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ABSTRACT

The eigenfunction expansion method is used to describe
the scattering of low energy electrons i)y atoms or ions
having any number of incomplete subshells. Hartree Fock
wave functions are used to describe the target system and
allowance is made for the inclusion of any number of excited
electronic configurations in the expansion. The continuum
electron wave functions are given as the solutions of coupled
integro differential equations with prescribed boundary con-
ditions. Expressions for the photoionisation cross sections
are also derived within this approximation. The formalism
presented in this thesis uses the technique of angular mo-
.mentum recoupling which greatly simplifies the evaluation
of the potential terms which appear in the equations and the
expressions for the photoionisation cross sections. This
has enabled us to write, for the first time, a computer pro-
gram for the calculation of the various electron scattering
and photoionisation cross sccticns for a general atomic
system, which requires as input only the Hartree Fock func-
tions for the bound orbitals and the parameters needed to
specify the terms to be included in the eigenfunction expan-
sion. A program which calculates the necessary recoupling

coefficients for any given expansion is described.
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INTRODUCTION

The scattering of low energy electrons by atoms and
ions is a process of great importance in astrophysical,
high altitude and laboratory plasmas. The knowledge of the
various elastic, inelastic and photoionisation crossections
is necessary for the interpretation and understanding of the
observed phenomena.. Recent developments in experimental
techniques for the measurement of crossections and the
availability of large high speed comptiters have also helped
to stimulate the theoretical study of electron-atom collisions.

In order to estimate the temperature, density and
chemical composition of astronomical objects one attempts
to interpret their spectra in terms of processes which have
been observed in the laboratory or predicted theoretically.

A process of interest to astrophysicists is the excita-
tion of atoms and ions, 'by collisions with low energy electrons
to metastable levels, since these may lie only a few e.v.
above the ground state. Depending on the electron density,
the atoms either cascade back down to the ground state
emitting forbidden quanta or are de-excited by collisions
of the second kind. Lines due to these forbidden transitions
are often prominent in the spectra of astronomical objects.
In particular, the strongest lines in the spectra of planetary
nebulae, which are responsible for their pale green appear-

ance, are emitted following the excitation process

+ 23 1
0 +(2p P) +e~— 0++(2p D) + e



Consequently there have been numerous attempts to predict

theoretically, the excitation crossections for these processes.
Alternatively an electron-ion collision may result in

the capture of the electron. This may occur directly with

the emission of a photon,

+ - c s
X +e - X+hv (radiative recombination)

or by means of a radiationless transition to a quasibound
state lying above the ionisation threshold of the atom, which
subsequently decays radiatively to a bound state below the

ionisation threshold

xt 4 e > x* > X +hy

This process is known as dielectric recombination. Burgess
(1965) has shown that in astrophysical objects of high tem-
perature and low density the rate coefficient for dielectric
recombination may exceed that for radiative recombination
by several orders of magnitude and that the neglect of di-
electric recombination was responsible for the large dis- -
crepancy between the observed and calculated temperature
of the solar corona. A

A process of even greater importance is the absorp-
tion of stellar or solar ultraviolst radiation by atoms. This

can result in excitation)photoionisation,

X+hv—>x++e'

or the excitation of the atom to an autoionising level lying

above fhe ionisation threshold. The atom may then undergo



a radiationless transition from the discrete super-excited

state into the state of ion plus free electron

5 + - C ..
X+h—-X">X + e (autoionisation)

Until recently, there was little astrophysical interest in auto-
ionisation since autoionising lines are most easily observed
in absorption and lie in the extreme ultraviolet well below the
limit of atmospheric transmission. However the rapidly in-
creasing amount of data from rocket and satelite experiments
has stimulated theoretical and laborafory investigation of the
processes which give rise to the newly observed lines.

Information on the composition of the earth's atmosphere
at different levels may be obtained from an analysis of the ab-
sorption of solar radiation. The principal constituents of the
upper atmosphere are oxygen and nitrogen and hence the vari-
ous i.onisation, recombination and excitation crossections of
these atoms and the molecules formed from them are of par-
ticular interest.

In this thesis we consider the scattering of low energy
electrons by atoms and ions with a low nuclear charge. That
is, the scattering of electrons, having velocities less than
those of the atomic electrons, by atoms with Z < 36. The
Schroedinger equation describing the scattering cannot be
solved exactly even for the simplest case of e H scattering
and hence some considerable approximation must be made.

The method we shall use in this thesis is the eigen-
function expansion, or 'close coupling' approximation. This

is based on the expansion of the wave function for the system



in terms of the eigenstates of the target Hamiltonian. The
expansion coefficients are interpreted as describing the mo-
tion of the projectilé relative to the unperturbed target. A
system of coupled integro differential equations for these
coefficients is d;arived from a variational principle and the
scattering parameters can then be obtained from their nu-
merical solutions.

The work of Feshbach(1958, 1962) and Fano (1961)
has shown that the autoionising states may be described by
the solutions in the closed channels and will give rise to
resonances in the open, scattering, c‘hannels. In the absence
of coupling to the open channels these states would be bound,
but in the presence of the coupling they decay, with charac-
teristic lifetimes, into the adjacent continua. An important
advantage of the eigenfunction expansion method, therefore
lies in its ébility to describe autoionisation as well as the
scatt‘ering of electrons by an atom.

In any calculation one, of course, has to truncate the
infinite series and retain in the expansion only those terms
which can be expected to play a dominant role in the scat-
tering. The energy range for which a particular expansion
is valid is therefore restricted. It has been found that,
except for very low energies, the expansion converges
slowly (Burke 1963). However good results can >be expected
if all of the open channels are included and if the coupling to
the neglected channels is weak in comparison to the coupling
between those retained. The results obtained for e He

scattering by Burke and co-workers (1965,1966) and the pre-



diction of éutoionising levels in oxygen by Smith, Henry and
Burke (1967) are in good agreement with experiment and
support this assumption. A serious criticis.rn of the eigen-
function expansion method is that,in expanding the total
wave function in a finite number of unperturbed eigenstates
of the target, one neglects the distortion of the atom by the
incident electron. The explicit antisymmetrisation of the
trial wave function partially compensates for the omission
of continuum states in the expansion through the introduction
~of exchange terms. However it has been shown that this is
by no means sufficient (Temkin 1957, Callaway 1957, Henry
1968).

The 'Polarised Orbital' method attempts to remedy
the neglect of polarisation effects by the expansion of the
total wave function in terms of wave functions of the dis-
torted atom (Temkin 1957). The perturbed atomic wave

function is expressed as

WXLz ) = 6K, + Xy z )

Ap
where ¢(§A) is the wave function for the unperturbed atom
and X(_)_(A_r_p) describes the distortion produced by a charge
at Ep' | |
In the adiabatic approximation X (_}EAE_p) is found by
solving the Hartree Fock equations for the atom in the pres-
ence of a stationary external charge, that is for fixed values
of r . This approximation neglects dynamic effects and has
beenpfouhd to overestimate the distortion of the target (Tem-

kin , 1962, LaBahn and Callaway 1966). Recent work on the

non-adiabatic contributions to the potentials (Kleinman, Hahn
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and Spruch' 1967, Garrett 1967) has enabled improved re-
sults to be obtained for e+H scattering and is capable of
extension to more complex systems. This method should
therefore prove to be a useful improvement on the unper-
turbed eigenfunction expansion. The methods described in
this thesis, although applied to an expansion in unperturbed
functions are capable of extension to a 'polarised orbitals'
expansion without difficulty.

Feshbach has shown that the energies of autoionising

states are eigenvalues of the equation

¥ = .
(QHQ) 0 EQ\I/Q

where the operator Q projects out the closed channels of ¥
and are related to the energies E at which resonances are
observed in the open channels by E = EQ + AQ where AQ
is the energy shift caused by the coupling to the open chan-
nels. Hence one may predict resonances in electron-atom
scattering either by solving the equations which describe
the scattering or by finding the eigenvalues of the operator
QHQ. The latter method has been used to clalculate the
position of autoionising or resonance states in H~ and He
(O'Malley and Geltman 1965, Altick and Moore 1966, Bhatia

and Temkin 1967) and has given good agreement with experi-

ment. The level shifts and widths are given by

<&l lQe
<Qela,lQz)

A
r

1

where A; and A, are nonlocal but hermitian operators. The
solution of the eigenvalue problem is by no means easy even

for such simple systems as H and He and although good
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results have been obtained for the positions of the autoion-
ising states, the values of A and I" calculated from the ap-
proximate eigenfunctions Q¥ have not been in good agree-
ment with experiment. Recently Chen and Rotenburg (1968)
have proposed a method by which systematic corrections
may be made to A and I'. However it remains to be seen
whether this method can be successfully generalised to more |
complex systems and whether accurate calculation of the
level shift and width will not prove to be more difficult than
solving the scattering problem to the same degree of accur-
acy. The main advantage of this method is that it can be
used to predict the positions of resonances and hence be
used to eliminate the search for them in a scattering cal-
culation.

Nume rous other methods have been developed for the
calculation of the crossections of particular atomic systems.
Many of these methods give more accurate results than
those described above but are incapable of generalisation
to other, more complex, systems.. This is true of many
e H calculations since the hydrogen wave functions are
known exactly and one may use the minimum principle of
Hahn, O'Malley and Spruch (1964) to systematically obtain
better approximations to the reactance matrix. Other meth-
ods which 'can in principle be extended to many electron
systems are made impractical by the great increase in the
complexity of the equations.

One of the most accurate calculations to date has been

made by Schwartz (1961). He has calculated the elastic e H
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scattering crossection to an accuracy of probably better than
one per cent using Kohns' variational principle and a trial
wave function constructed from up to 50 Hylieraés type
wave functions. Burke and Taylor (1966, 1967) have cal-
culated e H crossections below the n = 3 threshold using
as their trial wave function a 3-state close coupling expan-
sion together with up to 20 terms to represent the short
range electron-electron correlation. The minimum prin-
ciple of Hahn, O'Mélley andSpruch is used to find the 'best'
solution by varying the ;:orrelation terms until the maximum
eigenphase sum is obtained. Their results for the elastic
scattering crossection are comparable to those of Schwartz
and the estimated error in their 1s-2s and 1s-2p excitation
crossections is less than 10%. The noﬁadiabatic method of
Temkin takes the polarisation of the atom by the incident -
electron fully into account but is in practice limited to S-
wave scattering by hydrogen. Although these methods can-
not, successfully, be generalised to more complex atoms,
they provide a valuable check on the accuracy of more widely
applicable approximation schemes.

One of the principal difficulties in the application of the
eigenfunction expansion method to complex atomic systems
" has been the evaluation of the various potential terms when
more than one electronic configuration is included in the ex-
pansion. Henry and Lipsky (1967) have calculated photoion-
isation crossections for neon taking into account the possi-
bility of the ejection of one of the 2s electrons. The use of
conventional methods to calculate the coupling between the

ls2 2,s2 2p5 and ls2 2s 2p6 configurations of the ion leads to
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laborious evaluations of angular integrals even though each
configuration has only one incomplete subshell. Even in the
calculations of Smith, Henry and Burke (1966) and Saraph,
Seaton and Shemming (1966) on the scattering of electrons

q

by atoms and ions with configurations ls2 Zs‘Z 2p”* and
ls2 Zs2 Zp6 352 3pq (q = 2,3,4) where only the three terms of
the ground state configuration are retained in the expansion,
the evaluation of the angular integrals appearing in the po-
tential terms was not a simi)le task. In this thesis we shall
show how the scattering equations for these configurations
may be obtained directly from our general formalism; The
practical difficulties involved in the inclusion of configurations
with incomplete inner shells were a particularly great handi-
cap in the use of this method to predict autoionising levels
as these often result from inner shell excitations. For ex-
ample the energies of the autoionising series ms rnp6 (ZS) np(IP),
ms mp6 (ZS) ns (1’ 3S) of the rare gas atoms, hé.ve been meas-
ured experimentally by several groups. Also Carroll et. al.
(1966) have observed a new Rydberg series in the absorption
spectra of atomic nitrogen which they attribute to transitions
from the ground state to the autoioﬁising levéls
182252p3(53)np(1¥>) |

" Fano (1965) and Shore (1965) have developed methods
which greatly simplify the calculation of matrix elements of
one and two electron operators between configurations with
any number of incomplete subshells. These methods have
enabled us to extend the eigenfunction expansion method to

the scattering of electrons by a general atomic system. We

expand the total wave function for the system in terms of
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target wave functions constructed from one electron Hartree-
Fock functions and make allowance for the inclusion of any
excited configurations of the target. The scattering equations
are derived from a variational principle and the various po-
tential terms are expressed in terms of generalised angular
momentum recloupling coefficients. The derivation of these
equations and the explicit form of the potentials has been
published (Smith and Morgan 1968) and a reprint of this

paper is included in this thesis. An algorithm has been de-
veloped for the evaluation of the angular momentum recoupling
coefficients. This has enabled us to write a computer pro-
gram for the calculation of the potentials, a task which in-
volves much algebraic manipulation, which needs as input
only the parameters needed to specify the target and the
quantum number of the states to be included in the expansion.
The algorithm and the program for the calculation of the re-
coupling coefficients are described in Section 4 of this thesis.
The program for the potentials and a modified version of the
scattering code of Smith, Henry and Burke have been used

to construct a program which calculates the continuum wave
functions of an electron scat':tered by a general atomic sys-
termn and from them derives the various elastic, inelastic

and photoionisation crossections. A general expression for
‘the photoionisation crossection is given in Section 3. 'Through;-
out this thesis .we will use the notation of Smith and Morgan
(hereafter referred to as S.M.) and give all express{ons in

atomic units.



SECTION 2. THE SCATTERING EQUATIONS

2.1, Trial Wave Function

The Hamiltonian for an electron colliding with an
atomic system having N electrons and a nuclear charge Z,

neglecting magnetic and relativistic effects is, in atomic

units,
N+ Nt | [
H = Z HO+ Z
L-:_l L.(j ‘j (2.1)
where
2
. ! T LE
H‘(‘*) = ?_(v“ * w )
= = ro-rp|

Since spin-orbit coupling is neglected the total orbital an-
gular momentum and the total spin are separately con-
served and hence calculations may be simplified by using
a 1epresentation which is diagoaal in L and S. |

As an approximation to the exact solutions of the
' Schroedinger equation H¥ = E¥ we expand the wave func-
tion of the total system in terms of the complete set of
' (assumed known) normalised eigenstates Y; of the target

Harniltonian H__ where

N
N N
yo o= Z HE) = -k
N i=t e oy (2.2)

The expansion coefficients which are functions of

X, are interpreted as describing the motion of the pro-

jectile relative to the target. We write

15.



") = = ) Fy (2up ) (2.3)

where aZ implies integration over the continuous spectrum
L

E > 0.
Yi>

Bound State Hartree-Fock Functions

We choose the target wave functions qJ(yi}_SN) to be the
Hartree-Fock wavefunctions for the unperturbed atom. That
is, we neglect distortion due to the field of the scattered
electron. |

The Hartree-Fock self-consistent field approximation
assumes that each electron may be regarded as being in a
stationary state in the field of the nucleus and of the other
electrons. Hence we may take as an approximate wave func-
tion of N electrons, an antisymmetrised product of N one

electron orbitals ui

Viz f(z,z) N ) :/([ux(n)u_(z) : ..UL,,(N)_S

, w
where the u, are chosen such that fd} U= ud' x) = SU

There is no restriction since the determinantal wave function
is unaltered if u, is replaced by u, + A_.u. where A_, is

i i ij J ij
chosen such that the orthogonality condition is satisfied. If
all the electrons are in closed shells then the one electron
orbitals will be of the central field type, that is

Uplx) = wilnbge) = ROy ©F) K ()
| ¢ b, /i[,m,; L (2.4)

16.
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where Qn;ﬂ;(r) —_ P";Q.:CP)

If not all the electrons are in closed shc)alls the self consistent
field will not be spherically symmetric but we make the ap-
proximation that the one electron orbitals may still be
represented by central field functions.

For a bound state the uy must satisfy the boundary
conditions R(r) = 0 as r—> o, R(r) must be everywhere finite
and hence P(0) = 0. The "best'radial functions R are ob-
tained from the variational principle

S LEIH-E1E> =9©
(2.5)
with respect to variations R~R + 6R,6R ~ 0 as r > « and
subject to the constraint jct} u.f{ai_)u\-) ) = Sj to ensure that
LTIE> =

It can be shown that for the lowest state of a symmetry

species, that is, the lowest of the set of states having total

quarntum numbers {aSM LML} the exact solution to the equ-

ation HY = EV¥ R Svhere H is the usual approximate .
Hamiltonian given by (2.1), will give an absolute minimum
of the expression E ={UHT? Hence we may say that the best
‘ approximat.e wave functions laSMSLML> are those which
give the lowest E. However this is not the only criterion
by which we must judge the goodness of the approximate
wave function since other properties, such as its asymp- -
totic behaviour, may be of g‘reater importance in parﬁcular
applications. We note that the individual orbital angular
momenta are not good quantum numbers for the true solu-

tions to the Schroedinger equation and therefore the

electronic configuration is not used to distinguish symmetry
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species. For higher states of a given symmetry species
EHF will be a stationary value of E but not an extremum

so we must look for other criteria by waich we may judge the
"goodness'" of our trial wave function. If all the electrons
are in closed subshells,the N particle wave function may be
represented by a single Slater determinant. However as

a consequence éf the central field approximation an atomic
system with incomplete subshells will be highly degenerate
with respect to energy. This implies that several of the
Slater determinants (in the usual representation) will cor-
respond to the same energy and that the required wave
function will be some linear combination of these determinants.
In the absence of spin-orbit coupling the energy levels of an
atomic system with a given electronic configuration are
specified by the set of total quantum numbers {aSL}. We
shall therefore want to evaluate the matric elements of H

in a representation which is diagonal in {asM LML}.

S
We require a properly antisymmetric wave function

|aLMLSMS> in this representation. We first construct

normalised antisymmetric wave function for each subshell

X from the one electron orbitals ui

Mg ooy My

N
[q ™o s Lm )= Z¢C o G
b b » 'S b >~ B
by I n",(‘n'“,l_h A (;_\ N (5.1 X(q_ |
e
mAl M, g Z@}mé‘ M Y£>M£n > %1 ” '/l":
lﬂl"' MAN
where denotes the Clebsch Gordan coefficients and

coefficients of fractional parentage needed to couple the spin

and orbital angular momenta of the N equivalent particles

A
to give total &, 5}“_% LXM,‘)\ in such a way that the subshell
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wave functions is antis ymmetric under iﬁterchange of any
pair of labelséq)\ L denotes the set of 1abe}s, subset of
{1. .N}, of the N}\ electrons in subshell \.

" We next form an uns ymmetrised wave function for the

N particle system

g L LMSMY = [T{CK'"kN“x%Ms)L,MLQ]

K ShglM,

by coupling the subshell angular momenta to give the required
total oL .
otal a MLSMS

Finally we construct a properly antisymmetric normalised

N particle wave function . p
| ! ST g LN SMs >
L J = 7 }" ?’ =
[ LM SMg [N, )] = o .
where ’h(NQ is the number of possible distributions and Pq
is the parity of permutatibn q.
In order to evaluate the matrix element

< first i
vaLMLSMSIHN|aLMLSMS>We irst write

: NH' % i
HN - Lé—:. '(~)+L<J' rij

and consider the matrix elements of the one-electron and
two-electron operators separately. The wave functions
|aLMLSMS> are orthonormal and properly antis ymmetric

under interchange of any pair of labels 1..N, hence

N
L 2 HED = NIHMD
where o= : :

, -1 b.+6 -
< H‘(N)> - [fnm>)] 5('(—11 8 7;(6Ko<r_msm\l+'LN)1ch-¢LMLSHJ>
‘ ¥ h (2. 6a)
From the orthonormality of the wave functions we see that

the matrix element on the r.h.s. will vanish for q; £ qj and



20.

that all distributions of the labels 1..., N-1 will contribute

equally hence we may replace

= b
Ty

electron N and

N, = N, [ N# P
Equation (2. 6a) now becomes

RS = = TUNSE( )'<ro(LM SM,H(N)[/M&LMSMS>
( T

% Np jcuf’

= ’Y}(ﬁ>) where p is the subshell containing

i
>
«)

N.
(/1_‘)( —1,(!,HJ 2.2)? () (2 (o)

' The matrix element < Z > is a special case of that studied

L‘)

by Fano (1965) and equals

Ny N>\___ 2
= i N (Nph8>~/‘/~>z—;oﬂ >-t(£> o(>S>L>|fg>o()_S>L*)
Uy SL LTS T, ) {s RO S )
(£>f<ool£,0>(£fkoc:£/~o><L NN S AN

T Tolo(Loy Tledo ]l 1>+ Sey ,QK(;/,‘/A;)
<f kOOl{/AO) <S s-zw(g) E;' Led /(A)’ 'S‘ R ~
1SS A, (5. S (8 L L,\II/ e CA ) L
| L,--L,[ly/fu ULy LB - L>}

Applying the variation principle for completely arbi-

(2.7)

trary variations 6P and imposing the orthonormality con-

straint, using Lagrange multipliers M, gives the Hartree

" Fock equations:
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At +22. Q(uuspm_zm—& Q{z (L xs, LY ST
[Z/p‘ Vs

S (L koolR, o)((;,,[um,/ )

7o L LTS (€5 (LI L
<[ 1_ g k(f ey - 17,1}(L/3..L[ L:--L> >(L>.)" /‘*k‘q/“ el

0)2< S, - Tt ?/.,'{ECS/N).. <) |

F3Pry + (A koolf
W /. k(2,3 Dudan (L) L]

(TS ks, ALy XTI B
1T, Dok (A b T gL LY, (> )&(r,
+ = h, b =0 (2.8)

These are coupled nonlinear integro differential equ-
ations for the radial functions Pk(r). For complete subshells
B, X it can be shown (Hartree 1957) that there is no restric-
tion in choosing M)\H = 0 N =& p. For incomplete subshells
we may take M)\P- = 0 for ﬂ)\gé'lp since the orthogonality of
the one electron orbitals is assured by the orthogonality of
the spherical harmonics. However the one electron orbitals
are also orthogonal if 17\ = 1}1 but either mv.-é rn}L or ms>~7£ ms,
As the radial Hartree Fock equations are independent of these
quantities the constraint jdr P)\(r) Pp'(r) = 0, \#p may lead
to worse approximations than if it were not imposed. An
example of such a case is the wave function for the 1s2Zs (IS)
state of He like ions where the orthogonality of the 1s and 2s
wave functions is assured.by the antisymmetry of the spin wave

function, [Sharma and Coulson (1962)]. 'Fvor this system the

antisymmetric wave function is
1 + - + -
v o= = le) T, T@) - uy @), ()]

where the superscripts refer to the spin orientation. Due to
the different spin orientations of the two one particle wave
functions we cannot make the substitution st(r) = st(r)

+ AP (r) without altering ¥ and hence have no justification
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for imposiﬁg the constraint

jPls(r) st(r) dr = 0.

' The Hartree-Fock equations may be solved, subject
to the boundary conditions P(0) = 0/ P(r) - Oasr— o,
either numerically or by specifying some analytic form of
P(r) containing parameters which are varied to obtain the
'best' function. Froese (1963) has written a computer
program to numerically solve the Hartree Fock equations
for any atomic system with no further approximation,

other than taking M = 0, & #\. Numerical solution of

A
the Hartree Fock ec};uations can give greater accuracy than
the analytic methods and is more convenient for complex
atomic systems since analytic expressions for the radial
functions become increasingly more complicated as the
numbers of electrons increases. Roothaan and coworkers
(1960) have devised a more accurate analytic or expansion

method of solving the radial Hartree Fock equations. They

make the expansion -

- Ty H_Qi—J;_ n -l -S ¥ :
R ) = ?C"ﬂr{@"ir)"] ,(2545,) PR %, %r(z.9)

On substituting this expression in the expression for E and
applying the variational prinéiple for variations "Cnlp -
Cnlp + 6Cnﬂp’ they obtain pseudo-eigenvalue equations for
the vectors C (these will not be true eigenvalue equations
because of the self consistancy requirement). ‘Having found
a set {Cnlp} for a particular Sﬁp and n‘f’ they then vary S:Cf
and n/(r to minimise E in such a way that Rn!(r) has the cor-
rect behaviour for small r (Lowdin 1954). These analytic

radial functions have been calculated for a wide range of

atomic systems, in most cases to an accuracy comparable
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to the numerical results of Froese. They have the advant-
age of convenience over numerical tabulations, when used
as input to scattering programs, since differentiation and

integration may be performed analytically in many cases.

Continuum Hartree Fock functions

We expand the wave functions of the continuum elec-
tron in central field wave functions as described in S.M.

The antis ymmetric wave function for the complete system

is . NEC peiep
SR ST K
L \= all Q\H_,)vF.,: r

(2.10)

Asymptotically the most general form of the radial function
Vo
F of the continuum electron is some superposition of in-

coming and outgoing spherical waves, i.e.,

_e 6.
~ Hr,e Lr‘"&rﬁc

~
)
F; (

D oo

The coefficients A and B are related by
zfﬂs

where SI"I" is the scatterlng matrix and the sum is over all

incident channels I''. Hencé

- bn Y
~ o , e "'1
Fer ~ 2 A Sepe = Sep

PI"

For numerical calculations it is more convenient to express the

B (4"
asymptotic form of Fl" in terms of the reactance matrix R, which

is real and symmetric and is defined by

1 +iR

S=T1ir
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Making this substitution we obtain

Ty o = _ 2 [Sepr 56 4R e B |
r

rl ( ) —Qﬂrrl) (2.11)

for open channels I', I"'. If we choose the continuum wave
functions to be normalised to an incident wave of one particle

passing through unit area, per unit tirne

T ey = = 24 ~0, ©
Fr‘( ) F (o R kr [g{.,s Rrrm r‘]

It will be more convenient to work with real functions

(2.12)

& y ) &,
E () == F L)~ Z_ TS s '*Err‘@3 (2.13)
r l
In the closed channels

Frr,(r)m 6I‘I"NI‘ exp (-Ikl_,l r - -I—k;T- log Zlkl_,lr)

As for the bound states we required that E.-l..(‘“)““ is every-
where finite and hence the boundary condition of the origin is
FI‘I"(O) = 0. The total wave function may now be written
in the form

N1 N ’f/'
kl/ (1‘ Xpae ) = /'_ i( ) ‘%(rxj‘f){: (’A }2 14
(NHJ P=! I'T” —(—r ( )
For the system initially in state I‘j
— Nt Hep__
O 2, 2am) = L2 B fF (fxxf’)/: (2. 15)
Gt T T

We make the assumption that the radial functions P)\(r)
used in the construction of Y/Q-)j;_g\r) are independent of I" and
depend only on N and Z. The validity of this approximation

is discussed in S. M. From the determinantal form of the
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wave function (2.15) we see that we may choose Fi' such that
o p J
- (r . r) —
Sy [ 4 e bae = o

for all closed subshells X, without imposing any restriction on
the total wave function, since ¥ is unaltered if we replace Fij
by Fij +C p,,() , where C is chosen such that equation (2.16)
is satisfied. If li # 1)\ then the orthogonality of the continuum ‘
orbital and the one electron orbitals of subshell X\ is assured
by the orthogonality of the spherical harmonics. If \is an

incomplete subshell and Ei = £ we are not free to impose the

constraint (2.16). There are ’z\wo ways in which we may pro-
ceed. The first is to use as our trial wave function that
given by equation (2.15) and without making the as sumption‘
of orthogonality for the incomplete subshells with 12)\ = )Zi.
The second method was proposed by Seaton (unpublished
notes, 1961) and subsequently used by Smith, Henry and
Burke (1966) and Saraph, Seaton and Shemming (1966) in

their calculations on electron scattering by atomic systems

having incomplete p subshells. Seaton makes the substitution

[

~ A
!—Tj-(fj) = F.@)+ C;J- Phgf” 5&@

where

s
‘ J‘ cbr (‘::j/('”) Pm(f” = ‘-’

. . C) 8
[ de B b = Syt

This is equivalent to adding to our trial function (2.23) terms

(2.17)

of the form C/'“J ?;(LJSJ‘JDWhere & is a properly antisymmetric

function of N + 1 electrons constructed from the same radial
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Hartree Fock functions as is lJJ(inN). Hence it will not be

an eigenfunction of the N + 1 electron Hamiltonian, equatién
(2.1) but since we have made the approximation that the P,,({'")
are independent of configuration it may be regarded as al-
lowing for the virtual capture of the incident electron into

the incomplete subshell p.

In analogy with equation (2.4a) we write

-t Pt N
T s ) = TN )T E (10 7 E (9, LT
*%;QS”" Hore ) g %( “ (2.18)
We take as our trial function
rXYN - X M)+ =CC F LS X
—%5(2( >—I()_( ) /u/*_-—/» - )(2.19)

where zli runs over all incomplete subshells in the target
configurations included in the eigenfunction expansion. The
C:L are arbitrary parameters which together with the Fij(r)
will be determined from a variational principle.

In the derivation of the radial equationé both methods
for handling the non-orthogonality of the continuum orbital
ana the orbitals of the incomplete subshells \ in the case
;Ei = l)\ require the evaluation of matrix eleménts of H which
do not occur in the other cases and which lead to additional
inhomogeneous terms in the differential equations for the
Fij(r)' However, for compléx atomic systems, Seaton's
method leads to considerably more simple expressions for
the matrix elements and therefore we have used equation
(2.27) as our trial function in S.M. There we used a vari-
ational principle to derive differential equations for the
radial functions Fiﬂ(r). subject to constraint, ‘
Sl.lkjdr P, (r) Fﬂ(r) = 0 for all subshells \. The equations

obltained from the direct method using the wave function (2.23)
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are discussed in Section 2. 3.

2.2. Evaluation of the matrix elements (Case I)

The evaluation of the matrix elements using ¥ defined
by equation (2.27) is described in detail in S.M. section 3.
In this section we discuss the approximation made in the
evaluation of the direct potential, namely, that the target

wave functions satisfy the equation
J[de e K= EFOEY = ©

We also give an alternative expression for the terms quad-
ratic in C which is more convenient for machine computa-

tions than that given in S.M.

Direct terms

In order to simplify the expression for the direct po-

tential we made the assumption that
[feher e e EDYEX) =2

We have also made the assumption that llJ(in) and Lll(ij) may
be constructed from the same set of one electron orbitals.
The Y(yX) constructed in the manner described in section
(2.1) are orthonormal, hencé \;ve may write equation (2. 20)

in the form: ,

Joof dox e ) B EEX) =0 S5 5 50,
J"f‘l«’" - dxy ‘PQ}X_)HN CXy = g,} (2.20b)

Before using the direct potential given in S. M. equation (48)

we must therefore consider the validity of equation (2.20a)
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for the Hartree Fock functions to be used and the error in
€ incurred by the use of approximate wave functions.

The matrlx element <¢(y X)IH Ve /X)/ may be evalu-
ated in the same way as the diagonal elements, equations
(2.6) and (2.7).

< £ > = N<“(”3> P

o AR LTSI Z(‘” g

< 4G X)()]4(NJ| %GP YYD

The matrix element on the r.h.s. will vanish if Y; and Yj
differ by more than one electron jump and the non zero con-
tributions to 5‘“‘

‘the same distribution q of labels 1..N-1. Hence we may

will come from those qiqj which include to

replace

M

= T R EESURY N
‘PA:OV“ LD f‘:f\). g 8(N>J > +8>\€° %%fJ)T)( >\\

where Pi is the subshell containing electron N in 9; and pj

contains N in qj. In analogy with S.M. equation (56) we

obtain

N (H (N)> Z H S(N N —4~6>f,—%,70 )EN ijl

AT
X :
% jf..h”"“f S t"df ZeS gl "%( n’u/: ko)
TR P N T e A S MG AN
] , .

STy 1T Tl L>jetr '/2{%{; D22 e
The matrlx element ‘ (221 )

45 ,.> LNe-n < ’ZT;>

and < >1s the N partlcle analogue of the matrix element

f‘-b

on the l.h.s. of S.M. equation (62). Hence from equation
(2.21a) and S.M. equation (62a) we obtain
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SOPQER) TR >
) = [T 8(N7‘¢;N>~'+ 8) ‘._ Sl> )[ NP‘NPJW%J;)JM pﬂ,(r)

f‘Lf, >
cl/‘ IUQ :|>+2z]ggf(_‘) JZ(@,“{, ]Z/ (
pl “ry
’YJ Nt
'f[‘n L{)-Qr H(]_ L ><S S/,” (S(,) ST (S{J,).g?

SL;L}- S“L-NL- SS,Sj Sten,: = T
. _’ ©

‘;) 40"

. . _ pi €@
S(N Nj f’f’sxo- %>[3 >c‘)ZNF U\} )NJ'
(Ng, =S YJE C1) Nt 5t n/e,,“u,. pEp)

Ko b f

(fd s (’) [’s” @ﬁ/fﬂ)(fy e Se- La; M PRI
(1’ 5 Sa; b, “K'o( S, = (- eS8, X1-€'S, T)
TR

J ) 7Y Tee'=0,)

(”l) 43 ‘§ >2{5€€,Qk(ﬂo‘:{)j.o—l.)(,eﬂkO:),fho)
(k00 U KLILD (1= Seer) Rutperiey gy )

(Lp k0o WGJ.O)( f(,; k0 OMa;OKLQILj>E} gLiL)‘ 0. S“L;Hbjgﬂs; ;

J
(2.21)
(SL‘S)> - < ST‘ E—f‘ ;‘;feCSE‘-) S'f énﬂe(gfg‘)“ S“[
BY 'Sf) 1«J-,\e'(gej)“ SU‘J 2N+,-er<gcrj) 5J>

<L IL > < fc[f k(gf ;,'—Z;;[G-;(Lr;_)" Le [
[ e (Lf, . Z-q-'):k/ea;‘;(?a'j)La)" Lj>

LIS =< L [ Gk )Ly Tocbedber) &2
| (L, - L,,lkf ((F ]L,} T, f(/_f) L>

o)



From equation (2.21) we see that the matrix element is dia-
gonal in the quantum numbers aSMSLML'rr. The off diagonal
elements will not vanish for Yin having the same total quan-
tum numbers for different electronic configurations. An
example of a non-vanishing off diagonal matrix element is
one of the form <1 s2 252 2p4|HN|ls2 Zsz 2p 33p>. However,

in many applications of the eigenfunction expansion method

the off diagonal terms will vanish and in other cases they

30.

will be small in comparison with the diagonal matrix elements.

Therefore the equation
[ (s, de QOY) Ha C0GE) = o

will be exact in many applications and may be considered a
good approximation in others.

The error in 6; incurred by assuming that kl)(in) and

LIJ(yJ.X) may be constructed frornlthe same set of Hartree Fock

functions P)\(r), for all y retained in the eigenfunction ex-
pansion can be expected to be small if the exact energy dif-
ferences (EY' - E ') are also small.

In pr;ctice, the most reliable results are obtained
if the electron energies in the inelastic channels are calcu-

lated using experimentally determined energy differences

rather than Hartree Fock energies.
2
C term

In S.M. we expressed the matrix elements

<®p(LkSknk)|HN+1|¢ (3£S£w£)> in terms of the matrix ele-
ments of Hl(N+1) and Z‘ :_'—~ together with the Hartree
== oL, N+l

Fock energies ot the N electron target. @ is properly anti-

symmetric under interchange of any pair of labels 1..N+l.



31.

Hence we had to consider all possible configurations of the
N electron system resulting from the removal of one electron
from the configuration described by ® and not m.erely the
target configurat‘ions included in the eigenfunction expansion.
Although the error incurred, by assuming that all the LP(in)
included in th:a eigenfunction expansion may be constructed
from the same set of radial functions P)\(r), may be small,
the error in the Hartree Fock energies Et>§“’ of S.M.
equation(72)for the highly excited configurations may be
considerable. An alternative expression for the matrix
element

NH @, (LSm) > (2.22)

may be obtained by noting that, although the @H are neither

<
o) p.(LkskTTk

eigenfunctions of H nor constructed from the appropriate

+1
Hartree Fock functins for the N+l electron system, they
are properly antisymmetric under interchange of any pair of
the N+l labels and are constructed in the same way and from
the same set of radial functions as the target function Y(yX).
Hence the expression for the matrix element (2.22) is exactly
analogous to that given in equation (2.21) with N)\ now repre-
senting the number of elecirons in subshell \ in the N+l
electron wave function. | ‘

The expression given in equation (2.21) is no more

difficult to compute than the expressions given in S.M. equ-

ations (62a), (67) and (72) and does not require any Hartree

Fock energies as input.
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Evaluation of the Matrix Elements (Case Ii)

We wish to evaluate

. 0
Ly =<%lH-ElW>
when \I’k is of the form
NTI Nt = 3
g = L = () Zk-l“(ri)flﬂp)rdv\(r”\
K N+l )= p=t r.o S (2.30)
and
o
gﬁil)\ fdrFik(r)Pk(r) = o‘ (2.31)
o

only if X\ is a closed subshell.

The evaluation of Lk,ﬂ is equivalent to the evaluation
of the C independent terms of S.M. section 3, but without the
orthogonality condition (2. 31) for incomplete subshells \
with 1)\ = ii. .

It is clear that the direct terms (S.M. equation 42)
are not affected by the orthogonality requirement since
electron label N+l is in the continuum orbital on both sides
of the matrix element. However, the exchange term will

not simplify to the expressién given by S.M. equation (41).

The exchange term is

. ,jt - Ny
(% 20) Fielow
f

N

We éonsider first the matrix element of the one electron

operators
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byl
[,n(N L),h(N ! )]1’ Z—- ("l) ‘7 l/
%,

Pl T X S ) il = H,m RSB

< H, > = ~Nf fcbt, O(KNH

N-c—\ rN

The orthogonality constraint may be expressed in the form
JdrF (r) P (r) = c? 5 c? # 0 (2.32)

ij A ij 4.4 ij ’

ik

Although, strictly speaking, electrons l..a-1, a+l,...,N+1
are 'spectators' for Hl(a), only electrons l..a-1,a+l,...N-1
are 'spectators' in the sense that the various distributions of
these labels contribute equally to the matrix element. For
a#N, N+l the matrix element <H1(a)> may be non-zero if
Yin differ by two or less electron jumps. We define By and
p.j to be the subshells containing electrons N and N+l in dis-

tributions q; and q. respectively.

<5 Hheds —N(N_q["n(N;mNJ)J sz(““ Yy

o = § j
f‘(‘o()c c{)""‘h %KC} {'X)LNM _‘ (N ‘>
- ;T X e Pl foom
fJ — —
= e IO N TRRLY
. /‘Jf/J blo;‘).(H( )>
N - N-1))
h SCNMN’JrS’\f?‘(_ g}/(_ o )(U i
where
m)y = O SEVSICNE
(o
”""‘"‘(/’_/A,)-—- MoX J >
N - = Z N + _§__ |
AP»\X a\"m;n(f\'/u;J > >~2‘ﬂ‘m({)J/AJ)+

+osgalpe-pe) + sign (=)

the outside factor now becomes
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Q" ) [. N?;(N/u;,“ S(»‘;/A; > NFJ( N/“)_}%ﬂ/% 5] -

and the complete matrix element is, in analogy with S.M. Equ-
ation (56)

Nt l v
L £ HO> = = ll S(NS N°+$ + S, -8,
a-:. > S e fJ: . /°J)
RO - N -S,. . LZ(I.“ SLH"“'S__)
() C(Npe= S Y NN =S )] 72 C e M e 5ok
L( R S R TRV VA p' ] o(;-l-/-‘:)' -
( fJ ‘K(’J 6 u(’) )(fJ fa (’))(F % r ,u M/« ";,S;,.I/»;)
iz S .
(ﬂf 01/7 /‘,L/‘*)U% <S S L (S, /‘%&(gﬂ},g;,z{ws]
IS, S .09 3, M,(M S0, S OCL Tl (- T, )
\ L,-.L{J. (",(LPJ')"/*JI;J.“(L y-- Lf L> %g A S,L/, { 5,. b
jolm B{";@) F}'LQ—) 50“ F—m&f‘) (f') ( fﬁkf Pf,‘:(f
): O%L - /ef‘j'.(f{,-—{»l) _1_—2%] PG(”
: r : (2.33)

We are free to impose the constraint (2. 31) for by OT B 2
closed subshell hence the summation over By and p, need only

run over the incomplete subshells.

Similarly . g ' B4 |
— ) o J _S ._ -cJ
<SHODD = D Z TSN RS S S X0

| N, 0, — — — .. v,

AZ (A7 s, L %7 S T N0 s s -
[Nt S Ty i s M e N s W2
5T Ty S R RO S
<f("7";~c’§uf(é«;) ‘— '/‘NHLIZ L ’;j’%ﬂ“ D L4 L>

g,(‘% ng‘uljfdr (f‘)} (r‘) (/)[&Lr NG 1 (,(.H)

\ft)
gﬂ
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Now

SiLr (r)[ ﬂdH)*ZQJFW

jotr oo [4 4oz Jrie)

from Green's theorem and the boundary conditions
P (0 ‘=0=F.‘(0, P (r)—> 0and P' (r)— 0as r »w,
L(0) 40, P (@) L () 0 as

Hence we may write this matrix element in the form

< W (N < DY ourmpm ,wrm
7 MH /A)j k

L0 Q+d 22 <«
. Yﬂt J—J(-—: +’,‘:‘_’6‘«»

(2.35)

In exact analogy

= = :bLJ obr @’F @) [ ol F ()
<H, (vvoy = ?/{J/MJJ f

[a“ £ (Q +1) 12] (r)

(2.35a)

Also, in more compact notation

<£ J(u(J folf
o=« > f“/J/M/‘/j ('//”/UJ

Jo st i ol g

~ F.
fib( ) JL( )

(2.36)
We have four types of two electron operators to consider
N+ N_
! - + é L L
J —L<J ¢ rN L=|< 5+<("NT>

The matrix element <,'{:‘ﬂh> is given by S.M. equation (41) and

is of the form
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K (2.37)

= ! rijf" Ve, N1
- ) DP..+1(
— T v J S S =S ._g’\ ) (_|J “
fé./_;u.u.}l\ S (N)\; N,\- + ,\/3; -+ )/“‘; ;/,J /"‘))
) i
(J?NPKS " S, L, )
[N(N f‘*)N( i~ PJ/“ )} ,«J H P 2ppe
( J J/sc- ~ —
(f Kf (’LTJ ff ‘fo fJ Lo, Xf S/A;L/.A;lfé«i d/ut.S/“L/“-)
(4 T -

Py Sty 14 %y i Ly )
<5, S - (Sf) 3,:.' IN(;i)"S':’?{_NHS‘
”..‘./L ‘5N X .
IS, SfJ ) %.%N (S/h.)..SJ LSS
A tuL;]L o (LY Lol L)
£ f 73

L, Lgx (L) Tl '(L R t!(fj)L>

(4.t 00 lf0) (L, 6ooU€/Ac)fbrl-u @

ﬂ.;,[/,,. Qb f’/“ f)J‘ j-ﬁ

- = ¢! dr Free P )
it jeS R
o Ryl B

(2. 38)
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Similarly )
(f—ﬂ “f’N+‘> = %ﬁ/&%t Cr it Jcbrk (‘”/_ (r)
Ry (e R f’)/“J> (2.38a)
where
Cr:fi/“}“jt - Tijif:y} NS 8 =5, 80 k
(1) [NP;(N;—sf‘\/;)wﬂ-(%ﬂﬁﬁ\-]1
;‘[,ZEJ(:; ke e, ‘ﬁ S Syt AR 5, T
A N R AN TR TS
<SSl 5) - S Sy - Sk s
K. Sy () Sy b () S5 8D

<Ly /ff;[%-‘é(@)]l,ﬁ- ZJ”.(L DLt
JT, = Ly 0Ly Z; [¢” w L it L >
(4 kool d, 0)(L, euolg ©) S,y

Ly
and
N~
s . — _ﬁ (N-0)(N- z) .
CEy - e
= X L R pioy )
AR o—/u/«J& Pipj oy g f

‘(2.38b)
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where ¢ denotes the subshell containing electron N-2 and
‘) - T SN S S See =S,
GY = LTSN NG St S STy
CLme s roy

o

J

- S _.3>/4}_>[N(,;(Ng-.-8[,;¢43 |
( N/J; ~S(;/u; =~ Sq/u; ) NPJ'(N“J‘ ) %f}”ﬁj X M“)'_S/‘JFJ*;J'JJ ))

: e Ne, T —
z?r SRR A O %-sa.%-z; L5 )
‘ ﬂJ({ oSl ;(f% LA,y ﬂ'xu
fi Cpiopi il /* e f/ P fJ(a {01)
( ) /-J N/J - - =

(_\) ‘j <S;IS;>UZ/;e 001260)

(Lpoelt o)< LD, 8 8y,

Here .1,‘ _ bo be b; by —
AP _ 5 Ny, +Z=Z N,+3 N _+Z N, + Z° N,
>1(>qu N T >1/A.'_t' >’_/’)'1-: >-‘=0‘J'1-|
T
+ SN,
>~1/OJ'+'
<sisy > o= <SS S Sed (505,400 Sl
S -3 L .=
’ : ‘TJ ?N_1(S¢)> g.r),]l:;_l f) g )j“ro(guJ J2N3>

<Ly = <L T4 U]l T

L4, (L) LA L L, kfe HER
LH[& 4 dfi)]"r;"%“j(/«j ) G e

(L;)“
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The variational principle (S.M. equation 73) now becomes

2 [ ?J jd{ FZ“Q)[;-(” ij N Z jﬁ’{"' E’u(")xgz-@)
+ %:M,\ jc(rP s Fo +—@ M fdf PU)F ) —,’ u] =0

CLp‘)uL C(_“s fl

-1/2

for variations 6§ F ~ k / 6R
mn m mn

(M

N is the Lagrange multiplier chosen to ensure the ortho-

cos O

gonality of the continuum and the closed subshells). This

yields the radial equations

Jf (r),ft()_,_‘_)( Oy + E M(xpx("J = O

J X dsdes

(2.39)
where Zij(r) is defined by S.M. equation (74) and the innomo-

geneous term Xij is given by

ij.(f; = = {]}C)- P (f)fLr (-,[ ,((IJ,I)JFZZ}F(r

opg L
g L) 22 P LrF (mP )

“"\—9‘/}[ = + ] ()J‘

+£C‘3 P (r) Ar | (f)P () A/'Pf(h)

e Sl f h f

1 r UJ

[~ 4y 23] 2

x?(f)Q(f/Mf, Fe)+ = C3 P..cs

pepe TOppsE 7
. Py = 69
ey, (fefi o) [de FuorPoe 2 e St ot

(2.40)
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This may be condensed into the form

NS (’J(r) (fﬁ (J o)
°)( /‘”/){//”) f

G el 2 T
-
o
vz Gl R, o
e

/jf/AJ (2.41)
Each of the constituent terms of X are of the form
where g/ 1J(r) is a known function of r and Afj is an unknown

constant depending upon F As before, the radial equations

i
form a system of coupled integro differential equations.

Numerical Method

In order to solve the radial equations we use the method
of Smith, Henry and Burke to generate the independent solu-
tions of the homogeneous system. If there is a total of NV in-
homogeneous terms of the form {} ij(r)Afj, we may generate
NV particular solutions of the innomogeneous system by
setting each of the constants Af. in turn to unity, and the
rest to zero. If 3 h denotes the homogeneous solution
and 3 (ilnh denotes a particular solution of the inhomogeneous
system generated in the above manner,then the required solu-
tlons of the system of the equations are of the form

F = N -+ i{_‘ lq 9
= (2.42)

where the Ao. are defined by the equations

fde Feey Ao
[a{]’ v—Q (( +‘) l%]P (r* )

=
i

Jar Feo

ReCp /g
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Substituting equation (2.42) into these equations yields the

coupled algebraic equations for the Aa

Ny - e
b= fae [For 20350 Rer >t

4 _ f& [3;\(” + c% N, 9:;{”][%5’ L, 0, :L_Z‘vSPX(")
}’f‘//\ [~ N - r -

- v |
/) =aﬂUL3&U+§iﬁ¢3;£”]%“’jﬁfff>

i
p=2pe MY

where p is the number of incomplete subshells. The matching
parameters of the N independent homogeneous solutions may be
determined using the method described by Smith, Henry and
Burke.

The method described above has the advantage that trial

function ¥(x ) has a more general form than that used

1" N+
in S.M. and the Fi' may be varied subject only to the constraints
that they satisfy the same boundary conditions as the exact
solutions and that they are orthogonal to the wave functions

of the closed subshells. However it is clear that the radial
equations obtained for this form of ¥ are consiaerably more
complex then those given in S.M. For example if we retain

the ground state terms of carbon in our trial wave function

for e C scattering and consider the case when the system has
total quantum number.s'L =0, S=3/2, v=o0dd, (2.‘39) will
reduce to a single equation (see SHB II). There is only one
incomplete subshell p = 2p and hence S.M. equation 77 con-

tains two inhomogeneous terms, C:V1 1 (r) and M Pzp(r).

| 2p
Equation (2.39), on the other hand, will contain six inhomo-

geneous terms, one of the form é (r)A)\, one of the form

A d four of the f L A .
I;(r),\‘;n'oro eormzli 8
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2.4: Radial Equations for the Case of an Atomic Syétem
with Configuration 2pd or 3p94

A large number of calculations hav : been made recently
on the scattering of electrons by atomic systems with con-

4 1 since there is

figurations 152 Zs2 2p* or 152 Zs2 Zp6 352 3p
considerable astrophysical interest in the forbidden lines
arising from transitions between the three spectrascopic
terms of many of the atoms and ions having configurations
qu or 3pc‘l for q =2, 3, 4. These lines can be excited by
electron impact.

The eigenfunction expansion method has been used by
Smith, Henry and Burke (S.H.B. 1966), Saraph, Seaton
and Shemming (S.S.S. 1966) and Myerscough and McDowell
(1964) in their calculations. These authors include only
the terms of the ground state configuration in their expan-
sion and impose the constraint 51_‘1‘[ dr Fij(r)Pnp(r) =
S.H.B. and S.S.S. compensate for this restriction by
adding a term Cj¢(2pq+1LSv) to their trial solution as in
S.M. equation (14). A valuable check on the derivation of
the expressions for the potentials is, therefore, a compari-
son of the potentials given'by these authors with those obtained
from the general formulae of S.M. section 3.

If we include 6n1y the terms with configurations

q

2 :
1s Zsz. ..2p " in our expansion the direct potential, equation

(S. M. 48), is

) = TS (NSNS
VL]( ) = Z’C" li s ( ~ ., N> + S)f._' 7‘}0 )[’\'{" j
Nn R —

("I) J Z(( 9({» S‘o L—{: H/e() f () J

(i, f,J)S_ 7 5, Ty Y5l Z
:) (N(f 'v(‘o r )(E EOO{,@I,,O)(I E‘“‘fz (z) <L “—>
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where if I, and I', both correspond to the configurations

2,2 .
s 2s ...np%z- becomes 2? ,pizpj = N\ and APi.=O.

C > =1Is j
Also
b c < - - .
LSUSY = <8 L (8 st S 15T, 4,00 55,5
b Ny
= gS;SJ‘
~ > T Tl eIl el
L L ,LJ>)\ = <L—| 'L‘>~[ >~ >,) >~ [

‘T_‘Z>’()«(I—;) LJ-‘ ﬁlb('f\‘)l_>

so that o s N s o L
v = 2 N> f (£>)S>‘. L; ij'X%S)ML> )('€> ‘S)L>llk‘€)~ S)-L’ )
v BN

Sa ks

D
%()é‘somo )(fjkonfl;oj<z_; L :)t(*“\" )

If X\ refers to a closed subshell
N)\ = 2(22)\ + 1)
the C.F.P.'s =1 v s
LU = < LU )0 LA L] L4 (0 Lty Lpo,

KL Astyo|L L (0)k oD
T d, (o) blodeidel [EoAC0) Lo ek ISy,

= Suo Sug Sug
(For a discussion of the methods used to evaluate the re-

coupling coefficients, see section 4) Therefore the contri-

bution Vij from the closed subshells to Vij’ is

V~- = g"j' >~Z(,mu(2(2£>+‘>3°(\:\‘r)
g ;

If X = np, the incomplete subshell, N)\ =q
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- | h s
<>y = STl et it LT Ao (L)) 6D
e < Tapdept )L [ Tap L (LD E L.
LLje (L)L L)Ly ety L2
- [BQIJ'H)(ZL;Jrl)@LJ'JHJ']J’:L)(quf’—Jl-‘,Lj’)

by C L ¢ LA L [J)
so that L
W(aXNr) S; 0), _3(2,(-4-1)
vi\g(‘ﬂ) = Sj[z(_‘ﬁz (2/(%1-1)\)()\ :]+ < SJ !
(2L, *“LLL"‘“)] 2((&0-0110 (1-&%!1;0)

LJ(L&LILL);_ (?‘v§1_ f/DHSz_)
(MgL ISTV’sl_)LJ(L/L /L/)(tjk(n np o
- S Efz(zgw)abwf)],rg 3c}[m e

- X cladea

(7—L ﬁ,@.L f—()] Z(Q&-ﬂ) "Cl1oolt oy L; ;j bolto)
LJ(JZL L&)s’(r'}SL KFA"SL)(TVSLIK?Q'ST—)
(~l) - j+ i g | j,Lf)jt(ﬂPnr,r)

which is exactly that obtained by Smith, Henry and Burke

equation (19).

The exchange term, equation (S.M. 41) is (dropping the
subscript {)

Cos AP
NoF = ST SOV NSas =5 LN T 5=
tJF) z > npr O
AT f I’} "“__b
E{Zﬁ_f{(ﬁ% 5.0 114, sL DU 50 10Ty

L8:05:>° zf(ﬁf;kooujo){llﬁ Eoo IR oY L LiiIL;Y
Yelecfie ) B

where as before
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?:'_’ 5 L PBR e e
<5550 = <5 S h ]y sk SIS S 08 S
LojL>E = <’L—,-<E>\[l't(l>\)}L:~ Lol
Sd T s J . .
JT, D Do) Ll 4 =0
The contribution for the closed shells

WoF = = —2QL+1)<sis;T Z {toelkjo)
")\) > Loy el

(L, too Mio)< L: |L\;>‘i (th\ F:r Y P

where
<s8;55 = <% L (0)s, zw,515>‘(iﬁ+.(°)gjig>gss
=4S¢

J —
ZLiyS = <L e uoonliL e Lo L ghyS,

= (Z-(L'f—\)-’ SL;LJ' g/("()

hence

0iF = =Sy 22 U Jhteoltoy g B R0

The contribution from the incomplete np shell includes the

recoupling coefficients

. NEOL = A A - .y
<S"ISJ >‘r - < g”f’ ”IL—N(S“) ZAA-)-lS’ Sn'p/L (gJ ) ’7-Ng>

TN+t

T B
_ BZS;+I§(2SJ'+():{LU(§J'J{{S;‘S.\PS)

<'L;JLJ*>fr = 42,,1, ,IJ'H/,,‘,,)LJ;L]/_n edocl., 3L 6JL>
. Loy 1oL
= ZH'ZLH-‘)@LJ‘H)]‘— Le A
LJ' fl:\ L

and the complete exchange term is
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F;, ~.— -S| = <M>*">(2> 6oou¢0)l~3£>‘£}r)&“]

) >~C(—cr)u’/~ t 21(1"
' L
- rlc} IC)_L:,F\ )(ZL'+\)(ZS[+ i)@S'ﬂ—O(Z/e;# I)Q ‘?_ij\ sz_

N(S

(nfq'LS Hnrq'l—s)(f\r L S i n AY'EE)

= L
L)(S,LLS ss)z@““) (}[Oolé°>(f L 2. )
{

( l/ﬁc OO,‘To)"Jt(hf, J; )Pr\f( ) J L
which also agrees exactly with S.H.B. equation (22).

o
It is useful to note that
(1) any recoupling coefficients of the form
T S.)- Sod (38>
<3 Srz(S) Sok (So) SIS S5 (500 .
= |

(2) if all subshells except the outermost are closed

VLIS:LZS = "'Lb-l =0, Lsz

the direct type recoupling coefficient
LT, Tp i ea,)] Lo Todo () LT Tpkp(lp) CobdeUe Yo LD
for p = ¢ and p # b equals
<L([ﬂf,k(Qf)]o Lode Lo | Ep dp(0) B e 2 (e )
o KT Lok Up) 01T, £p(0) k0> < I TA (LY b | Do kleldedls>

= gKo
for p = ¢ = b this equals

LT Lkl 4, L, rf(,lfc}f,,Jk_ﬁ(»Mp)Lp>
= <T, QrV(ﬂf)L ITp Lp(Lp O LD
<u k(LSO f,zuf ke (Lo Lp 2
- (2(){,-}—()[(21_ +'>(7/_ +13)% L\)(Lf L
x w(r_‘f,lc Lll,):_(,ﬂf)

;K. ijf)

(3) the exchange type recoupling coefficients for p = ¢ p £b

are
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<SS 4 (S Sak (S-S5 3,4 (S,) S L (5085
= E L S L S - = =
( (p 1“)(0)50,__1’-"1( )STI%(:J{I\h}l(O) QU-‘%_N(SU—)S'J\>
< S k0
| ¢ S; S,
= 3
and

LT Tl Uy T TN LT T [l 0] Lo () 1)

Ny

= <-—Cr»(“’" k(ff,)ol—-aﬂ

L Lrlr—r‘k Qr (gfj O—E:G ‘Q: L¢>

= <KTpkhe ()01 Tp kU)o 0% e 01 = 147

L A (YT A Ly | A S (0 Tt N LD
. - . 2
- (2!2{)-4-1)(Zew-fl(lva-i)}_N(L-rkOJr, Lot {r Lo o

Co 2¢ Lo

~1

(4) the exchange type recoupling coefficients for p = ¢ = b
are

T

= 3 0@SI+n]T W

and

= v - Nl = v T NL
LTl U E 4L | L A, kLA, ;D

T T3 X
- @urnleLiroRT 0]

The terms linear in C are given by (S.M. equation 53a)

Lo - Z ek {<ainpes o <z

where p runs over all the incomplete subshells of the config-

)
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urations included in the cigenfunction expansion. The con-
figurations considered in this section have an incomplete

outer np subshell, hence only the term p = np will appear in

the above sum. We have, (S M. 56) b/* '\7>
4:H,> = £>7I— S(N N/“ Q /,)N -,_( l) -f-o—l
[ C
(z;‘u L s [ R [RE s

() <S‘~ SLk SIS, SELElYy S
<Lk LT L Ry L Sy,

The configuration of @H differs from that of \If(l"i) only by
an additional electron in the np subshell, hence the only non-

zerotermian‘iSp:np. HereNP:q+1’ psz.' S}; = S,

L:j = 1., S:) = Si and L; = Li since all other subshells are

closed. The expression for < H > therefore reduces to
< H/ D> _(@H)’-(?W"'SLBTWSL)&L( L)
[%;%VLZ:%]& ()<S, - SiLSIS, - SeES D>
<L, L), A S,Q-J’

There is no recoupling of the angular momenta, hence the re-

cow ling coefficients are both unity' and
, : \ /
<H> s o (s s )fiv é[’é»“?
R}

Also S. M. (60) is ‘ :
LL> = = TSNS N{+s .- gw B[N Ny (No -

P 2 A
(ﬁubf’égw(’_.) (1-€%,, )Z (f,,g o Spi L ”f‘/;(—r’ D)
f/" ) N,;;“_ —_ -

( 7= a((}lf‘ (‘/» /%u )(f f,,— L.r ”[d‘ 0:,-_ S Lc/-\,)

1E

=)

-2 ]

fed)

<8 ;s,y Z Ry (p. F z7?}(f;éc<>/ﬂ 0)({etoo]L,0)

7
<ol
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Here ¢ = np and P = where p runs over all subshells

P :

_ 25 B N

ls‘. HP‘ AP = >“<':(’,,r{ > él(/*ﬁ. = .
L

and§ -5, T -1, 8" -5, 1’-1. For €= 725
o 1 o 1 o

LS NS = <3S, (.,_N(S) S KPR S G T B

L ror-

10> = <L Z([Qfé(ff)]LF"LJL L, --Lf,_ﬁf,(Lf‘)-- Lo b8, (4 >
This is exactly the orbital recoupling coefficient that appears
in the direct potential, with 1@ replacing JZJ. and L. replacing
o

LJ.. For € =1, 7=n/>,5=f

<scsp = <5, L8y Sid
<oi1o.> = <L, Lf,[fzvt(Qf)JL(,- L;EQL]E--"E(,);UR;(Q{,)]L( LA L

$T, 5L (S)-sih 5>

£ Ty (

These recoupling coefficients are exactly those which appear
in the exchange term since the order of coupling is the same
in both sets of coefficients. We note that the expression of
a recoupling coefficient in terms of Racah coefficients de-
pends only on the order of coupling of the vectors and is
therefore independent of the subshells to which the vectors
belong. In this example, the vector lj of the exchange term
and the vector 20_ of the LC term both have the property of
being the last vector to be coupled under the prescribed
coupling scheme.

Using the expressions derived for the direct and exchange

recoupling coefficients we obtain
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<> = :_;j’cuk(;ym yh N,f (p¥*Ls ;”‘Y LIS R(pF, pop)
S L = eerorUpronie ey Ret Ry p)] Sy
. .

L
2

Fq (s 2R s RSO S pTL,)

L's'L, s

1
(foy/_;S;};f"f"L} S, ) Ss;s, C][(ZL/'/—I)(ZL;#-I )]z
GI)L;A—L#[_H—L_' Z(Zt%c)q(”o@“'b)&
t

WL, LeywoQreju, L, e) Qe(“rﬁm"(’“?)%ﬂ

If we write L, = Ckfdr Vi(r) Fﬂ(r) then collecting the

il, k
various terms together gives

e =t 8 {(fm' es [ preso [ g2
. > 2024,4+) (pp,rYP, ¢y —L &
P"f()+‘adauL LY. pacd By : Z
CLEH)—,‘ (,(’f, looiEO)zi—)C(f np.e) Pr(,'”)]

"‘7‘} IS (f[”'/_sI}'fcyl_’s')[(?Z.'+J)(U_;—s—))t]'/l

L’s’

Z TR s s, (TS B LS,

“:.Sz_

S: s’

S er> (Moo oy wCIL 1L LE)

£
WOIL! L, Lok )Ue<”f ap,n ) Pnfcm}
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This differs from S.H.B. equation (24) because their
'virtual capture' term <I>(pq+1LS1r) is not properly antisym-
metric with respect to interchange of the 'additional' electron
N+1 with a target electron.

+1
To demonstrate this we take @(pm LStw) to be of the form

_@/;(f"'“Lsn = mingHT “P"SZ (4 ™" hsm)
where q runs over only those dlstrlbutlons which assign
label N+1 to the outer np subshell. With this restriction the
normalisation factor becomes

NN = NL/TTI )

where Ni is the number of electrons in subshell\ in the ion
configuration ls2 252. . .npm. With this definition of & ,
S.M. equation (54a) gives | | "

<H > :(Nw)iﬂ’”(l\’;)"”)('\’fﬂan(Ny) .

(nfnﬂ Sn'; LA li r\I:'mS,,,Lr L:\r )J‘(/(r ELU) (—%%‘+%‘_$ )

1 <5, Shy & 1585 L S

S Uk
<T,~L;YALL~L/L"-LW, LY S4:4
As before /N(N ) = ND o N . and the normalisation factors
(N
reduce to -“(N"‘ '\( )
. . i P
TN:HTN;!) 7 Nt = (N+.1) ™
(e )" S == (
N1 N H 0\\>'
>

Hence

ZH> = (N+ 1Y% S (FM“LSUf”LﬁaJJA’FJ )

(%£+L~i)?0)
L A - (2.44a)
Similarly the factor [ Nf’ Nf/ﬁ( Ne- ,o,.r B] in S.M. equation

(58), which for this case equals (rn+1)’- N ) " is replaced by
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(N+1) N. . Also, since we have restricted label N+1 to

the outer r’:p subshell, only the terms corresponding to € = ©
in S.M. (58) will appear. The matrix element in S.M. (58)
will be unaltered as we have merely restricted the range
values qp‘ and may be simplified in exactly the same manner
as before to give

LyE s 2wy (RTTILS )y p LI DG,
<":’_‘> = (N ‘) ?C/l____‘j‘,_vl r ? T 1\'

R"(f FLL()"F> -+ CI(N‘*"Y‘{W‘ LZ"S' gS;s:
(’»"“”Ls!f f"‘L’s')[(?_L’-+-IJ(ZL;-J~‘Jj’g

f_ (_‘)LL‘}-L +/_’.I‘ L\_( fr\,‘L,S//{?W“ILLSL)
L, S,

¢ prLosl)
NI RN Led (i fuy, Ly®)d

Re(rp o np 7p ) S

Jpm LSS yS@er ) (1001t0)”
== €

(2.44Db)

Comparing equations (2.44a) and (2.44b) with S.H.B.
equation (24) we see that the use of this incorrect form of
@(pm-HLSn) will lead to the expression derived by S.H.B.
Comparison of S.M. equations (62a), (67) and (72) with
S.H.B. equations (25) and (26) shows that a sifnilar dis-
crepancy arises in the teI‘II.lS quadratic in C

If we consider.the particular case of the matrix element
<<I>|HN|<I>> (S.M. equ;tion 72) for @ = @(Zp?’, 4SO) and prop-

" erly antis ymmetric we obtain
' o ) T 3
KEWal@> = L [25 27y 70 42 E(k 2730557
1 S
b2 E (12223, 357 ) # 28 (1572 7,557

+ 3E(C Islaﬁzrfpe-)
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where E(ls Zs2 2p3, 3SO) is the energy of the excited target
state 1s 252 2p3, 3SO, etc. These highly excited levels of
the target may not be known accurately and as this diffi-
culty will arise for most complex targets, the expression
given in equation 2.21 of this thesis is more convenient
for numerical calculations. The reduction of the C‘2 term
for @(anHLSn) using this expression is very similar to
the reduction of the 'C' term described above. For &
having configuration ls2 ZsZ Zpqul or ls2 Zs2 Zp6 332 3pq+1,

the matrix element of Hl reduces immediately to
np "
<Y = oz AN A P[4 S LU ez fpe

>=Ilg

P

In the expression for <;1:> we have P = pj, o, = o—J, and the
following terms will appear in the summations over p, ¢ and
k.

(1) p=c =1s...npand k = 0. All the various Clebsch-
Gordan, and recoupling coefficients are unity therefore these

terms contribute

(2) p>o, k=0, €=¢ . Again all the Clebsch-Gordan and
recoupling coefficients are unity (the recoupling coefficients
for € =¢’ aré the direct type) and the summation over the
C.F.P.'s gives unity. Also the contributions from €= € = o

and € =€ '=| are equal hence the complete contribution is

= N, No- R(p o.po

F>

(3) p> o, p and o both s subshells, € ¥+ €’ . For these

terms the only allowed value of k is k = 0. The recoupling
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1
5 and all
other coefficients are unity. These terms therefore contri-

coefficients are of the exchange type. <Silsj> =

bute
= —L N, Ne- R _(p 7o=p )
RN P

(4) p> o p = psubshell, ¢ = S subshell or vice versa, € ¥+ & /
1 1
Here k =1 <Silsj> == <Lile> =3 hence the contribution

2’
is
= — L N, N R (p7.=p )
fffs.va,/\-vu 6 f 'f r
= = s skl

(5) p > ¢ both p subshells, € #¢& ‘. Such a term will only

occur for the configurations ls‘2 Zs2 2p6 352 3pq+1

hence
p = 3p, o = 2p. Since the 2p subshell is closed the recoupling

coefficients will be independent of k and as for case 4

1 . 1
<S.Is.y ==, <L.IL.> ==. The contribution from this term
i) 2 i 3
is therefore

1 < 2

- 2 3

5 NopN3 o 2 ( 1k 00]10) Rk(zp p 3p 2p)

(6) p=c =np, k=2 (€=¢c’). Substituting the numerical
values of the Clebsch-Gordan coefficient and using the ex-
pression for the orbital recoupling coefficient that we derived

earlier we obtain.

3c),(c),+t) = 2‘:(23‘&{“‘—53 1[’%"\-C§)
——“5 ‘,‘JL_S . -\
% A Ty (LY LS LS

(Zr Lsf}?r z_J&) f f L

=
(_1F°PZJ,§ ffzr’"'zf) J(2L+ )(Ltd-f\)j

(L lLez, Lyl bz, Ro(npnprpnp )



Collecting together the various terms we obtain

n'P |
< d I g>=-L = Nfcupm[& XD

> =

HT)'
22 1P () = L5 N (N = ROy 33 )
o~ N

i
"’_Z’——/ NfN“—Q"({)G—FQ—)
f’>°‘=l5

= N
- f>9.,s suls hells lQo(‘o s
B = N = koo lto) R (pPoep )

£ = TS““‘“"@LL Ne K 4 ! ETTp
+ 24(q+1) = N(z%_?M(LSli'er*Z;S‘)

< Z;’EJ'ZSS

C'Z'G)DHALS”ZI,"‘L ><-—2T‘1L SJSlro"'LS)
( 1F"Y ZJ'S“;; 2pT TS0 Lob [l +0RT; 0]

Ww( L Lop Lz yw(lot Ly (A )Qlﬂnf,ﬂfhfﬂp)
(9 J I} 4
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i

SECTION 3: THE PHOTOIQNISATION CROSS SECTIONS

In this section we derive expressions for the total and dif-
ferential photoionisation cross sections of a general atomic
system using the Hartree~-Fock wave functions discussed in
section 2 as our approximate wave functions for the system.

Fano (1961) has shown, using configuration interaction
theory, that the autoionising levels of the target atom will
manifest themselves as asymmetric peaks in the absorption
spectra, and has obtained a parameterisation of the line
shapes.in terms of quantities directly related to the matrix
elements of the energy and electric dipole moments. These
results have been recently derived by Shore (1967) from
scattering theory. The ability of the eigenfunction expansion
method to describe autoionising states as well as the con-

J
tinnum states of the target,supports our choice of wave

functions calculated using{chis method as final state wave
functions. |

In this section we shall make the 'relaxed core' approxi-
mation. That is, we take our initial state wave function
®(LSt) to be constructed from the bound state Hartree Fock
functions for the unperturbed target atom but make an ex-
pansion of our final state wave function ¥ in terms of un-
perturbed wave functions of the residual ion. As noted
earlier such an expansion neglects the effect of the free

electron on the ionic field. An alternative approximation,

proposed by Bates (1946) is to assume that the radial wave

Al
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functions of the final ion state are the same as those of the
initial state. This 'unrelaxed core' approximation implies
that, if exchange effects are neglected, the ejected electron
would move in the same field both before and immediately
after ionisation takes place. It also has the advantage of
simplifying the expressions for the cross sections as both
initial and final wave functions are constructed from the same
bound state orbitals. In processes where an electron is
ejected from the outermost subshell this approximation has
been found to give good results especially at higher electron
energies. However Bagus (1965) has shown that this approxi-
mation may not be valid for inner shell excitations. |

In order to achieve the greatest generality we shall derive
expressions for the cross sections assuming a relaxed core.
The expressions for the case of an unrelaxed core may be
obtained from these directly by substituting the alternative

set of Hartree Fock orbitals.

3.1 Total Cross section

We consider an unpolarised beam of photons with energy
hv << rnc2 incident on an atomic system having N+1 electrons
and a nuclear charge Z. The method that we use in this
section is a generalisation of that used by Henry and Lipsky
(1967) to derive expressions for the cross section for ion-
isation of an electron from the 2p subshell ofvan atomic &)
system having configuration ls2 Zsz 2pq+1. These authors . | ;;KW
have calculated photoionisation cross sections for Ne taking
into account the possibility of ejection of a 2s electron and ¢

have obtained good agreement with experiment. Encouraging

results have also been obtained by Conneely, Lipsky and
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Smith (1967) for the photoionisation of Si and Ar.
If we first consider the process in which a photon, having
propagation vector k and polarisation direction j, is absorbed,

the Schroedinger equétion for the system is, (Heitler § 17)

[HNTI * L‘f—’i\ ?%H n.VN"' ‘E—jg: ©

me (3.0)

to first order in A, where H is the N+l particle Hamiltonian

+
given in equation (2.1) and él\ilslthe vector potential of a
classical electromagnetic wave having propagation vector k

and polarisation vector j. For low energy photons (k2 = 0(l)ryd)
A is constant to good approximation and for a flux of one photon

LTk

>/

2 ' 2
pPer cm per sec. If” =
For low energy photons we may regard i;%‘fA-V as a small
perturbation on the initial state wave function ®. If the electron
is ejected in channel I and the final state wave function is E(I‘),

then, to first order the cross section is

—~ . (N+( 2
(e = MR o) £ %122]
E mle oy - ~ ==
(3.1)
where g(I‘) is the solution of the equation [HN+1 -EJ¥ = 0,

normalised per unit energy range and whose asymptotic form
has an outgoing spherical wave in channel T and ingoing waves
in all channels. (Breit and Bethe 1954, Mott and Massey,

Ch. XXI).

As our approximate wave function ’\f(rj) we take

T e - " =
()= o & 0TS R 2P 0

M

(N+l)‘<' =0 re e
where :
0- -8
~ > i6: + -
Fo. ~ A/.,- ( SL' e — S e )
9 ke =) (3.2)
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(for a discussion of the normalisation of F see Landau and
Lifshitz §33).
+
Sij is the adjoint of the scattering matrix Sij and all other

quantities are defined as in S.M. In terms of the real

functions
Coiry ~ 2 ]S w O + R s 6,
hj() kL}*L%\)S 3 ]
=~ 5 _x/:(r“)
()= YWs = ()n.Q)j
N1 Nti-p
C o2 | i) Z
b/‘/Tr (Nﬂ)»%( 2 ("'“'“~

(3.3)
In this section we shall aséume that the Fij are chosen
to be orthogonal only to the complete subshells of the ion.
That is,_ we take \I/(I‘j) to be defined as in equation (2.30)
rather than the form used by S.M. In the unrelaxed core
approximation, the use of continuum functions Fij’ which
are orthogonal to all the subshells of the ion, has no ad-
vantagg,.7rather, the introduction of the "® term" would
make the expressions for the cross sections considerably
more complicated. If these functions are used, we must
replace |
YT)byT(r)+ = cto (LS.m)
J J A A
in equation (3.1). The additional matrix elements which
arise may be evaluated in exactly the same way as those
described below.
To obtain the total cross section for the process in which

a photon is absorbed and an electron ejected we must sum
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over all open channels I' and average over the initial spin
and angular momentum directions of the target atom and over
the polarisations of the photon. If we chose our coordinate

frame such that the photons travel along the Z axis, jZ = 0.

Hence
o = 2T = <3 IEV ) s>
mtc v 2.(11_1—1)@.51—\);;.:1': (3.4a) Re L CCL (l)}
where »
| Y ik M S
Vm = /(1(:[:?”%« bi)m3

ih
Applying the commutation relation [r, H] = IEP to (3.4a)

gives the "dipole length" form of the cross section

o - B3y S J<g_(r)l(_t f! %(}-sTDNl

- T MM
/u:rl
(3.4b)
where w = 2(2L + 1)(2s + 1)
| . .
f‘o.:tr = 72 ('f“xaL'LUx)
7
_ (4= r = |
- (—5) Mot l)n:l(r"‘) fa Joy

The two expressions, (3.4a) and (3.4b) will only be equi-

valent if exact wave functions ¥ and & are used. In any cal-

culation one must necessarily use approximate wave functions

which will give considerabiy differen’-c values to Ty and o1

(We note that the error due to the approximate wave functions

will in general be large in comparison with the error due to

the approximations made in deriving equations (3.4).) Com-

paring equations (3.4a) and (3.4b) we see that equation (3.4b)

may be expected to give most reliable results for wave func- WoHY
tions accurate for large r and that equation (3.4a) may be

expected to give better results for wave functions accurate

at small r. Chandrasekhar (1945) has made a detailed



61.

comparison of the photoionisation cross sections of H ob-
tained using the dipole length, velocity and acceleration
formulae (the latter expresses the crcss section in terms

of the matrix elements of I?;J). Using the most accurate

wave functions available, he found that the results given by
the three formula were almost identical, but for less accurate

wave functions the dipole length formula gave the best results. n»7

Thto
The experience of other workers also suggest that the dipole

velocity formula is the most reliable. However it is useful
to compare the cross sections given by the dipole length
formula with those given by the velocity formula as this
will give some measure of the inaccuracy of the wave func-
tions used.

Substituting (3.3) into (3.4a) and (3.4b) gives

= AMER = = <% (= V/“ F (T
Vo T o MM, oy
/A:t\ |
- Nt /"“ . >
453(1.5,‘1”%2:' V lEE(rJ > —;"i:(H_LR)‘:K(lALP\)KJ.

(3.52)
N+t
9, = ST ve £ 7‘((\“- )| = . | cZ-(LS T )>
< Mo grx F',‘f"- o4 =
A= NQ—;J * > I
£ P (LsTD !M_z‘r,,g* ]51134(1}')> T (iR, L1=iR )y
(3. 5b)

We assume that the radial functions Fij(r) and the corres-
ponding R matrix have been calculated, which leaves us with
the task of simplifying the matrix elements which appear in the

expressions for ¢
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L . N+t M . ] N-i»l( )N-H-:}; -
<E Y= VallsT D = dnys Piﬂ“* (N

- ) NT .
e Ly X 2Rl | 2 VS BTy
q/i« e =

From the symmetry of the operator and antisymmetry of

the wave functions, each distribution 4 will contribute equally

hence , .
N + o /|’: l: 4_
L ()= A FasTY> = (e b’;(w> )]
K v o = | -
N+
< \{)u(c;' >—( E‘\N-f—-u )sz(f’er)}f .\7::\ , ? (LST)>
i T O
. L ‘ /\
_ (NeyE [N ]lz(ﬂ)?‘* P AR
B MENF) 9

Rl | 2 V0| p (5 £ST DD

YN

(3.6)
where q, is the distribution corresponding to normal order

and 7] (Nk‘1>

N+1 electrons of the target atom.

) is the number of possible distributions q of the

Further simplification of the genei‘al expression for the
cross sections is made difficult by the lack of orthogonality
of the ion Hartree Fock functions and é.tom Hartree Fock
functions. However for a particular atomic system one may '
simplify the cross section formulae using the orthogonality
properties of the angular and spin functions. This is demon-
strated in section 3.3 where we derive expressions for the
photoionisation cross sections for an atomic system having

configuration ls2 Zsz 2pq+1 .
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An expression for the angular integrais of the dipole

length formula is given in section (4), viz

< L IV%<?K>1L¢;> = 2 U o], 00

4

(L(/s | My»/AILkMK ><LLV.’L¢>

(3.9a)
where Py is the subshell containing electron a in qOI‘i and
pq) is the subshell containing a in @(qu)Sq)Trq)). < Lik|L¢>
is an angular momentum recoupling coefficient which, for
the case where q, and q include the same distribution q of
spectator electrons 1+++a-1,a+l°**N+l equals, (see equation
4.11)
<E|..T{,_.[I{,%1(ﬂﬂ)]1_f;--- Lo 1T By by L) by 1 a7
(3.10)
if q, an"c_l q do not include the same distribution of spectators,
then since q, corresponds to normal order, < Lile¢> may
be expressed in the form
Slallp> = Z KLy lTyd<Tglly> |
L (3.11)
where the < E¢|L¢> are the recoupling coefficients needed to .
recouple the angular momenta of the spectator electrons from
the order of coupling prescribed by q to the normal order of
coupling and < LikIL¢> is a recoupling coefficient of the form
given by (3.10). For example, if q, assigns electron B to sub-
shell mand electron y to subshell ¢, and if q differs from q,
only by assigning B to ¢’ and y to sthen (for 8,y £a)
<T¢ 1L75> — <’[_‘ : Z/ue/f)(z/,) - Za_,(: (T, ) & /
| T, - La (:U{i)' -T_TX;(Li) LD gg {,-

(3.11a)
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and the summation in (3.11) runs over all possible values
of the intermediate couplings 'ijp- . 'i(r.

The corresponding angular integral which occurs in the
dipole velocity formula can be obtained directly from (3.9a)

using the Wigner Eckhart theorem and is

<Luc 19l 7 = (LA ,,) (26+1)*
(L¢IH¢/MILRMK)<L;,‘JL¢7

(3.9b)

where

(f(;f/\'f“ﬁ) = QQ%‘* ‘)}L(f{d 00 MHO )[ d o+ Lo fL(o,;(_Q@L‘*;);X (HJ

(see for example Rotenburg, et. al.)
For a given term in i we may classify the distributions q
according to the subshell, p¢ to which they assign the particular

ok
label a. For this value a we may replace /-c; by Z Z where p¢

runs over all the subshells to which a may be ass1;i1eqc,1°r that is,
z_iJl}_occupied subshells in fI?, and ?q-a runs over all possible distri-
butions of the labels 1*°+a-1, a+l,<++N+l amongst the occupied
subshells with 1’\})\> 0. (The subshell wave functions aire properly
antisymmetric and normalised, hence we sum over distributions
amongst subshells rather than permutations of the labels 1:++a-1,
atl,***,N+1). We note that the subshell, Ps containing a in
)L‘L(C}, [; X%...% ,and the corresponding distribution of spectators are

uniquely defined by 9, Hence, equation (3.6) may be written in

the form

<TNE V’“JIL SO0 = (LglHyp L)

I“ (N l\/l (N"")] % (_,)P‘y(jﬂoouﬂ )
'T,H ):Ssﬂéﬂj ORI A (n )712 CFOCud CPAE)

K L,ﬁ

e <) Sp TP b, | L 7
< B ) 1Ry M(Q)) (3.12)

N,

e I’YQ
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where q denotes the distribution of spectators corresponding to q
a
P; is the subshell containing electron a in q,

is the subshell containing a in distribution g

Pé
)\ip is the subshell containing B in q, v

)\q)ﬁ is the subshell containing § in q

We note that for f = N+l

)

8 _
Pxi(rp) = Four N

£S.q IS, p,q) is a spin recoupling coefficient analogous to (3.11a) oo e
10 ¢ ¢ a — - (’"'(J-.n o~
3,&; t‘%\‘m',

(Liqo|L ¢q > is an orbital recoupling coefficient of the type given
in (3.11) '
a . £, H)-f-(ﬁ-ﬂ)]
R is the operator [-~ + = + P
v . P df“ e "va‘w—

CFP(ik) denotes the fractional parentage expansion
necessary to separate from tl)k(l"i), the one electron orbitals
occupied by electrons whose angular momenta are recoupled
in <8.q [S . p q)q > and <L.q ILtbpchL )+ Thatis, we must
separate out electron a and those electrons B=1.--at+l,a- 1
*+N+1 for Which')\iﬁ £ )\¢[3, from the remaining spectat‘or

electrons. In the example given in equation (3.11a)

S CFPLk) = £ ( "%, LJ{[’ 5.0 )
*‘t;h(f (P -7 f f r F f /’ f‘ (2,

”/“ /“/”/)u/’“#o‘/“; (L o5, 1 J/L “ele S,

From the antisymmetry of the subshell wave functions, we
see that each label a, assigned by a, to the same particular sub-
shell Py will contribute equally to f . Hence we need only evalu\—/
ate the matrix element for one value( ¢ pe and replace 0(2 by ? Nfb

Equation (3. 12) becomes
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N+ | .
<9_—’y(ﬂ3 l:‘?—_“ V::l g_)-(L4)S¢T¢ 3> = (L¢'M¢/AJLKMK3

. = P, o< |. o
fT(NJ'-B/'j‘—(Nf‘. VT8 = Npsenf Uy es 14,0

w4t (“‘Dﬁ C}/u(r.

n

. A 3 = CFPLKYCFA (L )
) <

/L

<t R <L Ly T 7

< P{,J(r«os | R P(,%(v;é s >

- (3.122)
where a_ = ( 'fi{": )+4 is the label of the first electron that has Y
been assigned to subshell P; by 9,
We note that, in order that the Clebsch-Gordan coefficient
( [ﬁf 00| QF*PO) be non-zero, we must have 6(#1 ‘—’,Qf;_t ] . Hence

S/
the only non-zero terms in ;E‘; will be from these p¢ whose orbital

angular momenta satisfy this condition. The Kronecker delta,
819 2° implies that the matrix element will be non-zero only if
MWhrg
¥ and & contain the same number of spectator s electrons, the
D Tn (ﬂfor\ \,ao_r\n
same number of spectator p electrons, etc. Similarly the only
non-zero contributions to & will be from these Ed which assign
. -
the spectator s electrons of q, to s subshells in &, the spectator
p electrons to p subshells, etc. Hence we may replace ;4; by
“ﬂ
—s =3 _ where q° runs over all distributions of the labels,
Fo Gl a .
assigned by q, to the spectator s electrons, amongst the s orbitals
of & having 'ﬁ)\ > 0, and Zfar s aad -+« denote the corresponding
distributions of p, d, «** electrons.

If we choose ¥(I') to be defined as in S.M. equation 15, we

must replace ¥(I') by ¥(TI') + = C“@H(]-S‘IT) in equations (3.4a) and
Y- ,
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(3.4b). Making this substitution we obtain

~ Nv—l
- = 2wtk =T { | < [E( | ]{(L:ﬂ)7[
v Mt v el M Mg rn . -
m = Lt | N
.1,2((&2('“<$Q“)l<, u,\li(l_<4|)>
/7 Mo L
c < Lesmy | Z VI E GO
—_— —_— N+ "
2l LEWSTolz VL s 7

S~

L T@sT 2 VT T (ST >>j

and an analogous expression for ¢_ .

The evaluation of the matrix elements <—CE ] ol o., | a—>
may be carried out in exactly the same way as the evaluation of
the matrix elements described above. We first express the ma-

trix element in terms of unsymmetrised wave functlons

< ;é/&(LkSk . )/ /Z(LS:{)) NINTHTE 5(_” ‘y,»
N+{(

,os
<j/)“ (‘L xr 3/; V:[_q_TLan>

where 77 (N)\p‘) is the number of distributions qp of the N+1 electrons
amongst the occupied subshells of @H. The ope‘rator is symmetric
and ®(LSw) is antisymmetric under interchange of any pair of labels,
hence

<I(Ls‘r)/2 v {I(LSM)) = PN )
< $q, L,ﬁﬁns TNFCTS

[ (v )] s—(uf"v<q’ G, LS T s] V | (q LST >
7 N> 4

v ‘)1: N .
Ff(”* ) ] S "L G LTI VI Tl Lo

TTNF OS]
t;(N,\_

il
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¢ u is constructed from antisymmetric subshell wave functions
in exactly the same way as LIJu. Here electron N+1 is assigned

by q, to the outermost subshell bp. of cbr!. Comparing the above
expression with equation (3.6), we see that this matrix element
may be reduced to a form exactly analogous to equation (3. IZaj
with Py N+l ).

(r ) =P, (r
n N+1 bIJ- N+l

The expression for the matrix element

<Y (N2 &) gusm

may be obtained directly from (3.12), merely by replacing RVQ
a
by RL =T -
We may write (3. 12a) in the abbreviated form

<4 r;}zv [TusTYY = (LIMopm LMD C

where Gik is independent ci the quantum numbers MLMS’ p and

Mk. - Similarly

LT £ VT CLAML wf Lich, ) Gix
Hence equation (3. 5a) becomes

o = 2Terht = E (LIM_pl LM ) GL;LC ,l)Jk

v M v e MM T mo= 2 QFp
2T etk & (2L (L, LH M|t )Z . ¢* n
= w‘::vw HekgF /xzi:l 3 ]/‘" ‘J e i J
1 2

where A, = ; -
ij ( 1+1R)ik( 1 —1R)J_k

performing the summation over M, we obtain

k
< 77_&%; s (2L,+1) 2 6. & i QQJK
'3”\ CYVis H F/Ztl r"rJ
k
: 2T kT Z‘ CANER IR G !)LJ
3 m c_u(ZL‘f’f)r rrJ

(3.133a)
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=3 .
where [/ denotes summation over all quantum numbers

needed to describe I' except Mk. Similarly (3.5b) becomes

TL_ = QT\_z 1% Q,l i HLk H\;: /‘)‘_J*
2 e CzbL+1y Wy (3.13b)
a a
is obtained b i i .
where Hik is obtained by replacing RV by RL in Gik

3.2 Differential Cross Section

Recently experiments have been performed to determine
the angular distribution of electrons ejected in the photoion-
isation of rare gas atoms (Berkowitz and Ehrhardt 1966),
Vilesov et al. 1967). Lipsky (1967) has derived an expres-
sion for the differential cross section for the ejection of
one of the outer p electrons of a rare gas atom, within the
framework of the close coupling ‘approximation. It is of
interest therefore to extend this result to the photoionisa-
tion of a general atomic system.

The differential cross section for the absorption of a
photon travelling along the Z axis with energy hy resulting
in the ejection of an electron with momentum bk is, in the
dipole velocity approximation

do (5> = ek = I(ff(lg) = vild D> jzo('(:(E)

MCvis M MY ot =1

s, M, M =+
ke M Moy /2 (3.14)

where dp(E) is the number of final states T per unit interval
of electron energy with the electron ejected in a direction
which lies within a cone of infinitesimal solid angle df? with
axis along k. If ¥ is normalised per unit energy range

OL(}(E‘) - lf(%g E‘ - k’n" (Heitler §21)
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-~ x cker = cler
$k)~ LV(ZYSKMS,\XW‘)V‘L[@ +1(kﬂ)¢__ ]

.

Y = {QTLTMTST}, a,I denotes the other quantum numbers
necessary to specify y, and the electron spin function
x,m((r) is coupled with that of the ion to give total spin
SkMSk'
?; runs over any degenerate states of the ion having
E =E-lK = E¢ +hv -} k®. In order to obtain an expression
Y

for dg in terms of the channel wave functions E/J(I‘), equation

(3.3), we make the partial wave expansion

doe) = k Rlet = l=<aitn
T MY S L
(lll) mitc Vv MKMS“/A’i/

< T EvL1E o1

(3.15)
<ollm> e o2
ané E(lm) is related to the functions \IA/J(I") by
vl (Led Mem M) ()
Flimr = g, (e b i) £
r, = {o(r Lrd Ly My SeMed
Also ‘
- L
&1(,[1»() - y Bl ({4»-.Q)
Hence (3.15) becomes
.F
| 1,0 =" = ") iy
OL'J;;(E) = ‘({xe—u ?IL‘ M Mg Mg M, Hk| zﬂw( Yl(m‘(
CIT) W Yo S L L‘; W’ml/“:
. . -
(»rf&MrmlL MLl g " LR T:—,-).

(37[ (f")|£ VAl (s < & (LS

/,._i‘—
Z_ \7 ’ g‘,f(l )>._r— (+w") (,-;2},(3 16)
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An expression for the matrix elements is given in equation
(3.12), which is of the form
T ey | oo NS — L, Moy &
(T2 V0 Ty = (LiHgml bk Gu
Hence we may write (3.16) in the form
’ _ \ */_ "
OLU}L(E) _ kﬁ‘LLL Z Z- Y (Q) /llml(“")

i
(1T)'1A IV\ILVN 3’ 1—9- . L‘[f H
S L b, My M w»/(/\ =+

(Lp QwaLkM)(L__iM Lk, )
(LIML/,«ILKMK)(LI NL/MJLK M)

! Al e
f{; )(;hp\) (1R, 7 IE

(3.17)
We next perform the summations over the azimuthal quan-

tum numbers.

ZM YA () (LA M [ LMD

‘ A

o :f (Lo L M LM (LR e LMy KLIHL/uIL M)
= L12+,)(ZQ+‘):{7.(£”OO /&o)‘/«,‘(ﬂ
KMLMKMMI - tpr‘(zu-\)

mm/"‘; ("‘U lj.'m m/l )(L ,(H m/L Hj(_)

(LA Mo LI LM [t ) LiMop L "M)
: (3.18)
A requirement for the non-vanishing of the Clebsch-Gordan

coefficient (jljzmlmzljrh) is that m, +m, = m. Therefore
the only non zero contributions to % , come from
KI'A

Ml'< = Mk and m' =m and hence M =m - m' = 0. The only

\ ra (2 ) which appear in the final expression for the dif-
AR :

ferential cross section will therefore be those with ™ = 0

which is in accordance with the result that the differential
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cross section for scattering by a spherically symmetric
field is independent of the azimuthal angle $.

If we perform first the summation over m and then the
summation over M, using the relation given by Biedenharn

k
et al. (1952) equation (3.18) reduces to

fi’ [(2;24-1)(2@4—”]}1(}QA‘OOli\O) \‘/ﬁo(ﬁl)

)L/f«ztl 2.4

NENIRER BRIV LA A, Ld)

L+ L

()T ol
(g lL, 1, L2)

Oc

_ 2/\/1— (ZL,+1) SLKL‘: SM, Y (»)
SN e

4+ (’2.Q+r)(2,2'wL l)]'/L :2:' (,Q£IOC»ILO)(1LK+I)
4 1<

Gt ) TR (L AT LA )

WCL L 1, e2) Y (2)

Substituting this expression in equation (3.17) gives

dogy = K2e S = L Q@ury @)
& CETYcvem TR S, My, 3 Ny oo

Mg Ly

ook S (2L (2L ) z'
%; G GJK ch YT S, N W K //16
J _ Mg L, L)
L-t+L
[t e e oo™ G L)
¢

Lt ey Y (o G G (=
w(.KlLK >/lo(_)§, T (3.19)

|
-Q+;Q ). ¢ |_-:(&)J-K.
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Comparing the first term in (3.19) with the expression for

the total cross section 0y given by equation (3.13a) we see

that /’-
*
de,@) = K oe) « Z 8,0 = Cu G (B)
. (27)? F Tl L AT
- -\
Cre@) (1 —RY Y, (2 (3.20)
where : Lo+ L
11
B = k(lS+|)T«e/\/ (L4, +1 )
(‘L“ T Vi '€
[0t w015 (LA eel2e)
L)(Lu{/ay LKXK/LT’Z ) L‘/( LK’ ILM ]) LZ)
(3.21)
Apart from the factor (2L1|’<+ 1) in the expression for @kk" the

expression for the differential cross section given by equation
(3.20) and (3.21) is of the same form as that given by Lipsky
(1967). The lack of symmetry in Lipsky's expression for

' ] ps s
BI‘I‘ suggests that it is incorrect.

3.3. Photoionisation Cross Section for an Atomic Systemn
Having Configuration 1s%2s%2p9d

As a demonstration of the reduction of the general expres-
sion for the total cross section given in section 3.1, we con-
sider the photoionisation of an atomic system having configura-

9 and check the simplified expression against

tion 152 252 2p
that given by Henry and Lipsky (1967).

We first simplify the expression for Gik given by equation
(3.12). In this case @ has configuration 152 252 2p9 and

\If(l"i) has configuration ls2 ZSZqu—lkﬂ, hence
T ‘/5, P
(NUNR AN L

— | =
T, ) |
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We next consider each term in %; separately.

For P, = 1s equation (3.12) c'onta1Jns
the Clebsch-Gordan coefficient ({, | co Hf/o)' Hence the only
non zero term in %}; will be Py = 2p. For a = 1 the ortho-
gonality of the spherical harmonics implies that the non-
vanishing terms in Z will be from those ﬁa which assign labels
2, 3, 4 to either the I's or 2s subshell and fabels 5, q+3
to the 2p subshell. ILabel l is already assigned to the 2p
subshell hence label q+4 is assigned to the only remaining
vacancy in one of the S subshells. Again the orthogonality
of the spherical harmonics implies that the matrix element
will be zero for !Zi # 0. There are 6 distributions ?{a which
satisfy the above requirements. These are characterised

by their distribution of the labels 2, 3, 4, q+4 amongst the
1s and 2s subshells

1s 2s Pq
a (q+4, 2) (3,4) odd
q, (3,4) (q+4, 2) odd
d, (q+4, 3) (2,4) even
qy (2,4) | (qt4, 3) even
dg (q+4, 4) (2.3) even
9 (2,3) (g+4,4) even

For c})

<SLC"0|S%€M> = <_’7j"7‘:(0) S\% SML‘/;‘ "- (O)Sél S>

,
CRgea Ty



th
Sl by, > = <Eb 1o n

is 'lf

T L%zr(o)zzf,ﬁi; (LY 1L, ”

i “

= <JZ.TI (o) Lo, | by Gy (LD LD SL;IW

(l\tmeyg}\j "fa(MN(“m/{’ Zero s )

_ L ek | Lol (L) L.JfS,_;u

_ (2R oLt 1, Lo)s, T,

In a similar manner it may be shown that

LS.~ S_
pd <. Y | S75 9 > 2 s;slr S S for Pq odd
: ! —
/L{. SS; Szf SSKS - for Pq even

<LL19|L¢C}'> = (’)_L"’“)Ji \/\/(LLI LKl) LO)SL._'EW

for all Pq
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The contribution to equation (3.12) from p, = Is is therefore
i

<

1(O|oolto)z?>klc< PT

¢ = .
7,757 Ur LS!jZ"* L.S.,)

‘—LF 1’f

(zu.ﬁ DL L i, 0L) 8¢ oL <P/ ,@,Prsﬁ> ¢ Sz
B A S AR T S S A
LSRRI R IRS < PSR D
f LR RS < ARSI PRI X RIIRS D
LRI RIS RS IR OKR IR <R 0. |

< o -1 ’ J{
- _./.\/Z (;,ooloo)gko <?7'r’ lPlf>r CuL+1)

(2" Lsfpt T Ls) 8y, WCkikalL R ) S5 s

43}.: IR !Pl‘f) (F 2 | 1s%2:%D00sf 25 1s P 2u¥ )

where
(e 2e ™ = [ TIPS >R IR
| _ LRSI KRS mé‘;]

and (Fi Zsllls¢ Zs¢) is defined 51m11ar1y The contribution from
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P, = 2s may be found in exactly the same manner.
For p, = 2p in order that the Cleb ch-Gordan coef-

ficient (fhi ce UQNO) be non zero we must have /Qf, = 0

7

or {,, =2. There are no occupied d subshells in & hence

[
p¢ = 1¢s or 2s. However the orthogonality of the spherical
harmonics imply that the only non zero contributions to

= come from those Ela which assign labels 1¢**,4 to the
S s::bshells. ® contains only 4 occupied S orbitals and
therefore the contribution to Z from P = 2p must be

-

ZeTYo.

Finally we must consider a = continuum. As for p, = 2p
i

M . <~ -
the non zero contributions to <=  come from those q

q'd*b 0‘0
which assign labels 1+*+4 to the S subshells. Again we
will have 6 such aa’ corresponding to the 6 distributions

for P = 1s, with Plls replacing Fi’ and here

. _ S Y for P_ even
(59‘%‘%&7? = S S"r”s" q
L8 s gng S. for Py odd -

~

Lliqollygy = < Ll LU L Top & LDVl )

= [@1;%—1)@-1—7“ 07* NIQEREPEECY S:: L

e
The complete contribution from a = ;:ontinuum is
IQ_L.H )(7_1;%-()]): (l:1oo ]l o)(?ro'yLS If Zf"H Li80)
< : h C (}("‘
Se g WOLiT Ll LAY (152 e 209 )< 2" 3

: )
(F;N{ip-zf,)
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therefore reduces to

NHVQAJEZ_<LST)> :(35} )J_:(L‘M/\AILKN )

~—

Equation (3.12
<y¢ ()]
(2L+0)% (2% L] zr"f“‘ LiS ) 8 5 ClL oo die)

3 W\

<

S Fe Il #2550 (2 [ &y L2, >}]

T 7
(;,° 20 1€t ) _ (3.31)
= (zcrﬁ-(um/uu“m Yrirnt g, So
Ro= d 4+ 22— LU+t
Y L B (3.31a)
Similarly . . ‘
L F ez VETELIY = Gqf (bt Mucmm [EFD

(L% (2p T LS 2p7 ey Sy S5 C110ollje)
WC L Lot e yChPad | Liiai)tc z{;“nrh’k"f
[ 18,15 = S0 {C2p IR (LT RF T1a0200)
v . S
(2p AR, (2590157 2 f 1) (s 2102 o)

P . n -
= G )™ (LiMp LMY @e+n T g0 Sss,
Substituting equations (3.31) and (3.32) into equation (3. 5a)

gives
o, = 2T S ~ 20}(1L_+1)(L:H/A|LKMK32
e =M L) < Ak *
meEr D B Gue My g
where
A ’
(:J 'I') Q‘*"Q)y(!-"/\))k
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2
v, = AT = 31(21_44)[)_1_““)([_‘{LMK—H,_[)/L«]\‘
< Yo MA_MS ru r-l rJ S
o=

k 3
%¢k ﬁj‘ 3\)'%

= 2T Z (2L.+')9, Qc; ng:

(3.33)
The paper of Lipsky and Henry contains the following typo-
graphical errors. (I should like to record my thanks to Dr.
Lipsky for pointing out these mistakes.)
m
The definition of the operator Vi 1 appearing in equation
+ 1 i S '
- = = S
(1) should be Vi = <+.%—x; - _559)
Equation (5) should read
{ T — -_
T R ke = B o= AT
-Taking into account these typographical errors we see that
the expression for gik(E) given by equation (3.31) differs from
that given by Henry and Lipsky equation (21) only in the definition
of RV(= P, _Of Henry #nd Lipsky). The expression given by Henry
and Lipsky (hereafter refered to as H.L.),
Po= ,OL + [ | + (/-L‘)(ngr'*")]
n Ar _
. 2r
is dimensionally inconsistent and we therefore conclude that this
is incorrect. Lipsky (unpublished notes) gives an alternative defi-
nition A
p VR Bl e D (ol
2L A 2r

For the case considered here £' = ﬂi 2=1

P = 9‘— + | —2@‘:—') .
r, Tr — . (3.31b)
This is not the same form as that given in equation (3.31a). How-
~ever in order for the Clebsch-Gordan coefficients (llOOIEiO) to be

non-zero we must have li = 0 or 2. It may easily be verified that
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for these values of li( =£r) equations (3.31a) and (3.31b) reduce
to the same expression. If we compare equation (3.33) with

H. L. equation (20a) we note the following differences

k 1
(1) H.L. defines A_., = ; : whereas we
ij (1-1R)k.1(1+1R)Jk
. 2 1
define A..k == : ppy The factor & arises from the
ij T (1+1R)ki(1—1R)jk s

different normalisation assumed for the continuum wave functions
(S.M. equation 17, H.L. equation 18). The different definitions
of Aijk may be traced back to the different definitions of \I/i(l"i),
see equation (3.3) and H. L. equation (12). Henry and Lipsky
equation (11) yields

re! T - re' L
¢ | - R r |+ R e
Substituting the expression for S;‘I" into H. L. equation (3) gives
r SO+iRY "
4 = | + ¢ et
204 Y ret LA

r'= ‘
where ifngp is defined in H. L. equation (10). This expression
is now in agreement with equation (3.3) of this thesis and also
with Lipsky (unpublished notes). Hence we conclude that the de-
finition of Aijk should be

1
— 153
(1+1R)ki( 1R)jk

(using the normalisation of H.L.)

' — R
(2) The normalisation factor in equation (3.33) is 2T f["'zf‘

B

m= o >

whereas the factor in H.L. equation (20a) is

(Tqeth? _ 2T g eth?

mlc vy mtoy (2L+128+1)
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Lipsky evaluates the matrix element
Nt

ph. L = IKEMIZ Vi Zesmrl”
- L (2.8 +¢ Hy My Mo, Sk =1
(212 P e

rather than the expression for the cross section given in equ-

ation (3.4a) and obtains the normalisation factor 3q. If we

substitute Lipsky's expression into the formﬁla for the cross
section and take into account the fact that the summation over
p includes only p = £1, since we have chosen the direction of

propagation of the photons to be along the z axis, we obtain

27 q I RE
the factor ol il in agreement with equation (3.33) of

mPc ¥
this thesis.

We therefore conclude that the expression for the di-pole
velocity approximation to the photoionisation cross section
given in equation (3.33) is consistent with the expression de-
rived by Lipsky but differs from that given by Lipsky and
Henry as described above. The general expression for the
dipole length form of the cross section given in equation (3.4b)
also differs from that given by H. L. equation (8) in the de-
finition of the operator. We note, however, that applying the

commutation relation [’“, H}}%‘Pto (3.4a) yields equation (3.4b)

th .
where r}: is the 4= component of x;- In spherical polar co-
A L A
ordinates T, =(£T_T)"Y‘,; \/a (<) [see for example Rose
2

"Elementary Theory of Angular Momentum (Wiley) 15] and
hence we conclude that the expression given by H.L. is incor-

rect.
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SECTION 4: EVALUATION OF ANGULAR INTEGRALS

In this section we derive expressions for the angular
A
integrals that occur in the matrix elements of PK(?N.ENJrl
tively. These integrals are expressed in terms of gener-
alised angular momenta recoupling coefficients. A meth-
od for the evaluation of these coefficients is described in
section (4.2) and a FORTRAN program which uses this

method is described in section (4. 3).

4.1 Expression of Integrals in Terms of Recou.t;;l‘ingb(i-o—

- efficients.

We first find an expression for the matrix element

of a two particle operator of the form

k[}' A -~ V\A ko ]kﬁ'
:j ( frJ 3 r{\la—l3 = [ y (_I‘N ) x (?er ) .
ka“l— :

. (?“)J (;:H—-)
= Z(knl'(‘?—hcl/zlkm}/S K\. \/ >

%,

82.

)

Vm(r) and Ylm(r), described in sections (2) and (3) respec-

- (4.1)

between n particle angular momentum eigenfunctions of the

form
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/L\s., tbu T Mg ""e\_""‘__ _ —
= 2 C (Ll st LL—,_"
”n
LS\, L-Ls ms;. M"'-w
| /Qs; MA;>’[c;me;>
fs‘ AL T M (4.2)

where the C i is a product of Racah and Clebsch-
Gordan coefficients needed to separate off the two one-~
particle wave functions from the remaining n-2 particle
wave function.

- Fano, Prats and Goldschmidt (1963) have derived an

expression for the more general tensorial operator

[gk.xj_k}:(k%

The operators with which we are concerned are constructed
from the same irreducible tensorial sets as are the angular
momentum eigenfurictions, namely the '_spherica.l harmonics.
This fact enables us to derive an expression for the matrix
elements of the operator (4.1) in a more direct manner.
We first separate the operator into two sums of one

particle operators using the method of Fano, Prats and
Goldschmidt.’ We introduce two mock particles labelled

0 and 0 with angular momentum eigenfunctions

I ka1, (00, Ikaq,(0)>
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where <{k;q;'(0) k, q1(0)> = 8q} q;
and  Jkyqp(0)] = (-1)%k - q(0)>

with similar relations holding for |k,q, (6)>

Now
“(:)‘Zﬂ/ (NAN‘) - o Q< Ol/,‘](l{kf],)ykc(?,\.)\/k ,<?~h‘
Ky 9,
- = ([(f/oy; “uy>\/ (f\f(ky(O))ch(OD
6? Cv
x 2 <kyq, (c)!gza“ow Y. L
?‘ 4 (" /Y‘ &, =
= { cpzae y‘c«,‘( <k, «”‘j{ 7" {/“;‘yf Ne? 4‘&%(0)]]
where ko, kg 2 (4.3)
(ki ko) = Z (hkaallg) g I RAT),
| .
consider

<£mlfYA ) kg 0)] -
-~ é:' , [:(225 H)(Zlcf‘)]z(,(g‘. ’(‘Oo/f;lo)(jgikl WA;'_T:L/(’(""‘/)

l-:nq.L 41 (24 +1)
x(~))q‘*<f l, ‘1 'm-’}<l< cy“(o)]
- = [Zk“] ek 00l0 )AL Ky ey o Y1 L [ bt

q’l*’(il“‘x. &4 .

~ g/ [2_%:‘:’] E (—l)K' (4 1coold;'0) < kg, k, Ik, Ig; Py [
= i i < ¢

(4-4)
We now operate on ((bbmh;l with {f ‘/ @*( N,-‘)Z‘/ -~ (O)!j

which‘gives, in analogy with the above expression
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<ymil 2, Vqr ) < g (0]

rS

- o[ 2kL+'] (R by 0 10 0) <l b U] o b

t

now the L.H.S. of the matrix element is

KL L AN LA e bl 2 Y x o <o f] ”‘/ $7w <
[ 9 t ? [ ¢ 2
I T B fowy | = Y )
= =L <L""Ls‘-" I_&L,.-L;f( S.:”‘A"l s Kg*
SO IR T S 2 i

<kl <l 2, foqr Ot < by
| oo L
. = ) CL;_,..L L w,mzL . f&."l.clf(—')k'liz——{f—\j“]
t;h.' T—e;“l‘i”‘i;"‘(z;"" S¢ (8 ﬁdl &
f ¢ Ky [ 2kt e | h
(£ kool 8oy< O, o, (L' )k, 173;,%;)5”@) }“4_1‘7 ] (f. k00180

<1£ Z\’ (Iﬂ)!’ [(_ My - [

_ = y itk ok 02k, 015 (f: k, 00 [£0 3V (Ly k, ooll."o)
— -{((L" ‘ Q_T

LT, G (4 UL L L8k ULy Moo L |
Since the Racah and Clebsh Gordan coefficients needed tn
recouple <P5Lk‘ U}i[”‘n [s;"’s;[and <F&“1<L(fc(,)4<z [L,; "fq‘ back into , ;o
the original wave function are just those specified by the ¢ Lok

Therefore the complete matrix element
/‘jky Py o / (—I) krke [(ZkH)U(H)] (1 kool / o)
v (4, k, ooWﬁO)(L, Lo [ ks le U S]L Let.[ﬂ%.kl(feé ]Le; LM |
L L s L 4, ( Le) ol J>H(,z<,_x<c,>
< (5 Rk @k ]E U, oo 14;0)({s k.20 1 0) (1 kb IL: M)

T

(&

IT, - 1_:.}.1%.“5). )"'Zg‘[‘,‘“g) L ke, (k) LL> |

LD ok Uo)L, L [k U Ly L

(4.7)
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as the sums over £ ' and £." reduce to a single element from
i i

the orthogonality of the one electron wave functions

i.e.,

<1¢' m () Ifs N‘}" (N)> = Sx’;(-/s' g'm’m-
and J

< ZCI/ m;”(Ni-l) }[é/' méJ.(er)> = gg(_”}(ﬁ gmﬁ""‘el.
The last term on the R.H.S. of equation (4.7) is the inner
product of two different functions constructed from the same
set of angular momentum eigenfunctions but coupled to-

gether in a different order. It is one of the matrix elements

of the transformation from the [L Ls /J[C(/ )(Z— ) L /@ /(z(ﬂ )Z AM}
representation to the IL l— z(; ([ ) Le j (Le ) (L J/< fe ) L,} ({sj

representation. (L) denotes the set of Values of the inter-
mediate coupling which has the particular value L in equ-
ation (4.7), (the notation has been modified slightly to dis-
tinguish between basic set of angular momenta and the sets
of intermediate couplings). These matrix elements are
known as angular momentum recoupling coefficients.

k . . .
If C' is the vector spherical harmonic with components

kK _ ANTE
Ctp 'A/le:ZT y"?

,x ‘
where the qu are normalised such that }'k? = (’U /,(..7,
X k—a \f
(and not such that %(c;. = (-1) ? ‘/K«‘, as used by Fano,
Prats and Goldschmidt) then

(ESL ‘(‘ o0 I QSJO) = ,‘(_| )kl- [O,[‘S:i— | )]'%—((sulle')] 15\)>
_ uzsz.H)]"i( ey L6.)

and
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N

kg ', (b, + H(2h, 1) ] s f‘”CkIWs-X
<qj&(kfr""r““)> ) [(u"?i(u o) e ;)4 !
(Ljk Miq [ LML Esy.[lj. k()] Ty ((ej W’ej’]lej-' |

o R O R T

which is a special case of equation (36) of Fano, Prats and
Goldschmidt.
The particular matrix elements that we wish to evaluate are |

O <RG0y = L Goy D

2.6+

RN {f(—u }/é “, \72 <¢~A>

2(;1—( S
- 4T ~ ('/’:\/ AN >
[2&4—«] g < y“ ™

1) (2é+ i [QZS-H)(U‘Z'H )]—%'(f{ NUMSJ')
e i c” )(L oM OfL:M )
<1, ,;u;/. U T Tl 1L - &

,E(.‘Es.k(ls.)._ l—e] '(J(Lej) LJ ke, ks (o)L, Y

= (1t @b ot 10t 0] Tl Cl )
(ke llc‘M ) S, |
J
4T,--L USM ;- Te M b U L, e
Y]
t"LgJ'&J(sz) ' eJ'-QJU‘tj)“LJ ki k() Ln.>
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where k; =k, =t, the labels k,k; being retained to identify
particles (0) and (_6).

Now the recoupling coefficient may be expressed in the

alternative form
<Lk, (s (L) L, T_h.[gé) ko Ue)] Ly, Lol
H:l ES; [%LJ(L%) o te&- B rtj' Lk. k:.(o) (ijﬂbﬂ[-tj“ LPgL;Lj
= <_E\ T"Sd(ﬁgj k‘ (KS;\)LSL "—Et; ét_- (LE;) N ’
' T_‘ ..—[5; ES) [S)(LSJ) ...l:‘,_; t_—t) Lk‘ kz'q&J(’EtL\/XLj] L‘_’J Lj>
Lk, (o) 4 4y | k.)kl&j((e;)lk)) g%
v ‘i - _ )
_ {('zlum ] T, Ls;ysﬂf(mﬂsl Tedelle) Lo

ke R4+ _ |
J ‘ L,-- LS)"(.SJ'(LgJ' ) L&)'[k Ié‘:([éj)]Ltj = LJ >5L;Lj

so that
P TN =l [t o@lytol (i)
(L, 1l St
LT T [ GO T e L
T, .Z;J.is)-(L;)) LM gL vy

- (4.10)
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The matrix elements required for the evaluation of the photo-

ionisation cross sections are

(2) < Y"?(r)> = A4l <Y (r )\/ (r)>
I

IV 'j ’ r)>

? :',—_ﬁ{—i r (L 4 ClA)
N [ (2Lt )

(L1 Mg [t
<t""t¢[AEj1ukcﬂLe; L
T - Lot L
lL‘ s L&jﬂej(l-esj LJ J l “>
(4.11)

(3) <vir)>

Now the components v’l, V', V = (defined in section 3) also

form an irreducible tensorial set of degree 1. Hence we may

apply the Wigner Eckhart theorem (Fano and Racah, Ch. 14)

and use equation (4.11) to obtain

Vo> = JEF LATUG) Ly

(le-llﬁ’llé‘/ '

- L+ 5 (e /V//fc )(L 1 H} ‘;,//_ M)

<T Tl 1t e L :L Le} by Lt ke 2
(4. 12)

where
(L, V/[ ) = (2L +I)"([‘OO(O)
[;o/é 4 1 +[e(1 1) — [e(feﬂj‘(
olr r
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4.2 Evaluation of the recoupling coefficients.

We recall that in constructing the total wave function,
equation (2,14) we first coupled together the angular mo-
menta of electrons in discrete orbitals to give subshell
angular momenta L)\S)\. We then coupled the subshell
angular momenta and the angular momentum of the pro-

jectile according to the coupling scheme
qa a a a
{Ly Lo (L, )L (L )"'L)\(L}\ ) oLy (I..Jb )2, L} (4.20)

to give total angular momenta LS for the system. L

A

denotes the result of coupling L)\ to L;t-l which is the

resultant of L.« 1, If the set of values of the inter-

1 A-1°
mediate couplings L lis not unique then to each set {Lai}
there corresponds a distinct state I‘i specified by the total
quantum numbers LSt together with an additional para-
meter a, which specifies the set of intermediate couplings.
It can easily be shown that the wave functions for a given
coupling scheme, corresponding to the different values of
a; form a complete orthonormal set.

Three basic types of recoupling coefficients occur in
the analysis of S.M. These are those in which
1) One vector is recoupled, the order of
coupling of the others remaining unaltered. For
example in the recoupling coefficien;cs in S.M.‘equation
(56) the vectors £ and ! are recoupled, the
order of coupling of the spectator angular momenta

L.,S, remaining unchanged.

AA
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2) Two vectors are recoupled. For example the spin

recoupling coefficients of S.M. equations (41), (59) and

1 1
N 2 N+1
The spin recoupling coefficient equation (49b) is of type

and .

(62a) where the two recoupled vectors are

. 1 . a ) .
(1) since ; N+l 18 coupled to Sb on both sides of the co-
efficient and is not recoupled.
3) Three vectors are recoupled. These arise in the

evaluation of the matrix elements of PK(E ) dis-

A

er
N -N+1
cussed earlier in this section and occur in S.M. equations

(40), (49a), (60a) and (62a).

These multivector recoupling coefficients may be expressed
in terms of sums of products of three vector recoupling co-

efficients or Racah coefficients (Biedenharn 1953),
‘_< jl jL(Ju) )3Tl JI)JZ )3(5?_2) J >
= [(z\ju_*" Y2 j+t ) 1*H (J‘;erjg I Jzz >
We first consider recoupling coefficients of type (1), that

is, those of the form

_ L L — T (1% YL Ld-‘ <L L L
<L|--(L“;“)L(l(‘Lf>(LF)-~Lq."L,L( (Lf,i)_Lr( R >

(4.21)

We recall that this is the inner product of the wave functions,
. T YL D I AUERY N :
and

N L R L e N L) (4.23)
We wish to expand <aiL| in the complete set of functions of

the form of (4.23)

We first recouple the three vectors Lc;i_l, Lp, )
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G.i Q. Q. Q-
from the scheme {L ' , L 4L )L *} to {L * L (L ML %}
p-1""p Tpp p-l"p p" p
by means of the transformation o
« T “ L T
Z <L p AL L LS TADIALS )
I o T [ ag ..
<L % )L,(LH(L,, oL
We then recouple £ step by step from A =p to X =o by trans-

KL T, Ly k| =

. formations of the form

LT, (C s )E, sy o

]

e F LT L)L VS T T (T DT GO RO ¢
T

>
to give finally

Lo (0 Ga,) - oot
< T ol < T o~ K
1:2..’; La’_' Ep k(L) LS }L/M Lo(L,) AL .
vf- g — Ld LQO>
i T S <
- TF KT OO, LT, L CE RS
D, (LY, LT | To, Lot (L) L >
T,-(L;j}zf (%) - (To»-l)?,i(’fﬂ-*{ (4.24)
so that
<r..(L‘(‘ YL R (L )(L‘\/’;')... - L[L

f Les T T8 (L] Lyt T (B )k L >
L

L, (ROSE L)L

i <"' LS LS T T LD
”‘< o A LS)T, L) T T T ) L5
(4.25)

K ,-\, ~ T 4T N P <5 7 .
L) T L) o O EAACT )L T (ST i) (UL 2 )L
from the orthonormahty of the functions of the form (4.23)

we have that
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RO DL the) e I K, L () AL L)) Ly
- <L";i.IruL{>L°;“lL“}‘;.Lr(l—f)ikf>

T D TR P
I <1_\J_‘QU_>_‘§L>L>[L_x_‘L’\(L_'\),Q >

>~‘:{’+‘< L_"‘.; Q(L_":\: 3_[:0‘ LD::‘\ L«;‘v‘tq—i (L—a—s Lu:;‘>

5Ly Sl ) S WL SQ—";‘ LoD
L“J'

RzLTJru(st,u)j u(Lr,L L= L, r>

,
~1 =3

TOpa L soe ol (L JzI,L‘?,LA-,L“:)

A2 piy

(’.+L,, Llf-i)] L)(L_“J KL L_L"|L}
[(11_ +1 X2 7= (4. 26)

This proceedure of step by step recoupling may be sum-

marised as follows

(i) Recouple three (or four) of the vectors which appear
in either the l.h.s. or r.h.s. of the coefficient. If these
three vectors are denoted by £;, £,, £, and are coupled in
<aiLil according to the scheme £;£; (£ ;)£ then we mé.y
express the original recoupling coefficient in terms of prod-

ucts of two recoupling coefficients of the form
Ll LD = 4;- <Al AL, LT LD
<°<(.2LLI oy l—j)

(4.27)
(ii) Check whether the new order of coupling of these
three vectors is the same as the order in which they are

coupled on the other side of the coefficient. If this order is
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the same then we may use the orthonormality properties of
the spin or angular momentum eigenfunctions to reduce the
summation over intermediate couplings to a single term
where { takes on the value that this intermediate coupling
has in the half of the coefficient not currently being re-

coupled, i.e.,
LRl > = <4 L LG (O
S E MN R TR

(4.28)
If the three vectors fl 1,1, are coupled according to some
other scheme in lo.J.Lj> then we must retain the summation
over L.

(iif) Recouple other sets of 3 (or 4) vectors in the man-
ner described above until the order of coupling of the vectors
in the 1.h. s; of the coefficientv is the same as that of the r.h.s.
In the final recoupling the second of the coefficients on the
r.h.s. of equation (4.27) will be zero for I% IJ and will be
unity for 7= Ej. We will then have expressed the original
recoupling coefficient in terms of a summation over prod-
ucts o three (or four) vector recouplings similar to the

first coefficient on the r.h.s. of equation (4.28).

This procedure is similar to that used by Innes and
Ufford (1958) to obtain expressions, in terms of Racah and
9':1' coefficients, for recoupling coefficients analogous to
the two "two vector" recoupling coefficients, with
¢. = ¢. = b, which are discussed below. The problem which

i J :
now remains, is to find the optimum sequence of recouplings
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which bring both sides of the recoupling coefficient into
some common order of coupling, that is, the sequence
which involves the least number of three or four vector
recouplings and the least number of summations over
intermediate couplings.

"One vector" recoupling coefficients may always be
expressed as a simple product of Racah coefficients by this
procedure. In the evaluation of a recoupling coefficient
in which more than one vector is recoupled we can always
obtain an expression analogous to (4.25). However we may
need to make additional intermediate recouplings which do not
not appear in the r.h.s. of the.coefficient and hence the
summation over these intermediate recouplings will re-
main in our final expression for the complete recoupling
coefficient. 3

The "two vector" recoupling coefficients can be divided
into three basic types. If the two vectors to be recoupled
are labelled N and N + 1 we define subshell p to be the sub-
shell containing electron N and ¢ to be the subshell con-
taining N + 1. For the purpose of recoupling we may
regard the continuum electrén as being in a subshell b + 1

where b is the outermost of the discrete orbitals and where
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_c _ _ _ 1
Lb+1 = Sb+1 =0, Lb+1 = li, Sb+1 = 3 . For example the ex-

change spin recoupling coefficient is of the form

T T ) S (S v S S0 5,4, (52 S hi8) 6

o ANt 0")-1er

(4.27)
where p. <c. but pyo. (in S.M. equation (41) o, =p. = continuum)
i i i’ i "
The three types of recoupling coefficients may now be

classified according to the relative values of P;0;P.0. and

are

1) direct: max (pipj)f min (O‘iO'j). The

spin recoupling coefficient of the direct term is a
special c.ase of this type. This type of recoupiing
.may.occur in'S.M.{ e@uatioris (59)-and:{62a) depending
on the particular configuratidﬁs considered. Con-
verégly we may also have max (o—icrj)s min (pipj)
which may occur in equation (62a). The direct
type of recoupling may be represented schematically
> < P S Wed | :
~ ~ S

\ f; 3

We must recouple N from Py to pj.and N+1 from o,

to o-j but since these two intervals do not overlap

the recoupling may be achieved in two separate
-steps and the complete récoupling coefficient may

"one vector"

be expressed as the prodﬁct of two
recoupling coefficients of the form of equation

(4.26).
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2 : i < i
) exchange: min (pipj\ min (cricrj)< max(pipj)
as in equation (4.27) and S.M. equation (41), or con-
i =< i <
verseley min (o-i(rj) min (pipj) max (critrj). Both
these cases may occur in equations (59) and (62a).
The former case may be represented by
<. FL N_ w7 ’
‘ ¢ WQ’ Fa ‘ >
We will have to recouple both N and N+1 through the
range o-J. to pj and hence we will have to sum over
the intermediate couplings in this range. As an
example, the recoupling coefficient (4.27) is
E = = — .
<§; [ SJ‘> =<S., - Sp‘;/" (S(; Yoo Sr‘_-"{Nh(S -)"‘S I
lsl" ay LNH(SJ ) JLM(S\F) g>
and if p; < o-J. < cri< pj we have

~—

<§‘ N Src lzﬂ(gf’a) ' _S-O‘c J;—N-T.(S“”C) ’ Sl
= 2 <SS SIS SUS0d s Y

2y
<
Fu‘ 5 |
< e S (T “:
T LS L (505,57 “18, 5,505 8%
>=fo+ »
oo <’SV¢._( - (S50 S0y CSES s (Se 0k SED
1 e ~ <
A NS IR R RN Ry

< L < o> . N'
< Sfj" 2 (er ) rj Sf) f’)'-4 rJ PAN] f’

L5 S S, G Sk (G- S
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hence
SN < S S kG S IS;‘I 1 ()L s
ﬂ‘f PR AR EX XY S0
£ SRR )
P
T 48, DT STES S S 575
._J‘< A (SE Y S, SE ] Sy Ser (ST, ST
jj._rmﬂ SN (S;As SES§S 3, (5;% $ED
< LN, s ST RN
' <5 Sy S &y S;;,,“(s'q)-- §4, 0505 |
3, 50 3 "—Sh‘rjllw(S&,') , 564(5:{)..%%”(56).. 5>

In order to complete the recoupling we must recouple

1 .
2 N+1 from ¢, to oy To do this we expand
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{Sn Sf“ . Sojll’m‘(sg}) '?6; (’ ‘1,«:(51) S>
= % '
§§<S¢, 9; (G')S;:.JISJS(SO.),L SJ>
o
' S A (sUys, SJ)\S(S)Ww S

which gives finally

<SS = <S8 Sk () 85 ST .cs”‘.s')%d S’;:;>
oy

(‘- 3 .

<S4 (555, 55155, 60554 5%

« L T oL ..
’3‘6.{_3"<8Tj-0{ (SJ--‘SS ’O!‘)] ‘SJ(SG )1NS:T>

- J - "
e <siJ‘ S, S, )sJ) i )';Ms; >
l < :

>|=¢J'+a< xt ?—eJCSd- Sc(‘( ] S>(S>~) SN >

S £ GEDT SV, 5 (5 >¢.4,l5':“'>
< -1 }1@ (‘S;j_( D 3oz 5‘(‘;\ ’5’6 5 ‘CS&J ) \,>
1’)'( < rg;&.-‘l )77\'\”\(5‘] s’sq d.( ’ 'SG' -t Sd‘n. INHCSO" ) S;(J >
I Led 4%y, s"“\ $ 3,5, (S A 4>
N0y ved
Qe “j 3 ‘(‘>
‘(‘Sp_,' 1.4(‘5 ,‘)SP J/g -t (’) 1.4(5(’)SJ
which can now be expressed dlrectly in terms of

Racah coefficients.

3) translation: max (piG"iJ < min (pjﬁj) or max
(p .crj) < min (pio'i). This type of recoupling will only
occur in terms linear or quadratic _in C., i.e., in
equations (59) and (62a) where b;)th interacting

electrons may appear in discrete orbitals. For
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example the recoupling coefficient in equation (59) .
for the configurations 1522322p435 k{ and 1s%2s? 2p6
where p; = 3s, v, = k{ (continuum) and Pj =0.= 2p

J -

will be of this form.

Translation recoupling coefficients may be represented
by
< pe v t

| \:Nn\‘ 0y >

We must recouple both N and N+1 from os to pj in the
former case and from o; to o-j in the latter. This is
most easily achieved by coupling the vectors N, N+l
fogether, recoupling their resultant from s to pJ. (or
o, to o-j) then decoupling them. This gives rise to a
single summation, over the possible values of the

resultant (N, N+1).

Tor example the recoupling coefficient

S < - S, S
<5, Sr;t“:5 Tl (5,35 S s]
'?"'Sr;“?‘r fJ ACDE “O_J,ITN“(;J.)..5>
’CC < %; X = | «;
:r-'< S“JJ = (S )A> S“(; ‘ S;(J'_' E(\ (Sn{: )’l{ S“:.>
>~:() +1

i R S (U { {5 s (3“3) L

- (S ¥k lN 1«"

2’<S°(_5J’ (s
G

il <
;\<8°s(s°“3s s"!SJs(SJ)SS <>

b ] !

2N Nt

TS

<SHL K (T sd';sf,,.'s‘_-%q(sgﬁ’? MS‘;‘?

>~(7—

Azc‘

<s* »(g"“,w s [S sf.,g(g.;sji
s

J ) !

A < s s (s, s s SN
+

)

~

7
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The 4-vector recoupling coefficients may be expressed

directly in terms of 9-jsymbols using the relations

<G00 G T L, G0 L) GudT)

= [ egeoe, o 00
e
i, o

)y Va

\).4’ Jg«.f
T

and
<. js,Jz Jg (jn)‘juz )%T( JI \JL)L,,_ (J‘lL%)').l)_q JZ T>
= ‘[(zjhm)(-ljll;ﬂ)(zjuf, X2, ¢ Nk
J“ j‘ll ju]
37_4 j'z_ J."(-
Jo T

JILW 3

The "three vector' recoupling coefficients have a very
similar structure to the two vector coefficients since the
third vector k is coupled to N on the 1.h.s. of the coefficient
and to £N+l on the r.h.s. Hence they can be divided into
the same three classes as the two vector coefficients and

may be represented by
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(1) Direct

Fy J
(2) Exchange
Pb T~ __ N [ S ad] G—‘_"’
k \//
™ Fy

(3) Translation Po T, N+

>
The 'one' and 'two' vector recoupling coefficients may
therefore be regarded as special cases of the 'three vector'
coefficients. However there is one useful property of the
'one' and 'two'vector coefficients which is not shared by the
three vector coefficients that occur in the expressions for

1
<i|=—————[j>, namely that < L.IL.> = <L |L.>
TN, N+1 % v Jo1

N
but | <Lile>k £ <LJ.|Li, k#£0

k

The asymmetry of the < LiILJ.> K P2y be seen in the following

way. We have shown that |
an ] PK(?,¢~_€,MB J LJ > = '(ffik OOM(’JO)urj k COL{f\:O)< L \Lj>l<
and similarly
LU 10 Edud| 1> = (koo lhy 0 o koo My 08 LL7 IR,
From the symmetry of the operator
LR Gatad |y D = L8 ) PP ey 1L

hence
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(£ k0018, 0) g koolle 0y L LitLy Dy
- (RPJk oG ,»ﬂﬁb())(ﬂr;kcc'_f‘qﬂj o )<L3 L >K

and from the symmetry properties of the Clebsch-Gordan

coefficients
~L '15_
)}Zﬁfﬁ- [ )(lf(rJ.-H )] 1< L: )L_J>k = ):(Zfﬁ--}q )(l(a_bf- | ﬂ 4 LJ.)L;>V\

This asymmetry implies that, in general, we must couple
k to N on the 1. h.s. of the coefficient and couple k to N+1
on the r.h.s. However if we choose to evaluate the sym-
metric quantity [(2 ,Qf,;'t-l\(la(rd-#—() TR [L; 2

rather than < LilLJ.> K then we can choose to couple k to
either N or N+l on the l.h.s. (provided we couple it to the
other on the r.h.s.).

It is clear that any recoupling of vectors, initially coupled »
according to (4.20) is most easily carried out by successively
recoupling the appropriate vectors from left to right. In the
above diagrams, the vector ﬁN is most easily recoupled from
P to pj raigher than from p. b;c;l; to pf’ k is most easily recoupled
from A to crj, in (1) and (3) ¢ is most easilyicoupled from
o, to crj, whilst in (2) it is m?st easily coupled from crj to 0 -

Consider the two cases

(2)

. ' T‘
o T
N \\T.
Pi J
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These are both of the direct type and are the inner prod-

uct of eigenvectors . y
l"-/{x !“\,> = I Z:’ L’::-; L ):QOI'((Q )JLF t t:{’(u—’j |(L‘7..) ' }*>
T Nt
J, LS = VT f{, (L) [ki (4, )]L >
In order to obtain an expression for (a) in terms of Racah

(and q) ) coefficients we first recouple the vectors L i 1’
p -

(L )of< a; L [ to bring them into the same order of
Pl P1 Pi

coupling as those in la 1.,y . This step contllbutes the co-
efficient < L37, L ( S YL B (LR LD
We then recouple ﬂp step by step from Py to pJ At pj we

uncouple ENk(ﬂ ) and couple EN to L to give L . We then

proceed toerecgflple k step by step to i]r where WF;J couple it

to EN tl to give £ , and recouple £ fronn 0. too.. We will
o5 o; o i j

then have brought all the vectors of < aiLiI into the same

order of coupling as in IaJ.Lj>. In order to express (b) as
a product of Racah (and 9-j)coefficients we may proceed in
the same manner until we reach the third of the interacting
subshells which in this case is ¢;. The vectors adjacent to

J

a:

o.in <a.L.| are now recoupled to L, ] k(L )L (L
j i7i o:-1 -1

5" T3 o J). ..
whereas in la.L.> we have the vectors
o .

j
...L .-1,
J

N a.
L kI (£ )L (L7)...
oc. o, 0, 0, o0,
1) J J
We do not want to recouple [ backwards from os to O'j and
i
therefore in order to bring the two eigenvectors into the same

form we must start to recouple Iaij > . Unlike the exchange
case there is no need to recouple both < uiLi| and |aJ.LJ.>
We need only uncouple k and lg then recouple 10__ from U‘j

i
to oy in order to complete the recoupling.
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Similarly we will have two types of translation coefficient
and two types of exchange coefficient. These six types of

recoupling coefficients may be descri])aed as follows

(1) pe e Tl subscript of largest
N T .
Py 0") ;4 subscript of smallest
(2) pe y /0“_- sign (pi - o‘i) subscript of largest
N\}V“ Nt = sign (pj - U‘j) = subscript of smallest
J .
(3) pe_ Te max (p.o.)
\K\Nl‘ 2
N TS < min (p.c.)
oy (PJ j
(4) po_ ¢ " or max (pjcrj)
B N < i
N\x o K ’ min (p.o.)
(5)  p g sign (pi - cri) subscript of largest
N
K\?,\, Py £ sign (pj - (rj) £ subscript of smallest

(6) Pl wm>TE subscript of largest

= subscript of smallest

The one and two vector recoupling coefficients also fall
into these six classifications. We may obtain an expression
for a 'two vector' coefficient in terms of Racah coefficients
merely by settingk = 0 in the expression for the corresponding
3 vector coefficient. We may also obtain an expression for a
'one vector' coefficignt by setting k = 0 and P; = 05

Explicit expressions for the six basic types of coefficients
together with the degenerate cases where some or all of the

.p.o.o. are equal, are given below. These expressions are
PIPJ i%j P
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written in terms of elementary recoupling coefficients which

may be expressed directly in terms of either Racah or 9-¢

J

coe fficients by the use of the following relations

<J](J‘LU JIJ)J ')T7

= [(1j,:i‘)(‘z~jz:—|)]i L\)(j:jLT‘)L ‘j ‘} )

<G 3R, G0 )T 2
= I(_ljuﬁ-ﬂ(lj@*‘ﬂl{ NIGN jg )\g ,j,tr)
<3G DL T GOT) ), G0 10U )TD

= Iizj‘n—*— | )&2- j.l :— ()(Z:)l{i '\/\Z}z_d‘ \)_in \jn J P J‘-L

—_—

SR S 0 R AU B 1 TS 0 B I

) ' L j| ‘7. lj;),

= [ej,r ), i Xej it s [
JLL(, J2. L)Lf

(I

Interchanging the order of couphng of any pair of vectors

[ gm? = 60 “"U J]
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Type (1) Direct

£ - K rc\_'i*‘ ﬁ;4f1'40‘¢< Ty
T
T Tk Bdl = B G, ) Top o b |
I - Lo T, AL )o Lo = bebeeClejlig; - L >
= <L;L L (L DL : ‘L k -Uﬁj ),@F:Lfof;‘>
_fi- L
I <LJ fz AR TN A S I S VAR

\'zr-i-a >

< k) LY LS,

) f/JJ(L )L RLK">

T( <L°‘) k(L )E\L;lLi{\ L (Lg)k L;;
>\7fJ+-|

< w'iz.)L,,;fﬂu—ﬂ-ﬂ“:;lt‘;iji (SIS AT IE )

o‘;-

T <0 0 (U T, U T 4 15D

A= 0o

: sl DA SR IR
< Lf;ﬂf,—j(lﬁ’;j_()f—f}."_q }LrJA_'Lr).l,J(LVJ) s

(4.30)

Special cases

‘.:PJ‘:O‘ngtJ.

coefficient reduces to

Lo k) Ty gL | B (L] )M UL >
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ST 7O <G\J

L LA kU Ly (U /‘“gf(u L@'Hfl(ﬂ?'nﬁo
= <L LI IT f(L“')kL >
<L‘ kLL I | L kdy A.J-)L,>
<Ly LA (LR L L (L) L LS

>H(’+.<LJ£ (LT LS | T, e LS

L"‘* L"“ L"‘ LV f ot
LS Ao (LT )L 1] L o JJIGJ(LWJ.)LGJ.>

<L f‘~lf’ak(f)L sle (L) L L
)Ll FJ ff (.LJ )l(f (‘Q,—L) - L‘>

= <L°/<,f‘_. L;I;(L;)L,IJL : L (L >f L"‘ D
T

1< e (L0 05 s L) 18D

>~7€+| A=

<L %) [ (L) L~ L L L¢f-i’f°-(LﬁL_)L‘;‘bj:,>

¢b

Po=fy<v<y

replace the first three lines of equation (430) by

<L H!f)L |C, !Zf(l— Yk LD
<L“° L‘k(L L“ |L°‘” L" (L(J)RL )
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f;<“‘.< M = c‘J

replace last three lines of (4 3¢) by

KL )L L LR L RS

-

T A (L) e LI T Lk UYL

!D;<\o5 = T < o**J'
replace the third, fourth and fifth lines of (4.2¢) by
. . —~ ol
“ L =LY L 4, (DY D
'.:i A b L P B At
T AT LV A (4T
< L-aj-_ lr;(Lri )/gn'k (/Qf_ VL L‘TJ!OQL/"J)X’“E‘((QTJ) >
o —~ l_d_; Was . Lon‘ e
<KL b by YL L () e L 2
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Type (2) Direct

N\A(\) /NH (J;<(DJ‘ LT LT
< T By ULy, D--T—f Lo de (L) L
FL,.-E(,;.. JIJ(LJ) Lg kfﬂ Q~JLrJ~~LrU_..L>

Q.0 . < T e | ol
= <L - L U e E O
PS-\

— . oL, T o o
LR (LT, LS L B W s

>~7{’+‘\

. R T T
<L J-. [h o) 156 T L ] Lﬂs_‘ Loy (L) Ltk L% D
q’ ' . . x- —_— O(’ . %‘
IREaN k(Li»I;tf;U-;(L>(L;)ktw;>

\70‘1’: > =t

£ L% Lk )L m ;LJ k(Lo VB (S M L8

d‘J...g J Co
G‘C-l
I " A, (L"" R Sl TS R S VAR
>‘=O~J.+' ) ’ A >~( > )/(G‘-\ P >

< L;‘j.. L (DT R DL 1725

(421 )

Special Case . '

P b= < o

replace the third, fourth and fifth lines in (4.23}) by
ﬂ() L Z L-C{.;~ L o( : f ( ) R >
= <A (LT T B

LTy () be Lo (U)o | By ib- T s ey Y

L5 o~ ) o oLy = ol L) SN
< Lfi-' L Lo, (L"J >Lf’j' | LfJJ" LV (- ) boc ) £y )
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Type (3) Translation

xs% f’(4°‘;<f>d‘<¢j

[

T T bk Lo Tl (e Ty By |

fe
- 7 - T . Lo E AV
’L' .L(L . L—-d“_' - LfJ'QG(L(J). L,rJ keg—L( U'J)LQ‘J L—>
o7 ol X T < R
= < Lo;’;_. b QP-'(Lf’J)L/’? “’f:-: Lt’i(Lr? Moo Lpe 7
Ty 0 (L3 R i RN I LS
Xz o ~ :

S LT e G (1 B et D2
3

’Q:—‘ oy B LT \T o PN oy NL"(\‘.
” <L\J_‘QCL>“)L>L>|L3_‘L>(L>),Q >~>
>‘7U’;+l

< ke U e T 1t U 22

i DL T |1 T L fe L7
< L(\,'s«t jfjl% (£ \) LfJ‘—l' LfJ'LfJ' ‘L,'_;l-n Lf)'QfJ(LfJJ - h J 8 >

ay - . —_— ‘D(. ~«0 *
T =3 ' YN s N Lo Li)"qv;l—>>
17407 A (LT L5 P B
)*"'{j*“ . i
o Ko N A Ldfs T . (La.) L e >
< La~;~: q‘fj U’o‘J--. Yo - 7 | v~ ")Q T J

To obtain an expression for type (4), Py < v, < o-j < pj merely
replace pj by o-j in the last three lines and in the upper limit of

the second product.
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Special Cases
o= e Sy amd poTTISIISL,

replace first three lines by

— < — — ] ooo— < N
% <Lr;_‘ L{,;Xf;(L,;)L_L L }LfH Lﬁ.(L_fL),Qﬂ J(Q-ULBL/Q

Py e
fos 7o <p;=9y
replace last three lines by

i AV R T L £ L, £ (L)L
<ijj" jﬁj ij (E)LfJ_‘ 1 {,J} (- ( ) ( ) b

T4 L =

replace last three lines by the above coefficient and the fifth
line by

<Je Ay kU VT ) 8 g the YA D
_ (,)”r“ L, wzﬂ)faﬂku,, kel YA
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Type (5) Exchange

F N N+t G -

K\U—//7\>\’J F;<'TJ‘<TL.<fJ.

<Ly L bk U ) Ly - Ly Co b (L ) L

'LI "I[J ' L‘G‘J' k/eTQ'(KTJ'JLUJ'\" :o—h' LfJQfJ{' J- L>

-L}

= <L_°;°_‘ Epke (D L30T L T 0 g 1>
q—-)

D <L"<J fZUM)L L)LY DLW e LD

\,f
LS kU ) 2% T WL Tk ()T, 0 L
= S kU by T U L Rk ()T R LD

<L’ [ H e Lo LJJL" ra-wﬁf-)tg.fengg’)
J J

r <<L>41faL VT, L )T En (T 155
W Ao L YL LTS \L>_‘:_>u_%;/zv- Loy >

. . —~ oL ¢
<t01;~\ Rf)' U"O:E—l ) LO‘.; L:-‘.. l Loim L"_‘; LL“’i )Ih . T >

< (Eq-~;( /(}a" (Ldv \Eo— L‘.{d: ’rl:. - :g-"fr‘ &L:TC,‘) L‘::;' >
- - oL~ [ [oa T .~ [ ) -«
.i:' P —_ ol » o(j _— ’ e(s 1 ol {
T <y >RL>)HHHUU>QLX
b 4 + 1

<5 CNT L5 Ty dp (L) L
< ijJ~l /QPJ ('.L-fj")LD fJ , f J | ) /QJ >

(4.35)
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Special Cases

fJ = G"J’ < o < (pa'

replace first four lines of (4.35) by

. = -_ LS < - A ~ oy

= SN e Akl L T Do) b A LTS

e T \ oK A )/L\ )
< L’;;J—Ith.kﬁq Lo )Ls; L L5 Tk ) B e 153>

replace last four lines of (4 35) by

<ir¢" 2)01' (Li:‘* )tﬁ Q"T (L°“~' )Lx:; lrEo*:-: 't:r; (L:‘i-u ‘)I‘Ti ¢ FJ(L(&)U;;>

o<y =<y

<L T:{’L fzﬁ'k(ff;)Lf‘- L (LF) ZPJL |
T, T, Te Myuz,_)u;._.tﬁ.gﬂ(%)” L>

xS — ’ : o T <y . "y
= LT L b (LS L5 Aﬂu.ri)_fﬁ L%
T T e T 4D

. . oL ‘ &£ a | ¢ K o ol
S L A L
<Ll (L) k L I Ee ke (e ) HS

pit ; . _ . o o : =L
I <L°?.’2(;tLi‘_.>L>L°‘;)L"‘:-(LAL»J”&L>>
N2 Ty - :

. N N T | . wl
< L;ﬂ. f“- (LE;-,)LFJ'L“ }ij_' Lt,;,Qf)(ij)L rb>
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An expression for type (6) P; < o—j < pj < o, may be obtained

by replacing the last four lines of (4 3s) by

Y (L”_ )—m‘ LT, Loty (1 )LD

<T
L ﬁ (Lf >L(4 L ’T(J‘J ’"f‘;“‘? ) A, L/?j' D
I £ L Lo (LG L, 8 LTS TS LD

. o — o ¢ T . - ~
< L:’_' /{f«: (Lcr{—l ) L‘T‘J L"“‘ju.' ) Lf’.:-: L“; Q“’x (’L"L ) L o >
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4.3 Program

A computer program has been written to evaluate the one,
two and three vector recoupling coefficients of the type de-
scribed in section 4.2. The program is written assuming
that recoupling coefficients will always occur in pairs of an
orbital and a spin coefficient. The classification of the co-
efficients depends only on the order in which the vectors are
coupled and not on their numerical values. Hence both mem-
bers of a pair of coefficients will belong to the same basic
type. The program is therefore written to evaluate a pair
of recoupling coefficients and the final value that it returns
is a product of the orbital coefficient and the corresponding
spin coéfﬁcient.

The program is written in FORTRAN and is split into 5

subroutines.

(1) S@PRTS: This subroutine examines the input data and
classifies the coefficient according to the three basic types
described in section 4.2,

(2) REC@PS: Evaluates direct and translation typé co-
efficients. '

(3) RECPSX: Evaluates exchange type coefficients.
(4) RACAH: Evaluates Racah coefficients.
(5) FGO03B: Evaluates 9-j coefficients.

The versions of RACAH and FGO03B used in this program are

library routines and will not be described here.

(1) S¢RTS: This subroutine may be regarded as the link
between the calling program and the recoupling subroutines.
For this reason, its form depends on the problem for which

recoupling coefficients are needed, whereas subroutines
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REC@PS and RECPSX are completely problem-independent.,
The version of SPRTS described below has been written for
the calculation of the recoupling coefficients which arise in
the evaluation of the matrix elements of the one electron
operator <H1> and the two electron operator < F::—m >
described in S.M. REC@PS has been written assuming that
k is recoupled from the lowest of the-4 interacting subshells
to a higher subshell. This may not be true for the required
coefficient therefore, instead of returning the values of
<Lile>k <Si|Sj> for the matrix element < 7 . N,. , S@RTS
returns the values of the 'invariant' quantity

[+ QA )] 5Ll 1>, <50 S

(see equation (4.28)

InEut data

The program requires the following input, (we use the
notation of the preceding sections to describe the various

quantities),

I,J - parameters which label the l.h.s. and r.h.s., re-
spectively, of the coefficient. .

IRHJ@, JRH@ - subshells containing electron N on 1.h.s.
and r.h.s., respectively. (We label subshells 1,2,
3, *N¢ZRB rather than ls, 2s, 2p+--b.

K - third vector to be recoupled in orbital coefficient.

KFLAG - equals 0 if <1, |L> is the angular part of
<1| —— |J> equals 1 if <L IL Y is the angular part
of the matrlx element <H1> .

N@RB - number of occupied subshells.

N@ZRBLl = N@GRB + 1 - Number of occupied subshells if the

continuum is regarded as being the outermost subshell.
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ISIG, JSIG - subshells containing el.ectron N+1.

SPI,SPJ,SSI,SST - Spi’ Sp:, Scri’ Scj.
J )
LPI,LPJ, LLSI,LST - L ,L ,L , L
p. p. g, g.
1 J 1 J
LRGL,SPN - total L, S for the system

For each channelI = 1, N and subshell LAM = 1, N¢RB

SLAM (LAM,I), LLAM (LAM,I) - s)\l, L)\l subshell angu-
lar momenta
as: a-
SALPA(LAM,1), LALFA(LAM,T) - S, ' L, ! intermediate

couplings

For each channellI = 1,N
AL2(I) - li projectile angular momentum
IWRITE - logical number of output device
IDEBUG (3) - flag for debug prints.

(Note that as we will regard the continuum as an additional

subshell the dimensions of SLAM and LLAM must be (N@'RBI,N)

The following local arrays will also be required
QALFA (NGRBI, N) QLAM(NGRBI, N), QL(NZRBI1), QS(NFRBI)
QRE(N@RBI), QER(N@RBI1), Q(4), S(4), L(4), ILAM(4),
JEND(N@RBI)
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S@PRTS performs the following checks and reordering

(1) Checks that the quantum numbers of the spectator subshells
are equal.

For each LAM = 1, NJRBI -

SsS(kAaM) = ©
QlE CLAMY =0
QEA(LAM) = ©

S
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(2) Sets IMIN = min (IRH{, ISIG)
IMAX = max (IRHJ@, ISIG)

LIl = LivIN

SIt = "IMIN

Liz = Divax

SI2 = Sivax :

Sets IRS = 1 if IRH{ < ISIG
= 0 if IRH{@ = ISIG
= -1if IRHJ > ISIG

Defines JMIN, JMAX, LJ1, SJ1, LJ2, SJ2, JRS in similar
manner ‘
Sets ANS =1
MATCH =0

a a
N@RB LN¢RB SN@'RBI LNngRBl

SALPA(NERA , TS = SPN
SALPR(NERR,T )Y = SPN

LALEA(N$RR,TY = LREL
LALEA(NORA,T) = LAGL

(3) Defines S

TMAX *nFdeRy Tes '~
SLAMINGRRY,T) = © SLAM(NGRR4,T)Y = &
Liam(NERR(TY = © LUANR g28s, Ty = AL
\
Z

U'Mfr‘xz% ‘/ed =
7./
”6
tuwuv;mzq LT = o
LLUAM(NEZRY T )Y — © LLAH(N¢£/€1,I)?,€J~
]

=

SLAMINGRRT, T = &
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(4) Checks the quantum numbers of the spectators in the
interacting subshells. Puts pipjcrio‘j in ascending order and

relabels them by defining new arrays

ILAM(4)
L(ILAM) :*LILAM
SILAM) =S

When checking the quantum numbers we must consider the

following cases

= L

(i) IMIN = JMIN, Sy =S rvin' PN = FrMIN
) IMIN = IMAX, Spin = Syvax’ Movan = Yrvax
IMIN = IMAX, S v = Stvax Mrvin = Tivax
. - } - S
s JMAX, = ) =
(i) IMIN ATMIN, J Sivin = Stvin' Pivin T Miman
= . - i
JMIN # IMIN, IMAX, Sovn = Sivane’ Prvin = oM
(v) IMIN = IMAX no check ior SIMAX’ LIMAX
JMIN = JMAX no check for SJMAX’ LJMAX
(v) IMAX = JMAX ZIMIN or JMIN S =S

IMAX JMAX

MAX = TIMax

=
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ST1 = $31

K“ LTA
2

N
MATCH

@

TLAmt = THN  TLAMN = THIN
L) = LT, LEAMN = 04

Sc1y = STH1 SLAMN 2ST4

JTIL =T

=

T3 =T

Tharmi = TN, TLAMN = T
Ly = 00 ANy = EI05A4
S(1) = ST SLARN = $TF1

3




MATCH = —|

W

Y

Y

TLAUY) = TMax , TLaMX = THMAX
L)y = LT LLAMX = 12
S(4) = 5T 2 SLAMX = ST

ITT4 = IJr4 = J

9 &

TLAME) = THax  TLAMX = JMAX
L(4y = LI Lenmy = 192

S(4)

L]

STz SLAMX = ST 2

LA 4 = 1=

-—

= T AR
(jFD
Q.NS = O

123,



TLAMX =
Tty or

SLAMX, LiAnx
o.l.

Yes
[ <
; Yes / \

TLAMG) =TLAAN

Sy Ly
math veduas an oth [
sicde c} the

cocfl

25

We note here that MATCH = -1 = IMAX = J] [AX
=l = =
MATCH = +1 = IMIN JMAX

or J =1

MIN MAX
hence MATCH = 0 includes the cases

IMIN = JMIN
IMIN

IMAX
- IMIN

JMAX

124.

and that JLAMN = max (IMIN, JMIN), JLAMX = min (IMAX, TMAX)
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TLAMQ )Y = TLAMN T AM () & Te—AmMX
TLAM(Y) =3 LAMA Team () = TLAN
L@y = LeAmn L"_f;j : :::::
L(3) = LeAmX S (2) = SLAMX
S(2y =T SLANMM S(3) = SLAMN
g@) = Si-AMX

¥ \

(5) Classifies the recoupling coefficient according to the

six types discussed in section (4.2) and labelled by

ISRT = 1,°°+6. Although the spin recoupling coefficients
may be obtained by substituting the appropriate values of j
together with k = 0 into the expressions for the 3 vector co-
efficient it is often easier to obtain these more directly.

For this reason we reserve ISRT = 1,*+-6 for spin recoupling

coefficients and set ISYRT(orb) = ISERT(spin) + 6.
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4/%-7(>/\ fes
\cm i

\

LSorT = ISoRT |

(35




(6) The program now considers the spin and orbital coef-
ficients separately. The angular momenta of the individual

subshells X < ILAM(1) play no part in the recoupling and
a

' a
only their resultant SILAM 1- 1(L1LAM1 -1

) is required. We

define
a >
QS(1) = S AMI-1 ILAMI1>2
= S AMI-1 ILAMI = 2
=0 ILAMI =1
QRE(1) _ gl ILAMI > 1
( T YILAMI1
1J
= ST aM1 | ILAMI =1
QER(1) - s o ILAMI 1
- P1LAM1 7
JI '
= 1AMl ILAMI1 =1
We recall that 13 =i, JI =jif ILAMI = p; OT T,
1J =j, JI =1iif ILAMI = pj or 0‘j

We next scan through all subshells ILAMI1 < A\ <ILAM4 dis-

carding any spectator subshells with _S-)\ = 0. We store the
X
parameters S)\IJ, S}\ = S)\O(F"l of the remaining subshells in

QS(II), QRE(II) and QER(II) respectively, with the counter
II replacing A\. For A = pipjo—i or o—j we store JEND(\) =
II(A) - 1. At X = ILAM3 we choose to store S e rather

rr, *Try A
than S}\ in QRE, and to store S&Jn QER
(w1 =4,0m=j  ifILAMY4 = p, oT 7
1IJ1 = j,JI1 = i if ILAM4 = Py or o‘i)

We have now defined all the quantities needed by REC@PS

127.
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and RECPSX. The program now calls REC@PS (which calls
RECPSX if necessary) which returns the value of < SiISJ.7 .
We now define QS, QRE, QER etc in terms of the orbital
quantum numbers and repeat the process. We note that as
the number of non zero 1)\ will not necessarily be the same
as the number of non zero S)\, the process of eliminating
redundant couplings in the recoupling coefficient has to be
performed separately for < Si|Sj7 and < LZ;.IL? . As men-
tioned earlier REC@PS assumes that k is initially coupled

: L
into ILAMI1 and we multiply by the factor [( 2Q1—Lm:'; )(284+1)]

where
by = Hpana for ISGRT = 1,3
= hpams ISGRT = 2,4
= zILAMZ ISYRT = 5,6

to obtain a quantity independent of the coupling of k. S@RTS

E ’L . . M .
therefore returns the value Blﬁ_n_,,;’", | )(ZQNH)] L LJ>K<S‘ (SJ>
for the matrix elements of <;—L > and the value of

N, N+

L LA DLSS;> for HD
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TramM1 = ILAMUY)
TrAmMm 2~ = TLAM2)
Tramz = TLAMQA)
TLamMy - TLAMLG)

JEND (LLr4m1) = 1

QLAM, = StAaM,
©ALEG, = SALPA,

(w oM = LNCoRRY
Q(LAM) = S(LAM)

fp’L&M =1, 4%
KP = o
[IND> = o0 |

\Y4

\'d

QRE (1) = BLAM (1,T7)
QERL =®LAMIT, TT)

Q@ SU) = QLAMUM,TY

G 1) = QALEAErM1-))

N

< I

\ 4

GRECIY = QALFA (TLAMI-LLTT)

QRERC) = QALFATLAM1 —1,TT)

N/

Soo
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=y

T =1

LAM = LLAMY 4+
YL? / )
LAM 2T LAty

N

|
! LAM = LOM +1 '

TENY (LAM )
b= II

Y

QS(IT) = QLAM(LAN,TT)

No

%I L2

N N Y(’/é
A\
Y
BRE(TTY = QRECTID) =
QALFA CLAM-1, T QALFA L LAM-1,T7T )
REsR(TIDY = RER(TIT) =
CALEF (efr-1, TT) QALEA (=Ata—t T L)




V0

@F)

| catwe
RECoPsS( ANSS)

ANG = ANS x ANSS \

GLAMLAM,T) = L
BLAM (LAM,T) = LY
CALFA GAM,T) = LTF
CLALEA CLAM T )Y = L‘*\J
N = ), Ndant ‘
&LL l\ﬁ,Lf‘“) = /e>

N =1, NgR@

oL(NERR1) = L3y

QlLaHy = LILAM )
LM = L&
kP = K

JSeRT = TSaRT

131.



KFLAG = ©

132.

TA=TLAMY

| TA - TeAy

ANS = ANS *

[24_ +1)(2leTh

ILﬁP’K‘ +1 )‘J -

GersesD
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RECQ@PS

This subroutine together with RECPSX, RACAH and FG03B
performs the actual calculation of the recoupling coefficients.

It requires as input the following data.

ISgRT -- label denoting type of coefficient.
ILAM(I) I =1,4 -- labels of interacting subshells arranged in

ascending order.

1IJ =1,JI = J if ILAMI1 = p, OT o
1IJ =J,JI =1 if ILAMI1 = pj oraj
01 = J,JI1 =1 if ILAM4 = p, OT 0}
IJ1 = 1,101 =7J if ILAM4 = pj or(rj

JEND(p) = number of subshells A < p = interacting subshell
contributing to recoupling (see SFRTS)

K = value of third vector to be recoupled
1

——1j>

0 if coefficient is part of < ilr
N, N+1

IFLAG =
1 if coefficient is part of < iIHll i>

QALFA, QLAM, 0QS, QRE, QER, Q (=QL of SGRTS)
QBAR (=Q of SGRTS) -- quanturh numbers appearing in the
recoupling coefficient, see SGRTS

The following local arrays are also used,

QOMIN(N@GRB1), QMAX(NZRBI)

The subroutine uses the expressions for the basic types of
recoupling coefficients given in the previous section. We note

that if ILAMI (=))) %ILAMZ(EKZ) then the recoupling
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LT LA WL T (L), L=

> Uy N P >, ‘

bl

T <L7F L, (K5 VL, L= LT LT )

A= )\'i-(

is common to all coefficients. Similarly if ILAM3 (E)\3)
%ILAM‘I(EK ) then the recoupling

P

T <7, (57T LT LT A L
A= \ i
« XTF4 \ ey oLrT4 — IT1 | Xxoa
< L :T—1‘ z (L M-t )L>‘~+L >y \ L gl LN*QN.(LM& )Lx,{_ >

is common to all types of coefficients.

The subroutine is constructed as follows

INITTVALISATION ’

Y

TLAMA
"T_IJ‘rH?- :

» Ne

No

CCbLC LLLK\,\‘{A (‘LA‘S {b .
¢ ’ chtH‘LcLe, ~F
A4

\/

N

HIMY =2 LM = TTEs
CT = G(TLAMIL)
KK = (&

T
3D




?)

PIRECT

SPIN

e

C &LCw(A'LQA

LM 2

= Lkt

™ <5§165>

IT =X I+1 )

Kk K

TLAMT :—D_y
\'\.?

DIRECT
OREL

S

135.

EXCHANGE

LIMA = 3VS, LIM2=TYEND

6T = Qu,

KK =92

Cobeulabes last
Cc-é{:f(‘}.ief\t

«

N

Y

x
m
A\t
c

A
e
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The intialisation step includes the following definitions
QK =K
ANS =1 ¥
ANSS =0

if ILAM3 = NGRB1, Q4 = £

171 for orbital coefficients

For all other cases Q4 = Q(ILAM3)

JTEND = JEND (ILAM2)

JUS = JTEND + 2

JUEND = JEND (ILAM3)

JVS = JVEND + 2

JVEND = JEND (ILAM4)

JSYRT = 1 for DIRECT SPIN coefficients
TRANSLATION SPIN
EXCHANGE SPIN
DIRECT @JRBITAL
TRANS.@GRBITAL
EXCHANGE @RBITAL

(o XTI ) B " I 3V

The steps “calculate coeff. would consist of the following
instructions for the calculation of the coefficient

<ab(D)cFla, be(E)F> = [(2D+1)(2E+1)] 12 W(abFc, DE)

No
qt] A‘NS: o

Yes
cArL RacaH(abFe , DE, W)

R}

ANS = ANS x [(2Dr l)@Eﬂ)—j‘%w I




4 )
where A+ ? is an abbreviation for "are the triangular in-
a-b=D=a+b

b-c=<E=<b+c

equalities satisfied?"

D-c=F=D+c
a-EfF=<a+E

In practise, we assume that the original intermediate coupling,

D, is allowed and we only check that the new intermediate
coupling, E, satisfies the triangular inequalities. (RACAH
also checks the triangular in equalities therefore this omis-
sion is not important).

The direct spin recoupling coefficient is considered
separately from the direct orbital coefficient, since the ex-
pression for the former in terms of Racah coefficients is
considerably less complicated than that for the latter,
particularly for the special cases where some or all of
the subshells p. p .0, ch are equal.

The direct and translation coefficients may be expressed
as a product of Racah and 9-j symbols with at most one
summation over intermediate couplings. Hence they'ma'y
be evaluated using a sequence of instructions of the type
described above.

The portion of the exchange coefficient which involves
multiple summations over intermediate couplings is evalu-

ated in RECPSX.

RECPSX

This subroutine is called by REC@PS and evaluates the
portion of an ex“change type coefficient which involves multi-
ple summations over intermediate couplings. We recall

that in general this is a sum of products of coefficients of

the form
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2y _ - -
T < Lg,,ﬁ(Li—|>L>\ L’< |L>.~( L:«(L%)’(Lp;>

>

— ( ~ — —~ | "<‘
) L>~ LD<>~ l L_>~~t L>(L>‘){ L ,\7

e o= o,
t L _ = ALt —
>L )3‘ <L_>_[£‘(L

w !

XNt

The maximum and minimum values of ?:‘}\2 and (’I:)\3) will
be determined by the triangular inequalities satisfied by the
arguments of the coefficients which precede (and follow) the
above sum of products. These triangular inequalities will
depend on the particular type of recoupling coefficient being
considered. Assuming that EKZMIN and ’ﬁ)\lMAX have been
determined, and that ANSS(IP) denotes the value of the preceeding
product of recoupling coefficients for each possible valug of

,i)\z, labelled by IP, we evaluate the sum of products of co-

efficients in the following manner.

Clecwr ANSY
X _—>\2_

Sb{—s 'Af L.> I‘) L:UN

(See note be,(crw)

~ ~ MIN
L> = L-}\
T =1

s




\/
A

$¢Lt.lslu;n‘ 6;( t{fwé T>~ -t

(sce nghe
bolew )

Coledade P al-
o\ Coc({{c_ @k for
H\QA [ [ N - T— >

\

Asy (IT) = ANSV(TITT) +

ANSSLI?)*Hu*“L"'& X
Y
T»_l =T:>,1+|
<
Iy =P+ 1
T—J)\:LA'{—’ <
TT=CLT+1

ITMAX =TT
ANs S (T)= ANSVCT)

ANsSV(T)= o
fn- T = 1. TTHAX

le?;

ANS = A NS + ANSSCT)

fo- T =1, TTHAX

139.
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~ MAX ~ MIN

Note: L)\ , L)\ are determined from the triangular
inequalities | £ - L)\°‘| < f_,)\ <7+ L)\a
}
_ a' ~ o a!
L - < <1+
| Ly =1y Ly
after choosing a particular value of ,I:)\ , Ve check the

other inequality

- ~ ~ - ~/
- < < +
IL)\ L)\ [ L)\—l L)\ L)\
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Scattering of Electrons by Atomic Systems

%

KENNETH SMitH AND LESLEY A. MORGAN
Department of Physics, Universily of Nebraska, Lincoln, Nebraska
(Received 20 March 1967)

The theory of the scattering of electrons by atoms or ions with any number of incomplete subshells is de-
veloped within the Hartree-Fock, or close-coupling, approximation. Allowance is made for the target system
to be excited to any electronic configuration constructed from discrete orbitals. The one-electron orbitals of
the discrete subshells are assumed known; the scattering (continuum) functions are given as the solutions of
coupled integrodifferential equations with prescribed boundary conditions. The form of these equations is
such that the continuum functions are orthogonal to all the discrete orbitals. The potential terms appearing
in the equations are written in terms of the generalized angular momentum recoupling coefficients. A
technique for calculating these coefficients on a computer, which is a complicated algebraic problem, is pre-
sented in an Appendix. A computer code for calculating the various elastic, inelastic, and photoionization
cross sections has been written and is currently being tested.

1. INTRODUCTION

HE scattering of electrons by many electron

systems has been studied by Seaton! and by
Vainstein and Sobel’man.? Seaton showed that the only
consistent means of obtaining antisymmetric wave
functions in approximate solutions is to make the expan-
sion explicitly antisymmetric. He then analyzed in
detail the configuration nlekl. In this case, the anti-
symmetrized ‘wave function for a system of (N+1)
electrons initially in the state I' is

N
W0 )= (V1) 5 (— 1w

p=1

Frr(ry)
XE LX)

”p

where X=x,- - 'xy, with x; denoting the space (r) and
spin (o) coordinates of electron 4. The quantity «
denotes all the quantum numbers of the N-electron
target, while I, represents the orbital and spin angular
momentum of the projectile; L and S are the total
quantum numbers.

Vainstein and Sobel’man considered the case of two
groups of equivalent electrons.

Calculations of the cross sections for the collision of
electrons with many electron atoms have been per-
formed by numerous authors in a variety of different
approximations, e.g., Bauer and Browne.®? Extensive
calculations are currently under study by Peterkop and

* Work supported, in part, by the Air Force Weapons Labora-
tory, Kirtland AFB, N. M., under Contract No. AF29 (601)-6801
with Lockheed Research Laboratories, Palo Alto, Calif., and by
the U. K. Science Research Council.

1 M., J. Seaton, Phil. Trans. Roy. Soc. (London) 245, 469 (1953).

2 L. A. Vainstein and I. I. Sobel’'man, Zh. Eksperim i Teor.
Fiz. 39, 767 (1960) [English transl.: Soviet Phys.—JETP 12,
536 (1961)7.

3E, Bauer and H. N. Browne, Alomic Collision Processes,
edited by M. R. C. McDowell (Nzorth-Holland Publishing Co.,
Amsterdam, 1964), p. 16. .
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Karule,* Krueger and Czyzak,’ and Smith, Henry, and
Burke.®7 All these calculations involve only a single
incomplete subshell in the target atom, and only a
single-electron configuration in the expansion over I' in
Eq. (1). . . )

Recent developments in the calculation of matrix
elements of one and two electron operators between
wave functions describing configurations with several
incomplete subshells (see Shore? and Fano®) have indi-
cated the method for formulating the general electron-
atom problem. In the present paper, the notation of
Fano is used to take into account the actual or virtual
excitation of any number of atomic terms.

The need for developing the formalism presented in
this paper is due to the failure of single-configuration
theories to predict the low-energy cross sections for
electron-atom scattering (see Smith ef l.7) to provide a
close-coupling framework for discussing auto-ionization®
and photo-ionization!! since the close-coupling approxi-
mation has proved so successful for simple systems,?
and to provide a theory which will allow the calculation
of inelastic cross sections involving a change in the
electron configuration.

In Sec. (2), the form of the trial wave function to be
substututed into the variational principle is discussed.
In Sec. (3), the techniques for evaluating the various
matrix elements are presented. Finally, in Sec. (4),
the radial equations for the continuum functions are
derived.
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2. TRIAL WAVE FUNCTION

An unsymmetrized wave function of an N electron
atomic system is (see Fano?)

YulgyrX)= [I} (r [ M arSaLa} ], (2)

where yr denotes the complete set of quantum numbers
which specify the target T. The wave function for
each subshell A, of principal quantum number 7 and
orbital /, with resultant quantum numbers ax Sy L,
is antisymmetrized and their angular momenta are
compounded to give a S L for the target. The unsym-
metrized wave function for an (V+41) electron system
can be expanded using the functions of Eq. (2) as a
basis:

4u(gxm) = T Ve Frns), Q)

where we shall assume the sum to include several

distinct configurations, and the coefficients F' can be
expanded also in two steps:

Froyp(Xn11) =2 X, (05-41) Frrm, (Ta41)

ms

and

From(Ivi)= 20 fromirmp(rns1) Vipmp(Pypa)raa™,
lrmr

where Ir is the orbital angular momentum of the pro-
jectile relative to the target.

Combining the above results we obtain

Yu (QXXN +1) = Z

YrlrLMLSMS

[YulgyrX) X(V+1|krirt}]T

ﬁ r(fzv+1)
X,

TN+1

where T denotes the complete set of quantum numbers
(vr3l.LM LSM s) and where the X denotes the vector
coupling of the N-electron function and the single-
electron spin-angle function (N+1|k¢lri}, and

Fr(rws)= ¥ (LoleMyyme| LM 1)

mem7T
X (ST%MSTmalSMS)f'rrm.lrmr(TNﬂ) , (5)

where LrM1,.StM s, are the total orbital and spin
quantum numbers of the target T and their 2
components.

The unsymmetrized wave function of Eq. (4) will be
written

¢u(9XXN+1)=Zr YulgT X?ys10w41) Fr(rws)raert. (6)

Asymptotically, the radial functions are superpositions
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of ingoing and outgoing waves
Fr~Arer—Brer;
Or= krr—%lmr—l—( _ ) In2krr+ayp,

where the S matrix is defined by
Br=} Srrdr,
I‘I

where the sum IV is taken over the incident channels.
Therefore a new radial function F can be defined by

Fr=3 Fro()~X Ar[rr e Srr 7], (7)
PI I"

In terms of these new radial functions F, Eq. (6) is
therefore

‘/’u(qxxN-H) = I‘Z ‘!/u(qP:XfN+10'N+l)
I
XFrr(rne)rae™, (8)

which is the total, unsymmetrized, wave function for
the entire system (projectile+target).

For the system (p+ T) initially in the quantum state
T, the wave function is

Yu(gl Xxyya)= Zr: VulgTXPNy10n41)
XFrr(rvs)rae. (9)

The wave function for the target system will be con-
structed from Hartree-Fock orbitals, Pni(r), which,
strictly speaking will depend upon T'. In this paper we
shall ignore this dependence. We can expect this as-
sumption to be valid for inner closed-shell orbitals. Its
validity for incomplete outer subshells will be tested
by running the computer code with the different sets
of P,; and observing the variation of the cross sections.
If this variation is substantial, then the problem will
have to be reformulated including the I' dependence in
P,; this will result in considerable complication of the
algebra and many more radial equations to be solved.

In order to have a properly antisymmetrized wave
function, we antisymmetrize the target function, Eq.
(2), as proposed by Fano?:

YrrX)=(N)"12 X (—1)PepulgyrX), (10)

and then antisymmetrize with respect to the projectile
as in (1) to give a total antisymmetric function

Y(IV Xy - Xpyqr) = (V41)-12

X3 (~1)¥s T U(TRt ) Frnlrari™, (11

p==1 T

instead of the unsymmetrized form given in Eq. (9),
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where

Y(TXPpop) = UN2 Z (— 1) P (qT X7 50)

=N\ (=P "[HA(QA | nhMaar xSy} J'T
X (p|krlr3) 1T, (12)

Here we assign even parity to the normal order of
labels 1, 2, 3, ---, p—1, p+1, ---, N, N+1 and a
parity Pg to any ¢ according to the number of permu-
tations by which it differs from normal.

The continuum functions Frr(r,) will be determined
from a variational principle, subject to the constraint

/‘” dr Frr(r)Pa,(r)=0.

0

(13)

This orthogonalization of F with respect to the dis-
crete orbitals can be interpreted as preventing the pro-
jectile from being captured into any incomplete sub-
shell included in the eigenfunction expansion, Eq. (3).
Because of the assumed form of the Hamiltonian, each
set of LSw of the (N+41) electron system is decoupled
from the other sets. Consequently to allow for electron
capture we must include in our trial function, (N41)
electron wave functions in which there is an extra
electron in one of the incomplete subshells included in
the eigenfunction expansion, i.e., functions of the form

B, (LS Xy -« Xvg) = TN *)~V/2
X2 (—1)Pepu(quLSmx1- - Xn41), (14)
M

where p runs over all the incomplete subshells included
in the eigenfunction expansion which can contribute
to the LSm, > » Na*=N-+1, and ¢, is an unsymme-
trized wave function of the form given in Eq. (2).

The trial function ¢, is taken to be a linear super-
position of functions (11) and (14), viz.,

‘bt(l—‘ixl' . 'xN+l)=‘l’(I‘i,X1' . ~XN+1)+Z Cnrﬁ'm(Nx“)_ll2
F3
X2 (—1)Pepu(guLSmX1 - *Xn41), (15)
u

where the coefficients C,T are completely arbitrary.

In Secs. (3.2) and (3.3), it will be necessary to sepa-
rate out the interacting electron in the subshell p from
its equivalent electrons. This is accomplished using
coefficients of fractional parentage [see Fano’s Egs.
(24) and (25)].

3. VARIATIONAL PRINCIPLE
We consider
BEL“'— %K},z:’=0 s (16)

where the elements of the real and symmetric reactance
matrix K, are defined in terms of the asymptotic form
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of F in the open channels
Fr',,r,"'kk_1/2[5kt sinek—l—-Ku cosﬁk] ’ (17)
and
Ly= / . 'fdx1' s dxye(Te, X1+ - Xng1)
N
X[Hy+H\(xy41)+ 2 041,01 —E]
a=l1
XYTpxa- - -Xny1), (18)

where the variations in the continuum functions are
such that
OF i~k V28K 1y cosfy ’ (19)

subject to the constraint of Eq. (13), and the vari-
ations 8C,T are arbitrary. Substituting Eq. (15) into
(18) gives three types of terms; first, terms independent
of C but quadratic in F; second, terms linear in both C
and F; third, terms quadratic in C, but independent of
F. The first two types of terms will lead to the Hartree-
Fock equations for F when we consider F — F+-8F.
These equations will contain factors linear in C. When
variations C — C+6C are taken in (16), the last two
terms give an expression for the C’s which will be sub-
stituted into the Hartree-Fock equations.

Making the substitution for the first ¢, in Eq. (18)

Lkl=/"'/dx1"‘de+1

XIWA1)12 3 (—1)¥+is = U0 X7y,

r=1

XFa(rprs V2 Culed, (LiSime,X1: - - Xn41) ]
m
X[H—EW(TiX1- - - Xn4) -

Since H is symmetric under interchange of any pair of
electrons and ,(T';) is antisymmetric, then

Lk;=[---/dxr--de_,_l{(N—i—l)”z
X2 YT Xfnponi) Fa(ryp)rver™
I

+Z Cu rkcI)n (LkS LIS SR XN+1) }
X[H—EW (T Xy41). (20)

A. C-Independent Terms
The C-independent terms are

L = f e f dxy -+ dxXys1(N+D)VY(LXP x4 10841)
XFu(rys)ra [H—EJ(N+1)-1/2

N1
X 2 (—=D¥2Y (T X7 o) Fii(rp)rst, (21)

p=1
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which can be separated into so-called direct and ex-
change terms by writing >~ , in the form

V(U Xrx 10w 41) Fi(rner)

N
+ 2 (= 0)VH=pY(TXP o) Fii(rp) .

p=1

The fact that ¢ is antisymmetric under interchange of
any pair of labels in the target function can be used to
give Eq. (21) in the form

1k(7N 1)
L= / / dxy- - - dXnp W (TiXPa 10N p) ——— i
TN+1
1(7N+1)
XEH E]‘l’(r X”N+1¢TN+1) ’
TN+1

—;\7/' .. /dxl- . 'dx_v+11//(PngN+1o'Av+1)

tk( N+1)

) g w2

TN+1 ~

(22)
where the first term is the direct term and the second is

the exchange term.

1. Exchange Terms

The matrix element of the NV electron Hamiltonian,
Hy, will include an overlap integral

/ dxXy1F i (Xn+1) Rut(Xn41) =0, (23)

and so will the E term. Furthermore, the term H;(xy.1)
will contain

A /dXNRnI(xN)Fjl(XN)=O. (24)

Consequently, the second term in Eq. (22) reduces to
L.‘k,sz= —1\7/° . '/dX1' . 'dXN+1l//(F,'X£N+1)

F;
YT 2

TN41,N N

Falrys) 1

(25)

TN4+1

where 7y41,5= |tx+1—1x], since the other termsin 3.
will contain (24). Substituting Eq. (12) into (25) gives

L, jp®=— N[UNN)TU(N) T2 X

2197

X / oo / dx1: « - AXy 1 (rarvsr) " Wu (gl XEn41)

(—1)Pai+Poi

X Fulrys) Yu(g;TiXEN)Fia(ry)

TN ,N41

(26)
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where the distributions ¢;, ¢; are such that electrons
labeled N+-1, N, respectively, are in the continuum; in
other words, neither ;; nor IY;; will contain “spectator”
electrons. “Spectator” electrons are those with labels
other than NV and N1, the lubels of the two-clectron
operator. Consequently, in Eq. (26) only one inter-
acting electron can appear in the discrete subshells.
If the configuration of the electrons in v, differ by two
electron jumps from the configuration in +y;, then the
matrix element vanishes, because there will be a factor

/de,.“(x)R,.;JA(x)=O for (nl)i=(ud);, (27)

provided discrete one-electron orbitals are used which
are orthogonal to one another whether the subshell is
complete or incomplete. If the configuration of elec-
trons differ by one electron jump, e.g., 15°2s?2p% com-
pared with 1s%252pSul, then the interacting electron
will be assigned to a 2s orbital in the former configura-
tion and to 7/ in the latter, and the configuration of the
spectator electrons among the subshells is determined
uniquely. If {N,\} and {N)/} are identical, then the
second of the interacting electrons will be found in the
same subshell in T; and T; and can be assigned to each
of the subshells in turn; that is to say, there are as
many configurations of spectator electrons as there are
subshells with N)i=N’#0. We note that the matrix
element will vanish unless it is diagonal in the quantum
numbers of the spectator electrons.

Symbolically, the exchange terms of Eq. (20) can be
written as

max (b, b))
Liuf=2 Lanf=2 Z II (N2, 0N+ 8np—0rsy)
Iir; rir; C A=ls
X Liyu®, (28)

where J_ ¢ denotes the sum over possible configurations
of spectator electrons. The interacting electron with
label N is assigned to Rai(,, in ¥(T';), while the inter-
acting electron with label N+1 is assigned to Rau(, in
¥(T;). If more than one configuration is included in > _r
of Eq. (11) then the double sum over I'; and I'; in Eq.
(28) will include terms with N)i£N)/ so that the &
will specify nonzero elements in this sum and designate
the subshells which contain the interacting electrons.
If pi#£p;, then only a single configuration of spectator
electrons is possible. If p;=p;, as in the formulations of
Seaton and coworkers® and Smith, Henry, and Burke,
then there will be as many terms in the sum over C as
there are subshells with Ny*=N,720.

For the remainder of this subsection we shall con-
sider a particular configuration of spectator electrons;
quantities with a bar over them refer to spectator
electrons. Both the distributions ¢; and ¢; include a
distribution §;=¢;=¢ in order to give nonvanishing
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contributions to Eq. (26). The number of diiferent
distributions of spectator electrons will be

SI(N)\)=(1\'—1) !/H (N)\I), Z N)‘=ZV—1 , (29)
A N

and their contributions to 3_4,.; will be identical. The
distributions in the interacting subshells are uniquely
specified

9pi={Tp0lV}

Now Pj takes all the spectators to normal order and
in Y(I;) label N will be in subshell A= p;; consequently,
further

and  g,,;={,;, N+1}.

permutations will be required to put the labels of the
atomic electrons in normal order, where b; is the outer-
most subshell containing an electron in T';. Hence

by _
Pai=Pi+ Z N)\:

A=pji+1

and similarly for P, (since in the exchange term,
“normal” order for the atomic electrons is 1---N—1,
N+41, the label N being in the continuum). Therefore

by _ b; _
PotPoy= 3. Nyt 2 N\=APy;.

A=ps+l1 A=pj+1

(30)
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We can now write, from (26) and (28)-(30), that
L jt%= — NIUN)OUN\)IUN ) T2

X(=1D)2Piry wyi™), (1)
where the outside factor becomes
[N, N, ]2, (32)

The matrix element in Eq. (31) vanishes unless the
representations are diagonal in the quantum numbers of
the spectator electrons. For those subshells which just
contain spectators

{(nhMVaniSy Ly af) = {nh M aSiLa|6y), (332)
and for those same subshells
(qﬂ'l ‘rll).N""a)\-’Sk"L)\j} = (qx l nl)‘ﬁ"&)\S)\L)\} , (33b)

while for the subshells p; and p;, containing the inter-
acting electrons & and N1 respectively, we separate
out the interacting electron from the N equivalent
particles in the subshell using coefficients of fractional
parentage

{nlnN"apSprl Qp)
= g (l,,NPa,,SpL,,{ Ilaﬁpansp-z’plp)

@pS,Lp
X [{nl,¥o@,S,L,13,) X {nl,| N)]SeLe,  (34)

where the first factor in the sum is a coefficient of frac-
tional parentage (see Racah'®). A similar separation is
carried out for the p; subshell.

Substituting the above results into Eq. (31) we obtain

La 1B =[N iV JH2(— 1) AP+ Z__ (lPs'Np‘.aPiSMLPi{ llﬁiﬁp‘.&PiSPiZPilPi)

@5-erLj

—_— - =3 3 1
X (lﬂi Np’&PiSPjLlePJ' I }lp,-Nﬂ’a,,,S,,L,,i) (l//w,,-(l".-)F sk [— I Sbupj(Pj)F J'l> )

where Y., is defined by Fano to be

V(D)= ([AH (nDF&GS\In | 00 X ({1 ¥ #'@58 5L | Gp) X {1lpi| N) IS Lo v X {Les| N 1)) T,

#ps

35)

TN4+1,N

(36)

where we recall {/;k;| N41) is the spin-angle function associated with the projectile orbital F.
In LS coupling, spin and orbital variables are tied together in the matrix element only by the connection between
antisymmetrization and addition of angular momenta within each subshell. Writing

8= {Sl ' 'Sarl(Sps%(N))Spi' . 'Sbs%(N“l‘ 1), il ’ (37a)
and
®;= {I-zl' * -E‘,'._l(f,,‘.l,,,.(N))L,,,.- . -I_,b,.l,-(N—l—l),a;L,-‘ ) (37b)
we obtain
I/ik.ﬂE= [Npini]l/z(“ 1)apitt Z_ (lm'N"“ap-'SpiLM{ llﬂiﬁp‘&ﬁgm‘zﬁlﬂi)
& Lj
- - = 1
X (lPiniaﬂiSPJ’LlePi, }lﬁN’f“piS piLios) (8 I Si))(@)iF e l ©F ). (38)
TN N+1

B G, Racah, Phys. Rev. 63, 367 (1943).
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The spin recoupling coefficient (8;|8;) will depend upon the problem under consideration. For example, for a
target atom with configuration 15225225 when no electron jumps are permitted, the sum over € in Eq. (28) will
contain three terms, one of them having the factor

(o (V))Sa5" 3(N41) 5 851 (Sesd (V41))S2,7 3 (V) 5 S5) = 85,5, (252, + 1) (252,74 1) 12 (S2533 8257 82050 . (39)
Upon expanding 7y, x41? in terms of Legendre polynomials P,(7x-7#n41) the radial integrals reduce to Slater
integrals and the matrix element is
[©,F)=>" Ri(nlyiF s, Fynl XD+ - (Lpidpi V) Loi+ + » Lo d o(N+1),Ls]
X PPy Pye) | In - - Loy (VA1) Ly - - Loy s(V), L)
= Z‘ Ru(nbpiF ity Finnl) (1| CHIL) (o | CHIED L2+ 1) (2L, 1) 712
XLy + (L)1 piv - Lodiy,Li| Ly- + -[Lp; (10)80; 1L s - - Lok, L), (40)

(@)iFikI

TN, N41

using the method of Fano, Prats, and Goldschmidt' and where the orbital recoupling coeflicient can be calculated
in the same way as in the spin coefficient (see Appendix). Combining Egs. (28), (38), and (40), we obtain

Luf= 3 [T 800~ 5”,)]2 [N ooV oy 13— 1) AP [(2p 1) (2 - 1) 172
TR A

X 2 (GNP SaLaf| LoV 0@, 8. Lyl ) Uy ¥ S Lyl | YoV ety Spi L)
&iooo Lj
X <8,l S,')E Z Rt(]llp"F‘k,Fjl’ilnj) (lp.'” Cl”lj) (lpj”C'”li) <0i|0i>E ’ (41)
¢

where the final factor in Eq. (41) denotes the exchange orbital recoupling coefficient as written out in Eq. (40).
2. Direct Terms
These terms are given by the first term in Eq. (22)
Fu(rys1) Filrns1)
L, aP= [ / dxa- -+ dxy s (CXdyp))———[H— EW(CXEyp)——— k ) (42)

TN+1 TN41

where ¢ is defined in Eq. (12). It will be assumed (as in Smith e al.%) that
f e / dxy- - - dxny (v X)[Hn— 6 (v, X)=0. (43)

Any calculation on N>1 target systems must use approximate wave functions, i.e., functions which are the eigen-
functions of an N-electron Hamiltonian H y(approx) Hy(exact). Consequently, (43) introduces an inconsistency
which should lead to a small error if accurate atomic orbitals are used. Because of this assumption, the Hy term in
Eq. (42) is

/ drviFalrni1)8:bi;Firny) . (44)

Due to the orthonormality of ¢(y,X) the H; term is

1, @ L+l 22
8ij / dryF ik(7N+1)[—-< f )]F a(rna) (45)
2\dr TN41

N+12 7 N+12

which leaves us with the evaluation of

¥y 1
/ din / dxy- - - dxyP(TXeny) 22 —Y(OXdn1)=Viilra). (46)

a=l¥N+il,a

1 U, Fano, F. Prats, and Z. Goldschmidt, Phys. Rev. 129, 2634 (1963).



165 K. SMITH AND L. A. MORGAN 116

As for exchange terms, the matrix element will be nonzero only for zero or one-electron jumps, i.e.,

max (b¢,by)
Vii(r)= é II (VNN +dni—brs,) Vi), 47)
A==lg
with

ViP(r) =[N oV o 13— 1) AFs Z_ (B ¥ apoS piLpif llpiﬁ’i&pigpeip-;lpi)

X (lpj_ o; L I }lp;N“ aF;SPJLﬂ;)<S I 8 PL(2%,+1) (2L +1)J2
><>; ye(nlpinily;r) (Lol [CHIL,,) Gil|C12:)(0:] 0,02, (48)

where the direct orbital recoupling coefficient is defined by

(0t‘l0.i>n= (El ‘ '[I/p.'(lajt)ln.-]l:n' : 'Zb.‘lhai[’i[fd’ : '(Zp,'lpi)La," : 'Lb;(tli)liyajLJ')a (492)
and the direct spin recoupling coeflicient is defined to be
(Sil 8j>D= (Sl T (S'n;%(N)Sp;' * ‘Sbg%(N"l'l):aiSilSl' o (Sp;%(N))Spy' " ’Sb,'%(N"f’l):aij)- (4()b)
Collecting the various factors of the direct terms together gives
1 & LU+ 2Z
Ly yP= [ drN+1Fsk(rN+l)|: ( —‘ 1 }+8,~—E)+ ij(’N+1):|F i(r) (50)
2Udrn®? rvn? e

B. Terms Linear in C

From Egs. (15) and (20) we see that the two terms linear in C are

Furag)
LownC= / / dxi- - de+1(N+1)”2{ VX v g B]S Cb,(LiSum)
TN+1 v
Jl( N+1)
+Z C k‘I)“(LkSka)[H E]\II(P X£N+1) }. (51)
7
The full term can be written i
Liy® =Z_: (L, 4 Lr,at%, (52)

where the two terms on the right are defined in Eq. (51). The matrix elements of (Hy— E) vanish because they
contain a factor like the Lh.s. of Eq. (23). From Green’s theorem and the boundary conditions of the discrete one-
electron orbitals Eq. (52) can be written in the form

L C= Z (Lik,tc-f'La,kc) s (53)

where the two terms have the same structure, viz.,

.z(fN+1)
Laso=(VH)™ E G [ / %1+ - A (CXEws1) H(V-+1)+

TN+1 TN+1,N

]fP“(LkSknxl s XN+1) . (54)

We note that the configurations of ¢(I's) and ®,(LiSkm) necessarily differ by one electron jump, hence for a non-
zero matrix element we must have an interacting electron in the “extra” orbital of ®,. For the one-electron operator
this implies that we must have the label N41 in the extra orbital. To calculate the matrix element we must sepa-
rate off R,(rwn41), the radial function of the only interacting electron, from &, using coeflicients of fractional paren-
tage; for the two-electron operator a further two fractional parentage coefficients are introduced, one each from
¥ and &,. We have the matrix element

()= (V-4 D T BV M=y I ITUN T2 3 (—1yPesere / / / dx,- - d%ypn
E gieh

£ R,
X (1002 L 58 4| Y1,V 00, L3S L W u(gi T i) ——— Falrms )Hl(N-l—l)qbu,,(q,‘LkSmrk) (rN-H), (54a)

IN41 TN+1
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where

(N4+D!
H)‘ (A’r)‘"‘ D) ’

and ¢, and ¢, do not include the radial functions of the electron with label (N¥+1). Here, N'y* denotes the number
of electrons in the discrete subshell A, with an extra electron in subshell A=y (compared with the configuration of
the parent state v.) For a properly antisymmetrized (N4-1) electron wave function we must allow for the label
(NV+1) to be in any of the subshells for which Ny#£0. The number of alternative configurations of electrons which
are spectators for the interaction Hy(N--1) is

31(1\7);“) = (55)

N

Ny)=——.
OUN») R

Equation (54a) becomes

(" 1>=I} B(NNF, Nyt — Bap) IV 12— 1) Bmeti® WN (P NP S 1Lk}, V00,5, L, )
174> L(,+1) 22

X / drl«‘.-l{-“( L >1Pn1,(r)
2\dr? r? r J

X(Sot - S, Sil (So) et - - St Si) (Lot - Lofli, L (L L)L+ - L#,Li) . (56)

We note that (L5« Lyl;,Li| (L,%,)L,#+ - « Ly#, Ly will be nonzero only for 4;=1, since it contains

/d£N+llfl;m*(£N+1) I'l,m(ﬁN-l-l)-

This is equivalent to saying that the incident electron can only be captured into the incomplete subshell p if its
orbital angular momentum equals that of the subshell. In general p#pu since the ‘extra’ orbital u of ®, may be
matched by one in I';. For example, if the target atom in state v, has configuration 15%2s22p* and &, has configuration
1522522p5(=152252p5+2s) then p=25 but p=2p.

For the two-electron operator in Eq. (54) let p, and o, be the subshells containing the interacting electrons, For
a nonzero matrix element we must have identical distributions ¢ of spectator electrons and for each § there are in
general two possible distributions of interacting electrons labeled by e=0, 1. Viz., for A#p, or o, p*=Gr, e=0o0r 1,
and for A=p, or o, either p,#0y, ¢,,°={7,,, N+ ¢} and g, *= {7, N+1—¢€} or

Pu=0py §p, 0= {QPuN; N+1}, =0 or 1. (57)
Substituting Egs. (12) and (14) into Eq. (54) and using Eq. (57) we get for a function f of ¢; and g¢,, that
X flgign) — V) Zl(l—eém»)g(empﬂfru)-

a3 e=0,

Defining AP to be the number of permutations to take the N electron of p;, and the interacting electrons of p,
and o, out to normal order, the matrix element of the two-electron operator is

1 max (bib,)
< =§H 6(1\71"!]\5\“—'— 6)%'_6)41/4_ 5)\710) [Nm‘Nnu(‘Vw&_6puvu)]l/2(_ I)AP Z (—— l)e(l_esp,mu)
TN N+1 C M=1s 3

><<¢u<q,-r,->z~u~z ¢u<q,uLksm)>, (58)

YN ,N+1
where bi e
AP= Y Nya— > Ns.

A=pitl Ae=p -1
We recall there is only one term in 3z if Y(I';) and ¢., differ by two electron jumps, but “b” terms when they differ
by only one electron jump, and the matrix element vanishes unless it is diagonal in the quantum numbers of the
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spectator electrons. The matrix element on the r.h.s. of Eq. (58) can be expanded out into the form

Z (lPin(aPl'SPs[‘ﬂl'{ l lpiﬁp"&ﬂiS—PiZMlFi) (lﬂuﬁpﬂ&l’ngﬂﬂﬁpulﬂﬂ l }lﬂnNﬂ‘aPuSPuLPu) (lﬂuﬁ’“&ﬂys—"uz’ﬁtl”p l }l‘uN,“a”uS‘uLﬂu)

api-< Lo,
X<Sl‘ . '(Sp.'%(N))Spi' : 'Sbf%(N'f‘l);S-',Sl' : '(‘S—‘p,‘%(N'}‘ 5))51:“' : '(S'c,.%(fv'f‘l—é))sv," ) ':Sic>
X<Z’1 o (‘Zﬁilﬂi)[‘ﬂi' : ’beliyLiva(fN'fN-H) [Zl . ‘(Lpﬂlp#('\7+e))Lpu. : '(Eaula,‘(i’v‘*‘l_ 5))[4“' : 'aLk> ’ (59)

where (P,) can be evaluated using the method of Fano, Prats, and Goldschmidt as in Eq. (40).
Writing Eq. (53) as
)l

EZ C“"/.dXN,H V,.,;(fN.,_I)F.'z(?’N.;.I) , (538.)
»

1
r

Lil,kc= Z Cuk{<il|Hl |ﬂ>+<il

where the first term on the r.h.s. is written out explicitly in Eq. (56) and

1
(s

r

B )= H 5(1\7)“,]\7)\"{-5)“—5)‘pu—5x¢“) '[]Vpinp(Nvu—5”0,.)]”2(_I)AP z (——1)‘(1—68,“,“)

(’ A=1s e=0,1

= — s = = R ‘
< X E_ (l“Nﬂ‘a“S,‘L“{Il,,,-NP'&“S“L,-lP'-)(l,,“NP“&“S,,‘,L“lM|}l,“NP“ot,,‘,SP“LpF)

& pire+ Ly
X (e V@0,80,Lobuu | Yo,V t6,S0,La,)(8:] 8,)* Z Rofprant) (e C71n) &lceiz)
X[ +D 1D T0:] 041, (60)
where the last factor is the orbital recoupling coefficient
(L1 (Lo dod Lo - Lo \lw)liy Li| Ly« « -[Ly Lo MLy - - (L) L+ - - Ly, (60a)

where 7 is the subshell containing & in distribution e and ¢ is subshell containing N+4-1.

C. Terms Quadratic in C

The matrix elements of the two-electron operators which are quadratic in C, i.e., do not involve the continuum
functions F, are precisely the quantities studied by Fano. From Egs. (15) and (20) the terms quadratic in C are
seen to be

i

Luf=S j’ .. f 0% - d%y1CoEC B (LuSime) [ H— E10,(LiSim). (61)

The (N+1) electron Hamiltonian will be ekpzmded out as in Eq. (18). The matrix elements of 3¢ 7x41,o~ ! will all
contribute equally and the contribution to Eq. (61) will be

2 CrCIN <<I>,.(L,,S,,7rk)
'Y

QV(LISIWI)> = I‘Z: C]tkcvl(lv-*— 1)-1 Z_ [Nﬂp(Nﬂ'u— aﬂpqlt) IVﬁD(ATVI— apvﬂ)]llz
14 C

TN .N41

XH 6(N)\“’Nx,+ 8)Py+ 8*’;‘— 8)\”- 6*’») E (— 1) AP(l— eﬂaﬂufn)(l - el'aﬁnﬂ'v)(— 1) wer
A

€€y

1

X <¢u (geuLaSime)

¢u(qe-LvS v7"v)> s (62)

TN, N+1
where the quantities ¢,, €, and AP are defined in Fano.
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Using Fano’s Egs. (24), (34)-(36), and (41) we have

1 - .
4’“ (qfrl’l‘sﬂr’) = Z_ (lPuNp”aPuSﬂ»L Pu { l lﬂu NH‘&P“SP;ALP:AIM)

@p+++ Loy

<¢’u (@euLieSks)

TN N+1
X (o, ¥, S e Loy { | 10,7 0,80, Lo, bo,) Lo, ¥ @S p Lipilos | Yo ¥ 9 20,S 5, L) (b, @0, S0, Ll | Yoy ¥ 2, S0, L)
Sr - (S 3V+e)Se, - Se3(N+H1—6))S0, - - Sk |81 - (S 3 (VF6))Ss, - - (S 3 (VH1—€))S,, - - Sy
x; [BeyesRe(0u0u0,0,) [ (200, 1) (205, +1) T2, | CH 12, o, | Clo ) (L - - (Lipulo) Loy * - [La(los)lou L, - -

I—/bmakLkI-Zl' . [z’p:(ﬂpp)lp-]Lp.' " ':alLl>+(1_6¢néy)Rt(Pua'uC"VPV)[(2hp+1)(21’v+1)]_”20“#”(;'”1"#)(lﬂ'”C‘”l’n)
X (Ll o (I-Jnulpu)[‘pu' o [I_I"l(lﬂ't)l’ll]L’#.akLk ll_fl e (prlp.)va' o ELa»([lpp)lv.]va’ : ',asz)]. (623')

Within the distributions g, and gx,, (V+1) and (¥) are the interacting electrons. When &, and &, have identical
configurations then there will be several ways of determining {N,}, hence 3_¢ appearing in Eq. (62). When these

functions differ by one jump, e.g.,
1

< 1522522p¢ 152252p“33> R

TN N1

then label (V1) could be assigned to 2s on the left and 3s on the right; the interacting label (¥) could then be in
any of the three common subshells and once again a 3_z. For ®, and &, differing by two electron jumps, there is a
unique configuration of the spectators.

The matrix element of Hi(xy41) is

(®u| Hi| @) =[NV T2 2 (= 1) PeHPe(9,u(quLaSimi) | Hi| du(@y LS i) - (63)

Q:Qr

If &, and &, differ by a single electron jump, then this must be the interacting electron and there is a unique con-
figuration of spectator electrons. For two or more electron jumps, the matrix element vanishes. For $,=®,, then
(N+1) will be found in the same subshell in &, and &, and there will be as many terms in 3_¢ as there are occupied
subshells.

(B H1] @)= TUNN)[TUN )TN ) ]2 I} (NN Y4850 85,0)
c
X (_ 1) AP _ Z - (lﬁpr“aP»SPpLﬁ#{ l lﬂy ﬁpﬂaﬂus-m‘zﬂplpu) (lpvﬁp,&hSﬁrZwlpr I }lPrNP”aﬁrSP»LM)

&Ly,

x ([ H {nlxﬁx&)‘g)‘i)‘ ] qk) x [{ nlﬂuﬁﬂuaﬁusﬂuzﬂp l q}‘) X {nlﬂu l A7+ I)JLP”S#“]L"S';HI(IV-*- 1)
Aotpy _ _ -
X [ H (q)\ | nl)‘ﬁ}‘&)‘S)‘L)‘} X [(qpr l anrN”&PrSPrLPr} X (1V+ 1 l nlp'}]L"sp']L[Sl ’ (64)

X#ﬂp

which will include a spin recoupling coefficient
<Sl' . '(Sﬁu%(N'i'l))Spp' ° 'Sb,‘aksklgl' * '(Spy%(N'*‘l))Spu' * 'Sb,alSl> (65)
and the factor
(P(anu)lHIlP(nlﬂr)><Ll' e (Eﬁylﬁp)LF," : 'akLkILl' o (LPrlP-)LPt. * 'alLl)' (66)
Combining the above results together

<‘I>p I 0, l <I>y)= Z (N+ 1)—1[NﬁuNh:lllz H 5(1\7)"‘,N;‘"+ 3%”* 37\;»)(— 1)AP
¢ A

X Z (lPuNP“aPuS FML Pn{ I lPAl Np“aﬂps’ P»z PulPu) (lﬂv NP'&MS- hl-/ Prlﬂv l } lPer'aPrS PvL h)

@p,eLp,
X (81« - (80,380, - Sk 81+ (80 3)S,, - - arS)(Lu- (LB ) L, ~exLie| Ly- « - (L) Ly, - - erLa)
a 1,0,+1) 22
X(—3) / drP,.;M(r)[ e :IP,.,,,(r), (67)
dr? r2 r
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mu(ﬂu py)

AP=

A=min (pu.p»)

Finally we have to evaluate the matrix element of Hy, the N-electron Hamiltonian:

(PulLieSeme) | Iy | ®,(LeSimy)y=[FUNMTUN) T2 T (= D22 (po,u(guLaSimi) | Hy | bu,(g.LiSimr) . (68)

Separating off the noninteracting electron we have

<¢up(LkSk7rk) l []N [‘ﬁuv(LlSl"rl)): Z

api.umpy

qudr

(lﬂu NF“aFuSPuL Pu { I lﬂu NP"&“SP“Z PulPu)

X (IP- Np'apvgpvf‘mlm l }lP-NP'aPrSmLﬂ-) (I-JPulPuMzumlu ' LPnMLu> (SPu%Ménm‘u ISﬁuMSa)
X (Zp,kpyM.E.”“u I LﬂuMLv) (Sﬂr%Mgvmav ISFMMSV) (nlﬂp , ”lﬁv>(¢1‘(LkSk7rqu) | IIN l Q"(Ll'sﬂrlql)) b (69)

where @ is an unsymmetrized wave function of N electrons. In order to evaluate the “direct” terms we have made

the assumption that

[ .. f dx1- - dxp rX) [ H— E W, X)=0,

where ¥(v:X) is a properly antisymmetrized wave function of N electrons [see Eq. (43)]. Hx is symmetric under
interchange of labels of any pair of electrons and so it can be readily shown, using the expansion of Eq. (10), that

this implies that

f .. [ dx1- - Ay X Hy— 8y %)=0.

Hence we have

(SuTi@i) | Hn | 67100 = EV%85 5,0 7,30

and

(70)

(Bu(LiSums) | Hy | @LiSm))=[UNNTT T (G ¥PasL,nS #{|1,7a,L,8,l,)

a&pSpLp

X GFoa, LS, 0, MV o LS ) ELeSesaunye.  (71)

The noninteracting electron N41 may be found in any subshell for which N0, and from the symmetry of Hx
(for a given configuration) each distribution of interacting electrons contributes equally, hence

1 b — R
<‘pu(LkSk7rk|HNl(I)v(LlSlWl»:]v—_*_I 2 Ny X (WM arSeLyk | JaMaSiLah)

A=ls arLaSx

4. RADIAL EQUATIONS

A. Derivation

As in Smith e! al.,% Eq. (16) can be written out ex-
plicitly with the help of Egs. (50), (41), (53), and (61),

5[2 fF;k£;ijzdr+Z Cuk/V“,ijzdr‘*-Z C,.l
Jp

7 L4

X f V,,,J.-,,dr—l—Z CrClA w—3K ,,z] =0, (73)
where '

iradt L+ 2Z
L= -—[ }—+2(E— 6e)]5.-,-

2L dr? 72 r

+ Vit Wi, (74)

X (W@ S, Lah | Yo Ve Sy Ly ) Ei$syyunys.  (72)

and 4, is defined in terms of Egs. (62a), (67), and (72).
For variations of Fp 4 of the form Eq. (19), Eq. (73)
yields the integrodifferential equations

Z_; LiiF it ClV, =0, (75)
E u
Variations of (73) with respect to Cx™ lead to
Z A ”yCyt+Z /V,‘,ijzd7'= 0. (76)
’ 3

The solutions of Egs. (75) and (76) are to be subjected
to the further requirement and that they are orthogonal
to all subshells of the target system with the same orbital
angular momentum, i.e., Eq. (13).

Introducing this requirement into (74) using
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LaGrange multipliers, 9T gives (75) to be

Y CiFpt X ClVuit X MPandiay=0. (77)
J I A

B. Numerical Method

An algorithm for the solution of the system of second-
order integro-differential equations £;;F;;=0 for £2;2>0
has been given by Smith'® and for £,2<0 by Smith and
Burke.!®* Both these papers are based on iterative
techniques. Noniterative techniques are implied in the
work of Hartree!”-!® and have been developed for col-
lision problems with 2,2>0 by Marriott'® and Omidvar?
for the system £;F;;=0. The noniterative alogrithm
for the system of equations in (77) for all real nonzero
k:? has been developed by Smith et al.b

A FORTRAN program has been written to solve Eq.
(77) and is currently being tested. Given a set of (LSw),
the configurations to be coupled together and their
term values, the code calculates the number of channels
and potentials and sets up the distinct exchange terms
to be obtained as the solutions of differential equations.
It then proceeds to solve the equations, using an ex-
tension to the algorithm presented in Smith et al.,5 and
prints out the partial-wave cross sections. Some of the
early production runs with the code will be to calculate
the total cross sections for the scattering of low-energy
electrons by atomic oxygen in order to compare with
the absolute measurements of Sunshine et al.?! Calcu-
lations will also be carried out to determine the positions
and widths of resonances in the photo-ionization con-
tinuum of Ne I (20-150 €V), as these have been observed
by Codling et al.?? Carroll et al.,?® have observed a new
Rydberg series in the absorption spectrum of atomic
nitrogen which they attributed to transitions from the
459 ground state of the nitrogen atom to the Rydberg
terms 2s 2p° (55%np 4P; it will be possible to calculate
the parameters of these autoionized levels with the code.
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APPENDIX
Evaluation of the Recoupling Coefficients

The subshell angular momenta Ly, S\ together with
the angular momenta Iy and } of the projectile are
coupled according to a prescribed coupling scheme to
give total angular momenta L, S. If the intermediate
couplings leading to a given L, S are not unique, then
to each coupling there corresponds a distinct state T';
specified by the quantum numbers L, S, = together with
an additional parameter «; which specifies the coupling.
We shall couple the vectors Ly- -+ Ly, I; to give a total
L; according to the scheme

l (LlL:’)-(Lz“‘Ls) (Lgi- - L) (Ly+ + ) (Lol Liy,  (1a)

where Ly*¢ denotes the result of coupling Ly to the
resultant of Li---Ly—;. For the purposes of recoupling
we may regard the continuum electron as being in a
subshell b+1 where b is the outermost of the discrete
orbitals and where Ly1=0, Ly.1=1;. We shall define
subshell p to contain electron IV and ¢ to contain N+1.
The general form of the orbital recoupling coeflicient is

(LlL_z' . -L,,i_1i‘[Lp.~(lp,'k)_lﬂn‘_]L"iLPa“" +Lg;- -
(Lodos)++ Ly - yLi|LiLy-+ L pye + - (Lo )Lp;- -
Zv." ' '[Lv:'(klv.')laj]L’iL”iai' ) "Lj)'

We note that there are three vectors to be recoupled,
namely, Iy Iy41 and k. We must recouple Iy from p; to p;
or vice versa when p; lies inside p;, as we do not know
a priori which is the smaller, then recouple /y4; from
o; to o; and %k from p; to ¢;. To evaluate the above
recoupling coefficient we generalize the method of
Biedenharn? by first recoupling /,,(=1y) step by step
from p; to pj, each intermediate recoupling contributing
a_Racah coefficient and then recouple the vectors
CLy; (L) o AL p; — [(Lpls;) Ly, k. Next recouple  step
by step from p; to ¢y, couple it to l,,(=In41) to give l;
and finally recouple Z,; from ¢; to o;. The recoupling
coefficient will then have been expressed as a product or,
in the case when the intermediate recoupling vector is
not found on the r.h.s. of the coefficient, a sum of
products of Racah coefficients. Three basic types of re-
coupling occur:

(@) Direct: in which max(p:p;) < min(s;0;) as in Egs.
(49a), (56), (67), and, depending upon the particular
configurations considered, in Egs. (60a) and (62a), see
Fig. 1(a). Alternatively we may have max(oi0;)
< min(p;p;) which can occur in Egs. (60a) and (62a). In
either case, we do not, at any stage in the recoupling,
have to recouple both Iy and ly;: through the same

%L, C. Biedenharn, J. Math. Phys. 31, 287 (1952).
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F1G. 1. Schematic representation of the three types of recoupling
schemes encountered in the angular-momentum recoupling coeffi-
cients: (a) direct, (b) exchange, (c) translation,

range. This will give rise to a single product of Racah
coeflicients since we may use the property

((Laa® L) Ll ; I | (Iaea® La) La®ily; Ly®> = 0L, L,¢;

to eliminate the summation over the intermediate

couplings, L;
(8) Exchange: min(p:p;) < min(o;o;) <max(p:p;) as in

(Sre S pica® (S 3 (NS i - S5y Su@H(V+1),8:] S -

.. A. MORGAN 122
Eq. (40) or alternatively min(a;0;) < min(p;,p;)
< max(o:0;). Both cases may also occur in Eq. (60a)
and (62a). In the former case we will have to recouple
both ,; and I,; through the range o¢; to p; and will
therefore have to sum over the intermediate couplings of
this range. A schematic representations of these ex-
change recouplings are presented in Fig. 1(b);

(¢) Translation: max{p;s;) <min(p;o;) or alternatively
max(pjo;) <min(p;o;). This type of recoupling will only
only occur in terms linear or quadratic in C, Egs. (60a)
and (62a), where both interacting electrons can appear
in discrete orbitals. For example the recoupling coef-
ficient of Eq. (60) arising from the configurations
1522522 p*3skl—1522522p% (where p;=3s, o;=kl contin-
uum, and pj=¢;=2p), will be of this form. In the former
case we will have to recouple both ,; and /,; from ¢; to
p;» This is most easily achieved by coupling Z,; I,,(f:)
and recoupling Z; from o; to p; then summing over all
possible Z;. Schematically, these recouplings can be
by Fig. 1(c).

The general form of the spin recoupling coefficient

is
(Sl' . 'SPi—la"(SPi%(I\7))SPi. '_'Snj' : 'SVi—la_'.(Sv.”li(N"l’l))
8 Semi Sl Sre 8y - S ®i(S, A (N))S e -
S,_-- ) 'de—lai(scj%(N“*—l))Sq' ¢ ',(1,‘5,‘).

The evaluation can be carried out in the same way as the
orbital recoupling coefficient, giving rise to the same 3
types of recoupling but will be simplified by the fact
that there are only two vectors (), 3(N-+1) to be
recoupled.

For example, the direct spin recoupling coefficient
is, for p;<pj,

Sm" o (Spj%(N)) ce ‘Sbj“’%(lv"' 1),5,-)

- _ pi—1 - -
= (S 0im1%8, 3 (S50) 350 | S 0im1®8,pi(S 52,3350 IT  (Sam193(S2179),83;50%7 [ Sr—1®iSa(She9), 3 152%%)

A=pi+l

_ _ pi—1
XS pm1%5 (S p-1%)S 035 0% | S 19,8 55 (S 1,) 505%4) ;l\tI 8(Sx*iSx)
=1

bi
H 5(SxaiSAai)ab;bjasiSj,

A=pj+1

where the recoupling coeflicients are given in terms of Racah coefficients by?*

- pi—1
[(ZSPH—1)(25piai+1)]1/2111/'(5”_1&1'5”5‘”“%;Sm.aiSp‘_) H [(25)\—1'1’.+1)(2S>‘ai+1)]”2

A=pi+1

XwW (Sh-—la%‘g)\skaiE Sk—la"Sxa‘)[(ZSpj—IM'i‘ 1) (ZSpj+ 1)]1/2( -1) s"'H-l/Z_S”jW'(Spj-la%SpiaiSﬁj 3 Sﬁj—laiSﬂj> .

@a- H'c

-



