IF' 0 'O' ( A = B ) 'THEN' 0 '0' ( C := 5 ) 'FI' 0 )

OPERAND OPERATOR OPERAND — > RESULT COMMENTS

1: 0 'IF' 0 — > 0 stack details of any
outer IF's

2: A = B ——^ A=B Code, compare A and B
3: 0 'O' A=B — > A=B do nothing
4: A=B 'THEN' 0 — > 0 Code, test operand.

possible jump
5: C I = 5 — > 5 Code, C:=5
6: 0 '0' 5 — > 5 do nothing
7: 5 'FI' 0 — > 0 Fill in jump address

from THEN;
Unstack details of 
outer IF

Figure 4.5 "IF" Statement Expansion and Result

4.6.7 Other Statements

A few other keywords and structures are also converted to strings 

of special operators and operands: these are fully listed in figure 4.6

and the operators detailed in figure 4.7. Those operators in figure

4.6 which may be unary or binary depending on where they occur have two 

entries, the first for binary use and the second for unary.

Some of the operators may occur only in the interpret mode or only 

in the compile mode; these return an error if they are found in the 

wrong mode.

PPL2 compiles machine code for image operations but interprets all 

other statements; the switch to compile mode is indicated by the 

operators associated with "[[" and the switch back to interpret mode by 

those associated with "]]"; these latter also causing execution of the 

image scan code generated.



4.7 CONCLUDING REMARKS

The complete system described here is composed of some 2000 lines 

of FORTRAN and MACRO programs, totalling 60 000 bytes of machine code. 

This is executed in overlays in about 43 000 bytes of machine memory. 

One thousand bytes of space are reserved for compiled code which, 

although sounding rather small, is adequate for highly complex programs 

due to the compiling method chosen.

Space is available for 8192 characters of PPL2 program which 

corresponds to about 250 'average' lines. To cope with this there is 

enough table space for 80 variable names which is found to be a 

suitable number for the total amount of text space. FOR loops and IF 

statements are each permitted to be nested to a depth of 10 levels,

this being determined by the sizes of internal tables and found to be

more than adequate.

In short, fairly simple techniques have been used in an

unconventional manner to produce an extremely flexible system for 

developing and testing image processing algorithms. The need for a

large and very expensive mainframe computer has been avoided.



90

END —  > 0 'EOI' 0 '00' 0
—  > INDEX' (
—  > ( 0 'FORWARD' 0 'O' (

'[[+' —  > ( 0 'FORWARD' 0 'o' (
—  > ( 0 'REVERSE' 0 'o' (
—  > )
— — / ) 'FEND' 0 )

'+]]' — y ) 'FEND' 0 )
— y ) 'REND' 0 )

' ê ' — > 0 'CALL'

'IF' — > ( 0 'IF' 0 '0' (
'THEN' — > ) 'THEN' 0 '0' (
'ELSE' — > ) 'ELSF' 0 '0' (
'ELSE' ) 'ELSE' 0 '0' (

'FI' — > ) 'FI' 0 )

'FOR' — > ( 0 'FOR' (
'FROM' — > ) 'FROM' (

— > ( 0 'OFROM' (
'BY' — > ) 'EY' (

——) ( 0 'OBY' (
'TO' — > ) 'TO' (

— y ( 0 'OTO' (
'WHILE' — > ) 'WHILE' 0 '0 ' (

——^ ( 0 'OWHILE' 0 '0' (
'DO' — > ) 'DO' 0 'O' (

— > ( 0 'ODO' 0 '0' (
'OD' — > ) 'OD' 0 )

'GOTO' — y 0 'GOTO'

'EXIT' — > 0 'EXIT' 0

'MODULO' — > 'MODULO '

READ — > 0 'READ'
WRITE — > 0 'WRITE'

Figure 4.6 Keyword Conversions



91

OPERATOR Pri Mode Result of A OPERATOR B

(unary) -12 I/C Twos complement of B; A ignored
(unary) -12 I/C Ones complement of B; A ignored

* MULT 11 I/C A * B Integer result
/ DIV 11 I/C A / B ditto
+ ADD 10 I/C A + B ditto
- SUB 10 I/C A - B ditto
= .EQ. 8 I/C A = B Logical values; TRUE = -1
# .NE. 8 I/C A # B ditto FALSE = 0
> .GT. 8 I/C A > B ditto
< .LT. 8 I/C A < B ditto

>= .GE. 8 I/C A >= B ditto
<= .LE. 8 I/C A <= B •ditto
& AND 7 I/C A & B Bit by bit logical AND
! OR 6 I/C A ! B ditto OR
$ EX OR 5 I/C A $ B ditto EXCLUSIVE OR

-4 I/C 0
:= ASSIGN -3 I/C B A gets the value of B

2 I/C B A ignored
'IF' 20 I/C A B ignored
'THEN' 20 I/C A B ignored
'ELSE' 20 I/C A B ignored
'ELSE' 20 I/C A B ignored
'FI ' 20 I/C A B ignored
'0' 20 I/C B A ignored Dummy
'00 ' 0 I/C B A ignored Dummy
'INDEX' 15 I/C ADDRESS Address of A + 2*(value of
'FORWARD' 20 I 0 Generate code; Set Compile

c ERROR 7
'REVERSE' 20 I 0 Generate code; Set Compile

c ERROR 7
'FEND' 20 I ERROR 3

c B Code is run; Set Interpret
'REND' 20 I ERROR 3

c B Code is run; Set Interpret
'GOTO' 20 I 0

c ERROR 8
'EXIT' 20 I ERROR 4

c B Generate code
: LABEL 20 I/C B A ignored

?> MAX 9 I/C The greater of A and B
?< MIN 9 I/C The lesser of A and B
?+ (unary) -12 I/C The absolute value of B A ignored
?i (unary) -12 I/C IF B<0 THEN 0 ELSF B>255 THEN 255 EL

ignore A
'MODULO' 14 I/C The remainder after dividing A by B
'E-O-I' 1 I/C -none- The program terminates

Figure 4.7 Actions1 of the Ooerators



92

OPERATOR Pri Mode Result

'FOR' 20 I/O 0 Tables are
'FROM' 20 I/O 0 ditto
'BY' 20 I/O 0 ditto
'TO' 20 I/O 0 ditto
'WHILE' 20 I/O 0 ditto
'DO' 20 I/O 0 ditto
'OD' 20 I/O 0 ditto
'OFROM' 20 I/O 0 ditto
'OBY' 20 I/O 0 ditto
'OTO' 20 1/C 0 ditto
'OWHILE' 20 I/C 0 ditto
'ODO' 20 1/C 0 ditto
READ -4 I 0

C ERROR No i
WRITE -4 I 0

C ERROR No

. ]] 

. ]]

Notes -

Pri = Priority of operator (Negative values indicate right to left
operators, the magnitude of the priority determines the order
of evaluation.

I = Interpret mode. i.e. outside [[ ... ]]

C = Compile mode. i.e. within [[ ... ]]

I/C = Interpret or Compile modes.

Figure 4.7 (Continued)



93

5. IMAGE STORAGE AND ACCESS I.nOTC

5.1 INTRODUCTION

Before any image processing can be contemplated an image must be 

made available to the computer. Images may be obtained from a wide 

variety of sources; probably the most versatile is the standard 

television camera.

Television cameras have existed for more than forty years and have 

undergone numerous improvements in that time. Modern cameras can be 

obtained with a wide variety of different tubes, each with its own 

advantages, and in many styles of construction for use in a large 

number of applications. Adaptors are available for viewing anything 

from the microscopic to the stars; from freezing conditions to the 

inside of a furnace. They may also be placed in situations that a man 

could not tolerate.

Standards of operation have been laid down and are well

established so that cameras may be interchanged with ease. A commonly 

used standard is that defined as CCIR(625-Iine) which appears both 

industrially and in domestic television sets. This system provides 

high resolution motion pictures.

Fully semiconductor cameras using the newly doveioped charge 

coupled device image sensor are now becoming available. These are

being developed to provide signals conforming to the COIR (625-Iine)

standard and will be fully compatible with current cameras.

Signals from such a camera are analogue in nature and provide, in 

addition to the image information, signals for the synchronisation of 

the display device. In order to use these signals for digital image 

processing they need to be decoded and converted into a suitable 

digital form.



94

The resolution of cameras is such that they may provide more than 

forty million bits of information in one second. This rate of 

information transfer requires very fast machinery to handle and process 

it.

Research into the type of processing to be performed on the 

signals does not normally need to occur at this speed. Development of 

algorithms can adequately be achieved with much slower machinery and 

the resultant methods transferred to special hardware.

Similarly it is unnecessary to work with a full resolution image - 

lower resolution versions can be used to prove the method. However, 

sufficient results should be retained to pick out the detail required 

for the process under investigation. Since it was not the aim of this 

project to attempt scene analysis but to study simple groups of objects

such as a few nuts and bolts on a table, a resolution of 128 by 128

pixels, 16 384 pixels per image, was felt to be adequate.

Allowing eight bits per pixel for grey scale presentation requires

some 16 000 bytes per image. Provision of several image spaces soon 

uses up a great deal of memory and while memory itself is not too 

expensive it quickly uses up address space on the host computer. To 

reduce the computer's overhead and still provide a reasonable number of 

images, the memory for them has been placed in a separate interface 

unit.

In addition to the image memory, fast image input and output 

convertors have been provided with a novel accessing structure which 

increases program speed. Use of this accessing method has resulted in 

the ability to access over 250K bytes of image memory in only a 4K byte 

address space on the host computer.

Space is available for storage of up to 16 images each of 128 by 

128 pixels by 8 bits per pixel; a total of 128 bit planes. The well



95

known CLIP# image processing system has 32 bit planes of 96 by 96 

pixels.

5.2 THE DIGITISATION SCHEME

Triangles, rectangles or hexagons may be used to form a regular 

tessellation covering the image. The triangular tessellation is very 

unpopular due to the over-complex nature of the algorithms using it. 

On the other hand both rectangular and hexagonal tessellations are in 

use. Hexagons have received relatively little attention, perhaps due 

to the complexity of accessing neighbouring window elements, but do 

provide the advantage of always being 6-connected. Rectangles are most 

commonly used: they can be simply accessed in most computing languages, 

but care has to be taken over whether to treat them as 4- or

8-connected. To allow investigation of algorithms on either

rectangular or hexagonal tessellations the image storage circuitry has 

been designed to allow both.

Conversion of the incoming signal to a digital pattern is achieved 

by sampling the level at regular intervals and storing the digital 

value of the signal in a memory array. The intervals chosen depend

upon whether a rectangular or hexagonal tessellation is being used.

The hexagonal array may, to a first approximation, be considered a 

rectangular array in which alternate rows are shifted a half-cell 

sideways (see fig 5.1). It is easy to achieve this shifting

electronically and the mode of operation can be controlled by the

computer. This extends the flexibility of the hardware with very

little extra circuitry.



96

True Hexagonal Array-

Rectangular Array with alternate rows shifted by a half pixel

Centre points marked with a dot.

Figure 5.1 Approximation of a Hexagonal Array

TIMING

Each line scan in the CCIR (625-line) standard takes 64uS to 

complete; of this 12uS is not used for image information, it being the 

blanking period which is required to suppress spurious signals during 

the 'flyback'. Thus there is some 52uS of image information per line. 

The bandwidth of the image information is not generally much more tham



97

6MHz for the majority of the cameras available at reasonable cost. It

is not possible to extract more than about 800 pixels per line of

information.

Frames, composed of 625 line scans in two interlacing fields of 

the image, take 40mS to complete. Of this time about 4mS are required 

for frame 'flyback' leaving some 560 lines of information. The

resolution chosen for this project of some 128 lines of 128 pixels each 

is well within this maximum limit.

Image information has to be sampled at approximately 400nS 

intervals at this resolution. It is possible to buy, from stock,

analogue to digital convertors that can easily cope with this data rate 

at 6-, 7- or 8-bit resolution. At the time this project was undertaken 

only the 6-bit convertor was available at low enough cost; but with 

future diminishing product costs in mind the image memory was built for 

8-bit resolution, enabling a future system upgrade.

Generating the timing signals to the CC1R(625-Iine) standard would 

have required a large number of integrated circuits were it not for the 

ZNA134J video timing generator from Ferranti [30]. This device needs 

to be supplied with a 2.5625MHz clock to produce all the required

timing signals; this frequency converts to a clock time of 390nS which 

is ideal for the conversion clock. Frequency stability is ensured by 

deriving timing from a 10.25MHz crystal oscillator and dividing the

frequency by four to feed the ZNA134J.

Counters are also driven to generate row and column addresses

across the image, to be used as addresses for the memory when storing 

or retrieving the image for display. At the resolution required there 

is no need to account for scan interlace; furthermore it is only

necessary to increment the row counter every other line for 128 active 

lines from 280. The counters are reset by the blanking signals from



98

the ZNA134J and a short delay provided by auxilliary counters before 

beginning to count pixels or lines; this ensures a centered image. The 

column counter can be further delayed by a half pixel time on alternate 

rows when in hexagonal tessellation mode.

5.4 IMAGE PROCESSING

New images are formed by generating new pixel values as , some 

function of the pixels in the original image. It is usually only 

necessary to use the corresponding pixel and its near neighbours from 

the original image; this small set of pixels is known as a window on 

the image. The size of the window determines the number of neighbours 

available for the function; in the extremes the window may be of zero 

size (to produce a constant image not dependant on the original) or as 

large as the image itself (for example, to find the mean pixel value). 

All image processing algorithms fall within these limits. It is 

usually only necessary to use a small number of neighbouring pixels, 

that is only a small window. The majority of published algorithms use 

only a 3 by 3 pixel window consisting of the corresponding pixel and 

its eight immediate neighbours, although larger windows are 

increasingly encountered.

Having defined the function for a window it is necessary to apply 

it to the whole image. Given a parallel processing machine it is 

necessary to feed the function to all the processors and issue the 

execute command. Execution on a sequential processor is achieved by 

evaluating the function with the window centered on each of the image 

pixels in turn.

What follows relates to a sequential machine used for image 

processing; it is likely to be some time before parallel processing 

machines completely oust them in this application.



99

^.5 ACCESSING WINDOW POINTS

Images are two dimensional arrays of pixels but must be stored as 

a single dimensional list of elements and a two- to one-dimensional 

mapping must be provided to access the desired point. The ability to 

declare a two dimensional array is provided in most high level 

languages, together with a suitable mapping which is usually invisible 

to the user, it being contained within the compiler. The subscript 

values are shown in figure 5.2.

A general point is IMAGE(X,Y) from which its neighbours can be 

given general subscripts, as shown in figure 5.3.

If a hexagonal tessellation is used a further complication arises 

in that the subscript referring to a neighbour on a line above or below 

the centre depends not only on the neighbour but on which line contains 

the centre point (see figures 5.4 and 5.5).

When accessing neighbouring image points in a window it must be 

remembered that when the centre point is near the edge of the image 

some of the neighbours may be off the edge. There are two ways round 

this :

1) to restrict the scan so that no neighbour within the window 

being used is off the edge of the image.

2) to detect that this has happened and take action to prevent 

spurious results.

Of these the latter is most often used in a simplified form. It 

is usually sufficient to return a particular value if the pixel is off 

the edge of the image and otherwise undefined. This "edge value" is 

set up before the scan commences and then used when required. Figure

5.6 shows a simple FORTRAN program to smooth an image by generating a 

resultant image in which each pixel has the value of the arithmetic



100

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) ... etc. ,
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) ... etc. .
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) ... etc. .
(1,4) (2, 4) (3,4) (4,4) (5,4) (6,4) ... etc. .
(1,5) (2, 5) (3,5) (4,5) (5,5) (6,5) . . .  etc. .
(1,6) (2, 6) (3,6) (4,6) (5,6) (6,6) ... etc. .

• • • » « . • • • ■ • • • • ■ # * a up to the
etc. etc. etc. etc. etc. etc. limits of
. . . • . . . . .  . • • • . . . the array

Figure 5.2 Subscriot Values (Rectangular Tessellatic

(X-2,Y-2) (X- 1 ,Y-2) (X,Y-2) (X+1,Y-2) (X+2,Y-2)
(X-2,Y- 1) (X- 1,Y-1) (X,Y-1) (X+1 ,Y-1) (X+2,Y-1)
(X-2,Y) (X- 1,Y) (X,Y) (X+1,Y) (X+2,Y)
(X-2,Y+1) (X- 1,Y+1) (X,Y+1) (X+1 ,Y+1) (X+2,Y+1)
(X-2,Y+2) ( X- 1,Y+2) (X,Y+2) (X+1,Y+2) (X+2,Y+2)

Figure 5,3 Neighbouring Subscriots (Rectangular)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) .
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) .
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) .
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

etc. etc. etc. etc. etc etc.

etc. .
... etc 
etc. .
... etc 
etc. .
,.. etc 
up to the 
limits of 
the array

Figure 5.4 Subscript Values (Hexagonal Tessellation)

for lines "a"
(X-1,Y-1) (X,Y-1)

(X-1,Y) (X,Y) (X+1,Y)
(X-1,Y+1) (X,Y+1)

for lines "b"
(X,Y-1) (X+1,Y)

(X-1,Y) (X,Y) (X+1,Y)
(X,Y+1) (X+1,Y)

line
a
b
a
b
a
b

Figure 5.5 Neighbouring Subscripts (Hexagonal).



101

mean of the nine pixels in a 3 by 3 window on the original. When a 

pixel is off the image it is replaced by the constant value 0.

Clearly a great deal of work has to be done to calculate the 

position of the neighbours and to check the validity of those 

positions. This work is in addition to that required to achieve the 

required result. The first result of this is that the program does not 

clearly show the image processing being performed. The second is that 

a great deal of machine code is produced, all within the scan loop and 

hence rather slow in execution (for the program given there are 108

machine code instructions within the loop). Similar overheads will be 

incurred by any high level language operating on internal arrays of 

values.

Another problem that can occur in many computers is the large 

amount of memory required for image storage. Images of 128 by 128 

pixels contain a total of 16 384 pixels, and for grey scale images a

byte must be allocated for each. This is one quarter of the total

memory available to most microprocessors and quite a large proportion

of that in a mini-computer. It would be convenient to be able to store 

images without committing such a large amount of address space.

By using a novel address mapping architecture the image storage 

hardware described in this chapter overcomes the problems described

above. The resultant device has enabled PPL2 to compile shorter and

faster code than can be achieved using the more common high level

languages such as FORTRAN or ALGOL using data in their own arrays.

5.6 A FAST SOLUTION

Although time consuming in software the address calculations are 

very simple, only requiring an offset of a few pixels or lines from the 

centre point. This can be achieved by using standard TTL integrated



102

PROGRAM MEAN 
C Declare the variables and images.

INTEGER X,Y,TOTAL,INPUTd28,128),OUTPUTC128,128)
C Scan the image.

DO 110 Y=1,128 
DO 100 X=1,128 

C Sura the points.
C The centre is always OK.

TOTAL=INPUT(X,Y)
C Checking that the rest are valid

IF(X.GE.2) T0TAL=T0TAL+INPUT(X-1,Y)
IF(X.LE.127) T0TAL=T0TAL+INPUT(X+1,Y)
IFCY.GE.2) T0TAL=T0TAL+INPUT(X,Y-1)
IF(Y.LE.127) T0TAL=T0TAL+INPUT(X,Y+1)
IFCX.GE.2.AND.Y.GE.2) T0TAL=T0TAL+INPUT(X-1,Y-1) 
IF(X.GE.2.AND.Y.LE. 127) TOTAL=TOTAL+INPHT(X-1,Y+1) 
IF(X.LE.127.AND.Y.GE.2) T0TAL=T0TAL+INPUT(X+1,Y-1) 
IF(X.LE.127.AND.Y.LE.127) TOTAL=TOTAL+INPUT(X+1,Y+1 ) 

C Divide by the total number of points to get the mean.
0UTPUT(X,Y)=T0TAL/9 

C End of the scan.
100 CONTINUE 
110 CONTINUE 
C We've finished.

STOP
END

Figure 5.6 Example Image Processing Program in FORTRAN

circuit adders fed with the centre point co-ordinate and the offset 

required.

Mapping the window rather than the image into the computer's 

address space brings two significant advantages:

1 ) A very large reduction of the amount of memory space occupied 

by the images. Only as much address space as total window area is 

required, a 15 by 15 window, which is quite large by image processing 

standards, requires only 15*15 = 225 bytes of storage per image. 

Compared to a 128 by 128 pixel image this is a factor of 80 reduction; 

a greater reduction is achieved on larger images.

2) The software can directly access points in the window without 

any address calculation overheads. The calculations occur at high



103

speed in the interface and can be made quite invisible to the user, 

both logically and timewise. Window points appear as a one dimensional 

array of values and by assigning a name to each window element (as in 

PPL2) all run time address calculations are avoided.

Additionally, outputs from the adders can be used to detect an 

attempted access to a point outside the image boundaries. The

interface can, in this case, return a defined edge value to the

computer.

Large reductions in program length, and hence in execution time, 

result from this technique; the example program in figure 5.6 requires 

only 13 machine code instructions rather than the IO8 needed in 

FORTRAN.

5.7 CIRCUIT DESCRIPTION

Offsets from the centre point do not bear a simple relationship to 

the window point address fed to the interface. To avoid complex 

calculations the offsets are stored in a Read Only Memory whose input 

address is the window point required and output is the address to be

used by the adders. It is easy to arrange for completely separate

tables of offsets for rectangular and hexagonal tessellations; the 

hexagonal version requiring two tables for the cases of odd or even 

lines (see figure 5.5).

Each table is as long as there are addresses in the window; a 15 

by 15 window has 225 addresses which is just below the rather 

convenient number 256. Rectangular tessellation requires one table 

whilst hexagonal requires two; it is convenient to assign two tables to 

the rectangular mode and fill them with identical values, thus avoiding 

some signal switching. A block diagram of the arrangement is given in 

figure 5 .7 .



104

Window point address
(from computer) Odd/even line Rectangular/Hexagonal

(from interface)

X offset Y offset

Centre point 
X address

Centre point 
Y address

Overflow Overflow

Pixel X address Pixel Y address

AdderAdder

Read Only Memory 1024 words of 8 bits

Image limits 
exceeded

Figure 5.7 Address Mapper - Block Diagram

In addition to the image points it is necessary to be able to 

access control registers which determine the centre point address, the 

mode (rectangular or hexagonal), which image is to input from the 

camera, which is to displayed and the value to be returned if the image 

limits are exceeded.

Each byte from the ROM is divided into two nibbles, one for the X 

offset and the other for Y. The 4-bit value is interpreted as a two's



10!

complement value in the range -7 to +7 to give the offsets needed for a 

15 by 15 window. The remaining code, binary 1000 or -0, is used to

signal special addresses that are used to access the control

registers.

The most significant carry bits out of the adders are used to 

determine that the image limits have been exceeded. When this happens 

the address formed is replaced with the address of the register 

containing the edge value for the image being accessed.

5.8 OTHER FACILITIES

Image input, from a television camera, and output, to a monitor,

is also provided within the interface. These facilities enable high

speed data acquisition and continuous display of any desired image, 

even as it is being processed.

5.9 AS THE USER SEES IT

Sixteen blocks of memory are available to the user, one for each 

image within the interface. Each block has 256 addresses within it; of 

these 225 are required for the window and the rest are either control 

register addresses or unused.

An address map for one image block is shown in figure 5.8. The 

maps for the other images are the same. Addresses marked with an 

asterisk are registers common to all image spaces and may be accessed 

from within any image space.

5.9.1 The Window

Each point in the window has an address in the image block, the 

centre point is at address 0 and the other points at increasing 

addresses. A complete list of addresses is given in figure 5.9-



106

fbpfl
Address Contents
(octal)

776 Edge value of the image

774* Number of the image being displayed

772* Number of the image to be input

770* Mode (Rectangular or Hexagonal)

766* Y co-ordinate of window centre point

764* X co-ordinate of window centre point

762II
702

700
I

Not used

Pixels in the window

Figure 5.8 Address Mao

5.9.2 The Centre Point

The address of the centre point of the window must be given to the

interface before any processing on the window is performed. The X and

Y co-ordinate values may be given separately in addresses 7̂ 4 and lL i>  

respectively or use may be made of the concatenated registers in

adresses ~ ]S k and 1 5 i  or l i o  and l i Z ,  These last two pairs of registers

allow a simple scanning method to be used with microprocessors having a 

l6-bit register that can be incremented or decremented. By cycling the 

l6-bit register and writing its value to the interface a complete scan 

may be accomplished with the minimum of programming.



107

A “ 7 - 6 -4  -7  “ 2 -1 C 1 T 4

-7 196 195 - 4 '9 3  192 191 1?0 IB ? 133 197 186 185 184 133 132 “ 7

-6 197 144 147 14? I K 139 133 13" 136 135 134 133 132 181

196 145 9 6 95 94 93 72 ?1 ' 131 180

-4 199 147 101 64 63 6? 61 6C 59 5? 56 89 130 179 “ 4

-3 203 14? 1 (V' 65 3c 35 34 ^  32 31 30 55 88 12? 176

-? 201 1^3 66 37 '6 15 14 13 12 DO 54 87 128 177 -2

-1 202 119 0,7 35 17 4 11 23 53 86 127 176

0 203 15 V 195 66 13 0 1 10 27 52 85 126 175 0

1 204 151 100 69 40' 19 ! 7 8 ? 26 51 04 125 174 1

2 205 152 10 '' ?0 ^  20 21 24 25 50 S3 124 173 2

206 153 108 ’ 1 42 4 j 44 45 46 47 43 4? 82 123 172 3

4 20 7 154 10? 72 %  74 75 76 77 79 80 81 122 171 £

5 208 155 110 111 IK !  H 3 I K 115 116 117 113 119 120 121 170

6 209 156 157 158 15 " 160 1M 162 163 164 165 166 167 163 169 6

210 211 2 . : '  2 i- ;  21 j 21? 218 21? 220 221 222 2'■■7 224 7

-7 -A • A' 4 5 6 7

RÎK
HO

G
rpOM

■
TO

5 0 INTO 40, 
TO

rO iNT 5
POINTS

NO .OUTSIDE

0
i -i :•

0
1 8 

24

1
3

16

i
0

25

224
216
200

3

5

-3
-4._C 4

25 48 
49 so 
G1 120

24
32
40

49
81

121

176
144
104

6 " 6 121 163
169 224

43
56

Id?
225

56
0

Fib c7...yiüdau_c’Dinl-Audc25Se5_(dZCiûcill



108

8.9.1 Mode

The value set within this register determines whether the 

interface is to operate in the rectangular or hexagonal mode. Zero 

represents the rectangular mode and 1 the hexagonal mode. This value 

selects the appropriate mapping from the ROM and adjusts the timing for 

image input and output.

8.9.4 Input Image Number

Writing a value to this location starts the digitisation process 

to capture the next frame of image information from the camera. When 

an input is in progress the computer cannot gain control of the 

interface as this would probably corrupt the incoming data. If the 

computer writes to the interface in this time the command is ignored. 

If it tries to read it will receive the value -1. This may be used as 

an indicator that the interface is busy. When the interface has 

finished digitising the image this location will return the number 

written to it, i.e. the last image to be digitised.

5.9.8 Output Image Number

Display of a particular image is achieved by writing the number of 

the image to this location. This value can be read when desired.

5.9.6 Edge Value

This value is returned to the computer if an attempt to read a 

value from a point that is off the edge of the image.



109

8.10 CONSTRUCTION

Due to the very large amount of circuitry involved it was decided 

to divide the construction into a number of units each of only moderate

complexity. A block diagram of the units involved is given in figure

5.10.

8.10.1 Timing and Control

This board contains the master crystal oscillator and frequency 

dividers to provide all the timing signals required by the interface. 

It also contains the bus arbitration circuitry that ensures that only 

one device at a time tries to drive the bus and that all drive 

changeovers are synchronised.

8.10.2 Displav

Data is taken from the bus and presented to an ANALOGIC MP8308 

digital to analogue convertor with composite sync and blanking. It 

produces a COIR (625-Iine) composite video signal for use with a 

standard video monitor.

The sync and blanking signals are converted to 1v standard signals 

to feed the camera to synchronise it to the interface.

5.10.1 Colour Displav

Colour output can be used to great effect to highlight particular

areas of the image. The display is not intended to produce a colour

image but merely to be able to produce colours. The eight data bits 

are split into 3-bits of red gun grey scale, 3-bits of green gun grey 

scale and 2-bits of blue gun grey scale. These signals are encoded to 

the PAL standard using the National Semiconductor LMI886 and LMI889 

I.C.'s and fed, at UHF, to a domestic colour television as monitor.



110

Interface Bus
625-line Camera— *Video ♦Input A/D

'Blanking.

Monitor Output D/A*
Composite Video

Timing and Control*

Front Panel*

Memory*.

Computer <- -^Computer Interface*

Domestic TV * Colour output*

Figure 5.10 The Video Interface - Main Units



111

5.10.4 Input

Video from the camera is digitised by a TRW TDC1014J fast 6-bit 

analogue to digital convertor. The digital values are fed immediately 

into the image memory.

5.10.5 Memory

The image display runs all the time and accesses all the image 

points in turn enabling a dynamic memory to be used without any further 

complexity in refresh circuits. l6Kx1 (4116) memory chips were used, 

requiring eight devices per byte image.

5.10.6 Computer Interface

Access commands from the computer arrive at high speed (about 

1MHz) over a fairly long length of cable (36 feet). 75-series balanced

line drivers were used for this application and this board houses the

necessary integrated circuits with tri-state drivers for the internal 

bus.

5.10.7 Registers

The registers board contains the centre point co-ordinate, mode, 

input number, output number and edge value registers. Drivers for the

front panel indicators and switches are also provided.

5.10.8 Front Panel

Apart from the mains on/off switch, the front panel also contains 

(a) indicators to show the state of the _ interface and (b) manual

override switches. The front panel is shown in figure 5.11.

The right-hand switches marked "HEX" and "RECT" indicate the



1 12

Figure 5.11 The Front Panel



INPUT DISPLAY



113

operating mode of the interface. Pushing a switch will select that 

mode, overriding any mode set under computer control.

Switch "VIEW" switches to continuous digitising mode and 

immediately re-converts the digital signal to video for the monitor. 

This provides a check that the analogue to digital and digital to 

analogue convertors are working correctly.

The displays at the top marked "COMPUTER" show the last image 

number to have been input or output by the interface under computer 

control. The arrow switches below them allow manual overriding to 

input or display the image selected on the thumbwheel switches below 

them.

5.11 PDP11 INTERFACE

A special board plugs in to the PDP11 unibus containing address 

recognition circuitry for the board and drivers for the balanced line 

to the interface. The interface is made to appear as word wide data so 

that the image values do not become negative values as they would if 

byte addressing were used. Bus protocol is converted from that used on 

the asynchronous Unibus [31] to the synchronous form required by the 

image storage logic.

The 16 images each require 256 words, a total of 4K words or 8K 

bytes which is, conveniently, one page of memory to the memory 

management unit and can easily be mapped into the driving program.



114

6. AN APPLICATION OF THE GREY SCALE QUADTREE IN SMALL PART LOCATION

6.1 INTRODUCTION

Binary images of resolution 512 x 512 contain more than 

one-quarter of a million bits - an eno rmous quantity of information. 

A grey scale image of similar resolution will contain well over one 

million bits. In these circumstances object recognition necessitates a 

vast data reduction, in the order of five orders of magnitude.

Individual pixels can often be grouped together with others having 

similar properties within the scene, such as belonging to an object or 

background. Interest in finding image descriptions on a larger scale 

than single points has led to schemes which generate more global

descriptions of all or parts of the image. Operations on the more 

global attributes of the image can lead more quickly to the desired 

result than an unnecessarily detailed examination of the basically 

redundant information in many of the pixels [32]. Formation of a set 

of image descriptions of differing resolution provides a method whereby 

a very fast global search for items of interest can be followed, if 

necessary, by a more detailed local examination.

In this section we first of all discuss pyramidal and in

particular quadtree representations. We then look at binary and

grey-scale quadtree implementations and some of the particularly useful 

information made available for the thresholding of grey-scale images. 

Finally, a complete object segmentation scheme, using information

derived from quadtrees, is described to cope with practical (off the 

camera) images of small components.



115

6.2 THE QUADTREE

Pyramidal structures for image representation have been proposed 

[3 3 ,3 4 ,3 5 ,3 6 ] as a means of data reduction which can speed up

subsequent processing of the image. Such structures have been used to

considerable advantage in applications such as scene matching [37].

Reliance is made upon the fact that most images contain regions of

constant information in which the individual pixel carries very little 

information and groups can be replaced by a single overall 

description.

Quadtree representations are one form of pyramidal reduction 

technique which is easy to produce, can be generated at high speed and 

give a very usable data set for further processing [38,39,40,41].

Given an image that is square, with sides some power of two long, 

a quadtree representation may be formed as follows: if all the pixels

have the same value the tree consists of only a single value, the root, 

with that value. If not, the image is divided into four quadrants and 

the root is given these four successors. The process is now repeated 

for each of the successors; if all pixels in the quadrant have the same 

value the node is given that value; if not it is further subdivided. 

The end result is a tree in which each node has four successors (i.e. 

a tree of degree 4, a quadtree); the successors may be leaves (for

constant regions) or other nodes (for non-constant regions). An image

of 2^ by 2 '^ pixels has a quadtree of maximum depth n+1. An example of

the tree produced by a simple image is given in figure 6.1.

6.3 A BINARY QUADTREE IMPLEMENTATION

Only the simplest of trees can be drawn on paper, those found in

quadtrees are too complex to be shown in this form. This can neatly be 

illustrated by displaying the depth of the leaf of the tree for each



116

Image
1 1 1 1 0 0 2 2
1 1 1 1 0 0 2 2
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
3 3 0 0 0 0 0 0  
3 3 0 0 0 0 0 0  
0 0 4 5 0 0 0 0  
0 0 6 7 0 0 0 0

Quadtree Node
A B

A,B,C,D contains values or pointers to successors
C D

Quadtree Structure

Root: 1

Level 1: 0,2,0,0

Level 2:

Figure 6.1 Example Quadtree

I

pixel in the image. This is not as compact as the tree (it requires a 

whole image) but does provide a useful visual representation and can be 

trimmed to the minimum tree if required.

Production of a quadtree for a binary image in depth format and 

its tree representation is very straightforward; a PPL2 program to do 

so is given in figure 6.2. Initially, the image is assumed to be 

uniform and all pixels marked as belonging to the root node. The image 

is then scanned to test this assumption and if it is found to be false 

the image is assumed to be composed of four regions at one deeper level 

of the tree; pixels are marked accordingly. Each of these assumptions 

is then tested and if the region is not uniform a deeper level is 

assumed. This continues until a region is discovered to be uniform, if 

necessary containing only one pixel.



117

An example of the result obtained is shown in figure 6.3, the 

brighter areas in the quadtree image correspond to deeper leaves in the 

tree. In order to make the different levels more visible the level 

information produced by the program has been multiplied by 36 before 

display.

Although this program does not employ the fastest possible

strategy its speed is adequate (9 seconds on a 128^ image using the

PDP11 PPL2 system described in chapter 3) for research purposes. For 

industrial use a faster technique would have to be used.

It can be seen that large areas of constant value are situated 

near the root of the tree whilst areas of greater activity, near or on 

edges, fall to a much deeper level.

Depth labelling of pixels in this way allows particular levels of

the tree to be extracted: figure 6.4 shows two different levels of the 

tree generated above. Deep leaves occur on object edges, and shallow 

leaves in large, uniform areas.

6.4 A GREY SCALE QUADTREE IMPLEMENTATION

Grey scale images, unlike binary, only very rarely contain areas 

of exactly the same pixel value. Real scenes generally contain both 

gentle brightness gradients on uniform surfaces as a result of the 

lighting conditions, and digitisation and noise errors in the digital 

form of the analogue signal. Large uniform areas can be produced by 

mechanical (artificial) image generation or by digitisation to only a 

small number of grey levels; the latter method often artificially 

dividing an area as the real intensity crosses a digitising 

threshold.

The program in figure 6.2 would work with a grey image but, except 

for the very rare or mechanically produced scene would result in almost



118

QUAD;
{ set all to root, initially }

[[ Q0:=0 ]];

{ LEVEL is the level, 0 = root
BLKSIZ is the block size, 128 = the whole image } 

BLKSIZ:=128;

{ scan for each level }
FOR LEVEL FROM 0 TO 6 DO

{ go to top L.H. corner of each block of the specified size } 
FOR I FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
FOR J FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
X:=I; Y:=J;

{ if it needs checking - }
IF QO>=LEVEL THEN VALUE:=P0; SAME:=TRUE;

{ test all pixels for equality }
FOR X FROM 1 TO l+BLKSlZ-1 DO 
FOR Y FROM J TO J+BLKSlZ-1 DO 

SAME:=SAME & PO=VALUE
OD

OD;
{ if not all the same mark block as deeper level to study it 

next time through
IF -SAME 

THEN
FOR X FROM I TO l+BLKSlZ-1 DO 
FOR Y FROM J TO J+BLKSlZ-1 DO . 

Q0:=LEVEL+1
OD

OD
FI

FI
OD

OD;

{ halve the block size for the next level }
BLKSIZ:=BLKSlZ/2 

OD

RETURN;

Figure 6.2 Quadtree Generation Program



119

Image,

.a Leaf Depth o

Figure 6.3 Binary Image and its Quadtree Representation



K C



120

Leaves at level 7 ( the furthestl^from^HHËTOÔ

Figure 6.4 Selected levels from the quadtree



i v i ! ;

f / 7 : Y

■ I 
■ ■Li - P



121

entirely single pixel blocks. This results in very little benefit, or 

even a data increase, and cannot be usefully employed.

Instead of requiring that an area be constant it is necessary to 

specify that an area contains similar pixel values for a sensible 

grouping into regions to be made. Any one of a large number of 

algorithms could be used for testing for similarity. There are 

conflicting requirements for such algorithms, for example noise 

rejection versus real object detection. Different algorithms have been 

suggested (e.g. [36,42]) but for the application in this chapter a

very simple test appears to be adequate.

Uniformity, in this application, is determined simply by checking 

the total range of values in the block; the maximum value minus the 

minimum value has to be below a given threshold. This method is prone 

to error due to noise but still achieves satisfactory results without 

the time penalty of a more complex test. It also has the advantage of 

guaranteeing a known range of values within the block.

Much the same program as before is used with alteration only of

the uniformity test: the grey scale version is shown in figure 6.5.

The threshold value for the uniformity test has been set to a maximum

range of 20, this value being determined by the lighting conditions and 

contrast between the objects and the background in the scene. It must 

be determined experimentally for the arrangements used although its 

value is not too critical and a few trials with different values will 

be sufficient.

An example of the result obtained from this program is given in 

figure 6.6.



122

QUAD:
{ set all to root, initially }

[[ Q0:=0 ]];

{ LEVEL is the level, 0 = root
BLKSIZ is the block size, 128 = the whole image 
THRESH is the maximum range of values in a constant block } 

BLKSIZ:=128; THRESH:=20;

{ scan for each level }
FOR LEVEL FROM 0 TO 6 DO

{ go to top L.H. corner of each block of the specified size } 
FOR I FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
FOR J FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
X:=I; Y:=J;

{ if it needs checking - }
IF QO>=LEVEL THEN MAX :=MIN:=P0;

{ test all pixels for equality }
FOR X FROM I TO I+BLKSIZ-1 DO 
FOR Y FROM J TO J+BLKSIZ-1 DO 

MAX:=MAX?>PO;
M1N:=M1N?<P0

OD
OD;

{ if not all the same mark block as deeper level to study it 
next time through j

IF MAX-MIN > THRESH 
THEN

FOR X FROM 1 TO I+BLKSIZ-1 DO 
FOR Y FROM J TO J+BLKSIZ-1 DO 

Q0:=LEVEL+1
OD

OD
FI

FI
OD

OD;

{ halve the block size for the next level }
BLKSIZ:=BLKSIZ/2 

OD

RETURN;

Figure 6.5 Grey Scale Quadtree Generation Program



123

4

e Leaf Depth of Quadtree bf-above
^ ar —  _

Figure 6.6 Grey Image and its Quadtree Representation





124

6.5 IMMEDIATELY AVAILABLE USEFUL INFORMATION

Some very useful information can be extracted from the quadtree 

without the need for any further processing. The larger the area of 

similar intensity the larger the block that can cover it and hence the 

nearer the root of the tree it occurs. Conversely, fast changes in 

intensity of the scene allow only small blocks to be used: these occur 

further from the root.

Deep leaves, therefore, occur at sharp changes in intensity such 

as the edges of objects. Unfortunately, simply interpreting deep 

leaves as edges is not sufficient to guarantee finding the complete 

edge, since some edge points may occur on the edges of large blocks 

near the root. It may be possible to use this data to partially remove 

edges from the scene: this may be useful in determining the properties 

of the background.

Leaves near the root describe large constant areas which, although 

they may border upon edges, do not contain them. Regions on large 

objects or expanses of background can quickly be extracted.

The depth of the leaf determines the size of the block that it 

describes. The root describes blocks the size of the image, the next 

level down those of linear dimensions half this size, the next a 

quarter the size and so on to the lowest level which describes 

individual pixels.

Since the blocks in the quadtree are fixed in position whilst 

objects in the scene are not so constrained, it is not certain that an 

object (even a square object of the size of the quadtree block) will be 

covered by a block of a particular size - indeed it is very unlikely. 

It is more probable that a block of the next smaller size or even 

smaller blocks will be needed to help describe the object accurately.



125

6.6 BACKGROUND EXTRACTION

As objects will be likely to be split into small blocks for the 

quadtree description it is not easy to see how objects may be reliably 

extracted from such a description. However, large blocks near the root 

of the tree will accurately describe large constant areas, any 

irregularities causing splitting of the block.

Provided that objects in the scene are fairly small the large 

blocks can only describe the areas of background between the objects. 

Areas of the scene that are known to be background can be extracted 

ignoring the objects within

Unlike the normal thresholding techniques of separating foreground 

and background in a scene, this technique is not affected by 

non-uniform illumination of the background. Whilst it may be argued 

that it is quite possible to light a scene uniformly it should be noted 

that a failed light bulb will alter this situation. It might be 

embarrassing on a production line to have to stop production to change 

a light bulb for the sake of the controlling machinery. Inspection by 

manual labour is currently iimnune to this type of defect and it is 

unlikely that an inferior method would be appreciated by the line 

manager.

6.7 SMALL PART DETECTION

Once a few background areas have been found it should be possible 

to interpolate between them to give an estimate of the complete 

background. Objects can then be found by simply detecting differences 

between the scene and the estimated background. Of course, the 

estimate will not correspond exactly to the actual background so an 

error limit must be set. The block uniformity description given in



126

section 6.4 is useful in that it can be used to set such a limit.

6.8 A SMALL PART DETECTION PROGRAM

The ideas suggested above have been incorporated in a program for 

the detection of small parts. The problem has been split into three 

parts -

1) detection of known background,

2) interpolation of the background over uncertain areas and

3) separation of parts from the background in the scene.

The scene shown in figure 6.7 has been used as a test scene for 

this application; it contains a variety of different objects. The 

objects are all small but otherwise vary in their size and shape. The

image is directly from the camera, and has been digitised but not

preprocessed in any way. It can be seen that the contrast is not very

good and that there is a fair amount of noise in the scene.

6.8.1 Background Detection

Assuming that the objects to be found are small, the background is 

defined as that area in the scene that can be divided into large blocks 

of similar pixel values. We need to find leaves near to the root of 

the quadtree. After construction of the tree these leaves can be 

removed and used as the known background areas. (Note that at this 

point we limit the size and spacing of the objects that can be 

detected - see section 6.10.)

Since it is only the large leaves that are required it is 

pointless generating the tree beyond them: thus a saving in

computational effort can be achieved. It is only necessary to note 

whether a block is consistent or would have been subdivided if 

processing had continued.



127

#
4

i O
«' ' Figure 6.7 Small Parj^Scene

è â

mage at Quadtree Levels <
(block size 8x8 or greater



#



128

Indeed, in a program such as that given in figure 6.5 where the 

tree generation proceeds from the root, it is unnecessary to generate 

levels nearer the root than that one required. This is so because such 

a program examines each pixel in each of the different sized blocks: 

smaller blocks merely repeat the uniformity tests made further up the 

tree. A complete examination at a particular level will detect all 

those blocks that would have been placed into higher levels on the 

tree.

Routine QUAD in figure 6.9 performs the uniformity tests at one 

level only. The level is determined by the block size set in BLKSIZ. 

This value should be a power of two to give a correct quadtree 

subdivision but, as will be seen later, could advantageously be given 

other values. Image A is given the binary result of the uniformity 

test whilst image Q is given the value of the average of the maximum 

and minimum values found in the block. This value will not truly 

reflect the correct grey level of the block but all pixels within the 

block are within + THRESH/2 of this value, a fact which will be useful 

later.

Areas of the image which are considered to be background in the 

example image of figure 6.7 are shown as white blocks in figure 6.8.

6.8.2 Background Interpolation

Having determined a few known background values it is necessary to 

fill in unknown areas with a suitable approximation.

The simplest reasonable approximation is a linear interpolation 

between known values. More complex algorithms, whilst providing a 

better approximation, would take rather longer to execute.

Interpolation is performed in two stages within routine INTERP of 

figure 6.10. First interpolations in the X direction take place



129

QUAD;
{ BLKSIZ is the block size, 128 = the whole image 
THRESH is the maximum range of values in a constant block } 

BLKSIZ:=8; THRESH:=35;

{ go to top L.H. corner of each block }
FOR I FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
FOR J FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
X:=I; Y:=J;
MAX:=MIN:=PO;

{ test all pixels for equality }
FOR X FROM 1 TO I+BLKSIZ-1 DO 
FOR Y FROM J TO J+BLKSIZ-1 DO 
MAX:=MAX?>PO;
M1N:=MIN?<P0

OD
OD;

C:= MAX-MIN > THRESH;
R:=1F C THEN 0 ELSE (MAX+MIN)/2 FI;
FOR X FROM 1 TO l+BLKSIZ-1 DO 
FOR Y FROM J TO J+BLKSIZ-1 DO 
QO:=R; AO:=C

OD
OD

OD
OD

RETURN ;

Figure 6.9 Quadtree Derived Background Extraction Program

followed by those in the Y direction; routines XINTER and YINTER.

Unfortunately extrapolation can not be performed with as much 

confidence (bearing in mind the uneven illumination with, possibly, 

some very odd effects at the edges) and the areas outside the known 

values can not be so easily found. For simplicity the program simply 

notes that it can do nothing in such areas; although in practice it 

would be possible to attempt to do so.

Figure 6.11 shows the interpolated approximation to the background 

of figure 6.7.



130

INTERP: êXINTER; gYINTER RETURN;

XINTER: EDGEA:=TRUE;
FOR Y FROM 0 TO 127 DO 
OK:=FALSE;
FOR X FROM G TO 127 DO 
IF AO THEN

IF A5=0 THEN OK:=TRUE; DIST:=1;
VAL:=Q5; XX:=X 

ELSE DIST:=DIST+1
FI
ELSE
IF A5 & OK THEN XXX:zX; DIST:zDIST+1;

VAL2:=Q0; OK:=FALSE;
FOR X FROM XX TO XXX-1 DO 
Q0:=(VAL2*(X-XX+1)

+VAL*(XXX-X))/DIST;
A0:=FALSE

OD;
X:=XXX

FI FI
OD

OD RETURN;

YINTER: EDGEA:=TRUE;
FOR X FROM 0 TO 127 DO 
OK:=FALSE;
FOR Y FROM 0 TO 127 DO 
IF AO THEN

IF A3=0 THEN OK:=TRUE; DIST:%1;
VAL:=Q3; YY:=Y 

ELSE DIST:=DIST+1
FI

ELSE
IF A3 & OK THEN YYY:=Y; DIST:=DIST+1;

VAL2:=Q0; OK:=FALSE;
FOR Y FROM YY TO YYY-1 DO 
Q0:=(VAL2*(Y-YY+1)

+VAL«(YYY-Y))/DIST;
AO:=FALSE

OD;
Y:=YYY

FI FI
OD

OD RETURN ;

Figure 6.10 Background Interpolation Program



131



•J * \0 s
V .o v



132

6.8.3 Part Separation

Differences between the scene and the background generated above 

determine the presence or absence of the parts we are searching for. A 

small difference suggests that the area in the scene is background 

while a large one suggests that an object has been found. A suitable 

limit on the error must be set, above which it is possible to say that 

this is no longer background.

Here we can make use of the error limit set in the first section 

of the program and the knowledge that the block values generated there 

are within half the threshold value of the real background. Hence this 

value, THRESH/2, is used as the test value in routine PARTS which 

extracts objects from the scene.

From routine PARTS (figure 6.13) the objects are extracted and

seen in figure 6.12, grey shades representing those areas in which an

interpolation could not be made and no decision given.

Also seen in figure 6.13 is the calling program FIND to run all 

the above routines to perform the whole operation of small part

detection.

This set of routines in PPL2 compiles and executes in

approximately 9 seconds, about half of this being the compilation 

time.

PARTS: [[ RO:=(?+(PO-QO) > THRESH/2 & A0=0)
+ ((A0#0)&127) ]] RETURN;

{ Do the whole job }

FIND: eqUAD; ëINTERP; gPARTS RETURN;

Figure 6.13 Object Location and Display with Overall Program



133

6.9 UNIFORM THRESHOLD COMPARISON

Commonly used part detection algorithms put a lot of effort into 

finding a single threshold value to be applied over the whole image. 

This produces satisfactory results with good lighting but with a scene 

such as that in figure 6.14 (where the lighting is slightly uneven) 

proves unusable. A threshold value suitable for most of the objects 

fails to detect the thin wires from the capacitor on the left (see 

figure 6.15). A different value which finds the wires also removes 

most of the rest of the objects, as in figure 6.16. The scheme 

suggested above, in effect, adjusts the threshold over the image 

producing the result of figure 6.17 which does not suffer from the 

problems of the uniform threshold method.

6.10 PARAMETER SELECTION

Two parameters are crucial to the correct operation of this 

program - the maximum block size and the uniformity test threshold. 

Both depend on the scenes being viewed.

Maximum block size is determined by the size of the objects to be 

detected and the amount of background visible between them. The size 

selected must be sufficiently large that an object cannot totally fill 

it (or the block would contain a uniform area and be classified as 

background). It must be small enough to find the areas of background 

between the objects (if it were too large a block would include part of 

an object and not be uniform). This places a condition on the scenes 

that can be tested, namely that the spaces between the objects must be 

larger than the largest objects; or, only small parts can be correctly 

extracted.



134

I
ri Figure 6.14 UnevenMT111

i



I



135

to Detect Wires on Li



»  o



136

Quadtree block sizes all have sides that are a power of two long, 

this gives only a limited choice of block sizes and hence restricts the

scenes that can properly be interpreted. It is not necessary, in the

program given, for the blocks to be limited to these sizes. Any block 

size may be chosen to suit the application and BLKSIZ set accordingly. 

If there are not an integral number of blocks in the image a border of 

uncertain area will be given. Allowance for this border can be made in 

the setting of the field of view of the camera and need not be a 

problem.

Block positions are fixed by the program and the background 

regions between objects must coincide with them. Clear spaces need to 

be twice the length of a block (four times its area) to guarantee 

satisfactory detection.

Secondly, a suitable threshold for the determination of uniform 

blocks must be set. This must be such a value that a block covering 

only background be accepted but one containing any part of an object be 

rejected. Obviously this depends upon the contrast of the scene and, 

less obviously on the amount of noise present. The value must be 

larger than the noise but less than the brightness difference between

the objects and the background. It is not necessary to ensure that all

background blocks are detected, those missing will be interpolated from 

those present, so that the threshold may be set low to give errors due 

to noise rather than to objects.

Noisy environments can benefit from a small amount of noise 

removal beforehand although this can add a great deal of processing 

time for relatively little gain. It might be better to change the 

object location algorithm so that it gives a three-way result, 

background, object and uncertain, which can be resolved by the 

recognition system.



137

6.11 Conclusion

The quadtree representation has been described and shown to lead 

to a practical method of segmenting an image. There have been

difficulties with this approach that would not have been evident in a 

'straightforward' method of analysis. On the other hand this method is 

many times faster than the direct approach. Clearly some more general 

method is required that retains the speed properties of the quadtree 

with the ease of application of the direct method.

Ideally tree methods should not only be faster in operation but

should implement a more natural rather than a more restricted

description of the image.



138

7. SKELETONISATION

7.1 INTRODUCTION

Skeletons of objects form a compact description of their shape 

and, providing a suitable skeletonising method is chosen, may be later 

used to reconstruct the object to any required accuracy [43]. A 

skeleton shape is characteristic of the object and is suitable for use 

in a pattern recognition system for identifying the objects (for 

example [44,45]).

Quadtrees have been suggested for data reduction to speed 

subsequent processing, and skeletons may be used for a similar 

purpose. Both allow fast processing on a reduced data set and both can 

be used to reproduce the original object, either exactly or to a 

specified, relaxed accuracy. However, there are differences between 

the two techniques that affect the subsequent processing of the data. 

Perhaps the most important is the affect of re-positioning the object 

in the field of view; the skeleton of such an object will be unchanged 

by such a move but the quadtree may be altered drastically [46,47]. A 

movement of as little as one pixel will cause a completely new quadtree 

to be formed and its usefulness in a recognition system consequently 

reduced. To overcome this problem an algorithm for producing a 

skeleton from a quadtree has been described [48]. A second difference 

that is implied by the two techniques is the architecture of the 

processor that is best suited (fastest, cheapest, etc.) to the 

technique; this is discussed further in section 8.3.

7.2 SKELETON FINDING ALGORITHMS

Many skeleton finding algorithms have been proposed over the past 

twenty or so years [44,49,50,51,52] but the approach to their design 

has been rather ad hoc and each has some property that prevents it



139

being of universal value. The problems of these algorithms have been 

studied in [1] and a new method proposed that is rigorously derived. 

This method is guaranteed to produce skeletons to a known accuracy and 

capable of being used to reconstruct the original image if so desired.

Common to all skeletonisation algorithms is the need to remove the 

outer layer of pixels from an object to produce a slimmer outline; the 

procedure is repeated until a single width line is left. Parallel 

implementations of the skeletonising algorithm are faced with a problem 

when the object contains a limb of two pixels width. Consider, for 

example, figure 7.1 which shows a portion of an object with a section 2 

pixels wide marked as ' k '  and 'B', '+'s denote other points on the 

object.

+ + + + A + + +
+ + + + B + + +

Figure 7.1 A Two Pixel Wide Object

Using a 3 X 3 window to process the image produces the problem 

that for the processor centered at ' k '  the object appears to need 

slimming and point ' k '  is removed. At the same time the processor at 

' B '  comes to the same conclusion and removes ' B '  to produce a break in 

the skeleton. The problem occurs because of a lack of information on 

the part of each processor, a 3 x 3  window is not sufficient to detect 

that the object is not more than 2 pixels wide and an error occurs.

Two possible solutions to this problem can be found, the first is 

to use a window of more than 3 x 3  pixels. The second, which is the 

more usual, is to divide the slimming procedure into four sections each 

removing points from only one direction at a time, e.g. from the 

North, South, West and East sides. The latter solution requires four 

processes to remove one layer of cells from around the image where the 

former would need only one; however the 5 x 5  window would take longer



140

to execute for its one application and it is not obvious which would be 

the faster overall.

In order to investigate the differences in method the 

Davies-Plummer algorithm of [43] has been implemented in PPL2 with a 

3 x 3  and a 5 x 5  window so that the relative performances of each 

could be tested.

7.3 PPL2 IMPLEMENTATION OF THE DAVIES-PLUMMER ALGORITHM

The algorithm described by Davies and Plummer [4J] can be divided 

into five sub-tasks each of which can be implemented separately -

1. Propagate the distance function,

2. Mark the local maxima,

3. Slim to a connected shape,

4. Thin to a unit width skeleton and

5. Clean off the unit length noise spurs.

It is during step 3 that a 5 x 5 window is employed and the interactive 

facilities provided by the PPL2 system were used to full advantage in 

generating the algorithm and checking the results obtained. The object 

shown in figure 7.4 will be used to demonstrate the workings of this 

implementation.

7.3.1 Propagation of the Distance Function

Either sequential or parallel algorithms may be used to propagate 

the distance function: the sequential algorithm is given in figure 7.2 

and requires a pair of scans, one forward and one reverse. The 

parallel version is given in figure 7.3 and requires a number of 

applications depending on the data. If the largest object is n pixels 

wide at its widest the propagation function must be applied n/2 times 

before completion. For a 128 x 128 pixel image the maximum number of



141

PROP: [[ P0:=0 ]]; EDGEP:=0; I initially distance function is 0 }
{ A contains the binary image }

[[+ IF AO THEN P0:= (P2 ?< P3 ?< P4 ?< P5) +1 FI +]];
[[- IF AO THEN P0:= ((PI ?< P2 ?< P3 ?< P4 ?< P5 ?<

P6 ?< P7 ?< P8) +1) ?< PO FI -]]
RETURN;

Figure 7.2 Distance Function Propagation - Sequential Algorithm

PROP: [[ P0:=0 ]]; EDGEP:=0; { initially distance function is 0 }
{ A contains the binary image }

TO 64 { 128/2 times is the maximum }
DO
[[ QO:=IF AO { process into Q, for parallel }

THEN
(PO ?< PI ?< P2 ?< P3 ?< P4 ?<

P5 ?< P6 ?< P7 ?< P8) + 1
ELSE

PO
FI

]] ;
[[ PO:=QO ]] { return to P for next run }

OD 
RETURN;

Figure 7.1 Distance Function Propagation - Parallel Algorithm

applications needed is 64; this is the number performed in the program 

of figure 7.3. It would be possible to reduce this number by testing 

at each application if another is required and thus stopping at less 

than 64 applications. Each application would take a little longer, 

however, so the advantages may not be as large as expected. The result 

obtained is shown in figure 7.5.

7.3.2 Marking of Local Maxima

Little effort is required to discover which points correspond to 

the local maxima of the distance function, . such points are 

characterized by having a value at least as large as all their



142

X
X
X

X X
X X
X X

X X X
X X X
X X X

X X X X
X X X X
X X X X

X X X X X
X X X X X
X X X X X
X X X X X

X X X X X X
X X X X X X
X X X X X X

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

X X X

X X X X X X
X X X X X X
X X X X X X

x x x x x x x x  
x x x x x x x x  
x x x x x x x x  

x x x x x x x x x x  
x x x x x x x x x x  
x x x x x x x x x x  

x x x x x x x x x x x x  
x x x x x x x x x x x x  

x x x x x x x x x x x x x  
x x x x x x x x x x x x x  
x x x x x x  x x x x x x x

X X X X X X X x x x x x x x
x x x x x x x  x x x x x x
x x x x x x  x x x x x x x

x x x x x x x  x x x x x x x
x x x x x x x  x x x x x x x
x x x x x x  x x x x x x
x x x x x x  x x x x x x x
x x x x x x  x x x x x x x
x x x x x x x x  x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x  x x x x x x
X X X  X X X X
X X X  X X X X
XX X X X
X X  X X X
X X  X X X
X X X
X X X
X X X

X
X
X

X
X
X
X X
X X
X X
X X
X X X
X X X
X X X
X X X X
X X X X
X X X X
X X X X
X X X X X
X X X X X
X X X X X
X X X X X X
X X X X X X
X X X X X X

X X X X

Figure 7.4 Original Shape



143

1
1
1

1 1
1 2
1 2

1 1 2
1 2 2
1 2 3

1 1 2 3
1 2 2 3
1 2 3 3

1 1 2 3 3
1 2 2 3 3
1 2 3 3 2

1 1 2 3 3 2
1 2 2 3 3 2
1 2 3 3 2 2
1 2 3 3 2 1

1 1 2 3 3 2 1
1 2 2 3 2 2 1
1 2 3 3 2 1 1

1 1 2 3 3 2 1
1 2 2 3 3 2 1
1 2 2 2 2 2 1
1 1 1 1 2 1 1

1 1 1

1 1 2  2 11
1 2 2 2 2 1
1 2 3 3 2 1

1 1 2 3 3 2 1 1
1 2 2 3 3 2 2 1
1 2 3 3 3 3 2 1

1 1 2 3 4 4 3 2 1 1
1 2 2 3 4 4 3 2 2 1  
1 2 3 3 4 4 3 3 2 1  

1 1 2 3 4 4 4 4 3 2 1  1 
1 2 2 3 3 3 3 3 3 2 2 1  

1 1 2 3 2 2 2 2 2 3 3 2 1  
1 2 2 3 2 1  1 1 2 3 3 2 1  
1 2 3 3 2 1  1 2 2 3 2 1 1

1 1 2 3 2 2 1 1 1 2 3 2 2 1
1 2 2 3 2 1 1 1 2 3 3 2 1
1 2 3 3 2 1  1 2 3 3 2 1 1
1 2 3 2 2 1 1 2 2 3 2 2 1
2 2 3 2 1 1 1 1 2 3 3 2 1
2 3 3 2 1  1 2 3 3 2 1
2 3 3 2 1  1 2 3 3 2 1
2 3 3 2 1  1 2 3 3 2 2
3 3 3 2 1 1 1  1 1 1 2 3 3 3 2
3 4 3 2 2 2 1  1 1 2 2 2 3 4 3 2  
3 4 3 3 3 2 2 2 2 2 3 3 3 4 3 2  
3 4 4 4 3 3 3 3 3 3 3 4 4 4 3 2  
4 1 1 5 4 4 4 4 4 4 4 4 4 4 4 3 3  
4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 3  
3 3 3 3 3 3 3 3 2 2 2 2 2 3 3 3  
2 2 2 2 2 2 2 2 2 1  1 1 2 2 2 3  
2 1 1 1 1 1 1 1 1 1  1 1 1 2 3
2 1 1 2  2
11 1 1 2
1 1 2
1 1 2
1 1 1

1
1
1

1
1
1
1
1 1
2 1
2 1
2 1 1
2 2 1
3 2 1
3 2 1
3 2 1 1
3 2 2 1
3 3 2 1
2 3 2 1 1
2 3 2 2 1
2 3 3 2 1
2 2 3 2 1
1 2 3 2 1 1
1 2 3 2 2 1
1 2 2 3 2 1
1 1 2 3 2 1 1

1 2 2 2 2 1
1 1 2 2 1 1

1 1 1 1

Figure 7.5 Propagated Distance Function on figure_7,.4.



144

neighbours. A program is shown in figure 7.6 and is equally applicable 

to a sequential or a parallel machine. A display of the points marked, 

with their values, is given in figure 7.7; the original image points 

are shown with dots.

MARK: [[ B0:= { B set if the point is a local max ... }
AO & { ... on the image }
PO >= ( PI ?> P2 ?> P3 ?> P4 ?>

P5 ?> P6 ?> P7 ?> P8 ) ]]
RETURN;

Figure 7.6 Mark the Local Maxima

7.1.1 Slimming to a Connected Shape

Slimming is achieved by removing, symmetrically, the outer layers 

of the shape to leave a connected skeleton of 1 or 2 pixels width. The 

Davies-Plummer algorithm requires that the local maxima marked in the 

previous step are not removed at this stage. This process has been 

programmed for 3 x 3 and 5 x 5  windows.

7.1.1.1 3 X 3 Window

As shown in figures 7.8a and 7.8b the program for a 3 x 3 window 

is quite simple. In each of the four directions of erosion the 

specific conditions attached to the removal or otherwise of a point are 

explicitly stated. First, a check is made that the centre point of the 

window is on an image and that it has not been marked. This is 

followed by a check that the point is on the correct edge of the image 

and then that its removal would not break the skeleton. For example, 

in the case of possible northerly point removal (the first in the 

program) the centre point must remain if -



145

1 1

. 2
2 2
2 2

3 
3 
3 3

3 
3 
3 

3 3 
3 
3 
3 
3

3 
3 
3 

3 3

4 4 4 4 4 4 
4 4 4 . . .

.. . 4 
. . 4
4 4 4 
4 4 4

3 
3

2 2

Figure 7.7 Local Maxima of the Distance Function 
(Original shape marked with dots)



146

It is not on a northern edge OR it would break the skeleton

i.e. ~A7 ! A3 ! ~A1 & A2 ! ~A5 & A4

X 0 X 1 X X X X I
X + X 0 + X  X + 0
X I X  X X X  X X X

Similar conditions apply for the southern, western and eastern 

edges which may be illustrated by rotating the above diagrams by

multiples of 90 degrees. This is the parallel thinning algorithm

employed by Davies and Plummer [43].

The first program of figure 7.8 shows a separated parallel 

implementation and the second combines processing with the restoring 

move to execute in about 60% of the time required by the first.

7.3.3.2 5 x 5  Window

Using a window larger than 3 x 3  pixels it is possible to 

determine whether the shape is less than three cells wide and hence 

avoid simultaneously removing opposite edges to disconnect the shape. 

It is possible to remove the edge point of a two cell wide shape if it

is known that the opposite edge will not be removed, i.e. it has been

marked.

At first sight the required algorithm is extremely simple and 

obtained as a small extension of the 3 x 3  method above. The centre

point of the window may be removed if (in the case of a northerly 

point) -



147

SLIM: { A contains the binary image
TO 64 { B contains the local maxima points
DO { Perform 128/2 times (max needed) }
[[ CO:=IF “BO&AO THEN { N }

~A7 ! A3 ! -A1&A2 ! -A5&A4 ELSE AO FI ]];
[[ AO:=00 ]];
[[ CO:=IF "BO&AO THEN { S }

"A3 ! A7 ! ~A5&A6 ! ~AUA8 else AO FI ]];
[[ AO:=00 ]];
[[ 00:=IF ~BO&AO THEN { E }

~A1 ! A5 ! -A3&A4 ! ~A7&A6 else AO FI ]];
[[ AO:=00 ]];
[[ 00:=IF -BO&AO THEN { W }

~A5 ! A1 ! ~A7&A8 ! ~A3&A2 ELSE AO FI ]];
[[ AO:=00 ]]

OD
RETURN; { A now contains the slimmed binary image }

Figure 7.8a NSEW Slimming Program

SLIM:
TO 64
DO
[[ 00:=IF "BO&AO THEN { N }

"A7 ! A3 ! "A1&A2 !! "A5&A4 ELSE AO FI ]];
[[ AO:=IF "BO&OO THEN { S }

"03 ! 07 ! "05&06 !! "01&08 ELSE 00 FI ]];
[[ 00:=IF "BO&AO THEN { E }

~A1 ! A5 ! "A3&A4 ! "A7&A6 ELSE AO FI ]];
[[ AO:=IF "BO&OO THEN { W }

"05 ! 01 ! "07&08 !: "C3&C2 ELSE 00 FI ]]
OD
RETURN;

Figure 7.8b Faster NSEW Slimming Program



148

1 1 
. 1 
. 2

2 
2 
2 
3 
3 
3 
3

4
4

4
4

4 4
4 4

3
3 . 3 3
3 . 3 3

3 3 3
3 3
3 3 3

3 3 3 3
3 3
3 3

3 3 3 3
3 3 3 3
3 3 3 3

3 • . 3
4 • « • • 4
4 4
4 4 4 4

4 5 4 4 4 4 4 4 4
4 4 4 4

3 3 • . . . .
3 3 » . . . .
3 3

3 3
3 3
3 3

3 3
3 3
3 3
3 .

3 3 .
3 3 .
3 3 .

2 .
2

Figure 7.9 Slimmed Shape - 3 x 3  Window



149

It is on the northern edge AND removal would not break the skeleton 
AND ( the shape is >= 3 deep

OR the shape is >=2 deep 
AND marked )

I.e. & A7 & (A22 ! B7) & ~( ~A5 & A4 ! ~A1 & A2 )

X X X X X X X X X X X X X X X
X X 0 X X X 1 X X X X X X 1 X
X X + X X X 0 + X X X X + 0 X
X X 1 X X X X X X X X X X X X
X X 1 X X X X X X X X X X X X

While this condition provides the major requirement of the 

slimming algorithm, that North and South points on opposite sides of a 

shape less than 3 cells wide are not simultaneously removed, it is not 

sufficient for a complete algorithm. Further restraints on the removal 

of points have to be added to fully prevent the breaking of a 

skeleton.

Consider the portion of a shape shown below; zeros represent cells

which are not part of the shape, other characters cells belonging to

it. The two cells marked ' S '  and 'N ' are both found to be removable

during the same pass; ' S '  as a southerly point and 'N' as a northerly

point, by the algorithm proposed above.

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 S N 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

However, if their simultaneous removal is attempted the skeleton 

is broken. The problem does not arise in the case of the 3 x 3  window 

as the two points are tested on different passes so that one of them is 

removed, causing the shape to change and the other is then not allowed 

to disappear.

Prevention of this case is fairly simple but requires a 

considerable computational effort relative to the detection algorithm



150

above. It is necessary to detect the existence of adjacent cells which

are edges in the opposite direction to that at the centre point; that

is the algorithm must prevent removal of a point

X N S X  or X S N X

While removal is allowed for -

X S S X  o r X N N X  

The presence of an adjacent edge point in an orthogonal direction (E or 

W) does not matter. The scheme suggested here prevents the removal of 

either point where one of them may have been safely removed; the

program thus errs on the side of safety.

The discussion above referred to the removal of northerly and 

southerly points from a shape; the same argument may be applied to the 

westerly and easterly points by rotating all diagrams through 90

degrees.

Parallel removal of points in the North-South and West-East 

directions causes a further interaction that can also break the 

skeleton. An example of the problem is shown below; zeros represent 

cells not on the shape, while ones, 'W's, 'S's and '*'s represent cells 

on the shape.

0 0 W 1 1
0 0 W 1 1
0 0 * S S
0 0 1 0  0
1 1 0  0 0

Cell '*' on the corner is both a Westerly and Southerly point and

is thus clearly suitable for removal. A problem occurs if this point

AND that next to it on its right (a Southerly point) are both removed,

the skeleton is broken. It is possible to detect this specific

condition and to prevent the removal of points such as that marked * 

above by looking for patterns such as



151

0 X X X X 0 0 1 0  X X X
1 + X or X + 1 or X + X or X + X
0 X X X X 0 X X X  0 1 0

to inhibit removal of the centre point ('+').

Implementation of this algorithm is simple but fairly long in

PPL2, as is shown in figure 7.10. It is possible to speed up this

program by algebraically.simplifying the equations, at the expense of

clarity; the clearer version is given here. The slimmed shape

resulting from this algorithm is shown in figure 7.11. Comparison with

the shape produced by the 3 x 3  window program (see figure 7.9) reveals

some minor differences caused by the sequential erosion of the edge of

the shape by the 3 x 3  window technique. Both skeletons are, however,

acceptable under the requirements of the Davies-Plummer algorithm.

7.3.3.3 Performance Comparison

In order to reduce the execution times of the algorithms to a 

minimum they were both modified to stop after completing a scan ( 5 x 5 )  

or set of scans (3 x 3); the resultant programs are reproduced in

Appendix A. The programs were then executed for a number of images, 

each image being slimmed by each of the algorithms to enable a 

comparison to be made. Figure 7.12 tabulates the resulting execution 

times for these trials; the images Used are shown in figure 7.20 at the 

end of the chapter. Since PPL2 compiles image scan operations each

time they are required this compilation time has to be removed from the 

total elapsed time to give the execution time of the algorithms.

Additional scans by the 5 x 5  window algorithm over the number 

required by the 3 x 3  algorithm are caused by the caution in point 

removal built in to the 5 x 5  slim. Despite the extra scans required 

and apparent extra complexity of the programs it is seen that the 

larger window executes in less time than the smaller. The difference



152

SLIM: EDGEA:=0; { shape surrounded by nothing }
TO 64 { enough times to be sure of finishing }
DO
[[ C0:= 1 results — > C for parallel }

IF ~B0 & AO { remove only if not marked object point}
THEN
NS:= (A4!~A5!A6) & (A2!~A1!A8); { thin connection }

N:= "A3&A7&(A22!B7) & ~(~A5&A4 ! ~AUA2);{ N point } 
NW:= "A6&A4 & (A18!~A19); { S point on W }
NE:= "A8&A2 & (A10l~A9); { S point on E }

S:= ~A7&A3&(A14!B3) & ~(~A5&A6 ! ~AUA8);{ S point } 
SW:= "A4&A6 & (A18!~A17); { N point on W }
SE:= "A2&A8 & (A10!~A11); { N point on E }

WE:= (A2!"A3!A4) & (a6!~A7!A8); { thin connection }

W:= ~A5&A1&(A10!B1) & ~(~A3&A4 ! ~A7&A6);{ W point } 
WN:= "A2&A4 & (Al4l~A13); { E point on N 1
WS:= ~A8&a6 & (A22!~A23); { E point on S }

E:= ~A1&A5&(A18!B5) & ~(~A3&A2 ! ~A7&A8);{ E point } 
EN:= "A4&A2 & (A14!~A15); { W point on N }
ES:= "A6&A8 & (A22!~A21); { W point on S }

{ remove it if we can }
~( ( ~(NW i NE) & N ! ~(SW ! SE) & S ) & NS

! ( ~(WN ! WS) & W ! "(EN ! ES) & E ) & WE
)

ELSE
AO { background and marked points unchanged }

FI
] ] ;

[[ AO:=CO ]] { results back — > A for parallel }
OD
RETURN;

Figure 7.10 5 x 5  Window Parallel Slim



153

4 
4

3 3 3
3 3 
3 3 
3 
3

1 1 
. 1 
. 2
2 
2 
2 
3 
3 
3

2 
2 
2 
3 
3 
3
3 3
4 4

3 3 
3 3 

3 
3 
3 3
3
3
3 3 

3 
3 
3

3 
3. 2 2
2 2 .

Figure 7.11 Slimmed Shape - 5 x 5  Window



154

3 X 3 Window 5 x 5 Window Ratio

I Ns Tt Tc Te Ns Tt Tc Te Te(3x3)/
(s) (s) (s) (s) (s) (s) Te(5x5)

a 11 38.50 7.26 31.24 19 48.20 20.33 27.87 1.12
b 6 20.31 3.96 16.35 7 15.53 7.49 8.04 2.03
c 5 17.02 3.30 13.72 9 20.12 9.63 10.49 1.31
d 11 38.05 7.26 30.79 19 45.79 20.33 25.46 1.21
e 11 38.46 7.26 31.20 19 47.97 20.33 27.64 1.13
f 7 24.30 4.62 19.68 9 21.92 9.63 12.29 1.60
g 6 20.66 3.96 16.70 11 25.36 11.77 13.59 1.23
h 7 24.73 4.62 20.11 11 28.39 11.77 16.62 1.21
i 8 27.09 5.28 21.81 8 17.31 8.56 8.75 2.49
j 6 20.33 3.96 16.37 6 13.05 6.42 6.63 2.47
k 22 80.35 14.52 65.83 31 96.26 33.17 63.09 1.04
1 4 13.63 2.64 10.99 6 13.28 6.42 6.86 1.60

Compile time per scan 
0.66s

Compile time per scan 
1.07s

I: Image, see figure 7.20.

Ns: Number of scans.

Tt; Total time taken.

Tc: Compile time = Ns * Compile time per scan

Te: Execution time = Ttot - Tcom.

Figure 7.12 Performance Comparison of Slimming Algorithms



155

is highly data dependant and hence the ratio of execution times is seen 

to vary from only just greater than 1 to nearly 2.5.

Worthwhile speed increases are possible by using the larger window 

for slimming of the shapes. The improvement in execution speed is not, 

however, so great that this technique should be used at all costs. It 

is quite likely that a processor that lacks the image access hardware 

built for this project and described in chapter 5 would lose the speed 

advantage of a larger window in the time required to access the 

increased number of image points.

Different skeletons are produced by the two algorithms and while 

both fulfil the accuracy requirements of the Davies-Plummer algorithm 

they can differ somewhat in detail. Figure 7.13 shows two skeletons of 

part of a key which has been slimmed by both the methods described 

above; the original being indicated by ' , ' s  and the skeleton by ' X ' s  It 

can be seen that the second upward spur from the left is rather 

different in the two cases. The cause is the improved symmetry of the 

5 x 5  window algorithm as opposed to the bias introduced by the 

sequential choice of directions of erosion for the 3 x 3  window 

algorithm.

7.3.4 Thinning to a Skeleton

Prior to this step the original shape could be recreated from the 

slimmed shape and the corresponding values of the distance function. 

However, the shape is not a unit width skeleton and must be further 

thinned. At no point on the slimmed shape is the width more than two 

pixels in the thinnest direction so that it is necessary to remove no 

more than one pixel from the edge to produce the skeleton.

Production of a unit width skeleton from the slimmed shape



156

,X.
.X.
,X.
.X.
,X.,
,X.,
,xx
.X
, .X

XX 
. .X 
. .X,

XXXXX....................X............... X......
• XXXXXXXXXXX............. X.............. XX.......
 xxxxxxxxx.........X...............X.......
 ............xxxxxxxxxxxx.XX........ xxxxxxx.......
........................ xxxxxxxxxxxxx XXX.. X.
............................................ xxxx,

3 x 3  slimmed

X....
.X.....
,X.......
,X......... X
X......... X
X......... X
• XXXX...... X
...X...... X
 X X

X.

XX

.X___

.X___
,XXXXX X............. XX...............X..... .
• XXXXXXXXXXX............ X............... XX.......
 • xxxxxxxxx........ XX..............XX....---
 •............. XXXXXXXXXXXX .XX........ xxxxxxxxx----
 •...............................xxxxxxxxxxxxx......X . x xxx,
...............................................X..X

5 x 5  Slimmed

Figure 7.13 Comparison of Slimmed Shapes



157

requires an algorithm that is permitted to remove the marked points in 

the image. This can be achieved with the slimming algorithms given 

previously by removing the references to the image plane containing the 

marked points. Since it is necessary to delete points from a two cell 

wide shape the 3 x 3  window program which erodes from each direction in 

sequence is required.

Removal of these points renders it impossible to exactly re-create 

the original image from the skeleton; however, an approximation may be 

generated. Providing care is taken in this stage to preserve the end 

points of lines, as they are no longer protected by marking, the 

original may be re-created to within one pixel. In accord with the 

theory in [43] the shape generated from the thinned skeleton will lie 

within the original shape. A suitable program is given in figure 7.14a 

and the thinned skeleton formed in figure 7.15. The information 

contained in this skeleton has been used to re-create an approximation 

to the original shape and this is shown overlaid with the original in 

figure 7.16.

Use of a thinning algorithm that does not preserve line ends may 

be used at this stage with only slightly worse results. Since the 'thin 

will be applied only a single time, at most one point will be removed 

from each line end. This will introduce an error in the re-created 

shape which most often will be a difference of one pixel; it should be 

noted that the same error is introduced elsewhere by this skeletonising 

method.

Occasionally (with the set of images tested so far, very rarely) 

the error will worsen to two pixels when a condition such as that shown 

in figure 7.17 occurs. The topmost point can be removed without 

introducing an error of more than one pixel but that at the right-hand 

side introduces an error of two pixels, as shown in the figure. This



158

THIN: [[ CO:=AO & ( §SIGMA=1 ! ~A7 ! A3 ! "A1&A2 ! "A5&A4 ) ]]; {N}
[[ AO:=CO ]];
[[ CO:=AO & ( @SIGMA=1 ! ~A3 I A7 ! "A5&A6 ! "A1&A8 ) ]]; {S}
[[ AO:=CO ]];
[[ CO:=AO & ( @SIGMA=1 ! ~A1 ! A5 ! "A3&A4 ! "A7&A6 ) ]]; {W}
[[ AO:=00 ]];
[[ CO:=AO & ( eSIGMAzl ! ~A5 ! A1 ! -A7&A8 I ~A3&A2 ) ]]; {E}
[[ AO:=00 ]]
RETURN;

SIGMA: A1+A2+A3+A4+A5+A6+A7+A8 RETURN; { find the number of
neighbouring points } 

{ @SIGMA=1 is a line end }

a) Thinning Program Preserving Line Ends

THIN: [[ CO:=AO&(~A7!A3 
[[ A0:=C0&(~C3!C7 
[[ C0:=A0&(~A1!A5 
[[ A0:=C0&(~C5!C1

'A1&A2
"C5&C6
"A3&A4
C7&C8

'A5&A4) ]];
'C1&C8) ] ] ;
■A7&A6) ]];
X3&C2) ]] RETURN;

b) Thinning Program Removing Line Ends

Figure 7.14 Programs for the Final Thinning Stage



159

Figure 7.15 Thinned Skeleton



160

X .

X X X
• X X X
• X X X
X X X X
X X X X
X X X X

X X X X X
X X X X X

X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

. X X X X X X X
X X X X X X X X
X X X X X X X X

X X X X X X X X X
X X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X
X X X X X X
X X X X X
X X X X
X X X X
X X X X
X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X

X X XX X X X 
X X 
X X .
X X .X X .
X X X .  
X X X X
x x x x  
x x x x  
x x x x .
X X X X Xx x x x x x x  X X X X X X  X X X X X X  x x x x x x .x x x x x x  x x x x x x xx x x x x x  . x x x x x xx x x x x x  x x x x x x

x x x x x x x  x x x x x x xx x x x x x x  x x x x x x xx x x x x x x x x  . . x x x x x x x  x x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x x x  x x x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x x x  

x x x x x x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x x x x x xX X X X X X X X X X X X X X  . X X X X X

x x x x x x x  x x x x
. x x x x x x .  . X X X. x x x x x x  X X Xx x x x x x x  X X X
x x x x x x .  X X X

. X X X X X X  X Xx x x x x x x  X X
x x x x x x .  X X

. x x x x x x  X
x x x x x x x  X
x x x x x x x  Xxxxxxxx

X X X

Figure 7.16 Re-created Shape ('X's) Over Original Shape

X X
X X
X X
X X •

X X X
X X X
X X X
X X X X
X X X X
X X X X
X X X X X
X X X X X
X X X X X
X X X X X X
X X X X X X
X X X X X X

X X X



161

occurs because the region described by that point extends to the edge 

of. the figure, but on its removal the distance function at the new edge 

can re-create to no better than within two points of the original 

edge. A suitable program is given in figure 7.14b.

7.3.5 Removal of Noise Sours

Roughness on the edges of the shape will cause small spurs on the 

skeleton which may be detrimental to the recognition of the object from 

its skeleton. Such roughness is often caused by noise on the image and 

could, with a suitable algorithm, be removed without altering the 

validity of the skeleton as a description of the object.

Spurs caused by noise will be characterised by being small and may 

be easily removed from the skeleton. It is suggested in [«j] that unit 

length spurs may be removed. Points that are line ends next to points 

that branch fulfill this criterion and can be removed. A program for 

this operation is given in figure 7.18 and the resultant skeleton in 

figure 7.19.

7.4 CONCLUSION

Skeletonisation of shapes provides a compact way of representing 

them and, by employing the algorithm implemented here, of re-creating 

the original to a good accuracy. The precise choice of thinning 

program is determined by a number of features and, as has been shown,

the choice of window size is one of importance. In this, as in all

image processing tasks there is a great need for facilities to 

carefully monitor the program in development and to test it on a number 

of examples; these were all provided by the PPL2 system.

Although the execution times given here are rather long in real 

terms they give an indication of the best approach to use on faster



162

<
<
<

etc. < 
< 
< 
<

4
4

4 4 5 
4 . .

L v v v v v v v v v v v  
etc.

Thinned Skeleton on Original Points

etc

< X X X X X X X <
< X X X X X X X X X < X X X X X X X .
< X X X X X X X X X X < X X X X X X X X
< X X X X 4 X X X X X etc. < X X X X X X X X
< X X X X 4 X X X X X < X X X X 4 X X X
< X X X 4 4 5 X X X X < X X X 4 4 X X X
< X X X 4 X X X X X X < X X X 4 X X X X
L V V V V V V

etc.
V V V V L V V V V V V

etc.
V V V

Re-created Shape - 
Skeleton Ends Preserved

Re-created Shape - 
Skeleton Ends Deleted

Figure 7.17 Shape Re-construction from Thinned Skeleton

equipment. The choice of suitable processing hardware to implement the 

algorithms is aided by being able to test them beforehand on a system 

such as this and to compare methods. Given a suitable machine a speed 

improvement of several orders of magnitude could be achieved.



163

CLEAN: { Form plane of number of neighbours }
[[ Q0:=A1+A2+A3+A4+A5+A6+A7+A8 ]];

{ Use it for spur removal test }
[[ IF Q0=1 { Line end }

& Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8>2 { Next to branching point }
THEN

A0:=0 { So remove the point }
FI
]] RETURN;

Figure 7.18 Noise Spur Removal Program



164

4 4

Figure 7.19 Skeleton After Removal of Noise Spurs



165

^ # # #

Figure 7.20 Images for Speed Comparison



AO

A



166

m

Image d.^

Figure 7.20(continued) Images for Speed Comparison



o



167

Figure 7 .20(continued) Images for Speed Comparison



AO

K



168

Figure 7 .20(continued) Images for Speed Comparison



c
K G



169

Figure 7.20(continued) Images for Speed Comparison





170

Figure 7.20(continued) Images for Speed Comparison





171

8. CONCLUSIONS

8.1 INTRODUCTION

Systems used for image processing fall into two distinct 

categories, those used for research and development of techniques and 

those on the factory floor performing a real job. The factory 

environment requires nothing more than a black box that produces 

signals to control the process to which it is attached. A development 

system, on the other hand, must yield a great many intermediate results 

for detailed examination and checking.

The development system described in this thesis is summarized in

section 8.2. A number of improvements to the PPL2 language have 

suggested themselves in the course of its use and are described in

section 8.3.

Industrial systems have rather different requirements from the 

development system, perhaps the most important being a much greater

speed. The system described in this thesis has produced results that

indicate the type of architecture that is required in industry. 

Section 8.4 discusses these indications.

Implications of the use of different processing techniques are 

briefly discussed in section 8.5.

8.2 THE DEVELOPMENT SYSTEM

PPL2 as described in this thesis is intended to fulfil the 

requirements of a development system and provide facilities that assist 

in the design of image processing algorithms. As a system PPL2 has not 

been found to lack any feature that would significantly affect its 

usefulness. Perhaps the single most important feature of PPL2 is the 

fast interaction it provides. Images can be quickly stored on and 

retrieved from disc storage, input from camera, displayed on a monitor.



172

printed, dumped in character form and displayed as numeric values.

Programs may be created, listed, retrieved, saved, edited (with the aid 

of a screen editor) and run. It is possible to create, test and modify 

programs very quickly and to observe their effects on a large number of 

test images both off camera and from a disc based library. Whilst 

speed is not of utmost importance when developing algorithms it is 

relevant in that to fully test the program it must be run a number of

times with different data. A slow system or one that is inconvenient

to use will discourage thorough test procedures and may cause an error 

to be missed.

Transfer from this development system to a run-time system is made 

easy by the use of a high-level, machine independent language, PPL2. 

It must be remembered, when developing algorithms, that the run-time 

hardware may not be able to support certain classes of algorithms, for

example, sequential or parallel procedures may be required.

8.2.1 The PPL2 Language

PPL2 was designed to be used for image processing and thus 

provides constructs that are of particular use in this application. 

Particularly useful short-hand notations include the double square 

bracket scan indicator and the fundamental operators MAX, MIN and 

RANGE, Other frequently used operators, for example - the logical and 

arithmetic operators, have been given short, often single character, 

symbols to ease programming.

By using a high-level language, concepts rather than detailed data 

manipulation are programmed, thus avoiding an intricate program which 

cannot be understood without a detailed explanation. When bit 

manipulation is required it can be accomplished within the language 

without the usual recourse to accessing special routines or writing



173

special operators which may not be particularly fast in execution. As 

a high-level language PPL2 is compact and can in principle be 

transported between computers with ease.

8.2.2 The Image Storage Svstem

Only large computers have enough memory to contain one or more 

images so that it is commonly necessary to process an image in stages, 

each on a small sub-image. Partitioning of an image requires an 

overhead in "stitching" together the various parts to produce the whole 

which contributes to the execution time. By removing the image to an 

external memory unit with a suitable access method this problem can be 

avoided. Further benefits can be obtained in the provision of fast, 

hardware, window mappers and edge of image detectors which improve the 

system performance.

The image storage hardware described in chapter 5 provides these 

functions very successfully and consumes only 1/32 of the machine's 

memory space for a total image storage capability which would otherwise 

require the whole machine. The window mapping scheme provides a large 

reduction of computational effort at run-time resulting in very 

acceptable execution times.

8.3 IMPROVEMENTS TO PPL2

PPL2, in common with most other computer languages, has been found 

to contain a number of ambiguities that could cause differing results 

to be obtained from different implementations. To be fully useful as a 

communications language this should not occur. Most of these problems 

are a direct reflection of the computer used to execute PPL2 programs, 

an event that should not occur in a (supposedly) machine independent 

high-level language.



174

8.3.1 Data Type Definitions

During the design of PPL2 it was felt that it would only be 

necessary to work with integers as provided by the PDP11 with pixels 

forming a sub-range of values. The pixels are represented by 8-bit 

unsigned values while 16-bit signed integers are also supported by the

machine. After a number of odd and inconsistent results had been

obtained it became clear that l6-bit working storage is occasionally

inadequate. This occurr when more than just a few pixel values are 

combined and was soon identified as an overflow problem. Only 127 

pixels of 8-bits each can be summed without running the risk (it does 

not always happen) of overflow, this corresponding to just an 11 x 11 

window. The problem is further aggravated when the values are weighted 

and the restriction on window size has to be further tightened.

Squaring a pixel value immediately runs the risk of overflow. With

care the restriction may not be fatal and PPL2 has nonetheless 

continued to be extremely useful provided that the problem is 

considered when designing an algorithm. Failure to note the effects of 

overflow can lead to very odd results and even extensive alteration of 

an algorithm in an attempt to correct them. Using long integers on a 

machine designed to support in hardware only l6-bit precision requires 

the use of a small program for each operation and is considerably 

slower than directly using the machine's instruction set. The problem 

is much more serious when using 8-bit architecture microprocessors. 

Ideally the computer should support 24- or 32-bit arithmetic within its 

basic instruction set, something found only on the more expensive 

mini-computers and latest generation of micro-processors.

There have been occasions when integer arithmetic could not 

provide an accurate enough result for meaningful comparisons to theory



175

to be made and real number arithmetic is then required. Unfortunately 

this tends to be slow relative to integer arithmetic unless special 

processors are used. It would seem likely that real number arithmetic 

should be avoided in an application program on the grounds of speed but 

there is obviously a need to provide it for research.

Several different types of data are required at different times in 

a program and the simple answer of providing a single large type (e.g. 

high precision real numbers) is not really satisfactory. It requires a 

large overhead in space and time on the many occasions in which it is 

not needed. The obvious answer is to adopt a system of declaring 

program variables as being of a type appropriate to the section of 

program concerned. There are, however, problems in using this approach 

for an interactive language, for example - ensuring that when a part of 

the program is called upon to be executed the appropriate declarations 

have been previously executed. Interactive systems such as PPL2 are 

very valuable for fast evaluation of a large proportion of image 

processing algorithms but in a few cases it would seem to be necessary 

to move to a serai- or non-interactive system.

Even those languages that do support multi-type variables (such as 

FORTRAN) rarely provide an explicit declaration of their precision in 

the program. The only information generally provided on the precision 

of operations occurs within the language or machine manual: this is of 

little help when transporting programs from machine to machine. 

Languages must provide a clear definition of the precision used either 

as part of the language definition or in the variable declarations 

themselves.



176

8.3.2 Overflow

If it is at all likely that an overflow will occur it is necessary

to detect it and take an appropriate action or a whole range of odd

results may appear. Many floating-point processors (for example the 

FP11 in a PDP11) can detect and trap, with an interrupt, overflow or 

other error conditions. Integer overflows generally do no more than 

set a flag which can be tested if required (with consequent run-time 

overheads). It is quite likely that an image overflow does not 

correspond to a hardware overflow in the computer - for example the

case of 8-bit pixels on a l6-bit machine. Some means of detecting and 

flagging overflows from a user defined precision of arithmetic would be 

desirable; it is possible that such a mechanism could be incorporated 

in the image storage device. An appropriate set of instructions in the

programming language would be required to control this mechanism and

make clearly visible the permissible range of values and error 

conditions. Without such a facility programs lose a degree of 

portability between machines and become restricted in their 

applicability.

An interim partial solution in PPL2 is the provision of an

operator that tests a pixel value and clips it to range limits if it is 

not within them. This greatly reduces the number of apparently

ridiculous results but is still far from an ideal solution.

8.3.3 PPL3

In order to incorporate the ideas expressed above into an improved 

image processing environment a new language, PPL3, is being developed. 

It is intended to be used as a stand alone compiler or within a command 

loop with an editor to provide semi-interactive facilities; the program 

can be interactively edited but must be compiled and run as a whole.



177

8.4 INDUSTRIAL SYSTEMS

Single sequential processors when used for image processing are 

adequately fast for research use but appear to be far too slow to be 

used in an industrial application. The benchmark timings given in 

appendix A show execution times that are too long by two or three 

orders of magnitude when the application is, for example, inspection of 

parts on a conveyor belt.

To provide an industrially useful system a large increase in speed 

has to be achieved. The processor used for these timings has a cycle 

time of about luS which is reduced by only about one order of magnitude 

in large main frame computers. The alternative to faster processors is 

a larger number of them, in other words a multi-processor system. To a 

first approximation a system of n processors should be able to handle 

n times as much information in a given time as one processor. This is 

only accurate if the processors can work on data that is independent of 

the results from other processors; in a network of sequential

processors on a single image (the problem we are trying to speed up) 

this is unlikely to be true. The full benefit of such a system is

likely to be realised only when the image can be divided into

independent sub-images each operated upon by its own processor.

Collections of processors in which the dependence of the data is 

recognised and catered for can be built and are seen in the form of 

vector or array processors. The vector processor can be used to

operate upon part or all of one line of an image at a time while the 

array processor uses the whole image as its data base. Unfortunately 

such processors are, at the present, very expensive and thus relatively 

unattractive so that alternative methods will be of interest for some 

time.



178

Computer designers have continually strived for greater speeds in 

their machines and a number of techniques have been developed to 

achieve this. One such method that is of particular interest in image 

processing is called pipelining. This stems from the fact that many of 

the basic machine operations can be divided into several smaller 

stages, each using a physically separate piece of hardware. For the 

execution of a basic operation the data passes through the 

sub-operations in turn. Whilst the data is occupying a sub-stage the 

rest are idle; pipelining uses these idle times to process other data. 

When the first datura has passed to the second sub-operation another 

datum enters the first. Each datum takes the usual time to pass 

completely through the system but the total data throughput is 

increased many-fold. Processors specifically designed for image 

processing have made use of this technique to increase their speed, for 

example [53].

Image operations can be divided into many stages and it is often 

not the absolute processing time but the rate at which images can be 

accepted that is the limiting factor. For example, a system that is 

employed for industrial inspection of parts on a conveyor belt must 

handle a large number of images per second, but it does not matter too 

much if it takes a couple of seconds to produce a decision on a given 

part. The only thing that will have happened in the meantime is that 

the parts will have moved along the belt a little; indeed, in this 

application, the mechanical layout may dictate a delay from the 

inspection to the routing stations!



179

8.4.1 The Shift Register Processor

Shift register processors are ideally suited for use as 

sub-operations in the complete image processing task. Although the 

time required to process an image is the time required to completely 

scan that image (20ms for a television signal) data from the process is 

available after only two line periods (128us), for a 3 x 3  window, and

can be passed to the next stage. This delay depends only upon the

window size (for a n x n window the delay is n-1 lines plus n-1 pixel 

points) and the speed required from the processor is dictated by the 

resolution required. If a throughput of 10 images per second is

required, with the television standard above, it would be possible to 

process the image through about 800 steps - this is rather more than 

any program I have yet needed to write! With this scheme the 

processors are idle 4/5 of the time and by making use of this fact it 

would be possible to use only 140 processors and still achieve the 

throughput above.

Cheap processors for a 3 x 3 window and binary operations can be 

produced rather more cheaply than array processors for the same

performance and it seems likely that these can produce an effective

system where binary images are employed. Unfortunately, for some

applications, binary images cannot be directly used thus requiring

either faster grey-scale shift register processing elements or a fast 

grey to binary conversion.

8.5 ALGORITHM DEVELOPMENT

Algorithms for image processing may be written for either a

parallel or sequential architecture depending on the intended hardware 

to be used for implementation. Sequential algorithms can be executed 

efficiently only on a machine with sequential architecture - simulation



180

on a parallel machine is an expensive way to go slowly. Parallel 

algorithms can be simulated on a sequential machine, albeit slowly, 

provided that more than one image storage area is available; this 

provides a development system at moderate cost (for example the PPL2 

system described earlier',. Shift register processors can be used to 

implement either a parallel algorithm or one direction of a sequential 

algorithm.

Architectures that execute parallel algorithms would seem to be 

the most likely to be used in a situation where speed of operation is a 

requirement; this has long been recognised [54]. It seems reasonable, 

then, to concentrate development work in parallel algorithms. (Even if 

the problem appears to be easily soluble by a sequential process 

algorithms should be re-implemented for a parallel machine to ensure 

universal application.) This is particularly important as the number 

of parallel machines being developed is increasing.

8.5.1 Window Size

Image operations may be performed with a variety of different 

sized windows, the choice being influenced by two major factors, namely 

speed of execution and ease of implementation. Ideally the former 

should take priority but in practice it is often the latter that does 

so.

Finding the skeleton of an image has been used as a task that can 

be implemented with more than one window size (see chapter 7). It has 

been found that the use of a window larger than the usual 3 x 3  pixels 

can bring speed benefits in parts of the process. Heavy use was made 

in this task of the facilities provided by the PPL2 system, possibly 

explaining why ease of implementation is often a criterion for the 

choice of window size.



181

It would appear to be worthwhile to investigate the use of windows 

of various sizes for a given task to find the optimum in terms of 

performance. It must be remembered, however, that the hardware used to 

implement the algorithm will impose its own restrictions on execution 

time. Differences of a factor 2, as found in the case of 

skeletonisation, may well be masked by the different operating 

environment, or may be increased; only a final test on the complete 

system will prove the case.

8.6 FUTURE

Image processing and pattern recognition will clearly be of major 

importance in the future and it is necessary to provide the appropriate 

machinery for the development and execution of suitable techniques. 

There are two closely linked aspects to this aim: firstly the

construction of suitable hardware for the storage and processing of 

image data, and secondly the provision of a suitable software 

environment for the specification of algorithms.

Digital computers of the type most commonly found are not at all 

well suited to the task of fast image processing. Some improvement can

be made by the addition of image storage and access hardware such as 

that described in chapter 5. Although this still does not provide an 

industrially satisfactory machine it is well suited to a research 

environment. The ideal machine will have to wait for specialised 

integrated circuits that can be interconnected to form fast processors 

for image type data; machines such as the CLIP series indicate that 

such an approach is possible.

Software for the development and description of image processing 

algorithms is, as yet, relatively unavailable. The only generally 

available computer languages were not designed for the type of tasks



182

required in image processing and hence do not provide a very convenient 

system. PPL2 was designed to provide the facilities required in a 

clear and easy to use manner, both in terras of the language for image 

processing and of the peripheral aids to image analysis. PPL2 has, on 

the whole, proved itself to be extremely valuable but as has been noted 

above is rather weak in some areas. There is a great deal of scope for 

the design of much improved languages for image processing both to make 

use of the available image-computers and to incorporate the structures 

required for pattern recognition.



183

ACKNOWLEDGEMENTS

I would like to thank Dr.E.R.Davies for his supervision of this 

research and for the many helpful comments and suggestions that he has 

made during the preparation of this thesis.

My thanks are due to the Science and Engineering Research Council 

for providing the grant necessary to allow me to undertake this work.



184

REFERENCES

[1] Hall E.L., "Computer Image Processing and Recognition",

Academic Press, Chapter 1 (1979).

[2] Mayer M., "Investigations into Trainable Learning Machines",

PhD. Thesis, London University (1982).

[3 ] Deutsch E.S., "Thinning Algorithms on Rectangular, Hexagonal, and 

Triangular Arrays",

CACM, vol 1 5, no.9, 827-837 (September 1972).

[4] Batchelor B.C. and Brumfitt P.J., "Command Language for 

Interactive Image Analysis",

Proc lEE, vol 127, Part E, no.5, 203-218 (September 1980).

[5 ] Plummer A.P.N., "Structural Analysis and Classification of 

Patterns",

PhD. Thesis, London University (1980).

[6] Nevatia R., "Characterization and Requirements of Computer Vision 

Systems",

in "Computer Vision Systems"

Eds. Hanson A.R, and Riseman E.M.

8 1 - 8 7 (1978)



185

[?] Paul G., "Large Scale Vector/Array Processors", 

in "Advances in Digital Image Processing"

Ed. Stucki P.

277-300 (1979).

[8] Kruse B., "A Parallel Picture Processing Machine",

IEEE Trans Comput, vol C-22, no. 12, 1075-1087 (Dec 1973).

[9] Unger S.H., "A Computer Oriented Toward Spatial Problems",

Proc IRE, vol 46, no. 10, 1744-1750 (1958).

[10] Unger S.H., "Pattern Detection and Recognition",

Proc IRE, vol 47. no. 10, 1737-1752 (1959).

[11] McCormick B.H., "The Illinois Pattern Recognition Computer - 

ILLIAC 111",

IEEE Trans Comput, 719-813 (December 1963).

[12] Barnes G.H. et al., "The ILLIAC IV computer",

IEEE Trans Comput, vol C-17, no. 8, 746-757 (Aug 1968).

[1 3] Duff M.J.B. et al., "A Cellular Logic Array for Image Processing", 

Pattern Recognition, vol 5, 229-247 (1973)

[14] Reddaway S.F., "The DAP Approach",

Infotech State of the Art Report on Supercomputers,

^  3 0 9 - 3 2 9 (1979).



186

[15] Hunt D.J., "The ICL DAP and its Application to Image 

Processing",

in "Languages and Architectures for Image Processing"

Eds. Duff M.J.B. and Levialdi S.

275-282 (1981).

[16] Fountain T.J. and Goetcherian V., "CLIP 4 Parallel Processing 

System",

Proc lEE, ]27, Part E (no 5), 219-224 (1980).

[17] Duff M.J.B., "CLIP 4: A Large Scale Integrated Circuit Array 

Parallel Processor",

Proc 3rd Int Joint Conf on Pattern Recognition, Coronado, 

California, November 8-11, 728-733 (1976).

[18] Reynolds D.E. and Otto G.P., "Software Tools for CLIP 4", 

Report no. 82/1, Image Processing Group, University College, 

LONDON (Jan 1982).

[19] Fountain D.J., "CLIP 4: A Progress Report",

in "Languages and Architectures for Image Processing"

Eds. Duff M.J.B. and Levialdi S.

283-291 (1981).

[20] Kashner T., Wu A.Y. and Rosenfeld A., "Image Processing on 

MPP:1",

Pattern Recognition vol 15, no.3, 121-130 (1982).



187

[21] Brooks F.P. Jr., "The Mythical Man-Month",

Addison-Wesley, Chapter 8 (1975).

[22] Wood A., "The Interaction Between Hardware, Software and 

Algorithms",

in "Languages and Architectures for Image Processing"

Eds. Duff M.J.B. and Levialdi S.

1-11 (1981).

[2 3 ] Maggiolo-Schettini A., "Comparing some High-level Languages 

for Image Processing",

in "Languages and Architectures for Image Processing"

Eds. Duff M.J.B. and Levialdi S.

157-164 (1981).

[24] Levialdi S., Maggiolo-Schettini A., Napoli M. and Uccella G., 

"Pixal: A High-level Language for Image Processing",

in "Real-Tirae/Parallel Computing",

Eds. Onoe M., Preston K. and Rosenfeld A.

131-143 (1981).

[2 5 ] Preston K., "Languages for Parallel Processing of Images", 

in "Real-Tirae/Parallel Computing",

Eds. Onoe M., Preston K. and Rosenfeld A.

145-158 (1 9 8 1).

[2 6 ] Woodward P.M. and Bond S.G., "ALGOL 68-R Users Guide",

HMSO, London (1975).



188

[27] Jensen K. and Wirth N., "PASCAL User Manual and Report", 

Springer-Verlag, New York, Second Edition (1975).

[28] Aho A.V. and Ullman J.D., "Principles of Compiler Design", 

Addison-Wesley (1979).

[29] Cries D., "Compiler Construction for Digital Computers",

Wiley (1971).

[3 0 ] Ferranti Semiconductors, "ZNA134J: CCIR/EIA TV Synchronizing 

Pulse Generator",

(1977).

[3 1 ] Digital Equipment Corporation, "PDP11 Bus Handbook",

(1979)

[3 2 ] Klinger A., "Data Structures and Pattern Recognition",

Proc. 1IJCPR, 4 9 7 - 4 9 8 (1973).

[3 3 ] Uhr L., "Layered 'Recognition cone' Networks that Preprocess, 

Classify and Describe",

IEEE Trans. Computers 2^, 758-768 (1972).

[3 4 ] Tanimoto S.L. and Pavlidis T., "A Hierarchical Data Structure 

for Picture Processing",

Computer Graphics Image Processing _4, 104-119 (1975).



189

[35] Tanimoto S.L., "Regular Hierarchical Image and Processing Structures 

in Machine Vision",

in "Computer Vision Systems",

Eds. Hanson A.R. and Riseman E.M.

Academic Press, N.Y., 165-174 (1978).

[3 6 ] Rosenfeld A., "Quadtrees and Pyramids for Pattern Recognition and 

Image Processing",

Proc 5ICPR Florida, 802-811 (1980).

[3 7 ] Wong R.Y. and Hall E.L., "Sequential Hierarchical Scene 

Matching",

lEE Trans Comput, vol C-27, no.4, 359-366 (April 1978).

[3 8 ] Samet H. and Rosenfeld A., "Quadtree Representations of Binary 

Images",

Proc 51CPR Florida, 815-818 (1980).

[3 9 ] Samet H ., "Connected Component Labelling Using Quadtrees",

Computer Science Centre TR-756, University of Maryland,

College Park, MD (April 1979).

[40] Shneier M., "Extracting Linear Features from Images Using 

Quadtrees",

Computer Science Centre TR-855, University of Maryland,

College Park, MD (January 1980).



190

[41] Ranade S., "Use of Quadtrees for Edge Enhancement",

Computer Science Centre TR-862, University of Maryland,

College Park, MD (February 1980).

[42] Wu A.Y., Tsai-Hong H. and Rosenfeld A., "Threshold Selection Using 

Quadtrees",

Computer Science Centre TR-886, University of Maryland,

College Park, MD (March 1980).

[4 3 ] Davies E.R. and Plummer A.P.N., "Thinning Algorithms: a 

Critique and a New Methodology",

Pattern Recognition, Vol 14, Nos 1-6, 53-63 (1981).

[44] Beun M., "A Flexible Method for Automatic Reading of 

Handwritten Numerals",

Phillips Tech. Rev. Vol 33, 89-101 and Vol 33, 130-137 

(1973).

[45] Cox C.H., Coueignoux P., Blesser B. and Eden M., "Skeletons:

A link Between theoretical and Physical Letter Descriptions", 

Pattern Recognition, Vol 15, no.1, 11-22 (1982).

[46] Ranade S., Rosenfeld A. and Samet H ., "Shape Approximation 

Using Quadtrees",

Pattern Recognition, Vol 15, no.1, 31-40 (1982).



191

[47] Tanimoto S.L., "Pictorial Feature Distortion in a Pyramid", 

Computer Graphics and Image Processing Vol 5, 333-352 

(1976).

[48] Samet H., "A Quadtree Medial Axis Transform",

TR-8 0 3 , Computer Science Dept., University of Maryland 

(1979).

[4 9 ] Sherman H., "A Quasi-topological Method for the Recognition 

of Line Patterns",

Proc UNESCO conf., 232-238 (1959).

[5 0 ] Hilditch C.J., "Linear Skeletons From Square Cupboards", 

Machine Intelligence Vol 4 , eds Meltzer B. and Michie D., 

403-420, Edinburgh University Press, Edinburgh (1969).

[51] Rutovitz D., "Pattern Recognition",

J R Statist Soc, Vol 129, 504-530 (1966).

[5 2 ] Jones R.N. and Fairhurst M.C., "Skeletonisation of Binary 

Patterns: a Heuristic Approach",

Electron Lett Vol 14, 265-266 (1978).

[5 3 ] Gerritsen F.A. and Aardema L.G., "Design and Use of DIP-1:

A Fast, Flexible and Dynamically Microprogrammable Pipelined 

Image Processor",
i

Pattern Recognition, Vol 14, nos 1-6, 319-330 (1981),



192

[54] Cordelia L., Duff M.J.B. and Levialdi S., "Comparing 

Sequential and Parallel Processing of Pictures",

Proc 3rd Int Joint conf on Pattern Recognition, Coronado, 

California, 703-70? (November 1976).



193

Appendix A 

BENCHMARK TESTS

The Abingdon Workshop on Multi-computers for Image Processing

suggested a number of tasks that may be used to provide benchmark 

timings for image processing systems. A number of these tasks and some 

others have been programmed on the PPL2 system and the results are

presented below. The programs, where appropriate, are given on the

following pages. It should be noted that the times given are for a

complete task from the command to start to its completion for a 128 by 

128 pixel image. Since PPL2 is an interactive system all programs are 

compiled and executed after the task is initiated, the times are given 

as a total run time and, in brackets, the compile time. Faster 

execution could be achieved by re-writing the programs in machine code 

and carefully optimizing them.

Computer PDP11/34A with 128K bytes MOS memory

Operating system RT11XM V04.00G

Mass storage RL02 (2 off) 10.4M byte removable cartridge

Language PPL2

A.1 IMAGE INPUT

Camera input is digitised by the image storage hardware in real 

time but input from disc storage takes place via the main processor.

A.1.1 Camera Input

Minimum 20ms i.e. 1 to 2 frame scans for a 625-line TV standard.

Maximum 40ms frame rate 50Hz.



194

A. 1.2 Disc Input

Approximately 1.5s including directory access.

A.2 IMAGE OUTPUT

Output can be to a television monitor for immediate viewing or to 

disc for storage. Hard copy can be obtained from the monitor output 

via a Tektronix 4634 Image Forming Module.

A.2.1 Monitor Output

Output time Os the contents of the working memory are continuously

displayed, changing to another working area for display requires one

machine instruction of approximately lus.

A.2.2 Disc Output

Approximately 1.5s including directory access.

A.2.3 Hard Co d v Output 

Approximately 25s.

A.3 MEDIAN FILTER

7 to 11s (2.3s) run time is data dependent.

A.4 HISTOGRAM

0.87s (0.l6s) data collection only.

A.5 THRESHOLD

0.55s (0.04s) Against a given value.

2.03s (0.68s) Threshold derived from histogram (includes histogram

and threshold selection.



195

A.6 SIMPLE OPERATIONS BETWEEN TWO IMAGES 

Logical

AND 0.58s (0.04s)

OR 0.51s (0.04s)

EX OR 0.54s (0.04s)

Arithmetic

ADD 0.52s (0.04s)

SUBTRACT 0.51s (0.04s)

MULTIPLY 0.64s (0.04s)

DIVIDE 0.71s (0.04s)

A.7 PROPAGATION OF DISTANCE FUNCTION 

A.7.1 Sequential Algorithm 

1.7s (0.23s)

A.7.2 Parallel Algorithm

8l.6ls (10.4s) for objects up to 128 pixels wide

A.8 SMALL PART LOCATION 

7.65s (1.75s) See chapter 6.

A.9 Skeletonisation

15s to 120s Very highly data dependant, see chapter 7



196

MEDIAN FILTER

{ Replace centre point with median value of 3 x 3 window

Perform partial bubble-sort to get median value;
Add value by bubbling up list until in correct position. 
Bubble is performed long-hand as this is faster than a loop.

MEDIAN: [[
{ P0,P1 } IF P0>P1 THEN A:=PO; B:=P1 ELSE A:=P1; B:=PO FI;
{ P2 } IF P2<=B THEN C:=P2 ELSE C:=B;

IF P2<=A THEN B:=P2 ELSE B:=A; A:=P2 FI FI;
{ P3 } IF P3<=C THEN D:=P3 ELSE D:=C;

IF P3<=B THEN C:=P3 ELSE C:=B;
IF P3<=A THEN B:=P3 ELSE B:=A; A:=P3 FI FI FI;

{ P4 } IF P4<=D THEN E:=P4 ELSE E:=D;
IF P4<=C THEN D:=P4 ELSE D:=C;
IF P4<=B THEN C:=P4 ELSE C:=B;
IF P4<=A THEN B:=P4 ELSE B:=A; A:=P4 FI FI FI FI; 

{ P5 } IF P5<=E THEN F:=P5 ELSE F:=E;
IF P5<=D THEN E:=P5 ELSE E:=D;
IF P5<=C THEN D:=P5 ELSE D:=C;
IF P5<=B THEN C:=P5 ELSE C:=B;
IF P5<=A THEN B:=P5 ELSE B:=A FI FI FI FI FI;.

{ P6 } IF P6<=F THEN G:=P6 ELSE G:=F;
IF P6<=E THEN F:=P6 ELSE F:=E;
IF P6<=D then E:=P6 ELSE E:=D;
IF P6<=C then D:=P6 ELSE D:=C;
IF P6<=B THEN C:=P6 ELSE C:=B FI FI FI FI FI;

{ P7 } IF P7<=G THEN H:=P7 ELSE H:=G;
IF P7<=F THEN G:=P7 ELSE G:=F;
IF P7<=E THEN F:=P7 ELSE F:=E;
IF P7<=D THEN E:=P7 ELSE E:=D;
IF P7<=C THEN D:=P7 ELSE D:=C FI FI FI FI FI;

{ P8 } IF P8<=H THEN I:=P8 ELSE I:=H;
IF P8<=G THEN H:=P8 ELSE H:=G;
IF P8<=F THEN G:=P8 ELSE G:=F;
IF P8<=E THEN F:=P8 ELSE F:=E;
IF P8<=D THEN E:=P8 ELSE E:=D FI FI FI FI FI;

{ MEDIAN } QO:=E
]] RETURN;



197

HISTOGRAM

{ histogram is in ARRAY }

HIST: [[ FOR I FROM 0 TO 255 DO ARRAY[I]:=0 OD; EXIT ]]; 
[[ ARRAYLPO]:=ARRAY[P0]+1 ]] RETURN;

THRESHOLD ’

{ TH is the threshold value } 

THRESH: [[ PO:=PO > TH ]] RETURN;

THRESHOLD SELECTED FROM HISTOGRAM 

AUTO:
{ histogram }

[[ FOR I FROM 0 TO 255 DO ARRAY[I]:=0 OD; EXIT ]];
[[ ARRAY[P0]:=ARRAY[P0]+1 ]];

{ smooth histogram to avoid false peaks & troughs }
[[ FOR I FROM 5 TO 250 DO T:=0;

FOR J FROM -5 TO 5 DO T:=T+ARRAY[I+J] OD; 
ARRAY1[I]:=T/11

OD;

{ find the first peak (foreground) }
FOR I FROM 8 TO 247 WHILE A:=ARRAY1[1-3]>=ARRAY1[I];

B:=ARRAY1[I+3]>=ARRAY1[I];
A!B DO PK:=I OD;

{ find the trough }
FOR I FROM PK TO 247 WHILE A:=ARRAY1[1-3]<=ARRAY1[I];

B:=ARRAY1[1+3]<=ARRAY1[I];
A!B DO TH:=I OD;

EXIT ]];

{ threshold at the trough value }
[[ QO:=PO<TH ]]
RETURN;



198

SMALL PART LOCATION

FIND: gQUAD; &NINT; @OBJ RETURN; { Find the parts }

QUAD: 0UT:=1;
{ to force compilation only - } [[

{ BLKSIZ is the block size, 128 = the whole image
THRESH is the maximum range of values in a constant block } 

BLKSIZ:=8; THRESH:=35;

{ go to top L.H. corner of each block }
FOR 1 FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
FOR J FROM 0 BY BLKSIZ TO 128-BLKSIZ DO 
X :=I; Y :=J ;
MAX :=MIN:=P0;

{ test all pixels for equality }
FOR X FROM I TO I+BLKSlZ-1 DO 
FOR Y FROM J TO J+BLKSIZ-1 DO 
MAX:=MAX?>PO;
M1N:=M1N?<P0

OD
OD;

C:= MAX-MIN > THRESH;
R:=IF C THEN 0 ELSE (MAX+MIN)/2 FI;
FOR X FROM I TO I+BLKSIZ-1 DO 
FOR Y FROM J TO J+BLKSIZ-1 DO 
QO:=R; AO:=C

OD
OD

OD
OD

{ end of compiled section } ;EX1T ]]
RETURN ;

NINTX: { Interpolate background in X, }
EDGEA:=TRUE; { Use linear interpolation }
FOR Y FROM 0 TO 127 DO 
OK:=FALSE;
FOR X FROM 0 TO 127 DO 
IF AO THEN

IF A5=0 THEN OK:=TRUE; DIST:=1; VAL:=Q5; XX:=X 
ELSE DIST:=DIST+1 & DIST#0

FI
ELSE
IF A5&0K THEN XXX:=X;DIST:=DIST+1;VAL2:=Q0;0K:=FALSE; 

FOR X FROM XX TO XXX-1 DO 
QO:=(VAL2*(X-XX+1)+VAL*(XXX-X))/DIST; 
AO:=FALSE

OD; X:=XXX
FI

FI
OD

OD
RETURN;



199

NINTY: { Interpolate background in Y }
EDGEA:=TRUE;
FOR X FROM 0 TO 127 DO 
OK:=FALSE;
FOR Y FROM 0 TO 127 DO 
IF AO THEN

IF A3=0 THEN OK:=TRUE; D1ST:=1; VAL:=Q3; YY:=Y 
ELSE D1ST:=DIST+1

FI
ELSE
IF A3&0K THEN YYY:=Y;DIST:=DIST+1;VAL2:=Q0; OK :=FALSE; 

FOR Y FROM YY TO YYY-1 DO 
Q0:=(VAL2*(Y-YY+1)+VAL*(YYY-Y))/DIST;
AO:=FALSE

OD; Y:=YYY
FI

FI
OD

OD
RETURN;

NINT: [[ gNINTX; §NINTY; EXIT J] RETURN;{ Interpolate background }

OBJ: { Discriminate the objects }
OUT:=2; [[ RO:=(?+(PO-QO) > THRESH/2 & A0=0)+((A0#0)&127) ]] 
RETURN;



200

DISTANCE FUNCTION PROPAGATION (Sequential Algorithm)

PROP: [[ Q0:=0 ]]; { initially all is 0 }
[[+ IF PO

THEN Q0:=(Q2?<Q3?<Q4?<Q5)+1 FI +]];
[[- IF PO

THEN Q0:=(Q1?<Q2?<Q3?<Q4?<Q5?<Q6?<Q7?<Q8)+1 FI -]] 
RETURN;

DISTANCE FUNCTION PROPAGATION (Parallel Algorithm)

PROP: [[ P0:=0 ]]; EDGEP:=0; { initially distance function is 0 }
{ A contains the binary image }

TO 64 { 128/2 times is the maximum }
DO
[[ Q0:=1F AO { process into Q, for parallel }

THEN
(PO ?< PI ?< P2 ?< P3 ?< P4 ?<

P5 ?< P6 ?< P7 ?< P8) + 1
ELSE

PO
FI

] ] ;
[[ PO:=QO ]] { return to P for next run }

OD 
RETURN;



201

SKELETONISATION

SKEL: @PROP; 
@MARK; 
@SLIM5; 
êTHIN; 
ëCLEAN 
RETURN;

{ Propagate the distance function }
{ Mark the local maxima }
{ Slim to a connected shape, 5x5 here or 3x3 } 
{ Thin to unit width skeleton }
( Clean off noise spurs }

PROP: [[ P0:=0 ]]; EDGEP:=0; { initially distance function is 0 }
{ A contains the binary image }

[[+ IF AO THEN P0:= (P2 ?< P3 ?< P4 ?< P5) +1 FI +]];
[[- IF AO THEN P0:= ((PI ?< P2 ?< P3 ?< P4 ?< P5 ?<

P6 ?< P7 ?< P8) +1) ?< PO FI -]]
RETURN;

MARK : [[ B0:= { B set if the point is a local max
AO & { ... on the image
PO >= ( PI ?> P2 ?> P3 ?> P4 ?>

P5 ?> P6 ?> P7 ?> P8 ) ]]
RETURN;

SLIM3:
I: = 1 ;
WHILE 
F: = 1;

. }}

[[ CO:=IF "BO&AO THEN { N }
F:=F&(R = ~A7 A3 ! "A1&A2 -A5&A4); R ELSE AO FI ]];

[[ AO:=IF 'BO&CO THEN { s }
F:=F&(R = ~C3 C7 ! ~C5&C6 ~C1&C8); R ELSE CO FI ]];

[[ CO:=IF “BO&AO THEN { E }
F:=F&(R =~A1 A5 ! "A3&A4 -A7&A6); R ELSE AO FI ]];

[[ AO:=IF "BO&CO THEN { w }
F:=F&(R =~C5 Cl ! ~C7&C8 -C3&C2); R ELSE CO FI ]];

F=0 
DO 
I:=1+1 

OD;
WRITE "(' 3x3 - ',13/ Passes')",I 
RETURN;



202

SLIMS: EDGEA:=0;
I:=1;
WHILE
FLAG:=1;
[[ CO;=IF "BO & AO 

THEN

NSZ:= (A4!~A5!A6) & (A2!~A1!A8);

ZN:= ~A3&A7&(A22!B7) & ~(~A5&A4 ! "A1&A2);
ZNSW:= -A6&A4 & (A18!~A19);
ZNSE:= -A8&A2 & (A10!~A9);

ZS:= ~A7&A3&(A14!B3) & ~(~A5&A6 ! ~AUA8);
ZSNW:= -A4&A6 & (A18!"A17);
ZSNE:= -A2&A8 & (AlOrAll);

WEZ:= (A2!~A3!A4) & (A6!~A7!A8);

ZW:= ~A5&AU(A10!B1) & ~(~A3&A4 ! ~A7&A6);
ZWEN:= -A2&A4 & (A14!~A13);
ZWES:= ~A8&A6 & (A22!~A23);

ZE:= ~A1&A5&(A18!B5) & ~(~A3&A2 ! ~A7&A8);
ZEWN:= -A4&A2 & (Al4l~A15);
ZEWS:= -A6&A8 & (A22!~A21);

FLAG:=FLAG&(R:=
~(

( ~(ZNSW!ZNSE)&ZN ! ~(ZSNW!ZSNE)&ZS ) & NSZ !
( ~(ZWEN!ZWES)&ZW ! ~(ZEWN!ZEWS)&ZE ) & WEZ
)

);R
ELSE

AO
FI

] ] ;
[[ AO:=CO ]];
FLAGzO DO

I:=1+1 
OD;

WRITE "(' 5x5 ',13,' Passes')",I 
RETURN;

THIN: [[ CO:=AO & ( @SIGMA=1 ! ~A7 ! A3 ! ~AUA2 ! "A5&A4 ) ]]; 
[[ AO:=00 ]];
[[ CO:=AO & ( eSIGMA=1 ! "A3 ! A7 ! “A5&A6 ! "A1&A8 ) ]] 
[[ AO:=00 ]];
[[ CO:=AO & ( esiGMA=1 ! "A1 ! A5 ! ~A3&A4 ! "A7&A6 ) ]] 
[[ AO:=00 ]];
[[ CO:=AO & ( @SIGMA=1 ! ~A5 ! A1 ! "A7&A8 ! "A3&A2 ) ]] 
[[ AO:=00 ]]
RETURN;

SIGMA: A1+A2+A3+A4+A5+A6+A7+A8 RETURN;



203

CLEAN: [[ QO:=éSIGMA ]];
[[ IF Q0=1 & Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8>2 THEN A0:=0 FI ]] RETURN;



204

Appendix B 

An Example Terminal Session

A short annotated terminal session with the PPL2 sub-system is 

given to demonstrate the ease with which it can be used. A full 

description of the facilities available is given in appendix C, the 

users guide.

The text that appears on the terminal is shown on the left of the 

page and explanatory notes appear on the right within curly brackets.

.ëPPL

FRIDAY

{ Initiate the sub-system from RT11 }

3O-JUL-I982 10:52:43 { PPL gives the date and
{ time for record keeping

Good morning. Welcome to PPL.

THERE ARE NO DEFINED VARIABLES 
? .0UT:=0

0 . 2 7  SECONDS ELAPSED 
? POET HOUSE,P
THERE ARE NO DEFINED VARIABLES 
? GET DEMO
UNABLE TO OPEN FILE SY:DEMO.PPL 
THERE ARE NO DEFINED VARIABLES 
? DIR DEMO

0 FILES, 0 BLOCKS 
THERE ARE NO DEFINED VARIABLES 
? NEW DEMO
THERE ARE NO DEFINED VARIABLES 
? LIST

A warning that nothing 
is defined (yet)

Immediate command to display P
Time taken to execute
Get image from file HOUSE into P

Get a program from file DEMO 
DOES IT EXIST ?

It wasn't found 
Directory to check 
It isn't there, so

Create a new file using the screen 
editor, then return 

List it to the terminal

DEMI: [[ P0:=255-P0 ]] RETURN;

DEM2: [[ IF P0<127 THEN P0:=255-P0 FI ]] RETURN;

THERE ARE NO DEFINED VARIABLES 
? SAVE
AS SY :DEMO .PPL ? Y
THERE ARE NO DEFINED VARIABLES
? ëDEMI

0.65 SECONDS ELAPSED 
? @DEM2

0.90 SECONDS ELAPSED 
? PGET HOUSE,Q

{ Save it on disc 
{ PPL checks the file-name to use

{ Execute DEMI

{ And DEM2

{ Get the image into Q
? .DO OUT:=1-OUT; TO 40 DO SKIP OD OD { compare it to P



205

PROGRAM STOPPED MANUALLY 
31.07 SECONDS ELAPSED 

? EDIT
THERE ARE NO DEFINED VARIABLES 
? @DEM2

0.64 SECONDS ELAPSED 
? SAVE
AS SY :DEMO .PPL ? Y 
SY:DEMO.PPL ALREADY EXISTS. 
THERE ARE NO DEFINED VARIABLES 
? END

DO

{ Break out by pressing STOP key }

Edit the program on screen 
return from edit 

Run DEM2 again

Save the new program 
But it already exists, query it 

YOU MEAN TO REPLACE IT ? Y 
Replaced
finish session, return to RT11

{ RT11 prompt



206

APPENDIX C

PPPP PPPP L 222
P p P p L 2 2
PPPP PPPP L 2
p p L 2
p p LLLLL 22222

USER GUIDE 

BARRY M. COOK 

PATTERN RECOGNITION GROUP 

ROYAL HOLLOWAY COLLEGE 

UNIVERSITY OF LONDON 

OCTOBER 1981



207

CONTENTS

C.1 Introduction ......................................... 209

C.2 Environment .......................................... 210

C.3 Starting Up .......................................... 211

C.4 Filenames .............................................212

C.5 Keyboard Commands .................................... 213

C.5.1 NEW .........     213

C.5.2 GET ..............................................214

C.5.3 edit ...........................   214

C.5.4 SAVE ............................................ 214

C.5.5 LIST ............................................ 215

C.5.6 PGET .............................................215

C.5.7 PSAVE ........................................... 215

C.5.8 PRINT ........................................... 216

C.5.9 LOOK ............................................ 216

C.5.10 OPT ..............................................217

C.5.11 ON .............................................. 217

C.5.12 OFF ............................................. 217

C.5.13 DIR ............................................. 218

C.5.14 END ............................................. 218

C.5.15 \ ................................................218

C.5.16    219

C.5.17 ë ................................................219

C.6 The Editor .......................................... 220

C.7 The Language PPL2 - Introduction .....................228

C.7.1 Comments...........................  228

C.7.2 Constants ...........  228

C.7.3 Variables  ......   229

C.7.4 Limits oF Constants and Variables .............. 229



208

C.7.5 Logical Values ........   229

C.7.6 Reserved Words .................................. 230

Table C.1 - Reserved Words ...................... 231

C.7.7 Assignment ...................................... 230

C.7.8 Other Operators ................................. 230

Table 0.2 - Operators Available ................. 232

C.7.9 Unitary and Serial Clauses ......................232

C.7.10 Results delivered by Unitary and Serial Clauses .233

C.7.11 Program Sequencing - IF Statements ............. 234

C.7.12 Program Looping - DO Statements .................236

C.7.13 Sub-programs .................................... 237

C.7.14 Arrays ..........................................,238

C.7.15 Indexing ........................................ 238

C.7.16 Image Spaces .................................... 239

Table C.3 - Image-point Numbering ............... 240

C.7.17 Picture Operations .............................. 239

C.7.18 GOTO ............................................ 241

C.7.19 EXIT ............................................ 241

C.7.20 Input and Output ................................ 241

C.7.21 Spaces in the Source Program............   242

C.7.22 Construction Occurrence .........................243

Table C.4 - Construction Occurance .............. 244

C.7.23 Example Programs  .........   245

C.8 Special Hardware .....................................246

C.8.1 JOYSTK .......................................... 246

C.8.2 RGB256 .......................................... 247

C.8.3 MDC512 .......................................... 247

C.8.4 Example programs using the special hardware .... 248



209

C.1 INTRODUCTION

The language PPL2 is intended as a versatile means of 

describing image-processing algorithms. In order to increase its 

usefulness a sub-system to create, modify and run programs 

written in PPL2 is provided. The sub-system is highly 

interactive to allow the rapid design and testing of 

image-processing algorithms: a number of special functions have

been provided to facilitate this.

The aim of this manual is to describe the sub-system and 

PPL2 language in enough detail to allow a person to write and 

develop image-processing algorithms in PPL2.



210

C.2 ENVIRONMENT

The system to be described was first written at the

beginning of 1981 and after a period of improvement is now

considered a complete product.

The machine currently in use to run this system is a Digital

Equipment Corporation PDP11/3^A with 128K bytes of store and

running the RT11XM V4.G operating system.



211

C.l STARTING UP

The PPL2 sub-system is started automatically at bootstrap. 

To start up at any other time the user should reply to RTII's 

prompt (a full stop) with:

@PPL<cr>



212

C.4 FILENAMES

Filenames within the sub-system follow normal RT11 

conventions, having a device name, file name and file type. When 

specifying a filename the user may give all three parts or only a 

subset of them; any part missing causes a default action:

Part Default Action

Device name SY: substituted (the device the system was

bootstrapped from).

File name The user is asked to supply a name.

File type The tag .PPL is substituted for program files

and .PIC for picture files.



213

C.5 KEYBOARD COMMANDS

When it is ready to accept a command from the user the

sub-system will prompt the user by displaying a question mark and

ringing the bell on the terminal. Any of the commands available

on the system may then be entered; execution is initiated by

pressing the RETURN key. Any command not recognised will produce

an appropriate comment in response.

The purpose of ringing the bell as well as printing the

question mark is to call the user back to the terminal if he was

away waiting for a long program to complete.

The following commands are available in the system:
NEW Create a new program.
GET Obtain an existing program from disc.
EDIT Edit the program.
SAVE Save the program on disc.
LIST List the current text.
POET Get a picture from disc.
PSAVE Save a picture on disc.
PRINT Print a picture on the terminal.
LOOK Study a picture in detail.
OPT List the options currently switched on.
ON Switch options on.
OFF Switch options off.
DIR Directory of files on disc.
END Return to RT11.
\ Print the values of all variables.

Indicates a PPL2 program to be executed,
ê Call a PPL2 sub-program to be executed.

0.5,1_ NEW

This command clears out the text buffer and enters EDIT mode

to enable the user to type in a new program. When the user is

satisfied the END-EDIT key will return to the control loop.

The command may have one of two forms:

NEW

or NEW (filename)



214

If a filename is given (second form) this will be remembered 

for future use in the SAVE command.

e.g. NEW FILE1 creates a new program SYrFILEI.PPL

0..̂ .2.__GET
Files already existing on disc can be read into the text 

area by this command. It has two forms:

GET

or GET (filename)

e.g. GET FILE2.XYZ gets the file SY:FILE2.XYZ from disc.

C.5.3 EDIT

The editor is invoked by this command enabling the user to 

change his program. A large range of text manipulating commands 

is available on the keyboard and auxiliary . keypad; a complete 

list is given in section C.6.

C.5.4 SAVE

This command permits programs to be stored on disc for

future use. It has two forms:

SAVE

or SAVE (filename)

The action in the first case will depend on whether a file 

name was previously given in a GET or NEW command; if it wasn't 

then the user will be asked for a filename but if it was the user

will be asked if this is the filename to be used by printing:

AS (filename)?

The user must reply "Y" for yes and any other character for

no.



215

If a file of the same name as that specified already exists 

the user will be asked if he intends to overwrite it by printing: 

(filename) ALREADY EXISTS. DO YOU MEAN TO REPLACE IT ?

The reply should be "Y" if he does and anything else if

not. This action prevents the accidental destruction of files, 

e.g. SAVE DL1:F1LE3 saves the program as FILES.PPL on disc DL1.

C.5.5 LIST

The program is printed on the terminal. There is only one 

form of this command:

LIST

C.5.6 POET

This is similar to GET, it gets a specified picture from

disc into the video interface. It has three forms:

PGET

or PGET (filename)

or PGET (filename),(picture space)

In the first case the filename and picture space will be 

asked for; in the second case only the picture space will be 

asked for and in the third case the action will proceed without

further ado. The picture space consists of a single letter from

A, B, C, ........  Z.

e.g. PGET IMAGE,P gets picture SY:IMAGE.PIC into P.

C.5,7 PSAVE

This stores a picture from the video interface onto disc; 

like PGET it has three forms:

PSAVE



216

or PSAVE (filename)

or PSAVE (filename),(picture space)

In the same way as SAVE a check is made that no file of the 

same name already exists; if it does the user is asked if he

wants to overwrite it.

C.5.8 PRINT

A picture is interpreted as ASCII characters and is printed

on the terminal; only printable characters are output, all others

are converted to spaces. There are two forms of this command:

PRINT

or PRINT (picture space)

In the first case the user is asked for the picture space to

be printed.

C.5.9 LOOK

Pictures are displayed by LOOK on the VDU as numerical

values. A 15 x 15 window on the picture is transferred to the

VDU and displayed as an array of 3-digit octal values. The

position of the window can be changed by the use of the

joystick. Small movements of the stick move the window in

1-pixel increments and large movements of the stick in 8-pixel

increments. Also displayed are the co-ordinates of the top left 

of the window, the picture number being displayed, the edge value

of that picture and the mode (rectangular or hexagonal) of the 

interface.

Next to the joystick is a switch which, when raised, returns 

control to the PPL2 sub-system.

There are two versions of this command:



217

LOOK

or LOOK (picture space)

In the first version the user is asked for the picture space 

to be viewed.

0,5.10 OPT

Informs the user which options are currently switched on,

there is only one form of this command:

OPT

The options which are controllable by the user are:

T When on prints the time taken by a program.

R When on displays the resultant value of the program,

permitting use as a calculator.

0.5.11 ON

Used to switch options on, its form is:

ON (list of options to be switched on)

where the list of options is one or more of the key letters

for the options.

e.g. ON T switches option T on.

Used to switch options off, its form is:

OFF (list of options to be switched off)

where the list of options is one or more of the key letters

for the options.

e.g. OFF XYZ switches options X, Y and Z off.



218

C.5,13 DIR

Enables the user to print a directory of files existing on 

the machine; the user supplies details of the files to be listed 

in the form of a sample filename. Characters in the sample

filename may be replaced by a percent sign to indicate that any 

character will fit, or by an asterisk to indicate that the rest 

of the field may be any character. Omission of a device name

implies the device the system was booted from (SY:). Omission of 

the name or type field indicates that any name or type will do. 

e.g. DIR .PPL prints all .PPL files on the bootstrap disc

DIR prints all files on SY:

DIR DL1: prints all files on DL1:

DIR B* prints all files beginning with the letter B

on the bootstrap disc.

C.5.14 END

This returns the user to RT11, removing the PPL2 sub-system 

from memory. To restart PPL2 the user should type: 

êPPL<cr>

C.5.15 \

The names and values of all currently defined PPL2 variables

are printed on the terminal, values are given in decimal 

(followed by a decimal point) and in octal. This is useful for 

error diagnosis. Note that getting a new file or editing the 

current one will invalidate the values of values.



219

C, 5 « 16 .

A full stop as the first character on the line indicates 

that the rest of the line contains a PPL2 program that the user 

wishes to be executed. Immediate mode programs may be entered in 

this way.

e.g. .[[ P0:=0 ]] { clears image P to 0 }

The 'at' sign at the beginning of a line indicates that the 

characters following it are a PPL2 sub-program name which is to 

be immediately called and executed. This call may be followed by 

a semi-colon and further PPL2 program also to be executed in 

immediate mode. The sub-program called must exist in the text 

space or an error message will be printed.



220

C.6 THE EDITOR

The PPL2 sub-system provides a screen editor to allow rapid

changes, additions and deletions to be made to the current

program. It is invoked by typing EDIT<cr> in response to the

system prompt ('?') and exited by using the END-EDIT key.

The special editing keys are described in the following

pages.



ciliary keypad 

1

221

editing keys:

1 1 1 11

j INSERT

1 1

! DELETE ! INSERT

1 1

i DELETE i

i CHARACTER 

!

i CHARACTER | 

1 1

LINE ! LINE ! 

j j

1 1 1 1 11

! START OF

1 1

! UP 1 UP

1 1

1 DELETE TO I

! TEXT 
1

1
1 !

PAGE i END OF LINE 

! 1

1

1 1

1 1

1 1

1 11

1 LEFT

1 1

1 TOP LEFT 1 RIGHT

1 1 

1 — N/U—  Î
11
11

1

1 OF PAGE i 

! !

1 1

1 ! 

: 1

1 11

i LAST

1 1

1 DOWN i DOWN

1 1 

1

1 PAGE ! 1 PAGE 1 !
11 1 ! i INSERT !

- + MODE 1

1

1 INSERT

11

MODE ON ! END

I OFF 1 

1 i
11

1

11
11

EDIT i ! 

! 1



222

Key Function

INSERT The text under and to the right of the cursor

CHARACTER is moved one place to the right and a space

generated for the insertion of one character. 

Any text falling off the right-hand end of the 

screen is lost.

DELETE The character under the cursor is deleted and

CHARACTER the text to its right is moved one place left.

The far right character becomes a space.

INSERT

LINE

A blank line is inserted above the line 

containing the cursor. The cursor is placed 

at the beginning of the new line.

DELETE

LINE

The line containing the cursor is deleted.

START OF The cursor is placed on the first character

TEXT of the text.



223

Key Function

TOP LEFT The cursor is moved to the top left-hand

OF PAGE corner of the screen.

LAST

PAGE

The last 24 lines of text are displayed. The 

cursor is positioned on the top left-hand 

corner of the screen.

DELETE TO Delete the character under the cursor and all

END OF LINE characters on the line to its right.

DOWN

PAGE

Move down 24 lines, the line at the top of the 

screen is the line that was just below the 

bottom of the screen. The cursor is positioned 

at the top left-hand corner of the screen.

UP

PAGE

Move up 24 lines, the line at the bottom of 

the screen is the line that was just above 

the top of the screen. The cursor is 

positioned at the top left-hand corner of the 

screen.



224

Key Function

UP Move the cursor up one line.

DOWN Move the cursor down one line

LEFT Move the cursor one place to the left; if the 

cursor moves off the left-hand edge of the 

screen it will appear at the end of the 

previous line.

RIGHT Move the cursor one place to the right; if 

the cursor moves off the right-hand edge of 

the screen it will appear at the beginning of 

the next line.

INSERT MODE ON Switch the insert mode on. In this 

mode all text typed is inserted before 

the cursor; if necessary the line is 

at a suitable word boundary.

INSERT

MODE

OFF

Switch off the insert mode.

N.B. Any editing key except DELETE and 

INSERT MODE ON will switch off the 

insert mode.



225

Key Function

END Finish editing and return to the main

EDIT PPL2 control program.



226

Main keyboard editing keys: 

< < < < <  + ----

1 LOCAL LOCAL 1

etc. 1 FORM LINE !

1 FEED
11

FEED 1

< < < < <

etc.

< < < < <

etc.

( ( ( ( (  —  —  —

etc.

< < < < < +

etc

REPEAT BREAK

1 1 1 1

! } 1

11

i DELETE 1

! ] 1 
1 1

11
1

1
+ -
11

1 RETURN
11
1

1
11
11

! 1 

\ i

1 !1

SHIFT I LINE

1
11

FEED

< < < < < +



227

Key Function

LINE

FEED

Move the cursor down one line

REPEAT Repeat the last cursor move, this key

has auto-repeat if held down.

DELETE In normal edit mode this key moves the cursor

left one place. If insert mode is on, the 

last character typed is deleted.

RETURN Moves the cursor to the beginning of the next

line, (in effect, carriage-return and line

feed) .

All other keys have the labelled effect. A character key 

places that character at the cursor position; if the cursor is at 

the right-hand end of the screen it will not move further and 

characters overwrite each other.



228

C.7 THE LANGUAGE PPL2

This section of the user guide describes the language PPL2 

as implemented on the PDP11/34A in the pattern recognition group

at the Royal Holloway College and includes notes on the special 

features found at this establishment.

This document is not intended to be a text book but merely a 

reference for the programmer who is already competent in another 

language and wishes to learn what PPL2 has to offer.

C.7.1 Comments

Comments in PPL2 are enclosed within curly brackets. These 

brackets must not be nested. The comment may extend over more

than one line if required. Any characters except curly brackets 

may be used in a comment, 

e.g. { this is a comment in PPL2 }

C.7.2 Constants

Constants may be decimal, octal or the ASCII value of a 

character,

A decimal constant is a string of digits, each one in the

range 0 to 9. 

e.g. 3906

An octal constant is a string of digits, each one in the

range 0 to 7, proceeded by the up-arrow character (shift-6), 

e.g. "377

A character constant is any character enclosed within prime 

symbols ('); The 7-bit ASCII value of the character is used, 

e.g. 'A'



229

C.7.3 Variables

Variable names may be between one and six characters long, 

the first character must be a letter and the others may be 

letters or digits. Only upper-case letters may be used. The 

name generated may not be the same as a reserved word. Special

care should be taken not to use names that may be confused with 

picture-points, i.e. one letter followed by digits.

C.7.4 Limits of Constants and Variables

Values are stored within the machine as l6-bit integers, the

top bit is used as a sign bit; the range of values that may be 

stored is from -32767 to 32767. Care should be taken not to 

exceed this range as no checks are made; it is particularly easy 

to exceed this limit when summing a number of picture points (128 

points should be taken as an upper limit when 8-bit picture

values are used). The result of overflow is undefined.

Within the video interface there are both byte and bit

picture planes. The bit planes hold only the values 0 and 1; if

a value outside this range is written to the interface only the 

least significant bit of the value is stored. The byte planes 

contain 8 bits holding values from 0 to 255, always positive; 

only the 8 least significant bits of a value sent to the

interface are stored. (Future hardware will permit storage of

l6-bit signed integer values).

C.7.5 Logical Values

When generated by one of the comparison operators 

(%,#,>,<,>=,<=) logical FALSE is returned as a word of zero bits 

(0) and logical TRUE as a word of one bits (-1).



230

A conditional statement tests for zero to indicate FALSE and 

non-zero to indicate TRUE.

C.7.6 Reserved Words

Certain words have special meanings within PPL2 and may only 

be used as intended and not as variable names. A list of the 

reserved words and their meanings is given in table C.1.

C.7.7 Assignment

Variables are assigned values by using the assignment 

operator they must be assigned a value produced by a

unitary clause, 

e.g. TIGGER:=6

C.7.8 Other Operators

See table C.2 for a complete list of operators available.



231

X Y IN OUT EDGEA to EDGEZ MODE
RGB256 JSTICK RETURN MODULO IF THEN ELSF
ELSE FI FOR FROM BY TO WHILE
DO OD MDC512 READ WRITE GOTO ARRAY
ARRAYO ARRAY 1 ARRAY2 ARRAYS TRUE FALSE
Single letter followed by digits = Picture-point

X The X co-ordinate of the centre of the window.
Y The Y co-ordinate of the centre of the window.
IN The number of the picture to be read from the

camera ( 0 <= IN <= 15 ).
OUT The number of the picture to be displayed

( 0 <= OUT <= 15 ).
EDGEA
to The edge value of the picture.

EDGEZ
MODE Interface mode, 0=RectanguIar, 1=Hexagonal.
RGB256 256 x 256 x 8 bits video output.
JSTICK Joystick.
RETURN Return from sub-program to calling program.
MODULO A MODULO B = remainder after dividing A by B.
IF Part of conditional statement.
THEN ...ditto...
ELSF ...ditto...
ELSE .. .ditto...
FI ...ditto...
FOR Part of looping statement.
FROM ...ditto...
BY .. .ditto...
TO ...ditto...
WHILE ...ditto...
DO ...ditto...
OD ...ditto...
MDC512 512 X 512 binary video output.
READ Read statement.
WRITE Write statement.
GOTO Unconditional branch.
ARRAY A 1024 word array overlaying ARRAYO to ARRAY3
ARRAYO A 256 word array (subscript range 0 to 255)
ARRAY1 ...ditto...
ARRAY2 ...ditto...
ARRAYS ...ditto...
TRUE Logical .TRUE. (-1)
FALSE Logical .FALSE. (0)

C.1 Reserved words



232

Op Prio]
12

- 12
?+ 12
?! 12

« 11
/ 11

+ 10
- 10

?> 9
?< 9
- 8

8
> 8
< 8

>= 8
<= 8

& 7

I 6

$ 5

: = 4

; 3

f 2

.NOT, Unary op.
Negate Unary op.
Abs Unary op ?+ A means IF A < 0 THEN -A ELSE A FI
Range Unary op ?! A means IF A < 0 THEN 0

ELSF A > 255 THEN 255
ELSE A FI

Multiply
Divide

Add
Subtract

Max A ?> B means IF A > B THEN A ELSE B FI
Min A ?< B means IF A < B THEN A ELSE B FI

Equals A = B means IF A = B THEN -1 ELSE 0 FI
Not equal 
Greater than 
Less than
Greater than or equal 
Less than or equal

similarly
similarly
similarly
similarly
similarly

Bit by bit logical AND of operands

Bit by bit logical OR of operands

Bit by bit logical EXCLUSIVE OR of operands

Assign This is executed from right to left

List separator (for READ and WRITE)

Statement separator

Operators are executed in priority order; if two operators
of equal priority appear they will be executed from left to right
(except :=),

The order of execution may be altered by the use of round
brackets.
E.g. A+B*C first multiplies B by C and then adds A

(A+B)*C first adds A to B and then multiplies by C

0.2 Operators

C.7.9 Unitarv and Serial Clauses

Each self-contained program step is known as a unitary

clause, an example being an assignment statement. A program may

be as short as one unitary clause or may consist of a sequence of

such clauses separated by semi-colons. Two or more unitary



233

clauses separated by semi-colons are known as a serial clause, 

i.e. unitary clauses to be performed one after another.

Examples :

Unitary clause: Z:=6?

Serial clause: A:=5; B:=9; C:=456

If a unitary clause is required where a number of steps are 

to be performed they may be enclosed within round brackets to 

form a self-contained program step which is a unitary clause.

Example :

Serial clause: VAR;=56; VAR2:=6?

Unitary clause: ( VAR:=56; VAR2:=6? )

Notice that there is no semi-colon before the closing 

bracket as there is no statement needing to be separated.

C.7.10 Results delivered bv Unitarv and Serial Clauses

A unitary clause may or may not return a result; those in 

which the last thing performed generates a value return that

value whilst those which do not do so return no value.

Examples - unitary clauses returning a value:

5

A+7

J0HN+JEAN*3

A:=B

IF ... THEN (value) ELSE (value) FI 

GEORGE



234

Examples - unitary clauses returning no value:

DO ... OD

FOR ... DO ... OD

IF ... THEN ... FI

IF ... THEN <no value) ELSE ... FI

IF ... THEN ... ELSE <no value) FI

The result of a serial clause is the result of the last

unitary clause within it to be performed.

Examples :

A:=5; B:=8 returns the value 8

A:=2; B:=3; A+B returns the value 5

READ A; A)6 returns either TRUE or FALSE depending oa

the value read for A 

It is thus possible to meaningfully write such statements

as :

EEYORE:= IF A)B THEN 3 ELSE 7 FI 

IF READ A; A=3 THEN ... ELSE ... FI

C.7.11 Program Sequencing - IF Statements

The IF statement allows decisions to be made at run time

about which part of the program to execute next; such decisions 

depend upon values generated during the course of the run.

The statement starts with the word IF and ends with the word 

FI; there must also be a THEN part, other parts being optional 

unless a value is required to be returned; in such cases an ELSE 

part is also required.



235

The general form is:

The first two parts must always both occur.

IF (clause returning a value)

THEN (clause, a value need only be returned if the

whole statement is expected to return a value)

The next two parts are optional; if required they must both

occur.

ELSE (clause returning a value)

THEN (clause, as above after THEN)

This part is optional.

ELSE (clause, as above after THEN)

this part must occur if a result is to be 

returned by the IF-statement

The final part must occur

FI

Note - the result of the clause after IF or ELSF is 

interpreted as logical FALSE if it has value zero and TRUE if 

non-zero.

Examples:

IF X=6 THEN J:=8 ELSE N:=N+1 FI 

IF Z)3 THEN S:=6 FI



236

IF A=0 THEN B:=8 

ELSF A=1 THEN J:=J-9 

ELSF A=5 THEN C:=0 

ELSE Z:=88

FI

C.7.12 Program Looping - DO Statements

All parts of the DO statement except DO and OD are optional,

default actions being taken on their omission. Those parts which

do occur must do so in the order set out below.

The general form is:

FOR (variable name)

FROM (clause returning a value, the initial value)

BY (clause returning a value, the step size)

TO (clause returning a value, the final value)

WHILE (clause returning a value, the continuation condition)

DO (clause, the part to be repeated)

OD

The step size may be negative in which case the final value

will be less than the initial value.

The step size, initial and final values are evaluated once

only; at the beginning of the loop, they cannot be altered from

within the loop.



237

Default actions:

Part Default Comments

FOR -none- There is no control variable
FROM 1
BY 1
TO infinity There is no final value
WHILE -none- No condition is tested
DO MUST NOT BE OMITTED
OD MUST NOT BE OMITTED

Examples :

FOR A FROM 5 TO 20 DO ... OD

TO 50 DO ... OD

WHILE Z=T DO ... OD

FOR I FROM 0 BY 5 TO 300 WHILE X#5 DO ... OD 

The PASCAL construction:

REPEAT (action) UNTIL (condition); 

can be written in PPL2 as:

WHILE (action); "(condition) DO SKIP OD;

Note that the condition is negated as a TRUE is needed to

continue as opposed to PASCAL'S TRUE to stop and also that a

dummy statement is used between DO and OD; anything would do here

but SKIP is fairly descriptive and the normal word in ALGOL68.

C.7.13 Sub-programs

The sub-program in PPL2 is very similar to a macro in

assemblers in that a section of text is marked and then pulled

into a program when required. This generates longer but faster

object code than calling and returning from genuine sub-routines;

a vital consideration in image processing

The start of the text section is given a label and the end

is marked by a RETURN statement. A label is simply a standard

variable name followed by a colon.



238

Example :

TEXT: {this is the section of text to be treated as

a sub-program. When it is finished we} RETURN;

To include this program section we write:

§TEXT

and all the text between the colon of the label and the R of

RETURN is substituted for @TEXT.

C.7.14 Arrays

At present there is available either a single array of 1024

words or four arrays of 256 words each. They are named:

ARRAY for the 1024 word array

ARRAYO for a 256 word array 

ARRAY1 ...ditto...

ARRAY2 ...ditto...

ARRAY3 ...ditto...

Elements of the arrays are accessed by indexing; the index

values for the 1024 word array ARRAY are 0 to 1023; the range for

the 256 word arrays ARRAYO to ARRAY3 are 0 to 255.

C.7.15 Indexing

To access elements of an array we must give the name of the 

array and an index value to specify the offset into the array. 

The array is assumed to be consecutive words in memory and the

index value simply indicates the offset from the first word. An

index value is given by enclosing it in single square brackets 

after the array name. The item within the index brackets may be

a unitary or serial clause provided it returns a value.



239

i.e.

ARRAY [ 34 ]

Picture points may also be indexed - see section C.7.16

C.7 . 1 6  Picture Spaces

At present there are eight picture areas available on the

video interface These consist of (a) four spaces containing 8

bits per pixel known as byte spaces and referred to as P, Q, R

and S and (b) four spaces having only one bit per pixel called

bit spaces and referred to as A, B, C and D.

The centre points are AO, BO, CO, DO, PO, QO, RO and SO; the

neighbours are, for example, PI, P2, etc.. A complete list of

neighbour numbers is given in table C.3.

The elements of the window may be considered as an array of 

values and indexing used to access them.

PO is the same as PO [ 0 ]

PI is the same as PO [ 1 ]

Pn is the same as PO [ n ]

C.7.17 Picture Operations

Window operators are enclosed within pairs of square

brackets to indicate that they should be performed over the whole 

picture :

forward raster scan:

[[ (window operator) ]] 

or [[+ (window operator) +]] 

reverse raster scan:

[[- (window operator) -]].

A parallel operation may be effected by ensuring that the



240

cECIANGUL -âï,-..
T.bl
..15̂ 1

J.-C.2
5.7J1! .20INI.N31 C[2IHG

XIY -6 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7: 196 195 194 l'̂ 3 192 19] 190 1C? ISA 187 186 185 184 153 132 -7
-6: 197 144 143 142 141 140 139 138 137 136 135 134 133 132 121
-5: 193 145 too 9? 92 Y 7 9,5 75 94 92 91 90 131 ISO -j
-4: 199 146 101 64 62 61 60 5? 58 57 56 89 130 179 -4
-3: 200 147 102 65 36 35 34 33 32 31 30 55 SS 12? 17S -3
-21 201 148 103 66 37 16 15 14 13 12 29 54 87 128 177 _2
-i: 202 149 101 7)B 4 3 2 11 23 53 86 127 176
o: 203 150 105 68 39 13 5 0 1 10 27 52 85 126 175 0
i: 204 151 1C6 6? 40 17 6 7 8 9 26 51 84 125 1/4 1
2î 205 152 107 70 41 20 21 2.2 23 24 25 50 83 124 173 2
3: 206 153 103 71 42 43 44 45 46 47 48 49 82 123 172
4! 207 154 109 72 73 74 75 76 ?7 78 79 80 81 122 171 4
51 208 155 110 111 112 113 114 115 116 117 118 119 120 121 170 5
61 209 156 157 158 15? 160 161 162 163 164 165 166 167 168 169 6
71 210 211 212 213 214 215 216 217 218 219 220 221 22? 923 224 7

-7 -6 ■j -4 -3 “1 0 1 7 3 4 5 6 7
RING
NO.

X
FROM

r
ro

RO
FIT:

ii;t;
6 IV.

'.'0.MIN "C CÜM.NG 
MINTS

Nfl nUTSIDF

0 0 0 0 0 1 1 224
1 -1 1 1 5 3 9 2169 -2 9 24 16 25 2003 25 43 '4 49 1764 -4 4 49 GO 32 81 144

-J n G1 120 40 121 1046 -6 6 121 U B 48 16? 567 •-? 16? 224 56 225 0



241

result of an operator does not corrupt the input picture space

i.e. the result is put into a picture space which is not used 

for input data.

C.7.18 GOTO

Control may be passed to labelled parts of the program by 

the use of GOTO. This statement is usually frowned upon by the

advocates of structured programming and should be used 

sparingly. The only occasion when it is notably useful is to 

deal with error conditions as the quick way out of a program.

Example of its use:

................ GOTO HELP; ......................

HELP: {error routine}

C.7.19 EXIT

This enables a picture scan to be terminated, control 

passing to the statement after the closing double square

brackets.

It is also useful for forcing compilation of a section of 

code; the section is enclosed within picture scan brackets but

only one execution allowed by using EXIT to prevent repetition. 

Example:

[[ FOR I TO 10000 DO ... OD; EXIT ]].

C.7.20 ' Input and Output

Information may be exchanged between the program and the 

terminal by the use of the READ and WRITE statements. I/O may be 

formatted or free format, free format is useful for input from

the terminal while formatting is useful for output.



242

Free format read:

READ A,B,C;

Formatted read:

READ "(FORTRAN format including ( and )>",A,B,C,D; 

as in READ "(2l6)",I,J;

Free format write:

WRITE A,B,3+5*C,D+H,E;

Formatted write:

WRITE "(' The values of X and Y are -',203)",X,Y; 

or WRITE "(' Give the value for JOHN

Note that there must be a variable list for read statements 

and unformatted writes but formatted writes need have none. The 

output list in a write statement may include clauses returning a 

value but that in a read must be variable names. Formats may not 

continue past the end of the line.

C.7.21 Spaces in the Source Program

Usually spaces are ignored and may or may not occur as the 

programmer sees fit; they may thus be used to aid the clear 

setting out of the program. There are some places where they 

must occur and some where they must not:

Spaces MUST occur:

To separate keywords from variable names.

Spaces MUST NOT occur:

Within a keyword or variable name,

Within a decimal or octal constant.

Within the primes of an ASCII constant, unless it is the 

character required,

Between the '' and digits of an octal number.



243

Between the ë symbol and sub-program name,

Between the characters of a multi-character symbol 

( e.g. [[+ ?> <= etc. ).

C.7.22 Construction Occurrence

Some of the constructions in PPL2 have restrictions on the

positions in a program at which they may occur. Table C.4

details these restrictions.



244

L C . . . 3 J Ot / r s i j b a ri

IF ... FI YES YES

FOR ... DO ... OD YES YES

Arrays YES YES

Operators in table 2 YES YES

RETURN NO YES

Sub-program call ( § ) YES YES

READ NO YES

WRITE NO YES

GOTO NO YES

Labels NO YES

Indexing YES YES

Table C.4 — Construction Occurrence



245

C.7,23 Example Programs

{ MEDIAN FILTER - replace centre point with median value of centre and 
immediate neighbours }

MEDIAN: [[ FOR 1 FROM 0 TO 8 DO ARRAY[1]:=P0[1] OD;
FOR 1 FROM 7 BY -1 TO 3 DO
FOR J FROM 0 TO 1 DO
IF ARRAY[J] > ARRAY[J+1] THEN A

ARRAY[J]
ARRAY[J+1]

OD OD;
Q0:=ARRAY[4] ]] RETURN;

=ARRAY[J];
=ARRAY[J+1];
=A FI

t ROBERTS CROSS OPERATOR.
From: Digital Image Processing by Pratt: P487 Eqn. 17.4-11

ROBERT: [[ Q0:= ?|( ?+(P0-P2) + ?+(P1-P3) ) ]] RETURN;

{ SOBEL EDGE ENHANCEMENT.
From: Digital Image Processing by Pratt: P489 Eqn. 17.4-13a,b,c 

Replacing squared + square roots by absolute values

N.B. notation difference

AO A1 A2 P4 P3 P2

A7 F(j,k) A3 compare to P5 PO PI

A6 A5 A4 P6 P7 P8 }

SOBEL: [[ EXE 
WHY 
QO

= (P2+2*P1+P8) - (P4+2*P5+P6);
= (P4+2*P3+P2) - (P6+2*P7+P8);
= ?i( 7+EXE + 7+WHY ) ]] RETURN;

{ Generate a picture of random values.
Using a 15 bit pseudo-random number generator }

{ The generator }

RAND: R:=R/2 ! (R&1 $ (R&2)/2 ) * "40000 RETURN;

{ Fill picture space P with random values }

RP: IF R=0 THEN R:=l FI; { Generator will not start if R=0 }
[[ PO:=@RAND ]] RETURN;



246

C.8 SPECIAL HARDWARE

Any memory location in the PDP11 may be accessed from a PPL2 

program enabling special hardware to be used. The commonly used 

special hardware has been given special names in PPL2 to 

facilitate access.

The general way to access a particular memory location uses 

the address calculation of an index to achieve the desired 

result. The following statement is used:

(constant) [ (expression) j

(constant) can only be that, not a variable; it is the base 

address in the machine in bytes.

Since word addressing is used this value must be even.

(expression) can be any clause returning a value, it is the 

offset from the base in words (=2 bytes).

So the address referred to above is:

(constant) + 2*(expression) bytes.

C.8.1 JOYSTK

The variable JOYSTK returns a value which indicates the

position of the joystick which is situated on the rack to the

left of the terminal.

In the central position the value is 48 to which is added:
1 if the stick is pushed UP
2 " 
4 "
8 " 

- 1 6  " 
-32 "

DOWN
RIGHT
LEFT
hard over UP or DOWN 
" " LEFT or RIGHT

64 if the switch to the left of the stick is raised



247

C.8,2 RGB256

RGB256 is the variable name used to access the registers of 

the URGB-256 image board. This board provides a display of 256 x 256 

pixels at 8-bit resolution in either grey scale or colour.

RGB256 [ 0 ] is the data/control register

RGB256 [ 1 ] is the Y and X register

RGB256 [ 2 ] is the scroll register

For further details see the MATROX description of this

board •

Bit Octal Decimal Colour controlled
7 200 128 Most significant GREEN
6 100 64 Most significant RED
5 40 32 Most significant BLUE
4 20 16 Next significant GREEN
3 10 8 Next significant RED
2 4 4 Next significant BLUE
1 2 2 Least significant GREEN
0 1 1 Least significant RED
Uncontrolled Least significant BLUE

C.8.3 MDC512

MDC512 is the variable name used to access the registers of 

the MDC-512 image board. This board provides a display of 512 x 

512 pixels at single bit resolution, it is used for graphs.

MDC512 [ 0 ] is the data/control register

MDC512 [ 1 ] is the X register (contains X*2)

MDC512 [ 2 ] is the Y register

MDC512 [ 3 ] is the scroll/flag register

For further details see the MATROX description of this

board.



248

C.8.4 Example programs

{ Transfer the four picture spaces P, Q, R and S from the 
video interface to the 256 x 256 display to see them 
all at the same time. }

D: [[ RGB256[1] 
RGB256[1] 

[[ RGB256[1] 
RGB256[1]

= Y *256 I X; RGB256:=P0;
= Y *256 ! (X+128); RGB256:=Q0 ]];
=(Y+128)*256 ! X; RGB256:=R0;
=(Y+128)*256 ! (X+128); RGB256:=S0 ]] RETURN;

{ 256 X 256 board.
Draw a circle Centre (128,128), Radius R, Colour C ;
F does not ask for R,C }

{ Ask for R and C }

E: WRITE "(' RADIUS ?',$)"; READ R;
WRITE ''(' COLOUR ?',$)"; READ C;

{ Entry if R,C not asked for, e.g. call from program }

F: [[ FOR YY FROM 127-R TO 129+R DO
FOR XX FROM 127-R TO 129+R DO
RGB256[1]:=YY*256!XX;

{ is the point in the circle ? If so set its colour } 
IF ((XX-128)*(XX-128)+

(YY-128)*(YY-128)) <= R*R THEN RGB256:=C FI
OD
OD; EXIT ]] RETURN;



249

{ Transfer the picture space P as a perspective view in three 
dimensions to the 512 x 512 board, X and Y axes as the 
original and Z axis as the brightness of the original.
Hidden surfaces are not seen. }

{ Clear the screen }

CLR: MDC512:="100000;
WHILE (MDC512[3]&''200) = 0 DO SKIP OD 
RETURN;

{ Draw the graph }

ZZ: MDC512[3]:=0; 
eCLR;
[[ FOR 1 FROM 0 TO 1023 DO ARRAY[1]:=2000 OD; EXIT ]];
[[- MDC512[1]:=XX:=(X+Y)*4;

YY:=2*Y+64-P0/4;
IF YY<ARRAY[XX] THEN ARRAY[XX]:=YY;

MDC512[2]:=YY;
MDC512:=1;
MDC512[1]:=XX-2;
MDC512:=1

FI
-]] RETURN;


