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Abstract

In the field of information retrieval and in particular classification, the mathematical

and statistical rules and classifiers are not human readable. Non-human readable rules

and classifiers act as a barrier in utilizing "expert knowledge" to improve results.

Such barriers can be overcome using genetic programming. The aim of this thesis is to

produce classifiers and in particular document representatives which are human read-

able using genetic programming. Human readability makes these representatives more

interactive and adaptable by providing the possibility of integrating expert knowledge.

Genetic programming as a non-deterministic method with high flexibility is among the

best options to produce human readable document representatives. To test the results

of the chosen method, standard test collections are used. These standard test collections

guarantee that the experiments are replicable and the results are reproducible by other

researchers.

This thesis demonstrates the process of producing human readable document represen-

tatives with transparency for further modification and analysis by expert knowledge,

while retaining the performance.

To obtain these findings, this thesis has contributed to the field by developing a system

that introduces a novel tree structure to improve the feature selection process, and a

novel fitness function to improve the quality of representative generator.

To produce a human readable representative the tree structure is changed into a new

shape with more control on the number of children. This reduces the depth of each

tree for certain number of features and results in a flatter structure. A fitness func-

tion is constructed by combination of classification accuracy on training and valida-

tion sets and a parsimony component. This study found that the order of matched

document with representatives can improve overall performance. Different feature se-

lections are investigated and integrated into our genetic programming based feature

selection method which is based on a probability distribution derived from the feature

weights.
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CHAPTER 1

Introduction

1.1 Background

During recent decades, the fast growing amount of digitally available information has

resulted in an information explosion and brought new challenges to organisations and

businesses. This has happened due to advancement of technology in hardware, while

new efficient and effective computational models are being developed at a much slower

pace. While the amount of available digital information is growing, they lack sufficient

means to search and retrieve it. The creation of the World Wide Web (WWW) and the

appearance of search engines have provided a comprehensive understanding of digital

search concept for entities and the essentialness of comparable tools for their digitised

information. For example, currently CiteSeerX searches over 1.5 million documents and

29 million citations on the web1.

This excessive availability of digital information passes the user’s cognitive capacity

while only a very small fraction of the available information is relevant and matches

the user’s information need. One of the most effective and widely used methods to

deal with the information overload is the use of Information Retrieval (IR) techniques.

Information retrieval is a discipline concerned with organisation, analysis, extraction

and storage of the information for the future use [van Rijsbergen, 1979].

Information retrieval includes tasks such as search, classification, clustering, filtering,

1http://citeseerx.ist.psu.edu
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novelty detection and routing to tackle the information overload problem and identi-

fies relevant results for users’ information needs. Each of these tasks are implemented

differently and require different algorithms to perform their jobs, however, they share

principles and techniques.

A technique employed in most of these tasks is generating a string (of terms and logical

functions) to represent a set of documents that are related to each other context-wise

and convey the same content. This technique is known as generating a document repre-

sentative. For example, a news story and its follow-ups can be considered as a set of

related documents. To determine if a new document belongs to the set, a representa-

tive is built for the document set and the new document is compared and evaluated

against the representative instead of being compared with each individual document.

The same technique can be applied to a classification problem which requires an algo-

rithm that labels a new document to one of the pre-defined classes. A representative

is generated based on the labelled documents (examples) for each class and new docu-

ments are tested against the representative.

Using a string as the representative for a set of documents to solve the classification

problem, provides the opportunity to re-formulate most of the other problems of text

management to be similar to classification. Document retrieval can be seen as cate-

gorising documents under two classes of relevant and non-relevant [Robertson and

Jones, 1976]. Filtering can be defined as classification under allowed and not-allowed

(filtered) categories [Robertson, 2002a] and so on. Once we have a flexible classification

system, it can be tailored to perform many other tasks in text management.

Machine Learning (ML) is one of the most popular and successful approaches to im-

plement IR tasks. A machine learning system refers to any system that learns from

experience, analytical observation and other means. Machine learning has two main

approaches for learning: supervised and unsupervised learning [Sebastiani, 2005]. Su-

pervised learning which is the base of our approach includes: classification, filtering,

novelty detection and routing. In the case of classification, a set of manually labelled

examples are provided for the system to learn a model or a collection of rules and use

it to perform the task on future documents.

16
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There are different approaches of machine learning to solve the classification problems,

such as statistical, rule-based and evolutionary based [Sebastiani, 2002]. In statistical

methods, different features are selected and tuned on the tuning set to classify the doc-

uments. Features may vary relating to the purpose of the system. Each feature has a

weight based on its importance and the job of the statistical system is to find the best

combination of weights for the features, based on the examples provided as training

and tuning data.

In rule-based methods, a hierarchical tree structure classifies documents using rules

that apply each class attributes to a document’s features. The tree starts with user

information need or its representative query, and applies each of the class rules in order

to narrow down the number of documents in each class.

Evolutionary based computation is a broad term to address all the computation meth-

ods that employ an iterative process often simulates biological mechanisms of evo-

lution. In these methods there is a population2 and solutions grow or develop in this

population. Evolutionary based algorithms simulate the process of biological evolution

by relying on random mutations and selecting the fittest to breed more and transfer its

characteristics to the next generation. When all the progress is done, the desired result,

which is the fittest individual in the final generation, is chosen.

In this thesis, we propose a method based on evolutionary computation to perform

representative generation and classification.

1.2 Motivation

Evolutionary based computational techniques are inspired by natural biological sys-

tems. They are stochastic methods which makes them very flexible to solve complex

problems and create candidate solutions. This flexibility gives them the power to solve

problems in the manner which is not available to other commonly used classification

techniques like, statistical classification, decision trees and neural networks. In gen-

eral, there is a random element in evolutionary algorithms that makes them different

2There are methods with more than one population, but the basic concepts are the same.
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from other deterministic approaches.This guided random nature, gives the Evolution-

ary Algorithm (EA) the chance to overcome problems that a deterministic algorithm

can not.

Genetic Programming (GP) [Koza, 1992] is an evolutionary learning technique, specifi-

cally useful for classification. GP’s inherited flexibility as a heuristic technique makes it

possible to use complex pattern presentations such as trees. This presentation includes

any kind of operations or functions and accepts any domain knowledge in the learning

process.

GP makes few assumptions about how good solutions should be characterised, which

makes it specifically suitable to search large complex solution spaces. GP produces

solutions as a symbolic representation which can be analysed further. This feature is

very useful when a general solution is needed at the beginning, before moving to more

focused and specific issues. GP has a random nature which makes it a better approach

to deal with complex solutions. However, as a non-deterministic method it is necessary

to run the GP multiple times to result in useful solutions.

GP automatically generates computer programs by simulating biological evolution al-

though it is different from other evolutionary algorithms in its representation of candi-

date solutions. For example, in genetic algorithms, a solution is usually a binary vector

or a vector of numbers. In genetic programming the solutions are computer programs

that can be run, which enables genetic programming to deal with problems that require

complex solutions.

Providing solutions in the form of computer programs or tree-shaped structures is an

ideal way to generate the representatives for a set of documents. A representative is a

program that selects the documents which belong to the set and deselects those which

do not.

There are many applications of GP in IR [Fan et al., 2004b; Trotman, 2005; Cummins and

O’Riordan, 2007; Kro andmer et al., 2010] and Classification [Lin et al., 2007; Faraoun,

2006; Segond et al., 2009; Espejo et al., 2010], however most of the work has been done

on learning ranking functions, query expansion or similarity methods of Classifiers.
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The representatives that we generate are logical sentences that can be used as classifiers.

They are combined sets of features extracted from the training samples and logically

connected to each other to select or deselect future documents. This thesis work is

close to the work of [Hirsch et al., 2007] more than any other. However, this thesis

approach is different from this work in many aspects. This thesis focus is not only on

the quality of the classification system, but also improves the readability of the learnt

representatives to be as important. Therefore, we have chosen a different structure for

our representatives. Apart from the tree structure, our feature selection and fitness

evaluation are also significantly different from the mentioned work above.

1.3 Experiments

In this research, we use experiments to test the theory and explore the reality against

the predictions. Experiments can show if there are bugs in a theory, however it can not

guarantee their absence. While an experiment’s inductive approach can extract the area

by observation, there are some areas in reality where theory and deductive analysis

cannot reach. The best example for this process is artificial neural networks. Based

on theoretical ground they were discarded, however researchers later developed better

theories based on the properties that experiments had demonstrated [Tichy, 1998].

It is very important for an experiment to be repeatable. Repeatability makes it possible

to check the results independently so thereby raising the confidence in the results, iden-

tifying and eliminating errors and frauds. Experiments provide a reliable foundation

of knowledge to decrease the ambiguity of theories, methods and tools. Experiments

may derive unexpected, new understanding of the area which indicates new investiga-

tions in the field. As unsuccessful approaches and incorrect assumptions are identified

and eliminated quickly by experiments, the progress accelerates [Sjøberg et al., 2005].

Experiments can be extremely expensive in terms of both money and time, however

there are meaningful approaches to fit different budgets. Benchmarking provides an

effective and affordable way to experiment. Benchmarking takes a sample of a task do-

main, human and computer execute this sample while well-defined measures are used
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to evaluate the performance. Benchmarking is a successful approach that provides a

level field to compare ideas, while adequately chosen benchmarks are sufficiently rep-

resentatives, repeatable and objective comparisons are allowed there for unpromising

approaches and exaggerated claims are identified and eliminated [Sim et al., 2003].

1.4 Research Questions and Hypotheses

This thesis addresses the following research questions:

1. How can we automatically improve the representative generating for a document

set?

2. Can GP improve the readability of a document set representative?

3. Which feature selection method results in the best performance of classification

based on GP learnt rules?

4. How to increase the readability of the generated representatives by incorporating

a readability component in the fitness function?

5. Does increasing the readability damage/degrade the quality of classification or

representative generation?

Based on these research questions, the thesis hypotheses are:

1. Hypothesis 1: The GP-based representative generation achieves classification results

comparable to, or even better than state-of-the-art classification methods

2. Hypothesis 2: The readability of generated representatives can be improved by defining

more complex functions for the simpler GP tree structure

1.5 Aims and Objectives

In this thesis, we aim to address the following points :
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1. We design and develop a machine learning system based on GP to learn a repre-

sentative for a set of documents. This system is used for classification and per-

forms other information retrieval tasks.

2. One of the most important advantages of GP is human readability of the gener-

ated representatives, however this readability can be reduced and degraded by

complex combinations and numbers of duplicated terms. This thesis improves

the readability by defining a new tree structure and adding a component to the

fitness function.

3. In this work we use Ephemeral Random Constants3 to improve the feature selection

and simplify the tree structure by this sophisticated method.

4. This work investigates different feature selection methods and reports the re-

sults.

5. We design a new fitness method to consider the quality and readability at the

same time. By introducing a new component we hope that the performance of

the algorithm on the unseen data will improve.

6. We outline how to use a representative generation algorithm to perform classifi-

cation, filtering and query expansion.

1.6 Thesis Outline

This thesis is structured into 7 chapters (including the present chapter). An outline of

the contents of the remaining chapters is as follows:

Chapter 2, introduces the fundamental concepts of information retrieval and text pro-

cessing with a review of the previous work in the field.

Chapter 3 , discusses biologically inspired models and their applications in informa-

tion retrieval and text management.

Chapter 4, explores the related work and state of art in the field.

3see Chapter 5
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Chapter 5, presents this thesis classification system based on genetic programming

and reports an initial empirical results.

We improve all the aspects of our system in Chapter 6 and present results of various

experiments.

Finally, Chapter 7 concludes the thesis and points out some areas for future work.
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Background: Basic Concepts

2.1 Introduction

In this chapter we are going to introduce the importance and need of information re-

trieval. We will look at classification, clustering and document retrieval as three main

parts of information retrieval. The different methods (such as supervised and unsuper-

vised learning) and applications (such as web-based search or enterprise search) will be

surveyed and we will look in detail at the different types, approaches and applications

of information retrieval.

2.2 Information Retrieval

The meaning of information retrieval can be defined as finding unstructured material

(usually text documents) from large collections (usually stored on computers) to satisfy

a user information need [Manning et al., 2008].

As the above definition shows there are three major parts in information retrieval. The

first part is information need, the user’s request for information which is expressed by

a query, although the queries are not the same as information need, they are used to

represent the user’s information need in a format which can be understood by infor-

mation retrieval systems and retrieval mechanisms. The second part is a collection of

documents which is expected to match the query against. The third part is the match-
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ing process, which shows the result of retrieval process in a list of relevant documents

to the query.

We refer to the unit that the information retrieval system has been built over as doc-

ument. Users are looking for documents in the retrieved list which contains a list of

documents. A document can be a web-page, a PDF file, an email message or a sim-

ple plain text file. Also, a group of documents that we are dealing with is referred to

collection1. Thus, we will have a collection of email messages or web-pages that our

information retrieval system is working on.

In this chapter, we claim that there are three main parts in information retrieval:

• Information organisation : classification and clustering

• Information search and retrieval : matching process and document retrieval

• Information management : information processing

A system capable of performing techniques of these three topics is able to effectively

organise and manage text documents.

Clustering

Clustering is the task of grouping a collection of documents into sub-collections which

are called clusters. A clustering algorithm aims to make clusters that contain similar

documents, but different from other documents in other clusters. Clustering is an un-

supervised procedure (see Section 3.2.1 for types of learning methods), which means

the documents are categorised based on a set of unlabelled samples. Although, it may

seem unpromising to address such a problem, there are good reasons that make clus-

tering very useful and worth investigating [Basu et al., 2008].

1Sometimes it is called corpus.

24



CHAPTER 2: BACKGROUND: BASIC CONCEPTS

Classification

In Classification, in contrast to clustering, there are predefined classes2 and the classi-

fication job is to label future documents to one or more of these predefined classes.

Since the classes are manually defined, classification is a supervised procedure (see

Section 3.2.1 for types of learning methods). Classification is very useful for many

search-related tasks such as Spam detection, Sentiment classification, Online advertising

[Croft et al., 2009].

Matching process and document retrieval

Matching process and document retrieval is finding documents that satisfy a user’s in-

formation need by comparing the document representatives against the query which

represents the user’s information need. The result of matching process is a ranked list

of documents of which web search engines are good examples. They work by crawling

and storing many web-pages and retrieve a list of relevant documents (web-pages in

this case) upon the user’s request based on the query provided by the user. Another

application is enterprise search which deals with documents and contents across an en-

terprise. An enterprise search system indexes and retrieves the contents within the

organisation to the authorised users [Göker and Davies, 2009].

Web-based search is finding relevant web-based documents which match the user infor-

mation need. Web-based search has different requirements and characteristics com-

pared to traditional search because of distinctive web document characteristics as well

as a user’s behaviours and requirements. Web-based documents are known as pages.

Pages are addressed by a uniform resource locator (URL) and are grouped as sites. Pages

are exceptionally versatile, a page can provide simple information such as introduc-

tion to a site or can play an interactive role by accepting information from a user as an

online form or simply can contain a news article.

Web-pages refer to each other by using hyper-links. This is a reference from source

page to the destination page URL. Web-pages are built by HyperText Markup Language

2In this thesis, terms ‘class’ and ‘category’ are used interchangeably
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(HTML) which make it possible to provide a uniform and standard view for all different

platforms and web browsing technologies. Though users may see a specific sort of

information on browsers, HTML makes it possible to add extra information, namely

meta-data for web search engines.

User’s behaviours vary from finding the latest financial news, using interactive pages,

shopping online, searching a library archive, joining a social network, to simply check-

ing their emails [Craswell and Hawking, 2004; Davison et al., 2010].

Enterprise Search is a relatively new concept, its applications are used where the search

is taking place on an organisation’s data to complete a task. The data is a collection

of diverse types, such as emails, employees forums, Intranet web sites and published

reports. The ultimate aim is to have a search system that is able to include and deal

with all different data types. Enterprise search is interesting as it works on two main

issues :

• new data: organisations have different type of documents, such as, web pages,

emails, archives, each type has its specific characteristics.

• new tasks: enterprise users may search for a single data type such as a specific

item in their emails or may request an adhoc search on a mixture of data types

such as search for a specific topic across all available documents including emails,

archives.

[Voorhees, 2005; Halvorsen et al., 2008].

Enterprise search can improve the result of search for organisations by shorter search

sessions which means more time to spend on other searches or activities. Also it re-

duces the number of failed search sessions which results in less unnecessary activities

inside the organisations. However there are two main potential problems. The first one

is based on the fact that each organisation (Enterprise) is different from the other one,

therefore the result of one single enterprise may not reveal anything about enterprise

search in general. The second one is related to confidentiality. The real world enterprise

search needs to have access to confidential information. Though this information may

be available inside the company, enterprise information may have been accessible to a
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subset of employees. Even if some documents are publicly available, there are always

users who resist to use documents which were supposed to be private [Bailey et al.,

2007].

The rest of this chapter is structured as follows: first we discuss the information re-

trieval techniques common to all of the above tasks. Then we discuss three main prob-

lems in more detail and introduce some of their models . Finally, an introduction to

evaluation of information retrieval is given.

2.3 Information Retrieval Processes/Techniques

Documents in their original form are not suitable for retrieval processes. Retrieval

systems need to receive an accurate pattern to represent the original information con-

tent. This pattern, which is the internal representation of the document is the result of

the indexing process. Indexing process presents each document as a set of indexing fea-

tures.The indexing process extracts words, known as terms, with a specific value related

to the purpose of indexing from the original documents.

To identify these indexing features some pre-processing is required. These processes

are specific forms of lexical processing which focuses on the first two main parts of an

information retrieval system.

1. Reduce the complexity of document’s structure and remove unnecessary parts.

These processes are applied to all the documents in the collection to simplify

representing the documents.

2. Optimise the configuration of user information need for a better query. All the

processes that have been applied to the documents should be applied to the query

as well, so the comparison and similarity measures can be computed. In addition,

there are techniques to improve the query to better represent the user’s informa-

tion need.

[Herrero et al., 2010; Zhang, 2005].
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2.3.1 Document Presentation

Document pre-processing changes the documents from their original form into an in-

ternal representation. These pre-processes are mainly lexical-processes. Some of rou-

tine lexical processing can be named as follows.

Tokenisation

It is the process of identifying the terms (tokens) in the document as the meaningful

units of the text. Tokenisation is a simple algorithm that looks for white-spaces and

punctuations, works efficiently in many languages. However, for some languages such

as Chinese, identifying the boundary of the words is not trivial.

Case Folding/Normalisation

Case folding changes the document’s terms into a unified format, either all lower-case

or upper-case. Case folding increases the number of terms that match the query terms

and improve the search results in most instances, however it can reduce the precision3

as some terms are distinguished in their capital letters. For example, Turkey the coun-

try and turkey the bird [Jurafsky and Martin, 2008].

Stop-words Removal

In traditional language structure, there are certain high frequency function words

known as stop-words. Typical examples are articles such as the and prepositions such

as in, at and on. This operation reduces the text volume up to 50 percent without losing

any significant information [van Rijsbergen, 1979]. However there are disadvantages

to this process. Phrases that contain words from stop lists may be eliminated from

search results and decrease the recall4 [Jurafsky and Martin, 2008], as an example

the phrase To be or not to be may be lost during the stop-word removal process. With

more powerful computers and compression techniques modern information retrieval

3For definition of precision see Section 2.7.1
4For definition of recall see Section 2.7.1
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systems use a very short stop-word list. In other words, they prefer to deal with more

terms in the collection rather that hurting the performance of the system.

Non-alphabetical Character Removal

Apart from stop-words, there are some other concerns such as special symbols (!, ?

and % ) or sometimes numbers. It can be helpful to remove all these non-alphabetical

characters. This increases the recall, however some lost punctuations may change the

meaning of a word or phrase so the precision will be decreased [Iliopoulos et al., 2001].

Morphological Normalisation

Traditional document structure uses different forms of a root word, manufacturer and

manufacturing are both generated from the same entity manufacture. There are many

lexical processing methods to normalise the morphology of words in the documents.

A very accurate, though difficult, algorithm is lemmatisation that determines the lemma

of a word. An English lemmatiser can determine that word worst has bad as its lemma,

or say is the lemma for said. However, it requires context understanding and extra

algorithms such as part-of-speech tagging to perform correctly.

A widely used automatic approach in information retrieval is called stemming which

maps two different children to the same root. Stemming is less accurate than lemma-

tisation, but it is faster and does not require extra tools. Two of the main methods for

stemming are:

1. Rule-based: there are hand-crafted rules for each natural language to reduce the

words to their roots [Nahm and Mooney, 2001].

2. Automatic suffix algorithms: the process that removes the frequent and ordinary

morphological and inflexional word endings that exist in the language grammar

[Porter, 1997].

The stemming algorithm developed by [Porter, 1980, 1997] is widely used by infor-

mation retrieval researchers [Robertson et al., 1980]. An extensive general survey of
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stemming algorithms is provided in [Frakes and Baeza-Yates, 1992].

Weighting

Extracting the terms from the document includes estimating the importance of each

term in order to find particular documents. The indexing feature must have a discrim-

inant power to differ between the document it has been extracted from and the rest of

documents in the collection. These discrimination powers are measured by a numeric

values called weights. There are different types of weighting methods. Here, we briefly

introduce the classic ones:

• [Luhn, 1958] used term frequency to measure the effectiveness of each term. Term

frequency is estimated by counting the occurrences of a term in a document5. He

concludes that terms with medium frequency are the most discriminant. Terms

with high frequency have very little information and terms with low frequency

are unlikely to appear in a query, so they are discarded.

• [Sparck-Jones, 1971] used inverse document frequency to emphasise the term im-

portance within the entire document collection. The intuition behind idf is that

the less documents a term occurs in, the more significant is in discriminating the

documents. For a document collection with size of N when term i occurs in ni

documents then the idf weight is calculated for that term as log
N
ni

.

• Another weighting scheme is known as tf-idf weight, which is a combination of

the above methods. It has been used by [Salton, 1971]. The tf is used in this

weighting scheme is normalised by the length of the document [Salton and Buck-

ley, 1988] to prevent any misleading effects of long documents. tf-idf calculates

the term weight as follows:

wij =
log( f reqij + 1)

log(lengthj)
log(

N
ni
) (2.3.1)

where, wij is the t f − id f weight for term i in document j,

5Usually there are normalisation factors in estimating the term frequency.
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f reqij is the frequency of term i in document j,

lengthj is the length (in words) of document j,

N is the number of documents in the collection and

ni is the number of documents that term i is assigned to.

For more information and a discussion on weighting schemes refer to [Salton and Buck-

ley, 1988]. An extensive survey which also compares the effects.

When these processes are done, in order to store all the information about extracted

terms, a specific data structure is used. One which is typically used is inverted file

structure [Frakes and Baeza-Yates, 1992]. In retrieval systems, this means to identify

immediately all the documents in the collection that contains a specific given keyword.

2.3.2 Query Representation

Query pre-processing focus is mainly on improving the user information need repre-

sentation. A user information need is represented by relevant keywords which are

understood by retrieval mechanisms and are chosen by user. These keywords or any

other types of information need expression are called query [Spoerri, 1995; Zhang, 2005;

Meadow et al., 2007].

One of the fundamental types to formulate the user information need into a query is

Boolean Query. In this formulation, Boolean operators such as AND, OR, and NOT join

the terms to generate the query. An example query may look like: (Information AND

Retrieval) NOT Evaluation. This method is the easiest way to formulate a query for an

experienced user. However [Sparck-Jones and Willett, 1997] has claimed, it is difficult

and somehow impractical for non-experienced users to formulate effective queries.

When a query is generated, lexical processing and term-weighting such those men-

tioned for the documents, are required (see Section 2.3.1). A generated query may be

expanded before or after the retrieval to better represent the user’s information need.

To expand the query before retrieval, a thesaurus can offer semantically related terms

to those already in the query [Voorhees, 1994]. After retrieval, relevant retrieved docu-

ments may add extra terms that the original query does not include [Magennis and van
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Rijsbergen, 1997]. The process of query expansion can be either automatic, which takes

place by the system, or controlled, which is done by user through user interaction.

Relevance feedback is one of the techniques for query expansion. The relevance feedback

process is a cycle. The system provides a set of retrieved documents, user identifies

the relevant documents, the system uses the relevant retrieved documents to extract

new terms from relevant documents and modify the query. The point is to increase the

possibility of retrieving more documents similar to documents identified as relevant

and less similar the rest of the collection. The modified query is then used to retrieve a

new set of documents [Ruthven and Lalmas, 2003]. Studies have examined the infor-

mation retrieval systems that use relevance feedback methods. Most of these studies

have shown positive results [Harman, 1992b]. Meanwhile, the lack of interest from the

user to engage into these sorts of processes, query expansion and relevance feedback,

is an ordinary reported problem [Ruthven et al., 2001].

2.3.3 Matching Documents and Queries

So far, we have described two common processes of information retrieval document

and query representation. The next step is estimating the similarity of a document

and a query or more generally estimating the similarity of two documents. Consider a

document retrieval system, which aims to retrieve a list of relevant documents against

a given query. The system should identify relevant documents which are the most

similar to the given query.

Boolean Query

One way to deal with this is to formulate the query as a Boolean query and return

the documents that fulfill the logical requirements of the query in an unranked list.

However, this way of matching does not show the degree of relevancy.
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The Best Match Searching

Another way to find relevant documents is the best match searching. In these methods,

query is compared to documents in the collection and the similarity between them is

measured. There are many methods to estimate the similarity, which will be discussed

later. Based on the similarity scores, a list of relevant documents is created. This list is

sorted in decreasing order and presented to the user, the final answers are chosen from

the top of the retrieved list.

Vector Space Model

There are different retrieval models (see Section 2.4) that use variety of similarity meth-

ods to calculate the relevancy of a document against a query. For example, in Vector

Space Model [Salton and McGill, 1986] vectors of terms are used to represent documents

and queries. In a simplified example each term shows one dimension and each docu-

ment coordinates with each dimension based on that term’s weight in the mentioned

document. The queries are represented in the same way. The angles between the vec-

tor which represents each document and the vector that represents the given query,

measures the similarity between that document and the given query.

Coordination Level

Another way of measuring the similarity between a document and a query is calcu-

lating how many words they have in common. This measure known as coordination

level matching function [Losee, 1987]. Consider vectors of length n representing the

document D, and the query Q, the similarity is calculated as:

Sim(d, q) =
n

∑
i=1

diqi (2.3.2)

where, di is the ith term in the document vector and qi is the ith term in the query vector.

To avoid the negative effect of long documents with high occurrences of terms, we need

to normalise the estimate. To normalise the similarity by the length of documents and
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queries, Dice coefficient can be used:

Sim(d, q) =

2×
n

∑
i=1

di × qi

n

∑
i=1

di ×
n

∑
i=1

qi

(2.3.3)

To this point, we have discussed techniques that are common in all information re-

trieval problems. In the next three sections, different models used in document re-

trieval, clustering and classification will briefly be discussed.

2.4 Document Retrieval

Document retrieval systems try to recognise relevant and non-relevant documents with

respect to a given query which represents the user’s information need. Apart from the

binary decision of relevant and non-relevant, sometimes it is required to measure the

level of relevancy. Retrieval Models are the main part of information retrieval process.

These retrieval models are used to predict the relevancy of a document and most of the

times calculate a numeric value as a score of each document to compare the relevancy

of different documents. There are different approaches among these models and a few

of the main approaches are introduced here.

An information retrieval model is a quadruple (d, q, F, R) [Baeza-Yates and Ribeiro-

Neto, 1999], where:

1. D is a set composed of logical views (or presentations) for the documents in the

collection (see Section 2.3.1).

2. Q is a set composed of logical views (or presentations) for the user information

needs. Such representations are called queries (see Section 2.3.2).

3. F is a framework for modelling document presentations, queries, and their rela-

tionships.

4. R(q, d)is a ranking function which associates a real number with a query Q ∈ Q
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and a document representation D ∈ D . Such ranking defines an ordering among

the documents regarding to the query Q .

There are two main steps concerning each model [Meadow et al., 2007; Zhang, 2005]:

• How to represent the documents and user’s information needs.

We discussed the problem of representing the user’s information need and the

possibility of representing it with queries in Section 2.3.2 and document presen-

tation in Section 2.3.1. Also, each retrieval model represents the documents and

the queries differently.

• The framework that builds a ranking process.

As mentioned in Section 2.3.3 about the similarity methods, there are many ways

to model and compute the relevancy of a document and a query.

Building the models and representing the user’s information need and the documents

also have some drawbacks. For example, using a set of keywords and indices as de-

scribed before, will affect the semantic of a document and the information need. The

situation will become worse when users do not have any knowledge on how to transfer

their information needs into the query string [Bai, 2007].

In this section, we will introduce a few classical models of document retrieval that have

extensively been used and improved over the years. The basic retrieval models, that

only consider the existence of a term in a document are the so-called set models. In

such models documents and queries are considered as a SET of their terms. Terms

in a query set will be compared with terms in a document set. As joint terms in a

query set and a document set increase, the document will become more relevant to the

query. Therefore, where Q is the set of query terms and D is the set of document terms.

Ranking in these models are based on the cardinality of D ∩Q, which is the number of

common terms between the document and the query [Baeza-Yates and Ribeiro-Neto,

1999; Grossman and Frieder, 2004]:

RSV(d, q) = |d ∩ q| (2.4.1)
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Where, RSV is the retrieval status value which is a numeric value associated by the re-

trieval model to the query and document pair, in order to compare different documents.

There are also methods to normalise the Equation 2.4.1 to compensate for the effect of

the document and the query length:

Cosine: RSV(d, q) = |d∪q|√
|d|·|q|

(2.4.2)

Jaccard: RSV(d, q) = |d∪q|
|d∩q| (2.4.3)

Dice: RSV(d, q) = 2·|d∪q|
|d|+|q| (2.4.4)

The set-based models have advantages, because of their simplicity.

These models are simple so their implementation is easy and does not add any com-

plication to the process. In addition, they are very clear for individual subsets of a

collection. Furthermore, the whole characteristics of Boolean Algebra are applicable.

On the other hand, there are also disadvantages in using them: In these models partial

matching is not possible. There are some difficulties in understanding complex queries.

Not only they do not support null output but also the information overload causes

difficulties that are not handled properly. There is no meaningful style(such as ranking)

to order the output. Users search and their individual search techniques are not taken

into consideration [Willie and Bruza, 1995] and different systems may retrieve different

documents for the same query [Borgman et al., 1996].

An improvement over the set-based models is a model that represents the documents

and the query as vectors. Vector Space Model considers documents and query vectors

and ranks the documents based on the closeness of their vectors to the query’s vector

[Salton, 1971; Salton et al., 1975]. Each term in the query or document is an axle and

has a weight. There are many methods to calculate these weights, some approaches

use 1 if a term occurs and 0 if it does not. Most methods employ a form of t f × id f

weighting, that is discussed in Section 2.3.1. There have been many studies in finding

the best weighting schemes on different collections. For different weighting methods

and a comparison of their effectiveness and performance see [Salton and Buckley, 1988]

and [Zobel and Moffat, 1998].
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Consider an ordered set of all the terms in the collection as C = {t1, t2, . . . , tn}, each

document D is represented by a vector with n dimensions: ~d =< d1, d2, . . . , dn > and

each query Q as ~q =< q1, q2, . . . , qn >. In these vectors, di is the weight of term i in

document ~d based on a weighting scheme such as t f × id f and qi is the weight of the

term i in the query such that if ti ∈ Q then qi is 1, otherwise it is 0. Now, we have the

document and query representations as vectors, we can compute their similarity based

on the closeness of the vectors. Figure 2.1 shows a special case of a document and a

query with only two terms. The angle α between the vectors can measure the similarity

of the document and the query.

~q

~d

q1

q2

d1

d2

α

Figure 2.1: Vector space model - Graphical interpretation

Thus, the retrieval status value for vector space model is defined as:

RSV(d, q) = ∑i=1,n diqi

(∑i=1,n d2
i )

1/2(∑i=1,n q2
i )

1/2 = RSV(~d,~q) (2.4.5)

=
~d·~q√
~d2·
√

~q2
(2.4.6)

= cos α (2.4.7)

Vector space model is simple and easy to implement, unlike set-based models it uses

term weighting to improve the quality of matching, which also makes partial matching

possible. In addition, the cosine formula in Equation 2.4.5, shows the similarity of the

document and the query which makes ranking possible. On the other hand, it does not

support logical expressions such as "mouse & NOT cat" and does not understand term

dependencies by default6.

6Term dependencies are modelled in generalised vector space model [Wong et al., 1985]
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As discussed already, a retrieval system tries to determine the relevancy of different

documents against a query by considering the representations of the documents and

the query. The query represents the user information need. The document representa-

tions contain, in fundamental, less information than the actual documents. Probabilistic

models give a theoretical foundation to the notion of relevance and the retrieval process.

Probabilistic models that were developed by [Robertson and Jones, 1976] and [van Ri-

jsbergen, 1979] rely on probabilistic ranking principle [van Rijsbergen, 1979]:

If a reference retrieval system’s response to each request, is a ranked list

of documents in the collection in order to decrease the probability of rel-

evance to the user who submitted the request, where the probabilities are

estimated as accurately as possible on the basis of whatever data have been

made available to the system for this purpose, the overall effectiveness of

the system to its user will be the best that is obtainable on the basis of those

data.

There are many probabilistic models for information retrieval. Binary Independence Re-

trieval Model (BIRM) [Robertson and Jones, 1976] is a classical model, which estimates

the probabilities based on the presence and absence of the terms in relevant and non-

relevant information, acquired through relevance feedback by the user. BIRM performs

poorly in practice because it does not take advantage of t f and document length, which

causes problems for long documents. The BM25 model7 [Jones et al., 2000] consid-

ers document normalisation and also query normalisation, and similar to vector space

model, adds a term frequency component.

7Often called Okapi BM25 weighting
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RSV(d, q) = (2.4.8)

= ∑t∈q

(
wt · (k1+1)tf (t,d)

K+tf (t,d) ·
(k3+1)tf (t,q)

k3+tf (t,q)

)
(2.4.9)

+ k2 · |q| · avgdl−|d|
avgdl+|d| (2.4.10)

where wt = log N−df (t)+0.5
t+0.5 (2.4.11)

and K = k1((1− b) + (b · |d|)/avdl) (2.4.12)

where wt is the term weight as above or idf . tf (t, d) is term frequency within document

d and tf (t, q) is term frequency within the query. k1, k2, k3 and b are tuning parameters

and avgdl is the average document length in the collection.

In addition to classical models described above, there are many other models built

on the classical ones or ideas from other domains. For example, in Boolean retrieval

there is no provision for term weighting and no ranking is generated. As a result the

size of output might be too large or too small. Extended Boolean Retrieval [Salton, 1989;

Baeza-Yates and Ribeiro-Neto, 1999] extends the Boolean model with the functionality

of partial matching and term weighting. This strategy allows one to combine Boolean

query formulations with characteristics of the vector model. Despite more than twenty

years of using language models for speech recognition [Kuhn, 1988; Jelinek, 1997] and

language translation [Brown et al., 1990], their use for information retrieval started only

in 1998 [Ponte and Croft, 1998]. In their language modelling approach to IR, a language

model is built for each document, and the likelihood that the document will generate

the query is computed.

2.5 Clustering

Clustering is one of the popular problems in IR. Clustering focuses on putting docu-

ments into groups known as clusters when they are similar to documents in that cluster

and dissimilar to those in other clusters [Gordon, 1987].

Figure 2.2 shows a simple example of clustering. It can be seen that there are four

39



CHAPTER 2: BACKGROUND: BASIC CONCEPTS

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 2.2: A clustering example

clusters of elements in the picture. Clustering algorithms aim to find such clusters

without labelled data.

2.5.1 Clustering Types

Clustering is trying to determine the natural similarities in a set of unlabelled docu-

ments and group them into clusters. This can be done by employing different algo-

rithms. Some of these algorithms are mentioned as follows [Gulli, 2008].

Flat Clustering

Flat clustering, also known as partitioning or exclusive clustering is when documents

can belong to only one cluster. K-means [MacQueen, 1967] is one of the perhaps most

common flat clustering algorithms. K-means’ goal is to minimise the average squared

distance of each document in a cluster from the cluster centre. The cluster centre known

as mean or centroid is calculated:

µ(ω) =
1
|ω| ∑

χ∈ω

χ (2.5.1)

40



CHAPTER 2: BACKGROUND: BASIC CONCEPTS

Where the ω represents the cluster, X represents the documents, with assumption of

document-length normalised. The measure residual sum of squares or RSS is used to

evaluate how well the centroids represent each cluster’s members:

RRSk = ∑
X∈ωk

|χ− µ(ωk)|2 (2.5.2)

The squared distance of each vector from its centroid summed over all vectors:

RRSk =
K

∑
k=1

RSSk (2.5.3)

Hierarchical Clustering

Hierarchical clustering uses the combination of the most similar clusters. The algo-

rithm starts by clustering any single fact as a cluster and after few iterations unites

nearest clusters and reaches the desired clusters.

Hierarchical clustering [Johnson, 1967], for a given set of N documents, consists of

following steps:

1. Assign each document as a cluster. It means there are N clusters to start with.

2. Find the most similar pair of clusters then merge them into one new cluster. The

number of clusters will be N − 1.

3. Compute the similarities between the new cluster and all the old ones.

4. Repeat steps 2 and 3 to reach the most desired results or reach to the requested

number of clusters.

To compute the similarity between two clusters, the similarity between all the docu-

ment pairs in the two clusters are computed. So, there are similarity scores between

each pair of document that each one belongs to a cluster. Having computed the docu-

ment similarities, similarity computation of clusters can mainly be done in three differ-

ent ways:
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• Single-linkage clustering where the similarity of two clusters is considered the simi-

larity of their most similar documents. In other words, the similarity of the clusters

is estimated by the similarity of the two closest documents in the two clusters.

• Complete-linkage clustering where the similarity of two clusters is considered the

similarity of their most dissimilar documents.

• Average-linkage clustering where the similarity of two clusters is considered the

average of the similarities of the documents. In other words, for all the document

pairs the similarity is computed and the similarity of the clusters is the average

of all those similarity scores.

Overlapping Clustering

Overlapping clustering is based on fuzzy sets therefore each clustered document can

belong to more than one cluster. The membership of each cluster is associated with a

degree (weight).

One of the popular algorithms in this group is Fuzzy C-Means (FCM) [Dunn, 1973], in

this algorithm one document can belong to more than one cluster and each document is

associated with a set of membership degrees (weights). This algorithm is widely used

in pattern recognition and image processing[Bezdek, 1981] .

FCM focus is on using the membership degrees that minimise the total mean-square

error of membership degree:

Jm =
N

∑
i=1

C

∑
j=1

Uij
m|Xi − Cj|2, 1 <= m < ∞ (2.5.4)

Where Xi is document i from the given finite document set, Uij is the degree of member

ship of document Xi in the cluster j, Cj is the centre of cluster j and |Xi − Cj| expresses

the similarity between the document and the centre.

The membership degree can be calculated using the following formula:
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Uij =
1

∑C
k=1(

|Xi−Cj|
|Xi−Ck |

)

2
m− 1

(2.5.5)

Where k is the iteration steps. This iteration will terminate when:

max{|Uij
(k+1) −Uij

(k)|} < ξ (2.5.6)

where ξ is the termination criterion.

Probabilistic Clustering

Probabilistic clustering uses probabilistic algorithms to group documents into different

clusters.

Model-based clustering [Wolfe, 1963] techniques are another way to solve clustering

problems. In this approach, clusters are mathematically represented using a parametric

distribution such as a Gaussian (continuous) or a Poisson (discrete).

There are assumptions for this approach:

• Documents are collected from a finite document collection.

• Document within each collection can be modelled using standard statistical

model.

Model-based clustering has some advantages:

• Available statistical inference techniques are well-studied.

• It is very flexible to choose the component distribution.

• For each cluster a density estimation is obtained.

• Soft-clustering is available.
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2.6 Classification

Classification refers to the problem where there are pre-labelled classes and documents

are labelled to those specific classes, when a new document arrives, it should be la-

belled to one of the class it belongs to [Dominich, 2008].

In text classification, there is a document space D = {d1, d2, . . . , dn}, containing all

the available documents to classify. A set of classes C = {c1, c2, . . . , cj}, these classes

are human-predefined labels to address different and desired information needs for

applications. There is a set of labelled documents which are manually labelled for each

class. This is called training set and is used as a set of examples for classification, the

classifier can be built based on these examples or can be validated if they have not been

used for training. There are more discussions on training set, its usage and machine

learning in general in Section 3.2.1.

A classification system can be developed by employing experts knowledge to con-

duct rules to discriminate between documents and select the relevant ones to the class.

These classification systems can be very accurate, because they benefit from the experts

knowledge in the field that no systems can acquire from the labelled examples. How-

ever, maintaining the system and modifying it for future needs, are very expensive

processes. In addition, for some problems, the complexity of features is a substantial

obstacle for the human expert.

Another way to build a classification system is to use automatic algorithms to create

a model based on the labelled examples to predict future classifications. A learning

method or algorithm is used to go through all training documents and generate a clas-

sifier or a classification function. The responsibility of this classifier is to map the doc-

uments in document space D to the related class or classes in the class set C.

These labels are symbolic notations and they do not add extra information. Also all the

information about these labels are from inside the collection set and the document, no

extra knowledge is available from outside [Sebastiani, 2002].

Nowadays modern applications increasingly require a classification system. Based on

the application purpose, a specific approach is applied to the classification problem.
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Figure 2.3: Classification

2.6.1 Classification Types

As it was mentioned the task of assigning documents to predefined labels (that rep-

resent predefined classes) has become a very promising field. This field targets the

hidden information in text documents, where the length of each document and num-

ber of words vary and the documents structure are in natural language. In addition,

the vagueness, uncertainty and fuzziness should be handled [Hotho et al., 2005].

Single-label Classification vs. Multi-label Classification

Single-label classification, is assigning each document (natural language text) to only

one of the predefined labels (classes) based on its content. In this method, classes are

assumed to be disjointed, each document belongs to only one of these classes [Gao

et al., 2004].

Some examples for single-label classification can be: Students’ marks (A, B, C, . . . ), age

range (infant, youngster, teenage, adult, middle age, old ), education degree (Bachelor

degree, Master degree, MPhil, PhD, higher), level of proficiency (beginner, intermedi-
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ate, advanced), type of media (TV, radio, newspaper, web).

In the real world, most cases are related to each other and very few cases can be totally

independent, in fact one document can be labelled by more than one class. The task

of assigning one document to more than one class is called Multi-label classification

[Ghamrawi and McCallum, 2005].

Examples for multi-label classification can be: The courses that one student takes dur-

ing one term (management, business, marketing, . . . ), different media that broadcasts

news (TV, radio, newspaper and web), different aspects of one news (economy, social

life, tourism, industry, . . . )

In Single-label classification the assumption is based on class independence whereas

in Multi-label classification the assumption is based on class dependence and classes’

semantics.

Binary Classification vs. Multi-class Classification

In single-label classification task each document is labelled by only one label, however

there is no restriction on number of classes available. There is a very specific form

of single-label classification where there are only two classes available. This special

single-label classification is known as Binary classification. A binary classification can

be notated as, where the document (dj member of D) belongs to class (cj member of C)

or its complement (C− cj) [Hatano, 2001].

Binary classification examples such as the number of students who have passed a test,

either a student has passed or not, the news has been televised or not, the emails are

spam or not. In these cases there are always two classes: pass or fail, televised or non-

televised, spam or non-spam. One of the most popular uses of binary classification is

filtering [Pon and Cárdenas, 2007; Robertson, 2002b].

Though the binary classification, especially filtering are widely used, in most cases

there are more than two classes where an email can be from work, friends, home, on-

line shopping etc. Where the number of available classes is more than two, it is a

multi-class classification problem [Tax and Duin, 2002].
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It is crucial to understand that a multi-class classification problem is different from a

multi-label classification problem.

Class-oriented vs. Document-oriented

Traditionally classification is referred to classify a document under a predefined class.

However there are two approaches towards the classification problem.

Sometimes a collection of documents is available and the classifier provides a list of

relevant documents per each individual class from the set of predefined classes. This

approach is known as class-oriented or class-pivoted classification, where the emphasis

is on classes. This is what happens during training and testing the classifiers, where a

collection of train documents is ready and classifier has to find the relevant documents

for each class. However, in the real world the collection of documents is not ready and

normally documents will be identified one by one.

In the second approach, the classifier provides a list of relevant predefined classes for

each individual document and the emphasis is on the documents. This approach is

known as document-oriented or document-pivoted classification.

Though these two approaches are more practical than conceptual, in most cases either

the document collection or the set of predefined classes are not complete from the be-

ginning [Sebastiani and Ricerche, 2002].

The choice of orientation is more practical than conceptual, but very important as in

most of the cases the document collections or class sets are not complete right from the

beginning [Sebastiani, 2002].

Hard Classification vs. Ranking Classification

Measuring the relevance of each document to a class can be considered as a "YES/NO"

job, where the classifier either labels each combination of a class and a document as

relevant or not. This approach is called hard-classification [Qi and Davison, 2009; Wu

and Oard, 2008].
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Though hard-classification is widely used, it is not a sufficient way of classifying real

world documents. Where document and class are not totally irrelevant, there is always

a level of relevancy which is ignored in hard-classification. There is, however another

approach to consider this level of relevancy known as ranking-classification or simply

ranking. In this approach the classifier measures the similarity or relevance between

each document and each class, sorts the similarity measures and provides the result as

a ranked-list of document-class pair based on their ranks [Elsas et al., 2008; Sun et al.,

2009; Elsas and Dumais, 2010].

Hierarchical Classification vs. Flat Classification

In the classification task, there are different predefined classes which are treated as

isolated and totally independent classes. These classes do not have any relationship

with each other; this approach to classification is known as flat-classification [Zimek

et al., 2008; Li et al., 2007; Nguyen et al., 2005].

In contrast, there is an approach which considers a tree-shaped relationship between

classes. In hierarchical-classification, the classifier uses a tree-shaped structure which

represents, the general to specific levels and assigns suitable classes to one document

from one branch. There are two methods for this approach: where the document is

labelled by one class in one step process, the task is known as big-bang method. Top-

down level-based documents pass through classifiers in each level till they get labelled

to the suitable class [Ee-Peng et al., 2003; Cesa-Bianchi et al., 2006; Gauch et al., 2009].

2.6.2 Applications of Text Classification

Text Classification is based on Maron’s [Maron, 1961] original work, however it has

been applied to many different applications. Some of these applications are very simi-

lar to each other or sometimes one is a special case for another one. Such applications

include speech classification which is a combination of speech recognition and text clas-

sification [Myers et al., 2000; Schapire and Singer, 2000], multimedia document classifi-

cation by the means of textual captions [Sable and Hatzivassiloglou, 2000] author iden-
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tification for literary texts of unknown or disputed authorship [Pavelec et al., 2009],

language identification for texts of unknown language [Cavnar and Trenkle, 1994; Mar-

tins and Silva, 2005; Rehurek and Kolkus, 2009], automated identification of text genre

[Kessler et al., 1997; Goldstein-Stewart and Winder, 2009] and automated essay grad-

ing [Larkey, 1998] . Some of the most common and widely used applications have been

discussed as follows.

Automatic Indexing for Boolean Information Retrieval Systems

Most of the early research in the field of IR [Field, 1975] has been regenerated by au-

tomatic document indexing for IR systems. These applications depend on infinite sets,

called controlled dictionaries and are made up of hierarchical thesauri, such as the NASA

thesaurus for aerospace and MESH thesaurus for medicine. The most distinguished

example of these applications is Boolean Systems. They use the controlled dictionary to

assign one or more key words or key phrases to each document, in order to describe

the document’s content. Where key words and key phrases in the controlled dictionary

indicate classes, the task of indexing documents can be considered as a text classifica-

tion in the form of document oriented (pivoted) classification (see Section 2.6.1). More

examples and descriptions for text classifiers that clearly illustrate document indexing

are available in the literature [Robertson, 1984; Tzeras and Hartmann, 1993].

As automatic indexing for Boolean IR systems is a very broad task (concept), one of its

widely used sub-tasks is automated metadata generation. In a digital library, documents

may be described under a variety of aspects, such as document type, modification data,

owner, size, etc, or sometimes these aspects are thematic and they revile the document’s

semantics. These aspects or metadata can be seen as a task of document indexing with

a controlled dictionary [Jackson and Moulinier, June 2007].

Document Classification

Although using a controlled vocabulary in order to index document is a widely used

application, it is a sub-task of a more general task called Document Organisation. Docu-
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ment organisation can address personal documents filing as well as building a corpo-

rate document base [Sebastiani, 2002].

For instance, in a university registration office, each lecturer should be assigned to a

related department, students are categorised under the discipline they have registered

for and type of founding and financial issues.

Text Filtering

A text filtering system focuses on the incoming information flow. These systems work

with a long term user information need, represented by profiles. Dissimilar to tradi-

tional search query, these profiles are continual and can be optimised by user feedback,

which improves the overall system performance gradually.

A text filtering system main job is to sieve the incoming information flow based on

existing user information need and identify the relevant or non-relevant documents.

Filtering systems should be able to present relevant documents immediately to the

user, so there is no time to collect and rank a set of documents and rational evaluation

is purely based on the quality of the retrieved documents.

There are three main filtering sub-tasks: adaptive filtering, batch filtering and rout-

ing. Adaptive filtering starts with a user information need and a small set of relevant

documents as its training set, the system retrieves each document, assigns relevant or

non-relevant labels. Then the system is able to use it to update the user profile. Batch

filtering and routing start with a large training dataset to build their profiles. While

batch filtering should assign the relevant or non-relevant labels to the retrieved docu-

ments, routing system returns a ranked list of documents [Robertson, 2002a].

Novelty Detection

Novelty detection is to find the relevant and novel sentences within a given topic and

a list of documents ordered based on their relevancy [Soboroff, 2005].

One of the applications for IR is Novelty detection. The basic idea was introduced by

Prof. Jamie Carbonnell during a talk at the Automatic Summarisation Workshop at NAACL
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(North American Chapter of the Association for Computational Linguistics) in May 2001.

He argues that, in order to optimise search results relevance ranking is not the only

option. Documents can be ranked based on punctuality of the article, legitimacy of its

source, understandability and Novelty of its information. While some of the mentioned

features are very easy to identify such as punctuality (timestamps) some others are very

difficult and complicated to detect such as source validity and user comprehensibility,

in between novelty can be handled by the hypothesis that there is no prior knowledge

or information about the document and all the learning process happens during the

document retrieval [Zhao et al., 2006].

Word Sense Disambiguation

In many languages there are words or phrases that are spelled the same and pro-

nounced the same but they have totally different meaning (polysemous or homony-

mous). For instance, bank can identify a financial organisation, or means the river side.

In medicine bread diet can present a person who usually eats bread; or prescribed

bread to treat a condition. Word Sense Disambiguation is the task to clarify the sense of

each word in an ambiguous sentence. WSD can be considered as a classification task,

where each sentence is assumed as the document and the word sense as classes [Tufis

et al., 2005; Escudero et al., 2000]. Needless to say it is a single-label (see Section 2.6.1),

document-oriented classification (see Section 2.6.1) task.

Hierarchical Categorisation of Web Page

Hierarchical structure is one of the most efficient structures for large sets, this approach

improves the scalability of building the classifier for such sets. For the same reason

lots of popular internet portals host the web pages and sites based on a hierarchical

structure. When online documents are itemised or catalogued hierarchically, a searcher

finds the appropriate sub-hierarchy first and limits the domain to that specific class

rather than performing a general search over the whole collection. Although web pages

do have two strange characteristics:
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• The hypertextual nature of the web means that links provide an instant access to

vast amounts of information. Links may lead to other relevant pages as well as

pages with totally different information. There are techniques to deal with this

characteristic [Oh et al., 2000; Yang et al., 2002, 2003].

• The hierarchical structure of the web makes it possible to break down each clas-

sification problem into smaller problems [Dumais and Chen, 2000].

2.7 Evaluation of IR system

So far the need and design of IR systems in general have been discussed and the final

step in the series is to evaluate the system. The evaluation reveals which technique is

the most effective one, whether the stop word list is complete or not, which method

of stemming improves the result, and if the used weighting scheme is an appropriate

one. Each of the mentioned issues may or may not improve or optimise the result of

an information retrieval system. They are tested to see if they have any effects on user

happiness which is assumed as the key utility measure. User happiness also depends

on response time/speed; no one is satisfied to wait too long for an accurate result. In

reality no user waits more than a minute to get the result. The next point is index

size which can affect both the response time/speed and a key point in user satisfaction,

relevant results. However the result relevance and response time/speed are very impor-

tant, user interface must make the user feel comfortable to work with its layout which

should be very clear and responsive towards user’s needs.

To evaluate an information retrieval system there are three standard elements:

1. A document set

2. A set of representatives (queries) for information needs

3. A query-document pair of relevance judgements

There has been lots of studies to measure the effectiveness of an information retrieval

system. Techniques, models and design choices in such systems can affect the outcome.
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A careful and complete evaluation is an essential part in the designing of these systems.

Also, any system should be evaluated and have feedback in order to optimise and im-

prove its performance. A typical evaluation approach relies on the concept of relevant

and non-relevant documents. The user information need and a document from the set

are assigned to each other with a binary classification as either relevant or non-relevant.

The variety of information need representatives and the number of documents should

be considered to provide an accurate result.

To find the relevant documents to one user information need, queries are used, but the

relevancy is estimated based on the user information need and not the query. To make

it clearer, consider an information need as:

The advantages or disadvantages of computer employment in

students education

while the query that represents it might be :

computer AND employment AND students AND education

which may represent another information need such as:

Employment opportunity for students with education in computer fields

The fact that relevancy should be measured between documents and information needs

and NOT queries, is often misunderstood or ignored in practice. The reason is, infor-

mation needs are not normally clear and plain. To somehow overcome this issue and

also tune the system performance, many systems use various weights. To have a fair

and realistic evaluation it is very important not to use the same collection that has been

used for these weights and the system adjustment. As these documents are used to

optimise the system performance over those specific weights, it will lead to a biased

evaluation [Fransson, 2009].
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2.7.1 Unranked Retrieval Evaluation

The first step in retrieval evaluation is to identify if the document and information need

are relevant based on a binary decision. Precision and recall are the two most popular

and widely used measures to present the systems effectiveness.

Precision shows how many retrieved documents are actually from the relevant docu-

ment set, and is calculated as follows:

Precision =
#(relevant documents retrieved)

#(retrieved documents)
= P(relevant|retrieved) (2.7.1)

Recall shows how many relevant documents have been actually retrieved, and is cal-

culated as follows:

Recall =
#(relevant documents retrieved)

#(relevant documents)
= P(retrieved|relevant) (2.7.2)

A system retrieves non-relevant documents as well as relevant documents, and identi-

fies them as relevant documents by mistake. Also some of relevant documents will be

overlooked, treated like non-relevant documents and not retrieved. To clarify, this can

be shown in Table 2.1:

Relevant Non-relevant
Retrieved true positives(tp) false positives(fp)
Not retrieved false negatives(fn) true negatives(tn)

Table 2.1: True and false, positive and negative retrieval.

based on this table and the above definitions, precision (P) and recall (R) can be inter-

preted as follows:

P = tp/(tp + f p) (2.7.3)

R = tp/(tp + f n) (2.7.4)
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Another option to evaluate an information retrieval system is by its accuracy:

accuracy = (tp + tn)/(tp + f p + f n + tn) (2.7.5)

The majority of the documents in almost all cases, belong to the non-relevant class.

Since the data is extremely biased, the accuracy is not an appropriate measure. A sys-

tem with a very high accuracy can simply identify all the documents as non-relevant

which is unsatisfactory for users.

Precision and recall focus on the proportion of the number of returned true positive

items relative to the number of returned or relevant items respectively. Based on the

user’s intention either precision or recall can identify the more accurate systems. Gen-

eral web surfers prefer more relevant results on the first page, which means high preci-

sion will serve them best, while, professional searchers prefer systems with high recall,

they care how many of the relevant documents are retrieved. Precision and recall are

two measures that trade off against each other. When the number of documents re-

trieved increases and the recall value, referring to its formula, is a non-decreasing func-

tion; the fraction does not change if a new non-relevant document is retrieved. While

in a desired system by increasing the number of retrieved documents the precision de-

creases. In general, we can say, a system with Precision = 1 retrieves only relevant

documents but misses a lot of them. On the other hand, a system with Recall = 1 re-

trieves mostly relevant documents but the result contains a lot of non-relevant ones as

well [Meadow et al., 2007; Manning et al., 2008].

Despite their popularity and usefulness, precision and recall measures have some

drawbacks, namely:

• Do not show the efficiency of the system

• Do not provide any information about number of non-relevant documents in the

collection

• In the case of no relevant documents, recall will be undefined

• In the case of no retrieved document, precision will be undefined
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2.7.2 Ranked Retrieval Evaluation

Unordered sets of documents are used to measure precision, recall and F-measure so

they are known as set-based measures. In ranked retrieval methods, a set of top k re-

trieved documents is presented, precision and recall are calculated and a precision-

recall curve is plotted. (K + 1)th document is retrieved, if it is non-relevant, precision

will decrease while the recall stays the same, but if it is relevant, both precision and

recall will increase.

The first solution to take this increasing and decreasing into consideration is to calcu-

late the average for different precisions at the same recall level, also known as average

precision. This new measure, average precision, has improved the evaluation of process,

there are other more common measures. One method, that has become very popular

especially as a standard in the TREC8 community is Mean Average Precision, in which

a single-figure measure is used for all recall levels. Consider the set of {d1, ..., dmj} as

the relevant documents for an information need representative qj ∈ Q and Rjk as a

set of top k ranked retrieved documents, then Mean Average Precision, MAP, can be

calculated as follows:

MAP(Q) =
1
|Q|

|Q|

∑
j=1

1
mj

mj

∑
k=1

Precision(Rjk)

However, MAP is a single measure for whole system, it makes more sense to calculate

MAP for an individual information need in different systems than MAP for different

information needs in one system.

MAP has the advantage that it does not require any size estimation for relevant doc-

uments set. In contrast with other commonly used evaluation measures, there is a

disadvantage too. The total number of relevant documents has a strong influence on

precision so MAP is the least stable and does not average well [Croft et al., 2009; Göker

and Davies, 2009].

8Text REtrieval Conference. For more information refer to http://trec.nist.gov

56

http://trec.nist.gov


CHAPTER 2: BACKGROUND: BASIC CONCEPTS

2.7.3 Assessing Relevance

To evaluate a system properly user information need should be closely related to the

test document collection. The provided user information need also must be able to

present and predict the system’s goal. It is therefore better that a domain expert designs

the queries that represent user information need. These experts randomly combine dis-

criminant query terms, then they compare information need and representatives and

documents against each other and finally; relevant assessments are measured. However,

not only are these assessments time consuming and expensive but also there is no stan-

dard judgement for human users or experts. The relevance judgement from different

experts relies on their knowledge background and their personal or professional pref-

erences. How much agreement exists between the experts about the relevance is am-

bivalent. Based on TREC tradition, alongside the train and test sets of documents and

sets of classes, predefined relevance judgements are provided, to make it possible to

evaluate different systems based on standard pairs of information need and document

[Meadow et al., 2007; Dominich, 2008].

2.8 Summary

The main objective of this chapter is to provide a solid background in information

retrieval in general and specifically classification. The chapter has clarified the meaning

of document representative, user information need and its difference with query. Also

the process of generating representatives for documents or generating queries based

on user information need and their optimisations as well as matching the document

representatives and queries are explained.

This chapter has reviewed the need for IR. It has provided an insight into information re-

trieval (IR) processes; from document representation techniques and queries. More de-

tails for each part of the process, such as tokenisation, case-folding, stop-word removal

and weighting for document representation, have been provided. Boolean query, vec-

tor space model and coordination level for matching documents and queries are ex-

plained step by step.
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Different methods of Machine Learning (ML), namely supervised and unsupervised

learning are introduced. Some applications that use IR to improve the quality of ser-

vices they provide such as web-based search and enterprise search are named. Three

main problems in IR: document retrieval, clustering and classification are introduced,

while clustering and classification are explained with more details on clustering and

classification types and classification applications.

Evaluation of IR systems is divided into three sections to address unranked retrieval,

ranked retrieval and assessing relevance to finish this chapter.
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Biologically Inspired Models

3.1 Introduction

In the field of Artificial Intelligence (AI), machine learning is a major approach with

highly appreciated results in many problems. In this chapter, we start by briefly intro-

ducing machine learning. We will discuss biologically inspired models also known as

evolutionary computation (EC) models. The basic concepts are based on the principles

of biological evolution. However, there are differences in their representations of solu-

tions and operators. We introduce genetic programming in more detail, since it is the

main algorithm used in this thesis.

3.2 Machine Learning

Machine learning is a sub field of Artificial Intelligence that transforms a system to an

intelligent and automated one. Machine Learning is referred to a system that learns

from experience, analytical observation and other means. After training, the system

can improve its performance, efficiency and effectiveness [Mitchell, 1997]. Machine

learning algorithms have various applications in many fields such as natural language

processing [Manning and Schuetze, 1999], computer vision [Duda et al., 2000] and data

mining [Witten and Frank, 1999].

Machine learning has been used for a long time to create self-improving systems, sys-
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tems that learn to optimise and improve themselves. As Oliver G. Selfridge puts it:

if one finds and fixes a bug in a program, the program works today, however if one

shows the program how to find and fix the bug, the program will work forever [Hearst

and Hirsh, 2000].

It is used to create systems that learn how to do tasks in a quality level which is com-

parable with human being performance, meanwhile it reduces the time and expenses

that the work done by human needs.

3.2.1 Machine Learning Algorithm Types

Supervised Learning

One of the algorithms of machine learning is supervised learning. A training dataset is

used to train the system and create a function to deal with new requests. The training

data is normally a pair represented as a vector. This vector assigns input objects to

preferred outputs [Duda et al., 2000].

In this technique, the system receives a pre-categorised set of data. The system uses

this pre-categorised set to find the logical relationships between terms by creating a

prototype or a concept model for itself. When the system receives a new request, it

repeats the same processes in order to conceptualise the new request. To achieve this

conceptualisation, the system should see enough samples to be able to generalise the

characteristics of the training data in order to apply it to unseen data. This process in

human being and animals is known as concept learning. If the output of the system is a

continuous value, the process is called Regression, and if the output is a set of classes of

labelled input documents, it is called classification.

Unsupervised Learning

Unsupervised learning is another family of algorithms used in machine learning. In

such algorithms there are some inputs that need to be put together, but unlike super-

vised learning, there is no specified output set [Mitchell, 1997]. In unsupervised learn-
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ing set of inputs are assumed as a set of random variables. This kind of learning is used

to:

• Discover the structure of the data

• Encode the data

• Compress the data

• Transform the data

Semi-supervised Learning

This family of algorithms is a combination of the two previous ones. In such algorithms

a small training set and a large amount of raw data is used to train the system. It is

reported that they show better practical results than others [Mitchell, 1997].

Reinforcement Learning

In reinforcement learning, for each input an action will be taken. The system’s action

makes changes in the environment. Based on these changes, it receives rewards or

punishments (feedbacks). The system’s aim is to learn how to maximise the rewards

[Mitchell, 1997].

3.3 Introduction to Biologically Inspired Computing

Biological processes are used as a source for models, inspiration and ideas in develop-

ing new computational architectures based on the principles of natural biological sys-

tems. The primary objective of models based on biological evolution, is to study and

extract the essential working principles from biological systems and translate them into

useful software algorithms or architectures [Bäck et al., 2000].

One way in which bio-inspired computing differs from other artificial intelligence (AI)

algorithms is in how it takes a more evolutionary approach to learning, as opposed
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to what could be described as "creationist" methods. In traditional AI, intelligence

is often programmed from above and the programmer is the creator. The program-

mer creates something and makes it intelligent. Bio-inspired computing, on the other

hand, takes a more bottom-up, decentralised approach; bio-inspired techniques often

involve the method of specifying a set of simple rules, a set of simple organisms which

adhere to those rules, and a method of iteratively applying those rules. After several

generations of rule application it is usually the case that some forms of complex be-

haviour arise. Complexity gets built upon complexity until the end result is something

markedly complex, and quite often completely counter-intuitive from what the original

rules would be expected to produce [Bäck et al., 2000].

Natural evolution is a good analogy to this method, the rules of evolution (selection,

recombination/reproduction and mutation) are in principle quite simple rules, yet over

thousands of years have produced remarkably complex organisms. The technique used

in evolutionary computation is very similar.

To understand biologically inspired algorithms we need to be familiar with some bio-

logical terms [Luke, 2009; Bäck et al., 2000; Luke, 2000]:

• Individual: A single member of a population, representing a candidate solution.

In Evolutionary computation, each individual represents a possible solution to

the problem being tackled, i.e. a single point in the search space. Other informa-

tion is usually also stored in each individual, for example, its fitness.

• Breeding: Producing one or more off-springs from a set of parents by means of

genetic operators.

• Genotype or genome: the data structure of the individual used for breeding.

• Chromosome: In biology, it is strings of DNA that serve as a "blueprint" for the

organism. In EC, it is vector-based genome.

• Gene: Each chromosome can be conceptually divided into genes. In other words,

each element of the chromosome vector.
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• Reproduction: The creation of one or more new individuals from two or more

parents (sexual reproduction). Also, asexual reproduction can be the creation of

a new individual from a single parent.

• Crossover or recombination: A reproduction operator which forms two children

by combining parts of two parents.

• Mutation: A reproduction operator which forms a new individual by making

minor changes to the parent’s gene.

• Fitness: In general, it means quality of an individual. It is a numeric value as-

signed to an individual which shows how well the individual solves the problem.

• Fitness function: A function that maps individuals to fitness values.

• Population: A collection of individuals.

• Generation: An iteration of the fitness assessment and the creation of a new pop-

ulation by means of reproduction operators.

3.3.1 Evolutionary Algorithms

Evolutionary algorithms is an umbrella term used to describe the algorithms inspired by

biological models. The major ones are: genetic algorithms, evolutionary programming

and genetic programming. All evolutionary algorithms share a number of common

properties:

• They all utilise the collective learning process of a population of individuals [Bäck

et al., 2000]. They are generally re-sampling techniques and new populations are

created by revising previous ones [Luke, 2009].

• New individuals based on the selection of older ones are generated by ran-

domised processes intended to model mutation and crossover.

• The quality of the individuals are assessed separate from the others or in compar-

ison to the others. The assigned fitness is used in selection processes for breeding.
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Therefore, fitter individuals are more likely to breed new children than the less fit

ones.

An evolutionary algorithm usually starts with constructing an initial population, as-

sesses the fitness of each individual in the population and uses that information for

breeding. Breeding process then produces a new generation and a new cycle starts. Af-

ter a certain number of generations, or some other termination criterion, the algorithm

returns the fittest individual as the solution for the problem.

3.3.2 Genetic Algorithm

Genetic algorithms are a class of evolutionary algorithms first proposed and analysed

by John Holland [Holland, 1975]. A typical genetic algorithm requires two things to be

defined:

1. a genetic representation of the solution candidates.

2. a fitness function to evaluate the solution candidates.

A common representation of the solution candidates is a vector of bits or a string of

bits. Vectors of other types and structures can be used in essentially the same way.

The main property that makes these genetic representations convenient is that their

parts are easily aligned due to their fixed size, that facilitates simple crossover opera-

tion. Once we have the genetic representation and the fitness function defined, genetic

algorithm proceeds to initialise a population of solutions randomly, then improve it

through repetitive application of mutation, crossover, and maybe other operators [Bäck

et al., 2000].

Initialisation

Initially many individual solutions are randomly generated to form an initial popula-

tion. The population size depends on the nature of the problem, but typically contains

several hundreds or thousands of possible solutions. Traditionally, the population is

generated randomly, covering the entire range of possible solutions (the search space).
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Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely

to be found. Then each individual is evaluated for fitness [Luke, 2009].

Selection

Some of these individuals are selected to breed a new generation. Individual solu-

tions are selected through a fitness-based process where fitter solutions (as measured

by a fitness function) are typically more likely to be selected. However, there are many

approaches for selection that select a combination of high fitness and low fitness indi-

viduals in order to make it possible to explore a larger part of the search space.

Reproduction

The next step is to generate the next generation of candidate solutions from those

selected through genetic operators, such as: crossover (also called recombination),

and/or mutation. The rate at which mutation and crossover are applied is an imple-

mentation decision. By producing a child using the crossover and mutation, a new so-

lution is created which typically shares many of the characteristics of its parents. New

parents are selected for each child, and the process continues until a new population

of solutions of appropriate size is generated. These processes ultimately result in the

next generation population of individuals that are different from the initial generation.

Generally, the average fitness will have increased, since only the best individuals from

the first generation are selected for breeding, along with a small proportion of less fit

solutions [Bäck et al., 2000].

For a crossover example consider two selected parents as in Figure 3.1:

1 Parent1 10101001
2 Parent2 00111111

Figure 3.1: A cross-over example in GA with binary vector representation.

Suppose the vectors is a binary vector with the length of 8. A one-point crossover at

point 5 gives us the fragments in Figure 3.2:
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Fragment 1 Fragment 2
Parent1 10101 001
Parent2 00111 111

Figure 3.2: One-point cross-over example. The cross-over point is 5.

By combining Fragment 1 from Parent1 with Fragment 2 from Parent2 and Fragment

1 from Parent2 with Fragment 2 from Parent1, two new children will be produced as

in Figure 3.3:

1 Child1 10101111
2 Child2 00111001

Figure 3.3: Produced children in result of a cross-over.

The mutation operator works on one parent by first selecting it from the population

and then selecting a random point on the vector and complementing it. Cross-over

and mutation operators for other representations (non-binary vectors) are very similar.

Termination

This generational process is repeated until a termination condition has been reached.

Common terminating conditions are:

• A solution is found that satisfies minimum criteria.

• Fixed number of generations reached.

• The highest ranking solution’s fitness has not improved in a series of generations.

• Manual inspection.

• Combinations of the above.

Figure 3.4 shows the general process in genetic algorithms. The process starts with

an initial population in which each individual in this population is randomly chosen.

Each individual should fulfill a series of evaluations were its fitness is calculated: either
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Figure 3.4: Genetic Algorithm

the evaluated individuals meet the termination condition and the results are displayed.

Or, the process will repeat as a recursive process, in order to generate a new population

and re-evaluate the new population till it meets the termination condition.

3.3.3 Genetic Programming

Genetic programming is one of the evolutionary algorithms that differ from the genetic

algorithm approach in representing individuals, genetic operator designs and fitness

function evaluation.

In genetic programming individuals are represented by computer programs and a fit-

ness evaluation for them means executing these programs. Genetic programming like

genetic algorithm involves an evolve-based search on possible computer programs to

find the one that produces the best fitness value [Koza, 1992].

Genetic programming starts with an initial population of computer programs which

are generated randomly. Computer programs are composed of functions and terminals

which are specific to the problem domain. The fitness value for each individual is mea-

sured in a particular problem domain. Typically, each computer program is run over

a number of fitness cases so that fitness is measured as a function of these execution

values. The genetic operators are used to create new offspring computer programs.

Algorithm 1 shows the structure of a genetic programming process [Luke, 2009]. In

general, the process can be summarised as [Koza, 1992]:
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1. Generate an initial population of computer programs randomly which are com-

posed of the functions and terminals of the problem.

2. Repeat until the termination criterion has been occurred.

(a) Evaluate the fitness value for each program according to how well it solves

the fitness cases.

(b) Create a new population of computer programs by applying genetic opera-

tors to probability-based on fitness selection of parents.

3. The best computer program that appeared in any generation is provided as the

result of problem.

Algorithm 1 A genetic programming process.

Require: class c and the training data set
Require: parameters of GP such as: popSize, operators rate, . . .

1: P← randomly generate an initial population
2: repeat
3: for all pi ∈ P do
4: assessFitness(pi)
5: best← findNewBest(best, P)
6: end for
7: P′ ← {}
8: while |P′| < popSize do
9: c← generateNewChild(P)

10: P′ ← P′ ∪ {c}
11: end while
12: P← P′

13: until termination criteria met
14: return best

The representation used by genetic programming is in the form of executable computer

programs. There are many different forms of computer programs which are used in

genetic programming implementations, but most of them use a tree-structured repre-

sentation. Figure 3.5 shows an example of tree-structured representation for a genetic

programming implementation.

Most of the genetic programming implementations use two types of nodes in repre-

senting individuals: Terminals and Functions. Terminals are inputs to the program,

they can be constants or variables. In the above example a, b, x and y are terminals.
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+

×

x y

/

a −

b

(x× y) + (a/(−b))

Figure 3.5: An example of tree structured genetic programming representa-
tion.

Functions take inputs which produce outputs and have some possible side-effects. The

inputs can be terminals or the output of other functions. In the above example +, /, −

and × are functions. The functions may be standard arithmetic operations, standard

mathematical functions, logical functions, standard programming functions or domain

specific functions.

The representation for the program is the definition of the functions and terminals.

There are some important points that should be considered when defining the terminal

and functions sets. First, the set of terminals and the set of primitive functions must

be capable of expressing a solution to the problem. Each one of the functions in the

function set should accept any value and data type, that are produced by any other

function or terminal, as argument. Each function in the function set should be well

defined and closed for any combination of arguments that it may encounter. One way

to define a function set is to use only a single data type, so the output of any function

or the value of any terminal is acceptable as input for any function. Another way is to

use strongly-typed genetic programming which enforces data types constraints [Montana,

1995]. The definition of functions is not restricted to functions that only produce an

output, many genetic programming functions are used because of their side-effects.

These functions should return a value as well, but the main purpose of them is affecting

the environment.
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Fitness Measure

In genetic programming fitness value for each individual is evaluated by executing the

program on a set of fitness cases and summarising the results. Fitness cases are a set of

inputs in which the correct answers are known. In other words, the fitness of a program

is a function of the number of fitness cases which produces the correct result.

Genetic Operators: Reproduction, Crossover and Mutation

Reproduction, crossover and mutation are three basic operators in genetic program-

ming. They have different performances in different domains, however [Luke and

Spector, 1997] have done some research about the comparison of mutation and

crossover and have concluded that crossover has some advantages over mutation.

• Reproduction, First a single individual is selected from the population accord-

ing to some selection method based on fitness. Second the selected individual is

copied without alteration from the current population into the new population.

• Crossover, The crossover operation generates a new offspring that consists of

parts of its parents. According to Figure 3.5 there are two parents; A and B. Each

parent independently selects a point for crossover operation randomly. Then two

offspring will be generated by swapping two selected fragments of parents. For

example, we have following selected fragments (Figure 3.6), and by swapping

the fragments we have the following children (Figure 3.7 ).

• Mutation In genetic programming a point is selected at random within a selected

individual. The mutation operation then removes whatever is currently at the

selected point and whatever is below the selected point and inserts a randomly

generated sub-tree. Another method is to randomly find a function node any-

where on the tree and then replace the function with another selected at random,

from the set of functions, where the function takes the same number of arguments

as the function to be replaced.
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Figure 3.6: Two parents selected for crossover.

Figure 3.7: Two children generated by the crossover operator.
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3.4 Summary

In this chapter different machine learning algorithms are explained. We discussed how

biologically inspired computing uses the natural biological systems principle to im-

prove the computing results. In order to understand these principles, biological terms

such as Individual, Crossover, Reproduction, Mutation, etc were explained. Genetic

Algorithm was explained and how it works. Genetic Programming is shown to em-

ploy evolutionary algorithm and implement them in the form of computer programs.

In order to use evolved-based search, computer programs are composed of functions

and terminals which are specific to a problem domain and genetic operators such as

reproduction, crossover and mutation are used to produce new individuals which are

more capable of meeting the fitness measure.

These definitions and principles are used in this thesis to generate new population of

fitter individuals through the evolution-based search. This is in order to create better

representatives for documents and to address the user information need.
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Related Work

4.1 Introduction

In this chapter we look into the use of Evolutionary Algorithms (EA) mainly in the

field of information retrieval and also in artificial intelligence and natural language

processing. In particular, genetic programming has gained more attention in recent

years and it has grown to many applications in different areas of artificial intelligence,

data mining, text mining and natural language processing.

4.2 Data Mining and Knowledge Discovery

[Freitas, 2008] has discussed the use of evolutionary algorithms, particularly genetic

algorithms and genetic programming, in data mining and knowledge discovery. This

study discusses GA and GP in order to deal with the discovery of classification rules,

clustering, attribute selection and attribute construction. The focus of study is on the

individual representation and fitness function.

In addition, [Bojarczuk et al., 1999]’s study proposes a genetic programming frame-

work for classification and generalised rule induction. It also discovers some compre-

hensible rules and claims that the results look promising concerning predictive accu-

racy. However there are certain issues that the research does not address. The length

of the generated rules can be very long and the fitness function does not consider this
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problem. The preprocessing, which is used in this study, needs improving in order to

perform a careful selection of attributes, also the used data set is a small data set focus-

ing on patients chest pain, whereas the result on different and larger data sets may be

different.

Textual relations in documents and semantic networks are extracted by genetic pro-

gramming in the work of [Bergström et al., 2000] to enhance information retrieval and

the development of user interface, particularly for small screen devices.

4.3 Natural Language Processing

[Araujo, 2006] has used genetic programming in natural language parsing and tagging.

This work has attempted to develop a multi-objective genetic program which performs

statistical parsing and tagging simultaneously. Grammar rules and tag sequences are

used to train for the best sentence available. Different models (aggregative function,

MOGA, NSGA and NSGA-II)1 have been adapted to these specific problems. The re-

sults show improvements for each of these evolutionary multi-objective models, when

parsing and tagging are handled separately. The results also show that MOGA outper-

forms the other methods.

[Araujo, 2007] has studied evolutionary algorithms in statistical natural language pro-

cessing. This survey has reviewed several works that have applied evolutionary al-

gorithms to different Natural Language Processing (NLP) tasks . In most tasks GA has

performed with comparable and satisfactory results. The main drawback is the high

cost of the computation power and time. Usually the NLP problems have a very large

search space, so the GA’s execution time is practical only when the cost of fitness func-

tion computation is low.

As mentioned earlier, [Bojarczuk et al., 2000] have used genetic programming for

knowledge discovery in a specific domain (i.e. chest pain discovery) that involves

natural language techniques to extract information.

1MOGA is Multi-Objective Genetic Algorithm, NSGA is Non-dominated Sorting Genetic Algorithm,
NSA-II is improves NSGA with elitism and a crowded comparison operator that keeps diversity without
additional parameters
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4.4 Query Expansion

An area of information retrieval, which is being approached by evolutionary algo-

rithms is query expansion and reformulating queries in order to improve the retrieval

quality. [Vrajitoru, 1998] introduces a new crossover operation in genetic algorithm

specifically for creating new queries.

In [Araujo et al., 2010], an evolutionary algorithm is employed to combine clauses to re-

formulate a user query in order to improve the results of a similar search. The study has

two parts: Firstly, the study starts with a review of the query expansion algorithms and

discusses the negative effects of term correlation used in query expansion. A method,

which is called query clauses are used to address the problems pointed out caused by

term correlation methods. The second part of the study combines the query clauses

with genetic algorithm in order to create a method to improve the result of stemming

by reformulating the user query. Though this study has ignored the user and pseudo

relevance feedback as well as any re-weighting formulas, it has focused on the term de-

pendencies, their occurrences in simple experiments and their effects on performance.

An unsupervised method is suggested to note and include simple term dependencies.

To reformulate the query the candidate terms are specifically selected from a morpho-

logical thesaurus. The fitness function used in this study measures the proximity of

selected terms from the query and the top ranked retrieved documents. Different prox-

imity measures such as cosine, square cosine and square-root cosine are used as fitness

functions in the unsupervised method.

[Araujo and Pérez-Iglesias, 2010] have proposed a way to train a classifier for query

expansion of too short or unspecific queries. In this study, the user’s relevance judge-

ments on a document set are used as fitness function for the genetic algorithm to train

the classifier to identify distinguished terms for query expansion. The authors con-

clude that the genetic algorithm training can improve the query expansion quality. The

main focus is on a pseudo relevance feedback method and genetic algorithm is used to

build a set of suitable terms for query expansion from the top documents of the initial

ranked list.
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4.5 Weighting Schemes

[Cummins and O’Riordan, 2006] employed genetic programming to find a term

weighting scheme for the vector space model. The fitness function to evaluate the in-

dividual weighting schemes is average precision and statistics of the terms are derived

from two domains: Firstly, term weightings based on each document alone, which is

called local domain. Secondly, term weightings based on the whole collection, which is

called global domain. They argue that in their approach terms with low or high frequen-

cies do not affect the weight of the term, also for large collections local weighting does

not have a substantial effect. In their experiments, three small document collections

(Medline, CISI and Cranfield), one medium sized collection and one large document

collection TREC-9 are used. All the collections are preprocessed using Brown corpus

stop-words [Kuĉera and Francis, 1967] and Porter’s stemming algorithm [Porter, 1997].

The GP settings in the experiments are: 50 generations, initial population of 1000, tour-

nament selection with the size of 10. Each collection is divided into two sets: train

set and test set. The train set is used to train the solutions and the test set to evaluate

the weighting schemes. The ramped half and half2 [Koza, 1992] is used as the cre-

ation method of the individuals. As mentioned before, the average precision is used as

the fitness function and the traditional t f -id f and Okapi-BM25 weighting schemes are

used for comparison. The Okapi-BM25 model is used with the default parameters of

b = 0.75 and k1 = 1.2.

The function set for the experiment is consisted of the four main mathematical oper-

ators (+,−,×, /), the natural log, trigonometric functions, square root function and

square. The terminals include constants3, raw term frequency within a document,

number of documents a term occurs in, number of documents in the collection, col-

lection frequency, document length, collection size and so on.

Four main experiments were conducted: the first experiment aims to show that on

small collections, the general weighting schemes can be evolved into schemes with

2Means half of the random individuals must have the maximum tree depth (known as full) while half
of them may not have all the branches (known as grow)

3For example, 1
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better performance than the t f -id f and even the modern BM25 weighting scheme. The

second experiment has used the average precision to estimate the effect of each termi-

nal which has been used in the weighting scheme. Based on the result of this phase, ter-

minals with high advantage will be included in the weighting scheme where as those

with low or no effects are ignored. The third and fourth experiments, terminals and

their domains, either in document (local) or in collection (global), are combined. The

aim is to show that evolving the global weighting with local weighting in a binary

method can promote those important terms which support retrieval. Also the local

weighting improves while combined with the best global weighting. This helps to

evaluate and analyse the worth of the weighting scheme. The formula that has been

used for this purpose is:

Wt(di, q) = ∑
t∈q∪d

(lwt × gwt × qrt f ) (4.5.1)

where lwt is the local weight and gwt is the global weight and the qrt f is the raw

term frequency in the query. In this formula the weighting schemes are divided into

their relevant parts which shows the significant trait of each one in the final evolved

scheme. The novelty of the research is related to the set of text features that they collect,

so the advantage of each feature is measured based on their relevancy. The idea of local

and global weighting scheme reduces the search space. Also those text features with

certain relevance info are identified and those with no specific effect can be eliminated

to reduce the search space more.

Similarly, [Fan et al., 2000] use genetic programming to automatically generate term

weighting schemes for different contexts. The terminals are very similar to the ones

described above, but the functions are limited to (+,−,×, /) and log. In addition,

[Oren, 2002b] applies the same techniques to evolve better weighting methods to out-

perform t f .id f . The principles of both works are very similar to those of [Cummins and

O’Riordan, 2006], however the [Cummins and O’Riordan, 2006] provide more analy-

sis into the contribution of each terminal in the overall performance of the weighting

schemes and hence more insight into the effectiveness of the approach.
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4.6 Retrieval Functions

Since ranking functions are central to the document retrieval problem and genetic pro-

gramming is well suited to discover complex formulas for different problems, several

research projects have been carried out to discover best performing ranking functions

and similarity measures for document retrieval.

[Fan et al., 2004b] propose a generic framework to be based on genetic programming

to automatically discover and evaluate new ranking functions for different collections

and different scenarios. In [Fan et al., 2004a], they investigate the effect of the fitness

function in the quality of the discovered ranking function for web retrieval. The au-

thors conclude that the design of the fitness function is very important in the success

of the ranking function discovery. They suggest to use a fitness function that consid-

ers all the relevant information and also takes into account the order of retrieval of the

relevant documents.

In [Yeh et al., 2007] an evolutionary algorithm approach is employed to automatically

generate an effective ranking or retrieval function for information retrieval. The learn-

ing method, RankGP, which has been presented in this research, employs the genetic

programming as its engine for finding the best ranking algorithm. It has merged dif-

ferent IR features, such as content features, structure features and query-independent

features to learn the ranking function. The proposed learning method, receives two sets

of input and one set of output. The first input set contains pairs of queries and docu-

ments along with a vector for their features and their relevance judgement. The second

input identifies the GP-related parameters, such as number of generations, size of pop-

ulation, crossover rate and mutation rate. The output is a ranking function which is

believed to measure the real similarity between a query and a document. The learning

procedure is summarised as follows:

1. A set of individuals are randomly initialised for the initial population.

2. The performance of each individual in the initial population is scored on the train-

ing set used by a fitness function.
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3. The fittest individual from initial population is chosen for the output set.

4. Crossover and mutation are used to generate the individuals for the new genera-

tion with the specific population size.

5. These steps are repeated till the initial number of generations is fulfilled.

6. A score function evaluates the performance of each individual in the output set

and the best one is chosen as the result.

Each individual is a functional expression of variables, constants and operators, where

variables are figurative details for training set’s feature, constants are a set of prede-

fined numbers and operators are a set of mathematics operators. The overall repre-

sentation is a binary tree structure with internal nodes and leaves. The variables and

constants are leaves and operations are nodes. Only simple mathematical operations

{+,−,×, /} are used as the researchers believe they are sufficient enough to accom-

plish good results in for this problem, also they have less computational cost. Mean

average precision (MAP) has been chosen as the fitness function based on the idea that

is a widely used as a retrieval measure. During the evolution process, the initial popu-

lation is created by the ramp half-and-half method [Koza, 1992]. All three methods of

generating individuals are used; reproduction to follow the natural selection principle

for elitism, mutation, and crossover, while the tournament selection is used to keep the

fitness biased. After the output set is completed, each individual must have a good

fitness on the validation set as well as the training set and the final score is calculated

by the following equation to take into account the quality on the validation set as well

as the main fitness function:

Score(Ij) = F(Ij) + MAP(Ij, V) (4.6.1)

where Ij stands for an individual, F(Ij) is the fitness of Ij and MAP(Ij, V) donates the

MAP of Ij on the validation set.

[Yeh et al., 2007] used an open source GP toolkit (LAGEP) which implements layer

architecture of multi-population genetic programming in conjunction with a method
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for adaptive mutation rate tuning. If all the individuals in the generation have similar

fitness values it is appropriate to increase the mutation rate to increase the number of

new individuals. Three evaluation measures are used:

• P@n (Precision at Position n)

• MAP (Mean Average Precision)

• NDCG (Normalised Discount Cumulative Gain)

The above evaluation measures, for 5-fold cross validation, are used to evaluate the

system’s effectiveness. One non-learning-based method BM25 and two learning-based

methods, Ranking SVM [Herbrich et al., 2000] and RankBoost [Freund et al., 2003] are

used by them as baselines to compare two evaluation results of the RankGP method.

The main problem of this approach is the higher computational cost compared to other

learning methods that are used in the experiments, which is the common problem of

genetic programming based solutions.

[de Almeida et al., 2007] have tried a genetic programming approach to optimise MAP

for a specific collection. In this study, terminals as non-primitive parts of available

term-weighting schemes are used. Also complex features from different parts of the

term weighting scheme such as term-discrimination, term-frequency and normalisa-

tion components are considered. However, due to omitting the primitive measures for

terminals there is the danger of ignoring a large area of search space. Also the complex

nature of the used terminals has made it difficult to analyse the produced functions.

As a result it has become difficult to understand the nature of the ad-hoc retrieval. The

learning method in this study is a combination and aggregation of existing retrieval

functions. This approach relies on the GP’s advantage to produce a symbolic repre-

sentation of a possible general solution. As a conclusion this study has used the GP

abilities and advantages to develop term-weighting schemes, but it has analysed nei-

ther the produced solutions nor the ranked lists that are results of each solution.

Another learning to rank investigation based on genetic programming is done by

[Trotman, 2005]. The author evaluates the two best performing learned ranking
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functions by genetic programming to several traditional ranking functions including

Okapi BM25 [Robertson et al., 1995], probability measure [Robertson and Jones, 1976;

Harman, 1992a], inner product [Witten et al., 1999], Cosine measure [Harman, 1992a]

and one proposed by [Oren, 2002a]. Similar to other learning to rank methods, variety

of terminals as evidence were considered and the genetic programming process filters

those that are effective in enhancing the fitness function, which in this case is mean av-

erage precision. The experimental results show that on all collections, the GP learned

ranking functions perform at least as well as BM25 and in some cases outperform it by

10%. On the other hand, the generated ranking functions are quite complicated and

difficult to understand, which is a drawback in using them on new collections.

4.7 Classification

Genetic programming has been used to improve all the aspect of classification, from

preprocessing and inducing classifiers to combining classifiers. For the preprocessing

stage of classification, genetic programming is used to induce new features, select the

features or weight the features. In [Muharram and Smith, 2005] four fitness function

based on common feature selection methods are designed to produce new features to

later be used by decision tree and perceptron classifiers.

[Koza, 1991; Folino et al., 1999] is generating decision trees for classification by us-

ing the classification accuracy as the fitness function for genetic programming and the

evolved decision trees are used to classify new documents. Other researches have com-

bined the classification accuracy with tree size to produce smaller trees [Kuo et al.,

2007].

Rule-based classifiers are also producible by genetic programming. For example, in

a binary rule-based classifier, the rule returns true or false for each document against

each class. [De Falco et al., 2001] use genetic programming to discover rules for clas-

sification. The fitness function consists of a component that estimates the accuracy of

the classifier by considering both true positives and false positives and also a compo-

nent that forces the evolution process to produce simpler individuals. The functions
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are logical operators {AND, OR, NOT } and relational operators {<,≤,=,≥,>}. Each

function allows three arguments, which include constants and attributes of the domain

of the problem. Discriminant functions are another way of performing classification,

which can be learned using genetic programming. [Zhang et al., 2005] compares the

performance of classification by the discriminant functions learned using genetic pro-

gramming to two successful statistical classification techniques, SVM and artificial neu-

ral networks and report equal or better performance. In addition, they found that the

training times are also substantially lower for the genetic programming based method,

which is very important since computation time is one of the major drawbacks of the

genetic programming based techniques.

Finally, genetic programming can also be used to combine the predictions of other clas-

sifiers and produce a final prediction. The base classifiers can be based on genetic pro-

gramming [Imamura et al., 2003] or can be other methods of classification [Langdon

et al., 2002].

A thorough and comprehensive survey of all the applications of genetic programming

in classification is presented in [Espejo et al., 2010].

4.8 Summary

In this chapter, we overviewed the use of evolutionary algorithms in information re-

trieval, natural language processing and data mining and knowledge discovery. Sim-

ilar to many other machine learning techniques, evolutionary algorithms and specifi-

cally genetic programming can be applied to variety of problems and it can be effective

in many domains.

Most of the previous research of using genetic programming in information retrieval

are dealing with query expansion, learning ranking functions or weighting schemes.

The main issue in most of the studies is reported to be the computation cost of genetic

programming. Therefore, the proposed methods tried to deal with the this issue by

simplifying the structure of the individuals or choosing a fitness function that is easy

and fast to compute. Although genetic programming has been shown to be effective
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in finding high quality ranking functions, there is a drawback in using them for this

problem. The evolved ranking function, even though might use simple functions, can

be very complicated to understand and justify and this makes the traditional retrieval

models more appealing in using on new collections and domains.

In the next chapters, we try to address both problems in our proposed approach. One

of the main aims of this work is producing readable representatives for sets of docu-

ments. In Chapter 6, we present functions and terminals for the structure of the genetic

programming trees that produce readable and easy to understand individuals. In ad-

dition, we add a component to the fitness function that punishes the individuals with

more functions over those with less. In regarding the computational cost of the ge-

netic programming, we focus on improving the speed of the fitness computation. In

our implementation, we use a high performance indexing system for calculating the

similarities between the representatives and the documents. Additionally, the repre-

sentatives are used as logical expressions to exclude most of the documents from the

similarity computation process.
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Classification by Genetic

Programming

5.1 Introduction

So far, we have introduced information retrieval and some challenges for large data

collections. Chapter 2 discussed some of the approaches of representing documents

and calculating similarities. This chapter introduces the problem of classification in

information retrieval and proposes a method based on Genetic Programming (GP) to

solve the problem.

In this chapter we will look at the fundamental steps to solve the document classifica-

tion problem step by step and discuss how we address each step in our method. Then

we will introduce the bases of our approach based on GP and explain the nature of

the rules or the class representatives in our work. Finally, we discuss the evaluation of

classification methods and report the results of our baseline on a standard data set.

5.2 Classification

Classification can be defined as mapping the documents {d ∈ D} to one or multiple

classes {c ∈ C}. Figure 5.1 shows an example of a classification problem. There is a set

of predefined classes, when a new document arrives, then the task is to find the most
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Figure 5.1: Classification

relevant class or classes for the new document.

Classification can be performed by many different methods and approaches. In this

thesis a machine learning approach called genetic programming (GP) technique is used

to do the classification. Evolutionary based techniques and particularly GP, try to solve

complex problems such as classification by using the idea and some of the terminolo-

gies of biological evolution. Similar to other machine learning methods, there is a col-

lection of training documents for each predefined class. A rule which is a representative

of that class is built based on the training set. The rule is learnt or chosen from a practi-

cally infinite number of possible rules based on its quality to classify the training data.

The selected rule for each class is called the representative for that class. A representative

is a string that summarises the content of the class it represents. By investigating the

representative, instead of looking at each document in the class, we get an idea of the

topic of the class. Clearly, the rule must be able to filter future unseen documents to be

classified under the class it represents.

To classify new documents, we use the representative of each class to play the role of

the centroid of the class and estimate the relevance of the new document with respect
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to the class. When a new document arrives, the similarity between the new document

and the representative of the class is calculated. Then the new document is labelled by

the class which, for the new document, has the most similar representative.

The basic idea of the GP approach is to generate human-readable rules to perform the

classification. For each class a rule is learned based on the training data provided for

that class and will be used to predict the category of the future documents. Similar

to any other classification method, this method has different parts and algorithms that

cooperate with each other to constitute the whole method.

Training documents go through the pre-process stages as described before (see Sec-

tion 2.3). Different rules are learnt to represent the documents and classes, based on

their quality to classify the training data the best one is chosen as the classifier. When

a new document arrives, the similarity between the new document and each class rep-

resentative is calculated, then the new document is labelled by the class which has the

most similar representative to the new document.

It is a very straightforward process to compare the new document with the whole class

and decide about the new document’s label, however it is not practical, where the size

of classes or the number of new documents are high. It is not only very expensive but

also very time consuming, it is neither cost effective and nor time effective. To deal with

this problem, instead of comparing the new document with each one of the documents

in the class, the class representative can be used.

A class representative includes the discriminant terms which are useful in finding rel-

evant documents to that class. All the terms that may be common between the new

document and the class are considered. This increases the similarity measures. A good

representative expresses the best view of the class, where the complexity and the vol-

ume of similarity calculation decreases. To find the representative for a specific class,

we start with training data. Different features form these training data are extracted.

The genetic programming search strategies help to find the best possible rule which

represents the class. These required steps are: Extract discriminative features, Com-

bine extracted feature to construct a rule and evaluate the candidate solutions against

the training data.
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Figure 5.2: GP Classification

Figure 5.2 demonstrates a scenario where there are three different classes, triangles,

pentagons and octagons. The class representative for each of them is generated. When

a new document arrives, it is compared to each class representative and similarities

between them are calculated. Based on the calculated similarities the new document is

labelled to the class that is most similar.

5.3 Main Steps in Classification

Classification can be performed by lots of different techniques, however most of the

approaches consist of the following main steps:

• Document indexing

• Feature selection

• Choosing a classifier

• Training and testing the classifier

• Evaluating the effectiveness of the classifier

Document indexing prepares the documents by transforming them from raw text to

a more comprehensible presentation for the system. During document indexing all
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documents go through the pre-processing which has been explained in Section 2.3.1.

These pre-processing steps remove all the unnecessary parts by applying stop-words

removal, stemming and normalisation. For each document a list of terms along with

some of their attributes such as their frequencies are generated.

These terms carry different information about the document they are extracted from.

Therefore it is important to select those terms which represent the documents better,

terms with discriminant power. In our approach, selecting the features and combining

them to construct a class representative for a particular class is done simultaneously.

While GP selects different terms to generate the tree-shape individuals, it tends to se-

lect the most discriminant terms to distinguish relevant documents from non-relevant

ones. In addition, the document representative that is generated will be used to make

classification decisions.

A similarity measure based on the retrieval functions introduced in Chapter 2 will be

chosen to be the classifier that estimates the similarity between the documents and

the class representative. The similarity score is used to decide about the classification

results of the documents.

For training the classifier, which is optimising the class representative, a fitness func-

tions is used to score the individuals, with respect to their ability to classify the train-

ing documents under the correct category. The final step is evaluating the classifier by

classifying the documents in the test collection and estimating the classification metrics

described in Section 2.7.

In the next sections, we describe the above steps in more detail and sketch the overall

picture of the classification performed by our GP-based approach.

5.4 Document Indexing

All words do not have equal value to represent the semantic of a text, some words are

more significant than others. In documents in traditional format all words (terms) are

encoded in so many different ways that a classifier or classifier-building algorithm can

not interpret them. To make a document ready for the classifier some preprocessing is
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required (see Section 2.3). These preprocessing steps not only generate a set of terms, as

an index of discriminant terms in the document, but also reduce the size of the search

space that the classifier is dealing with, therefore less time is spent for non-discriminant

terms.

While the number of terms increases the model becomes more complex and the number

of parameters that algorithm needs to include and deal with goes up. Apart from the

speed issues that the huge number of parameters causes, unnecessary terms with no

discrimination value introduce noise to the process. The aim of this step is to represent

each document with a vector of features (such as words) to simplify the next steps of

the algorithm. However, the loss of discriminate terms can be very costly regarding

the loss of indicative features in the representative vector[Moravec, 2005; Barresi et al.,

2008; Nouri and Littman, 2010].

5.5 Feature Selection

The classification task requires a specific manner regarding the time and the cost and

especially the importance of features with significant values, therefore a subset of ex-

isting terms is selected. This process is known as feature selection. During the feature

selection, the size of available vocabulary decreases which improves the time and cost

efficiency.

During the training process, there is another problem or error which may occur and

end up building a classifier with low performance over unseen data. This can happen

where too much unnecessary detail about the training set is collected and entered in

the document representatives, especially when irrelevant terms are collected by acci-

dent, instead of fundamental and discriminant terms. For instance consider a very rare

term such as “arachnocentric” which has no information about a specific class such as

sport, repeated quite frequently in training documents and is associated with one of the

classes by mistake. When the classifier is applied to test (unseen) data, this association

can decrease and damage the classifier accuracy. In text classification process, when a

classifier has a very high accuracy over the training set while it performs poorly over
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the test set, this shows that a classifier has collected superfluous information about

training set and is known as overfitting.

The main intention of feature selection is to reduce or prevent these errors occurring.

[Parr et al., 2008; Yan et al., 2009]

5.5.1 Class Representative

The main part of our approach to classification by GP is to learn a set of rules in which

each one represents one of the predefined classes in the class collection C. The GP

learning algorithm receives a set of features as input and combines them in a way

that represent a particular class. The genetic programming algorithm searches (see

Chapter 3) among a large set of candidate solutions to find the fittest among them. In

our problem, the fitness is computed against the training data. In other words, the

performance of the candidate solution on the training data determines its fitness and

hence the possibility of its selection as the final representation of the class.

Definition 1. Representative is a string of different features which are logically related to

each other and represents a particular class.

Algorithm 2 GP based algorithm to generate the representative of a class.

Require: class c and the training data set
Require: parameters of GP such as: popSize, operators rate, . . .

1: P← randomly generate an initial population
2: repeat
3: for all pi ∈ P do
4: assessFitness(pi)
5: best← findNewBest(best, P)
6: end for
7: P′ ← {}
8: while |P′| < popSize do
9: c← generateNewChild(P)

10: P′ ← P′ ∪ {c}
11: end while
12: P← P′

13: until termination criteria met
14: return best

First we need to define the structure of this string and the components that compose it
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then, we need a method to evaluate each generated string to find the fittest one.

Algorithm 2 sketches the main process of generating a representative for a class. Firstly,

an initial population is generated randomly based on the settings of the genetic pro-

gramming engine. Then, the quality of each candidate solution, which is called fitness

of the individual, is calculated. The fitness for a class representative can be described

as a measure of how good it represents the corresponding class. A representative that

finds most of the relevant documents and very least of non-relevant documents of the

future documents is ideal.

If such a representative is generated then the termination condition is met. Where the

termination condition is not fulfilled, the reproduction methods are used to generate a

new population with new individuals and the process will be repeated until an ideal

representative is found, or we meet the termination condition. To implement this algo-

rithm, we need to define the following subroutines:

assessFitness, findNewBest, generateNewChild

First we describe the structure of the individuals or candidate representatives, so we

can discuss estimating their fitness and generating new generations later.

AND

OR

t1 t2

NOT

t3 t4

(t1 OR t2) AND (t3 NOT(t4))

Figure 5.3: Tree-shaped structure

5.5.2 Terminal and Function Nodes

The representation of individuals in genetic programming is discussed in Chapter 3.

A tree shaped structure has functions represented by non-leaf nodes and terminals rep-
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resented by leaf nodes, since we want to generate a representative that can be used to

select and de-select documents. A Boolean expression consisting of Boolean operators

and terms extracted from the collection’s vocabulary is used to shape the structure.

Figure 5.3 shows an example of such a tree.

AND

OR

t1 t2

OR

t4 NOT

t3

(t1 OR t2) AND (t4 OR NOT(t3))

Figure 5.4: An example of the structure of the class representatives. Functions
are AND, OR and NOT, terminals are t1, t2, t3 and t4.

Non-leaf nodes which are called functions include:

• AND joins its children and implies that all of them must be present in the docu-

ment to satisfy the condition of the representative.

• OR joins its children and means either of the branches can be present in the doc-

ument to satisfy the representative.

• NOT is a one child operand and enforces the absence of the child from the docu-

ment.

Terminals are terms provided as input to the learning algorithm. We will discuss about

the selection and types of the terms in the next section. To be able to verify the structure

of the tree and make sure we build valid trees, we use strongly-typed genetic program-

ming (see Section 3.3.3). Another benefit, is tuning the usage of each type to guide the

learning algorithm in finding better class representatives. Strongly-typed genetic pro-

gramming enforces the random generation and the genetic operators to produce valid

individuals according to the type declarations. Table 5.1 defines each function along

with the type of operand, the number of terminals and the type of children which are

accepted by the function.
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Operand type Number of children Type of children
AND Query 2 Query
OR Query 2 Query
NOT Query 1 Term

Table 5.1: Type of the functions and their accepted children

A Query type is a tree or subtree which is accepted as a representative. Term is the

type of the terms and is also a Query, therefore, even one single term is acceptable as

a representative. In general, AND and OR accept a subtree which is a Query or a term,

however, NOT only accepts terms as their child. This is to avoid the generation of very

complex trees that have a whole branch under a NOT operand. Since, these representa-

tives are used to filter and score text documents, combining NOTs with complex subtrees

is not going to improve the way we select the documents.

5.5.3 Positive and Negative Terms

The aim of a class representative is to return as many relevant documents and least

number of non-relevant documents. During training the classifier, to create the class

representative, choosing appropriate terms is very important. Apart from the structure

of the tree, the identity of each term in the leaf nodes determines the performance of

a particular representative and in total our classifier. Considering documents in their

traditional format, the system faces a very vast number of terms with different features

(or parameters). This huge space ends up in a very long and difficult search which

results very poorly. To overcome this problem the collection goes under a series of

processes known as pre-processing and filtering, which consist of stop-word removal,

stemming, etc (see Section 2.3). Pre-processing reduces the size of search space drasti-

cally, however it is a very sensitive and wise task to choose right terms, that specifically

distinguish the relevant documents.

On the other hand, while it is important to pick discriminant positive terms to increase

the representative performance and quality, it is equally crucial not to include those

terms which attract non-relevant documents. While positive terms are supposed to ex-
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pose relevant documents, negative terms are discriminant to return those documents

that are not relevant. As non-relevant documents are not desired to be returned as

results, these negative terms are used in the form of negative operands for negative

operators in the learning algorithm. Their presence as negative operands means doc-

uments that contain these terms, with high discrimination power, are not desired and

should not be considered as results.

We classify these terms, that are collected from the labelled documents provided as the

training data, into two categories: Terms such that their presence indicates the rele-

vancy of that document to the class and those where their absence does so. Therefore,

we define these two important concepts as:

Definition 2. A positive term is a term such that its occurrence in the class representative

guides the classifier to select documents that include the term. The positive list of a class is a

sorted list of positive terms that have been selected to be used in the learning algorithm.

Definition 3. A negative term is a term such that its occurrence in the class representative

guides the classifier to avoid selecting the documents that include the term. The negative list

of a class is a sorted list of negative terms that have been selected to be used in the learning

algorithm.

5.5.4 Selection of the Terms

As mentioned previously, we are using strongly-typed genetic programming (see Sec-

tion 5.5.2) to control the structure of the class representatives generated by the learn-

ing algorithm. Using typed genetic programming requires identifying the complete

relationships between parents and children, the number of children for each parent,

the type of children each parent can accept. We explained the type of the functions

and mentioned there are two types of nodes as terminals: positive terms and negative

terms. Each tree includes operators with leaf nodes chosen from positive or negative

lists according to the type of operator. For an example, consider Figure 5.5.

There are three operators AND, OR and NOT. Operator AND accepts two children, which

in this example has accepted another two operators as its operands. It can also accept
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AND

OR

PT PT

OR

PT NOT

NT

(PT OR PT) AND (PT OR NOT(NT))

Figure 5.5: An example of using positive terms PT and negative term NT.

positive terms as its operands. Operator OR operates exactly like operator AND, it ac-

cepts other function nodes as well as positive terms. Operator NOT is different. It only

accepts one negative term as its child. Operator NOT does not take other functions as

its children. We have not used operators such as NAND and NOR for two reasons. Firstly,

there is no logical expression which contains NAND or NOR that can not be rewritten using

only NOT. Secondly, even though NAND or NOR are useful in other contexts, for our pur-

pose readability is negatively affected while no noticeable improvements are gained

as the result. Therefore, we argue that a simpler operator such as NOT is capable of

expressing the requirements of the representatives, without hurting their readability.

Obviously a symbolic tree has got no use until these terminal nodes, PTs on one hand

and NT on the other hand, are replaced by actual terms from positive and negative

term lists. This symbolic tree structure is a kind of a pattern and not a unique class

representative, unless its instances replace the real positive and negative terms instead

of terminal nodes and turn it to a unique representative of a specific class.

Term selection for the terminal nodes is a very essential part of the training process. For

each terminal node, we generate a random number that indicates the index of the term

in the positive or negative list. Every individual in the population must be evaluated to

produce a logical string so its fitness can be calculated. Evaluating a tree is a recursive

top-down approach. The root node is asked to evaluate itself. It asks its children to

evaluate themselves and combines the result. This process recursively visits all the

nodes in the tree until it reaches the leaf nodes that do not have children. As described
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before, the leaf nodes are term nodes. To evaluate a term node a random number is

generated that corresponds to a term in the lists. Each random number indicates the

index of a term in the positive or negative lists. In other words, for each terminal node

that represents a positive or negative term, a random number is generated to replace

the terminal with an actual term from the positive or negative lists.

In previous work, [Hirsch, 2005], the index is generated by defining extra terminals and

functions, including addition, multiplication and constant numbers between 0 and 9.

Each terminal node is a subtree of an arithmetic operation that can be evaluated to re-

turn a number indicating the index of the term. This approach has a practical benefit,

which is essential. If a tree is evaluated and its terminal nodes are assigned numeric val-

ues and the tree or a part of it that contains a terminal is evaluated again (for example

in the next generation), the terminal must return the same numeric value as before. By

using the subtree of arithmetic operators, it is guaranteed that terminals return unique

values anytime they are evaluated. However, there are a few disadvantages in this ap-

proach. Firstly, it is more expensive to calculate a subtree than generating a random

number. Secondly, having more terminals and functions makes the trees more complex

without adding more complex representatives to the search space. The subtrees that

find the indices are not part of the representative itself. Therefore, we might have two

completely different trees with the same representative after evaluation.

To overcome these issues and keeping the terminals unique across generations, we

use a technique called Ephemeral Random Constants1. An ERC node is a node that is

initialised for the first time, for example by some random number, and always returns

the initial value from then on. The ERC node returns the initial value even if it is crossed

over into other individuals. With this approach, we not only keep the initial values of

the terminal nodes, we avoid the use of arithmetic subtrees and their complexity.

When a tree-shaped structure becomes a unique and specified representative then its

quality or fitness can be calculated regarding the required class. There might be many

different trees such as Figure 5.5 in the genetic programming search space, but as long

as the terminal nodes are replaced with different terms from the positive and negative

1Its use in genetic programming first described in [Koza, 1992].
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list, they will make legitimate candidate solutions.

Algorithm 2 requires a collection of positive terms for each given class as input. During

the tree-shape individual generation, one term is selected randomly for each positive

terminal node PT from positive term list. Equally, there is a collection of negative terms

for the given class, those terms that are not desired to appear as positive features of the

class representative, as they tend to return non-relevant documents. When positive

terminal nodes and negative terminal nodes are replaced by real terms from the pro-

vided lists, each instance of the structure becomes a unique and identifiable candidate

representative for the given class.

To build the lists, the only source of evidence that we have is the training data. In the

training data, there are relevant documents for each class and the rest of the documents

in the training set are considered to be non-relevant to that class. Since all the training

documents have been processed and indexed, we can easily collect all the terms in the

relevant documents and sort them according to a specific measure. Although sorting

the terms is not a must do, it has two advantages. Firstly, in large collections with a

large vocabulary, we might need to discard some of the terms to be excluded, from

being used in the learning algorithm. Having a measure helps us to decide which

terms are more likely to be useful in discriminating between documents. Secondly,

while we choose terms to replace the PT nodes in the trees, we might want to select

more discriminant terms more than others to shape the tree.

Term frequency has been used in many information retrieval problems as a measure of

estimating the discriminant power of terms [Salton and Buckley, 1988; van Rijsbergen,

1979; Nigam et al., 1999]. All the terms in the relevant documents are collected and

sorted according to their accumulated term frequency within the relevant documents,

which are called TFR. Depending on the collection size, a threshold will be defined and

all the terms with TFR higher than the defined threshold are added to the positive terms

list of the given class. Another way to discard the terms will be by defining a threshold

based on the size of the list. In other words, we select the top k terms collected from

the relevant documents and discard the rest of them.

Applying the same approach for the negative list is not practical, because the number
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of terms in the non-relevant documents are very high, recalling that all the other docu-

ments in the collection2 are non-relevant to the class that we are training. Additionally,

high value of term frequency within non-relevant documents is not necessarily a good

measure to consider a term as a negative feature.

Considering the definition of positive term for a class, we can deduce that a positive

term for class c can be a negative term for class c′, if it is not already in its positive

list. If a term does not retrieve relevant documents for class c′, it retrieves documents

belonging to another class, we need to add it to the negative list of class c′, in order to

reject the non-relevant documents which belong to class c.

5.5.5 Choosing a Classifier

Each classification approach needs a classifier at some point in order to separate the

relevant and non-relevant documents. There are different types of classifiers based on

their complexity. Here, we briefly introduce two types of classifiers: linear and nonlinear

classifiers which are commonly used in different approaches of classification. Later in

this section, examples of both types are provided to clarify the application of classifiers

in classification.

In order to look at classifiers in a more tangible way, only binary classifiers are con-

sidered. The functional form w1x1 + w2x2 = b represents a linear classifier where the

document set should be divided into two classes c and c. In this formula, (x1, x2) is the

vector representative of document d, wi is the parameter vector which in conjunction

with b represent the decision boundaries. The document d belongs to c if w1x1 +w2x2 > b

and to c if w1x1 + w2x2 ≤ b. So in fact a linear classifier is a line between documents

that belong to two specified classes. The linear classifiers seem easy to implement at

the first glance, as they do not have a very complicated formula and lots of parameters,

however there are some major problems with linear classifiers.

Figure 5.6 shows an example of a linear classifier that divides two sets of documents.

The line indicates a decision boundary to determine the class of each document. The

2We may refer to the training set as the collection while we discuss the training phase.
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first difficulty is related to the training methods for the linear classifiers. How to deter-

mine the parameters wi and b based on the training set (seen data), where the quality of

learning method, which is what we are looking for, is evaluated by its result on unseen

data [Duda et al., 2000].

Figure 5.6: An example of a linear classifier. The line indicates the boundary
between the classes. The future documents will be classified based
on their position with respect to the line.

The second difficulty concerns noise documents. A noise document is a document that

does not match the general distribution of classes and has misleading effects on the

classification process. All features from noise documents are known as noise features

[Manning et al., 2008]. So when a noise document exists in the training set it increases

the classification error and when a noise feature appears in the document representa-

tion it increases the average of classification error.

The linear classifiers is a line to separate documents, therefore there is an infinite num-

ber of lines that can represent the classifier and it is a big challenge to choose a suitable

training method for linear classifiers. Naive Bayes [Zhang, 2004] and Rocchio [Carter,

2007] are two very well-known linear classifiers.

Nonlinear classifiers are used where the distribution of documents is more complex

and does not fit in the linear classifiers’ boundaries. They are more complicated and re-

quire more parameters. One of the popular nonlinear classifiers is kNN, which is highly

accurate for those problems that can not be classified with linear classifiers. However,
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Figure 5.7: An example of a nonlinear classifier. The distribution of the doc-
uments are too complex for a line to properly discriminate them,
therefore a more complex model is needed to classify these docu-
ments.

nonlinear classifiers require a large training set, which can be considered as one of the

challenges for this approach. Figure 5.7 shows an example of a nonlinear classifier.

To clarify the distinction between the classifiers and also explain some of the techniques

which are directly related to our proposed approach, here we shall describe two differ-

ent classifiers, namely Naive Bayes and kNN.

Naive Bayes

Naive Bayes is a probabilistic model based on the Bayes’s theorem. It is called "naive",

because of the strong assumption of independence of features. Assume document d is

represented by a feature vector (x1, x2, . . . , xn) and we want to find the most probable

c ∈ C given these features:
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P(c|d) = P(c|x1, x2, . . . , xn) (5.5.1)

=
P(c)P(x1, x2, . . . , xn|c)

P(x1, x2, . . . , xn)
(5.5.2)

=
1
Z

P(c)
n

∏
i=1

P(xi|c) (5.5.3)

in which, Z = P(x1, x2, . . . , xn) is a constant for all c ∈ C and does not change the

assignment of the classes. Therefore, the decision rule is:

arg max
c

P(c)
n

∏
i=1

P(xi|c) (5.5.4)

For example, in case of two classes c and c, d is classified under the class c if and only

if:

classi f yb(d) =
P(c|d)
P(c|d) > 1 (5.5.5)

where classi f yb is called Bayesian classifier. In spite of its simplicity and the indepen-

dence assumption, Naive Bayes is one of the most effective classification algorithms in

many real world applications [Zhang, 2004].

k-NN k-Nearest Neighbour

In a kNN classifier for a given document d the k closest neighbours are considered

and the document will be assigned to the class which contains the majority of those

neighbour, while k is a parameter. The rational is related to "contiguity hypothesis",

where a test document d is expected to belong to the same class that majority of training

documents surrounding it belong to.

In 1NN the closest neighbour is considered and the new document is labelled by that

document label. However, 1NN is not a valid decision as the classification decision is

dependent on one single training document, which can be mislabelled or be an unusual
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example. kNN where k > 1 is more robust, it relies on more training documents, so

more samples reduce the probability of mislabelled document or unusual samples.

There are two main versions of kNN classification algorithm:

The first one is probabilistic version where the probability of one document d to be

labelled by a class c based on the proportion of its k closest neighbours is estimated.

The cosine similarity version is the second approach, where a document’s score of be-

longing to one class c is calculated as:

score(c, d) = ∑
d′∈Sk(d)

Ic(d′)cos(−→v (d′),−→v (d))

Sk(d) is the set of documents that are the d′ k nearest neighbours, and Ic(d′) will be 1

if document d′ belongs to class c and 0 if not. The document with the highest score is

assigned to the class. This approach is more accurate, there may be more than one class

with an equal number of the majority of the nearest neighbours in the top k. In this case

the class with more similar neighbours will be the selected one.

Training a kNN classifier is a two-step process, the first step is determining k and the

second step is preprocessing documents (see Section 2.3.1). As discussed before, it

makes more sense to do all the preprocessing once at the beginning for all the training

documents instead of repeating it each time a new test document needs to be classified.

Regardless of the number of classes, the kNN classifier computes the distance between

the new document and all the training documents. In the next step, the classifier deals

with the k nearest documents to the new document, instead of including all classes and

their documents, for deciding about the class of the new document.

Test time for kNN is calculated by Θ(|D|Mave Ma). In a simple description kNN memo-

rises all the training documents and compares them with each new test document, that

is why it is also known as memory-based learning or instance-based learning. In machine

learning, it is desirable to have as big a training set as possible, however large training

sets cause the kNN classifier to have a severe efficiency penalty.

There are two approaches that may improve the kNN testing efficiency. There are fast
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kNN algorithms that deal with small dimensionality M. For large M, there are approx-

imations that give error bounds to gain specific efficiency. There has been little testing

done to prove that approximation efficiency is better that Θ(|D|) without a great accu-

racy lost.

It has been claimed [Manning et al., 2008], that the two problems of finding the nearest

neighbours for one test document and ad hoc retrieval are both kNN problems with dif-

ferent densities. Inverted index is very efficient for ad hoc retrieval, so it can be applied

to kNN as a powerful tool as well. In kNN, inverted index can be efficient if the test

document does not share too many terms with many of the training documents.

kNN is one of the most accurate classifiers among learning methods in text classifica-

tion [Joachims, 2002]. Bayes error rate is a test that measures the quality of a learning

method. For a specific problem, it measures the average error rate of the classifier. kNN

does not perform well for problems with a non-zero Bayes error rate. Considering the

error rate for 1NN tends to double the Bayes error rate, so if the optimal classifier’s er-

ror rate is shown by x then the error rate for 1NN is going to be 2x. For those classifiers

with a zero error rate, the error rate for most of the number of k tends to be zero despite

the increase of the training set’s size.

5.6 Training and Testing the Classifier

The aim of text classification is to classify all documents d in a document set or doc-

ument space D, under classes C = {c1, c2, . . . , cn}, which may be called labels or cate-

gories. The document set is a high-dimensional space, while the classes are defined by

users for their specific application.

To build a classifier, there is a training set D, which is a set of manually labelled doc-

uments (d, c) by human specialists, where (d, c) ∈ D × C. Each training set includes

some typical samples for each class.

Recalling Section 3.2 in Chapter 3, the process of mapping documents to classes is done

by a learning method. The main family of models that is used to deal with classification

problems is called supervised models. Each supervised learning method takes a training
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set as the input and returns a learned classification function or simply a classifier. A

supervised learning model needs a set of training data to infer a model that is applied

to the test data. Another family of models is unsupervised models that do not rely on the

training data to infer the model and the learning and the application of the model rely

on the test data.

Once the learned classification function is ready, it should be applied to a new and

unseen set of data, known as test set, to map them to the classes and finally examine the

overall performance. The goal in text classification is high accuracy on new and unseen

documents that are in the test set.

Sometimes before evaluating the learning process on the test set, another set called

validation set is used. It divides the original training set into two separated sets: the

new training set Dtr, which is a smaller subset of the original training set D, and the

validation set Dval , which is the remaining documents of the original training set, this

means {Dtr ∪ Dval} = D. The learning method uses the new training set to produce

the learned classification function and validation set to evaluate the accuracy of the

classifier. Although the validation set is a subset of the original training set that is

labelled by the user, therefore it is known to the learning process supervisor, it is not

used in the training process so can be considered as unseen data to the learning method

to evaluate the learning accuracy.

5.6.1 Calculating the Fitness

An important component of the learning algorithm is calculating the fitness of each in-

dividual in order to not only find the best individual, but also to have a measurement

in order to select parents for breeding. A good class representative is the one that re-

trieves all the relevant documents and no non-relevant document in the test set. Since,

in real world problems, we do not know the actual relevant and non-relevant docu-

ments in our test set, we evaluate the fitness of our individuals on the training set with

the assumption that a good class representative on the training set is very likely to be
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a good class representative on the test set3. Algorithm 3, shows the fitness calculation

procedure.

Algorithm 3 Calculating the fitness for an individual

Require: class c and the training data set D
Require: individual p

1: Rc ← documents belonging to c in D
2: Q← {} {predicted relevant documents will be added to Q}
3: for all di ∈ D do
4: if di satisfies the logical expression p then
5: Q← Q ∪ di
6: end if
7: end for
8: f itness ← computeMeasure(Rc,Q) {computes the evaluation measure, based on the

retrieved documents and relevant documents for the given class}
9: return f itness

For each individual, all the documents that satisfy the logical requirements of the in-

dividual are collected and labelled as relevant. Then, they are compared to the actual

relevant documents of the given class and a score is computed as the fitness of the in-

dividual. To compute the score, we need to examine different measures of evaluating

classifiers in general.

5.6.2 Evaluating a Classifier

In Chapter 2 Section 2.7, we discussed different approaches of evaluating an informa-

tion retrieval system. In general, the same concepts are applied to measure the quality

of a classification system. Similar to document retrieval, we can define precision and

recall for each of the results of each class. Considering the values of TPi, FPi, FNi and

TNi according to the Table 2.1, precision and recall for category ci ∈ C are defined as:

Pi =
TPi

TPi + FPi
(5.6.1)

Ri =
TPi

TPi + FNi
(5.6.2)

3Of course, this assumption requires that the training set and test set are from one domain and are not
very different in nature.
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where Pi is the precision for ci and Ri is the recall for ci. Since, these measures are

estimated with respect to one class, we can employ two different methods to estimate

the overall precision and recall of the results:

• microaveraging is estimated by summing over all the individual judgements:

P =
∑|C|i=1 TPi

∑|C|i=1 TPi + FPi

(5.6.3)

R =
∑|C|i=1 TPi

∑|C|i=1 TPi + FNi

(5.6.4)

where |C| indicates the number of classes.

• macroaveraging, on the other hand, is estimated by averaging over the precision

and recall of each category:

P =
∑|C|i=1 Pi

|C| (5.6.5)

R =
∑|C|i=1 Ri

|C| (5.6.6)

where Pi and Ri indicate the precision and recall of ith class (ci) respectively. It

must be mentioned that the methods explained above can give different results.

Therefore, it should be clear which one is used during the experiments.

Similar to the discussion in Chapter 2 Section 2.7, there are other methods to evaluate

the result of a classification system. Sometimes a single measure is required to trade

off the precision vs. recall. The weighted harmonic mean of precision and recall, F-

measure, is used for this objective. F-measure is a very common measure which we

will mainly use in this thesis and is calculated as:

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P + R
(5.6.7)

where β2 = 1−α
α while α ∈ [0, 1] and β2 ∈ [0, ∞]. The balanced F-measure that weights

precision and recall equally, also known as F1 means α = 1
2 and β = 1. In this case the

formula is simplified to :
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Fβ=1 =
2PR

P + R
(5.6.8)

Though the balanced F-measure is not the only option, it is a trade off between pre-

cision and recall. Different values for β shows the focus on either precision or recall,

based on the application purpose. We have that β < 1 emphasises precision and β > 1

emphasises recall. The values for precision, recall and F-measure are between 0 and

1. However they are commonly measured in percentage too. From Equation 5.6.7 it

is clear that harmonic mean is the reciprocal of the arithmetic mean of the reciprocals

(α = 1/2). In the case of evaluating a classifier, harmonic mean makes more sense than

arithmetic mean, because harmonic mean tends to be closer to the smaller value of the

two compared to arithmetic mean. In other words, while harmonic mean mitigates the

large value of one of precision or recall, it aggravates a small value of one of them.

Harmonic mean punishes a failure in precision or recall more than rewarding a success

of either one of them.

5.6.3 Performing Classification on Test Documents

The learning algorithm provides a string as a representative for each class. To classify

the documents in the test set, we perform a procedure similar to the fitness calculation

for each class c. Algorithm 4, sketches this procedure.

Algorithm 4 Classifying the test documents

Require: test data set, S
Require: class to representative map, reps

1: for all ci ∈ C do
2: repi ← reps(ci)
3: for all dj ∈ S do
4: if dj satisfies the logical expression repi then
5: label dj as ci
6: end if
7: end for
8: end for

In the next section, we perform the described learning algorithm and the classification

provided above on a standard document collection and report and discuss the results.
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5.7 Experiments

5.7.1 Data Collection

Standard and widely used text-based data collections have been a considerable aid

in developing and testing information retrieval algorithms [Jones and van Rijsbergen,

1976]. They are very useful in developing, debugging and testing algorithms and also

allowing comparison of different algorithms. In this chapter and the next, we will

be using a very common text classification collection called “Reuters-21578” [Lewis,

1992c,a,b]. All the documents in this collection appeared on Reuters news-wire in 1987.

All the documents were classified and labelled by personnel from Reuters Ltd [Lewis,

1992c]. There are 1154 economic categories such as “coconut”, “palm-oil” and “money-

supply”. We use the “ModeApté” split of training and testing documents [Apté et al.,

1994a,b], which is commonly used for text classification evaluation [Sebastiani, 2002].

Table 5.2 shows some of the statistics of “Reuters-21578” collection.

Statistics Value
Number of documents 12,902
Number of training document 9,603
Number of test documents 3,299
Size of the vocabulary before preprocessing 69,104
Size of the vocabulary after preprocessing 48,446
Number of tokens in the collection 1,227,955
Number of categories 90
Average number of training documents per category 106.7
Maximum document length 731
Average document length 68.609

Table 5.2: Statistics of “Reuters-21578” collection.

5.8 Development

The classification system is implemented in Java programming language. We have

used the following open-source libraries in developing the system:
4There are 135 categories in the dataset, but 20 of them do not have any positive training document

attached to them, so they are not used by researchers.
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• ECJ which is an open-source evolutionary computation library with support of

almost all evolutionary algorithms written entirely in Java. ECJ supports many

different representations, selection and reproduction operators. It has a complete

package for writing genetic programming based applications.

• Apache Lucene is a high performance text search engine. We have customised

Lucene to perform all the information retrieval tasks needed for our system.

• Apache Commons is a set of re-usable Java components that are created for small

purposes. Using well-designed, well-tested components like Apache Commons,

improves the quality of the software and the speed of development.

5.9 Results

In this section, we provide the results of the classification system described in this

chapter on the “Reuters-21578” collection. Both micro-average and macro-average for

f -measure, precision and recall, are reported. In addition, the results for the top 10

categories of the collection (R10) are reported in detail. Figure 5.8 shows an example of

a query learned for category corn. Figure 5.9 shows a part of a sample document from

the training data of that category that shows how the learned representative matches

that document.

Measure Value
µF-measure 0.2718
MF-measure 0.4599
µ-Average precision 0.3148
µ-Average recall 0.2391
M-Average precision 0.6068
M-Average recall 0.4356
Average number of terms 11.4444
Average number of functions 11.7111

Table 5.3: Results of the classification system for all the categories of the col-
lection on the training set.

Table 5.5 and Table 5.6 show the results of the classification system for the top 10 cat-
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Measure Value
µ− F-measure 0.2064
M− F-measure 0.1348
µ-Average precision 0.2398
µ-Average recall 0.1811
M-Average precision 0.2025
M-Average recall 0.1324
Average number of terms 11.4444
Average number of functions 11.7111

Table 5.4: Results of the classification system for all the categories of the col-
lection on the test set.

Category F-measure No. Terms No. Functions
1 acq 0.4686 18 19
2 corn 0.1671 8 8
3 crude 0.1696 14 14
4 earn 0.2811 14 15
5 grain 0.4127 1 0
6 interest 0.1509 10 9
7 money-fx 0.1711 10 10
8 ship 0.1522 14 15
9 trade 0.2601 8 11
10 wheat 0.2232 16 15

µ-Avg precision 0.4141 M-Avg precision 0.3417
µ-Avg recall 0.2252 M-Avg recall 0.2059

µ− F-measure 0.2918 M− F-measure 0.2457

Table 5.5: Results of the classification system for the top 10 categories of the
collection on the training set.

egories of the collection. Apart from the quality measures, which are F-measure and

precision and recall, the number of terminals (leaf nodes) and the number of functions

(non-leaf nodes) used in generating each representative are also reported. These num-

bers can show the simplicity of the representatives generated. Results are reported on

both train and test set. Although the aim is to improve the results on the test data,

reporting quality of the train data can help us to identify overfitting.

Table 5.3 and Table 5.4 show the overall performance of the system on the collection.

Results of both train and test have been shown.
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OR

OR

OR

ecu AND

seed ec

OR

ec winter

OR

winter asc

((PT AND PT) OR PT) OR (PT OR PT) OR (PT OR PT)

Figure 5.8: The representative learned for category corn.

Compared to other classification algorithms, the results reported in this section are very

low. The main reason is that we have used the simplest methods in different parts of

the learning algorithm. Our term selection method is working completely randomly

and different terms have a similar chance of selection. On the other hand, we do not

take benefit from phrases or negative terms in the current experiment.

In the next chapter, we aim to explore different components of the GP-based classifica-

tion system and improve the quality of classification. In addition, we run some exper-

iments to evaluate the readability of the representatives generated by the GP engine.

...It said crop conditions were better than earlier expected following
the extreme dry conditions last fall and the prolonged winter
temperatures this spring. However, in general plant development was
at least three weeks or more behind normal this spring, and conditions
varied greatly by regions, the report said. Fields seeded during the
optimum period last fall, and especially those receiving supplemental
irrigation water (about 65 pct of the fields observed), appeared to
be in good condition, with little evidence of winterkill, while others
varied considerably, the report said. ...

Figure 5.9: A part of a sample document retrieved by the representative
learned for corn, which is shown in Figure 5.8.
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Category F-measure No. Terms No. Functions
1 acq 0.512 18 19
2 corn 0.1653 8 8
3 crude 0.145 14 14
4 earn 0.158 14 15
5 grain 0.4071 1 0
6 interest 0.1117 10 9
7 money-fx 0.1486 10 10
8 ship 0.0816 14 15
9 trade 0.3034 8 11
10 wheat 0.2597 16 15

µ-Avg precision 0.3775 M-Avg precision 0.3139
µ-Avg recall 0.1995 M-Avg recall 0.1894

µ− F-measure 0.261 M− F-measure 0.2292

Table 5.6: Results of the classification system for the top 10 categories of the
collection on the test set.

During the experiments in the next chapter, we use the results in Tables 5.5, Tables 5.6,

Tables 5.3 and Tables 5.4 as our baseline and will improve step by step the quality of

the system.

5.10 Summary

In this chapter we explained the main steps and concepts of our approach for classifi-

cation based on class representatives learned by genetic programming.

Similar to other classification approaches, we started with indexing the documents.

The indexing process, which is mainly transforming raw data into a list of terms and

their attributes, is explained in detail.

The unique feature selection method based on GP is described and we showed how

the generation of class representatives through terminal and function nodes is coupled

with feature selection in our method. The role of positive and negative terms in achiev-

ing high quality class representatives is also discussed.

The training process is the evolution of class representatives to generate a high qual-

ity representative that is able to retrieve all the relevant documents and discriminate
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against non-relevant ones. The aim in this process is to optimise the classifier by se-

lecting similar documents which have been identified as relevant in order to add or

replace terms with more discrimination power with those already in the classifier. The

fitness function we have used for the learning process in this chapter is F-measure.

The testing set provides the possibility to evaluate the classifier on unseen documents.

While the accuracy of the classifier is measured by fitness function. Micro-average and

micro-average F-measure, precision and recall are used to evaluate the classifier.
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Improvements and Experiments

6.1 Introduction

In the previous chapter, we described a classification system based on genetic pro-

gramming. In the training phase, we generate representatives for each category and

use those representatives to classify the future documents in the testing phase, the

main method of generating the representatives has been explained. In addition, our

approach to classify documents with the use of class representatives has been provided

(see Section 5.6.3). In this chapter, we improve almost all the aspects of the system de-

scribed in the previous chapter, which will be called the baseline, and report the results.

There are two aspects of the baseline that we want to improve. Firstly, the quality of the

classification on the test set, which is the aim of any classification systems. Secondly,

the readability or parsimony of the representatives. Therefore we need to improve the

quality of the classification without making the representatives very complex. On the

other hand, simple representatives that do not perform well enough, are not desired.

To improve the system in both directions, we examine different methods and improve-

ments to all the components of the classification system. The modifications discussed

in this chapter are categorised as follows:

• Learning the representatives

– Parameters of the genetic programming engine

– Definitions of the functions and the terminals in the GP tree
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• Feature and term selection

• Fitness measure

– Different evaluation measures that capture the quality better than the base-

line

– Similarity methods used in computing the similarity between the docu-

ments and the representatives

– Addressing overfitting by adding a validation set in fitness computation

– Incorporating a parsimony measure in the fitness

Each category listed above is explained and their results are reported. We discuss the

results and at the end of the chapter provide a summary of the methods that empirically

performed the best.

6.2 Learning the Representatives

An evolutionary computation-based algorithm has a set of parameters that substan-

tially affect the quality and the speed of the algorithm. We consider a set of parameters

that can change the genetic programming engine’s outcome in a way which is bene-

ficial to our classification task. Modifications and optimisations of these parameters

have two aspects. Firstly, improving the quality of the results and secondly optimising

the speed of the system. There has always been a trade off between these two aspects,

therefore in this chapter we focus on how to improve the quality while keeping the

system response time short.

To begin with, we examine the effects of the genetic programming engine parameters

on the quality and afterwards investigate different tree structures and more complex

functions.
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6.2.1 Genetic Programming Parameters

Table 6.1 shows the set of parameters with their values used in the baseline1. For some

of the parameters such as the generation method, there is only a small set of options

and for some of them such as number of generations, there is a broad range of numeric

values that can be tested. We report the effect of each parameter on the quality of the

classification system separately.

Parameter Value
1 Number of generations 20
2 Population size 100
3 Generation method Ramped half and half builder
4 Selection method Tournament selection with size 7
5 Mutation probability 0.1
6 Reproduction probability 0.1
7 Crossover probability 0.7
8 ERC mutation probability 0.1
9 Number of elites 0
10 Max tree depth 6
11 Number of Subpopulations 1

Table 6.1: Parameters of GP used in the baseline.

Number of Generations and Population Size

The number of cycles that the GP engine assesses the fitness of the individuals and

breeds new off-springs and assembles a new population is the definition for number

of generations parameter. More generation increases the time of learning the represen-

tatives and may or may not improve the quality of the best individual. On the other

hand, a low number for this parameter can prevent the GP engine to produce less than

enough individuals and fail to learn a good representative.

Figure 6.1, Figure 6.2 show the effect of changing the number of generations for sample

categories. A decent number of generations improves the fitness intensely at the start,

however after a certain number of generations this increase gradually fades away and

does not have any positive effects of classifier ability. The population size follows the

1For the definition of most of the parameters see Chapter 3.
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same routine, though the quality of classifier and the final performance are directly

affected. However, there is a peak point which after that it not only may be ineffective

but also degrading the quality.

As our experiments show a good point can be selected to have a reasonable response

time without degrading the performance of the system, however, there is a trade off be-

tween the quality and speed. The amount of physical memory, which directly depends

on the population size is also another limiting factor. Figure 6.1, Figure 6.2 show the

diagrams of population size changing from small numbers to very large populations.
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Figure 6.1: Change in the performance of the baseline on the train data based
on the increase in the number of generations.

6.2.2 Tree Structure and Different Functions

Regarding GP, each representative is generated in the form of a tree shape structure,

therefore the tree structure and its depth are very important. It is very important to

note that the representative human readability has a direct relationship with the tree

structure and more closely is affected by its depth, something that has not been consid-

ered in the baseline.
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Figure 6.2: Change in the performance of the baseline on the test data based
on the increase in the number of generations.

One issue in the baseline that should be tackled is having different individuals in the

population with the same quality and with the same discrimination power. This makes

the search algorithm incapable of exploring the search space as much as it should. The

algorithm is busy investigating individuals which are similar to each other. During a

search process in order to find the best representative for a class based on the training

data, due to time and computing resources restrictions, only a limited set of individuals

can be investigated. A search process is more effective when it investigates a variety of

individuals with different terms and structures rather than similar individuals.

To address this problem, we have defined functions that are more complex than the

ones in the baseline, however in the end, they lead to generate simpler trees. Table 6.2

shows a list of the new functions that are used to build the individuals.

The main difference between functions such as AND and AND5 is the number of children

that they accept. While both functions have the same effect, forcing the representative

to select documents that include all the child terms, having more children and less

depth makes the latter more readable on one hand and examines more positive terms
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Function Operand type Number of children Type of children
AND2 Query 2 Query
AND3 Query 3 Query
AND4 Query 4 Query
AND5 Query 5 Query
OR2 Query 2 Query
OR3 Query 3 Query
OR4 Query 4 Query
OR5 Query 5 Query
NOT Query 1 Term

Table 6.2: List of the new functions and their accepted children

to be included in the tree on the other hand. In general, using the new functions has

two advantages:

• Simpler trees with less depth. Readability is not the only benefit of this simplicity.

Trees with less functions are less likely to be similar in quality and different in

structure. In other words, we reduce the complexity of the tree structure to make

it less prone to redundant individual generation.

• Each node needs to select more terms to fill the children. Therefore the genetic

programming engine needs to query the terms in the positive and negative list

more than the baseline, which consequently makes the engine to try more features

and explore a larger part of the search space.

Figure 6.3 and Figure 6.5 show the difference between the baseline OR and the new OR.

OR

t1 t2

(t1 OR t2)

Figure 6.3: Function OR of the baseline with only two children.
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OR

OR

t1 t2

OR

t3 OR

t4 t5

(((t1 OR t2)) OR (t3 OR (t4 OR t5)))

Figure 6.4: Function OR of the baseline with only two children. To construct a
tree with five positive terms, at least three levels of OR are needed
(four function nodes).

OR

t1 t2 t3 t4 t5

(t1 OR t2 OR t3 OR t4 OR t5 )

Figure 6.5: New function OR5 with five children. A node with five children is
more readable than a binary tree with at least three levels of depth,
such as the one in Figure 6.4 .

6.2.3 Phrases

The use of phrases in text retrieval has been common in the information retrieval com-

munity [Smeaton and Kelledy, 1998; Pickens and Croft, 2000]. A phrase can contain

more information than its constituents’ terms [Smeaton and Kelledy, 1998]. There are

two types of approaches to use phrase in text retrieval:

• Statistical phrases which are any pair of words that occur contiguously frequently

enough in the documents is a phrase [Mitra et al., 1997; Caropreso et al., 2001].

• Syntactic phrases which are any group of words that constitute a syntactic struc-

ture, usually nouns for information retrieval [Kraaij and Pohlmann, 1998; Mitra

et al., 1997].

In our work, we use statistical phrases, which means any pair of words can be consid-

ered as a phrase and there is no syntactic constraint on the phrases. We assign each
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phrase a weight which indicates the discrimination power and hence the importance

of the phrase. Number of possible phrases in a collection is huge and considering all

of them is neither practical, nor beneficial. Therefore, each phrase is assigned a weight

and only phrases with a certain discrimination power are involved in the search pro-

cess.

Methods to assign the weights to phrases are explained in a later section ( 6.3.1). In the

GP engine phrases are treated like the positive terms. So, the type of a phrase is a Term

and a phrase alone can constituent a class representative.

6.2.4 Experimental Results

In this section, we investigate the effect of the GP parameters (Section 6.2.1), new func-

tions (Section 6.2.2) and phrases (Section 6.2.3) in quality of the GP classifier. The results

reported in Section 5.9, Table 5.5 were produced using the baseline GP classifier with

default parameters (see Table 6.1). Table 6.3 shows the contribution of each parameter

change in the quality of the classifier for class corn.

Run F1 Improvements Percentage
1 baseline 0.1671 0 0
2 no. of generations = 50 0.2322 0.0651 38.95
3 population = 500 0.2804 0.0482 20.75
4 population = 1000 0.5821 0.3071 109.5
5 phrases 0.7847 0.2026 34.80
6 new functions 0.8731 0.0884 11.26

Table 6.3: Step by step changes to the structure of the representatives over the
baseline and contribution of each change to the quality of the classi-
fier for an example class corn. For a description of the data collec-
tion, please refer to Section 5.7.1.

Table 6.3 shows the improved results of F1 for the baseline after some changes. These

results are produced on the same collection that was described in Section 5.7.1. The

claim is by the increase of the number of generations the fitness measure should in-

crease, when the number of generations increases to 50, then F1 improves by 0.0651.

While the number of generations is set to 50 the population size is increased. Growth
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of population size will improve the quality of classifier. However the main improve-

ment happens at population size 1000 which is 0.3071. Though a decent population

size is one of the key factors to the classifier accuracy and the quality of performance

but after a certain point this effect gradually stops and increasing the population size

does not improve the results any more.

At this stage considering phrases and employing new functions improve the results by

0.2026 and 0.0884 . The achieved results show that our claims regarding the number

of generations, population size, use of phrases and new functions improve the quality

and accuracy of a classifier on a given topic.

6.3 Feature and Term Selection

As discussed before, each document is represented by a set of features that are selected

with the aim to represent a document in the process as fully as possible, while discard-

ing non-informative features of the document.

The most important features in information retrieval and text classification are terms.

Therefore, an important part of the feature selection process is to select a set of terms

that are informative in discriminating between documents.

In the previous chapter, we described the GP algorithm that selects terms and combines

them to generate a tree-shape structure. In this section, we explore ways to provide the

GP algorithm with a better list of features to select from and a higher chance of selecting

more discriminant terms.

6.3.1 Feature Weights and Term Weights

To generate an accurate representative with a high fitness measure, it is crucial to

choose terms that reflect the best presentation of the required class. Referring to Chap-

ter 2, terms with high discrimination power are desired to be used in representative

generation. Terms that can discriminate between documents can be defined in two

ways. First, high power to identify the relevant documents and retrieve them, which
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are defined as positive terms. Second, high power to identify non-relevant documents

and avoid retrieving them, which are known as negative terms.

We explained the role of positive and negative terms in our classification method in

the previous chapter. Here, we improve the selection method of the terms and show

that this selection is very important to improve the quality of the classification system,

because after all, this system is based on features and the better the features are, the

better the system works.

6.3.2 Positive Terms

It was explained that terms may have different values and effects. To identify the

most relevant documents it is important what terms are used during the query gen-

eration process. Terms with high discrimination power identify more relevant docu-

ments (more in both sense of numbers and relevancy). The best way to identify and

choose these terms is after pre-processing (see Section 2.3). During the pre-processing,

a set of processes changes the original structure of document into an internal repre-

sentative in the form of a set of indexed features. These indexed features are terms

that have been extracted from documents along with their specific parameters. Pre-

processing is one of the main processes in information retrieval and there are different

methods, all known as feature selection methods. These methods work by eliminat-

ing non-informative terms which reduces the noise features and keeping informative

terms improves the classifier’s accuracy.

Unlike document retrieval, that the rest of the terms in the collection can efficiently be

considered to rank the documents, in text classification the use of all terms is neither

efficient nor effective for most classification algorithms. To overcome the issue of large

parameter space (a large set of distinct terms in the collection), a selection method is

used to remove a set of the terms from the parameter space. This process is called

filtering by term selection and leads to a reduced set of terms to be employed in the

learning process and eventually in generating the class representatives.
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There are many term selection methods2 that have been investigated for different clas-

sification algorithms. These methods work by eliminating non-informative terms to

reduce the noise features and keeping informative terms to improve the accuracy of

the classifier by avoiding over-fitting.

Feature selection methods are ways to find terms with high discrimination power. So,

they can be used in the positive list of the terms and be selected to be included in

the class representative. To improve the outcome and optimise the quality of selected

features, we investigate some of the feature selection methods used in the literature:

Term Frequency

In this method terms with high frequency, which are the most common terms in the

class, are selected. When the number of selected features is high, this performs well and

can be considered as a good alternative to other methods, however in ordinary feature

selection with far fewer selected features it does a lot worse than other methods.

The frequency-based feature selection can be done in different ways:

• Document frequency: the number of training documents in the class that term t has

occurred in them. We show this value as: #d(t, c)

• Collection frequency: the number of times term t has occurred in documents of

class c. We show the value as: #t(t, c)

Mutual Information

Mutual information measures how much information the presence or the absence of a

term in one document can provide, when the classifier decides about that document to

be labelled by a specific class and it is measured as [Sebastiani, 2002; Manning et al.,

2008]:

MI(t, c) = log2
P(t, c)

P(t)P(c)
(6.3.1)

2Also called term space reduction methods or feature selection methods
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where, P(t, c) is the probability of t being in a document that belongs to c. Mutual

information can be estimated as [Yang and Pedersen, 1997]:

MI(t, c) ≈ log2
#d(t, c)× |D|

#d(t, c̄)× #d(t̄, c)
(6.3.2)

where, |D| is the total number of documents, #d(t, c̄) is the number of times t occurs

without c and #d(t̄, c) is the number of times c occurs without t. The highest value for

this measure is MI(t, c) = 1 and shows the presence of the term can guarantee that

document belongs to the given class.

χ2− Chi-Square

χ2 is a statistical test that measures the independence of two events, which are term

occurrence and the class in feature selection for classification. Terms are ranked by the

estimation of the following equation of their independence from each class [Yang and

Pedersen, 1997]:

χ2(t, c) ≈ |D| × (#d(t, c) · #d(t̄, c̄)− #d(t̄, c) · #d(t, c̄))2

#d(t) · #d(t̄) · #d(c) · #d(c̄)
(6.3.3)

where, #d(t̄, c̄) is the number of documents that t does not occur and does not belong to

c, and #d(t) is the number of times that t occurs and the rest are similar to the notation

in Equation 6.3.2.

Information Gain

The idea to use information gain for feature selection is to select terms that reveal the

most about the classes. The information gain measure for feature selection is computed

as [Dasgupta et al., 2007]:

IG(t, c) = ∑
ci∈{c,c̄}

∑
tj∈{t,t̄}

#d(tj, ci)× log2
#d(tj, ci)

#d(tj, c̄i)× #d(t̄j, ci)
(6.3.4)
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Feature Scoring

We use the above method to select a set of features that are used to represent the docu-

ments. Although all these methods estimate a score for each feature and hence assign

a weight to each term, there are other ways to score the terms and weight them which

are different from the selection process and are shown to be effective [Sebastiani, 2002].

One of these methods that we use in this work is tfidf, where t f is the term frequency

within the document and id f is the inverse document frequency of the term.

tfidf combines two sources of evidence: the importance of the term within the docu-

ment and the discrimination power of the term in the collection. The more often it

occurs in a document, the more it represents that document and the less documents it

occurs in, the more discriminant it is. tfidf can be estimated in different ways and has

been widely used for document retrieval [Salton and Buckley, 1988].

Table 6.4 shows the effect of different feature selection methods on the quality of the

classifier on the training and test sets for one class, which is corn.

The results show that mutual information and χ2 are performing very well and all

the feature selection methods are performing better than the baseline, where the se-

lection of the terms is completely random and the probability distribution of selecting

the terms is uniform. These results also reveal that a feature selection method such as

χ2 is not a very good candidate for weighting the terms, but if it is combined with a

weighting scheme such as t f id f it performs very well.

6.3.3 Negative Terms

Positive terms have been described and also the reasons are given that why they are

important and how to select them, however it is equally important to identify terms

which may mislead the system by attracting non-relevant documents and decrease the

accuracy of retrieval process. These terms are known as negative terms (see Section 5.5.3

in Chapter 5). These terms may be collected form relevant or non-relevant documents,

however their importance to us is to attract non-relevant documents.

Selecting positive terms seems straightforward and sensible to do, however negative
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term collection is a bit tricky, as they may be in relevant documents and not necessarily

from non-relevant documents. We have considered three main characteristics for terms

to fall into negative terms collections:

• The first group is the group of terms with low discrimination power, they do not

bring that much value to the class representative to attract relevant documents,

though they exist in the relevant documents due to low discrimination power

they may lead choosing non-relevant documents as well as relevant ones. By con-

sidering them as negative terms, the case of retrieving non-relevant documents

will be eliminated, however it is possible to lose highly relevant documents just

because they include one or more of these terms with low discrimination power.

Also it is a very time consuming process as the system should go through all of

the terms and calculate the discrimination power for each and every one of those

terms, then compare the discrimination power to a predefined threshold, and in

case of a smaller value than the threshold, identify the term as a negative term.

• The second group is the group of terms with high discrimination power that does

not exist in the required class training documents. Sometimes it is possible after

doing all the preparation processes (see Section 2.3.1) for some terms with high

discrimination power to stand out. They belong to the training documents how-

ever they do not represent the specific required class. These terms mislead the

class representative and result poorly to find relevant documents. These docu-

ments may or may not represent other classes. These terms with high discrimi-

nation power can influence the system drastically while they do not improve the

results, so considering them as negative terms may reduce the chance of retriev-

ing non-relevant documents.

• The third group is the group of terms with high discrimination power that rep-

resent other classes but not the required class. These terms probably are the pos-

itive terms for other classes whereas they are totally misleading for the required

class. Though the system should identify and calculate the positive terms for all

required classes, overall it does not increase the time of the whole classification
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(a) With

OR

OR

corn OR

NOT

shr

corn

maiz

(b) Without
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OR
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corn maiz

corn

maiz

Figure 6.6: An example of a class representative learned with and without a
negative term terminal and a NOT function.

task, as it saves time by identifying positive terms for all classes and calculates

their discrimination powers right at the beginning and uses each class positive

terms as negative terms for another. Of course it is essential that some refine-

ments and eliminations should be done before using them.

Figure 6.6 shows examples of class representative for the same class with the same

settings apart from the fact that one of them has an extra function NOT, which takes

exactly one child that is also chosen from the negative list including a set of negative

terms.

6.3.4 Term Selection Procedure

In the baseline system described in the previous chapter, positive and negative terms

were chosen based on a random selection from their lists. This method may be the

first choice as it is random and all terms get the equal chance to be selected, but as

it has been described and explained different terms have different values in discrimi-

nating between relevant and non-relevant documents. Therefore, their chances should

increase or decrease based on their discrimination power or some other features and
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characteristics. In this section, we present two algorithms that have more authority

over choosing terms based on their different features.

Ranked-based

In this algorithm terms are sorted based on their scores, then the probability of selecting

a term in the ith position among n terms will be calculated as follows:

P(selection of term i) =
N − i + 1

N(N + 1)/2
(6.3.5)

In this algorithm, the terms are selected based on their feature value, however the

chance of selecting them during the process of learning only depends on their rank.

In other words, it does not matter how close two feature values are, the probability of

selecting them only depends on the distance of their ranking in the list.

Scored-base

This algorithm estimates the probability of one term to be selected regarding its “score”

according to the features used for term selection. The first step is to calculate the score,

then normalise the set of scores to make them a “probability distribution”3. Finally, the

probability of term in the ith position is equal to its score.

Note that in both methods the selection is with replacement, which means a selected

term can be selected again.

6.4 Fitness Improvements

To identify which class representative works better, there is a need to measure their

fitness. Choosing a good fitness function is very crucial in the success of any evolution-

ary algorithm, because it is the procedure that guides the random-based evolutionary

algorithm towards a solution. For an information retrieval task, such as the classifica-

tion that we are dealing with, the fitness can be measured by the number of relevant

3i.e. ∑n
i scorei = 1
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documents the representative identifies. However the overall performance is affected

by so many other details, such as the rank or score of relevant documents in the re-

trieved set or the number of non-relevant documents in the retrieved documents set.

The baseline system described in Chapter 5 uses F-measure to evaluate a representative

performance and estimate a fitness value. In this section, we investigate other fitness

functions that take into account the results ranking and scoring to improve the learned

representatives.

6.4.1 F-measure as the Fitness Function

The baseline system described in the previous chapter uses F-measure to estimate the

fitness for each individual. The fitness is calculated as:

f itness(qi, c) =
1

1 + eval(qi, c)
(6.4.1)

where here eval() function is F−measure and better individuals have lower fitness

value and vice versa. In this method lower F−measure produce higher fitness values.

Algorithm 4 shows how the classification is done by using a class representative. This

algorithm is used while the fitness for an individual is estimated and also when the test

documents are classified. One important point about this algorithm is, it labels all the

documents that satisfy the class representative, however this leads to classify too many

documents under a particular class, when the class representative is general.

There are several ways to select a subset of documents to be labelled under a class or

to select a subset of classes that a document is labelled with. Among the following list

of methods that are used in previous work, we choose PCut, which is more suitable for

our classification algorithm [Yang, 2001; Tang et al., 2009]:

• RCut: Rank-based cut ranks the classes assigned to a document based on their

scores and labels the document with the top k classes of the rank list. k is a pa-

rameter given by the user and usually estimated based on the training data.

• PCut: In proportion-based cut a ranked list of the documents is created for each
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class and the class is assigned to the top n documents of the ranked list. n is

estimated based on the training data.

• SCut: This approach is called score-based local optimisation and is similar to

PCut. The only difference is that the threshold is tuned for each category and

there is no one threshold for all, which is the case in PCut.

Since we learn a class representative for each class and estimate the quality of the indi-

vidual representative, The PCut method is the best method to be used in our algorithm.

Additionally, [Yang, 2001] have concluded that PCut is more stable than SCut.

The fitness function based on F−measure treats a ranked-list of classified documents

exactly like an ordinary set, so in this case if a relevant document’s score is less than

non-relevant document’s score the overall fitness is equal to the situation that relevant

document’s score is higher than non-relevant document’s score. On the other hand,

if there are two individual class representatives and the first one returns the relevant

documents in the 4th, 7th and 10th positions and the second one returns the relevant

documents in the 20th, 28th and 33rd positions there is no difference between their fit-

ness values, whereas in reality the first representative is performing better and the fact

that it returns correctly chosen relevant documents in higher ranks must be taken into

consideration. Although F−measure is very straightforward and effective, it misses

out many advanced features and details about the fitness.

There is a problem with this approach, after choosing top-k documents, the sequence

of documents and their scores are ignored, in other words, the system is not optimised

to push the relevant documents to the beginning of the list.

To address this problem, we investigate two other evaluation metrics that take into

account the order of the classified documents:

• Average Precision

• Normalised Discounted Cumulative Gain
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6.4.2 Average Precision

Precision and recall are two very straightforward measures. They are easy to use with

a fixed range (0.0 to 1.0 or 0% to 100%), with the ability to compare different queries

and collections for different systems. The best system increases the precision with an

admissible recall, however there is always a trade off between these two. Precision

shows how many of retrieved4 documents are actually relevant, but does not show

how many of relevant documents are retrieved and how many have been ignored,

while the recall shows how many of relevant documents are retrieved but does not

consider how many non-relevant have been retrieved as well as relevant documents.

The current systems may have an acceptably high recall while the precision is so poor, it

means though the system retrieves many relevant documents, and there are number of

non-relevant documents among retrieved documents. To combine these two measures

and have a better view of the system performance, the weighted harmonic mean of

precision and recall known as F−measure is used. All these measures are set-based and

represent the results in unordered lists of documents. However as we discussed in the

previous section, a ranked list of results is much more desirable. To be able to provide

such a result, we use another measure called average precision. Average precision shows

at each step of retrieval process what is retrieved and how it has increased or decreased

the system performance.

Recall measures how many of actual relevant documents in the collection get retrieved,

so a new retrieved document does not change the recall value if it is not relevant. In

other words, when a non-relevant document is retrieved recall is constant.

To take the order of appearing relevant documents into consideration we calculate the

average for different precisions at the levels that recall changes. This value is known as

average precision and is calculated as [Manning et al., 2008]:

AP(qi, c) =
1
m

m

∑
k=1

Precision(Rk) (6.4.2)

4In the discussions of this section, retrieved documents for each class are those labelled to be under
this class and relevant documents are those which truly belong to that class.
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where, d1, ..., dm is the set of positive documents for class c, qi is the class representa-

tive, Rk is the set of top k ranked retrieved documents and Precision(Rk) is calculating

precision at the bottom of the ranked list Rk.

6.4.3 Normalised Discounted Cumulative Gain

An approach to evaluation which has been used increasingly recently is normalised

discounted cumulative gain (NDCG) [Järvelin and Kekäläinen, 2002; Croft et al., 2009].

NDCG is particularly designed for retrieval tasks where there are more than two no-

tions of relevance, however it can easily be adapted to binary situations (relevant vs

non-relevant). The premise of the measure is relevant documents appearing in the top

of the list should be more valued than those appearing at the lower ranks. So, the re-

ward of finding relevant documents is reduced by going through the list. DCGp, which

is discounted cumulative gain at position p is calculated as:

DCGp =
p

∑
i=1

2R(i) − 1
log2 (1 + i)

(6.4.3)

where R(i) ∈ {0, 1} indicates whether ith document is relevant or not. NDCGp is a

normalised version of DCGp to give the perfect rank list value 1.0.

6.4.4 Validation Set

Machine learning approaches to classification rely on a set of data previously labelled

as training data to learn and tune the classifiers to be evaluated on the test data. No

information from the test data should be available to the learning algorithm and no

decision should be made based on the results of the system against the test data. Oth-

erwise, the results might unrealistically be very good, however fitted to that specific

test data. In addition, reported results obtained this way do not have any scientific

credibility.

On the other hand, optimising the classifier only on the training data and learning class

representatives that perform the best on the training data might lead to over-fitting and

a weak performing class representative on unseen examples. Therefore, we set aside
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a small set of training data as unseen examples and calculate the fitness based on a

combined version of the fitness on the seen and the fitness on the unseen data. This

held out set is called the validation set, which is used to avoid the learning algorithm

to over-fit the training data and make the class representative able to generalise.

We change the fitness function in Equation 6.4.1 to include a similar component:

f itness(qi, c) = α · 1
1 + evalt(qi, c)

+ β · 1
1 + evalv(qi, c)

and α + β = 1 (6.4.4)

where evalt() is estimating the evaluation metric on the training set and evalv() is es-

timating it on the validating set. α and β are weights assigned to each component and

are tuned manually to adjust the importance of each component.

6.4.5 Parsimony and Readability

One of the main motivations of using a genetic programming algorithm to learn a class

representative for classification in this thesis was the readability of the result. In other

words, it is very important and has many applications to generate a class representative

that can be read, understood and possibly modified by humans.

Although readability is subjective and can not automatically be calculated, we assume

that there is a strong correlation between readability of the representatives and the

number of terminals and functions used to construct them. In Section 6.2.2, we intro-

duced new functions to simplify the tree-shape structure and easily combine several

terms together. This modification leads to less functions and a flatter structure of the

tree, that we believe makes it more readable. However, in addition to the change to

the structure of the individuals, we add another component to the fitness function to

favour simpler individuals and penalise individuals that have a high number of func-

tions and terminals. To achieve this we modify the fitness function of Equation 6.4.4 to

include a readability component:
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f itness(qi, c) = α · 1
1 + evalt(qi, c)

+ β · 1
1 + evalv(qi, c)

+ γ · log(x)2

4
(6.4.5)

where x is the number of functions used to construct qi.

We use a logarithm square function to decrease the effect of adding one function to the

tree. Also, this component is between zero and 1, if the number of functions are less

than 100. Similar to Equation 6.4.4, we have α + β + γ = 1.

6.5 Results

Table 6.5 and Table 6.6 show the results of the experiments on the test collection by

running the system that has all the features combined. These results are produced by

running the classification system on the test collection that is described in Section 5.7.1

of the previous chapter. For more experimental results on a different collection, please

see Appendix C.

In Table 6.6, we start from the baseline and extend it with the features step by step. The

highest numbers of each column are highlighted in bold. In Table 6.5, the improve-

ments for each class of the top 10 category and the number of terminals and functions

for each one of them are shown.

F-measure No. Terms No. Functions
Category Baseline New Baseline New Baseline New

1 acq 0.1977 0.7563 18 5 17 4
2 corn 0.3279 0.9032 3 2 2 1
3 crude 0.417 0.7278 14 5 17 4
4 earn 0.018 0.9267 16 4 16 3
5 grain 0.0699 0.8926 13 5 12 4
6 interest 0.1577 0.4092 8 4 8 3
7 money-fx 0.1574 0.5282 14 5 14 4
8 ship 0.3134 0.6986 10 5 10 4
9 trade 0.186 0.4903 16 5 16 4
10 wheat 0.25 0.8974 11 1 13 0

Table 6.5: The results of the classification for the top 10 categories of the collec-
tion for the baseline and the new run, which is a baseline combined
with all the improvements discussed in this chapter.
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The results show that using the new tree structure is improving the performance of

the classifier, in addition to simplifying the representatives. The very small number of

functions in the new structure indicates that the learning algorithm favours functions

with more than two arguments compared to the baseline that all the functions have

two arguments.

By adding feature weighting and feature selection to the algorithm the quality of classi-

fication substantially increases, however, this leads to use more functions and terminals

in the class representatives. Adding the readability factor to the fitness function slightly

improves the performance of the classifier and as it is expected decreases the number

of functions and terminals used in the final class representatives.

Figure 6.7 shows an example of a representative learned by the new structure and the

readability factor in the fitness function for class money-fx, which is quite simple and

readable. On the other hand, the class representative for the same class that is learned

by the baseline structure and without the readability factor in the fitness function is

shown in Figure 6.8. The features are almost the same, but the structure of the latter

representative is more complicated and the relationship between the terms is quite

difficult to understand.

OR

otsuki dollar currenc fed monei

Figure 6.7: The class representative learned by the algorithm with the new tree
structure and feature selection methods for class money-fx.

6.6 Summary

In this chapter we started to build upon our system we had introduced and explained

in the previous chapter. Every aspect of the learning process was explored to achieve

the aim of the thesis, which is generating a readable class representative that has a good
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OR

OR

OR

currenc

dollar

fed

OR OR
OR

currenc

bank

marketAND

OR

OR
OR

OR

OR

currenc

bank

market

fedAND

market

currenc

fed

currenc

Figure 6.8: The class representative for class money-fx, learned by the baseline
structure with feature selection.
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classification performance.

First we examined the importance of the genetic programming parameters in the learn-

ing process and showed that higher population sizes or more evolving generations can

lead to better representatives, however there is a limit in their ability to improve the

quality.

We introduced a new tree structure, including several functions that simplified the

shape of the individuals, while retaining the performance and even improving it by

generating more general representatives.

To guide the learning process in selecting discriminant terms, we examined several

feature selection methods and weighting schemes and concluded that almost all of

them are relatively useful in helping the random feature selection of the GP to select

the most informative terms. We also added a component to the fitness function that

estimates the number of functions and terminals in an individual as a measure for its

readability.

Finally, we combined all the factors that were discussed in this chapter to build a new

system that substantially outperformed the baseline. The results were presented step

by step to demonstrate the effect of each factor.
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Conclusions and Future Work

7.1 Introduction

This chapter concludes the thesis and outlines the main conclusions drawn from the

research. It also provides a list of contributions made during this work. Additionally,

some of the applications of the document representative generation in information re-

trieval are discussed. Finally new directions and possibilities for future research are

mentioned.

7.2 Conclusions

The main focus of this thesis was designing and developing an evolutionary based

algorithm to generate a representative for a set of documents that can later be used to

classify, filter and retrieve similar documents. The aim of the research was to produce

the representative in a readable form that can be read, understood and even modified

by humans.

The algorithm was extended to perform the classification task and several novel meth-

ods were proposed to improve on different aspects of the algorithm. Experiments were

carried out on each component and they were investigated to generate representatives

with higher quality and better readability.

We first introduced information retrieval and evolutionary algorithms then reviewed
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previous work based on evolutionary algorithms in information retrieval and related

fields. Most of the previous work has applied genetic programming to information

retrieval to improve the learning to rank functions and combining weighting schemes.

The learned ranking functions in most of these works are performing as well as or

better than state-of-the-art ranking models. However, because of the complex structure

of these ranking models they are difficult to understand and justify. This issue led us to

concentrate on the simplicity of the generated representatives and optimise the system

to learn representatives that can be read and understood by humans.

In Chapter 6, we investigated different parts of the system, including the genetic pro-

gramming parameters, the feature selection method, the tree structure and the fitness

estimation. Experiments are done and results are reported to find the best solution for

each problem in the system. Based on our results, in order to learn more readable rep-

resentatives, more complex functions that construct simpler trees are very useful. We

discovered a good feature selection for positive terms is more effective in improving

the quality of generating class representatives than adding negative terms or phrases.

Adding a component to the fitness function that assesses the quality against a valida-

tion set can be very helpful on the generalisation of the representative and its perfor-

mance on future unseen data. Apart from simplifying the structure of the tree that

represents the individuals, an extra component is added to the fitness function in order

to estimate the readability of the individual by counting the number of functions and

terminals. The new component favours simpler and shallower trees over others, so the

learning algorithm is guided to produce simpler representatives.

7.3 Contributions

In this thesis, considering the drawbacks of previous work and focusing on improving

both the quality and parsimony, we have provided the following contributions:

1. A machine learning system based on GP is designed and developed to learn a

representative for a set of documents. The algorithm is used to perform classifi-

cation and other information retrieval tasks.
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Document representatives are essential for all IR systems. These representatives

are used during information retrieval tasks in place of the original documents.

The quality of document representatives has a direct effect on the result of clas-

sification or any other task in this field. Therefore we have implemented this

system to improve the quality of document representative generation.

In this method, terms are extracted from the documents based on their discrimi-

nation power, then the GP engine combines them in order to generate tree-shaped

individuals as document representatives. These representatives are evaluated

against the document collection and are ranked regarding how well they match

relevant documents. The representative with the highest rank on the list is con-

sidered as the best representative for the given set of documents.

2. We have defined a new tree structure and added a component to the fitness func-

tion to improve the readability of the representatives.

One of the most important advantages of using GP for representative generation

is the outcome is likely to be human readable. This readability can be degraded

drastically by complex structures and duplicated terms. In the baseline system

[Hirsch et al., 2007] the generated representatives have very complex structures

and include many duplicated terms, which defeats the purpose of choosing GP

for human readable results.

The new structure is a simple structure which is generated by complex functions.

This new tree structure forces the representative generation process to monitor

not only the terms it accepts but also its combination with the rest of the tree in

order to avoid any complexity and duplication. The new component in the fit-

ness function, adds an additional weight to individuals which are simpler. Based

on the new component of the fitness function, shorter representatives are more

preferable compare to those with the same classification accuracy. The proposed

tree structure produces shorter representatives with the same number of terms in

order to fill the search space with practically redundant individuals.

3. In the previous work, the feature selection mechanisms in the learning algorithm
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is implemented by employing a part of the tree to be responsible for generat-

ing the index of the feature. Not only does this method make the process and

individuals very complex by adding extra branches, functions and terminals, it

also increases the possibility of producing two complex individuals which result

in practically the same representative. In addition, a portion of the search time

is spent on assessing individuals that are essentially the same, but are different

in the details of the feature selection branch. In other words, the population of

potential representatives is crowded with individuals which generate the same

representatives.

We have used Ephemeral Random Constants (ERC)1 to eliminate this problem, also

to directly connect the probability of selecting a feature to its weight, which is

estimated by the feature selection method. ERC replaces the need for that part of

the tree responsible for the feature selection and makes the selection of features a

non-uniform random number selection.

4. By combining the state-of-the-art feature selection strategies with the genetic pro-

gramming algorithm, we have created a learning process that is in nature ran-

dom, however it is guided to select features that are more likely to be helpful in

the final representatives. In most of the other feature selection methods, a sub-

set of all the features are selected to be involved in the classification process. The

selection process in our algorithm occurs when the learning process randomly se-

lects different features to be included in the tree. By making the random feature

selection non-uniform, we make sure that more discriminant features, based on

the weight given by the feature selection method, are more likely to be selected,

however other features are not entirely discarded and they are tried and assessed

during the process.

1see Chapter 5
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7.4 Applications

In the previous chapters, we have demonstrated the use of our approach to learning

document representatives by GP, in classification. In this section, we propose other

applications of our approach in the field of information retrieval.

7.4.1 Query Expansion

Query Expansion is the process of expanding the query terms aiming to improve the

performance of the retrieval process. Query expansion can be used to improve both

recall and precision. There are two main categories of query expansion: Interactive

query expansion; where the query is modified using terms from the user. Automatic

query expansion; where the query is expanded automatically without user involve-

ment [Ruthven and Lalmas, 2003].

In interactive query expansion a set of terms is automatically proposed to the user to

add some of them to the query, however, in automatic query expansion the terms are

added to the query based on the relevance feedback from the user or blind relevance

feedback. Blind RF2 or RF without relevance information is a method of improving the

ranking before showing any result to the user. The system retrieves a ranked list of the

documents based on the initial query and selects the top n documents of the rank list

as relevant documents. In other words, without asking the user the system assumes

the top n documents are relevant. The next step is selecting a set of terms from these

documents and modify the initial query to improve the results. There have been several

studies on selecting and modifying the query [Xu and Croft, 1996; Ogilvie et al., 2009;

Chirita et al., 2007], including those that select terms from ontologies such as WordNet

to add to the query [Bhogal et al., 2007].

In the last a few chapters, we described a GP-based approach to learn a representative

for a set of documents. This approach can be applied to query expansion by consider-

ing the relevant documents as positive examples and non-relevant documents as neg-

ative examples. Our GP-based algorithm searches to find the best representation of the

2Also called: pseudo or ad-hoc relevance feedback.
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relevant documents, either selected by the user or selected through blind Rf. The only

difference here is adding the original query terms with high weights to the positive

term list, so there will be a very high chance they will be in the generated representa-

tive, which will then be used as a query.

7.4.2 Routing, Content-Based Filtering

A filtering system monitors a stream of incoming information to find documents rel-

evant to user’s information need represented by profiles. During the filtering pro-

cess documents arrive over time, however filtering is different from ad-hoc retrieval

[Robertson and Callan, 2005]. In ad-hoc retrieval, the document collection remains,

but the user’s information need can change over time. In contrast, while filtering and

routing, profiles are persistent and reflect a long-term information need.

The filtering/routing tasks can be seen as text categorisation and liable to use methods

of machine learning. However, there are some significant differences between rout-

ing/filtering and text categorisation. In filtering, the system analyses the incoming

documents and make a binary decision to retrieve or not to retrieve each document

based on a profile. The routing system assigns retrieval scores to the incoming docu-

ments according to profiles and the final output is the top n ranked documents. In the

filtering literature, the word profile refers to all of the information the system has ob-

tained about a particular information need. Profiles are persistent which means a user

may have the same information need for a period of time. With feedback from users,

the filtering system can learn a better profile for particular information need [Robertson

and Callan, 2005].

If we use the user’s profile as our training set, we can learn a representative of the

profile by our GP-based system and use it to assign scores to incoming documents. In

filtering, based on the score, we make a binary decision of retrieving or not. For routing

the score will be used to rank the documents and finally retrieve the top n documents.
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7.5 Future Work

7.5.1 Combining Evidence

Modern information retrieval systems use multiple sources of evidence and document

representative in performing the retrieval task [Tsikrika and Lalmas, 2004; Silva et al.,

2009]. In structured document retrieval [Tsikrika and Lalmas, 2004], known-item find-

ing [Ogilvie and Callan, 2003; Yahyaei and Monz, 2008] and web search engines [Silva

et al., 2009]. Our method can be extended to combine evidence from different fields and

parts of the document and use an additional function to assign weights to each source

of evidence. This method can be applied to structured documents or web documents

classification.

7.5.2 WordNet

WordNet3 is a lexical database for English language [Miller, 1995]. Among many other

features, it contains synonyms of words that can easily be found. By adding a function

that finds a word from WordNet4 to the structure of genetic programming individuals,

we can improve the performance of our system by including words that are not in the

training collection.

7.5.3 Regular Expressions and Stemming

In the current work, we focused on simple representatives which are readable and are

good in generalisation. This work can be extended to include functions and terminals

that use regular expressions to match the terms.

7.5.4 Other Languages and Collections

In general, the approach in this thesis can be applied to other collections and languages,

however, testing the system on other collections and collections with languages other

3WordNet can be accessed from http://wordnet.princeton.edu
4It can select from a subset of synonyms of the current words in the positive list.
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than English can show the effectiveness of the approach. For some languages that have

a more complex morphology than English, adding terminals that match the stems of

the words can be beneficial.

7.5.5 Novelty Detection and Topic Detection and Tracking Experiments

Among the problems that this work can be applied to are novelty detection [Allan

et al., 1998b, 2000] and topic detection and tracking [Allan et al., 1998a; Allan, 2002].

Generated representatives can be used to make decision for the new events or finding

the correct topic of the new documents, which are basically news stories.
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Program Structure

The following figures show an overall design of the Java program to index, train and

test the document representatives and perform the classification with them. Figures

A.1, A.2 and A.4 show a static view of the main applications, genetic programming

components and the feature selection methods and their hierarchy. Figure A.3 shows

the structure of the indexing and feature extraction classes in addition to the way they

interact with each other.

Figure A.1: Indexing, training and evaluation entry points of the application.
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APPENDIX B

Tools and Libraries

The classification system is implemented entirely in Java programming language,

which makes it possible to be run on all major platforms. In developing the system,

we used the following open-source libraries:

• ECJ1 is an evolutionary computation library with support with almost all evolu-

tionary algorithms. ECJ supports many different representations, selection and

reproduction operators. It has a complete package for writing genetic program-

ming based applications. It supports multi-threading, hierarchical parameter

configuration and master/slave evaluation. ECJ is publicly available and can

be downloaded from http://www.cs.gmu.edu/~eclab/projects/ecj. ECJ is li-

censed under Academic Free Licence, version 3.0 2.

• Apache Lucene is a high performance, cross-platform text search engine. Lucene

provides a lot of features such as high-performance indexing, field-searching

and complex queries through a simple and well-designed API. There are many

projects based on Lucene,extending its functionalities for crawling (Nutch) and

search server (Solr). Lucene is supported by Apache Software Foundation3 and

can be downloaded from Apache’s web-site. It is an open-source project and re-

leased under the Apache Software License4.

1A Java-based Evolutionary Computation Research System
2http://www.opensource.org/licenses/academic.php
3http://www.apache.org
4http://www.apache.org/licenses/LICENSE-2.0
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APPENDIX B: TOOLS AND LIBRARIES

• Apache Commons is another project of Apache Software Foundation, which aims

to provide reusable, open-source Java components. The packages of Apache

Commons are independent and unrelated to any other package or product and

are created for small purposes. Some of the components are:

– Collections, which extends Java collection frameworks.

– IO, which is a collection of I/O utilities.

– Lang, which provides extra functionality for classes in java.lang package.

– Pool, which is a generic object pooling component.

Apache Commons is also released under Apache Software License and is avail-

able for download from http://commons.apache.org.
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APPENDIX C

Experimental Results on

the 20 Newsgroups Data Set

The 20 Newsgroups data set is a collection of nearly 20,000 newsgroup documents, la-

belled by 20 categories [Lang, 1995]. It has been used widely for classification experi-

ments. The names of the classes are shown in Table C.1 and there are 18,846 documents

in our collection in the training and test sets. Table C.2 shows the results of the experi-

ments explained in Section 6.5 on the 20 Newsgroup collection.
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F-measure No. Terms No. Functions
Category Baseline New Baseline New Baseline New

1 alt.atheism 0.2371 0.4306 11 5 12 4
2 comp.graphics 0.0955 0.4825 15 5 16 4
3 comp.os.ms-windows.misc 0.1698 0.5298 13 4 12 3
4 comp.sys.ibm.pc.hardware 0.0843 0.4110 12 5 11 4
5 comp.sys.mac.hardware 0.1483 0.5838 10 5 11 4
6 comp.windows.x 0.0648 0.6030 13 5 12 4
7 misc.forsale 0.0993 0.6884 17 2 21 1
8 rec.autos 0.0630 0.6303 10 3 9 2
9 rec.motorcycles 0.1536 0.8119 18 3 20 2
10 rec.sport.baseball 0.1818 0.7407 17 5 19 4
11 rec.sport.hockey 0.2787 0.6566 12 5 11 4
12 sci.crypt 0.1752 0.8286 15 5 18 4
13 sci.electronics 0.2016 0.3138 17 5 17 4
14 sci.med 0.1395 0.4816 9 5 8 4
15 sci.space 0.0868 0.6102 13 5 13 4
16 soc.religion.christian 0.1576 0.7154 19 5 18 4
17 talk.politics.guns 0.1930 0.6243 18 4 17 3
18 talk.politics.mideast 0.3715 0.6695 17 5 16 4
19 talk.politics.misc 0.0926 0.4221 10 5 10 4
20 talk.religion.misc 0.0657 0.3702 14 5 13 4

Table C.1: The results of the classification for all categories of the “20 News-
groups” collection separately for the baseline and the new run,
which is a baseline combined with all the improvements discussed
in this thesis.
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APPENDIX D

Example Representatives

Examples of representatives produced by the learning process described in this thesis.

For each class the representatives learned by the baseline (described in Chapter 5, and

denoted by BASELINE) and the improved version (described in Chapter 6, denoted by

IMPROVED) are shown. The baseline examples are taken from the experiment that is ex-

plained in Section 5.9 and the improved representatives are taken from the experiments

that are explained in Section 6.5.

OR

OR

carb dod motorcycl egreen dod

OR

ride counterst

Figure D.1: IMPROVED: The representative learned for category
rec.motorcycles.
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OR

OR

OR

OR

melt
OR

OR

bag
OR

OR

melt
17h

trajectori

sabr

OR

melt

17h

OR

melt

17h

pettefar

Figure D.2: BASELINE: The representative learned for category
rec.motorcycles.
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OR

OR

nil jun AND

sunflow fiber cotton

AND

sunflow harvest

Figure D.3: IMPROVED: The representative learned for category sunseed.

AND

OR

NOT

tvx

OR

mln

AND
AND

OR

mln

NOT
tvx

AND
NOT

tvx

OR
sunflow

sunflow

OR
NOT

tvx

sunflow

sunflow

Figure D.4: BASELINE: The representative learned for category sunseed.
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OR

surinam line mid alumina surinam

Figure D.5: IMPROVED: The representative learned for category alum.

OR

OR

OR

AND

aluminum
capac

OR

petso

surinam

OR

surinam

OR
aluminium

OR
petso

aluminium

OR NOT
deficit

NOT

deficit

Figure D.6: BASELINE: The representative learned for category alum.
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AND

OR

index inflat

brazilian consum

rise consum

OR

inflat

consum

Figure D.7: IMPROVED: The representative learned for category cpi.
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OR
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fare
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OR
AND

gross

OR
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rise

NOT

royal

OR

AND
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wait

AND

NOT

laboratori

fare

Figure D.8: BASELINE: The representative learned for category cpi.

163



APPENDIX D: EXAMPLE REPRESENTATIVES

OR

tank farm

measur quak

ct diesel

OR
pct sulphur

ill lt

tank farmfeet surplu

draft budget

ct diesel

Figure D.9: IMPROVED: The representative learned for category fuel.
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Figure D.10: BASELINE: The representative learned for category fuel.
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