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ABSTRACT.

A derivation d in any associative ring R is a linear
mapping such that (ab)d = a% + apd , any a,bi € R. The
kernel of d is a subring of R which can sometimes be a
ring of the same type as R. In particular, if R is a free
power series ring, F<< xl,...,xq >> , over a commutative
field of characteristic zero, we find conditions under which
Ker d is again a free power series ring. This happens e.g.
if all the nonzero elements of the set {xid; i= l,...,q}
are homogeneous of the same order, or if at least one ele-

ment in this set has a nonzero constant term.

For every derivation 4 in a complete inversely filtered
F-algebra S satisfying the [n-term] inverse weak algorithm
it is at least true that Ker d is [an n-fir] a semifir, i.e.
Ker 4 is then again a ring in which every finitely generated
(by at most n generators] right ideal is a free right S-
module of unique rank. This is also true for the fixed
rings of suitably chosen automorphisms of S, for if « is an
automorphism which maps every element onto itself plus an
element of higher ordér, then log« is a derivation such
that Fix o = Ker (log ot ).

In a free associative algebra F< X > , X a countable
set, the kernel of any derivation d such that the nonzero
elements of the set fxd; X € X} are homogeneous of the
same degree, is also a free associative algebra over F.

In particular, the kernel of the derivation j% has a free
generating set consisting of {y € X; y # x} together
with the set of all commutators of the form [..[[y,x],..,x].
This mekes it possible to regard < X > as a skew polynomial
ring in x over Ker f} » & fact which characterizes x up to a
"constant" in Ker ;,‘{- . '
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INTRODUCTION .

If the development of general (noncommutative) asso-
ciative ring theory is superficially divided into rings.
with descending chain conditions, rings with ascending
chain conditions and rings without chain conditions; then
free rings, in particular free algebras and free power se-
ries rings over a field, fall under the last heading. In
other words they belong to a part of ring theory which is
still relatively little explored and as such present a
fruitful area for research.

It is still fairly recently that general methods for
their study became available., Among these tools are the
week algorithm (which is a generalization of the classical
Buclidean algorithm) in free associative algebras and its
counterpart, the inverse weak algorithm, in free power se-
ries rings. A survey which indicates the techniques pre-
sented by the weak algorithm can be found in [17] and this
paper also contains references to relevant literature in
this field. The inverse weak algorithm was first defined
in [10].

Whenever an algebraic structure, e.g. a free ring, is
being studied it is important to know as much as possible
about the endomorphisms, in particular the automorphisms,
and other related mappings, such as derivations, in this
structure. Free rings have the property that every (suit-
able) subset in them which can be taken as the image set of
the set of free generators, determines both an endomorphism
and a derivation in the ring. However, it can be quite
difficult to decide whether a given endomorphism is an auto-
-morphism. In a free associative algebra (of rank > 2) it
is not even known yet if every automorphism is "tame" in the
sense that it may be regarded as a product of certain "ele-



mentary" automorphisms (see page /22).

Derivations in free associative algebras have not
before been studied in any depth, and the research for
this thesis started with an attempt to use derivations
to characterize sets of free generators in such an al-
gebra. . Any derivation in a free algebra, F< X > , can
only marginally decrease the order of an element to which
it is applied. This suggests that it might be worth-
while to study the effect of derivations on 8-dependence
relations (8(a) = the order of a € F< X > ) , something
which can be done. more advantageously in free power series‘
rings, i.e. the topological completions of free associa-
tive algebras relative to the topology induced by the order-
"function., In this way we obtained information about the
kernels of derivations in complete inversely filtered rings,
and in particular free power series rings.

It is well-known in mathematics that elements which
belong to the kernel of a derivation (or differentiation)
are often also fixed elements of some automorphism, and vice
versa. We investigated this connection between derivations
and automorphisms in a complete inversely filtered ring, and
have shown how it enables us to extend results on the ker-
nels of derivations to fixed rings of automorphisms.

Additional information on the endomorphisms, automor-
phisms and derivations of a free power series ring can be
found in [1], but even so,all that has yet been said in this
- respect touches only a small part of the vast field of in-
vestigation presented by derivations in free rings.
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CHAPTER 1.

DEFINITIONS AND PRELIMINARIES.

The definitions and basic properties of-all the con-
cepts used and dispussed in the thesis form the subject
matter for this chapter. We have proved the assertions
only if it was inconvenient or impossible to provide a refe-

rence to a satisfactory proof in the relevant literature.

l. Filtered and inversely filtered rings.

We are primarily concerned with free associative alge-
bras and free power series rings, but some of the basic
notions which will be our tools for studying derivations in
these rings belong naturally to a more general context.

We take this as a starting point for listing the necessary
definitions. All rings are teken to have unit-elements
which are also the unit-elements of all their subrings, and
all homomorphisms map the unit-elements onto themselves.

A filtered ring R is a ring with a non-negative integer-

valued function v defined on its subset of nonzero elements
and satisfying the conditions:
i) w(x) >0 for x # 0, v(1) = O
11) v(x - y) < mex {v(x), v(y)}
ii1) v(xy) < v(x) + v(y) .

“-e

-e
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Extend v to the whole of R by taking v(0) = =0, An
equivalent way to get R to be a filtered ring is to re-
quire that there must be a sequence (Rn) of subgroups of
the additive group of R satisfying the conditions
a) O0=R ,S R SR SR,€ ... ,1€R;
b) URt =R ;

c) RiRj QR:HJ' .
The equivalence between these two sets of conditions stems
from the fact that a) - ¢) follows from i) - iii) if we take

Rn-{xGRlv(x)_{n};

‘.. and conversely i) - iii) follows from a) - ¢) if we define

von R by
v(x) -inin{~nl xeRn} .
For any a ( # 0) € R the integer v(a) is called the degree

of a.

On the other hand, if we have a non-negative integer-
valued function ¢ defined on the set of nonzero elements of
 the ring R and satisfying the conditions
1) #(x) >0 for x#0, (1) = O';

' 2) ¥(x-y) 2 min f +(x), ?(y)} 3

3) ¥(xy) > Hx) + AHy) ;

‘and if we‘extend ¥ to the whole of R by teking #(0) = o ,
we say that R is inversely filtered by ¥.
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1

Now put
Ry = { X €R ‘ (=) > t} ’

then (Rt) is a descending sequence of subgroups of the ad-

ditive group of R

a') R=R 2R 2R, 2 ..... such that

') (1R =0,
| c') RiRj =) Ri+j ;
Conversely, if a') - ¢') are given in R, we can get a

¥ satisfying 1) - 3) by taking ,
Hx) = (min{t|x¢ Rt+1.} ifx #0
o0 iftx=0.
For any a( # 0) € R the integer ¥(a) is called the order of a.

If R is an inversely filtered ring it may be topolo-
gized by taking the subgroups Rt to be a neighbourhood base
of zero. The completion ﬁ of this topological ring is also
of interest to us, because by b') R is Hausdorff and it is
therefore a subring of its completion ﬁ. (See e.g. [ 6 ’
ch. III] . In the next two chapters we shall always take
the inversely filtered rings to be complete, so that R = ﬁ
‘will hold.

Next we introduce the concepts of dependence and inde-
pendence relative to the filtration in filtered and inverse-

ly filtered rings.

AY
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Definition: i) Let R be any filtered ring with filtration v.

A family (ai) of elements of R is right v-dependent if there

exist elements bi € R, almost all zero, such that
v(fz.i aibi) < max 4 { v(ai) + v(bi)} ,
or if some a; = 0.  Otherwise the family (ai) is right v-

independent.

. 1i) An element a € R is right v-dependent on a

family (ai) if a = 0 or if there exist elements b, € R, al-
most all zero, such that
A v(a - E.aibi) < v(a) , while
v(ai) + v(bi) < v(a) for all i.

The corresponding notions for left v-dependence are de-
fined analogously. ) '

If one member of a family.is right v-dependent on the
rest, the family is necessarily right v-~dependent, but the
converse is not generally true. In fact the converse just
constitutes the "weak algorithm" as expressed in the follow-_

ing

Definition: A ring R with a filtration v is said to satisfy
the n-term weak algorithm (WAn) relative to v,if, given any

right v-dependent family ajseeeray (m < n) such that ;

'v(al) < eee £v(a ), some ay is right v-dependent on a),eeyay 4 -
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If R satisfies WAn for all n, we say that R satisfies the

weak algorithm (WA) relative to v.

For inversely filtered rings the corresponding defini-

tions are as follows:

Definition: i) Let R be any inversely filtered ring with

inverse filtration ¢. A family (ai) of elements of R is

right ¥-dependent if there exist elements bi of R, almost
all zero, such that
A A
V(Zi.aibi) > ming { v(a;) + v(bi)} ’
or if some a; = 0. Otherwise. the family is right ¢-indepen-

dent.

ii) An element a € R is right ¥-dependent on a
family (ai) if a = 0 or if there exist elements bi>€ R, al-
most all zero, such that

Ha -Za;b;) > ¥(a) , while
V(ai) + V(bij‘z ¥(a) for all i.

- Definition: A ring R with an inverse filtration € is said

to satisfy the n-term inverse weak algorithm (IWAn) relative

to ¥, if, given any right ¥-dependent family Bysecerdy (m;s n)
such that Q(al) L oo £ v(gm), some &, is right ¥-dependent

. on al,.-..,ak_l .
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If R satisfies IWAn for all n we say that it satisfies the

inverse weak algorithm (IWA) relative to ¢.

Note that both the definitions of WA and IWA refer only
to right dependence. This is so because the concepts are
left-right symmetric in both cases. For WA (and WA) a
proof of this fact can be found in [ /7 ] and for IWA (or
IWA) [ 2 ] can be consulted, but the argument in the latter
case is basically the same as in the former. It utilizes
the notion of graded rings associated to the filtered and

- inversely filtered rings respectively.

For a filtered ring R the &ssociated graded ring, gr(R),

is obtained by considering the union of disjoint additive
groups Rn/Rn-l = grn(R) (say), end defining multiplication
in the natural way such that gri(R) grj(R) < gri+j(R) .
For an inversely filtered ring the associated graded ring
is obtained in an exactly analogous way, the difference being
that we'now\have to consider the union of the disjoint addi-
tive groups Rt/Rt+l . (see e.g. [ 5 ,Ch.3] for a discus~-
sion of the parallel commutative case.)

It is important to be aware of the fact that every de-
~pendence relation relative to the filtration in a filtered |
or inversely filtered ring, manifests itself by a linear de-

pendence relation in the associated graded ring. N
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Consequently, R satisfies WA (resp. IWAn) if and only if
the associated graded ring, gr(R), satisfies the condition:
Given any right linearly dependent family &y ,...,aﬁ‘(m_g n)
of elements in gr(R) such that 23 € gry (R) and ils;..fﬁm ’
then for some k , 1<k < m, ag is right linearly dependent

on a geee,y 8 °
. k-1

2. Free ideal rings, and unique factorization domains.

A right free ideal ring (or right fir) R is a ring in which

\‘every right ideal is a free right R-module of unique rank.
The definition for a left fir is exactly analogous. If a
ring sétisfies this pfdberty only for finitely generated
right ideais, it is called a semifir. (Here it is no longer
necessgsary to distinguish between right and left semifirs, be-
-cause the notion becomes'left-right symmetric.) Rings cha-
racterized by these properties were first defined by Cohn

[ /3 ]. He later [ /6 ] introduced a refinement by conside-
ring rings in which all right (or left) ideals generated by
n elements, are free df unique rank. Such rings are called
n-firs. Bergman [ 2 ] developed these ideas further; in
particular he gave a number of equivalent characterizations
.0f such rings, one of Which‘will be‘important to us in Chap-

{

ter 2 (Cor. 2.3):
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A ring R is an n-fir if and only if, for

every set of m (m < n) elements 8yreesBys
which are left linearly dependent over R,
it is possible to find an invertible mxm
matrix u over R such that the vector
/u(ai)T has at least one component equal -

to zero.

P.M.Cohn [ /2 ] generalized the notion of unique facto-
rization to noncommutative integral domains. We recall only

the basic definitions.

Let R be an integral domain. An element in R is called
an atom if it is a non-unit which is not a product of two
non-units. Iwo elements a,b in R are said to be similar
if R/aR =2 R/bR as right R-modules. (It is sufficient to
state this only for operations on the right, because the con-
dition is equivalent to its left-right analogue. See [{2]

for a detailed discussion.) If

a = ulu2oonu ’ b = WlW2...WS

r
are any two factorizations of a and b respectively, these
‘factorizations are said to be isomorphic if r = s and there
is a permutation T of (l,...,r) such that uy is similar to

R itself is called a unique factorization domain

Vi *
(UFD) if every nonzero non-unit of R has a factorization in-

~to atoms, and any two atomic factorizations of a given element
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are isomorphic.

Definition: A unique factorization domain R is said to be

rigid if, for any two prime factorizations of an element

a€ Rt am= blbz"’br = C1CpeseC,

there exist units Ugslyseeerl,,
-1

such tbat ey = wy 7 by uw (L= 1,00e,T)e

(uo =u, = 1)

3. Free associative algebras and free power series rings.

Let K be a commutative ring, and X a set of noncommuting
indeterminates which commute without restriction with any
element of K. There exists a number of equivalent ways of
defining the free associative algebra, K <X > , generat;d
by X over K.  VWe give the definition which describes the
elements of K < X > directly in a normal form: Let.sX be
the free semigroup on the set X = { xi} » indexed by I.

This consists of all products (words)

xilxiz... xin ‘ (L
_where (il,iz,...,in) runs over all finite sequences of suf-
fixes in I (including the empty seqﬁence which gives the

unit-element 1). The free associative algebra K < X > is

. then the semigroup-algebra of SX over X, i.e. it is the K-
algebra consisting of all elements of the form
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Z ok oz ez A

i; "1 1y

' (2)

il...in

where the coefficients ;ki € X are almost all zero.

eoodl
Two elements of K< X > , wiitteg in the form (2), can be
equal only if they are identical.

In R = K< X > the free generating set X is not unique,
but any two free generating sets have the same cardinality,
which is called the rank of R (see [17 , p.41).

One very important general property of such a free alge-

bra (which can actually be used to characterize it, [8;IV.2])

is the universal mapping property: TFor every given mepping

t X —> A from X into another K-algebra A, there exists a
¢ :

*. unique K~algebra homomorphism n: K< X > — A such that

Q= ien , where i is the natural injection i: X —> K< X > .,

Let the length 6f“the word (1) be n, i.e. equal to the
number of factors x; appearing in it, and define a (natural)
filtration on R = K< X > by taking the degree v(a) of each
nonzero element a € K< X > to be equal to the maximum of
the lengths of the words appearing in a, when it is expres-
sed in the form (2). It is straightforward to check that
this definition does indeed make K< X > a filtered ring as
defined in section 1).

In the following chapters we will be mainly interested
in the case where K'is a field F, and if that is éo, it is
well known [ 9;P.28~] that P< X > satisfies WA with respect
to the filtration v just defined.
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It is then also true that for arbitrary a,be€ F< X >
v(ab) = v(a) + v(b),
and hence the natural filtration is in fact a valuation or,

as it is commonly called, a degree function.

It is also possible to define an inverse filtration, or

more precisely, an order function on F< X > . Take 6(a) to

be the minimum of the lengths of the words appearing in the
nonzero element a € FK X > when it is expressed in the form
(2), and say 6(0) =< . Then '

‘ 1') 6(a) >0 for a # 0, &8(1) = O;‘

2') 8(a - b) > min{ 6(a),6(b)} ;

3') 6(ab) = &(a) + &(b) .

Consequently F< X > may also be regarded as a topological
ring, and as such it has a completion which we denote by
F<< X >> .  This P-algebra, F<< X >> contains F< X > as a
subalgebra. It is in fact the free power series ring in X
over F [ /10 ,p.458]. In other words every element of

F<K< X >> can be uniquely expressed in the form

Z .. x. x X, A (3)
\ infinite il 12 i, 1060l
where for each n, the coefficients )“i i € P are al-
l..‘ n

most all zero. This also makes it clear hbw‘fhe order-
-function can be extended to F<KK X >> .,
Later it will be ﬁecessary to require the field F to be

of characteristic zero at some crucial stages of the discus-
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sion, such as in lemma 2.15, where we prove that F< X >
lies in the images of some.derivations in P X >> , and
therefore we make the convention that whenever free élge-
bras over F, or free power series rings over F, are being

discussed, P will always be taken to be of characteristic

ZeIO.

4. Derivations.

Derivations from a subalgebra into an algebra are map-

.. pings which are of considerable importence in algebra, and

which are still finding an ever widening scope of applicabi-

lity. e

Definition: If A is a subalgebra of an algebra B, a deri-

vation d of A into B is a linear mapping of A into B such

that
(e = 2%+ ap? , o abe a.

If A = B we say that d is a derivation in A.

The general propérties of such derivations are well
known. (See e.g. [ 201 or [ 4 J].) VWe list a number of
these properties which are of importance for our own work:
i) The kernel, Ker d, of every derivation d: A — B is a
subalgebra of A. .



23

1.4

ii) Any two derivations which coincide on a generating
set of A are'identical on A.
iii) The set £ of all derivations in A forms a Lie algebra
relative to the operations of addition and‘multipli-

cation given by 3 a 1
d.+
172, a 1, a 2 , any a€A

[4,,d,] d, d d, d
1727 (a l) 2_ (a 2) l,

(44,d5) +> 4+ d,, where a
(dl’d2) - [dl,dzl, where &
any a € A,
iv) The Leibniz-formula for the k-th power of a derivation
holds:

k
k . .
d i k-i
(ab)™ = fé% (g)ad pd , &any a,b € A.
v) For every element b € A the mapping defined in A by
a > ab - ba (any a € A) is a derivation which is

called the inner derivation determined by b.

vi) If A = K<< X >> is a free power series ring over a
commutative ring K and if d is a continuous derivation
in A, then the kernel of 4 is a closed subalgebra of Aj;
since it is the inverse image of the set {0} which is

closed in the "inverse filtration topology" on A.

The definition of a derivation can be generalized in
the following way: )
Definition: a) Let « and @ be any two homomorphisms of
‘ fhe subalgebra A into the algebra B, then the linear mapping.



24
1.4

D : A—> B such that

(ab)D = and + aﬁbD , any a,b € A,

is called an (o« 1 8 )-derivation of A into B.

b) In particular ai(X, I )-derivation is called an

& -derivatione. "

vii) For every given A -derivation D in an integral domain
'K, where A is an injective endomorphism of K, there
.exists a ring whose elements can be uniquely expressed -

as polynomials
a, *Xa, * x2a2 + eee * xnan (4)
in an indeterminate x over K, with componentwise addi-
tion and multiplication induced by the commutation rule
ax = xaf + & , a € K. . (5)
Conversely, if R is a ring which contains the integralﬁomain
X as a subrihg and which is isomorphic as right K-module to

| the ring of polynomials K[x] (with elements like (4) ), then

there exists an injective endomorphism £ and a /8 ~deriva-

tion D of K such that the multiplication in R is determined
by that of K together with the rule (5).

Such rings are called skew polynomial rings, the‘ywere

first studied by O0.0re [ 2! ], and they are usually denoted
by K[x;ﬁ »Dl. |
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Property (ii”) above is of special importance in free
associative algebras, because it implies that in these al-
gebras it is sufficient to know what any particular deriva-
tion does to the free generating set in order to-define it
explicitly end unambiguously. On the other hand, every
given mapping @ : X —>» K< X > (K a commutative ring) extends
{0 a unique derivation in R = K< X > . This can be seen by
noting'that the mapping of X into M (say), the ring of 2x 2
matrices over R, given by

X > X xd y €very x € X,

0 p:e
extends by the universal mapping property of R to a unique
homomorphism of R infbMM. It is then only necessary to look
at the co-ordinates in the upper right hand corners of the
matrices in M to see that d has been extended to a deriva-

tion in R.

For ffee power series rings F<< X 5> (P a field) the
situation is different, mainly because the set X is not a
_generating set of F<< X >> in the full algebraical sense of
the terminology (the elements of F<< X >> are pot necessa=-
rily finite linear combinations of monomials in X).  How=
ever the anaiogy isﬁbestored if we 1limit consideration to

continuous derivations in F<< X >> ,
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Proposition 1.1: Let R = F<< Xp,...,%, >> and let H(R)

q
denote the R;space of continuous derivations in R, then

H(r) = Y .

Proof: We have to prove that every continuous derivation
in R is completely determined by its values on X -{'xl,..,xq}
and that for every g-tuple (ul,...,uq) of elements in R the

mapping 4 : X —> R given by’xid

=y extends to a derivation
in ﬁ.
| Let 4 be a continuous derivation in ﬁ. | Teke any ele-
- ment g € ﬁ and say gd = h. For every positive integer n
the element h can be written as
Bo= oy + oy

where hn is a polynomial of degree < n-1l and hn’ is a power
series of order > n. Since d is continuous, there exists
a positive iﬁteger m (which we take to be minimal) such that
§md Q'ﬁn' Now write g = &, * gm' s Where &, is a polynomial
of degree <m-1 and g '€ ﬁm . Then (gm')de ﬁn , and
consequently

' h, = gmd_,(mod ﬁn) . (6)

d is uniquely determined by the

:By property (ii:) above, 8,
values of d on the elements in X. Hence by (.. 6) the saue

is true of hn’ and since this fact holds for all n, it fol-
lows that h is uniquely determined by the values of d on X.

In other words if x.d

;=g (i = 1,e00,q) then the F-linear
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mapping of £ (ﬁ) into RY given by
d — (ul,...,uq) (7)

is. injective, and it only remains to show that it is also
surjective. ‘ N

[Note that only after this fact (7) has been established,
can we use the knowledge that the continuous derivation d is
determined by its values on X to see that if f is an arbitra-
ry element of order r in f{, then 6(fd) > r-1.]

Let (ul,.:.,uq) be any element of fiq and define a map-
ping d : X — R by sending X — 0, . The argument prece-

. ding this proposition can now be used again (in an eppropri-

. ately modified form) to extend d to a unique derivation of
the free algebra F< X > into R. Denote this derivation also

by d. DNow if £ '23 :1.’j (sum of homogeneous components) is

~

an arbitrary element in R, each fj lies in F< X > and since

d is uniquely determined by its values on X, it follows that

S(fjd) 2 j-1. Hence the sequence..(:fjd) of elements in ﬁ

is summable (by Cauchy‘i criterion). Consequently, by writing
fd' - ):Zo fjd ) )

we get an F-linear mapping 4' : R —> R which extends 4.

It j.s straightforward to check that d' is indeed a deriva-

tion in I‘i. (See also [ 4 ,p.611) ‘l‘his establishes that

the mapping (7) is also surjective. //
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Remark: We would like to emphasize that up to now it has
generally been accepted in ring theory that all derivations
in a free power series ring K<< xl,...,xq >> are continuous.
This has led N.Bourbaki [ 4 3}p.61l] to make a mistake when
he considered a power series ring K[[xl,...,xq]] in commu- i
ting indeterminates, and tried to prove that a derivation |
do which is zero on every polynomial in this ring, is neces-
sarily the zero derivation. The mistake was made when he ’!
epplied a lemma to a power series, although it had only been :
proved for polynomials, and in doing so he tacitly assumed
that the derivation was continuous.

We now indicate in a special case how it is possgible to

obtain discontinuous derivations in a free power series ring.

Example of a discontinuous derivation: Consider the free

power series ring k[[x]] in one indeterminate over a field
of characteristic zero. = Pass from the inclusion k[x]< k[[x]]

ings ef Fracbions
? i of these rings, and con-

~ to the corrésponding
sider k(x) € k((x)) i.e. consider the field of rational
fractions in one indeterminate, x, over k, lying within the
‘field of Laurent-fractions in x over k. (See [ 4 3;p.601).
It is well-known that k((x)) is a transcendental extension
field of k(x), and that it has infinite transcendency degree
over k(x). (See e.g. [ 4 3p.l07(Ex.13) and p.100(Prop.8)] ).

Hence, by the theorem of Steinitz [ 4 3$p.98]1, k((x)) can be
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obtained from k(x) by a pure transcendental extension fol-
lowed by an algebraic extension. Let L be the pure
transcendental extension of k(x) with vasis { y;}, 1 € I.
Then for every family (ui), ielI, of elements of L there
exists a unique nonzero derivation d : L — k((x)) which
extends the zero derivation dj : k(x) —> k((x)), and which
is such that yid -‘ui , alli€ I. [ 4 ;p.136,Prop.4.]
. Since we héve taken k to be of characteristic zero, this deT
rivation 4 can also be extended to a unique nonzero deriva=-
tion & ¢ k((x)) =2 k((x)). [ 4 ;p.l136,Prop.5.] Thus for

- any family (ui); i € I, of elements (not all of them zero)

in L there exists a uniquely determined nonzero derivation

d in k((x)) which is discontinuous in k((x)), because it has

the property that Ker d = k(x). » //
Let R = K< X >>, X = f xl,...,xq}, be a power series

ring over a commutative ring.

Definition: - If 4 is a nonzero continuous derivation in R
and if n = minif G(xid)}, then d is said to be of order n

relative to X

~Definition: A continuous derivation d in R is called

 homogeneous relative to the generating set X if all the non-

zero elements of the set
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U ={u, ¢ RI u, = x.d}
i i i

are homogeneous, and there exists a non-negative integer n
such that 6(ui) = n for every nonzero u, € U.
It should be noted that each homogeneous derivation in

R is by this definition also a continuous derivation.

Now, if d is a given continuous derivation in

>~

R = P xl,...,xq >> , we know that it is completely deter-

mined by its action on the elements of X, say

d .
Xy U g* Usq* Uioteeees (sum of homogeneous components)

Proposition 1.1 shows that each of the mappings (from X into

R) in the sequence (dj)' J=0,1,2,¢000ey given by
d.
J =
, i Ui X
extends to a unique continuous derivation in R, and according

X i"l,.lo’q_ »

j (j = 0,1,2,...) iS a hOIIlO-

geneous derivation. Furthermore if f is an arbitrary ele-

to the definition above, each d

ment in R, we have for every j = 1,2,.¢... that

d. d.
5(f 3).2 6(f£) + j-1, and hence the sequence (f 9; j=0,1,2...)

is summable in R. Write its sum as

fdo+ dl+ d2+0000l

This implies that do+ dl+ d2+..... -is a proper derivation in
R and since it coihcides with d on X, we have

d ‘- d°+ dl+ d2+0.... .

Por ease of reference we state the conclusion as




31
1.4 / 1.5

Proposition 1l.2: Every continuous derivation 4 in

R = << xl,xz,...,x >> , given by

Q.
E;'ula ’ (sum of homogeneous components),
'1 = 1,...,4 , can be regarded as the sum dj+ d;+ dy* ...

of homogeneous derivations in R, where each d., is given by

d

xij -uij ) i-l’ooo,qo //

J

Remark: It is easy to see how the preceding definition and
discussion can be adapted to the case of derivations in the
free associative algebra F< Y > , where Y can now also be

" an infinite.set. In this case a derivation is called homo-
geneous if the images of the free generating elements yeY
are either zero or homogeneous elements of the same degree,
anéfézé}§hg:ﬁen derivation in FK Y > can be regarded as ?

Suc

finite sum of homogeneous derivations. The degree of a

derivation 4 is max {deg(yd) t ye Y} .

5. The Iie algebra of derivations in a free associative

algebra.

In the previous section we recalled that the set Jfof
all derivétions in an algebra A forms a Lie algebra. We
now want to show that if A is taken to be a free associative
algebra of finite rank over a field of characteristic zero,

it is possible to specify a nontrivial generating set of the
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Lie algebra Z. We do not claim that the generating set
given below is minimal, and the main reason for the inclu-
sion of this discussion in the thesis, is that it displays
the factors which have to be taken into account in the
search for such generating sets.

Let R = F< Xy,+++,X, > and let u g denote the deriva-
1

q
tion in R which sends the free generating element X to ueR

and dall the other free generating elements to zero.

Proposition 1l.35: Let Gl = {;ég“ ; i= l,...,q} ’
d . 2 4
G, = {(xixi+l)37c 3 1=1,...050 q+1=l}U{xq Fx;}

G3 = { h Xy 3 where h runs through the set of monomials

of degree > 3 which are either of the form
x® (8 23), or of the form h'xy (J £ @) 1

then G = Gl v G2u G, is a generating set for the Lie algebra,

>
z, of derivations in R.

Proof: Let ‘g be the Lie algebra (dver F) generated by G.
Then 4 < Z ., In order to see that 4 =Z it is by linearity
sufficient to show that all derivations of the form gg‘};;, ’
where g is a monomial, lie in é . We do the vérification
in three steps and in order to facilitate the exposition. we
change the notation by taking

faé;-_ -(xi":f),

1
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composing mappings on the right, and using q + k to repre-

sent the index ¥ (k = l,...,9-1), whenever it is convenient

to do so.

(x;°

i
a)

"b)
c)

(x5
a)

b)

c)

a)

e)

i) Monomials of degree 1 : All derivations of the form

xj) 1,5 = 1lyeeeyq , lie in «; since

(%" xg) = [(x; 7 myx 0 )a(xy " DI 4 4= 1,00,q 5
(3% xgaq) = [0x" xy%0,90, (%" Ie 4 4, i=1,00,q3
ifi-l’oo,q axld t‘ 2,3,0-,q-l

Xyag) = LeollCx;™ x990 (5097 35000 0000 (g, 9 725,40)
c

ii) Monomials of degree 2 : All derivations of the form

xjxk) i,j,k - l,...éq lie in {; , Since

(xq xlxq) - [(xq Xq ),(xq xl)] - (xq qul) e:’é

for j # q .

(x.* xlxj) = [(x * xlxq);(xq‘ xj)] € ﬁ?

q q
(xq" xjxl) - [(xq" qul).(xq" xj)J e 4
for i # 1,q ‘
(2" x3x ) = [(x," xlfcq).(xl“ x;)] € 4
(Xq" qui) - [(xq“ qul),(xl“ xi)] € 1?

for j,k = 2,..,q0-1

(x," xj;k) - [[(xq“ qul),(xq“ xj)],(xl‘ x,)] € 4
for i = l,e4ya=1 3 J = lyee,q; J#1

(x5 xixj) - [(x° xq),(xq‘ xixj)] + (xq° quj) € f?

(xi“ xjxi) - [(xi’ xq),(xq‘ xjxi)] + (xq“ xjxq) €

~
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f) fOI‘i"l,o.,q-l ; j’k-l’oo’q; j,k%i

(xi" xjxk) - [(xi" xq),(xq‘ xjxk)] € /g
g) fOI‘ i = l,oo,q"l

(2% %) = [0y ™ x )a(x ™ x0T+ (x " (xyx o+ x %)) <yq

1ii) Monomials of degree > 3 : Order the homogeneous ele-
ments of degree n (n > 1) lexicographically (on x1<ee o< xq)
by taking the smallest word in such an element to be the
leading term. We show that for every n > 3, and every mono-

mial g of degree n, the derivations (xi“ g),1i=1,..,q, lie

in »g .
Let h = h'xj be a monomial of degree > 3, then

a) If j # q we have for each i = 1,...,q-1 that (x," h)e 4 :

No?e that Y ”'-)

x.” x x.)(x." h'

x, * 249 = h'x. and
i J
(x* h')(x," x x.)

where £ is either zero, or it is a homogeneous element of

1

turn by quj and taking the sum of the monomials obtained

in this way. This shows that

degree n, obtained from h' by replacing each factor x; in

" ) e ny] + (x° ) = (" B,

Now, by induction (xq‘ h') ej and by (2) below (xq‘ f)€ y .
Hence (xi h) e'j .
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b) If j = q and i = ¢ we have
(x ~ x 2)(x_* h')
x ¢ ¢ 4 = h'x + x h' and
q , q q (1)
-~ ~ 2
(x," h')(x " x )
xq q @ aQ = £' (say)

where f£' is either zero, or it is obtained from h' by squa-
. ring each factor xq in turn and taking the sum of the mono-
mials thus .-obtained. Consequently, the element (f'-th')
‘follows h in the ordering and therefore (by induction)
(xq“ (f'-xqp!)) e-g . Now, using (1), it can be checked
q2) q
Hence (xq‘ h) e é? . This fact, together with the choice of

that (xq“ h'xq) - [(xq“ x o(x * h*)] + (xq‘ (f'—th')) .

G3 as part of the generating set G, implies by linearity that

(xq“ g) € 5 y any g8 € R, 6‘((9)23. (2)
¢) Finally, let j = g and 1 <1 <g-1l:

n - .

If h = x . we have (x;~ h)e€ 4 , since
~ n l -~ 2 ~ n“l

(x4 Xg ) =3 E(xi X ),(xql Xq )] € '§
So, assume h is not of the form an , then in general

h = h"xrxqs , where r # g and s > 1. We proceed by in-

duction on s: Note that
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(x." x 2)(x “h" x_ x s—l)

1 q q r q = ! S " s-1
xi; h xrxq + th X X

q

(x.* h" x_ x g"'l)(x.“ X 2)
xq q r q. 1 q - f" (Say)

s-1

where f£" is the image of h" X, xq under the derivation

(xi‘ xqz). This shows that
PN = -~ 2 -~ S-l
(x;" h) [(xi Xy ),(xq h" x X, )]

-~ " s~1 bod n
--(Jci xqb. Xy %o ) + (xq £"). (3)

Now teke s = 1. By a) and (2) above we know that

(xi“ th" xr),(xq" h" xr) , and (xq“ £") lie in «g . Hence

(xi“ h>.€ 'g « This provides a starting point for an induc-
tion argument which can be completed with the aid of (3).
Hence (xif‘ h'xq) € «g for every i = 1,...,9~1 and every
monomial h' of degree > 2.

The choice of the generating set G, together with the
arguments given in a) - c¢) above, establish the claim that
every de:'rivation‘of the form (xi‘ h), where h is any mono-

mial of degree > 3 in R, lies in —§ . //



37
CHAPTER 2. .

KERNELS OF DERIVATIONS IN FREE POWER SERIES RINGS.

In this chapter we study continuous derivations in free
power series rings over a commutative field of characteristic
zero in an attempt to find a fairly extensive class of such
derivations with the property that their kernels are also
free power series rings over the same field. Our main tool
for doing this is the inverse weak algorithm, which means
that we will have to consider {¥-dependent families of elements
in the kernels under consideration. (We invariably take ¢

kto be the natural order function determined by the free gene-
rating set of the power series ring.) However, we start off
by looking at linear dependence relations in the kernels;
something which can be done equally well in the more general
setting of complete inversely filtered rings, and therefore
‘the first section is devoted almost entirely to derivations

in such rings.

l. Complete inversely filtered rings.

Ve take a result of G.M. Bergman [ 2 ] about complete
inversely filtered rings satisfying n-term inverse weak
algorithm as a stepping stone to our first proposition.

Since his result is not yet readily available in print we
also'recall‘the main features of the proof given in his thesis.
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Proposition 2.1: Let S be a complete inversely filtered

ring (with filtration ¥) satisfying the n-term inverse weak
algorithq. Then for any family A of r < n elements of S
there exists an ordering of A as B1secerl, and a special
upper triangular matrix Y such that (ai)l/ = (ai') consists
of a sequence of right ¥-independent elements, followed by a
sequence of zeros.

[A special upper triangular matrix is one which has 1l's down
the diagonal and zeros below it.]

Proof: For every set of m+l elements in S, say Byreserdy
and a, there exist elements bl,bz,...{mn € S with
#(b;) > #(a) - ¥(a;) such that a -Za;b, is either non right
{-dependent on Byseeesdy 5 OT else it is zero, because a se-
quence of elements bi(k) can be found such that

~ ¥(a -Zaibi(k)) >%a) + kx
for every k, and the completeness of S ensures that this se-
quence produces the said elements bi’ i=1,eee,m
Now let A be the finite family of elements of S mentioned in .
the proposition and let 8 = al' be eny element of A of mini-
. mal order. By using the fact mentioned above, modify all
other members of A by multiples of a, 80 that they are either
zero or non right ¥-dependent on al’ . This will not de-

" crease any orders so ﬁ(al') will still Ve minimal in the re-

sulting set. Let az' be of minimal order among the resulting

elemenfs other than al'. Again apply the same fact mentioned,
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this. time making all remaining elements zero or non right
{¢-dependent on fal',a2'} . Continuation of this process
gives a sequence al',...,ar' which can also be seen to be
the image under a special triangular matrix of a certain
ordering of A. After checking that no ai' is right ¥-de-
pendent on the rest, }t only remains to apply IWA% to see
that a sequence of ﬁ%ﬁependent terms (followed by a sequence
of zeros) has been obtained. ’ , //

Now we can prove

Proposition 2;2: Let S befcomplete inversely filtered ring

satisfying the n-term inverse weak algorithm and let 4 be
any derivation in S. If A & Ker d is a set of gi:iéments
which are left linearly dependent over S, there exists an
ordering 'al,...,gm of A and a special upper triangular ma-
 trix u over Ker 4 such that /At(ai)T = (a.i')T is a se-

quence of elements which contains at least one zero.

2;991: Write A = { al,...,gm} » Where the ordering is still
arbitrary, and sey

Z 2,8, =0, (1)
where the i’i € S andv at least one of tb.em is not zero.
Ifm =1 it is immediately clear that a, = O and then the
assertion holds with M= [1], hence we can take m > 2.
- Apply proposition 2.1 to the set B = {fi; i= l,...ﬂn}

and rearrange (if necessary) the indexing in (1) in such a
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way that the permutation called for in this proposition be-
comes the identity permutation. Let J be the special
upper triangular matrix given by Prop.2.l, put (fi‘)=(fi)y
end let 7L = (gg)+  Rewrite (1) as
- g
(£,) YV (g5)" =0
which is "
[4a) .
Since i’l' # 0 and the :f’i' are right linearly independent
over 5,(2) implies that

| ot ek w0 (3)
Now if 81599098y € Ker d, (3) shows that the proposition
holds with )

- [ )
AT & e By
17 0 .. 0
L 1

Alternatively, if 81k ¢. Ker 4 for at least one k we apply
d to (3), then '
S d |
Zep’ e =0 (4)
If m = 2 we see immediately in (4) that g12d = 0 and hence
by (3) the required matrix is then
1 €12

0 1

 Assume inductively that the proposition holds for sets of

-cardinality:.m-l. By (4) the set {ay,...,a }is a set of
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elements in Ker d,left linearly dependent over S, hence
there exists an (m-1) X (m~l) special upper triangular ma-
trix A over Ker 4 such that the sequence

,&q(azy...,am)T = (a2',...,am')T

contains at least one zero. The m x m matrix

M= 1 0 .400el0]
0
A
Lo .
then satisfies the claim of the proposition. //
- Corollary 2.3: The kernel of any derivation 4 in a com-

plete inversely filtered ring S satisfying IWAn is an n-fir.

Proof: This follows immediately from the proposition and

the characterization of n-firs mentioned on page 18 . //

Corollary 2.4: Take S and d as before. It 8ysecerdy

(m < n) is a set of elements in Ker 4 left linearly inde-

pendent over Ker 4, then for ahy fl""’fm &€ S the equation
?:‘ fiay = 0

implies that fi =0, i=1,¢e0,m.

Proof: If this is not so, a straightforward application

of the proposition will givé a left linear dependence of
8yreeey8  OVEr Ker 4, contrary to the assumption. o/
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For the next corollary and ensuing proof we need the
vnotion of flatness and other terminology from homological
algebra. The reader is referred to some standard reference
work like [22] for the definitions of these concepts which

we use without introducing them beforehand.

Corollary 2.5: Let S be a complete inversely filtered

ring satisfying the full IWA and let d be eny derivation in
S. Then S is a flat right Ker d-module.

Proof: This follows directly from the preceding two corol-
- laries and the following criterion for flatness in semifirs,
due to P.M. Cohn:

If S is a semifir and H a right S-module,

then H is flat if and only if for any fi-

nite family {by,...,b;} & S of elements,

left linearly independent over S, and any

hl""’hm € H, %hibi = 0 implies that

hy =0 (i =1,...,m). , (5)
The proof of this criterion is not conveniently available
in reference'material‘and it is repeated here:
Let &« :S?O—-s- S be the linear map defined by (xi)“"inbi.
Since the bi are left linearly independent over S, the ‘

sequence
n &
0 —> S’(,() —> s(.()
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is exact, and (5) states that the induced sequence
0—>Hos ' = ' —>HOS =H (6)
is exact. Writing C = coker &« , we see that C is a fi-
nitely related cyclic S-module, and all such modules arise
in this way, because 5 is a semifir. Now the exactness
of (6) means that Torg(H,C) = 0. It follows from the
properties of Tor that this hoids for all modules C, whence
H is flat. Conversely, when H is flat, Toré(H,C) = 0,
hence (6) is then exact and (5) holds. ' //

Turning now to free power series rings over a commuta-

- tive field F of characteristic zero, we say that it is clear
that all the preceding results also apply to these rings,

but since there is more information available, we can also
say something more about the kernels of derivations. E.g. ,
Ype fact that a free power series ring is a rigid UFD (see
[/0] ) is inherited by the kernels of derivations in these

rings. In order to prove this we need to know the following

fact about local rings.

Proposition 2.6: The kernel of any deriyation d in g local

ring T is again a local ring.

Proof: We show that for any non-unit b € Ker 4 the element
1+ Db is aunit in Ker d. b Must also be a non-unit in T,

for if there exists an element ¢ € T such that be = 1,
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we‘see immediately on applying d to this expression that
bcd = 0, and hence ¢ € Ker 4, contradicting the fact that b
is a non-unit in Ker 4. Now, using the same argument, we
see that 1 + b, which is a unit in T, must actually be a
‘unit in Ker d. Hence,Ker 4 is a local ring. //

The situation for free power series rings is then as

follows. \

Theorem 2.7: Let R = F<<x1,...,xq>> and let 4 be any deri-

vation (continuous or not) in R, then

.i) Ker d is a semifir.

ii) Ker d is a rigid UFD.
iii) R is a flat right Ker d-module.

Proof: i)  This follows from corollary 2.3 since R satis-
fies n-term IWA for each n and therefore Ker d is an n-fir
for each n. ) |
ii) Note that Ker d is atomic in the sense that
every (non-zero) non-unit in it can be written as a product
of atoms (i.e. non-units which cannot be written as products
of two non-units). This is so because ﬁ is a rigid UFD
[10 ,p.462], which means that every non-unit b € Ker d can
be factorised uniquely (up to units) in ﬁ as b = bybye..by.

Now if it is not possible to £ind an index r, 1< r < t, such
that ble"'br € Ker d, b is certainly an atom in Ker 4.
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On the other hand, if such an r can be found, both the fac-
tors blbz'f'br and br+l"’bt' lie in Ker 4 and can therefore
be treated in the same way. The assertion follows then-
from proposition 2.6 and the following theorem of P.M.Cohn
[/ ]: An atomic semifir is a rigid UFD if and only if

it is a local ring.

iii) See corollary 2.5. | . //

Part iii) of the theorem immediately raises the question
whether ﬁ can be a free right Ker d-module. Ve do not know .
if this is so for arbitrary 4 or not. ILooking at particu-~
‘lar cases, however, we see that if d is e.g. the derivation
5":};' studied in exemple 2.12 (i), then ﬁ is indeed a free
right Ker d-module with basis { 1,x,x%,x°,....7,

This is s0 because we then have the following commutation:
£xy = %% (mod Ker d), any £ € Ker d.

A similar situation arises when primitive derivations in free

associative algebras are being studied and we will leave the

detailed discussion of this fact till then.

Remark: Theorem 2.7 as well as the results still to be dis-

‘cussed in the following sections are only nontrivial for

continuo;us derivations if ﬁ has more than one generator,

for if q = 1 then Ker d = F irrespective of the choice of a:
Let d be the continuous derivation in F<<x >>

w I3
given by x+—>u = C’Er.l/‘-xl,l/,.%o, r>aQ,




2.2

and suppose that

n if ’%ijj
is an element of Ker d. TFor every index k > r the

coefficient of x* in ¢ is.

¥ = A Y + QA;)))(., *eeo + (k-r+l) A o, Y

end since £¢ = 0 we have Y, =0, all k > r.

Putting k = r gives 'R, = 0 and for k > r + 1 we have the
sequence of recursion formulae

. 1 .
Ateryel = Dz (At 28U+ oo ¥ (eem)d %)
giving A;j= O for all j > 2. Hence £ = A, € F. 1

. 2. Homogeneous derivations in free power series rings.

>>

Recall that a continuous derivation d in R = F<<Z xl,..,xq

has been called homogeneous with respect to X -'{xl,...,xq}

if xid - uy (i=1, ...,q) where all the nonzero u;'s are
homogeneous of the same degree in X and that any continuous
derivation in ﬁ can be regarded as a "sum" of homogeneous
derivations. Throughout this chapter we denote the least
homogeneous component of any element a in ﬁ by a. Before
restricting attention to homogeneous derivations only, we
state a.lemma which is slightly more general than needed
here, but which will be used again laﬁer.

Lemma 2.8: Let d = d, + dj g *+ .o (sum of homogeneous

derivations) be an arbitrary continuous derivation in R
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with d 7 0. Then for any £ € R
fe€Kerd => fekKerd.

Proof: The least homogeneous component of 29 is 1, //

The aguxiliary information needed for the following
proposition about homogeneous derivations is contained in
Lemma 2.9: Let d be any homogeneous derivation in R, then

i) f€XKerd = fe¢ Ker d. |

ii) An &-dependence relation in Ker d
6(Za;b;) > ming { 6(a;) + &(b;)]} (1)
is the shortest possible for the set B ={ bl,...,bm}sKer d
if and only if any proper subset of B = {51,...,3m} is

left linearly independent over XKer d.
Proof: i) This is just a special case of 2.8.

ii) Any left 8-dependence relation shorter than
(1) satisfied by elements of B in Ker d, leads directly on
taking least homogeneous components of the réievant ele-
ments to a left linear dependence over Ker d involving a

proper subset of 5, and vice versa. //

Proposition 2.10: The kernel of any homogeneous derivation

d in R satisfies the inverse weak algorithm with respect to

the order function §.
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Proof: Any verification of the existence of IWA can be
carried out by considering either right or left dependence
relations. We find it convenient here to take the.rela—
tions on the left. Let A = {ai§s Ker 4 be a set of elements
which are left O-dependent in Ker d,and consider in particu-
lar the relation )

50 Z-bya,) > min, {6(b) + (s} (@
which we take to be the shortest possible relation satis-
fied by members of A in Ker d. Arrange the indices in (2)
in such a way that

6(al) <8(ay) £ .00 L B(gm)
. By IWA in R some ak (k<m) is left J-dependent on Byrecerdy g
Cin R, i.e. there exist elements. cl,...,ck 1 € R such that
6oy -~ 2 cia) > 8(z) } 5
6(ci) + 6(ai) > G(ak) ;1= 1,000,k-1.
By omitting terms if necessary we may assume in (3) that
6(01) +;6(ai)‘- G(ak) ; 1 =1,ee0,k=1. When we look at
the least homogeneous component of the left hand side of (3)

‘we see that

-a-'k LY ciai =0 (4)
Now epply d to (4) and keep lemma 2.9 (i) in mind, then

k-
= zd43 -0 (5)

Oy 1 1
By lemma 2.9(ii) the set { al,...,ak 1} is left linearly

independent over Ker d and hence by corollary 2.4 applied

d

to (5) the elements Ei must all be zero. It only remains

to replace every c¢; in (3) vy Ei to transform that relation

..o
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into a left 6-dependence of & On &1 ,e0e,2 5 in Ker d. //

Theorem 2.11: The kernel bf any homogeneous derivation

~
d in R is again a free power series ring over F.

Proof: Ker 4, being a closed subalgebra of ﬁ, (see sec-
tion 1.4, general property vi ) is complete. It is also
connected in the sense +that Xer d = P + Kl s Where Kl is
the two-sided ideal in Ker 4 consisting of all elements of
order 2> 1. Now using proposition 2.10 we complete this
proof with an application of the following theorem of P.M.'
. Cotn [/0, p.459]

Lét S be a complete valuated (by ¥) connected

algebra over a commutative field F. Then S

is.a power series ring (on a ¥-independent al-'

most generating set of Sl) over F if and only

if S posesses an inverse weak algorithm.

[Sl ={aes|o(a)> 1}. An almost generating set of Sq

is a generating set B of a right ideal I which is dense in

sl.] | //

This quéted theorem gives an indication of what is to
.be expected of the free generating set of Ker d. We now ' !
describe such a set by constructing an appropriate modifi-
cation of the "weak'algebra basis" of a filtered F-algebra
intro&uced by G.M.Bergman [ 2 ,p.34] (see also [ /7 ,p.12])
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For this we use the graded ring H = Gr(XKer d4) associated to
the filtration

Kerd‘Ko?_K 2K2_>_ R EX)

1
which is induced in Ker d by 6. H consists of the family

of disjoint abelian groups H; = K,/K; .4, 1 = 0,1,2,...

i
where in particular Ho =r.
For each i > 1 let H,' = Ki'/Ki*'l be the F-subspace of
H. spanned by the elements ab where a € H. beae H. , any
) (e 1’ )2
jlkand,jzasuch that jl + 3‘2 = i, and let Bi be a set of re-
presentatives for a basis of the F-space Hi/Hi' . The set
B = iL>JlBi consists of homogeneous elements of Ker 4 none of
which is right 6-dependent on the rest, for if there exists
b € B such that
b= ijgj (mod Ky,,) (6)
where the b, € B, the g. € K  and t = 8(b), then any term

J J

Abjgj with 6(bj) # t represents an element in Kt'/Kt-rl' H' .

So (6) can be written as
b= Zbk;\k (mod H,')

where kj € F and 8(b,) = t whenever )‘k # 0. But this
contradicts thevchoice of Bt as a set of representatives of
a basis of the F-space H’c/Ht' « Since Ker 4 satisfies IWA
with respect to §, B is actually an S-independent set.

Now let I be the right ideal in Ker d generated by B.
We show that I is dense in Kl’ and do this by way of a proof
adapted from the work of P.M.Cohn [/0 ,p.457]. Firstly we
point out that since Hl' = 0 and hence HlQ I, it can easily

-~
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be seen by induction that for every i > 1, E& < 1.
Hence if we take a ( #0 ) € K, with , say 6(a) = n and
write a = a(n) + pl‘where ple. Ig'ﬂl , then a - Py = a(n)e: I.
By induction on n we obtain a sequence Py ™ @3P1sPoreeses
of elements of strictly increasing order, such that
P; = Pysp € I. It follows that the orders 8(p; = DPy.p)
also increase strictly, and hence
a= (p, = py) + (py - py) *+ ...

is. convergent. Thus a lies in the closure of I and the
assertion follows.

Referring back to the quoted theorem, it can now be
stated that the power series ring Ker d has the set B as a
free generating set. Note that even though ﬁ has only fi-

nitely many generators; this set B is in general infinite.

2.12 Examples: The insight obtained in the theoretical

discussion above is now put to use for studying the kernels
of two special homogeneous derivations, singled out because
they are of importance to the succeeding sections and be-
cause they reveal typical properties of such derivation -

“kernels.

~ 2
1) Take R = F<< XyyeeesXy >> and d = 3y 1i.e. take d to
be the continuous derivation which sends X5 ——>»4¢(Kronecker
delta) i = 1,..,9. Ve use the same notation as before.

Consider ahy homogeneous element g & Hn’ n > 1, and note
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that g may also be taken to be homogeneous in X1y Say it is
of degree n - r in X . This means that each monomial in

g has r factors x; , i:j 1, j = 1,2,..yr. Purthermore,

there is at least one monomial in g of the form
S3i S 8
' = xi. Xl ‘xile 1s coo xi,.xl ir , (7)
where s. + 8, + 46 *+ 8, ® n-r T <n
1 1 *r ? )
If (7) is not true, g will have x; as left factor, say
g™ xltf where f does not have the left factor Xqe Now

. if we apply 4 = 3% to this , we get
0 = txf"lf + xf 24
. _— d

i.e. tf X £

L)

‘contradicting the choice of f. )
Vie can therefore write
g %"‘- )\L(xi‘ Xy i, “‘xi,xl iv) + x,8' (8)
Notation: Use the symbol ' ‘
[k]J

[ u, Xy

to denote the commutator [...[[u,xl.'l,xl],..,xl] , U arbitrary

k] ~ é.
ia R. k Cimes

An easy induction on k shows that [u,xl[kJ] is of the

form

[k]) w e v 2 () BN

where fu(k) is an element generated by u and X in

[u, Xy

| R = P< xl,...,xq > .- We use the formula (9) repeatedly to

write (7) as:
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S. s, S. ) s
Wo= (X Xy T3 J(x, eee Xq3T) = x P L1 (x. .4l x,31T)
11’ 1 i, 1 1 xil 12 1
s, (s, 1 s (s, ) S,
- [[xi ) Xy ! ]xi 1 X 1 ](x:.L ces xli*) - xlf#i-l(xi .o xllf)
1 2 3 3
(s:) s. ' ‘ [s. ]
- xlfxll(xi .o xllf) , Wwhere #f= [xi 1 Xy 1 ]xi
i, 12 1. 2
11] [siz] [sir]
= [...[[xil,xl ‘ inz’xl ]xis,...,xl ]+ h (10)

where hi represents in general such a long and involved
expression that we do not endeavour to write it down expli-
citlye. It is only important to note that hi has the left
factor x,, say hy = x,h;' . v
With the aid of (10) we can rewrite the expression (8)

for g in the following form

| (s, ] [s. 1
g= Zi }l[' ‘[xil’xl 1 inz,....,xl 1r ]+ Xl(Zhl' + g')
‘ (11)

Since the sum of commutators in (11) lies in Ker 4, it

follows that

xl(Zhi' + g') € Ker 4.
However, as we.have seen above, the fact that there is a left

" factor x; will only allow this to be true if Zn'+g = o.
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Let c,; = [...[xi‘,xg_siuJ]xiz,...,xg_sir]]

Now for any r, if 8;, = 0, c; is. of the form Ea,ij, where

a,xj € Ker 4 and hence. cy € H ' . Furthermore if r > 1

i, %0, ‘then c; is of the form [(ab),xtsir]] where

)
a € HJ sy D E HJ for some 31 and 32 such that al+32 - n—slr.
Hence, by a straightforward induction starting from
(ab, xl;l = a[b, xl] + [a, xl]b

it follows that ci € Hn' o The outcome of this discussion

and s.

is then that
g = % zij,x[n l]] (mod H ') .

Now we have made it clear how the set B =-U B of free
. generators should be constructed: Jjust take Bl = {xj|2_§j§q ’
and :for’evevry n > 2 take B, = {[xj,xgz'l]] l 2<J < qf .
Then the elements of Bl are clearly P-linearly independent
and by an easy induction the same is true of Bn for every
n>2. Hence by the argument on page 50 the set B consists

of 6-independent elements which form an almost generating

set of Kl'

So, summarizing the precedmng discussion,
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Proposition 2.13: InkR = P xl,...,xq >> the kernel of

the continuous derivation 52' is a f;ie power series ring
over F with free generating set B = &{E&, where

By -’{xj 12 <3 q} » and for every i > 2

By = {[xj,xgi-l]] | 2<3 <4}, //

Example 2: In ﬁ = F KL X,y »>> , let 4 be the continuous
derivation which sends x —> 0, ¥ym—> X.

The way in which we describe a set B of free generators
for the kernel of this derivation will enable us to show
that it is the least closed subalgebra N of ﬁ containing x

'and satisfying the property
geEN = (xgy -ygx) €N (13)
By lemma 3.7 in the next chapter, N will then also be the
fixed ring of the automorphism |
A exp d = 1+ d + %sz + %T d3 + eeeee
- which in this case turns out to be the elementary automor-

-

phism in F << x,y >> given by |
X —> X
y.r"—>y+x.

Use agein the same notation as before by taking Hn to
represent the set of homogeneous elements of degree n in Kerd.
. Verify that Hl is the F-space generated by x, and that H2 is
the F-space generated by {xe, [x,y]} » 50 that we can take
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B = {x} and B, = {[x,y1}. |
In general, i.e. for r > 3 it is sufficient to consider
elements which are also homogeneous in y, therefore we de-
fine H, (r >2, 0<k <r) to be the F-subspace of H,
con31st1ng of the elements homogeneous of degree k in y.

For homogeneous elements feiR which are also homogeneous
in x and y separately (and in particular for monomials) we
use the symbols Ax(f) and éy(f) to indicate the degrees in

x and y respectively.

For each Hrk (r >3, 0 <k <r) define two subspaces
‘ka' and Hrk" by teking
i) Hrk' = (the subspace spanned by the products ab,

where a -and b are homogeneous elements in

Ker 4 such that deg a2 + deg b = r,

3 (a) + (1) = k );
ii) Ba," = (the zero subspace), if k = 0,1 ;

| (the subspace spanned by the elements
xfy - yfx, with fe Hr-2,k-l)’ if2<k<r.
our object now is to prove for every r > 3, 0 <k < r that
Hy = Hy' © Hy" )
If k = 0, this is immediately clear. If k=1, H,

is generated by elements of the form xlyxJ -_xsyxt s Where

i+ j+1l=2g5.+t+1=1r. These elements clearly lie in

H_,' whenever either j > 1 or s > 1 (or both); and the ele-

rl
ments. of -the form [xZ-3 1' y] also lie in H.q! because
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[xr-l,y] = xr-2fx,y] + [xr-z,y]x .
Ifr>3,2<k<r, then Ha'n H," = 0 because no non-
zero element of the form xfy - yfx, where f is a homogeneous
element in Ker 4, c‘e.n be written as a product of two- ele~-
ments in Ker d. It remains to show that for r > 3,

2 <k <rwehave Hy gH, '+ H," =M, (say).

We introduce a classification of the monomials in R
in the following way:

Let h be an arbitrary monmomial in H, (r 22, 1 <k <r)
Distinguish between the y's appearing in h by numbering
them from left to right so as to create k different factori-
zations of h into the product of a y and two other monomials,

viz. h’l'y(l)h]_" , h2'y(2)h2" y eves hk'y(k)hk" .
We . now say that h is of type 'L' (for leading term) if and

only if it does not have left factor y, and ax(hi') > 5y(hi')
for every i = 1,2,.+.,k. The monomials xTe H.» (r >1)
are also said to be of type 'L

E.g. xzyxy is of type 'L', whilst xy2x2 is not.

Order the monomials in ﬁ lexicographically (with x < y)
and extend this to an ordering of all elements of ﬁ by taking
the smallest term of any fe fl to be its leading term.

" The reason for introducing monomials of type 'L' be-
comes clear as soon as we note that every monomial h of type'
'L ‘is ‘the leading term of an element in the space .

B : SN Hy'= My where r = degh and k = 8y§h) .
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This can bé seen by noting first of all that the only mono-
mials of degree 2 which are of type 'L' are x2 and xy, and
both of them are leading terms of elements in HZO and H2l
respectively. Purthermore if h is a monomial of type 'L’
(with deg h = r (>2), é%(h) = 3) we have either h = h'x or
h = xh'"y . If h = h'x, h' is also of type 'L' and is by in-

duction the leading term of an element g'e U , 50 h is

r-1,s
the leading term of g'xeMrS. If h = xh"y, h" is also of
type 'L' and is by induction the leading term of an element

g'e M 1 » 80 h is the leading term of (xg"y - yg"xe M e

r-2,s-
) The’next step is to prove that every element in Ker 4
'\haé at least one term which is of type 'L'. Conside: a
homogeneous element ge Ker d and write it (as is generally
possible) in the form

g = XY * YEHX * XEzX * ¥EY (15)
Applying the derivation 4 to (15) gives '

0=¢g - x(gld + g4iy * y(gzd * g )x +x(g + gyt g3d>x E
* Y8,y |

from which we get Z
gid + g =0 ﬁ

d ;

S2 T8 " O (16) f

gl+g2+g3 =0

. "g4d =0 ?

. By (16) clearly (gl - gz)d = 0. VWe may assume (inductively)

thatvgl - & has at least one term of type 'L' . If this
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term appears in 81 the assertion about g follows immediately,
so we say that none of the terms in &, is of type 'L' and
that 8> has at least one term of this type. Now since
g3d - -(gl + gz) (by (16) ) we can also assume g3d # 0, for
g3d = 0 &ill imply 8 = =8 » whence 81 has a term of type
'L' , contradiction. The assumption about 85 implies that
g * & - —g3d # 0 has a term of type 'L' and then recalling
the action of 4 on monomials, we see that g3 either has a
term of type 'L' , or if not, it has at least one term of
the form h'yh" where h' and h" are both of type 'L‘ and h'y
is not (h" = 1 is also possible). In both these cases
xXgzX has a term of type 'L' and this establishes the asser-
tion about g.

Return to (14); if it does not hold there will exist
r >3 and 2 <s <r such that M ?'Hrs‘ Consider then
ée:Hrs/Mrs gé # 0) and let g be any representative of g.
Write this representative in the form

£ A e Ay

where the hi are monomials indexed in such a way that
hi < hi+l (L =1l,...,m~1) din the lexicographical ordering.
Let t be the least index such that hy is of type 'L’ (such
a t exisis because g € Ker d). We know that h; is the lea-
ding term of an elemqnt, say htx, in Mrs and can therefore

write
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m
1=l 1 J:t-n
Hence & can also be represented by the element
N - - x - >
8 %"11‘1 Ay = hy) ¢ = Ay
in which the smallest term of type 'L' is larger than ht'

L 2]
* ® <
g = ZAih. +Ah* - At(ht -h) v = Ajhj.

This obviously indicates a process of elimination of terms
of type 'L' from the chosen representatives of g, and this
pfocess then ends in a representative which does not have
any term of type 'L' , contradicting the fact that every
element in Ker 4 contains at least one such term. Hence
Hg = M, for allr >3 and 2 <k < r.

This discussion shows that in order to find a free
generating set B for Ker d it is sufficient to confine at-
tention to the subspaces H " , Jin fact we can take B, (r>3)
to be a basis of the F-space 7(20 Hrk" . Hence Bl = {x},
Bz-{[x,y]}, B3=¢,aﬁd for r > 4 '

B, - { xby - ybx lb.f xF2

, &b e Yr-2; Yr-2 being a basis of
the F-space H,_, }.
It is now also clear that Ker d is contained in every

subalgebra satisfying (13) in R, and therefore Ker d = N. So

Proposition 2.14: Iet N be the least subalgebra of P<<x,y>>

containing x and satisfying the property g& N => (xgy-ygx) €N,
then i) N is the kernel of the continuous derivation in

P <X,y >> given by x —> 0, ¥ »-} Xe
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ii) N is the fixed ring of the elementary automorphism -
in P <K x,y 2> given by x +> x; Yy —> X + Y.

iii) N is a free power series ring over F with free genera-
ting set B = QBi, where B, = {x}, B, = {Ix,y1},

By = § and for every i > 4 I; = { xby-yox|b # x*72, &

| bel¥ 5} -
Yi-2 is a basis of the F-subspace of N consisting of all

the homogeneous elements of degrec i-2. //

3. Derivetions of order zero.

When the kernel of a continuous derivation in R-F<<xl,..x§»»‘

is being studied in connection with the inverse weak algorithm

the least homogeneous components of the elements appearing
in the dependence relations pley a constantly recurring part.
This came toAlight in the previous section and it will do so
again in our treatment of continuous derivations of order
zero because for such derivations the said components de-
termine the whole situation. Here we can strengthen theo-
rem 2.7 (asserting that Ker 4 is a semifir and rigid UFD) by
‘showing that the kernels of continuous derivations of order
zero have IWA and hence.are also free power series.rings.

The door is opened by

Lemma 2.15: If d, is a homogeneous derivation of order zero

)

PSS
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in R, the free algebra R = F < xl,...,xq > lies in Im do'
and in fact every homogeneous element of degree r in R is

the image (under do) of a homogeneous element of degree r+l.

Proof: Let do be the continuous derivation given by
do o

Xy = )i (Aie F) an@ say'kl # 0. Teke Y = {yl,...,yq}

to be the free generating set of R obtained from X ={xl..,xq}

by the lirear transformation: x, %-x, ’ xir—> X;- %?X,,
e €y B 4

-~

2 <i<q. Ve are then in faci consicering the derivation
3 . =
g& in R = F << yl,...,yq >> .

It is sufficient to show that every monomiel h in Y is
the image under do = ji; of a homogeneous element of degree

J
(deg h)+l . VWrite

h = y.sl y.52~.oooy-sm (l)
11 1o ‘n
where 1, . Fiy , Y=1,...,0-1; and let s = 8y * eee * 8 .

It i, #1, all ¥, we can write

= (nydd0 |
If, on the other hand, i,, = 1 for at least one
Yenm = {1,2,...,m} we order the monomials in Y lexicographi-
cally (based on y; < ces < yq) and extend this ordering to
all elements of R = F < Yy ...,yq> by taking the smallest
term in any element of R to be its leading term.  Then we

do

choose an £ € R such that h = £ -:g, where g follows h in

the chosen ordering.
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In fact, let k be thé largest member of the set m such that

ik = 1, and take

s s s, +1 s s
1 k-1 k k+1 m
f=y:"eee ¥; N Vs oo ¥
i ey Vi Yk ip ’
then
h = 1 fdo -g where
sk+l g€

g=( 0 1f k is also the smallest member of m
such that ik = 1.3

ZE Sl sj-l Sk+l s

1 m
‘é‘]‘{";I‘[ i-"l sj(yi oo yi- e e yi oee yi )J
<k 1 J k m
J - otherwise.
Each of the monomiels in g can now be treated in the same
way, and since we are dealing with homogeneous elements on
a finite generating set, the process must terminate. Hence
it is possible to find a homogeneous element a of degree s+l

4o
such that a ~ = h. //

Lemma 2.16: If d is a continuous derivation of order zero

in R, say d = d *+ d;+ d,+... where d # 0, it is possible
to £find for any given homogeneous element ¢ € Ker do an ele-
ment g € Ker 4 such that ¢ = g (g being the least homogeneous

component of g).

Proof: Let £ = fr+ fr+l+ fr+2+""' (sum of hoTogeneous
components) be an arbitrary element of order r in R, then

f € Ker & if and only if all the homogeneous components of
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fd are zero, i.e. if and only if

= a
£, 5T = 0 (k= 0,1,2,.00)

(This is the homogeneous component of degree r+k-l1 of fd).

If the given element ¢ has order r, write ¢ = 8 then

we know that g do O. Assume inductively that homogeneous
r

elements gr+l""’gr+k exist such that

dy do .
Er = * 841 0

az d a

do

d dice
grk+gr+lkl+ooo+gr+k = O

and consider the element

a d
+
grdk 1 + gr+l k + cee T gr"'k 1 = a (Say)o

This is an element in R, homogeneous of degree r+k.

By lemma 2.15 there exists a homogeneous element of degree
r+ k + 1, say gf+kfl’ such that

d
o

8% 8.+l - 0.

Hence it is possible to build up a sequence (g . ..; 1=0,1,2,..)

r+i
of elements which satisfy the system of equations
' Kk

pa -3 0, k=20,1,2,00e .
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(=]

Hence g = is en element in Ker 4 such that g = c. //

t':O gr+i

Vie say that a set A of elements in R is a2 minimal left

§-dependent set if no proper subset of A is left 5-dependent.

Before we can get the following proposition we need yet

another lemma.,

‘Lemma 2.17: Let 4 = do+ dl+ dz+... be a continuous deri-

vation of order zero in R. If A= {al,...,am}EEKer d is a
set, minimal left 6-dependent (in Ker 4), then any,proper
subset of A = {El,...,am} € Ker 4, is. left linearly indepen-

dent over Ker dO o

. Proof: Suppose {Ej ;...,53 } is a proper subset of A
1 1~

P <9
which is left Ker do-dependent-and therefore satisfies a re-

lation g. &; = 0 , where every g. is a homogeneous
=4 Jr r Jr

element of Ker do . By lemma 2.16 it is then possible to

' £ind elements fj € Ker 4 such that g5 = fj y T = 1,2,..,k.

r r r

Hence
k

6( ijra3r> > min_ {6(fjr) . a(ajr)}

*3
which is a left §-dependence relation in Ker d featuring a
proper subset of A, and hence contradicting the assumption -

about A. - //
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Proposition 2.18: The kernel of every continuous deri-

vation of order zero in R = F <L xl’XZ"”’xq >> satisfies

the inverse weak algorithm with respect to the order f£il-
tration.
Proof: Consider the derivation d = d + d;+ dy*... where
dg # 0. Let A €S Ker d be a finite set of left 6-dependent
elements and take the relation

6( ‘.Z:biai) > ming {6(bi) + 6(ai)} (2)
(aie<A, bie Ker d4) to be the shortest satisfied in Ker d
by elements of the set A. Arrange the indices in (2) in
such a way that G(al) < eee < o(gm) (2) is also an 8-
dependence relation in R, so that by IWA in R some a, is
left 8-dependent on ByseserBy 71 i.e. there exist‘elements

Cyrese9Cyp_q & R such that
S(ak - ‘Z—‘ ciai) > B(ak) } (3)
8(cy) + 8(ay) 2 6(ak) y 1= 1,ee.,m=1

By omitting terms if neceésary, we may assume in (3) that
S(Ci) + 5(&1) - 6(&1{) ? (i = l’o-o,k-l) [

\Looking only at least homogeneous components in (3), we get
L1

51«:'%%51 =0 (4)

Now apply d, Eo (4) and recall lemma. 2.8 . This gives
-y d

%Eioai'o a . (5)
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Since (2) had been taken to be the shortest left &-depen-
dence relation satisfied by elements of the set A, lemma 2.17
says that the elements 51""’£k-l are left linearly inde-
pendent over Ker do . Hgnce corollary 2.4 can be applied

to (5), and this gives G, © a0, fori = 1,ee.,k-1.

Now by lemma 2.16 there exist elements BrrecerByy in Ker 4
such that éi = Ei (i = 1,e0e,k=1). All that remains to
be done to get & left 6-dependent (in Ker d) on the pre-
ceding a;'s, is to replace every c¢; in (3) by the correspon-

ding g; € Ker d. //

Theorem 2;19: The kernel of any continuous derivation of

order zero in R = I << xl,...,xq >> is again a power series

ring over F.

Proof: Identical to the proof of theorem 2.11 except that

proposition 2.18 must be used here. ' //

In this case the description of a free generating set
for Ker 4 is facilitated by the information already obtainéd
\for'homogeneous derivations and in particular the derivation

5% (see propositién 2.13). As was shown in the proof of
lemma 2.15 we may take the derivation d  in d = d* dy+ dyte..
to be g% by employing a suitably chosen linear change of

generating set.
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)
Now Ker o - P <L YoV psTzrecces >>, where
Yi =[*i41 ifl <i<qg-1

[xi_q+2, xd if ¢ £1 < 2(q-1)

[xi+n(l-q)+l’ xl[n]] if n(g-1)+1 <1
i< (n+1)(q-1)

LR AR BN BN R IR N B 2

Ve know by lemma 2.16 thatvtheré exists for every Ty
an element zie Ker 4 such that Ei =7y and it requires
only a short argument (Which we now give) to verify that
Z = {Zi ;o i= 1,2,...} is a free generating set of Ker d:

The fact that Y ={y; ; i = 1,2,...} is & right 6-
independent set in Ker do clearly implies that Z is a right
8-independent set in Ker d. Furthermore , if Kl is the
ideal of Ker 4 consisting of all elements of order 21,
we claim that the right ideal J generated by Z in Ker 4 is
dense in Kl‘ The least homogeneous component f of any eleQ
ment £ € Kl is an element of Ker do and is therefore expres-

' gsible in terms of the generators Y , say

T = rinite yi,’yiz"‘yin Ail"'in .
- i i

Now let 81 be the corresponding element

- Z. Z. eeeZ. x- € J .
finlte"ll i, lni 11...ini ’

then the element f - g € K, has. 6(f - g;) > 6(2).
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Again f—:ﬁgf € Ker do . In the same way as before we ob-
tain an element 8, € J such that £ - g - & € Kl and
6(f-gl-g2) > 6(f-gl). This process can be continued to
give a sequence

gl’g2’g3,o.o . (giE‘ J, 8.11 i)

of elements of ascending order with the property that for
any n € 2" there exists an m € Z' such that

- =
Hence £ lies in the closure of J as we wanted to show.

-~ Conclusion: In order to find a free generating set for the

free power series ring Ker d §=§ where 4 = do+ dl+ d2+ coe

is a continuous derivatioq of order zero in ﬁ = F<< xl,..,xq>>,
it is sufficient to take a free generating set {yi,yz,y3,...}
for the kernel of the homogeneous derivation do and then

find a set of elements Z = {Zl'z2’23""} S Ker 4 such that

the least homogeneous component of Z5 equals Jy» every i>1l.

4. Derivations of order one.

The successful establishment of IWA in the kernels of
all continuous derivations of order zero in ﬁ can be attri-
buted chiefly to the ease with which.inverse images can be
found under the homogeneous defivations of order zero (see

- lemma 2.15),
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In the case of continuous derivations of order > 1 this is
not possible any more, and any attempt to prove directly

that the kernel of such a derivation satisfies IWA is there-
fore made much more complicated, if not totally impossible.
E.g. if 4 = dl+ d2+ d3+... is a continuous derivation of
order 1 in ﬁ where dl is a "diagonal" derivation with respect

to X, i.e.

d
X571 . Rixi , Ai €EF, 1=1,0eeyq

it is easy enough to say whether a given element lies in
Im dl or not because d, sends every monomial in X into a
" scalar multiple of itself (see lemma 3.6, proof) and there-
fore R = Ker dy @ Im d; -
But if (say) d, # 0 and ¢ is a given homogeneous element in
Ker dP it is by no means certain that it will be possible to
find an element g € ﬁ with 8(g) > &(c) such that

c+g e Kerd,
because we must then in particular have that

d d

c 2+ g 1aop

(g = least homogeneous component of g) i.e.
4
2
c "€ In dl .
This, however, will depend entirely on d2 which has not been .
restricted in any way, and hence the whole argument may grind

to a halt.
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Another property which facilitated the arguments in the
case of continuous derivations of order zero, was the smooth-
ness with which the order-filtration (as determined by the
free generating set) could be used, but even this changes
when non-homogeneous continuous derivations of order one are
being considered. See for example the following example
(2.20) of a continuous derivation whose kernel does not satis-~
fy IWA with respect to the naturel order function. The sig-
nificance of the existence of such derivations is then that
any further investigation along the same lines will be ham-
pered by the additional task of finding a suitable inverse

filtration for the kermel of the derivation under considera-

tion.

2.20 Examples In F << xl,xz,...,x5 >> , consider the

continuous derivations dl and d2 given by

dl X — - Xy d2 DX —> X)Xy
X5 —> X, X5 —> - x4x2
X hé-x3 X, X — - x4x3
x, = 0 x, = x,°
X —> 0 X5 - - Xy X5

We show that the kernel of the derivation d = dl + d2 (of
order 1) does not satisfy IWA with respect to the natural

~ order-function:
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Ker 4 contains the four elements
8] = X%,
8y = X XpXg * X XzX, X
bl = XgXyX, + XXX X
b2 ==X X5
Furthermore, a] and a, are right 06-dependent in Ker d, in fact
6(albl + a2b2) > S(albl) = 6(a2b2)
since
(xlxz)(x5xlx2) + (xlx2;5)(-xlx2) = 0.,
Now X)X Xg = (xlxz)x5 ’
i.e. a, = Elx5 ,
where Ei, 52 are respectively the least homogeneous compo-
nents of ay and e But Xg can never be the least homoge-
neous component of an element in Ker d, for if an element
| &= 8 * 8z * oo » 8(g) 22,
could be found such that
Xg + g € Ker d .
it will follow in particular for the homogeneous component
of degree 2 oi"(x5 + g)d that
x5d2 + gzd} -0. (1)
(1) Shows that x5d2 must then lie in Im 4, , but
x5d2 - =XyXg ¢ Im &, .
Hence it is impossible to find ¢ € Ker 4 such that
8(ay = aje) > 8(ay) ,

and this establishes the claim.
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Remark: The existence of continuous derivations (in free
power series rings) whose kernels do not satisfy IWA re-
lative to the natural order function, becomes even more

interesting if it is recalled from section 1 (Thm. 2.7)

that each of these kernels is a semifir.

An attempt was made to determine the (very involved)
kernel of the derivation in the exemple completely in the
hope that this might turn out to be non-free, but the indi-
cations were that another filtration could be found relative

to which the kermel does satisfy IVA.
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DERIVATIONS -AND AUTOMORPHISNS IN COMPLETE INVERSELY.

FILTERED F-ALGEERAS. -

We can use the information, obtained in Chapter 2,
about the kernels of derivations in complete inversely
rings satisfying IWA to prove corresponding results for
the fixed rings of certain automorphisms in complete in-
veréely filtered F-glggbras, where P is a field of charac-
teristic zero. The theorems will then of course apply di-
rectly to free power series rings F<< xl,...,xq >> ; Wwhere
we find for example that a continuous automorphism o which
sends the free generators x; to x.% = Xt 8 s 6(gi)|2 2,

i
has a fixed ring which is both a semifir and a rigid UFD.

First of all an-appropriate connection between auto-
morphisms and derivations in such an inversely filtered al-
gebra S. is needed. Consider the mapping formally given by

exp d = 1 + 4 + %,dz 3.d3 cecee (1)

?

where d is a derivation in S. Initially, take

S = R = XKL xl,...,xq >> .

We canﬁot expect (1) to represent a well-defined mapping in
ﬁ for any arbitrary chwoen derivation d of order zero in ﬁ.
BE.go d = j% » then exp d will be undefined in some elements
of ﬁ, sﬁch as £ = gé»xl ’ because the elements L fd (n>1)
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all have constant term equal to 1 and therefore the formal

=R n ~
expression %; %,fd does not represent an element of R.

For derivations of order 1 in ﬁ we must also move about
with care and take account of the fact that even trivial
continuous derivations, like the one which sends every X3
to itself, make exp d undefined in (e.g.) the points X; 3
but here the situation can be rectified by taking the field

F to be suitably restricted, as we shall do in section 2.

Everything becomes much more tractable if we consider
only continuous derivations of order > 2 in R, because such
a derivation d increases the order of every element to which

it is applied. Consequently, for every f € R the sequence

(%1fdk ; k=0,1,2,e00..) is summable in the order filtra-
tion topology (by Cauchy's criterion), because for every

n > O there exists an'm > 0 such that 6(fdk) > n for all

k > m. In fact this is true in any complete inversely fil-
tered F-algebra - see proposition 3.2 below.

»

l. Order-increasing derivations.

Let S be a complete inversely filtered F-algebra with

filtration V. We call a derivation d in S order-increasing,

if %(fd),z ¥(£) + 1 for every £ € S.
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Note that every order-increasing derivation is necessa-
rily continuous because it maps every neighbourhood of zero

into itself.

The following fact about exp d, which is partly a con-
sequence of the Leibniz~formula for the powers of a deriva-

tion, is well known.

Lemma 3.1: If 4 is a derivation in an F-algebra R such
that exp 4 is defined throughout R, then exp 4 is an auto-

~morphism of R.

Proof: Exp 4 is an P-linear mapping, because for each
n > 0 the mapping %!dn is F~linear. It is an endomorphism,

because for arbitrary a,b€R

()@ ¢ o = L ()8

1
o I
- e..—%—..(Z( yad7pd
r
“%t(l d )(1 d)

va )( Z lbds

20 r 220 Se

-~

*&

= gSXP d yexp d .
Finally, exp d has an inverse, viz. exp(-d), as can be veri-
fied by a straightforward calculation. Hence exp 4 is an

automorphism of R. | . /!
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Proposition 3.2: Let S be a complete inversely filtered

F-algebra. If d is an order-increasing derivation in S,
then exp d is a continuous automorphism which maps every
nonzero element of S onto itself plus an element of higher

order.

n
Proof:  For every a € S the sequence (%.ad ) is summable,

with sum a®%® d y because the fact that d is order-increasing

implies for every m > O that there exists an integer t > O
such that 9(%..8.&1{) >m for all k > t. Hence exp d is de-
fined throughout S, and by lemma 3.1 it is an agutomorphism.
Clearly if maps every nonzero element of S onto itsélf plus

an element of higher order. //

If the derivation d is order-increasing and b is an
arbitrary element in S it is not only true that
G(bd).g G(bdz)lg cseee 5 Where equality holds for any m > 1
only if bdm - b, but we also have for any sequence{,ui} of

nonzero sScalars that

A d A d2
V(A7) S V(MPT ) < eees (2)
where it is again true that the equality holds for any
ar

m>1only if b =0 . This will allow us to determine

the fixed ring of exp d .
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Lemma 3.3: Let S be a complete inversely filtered F-zlge-
bra, and let d be an order-increasing derivation in S.
n nzi

If a€S is such that the sequence (;\na )Ais summable,

with sum zero, for some sequence {Xn} of nonzero scalars,

then a € Ker 4 .

Proof: If a ¢ Ker & , then \?(ad) = k <o, znd hence also
7 Aah) =k . Then by (2)

A “ n
v(nzu-;\nad)=k for allm > 2 ., (3)
0 .

On the other hand, since the seguence ( Xnad ) is summable,
with sum zero, there exists an index t > 1 such- that

n = an
(= Aga® ) >k for all m > t , which contradicts (3).

na

Hence a € Ker d . - //

Proposition 3.4: If d is an order-increasing derivation

in a complete inversely filtered F-glgebra S, then the fixed
ring, Fix o, of the automorphism o = exp d equals the ker-

nel of 4 .

Proof: Clearly Ker d & Pix o« , If a € Fix o, then

n

the summable sequence (%,ad ; n>0) has sun a, and there-
. ‘.

fore the subsequence (%.. ad ; n >1) has sum zero. Hence

by lemma 3.3 a € Ker d . Hence Fix(exp d) = Ker d . //.
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Definition: Call an sutomorphism « in S exvonentially

devendent on a derivation if there exists a derivation d

in S such that o = exp 4 .

Now some of our results on kermels of derivations in

S cen be gpplied to the fixed rings of automorphisms in S:

Theorem 3.5: a) In a complete inversely filtered F-alge-

bra S satisfying IW}&1 y the fixed ring of any automorphism
o< which is exponentially dependent on an order-increasing
derivation, is an n-fir. lMoreover if S is a local ring,
then so is Fix «£ .
b) Take S and K as in a). If S satisfies
IWA, it is a flat right Fix « -module.

Proof: This follows immediately from proposition 3.4,

corollaries 2.3 & 2.5 and proposition 2.6. //

2. Homogeneous derivations of order one in C<< EyrecerXy >>.

On page 75 we mentioned an example of a derivation 4
of order 1 for which exp d could only be a proper mapping
in the free power series ring if the base field had the
appropriate properties. So to ensure that this will be the

case, the base field is now taken to be the field of complex
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numbers, C .
We discuss. only homogeneous derivations of order 1.
The situation for arbitrary continuous derivations of order

1l is more difficult, and it will not be pursued here.

If h is any monomial in R = ¢:<< xl,...,xq >> , let
d (h) denote the degree in x. of h .
x4 i
Lemma 3.6: If d is the homogeneous derivation in
R = d:<< xl,...,xq >> given by

Xid - Aixi ? Aié: C ] i = 1,0.0’q_ ’
then the mapping exp d is an automorphism in R, and

Ker 4 = Fix(exp d).

Proof: This derivation d has the property that its action
on any monomial h amounts only to a change of the coefficient,
in fact N
nd - ( Z 3, () A;)n
= o6h (say),

" and hence for every n > 1

n
hd - oinh’

whence
he]fp d - (

00 -~

a-Fn . =(e™ n)er,

o [

k:o :
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By linearity %P d € R, for every £ € R, and by lemma 3.1
exp d is then an automorphism of R. Since an arbitrary
element a € R , written as a sum of monomials
(=] mg
v <<
a = /Uc+ 21 ‘:'/uijhij

€= J=t

is mapped by exp d to e

exp & ., = Z 1]

a o~ & /UlJe hij “f‘/uc (1)
where Ozj = aaij , Wwe have that

a € Fix(exp 4) ==> ‘G;j = 0
for every i,j in (1) , and then also

s =

d =

S R TR Tt
Hence Ker d = Pix(exp 4). //

The following lemma has been used for establishing part
ii) of proposition 2.14 in which we gave an explicit descrip-
tion of the fixed ring of an elementary automorphism in
P<< x,y >> . FYor this application the base field can be F,
because the derivation is already given in the form (2) (see
below).
| Call a derivation 4 in an algebra A locally nilpotent

n
if there exists for every a € A an n > 0 such that ad = Q.
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Lemma 3.7: Let R = Q:<< X >> and R = ¢:< X > , where
X = {xl""’xq} . If d, any homogeneous derivation of
order 1 in R, is locally nilpotent on R, then the mapping

exp d is an sutomorphism in R, and Ker d = Fix(exp d).

Proof: The homogeneous derivation d in i is by definition
continuous, and hence uniquely determined by its values on
{xl,...,xq} . Consequently, d is determined by a qx g
matrix over € which is an algebraically closed field, and
we may therefore assume this matrix to be in the (lower tri-
~ angular) Jordan canonical form. thermore, since d is
locally nilpotent on R, the matrix has only zeros along its

main diagonal. Write

x, 0 = 0 ifi=1

Agpxg*eest Ay 3% @
if 1 = 2,3,000,9

On the other hand, every homogeneous derivation of order 1

of this form is locally nilpotent on R. Now, 1f g is any

homogeneous element in R the formal sum ;% l,g (if it is

nonzero) has almost all its terms equal to zero, and it is

- a homogeneous element of degree equal to deg g. By lineari-

ty it follows that exp 4 is a well-defined mapping in ﬁ, and

by lemma 3.1 it is then an automorphism‘in §.

| FPinally, Fix(exp d) = Ker 4 : It is enough to consider

homogeneous elements, so let a be a homogeneous element of
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+ at
degree k, and let m(a) + 1 = nmin{ne Z l a = O} . Teking
a € FPix(exp 4) implies that

a,1 a g2(a)

a +'§=a +o.o+ﬂ—3a-’)-':a =O- (3)

Order all homogeneous elements of degree k lexicographically
l&msed on x; < eee < xq) by taking the largest term in each
homogeneous element to be the leading term. Note that for
each homogeneous element of degree k we have then gd < gin
the chosen ordering. This implies that the leading term

da d

of a” in (3) is zero, which is only possible i a% = 0.

Hence a € Ker d, and the assertion follows. //

Proposition 3.8: For every homogeneous derivation 4 of or-

der 1 in R = € << X)se+es%, >> the mapping exp d is an auto-

morphism, and Ker 4 = Fix(exp d).

Proof: As in the preceding lemma it is sufficiént to con-
sider a d (completely determined by its values on X) which
is given by a lower triangular matrix in the Jordan canonical
form. We write it simply as

d P

| Ai’i_lxi_l + 2iixi , if i = 2,e00,Q.
Decompose d into 4 = 4' + 4" , where d' and d" are respective-

ly the linear derivations given by
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a' .
x4 = ?\*ixi 3 1=1,...,q' , and

% =~ [0,if1=1
{Ri,i-lxi—l y if i = 2,...,q
By the preceding two lemmas both exp d' and exp d" are auto-
morphisms in ﬁ Furthermore it is a consequence of the
"special nature of the Jordan canonical form that
d*'d" - d"d' = O. Hence exp 4' exp 4" = exp(d'+d"), and
therefore exp(d'+d") is an automorphism.
Clearly Xer d € Fix(exp d). For the converse, note
that if we can show that
Fix(exp d) = Fix(exp 4') n Fix(exp 4“) , then
Fix(exp d) = Ker d' N Ker d" € Ker 4 ,
and the proof will be completed.
‘ An endomorphism A4 in an F-vector space V is said to
be semi-simple if evefy subspace of V which is mapped into
itself by B2 is a direct summand of V [ 7;p.661. Let v,
be the finite dimensional F-space consisting of the homoge-
neous elements of degree n in f{, and note that exp 4' , exp 4",
and exp d restrict to (vector space) automorphisms of Vn . '
Denote them respectively by otn' ’ ocn“ , and ocn . Then
we have for each n that _
X, = et = e, (4
+ where ‘o ' is semi-simple and c(n“ = 1 is nilpotent, and hence

n
we can apply theorem 18 of [ 7;Ch.2] to see that both o
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and «_" are polynomials in e, with coefficients in F.
This implies that every element of Vn which is fixed by <
is also fixed by both « ' and &« " .  Conversely, (4) shows

that every element which is fixed by toth «_' and o(n” is

n
also fixed by ol e Since this is true for each n, we get

that _
Fix(exp d) = Pix(exp 4') N Fix(exp 4d"). //

3. Automorphisms exponentially dependent on order-increasing

derivations.

Returning to an arbitrary complete inversely filtered
F-algebra S, we describe a class of continuous automorphisms
which is' exponentially dependent on order-increasing deri-
vations. Pormally speaking, it is reasonazble to think that

if K= exp d, then & = logxX , i.e.
- 1,2 1,3 1,4
d ﬁ "'éﬁ +-3-/3 "Zﬂ *t seene
where ﬂ = oL =1, S0 if we can prove for some given auto-

morphism o< that the sum

= n+l .
= (=1 - (ot-1)8
n=i n
represents a derivation in S, we will have found a derivation
d' with the property that o = exp d4' . Since 4d' will be
order-increasing if # = o« -1 is an order-increasing mapping,

we restrict consideration to continuous automorphisms of S
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which map every nonzero element of S onto itself plus an

element of higher order.

Tor any given automorphism ot in 5, B =« -1 is an
& -derivation (i.e. (1, )-derivation), because the difference
L-¥, of any two automorphisms in an FP-algebra is a (¥ ,« )=
derivation; as can be seen by noting that it is F-linear,
and that for any a,b € S
(ab)“‘r = 2% bp* -a¥ b¥
= 2% (b -b¥ ) + (a% -a¥ )b¥
= 2% TP+ g% px"Y (1)

In (1), take ¥ = 1, then we get

(ab)? = 2pf s 2y
= a/gﬂ'b/g + a/”b
= af b+ abf + alfvf . (2)

We extend (2) by induction to higher powers ofﬁ :

Lemma 3.9: Let T be any F-algebra. If A is an F-linear
mapping in T such that (2) holds, then for all n > 1 and any
a,b €T

o] f:f Ir 1= ) .

()" = Z 2 BHETE T (3
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n+l n
Proof: Consider (ab)ﬁ = [(ab)P ]"3 and use (3) & (2)

to write this as

(a0)p ™ = Z 2O ag T g Ly g g WL g3
+ a/?n+r-l+lbﬁl+l :]
~LZ 2D = ;‘_>M<n><1 T

n+t n+

¢ 2 Z PO T ap™ T gt

12 Y] P Ay

- Dap™t o ZMapm gt Z(Map™ s

n

+§( n-i+l b g i, (g)a b n+l+Z -l> /5,n+l r
. 2 "Zwtcnxn'r (MGEID

( )( n- I‘+l)] /gn+r-i+l b/gi
- g(n)a/;r b/an"l + g( nl)a/g /3n+1
+ ag bA

Rewriting this with the aid of the formule (§)+(p‘fl)-(m;1)gives

n+l n+l

(ah)ﬁ n+l - Z(n'*'l)(n‘!'l)aﬂ n+l-1i -b/g i

+ Z 2 (n+l>(n+l-r) ﬂ n+l+r-i b/f

= gz

+ (Il"'l n+l

1003 LY

Nyt a4t

Z Z(n+l)(n+l-r) ﬁn+l+r..1 b/?

Tao ey

Hence (3) holds for all n >1. //
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The proof of lemma 3.1l below requires some identities

which we establish beforehand:

£y

Lemma 3.10: The following identities hold in the ring of

integers ¢ TFor every s > 1 let
t = % if s is even, and t =,§%l if s is uneven;

(-1)k*1

L— (5o EEs .

and let < s,i,k > =

=
If0<i<t, then §~< S,i,k > = (-l)S+l(—§-) ifi=20
0 otherwise

and if t+1 <i <s , ;Ei<:s i,k > = {( l)S+l(l) ifi=3s
k=7

0 otherwise.,

Proof: Consider the free commutative power series ring
Zlx,y1]. If we apply the logarithmic mapping to the |
Celement 1 + x + vy + xy = (L+x)(1+y) we get
log(l+x+y+xy) = log(l+x) + log(l+y)

which is just a convegiént way of stating that

-1)k+l

‘ +
= S“‘j{" (xry+xy)E = :Ei( oyt (4)

By an induction proof, which is exactly analogous to the

one given in lemma 3.9 we see that for every k > 1

.(X+y+xy) ;E: ;E;(k)(k-r) k+r-1 1 e

f:0 {3 T 1=
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Substitute this in (4) , then

i%i :EE = ﬁ__l___ (k><h-r> Jotr-i o1

k= Ti0 1=

k+1
= 2.£——1>——< ) (5)

ko
In (5), equate homogeneous components of degree s, then

S

k+1 s+l
kag-t a: Sk( 112 ( kk)(2k3+k) X ytz Sll_g— (xs"'yS)
+
i.e. [ “Z;[g;}_L ( kk)(fk;+k)] s~ 1 iy
k+1 . s+l
+ E;;[;i §~1) ( kk>(§ksfk)] xS-l -L—ll———(x vy )

The lemma follows immediately on equating coefficients of

= yi in this last identity. ' //

Lemma 3.11: Let S be a complete inversely filtered F-alge-

bra. It /§ is an I'~linear mapping in S such that both
(ab)ﬂ = alfb+ abf + afvf any a,b € S (6)
and the mgpping d = - %ﬂz + %—/:’3 eeeee 15 defined every-

where in 5, then this d is a derivation in S.

Proof: By lemma 3.9 it is true for arbitrary a,be S that

e2 k+1 k
COLEP= -<;1>——-— (ab)¥
k+l S

Now use. the knowledge gained in rewriting the summations in
the proof of lemma 3.10 to rewrite (7) in an exactly analogous

way as
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(ab) EEZ(Z<51K>)aﬁS-iﬁi
Sai i hs«
< k> S=lp gt
+ ;;i( :2; S,ik > ) a4 b/? ]
k+1
where again < s,i,k > = L:l%——- )(fksfk

Then by lemma 3.10

s+l ] s
-1) [af b+ ab 1 = 2% + apd

(ab)° E(

Hence d is a derivation in S. //

Proposition 3.12: Let S5 be a complete inversely filtered

F-algebra. If the continuous automorphism & maps every
element of S onto itself plus an element of higher order,

then d = log« is a derivation in S such that o = exp d.

Proof: Put &K =1+g , then £ satisfies (6) (See the
discussion leading up to (2) above.) Also,

@ = logo= = (-1 Idyk
is a well defined mapping of S, because /S is an order—:Ln-
creasing mapping and therefore the sequence (ﬁ—ﬂ a/g )
is summable for every a € S. Hence by lemma 3.11 the map-
ping d is a derivation which is also order-increasing.
. Purthermore o¢ = exp d, as can be seen by a direct calcu-

//

lation.

Propositions. 3.2 and 3.12 combine to give a characteriza-

‘tion of continuous automorphisms which are exponentially
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dependent on order-increasing derivations.

Theorem 3.13%: Let S be a complete inversely filtered F-alge-

bra. A continuous automorphism <« in § is exponentially de-
pendent on an order-increasing derivation 4 in S, if and only
if &« maps every nonzero element of S onto itself plus an

element of higher order. //
We also get the following corollary to theorem 3.5(a)

Corollary 3.14: If S is a complete inversely filtered F-

algebra satisfying IWAn » then the fixed ring of any conti-
nuous automorphism which maps every element of S onto itself

plus an element of higher order, is also an n-fir. //

It is interesting to compare this corollary with a re-
cent result of G.M.Bergman [ 3 ] on the fixed rings of endo-

morphisms in filtered rings with IWA2 :

If R is a ring satisfying IWA2 with respect
to some filtration, then the fixed ring R' of
any semigroup of ring endomorphisms of R is :.
still a 2-fir, and two elements of R' right
commensurable in R are right commensurable

in R' .

[Two elements a,b &R are right commensurable if aRn bR # 0.]
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Bergman could not extend the proof of this theorem to higher
n-fir conditions because the elementary operations by which
linearly dependent n-tuples are brought to standard forms
are not uniquely determined in these cases, but note that
the theorem covers all endomorphisms of the rings under con-
sideration.

In the case of complete inversely filtered rings it is
possible to handle higher n-fir or even semifir conditions,
as we have done abqve, but we could only prove the correspon-
ding result for a restricted class of endomorphisms. It
should be pointed out, however, that this restriction was
brought about by the perticular "exponential" connection which
we established between derivations and gutomorphisms, and

not by properties of the endomorphisms themselves.

For free power 'series rings S.Andreadakis [ 1 ] esta-
blished another commection between continuous endomorphisms
and continuous derivations by showing that for every given

continuous endomorphism 4 of @ = Q<< XypenerXy >> which

~

sends the free generators to x4

ﬁ order > 1, it is possible to define an infinite sequence

+ fi , where each fié‘- Q has

DO‘- 1, Dl’ D2, eeses 0Ff Q-linear meppings in Q in such a

way that
(8)

bA&
ahd

J
B

/@ =

D
[’}
o
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Dl is in particular the continuous derivation in é given by
X5 —> fi y 1 = 1,2,e0e,9 , and the other Dn (n > 2) are
differential operators of higher order with such intricate
definitions that it is not worthwhile to describe them here
in greater detail, because (8) does not comnect £ with a

single derivation in such a way that we could have used it

to prove e.g. that the fixed ring of /3 is a semifir.

ow let ﬁ = <KL xl,..,,xq >> and let < be a continuous
automorphism.which meps every nonzero element of ﬁ onto it-
self plus an element of higher order. Then,in particular
xix = x,+ £, , where 6(fi) 22 (i=1l,000,q9), and &« is com-
pletely determined once the elements fi are known. On the
other hand every continuous automorphism o& in ﬁ whose values

ol
on X = {xl,...,xq} are of the form X, 0= X.+

it 85 where

6(gi) >22 (i =1,.00yq) , maps each element of R onto itself
plus an element of higher order, and hence it is exponentially
dependent on an order-increasing derivation. By proposition

3.4 we then get the following corollary to theorem 2.7 :

Theorem 3.15: Let R = F<< X >> , -x={xl,...,xq} , and
let & be a continuous automorphism whose values on X are
X{* - X+ fi'(xl,...,xq) , Where 6(fi) 22,1 =1,004,Q,
then i) Pixo¢ is a semifir

ii) Pixo is a rigid UFD

1ii ), R is a flat right Fix« -module. //
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. Linear sutomorphisms in C<< x yeeeyX 2>
1 q

A continuous sutomorphism o in a free power series
ring << X >> is called linear if each x* is an P-linear

combination of a finite number of x's in X.

For the free power series ring C<< X)reeesX, >> in
particular we can show that the class of automorphisms which
are exponentially dependent on derivations, includes not
only those automorphisms which map every xg onto itself plus
an element of higher order, but also all linear automorphisms,
This implies that the fixed ring of every linear automorphism

in this ring is again a free power series ring over C (Cor.3.19)

Lemmg %.16: If « isl the continuous gutomorphism in

R= C<< xl,...,xq >> given by

-4 .
X = 'Aixi , RiF_C , i= 1,00e,q

then the mapping d = loga is a derivation in R.

g
Proof: Let &= 1 +¥ , then x; = (7\i-1)xi = Vixi (say),

and ¥ is a C-linear mepping which satisfies (6) of section
3) above. If h = xil.....xin is an arbitrary monomial in
ﬁ, let I = {l,...,n} sand note that if we extend the action
of & on products of elements (as given in (6) ) by induction

on n, we find
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n
.4 .
h = Z. Z.. r %5 ...xir ...x.a’ .eoX, (1)
r=1 (jl,.,jr)el 1 i1 15 1n
il< e..< jr T

n
-1z =Y, Y, 1n
=1 (31l,..,5r)el j1 iy
Jjl< oo < Jr

- T b (sey)

k
end ¥ = TEn , eachk >1.

‘ . bt k+1 k
Hence ha = g ﬁ-_lf{" hr
s k+1
- (= Ty
E¥]

w[(log 7{1) hfe R.
By linearity 4 is a well-defined mapping of R, and hence by

lemma 3.11 it is a derivation. _ //

Lemma 3.17: If &£ is the continuous automorphism in R given

by
% . ifi=1

then the mapping d = log & is a derivation in R.

Proof: ILet < =1 +%¥ , then

afo - ifi=1
(2)

2,..0,‘10

+e00t l . . X. if i
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~

Order the homogeneous elements of degree n in R lexicographi-
cally (on X < eee < xc'l) by teking the largest term in each
element to be its leading term. I'or every monomial

-~

h = Xy eee X4 in R we have as in (1) that

1 n
n .

ha’ﬂz Z r Xi oo e Xix e o0 Xia’ [ ) Xi ?
r=1 (jl,.,jr)el 1 jl jr n

Ji< o< Jr

I={1,...,n}.
Then by (2) hx is either zero or homogeneous of degree n
a:ndfi‘t is nonzero it precedes h in the lexicographical order-
ing. since (xln)x = 0, this implies that an integer m > 1
can be found such that hrm--' 0. Comsequently, ¥ is local~
ly nipotent on 0:< xl,....,xCl > . Hence if £ is an arbitra-
ry element in ﬁ and t > 1 any given integer, it is possible
to £ind an index m such that 6(£7 ) > % for all r > m.

k+1 k
This shows that the sequence (L::-L-%—-— ft s k= 1,2,e00)

log« s for every .f € R, Thus 4 is

is summable, with sum f
e well défined mapping which, by lemma 3.11, is a deriva-

tion in R. //

Proposition 3.18: Every linear automorphism (see p. 94 )

« in R = C<< xi,...,xq >> 1s exponentially dependent on

a derivation d.
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Proof: The automorphism & is completely determined by its

values on XyseeosX s end each of these values is a C -

q
linear combination of Xpseaws Xy o Let A be the coefficient

matrix of the xid' . Since U:qis algebraically closed we
may assume (by a linear change of thel free generating set,
if necessary) that A is a lower triaengular matrix in the
Jordan canonical form. Let D be a diagonal matrix with its
diagonal identical to that of A, and let N = A-D. Then N
is a lower triangular matrix with zeros along its diagonal.
Furthermore the fact that A is in the Jordan canonical form
implies that ND = DN , and hence also D(I+D IN)=(I+D™N)D .
Let ' and " be respectively the linear automorphisms in

lN over € s then

ﬁ with defining matrices D and I+D~
A m o(l'o(“ = X "X' , and hence loge = log' + logus" ,

| By lemmas %.16 and 3.17 we know that both loge«t' and loga™
are derivations in fi. Hence log & = 4 (say) is a deriva-

tion. A straightforward calculation shows that ¢ = exp 4. //

Corollary 3.19: The fixed ring of any lihear automorphism

o in C<< xl,...,xq >> is again a free power series ring

over C .

Proof: By the proposition o« = exp d where the derivation
'd = logoK is also homogeneous of order 1. Hence by prop.

5.8,Fix ® = Ker d, and the corollary follows from thm.2.1l. //
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DERIVATIONS IN TFREL ASSOCIATIVE ALGEBRAS.

In Chapter 2 we used the excellent divisibility proper-
ties available in complete inversely filtered rings satisfy-
ing IWAn y when we started off with the fact that in such a
ring any m-tuple (m < n) of elements, taken in a suitable or-
der, can be reduced by a special upper triangular matrix to
a sequenée’of right ¥-independent elemenfs followed by zeros.
For filtered rings R wi‘ch'\f‘v'A.n » the corresponding reduction
of an m-tuple (m < n) of elements to a sequence of right v-
independent elements followed by zeros, can be carried out by
a matrix which lies in GE (R) (see [ 2 J or [ 46 1) This
means that the matrix can be written as a product of elemen-
tary matrices, i.e. invertible matrices with not more than
one nonzero off-diagonal term; but then we cannot be sure
that the matrix is such that its inverse has a 1 in its first
row (cf. proof of proposition 1.2). Consequently, we can-
not use an analogcﬁs argument to obtain corresponding general

results for derivations in filtered rings with'WAn .

In free associative algebras we can use techniques which
are similar to those. employed for studying derivations and
their kernels in free power series rings. Consider the deri-

vation d = 4+ 4, + ... + d, (sum of homogeneous derivations)
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in R = F< xl,...,xq >, and let a = ar+ ar+l+ ceet ag

(s > r) (sum of homogeneous components) be an element in
Ker d. Since each homogeneous component of ad equals ze-
ro, we have the following set of equétions:

a P =p

(1)

r+2 r

- Conversely, if one wants to find an element in Ker & starting
from a homogeneous element a € Ker dp » (1) shows that a

finite sequence of homogeneous elements gs-l’ Bg_ny ececess

has to be found such that ag p"1::.-"8.5_1 p,

dp42 dp-l . d
s=2

+ ag_1 , €tc. However, finding appro-

a
]
priate inverse images under an arbitirary homogeneous deriva-
tion is very difficult if not impossible, and this reasoning Z
will only lead somewhere if we keep to the simplest case in ‘

which 4 = dp is a homogeneous derivation.
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1l. Kernels of homogeneous derivations in ¥< X > .

Let R = F< X > ., Throughout this section and the next,
F is a commutative field of characteristic zero and X={xl,x2,.J
is a finite or couﬁtable free generating set, unless it is
stated explicitly that X must be taken to be finite. R is
filtered by the natural degree function v on X, and we con-
sider derivations which are v-homogeneous, i.e. they are ho-
mogeneous with respect to X in the sense that they map the
free generators to elements which are either zero or homoge-
neous of the same degree in X. We show that the kernels of
such derivations satisfy the weak algorithm with respect to

v, and consequently they are also free algebras over F.

Lemma 4.1: Let & be a v-homogeneous derivation in R = F<X>.
If the nonzero homogeneous elements él,az;...,gm in Ker d
are right linearly dependent over R, and if v(al)s e o< v(gm),
then some " & (k < m) is right linearly dependent on

8118p9e00,8 1 OVEr Ker 4.

Proof: Let fl’fz”"’fm be elements in R such that

Z.ai £, = 0 (2)

0
a3

It is clear that we may take the fi to be homogeneous.
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By the WA in Gr R, the graded ring associated to R wer.t. v
(see section 1.1), there exist homogeneous elements 8119851
(r <m) in R such that
)

& 7 %aj &5 (3)
If all the elements gj lie in Ker d there is nothing more
to prove, and this is indeed the case if m = 2, for if we
gpply 4 to the expression

8x T 8 &
we get O=a g d whence d ., 0

& 1 ©1 r e & ‘

. Hence,we may assume inductively that the assertion holds for
all relations (2) of length less than m. Now apply d to (3),

where we assume that g, ¢ Ker & for at least one j, then

0= Z a; g% ‘ (4)

By the induction assumption some 3 k < r-l, is right
linearly dependent on Bpseeesdy q OVer Ker d. This proves

the lemma, //

Proposition 4.2: Let d be a v-homogeneous derivation in

R=PFP<X >, If the finite set of nonzero elements
bl’bz”"’bm in Xer 4 is right v-dependent over R , then
some bk‘, k <m , is right v-dependent on bl;""bk-l over

Ker d.
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Proof: Let the given v-dependence be

v( ;%;k& fi) < maxi{jv(bi) + v(fi)} — - (5)

where the fi's are elements of R. It

R, = {fe Rlv(f) _gn-l}
and we. take (5) modulo Rn-l we get a linear dependence

’. —-— -—

% bij fij = 0
where we have denoted the representative of an arbitrary
element £ modulo Rn—l by f. Now, since d is a homogeneous

derivetion, each bi lies in Ker d; hence by lemma 4.1 there
J
exist homogeneous elements CiseeesCpq (k < r) in Ker d

such that

—— k-’ -
b, = -;i b, ¢, B
x J¥ oty
from which it follows that
ki
v(bi - égi'b. cj) < v(bi )

k J:l lj k

and (6)
v(by )+ v(cj) =v(b )y § = 1ly..0,k-1

J k

In (6) we have obtained a right v-dependence of b, on
k
B yeeesby over Ker d. //
1 k-1

The promised result follows as.a corollary to this proposi-

tion.
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Corollary 4.3: If 4 is a v-homogeneous derivation in

R = P< X >, then Ker d satisfies WA relative to v. //

Theorem 4.4 The kernel of any homogeneous derivation d

in R = F<K X > 1is also a free associative algebra over F.

Proof:  According to our definition of a homogeneous deri-
vation there exists a free generating set Y and a natural
degree function v' relative to ¥ such that 4 is v'-homogene-
ous. By the preceding corollary we can apply the following
theorem of P.M.Cohn [ 9 1 to establish our result:

Let A be an algebra over a commutative field F,

with degree function v such that for any nbn—‘

zero a € A, v(a) = 0 if and only if a € F.

Then A is a free associative algebra over F

with a right v-independent free generating set

if and only if WA holds in A. //

Remark: In order to find a free generating set for Ker d
we can construct a "weak algebra basis" for this algebra
in -the way described by P.M.Cohn in [ 17 1. We do not re-
produce that construction here, but we use it in the next
section to describe a free generating set for the kernel of

a rather special homogeneous derivation.



104

4.2.

2. Primitive derivations in F< X >,

We say that an element y € R = F< X > is a primitive
element in R if there exists a free generating set Y of R
with y € Y. In a free generating set Y of R each primi-
tive element y uniquely determines a derivation in R; just
take the derivation in R = F< Y > given by the mapping
from Y into R which sends y +~> 1 and z +> 0, each ze:Y—{y}.

We call such a derivation in R a primitive derivation and

denote it by é% .

S0, if it is said that a given derivation d in R=F< X >
is a primitive derivation, it megns that for some free
generating set Y of R there exists a y € Y such that d= 5&
This d is then a homogeneous derivation of degree zero with
respect to Y, and hence, by theorem 4.4, Ker d is also a
free associative algébra over F,. Ve now describe a free

generating set for this algebra.

Let d be the primitive derivation g% inR=FKX>,
where X = {xl,xz,.....} . Denote the degree-funciion
relative to X by v, and let Nn = Ker d n Rn ’

R, = {f € R.lv(f).g n}' » then the filtration induced in
Ker d by v is ‘ .

NO'FgngNzg‘..........
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Define, for eachn > 1 , an F-subspace Nn' of Nn by teking
I\Tn' to be the space spanned by all products ab with a,b &€ P"n—l
v(a) + v(b) <n . Let B, be a set of representatives for

a basis of the F-space Nn/Nn' . In order to describve such
~a set Bn explicitly we have to find the homogeneous elements
of degree m  which lie in Ker 4 but not in N_' . Denote

n
commutators of the form [...[[f,x],%;],e00,x7] by [f’xl[k]]
w < )

k-times
and repeat the argument given in the discussion of example

2.12(1) in section 2.2. This shows that every homogenedus

element of degree n which lies, in Ker d can be written as
g 1Z>; ?\ifxi,xl 1 (mod N '),

where almost all the terms in the sum are equal to zero.
Furthermore, since for each n > 1 the commutators
[xi,xltn'ljl (i > 1) form a basis of the F-space generated
by them, we can take

By ={x; :1>2} and for each j > 2

By = {fx,,x 07H1 01 > 2}

(-]
Then B = UJ-“ Bj is a free generating set of the F-algebra

Xer é%(—‘ (see P.M.Cohm [ 17 ,p.12]) We state the conclusion

as proposition 4.5.
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Provosition 4.5: If d is the primitive derivation deter-

mined by -the primitive element y€ Y in <Y >, then Ker 4
is a free subalgebra of F< Y > , with free generating set
(-]
C = U‘.uCi » Where
Cy = {zele%y} and for every i > 2
i~-1
Ci“{[Z’y[l ]JIZGY’ Z%y} . //

Next we indicate how Ker% lies embedded in < X > by
proving that F< X > may be regarded as a skew polynomial
ring over Ker %. ; but before we can do that we have to in-

troduce another valuation on F< X > ,

Proposition 4.6: If d is any locally nilpotent derivation

in an integral domain S (with 1), then the Zw{-o0}- valued
function w defined on S by .
w(a) = {k-1 if k = min {je Z* !adJ =0, afo0}
{-00 ifa=20

is a valuation.

Proof: w(l) = O since 14 = o. Also, for eny a,b € S
w(a-b) = min {je Z7| (a-b)daf o} -1
< min{min {i€z+ !adl' = o} 9
" min {je 2% lbd? =o0}} -1
= nin {min {ie Z" ladl' = o} -1,
min {je Z* |v&° = 0} -1}
= min {w(a), w(b_)} ,
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. . ok
and w(ab) = min {ka Z { (ab)™® = o} -1 , so that by the
lemma below we have
i
w(ab) = (min{iezzw a4 =_O} -1)
J
+ (min {je Z*| %" = 0} -1)
= w(a) + w(b) .
Lemma: Let S and 4 be as in the proposition.
+1 gt
it r=min{iez Ia =O}
J
s = min {je Z* | v®° = 0}
k
then minﬁ{ke'22+| (ab)d = 0 } =r+s-1.

-t
Proof of lemma: Put r+ s ~1 =1t and consider (ab)d .

By the Leibniz~formulsa
¢

S i t-i
(a0)¢ = Z (5 T T
and since b =0 if 0Li<r-l , a =0 if
dt . d-t“'l
= p <1 <t , we have (ab)~ = 0 . ©Now if also (ab) =0,
i.e. if '
& j  gt=3-1
gc’“gl) 2" ve - 0 (1)
=0

end if we omit all terms in (1) which are zero by virtue of
the fact that either

J
ad = 0
dt-j"l ! .
or b = 0 (which occurs when 0 < j < r-2) ,

(which occurs when r < j < t-1)

then (1) reduces to -

r-1 .s-1
it I S
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dr-l dS-l
Hence either a = 0 or D = 0 which constitutes

a contradiction against the minimality of either » or s .

Hence t=min{kez+l(ab)dk=o} . //

Theorem 4.7: If d is the primitive derivation g? in

R=I<X>, X= {xi,xz,.....} » then the inner derivation
given by A : a — [a,xl] on R restricts to a derivation
A&x in Ker d, and R may be regarded as the skew polynomial

1
ring Ker & [xl;l,lﬁk 1.
1

| Proof: To see that zkxl is a derivation in Ker d it is
sufficient to know that XKer d is closed with respect to the
mepping A, and this is clear, becauée for any b € Ker &
we have -
bz 1% =v-p=0.
For the rest of the theorem we start off by showing that R
is a free right Ker d-module with basis
{l,xl,xlz,x13,.....} :
Since 4 = g% is. clearly a locally nilpotent derivation on
R we can introduce a valuation w on R in the same way as in
proposition 4.6, and use this valuation in an induction argu-
ment to show that every element a € R with w(a) = n can be
”written uniquely in the form-

2
a=a,*Xa *x%a,+ .0 xln &, (2)
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where ay € Ker d , i = 0,100,502 & This is trivially true
for all a € R such that w(a) =~O (or =o¢ ), i.e. 2ll a<XKer d,
Assume (2) for all a € R such that w(a) < n and consider an
elenent b € R with w(b) = n . By the definition of w we
have w(bd) = n-1 , and hence,by the assumption,there exist

uniquely determined elements Cu2CyresesCp 1 & KXer 4 such that
o 2 n-1

b™ = ¢ * XCqt XyTCoteeseet Xy n-1 .
* 1.2 1l n
Let b X1Cy ¥ 5% Cp ¥ eeses t ZXi7C, ;4 then
®\d _ ' n-1 - wa
(™) Cot X)Cqtecanst X7 e, 4 b .

" Hence (b-bﬁ)d = 0 . Now let bo = p-b* ’ bl = Cy s

1 .
b2 _é'cl 9 eos oy bn ch"l 9

then rewriting b = bo+ v*  we get

2 n
b b0+ xlbl+ xl b2+.....+ Xl b

where the bi's are uniquely determined elements of Kexr d.

n

This establishes the claim.

Finally, R may be regarded as the skew polynomial ring

Ker d [xl; 1, A&i] s because each of its elements can be
“written uniquely in the form (2), and because the multipli-
- cation of such elements is completely governed by the com-

mutation rule gxy = x;8 *+ [g,xl], any g € Ker d. //
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Kow that we have seen how every primitive element

ye <X >=R determines a derivation d such that R may

be regarded zs a skew polynomial ring over Xer d, it will

be interesting to find out how far this property goes to-

wards characterizing y as a primitive element. Vie attempt

to enswer this question in the case where R is free of fi-

nite rank, i.e. the free generating set X is a finite set, (seep.20)
and we find that the property only determines y up to an

arbitrary “constant" in Ker d.

" Theorenm 4.8: Let R = F< X >, where X = {xl,...,xq} and
q 2 2. There exist a derivation d and an element z € R
such that
i) +the mapping :ﬁz : & — [g,2z] defines a derivation in
Ker 4 , and
ii) R may be regarded as the skew polynomial ring Ker d[z;l,Ab]
if and oply if z = y+b , where y is a primitive element in
R,beKer'd,andd=§—5 : ' !
Proof: ==3> 3 Under assumption ii) cleafly Z ¢.Ker d, but
for every g € Ker d, [g,zd] = [g,z]d, and by i) this is zero.
Hence Ker d is a subring of the centralizer C of zd in R. |
d

VWe want to show that z~ € PF. Now if we assume zd‘¢ P it

" follows that this centralizer is a commutative subring of R
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(see [ ¥I ,p.%49]), and then by ii) R will be a skew poly-
nomial ring over &g comnmutative ring, which implies that R
is a rignt and left Ore domain. This, however, is impos-
sible since R was taken to be free on more than one gene-
rator; and therefore zdé F. Say 24 = A (#0).
Ifurthermore, if we use v to denote the degree function
determined by X, we can also see that the derivation d re-
duces ‘bhe_ v-degree of every element to which it is applied.
This is imxﬁedia'tely clear for all the no'nzero elements in
Ker d, and since any element a ¢ Ker d can be written unique-
- ly as
a = at za;t ...f z.keak » a; € Ker &, i=0,1,.,k (3)'

we know thav
v(a) 2 max; {v(z* ai) 5 1=1,2,...,k) .
Now apply 4 to (3) , then
4o Ao+ 2Aza* ...+ kAZET
a l 2 e e a,l{ Iy

and hence

v(ad) = max, { v(zi_la ) ; i 1,2,...,1{}

i i’ ?

<ma.xi{v(z1 a;) 5 i 1,2,4..,k}

< v(a) .

If we apply this knowledge to the free generators, xj, we

x.d = _Qj € F , where we may assume that (say) L3 # 0.

J
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The next step is to change the free generating set

linearly to a more suitable one. Consider the elements

1 P
Yy 7 ifi=1
05 o
'xi— 'Fl—.fxl lfl=2,3,o..,q,

and verify that Y = yl,...,yq is also a free generating
set of R. Note that y.¢ = 6. (Kronecker delta),
i=1,...,q9 .

This mekes it abundantly clear that the given d must
be a primitive derivation in R. Ve also know by theorem

. 4.7 that R = Ker 4 [y;l, Ay ] , hence there exist unique-
1

ly determined elements bysPysece,b, € Ker d (br 0, r>1)
such that o
r
z = Db+ ¥y b1+"‘_"+ i bn . - (4)

Apply 4 to (4),then

lbr ,

From which it is clear that r = 1 and that by = A

= r—
A bl+ 2yl b2+.....+ Ty,

Hence by (4) 1z = >\y1+ b, , end since ?\yi is also a
primitive element in R, this proves the necessity of the

conditions i) and ii).

<m== 3 Consider an arbitrary primitive element y in R,

and let d be the derivation g% , then we know by theorem

4.7 that R = Ker 4 [y;1, 4y] , where A}j is the derivation
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in Ker 4 given by g > [g,y] , all g € Ker d. Ve now
show that if a is an arbitraery element in Ker 4, and
z = yta , then the mapping ZSZ defined on Ker 4 by
g > [g,z] is a derivation in Ker d, and R may also be
regarded as the skew polynomial ring Ker 4 [z;l, AZ].
Ker d is closed under the mapping zﬁz since (for every
g € Ker d), [g,2z] = [g,y] + [g,al , where [g,y] end [g,a]
both lie in Ker d. Consequently, ZSZ is a derivation in
Ker d, because it is the restriction to Ker 4 of an inner
derivation in R.
The rest of the assertion follows from the fact that
the skew polynomial rings
M; = Ker d [y;1, ij and
| M, = Ker ¢ [z;1, AZ]
are isomorphic as right Ker d-modules : Take @ Ml — Mé
to be the mapping which sends
b= b+ ybytese.at v b, € M (b, #0)

to

b= b+ (z-a)by*te....t (E-g)p € N, .
By repeatedly using the identity

az = za + [a,z]
it is possible to find for every i = 1,...,m uniguely de~
termined elements Ci02C417°°*9C4 € Ker 4 such that
(z-a)i = Cy zcil+.....+zic.. - (In particular each

11
c;3 = 1)
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Hence v¥= 2. zi zd¢. . )b.
. 730 J':O 3-:.] 1
LS i<
Z Z (Z, c;55;) - (5)

It is straightforward to check that ¢ is a Ker d-module
horomorphism. Furthermore Ker ¢ = 0, for if b? = 0 we see
from (5) that for every jJ = 0yl,e¢.,0

'gé'cijbi =0 (6)
Teking j = m in (6) gives cmmbm = 0, i.e.b = 0, which is a
contradiction. ¢ is also a mepping onto M2 because every

element X N
Byt 28 et 2g €liy

is the image under @ of the element

k
8y éMl. //

gt (y+a)gl+.....+ (y+a)
Remark: The case of F-algebras which are free on one gene-
rator is completely ‘trivial, because the kernel of every
nonzero F-linear derivation d on F[X] is equal to F:
Let b be an arbitrary element of Ker 4 and say

m

'ba, Ao"' AJ_X +ooooo k{n}s .

Then since R is commutative

0 = e = ‘klxd + 2 A2xx§ +,.0+ M Amx _lxd

= (?\l + 2 )2x teeet m )mxm—l)xd
- end since x% # 0 we get .

‘Al =2 Az = ..;-. = HlAm'= 0.
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F has characteristic zero, hence ll = A2 B e = A = 0,

and therefore b = }b e F. //

The knowledge obtained in theorems 4.5 and 4.7 can of
course be applied again to the free algebra which consti-
tutes the kernel of the primitive derivation §%~, givinga
repetitive process which will allow us to describe a descen-
ding chain of free subalgebras of R = F< X > , each with the
property that R is a free module over it.

Denote the kernels of the primitive derivations ﬁ%: iz,"'

in :F< X > ’ X = {Xl,XZ,.-.- } ) I‘espectively by Nl,Nz’Iqs,oto’

. .
end let &™) = fL”Ni . Extend the notation [g,xi[r]],
which we introduced at the Beginning of this section, to

include also the case where r = 0 by taking [g,xiEOJJ = g.

Theorem 4.9: For every n > 1 the subalgebra N(n) of

R=PF<X>, X= {xl,xz,.....} , is a free algebra over F,
with a free generating set consisting of the elements

X (j > n+l) and all the left normed commutators of the

form [over.[lx,x, BT, 2,720y, 00 ol

where k > min, {ri 7 0} eand each r; >0, (at least one r;7 0),
Purthermore, when R is regarded as a right N ®_module it is

free with basis the set of all products of the form

Xli' X;‘.. ..-.xn‘." (each iJ. _>_ O).
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Proof: By proposition 4.5 and theorem 4.7 this theorem is
valid if n = 1, and hence we mzay assume inductively that it
holds for n - 1. Note that when the primitive derivation

(n-1)

g% in R is restricted to N we get exactly the primitive

derivation (say én) determined by the free generator x  of
N(n-l) , Dbecause é%; sends

xn > 1,

x. =0 (all j > =n) , and

J
R - £ (r, ]
[OOEE}CK,X]- ],X2 ]’...,x}'l"l ] > 0 (all I'i Z O).

All these commutators go to zero because in the cases where
this is not trivially true, i.e. when k = n, it follows from
the fact that (x ) 3y, = 1 and (x. )3z, = 0if 1 <t < n-1.

Now by proposition 4.5 applied to the free algebra y(n-1) we

see that Ker ‘Bn’ which is the same as N(n'l) AN = N(n) ’
is a free algebra with a free generating set as described in

the formulation of this theorem.

Furthermore, by theorem 4.7, we have then that N<n'l) is

. n . . 2

a free right N< )-module with basis { l,xn,xn ,;nz,... } ’
and we know by induction that when R is regarded as right
N(n-l)-module, it is free on the basis consisting of all pro-
ducts of the form (xlil x212 coe xn_lin'l). Hence it follows
that when R is regarded as right N‘™_module, it is free on
the basis consisting of all products of the form

i i i
(xl & X, 2 .. X, 2. . //
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Theorem 4.9 leads directly to the results of G.Falk

[ 79 ] on the intersection of the kernels of the derivations
o) J

OX, * OXy 1eceeecss in a free associative algebra F< X >.

It is only necessary to allow n to run through the whole
index set of X = {xl,xz,....} in this theorem to get

o0

Corollary 4.10:(G.Falk): The subalgebra N = [l Ker gg of

=

the free associative algebra F< Xl’x2"""> (where F is a
commutative field of characteristic zero) is also a free
algebra with free generating set equal to the set of all
» left normed commutators of the form

CrlJ [r2] [rt]
[....[[xk,xl 1, %, Jooeeeesxy 1,

. F O} end each r; >0, ry # 0. Further-

> nin.
where k m:Lnl {rl 5

more, when R 1s regarded as right N-module, it is free on a
basis consisting of all the products of the form
i i i
1 2 t . -
X] T Xy T oeeees Xy where 1, # 0 unless t = 1,

in which case it can possibly be zero.. //

Remarlk: Corollary 4.10 actually improves Falk's results,
" because it not only states that N is generated by the left
normed commutators mentioned above, but that it is genera-

ted by them as a free algebra over F.
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CEAPTER 5.

THE TRACH OF A DLRIVATION 1IN F< X >,

Up to now we have concerned ourselves almost entirely
with the kernels of derivations in free associative alge-
bras which we could take to be of countable rank; however,
when we turn to discuss the trace of a derivation, the free
algebra has to be of finite rank.

Initially we define the trace of a given derivation
relative to one free generating set, say X, and then investi-
gdte to what extent this definition is bound to the particu-

lar generating set chosen.

1l. Defining the trece of a derivation in F< xl,...,xq >

Let R = F <X >, where F is a commutative field of cha-
racteristic zero and X = {xl,...,xq} . R, regarded as a
graded ring, is a direct sum of the finite dimensional F-
vector spaces grn(R), and an arbitrary derivation 4 in R in-
cduces (for each n > 0) an F-linear transformation 5; in
grn(R). This 5; corresponds bi-uniquely to a square ma-
trix over F, end as usual we define the trace of Sn to

equal the trace of this matrix.
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5.1

Consider d in the sane way as before (section 1.4) as

a sum of homogeneous derivations d = G + di+ ... + 4 .

The fact thet a homogeneous derivation of degree i, when

only
restricted to grn(R), can o=EE¥ map grn(R) into itself,if
i =1, implies that for eachn > 1

én = 4, | er (R) . (1)

Denote the trace of 5n by 'l;c( cgn) .

Proposition 5.1: It dl is a homogeneous derivation af de-

gree 1 in R = F< X > , then for every n > 1 ,

T (a4 | er(®) ) = nad® ™t T (e [ ery(R) ) (2)

Proof: Recall that if grl(R) =V , then for every n > 1,
grn(R) = V®eeoe ®F (n factors), where the tensor products
are taken over TF. Suppose 011,..., ocn are linear trans-
formations in V. It is well-known that
T (@i @) = Te( K)ot TL 0t )y (3)
but for completeness we sketch the proof: Let each oci be
given (relative to the basis {xl,...,xq} of V) by
2
o(“ - T .
X3 %xr ?Lijr , 3= 1l,..e5q s then the linear

transformation o(l® 0<.2 in V®V is given by
| o, ® X = pa 2
1 2 _ 1 2 _
(’Fj@xk) X5 ' ® X %(Xr‘gxs) ler ?\2]&5 ’

all j,k = 1,¢..,Q &
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(=
Hence <
d.@ L) = 2 AL, A
hey 13l 2kk

<

o

. Z
= (>~ ?(ljj)( ?_ Aoy )

J=

(@ ) = 2

By induction this extends to (3).
Note that the action of the derivation dl on grn(R) is
mirrored exactly in the action of the linear transformation

( 5l®1 ® ...01) + (1® 5l®...®1) teeet (1®...01 ®5l>

on the F-space V®...®©V (n factors).
Let f’i = (l®...®l®§l®l®...®l) , then

i th position

since "Cx(lv) = g , we have by (3) that
n-1l .
TP = @ T(S) , 1=1,..m
Hence T.( i ) = ng®t ) is i i
L = p nq Ty O,) , and this implies

that T (d;] er(R) ) = ng™T T (4, | ary(R) )

This proposition shows that the trace of each gn is
jus't an integral multiple of the trace of 51 s, and there-

fore we can define the trace of the derivation 4 as follows

K3

(4)

//
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5.1/ 5.2

Definition: If d is & derivation in R = < X >,

X = fxl,...,xq} y and if dl is the derivation in R given

d
by x5 1 . Uy where uy is the homogeneous component of

d

degree one of x. (i = 1l,...,Q) ; define the trace of &

i
relative to X by

tracey(d) = traceX(dl[ gri(R) ) (5)

TraceX( ) then assigns to every derivation & a unique-
ly determined scalar in P in such a way that it gives an
additive meapping from the F-space of derivations of R into

.

2. Effect of a change in the free generating set on the

trace of a derivation.

Next we check whether the trace function defined in
(5) is independent of the choice of free generating set.
Simple examples show that this is not so.

In F< X15%, > 4, let d be the derivation given by

2,0 =t P (A F0)

d 2
X5 Xt X,V (Y #0),
and let &« be the translation given by
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502

X:Ld =y mEmr A

£ . Y, = Xt ?\2 » where (A; M+ )\22)) # 0.

A N2
Then ¥y = X (yq- 21) * (yy= A7

= ( Rlz/u - Rl) * y,(1-2 Rl/a) + yl2/u. ,

S VS W B N G W D ISR LS VI
Hence by (5) traceX(d) =2 , and

tracey(d) = 2-2(A; s+ X, ¥ ) 7 tracey(d).

This suggests that we limit ourselves to augmentation-
preserving automorphisms of R = F< xl”‘”’xq >, i.e. auto-

morphisms o such that xi“' has zero constant term for each

i = l’oo-’q_ o
An augmentation preserving automorphism in R is said to

be tame if it can be expressed as a product of elementary

automorphisms, i.e. automorphisms in which

i) an element x € X is replaced by Ax ( A a nonzero
element in F) and the rest remain unchanged;
- ii) the elements of X are permuted in any way;
iii) an element x e X is replaced by x + f(xl,...,xq) ’

where £ is an expression in the elements of X which
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are distinct from x; and the elements # x in X re-

main unchanged. (See e.ge [ 17 ,p.33]

Proposition 5.2:¢ Let d be a derivation in R = < X >,
q} be

where X = {xl,..,;xq} , and let Y = § TyseeerY
another free generating set which is the image of X under

a tame automorphism of R, then tracey(d) = tracex(d) .

Proof: It is sufficient to prove that traceY(d) = traceX(d)
for every Y which is the image of X under an elementary
‘ automorphism of R. Let dl be the derivation given by

d
1 = i =
Xi = ui /'{ilxl + eee T /L(iqxq ’ 1 l,o-o,q

where each Uy is the homogeneous component of degree 1 of

d

£
X;~ , then by (5) in section 5.1 tracey(d) = ;é;/ujj .

Any elementary sutomorphism given in i) or ii) above
induces a vector space automorphism in the g-dimensional
space grl(R) , and it is well-known that such an automor-
phism does not change the trace of the linear transformation
dl in this vector space. The same is true of any elemen-
tary automorphism given in iii) if deg f(xl,...,xq) =1 .
Hence it only remains to consider an elementary automorphism

ot which is given on X by
xk"’-=yk=xk. itk #i, and
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'd O( = = ‘ =
x5 Yy = %t f(kl"'.’xi-l’xi+l’""Xq) X5 ¥ £ (say),

where orderxfxlz 2.

-1
5 L -]
Note that y. = X, = o= L(FqseeesTi_qsTspqovessy,)
i i i 1 i-1774i+1 q

o

=y;- 1 (say) ,

y

where orderYfy > 2.

The derivation d; is defined relative to Y by

7 P =x® arxsa

£
= = 4 .x.
J= ’UkJXJ
- %’ukjyj MY T My Ty
d d d
1_.% 1
and ¥ x5 + fx
b4
D
J=! 1J J X
d -1
- - 1y
dch'l
where ordery(f ")%4;y> > 2.
2
Hence tracey(d) = %%;a/*kk = tracey(d). | //

There exists at the present time a conjecture that all
augnentation preserving automorphisms in a free associative
Laigebra of finite fank are tame. If this is true the pre-
ceding proposition will show that the trace of a derivation

is independent of any change of free generating set caused
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by an augmentation preserving automorphism.

Remarxs Anastasia Czerniekiewicz [ /2 ] proved that in a

free associative algebra of rank 2, ¥< x,y > , any auto-
morphism which preserves the commutator xy-yx is tame.
Moreover, she recently announced that she is now able to

prove that all automorphisms of I< x,y > are tame. -

~-00000=~
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