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CHAPTER ONE

GENERAL BACKGROUND

1.1 INTRODUCTION.

2)

The study of ﬁarticle production processes(lf has attracted
the interest of both theoretical and experimental elementary particle
physicists in recent years. From the experimental point of view

i

this seems natural, since production processes build up about
80% of the total cross section(3). However, for the complex
structure of the multiparticle production processes, parallel
advénces in both experimental and theoretical aspects were needed
to sustain this interest. As a good example of this parallel
advancemeat in the-past few years, we may recall the proposal of
a fourth quark and the discovery of the new particles, y/J, as
the bound state.

The complexity of multiparticle scattering is due to the factl

that the number of independent invariants is 3n - lO(u)

s where n
is the number of particles involved in the scattering, so there
are only two invariants for four particle processes, while there
are five and eight invariants for five and six particle processes,
respectively. Experimentally it is very difficult to control many
independent variables simultaneously and, therefore,processes of
this type are not of interest. Nevertheless, it is possible to
study multiparticle scattering in certain regions of phase space
by choosing the appropriate kinematics'ana dynamics; Regarding
dynamics there are tw§ different approaches; one approach is to
observe all the particles involved in the scattering. This is

called the exclusive approach. Experiments of this type are

difficult to carry out if there are more than five particles



involved in the scattering. The second approach, which is called
the inclusive approach, is the one in which only a selective set

of particles is observed, and was found extremely helpful in the

5)

investigation of production processes( . Experimentally, the
inclusive approach means there are fewer variables to be controlled

and therefore a simpler set up for carrying out the experiment

(6)

and eventually the collection of data becomes a practical reality °.
The interest in investigating the inclusive processes was

further stimulated by the scaling hypothesis of Feynman(7), which

(8)

can be traced back to the ABFST model which leads to a similar

(9)

result and was supported by experiments in the ISR range of energies .

Also, the limiting fragmentation hypothesis of Beneckeet alslo)

suggests that the high energy processes look simple when
viewed in the target or the projectile frame of reference. Finally,
Regge analysis was introduced into inclusive processes through

(11)

Mueller's generalized optical theorem

(2,12,13)

and inclusive Regge

phenomenology has developed
The construction of aﬁ explicit multi-Regge model as a basis

of one-particle-inclusive phenomenology is presented in this

thesis. The model with pure Regge poles is applied to the study

of thé charge-exchange nucleon broduction processes as a preliminary

test of its suitability for the investigation of the experimental

(4,14) are introduced into the model

data. Then the relevant cuts
via the absorption prescription and the nucleon production procésses
are reinvestigated. Finally, the model is applied to charge-and

strangeness~exchange A production and charge-exchange tensor

meson production.



1.2 ONE-PARTICLE-INCLUSIVE PROCESSES

Processes of the type a + b -+cl + c, + eee + c, + X are
called inclusive.reactions, where c; are the n particles observed
and X stands for any state which is not observed. This process

will be denoted by (ab, c ...cn). For a one-particle-inclusive

1%2 _
reaction only one particle in the final state is observed and we
have processes of the type a + b ® ¢ + X (see Fig. 1.1) which will

be denoted by (a b,c). The one-particle-inclusive invariant cross

section is given by

3 o m d'q.
£ (abye) = (2m)° 26, £2- =2 3 (11) [ 1 —1
dp, . 20 m=l = mz!_ j=1 2Ej(2w)

|2

m
" :
(2m) " & (pn t Py - P, -jilqj). | < Pes» 40009y | A | P> Py >

In the above equation P:» i = a,b,c are the momenta of the corre-

sponding particles, I qj is the momentum of the undetected state X,
% y is thestatisticalfactor for m identical particles of type z
"
2 2 . 2. .
and A = A (s, m S, m ), with s = (pa + pb) is defined by

A (x, v, 2) = (X2 + y2 + z2 - 2Xy - 2%z - 2yz).

b X}m2

Fig. 1.1. One-particle-inclusive reaction

N

The invariant cross section depends on three independent

variables which are commonly chosen from among



2
s = (p, P>
2
t = (Pa = PC) s
2
u=(pb—pc),

and M2 = (pa + Py - pc)z. Evidently, these are not independent;

we have s + t + u = M2 + ma2 + mb2 + mc2. The choice of variables

to be used depends on the physics of the problem. A convenient

set for our purposes, to be used in the rest‘of this text, is s,t

and M2.‘

The invariant cross section in terms of these invariants will

read

3
f(a bye) = (2m)° 28 &%

c 3

dp .

c o .
= 16 n2 A (s, m 2, mbz) do (averaged over azimuth).
| a © am?at

The physical region in the Mgt plane‘is the Chew-Low plot

defined by %)

2 2 2 2
G (s,t,M oMM "M ) <O,

and
2 2
H szin’

where G can be expressed as a determinant

01 1 11
l o v x =z
G (X,¥,2,u,v,w) = - 3 1 v 0 uy .

1 x u 0 w

l1 z y w O

For other properties of G, see reference 15.

~



It was suggested by Mueller(ll)

that ﬁge inclusive.cfoss
section for the process a + b »c + X could be related to a dis-
continuity in the analytically continued forward amplitude for the
process a + b + ¢' > a' + b' + ¢, where "forward" in this context
means the outgoing particles have the same momenta as the incoming
ones (pa = Pars Py T Pb'; Pu = P ). However; we have used super-
script "'" as indication that they may have different helicity

states. This Mueller hypothesis is known as generalized optical

theorem and is shown diagramatically in Fig. 1.2,

a C 2

b

! }[:: CI::: : :::: c’
. b b’

0

. X ) X
E c’ C

.

1

(

\YY
gluge]

N
DISCM2

Fig. 1.2. Generalized optical theorem

It has been generally understood that discontinuities of
scattering amplitudes arise from the unitarity condition and the
formation of various intermediaté states. This is, in fact, the
basis of the optical theorem. Now let us abply unitarity to the 3-
body amplitude.4Wé find that the corresponding total discontinuity

is given by several terms, as shown in Fig. 1.3.

e e



10.

Fig. 1.3. 3-body discontinuity equation

In this discontinuity equation Pi anvaf, respectively, represent
permutations of lines for initial-and final=particles, the shaded
portions represent the open channel, and an inéegration over its
phase spaée is implied. A bubble with a "+" refers to an amplitﬁde
evaluated in ité physical region, and a "-" sign refers to its
counter clockwise continuation around the branch point of the energy
variables involved. ‘Clearly from Fig. 1.3 one can see that only

the last summation on the fight'hand side resembles the one-particle-
inclusive process, and, in fact, one term in this summation corre-
sponds to the process ab - cX, which can be isolated by the special

path of continuation in taking the discontinuity. This is illustrated

in Fig. 1.4.

a >
b
|C' >

Fig. 1l.u4. Dlscontlnu1ty equation (term corresponding to 51ngle-

partlcle -inclusive reaction)
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the Mueller helicity amplitudes. Kinematical and dynamical properties
and limits of one-particle-inclusive processes will be discussed in
the following section. The invariant cross section is given by

f(ab,c) ~

T
) A shpsA, M

Disc , < A_, A
a

, A |aCs,t,4%) | A A

b? b Ae

and the density matrix element of the finally observed particle is
. 251
I Discy <A, LA |A(s,t,M A A sA
CALA 2 :
I Disc ,< A_uAp 54, [als,t,M )]A WA s, >
XA A M ‘

Similarly, one can define the .target and the beam dsymmetry(18’2o) as

. 2
E Diseu2<d_shy5A [AGs, T, M) [A 5050 >

[ ]
Ao A b
Ab __a, ¢ )
Aprshy P> Disc,, 2<A P |A(s t,M4 )IA oM poe >
: A shpsh
and z . 2
| o Dise,2h ;A LA lats,t,u?)[A A 2 >
Bi AL 2 ’
t? 3
ar*"a Aa,§b,ACDlscM2<Aa,Ab,Ac|é(s,t,M )lxa,xb,xc>

respectively, where we have chosen a as the béam and b as the target
particle. Again not all these matrix elements are independent. For
example,périty conservation requires that density matrix elements

of particle ¢ - satisfy

Ac'—xc c
o c (-1) oy, oyt
c'? "¢ _ c'’’c

C
P_a
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1.3 KINEMATICAL LIMITS AND THE MUELLER-REGGE EX™:NSION

The importance of kinematics in evaluating <iscontinuities has

been mentioned before. In this section we will iriefly review the

(15,21)

(22)

kinematical properties of one-particle-inclusive processes,

their high energy limits and the appropriatz Regge analyses of
Mueller's theorem in those limits. For this pur;ose we concentrate
on the regions of phase space where the peaction b =+ cX, to some
extent, is similar to a two-body reacticn ab +cd. The similarity
and the success of Regge theory in two-body reactlons has motivated
the extention of Regge analysis to inclusive prccesses in the above
mentioned regions of phase space. But for varying mass of particle
X, the analysis is more complicated than that of the two-body case.

We have also mentioned before that fhe inclusive distribution
can be expressed in terms of three independent invariants. However,
it is possible to choose any three independent variables,not nece-
ssarily invariants,for expressing the inclusive époss section, Let
us take Pos Py aﬁd P, as theAfour—momenta for'the particles a(beam),
b (target) and cyrespectively,and M2 the mass of state X squared.
We define‘the beam and the target fragmentation rsgions as those
subregions of phase space in which particle ¢ locks as if it is a
fragment of the beam or target particle and the central region as the
rest of phase.space. One of the variables is always taken to be the
centre-of-mass energy squared of the initial statz, s. For the
remaininé two there is a choice among the following pairs:

i) (p||, P;)’ where pll'and p, are the longitudinal (parallel

to the beam Ea) and transverse momentum éf particle c. If the centre-
of-mass scatfering angle is 6 then the~be§m and target fragmentation

regions will be reached by letting 6 +0° and o -*lSOo, respectively.
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(ii) (x,p,) In this pair, which is good for investigating the
fragmentation region, x is the scaled longitudinal momentum,

2P,

X =- . The fragmentation region is defined as the region where

5
% and p; are constant and s +«. The beam or target fragmentation
regions are distinguished by the sign of x which is "+" or "-" »

respectively.

(iii) (y,p;), where

/EI +p E +p m,
2. log\—c——”)= log(——c—-l—'-)= log(——-— s
Ec—p'l m E

c_pll

<
n
Nl

. 2 1
with the transverse mass m E(mc +pﬂ3)2

L

particle c. This pair is good for investigating the central region

and y is the rapidity of

near x = 0,

(iv) (M2,t), where M2 and t are both defined before. M2 is

related to x bﬁ %E- -~ 1 - x for large s. Since in the c.m. M? =
s - 2vs Ec+mc2, if s >>1nc2; then Ec Py apd we have M2 s - 2v§'pf,.
This is tﬁe suitable pair for Regge analysis in the beam fragmentation
region, while (M2,u) is the appropriate choice for the study of the
target fragmentation region.

At this stage we have crudely defined three regions in phase
space and the set of convenient variables far expressing the inclusive
distribution in those regions, but have said nothing about how |
those regions may be reached, how Mueller's theorem can be applied
and what sort of Mueller—Reggé expansion would be expected. A brief
discussion on these subjects follows. |

a) Beam fragmentation region
Within this region the following limits are distinguished

i) The single Regge limit; s =+, M2 + oo, —% and t fixed with

M
the Mueller-Regge expansion shown in Fig. 1.6.



whereaz denotes sum over all possible Regge exchanges.
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C Cc
c - N - c
a - i(. ) - a = 2:
b > N’ (g b @ a a; a
b b

Fig. 1.6, Mueller-Regge expansion for single Regge limit

In this

1

case, the distribution f(s,t,MQ) can be approximated by

| 2y 2 -3 2
f(s,t M%) = Gp(s,t,M ) +s % Gy(s,t,M7),

with G_ and GM’ respectively, the scaling and the non-scaling

components.

ii) The quasi—two-body limit; s ->W,AM2 and t fixed with the

Mueller-Regge expansion depicted in Fig. 1.7.

C - j,-\\ - -+ C Z
> > a =
Qb > AJ b I:J

Fig. 1.7. Mueller-Regge expansion for quasi-tﬁo;body Limit

where I implies the summation over all possible combinations of i

4]
and j Reggeons. The distribution is

2y _ (a3 ()+as (£)-1) 2
f(s,t,M°) = by Bij(t) s ] Tib-»jb (t,M%),
1)
where Tib-ﬁb is the forward diséontinuity of the Reggeon-particle

scattering amplitude. The particle-Reggeon-particle coupling is
accounted for by the residue Bij'
iii) ?he‘triple-Regge limity s =+, M2 +> oo, S/M2 large and t

fixed with the Mueller-Regge expansion illustrated in Fig. 1.8.
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C
> N > b ij.k

b

“

Fig. 1.8. Mueiler—Regge expansion for triple-Regge limit

where summation over all possible Reggeons is implied by I . The

(23) iapk

inclusive cross section is given by
\‘ .

f(S,t,MQ) = ¥ 8.. (_t) (S/MQ)(ai(t)+aj(t)_ak(o)) S(ak(O)—l),
. ijk
1,3,k
where B.., is the total residue.
o Tijk
b) Central region
Double Regge limit; s -*w,ltl >, lul +® and my fixed with

the Mueller-Regge expansion displayed in Fig. 1.9.

:

Y-

Y

a

g

R

A

= 2: C
b

-
| Sy

Neodale)
Y }1
N1
YAy
o0

.

Y

Y

Fig. 1.9. Mueller Regge expansion for central region

I takes into account all possible Regge exchanges. The

NP . : C e (24)
asymptotic inclusive cross section is given by

where

f(s,t,u) = .Z Bij(mL) Itlui(O)—l lu[aj(O)-l'

1,3

In this expression all couplings are accounted for by the residue

Bij(mJ.) .
¢) Target fragmentation region

The discussion given for the beam fragmentation region applies

to this region as well by changing t. »u and x > -x.
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2.2 FORMALISM

The scattering amplitude for the inclusive reaction ab - cX,

depicted in Fig. 2.1, for the specific inclusive final state X,is

taken to be
X
Ja PaB PB R
: . . . (28,29)
where Ju 1s the standard field theoretic current at vertex a
with all the particles a, c¢ and R put on their mass shell, Pug is

the Reggeon propagator between vertices a and B and FBX is the
structure function at vertex 8. The currents, propagators and

structure functions are given for the various processes under

investigation as they are needed.

b
Fig; 2.1. The Born diagram for single-particle-inclusive

production in the fragmentation region

A, |2

Yy Y

IR spins X

Fig. 2.2. The Mueller-Regge diagram corresponding to Fig. 2.1

In this chapter only nucleon production in nucleon-nucleon

scattering, which proceeds by the exchange of a charged non-strange
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meson, will be considered, e.g.,pp =+nX and np -pX.
The only allowed Regge exchanges for the reactions pp -+nX

and np - pX are the 7, the p and the A
(30)

exchange degeneracy to calculate the.A2 contribution from that
(31,32) |

0t We have assumed strong

of the p
For 7 exchange
P2 -
J =dJd_. = FM__——§'(N YSN)

o 5
HmN

D+2F/3-8°

and, for p/A2 exchange we have

P
-7 = (M T 1w
J, = Ju = (2mN Fc (NN)F+SS + Fy 5 (N ruN)D+2F/8—S)’
where FC and FM are the conventional Sachs from factors(ss) and

are related to the baryon-baryon-meson coupling, SREM? by

o
Fo = (1 + 500 8ppy»
and
s .o
FM = (1 + y ) H—

where m and p are the group theoretic average masses.of the baryon and
meson, respectively, My is the average mass of the incoming and

2
o " Pa)u’ (wherever P
2 . . 2 2. 2, 2
and Q appear we will take them to be on-shell, i.e. P" = 2(ma+mc)—u

outgoing baryons, Pu = (pa + pc)u and Qu = (p

and Q2 = u2); N and N are the nucleon and the antinucleon wave
functions (see Appendices A and B) and the subscripts D, F-and S
refer to SU(3) symmetric and antisymmetric octet and singlet coupl-
ings,respectively. In thevpresent case the Clebsch-Gordan
coefficients corresponding to (D + 2?/3-85 and (F+3S) are 5v2/3

and ﬁg, respectively. In addition
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r, = EuvKA.Pv Q" YX YS,
and EREM is calculated from the known pion-nucleon coupling constant(su)
by |

g21T g’ 2m. 2 2 2 542

BT = 30.0 =z (L +H° (-2 B

umN 3
The propagators PaB have the form
.
~g . +Q Q/m °
EuvTuy My
5 and 5 .

t-m t-m
s v

1

for pseudoscalar and vector exchange, respectively, with m and m,
as the on-shell mass of the exchanged pseudoscalar and vector

mesons, respectively. The Reggeization procedufe yields

1 da_ \l+T“eXp(—lﬂa“) s o
5 5 (= T(-a)) 5 ()",
t-m dt | t=m M
m T
and
do 1+t _exp(-ima )
1 -1
5+ —F , (I(1-a )) = )%,
t-m at | t=m P M

where a and t are the Regge trajectory and signature of the

appropriate Reggeon. Our Regge trajectories are taken as

u“(t) 0.013 + 0.650 t,

and

ap(t)_ 0.470 + 0.905 t,

]

where these trajectories are derived under the assumption of

exchange degeneracy between the pairs of particles m-B and p—A2.

B

pion excﬁange it must_be a pseudoscalar and for ;VA2 exchange it

At this stage all we know about the functionT X is that for
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- must be a vector.

Since we have assumed that p and A, are exchange degenerate

2
they do not interfere. Also, it is possible to show that Reggeons
of different natu;élity do not iﬂterfere, i.e., there is no inter-
ference between Ehé 1 and the p/A2. Thus, in-calculating the
differential cross section, as indicated in Fig. 2.2 , we are
dealing with the squares of the amplitudes and we have no inter-

ference terms. The only things we cannot, in principle, calculate

for these amplitudes, at this stage, are the scalar and the tensor

quantities
b) P5X P5x+ and I PVX Pv,XT,
X v X

which arise when we square the amplitudes, sum over X and factor-
ize out the pseudoscalars and vectors that arise from the three-
particle vertex (vertex o in Fig. 2.1 ).

For these quantities we turn to on-shell mp and pp elastic
scattéring at t' = 0 (see Fig. 2.3 ). The mp total cross section
is related to the transition matrix element <mp I T l‘ﬂ p > via

the standard optical theorem, i.e.

DiSCI { T = <Tp I T l X><X ] T l 1rp>*}
s''t'=0  spin X

(=)}
t

Flux . 0q0n (mp),

and similarly for the p, where I indicates an average over the
spin
initial and sum over the final p (and p in the case of pp scatter-

ing) spins.
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previous inclusive data.

Figs. 2.4 and 2.5 display the one-particle-inclusive cross
sections for the process (pn -+pX), while Fig. 2.7 shows thé same
quantity for the'ﬁ%ocess (pp »nX). In these figures the theore-
tical curves, for the ﬁnnatural parity, natural parity and total
contributions, a;e shown and compared with the experimental data
of FNAL and ISR. The dominance of the unnatural parity exchange
contribution, which is completely pion exchange, is evident, with
the ratio of the unnatural parity to the natural parity contribution
increasing with M2 for a given s. The M2 dependence>of the data is
well accounted for by the model. |

In Figs. 2.6 and 2.8 the t dependence of the one-particle-
inclusive distributions is shown at fixeq M2. Here it can again
~ be seen that the natural parity contribution, which is due to the
exchange of thé p and the AQ,is overwhelmed by the unnatural parity
contribution. The ratio of the unnatural parity to the natural
parity contribution decreases with!tl. The model gives a forward
dip in the t distribution at t = 0. The t dependence of.the model
is compatible with the data although, due to a paucity of the data
in t, no conclusive statement can be made.

Because of the higher symmetry scheme, it is easy to exten

A . .
+ - o _t
our model to such processes as p > A, ZO, r,r, =

where A is an apbropriate hadron. We accomplish this by replacing
the v, the p and the A2 trajectories by the K, the K* (890) and the
K* (1420) trajecfories, respectively, and uéing the appropriate
Clebsch-Gordan coefficient at the three'particle vertex (vertex o
in Fig. 2.1 ). Reactions of this type would be an interesting

test of the model and pp - KX will be studied in chapter 4.
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‘The invariant cross sectlon for (p Bn) at some ISR

energies plotted against M /s. Data from ref. 43 (-—-—-- 1nd1cates

the natural parity exchange contribution,— ——indicates the unnatural

parity exchange contribution, —— indicates the total exchange

contribution)
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2.4 CONCLUSION

A Mueller-Regge model has been constructed for studying the
one-particle-inclusive processes in the quasi-two-body and triple-
Regge limits of the fragmentation region. This parameter-free
model, which is the framework of our study of the inclusive
reactions, uses the Regge parameters derived from two-body
phenomenology .

The model has been applied to the nucleon production processes
and shows a surprisingly qualitative success. Nevertheless this
qualitative success has no real significance and we have learned
from two-body phenomenology to be cautious in intefpreting such
successes, But this qﬁalitative success encourages us to be more
optimistic about accepting this model as the basic framework for
more detailed investigations of the ;nclusive procésses and perhaps
the explanation of an effectively complete experiment(lg).

The model, as it stands, isrtqo naive to give a full description
of the inclusive processeé. The model has been applied to
resonance production processes(ul’uu). Obviously these resonances
subsequently decay into their more stable products and one would
expect any reasonable model to give some sort of explanation of
this decay process via the structure in' the decay density matrices.
This model at the present stage is unable to give any structure
for the decay density matrices.

The study of two-body processes has taught us that in any
realistic model, which is designed for high energy interactions,
apart from pure Régge poles, the inclusion of Regge cuts(qs) is

essential.’ Now one might argue that the inadequacy of the model

in describing the inclusive processes in a reasonable manner has
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Pw and Pp, after Reggeization, take the form

da_(t) 1+ t_exp(-imo_(t)) o (t)
P v e 2 (- Mo () (— &,
Ll 2 M
and
da (t) 1+t exp(-ima_(t)) a (t)-1
Pyt Itzmp2 (r1 - o (£)) (—2 . F—) (32—) ° ,

respectively, where a(t) = o+ a't and .t is the appropriate
signature.

Our Regge trajectories are taken as

aﬂ(t) - 0.013 + 0.650 t,

and

dp(t) 0.470 + 0.905 t,

where these trajectories are derived under the assumption of exchange

degeneracy between-the pairs of particles m - B and p - A2.

14—
2

"Fig. 3.1 The (%+,%+ R) particle-particle-Reggeon vertex with the momenta
appropriately labelled.

m

z -
N

R

’ . . + .,
Fig. 3.2 The Mueller-Regge diagram for the inclusive production of 2 in the
%+ beam fragmentation region.
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For the mp total cross section we take

(mp)= (23.4 + —2:3)mp,

g
: . (37)
and for the pp total cross section we take
' 0.6
cTOT(pp) =04270 ————52——2 (98.6 + %4%) mb.
- @-t/ml) ok

The A2 contribution was calculated using strong exchange

degeneracy, i.e., to get the A, exchange contribution from the p

2

exchange contribution we simply take Ty 7T A detailed
2

discussion of the calculation of these expressions is given in
Chapter 2. |

In the Mueller-Regge formalism we sum over all possible
helicity states in the final state X. It would be a difficult
task to disentangle these to ascertain the precise proportion of
helicity flip and helicity non-flip contributions at the inclusive
vertex. However, all the Mueller-Regge calculations show strong
forward peaking of the inclusive cross section which would suggest
the dominance of helicity non-flip contributions at the inclusive
vertex. Accordingly, we assume that no net helicity flip takes
‘place at the inclusive vertex. Thus, any net helicity flip arises from

the three-particle-vertex.

‘ Discpm2

Fig. 3.3 The absorbed Mueller-Regge diagram where elastic scattering in
the initial states is taken into account.

»
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is evident in this diagram.

In Fig. 3.6 we have plotted the polarization of the recoil
neutron as a function of the 4-momentum transfer for fixed M2/s.
Again the scaling behaviour of the amplitudes is clearly manifest-
ing itself. The polarization vanishes at tmin by angular momentum
conservation, rises to a maximum of about 6% positive polarization
at -t =0.50 (GeV/c)2 goes through zero at about -t = 0.70 (GeV/c)2
and attains a negative value of about 2%. This behaviour of the
polarization is quite dramatic and would be an interesting test of
the model.

Fig. 3.7 shows the polarization as a function of M2/s for
fixed momentum transfer. - The polarization, as shown in Fig. 3.6 ,
only reaches appreciable values for large t values.

The predictions of our model are compared in Fig. 3.8 with

(42) on the reaction (n E*p) at four different

the date from FNAL
incident momenta in the range s = 109 (GeV)? to s = 756 (GeV)Q.
This data is of much higher quality than the ISR data shown
previoﬁsly and, as such, provides a much more stringent test of our
model calculations. We observe that the s, t and M2/s dependences
of the theocretical distributions are consistent with the data.

The modified Mueller-Regge pole amplitudes.can be seen to inter-
polate the experimental data and represents a tru ly remarkable
parameter-free fit to the data while‘the unmodified amplitudes
overestimate the experimentai data by.factors of about 3. Thus,

we see that our conjecture that absorptive cut.corrections could
remedy the normalization problem fér the invariant cross section

is correct. ‘This provides yet another stimulus to studying cut
corrections to the Mueller-Regge model with simple poles, in

addition to those already mentioned in the introduction.
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(29)

It was shown that the closed expression for a Regge
eikonal formula for summing all Pomeron exchange rescattering

corrections to the Mueller-Regge Y graph shown in Fig. 3.13 is

given by
G S Uy
2. 2 4 2 4
H(s,t,M") = 5 2 2 2
(2m)° (2w)° (2m) (27)
—_ N - 2 -— -
. S(QQQQH)Y(t2u3t24’tOQSQM )S(QQ,QL})’
where
ORI
oo oo o 1B,y 1 1Q308,,
S(QQ,Qu) = f d led B, e
elxél(le) t iy ,10B01 Buy) * X 41 (Byy)s
and
iQ. .3, QB
— _f 23 2 TMNpeSyy TS
S(Q2,Qu) =) d°B,, &'B,, e
X 91 (Byy) = ixgy 1(ByyaByp) = 3xy, (B,

« €

where the variables are defined in Ref. 59 and x2i, Xy1 and X24,l
are eikonal phases between the indicated particles.
Calculations using this model are presently being carried éut(so).
Although these calculations should agree, to leading order, with
the calculations presented here it will be iInteresting to see if
any strong M2/s dependence results from the inclusion of the

eikonal phases qu and x24 1 In addition, it will be intereéting
. ]

to observe any changes in the predicted nucleon polarization.
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CHAPTER FOUR

A POLARIZATION

The evidence for including Regge cut corrections to the
Mueller-Regge model for inclusive processes of the forma + b -»c + X

52,61)

in the triple-Regge region, both from theoretlcal and

phenomenological(36’48—51) considerations, is persuasive. The
reaction p + p > A+ X, where the polarization of the A is observed,
provides a nice test of any particular method for including Regge
cuts in a Mueller-Regge model. This is because in a Mueller-Regge
model with simple poles the A polarization is identically zero. The

Polarization results from Regge cut contributions and thus provides

a sensitive measure of their strength and functional forms.

K.K (890) K*(1420)

‘\
pme

Fig. 4.1 The single-particle-inclusive diagram for p + p » A+ X )
with absorption corrections in the initial state. The particles,

the four-momenta and the Mandelstam variables are indicated.
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For the process p + p » A+ X the couplings to the three-

particle vertices as shown in Fig. 4.1 are given by

X

2 _ -—
oy (s, t,M7) = gPAK(NYSN)P T s

and

P .
2y _ U = — u X
dy(s,t,M7) —{Ml(t) __QmN (NN) + M2(t)NyuN] (pl) Pealys »

for K and K*(890) exchange, respectively. Here s and t are the
usual Mandelstam variables defined by (see Fig. 4.1) s = (pl + p2)2

and t = (p_ - p )2, M is the missing mass /4t is taken as 16.,

2
'3 1 > gPAK
my is the nucleon mass, Ml(t) and M2(t) are form factors related

to the conventional Sachs form factors(as) T, and FM by the relatiomns

c

t

2
umN

M, =F_ - FM and M2 = (1 + ) F

1 C M?

Pu = (p3 + pl)u and N and N are the wave functions of spin Z
particle and antiparticles, respectively. The structure functions

Fﬁ and Pik are defined by

X S 2, 2 X m12<='-°T0T(K*P)
2A(M°, (Kp) and T, = ’
TOT K=
A(M ,mK*,m )

respectively, where me and My are the masses of the K and the

K*(89 0 mesons, respectively, mP is the proton mass and
A(x,y,2) = (x2 + y2 + 22 - 2%y - ?xz - 2yz)

is given by ?L = q sinf. The propagators P and

The varlablé gl K
PK*’ after Reggeization, take the form
da (t) ' 1+t exp[}ina (t)] 0tK(t)
K . K - K 1| s
PK ‘*-——at— B o - T(- C'.K('t)) ) N
t = me . 2 M

and
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0-4 | U NN SN S I RS NN RN DN HND H NN N R B N B B
I pep— A+X at Pg,=300 (GeVic) )
i M?/s=0:1974 i
0.2 . 5
| ’f;::f:JTTJ&m- -
= '{,gf -
c o |
(0] B e ¢ T
"5 00 b o reas T el e aa
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S i
o i
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-0-2} a
[ — . — K*(890)-K*(1420) exchange i
[ — — K, KK*(890)-K*(1420) exchange .
-0.4L—L IS SR SN ISR AN NN NN NN AN U SN SO SR SO N N
00 01 02 03 04 05 06 07 08 09 10

P, (GeVi/c)

| Fig. 4.2 The A polarlzatlon for (p E%) at M /s = O 1974 showing the contributions
' for K (890) - K’ "(1420) and K, K (890) - K (1420) exchanges.
In Figs. 4.2, 4.3 we show the results of ouf calculations for
the A polarization in the reaction p +'p - A+ X at 300 (GeV/c)
for two different values of fhe variables M2/é. At M2/s = 0.1974
(see Fig. 4.2) we see that when the K%(8390) - K*(1u420) exchange
degenerafe trajectory is exchanged the polarization is small and
positive for O < PL < 0.8 (GeV/c). However, the exchange of the
K, K*(890) - K*(1420) leads to a polarization which is small and
negative for ﬁL < 0.38 (GeV/c) with our choice of parameters. In
Fig. 4.3 we have plotted our result fob_MQ/s = 0.0115. Here the
K*(890) - K*(1420) exchange dominates the K exchange in any case.
As M° +0 we find no difference between the results from K% (890)-
K*(1420) exchange and the results for K, K%(890) - K¥*(1420) exchange.
Of course our model calculations of the A polarization scale. The
Basel convention is adopted for our definition of the polarization

vector.
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0.4 I 1T T 17T T 7 T 7 T I 1T 1 1 1
[ PeP—A+ X at PL,=300(Gevic) 7N )
i M2/s=0-0115 / AN
02+ / , \
_ / N
c B 7 7
i) - 7 .
= = -
& 00 ——— )
O
0 I -
Ko - -
o - i
0 F— —— K,K(890)-K*(1420) exchange =
.0.4 i IR I T N B | '1' I W D | 1. | I N N ]
00 01 02 03 04 O5 06 07 08 09 1.0
| P, (GeVic)

* Fig. 4.3 The A polarization for (p_g'A) at Mz/s = 0.0115 resulting from
K, K (890) - K (1420) exchange. | '

Because the experimental data is indepeqdent of the target it

seems worthwhile to compare the data on the A polarization in

p + Be » A+ X with our model calculations on p + p - A+ X. This

should, at least, give us the sign and the order of magnitude of

the A polarization we would expect to obsefve inp+p » A+ X.

However, our model is a triple-Regge model and should only be

épplicable in the triple—Reggé region of phase space. The experi- {

mentai data exists outside of the triple-Regge region, e.g. for

les = 0,31, But the data is independent of x so we do not

introduce too much error by comparing our triple-Regge model calcu-

lation with data accumulated outside the triple—Regge region.
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In Fig. 4.4 we see the results of our model calculations for
both K#*(890) - K*(1420) and K, K*(890) - K*(1420) exchanges for
the A polarization for p + p - A+ X compared with the data for

p + Be » A+ X. The data is positive and small for < 0.8 (GeV/c)

il
and seems to agree quite well with the result of K*(890) - K#(1u420)
exchange. Keeping Fig. 4.3 in mind we can see that in the triple-
Regge region all the exchanges will lead to positive A polarization
as is observed experimentally. It should be poiﬁted out that both
the sign and the magnitude of the A polarization given by our
model calculation are predictions of the model resulting from our
absorption corrections and afe not arbitrary.

It is now well established that poiarization effects exist in
single-particle-inclusive reéctions. These polariéation effects

can be treated with absorption correction models(us—Sl)

, and this
leads to sensible results. Because of its simplicity it would be
most useful to have experimental data on the A polarization for the
reaction p + p » A+ X in the triple—Régge region itself., The’

data which is presently available on the reactions p + Be(Cu)—»> A + X
certainly indicates that the A polarization will be small and
positive. Polarization of the A in the interesting process pp -+ KX

(52) within an absorptive model,

(20,67)

was also studied by Paige and Sidhu

66)

by Turbiner( in Reggeized one-pion-exchange model, by Owens

and by Chang et al. in a difffactive excitation model(ss).
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02 T T T I T | T T T

~ Experimental data for p+ Be «A+X
 Theoretical curve for p+p — A+X T
[ . » i
B R
~ —
- § / ./' —‘..\v_
- ) A /‘ -
- 8} '—‘_{"_’_‘_‘./———/ —
OEF= T T I =
- —.— KY(890)-K{1420) exchange .
| — — K,K890)-K*(1420) exchange ]
C PLab = 300(GeV/c) 7
g M?2/s= O- 31 ]
-0.2 L 1 | | 1 ! ! 1 | '
0-0 016 032 0-48 0-64 0-80

Py (Ge\//c)'

Fig. 4.4 The polarization for (p > N at M2/s = 0.31 compared
with the experimental A polarization for (p Be 1) showing

the various exchange contributions.
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o (1p) = (23.4 + —=3) mp,
TOT 2.2
(M%)

The elastic rescattering effect in the initial state, shown
in Fig. 5.1, is taken into account through absorption in impact
parameter space. The corrected amplitudes are of the form

A g A
c’c

o e
Habs - Sa'b' (b2) o

(b,,b;) 8 4 (b)),
where S(b) is the elastic scattering S-matrix. Assuming that the
elastic rescattering effects in the ab and the Tb channels are

approximately equal, we have made the replacement

1 1 Sab(b)+SEb(b) )
sgb (b) séb (b) = = 1 - C exp(-Ab“) = S(b),

2

where b is the impact paraméter, C is the opacity, A = R-2 where
R is the target interaction radius. We take C = 0.70 and A = 0.068

(GeV/c)Q. The corrected Mueller-Regge amplitudes are given by

AA' o] (=] co
c'c 2, _ f f f .
Habs (s,T,M7) = TldTl TszQ Dldbl Jv(blT)Jv(blTl) S (bl)
‘ o o e
T Acké 2, L
. ) b,db, Jvﬁbzr) Jv;bQTQ) H ™ (s,Tl,Tz,M ) S (b2),

which, after performing the integration over impact parameter,

reduces to

® @ 2 2
AN E‘+T ] TT
ce 2, _ [ [ 1 c 1, 1
Habs (5,T,M) = TldTl 12d12 [Fé(r—Tl) Ty exp{ Iv(——-0
o _ o ua 22

XAt T2+T§L TT
.HC®C <s,Tl,12,M?)[-Tl—a(T-12) - % exp{ - 2 Iv,(—Q) .
ux 2A

In this equation, using the simplifying assumption that the inclu-

sive vertex is dominated by helicity non-flip , v and v' will take

*Following the formalism of Ref.(50) as given by equation (2.13) we
can relax this assumption and sum over all the spins of the inclu-
sive cluster. For small t the results of our calculation remain

unaltered.
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found that Rep2l is generally small with no dependence on t or
M2/s and that Rep20 is negative and changes little with variation
in t or M2/sﬂ Because of this, we only plot the decay density
t i .
matrix elements pOO’ P11 and Re Po1
All the calculations of differential cross sections and

(eu>.

density matrix elements were carried out numerically All

the figures were, for accuracy, plotted by computer(ss);
The turnover in the differential cross section (see Figs. 5.2

and 5.4) is expected because near the edge of phase space the

power dependence on t dominates over the exponential dependence on

A A
t. The expressions for Hagsc for Ac = *2 and *1 depend, respectively,
on sinQB and sinB which vanish at t = t . . Because Hoo is fall-

min abs

ing rapidly for t near tmin’ the rise in the remaining amplitudes
results in the differential cross section turnover. Since we
consider only pion exchange, we have no WSNZ dips in the range

| <]t] < 1.0 (GeV/c)2. A similar effect can be seen in the
0(32)

| t .
min

two-body exclusive production of the f

In Figs. 5.3 and 5.5 we have plotted the density matrix

elements in the Gottfried-Jackson frame. In a Mueller-Regge model

(41)

with Reggeized pion exchange we would get the result Poo = 1
and p,, = Re p, , =0 for all t and all M%/s. With the addition
of absorption corrections Poo shows strong dependence on both t
and M2/s while I and Rep2_l still remain close to their unabsorbed
predictions. In particular, 00 varies between 1 and O as t
varies between t_. and t_._ - 0.5 (GeV/c)2 for fixed M2/s and
min min _
between the same limits as M2/s varies between the edge of phase
00

is dominated by H so that the

spaée and 0.01 for fixed t. bs

Poo

position of the zeros in Hggs corresponds to the position of the

zeros in Poo in the c.m..frame.
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In conclusion we state that our model for including absorption
corrections in the Mueller-Regge formalism leads to the very definite
prediction, which is independent of the overall normalization of
our'amplitudes, that P50 will be a strong function of both t and
M2/s. An experiment of not very high statistics, some of which are
currently in progress, could verify this prediction. Moreover, for
the differential cross section, our prediction after carrying out
the integration over missing mass squared, 1s comparable to the

(71)

experimental results at 16 GeV/c .
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2 2
(p” - m") @u N (A,p) =0, ¢ ® .. ey e (A,p) =0,

1 b S A TS L
and
P e e e (Lp) =0, (k= 1,2,...,0)
Ul Ui DJ
where, as before;, A represents the helicity states. The wave

functions are normalized according to

A Hoewold
% 1 J
@ * e (A,p) @ ) J (A"P) = (—l) 6 [
¥y Wy A

Particle with Half-Integer Spin J + 3:

The half-integer spin J + % states are described by the direct
product of the infeger spin J tensor representation and the Dirac
spinor representation (2,00 @ (0,3). However, this spin addition
results in spins J + 3 and J - 2, the latter spin state can be
eliminated by the appropriate projection conditions. The wave
functions must satisfy the equations of motion

(g - m)uul...uJ (A,p) = 0 and y" uuuz...UJ (A,p) =0 ,
and the normalizatioﬁ

u,oow 1
— J 1
Wty (A,p) u .. (A',p) = (-1)J 2 om 8

)
LS LN |

AX!

with U = udt Yo' The projection operators Ap) consist of the
symmetrized products of those already found for spin 1 and spin 3.

As examples of the last two paragraphs we give:

Spin 3/2 Particle:

Equations of motion are

g - m)i uBu(A,p) = 0 and (Yu)i qu(l,p) =0



. and the projection operator is

ps By = B

ol o

Spin 2 Particles:

2 PP, i
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B8 1
2m) (_guv * 3 Yqu *

2

3m

pﬁyv-pvvu)

2 2
(0% -~ n%) ez (4,p) = 0, 0, (A,p) = 0 and p" o, (A:p) = 0

are the equations of motion and

PUPK

Ay, ) () =2 eyt =300y, *

m

is the projection operator.

A.2., Some Useful Mathematical Formulae

Fourier-Bessel or Hankel transform

The Fourier-Bessel transform is given by

L]

F(b) = f Jv(br) Q(r) T dr,
o

with the inverse transform

1) = f J (b1) F (b) b db,
(e]

Pvpk

m

2

e <2
L

)

where Jv is the Bessel function of the first kind and v >-1.

The orthogonality condition for Bessel functions of first kind reads

o

]de(bT) J,(b'0) tdt = 8(b" - b).

The following integrals(7u)

last three chapters

[ba 3, (b1) I (b') exp (-2 b°)
o

2

. 1 !

L= !2-7 exp (_ T +T ) Iv (TT )’
L 2X

are useful for calculations in the

2
3

N

<\

)
J

>



gy,

Spin 1

The polarization vector of a spin 1 particle at rest is given

by
0 0
1
21,00 = (7 ), 0,0 = 3.
0 1

The helicity polarization vectors of a spin 1 particle with
momentum g, which makes an angle 6 w.r.t.+z-axis, are obtained by

a Lorentz transformation followed by a rotation and are given by

u 1 0 U 1 d

e (£1,q) = 5 cosB , € (0,q) = . E siné
+i ' v 0
-siné E cos®

where the mass and energy of particle are denoted by my, and E

respectively.

Spin 2

The wave functions of a spin 2 particle with momentum g moving

in the direction 6 w.r.t.tz-axis are given by

L (22,q) = eu(il,q)-ev(il,q),

6 (£1,0) - (e (21,)e (0,@)+e (0,q)e (21,)),
by (05 =Jé— (2 €,(0,)¢,(0,@)+e (-1,q)e, (+1,)+
eu(+l,q)ev(-l,q))

where the s&s are defined above in section on Spin 1.

Note that the spin 2 wave functions are expressed in terms of
their constituent vector wave functions. This is only because the
vector wave functions and their properties are more familiar, which

will perhaps make the evaluation of the transition amplitudes easier.
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B.3. Normalization

A high energy one-particle-inclusive reaction in whichthe collision
between particles a and b produces particle ¢ and any other thing
is written as a +:b +c + X or as (abjc). The U-momenta (energies)
of a, b and ¢ ar? denoted by pa(Ea), Pb(Eb) and pc(EC),respectively.
In this section all spin indices are suppressed and it is assumed
that the summation over final spin states and averaging over

initial spin states has been carried out. The one~particle-inclu-

sive cross section is

PN d3px
<n:>c;; = %E. SC 3 (QH)Q 64(Pa+pb_pc_px)‘
T (2m) 2Ec (2m) 2§X

. I <C,X l A(S,Pcapxst)la:b >IQ H

where <n > is the multiplicity of ¢ and X refers to anything. We

know that the total cross section 10T and dsp"/Ec are Lorentz
-

invariants. Therefore it is possible to define a Lorentz invariant

momentum distribution of the form

c
ab

L

E do
c

3

d Pc

. . . 2 .
In the kinematical region s >> M >> m2, or the fragmentation
region, one has the kinematical relation

d 2

¢
ab _ do

3 =

d P, dtdM

ERl]

2 3

where s and t are the usual Mandelstam variables and M is the

missing mass. Moreover, from energy-momentum conservation in this

region, we know that there can be at most one particle, so that '
(27,10) '

<n> =1 . Hence the invariant differential cross section

is defined by
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l..'
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APPENDTIX C

STRUCTURE FUNCTIONS

Considering the nucleon-vector meson interaction, the most
general symmetric tensor we can form from the available four-

vectors is, after summing out the nucleon spin,

{ ' ! f ' !
M\)v - Vl g\)\) + V2 Pvp\) + V3 q\)q\) + Vu (p\)q\) + q\)p\) )

where p and q are the nucleon and the vector meson four-momenta
shown in Fig. C,1. For any vector meson this will be contracted
with

%

A % . A
€, (q) = €, (A,q) and €, (q) = €1 (A,q9),

where the e(X,q)'s are defined in Appendix B, so that V3 and Vq
are redundant. (Our choice of gauge invariant currents at the
three-particle vertex ensures the validity of this arguement for

our purposes.) The standard optical theorem gives us

Flux. aTOT(VN)

ofa
o

= Disc {Z.ek
v

'
(@™ e} (a) )
s'|t'=0 A

Vo~ V()
VI
N(p) , | | ~ N(p)

Fig. C.1l. Nucleon-vector meson forward scattering

Using the vector meson wave functions

e (q) = ;;-(q, E sin 8,0, E cos 0),
v m,



(1)

. . 1 (0)
% 3 - : : = = :
Strictly speaking the factor OTOT(VN) =3 (qTOT (VN) + 20T0T (VN))
g ey (0) ey - (1) N T R
should be replaced by OroT (VN) - OroT (V). For lack of experimental

information on the total cross sections for the individual helicities ~
A=0, A= l,. we take the former expression as gi&ing the correct

order of magnitude.




si (q)

(0; U (),

(O;; é% (cos B, #i, - sin 98))’

88.

+
where U™ (q) are defined by this expression and satisfy g%(q).q=0,
r~

the normalization is

&% 1
e (@ g™ €, (@) = 3.
v v
A
Then if we take
! _ vv! v v!
M =V, 8 tv, PP ,
we have

or

Discsq V2 + A2( , 2 2,
S ,mV,TrLN

We note that the term involving V2 ( and hence pip;

Disc_, V
s

, L2 2
A(s ,mv,mN) 5

)

+ 3 DiscS:1

8 mV2

2 2
A(s'?mv,mN)

gr=071(8"5t")s

TOT(v.N).

in terms

of our inclusive matrix elenent squared) will be multiplied by a

factor of 52 (via the (P.pl)2 term), and while Discs, vy is allowed

to be a factor of (s')2 (where s' is identified with MQD greater

than Discs, Vs in the triple-Regge region this becomes a factor

of (M2/s)2 which will be small,

Thus we will neglect V., and take *

1

2
8
N
2 TOT

Discar Vo = Als? ,m2,m2)
3 V’“"N

(v N),
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2
¢1ibs (S,T,MQ) = ¢I+(83T,M2) - Cexp |- I
1D
2 2
T exPE:/ux(uxb .+1)] ( UA(UAD. . +1)+T
i 11 11 .
4 T opp,d 11-— 5= (b > byid Y
i=1 (4Ab,, + 1) L 8k (4Ab, ,+1)
nabs 2 ™ 2 T T2
9y (s,T,M ) = ¢+_(S,T,M ) - c(idexp C o —
2k
2
Y i exp[T /MA(L&)\bli+lﬂ
r p, | = +n_(b.. »b, .)} ]|,
izl T (1b, . + 1) T 2
11
pabs 2 p 2 'r2
¢++ (s,T,M7) = ¢++(s,T,M ) -Cexp |- Y
exp[}Q/HA(MAd +1)] ( (RY + ur?) :
1 1 ++ ++ 2
{ R, -~ 5 (WA A+ [+ T0)
(uxdl + 1) 8k (4Adl+1) :
22 .
P (r“+1er21[4xdl+1] + 3222 [uxdl+a.J2) ban {a» 4,} ],
16Kk~ (4rd +1) : ' P
and
abs 2 2 T : 12
¢i (s,T,M7) = ¢i (s,t,M") - C(EE) exp| - —
- . I : . L4

o
exp (12/4}\(4>\dl+l)} 1 Ri (t +8)\['+)\dl+l] )
A { = R - — }

(uxdl+1)2 2 (4Xdl+l)2

+np {dl —>d2} .

D.3. Absorbed Helicity Amplitudes for £° Production

Ac

'
In order to give the final form of Aa and A)‘ ; (see Chapter

bs ab
5). Let us use the results of that chapter and define

1 s (a01r+a 'tmin) B '
=11 1 (S
fi : 8% (MQ) e%p bi tmin] ’

=4 ol 5_ =4 ' 5y _ iqa!
bli . [bi + ool 1n (M2) ], bQi . bi t ol 1n (M2) imal b,
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n. = 5
T2 'T.'2
d,. = d.. =
1i 1 > 721 2.1 ?
= ] = .
16f(m+%>li) 16 (M+b21)
P -1 .1 -1
e13 = Gy * bpy) > ep; = GGy Dyy) ’
2 2
t. =m~ +m - 2E_E + 2gk. Then we have
min ad a C
‘A = = A° - C T f, ( ex d.){l——3+d.
abs abs 1 i=1 1 6412 p[ 1i 4k2 11]
2.
€11 2
+ 5 dli +8d., +12 | D + n. (dl ->d2i s €5 ->e2i) s
euk
A =1 Al=-1 Y (qE_-5kE )
c c _ .1 T 2 : a c
abs abs " A T Cgm I fip (egg eXP[dli}{an“ch - 2
¢ 1i=1 8k
| (qE_+7kE ) :
i 2 2
.e.d.+2]—u—e. a‘. +6d.. +6|D
11{ .11 128k4 11 1i 1
0 dyy >dys sl eyl
lc=0 Aé=0 o 1 L T 2
Are T AL A" - ¢ (- 7 =) 5 (Zey; exp[dliJ{Q[an-kEc]
m i=1
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