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ABSTRACT.

A derivation d in any associative ring R is a linear 
mapping such that (ah)^ = a^h + ah^ , any a,h ^ R. The 
kernel of d is a subring of R which can sometimes be a 
ring of the same type as R. In particular, if R is a free 
power series ring, F «  »  , over a commutative
field of characteristic zero, we find conditions under which
Ker d is again a free power series ring. This happens e.g. 
if all the nonzero elements of the set i - l,...,q}
are homogeneous of the same order, or if at least one ele­
ment in this set has a nonzero constant term.

Por every derivation d in a complete inversely filtered 
P-algebra S satisfying the [n-term] inverse weak algorithm 
it is at least true that Ker d is [an n-fir] a semifir, i.e. 
Ker d is then again a ring in which every finitely generated 
[by at most n generators] right ideal is a free right S-
module of unique rank. This is also true for the fixed
rings of suitably chosen automorphisms of S, for if ©<: is an 
automorphism which maps every element onto itself plus an 
element of higher order, then log oc is a derivation such 
that Pix oc - Ker (log oc ).

In a free associative algebra P< X > , X a countable 
set, the kernel of any derivation d such that the nonzero 
elements of the set { x^; x e xj are homogeneous of the 
same degree, is also a free associative algebra over P.
In particular, the kernel of the derivation ^  has a free 
generating set consisting of {y e X; y / x} together 
with the set of all commutators of the form [..[[y,x],..,x3. 
This makes it possible to regard P< X > as a skew polynomial 
ring in x over Ker ^  , a fact which characterizes x up to a 
"constant" in Ker ̂  •
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, INTRODUCTION.

If the development of general (noncommutative) asso­
ciative ring theory is superficially divided into rings, 
with descending chain conditions, rings with ascending 
chain conditions and rings without chain conditions; then 
free rings, in particular free algebras and free power se­
ries rings over a field, fall under the last heading. In 
other words they belong to a part of ring theory which is 
still relatively little explored and as such present a 
fruitful area for research.

It is still fairly recently that general methods for 
their study became available. Among these tools are the 
weak algorithm (which is a generalization of the classical 
Euclidean algorithm) in free associative algebras and its 
counterpart, the inverse weak algorithm, in free power se­
ries rings. A survey which indicates the techniques pre­
sented by the weak algorithm can be found in [17] and this 
paper also contains references to relevant literature in 
this field. The inverse wealc algorithm was first defined 
in [10].

Whenever an algebraic structure, e.g. a free ring, is 
being studied it is important to know as much as possible 
about the endomorphisms, in particular the automorphisms, 
and other related mappings, such as derivations, in this 
structure. Free rings have the property that every (suitt- 
able) subset in them which can be taken as the Image set of 
the set of free generators, determines both an endomorphism 
and a derivation in the ring. However, it can be quite 
difficult to decide whether a given endomorphism is an auto­
morphism. In a free associative algebra (of rank > 2) it 
is not even known yet if every automorphism is "tame" in the 
sense that it may be regarded as a product of certain "ele-
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mentary" automorphisms (see page /2Z).

Derivations in free, associative algebras have not 
before been studied in any depth, and the research for 
this thesis started with an attempt to use derivations 
to characterize sets of free generators in such an al­
gebra. . Any derivation in a free algebra, P< X > , can 
only marginally decrease the order of an element to which 
it is applied. This suggests that it might be worth­
while to study the effect of derivations on 6-dependence 
relations (6(a) = the order of a e F< X > ) , something 
which can be done more advantageously in free power series 
rings, i.e. the topological completions of free associa­
tive algebras relative to the topology induced by the order- 
function. In this way we obtained information about the
kernels of derivations in complete inversely filtered rings, 
and in particular free power series rings.

It is well-known in mathematics that elements which 
belong to the kernel of a derivation (or differentiation) 
are often also fixed elements of some automorphism, and vice 
versa. We investigated this connection between derivations 
and automorphisms in a complete inversely filtered ring, and 
have shown how it enables us to extend results on the ker­
nels of derivations to fixed rings of automorphisms.

Additional information on the endomorphisms, automor­
phisms and derivations of a free power series ring can be 
found in [1], but even so, all that has yet been said in this 
respect touches only a small part of the vast field of in­
vestigation presented by derivations in free rings.



ABBREVIATIONS AND SPECIAL NOTATION.

(The numbers on. the left refer to the pages on. which addi­
tional information can be found.)

14 WA^ - n-term weak algorithm
15 WA ■ weak algorithm
15 IWA^ - n-term inverse weak algorithm
16 IWA - inverse weak algorithm
16 gr(R) " graded ring associated to a filtered or

inversely filtered ring 
16 gr^(R) " group of (homogeneous) elements of degree

n in gr(R)
18 UFD ■ unique factorization domain
22 Ker d * kernel of the derivation d

Fixo^(SA) - the subalgebra consisting of all elements
a c A such that a^ * aj 'oCan automorphism 
of A.

11 V " filtration, or degree function in a free
associative algebra

12 V" - inverse filtration
21 6. - order function in a free associative alge­

bra or free power series ring 
(a^)^ - transpose of the row vector (a^)

46 â - least homogeneous component of a
51,
tOif
51, ^  - the (continuous) derivation in F «  X »

or P< X > which sends x^ *-> 5^^
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32 f ^  “ the derivation in F< X > which sends

[a,h] - the commutator ah - ha
52 [ u , ] “ E • ■ • C [ u , y x^] I • • • y x^]

k times
C - the field of all complex numbers
Q  - the field of all rational numbers
Z  - the ring of all integers
'7̂  ' - the semigroup of all positive integers
// - the end (or absence) of a proof
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• . CHAPTER 1.

DEFINITIONS AND PRELIMINARIES.

The definitions and basic properties of all the con­
cepts used and discussed in the thesis form the subject 
matter for this chapter. We have proved the assertions 
only if it was inconvenient or impossible to provide a refe­
rence to a satisfactory proof in the relevant literature.

1. Filtered and inversely filtered rings.

We are primarily concerned with free associative alge­
bras and free power series rings, but some of the basic 
notions which will be our tools for studying derivations in 
these rings belong naturally to a more general context.
We take this as a starting point for listing the necessary 
definitions. All rings are taken to have unit-elements 
which are also the unit-elements of all their subrings, and 
all homomorphisms map the unit-elements onto themselves.

A filtered ring R is a ring with a non-negative integer­
valued function v defined on its subset of nonzero elements 
and satisfying the conditions:
i) v(x) > 0 for X / 0, v(l). - 0 ; 
ii) v(x - y) < max fv(x), v(y) ] ;

iii) v(xy) < v(x) + v(y) .
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1.1

Extend v to the whole of R by taking v(0) - - oo , An
equivalent way to get R to be a filtered ring is to re­
quire that there must be a sequence (R^) of subgroups of 
the additive group of R satisfying the conditions
a) 0 - R.«, Ô Rq S R^ £ Rg Ô ... , l €  R^;
b) U  R^ " R ;
c) - Ki+j ,
The equivalence between these tv;o sets of conditions stems 
from the fact that a) - c) follows from i) - iii) if we take 

R^ - { X € R I v(x) < n} ;
and conversely i) - iii) follows from a) - c) if we define
V on R by

v(x) " min { n | x € R^ j .
For any a ( / 0) € R the integer v(a) is called the degree
of a.

On the other hand, if we have a non-negative integer­
valued function V defined on the set of nonzero elements of 
the ring R and satisfying the conditions
1) V(x) > 0 for X / 0 , V(l) - 0 ;
2) V(x-y) > min [ V(x), V(y) ] ;
3) V(xy) > -V(x) + V(y) ;
and if we extend V to the whole of R by taking V(0) ■ ^  ,

we say that R is inversely filtered by "V.
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Now put
[ X € R 1 V(X) > t j ,t

then (R^) is a descending sequence of subgroups of the ad­
ditive group of R
a* ) R " R_ D R. :> Rg :> •. •.. such that0 — j. —  ̂—
b') /I " 0 '
o’) E^Ej S Eĵ +j .

Conversely, if a*) - c*) are given in R, we can get a 
^ satisfying 1) - 3) by taking

V(x) -  ̂min f 11 X ^ R^+i i if x / 0
I oo if X - 0 .
V

For any a( / 0) ̂  R the integer V{a) is called the order of a.

If R is an inversely filtered ring it may be topolo- 
gized by taking the subgroups R^ to be a neighbourhood base 
of zero. The completion R of this topological ring is also 
of interest to us, because by b') R is Hausdorff and it is 
therefore a subring of its completion R. (See e.g. [ é , 
ch. Ill] . In the next two chapters we shall always take 
the inversely filtered rings to be complete, so that R ■ R 
will hold.

Next we introduce the concepts of dependence and inde­
pendence relative to the filtration in filtered and inverse­
ly filtered rings.
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Definition; i) Let R be any filtered ring with filtration v.
A. family (a^) of elements of R is right v~dependent if there 
exist elements b^ e R, almost all zero, such that

< max ^ { vCâ )̂ + v(b^)j ,
or if some a^ ■ 0. Otherwise the family (a^) is right v- 
independent.

. ii) An element a € R is right v-dependent on a
family (a^) if a ■ 0 or if there exist elements b^ e R, al­
most all zero, such that

v(a - 2La^b^) < v(a) , while 
v(aĵ ) + v(b^) < v(a) for all i.

The corresponding notions for left v-dependence are de­
fined analogously.

If one member of a family is right v-dependent on the 
rest, the family is necessarily right v-dependent, but the 
converse is not generally true. In fact the converse just 
constitutes the "weak algorithm" as expressed in the follow-^ 
lug

Definition; A ring R with a filtration v is said to satisfy 
the n-term weak algorithm (V/Â ) relative to v,if, given any 
right v-dependent family aQ_,...,aĵ  (m < n) such that 
vCa^) < ... < v(a^), some a^ is right v-dependent on ''^-1^
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If R satisfies WA^ for all n, we say that R satisfies the 
weak algorithm (WA) relative to v.

For inversely filtered rings the corresponding defini­
tions are as follows:

Definition; i) Let R he any inversely filtered ring with 
inverse filtration V. A family (a^) of elements of R is 
right V-dependent if there exist elements of R, almost 
all zero, such that

Z. Uj^b) > min^ { v(a^) + v(b^)} ,
or if some - 0. Otherwise, the family is right -Q--indepen­
dent.

ii) An element a 6 R is right V-dependent on a 
family (a^) if a - 0 or if there exist elements b^ ̂  R, al­
most all zero, such that

f(a - Si aĵ bĵ ) > V-(a) , while
•O-(â ) + ^(b^) > V(a) for all i.

Definition; A ring R with an inverse filtration V is said 
to satisfy the n-term inverse weak algorithm (IWA^) relative 
to "V, if, given any right ^--dependent family a^,...,a^ (m < n) 
such that (̂â )̂ < ... < V"(a^), some a^ is right -^-dependent 
on a^ » • • • > 1 *
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If R satisfies IWA^ for all n we say that it satisfies the 
inverse weak algorithm (IWA) relative to V.

Note that both the definitions of WA and IWA refer only 
to right dependence. This is so because the concepts are 
left-right symmetric in both cases. For WA^ (and WA) a 
proof of this fact can be found in [ /7 ] and for lYk'Â  (or 
IWA) [ % ] can be consulted, but the argument in the latter 
case is basically the same as in the former. It utilizes 
the notion of graded rings associated to the filtered and 
inversely filtered rings respectively.

For a filtered ring R the associated graded ring, gr(R), 
is obtained by considering the union of disjoint additive 
groups R^/R^_^ “ gr^(R) (say), and defining multiplication 
in the natural way such that gr^(R) gr^(R) 6 gr^^^(R) .
For an inversely filtered ring the associated graded ring 
is obtained in an exactly analogous way, the difference being 
that we now have to consider the union of the disjoint addi­
tive groups R^/R^^2 • (see e.g. [-5* ,Ch.3] for a discus­
sion of the parallel commutative case.)

It is important to be aware of the fact that every de­
pendence relation relative to the filtration in a filtered 
or inversely filtered ring, manifests itself by a linear de­
pendence relation in the associated graded ring. :. :
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Consequently, R satisfies WA^ (resp. IWA^) if and only if 
the associated graded ring, gr(R), satisfies the condition; 
Given any right linearly dependent family a^ ,...,a^ (m < n) 
of elements in gr(R) such that â  C gr̂  ̂(R) and i^^#. ,

jthen for some k , 1< k < m, a^ is right linearly dependent
on a_ , # # #, a #

^ k-l

2# Free ideal rings, and unique factorization domains.

A right free ideal ring (or right fir) R is a ring in which 
every right ideal is a free right R-module of unique rank.
The definition for a left fir is exactly analogous. If a 
ring satisfies this property only for finitely generated 
right ideals, it is called a semifir. (Here it is no longer 
necessiary to distinguish between right and left semifirs, be­
cause the notion becomes left-right symmetric.) Rings cha­
racterized by these properties were first defined by Cohn 
[ /3 ]. He later [ /6 ] introduced a refinement by conside­
ring rings in which all right (or left) ideals generated by 
n elements, are free of unique rank. Such rings are called 
n-firs. Bergman  ̂ Z 2 developed these ideas further; in 
particular he gave a number of equivalent characterizations 
of. such rings, one of which will be important to us in Chap-

* i'

ter 2 (Cor. 2.3):
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A ring R is an n-fir if and only if, for 
every set of m (m < n) elements a2̂ ,..,a^, 
which are left linearly dependent over R, 
it is possible to find an invertible m%m 
matrix ̂  over R such that the vector

has at least one component equal 'I
to zero.

P.M.Cohn [ /2 ] generalized the notion of unique facto­
rization to noncommutative integral domains. We recall only 
the basic definitions.

let R be an integral domain. An element in R is called 
an atom if it is a non-unit which is not a product of two 
non-units. Two elements a,b in R are said to be similar 
if R/aR =  R/bR as right R-module s. (It is sufficient to 
state this only for operations on the right, because the con­
dition is equivalent to its left-right analogue. See C/2] 
for a detailed discussion.) If

a - u^Ug.. .u^ , b - w^Wg.. .Wg '
are any two factorizations of a and b respectively, these 
factorizations are said to be isomorphic if r “ s and there 
is a permutation TT of (l,...,r) such that u^ is similar to 
ŵ .ŷ  • R itself is called a unique factorization domain 
(UPD) if every nonzero non-unit of R has a factorization in­
to atoms, and any two atomic factorizations of a given element
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are isomorphic.

Definition; A unique factorization domain R is said to he 
rigid if, for any two prime factorizations of an element
& € E. ; a " "̂ l"̂ 2 * * * ** ^1^2 * * * *
there exist units Uq ,u ^,...,u ^ (u  ̂- u ^ - 1)

such that c^ - u^_^^ h^ ^i » (i " l,...,r).

Free associative algebras and free power series rings.

let K be a commutative ring, and X a set of noncommuting 
indeterminâtes which commute without restriction with any 
element of K. There exists a number of equivalent ways of 
defining the free associative algebra, K < X > , generated 
by X over K. ̂ We give the definition which describes the 
elements of K < X > directly in a normal form; let be 
the free semigroup on the set X - f x^j , indexed by I.
This consists of all products (words)

X. X. ... X. (1)

where (i^^ig,...,!^) runs over all finite sequences of suf­
fixes in I (including the empty sequence which gives the 
unit-element 1). The free associative algebra K < X > is
then the semigroup-algebra of over X, i.e. it is the X- 
algebra consisting of all elements of the form
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X. X . ... X . A i  i »^1 ^2

(2)

■where the coefficients A. . e K are almost all zero.
Two elements of K< X > , written in the form (2), can be 
equal only if they are identical.

In R * K< X > the free generating set X is not unique, 
but any two free generating sets have the same cardinality, 
which is called the ranlc of R (see [17 , p.4l).

One very important general property of such a free alge­
bra (which can actually be used to characterize it, [8;IV.2]) 
is the universal mapping property; For every given mapping 
^ : X —> A from X into another K-algebra A, there exists a 

unique K-algebra homomorphism rf ; K< X > —> A such that 
<f> - i"f̂  , where i is the natural injection i: X —> K< X > .

Let the length of the word (1) be n, i.e. equal to the 
number of factors x^ appearing in it, and define a (natural) 
filtration on R » E< X > by taking the degree v(a) of each 
nonzero element a € K< X > to be equal to the maximum of 
the lengths of the words appearing in a, when it is expres­
sed in the form (2). It is straightforward to check that 
this definition does indeed make K< X > a filtered ring as 
defined in section 1).

In the following chapters we will be mainly interested 
in the case where K is a field F, and if that is so, it is 
well known [ 9;p.28 3 that F< X > satisfies WA with respect 
to the filtration v just defined.
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It is then also true that for arbitrary a,b €. P< X > 
v(ab) - v(a) + v(b), 

and hence the natural filtration is in fact a valuation or, 
as it is commonly called, a degree function.

It is also possible to define an inverse filtration, or 
more precisely, an order function on P< X > • Take 6(a) to 
be the minimum of the lengths of the words appearing in the 
nonzero element a & P< X > when it is expressed in the form 
(2), and say 6(0) - ^  . Then 
1*) 6(a) > 0 for a / 0, 6(1) - 0;
2*) 6(a - b) > minf 6(a),6(b)] ;
3*) 6(ab) » 6(a) + 6(b) .
Consequently P< X > may also be regarded as a topological 
ring, and as such it has a completion which we denote by 
P «  X »  . This P-algebra^ P «  X contains P< X > as a 
subalgebra. It is in fact the free power series ring in X 
over P C /o ,p.458]. In other words every element of 
P «  X »  can be uniquely expressed in the form

in cite ^
where for each n, the coefficients % P are al-

most all zero. This also makes it clear how the order- 
function can be extended to P «  X »  .

Later it will be necessary to require the field.P to be 
of characteristic zero at some crucial stages of the discus-
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sion, such as in lemma 2.15, where we prove that P< X > 
lies in the images of some derivations in P «  X »  , and 
therefore we make the convention that whenever free alge­
bras over P, or free power series rings over P, are being 
discussed, P will always be taken to be of characteristic 
zero.

£. Derivations.

Derivations from a subalgebra into an algebra are map­
pings which are of considerable importance in algebra, and 
which are still finding an ever widening scope of applicabi­
lity. _ ' -

Definition; If A is a subalgebra of an algebra B, a deri­
vation d of A into B is a linear mapping of A into B such
that j a a(ab) - a b + ab , a,b C A.
If À - B we say that d is a derivation in A.

The general properties of such derivations are well 
known. (See e.g. C ZO ] or [ 4 ]•) We list a number of
these properties which are of importance for our own work;
i) The kernel, Ker d, of every derivation d; A —> B is a 

subalgebra of A.
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ii) Any two derivations which coincide on a generating 
set of A are identical on A.

iii) The set ̂  of all derivations in A forms a Z/e algebra 
relative to the operations of addition and multipli­
cation given by

d^+dp dn dp
(^1*^2^ ^  ^1* ^2* & - a + a , any a€ A

[d. ,dp] d., dp dp d.
(d^idg) *-> Cd^jdg], where a * (a ) - (a ) ,

any a € A.
iv) The Leibniz-formula for the k-th power of a derivation 

holds:

(ab)^ - ^   ̂ , any a,b c A.
v) For every element b c A the mapping defined in A by 

a »-> ab - ba (any a £ A) is a derivation which is 
called the inner derivation determined by b.

vi) If A “ K «  X »  is a free power series ring over a
commutative ring K and if d is a continuous derivation 
in A, then the kernel of d is a closed subalgebra of A; 
since it is the inverse image of the set foj which is 
closed in the "inverse filtration topology" on A.

The definition of a derivation can be generalized in 
the following way:
Definition; a) Let o( and /3 be any two homomozphisms of 
the subalgebra A into the algebra B, then the linear mapping .
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D : A —> B such that
(ab)^ - â b*̂  + a^b^ , any a,b ^ A, 

is called an ( oC ./3 )-derivation of A into B.
b) In particular qa{<X,1. )-derivation is called an 

-derivation.

vii) For every given -derivation D in an integral domain 
K, where is an injective endomoiphism of K, there 
Lexists a ring whose elements can be uniquely expressed 
as polynomials

â  +xâ  + x^ag + ... + x^a^ (4)
in an indeterminate x over K, with componentwise addi­
tion and multiplication induced by the commutation rule 

ax » xa/̂  + a^ , a e K. (5)
Conversely, if R is a ring which contains the integral^omain 
E as a subring and which is isomorphic as right K-module to 
the ring of polynomials K[x] (with elements like (4) ), then 
there exists an injective endomorphism /i and a -deriva­
tion D of K such that the multiplication in R is determined 
by that of K together with the rule (5).

Such rings are called skew polynomial rings, the^were 
first studied by O.Ore C 2i ], and they are usually denoted 
by K[x;y2 ,D].
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Property (li ) above is of special importance in free 
associative algebras, because it implies that in these al­
gebras it is sufficient to know what any particular deriva­
tion does to the free generating set in order to define it 
explicitly and unambiguously. On the other hand, every 
given mapping d ; X —> K< X > (K a commutative ring) extends 
to a unique derivation in E “ K< X > • This can be seen by 
noting that the mapping of X into M (say), the ring of 2% 2 
matrices over R, given by

X , every x c X,

0 X
extends by the universal mapping property of R to a unique 
homomorphism of R into M. It is then only necessary to look 
at the co-ordinates in the upper right hand corners of the 
matrices in M to see that d has been extended to a deriva­
tion in R.

For free power series rings P «  X »  (Pa field) the 
situation is different, mainly because the set X is not a 
generating set of P «  X »  in the full algebraical sense of 
the terminology (the elements of P «  X »  are not necessa­
rily, fini;^ linear combinations of monomials in X). How­
ever the analogy is restored if we limit consideration to 
continuous derivations in P «  X »  *
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Proposition 1.1: Let R = P «  »  and let£(R)
denote the space of continuous derivations in R, then 
•8 (E) = E% •

Proof; We have to prove that every continuous derivation
in R is completely determined by its values on X - ( x-, ,..,x j 
and that for every q-tuple (u^,... ,Uq̂ ) of elements in R the 
mapping d : X —> R given by x^^ = u^ extends to a derivation 
in R.

Let d be a continuous derivation in R. Take any ele-'
* dment g ^ R and say g - h. For every positive integer n 

the element h can be written as

where h^ is a polynomial of degree < n-1 and h^* is a power
series of order > n. Since d is continuous, there exists
a positive integer m (which we take to be minimal) such that 
^ d ^R^ s R^. Row write & " + 8%' » where g^ is a polynomial
of degree < m-1 and 6  R^ . Then (g^* ) C R^ , and
consequently

. (mod Ê^) . (6)
By property (11\) above, is uniquely determined by the
values of d on the elements in X. Hence by (! 6) the same 
is true of h^, and since this fact holds for all n, it fol­
lows that h is uniquely determined by the values of d on X.
In other words if x.^ - u. (i - l,...,q) then the P-linear
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mapping of o£) (R) into R^ given by
d ̂  (7 )

is. injective, and it only remains to show that it is also 
surjective. ^

[Rote that only after this fact (7) has been established, 
can we use the knowledge that the continuous derivation d is 
determined by its values on X to see that if f is an arbitra­
ry element of order r in R, then o(f^) > r-1.]

Let (u^,..,,Ug^) be any element of R^ and define a map­
ping d ; X —> R by sending ^  u^ . The argument prece­
ding this proposition can now be used again (in an appropri­
ately modified form) to extend d to a unique derivation of 
the free algebra P< X > into R. Denote this derivation also 
by d. Row if f - f. (sum of homogeneous components) is 
an arbitrary element in R, each f . lies in P< X > and since

V

d is uniquely determined by its values on X, it follows that
d ' d *0(f\ ) > j-1. Hence the sequence-(f. ) of elements in Rw J

is summable (by Cauchy’s criterion). Consequently, by writingf .
we get an P-linear mapping d* : R —> R which extends d.
It is straightforward to check that d* is indeed a deriva­
tion in R. (See also [ 4 >p«6l]) This establishes that 
the mapping (7 ) is also surjective. //
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Remark ; We would like to emphasize that up to now it has 
generally been accepted in ring theory that all derivations 
in a free power series ring K «  »  are continuous.
This has led N.Bourbaki [ 4 »P*61] to make a mistake when 
he considered a power series ring K[[x^,...,x^]] in commu­
ting indeterminates, and tried to prove that a derivation 
d^ which is zero on every polynomial in this ring, is neces­
sarily the zero derivation. The mistake was made when he 
applied a lemma to a power series, although it had only been 
proved for polynomials, and in doing so he tacitly assumed 
that the derivation was continuous.

We now indicate in a special case how it is possible to 
obtain discontinuous derivations in a free power series ring.

Example of a discontinuous derivation; Consider the free 
power series ring k[[x]] in one indeterminate over a field 
of characteristic zero. Pass from the inclusion k[x]Sk[[x3]

ef ff«cé«'c>nsto the corresponding leealigâtions of these rings, and con­
sider k(x) S k((x)) i.e. consider the field of rational 
fractions in one indeterminate, x, over k, lying within the 
field of Iiaurent-fractions in x over k. (See [ 4  ;p.60]).
It is well-known that k((x)) is a transcendental extension 
field of k(x), and that it has infinite transcendency degree 
over k(x). (See e.g. [ 4- ;p.l07(Ex.l3) and p.lOO(Prop.6)3 ). 
Hence, by the theorem of Steinitz [ 4  Ip.98], k((x)) can be
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obtained from k(x) by a pure transcendental extension fol­
lowed by an algebraic extension. Let L be the pure 
transcendental extension of k(x) with basis { y^j, i € I.
Then for every family iel, of elements of L there
exists a unique nonzero derivation d : L —> k((x)) which 
extends the zero derivation d^ : k(x) —> k((x)), and which 
is such that y^ - u^ , all i € I. C 4 jp.156,Prop.4.]
Since we have taken k to be of characteristic zero, this de­
rivation d can also be extended to a unique nonzero deriva­
tion d : k((x)) k((x)). [ 4 jp.136,Prop.5»] Thus for
any family (u^), i C I, of elements (not all of them zero) 
in L there exists a uniquely determined nonzero derivation 
d in k((x)) which is discontinuous in k((x)), because it has 
the property that Ker d 2 k(x). //

>
Let R - K «  X » ,  X “ { x^,...,Xg^], be a power series 

ring over a commutative ring.

Definition; • If d is a nonzero continuous derivation in R 
and if n = min^ [ d(x^^)j, then d is said to be of order n 
relative to X .

Definition; A continuous derivation d in R is called 
homogeneous relative to the generating set X if all the non­
zero elements of the set
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U - G r [
are homogeneous, and there exists a non-negative integer n 
such that d(u^) - n for every nonzero u^ € U.

It should he noted that each homogeneous derivation in 
R is by this definition also a continuous derivation.

Row, if d is a given continuous derivation in 
R = P «  x^,...,x^ »  , we know that it is completely deter­
mined by its action on the elements of X, say
x^^ = Uĵ Q+ u^^+ u^2+.... (sum of homogeneous components)
Proposition 1.1 shows that each of the mappings (from X into
R) in the sequence (d.), j » 0,1,2,   given byJ

Xi  ̂- Uĵ j i » l,...,q ,
extends to a unique continuous derivation in R, and according
to the definition above, each d̂  (j = 0 ,1 ,2 ,...) is a homo­
geneous derivation. Furthermore if f is an arbitrary ele­
ment in R, we have for every j - 1,2,.... that

d. d.
d(f '̂) > 6(f) + j-1 , and hence the sequence (f ; j»0 ,l,2 ...)
is summable in R. Write its sum asV V _

This implies that d^+ d^+ d^+.... is a proper derivation in
R and since it coincides with d on X, we have 

d - d^+ d^+ dg+....

For ease of reference we state the conclusion as
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Proposition 1.2; Every continuous derivation d in 
R " F «  f given by

x^^ “ ^  Uĵ j , (sum of homogeneous components),
i - l,...,q , can be regarded as the sum d^+ d^+ d2+ ... 
of homogeneous derivations in R, where each d. is given by

a. ' ̂ " u^^ , i - l,...,q . //

Remark ; It is easy to see how the preceding definition and 
discussion can be adapted to the case of derivations in the 
free associative algebra P< Y > , where Y can now also be 
an infinite set. In this case a derivation is called homo­
geneous if the images of the free generating elements y & Y 
are either zero or homogeneous elements of the same degree,

if y /sand^every given derivation in P< Y > can be regarded as a
S u c6.

finite sum of homogeneous derivations. The degree of^a 
derivation d is max { deg(y^) ; yt y ) .

The Lie algebra of derivations in a free associative 
algebra.

In the previous section we recalled that the set ̂  of 
all derivations in an algebra A forms a Lie algebra. We 
now want to show that if A is taken to be a free associative 
algebra of finite rank over a field of characteristic zero, 
it is possible to specify a nontrivial generating set of the
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Lie algebra ^  • We do not claim that the generating set 
given below is minimal, and the main reason for the inclu­
sion of this discussion in the thesis, is that it displays 
the factors which have to be taken into account in the 
search Pot such generating sets.

Let R » F< > and let u denote the deriva­
tion in R which sends the free generating element Xĵ  to u<c
and all the other free generating elements to zero.

Proposition 1.3: Let i - l,...,qj,
&2 - ; i “ , q + 1 - ij U
^5 “ f ̂  3̂  * where h runs through the set of monomials

of degree > 3  which are either of the form
(n > 3 ), or of the form h’Xj ( j / q)

then G- “ ^i ̂  ̂ 2 ̂  ̂ 3 ^ generating set for the Lie algebra,
of derivations in R.

Proof; Let be the Lie algebra (over F) generated by G. 
Then In order to see that it is by linearity
sufficient to show that all derivations of the form g^. , 
where g is a monomial, lie in We do the verification
in three, steps and in order to facilitate the exposition we 
change the notation by taking
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composing mappings on the right, and using q + k to repre­
sent the index k (k = l,...,q-l), whenever it is convenient 
to do so.

i) Monomials of degree 1 ; All derivations of the form 
(x^* Xj) i,j = l,...,q , lie in ^  since

[(x. " x.Xj.n),(x, 1)1 ̂  , i “ l,..,q ;
h) ^i+1  ̂ " [(Xi" ^lXi+i)'(%i* 1 )] ̂  » i “ i,..,q ;
c) if i - l,..,q and t “ 2,3,..,q-l

%i+t) " ^i+l^'^^i+1 ^i+2^^ ’ • •'^^i+t-1 *i+t^^

ii) Monomials of degree 2 : All derivations of the form 
(x^* XjX^) i,j,k - l,...,q lie in ^  , since 
a) (Zg- %!%%) - [(Xg* x^)] - (Xg* XgX^) e  ^
h) for j / q

(Xg“ X^Xj) - C(Xg- XiXg),(Xg- X^)

=j=l) “ [(Xg" ""j)
c) for i / l,q

(%q" %i=q) - [(Xq" XiXg),(Xj^* x^)
(Xq' XgX^) - [(Xg* XgX^),(x3̂ * x^)

d) for j,k - 2 ,..,q-l
(Xq" XjZ^) - [[(Xg* XgX^),(Xg* X^

e) for i - l,..,q-l ; j - l,..,q ;
(X.* X^X.) - [(X.* Xg).(Xg* X^Xj)
(x̂ '̂  XjX^) - C(x^" XjXĵ )

G
G
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f) for i - l,..,q-l ; j,k - l,..,q ; j,k / i

XjX^) - [(x.- Xg),(Zg- X.Xĵ )] C ^
g) for i - 1 ,..,q-1

(Xi* X.2 ) - [(X^* Xg),(Xg* X.2)] + (Xg* (X-Xg^ XgX.))

iii) Monomials of degree > 3 : Order the homogeneous ele­
ments of degree n (,n > 1 ) lexicographically (on Xj^<...< x̂ )̂ 
by taking the smallest word in such an element to be the 
leading term. We show that for every n > 3 » and every mono­
mial g of degree n, the derivations (x^* g), i =l,..,q, lie

Let h - h’x̂  be a monomial of degree > 3, then
a) If j / q we have for each i « l,...,q-l that (x^~ h) G ̂  ; 

Rote that

Vj> . ,
where f is either zero, or it is a homogeneous element of 
degree n, obtained from h* by replacing each factor x̂  ̂in 
turn by x^x^ and taking, the sum of the monomials obtained 
in this way. This shows that

C(X^^ XgXj),(Xg* h')] + (Xg* f) ^ (x^^

Row, by induction (x^* h* ) g: ̂  and by (2) below (x^* f)€ ̂  , 
Hence (x^* h) ^  .



35
1.5

b) If j - q and i » q we have
( x „ ‘  X Q ^ ) ( x _ *  h ' )^ ^ ^ - h*x + X h’ and1 I QL

. ‘ V '*■ X ' V - . ' >  ...
(1)

where f* is either zero, or it is obtained from h* by squa­
ring each factor x^ in turn and taking the sum of the mono­
mials thus obtained. Consequently, the element (f'-x^h*) 
follows h in the ordering and therefore (by induction)
(Xg* (f'-Xgh*)) 6 ̂  . Row, using (1), it can be checked

that (Xg* h'Xg) - [(Xg* Xg^),(Xg" h')] + (Xg* (f'-Xgh')) .

Hence (Xg* h) € . This fact, together with the choice of
as part of the generating set G, implies by linearity that 

(Xg" g) C ^  , any g € R; (2 )

c) Finally, let j = q and 1 < i < q-1 :

If h - Xg^ we have (x^* h) G ^  , since

(X,* Xg'̂ ) - i [(X,- Xg2 ).(Xg‘ Xg^-b] C ^

So, assume h is not of the form Xg^ , then in general 

h - h"x X ® , where r / q and s > 1. We proceed by in- 

duction on s: Rote that
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- h- y , "  . ...

^ U , - -■ S  < « > < V

where f" is the image of h" x^^"^ under the derivation 

(x^* Xg^). This shows that

(x^" h) “ [(Xi~ Xg^)'(%q* il”

-(Xĵ " Xgh" x^ XgG'l) + (Xg* f"). (3)

Now take s ■ 1. %" a) and (2) above we know that

(x^* Xgh" Xp),(Xg* h" x^) , and (Xg* f") lie in . Hence

(x^* h) € ^  . This provides a starting point for an induc­
tion argument which can be completed with the aid of (3). 
Hence (x^* h’Xg) c for every i = l,...,q-l and every 
monomial h* of degree > 2 .

The choice of the generating set G, together with the 
arguments given in a) - c) above, establish the claim that 
every derivation of the form (x^* h), where h is any mono­
mial of degree > 3 in R, lies in . //
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KERNELS OF DERIVATIONS IN FREE POWER SERIES RINGS.

In this chapter we study continuous derivations in free 
power series rings over a commutative field of characteristic 
zero in an attempt to find a fairly extensive class of such 
derivations with the property that their kernels are also 
free power series rings over the same field. Our main tool 
for doing this is the inverse weak algorithm, which means 
that we will have to consider ■O’-dependent families of elements 
in the kernels under consideration. (We invariably take f 
to be the natural order function determined by the free gene­
rating set of the power series ring.) However, we start off ■ 
by looking at linear dependence relations in the kernels; 
something which can be done equally well in the more general 
setting of complete inversely filtered rings, and therefore 
the first section is devoted almost entirely to derivations 
in such rings.

1. Complete inversely filtered rings.

We take a result of G.M. Bergman [ 2 ] about complete 
inversely filtered rings satisfying n-term inverse weak 
algorithm as a stepping stone to our first proposition.
Since his.result ia not yet readily available in print we 
also recall the main features of the proof given in his thesis.
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Proposition 2.1: Let S be a complete inversely filtered
ring (with filtration satisfying the n-term inverse weak 
algorithm. Then for any family A of r < n elements of S 
there exists an ordering of A as a^,...,a^ and a special 
upper triangular matrix V such that (â )̂ = (â ’̂ ) consists
of a sequence of right ^^independent elements, followed by a 
sequence of zeros.
[A special upper triangular matrix is one which has l*s down 
the diagonal and zeros below it.]

Proof; For every set of m+1 elements in S, say a^,...,a^
and a, there exist elements b^,!^,...,^^ € S with
■̂ (b̂ ) > ■O’(a) - 'O-(â ) such that a -2 a^b^ is either non right
"̂ --dependent on a^,...,a^ , or else it is zero, because a se-

(k]quence of elements b^ • can be found such that 
' t(a - > ■O'(a) + k

for every k, and the completeness of S ensures that this se­
quence produces the said elements b^, i - l,...,m .
Now let A be the finite family of elements of S mentioned in 
the proposition and let a^ " â ' be any element of A of mini­
mal order. Py using the fact mentioned above, modify all 
other members of A by multiples of a^ so that they are either 
zero or non right -^-dependent on â * . This will not de­
crease any orders so ^(a^') will still be minimal in the re­
sulting set. Let a2 * be of minimal order among the resulting 
elements other than a^'. Again apply the same fact mentioned.
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thia. time making all remaining elements zero or non right 
^--dependent on (a^*,a2 * } • Continuation of this process 
gives a sequence a^',...,a^’ which can also he seen to he 
the image under a special triangular matrix of a certain 
ordering of A. After checking that no â * is right ^-de­
pendent on the rest, it only remains to apply IWA^ to see 
that a sequence of ■̂ •̂ d̂ependent terms (followed hy a sequence 
of zeros) has been obtained. //

Now we can prove

aProposition 2.2; let S be^complete inversely filtered ring 
satisfying the n-term inverse weak algorithm and let d be 
any derivation in S. If A S  Ker d is a set of m^elements 
which are left linearly dependent over S, there exists an 
ordering a^,...,a^ of A and a special upper triangular ma-

m mtrix yU over Ker d such that yU(a^) • (a^*) is a se­
quence of elements which contains at least one zero.

Proof; Write A = f j , where the ordering is still
arbitrary, and say

0 , (1)
where the f^ ̂  S and at least one of them is not zero.
If m - 1 it is immediately clear that a^ " 0 and. then the 
assertion holds with ^  - [1], hence we can take m > 2 . 
Apply proposition 2.1 to the set B - {f^; i - l,...,mj> 
and rearrange (if necessary) the indexing in (1 ) in such a
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way that the permutation called for in this proposition be­
comes the identity permutation. let be the special 
upper triangular matrix given by Prop.2.1, put (f^*)=(f^)^'
and let V

which is

-1 Rewrite (1) as
(f^) - 0

^  fi’(a^ + %  Elk " 0 (2)
Since f^' / 0 and the f^* are right linearly independent 
over S (2) implies that

Now if gi2’**>^lm ^  ^Gr d, (3) shows that the proposition 
holds with

^12 »lm
0 .. Ov

Alternatively, if g ^  ^ Ker d for at least one k we apply 
d to (3 ), then

If m - 2 we see Immediately in (4) that gĝ ĝ  " 0 and hence 
by (3) the required matrix is then

1 &12

0 1
Assume inductively that the proposition holds for sets of 
cardinality -.m-l. py (4 ) the set { a^,...,a^ j is a set of
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elements in Ker d,left linearly dependent over S, hence 
there exists an (m-1 ) % (m-1 ) special upper triangular ma­
trix yU, over Ker d such that the sequence

/̂ i( &2 > • • • » ̂  " ( &2 *»•••> ̂  ' )
contains at least one zero. The m x m matrix

- 1 0 
0

then satisfies the claim of the proposition. //

Corollary 2.3: The kernel of any derivation d in a com­
plete inversely filtered ring S satisfying IWA^ is an n-fir.

Proof: This follows immediately from the proposition and
the characterization of n-firs mentioned on page 18 . //

Corollary 2.4: Take S and d as before. If a^
(m < n) is a set of elements in Ker d left linearly inde­
pendent over Ker d, then for any f̂ ,...,f̂ ĵ  6 S the equation

implies that f^ - 0 , 1 - l,...,m.

Proof; If this is not so, a straightforward application 
of the proposition will give a left linear dependence of

f • • • ,a^ over Ker d, contrary to the assumption. //
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For the next corollary and ensuing proof we need the 
notion of flatness and other terminology from homological 
algebra. The reader is referred to some standard reference 
work like [2 2 ] for the definitions of these concepts which 
we use without introducing them beforehand.

Corollary 2.3; Let S be a complete inversely filtered 
ring satisfying the full IWA and let d be any derivation in 
S. Then S is a flat right Ker d-module.

Proof; This follows directly from the preceding two corol­
laries and the following criterion for flatness in semifirs, 
due to P.M. Cohn;

If S is a semifir and H a right 8-module, 
then H ia flat if and only if for any fi­
nite family (b^,...,b^| ô 8 of elements, 
left linearly independent over 8 , and any 
hn,... ,h C H, èh.b. = 0 implies thatJL HI 6 JL 1
hi - 0 (i " l,...,m). (5)

The proof of this criterion is not conveniently available 
in reference material and it is repeated here;
Let oC :8^^j— ^ 8 be the linear map defined by (x^)*^Zx^b^. 
8ince the b^ are left linearly independent over 8 , the 
sequence .

0 — > 8^/) — > 8 (j)
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is exact, and (5 ) states that the induced sequence
0 — > H®S.^ - — > H <2) S - H (6)

is exact. Writing C - coker <?C , we see that C is a fi­
nitely related cyclic 8-module, and all such modules arise 
in this way, because 8 is a semifir. Now the exactness 
of (6) means that Torg(H,C) - 0. It follows from the 
properties of Tor that this holds for all modules C, whence 
H is flat. Conversely, when H is flat, Torg(H,C) - 0, 
hence (6) is then exact and (5) holds. //

Turning now to free power series rings over a commuta­
tive field F of characteristic zero, we say that it is clear 
that all the preceding results also apply to these rings, 
but since there is more information available, we can also 
say something more about the kernels of derivations. E.g. , 
the fact that a free power series ring is a rigid UFD (see 
[ /o ] ) is inherited by the kernels of derivations in these 
rings. In order to prove this we need to know the following 
fact about local rings.

Proposition 2.6; The kernel of any derivation d in a local 
ring T is again a local ring.

Proof; We show that for any non-unit b g Ker d the element 
1 + b is a unit in Ker d. b Must also be a non-unit in T, 
for if there exists an element c g T such that be - 1 ,
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we see immediately on applying d to this expression that 
hc^ “ 0̂  and hence c c Ker d, contradicting the fact that h 
is a non-unit in Ker d. Now, using the same argument, we 
see that 1 + b, which is a unit in T, must actually be a 
unit in Ker d. Hence, Ker d is a local ring. //

The situation for free power series rings is then as 
follows. \

Theorem 2.7; Let R - F«x^,...,Xg>> and let d .be any deri­
vation (continuous or not) in R, then
i) Ker d is a semifir.
ii) Ker d is a rigid ÜFD.
iii) R is a flat right Ker d-module.

Proof; i) This follows from corollary 2.3 since R satis­
fies n-term IWA for each n and therefore Ker d is an n-fir 
for each n.

ii) Note that Ker d is atomic in the sense that 
every (non-zero) non-unit in it can be written as a product 
of atoms (i.e. non-units which cannot be written as products 
of two non-units). This is so because R is a rigid UPD 
C/0 ,p.462],which means that every non-unit b E Ker d can 
be factorised uniquely (up to units) in R as b » bi%2"""^t" 
Now if it is not possible to find an index r, 1< r < t, such 
that ^ b is certainly an atom in Ker d.
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On the other hand, if such an r can be found, both the fac­
tors b^b^.-.b^ and bp+^...b^ lie in Ker d and can therefore 
be treated in the same way. The assertion follows then 
from proposition 2.6 and the following theorem of P.M.Cohn 
[ /f" ] : An atomic semifir is a rigid ÏÏFD if and only if

it is a local ring.

iii) See corollary 2.3. //

Part iii) of the theorem immediately raises the question 
whether R can be a free right Ker d-module. We do not know 
if this is so for arbitrary d or not. looking at particu­
lar cases, however, we see that if d is e.g. the derivation 
5̂  studied in example 2.12 (i), then R is indeed a free 
right Ker d-module with basis { l,^,x^^,Xj_^,.... ] .
This is so because we then have the following commutation: 

fx^ - x^f (mod Ker d), any f c Ker d.
A similar situation arises when primitive derivations in free 
associative algebras are being studied and we will leave the 
detailed discussion of this fact till then.

Remark; Theorem 2.7 as well as the results still to be dis­
cussed in the following sections are only nontrivial for 
continuous derivations if R has more than one generator, 
for if q - 1 then Ker d - P irrespective of the choice of d:

Let d be the continuous derivation in P « x  »
^  igiven by x *— > u - ^  x , / 0 , r > Q ,
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and suppose that

f . â
J ~ o  J

is an element of Ker d. Por every index k > r the 
coefficient of x^ in f^ is.

^  + ... + (k-r+1 ) ^
and since f^ ■ 0 we- have ^  “ 0 , all k > r.
Putting k - r gives "A, = 0 and for k > r + 1 we have the 
sequence of recursion formulae

^(k-r)+l “ '(k-r+1 C 2 + ... +
giving - 0 for all j > 2. Hence f = G P.

£. Homogeneous derivations in free power series rings.

Recall that a continuous derivation d in R - P «  x^,..,Xg» ; 
has been called homogeneous with respect to X » {x^,...,Xg}

if x^^ " u^ (i " 1 , ...,q) where all the nonzero u^*s are 
homogeneous of the same degree in X and that any continuous 
derivation in R can be regarded as a "sum" of homogeneous 
derivations. Throughout this chapter we denote the least 
homogeneous component of any element a in R by a. Before 
restricting attention to homogeneous derivations only, we 
state a lemma which is slightly more general than needed 
here, but which will be used again later.

Lemma 2.8; Let d - d^ + <3.^+1 + ... (sum of homogeneous 
derivations) be an arbitrary continuous derivation in R
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with / 0. Then for any f e. R

f € Ker d f G Ker d^.

Proof; The least homogeneous component of f^ is f^^. //

The auxiliary information needed for the following 
proposition about homogeneous derivations is contained in

Lemma 2.9; Let d be any homogeneous derivation in R, then
i) f C Ker d *> f £ Ker d.

ii) An 6-dependence relation in Ker d
dCzla^b^) >min^{ 6(a^) + 6(b^)j (1 )

is the shortest possible for the set B »{ b^,... ,b^sKer d 
if and only if any proper subset of B - I is
left linearly independent over Ker d.

Proof; i) This is just a special case of 2.8.
ii) Any left 6-dependence relation shorter than 

(1) satisfied by elements of B in Ker d, leads directly on 
taking least homogeneous components of the relevant ele­
ments to a left linear dependence over Ker d involving a 
proper subset of B ̂ and vice versa. //

Proposition 2.10; The kernel of any homogeneous derivation 
d in E, satisfies the inverse weak algorithm with respect to 
the order function 6 .
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Proof; Any verification of the existence of IWA can he 
carried out hy considering either right or left dependence 
relations. We find it convenient here to take the rela­
tions on the left. Let A - { â ĵ S Ker d he a set of elements
which are left 6-dependent in Ker d,and cop.sider in particu­
lar the relation

6( ^  h^a^) > min^ { 6(hu) + 6(a^)j ' (2 )
which we take to he the shortest possible relation satis­
fied by members of A in Ker d. Arrange the indices in (2) 
in such a way that

6(a^) < 6(a2 > < ... < 6 (a^).
Py IV/A in R some (k^) is left 6-dependent on a^,...,a^_^

A  ^
in R, i.e. there exist elements, c^,... £ R such that

j  (5 )
6(c^) + 6(a^) > 6(a^) ; 1 - l,...,k-l.i

Py omitting terms if necessary we may assume in (3) that 
6(c^) + 6(a^) - 6(a^) ; i - l,...,k-l. When we look at
the least homogeneous component of the left hand side of (3 ) 
we see that

ha - ° (4)
Now apply d to (4) and keep lemma 2.? (i) in mind, then

k-
(5)

Py lemma 2.7(ii) the set { • • • »a^.3_l is left linearly
independent over Ker d and hence by corollary 2.4 applied

ato (5) the elements c^ must all be zero. It only remains 
to replace every c. in (3) by c. to transform that relation
J F.
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into a left 6-dependence of a^ on â ,̂ . . . , in Ker d. //

Theorem 2.11; The kernel of any homogeneous derivation 
d in R is again a free power series ring over P.

Proof; Ker d, being a closed subalgebra of R, (see sec­
tion 1.4, general property v/ ) is, complete. It is also 
connected in the sense that Ker d * P + K^ , where K^ is 
the two-sided ideal in Ker d consisting of all elements of 
order >1. Now using proposition 2.10 we complete this 
proof with an application of the following theorem of P.M. 
Cohn C /o , p.459]

Let S be a complete valuated (by connected 
algebra over a commutative field P. Then S 
is a power series ring (on a "9"-independent al­
most generating set of 8^) over P if and only 
if S. posesses an inverse weak algorithm.

[8^ ■ f a € 8 1 -̂ (a) > l}. An almost generating set of 8^
/s a generating set B of a right ideal I which is dense in 
Ŝ .] //

This quoted theorem gives an indication of what is to 
be expected of the free generating set of Ker d. We now 
describe such a set by constructing an appropriate modifi­
cation of the "weak"algebra basis" of a filtered P-algebra 
introduced by G.M.Bergman [ 2  ,p.34] (see. also C /7 ,p.12] )
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Por this we use the graded ring H - Gr(Ker d) associated to 
the filtration

which is induced in Ker d by Ô* H consists of the family 
of disjoint abelian groups = K^/K^^^, i « 0 ,1 ,2 ,... 
where in particular ~ P.

Per each i > 1 let - ^i*/^i+i the P-subspace of 
H. spanned by the elements ab where a ^ H. b ô H. , any
j^^and jg^such that j^ + 32 " i-* let be a set of re­
presentatives for a basis of the P-space E./H.' . The set 

( /B = i>i^i consists of homogeneous elements of Ker d none of 
which is right 6-dependent on the rest, for if there exists 
b € B such that

b H  2 .bjgj (mod K^+^) (6)
where the bj a B, the ĝ  e. K^ and t = 6(b), then any term
bjgj with 6(bj) / t represents an element in K^'/K^+g^" •
So (6 ) can be written as

b H  2 .bj^A^ . (mod ) 
where ^  P and 6(b^) - t whenever / 0. But this
contradicts the choice of B^ as a set of representatives of 
a basis of the P-space • Since Ker d satisfies IV/A
with respect to 6 , B is actually an 6-independent set.

Now let I be the right ideal in Ker d generated by B.
We show that I is dense in K^, and do this by way of a proof
adapted from the work of P.M.Cohn C/0 ,p.457]* Pirstly we 
point out that since - 0 and hence I, it can easily
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be seen by induction that for every i > 1, Ô I.
Hence if we take a ( /O ) ë with , say 6(a) - n and 
write a - a^^^ + where p^ e , then a - p^ - a^^^c I.
By induction on n we obtain a sequence p^ - a,p^,P2 »**** 
of elements of strictly increasing order, such that 
Pj_ - Pi+i I. It follows that the orders 6(p^ - p^+^)
also increase strictly, and hence

a. - (Pq - P]̂ ) + (Pĵ  - pg) + ...
is. convergent. Thus a lies in the closure of I and the
assertion follows.

Referring back to the quoted theorem, it can now be 
stated that the power series ring Ker d has the set B as a 
free generating set. Note that even though R has only fi­
nitely many generators, this set B is in general infinite.

2.12 Examples; The insight obtained in the theoretical 
discussion above is now put to use for studying the kernels 
of two special homogeneous derivations, singled out because 
they are of importance to the succeeding sections and be­
cause they reveal typical properties of such derivation - 
kernels,

1) Take R - P «  z^,...,x^ »  and d - i.e. take d to 
be the continuous derivation which sends Xj, — > (Kronecker
delta) i - l,..,q. We use the same notation as before. 
Consider any homogeneous element g 6  H^, n > 1, and note



52
2.2(Example 1) ,

that g may also he taken to he homogeneous in x^* say it is 
of degree n - r in x^. This means that each monomial in 
g has. r factors x. , i. / 1, j = 1,2, ..,r. Furthermore, 
there is at least one. monomial in g of the form

U*- î, ••• î.3C3_®iv , (7)
where s. + s. + ... + s. » n - r . r ^  n

If (7) is not true, g will have x^ as left factor, say 
g " Xn^f where f does not have the left factor Xn. Now
if we apply d - ^  to this , we get 

0 - tx^^lf + x^ f^ 
i.e. tf "~x^ f^ 

contradicting the choice of f.
We can therefore write 

g - ^  ...x^ x^^if) + x^g* (8)
Notation: Use the symbol

[ U,
to denote the commutator [...[[u,x^],x^],..,x^] , u arbitrary

A *■ —;—XT: '
i a  E .

Aa easy .inctuotioa on k shows that ] ia of the
form

Cu^x^Ckl^ . ^ ^ k  , (9)

where f^^^^ is an element generated by u and x^ in 
R - P< x^,...,x^ > . ' We use the formula (9) repeatedly to 
write (7) as-
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[s. ] s. (s. ) s.
... X.

Cs. ] [s, ] s. (s. ) s.
ECx^^jXi 1  ̂ ^1 ~ ^ 1 ^  ^1

(s. ; 8. Cs. ]
- Xnf ^(x. .. Xn f) , where Cx. ,x. ]x.1 Xj_̂  i2 1 ±1 1 ±2

[s. ] [s. ] [s ]
" C...CCX. ,Xn i 3x. ,Xn  ̂ ]x. ,...,x. ] + h. (10)J. , ^2 1

where h^ represents in general such a long and involved 
expression that we do not endeavour to write it down expli­
citly. It is only important to note that h^ has the left
factor x^, say ĥ  ̂- ^i^i*

With the aid of (10) v/e can rewrite the expression (8) 
for g in the following form

Z Cs. 3 Cs. 3
.  ̂ + x^(2 .,ĥ ' + s')

^ ^ ‘ (11)
Since the sum of commutators in (11) lies in Ker d, it 
follows that

x^( %  h^* + g')2 Ker d.

However, as we.have seen above, the fact that there ia a left
factor x^ will only allow this to be true if S h ^ *  + g* - 0.
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Let c. - [•..Cx.,x?®ii ̂ ]x. ,...iXn^if]] .i Xj X X̂  X
Now. for any r, if s. - 0, c. is. of the form Ca,x.], wherex^ X j
a,Xj 5 Ker d and hence, ĉ  ̂e . Furthermore if r > 1
and s. / 0, then c. is of the form C(ab),xf®^f^] where 
a e Hj , b c Ej for some and j g ̂ iich that j^+jg "
Hence^by a straightforward induction starting from 

Cab, x^] “ aCb, x^] + Ca, x^]b 
it follows that c^ € . The outcome of this discussion
is then that ^

g - ^  ^jCxyX^^"^^] (mod H^*) .
Now we have made it clear how the set B » B^ of free 

generators should be constructed: just take B^ - [ Xj|2<j<qj,
and for every; n > 2 take B^ - { Cx^,x^^”^^] j 2< j < q j .
Then the elements of B^ are clearly F-linearly independent 
and by an easy induction the same is true of B^ for every 
n > 2. Hence by the argument on page 50 the set B consists 
of o-independent elements which form an almost generating 
set of K^.

So, summarizing the preceding discussion,
we get
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Proposition 2.13: In R “ F «  x^,...,x̂  ̂»  the kernel of
the continuous derivation ^  is a free power series ring 
over F with free generating set B - W  2̂ ,̂ where 
B^ " (xj [2 < j < q} , and for every i > 2

1 2 < 3 < < il . / /

Example 2; In R - F «  x,y »  , let d be the continuous
derivation which sends x i— > 0 , y j— > x.

The way in which we describe a set B of free generators 
for the kernel of this derivation will enable us to show 
that it is the least closed subalgebra N of R containing x 
and satisfying the property

g e. N (xgy - ygx) e N (13)
By lemma 3.7 in the next chapter, N will then also be the

fixed ring of the automorphism
exp d - 1 + d + Y^d^ + + .....

which in this case turns out to be the elementary automor­
phism in F «  x,y »  given by

X •— > X
y .1— > y + X .

Use again the same notation as before by taking to 
represent the set of homogeneous elements of degree n in Kerd. 
Verify that is the F-space generated by x, and that ia 
the F-space generated by {x^, [x,y] } , so that we can take
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“ {x} and B2 - { [x,y]}.
In general, i.e. for r > 3 it is sufficient to consider 
elements which are also homogeneous in y , therefore we de­
fine (r > 2, 0 < k < r) to he the F-suhspace of
consisting of the elements homogeneous of degree k in y.

For homogeneous, elements f € R  which are also homogeneous 
in X and y separately (and in particular for monomials) we
use the symbols (f) and à (f) to indicate the degrees inX y
X and y respectively.

For each (r > 3, 0 < k < r )  define two subspaces
H^k* ^rk’ * taking
i) " (the subspace spanned by the products ab,

where a and b are homogeneous elements in
Ker d such that deg a + deg b - r,
^y(a) + ^y(b) » k );

ii) E^^" - r (the zero subspace), if k - 0,1 ;
(the sub space spanned by the elements 
xfy - yfx, with ^^H^_2,k-1^' 2 < k < r.

our object now is to prove for every r > 3, 0 < k < r  that
Hrk - ^rk’ ®  ^rk" . (14)

If k - 0, this is Immediately clear. If k - 1, E^^ 
is generated by elements of the form x^yx^ - x^yx^ , where 
i + j + 1 - 8 + t + 1 " r. These elements clearly lie in
H^l* whenever either j > 1 or s > 1 (or both); and the ele­
ments,, of the form [xf"y, y] also lie in because
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[x^“^,y] » x^“^[x,y] + [x^”^,y]x .
If r > 3, 2 < k < r ,  then n * 0 because no non­
zero element of the form xfy - yfx, where f is a homogeneous 
element in Ker d, can be written as a product of two ele­
ments in Ker d. It remains to show that for r > 3,
2 < k < r we have ô (say).

We introduce a classification of the monomials in E 
in the following way:

Let h be an arbitrary monomial in (r > 2, 1 < k < r)
Distinguish between the y*s appearing in h by numbering 
them from left to right so as to create k different factori­
zations of h into the product of a y and two other monomials,

vis. n^’y ( i ) V  • ^ 2 ' y ( 2 ) V .....^ ' y ( k ) V  •
We now say that h is of type *L* (for leading term) if and 
only if it does not have left factor y, and à̂ (hĵ ' ) > ^(h^^* ) 
for every i - 1,2,...,k. The monomials x^€ E^^, (r > 1)
are also said to be of type *L* •

2 2 2 E.g. X yxy is of type *L*, whilst xy x is not.
Order the monomials in R lexicographically (with x < y) 

and extend this to an ordering of all elements of R by taking 
the smallest term of any f £ R to be its leading term.

The reason for introducing monomials of type *L* be­
comes clear as soon as we note that every monomial h of type 
*L* is the leading term of an element in the space 
Epk« + ^rk " ^rk r " <ieg h and k - ^(h) .
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This can be seen by noting first of all that the only mono-
2mials of degree 2 which are of type *L* are x and xy, and 

both of them are leading terms of elements in Egg and Eĝ  ̂
respectively. Furthermore if h is a monomial of type *L*
(with deg h - r (>2), <^(h) » s) we have either h * h'x or
h - xh”y • If h - h'x, h* is also of type *L* and is by in­
duction the leading term of an element g* £ M , , so h isi “-L I S
the leading term of If h » xh"y, h" is also of
type *L* and is by induction the leading term of an element 
g”s M ^_2 , so h is the leading term of (xg"y - yg"]^£

The next step is to prove that every element in Ker d 
has at least one term which is of type *L*. Consider a 
homogeneous element g € Ker d and write it (as is generally 
possible) in the form

g “ xg^y + yg^x + xg^x + yg^y (15)
Applying the derivation d to (15) gives 
0

+ y&4 y
from which we get

g - x(gi + g^)y + y(gg + g^)x + + gg + gg
d

^1^ * H

8 2 ^ * S4
gl + gg + gj*̂

g /

0
0
0
0

(16)

By (16) clearly " &2^ " 0. We may assume (inductively)
that g]̂  - g2 has at least one term of type ’L* • If this
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term appears in the assertion about g follows immediately, 
so we say that none of the terms in g^ is of type *L* and 
that g2 has at least one term of this type. Now since 
g^^ - -(g^ + (hy (16) ) we can also assume g^^ / 0, for
g^^ - 0 will imply g^ = -gg > whence g^ has a term of type 
*L* , contradiction. The assumption about ^ 2  i^aplies that 
gl + g2 • -g^^ / 0 has a term of type *L* and then recalling 
the action of d on monomials, v/e see that g^ either has a
term of type *L* , or if not, it has at least one term of
the form h*yh" where h* and h" are both of type *L* and h*y 
is not (h" ■ 1 is also possible). In both these cases 
zg^x has a term of type and this establishes the asser­
tion about g.

Return to (14); if it does not hold there will exist 
r > 3 and 2 < s < r such that ̂  ^rs* Consider then
gc fg / 0) and let g be any representative of g.
Write this representative in the form

g - * ... +
where the h^ are monomials indexed in such a way that 
hi < h^+^ (1 - l,...,m-l) in the lexicographical ordering,
let t be the least index such that h^ is of type *L* (such 
a t exists because g 6 Ker d). We know that h^ is the lea­
ding term of an element, say h^^, in and can therefore 
write
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Hence g can also be represented by the element 
. ... *

in which the smallest term of type *1* is larger than h^.
This obviously indicates a process of elimination of terms 
of type *L* from the chosen representatives of g, and this 
process then ends in a representative which does not have 
any term of type *L* , contradicting the fact that every 
element in Ker d contains at least one such term. Hence
^rk " ^rk all r > 3 and 2 < k < r.

This discussion shows that in order to find a free 
generating set B for Ker d it is sufficient to confine at­
tention to the subspaces H^^" , in fact we can take (r>3)
to be a basis of the P-space ^  ̂ rk" * Hence ** {x},
B2 - {[x,y]}, B^ - 0,and for r > 4

- { xby - ybx j b / x^” ,̂ &b£ Y^_2 » ^r-2 ^^ing a basis of 
the P-space E^_2 } •

It is now also clear that Ker d is contained in every 
subalgebra satisfying (13) in R, and therefore Ker d - N. So

Proposition 2.14: Let N be the least subalgebra of P«x,y>>
containing x and satisfying the property g£ N => (xgy-ygx)£N, 
then i) E is the kernel of the continuous derivation in 

P <<x,y »  given by x 0, y i-> x.
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ii) N is the fixed ring of the elementary automorphism *
in P «  x,y »  given by x x, y *—> x + y.

iii) N is a free power series ring over P with free genera-
ting set B = U  B^, where » {xj, B2 = ([x,y]},
B^ - 0 and for every i > 4 Bj * ( xby-ybxjb / x^” ,̂ &

 ̂^ ̂ i-2 }
Y^_2 & basis of the P-subspace of N consisting of all
the homogeneous elements of degree i-2. //

Derivations of order zero.

When the kernel of a continuous derivation in R»*P«x^,. .x̂ ^̂  
is being studied in connection with the inverse weak algorithm 
the least homogeneous components of the elements appearing 
in the dependence relations play a constantly recurring part. 
This came to light in the previous section and it will do so 
again in our treatment of continuous derivations of order 
zero because for such derivations the said components de­
termine the whole situation. Here we can strengthen theo­
rem 2.7 (asserting that Ker d is a semifir and rigid ÜPD) by 
showing that the kernels of continuous derivations of order 
zero have IWA and hence are also free power series rings.
The door is opened by

lemma 2.15; If d^ is a homogeneous derivation of order zero
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in R, the free algebra R = P < x^,...,x^ > lies in Im 
and in fact every homogeneous element of degree r in R is 
the image (under d^) of a homogeneous element of degree r+1.

Proof; Let d^ be the continuous derivation given by
\  (J\j_£ P) and say / 0. Take Y - ( y^_,...,yg^} 

to be the free generating set of R obtained from X =[x^..,Xgj 
by the linear transformation: x̂  y x̂  , x̂  ̂ x^- y  ,
2 < i < We are then in fact consioering the derivation

in Ê - ? «  »  •
It is sufficient to show that every monomial h in Y is 

the image under ^  of a homogeneous element of degree
(deg h)+l . Write

n - yi®2....y %  (1)

where 1^+^ / i^ , l,...,m-l; and let s " s^ + ... + .
If ± 2/ / 1, all P  f we can write

h » (hy^)^^ .
If, on the other hand, » 1 for at least one 
l > € m “ {l,2,...,m} we order the monomials in Y lexicographi­
cally (based on y^ < ... < ŷ )̂ and extend this ordering to 
all elements of R - P < y^, ...,y > by taking the smallest 
term in any element of R to be its leading term. Then we

J
choose an f € R such that h - f  ̂- g, where g follows h in 
the chosen ordering.
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In fact, let k be the largest member of the set m such that 

“ 1, and talce

^1 ^k-1 ^k ^k+1
then

1 ^oh » — -TT f - g » where ®k
f 0 if k is also the smallest member of m 

such that = 1.;

s_.-l s, +1 s_
“ )]s M  i V i  SjCyi^..' yij ••• yi^ yi

otherwise.
Each of the monomials in g can now be treated in the same
way, and since we are dealing with homogeneous elements on
a finite generating set, the process must terminate. Hence
it is possible to find a homogeneous element a of degree s+1 

d
such that a - h. //

Lemma 2.16; If d is a continuous derivation of order zero
in R, say d - d^+ d^+ dg+... where d^ / 0, it is possible 
to find for any given homogeneous element c € Ker d^ an ele­
ment g € Ker d such that c =» g (g being the least homogeneous 
component of g).

Proof; Let f = f^+ f^+^+ f^+g*....  (sum of homogeneous
*

components) be an arbitrary element of order r in R, then 
f 6 Ker d if and only if all the homogeneous components of
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are zero, i.e. if and only if

'̂ Pq j  ̂ ^ (k = 0,1,2,...)
(This is the homogeneous component of degree r+k-1 of f^).

If the given element c has order r, write c = g^, then 
we know that g^^o *^0. Assume inductively that homogeneous 
elements ĝ '+l ' " "  ' ̂ r+k ®xist such that

+ gf+l^° “ 0

g/^- + g^+/^ + gr+2*° “ 0

* Sr+l*k-l H. ... + - 0
and consider the element

* g^+i ^ + g^+k ^ “ a (say).
This is an element in R, homogeneous of degree r+k. •
By lemma 2.13 there exists a homogeneous element of degree 
r + k + 1, say s^ch that

d
^r+k+1a + ° - 0.

Hence it is possible to build up a sequence (ĝ +j_; i=0,l,2,..) 
of elements which satisfy the system of equations

 ̂ “ 0 >  k " 0,1,2,#.. .
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Hence g = ^r+i ^  element in Ker d such that g - c. //

We say that a set A of elements in R is a minimal left 
ô-dependent set if no proper subset of A is left o-dependent.

Before we can get the following proposition we need yet 
another lemma.

Lemma 2.17: Let d = d^+ d^+ 6^+... be a continuous deri­
vation of order zero in R. If A ** {a^,...,a^j S Ker d ia a 
set, minimal left Ô-dependent (in Ker d), then any/proper 
subset of A * {â^,...,â^} S Ker d^ is. left linearly indepen­
dent over Ker d. .

Proof ; Suppose (a.. ,...,a. } is a proper subset of A
^1

which is left Ker d^-dependent *and therefore satisfies a re­
lation kL-. g. à. ■ 0 , where every g. is a homogeneous ̂= ' Wp up Jp
element of Ker d^ . By lemma 2.16 it is then possible to 
find elements f. c Ker d such that g. " f . , r " l,2,..,k.Jp Jp Up
Hence

which is a left 6-dependence relation in Ker d featuring a 
proper subset of A, and hence contradicting the assumption 
about A. //
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Proposition 2.18; The kernel of every continuous deri­
vation of order zero in R » P «  »  satisfies
the inverse weak algorithm with respect to the order fil­
tration.

Proof: Consider the derivation d = d^+ d^+ where
dg / 0. Let A - Ker d he a finite set of left 6-dependent 
elements and take the relation

6(^h^a^) >min^{6(hj^) + oCâ )̂} (2)
(a^c A, Ker d) to he the shortest satisfied in Ker d
hy elements of the set A. Arrange the indices in (2) in 
such a way that 6(a^) < ... < o(a^). (2) is also an 6-
dependence relation in R, so that hy IWA in R some a^ is
left 6-dependent on a^, . . . , *  i.e. there exist elements 
C2 ,...,c^_^ £ R such that

"  fr Ci&i) > 3(a%) I
6(c^) + 6(a^) > 6(a^) , i = l,...,m-l J

By omitting terms if necessary, we may assume in (3) that 
6(c^) + 6(a^) - 6(a^) , (i « l,...,k-l)
Looking only at least homogeneous components in (3), we get

he ~ ^  " ° (4)
Now apply d^ to (4) and recall lemma. 2.8 • This gives

(5,
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Since (2) had been taken to be the shortest left 6-depen­
dence relation satisfied by- elements of the set A, lemma 2.17 
says that the elements ,..., left linearly inde­
pendent over Ker d^ . Hence corollary 2.4 can be applied 
to (3), and this gives Cj_  ̂ “ 0, for i = l,...,k-l.
Now by lemma 2.16 there exist elements g2.'*’*'^k-l ^^r d
such that 5j_ “ (i “ l,...,k-l). All that remains to 
be done to get a^ left 6-dependent (in Ker d) on the pre­
ceding a^'s, is to replace every c^ in (3) by the correspon­
ding g^ G Ker d. //

Theorem 2.19: The kernel of any continuous derivation of
order zero in R - P «  x^,...,x^ »  is again a power series 
ring over P. .

Proof; Identical to the proof of theorem 2.11 except that
proposition 2.18 must be used here. //

In this case the description of a free generating set
for Ker d is facilitated by the information already obtained 
for homogeneous derivations and in particular the derivation 

(see proposition 2.13). As was shown in the proof of 
lemma 2.15 we may take the derivation d^ in d - d^+ d^+ d^*... 
to be ^  by employing a suitably chosen linear change of 
generating set.
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Now Ker

’̂ i+1 if 1 < i < q-1
’-̂ i-q.+ 2' if <1 < i < 2(x-l)
• • • •

 ̂[%i+n(l-q)+l' =1 ^ ] if n(q-l)^l < i
i< (n+l)(q-l)

V/e know by lemma 2.16 that there exists for every y^ 
an element 6 Ker d such that » y^ and it requires 
only a short argument (Which we now give) to verify that 
Z - (z^ ; i = 1,2,...} is a free generating set of Ker d: 

The fact that Y -{y^ ; i = 1,2,...} is a right 6- 
independent set in Ker d^ clearly implies that Z is a right 
6-independent set in Ker d. Furthermore , if K^ is the 
ideal of Ker d consisting of all elements of order > 1, 
we claim that the right ideal J generated by Z in Ker d is 
dense in K^. The least homogeneous component 1 of any ele­
ment f € K^ is an element of Ker d^ and is therefore expres­
sible in terms of the generators Y , say

finite yV ^ i g • • -yin. ' ^ i x ' " \  *

Now let g^ be the corresponding element

fi§te ^

then the element f - g^<E K^ has, 6(f - g^) > 6(f),



69
2.3 /2.4

Again f - g^ £ Ker • In the same way as before we ob­
tain an element g^ ^ ^ such that f - g^ - g^ c K^ and
o(f-g^-g2 ) > 6 (f-g-|̂ ). This process can be continued to 
give a sequence

 ̂ > • • • ( ^ d , all i )

of elements of ascending order with the property that for 
any n & Z* there exists an m e z* such that

Hence f lies in the closure of J as we wanted to show.

Conclusion; In order to find a free generating set for the
free power series ring Ker d ^  H where d = d^+ d^+ 62+ •••
is a continuous derivation of order zero in H = P «  x , .,x » ,1 q
it is sufficient to take a free generating set {y^,y2 »y^> • • .j. 
for the kernel of the homogeneous derivation d^ and then 
find a set of elements Z = ( z^,Z2 ,z^,...] S Ker d such that 
the least homogeneous component of z^ equals y^, every i > 1.

Derivations of order one.

The successful establishment of IWA in the kernels of 
all continuous derivations of order zero in R can be attri­
buted chiefly to the ease with which inverse images can be 
found under the homogeneous derivations of order zero (see 
lemma 2.15).
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In the case of continuous derivations of order > 1 this is 
not possible any more, and any attempt to prove directly 
that the kernel of such a derivation satisfies IWA is there­
fore made much more complicated, if not totally impossible. 
E.g. if d “ d^+ d2+ d^+... is a continuous derivation of 
order 1 in R where d^ is a "diagonal" derivation with respect 
to X, i.e.

^i ^ , A- e P , i = l,...,q ,
it is easy enough to say whether a given element lies in 
Im d^ or not because d^ sends every monomial in X into a 
scalar multiple of itself (see lemma 3 .6 , proof) and there­
fore R - Ker d^ 0  Im d^ .
But if (say) d^ / 0 and c is a given homogeneous element in
Ker d̂, it is by no means certain that it will be possible to
find an element g £ R with 6(g) > 6(c) such that

c + g €. Ker d ,
because we must then in particular have that

dp d
c + g » 0 

(g - least homogeneous component of g) i.e.
Ü2c € Im d^

This, however, will depend entirely on d2 which has not been . 
restricted in any way, and hence the whole argument may grind 
to a halt.
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Another property which facilitated the arguments in .the 
case of continuous derivations of order zero, v/as the smooth­
ness with which the order-filtration (as determined hy the 
free generating set) could he used, hut even this changes 
when non-homogeneous continuous derivations of order one are 
being considered. See for example the following example 
(2 .2 0 ) of a continuous derivation whose kernel does not satis­
fy IV/A with respect to the natural order function. The sig­
nificance of the existence of such derivations is then that 
any further investigation along the same lines will be ham­
pered by the additional task of finding a suitable inverse 
filtration for the kernel of the derivation under considera­
tion.

2.20 Example; In P «  x^,X2 ,..«,x^ »  , consider the 
continuous derivations d^ and d2 given by

di : x^ - x^ ^2 " ^1 ^1^4
^2 X2 X2 - x^X2
x^ »-> x^ + X2 x^ - x^x^

. 2:4 0 X4 %4^
Z5 0 X5

We show that the kernel of the derivation d = d^ + &2 (of 
order 1) does not satisfy IWA with respect to the natural 
order-function; .
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Ker d contains the four elements

■ %1%2
ag

h - %5%x%2 + X^X^X^Xj

^2 “ -%x%2'
Purthermore, a^ and ag are right 6-dependent in Ker d, in fact 

6 ( a i h i  +  8 2 6 2 )  ^  6 ( a j ^ h ^ )  =  6 ( 8 2 6 2 )

since
(x^X2)(%5%i%2) (x^X2X^)(-x^X2) - 0.

Now " (x^%2 )x^ ,
i.e. ^2 = âĝ x̂  , 

where 82 are respectively the least homogeneous compo­
nents of a^ and 8 2. But x^ can never he the least homoge­
neous component of an element in Ker d, for if an element 

& - gg + Sg + » 6(g) > 2,
could he found such that 

x^ + g c Ker d
it will follow in particular for the homogeneous component

dof degree 2 of (Xc + g) that
“2 "iX5 + g2 . - 0 . (1 )

(1) Shows that x^  ̂ then lie in Im d^ , hut

x^^2 - -x^x^ ÿi Im d^ .
Hence it is impossible to find c £ Ker d such that 

6 ( 82 Sjî c ) ^  0 ( 82 ) >

and this establishes‘the claim.
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Remark ; The existence of continuous derivations (in free 
power series rings) whose kernels do not satisfy lY/A re­
lative to the natural order function, becomes even more 
interesting if it is recalled from section 1 (Thm. 2.7) 
that each of these kernels is a semifir.

An attempt v/as made to determine the (very involved) 
kernel of the derivation in the example completely,in the 
hope that this might turn out to be non-free, but the indi­
cations were that another filtration could be found relative 
to which the kernel does satisfy TiVA.
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CHAPTER 3.

DERIVATIONS -AND AUTOMORPHISMS IN COMPLETE INVERSELY
FILTERED E-ALGEBRAS.■

We can use the information, obtained in Chapter 2, 
about the kernels of derivations in complete inversely 
rings satisfying lY/A to prove corresponding results for 
the fixed rings of certain automorphisms in complete in­
versely filtered E-algebras, where E is a field of charac­
teristic zero. The theorems will then of course apply di­
rectly to free power series rings E «  x^,...,x^ »  ; where 
we find for example that a continuous automorphism which
sendgthe free generators x^ to * x̂ +̂ g^ , 6(g\) > 2, 
has a fixed ring which is both a semifir and a rigid UED.

Eirst of all an appropriate connection between auto­
morphisms and derivations in such an inversely filtered al­
gebra S. is needed. Consider the mapping formally given by

exp d - 1 + d + + y,d^ + .........  (1)
where d is a derivation in S. Initially, take 

S - R “ E «  x^,..., x^ »  .
We cannot expect (1) to represent a well-defined mapping in 
R for any arbitrary cteoesi derivation d of order zero in R. 
E.g. d - , then exp d will be undefined in some elements

- * ^  A Tof R, such as f " » because the elements — ,f (n > 1)
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all have constant term equal to 1 and therefore the formal
1 *expression ^  ~,f does not represent an element of R.

For derivations of order 1 in E we must also move about 
with care and take account of the fact that even trivial 
continuous derivations, like the one which sends every x^ 
to itself, malce exp d undefined in (e.g.) the points x^ ; 
but here the situation can be rectified by taking the field 
P to be suitably restricted, as we shall do in section 2.

Everything becomes much more tractable if we consider 
only continuous derivations of order > 2 in E, because such 
a derivation d increases the order of every element to which 
it is applied. Consequently, for every f € E the sequence 
1 d^(g,f ; k * 0,1,2,.....) is summable in the order filtra­

tion topology (by Cauchy’s criterion), because for every 
n > 0 there exists an m > 0 such that 0(f ) > n for all 
k > m. In fact this is true in any complete inversely fil­
tered P-algebra - see proposition 5.2 below.

1. Order-increasing derivations.

Let S be a complete inversely filtered P-algebra with 
filtration v. We call a derivation d in S order-increasing, 
if v(f^) > v(f) + 1 for every f 6 S.
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Note that every order-increasing derivation is necessa­
rily continuous because it maps every neighbourhood of zero 
into itself.

The following fact about exp d, which is partly a con­
sequence of the Leibniz-formula for the powers of a deriva­
tion, is well known.

Lemma 3.1: If d is a derivation in an P-algebra R such
that exp d is defined throughout E, then exp d is an auto­
morphism of E.

Proof; Exp d is an P-linear mapping, because for each 
n > 0 the mapping d^ is P-linear. It is an endomorphism, 
because for arbitrary a,b ̂  E

t'O 1 I

S  f..< ^

1 ao 
oo

l^wl
f+i=t si

( z  i  i . i " ' )1̂x0 . JCxO s.

- ^ .
Pinally, exp d has an inverse, viz. exp(-d), as can be veri­
fied by a straightforward calculation. Hence exp d is an 
automoiphism' of E. //
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Proposition 3*2; let S be a complete inversely filtered 
P-algebra. If d is an order-increasing derivation in S, 
then exp d is a continuous automorphism v/hich maps every 
nonzero element of S onto itself plus an element of higher 
order.

1 d^Proof; . Por every a £  S the sequence (— ,a ) is summable, 
with sum a®^^ ^ , because the fact that d is order-increasing 
implies for every m > 0 that there exists an integer t > 0

 ̂1 ghsuch that v(r:,a ) > m for all k > t. Hence exp d is de-
fined throughout S, and by lemma 3.1 it is an automorphism. 
Clearly it maps every nonzero element of S onto itself plus 
an element of higher order. //

If the derivation d is order-increasing and b is an
arbitrary element in S it is not only true that 

2
v(b ) < v(b^ ) < ....  , where equality holds for any m > 1

,m
only if b - 0, but we also have for any sequence of
nonzero scalars that

) <   (2)
where it is again true that the equality holds for any 

d“ ’m > 1 only if b *■ 0 . This will allow us to determine 
the fixed ring of exp d •
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Lemma 3*3: Let S be a complete inversely filtered P-alge­
bra, and let d be an order-increasing derivation in S.
If acS is such that the sequence ( A^a )^is summable, 
with sum zero, for some sequence { }  of nonzero scalars,
then a c Per d •

Proof ; If a ^ Per d , then v(a^) =» k < , and hence also
v( " k . Then by (2)

d^v( ^  A^a ) “ k for all m > 2 . (3)

On the other hand, since the sequence ( A^a^ ) is summable,

with sum zero, there exists an index t > 1 such-that

v( ̂  A^a ) > k for all m > t , which contradicts (3). 
Hence a € Per d ♦ //

Proposition 3.4: If d is an order-increasing derivation
in a complete inversely filtered P-algebra S, then the fixed 
ring, Pix od , of the automorphism ^  *» exp d equals the ker­
nel of d .

Proof : Clearly Per d ^ Pix , If a c Pix cc , then
1 d^the summable sequence (— ,a ; n > 0) has sum a, and there-

' 1 "de­fers the subsequence (:̂ ,a ; n > 1) has sum zero. Hence
by lemma 3.3 a C Per d • Hence Pix(exp d) = Per d . //,
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Definition; Call an automorphism ©d in S exponentially 
dependent on a derivation if there exists a derivation d 
in S such that ©d « exp d .

Now some of our results on kernels of derivations in 
S can he applied to the fixed rings of automorphisms in S:

Theorem 3.5; a) In a complete inversely filtered P-alge- 
hra S satisfying IWA^ , the fixed ring of any automorphism 
od which is exponentially dependent on an order-increasing 

derivation, is an n-fir. Moreover if S is a local ring, 
then so is Pix oC ,

h) Take S and od as in a). If S satisfies
IWA, it is a flat right Pix ©d -module.

Proof; This follows immediately from proposition 3.4, 
corollaries 2.3 & 2.5 and proposition 2.6. //

_2. Homogeneous derivations of order one in C «  Xn,...,x » .j. q .

On page 75 we mentioned an example of a derivation d 
of order 1 for which exp d could only he a proper mapping 
in the free power series ring if the hase field had the 
appropriate properties. So to ensure that this will he the
case, the hase field is now taken to be the field of complex
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numbers, C  .
We discuss, only homogeneous derivations of order 1.

The situation for arbitrary continuous derivations of order 
1 is more difficult, and it will not be pursued here.

If h is any monomial in R » C «  »  , let
è (h) denote the degree in x. of h .Xf 1

Lemma 3*6; If d is the homogeneous derivation in 
R - £  «  X-, ,. •., X »  given by

x^ " Aj x̂̂  , ^ ^  , i “ l,...,q,
then the mapping exp d is an automorphism in R, and 
Ker d = Pix(exp d).

Proof; This derivation d has the property that its action 
on any monomial h amounts only to a change of the coefficient, 
in fact ^

-  ( J .  è  ( h )  A .  ) h
i '

- (say), 
and hence for every n > 1

whence
d . ( . -(e^ h)c % .

Aso
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By linearity ^ c R, for every f c R, and by lemma 3.1
exp d is then an automorphism of R. Since an arbitrary 
element a e R , written as a sum of monomials

is mapped by exp d to oo
4 . X  +/i, (1)

where CC. = <7T , we have that

a c Pix(exp d) = >  dT^ = 0 
for every i,j in (1) , and then also

oo rAy'

Hence Xer d = Pix(exp d). //

The following lemma has been used for establishing part 
ii) of proposition 2.14 in which we gave an explicit descrip­
tion of the fixed ring of an elementary automorphism in 
P «  x,y »  . Por this application the base field can be P, 
because the derivation is already given in the form (2) (see 
below).

Call a derivation d in an algebra A locally nilpotent
d^if there exists for every a C A an n > 0 such that a = 0.
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Lemma 3.7: Let R “ C «  X »  and R = C < X > , where
X = • If d, any homogeneous derivation of
order 1 in R, is locally nilpotent on R, then the mapping 
exp d is an automorphism in R, and Ker d = Pix(exp d).

Proof ; The homogeneous derivation d in R is by definition
continuous, and hence uniquely determined by its values on
{x-,,...,x } . Consequently, d is determined by a q % q± q
matrix over C which is an algebraically closed field, and
we may therefore assume this matrix to be in the (lower tri­
angular) Jordan canonical form. Furthermore, since d is 
locally nilpotent on R, the matrix has only zeros along its 
main diagonal. Write

- r 0 if i = 1

A^lX^+...+
if i = 2,3,...,q 

On the other hand, every homogeneous derivation of order 1
of this form is locally nilpotent on R. Now, if g is any ̂ <30 -Î1 dhomogeneous element in R the formal sum ^  j,g (if it is 
nonzero) has almost all its terms equal to zero, and it is 
a homogeneous element of degree equal to deg g. By lineari­
ty it follows that exp d is a well-defined mapping in R, and 
by lemma 3.1 it is then an automorphism in R.

Finally, Fix(exp d) » Ker d ; It is enough to consider 
homogeneous elements, so let a be a homogeneous element of
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>n
degree k, and let m(a) + 1 = min { n£ | a^ = 0 } . Taking
a G Fix(exp d) implies that

d 1 1
^ " 2:% " ••• + S W T  ^ = 0 • (3)

Order all homogeneous elements of degree k lexicographically 
(based on x^ < ••• < x̂ )̂ by taking the largest term in each
homogeneous element to be the leading term. Note that for
each homogeneous element of degree k we have then g^ < g in
the chosen ordering. This implies that the leading term 
of a^ in (3) is zero, which is only possible if a^ = 0. 
Hence a C Her d, and the assertion follows. //

Proposition 3.8; Por every homogeneous derivation d of or­
der 1 in H = C «  X. ,...,X »  the mapping exp d is an auto-X q
morphism, and Ker d «- Pix(exp d).

Proof ; As in the preceding lemma it is sufficient to con­
sider a d (completely determined by its values on X) which 
is given by a lower triangular matrix in the Jordan canonical 
form. We write it simply as

- f • if i - 1

\ ' if i “

Decompose d into d = d* + d" , where d* and d" are respective­
ly the linear derivations given by
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A. • X . ; i = , and
d"x^ = [ 0, if i = 1

f i “ 2,.*.,q •
By the preceding two lemmas both exp d* and exp d" are auto­
morphisms in R. furthermore it is a consequence of the 
special nature of the Jordan canonical form that 
d*d" - d*‘d* = 0. Hence exp d ’ exp d” = exp(d*+d"), and 
therefore exp(d'+d”) is an automorphism.

Clearly Ker d S ?ix(exp d). Por the converse, note 
that if we can show that

Pix(exp d) = Pix(exp d’) n Pix(exp d") , then 
Pix(exp d) = Ker d* n Ker d" - Ker d , 

and the proof will be completed.
An endomoiphism ^  in an P-vector space V is said to 

be semi-simple if every subspace of V which is mapped into 
itself by is a direct summand of V [ 7;p.66]. Let 
be the finite dimensional P-space consisting of the homoge­
neous elements of degree n in R, and note that exp d* , exp d", 
and exp d restrict to (vector space) automorphisms of •
Denote them respectively by , and . Then
we have for each n that

where is semi-simple and - 1 is nilpotent, and hence
we can apply theorem 18 of C 7;Ch.2] to see that both
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and are polynomials in oĉ  with coefficients in P.
This implies that every element of which is fixed hy oC^

is also fixed hy both and . Conversely, (4) shows
that every element which is fixed by both oL^ and is
also fixed by cd̂  . Since this is true for each n, we get
that

Pix(exp d) “ Pix(exp d*) n  Pix(exp d"). //

Automorphisms exponentially dependent on order-increasing 
derivations.

Returning to an arbitrary complete inversely filtered 
P-algebra S, we describe a class of continuous automorphisms 
which is exponentially dependent on order-increasing deri­
vations. Pormally speaking, it is reasonable to think that 
if exp d, then d = logcC , i.e.

d - /3 - 1 ^ 2  ^ 1^3 _ 1 ^ 4  + ....

where /S » cd -i. So if we can prove for some given auto­
morphism that the sum

i  (.0-1)- • ■a»« n
represents a derivation in S, we will have found a derivation 
d* with the property that oC » exp d* . Since d* will be 
order-increasing if = ed-1 is an order-increasing mapping, 
we restrict consideration to continuous automorphisms of 8
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which map every nonzero element of S onto itself plus an 
element of higher order.

Por any given automorphism oi in S, = ©<l -1 is an 
# -derivation (i.e. (1,cd)-derivation), because the difference 
©d-2T, of any two automorphisms in an P-algebra is a ( ZT ,cx )- 
derivation; as can be seen by noting that it is P-linear, 
and that for any a,b G S

(ab) = a°̂  b®̂  -a^ b^
“ 8i^ (b^ -b^ ) + (a°̂  -a^ )b^
= (1)

In (1), take 2T * 1, then we get 
(ab)/^ = .a^b^ + a^ b

" a ̂  ̂ ^b^ + a.̂  b
= a/ b + ab/ + a/ b/ . (2)

We extend (2) by induction to higher powers of ̂  :

Lemma 3.9: Let T be any P-algebra. If is an P-linear
mapping in T such that (2) holds, then for all n > 1 and any 
a,b € T n n n+r-1
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Proof ; Consider ( ab) ̂  = [(ab)/ and use (3) & (2)
to write this as

(ab)/g . I
+ ayga+r-i+ltygl+l ]

(-)a;ff-"l b + ^ ( - ) a ^ - i + l  b^ ̂ + ± ( - ) a ^ - + 4 / g -  

+ b/ (“)a b^ -^1+ i.(r^i)a;3-*V

* I  t - i ^ p q z p  + ( : ) ( - i )

*  V
+  byS

I aid of the formula (̂ ,

(ab)f-+l - ;2i(-;l)(*!l)a/S-+l-i b/, i

* Cl)(o)a/,-+l b^-+l

r\*t A + (

Hence (3) holds for all n > 1 • //

Rewriting this with the aid of the formula (^^+(_^2^"(^p^)&ives
V\+I
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The proof of lemma 3*11 below requires some identities 
which we establish beforehand:

Lemma 3.10: The following identities hold in the ring of
integers : Por every s > 1 let
t “ if s is even, and t = if s is uneven;

and let < s,i,k > = )( 2^^+% ).

If 0 < i < t , then 2 . <  8,i,k >  =  f  (-1)®'^^(A) if i “  0k-S-x J S
I 0 otherwise

and if t+1 < i < s , ^  < s,i,k > = f (-1)̂ '*'̂ (~) if i = s
0 otherwise.

Proof: Consider the free commutative power series ring
2[[x,y]]. If we apply the logarithmic mapping to the 
element 1 + x + y + x y »  (l+x)(l+y) we get

log(l+x+y+xy) “ log(l+x) + log(l+y) 
which is just a convenient way of stating that

±  = 1  ( x S h  (4)t a / Aa/
By an induction proof, which is exactly analogous to the 
one given in lemma 3-9 we see that for every k > 1

(x.y.xy)^ . Z  yi .f ; O * a f * X X
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Substitute this in (4) , then

X à à/<,/ -r.o xzr k r 1-rS  % k + r - i  y i
=  Z  ( x S " )  (5)A., k

In (5), equate homogeneous components of degree s, then 

^  2 ' -  -  - 'k- (.!p(g;:k) >‘-V- ^

3 »=-v 3
• <A)‘£*t>3 «°'V ■

The lemma follows immediately on equating coefficients of 
y^ in this last identity. //

Lemma 3.11: Let S be a complete inversely filtered P-alge­
bra. If is an P-linear mapping in S such that both

(ab)/ = a / b  + ab/ + a/ b/ , any a,b g S (6)
and the mapping d = /̂  -  ̂ ..... is defined every­
where in S, then this d is a derivation in S.

Proof; By lemma 3.9 it is true for arbitrary a,b G S that

- I l  l <Ï3iï:î> • A ' - ‘ « 3
Now use. the knowledge gained in rewriting the summations in | 
the proof of lemma 3.10 to rewrite (7) in an exactly analogous 
way as
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(ab)^ » 2  [ 2  2  < s,i,k > ) a/g ®"^b/ ̂.Sal J’O k-S-1 < '<Ĉ  ,çA—
+ Z  ( Z <  S,i,k > ) 1]

where again < s,i,k > - Z Z —  .
Then by lemma 3.10

(ah)A . Z Z Z l i  [a^ \  + a/'] = a<̂ h + ah^3Sa| 8
Hence d is a derivation in S. //

Proposition 3.12: Let S be a complete inversely filtered
P-algebra. If the continuous automorphism oC maps every 
element of S onto itself plus an element of higher order, 
then d » log od is a derivation in S such that od = exp d.

Proof: Put o< » 1 + , then ^  satisfies (6) (See the
discussion leading up to (2) above.) Also,

d - log «  “ X  (-l)^"^^(^)y5 ̂
is a well defined mapping of S, because ^  is an order-in-

\k+l .k
creasing mapping and therefore the sequence ( '̂  a' )
is summable for every a e S. Hence by lemma 3*11 the map­
ping d is a derivation which is also order-increasing, 
furthermore = exp d, as can be seen by a direct calcu­
lation. / /

Propositions 3.2 and 3.12 combine to give a characteriza­
tion of continuous automorphisms which are exponentially
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dependent on order-increasing derivations.

Theorem 3.13: let S he a complete inversely filtered P-alge-
bra. A continuous automorphism in 8 is exponentially de­
pendent on an order-increasing derivation d in S, if and only 
if ctC maps every nonzero element of S onto itself plus an 
element of higher order. //

We also get the following corollary to theorem 3.5(a)

Corollary 3.14: If S is a complete inversely filtered P-
algebra satisfying IV/Â  , then the fixed ring of any conti­
nuous automorphism which maps every element of S onto itself 
plus an element of higher order, is also an n-fir. //

It is interesting to compare this corollary with a re­
cent result of G.M.Bergman [ 3  ] on the fixed rings of endo- 
moiphisms in filtered rings with IV/A2 :

If R is a ring satisfying IWA2 with respect 
to some filtration, then the fixed ring R* of 
any semigroup of ring endomorphisms of R is 
still a 2-fir, and two elements of R* right 
commensurable in R are right commensurable 
in R* .

[Two elements a,b eR are right commensurable if aRn bR / 0.]
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Bergman could not extend the proof of this theorem to higher 
n-fir conditions because the elementary operations by which 
linearly dependent n-tuples are brought to standard forma 
are not uniquely determined in these cases, but note that 
the theorem covers all endomorphisms of the rings under con­
sideration.

In the case of complete inversely filtered rings it 
possible to handle higher n-fir or even semifir conditions, 
as we have done abqve, but we could only prove the correspon­
ding result for a restricted class of endomorphisms. It 
should be pointed out, however, that this restriction v;as 
brought about by the particular “exponential" connection which 
we established between derivations and automorphisms, and 
not by properties of the endomorphisms themselves,

Por free power series rings S.Andreadakis [ 1 ] esta­
blished another connection between continuous endomorphisms 
and continuous derivations by shov/ing that for every given 
continuous endomorphism /S of Q « Q «  Xĵ ,....,x̂  »  which 
sends the free generators to x^ + f^ , where each f^c Q has 
order > 1, it is possible to define an infinite sequence 
Dq - 1, ^2' * of Q-linear mappings in Q in such a
way that -

/  - &  m  &  (8)
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is in particular the continuous derivation in Q given by 
, i = l,2,...,q , and the other (n > 2) are 

differential operators of higher order with such intricate 
definitions that it is not worthwhile to describe them here 
in greater detail, because (8) does not connect y? with a 
single derivation in such a way that v/e could have used it 
to prove e.g. that the fixed ring of yS is a semifir.

Now let R * P «  x^,....,Xg^ »  and let oC be a continuous
automorphism which maps every nonzero element of R onto it­
self plus an element of higher order. Then,in particular 
x^^ = x^+ f^ , where o(f^) > 2 (i » l,...,q), and oC is com­
pletely determined once the elements f^ are knov/n. On the 
other hand every continuous automorphism ©< in R whose values 
on X “ {x^,...,x^} are of the form x̂ *̂  = x^+ g^ , where 
6(&i) 2 2 (i»l,...,q) , maps each element of R onto itself
plus an element of higher order, and hence it is exponentially 
dependent on an order-increasing derivation. By proposition
3.4 we then get the following corollary to theorem 2.7 :

Theorem 3.15: Let R - P «  X »  , X = { x^, . . . ,  and
let cC be a continuous automorphism whose values on X are 

- Xĵ + f^ (x^,...,x^> , where d(f\) > 2 , i » l , . . . , q ,  
then i) Pix oC is a semifir

ii) Pixoc is a rigid UPD 
iii X R is a flat right Pix©^ -module. //
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il* Linear automorphisms in C «  »  •

A continuous automorphism cf in a free power series 
ring P «  X »  is called linear if each is an P-linear 
combination of a finite number of x ’s in X.

Por the free power series ring £ «  x^,..,,x^ »  in 
particular vie can show that the class of automorphisms which 
are exponentially dependent on derivations, includes not 
only those automorphisms which map every x̂  ̂onto itself plus 
an element of higher order, but also all linear automorphisms, 
This implies that the fixed ring of every linear automorphism 
in this ring is again a free power series ring over € (Cor.3-19)

Lemma 3.16; If oC is the continuous automoiphism in 
R » C «  x^,...,x^ »  given by

Xĵ  "* ^i^i * ^ £ f i “ l,...,q ,
then the mapping d » logoC is a derivation in R.

Proof; Let ©( = 1 , then x^ = ( A^-l)Xj^ = ^i^i (say),
and ^ is a C-linear mapping which satisfies (6) of section
3) above. If h “ x. .....x- is an arbitrary monomial in 

/ ,1R, let I = |l,..#,n/ ,and note that if v/e extend the action 
of 3̂  on products of elements (as given in (6) ) by induction 
on n, we find
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J  ^  ^  r rh " tffX,, tm „ X . • • • X • • • • X . • • • X . CI /
n
Z
r=l

jl< ...< j

c Z
r=l (jl,..,jr)<

jl< ... < jr 

" ^  h (say)

and h , each k > 1.

r H  V 1 h-r Iji ...

,k+l

4 ^  v>-
[(log % }  hje R.

linearity d is a well-defined mapping of H, and hence hy 
lemma 3.11 it is a derivation. //

A
Lemma 3.17: If cC is the continuous automorphism in R given

,
- |x. if i - 1

L^il^l*'"'* ^iji-l^i-l"*" ^i if i ** 2,... ,q,
then the mapping d » log oC is a derivation in R.

Proof: Let oC • 1 +7T , then
x / - f O  i f i - 1

.. • + 1 “ 2,...,q,
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Order the homogeneous elements of degree n in R lexicographi­
cally (on x^ < ... < Xq̂ ) hy taking the largest term in each 
element to he its leading term. Por every monomial
h = X. ... X. in R we have as in (1) that 

^1 ^n
. y 4  -5 " r rh “ y? _ -"-'*̂«.11, Y* 4̂ ... X • ... X . ... X . ,r,l (jl,.,jr)6lf ^1 ^jl ^jr ^n 

jl< .. .< jr
I “ ^lj...,nJ •

y
Then hy (2) h is either zero or homogeneous of degree n 

ifand^it is nonzero it precedes h in the lexicographical order­
ing. since (x^^)^ = 0 , this implies that an integer m > 1
can he found such that h =*0. Consequently, ^  is local­
ly nilpotent on C <  x.,..^,,x > . Hence if f is an arhitra-
ry element in R and t > 1 any given integer, it is possible
to find an index m such that 6 (f ) > t for all r > m.

/_T\k+l yk
This shows that the sequence (-̂ -̂ -̂   f ; k = 1,2,...)
is summahle, with sum , for every f c R. Thus d is
a well defined mapping which, hy lemma 3 .1 1 , is a deriva­
tion in R. //

Proposition 3.18; Every linear automorphism (see p. 94 )
 ̂ /r*oC in R - X. ,...,x_ »  is exponentially dependent on1 q

a derivation d.
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Proof ; The automoiphism cL is completely determined hy its 
values on , and each of these values is a C -■ q
linear combination of x^,.....,x^ . Let A he the coefficient 
matrix of the x^^^ . Since £ is algebraically closed v/e 
may assume (hy a linear change of the free generating set, 
if necessary) that A is a lower triangular matrix in the 
Jordan canonical form. Let D he a diagonal matrix with its 
diagonal identical to that of A, and let N = A-L. Then N 
is a lower triangular matrix with zeros along its diagonal. 
Purthermore the fact that A is in the Jordan canonical form 
implies that ND “ LN , and hence also L(I+L"^N)=(I+D"^N)L •
Let 06’ and oC" he respectively the linear automorphisms in

—1 /T*R with defining matrices D and I+D” N over £  , then
“ oc” oc* , and hence log = logoc* + logoc” .

By lemmas 3.16 and 3.17 we know that both log©©* and logcc” 
are derivations in R. Hence log = d (say) is a deriva­
tion. A straightforward calculation shov/s that » exp d. //

Corollary 3.19: The fixed ring of any linear automorphism
oC in £ «  x^,...,x^ »  is again a free power series ring 
over £  .

Proof ; By the proposition oL = exp d where the derivation 
d = log (X is also homogeneous of order 1. Hence hy prop. 
3.8^PixoC - Ker d, and the corollary follows from thm.2.11. //
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CHAPTER 4.

DERIVATIONS IN PREE ASSOCIATIVE ALGEBRAS.

In.Chapter 2 we used the excellent divisibility proper­
ties available in complete inversely filtered rings satisfy­
ing IV/Â  , when we started off with the fact that in such a 
ring any m-tuple (m < n) of elements, taken in a suitable or­
der, can be reduced by a special upper triangular matrix to 
a sequence of right V-independent elements followed by zeros. 
Por filtered rings R with \VÂ  , the corresponding reduction 
of an m-tuple (m < n) of elements to a sequence of right v- 
independent elements followed by zeros, can be carried out by 
a matrix which lies in GE^ (R) (see [ 2  ] or [ 4 6 ]) This 
means that the matrix can be written as a product of elemen­
tary matrices, i.e. invertible matrices with not more than 
one nonzero off-diagonal term; but then we cannot be sure 
that the matrix is such that its inverse has a 1 in its first 
row (cf. proof of proposition 1.2). Consequently, we can­
not use an analogous argument to obtain corresponding general 
results for derivations in filtered rings with WA^ •

In free associative algebras we can use techniques which 
are similar to those employed for studying derivations and 
their kernels in free power series rings. Consider the deri­
vation d “ (3q + d, + ... + dp (sum of homogeneous derivations)
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in R “ P< > , and let a = a^+ a^+^+ ...+ a^
(s > r) (sum of homogeneous components) he an element in 
Ker d. Since each homogeneous component of a^ equals ze­
ro, v/e have the following set of equations:

ag 2 = 0
d , d

S  + -s-l 0

(1)
^0 '̂ 1 ^2 

-r+2 " -r+1 + -r “ °

+ %r - 0
d
* - 0

Conversely, if one wants to find an element in Ker d starting
from a homogeneous element a_ ̂  Ker d^ , (1) shows that as p
finite sequence of homogeneous elements a^_^, ag_2 * .....
has to he found such that a„ =, “a„  ̂ ^ ,8 S-J.

a^ + ag_2 " -ag_2 ^ , etc. However, finding appro­
priate inverse images under an arbitrary homogeneous deriva­
tion is very difficult if not impossible, and this reasoning 
will only lead somewhere if we keep to the simplest case in 
which d - dp is a homogeneous derivation.
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1, Kernels of homogeneous derivations in F< X > .

Let R = P< X > • Throughout this section and the next,
P is a commutative field of characteristic zero and X={x^,X2 >..} 
is a finite or countable free generating set, unless it is 
stated explicitly that X must be taken to be finite. R is 
filtered by the natural degree function v on X, and we con­
sider derivations which are v-homogeneous, i.e. they are ho­
mogeneous with respect to X in the sense that they map the 
free generators to elements which are either zero or homoge­
neous of the same degree in X. We show that the kernels of 
such derivations satisfy the weak algorithm with respect to 
V, and consequently they are also free algebras over P.

Lemma 4.1: Let d be a v-homogeneous derivation in R = P<X>.
If the nonzero homogeneous elements a^,a2 ,...,a^ in Ker d 
are right linearly dependent over R, and if v(a^)< ..< v(a^), 
then some (k < m) is right linearly dependent on 
a2 ,a2 ,...,a%_i over Ker d.

Proof; Let elements in R such that

a, f. » 0 (2)1 a / J-
It is clear that we may take the f^ to be homogeneous
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By the WA in Gr R, the graded ring associated to H w.r.t. v 
(see section 1.1), there exist homogeneous elements g^,.,g^_^ 
(r < m) in R such that

If all the elements g. lie in Ker d there is nothing moreJ
to prove, and this is indeed the case if m = 2, for if we 
apply d to the expression

^2 “ ^1 ^1
vje get 0 = a^ » whence g^^ = 0.
Hence/we. may assume inductively that the assertion holds for 
all relations (2) of length less than m. Now apply d to (2), 
where we assume that gj ^ Ker d for at least one j, then

0 - ^  a. (4)J J
By the induction assumption some , k < r-1, is right 
linearly dependent on a^,...,a^_^ over Ker d. This proves 
the lemma. //

Proposition 4*2; Let d he a v-homogeneous derivation in 
R - P< X > . If the finite set of nonzero elements 
hĵ ,h2 > •. • in Ker d is right v-dependent over R , then 
some , k < m , is right v-dependent on over
Ker d.
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Proof; Let the given v-dependence be

v( fj_) < { v(bĵ ) + v(f^)} » n (5)
where the f^'s are elements of R. If

= (f e H 1 v(f) < n-l}
and we- talce (5) modulo we get a linear dependence

^  t. £. - 0

where we have denoted the representative of an arbitrary 
element f modulo R^_2_ f * Row, since d is a homogeneous 
derivation, each b. lies in Ker d; hence by lemma 4.1 there 
exist homogeneous elements (k < r) in Ker d
such that \ ■ IN
from which it follows that

v(b. - fzE b. 0.) < v(b. )

and (6)
v(b. ) + v(c.) » v(b. ), j = l,...,k-l y 

 ̂ ^k
In (6) we have obtained a right v-dependence of b^ on
b. ,#..,b. over Ker d. //

^k-l

The promised result follows as,a corollary to this proposi­
tion.
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Corollary 4.3: If d is a v-homogeneous derivation in
R = P< X >, then Ker d satisfies WA relative to v. //

Theorem 4.4: The kernel of any homogeneous derivation d
in R = PC X > is also a free associative algebra over P.

Proof ; According to our definition of a homogeneous deri­
vation there exists a free generating set Y and a natural 
degree function v* relative to Y such that d is v*-homogene­
ous. By the preceding corollary v;e can apply the following 
theorem of P.M.Cohn [ 9 ] to establish our result;

Let A be an algebra over a commutative field P, 
with degree function v such that for any non- ' 
zero a £ A, v(a) = 0 if and only if a £ P.
Then A is a free associative algebra over P
with a right v-independent free generating set
if and only if WA holds in A. //

Remark; In order to find a free generating set for Ker d 
we can construct a "weak algebra basis" for this algebra 
in-the way described by P.M.Cohn in [ ]. We do not re­
produce that construction here, but we use it in the next 
section to describe a free generating set for the kernel of 
a rather special homogeneous derivation.
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2* Primitive derivations in P< X >•

V/e say that an element y c  R = P< X > is a primitive 
element in R if there exists a free generating set Y of R 
with y e Y. In a free generating set Y of R each primi­
tive element y uniquely determines a derivation in R; just 
take the derivation in R => P< Y > given by the mapping 
from Y into R which sends y *—> 1 and z 0, each zeY-{y},
We call such a derivation in R a primitive derivation and 

jdenote it by ^  .
So, if it is said that a given derivation d in R=P< X > 

is a primitive derivation, it means that for some free 
generating set Y of R there exists a y £ Y such that d= ^  

This d is then a homogeneous derivation of degree zero with 
respect to Y, and hence, by theorem 4.4, Ker d is also a 
free associative algebra over P. We now describe a free 
generating set for this algebra.

Let d be the primitive derivation in R = PC X > ,
where X » {x2 ,%2 *.....} . Denote the degree-function
relative to X by v, and let » Ker d n R^ ,
R^ = {f € R I v(f) < n} , then the filtration induced in 
Ker d by V is
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Define, for each n > 1 , an P-suhspace of by taking
Rn * to be the space spanned by all products ab with a,b £
v(a) + v(b) < n . Let be a set of representatives for
a basis of the P-space . In order to describe such
a set B^ explicitly we have to find the homogeneous elements
of degree n which lie in Ker d but not in R^* . Denote
commutators of the form [... [Cf ,x^] ,... ,X2_] by [f,x^^^^]

k-times
and repeat the argument given in the discussion of example 
2.12(1) in section 2.2. This shows that every homogeneous 
element of degree n which lies, in Ker d can be written as

where almost all the terms in the sum are equal to zero. 
Purthermore, since for each n > 1 the commutators 
CXi,Xi^^“^^] (i > 1) form a basis of the P-space generated 
by them, we can take

B^ =* {x^ : i > 2 } and for each j > 2

Bj - : i > 2 } .

Then B - B. is a free generating set of the B-algehra
Ker ^  (see P.M.Cohn [ /7 ,p.l2]) We state the conclusion 
as proposition 4.5.
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Proposition 4.5: If d is the primitive derivation deter­
mined by -the primitive element y £ Y in P< Y > , then Ker d 
is a free subalgebra of PC Y > , with free generating set 
C = C. , where

= { z £ Y | z / y }  and for every i > 2 
Cl = |zGY, z / yj . //

Next v/e indicate how Ker ̂  lies embedded in PC K > by 
proving that P< X > may be regarded as a skew polynomial 
ring over Ker ; but before we can do that we have to in­
troduce another valuation on P< X > •

Proposition 4.6; If d is any locally nilpotent derivation 
in an integral domain S (with 1), then the Z. u {-<0 j - valued 
function w defined on S by

w(a) »  f  k-1 if k =  min { j £  j «  0, a /  0 }
\-<30 if a = 0

is a valuation.

Proof; w(l) = 0 since 1^ » 0. Also, for any a,b £ S 
w(a-b) - min { j £ | (a-b)^^ « o} -1

< min { min { i c | a^ =» 01 ,,
min fjc |b^ = o) } -1

- min {min {i£ | a^ » o) -1 ,
min {j£ jb^ “ oj -1 }

- min {w(a), w(b) } ,
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and w(ab) = min {kc 1 (ab)^ = o} -1 , so that by the
lemma below we have

w(ab) “ (min { i £ Z"*" 1 a^ = o} -1)
+  ( m i n  { j £  Z ' * ’ | b ^  =  o }  - 1 )

“ w(a) + w(b) .
Lemma; Let S and d be as in the proposition.
I f  r  =  m i n  {  i  £  Z " * "  | =  0  }

s  =  m i n  { j £  I b ^  =  0  j
t h e n  m i n  { k €  | ( a b ) ^  =  o } = » r + s - l .
Proof of lemma; Put r + s - 1 = t and consider (ab) •
By the Leibniz-formula

(ab)A^ . ^  (^) a'̂'’ ,
gt-i giand since b = 0 if 0 < i < r-1 , a * 0 if

jt—1
ST r < i' < t , we have (ab) = 0 . Row if also (ab) =0, 
i.e. if

( Y )  - 0 (1)3 0  J

and if we omit all terms in (1) which are zero by virtue of 
the fact that either 

d3a 0 (which occurs when r < j < t-l)
^t-j-l '

or b “ 0 (which occurs when 0 < j < r-2) ,
then (1) reduces to

= 0 .
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Hence either a 0 or h 0 which constitutes
a contradiction against the minimality of either r or s . 
Hence t = min { k £ | (ab)^ =* 0 } . //

Theorem 4.7: If d is the primitive derivation ^  in
R = P< Z > , X “............} » then the inner derivation
given by ; a —> [a,x^] on R restricts to a derivation
A  in Ker d, and R may be regarded as the skew polynomial 
%iring Ker d [2-, ;l, A ] ,

1

Proof: To see that A„ is a derivation in Ker d it is
^1

sufficient to know that Ker d is closed with respect to the 
mapping A, and this is clear, because for any b £ Ker d 
we have

[b,x^]^ = b - b = 0 .
Por the rest of the theorem we start off by showing that R
is a free right Ker d-module with basis

2 _ 5

Since d = ^  is. clearly a locally nilpotent derivation on 
R we can introduce a valuation w on R in the same way as in 
proposition 4.6, and use this valuation in an induction argu­
ment to show that every element a e R with w(a) = n can be 
written uniquely in the form

a - + ^1 ^ 1  + Y  ^2 ^l“ (2)
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where £ Ker d , i = 0,1,...,n . This is trivially true 
for all a £ E such that w(a) = 0 (or - oo ), i.e. all a<?Ker d, 
Assume (2) for all a € R such that w(a) < n and consider an 
element b £ R with w(b) = n . By the definition of v; we 
have w(b^) = n-l , and hence,by the assumption,there exist 
uniquely determined elements * * * *^n-l ^  R^r d such that

=. 0^+ Z]_ô +  ^1^ ̂°n-l .
let b^ = * .......+ ' then

(b*-)*̂  - c^+ x^o^+.... + •

Hence (b-b^)^ = 0 . Now let b^ = b-b^ , b^ = ,

^2 “ I ° 1 .......  i °n-l t

then rewriting b = b^+ b^ we get

^  "  V   +  \
where the b^'s are uniquely determined elements of Ker d. 
This establishes the claim.
Finally, R may be regarded as the skew polynomial ring 
Ker d [x^; 1, ] , because each of its elements can be
written uniquely in the form (2), and because the multipli­
cation of such elements is completely governed by the com­
mutation rule gx^ " x^g + [g,x^], any g c  Ker d. //
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Now that we have seen how every primitive element 
y C P< X > = R determines a derivation d such that R may 
he regarded as a skew polynomial ring over Ker d, it will 
he interesting to find out how far this property goes to- 
v/ards characterizing y as a primitive element. We attempt 
to answer this question in the case where R is free of fi­
nite rank, i.e. the free generating set X is a finite 
and we find that the property only determines y up to an 
arbitrary "constant" in Ker d.

Theorem 4.8; Let R = P< X > , where X = {x^,...,x^^} and 
q > 2. There exist a derivation d and an element z £ R 
such that
i) the mapping ; g —> [g,z] defines a derivation in 

Ker d , and
ii) R may be regarded as the skew polynomial ring Ker d[z;l,A^] 
if and only if z = y+b , where y is a primitive element in

j
R, b € Ker d, and à = .

Proof ; Under assumption ii) clearly z ^  Ker d, but
for every g £ Ker d^ [g,z^] = and by i) this is zero.
Hence Ker d is a subring of the centraliser C of z^ in R.
We v/ant to show that z^ £. P. Now if v/e assume z^ P it 
follows that this centralizer is a commutative subring of R
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(see [ H  ,p.349])> and then by ii) R will be a skew poly­
nomial ring over a commutative ring, which implies that R
is a right and left Ore domain. This, however, is impos­
sible since R was taken to be free on more than one gene­
rator; and therefore €: P. Say z^ = A (/O).

Purthermore, if we use v to denote the degree function 
determined by X, we can also see that the derivation d re­
duces the v-degree of every element to which it is applied. 
This is immediately clear for all the nonzero elements in 
Ker d, and since any element a ^ Ker d can be written unique­
ly as

a = a^+ za^+ ...+ z^a^ , a^ € Ker d , i=0,l,.,k (3)

we know that
v(a) > max^ { v(z^ a^) ; i = 1,2,... ,k } •

Now apply d to (3) » then
a^ “ Aâ +̂ 2Aza2+ ...+ kAz^"^a^ , 

and hence
v(a^) = max^ { v(z^“^a^) ; i = 1,2,...,kj

< max^ { v(z^ a^) ; i = 1,2,...,k i

< v(a) .
If we apply this knov/ledge to the free generators, x •, we 
see that for each j = l,2,...,q , v(Xj ) < 0 and hence 
x.^ = £ P , where we may assume that (say) / 0.
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The next step is to change the free generating set 
linearly to a more suitable one. Consider the elements

?! - j %  if i = 1
I Y] .
I if i = 2,3,...,q ,

and verify that Y = y^,.,,,y^ is also a free generating
set of R. Note that y^^ = (Kronecker delta),
i “ 1,..., q .

This makes it abundantly clear that the given d must 
be a primitive derivation in R. W’e also know by theorem
4.7 that R = Ker d [y.;1, A  ] , hence there exist unique-Yl
ly determined elements b^,b^^,... ,b^ £ Ker d (b^ / 0, r > 1) 
such that

Z = ŷ _ b^+.... + . - (4)
Apply d to (4),then

“X =  b^+ 2y^ bg+ + r y Y ^  ,
Prom which it is clear that r = 1 and that b^ = A ,
Hence by (4) z = A y^+ b^ , and since A also a
primitive element in R, this proves the necessity of the 
conditions i) and ii).

<== : Consider an arbitrary primitive element y in R,
àand let d be the derivation ^  , then v/e know by theorem

4.7 that R = Ker d [y;l, ^y] , where is the derivation



113

4.2

in Ker d given by g *-> [g,y] , all g £ Ker d. V/e now 
show that if a is an arbitrary element in Ker d, and 
z = y+a , then the mapping defined on Ker d by
g [g,z] is a derivation in Ker d, and R may also be 
regarded as the skew polynomial ring Ker d [z;l, A^]. 
Ker d is closed under the mapping since (for every 
g C Ker d)^ [g,z] = [g,y] + [g,a] , where [g,y] and [g,a] 
both lie in Ker d. Consequently, is a derivation in 
Ker d, because it is the restriction to Ker d of an inner 
derivation in R.

The rest of the assertion follows from the fact that 
the skew polynomial rings

- Ker d [y;l, A^] and

“ Ker d [z;l,
are isomorphic as right Ker d-modules : Take (pi —> M2
to be the mapping which sends

b “ bg+ yb^+ + y^ b^ 6 (b^ / 0)
b^“ b^+ (z-a)b^+.... + ((z-^)b^ S Mg

By repeatedly using the identity 
az = za + [a,z] 

it is possible to find for every i = l,...,m uniquely de­
termined elements ^io'^il’* * **^ii ^ R^r d such that
(z-a)^ = cug+ . (In particular each

°ii '
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Hence
m

/= ^  ( 2. z^c. . )b.1:0 I'xo Ij 1J'-

“ ^  cx.b ) . (5)
J=o W'

It is straightforward to check that (p is. a Ker d-module 
homomorphism. Purthermore Ker Ç = 0, for if h ^ =  0 we see 
from (5) that for every j = o,l,...,m

0.:b. = 0 (6)
Taking j = m in (6) gives c_^b^ = 0, i.e.b^ = 0, which is a
contradiction. Ç. is also a mapping onto M2 because every
element ^

So+  + Zgj,eïû2
is the image imder <p of the element

(y+a)g^+.... + (y+a)^g^ £M^. //

Remark ; The case of P-algebras which are free on one gene­
rator is completely trivial, because the kernel of every 
nonzero P-linear derivation d on P[X] is equal to P:
Let b be an arbitrary element of Ker d and say

b - \ +  \ x  +..... \ x ^  .

Then since R is commutative

0 = b^ = + 2 A2Xx‘̂ +...+ m A^x^”^x^

and since x^ / 0 we get
A^ = 2 A2 = ..... = m A^ = 0.
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P has characteristic zero, hence = Ag =...= = 0,
and therefore b = A^ € P. //

The knowledge obtained in theorems 4.5 and 4.7 can of 
course be applied again to the free algebra which consti­
tutes the kernel of the primitive derivation ^  , givinga 
repetitive process which will allow us to describe a descen­
ding chain of free subalgebras of R = P< X > , each with the 
property that R is a free module over it.

è ADenote the kernels of the primitive derivations 
in P< X > , X = {x^,X2 ,.... } -, respectively by N^,N2 »R^i••.>

and let • Extend the notation [g,x^^^^] ,
which we introduced at the beginning of this section, to 
include also the case where r = 0 by taking [g,x^^^^] = g.

Theorem 4.9: Por every n > 1 the subalgebra of
R “ P< X > , X = {x^,X2 ».....} , is a free algebra over P,
with a free generating set consisting of the elements
Xj (j > n+1) and all the left normed commutators of the
form [.....[[x^,x^*-^l^], X2 ^^z]],.... '
where k > min^ } r / o} and each r^ > 0^ (at least one 0),

Cn )Purthermore, when R is regarded as a right R -module it is 
free with basis the set of all products of the form

.............. (each Ij > 0).
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Proof ; By proposition 4.5 and theorem 4.7 this theorem is 
valid if n “ 1, and hence we may assume inductively that it 
holds for n - l .  Note that when the primitive derivation 
^  in R is restricted to we get exactly the primitive
derivation (say determined by the free generator x^ of
^(n-1)  ̂ because ^  sends

^n
Xj 0 (all j > n) , and

[r.] [rp] [r^ . ]
[..[[x^,x^ ],X2 ],...,x^_^ ] 0 (all r̂_ > 0)

All these commutators go to zero because in the cases where
this is not trivially true, i.e. when k = n, it follows from
the fact that (x^) ^  = 1 and (x^) ̂ = O i f l < t <  n-l.
Now by proposition 4.5 applied to the free algebra we
see that Ker which is the same as n N^ = N^^^ *
is a free, algebra with a free generating set as described in
the formulation of this theorem.

Purthermore, by theorem 4.7, we have then that is
a free right N^^^-module with basis { l,x^,x^^,x^^,... } ,
and we know by induction that when R is regarded as right 
N(n“l^-module, it is free on the basis consisting of all pro­
ducts of the form (x^^I x^^^ ... ^-1^^”^^* Hence it follows 
that when R is regarded as right N^^^-module, it is free on 
the basis consisting of all products of the form

(x^ 1 Xg 2 ... X% * ). ' //
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Theorem 4.9 leads directly to the results of G.Palk 
[ /9 ] on the intersection of the kernels of the derivations
^  ^   ....  in a free associative algebra F< X >.
It is only necessary to allow n to run through the whole 
index set of X ■= {x^yXp,....} in this theorem to get

Corollary 4.10î (G.Palk) ; The subalgebra II ° (] Ker ^  of
the free associative algebra F< x^pXp, > (where P is a
commutative field of characteristic zero) is also a free
algebra with free generating set equal to the set of all
left normed commutators of the form

[r\] [rv] [r.]
r• • • • CCx^, 3 , • • • • • , ,

where k > min^ { r^ f o} and each r\ > 0, r^ / 0. Further­
more, when R is regarded as right N-module, it is free on a
basis consisting of all the products of the form

in ip i+x^ X2  x^ where i^ / 0 unless t = 1,
in which case it can possibly be zero. //

Remark : Corollary 4.10 actually improves Falk's results,
because it not only states that N is generated by the left
normed commutators mentioned above, but that it is genera­
ted by them as. a free algebra over F.
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CEjlPTER 5.

THE TRACE OP A DERIVATION IN F< X >.

Up to now we have concerned ourselves almost entirely 
with the kernels of derivations in free associative alge­
bras which we could take to be of countable rank; however, 
when we turn to discuss the trace of a derivation, the free 
algebra has to be of finite rank.

Initially we define the trace of a given derivation 
relative to one free generating set, say X, and then investi­
gate to what extent this definition is bound to the particu­
lar generating set chosen.

1. Defining the trace of a derivation in P< x^,...,x^ >.

Let R = F < X >, where F is a commutative field of cha­
racteristic zero and X = {x^,...,x^} . R, regarded as a
graded ring, is a direct sum of the finite dimensional F- 
vector spaces gr^(R), and an arbitrary derivation d in R in­
duces (for each n > 0) an F-linear transformation in 
gr (R). This S corresponds bi-uniquely to a square ma-

&
equal the trace of this matrix.
trix over F, and as usual we define the trace of to
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Consider d in the same way as before (section 1.4) as 
a sum of homogeneous derivations d = d^+ d^+ ... + d^ J 
The fact that a homogeneous derivation of degree i, when 
restricted to gr^(R), can map gr^(R) into itself^if
i = 1 , implies that for each n > 1

^n “ *̂ 1 I • (1)
Denote the trace of by 1^( <$̂ ) .

Proposition 5*1: If d^ is a homogeneous derivation df de­
gree 1 in R = P< X > , then for every n > 1 ,

I "^x^^l I Gf^CR) ) (2)

Proof; Recall that if gr^(R) = V , then for every n > 1, 
grn(R) =  V(S>... <S)V (n factors), where the tensor products
are taken over P. Suppose oĈ  are linear trans­
formations in V. It is well-known that

"^x^ ^ 1 ^  ... ®  oĉ ) = T^( c6^), (3)
but for completeness v/e sketch the proof; Let each be 
given (relative to the basis {x. ,...,x  ̂of V) by2 J- q

x.^’ “ S x ^ X . ^  , j “ l,...,q , then the linearJ •I'-i r ijr
transformation iu V® V is given by

o C ®  0̂ 2 ^  T cC 2 ^
(x^®Xjj.) - x^ ®Xj^ - d j r  2ks '

all j,k = 1,...,q
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Hence
= | . .

“  ̂̂  &  ^kk)
“ r.c « P  r^( .

By induction this extends to (3).
Note that the action of the derivation d^ on gr^(R) is 

mirrored exactly in the action of the linear transformation 
( 1 © ... ®i) +' (1 ®  o ^ © . .. ©1) +...+ (1 ® 1 ®  i  ) (4)

on the P-space V ®  ... 0 V (n factors).
Let = (1 0 ... 0 1 0  1 <2>... © 1 ) , then

i th position

since ^(ly) “ q , we have by (3) that

T^( Ĵ_) , i = l,...,n.

Hence %  ( ) ” nq^"^ C 6-, ) , and this implies^ /.L X -L

that %^(d^| gr^(R) ) = nq^"^ lẐ (dg_ j gr^(R) ) //

This proposition shows that the trace of each is 
just an integral multiple of the trace of » and there­
fore we can define the trace of the derivation d as follows
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Definition; If d is a derivation in R =• P< X > ,
X = , and if d^ is the derivation in R given

^1by x^ = , where is the homogeneous component of

degree one of x̂ ^̂  (i = l,...,q) ; define the trace of d 
relative to X by

trace^(d) = trace^(d^ ! gr^(R) ) (5)

Trace^C ) then assigns to every derivation d a unique­
ly determined scalar in P in such a way that it gives an
additive mapping from the P-space of derivations of R into
P.

2. Effect of a change in the free generating set on the 
trace of a derivation.

Next we check v/hether the trace function defined in
(5) is independent of the choice of free generating set. 
Simple examples show that this is not so.

In P< X2,%2 ^ > let d be the derivation given by

X1

and let ci be the translation given by
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^1^

x / = Y2 “ X2+ , where ( ”X^/< + %2 / 0«

Then d= x^ = (?!- \ ) + Cyi_-

( ■- + y^(l-2X^/i) + y]_Y

and d= Xg = (y2~ + (72~

( •- y2(1-2 ̂ 2 ^ )  12 ^

Hence by (5) trace^(d) = 2 , and

tracey(d) = 2-2( ^ 2 ) / trace^(d).

This suggests that we limit ourselves to augmentation. • 
preserving automorphisms of R = P< > , i.e. auto­
morphisms cc such that x̂ ^^ has zero constant term for each 
i “ l,...,q .

An augmentation preserving automorphism in R is said to 
be tame if it can be expressed as a product of elementary 
automorphisms, i.e. automorphisms in which

i) an element x £ X is replaced by ^x ( A a nonzero
element in P) and the rest remain unchanged;

. ii) the elements of X are permuted in any way;
iii) an"element x e X is replaced by x + f(x,,...,x ) ,J. q

where f is an expression in the elements of X which
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are distinct from x; and the elements / x in X re­
main unchanged. (See e.g. [ /7 ,p.33]

Proposition 5.2; Let d be a derivation in R = PC X > , 
where X = {x^,....,x^} , and let Y =  ̂ } be
another free generating set which is the image of X under 
a tame automorphism of R, then tracey(d) = trace^(d) .

Proof ; It is sufficient to prove that tracey(d) = trace^(d)
for every Y which is the image of X under an elementary
automorphism of R. Let d^ be the derivation given by 

d.

where each u^ is the homogeneous component of degree 1 of
d 'èiX. , then by (5) in section 5.1 trace^(d) = ,

Any elementary automorphism given in i) or ii) above 
induces a vector space automorphism in the q-dimensional 
space gr^(R) , and it is well-known that such an automor­
phism does not change the trace of the linear transformation 
d^ in this vector space. The same is true of any elemen­
tary automorphism given in iii) if deg f(x^,...,x^) = 1 . 
Hence it only remains to consider an elementary automorphism 
oC which is given on X by

= yjj. = Xjj. . if k / i , and
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= x^+ )=x^+ (say),

where order^f^ > 2.

oCHote that = y^- f (y;]_. •. • .y^.^.y^+i» • • • »y^)

= y^- fy (say) ,

where orderyf^ > 2.

The derivation d^ is defined relative to Y by 
y^^l = x^^l if k / i

c/
^1 ^1 ^1 and \

->i ” -Â ki ^y

( ^ A  A  V / y  +
d. oc“^

where order^Cf^ — ^.f^) > 2.
2

Hence tracey(d) » /^kk ” trace^(d). //

There exists at the present time a conjecture that all 
augmentation preserving automorphisms in a free associative 
algebra of finite ranlc are tame. If this is true the pre­
ceding proposition will show that the trace of a derivation 
is independent of any change of free,generating set caused
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by an augmentation preserving automorphism.

Pernark: Anastasia Czerniakiewicz [ ] proved that in a
free associative algebra of rank 2, P< x,y > , any auto­
morphism which preserves the commutator xy-yx is tame. 
Moreover, she recently announced that she is now able to 
prove that all automorphisms of ?< x,y > are tame. •

——ooOoo——
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