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ABSTRACT

This work can be split into two parts.In the first part
we generalize the concept of Unique Factorization by viewing
Unique Factorization Domains as integral domains, non zero
non units of which can be expressed uniquely (up to
associates and order) as products of finitely many mutually
co-prime associates of prime powers. Our working rule con-
sists of taking a subset Q of the set P of all properties of
a general prime power and investigating integral domains,
whose non zero non units are expressible uniquely as as pro-
products of finitely many non units satisfying the proper-
ties in Q. For example we take § consisting of only one
property: of any two factors of a prime power one divides
the other and call a non unit x rigid if for each h,k
dividing x one divides the other. We find that in a Highest
Common Factor domain a product of finitely many rigid ele-
ments is expressible uniquely as the product of mutually
co-prime rigid elements. And a Highest Common Factor domain
with the set of non zeros generated by rigid elements and
units is the resulting generalization of a Unique Pactori-
zation Domain.

We consider three different Q's which,ggﬁitable integral
domains give distinct generalizations of Unique Factorization
‘domains. In each case we provide examples to pfove their
existence, discuss their points of difference with UFD's and
study their behaviour under localization and adjunction of
indeterminates., We‘also study these integral domains in
terms of the valuations of their fields of fractions and

show that these integral domains are generalizations of Krull



domains.
The second part is mainly a study of ideal transforms
in generalized Krull domains and some of the results are

generalizations of results known for Krull domains.
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CHAPTHR O
INTRODUCTION AND CONTENTS

1. Introduction . The main purpose of this work is to study
Unique Factorization and its generalizafions in commutative
integral domains. A Unique Factorization Domain is defined
to be an integral domain in which every non zero non unit
element x is expressible as the product of a finite number
of principal primes i.e.
X =DiDzess B

where a principal ideal (p) is a principal prime if p ]ab
implies that pla or p|b.

It is well known that

(1) a Unique factorization domain (UFD) is an HCF domain
ive. every two elencnte have g highest common factor.

(2) a UFD is a Krull domain i.e an integral domain R
such that

K, . every non zero non unit of R is contained in only a
finite number of nom zerws minimal prime/ideals of R

KQ. for every non zero minimal prime idegl P of R, RP
the localization at P is a discrete rank one valuation ring.

KB' R =N R, where P ranges over all minimal non zero

P
primes of R .

(3) every non zero non unit x of a UFD can be written
as X = upfipga... pﬁ"; where u is a unit g >0 and D ,p, are
are co-prime if 1 #Z j (cf [30] Theorem ?.3 (g)).

We observe that if x = upSp32,.. p2as in (3) above it
is expreséible as a product of a finite number of mutually
co-prime elements uipfi(iz 1,2,...,0n) where u pftare such that

(1) for every non unit x;,lu;,p-f,iL there exists a positive inte -

' ger n, such that u pQt|xit.
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(2) for every n and for every pair xL,yLluLP?aL3 XLIYL
or yi |x .

(3) irf utp?i~’is non co-prime to ab then for every n
and for every non unit ylutpfai, which divides &b, ¥ = ¥.¥2
where y, |a and y,|b .

This observation gives rise to the

Question . If an element x in an integral domain R is
-expressible 88 X = Q3 Qzeee U (4)
where giare non units,(qy,q;) = 1 1f 1 # J and for each q it
is true that .- 4

Q. for each non unit-h |q, there exists n such that @) hit.
Q,e for each n and for each pair hy .k |at ; h ki or ki |hye
Q3. if»qi is non es-prime to ab then for every n and for

every y|qi which divides &b; ¥ =.y,¥, where y,|a and y,|b .
- Is the. factorization (A) unique up to associates and or-
der of q even if g;are not powers of primes %

The main part of this work is the result of an effort to
find an answer to the gbove question. We 1in fact find out a
number of different generalizations of Unique Factorization

Domains .

2. Notations and Notions. We explain the notations and
notions when ever we use them except for those in common use

e.g. (1) we use a|b to indicate, a_divides b

(2) (a,b) is used to denote the highest common factor of
a and b as well as the ideal generated by g,b and the context
determines the meaning of (a,b). More over we use (a,b) # 1
to denote that g"and b have at least one non unit common fac-
tor

(3) by x is_an associate of y we mean

X =1Uy 3 ¥ = vX where u and v are units.
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Finally we mention that all rings considered are commu-
tative with 1. |
3. Contents . In Chapter 1, we prove that the answer to the
above question is in the affirmative. And from this arises
the concept of a Generalized Unique Factorization Domain
(GUFD), We show that a GUFD is a generalized Krull domain
(GKD) where a GKD is an integral domain satisfying K1,K3 of
the definition of a Krull domain along with: 7
(Ké). for every minimal prime P, RP is a rank one valuation
domain. We also show that an HCF-GKD is a GUFD.
In Chapter 2, we consider the properties of a non unit
x # 0 satisfying
(R). for every pair of factors h,k of x ; hlk or‘klh.
xlements satisfying (R) are already known and are
called rigid elements (cf [ 6 ] page 129). We restrict our
study of rigid elements to those in HCF domaihs and show
that if in an HCF domain R an element x is expressible as
the product of a finite number of mutually co-prime non unit
rigid elements i.e.

X = PyTyeeely ; ry rigid and (ry,r;) #1 for i # j
then this expression is unique up to associates of and up to
a permutation of r;. We shall call an HCF domain R a Semi-
rigid Domain if each non zuro non unit of R is expressible
as a product of a finite number of mutually co-prime rigid
non units. We also show that if R is a Semirigid Domain then
there exists a family F = | ?d}ae I of prime ideals of R such
that

Sl. every non zero non unit of R is contained in only
a finite number of elements of F . _
Sge Pa: fﬂ does not contain a non zero prime ideal,a,fel

83. RP is a valuation domain for each o €I
o



SL}.. R=nRPaa€I.

Obviously if F consists of minimal primes only, the
gbove four conditions define a GKD i.e. Semirigid Domains
are another generalization of XKrull domains.

In Chapter 3, we consider the*factorization of an arbit-
rary non zero non unit in an HCF domain of Krull type and

use this study to define Unique Representation Domains,

Chapter 4, is mainly concerned with the study of ideal
transforms in a GKD and a part of it consists of extensions
of results proved in [15].
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cept of Unique Representation deains.

Pellow students and the staff of the Mathematics
Department have also been kind and helpful. Among fellow
students, I feel obliged to mention Warren Dicks whose
capability has been a source of inspiration and whose advice

exacting and helpful.,



CHAPTER 1
GENERALIZED UNIQUZ FACTORIZATION DOMAINS

0. Introduction . The theory of Unique Factorization Domains
is well known and the most part:of the theory is covered by
[30],[31],032] and by [23].

To start with, we mention that if R is a UFD then every
non zero non unit x in R can be expressed as

X = Upetpo2 . . pd mmmmeem - (a)
where u is a unif and p?iare powers of primes such that
(p?t,p?J) =1 if i # j and the expression (A) is unique up
to associates of the prime powers and up to a suitable per-
mutation (ef [30] page 16).

We call a non zero non unit a an atom if a = a;a,
imﬁlies that a; or a, is a unit and an integral domain is
called atomic if every element in it is expressible as a pro-
duct of a finite number of atoms. A prime is defined to be
a non zero non unit p such that p]ab s implies that pla or
p|b. Obviously if p = ab end a = a'p j p =a'bp i.e.

1 = a'b , that is b is a unit, similarly we could take

b b'p and show that a is a unit. In other words a prime is

]

an atom and a U¥D is an atomic integral domain.
Qur main aim in this chapter is to repiace the prime

powers by the more flexible non units; prime gquanta which

behave like prime powers but are not products of atoms, and
to work out a generalized theory of factorization which does
not require a generalized unique factorization domain to
be atomic.

Section 1l,0f this chapter mainly deals with the defi-
nition of a prime quantum, its properties and with the
definition of a Geéneralized Unique Factorization Domaih(GUFD)

as an integral domain in which every non zero non unit is
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is expressible as the product of a finite number of mutually
co-prime,prime quanta. In sectlon 2 we give examples to en-
sure the existence of notions introduced in section 1, and
of course to justify their introduction. Section 3, estab-
lishes analogues of some results about UFD's, while in sec~
tion u; we study the stability properties of the GUFD's. In
section 5, we study the ideal theory of GUFu's and related
integral domains and at the end of this section we ﬁféﬁl"
that if a proper ideal A in a Prufer domain R has a primary

decomposition then this decomposition is unique.

1. Definition and properties of Prime quanta.

We split our task of defining a prime gquantum into two

parts, that is we give the generalization of the concept of
atom first and state the
Definition 1. A non zero non unit element h in an integ-~
ral domain R will be called a guantum if for each non unit
h, |h there exists a positive integer n such that h|hi.
We note that the semigroup R¥ = R - |0{ 1is preordered
by aib ( divisibility) and if U is the set of all the units
of R then thé semigroup R*/U is partially ordered by

al < bU iff a|b, and obviously by h_is a guantum we mean

that for every U # h;U < hU there e¢xists a positive integer
n such that hU < hnU. In view of the partial order we may
call a quantum hjyhigher than another quantum hyif hyU<hyU.
| Definifion 2. If in an integral domain R a quantumkh
divides an element a such that there exists no other quantum
hy with hU < hyU < aU , then h Will be said to divide a
completely.

Now’to make a quantum behave more like a prime power

we impose some more conditions on it by
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Definition 3. A quantum q in an integral domain R will

be called a prime_guantum if

(1) for every n and for every gy ,ds qp, q | gz or quQ1
(2) if q is non co-prime to ab then for every n and for
every g, |q" which divides ab, gy = q.dg such that qr[a.and
qslb i.e. every factor of g is primal.
We recall that an element X in an integral domain is
called primal if x|ab implies that x = yz ; y|a and z|b
and an integrally closed integral domain in which every

non zero element is primal is a Schreier domain. More over

an HCQ* domain is a Schreier domain (cf [5] p.25L4).

Looking back at the Definitions 1 and 3, we note that
an atom Vécuously satisfies the condition for an element to
be a quantum, while a prime p is a prime quantum because
every factor of pn is primal and this marks the basic
difference between the concepts of a quantum and of a prime
quantun,

Definition 4. Two prime quanta will be called gimilar if
they are non co-prime and dissimilar or distinct otherwisc.

Lemma 1. In any integral domain R.

(1) Any non unit factor of a prime quantum is a prime
guantumn.

(2)1If 94,92 are similar prime gquanta then qilquor gz |Q1.

(3) If q4,q; are similar prime quanta then qiq  is a
prime gquantum similar to themn.

(L) If a prime quantum g divides ab comoletely, that is
there is no prime quantum q'] ab such that gq' properly;
then q = 9,9, where a = a;q, , b = by1ge and
(a15a) = 1 =(by,q).

(5) The relation of similarity between prime quanta is
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an equivalence relation.

Remark 1. Statements (1) - (3) can be equivalently re-
placed by the following comprehensive statement:

" The prime quanta in an integral domain similar to a
given one, with units form a multiplicative set which is
saturated and totally ordered by divisibility."

Proof. (1) Let q be a . -~ quantum and g, be a non unit
factor of g. To prove that g is a prime quantum we have to
show that q, satisfies (1) and (2) of Definition 3,(obvious-
ly q, is a quantum). Now for somnc n

qr,qsqu then qr,qslqn and so q.lag or a.la, i.e. (1)
of Definition 3,is satisfied. .

Further if q, is non co-prime to ab then so is q, and
every factor Qy of qf which divides ab, being also a factor
of qp can be written as Q= 9,9, where quia and qvlb, which
is (2) of Definition (3).

(2) If q,9, are similar prime quanta then let gz be a
non unit common faqtor‘of dis Q2. By (1) above q3 is a prime
quantum, So there exist. im,n such that q1|q? ’ q2|q§ and
thus o; gz | a5 ™™ and by (1) of Definition 3, @ lae or az]as .

(3) We establish that if q is a prime quantum then " is
again a prime quantum (for every positive integral m). By
(1) of Def. 3, if x,y|q™ then x|y or y|x. So if a non unit
n|q™ , h|g or q|h. If h|q then there is n such that q |h"
and so qmlhnm, and if g|h then q@lhm. fence @7 is a princ
quantuin. Further if hy,h;are factors of an integral .power of
qm, h:,hy are factors of a power of q and so hilhz or hzlhi.
Similarly if q@is non co-prime to gb then solis g and it is
easy to see that q" satisfies (2) of Def. 3 .

Finally if q;,qz are similar prime quanta and if q5 is

'is a non unit common factor then there exists an integer m



13
such that g g, |q) ‘i.e. g g, is a factor of a prime quantum
and hence 1s a prime gquantum,

(4) Let q be a prime quantum such that q|sb completely,.
By (2) of Def.3, q = q g, such that q, |a and q,|b, so that
ab= a, b, q g, . Suppose that (a,, q) # 1, and let g3 be a
non unit common factor i.e. a; = a;g;. Thus

ab = a,b,q, 09,03, but then q, g, g3 = Qg is a prime quan-
tum higher than q with respect to &b, a contradiction and
hence (g, ,q) = 1. Similarly (b,,q) = 1.

(5) Reflexivity and symmetry are obvious. For transitivity
let g, ,q; and g, be prime quanta such that (a) q is simi-
lar to g, and (b) g, is similar to qz.

Here (a) implies that q, and g, have a non unit common
factor q,, say. Now g, and g, are similar and so by (3)
gbove q,|q; or g;|gz. If g;)q; then q,,|q; and so g and g
are similar. Further if q3|q2 then since q,, and gz both
divide a prime quantum qg,,Q;,|93 Or qz|q;z, that is g, and
qy are similar.

" Corollary 1. A quantum is a prime quantum iff it has a
prime quantum as a factor.

Proof. If q is a quantum and g is a prime quantum divi-
ding it then there exists & positive n such that qqu; Now
q, being a prime quantum the result follows from (1) and
(3) of the sbove lemma. The converse is obvious.

Corollary 2. If a prime quantum g|sb and(g,a) = 1 then g|b.

Proof. By (2) of Def. 3, if q|ab then g = qigzsuch that
q; |a and g, |b, but since (g,a) = 1, q; is a unit and hence
qlb.

Proposition 2. If an element in an integral domain R is
expressible as the product of a finite number of distinct

dissimilar prime quanta then the expression is unique up tb
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the permutation of distinct prime quanta and up to their
associates.

Proof. Let x be a non zero non unit element in an integ-
ral domain R and let x be a product of prime quanta q i.e.
X = Qydgee+Qq » Q. sq; dissimilar if i # J

Suppose that x can also be written as
X = DyDgesePy 5 Pj prime quanta, py ,p; dissimilar if
i #3j.. Now

q1q2-ooqn =p1pzontpm

Since gy 1s a factor of the L.H.S.
Q1 |P1Pz e« Pn
and similarity between prime quanta being an equivalence
relation, g, can be similar to TZ2%%n of the pr ( i =1...0)
while from the definition of a prime quantum it follows that
g,1is similar to at least one of the p, . That is there
exists a unique py such that qilpt.

We claim that q; and py are assoclates,because rever-
sing the process, that is taking pL|Q1QQ¢..Qn s We get Dy Qe
And combining the two results confirms the claim.

Now we are left with

gz2Q3+e+Qn = P1Pz-o-Pt_1Pt+1---Pm

and repeating the above procedure we conclude that n = m and
each qy is an associate of some pifor a suitable permutation
Of DPy1sP2s eee Pns

Definition 5. An integral domain R will be called a
.Generalized Unique Factorization Domain (GUFD for short)
if every non zero non unit element x in R can be expressed
as the product of»a finite number of distinct prime quanta.

The proof of Proposition 2, depends heavily on the
assumption that we can write X = g1Q42...Qny Where

(1) qi are prime quanta (i = 1,2,..n) and (2) qi,qj are
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dissimilar if i £ j.

In the case of an element x which is a product of primes
we do not need the assumption (2) above, while proving the
uniqueness of the factorization because of the fact that a
prime is an atom . But as it can be easily verified that
every positive integral power of a prime is a prime quantum
we can easily achieve the form -

X = upfipgz...p?" ; wheré u is a unit and p ,p; are
non associate primes for i £ j, and hence p?i,pfjare distinct
prime quanta. But before accepting the above two restrictive
assumptions as a price of generalization we have to be sure
that there do exist (1)'auanta (2) prime quanta (3) quanta
which are not prime quanta (4) Generalized Unique Factori-

zation Domains.

2. Exampies.
(1) fuanta: Kxample 1. dvery atom is a quantum.
Obviously every non unit féctor of an atom a is an
associate of a, and so an atom satisfies the condition of
being a quantum.

Example 2., Let R be a quasi-local domain of XKrull dimen-
sion 1. It is well known that if a,b are two non zero non
units of R then there exists a positive integer n such that

b|a® (cf Theorem 108 [23]). and of course the result is
symmetric, that is a]bm for some positive'integral m. So if
X is a non zero non unit in R and h is a non unit factor of
x then there exists n such that x hn. Thus we conclude that
€very non zero non unit element of R is a quantum. This
example also estsblishes the existence of quanta which are
not étoms €.Z. when R is hon Noetherian.

(2) Prime quanta: Example 3. A prime is a prime quantum.



16

As we have mentioned befors this fact can be easily

verified. It can also be verified that an atom is a prime
quantum iff it as a prime. |

Example 4. Let R be a rank one valuation ring. Obviously
R is a quasi-local ring of Krull dimension 1. So that by
Bxample 2, above every non zero non unit of R is a quantum,
Further,R being a valuation ring if x is a non zero non'
unit of R then for every positive integer n and for every
Xy %g | X7, X | % or Xz | % (holds vacuously). And if x is
non co-prime to ab then at least one of a,b is a non unit
and so is non co-prime to x . Moreover if y[xn for some n
such that y|ab then y = y,y, where y,|a , yz2|b ( follows
from the fact that a valuation ring is HCK). So we have veri-
fied that x satisfies (1) and (2) of Def. 3, and thus is a
prime quantum. It may be noted that x is an arbitrary non
unit of K.

(3) CameUMg bxamples (1), (2) and (L) we see that any
atom which is not a prime can serve as an example of a quan-
tum which is not a prime quantum. Also since there exist
non Noetherian integral domains of Krull dimension 1, which
are not valuation domains we)have our examples of non atomic
quanta which are not prime quanta.

(4) Generalized Unique Factorization Domains:

Example 5. A UPFD is a GUFD. This follows from the fact
that a prime is a prime quantum.

gxample 6., A rank 1, valuation domzin. Fach non zero non
unit of a rank one valuation domain is a prime quaﬁtum (ixely)
and so the statement that,'"ivery non zero non unit is a
product of a finite number of distinct prime gquanta." is
sétisfied.

Example 7. Let S be the product of two copies of positive
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rationals i.e.
o B . g .

S =1{x 3 s rationals 2 O } where X,y are indeter-
minates over the field of reals. Ict R be the field of real
numbers and consider the algebra R[{S] = L say. It is not
difficult to prove that L is an integral domain. Let

T=141te L |t is co-prime to x and y bothj.

The set T has elements of the type:

C o«
T =1y + ax* N Tio r, € R - {0 ty= 4+ Ax+5§
i 3 j . ﬂqie,ieﬂ—ia}
t, =1, + by a,b ¢ R[S] ol a,beﬁfﬁvj

= ax + byﬁ; a;beR[SJ;(yﬁ,a) =1 = (%, b)

ct+
|

The foras of thuee ele.unts show that T is a multipli-~
cative set, and is saturated(ci Scc.3). Now in the locali-
zation, (R[S])T =D , every element d can be written as

a = ux® s where u is a unit and obviously this ex-

pression is unique. It can also be verified that xg;yﬁ are

prime quanta (o ,8 rational > 0). uﬂabAaﬂb”WJljFD?
wxample 7, above ensures the existence of GUFD's'and

as we develop the theory further we shall sce that there
exists a sufficiently large class of integral domains which

are GUFD's but are not UFD's.

3. Some Results analogous to Classical theorems.

First we recall that in a ring R a set & is said to Dbe
multiplicative if a,b € S implies that &b € S and S is satu-
rated if ab € S implies that a,b E'S. Further it is well
known that in an integral domain R a set 8 generated by .
primes is multiplicative and saturated. Analogously we prove

Proposition 3. Let R be an integral domain and H the set
generated multiplicatively by units and prime quanta then H
is multiplicative and saturated. |

' Proof. The hypothesis implies that if x€ H then

X = g41Qz...0nWhere each gy is a prime quantum or a
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unit for each i = 1,2,...n: From the fact that the product
of two similar prime quanta is a prime quantum similar to
them we deduce that if x is a non unit we can write

. X = DyDgeseby s DysPjdissimilar if i # j.

That H is multiplicative is quite obvious. To prove
that H is saturated let ab € Hyuo

First suppose that ab = g a single prime quantum.
Bither, one of them is a unit or both are similar prime quan-
ta, and in both cases a;b ¢ H.

Further let ab = q,q, where q,,q, are distinct prime
quanta. Now as q, ,q, are distinct Q1|ab completely and so
Qs = QiprQys Where g,.|a , q;5|b such that a = a;q,p,

b =byqs and (8,,9) =1 = (b,,q,) (cf (4) of Lemma 1).
Consequently q, = a,b, implying that a, |b, or b,|a; i.e. one
of them is a uﬁit or both are prime quanta. In other words

a and b both’are products of prime quanta and hence are in H,

Applying induction on the number of distinct prime quan-

ta involved we can prove that if

ab = gy Qp...Q, 3 Qysq; distinct for i £ j,
then o,b are products of prime quanta and hence are in H
i.e. H is saturated.

An integral domain in which every two elements a,b have
the highest common factor is called an HCF domain. It is well
known that a UFD is an HCF domain and in analogy to this we
state the

Proposition 4. A GUFD is an HCPF domain.

Proof. Let R be a GUFD and let X,y € R 1if one of them is
a unit then obviously they have a highest common factor; a
unit, If one of them say y is zero then x is the highést
common factor. thus we can assume x and y to be non zero non

units. Now let



19
X = Q 0z +eQpn s Q, prime quanta and all distinct
¥ = PyPgecebm »Pp prime quanta and all distinct
Now for every prime guantun g |x ( 1 =1,2,...n) @
has a common factor with y or does not. Also if g does have
a common factor with y then g is similar to one and only |
one of p;|y (Def, 3). Now select out Of Qi ,02,...Qn 2ll those
prime quanta q),qd,...q! such that(q',y) # 1. Similarly
select out of Dy ;Do sseeeDy all those py,Pls..+Ds such that

p; are non’'co-prime to x. By the above assertionr = 8 and
we can form pairs § qf,pf} of similar prime quanta for a
suitable permutation of p' say. |

Let'd;= (py>q') where d{ = p if p'|q’ and & = g if
q |p'. Obviously as p{ and q' are similar in pairs, &
exists for each i = 1,2,...r. And it is easy to see that in
each case d;, is the HCF of p{,q/.

Let 4 = dydz.esdr ; that 4 is a common factor of x andy
is obvious, To prove that 4 is the highest common factor we
have to show that every common factor d' of x and y divides
d. we first note taat 4' is a product of.prime quanta‘that
is a' = ﬂ;ﬂgt- ﬂt 5 Wi distinct,prime'quanta dividing
x and y. That is each 7 is similar to one of di,da,...dr
and so divides it. And it is easy to see that d'|d and that
d is thc¢ bhighest common factor,

Remark £ . Many notions in the classical theory of Unique
Factorization are taken as granted; for example we hardly
need to state the fact that if in a UFD, x is a2 non unit
factor of y then there exists a positive integer n such.that
any. If on the other hand we need to stress this fact we
content ourselves by saying that a UrD is atomic. In case of

a GUrD the above mentioned property holds but needs an expla-

nation:
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et y = pp...py Where p are distinct prime quanta,
And let x be a non unit factor of y, then by Proposition 3,
X is expressible as a product of distinct prime quanta, that
is X=1'n...pn where p' are distinct prime quanta each
dividing one ( and hence only one) of p1,...,g1..Suppose that
for a suitable permutation of p;,n'|n . And by the definition
of a quantum, there exists a positive integer n such that
g‘|pfn(properly)that is x™ has at least one prime quantum as
a factor which does not divide the& prime quantum factor of y
which is similar to it and hence xJy.

Before proceeding further with the analogy, we need an
auxiliary arrangement of some new notions and facts, As our
first step we introduce the notion of a prime ideal asso-
ciated to a prime quantum.

Let g be a prime quantum in an integral domain R and

put Qg = Lxe | (x0) #11.

Now x,y € Qq implies that there are two prime quanta
g4 s9z8uch that x = %39, , ¥ = ¥y29z2. As similarity between
prime quanta is an equivalence relation, g and qz are simi-
lar and consequently a; |qz or gs|qi. If @]z say,

X + ¥ = %0+ Y292 = @ (Xy + y2Q¢) non co-prime to ¢,
that is x + y € Qq. And since for every x non co-prime to g
X is non co-prime to q for every r in R, Qq is an ideal,
Moreover xy € Qq implies that Xy is non co-prime to q and
by Def. 3, either x is non co-prime to q or y is i.e,.

Xy € Qq implies that x € Qq or y € Qq and so Qq is a prime
ideal. And this observation provides us the

Definition 6. Let q be a prime gquantum in an integral
domain R then the prime ideal
Q ={ xeR(x,q) #1] will be called the prime

q
ideal associated to q.
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Further, it is easy to see that if q, ,q are two simi-
lar prime quanta then qo € quand as every element in tge
integral domain R, non co-prime to g, is also non co-prime

to 0. C g and similarly ¢ C that is = Q
Q1 » e= Yaqi y qu c qus qu qu

and conversely if = then €% and so €qQ which
Y. QQJ. qu % 4y, % Qs

implies that q;,qz are non co-prime and hence are similar.

We note that if in an integral domain R, a prime quantum
q is contained in a prime ideal P then every non unit factor
g, of g is in P, The proof follows from the fact that q is a
quantum. This observation suggests that if a prime quantum g
is i;l a prime P then Q.q c P.

For further references we record the above observations
and their easy consequences as the

Proposition 5. Let g,94 52 be prime guanta in an integral
domain R then

(1) qu = Q ziff g, and g, are similar.

Q.
(2) If P is a prime ideal in &R and q € P then Q_ c P

q
and if P is minimal then Qq = P.
(3) If P is a minimal prime ideal and q €P then g € P
iff g, is similar to q .
Note . By a minimal prime idéal we mean & minimal non
zero prime ideal.

We recall that an integral domain R with quotient field

K is called completely integrally closed if for a and u

in X with a £ 0, au” € R for all n implies that u € R (cf
[23] p.53). From Remark 2, it follows that if x and y are
two elements of a GUFD R then xnly for all n implies that'
X has no prime quantum as a factor i.e. X is a unit. Now a
GUFD R is an HCI" domain and if K is the quotient field of R

then for every u € K-{0{ , u = x/y = x,/y, where (Xy,y.) = 1.



Similarly O £ a € X can be written as a = x,/y, where
(%, %) =1.

Now au™ € R for all n implies that(®x/y )(x /v, )"eR
for all n. By the HCF property yfogfor all n,which by the
above observation is possible only if y; is a unit in R,
that is u € R. Thus we have proved th.

Propesition 6. A GUFD is a completely integrally closed
integral domain,

We go further in our pursuit of analogous results and
state the

Proposition 7., An integral domain R is a GUFD iff every
non zero prime ideal in R contains a prime quantum.

Proof. Suppose that every prime ideal oftﬁuzgﬁﬁi;ns a
prime quantum and let S be the set generatedlby prime gquanta
and units of R. If S # R - {0} then by Zorn's Lemme, the
complement R =S contains a prime ide¢al and hence a prime
guantum, a contradiction and hence S = R ~ {0f i.e. R is a
GUFD, Conversely if R is a GUFD and P.a prime ideal in R; let
x be a non zero element in P. Then X = q; 9z ...Qn Where g
are distinet prime quanta. Obviously q;Q93...9n € P implies
that g€ P or qaqa...qne.P, and proceeding in this manner we
conclude that at least one of g, ( 1 = 1,25...0n) is in P,

Corollary 3. If q is a prime quantum in a GUFD R then Qq
the prime ideél associated to q is a minimal prime ideal(# 0)

Proof, Obviously Qq is non zero. Now suppose that Qq is
not minimal and let P be a non zero prime ideal contained in

Qq. By Proposition 7, P contains a prime quantum q' say and
by (2) of Prop.5,Qq. c P. But as q' ¢ Pc 45 ; q' is similar
" to q and thus by (1) of Prop., 5, & = Q_, so that Qq c P i.e.

q q

Qq=Po

Corollary 4. In a GUFD R every non zero prime ideal
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contains a minimal (non zero ) prime ideal.
Proof. Immediate from Cor, 3 above.
Corollary 5., In a GUFD every non zero minimal peime ideal
P is associated to a prime quantum q i.,e, P = Qq.
Proof. By Cor. L4, P contains a prime quantum q and the

result follows from Prop. 5.

L, Stability Properties of GUFD's.

In this section we shall establish that the property of
being a GUFD remains invariant under lccalizations and poly-
nomial extensions, For this purpose we need to introduce the
concept of a Generalized xrull Domain (GKD).

An integral domain R is called a Generalized Krull
Domain if

(1) every non zero non unit x in R is contained in a
finite number of minimal prime ideals of R.

(2) for every minimal prime ideal P of R, Ry is a
rank one valuation domain,

(3) R=NR

D ? where P varies over all the minimal prime

ideals of R.
It may be noted that a Kruyll domasin is a Gencralizcd
Krull Domain. In this section we shall use the facts that
(1) every localization of a GKD is a GKD (2) if x is an
indeterminate over a GKD R then R[x] is a GKD., For a dstailed
theory of GKD's the reader is referred to [21],[29]) and [9].
As our first step towards the consideration of stability
properties of GUFD's we collect some useful facts.
Lemma &, In an HCF domain a quantum is a prime quantum,
Proof. Let q be a quantum in an HCF domain R and suppose
that x,y|q. We claim that x|y or y|x. For if we suppose on

the contrary that x J y and yfx then R being an HCF domain



24
x and y have a highest common factor d-say, that is x = X 4,
y=y,4 and (x,, y,) = 1, Obviously-Xx, , ¥, are non unit fac-
tors of a quantum and so by the definition of a quantum there
exist m,n such that q|x? and q]mn, so that x, |y, and AR
Awhich in view of the HCF property implies that (x,, y,) # 1
a contradiction and so for all x,y dividing q, x|y or y|x.
Further we see that if x]qn for some n then by the HCF
property if x is a non unit then it has a non unit factor 4
common with g. But qldn for some n because g is a quantum
and it follows that qlxn and that qnlxnz, that is q" is a
quantum for all n and it can be shown on the same lines as
above that for each pair u,v|q”, u|v or vlu, which is
exactly (1) of Def. 3. Moreover since an HCF domain is also
Schreier évery factor of g for each n is primal that is.(2)
of Def.3, also holds and q is a prime quantum,
Lemma 9, If R is an HCF domain and S is a multiplicative
set in R then Rs is an HCF domain.
Proof. It is well known that if A and B are ideals of an
integral domain R and S is a multiplicative set in R then
| (A N B)Ry = ARg N BRg (ef [9] p 34) .
Moreover the necessary and sufficient condition for an
integral domain R to be an HCHF domain is that the intersec-
tion of every two principal ideals is principal(can be veri-
fied easily).

Now let x,y € R., Where X and S are as in the hypothe-

S
sis. We can write x = r1/s1, y = rz/sz where (r_,s;) =1,and

g arc units in i« .
|9

Consider xR, N YRg = (rx/si)RS N (rz/sz)RS,sLbeing

(o]

units we. can write the R4S as .riR. N rzRS but since

S
riRg N reRq =(rsR N rzR)RS = LPi,Pz]RS where [ri,rz2] is the
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least common aultiple of Tssly o
But since x,y are arbitrary and for each pair
xRS N yRS S
is an HCF domain.

=Ty Rg N TpRy = [I.i:I'zJRS a principal

ideal, RS

Proposition 10. A quasi local domain with Krull dimension
1 is a valuation domain iff it is an HCKF domain.

Proof. If R is a domain as in the hypothesis and is HCH
also, the result follows from fxample 2 and from Lemma 8. The
converse 1is cbvious.

Corollary 6. For every minimal prime ideal P in an HCF

domain R, RP is a rank one valuation domain.

Proof. ny Temma 9 R, is an HOF domain and since P is mini-

mal, R. 1s a one dimensional quési local domain and so by

P
Proposition 10, the result follows.
A simple but worthy of mention faet is recorded as

Proposition 11, If R is an integral domain in which every
non zero non unit is expressible as a product of a finite
nunber of quanta then the sufficient condition for R to be
a GUFD is that it is an HCY domain.

Proof. By Lemma 8 above, every quantum of R in the hypo-
thesis is a prime quantum., Thus every element x in R (othsr
than zero or a unit) is expressible as the product of a
finite number of prime quanta.

Let x = pipz...pn,|where p; are prime gquanta, Then if
(say) pysppare not distinct then by (3) of Lemma 1, p,p, is
a prime quantum similar to p,and p,, and after a finite
number of steps we are able to express X as aAprime quantum
or as the product of a finite number of distinct ﬁrime gquanta.

Cor 7. An atomic HCH domain is a UFD,

Now we have enough material to be able to prove
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Theorem 12, An integral domain R is a GUFD iff it is an
HCF=GKD.

Proof. Let R be a GUFD then

(1) every non zero non unit of R is contained in a finite
number of minimal prime ideals (Cor. 3 and the fact that
every non zero non unit of R is the prcduct of a finite
number of prime quanta)

(2) for every minimal prime P, Ry is a valuation domain(
Prop. L4 and Cor. 6)

(3) R=n R, , where P ranges over all minimal prime ideals
of K.

Proof of(3). Obviously R c N Ry where P ranges over mini-
mal primes. Let x € N Koy then since R is an HCEF domain, we
can write x = r/s where (r,s) =1 . Now r/s ¢ R, for every
minimal prime P implies that s is a unit in each RP,consequ-
ently s is in no minimal prime ideal and so has no prime
gquantum as a fagtor which in a GUFD is possible only if s is
a unit and hence x € R.

The properties (1),(2) and (3) as we have mentioned at
the beginning of this section, show that R is a GKD and with
the help of Prop. 4 we have proved that a GUFD is an HCF-GiD.

Conversely let R be an HCH#-GXD, Let x e a non zero non
unit element of R, then by the definition of a GKD, x is con-
tained in a finite number of minimal prime ideals P,,P5, . Pp
say. We may assume that thers is no other minimal prime which
contains x. Now since P, are discinct there exists an elesment
y € B, such that y ¢ P,. We claim that (x,y) # 1, for other-
wise (%X,y) = 1 in » implies that xR N yx = XyR in R and se
x2. N yRE'= xyRR in RB (ef Proof of Lemma 9) which further

5

implies that (x,y) = 1 in X,. But R

5 D being a valuation domain
] '
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either x or y is a unit in x, i.e¢, either x or y is not in

B
B, a contradiction, |
Let(x,y) = d , and so x = 5,4, ¥y = y, 4 where (x ,y,) = 1
and by the previous argument, x; and y, cannot both belong to
B . Let x, be such that x, 6B , then x,d ¢ P, implies that
d ¢€ P, Obviously since 4 is a factor of y,vd eP and being a
factor of x, d belongs at most to’?;,PB,...,P . Further let
ye€ Py such that y,¢ P;, and repeating the above argument we
get 4, = (d,y; ) where 61 is a non unit factor of x which can
belong at most to Py 5B s+0.5Pq. And it needs a finite number
of steps to reach the conclusion that x has a non unit factor
q say, which is contained in P, and is contained in no other
minimal prime ideal.
Now as q € P, and belongs to no other minimal prime
ideal, qn is also in no minimal prime ideal other than P,,
because i1f we suppose on the gontrary that qne P a minimal
prime other than P, then q ¢ P a contradiction,
Further let a non unit h|q then since a 3KD is completely
integrally closed, there exists a positive integer n such
that han. But R being an HCF domailn n" and g have a highest
common factor d say, then h™ = rd , q = q'd where (r,q') =1.
Since han, r is not a unit, and if we assume that q’
is also a non unit then either r or q' is not in B, a contra-
diction and hence q' is a unit. In other words, for every non
unit factor h of g there exists an n such that g|h” i,e. g is
a quantum and so by Lemma 8, q is a prime quantum.
Now the prime idesl Qq associated to g is obviously con-
tained in P, but P being minimal Qq = P (cf (2) of Prop. 5)
Finally we know that for every minimal prime P of R,

X ¢ P implies that x is in a finite number of minimal primes
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P,P/s...3B and so by the above process we can show that
P = Qq, where q' is the prime quantum emerging from the above
process,

It is well known that in a GAD every non zro priie ideal
contains avminimal prime ideal and so we have proved that in
an HCPF-GKD every primérideal contains a iminimal prime ideal
associated to a prime quantum which by Proposition 7 is equi-
valent to séy that & is a GUsD.

Remark 3. The above proof does not demonstrate as to how
we can write a non zero non unit x in an HCF~GKD R. This end
may bec achieved as follows:

et | PyyPsyeessPr§ be the set of all non zero minimal
prime ideals contaiﬁing X, #c have shown that x € P, implies
that there exists a prime gquantum q;in P such that qq]x.
Suppose that g, does not divide x completely (cf Def. 2),
then R being a GKD, is completely integrally closed and so
' there is an n sugh that q?[x. Now by the HCE property
qy = (qi,x) divides x completely, Similarly proceeding for
Pssy.sPr Wwe conclude that X = @fq3...qf and this factori.
zation is obviouysly unique.

It is well known that if R is a GKD and S is a multipli-
cative set in R then R is a GiD (gf[9] D 513). Further by
Lemina 9, if R is an HCF domain and S in R is multiplicative

then R, is an HCF domain and so using the above theorem we

S
can prove the

Proposition 13. If ® is'a GUFD and S is a multiplicative
set in ® then HS is a GUFD.
. Further if R is a GKD and x is an indeterminate over R
then R[x] is a GKD (9] p. 517)and it is well known that if
R is an HCF domain then so is R[x]. Hence follows the

Proposition 14. If R is a GUFD and x is an indeterminate
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over R then k[x] is a GUFD.
We end this section with an application of the fheory
developed in the previous sections and state the

Proposition 15, Let R be an integral domain such that for

every non zero non unit x in =
X=06G N G N ... NQ 4,
where ¢ are primary ideals such that\fﬁ, is a minimsal prime
ideal, then Rr is a GU¥D if it is an HCF domain.

Proof. (1) from the hypothesis it follows that every non
zero non unit of X is contained in a finite number of hini—
mal prime ideals of R.

(2) R being an HCF ring RP is a valuation domain for every
non zero minimal prime ideal P of R.

(3) The proof that R = n Rp follows the same lines as the
proof of Theo, 12, ’

From (1),(2) and (3) above it follows that R is an HCF

GXD and hence is a GUFD,

5. Ideal Theory.

This section includes a brief account of the behaviour
of minimal prime ideals of a GUFD, We then pass on to the
ideal theory of GXD's which are Prufer(Bezout), the primary
decomposition being our main concern., ¥We shall find that the
primary decomposition of every non zero ideal in a Prufer GKD
is unigque, in other words a Prufer GKD is a W=-ring. At the
end of the section we show that the necessary and sufficient
condition for a Prifer domzin to be a Prufer GED is that its
non zero ideals have primary decompositions.

For the sake of reference we quote the definition and
some properties of #-rings from [10].

Definition . Aring R is a y-ring if each ideal of R may
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be uniquely represented as an intersection of finitely many
primary ideals.

A W=ring R is called a W*~ring if each ideal of R con-
tains a power of its radical.

Theorem A{ [10] Th., 1). A ring is a W-ring iff it is a
finite direct sum of primeary rings and one dimensional integ-
ral domaing in which every non zero ideal is contained in
only finitely many mazimel ideals.

Theorem B ([10] Th.2). A W-ring is a W¥-ring iff each non
zero ideal cof R contains a prcduct of non zero prime ideals.

Theorem C ([10] Th. 4), If a W#-domain is strongly( -
completely) integrally closed then it is a Dedekind domain.

First we take up the behaviour of minimal prime ideals
in GU¥FD's, We note that in the case of UFD's it is well known
that an integral domajin R is a UFD iff every non zero prime
ideal of R contains a principal(non zero) prime, and that an
analogue of thig resuylt appears in this chapter as Prop. 7.
And to clarify the structure of minimal prime ideals of GULD's
still further we prove the

Theorem 16. If P is a minimal prime ideal in a GUFD R, then
P is either principal or idempotent.

Proof. Let P be a minimal prime ideal in a GUFD & then by

(2) of Proposition 5, P = Qq for a prime quantum gq.
| Suppose that P° £ P and let x e P - P2, Since P = U
(x5q) # 1 , obviously q;= (x,q) is contained in P and no
other minimal prime ideal. We claim that q is an atom.For
supposing on the contrary that q,= q,q;, where ggzj,;qzare both
non units. Since g,¢ P and is in no other minimal prime ideal
every non unit factor of g, 1s in P. This implies that

: 2 . ’ s
d5s93€ P and sO Q4= ({gQz€P 1.€¢ X = X4Q4€ PZ, a contradiction
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and hence @ is an atom.

Now since a GUFD is an HCF domain and it is well known
that an atom in an HC¥ domain is a prime(cf.e.g. [5]),q R is
a prime ideal contained in P,that is g &k = P ((2) of Prop. 5)

To study anothef feature of GUFD's, let q be a prime
quantum and let abeqRk , that is g|ab. By Definition 3,.
qQ = g ¢, such that qila and g, |b, that is a = a,q,,b =D, g
say. Obviously if bégr, g, is a non unit and so there is a
positive integer m(say) such that q]qf i.€. q a?q?: am, that
is if DbEgRr, ameqR. In other words gR is primary. Further we
note that

JaR = § x| (x,0) £#1 1} = U which in a GUFD, is
the minimal prime ideal assogciated to q.

Now let x be a non zero mon unit in a GUFD R then

X = Q3Qzese0n» Where q; are distinct prime gquanta
can be written as xR = ¥z fuR = @R 0 R N .o NGni
and a consideration of/ﬁfﬁ shows that xK has a unique primary
deéomposition. And so w¢ have proved the

Theorem 17. In a GUFD, every non gzero principal ideal has

a primary decomposition xk = P;N PyN ... NP, where each Fy
is primary to a minimal non zero prime ideal and is principal.

It may be pointed out that the above theorem is closely
related to Prop. 15. In connection to these and specially as
a corollary to Prop. 15, we state

Corollary 7. If in an HCF domain R every principal ideal
is primary then R is a rank one valuation ring.

Proof, Let x,y be any twd ncn zer: non units of R, Accord-
ing to the hypothesis, xR,yR and xyR are primary. Obviously
since ¥ and y are non units, x,y ¢ xyx and conscquently

there €xist m and n such that xm,yn € Xy lece Xy xm,yn. Now
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h-1 L€+ EVEDY NON ZEro .

xy|x®,y™ implies that x|y and y 214
non unit of R is a quantum and hence a prime gquantum because
of the HCF property and hence R is a rank one-valuation domain.

To proceed further we need. some more definiticons,

An integral domain R in which every finitely generated

ideal is principal(invertible) is called a Bezout(Prifer)

domain. It is well known that a Prdfer domain which is also

an HCI domain is a Bezout domain and equally well known is

the fact that an integral domain R is Prifer iff RP is a
valuation domain for each prime ideal P (cf e.g. [5]). A gene-
ralized Kpull domain which is also Prufer(Bezout) will be

called = Prﬁfer(Bezout) GED

As no conveplent and to the point reference is available
we include
Lemma 18. A GiD R is a Priifer G¥D iff every non zero prime
ideal of R is maximal.
Proof. Let R be a Prifer GKD and let P be a non zero prime
ideal in R, then R, is a GKD (L9] p. 513). But the Prifer

condition implies that R, is a valuation domazin. If P is not

P
minimal then RP is a valuation domain of rank greatér than 1,
which implies that there exist non units in RP which are con-
tained in no minimal prime ideals, a contradiction to the
fact that KP is a GED and hence implying that every non zero
prime ideal of K is minimal. The converse is obvious.

Now a GU:D is an HCF-G.D and so for a QUKD to be Bezout
all we need to state is |

Corollary 8. A GUFD R is a Begzout GUID(3ezout GuD) iff

every non zero prime ideal of =z is maximal.

Gilmer ahd Ohm in [18] prove that a UFD is a PID iff

it has the Q.prroperty, where an integral domain R is said
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to have the ¢,R~property if every over-ring(ring between R
and its quotient field K) is a quotient ring., In a similar
way it can be proved that a GUFD is & Bezout GKD 1ff it has
the Q,R-property, but a more general result is in order and
we state |

Proposition 19. A Schreier domain & is a Bezout domain iff
it has the Q.R-property.

Proof. If R has the Q.R property, it is a Prifer domain(
[9] p. 319) and R being Schreicr also is Bezcut(cf _[5]). Con-
versecly it is well known that a Bezout ring has the Q.R pro-
perty (cf e.g.[5]).

It is cbvious that a Bezout GKD(Prifer GiD) is a N- do-
main and so every non zero ideal of a Prufer GKD has a unique
primary decomposition., The above staied fact makes a Prﬁfer(
Bezout)GiD very similar to a Dedekind(Principal ideal) domain.
In fact the only point of difference is that Prufer(Bezout)
GiD's admit idempotent ideals while Dedekind domains(PID's)
do not., To establish this fact we prove

Proposition 20, A Prufer ¢&D R is a Dedekind domain iff
gach non zero prime ideal of R is non idempotent.

Proof. If R is a Dedekind domain the result is obvioucs.
Conversely let R be a Prufer GKD such that every non zero
prime ideal of k is non idempotent. Then if P is & non zero
prime ideal of R every P-primary ideal contzins a power of
P(cf [28]) and so every non zero idsal of R contains a
product of a finite number of maximal ideals,that is & is a
W#*- domain (cf Th. B) but since & is & G£U and hence complete-
ly integrally closed it is a Dedekind domain by Theorem C.

A Bezout GuD being a GUFD, we can stote as a corcllary

to Theoren 16 the
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Proposition 21. In a Bezout GKD a prime ideal is either
principal or idempotent.

finally to study the primary decomposition in Prufer
domains we proceed as follows.

Let R be an integral domain, an ideal P is said to be an
S-ideal in k if (1) P is prime (2) the set of P-primary ideals
is linearly ordered (3) the intersection of all the P-primary
ideals is a prime ideal M (4) M contains each prime idsal
properly contained in ?. An intcgral domain R is said to be
an S-domain if every prime ideal of R is an S-ideal (cf [13]
pp. 249-250 ).

According to Cor., 2.5 of [13],( C = proper céntainmunt)
" If D is an S-domain and @ ,7 are primary ideals for B, ,P,
respectively, where Pr ¢ Pz, then @ € Qe A (s)

Iﬁ is easy to establish that a Priifer domain is an
S-domain and that(S) can be proved for a Prifer domain. But
for the convenience of reference we adopt (S) for Prifer
domzins and use it to prove

Theorem 22. If a non zero ideal A in a Prlifer domain R has
a reduced primary decomposition

A=P 0PN o0 N By ——mmmmmmmmmm e (a)

then (a) is unique,

Proof. Iet rad B, =% (i=1,25e..,n), we claim that if
(a) is reduced then -

(1) @& are incomparable under inclusion (i = 1,...,1)

(2) no two B ,7; 1 # J are contained in the same prime .
ideal 9.

First let . € Qj for some i # Jj, then if QO = Q;;
PL € P; or Pj C 1 because each of the ¢, is an S~ideal and
this contradicts the assumption that (a) is reduced. IFurther

if Q & @ then by (S) above P, € P;which again contradicts
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the assumption that (a) is reduced and hence establishes (1)
for (2) let P, ,P; ¢ § a prime ideal then Rad P, Rad Pj C Q.
But since R is a Prufer domain RQ is a valuation domain and
so Rad P, ¢ kad P; or Rad P; ¢ Rad ¥, this contradicts (1)
and hence establishes (2). Now let

A=P/ NPIN eee NP  —emmmmmmemmm e (b)

be another primary decomposition of A and since every primary
decomposition can be reduced, suppose that (b) is reduced and
let Rad P} =4} (j=1,2,...m)
We note that the above claim holds for (b) as well and that

(Py NPy N wee NPy)R, = (P N PIN .o NPHR. 4(i=1540.n)
t A% 9

can be written as

P'L} n LRI n P“‘]‘L‘{f\ —————————— (C)

1 K, )
U i

(ef (9] p 34 )

In view of the above claim there exists only one primary

ideal P, C @i in the decomposition (&) and so (c) can Dbe

Rl a n .
written as 8 p i S PR N PLA. N ... N BER. ——————(d)
K=1 e A 3 ol

Now on the right hand side of (d), no two of P are in
Qy and since the left nand side is a proper ideal of Rw_there
YL
muet at least one of P] be contained in Q. and thus

P R, = PR

i, &
Prufer domain (cf [28])

s but since Py is Qi -primary and R is a

» ») : > t e e e e e e e e e e v s e e

P = PLhQLﬂ R = PJRQLH R (e)

we have P} c Py e (f)
Similerly considering

(?{ N Pé N .. N Pé)Rjg :(P1 | Pg N eee N PH)RQi
) N

where Qj = Rad P}, we find that there exists some primary

ideal Px in the decomposition (a) such that
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Combining (£) and (g)s P ¢ P} ¢ P and recalling that
(a) is reduced P= Py = P; . Hence m = n and the primary
decomposition 1s unique.
And &ll that interests us at present may e stated as

Corollary 9. A Prifer(Bezout) domain R is a Prifer(3ezout)
G£LD iff every ideal ¢ R has a primary decomposition.

Proof. Ier is a Prufer domain and every ideal of R has a
primary decomposition then these decompositions being unique
by the above theorem show that X is a W-domain and a #-dcmain
which is Prufer is a Prifer GiD.

Conversely in a Prufer 3&KD every non zero prime ideal is
maximal and every ideal is contained in a finite number cif
maximql ideals, and this is a condition for a domain to be a

W-domain.
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CHAPTER 2
SEMIRIGID DOMAINS
0. Introduction.
In the theory of Unique Factorization the concept of a

prime element is basic. Similarly it is clear that a

discrete rank one valuation domain is the simplest UFD ( in
the sense that it has only one prime and its associates). In
the previous chapter we replaced the concept of prime ele-

nent by a nore gencral concept ;prime quantum which resulted

in the replacement of a discrete rank one valuation domain
by a rank one valuation domain as the simplest GUED(every
non zero non unit in a rank one valuation domain is a prime
quantum similar to any other). But the generalization of
Unique Factorization in the above mentioned fashion gives
rise to the following

Question . Is it possible to work out a theory of Unique
Factorization in which a general valuation domain replaces =a
rank one valuation domain ?

We note that in a genersl valuation domain R; no non
zero non unit x can be expressed as a product of two co-
prime non units. Moreover for all v,u|x in R, u|v or v|u. In
other words the lattice L(xi,R) is a chain for each ncn zero
element x in a valuation domain R. According to [6] p. 129
an element x in an integral domain R is called prigid if

L(xR,r) 1s a chain, and an integral domain R with all non

zero elements rigid is called a rigid domain (cf [6] o 129).
It can be easily seen that a commutative valuation domain is
a rigid domain.

An obvious programme is, that we should consider an

integral domuin in which every non zero non unit element is
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expressible as the product of a finite number of mutually
co-prime rigid non units. For a clearer picture of factori-
zation into rigid non units we consider the following

isxample 1. Let V be a valuation domain, X an indeterminate
over V and let R = V[x].
Pick a general non zero non unit element

n
y=2 VX ;5 vipe V.

Since V is an HCF domain, we can calculate the HCF, 4 of
: o1 '
VosViseeesVpand so y = d( 3 v/x ); where { v} have no non
o]

unit common factor( in fact one of them is a unit).

In the factorization of y' = Vle , every non unit

o M3

element has positive degree in x and hence % v{xi is a pro-
duct of atoms. Moreover since, V is an HCF domain and so is
Vix], every atom in V[x] is a prime (cf [5]) and thus
% vzl = pfipgz...pfs; (ppsp;) =1 for i # j . That is
y = dp?ipgz...pfs ; (depy) =1 (1 =1,2,...58)
(pysp;) =1 for i # j ————=(4)
Obviously each prime power is a rigid non unit and d
being a member of V is rigid and so if y is non unit, it is
the product of a finite number of mutually‘co—prime rigid
non units. It is also obvious that the factorization in the
expression (A) is unique up to associates of the rigid non
units. And since,y is arbitrary we conclude that every non
zero non unit element in R = V[x] is uniquely expressible as
the product of a finite number of mutually co-prime rigid
elements.
Here we note that while an atom is rigid, a quantum

according to its definition, need not be . For example,

in a one dimensionsl quasi-local domain every non zerc non

unit element is a quantum but a one dimensional quasi-local
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domain need not be a valuation domain and to show that there
does exist at least one, one dimensional quasi-local domain
which is not a valuation domain we take up the following

mxample 2.(cf [5] p. 262). Let G be the additive semigroup
of all rationals > O and reals > 1, form the semigroup
algebra F[G] and let F(G) be the ring obtained by adjoining
inverses of all elements with non zero constant term. Ve can
write
o
F(@) = § 2uxt \ o, > O if ratiopal and o > 1 if real
and u, are units }
No two elements of ¥(3) are co-prime and it can be veri-
fied that one divides a power of the other and that F(G) is
a one dimensional quasi-local domain, because if (a),(B)e G
where B >a then there exists a positive integer n such that
no >B +1 (a,8 being real numbers). But F(G) is not a

1+y’ where. yis an irrational

valuation domain, since fay X
number less than 1/2.

Purther it can be verified that a prime gquantum is a
rigid non unit while a rigid non unit may not be a prime
quantum, for example every non zero non unit in a rank two
valuation domain R is rigid, while if P is the maximal ideal
of R and Q is the minimsl non zero prime ideal then every
integral power of x € P -Q will divide every element of Q,
that is elements of § do not satisfy the condition of being
a quantum and hence are not prime quanta.

In the case of prime quanta it was easy to develop a
theory of factorization on classical lines, as we did in the
previous chapter, but in the case of rigid elements it locks

not only difficult but also unnecessary to go through all

those details. So we shall consider the properties of rigid
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non units in HCF domains and will investigate the structure
of those HCF domains in which every non zero non unit ele-
ment is expressible as the product of a finite number of
mutually co-prime rigid non units and these domains we shall

call Semirigid Domains.

This chapter consists of only two sections. In the
first section we formally define a rigid element and discuss
its properties in an HCF domain, while in the second section

we introduce the concept of a semirigid element - the pro-

duct of a finite number of mutually co-prime rigid ndén units
and prove that if in an HCF domain an element can be
exoressed as tne product of a finite number of mutually co-
prime rigid non units then this factorization is unique up
to associates of the rigid non units and up to order. And

from this we derive the definition of a Semirigid Dcmain.

Moreover in the same section we give, what may be called the

local characterization of a Semirigid Domain, in the form of

Theorem 2, which eventually induces the definition of an-

other generalization of Xrull domains.

1. Preliminary Definitions and Basic Results.

Definition 1. A non zero element r in a commutative integ-
ral domain k is said to be rigid if for every u,v]r 5 u]v
or v|u.

rrom the definition it follows immediately that every

factor of a rigid non unit is also rigid . We proceed to
investigate the properties of rigid non units in an HC¥ do-
main and prove the

Lemma 1. In an HCi domain R the following are Valid.

(1) Let r,s be any two non co-prime rigid non units of R,

then r|s or s|r.
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(2) Let r,s be any two non co-prime rigid non units of R
their product rs is again a rigid non unit ( obviously non
co-prime to both r and s).

(3) To each rigid non unit r ¢ R, there is associated a
prime ideal P(r) = { x € R | X is non co-prime to r }.

(4) Let r,s be two rigid non units in R then P(r) = P(s)
iff r,s are non co-prime .

(5) If r is a rigid non unit in R and P(r) is the prime
ideal associated to r then the localization RP(P)-is a valua-
tion domain.

Pfoof. Let (rys) =d ( #1); r =r,d , s = s 4 where
(rifsQ = 1. If either of r,,5,1s a unit, (1) holds and we
have nothing to prove. So we suppose on the contrary that

r, 8, are both non units . By the definition of a rigid ele-

ment ry |d or d|r; - ~-mmme—m———m e -(a)
and s, |d or d|s; =——mmm—m—mmm—m—— e (b)
Now if r, |d and d|s, ; r,|s; a contradiction —----- (1)

and if r,and s, divide d which being a factor of a rigid
element is it self rigid and hence r, |s, or silr1
a contradiction ————=—-——eeme—o (ii).
Further if d]r1 and s, |d then s, |r, a ccntradiction ---(iii).
Pinally if d|r, and d |s, then again (ry,s,) # 1
a contradiction ————~—-———————- (iv).
To sum up we get contradiction as a result in all the
four cases which arise from the assumption that rXs and s*r
and this confirms the truth of (1).
(2) Let z = rs, where r,s are non co-prime rigid elcncnts.
Let x,¥y be any palr of factors of z and suppose that xyy and
y*x ( in other words we suppose that z is not a rigid e=le-

ment). Now let (x,y) = d, where X = x;d, y = y1d and
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(x05¥1) = 1 and obviously x,,y, are both non units . We note

that xi|x and x|z = rs, therefore xilrs , and by the HCF pro-

perty of R,
X = x'x" where x' lr' and x”ls ————————————————————— (C)
Similarly y= y'y" , where y'|r and y'|s =-=—-=m—-m—==v (a)

Further y'|y,,x'|x, and (x,,y,) = 1 implies that (x',y') = 1.
But since r is a rigid element x']y' or y'|x' which is
possible only if one of x',y' is a unit ——-—-—————;———(e) .
Similarly we conclude that either of x',y" is a unit—é(f).

Let x' be a unit , then since x, is a non unit and
x = x'x" , x" is a non unit and is an associate of x, but
then y" is a unit (by (f)). Again since y, is a non unit y'
is a unit and so we conclude that

y'|r where y' is an associate of y, and

x'"|s where x" is an associate of x,.
I.e. there exist two co-prime elements x,,y,such that y, |©
and Xils. But since r and s are non co-prime rigid elements
r|s or s[r by (1) above. And in both cases x, and y, become
factors of a rigid non unit (e.g. x,,y, are factors of s if
r|s because y, |r and r|s i.e. y,|s while x,|s is assumed)but
this being in contradiction with (x,,y,) = 1 implies that
the aséumption ny and y*x is wrong and z is a rigid non unit.

(3) Let P(r) = | xex  (x,7) £ 1§.

Because of (1) above, if x and y are non co-prime to r
and if (x,r) = 4, (y,r) = & then, being factors of a rigid
non unit d|d, or d,|d . Consequently if d,|d then d,|X,y and
80 dilx+y, similarly if d|d, , d|x+y. In other words if
%,y € P(r) then x+y ¢ P(r). iMoreover if x ¢ P(r) then
ax € P(r) fcr all a € R, that is P(r) is an ideal. Finally

because of the HC¥ property (xy,r) £ 1 iff (x,r) # 1 or
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(#:%) #1 i.e. if xy e P(r) then x ¢P(r) or y ¢ P(r) and
this establishes (3).
(4) If P(r) = P(s) then since r ¢ P(r) , (r,s) £ 1.
Conversely let (f,s) Z1 thenby (1), r|s or s|r . If
r|s then (x,r) # 1 implies that (x,8) # 1, that is
P(r) ¢ P(s). If on the other hand (x,s) #Z 1 then by the HCE
property x = x,8, and s = 8,8, , where (xy,8;) = 1. Bince
sils, s, is a rigid element which is non co-prime to r(since
we have assumed that r|s) that is (x,s) # 1 implies that
(x,r) #1 i.e. P(s) ¢ P(r) and combining the two inclusion
relations the result follows.
(5) Since R is an HCF domain, RP(r) is an HCF domain (cf
Lemma 9, Ch. 1). To prove that a quasi-local HCF domain (
RP(r) in this case) is a valuation domain, all we have to

show is that no two non units of this domain ( R )) are

P(r
co-prime. Suppose on the contrary that there exist x,y in
P(r)RP<r), such that (x,y) = 1 and let

X =U/vy 3 ¥ =u/ve ( we can assume that (w ,vi)=1).

Now since vy,vz are units in RP(r) we get (ug,us) = 1

in RP(P)’ that is (u, ,up) & P(r)RP(r). But since we assumed

that x,y are non units in R w ,uz € P(r) and so

P(r)’
(u ,r) = r, (i = 1,2.) are such that r, # 1 that is

d = (u,sup ) is a multiple of rjor of rz in R (since ri are
factors of a rigid element r ) and thus (u1,U2) =d e P(r)
i.e. uy,us are non co-prime in‘Rp(r>‘a contradiction estab-
lishing that no two‘non units in RP(P) are co-prime which

implies the result.

2. Semirigid Domains.

Using Lemma 1, we first prove the
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Theorem 1. Let R be an HCPF domain and suppose that an
element X € R, can be expressed as the product of a finite
number of mutually co-prime rigid non units then this
factorization is unique up to associates of the rigid non
units and up to their 5rder.
Proof. ILet R be an HCK domain and let x € R be such that
X =T The.aly ; 1y rigid , (v ,r;) =1 for i # J.
FPurther suppose that
X = 8, 8...8, ; § rigid(non unit) (s;,s;) =1, for i £ j.
Since s, {X, by the HCF property
§;= 8;48,5++48,, ; Where s, |1 wﬁshmeiri?m
are co-prime, at most one of s,; say s;, is a non unit an;1=1
80 8 | for some K ( = 1525400550 )
/Reversing the process we take n<[x and so
Ty = TPgyTyp-seTip Where ry sy (1 =1,250..50) ¢
By the above argument there exists an s; such that q<{sj and
obviously s; is an associate of s,, for if not so (s, ,s; )=1
while s, |, and r,|s; that is s, |s; a contradiction estab-
lishing the fact that si is an assoclate of r, .
Repeating the above process for s,,55;5...55, we get
m = n eand each s; associate of some r;. In other words the
factorization x = r,ry...r, is unigue up to associates of r;
and up to a suiteble permutation of the rigid non units.

e can call the non unit of Theorem 1, a Semirigid ele-

ment and based on this notion we make the following
Definition 2. An HCPF domain in which every non zero non

unit is semirigid will be called a Semirigid Domain.

We note that in an HC# domain a rigid non unit generalizoes
a prime quantum ( since a prime gquantum satisfies the pro-

perties of a rigid ncn unit) and it is easy to see that a
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Semirigid Domain is a genefalization cf a GUFD. And to dis-
play another feature of Semirigid Domains we prove the
following

Theorem 2.Let R be a Semirigid Domain, then there exists
a family ¢ = | Eci (0 € I an index set) of prime ideals
of R such that

(1) Rp, 1s a valuation domain for each « € I

(2) each non zero non unit x € R is contained in only a
finite number of members of &

(3) Paiﬂ Pazdoes not contain a non zero prime ideal if
oy Foags g€ I

(L) R =n Rﬁx s o € I.

Proof . By part(3) of Lemma 1, in an HCF domain R, corres-
ponding to each rigid non unit r, there exists a prime ideal
P(r) = { xe R| (x,r) #1 } associated to r, and by (4) of
Lemma 1, P(r) = P(s) iff s is a rigid ncn unit nin co-prime
to r. o areimad
Now let T be a¥set of mutually co-prime rigid non units
Ty of the given Semirigid domain R, where a € I an index sct.
According to the above observation we have a family of prinme
ideals @ ={ P(r)( =P, ) | r, el ;acl }, and by part

(5) of Lemma 1, Rp = RP(r
o a

o € I, that is (1) holds for the selected family & .

) is a valuation domain for each

Since R is a Semirigid Domain, each non zero non unit
being a product of a finite number of mutually co-prime rigid
non units is a member of at mcst a finite number of elements
of & , that is (2) also holds for § .

Now let @ be a non zero prime ideal contained in the

'l = 3 = { P
intersection P, N P&g = P(rai) n P(raz) s ( oy # POCz ) and

1
let x € Q. Then since x is semirigid



L6

X = X3 X3.0.Xg, Where x; are mutually co-prime rigid non
units. Since x € P(ra*); one of the x (i = 1,2,...8) say x,

is non co-prime to Ty o+ Also since x € P(raz) one of the x

1

(i=2,3,...,8) say x,is non co~-prime to r so that
2

X = X, X8 ; where a ¢ P(rat) i = 1,2 (because (a,x, )=1

which is equivalent to saying that (a,ra_) =1).
L

Since we assume that Q is prime and since a ¢ P(r-OC )
L

a g 4, and s0 xy%8 = X € Q implies that x,x, € 3, that is
X, € Q or X, € Q . In other words x;, € P(rai) n P(raz) or
X, € P(rai)/} P(Paz) that is x, or x, is a rigid non unit
non co-prime to two co-prime rigid non units ( since oy # og)
a contradiction that confirms that (3) holds for ¢ .

To prove (4) for & let R' =N R, , a e I,

Fa

and suppose that x = u/v € R', then since R is an HCF domain

we can assume that (u,v) = 1, but this implies that v is a

unit in each RP s
o

of rigid non units and we are furced to conclude that v-is a

that is v cannot be expressed as a product

unit and x ¢ R which confirms that

R=0NR ;0 e 1.

T by
The above theorem M«W@y%; is a local characterization.

of Semirigid Domains, and gives us another generalization of
£Lrull domains. Being short of a suitable name for these
intégral domains, we call them #*GixD's.

Definition 3. An integral domain R will be called a #GED
if there exists a family ¢ = { P, §, ., ; ©of prime ideals of
R such that

#1- every non zero non unit element of R is contained in

only a finite number of members of ¢ .

# 2- for each P, ;& ¢ I, RP is a valuation domain
o]
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#3- for each pai ¢ . i
3 pair P&,Pb e ¢p N Pﬁ contains a non zero
prime ideal iff %x = 36 .
%~ R = N RP .
ael o
It is not very difficult to prove that an HCF- *GKD is
a Semirigid Domain, but since there does exist yet another

generalization of Krull domains, namely Rings of Krull Type(

cf [21]), which also generalizes a *GihD, we postpone the
proof till we are able to consider the factorization of an
arbitrary non zero non unit iﬁ.an HCE Ring of Xrull Type.
Briefly a ring of Krull type is an integral domain with a

family ¢ = { P, | of prime ideals, for which *1,%2 and #4

&el
hold. But since the rings of Xrull type are not much known
we need to give an introduction to the theory of rings cof
Krull type, while it seems difficult to inject it into the
discussion of Semirigid Domains, and so we close this chap-
ter with the remark that *3 of Definition 3, holds automatic-
‘ally in the case of Xrull domains and of Generalized Krull
domains, because of the fact that the families of prime :
ideals in these cases consist only of minimal primes and in

this sense a *GKD is one of the nearest generalizations of

Krull domains.
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CHAPTER 3
UNIQUZ REPRESENTATION DOMAINS
O. Introduction.

Ne concluded our previous chapter with the local
characterization of Semirigid Domains (ef Th. 2 Ch. 2) which
shows that a Semirigid Domain is a generalization of a Krull
domain ( is a *GKD). The fact that the two generalizations
of UFD's we have worked ouﬁ are also generalizations of Krull
domains lcads us to think that if there exists yet another
generalization R of XKrull domaing, which is also an HCF
domain, then it 1s possible that the factorization of non
zero non units cf R should exhibit some interesting pattern .
But we have to be selective in choosing a particular gene-
ralization of Krull domains for an examination ; because
arbitrary generalizations of XPull domains can range over an
uncontrolably large family of integral domains, which may
be irrelevant too} ¥or example an integrally closed domain
generalizes a Krull domain in the sense that a Krull domain
is integrally closed, but choosing an HCF integrally closed
domain is agbsurd, because an HCF domain is already integrally

closed (cf |23] p.33. ). We did mention at the end of the

%

last chapter that a ring of XKrull type satisfies #*1,%#2 and *4
of Def. 3 , in view of this,a ring of XKrull type seems to be
very near to the generslizations of Krull domains we could
achieve through a generalization of the concept of Unique
Factorization.

Thus it looks worth while to consider the factorization
of a non zero non unit in an HCF ring of Krull type and to

set up a more general theory if some pattern shows up. And

our first step towards this end should be to give an



L9
introduction to the theory of the rings of Krull type because
these rings are not very widely known. Section 41, of this
chapter includes an introduction to the theory of rings of
Krull type. Briefly for the sake of completeness of the
present section we note that

(1) if R is an integral domain, K its field of fractions
and S an integral domain such that R c Sc K then S is
called an ogverring of R,

(2) 1if R is an integral domain and S a valuation overring

of R then S is called an essential valuation overring of R

ir S = RP for some prime ideal P in R,
(3) an integral domain R is called gssential if it can be
expressed as an intersection of essential valuation domains
(4) an essential integral domain R = N Rp 5 o eI
is a ring of Krull type, if for each non zegg non unit x in
Ry x is a non unit in oﬁly a finite number of RP sa € I
If P is a prime ideal such that R, is a va%uation

P
domain, we shall call P, a valued prime, and every prime

ideal Q such that O # @ ¢ P, will be called a subvalued prime
in P. In section 2, we show that if P is a valued prime and
0 # x ¢ P then there exists a unique minimal subvalued prime

which is minimal with respect to containing x such that

X € Q ¢ P, and this we shall call the minimal subvalued prime
of X in P. In the same section we show that if an element p
in an HCF ring of Krull iype has only one 2inimal subv.lued
prine W;t;tg;ﬂ.f all the valued primes containing x then
P is such thét if p = pypo;3;py non units then (p1,p2) Z 1 and
there exists a positive integer n such that p1|92 or lePS.
Suéh an element will be called a packet. Finally we shall

prove in the same section that a non zero non unit in.an HCF
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ring of Krull type is expressible as the product of a finite
number of mutually co-prime packets.

In section 3, we show with the help of a counter example
that an HCF domain in which every non zero non unit can be
expressed as the product of a finite number of mutually co-
prime packets may not be a ring of Krull type. We shall call
the above mentioned integral domains, Unigque Representation

Domains (URD's). After the counter example we proceed to

investigate the conditions under which an HCP domain should
become a URD. This gives rise to the concept of

*-ecssential domains which can be explained as follows.

Let R be an essential domain and let | Pa &e I be - the

family of valued primes of R such that R = f]RP ; ae I,
o

and that no two members of { P } are comparable w.r,t.
ae 1l

inclusion, then R is a #*-essential domain if every non zero
non unit of R has a finite number of minimal subvalued primes
which are contained in the members of { P, {. Pinally we
shall prove that a * -—-essential domain is a URD iff it is an
HCF domain.

vIn section 4, we consider the stability properties of
URD's under the operations of adjoining indeterminates and
localization. We shall also prove that an integral domain R
is a URD iff R + xK[x] is a URD, where K is the field <f
fractions of R and X is an’indeterminate over R. At the end
of section L4, we establish that the concepts of GUFD, Semi—
rigid Domain , HCF ring of xKrull type énd URD signify dis-
tinct classes of integral domains, out of a pair of which,
one generélizes the other.

Our procedure of going from one generalization to a fur-

ther generalization may look repetitive espacially the
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distinct treatment of HCPF rings of Krull type and of URD's.

But we have adopted this approach because it is easier
going from HCF rings of Krull type to URD's in the sense
that we get the concept of a packet using the strict defi-
nition of the rings of Krull type, which it would have been

difficult to visualize in the general case.

1. Rings of Xrull Type.
Griffin in [21] introduced the notion of a ring of Krull
type as a special case of the rings of finite character. The
basic notion in the theory of rings of finite character is

that of a valuation v_over a field K. And for the sake of

completeness we include the
Definition 1. Let G be a totally ordered group under
addition and let G* = G U | « } be the group including the
symbol « with the properties
E+0 = + =0 +xw=«x ; gE€G
then the function v:K —> G* such that
(1) v(a) =« iff a =0
(2) v(zy) = v(x) + v(¥)
(3) v(x +y) > min( v(x),v(y) )
is called a valuation of K (or over K).
If v is a valuation ¢f o field K, then the set
Ry = { xe K| v{x) 201} is a valuation domain and is

called the valuation ring of V.

Let 1 be a family of valuations of a field K and let
R="N Rv ; v € 2 then kK is called the ring determined by
the family £ . Moreover the family 1 of valuations of X is

said to be of finite character if for each o#xeéK the set

{ we 2 | w(x) #0f is finite.
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Definition 2. Let fI be a family of valuations of a field

K and let O be of finite character then the ring determined

by (1 is called a ring of finite character.

Now let R be a ring determined by a family O of valu-
atiocns, let Rv be a valuation ring of v € 0 , and let Mv be

the maximal ideal of R ,then the prime ideal R N M, = Z(v)

is called the centre of v on R. If the localization RZ(V) is

equal to RV we call v an gssential valuation. And according
to Griffin, a ring R of finite character is called a ring of
Krull type if it has a defining family of valuations consis-
ting of essential valuations only.
€quivalently we can define a ring of Krull type as

follows

Definition 3. An integral domain R is said to be a ring of
Krull type if, there exists a family of prime ideals

t P, }ae 1 such that |
(1) R, 1is a valuation domain for each & € I
(2) evzry non zero non unit element of R is contained in

only a finite number of members of { P, } e 1

(3) k=nNnR
PO(

We shall adopt Definition 3, as the standard definition

Ho

of a ring of Krull type. The family |} P, jae [ can be
assumed to be such that Pa,Pﬁare incomparable w.r.t.
inclusion for each a#Zf € I. Because if P.C Pﬁ; RPﬁD RPa and

so R, 1" R, =R i.e. Pﬁ can be dropped from the family.

Pa Pﬁ Py

Moreover if there exists a chain of prime ideals | Py’} = C

in {Paf i.e.PyC Py OF Py C nyor sach pair P ,Ps € C then

Y
since the unions and intersections of all the elements of C
exist we can rcplace the elements of Cby P=U.Q,. 3 ¢ C.

In other words we can assume that { P, { consists of the
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largest possible prime ideals for which, RP is a valuation
o

domain for each a € I. Thus by the family of valued primes

defining a ring R of Krull type we shall in future mean the

familyigx } consisting of the largest valued primes of R. ie
recall that

Definition 4. An integral domain R is called a Krull
domain if

(1) every non zero non unit element of R is contained in
only a finite number of minimal prime ideals of R

(2) R, 1s a discrete rank one valuation ring for each
minimal (ncn zero ) prime ideal P of R

(3) R =n RP where P ranges over all the minimal prime
ideals of R.

Comparing the Definitions 3 and h,;we infer that a Xrull
domain is a ring of Krull type with the difference that the
defining family of prime ideals of a Krull domain consists
only of minimal non zero prime ideals, and of course that

R, is a discrete for each P in the defining family. Similar-

P
ly recalling Def. 3 of Chapter 2, we infer that a *GXD is
also a ring of Krull type. Thus if £ denotes ," Form a
special case of " then
Krull domains & GKD's < #*GKD's < Rings of Krull type.
The examples given or mentioned at the end of section 4 of
this chapter ensure that the above is a chain of distinct
classes of integral domains.

There may be many further .geheralizations of a ring of
Krull type but we shall restrict our attention to essential

domains and their special case to which we have given the

name ¥-~gssential domains.
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2. Factorization in an HCF ring of Krull type.

In this section we first take up a non zero non unit
element in an HCF ring of Krull type and prove a sequence of
lemmas to establish the notions in terms of which we can .
describe its factorization. In brief we shall first derive
the notion of a packet as we mentioned before and then prove
that in an HCF ring of Krull type a non zero non unit is ex-
pressible as the product of a finite number of mutually co-
prime packets.

Let R be a ring of Krull type and let &= | P } be

o’oe I
the family of valued primes defining R. We start by showing
that if O # x € P ( € & ) then there exists a unique prime
ideal @, minimal subject’to the property x € Q c P.
To achieve the above mentioned result we proceed a bit
more generaily as follows.
Let P be a prime ideal in an integral domain R and
denote the set | Q ] Q is a prime ideal contained in P ! by
¢ (P). we note that if P is a valued prime then & (P) is
totally ordered under inclusion and keeping in view the fact
that every prime ideal contains a minimal (rank zero) prime
ideal we state the
Lemma 1. Let P be a prime ideal in an integral domain R
such that ¢ (P) is totally ordered under inclusion, then for
each non zero x € P, there exists a unique prime ideal Q in
P which is minimal subject to the property x € Q ¢ P.
Proof. P/xR is a prime ideal in R/xR and so contains a
minimal prime ideal Q' = Q/xR for some @ ¢ P, but since
é CP) is totally ordered, Q is unique and hence the lemnma.

And as a result of the above lemma we can state that,
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"If x is a non zero non unit in a ring of Krull type R, then
each valued prime P of R with x € P; contains a unique mini-
mal subvalued prime satisfying x e @ c P." We shall call Q,

the minimal subvalued prime of x in P.

Now let x be a non zero non unit in an HCF ring of Krull
type and let Py,Pz5...,P be the only valued primes containing
X. By the above lemma, each valued prime P, contains a unique
minimal subvaluéd prime @ containing x ( i = 1,2,.0.,0).
Here we note that unlike a ¥GKD, a ring of Krull type admits
valued primes Pa’Pﬁ €t P, ! ( the fanmily defining‘the ring
of Krull type) such that B, N Pﬁ contains non zero prime
ideals. And so the minimal subvalued primes Q, ( ¢ Py) of x
may not all be distinct. The case where Qc Q;; i # j does
not arise, because then Q becomes the minimal subvalued prime

of x in P, and P; both.

n
Striking repetitions out of { Q;, 11_1 and denoting the
- r
set of distinct minimal subvalued primes of x by f§ Q;j ;j=1

n
wWe can regroup {PL}i_1 after a suitable permutation of

n r "
=UI; where I ={ Pce { P hqui c Pkl
2=t =

We shall call the set I , the bunch of valued primes
of x containing q;j only( among all qj of course).

Now let y be such that y € qsbut y £ gz ( since q4,0q,
are distinct we can have such a y ), then since R is an HCF
domain and quis a valuation domain, (y,x) = d1 € Q1 — Q2 »
because y = y'dy ,» x = x'd, , (x',5') =1 ( since d,is the
HCF ) and because of the HCF property (x',y') =1 in qu that
is at least one of x',y' is not in g4 but since X,y € qa
d4 € g4, further since y ¢ gz and dlly y dif ge. Further let

Y1 € g1 - gs, then as before (y1,d1) = ds ¢ g1-qs( and also
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d, € g - Q).
Replacing 4, by d; = (y,,4 ), where V. € @4 - q,, and
repeating the process, we conclude that there exists a factor
d of x such that d e q and d ¢ q; ( j = 2,3,.4.,r)¢ In other

words, with a suitsble permutation of { gqj } 4 We have

J=
proved the

Lemma 2. Let x be a non zero non unit of an HCF ring R of

Krull type with the family | P, ! of valued primes

oe I

defining R, { P, ,Py4544.,P,) be the set of all the valued

r

primes containing x and let { q; j=1

be the set of all the

distinct minimal subvalued primes of X, then corresponding
to each g; there exists a p;|x such that p; ¢ q; and
pj £ o for all k £ J ( kyJ = 1;25400057)
| Lemma 2 leads to the notion of an element( in an HCF
ring of Krull type at present) with a single minimal sub-
valued prime and to study the properties of such elements
we state the

Lemma 3. Let d be a non zero non unit element in an HCFEF
ring of Krull type R. Let Py, Ps,..05,0 be the only valued

}ae I
suppose that d has only one minimal subvalued prime g then

primes( in the family { P ) of R containing 4 and

o

(1) If & = d,d, , then (d,,d;) = 1 only if either of 4
is a unit ( 1 = 1,2).

(2) If x £ q but the set of all the valued primes contain-
ing x is a subset of | P, ,Pas...,Pr} then x7|d for all posi-
tive integers n.

(3) If there exists another element d' such that d' has
q as the only minimal subvalued prime containing it, then a'
belongs to Py ,Pz,... P~ and to no other valued prime in the

defining family and there exists a positive integer n such
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that d|a'™ and a'|a”,
(4) If ¥ has q as one of its minimal subvalued primes and
d]x, then there exists a positive integer n such that dan.

Mor¢over X = X;Xz such that (x ,x, )

]

1 and x;, has q as its
only minimal subvalued prime.

(5) If d = 4,d,; d non units ( i = 1,2) then there exists
a positive integer n such that &, |d; or & |a .

Proof, (1) Suppose that (di,d;) = 1 and that both & are
non units. Obviously (d,;d;) = 1 in any localization of R
( since R is an HCF domain),

Since q is a prime ¢, dp= d ¢ q, implies that 4, € ¢ or
dz € g. We note that both of d cannot belong to q, because
if(dy, d&3) =1 in R, (4,,4d42) = 1 in Rq and since Rq is a
valuation domain( q is a subvalued prime ) at least one of
di is a unit in Rq, in other words at least one of §; is not
in q.

Let dz £ q then since dzld and since we have assumed
that d; is a non unit the set | Pg € { P, gae 1 | & « Pg }
is a subset of | Py ,PaseeesPr} ( FfOr if not S0 {Pyseee;Pp}
is not the set of all the valued primes containing d).

Select a member P; of {Pi,...,Pr} such that d,,d; € P;
but since (dy,dz) = 1 in R and(dy; ;dz) = 1 in Ry and thus de
does not belong to P i.e. if (d45d2) = 1 and d; ¢ q then
there exists no valued prime in the defining family of R
which should contain dz, a contradiction to the definition
of a ring of Krull type and hence dp is a unit. Similarly if
we had assumed d; ¢ q we would conclude that dy is a unit.
thus if (d4, dz) = 1 then either of d; is a unit( but of
course not both) .

(2) Let x and d be as in the hypothesis and let



58
(x,d) =h i.e. x = xh , d =dh where (x,,d4, ) = 1.
Since x £ q, h £ g ( = h|x), further since q is a prime and
d;h =deq; d € q. Now (%x,,4, ) = 1 and we claim that x
is a unit, for if not x, is a member of at least one of
Py sPysevs, P Suppose that x,¢ Ps s then since qgc P
X sdy € Pyo Further since R is an HCF domain and RPs is a

valuation domain X, sd, are non units in R_ and so

P
(x,54,) #1 in R, a contradiction implyingdthat X, is a
unit i.e. x]d and Obﬁiously the same prceedure = holds for
each integral power of x.
(3) Let d,d' be as in the hypothesis and let (d,d') = h
i,es d = dh , d' = d4/h such that (d4,d!) = 1. Obviously
h € q and this leaves us with two possibilities to consider
(a) &,4{ £ q
(b) one of 4,,d4) is in q.

In case (a) holds d,,d!|n by (2) above and so d are

and d’|d2. And in casc Cb) ‘holds ; ° if 4; is in q then
dld'. To show that there exists a positive integer r such
that d'ldr we first prove that there exists an m such that
dmkd'. Suppose on the contrary that a®|a' for each m, then

for all m, dmld' in Rq. But then Rq being a valuation domain

ob
0 =N a"r  is a prime ideal properly contained in
Mt

dRq (cf Theorem 17.1 (3) page 187 [11]) that is

d'Rq c Qg qRq i,e. Q' = § N R contains the minimal prime of
d', but since we assumed that g is the minimallprime of af
and this result contradicts our assumption we infer that
there exists a positive integer m such that dmfd'. Now if we

let (a®,a') = a" (n greater than m) such that a® = aa" ;

d' = ba",then (a,b) =1 and b £ q ( for if be q, a £ q :;;;

<
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and so by (2) a|b i.e. a"]d', a contradiction to the fact

that ded' for an m < n.) and so d'|d2n which is the required
result.

(4) Let x and 4 be as in the hypothesis. Using a method
similar to the one used in the procf of (3) above, we can
prove that there exists an n such that dn[x. Suppose that
a™fx and consider (d™,x) = h, that is a® = ah, x = bh and
(a,b) =1 i.e. at least one of a,b is not in q. If b e g
then a ¢ ¢ and so h e q (' ah € d). Now b has a factor con-
tained in q such that q is the only minimal subvalued prime
of this factor (cf Lemma 2) and thus by (2) above a"|b for
each m, and so d” = ah|bh = x ( = a|b and h|h) a contra-.
diction and hence b ¢ q. If we assume that a € q then since
(ayb) =1 and q is the minimal prime of d and hence of a
"and h we have (h,b) = 1 (since if (a,b) = 1 then (a®,b™) = 1
and by (3) above there exists an n such that hlan) i.e.

X = bh where‘(b,h) = ], = e (4)

n+

Similarly if a ¢ q we can consider (& ,x) = x' and

then a™' = x'x s, Xx = x" x' , (k,x") =1 and if k ¢ ¢
then dnlx' and so dnlx a contradiction establishing that k
must be in q. As in (A) above (k,x") = 1 implies that
(x",x') = 1 i.e. x = x"'x' where x' has g as its only minimal
subvalued prime and (x",x') = 1., —==————m———————————— (B)

Now combining (A) and (B) we get the result.’

(5) the proof follows as an application of (2) and (3).

The properties (1) and (5) of d& in Lemma- 3 give rise

to the following

Definition L. A non zero non unit element d in an intcgral
b wo neon unils

domain R, will be called a packet if every factorization of dV,

d = dyds (if it exists) is such that
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(py) (day,d;) # 1
(p;) there exists a positive integer n such that
. d1|d§ or dzldf.l-
Finally we state the
Tﬂeorem 1. In an HCF domain of Krull type R, a non zero
non unit x, is expressible as the product of a finite number of
mutually co-prime packets and this factorization is unique
up to associates of the respective packets and up to their
order.,
Proof. Let x be a non zero non unit in R, let
Py sPyseeesPq be the set of all the valued primes containing
X and let Q; 59354459y be the set of all the distinct mini-
mal subvalued primes of x. By Lemma 2, corresponding to each
q; there exists.a pL]x sgch that p, € q, and p 4 q; for
each 1 # j.
We first take up q,; there exists a p, such that
X = p,x' where p, € g and p, £ q; J = .2,.;.,m.
And by (4) of Lemma 3 we can write
x = x,x3 where (x,,x3) =1 and x, has q;, as its only
minimal subvalued prime i.e. x;, £ 95 ( J = 2,00.,m). -
Similarly corresponding to gz, there exists Dz € Q@
such that Pz]x and ps £ a; J # 2. Being in gz, pe is not in
the bunch of valued primes of x containing g1 we conclude
that x = x;p2xy and by an application of (4) of Lemma 3
again X = X3 Xoxd 5 (X1Xe,x3) = 1.
Repeating the above process we get
X = X1Xs..eXm ; Where each xi 1is a packet'x;
and (xy,x;) = 1 whenevcr i # J.
Moreover if X = Yi¥z...Ys where yj are mutually co-prime

packets then s = m, because the set of the valued primes(and
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hence of the minimal sﬁbvalued primes) remains the same.
Suppose that y; are permuted such that, x.,yx are in the
same minimal subvalued prime q , then x, | (y5,x) =
( Vs Tidges- Ym) = ¥y that is x, |y«, and similarly we can
show that yk|xk. I.e. for each packet xk|x = X,Xg...X there
exists its associate Ik |X = Y1 ¥z00.¥, Which is the required
result.

Corcllary 1. In an HCF #*-GKD a packet is rigid and hence
an HCF #-GKD is a Semirigid Domain,

Proof. We recall that a *GKD R is a ring of Krull type

with the family Ra } of primes defining it, such that for
€ I

a#£pBel, P, N ?B.contains no non zero prime ideal(cf
Def.3 Ch. 2, and Def.3 of this chapter).

Let q be a packet in the HCF #-~GKD R and let & be the
minimal subvalued prime containing q( it can be easily
deduced from Lemmas 2 and 3 that in an HCF ring of Krull
type an element x is a packet iff it has a single minimal
subvalued prime), then q is contained in a single valued’
prime P of R{because of *3 of Def.3%, Ch. 2). And obviously
every non unit factor of g is in P (since otherwise g will
not be in a single minimal subvalued prime e.g. if g € P ¢ Pt
with no containment relation between P and P'; P' contains a
minimal subvalued prime Q' of ¢ such that Q £ZQ').

Now let Q4 sgsbe two non unit factors of g then
Q1592 € P. We claim that (g, ,d) # 1 for 1if (g4592) =1 in R
then since R is an HCF domain (g ,q2) = 1 in Rp i,e. at least

one of Q1 ,0e is a unit in RP which in other words means that
at least one of g4 ,9; is not in P a contradiction implying
that no two non unit factors of g are co-prime. Ve now takc

any two non unit factors q',q" of q and
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suppose that (q';q") = d then q' = xd,q" = yd where (x,5) = 1.
But since X,y also are factors of asboth of x,y cannot be
non units and hence q'lq" or q”lq'. That is q is a rigid non
unit (cf Def. 1,Ch.2). Once we have shown that every packet
in R is a rigid non unit it becomes obvious in the light of

Theorem 1, that R is a Semirigid domain.

3. Unique Representation Domains.

In the previous section, we were able to show that
every non zero non unit in an HCF ring of Xrull type is the
product of a finite number of mutually co-prime packets. But
from the definition of a packet follows the

Proposition 2. Let R be an HCF domain and suppose that a
non zero non unit x in R is expressible as the product of a
finite number of mutually co-prime packets, then the factori-
zation of x in this manner is unique up to associates of the
packets and up to order.

And this Proposition gives us the concept of a

Unique Representation Domain (URD), as an HCF domain in

which every non zero non unit is expressible as the product
of a finite number of mutually co-prime packets.

In this section after formally proving the Proposition 2
we show with the help of an example that a URD is not
necessarily a ring of Krull type. We show that an HCF domain
is an essential domain and prove that the necessary and
sufficient condition for an HCF domain R to be a URD is that
every non zero non unit in R has only a finite number of
minimal subvalued primes,and this gives rise to the defi-

nition of a *-essential domain as an essential domain in

which every non zero non unit has a finite number of minimal
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subvalued primes,

Proof of Proposition 2. Let x be a non zero non unit in

an HCF domain R and suppose that x is expressible as

X = X Xe.eXy 5 X are packets and (x,x;) = 1,i£j-—~(A).
Further suppose that x is also expressible as

X = ¥Y1Y2+++¥y 3¥; are packets and(y;,y,) = 1, j#x ——-(B).

Now X|¥,¥s+..¥p,implies that x,= x,,%,,such that x,, |y,
and Xy, |¥a¥5...¥, . But since (FysY2Vge09y) = 1, either x,,
is a unit or X, is (cf Def.l4 ). In other words x, |y,or
xllyzys...ym, and proceeding in this manner we can show that
there exists only one y; such  that x,|y;. Reversing the
process and considering y;|X,X,...X, and using the defi-
nition of a packet as above, we conclude that there exists
an xx such that yjlxk. Moreover y;|yj and ,yjlxK implies that
X, |%¢ i.e. k = 1 ( since if x # 1.then?(xk,x1) =1 a
contradiction ) and obviously for each x |x in (A) there
exists a y;j|x in expression (B) such that x; is an associate
of y;. And consequently n = m and the factorizations (A)and
(B) are unique up to associates and a suitable pefmutation
of the packets.
| Definition 5. An HCF domain R will be called a Unigue

Representation Domain if every non zero non unit of R is

expressible as the product of a finite number of mutually
co-prime packets.
Now to show that a URD is nct necessarily an HCF ring
of Krull type we put forward the following
bxample 1. Let R be a PID, K its field of fractions and
let x be an indeterminate over R. The integral domain

S = R + xK[x] ; called the almost integral closure

of ® (cf [24] page 9) is a Bezout domain.
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Consider a general non zero non unit element y in S,
that is y = rb+‘é:ain s o € R, g € K.
Now y can.be.of two possible types i.é. such that
(1) ro =0, (2) r, # 0. ‘
In the first case y = bxs(1 +7g;ajxj) ; alsb e K. We sce

3
)z
that bxs is a packet, because if

S X
bx'= d;d; ; 4, non units and (d4,,d;) = 1, then at least
onc of 4 say d, is of degree zero in x and thus belongs to
e - n 3
R, but then dy |d,for each n and d, is of degree s > O in x;

d1|d2; a contradiction establishing that(p; ) of Def. L4 holds
for bx®, Further if bx® = ddzs s > 0,4, non units either

d, e Ror & =b,x°, If 4, ¢ R obviously &, |d; and if

a, = bixs‘-,s1 > O then dy = byx°2, where byby; = b , We note
that if s, = O then d,|d;and so we take up s; > O and in this
particular case d, divides a power of dz and vice versa. And
to sum up (pg;) of bef. i holds for bx°, that is bx° is a

».$

packet . It is obvious that ( 1 + 2 alx?) is & product of

-
atoms . But since, an atom in a Bezout domain is a prime,
n-3 . ' :
(1 + 3 a}xJ) is a product of powers of primes and can be
V4
written as the product of a finite number of mutually coprime
powers of primes and thus is a product of a finite number of

mutually co-prime packets because a prime power satisfiecs

the requirements of a packet. Moreover since

" :
".g . . .

(bxs, 1 + 3 ajxa) =1, ¥y = bxs( 1+ 3 aij) is the product
J=i Js! .

of a finite number of mutually co-prime packets.

n .
i
In the second case, ¥ = ro(1 + 3 a!x"), where r, € R
: ; t =/
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and so 1is a product of powers of primes and similarly as in
the first case (1 + 3 afxl) is a product of powers of primes

- n i
and combining these observations r (1 + 2 aﬂxl) is th¢ pro-
(=1 i
duct of a finite number of mutually co-prime packets. And

thus we have established that S = R + xK[x] is a URD. But S

is not necessarily a ring of Krull typc, follows from the

fact that x € pS for each prime p in R and if the number of

prime ideals in R 1s infinite, S is not a ring of Krull type.
The above example gives rise to the question of charac-
terization of a URD. We note that a URD by definition is an

HCF domain and so, part of our task would be done if we ex-—
plain the structure of an HCF domain in terms of its valua-—
tion overrings. For this purpose we prove that an HCF
domain is an essential domain. To achieve this result we need
to introduce some concepts which are to serve as tools.

Let R be an integral domain and K be its field of frac-
tions and let F(R) be the set of non zero fractional ideals

.1

of R. If A ¢ F(R), by A" we mean the set

{ x e X | xoA c R} and this again is a fractional ideal.
-1

We denote by A, the fractional ideal (A—1) . The operation

of associating A, with each fractional ideal A ¢ F(R) is
called the v-operation (cf [11] page L16]
It is well known (ef 32.1 [11]) that if a € K and
A,B € F(R)
(1) (a), = (a) ; (an), = oA,

(2) A ¢ A, if Ac B then A ¢ B,
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(3) (A), = 4,

It is also known (ef (c) 32.2 [11]) that

(2B), =(4B_), = (A B,), =mmmmmmmmmmmmmm e (Vi)

A fractional ideal A is a v-ideal if A = Av’ and a
v-=ideal F is said to be of finite type if there exists a
finitely generated ideal A such that AV = F.

Definition . An integral domain R is called a Prufer

v-—multiplication domain if the v-ideals of finite type in
F(R) form a group under v-multiplication as (VM) above.
Note . Griffin [19] and [20] calls these integral domains,

"y-multiplication rings" while in the present literature, a

v-multiplication ring is an integral domain in which
(4B), < (AC)V implies that B c C_.

Turning our attention towards HCF domains we see that it
is well known (cf e.g.[8]page 584) that each v-ideal of
finite type of an HCF domain is principal. And to prove that
an HCF domain is a Prifer v-multiplication domain we only
need to verify that the principal fractional ideals in F(R)
form a group under multiplicaticn which is evident. Thus an
HCF domain is a Prufer v-multiplication domain and hence
according to Griffin [19] an essential»domain;

fle recall that an integral domain R is on essential do-

main if there exists a family ¢ = } P, g 7 OF Prime ideals
such that 4. RP is a valuation domain for each a € I
a
4[32. RanP 9(XEI.
o

e e s e e T _. e e e R T T e T e e

7 s === We shall call { P_# the family of

valued primes defining R. Clearly by E; above, a non zero

o’ae 1

non unit x in R is contained in at least one valued prime in
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{Pal, for if not: x is a unit in each R, ae I

-1
i.e. x € RP o€ I
-1

l.e. x €N RP = R, that is x is a unit

in R, a contradlctlon establlshlng the result.

In what follows,the fanily of valued primes defining an

HCF domain R will be denoted by {P }
o’oae I

prime we shall mean a  valued prime in {Pai

and by a valued
oe I and by =a
subvalued prime we shall mean a prime contained in a valued

prime in iPai.

Lemma 4. A non zero non unit x in an HCF domain R is a
packet iff x has a single minimal subvalued prime .

Proof. Let x be a non zero non unit in an HCF domain R
and let x have a single minimal subvalued prime q. We have
to show that x is a packet i.e.

(py) if X = X;X,, Where X; are non units then (x1,Xz) # 1

(ps) if x = x,X3,with X; non units then there exists a
positive integer n such that xilxg or lex?.

We first show that (p,) holds for x, for if we assume

on the contrary that x = x4Xz, xinon units and (Xy9%Xz) = 1
then x, and x, cannot both belong to the same valued prime P
because then (X;,%;) = 1 in R implies that (xi,xg) =1 in
R which in turn implies that at least one of X, ,Xpzis not

P
contained in a given valued prime.

Let P, be one of the valued primes containing Xjand Pz
be one of those containing xp then the minimal subvalued
primes g,,9s Of X; and Xp respectively are distinct and
obviously these are minimal subvalued primes of x, a contra-
diction establishing that (Xis,Xz) # 1.

Before establishing that (pz) holds for X, we prove the

following lemma to make our task easler.
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Lemma 5. Let X be a non zero non unit with a single mini-
mal subvalued prime q in an HCF domain and let {Pﬁi c if&f
be the family of valued primes containing X, then for every
element y which is contained only in the intersection of a
subfamily of i?ﬁ; such that y ¢ g then yn]x for all n.
Proof. Let X and y be as in the hypothesis, then for each
n, xyn € g and xyn has g as its minimal subvalued prime (
any minimal subvalued prime of y is some subvalued prime
containing q).
Now suppose that yfx and let d = (x,y) where x = x, d,
y =y 4dand (x,,y,) =1, then since y g , 4 £ q and so

2 . . s
xy/d® € q and q is the single minimal subvalu:d prime of

xy/a%. But xy/a° = %, ¥, where(x ,y,) = 1. In other words
Xy/d2 has a single minimal prime and is expressible‘as a
product of two co-prime non units, a contradiction of (p;)
unless y, is a unit i.e. y|x. Similarly we can procecvd with
y" and can show that ynlx for each n.

To show that (ps;) also holds for x of Lemma L, we first
note that q being a prime ideal, X € q Or Xz € g, and we
have two cases to consider:

(a) x, ¢ ¢, and %, £ a (or % c gand x £ q )
(b) %, 9% € Q.

If (a) holds, x, belongs to a subfamily of the valued
primes containing x and by Lemma 5, xglx for each n,i.e.

X, |%,. And in case (b) holds, X;,%X; € g implies that X ,X
both have q as their minimal subvalued prime 3nd that
(%,5%,) = d eq ( R is an HCF domain and Rq is a valuation
domain). Now if (x,,xz) = 4 then x = x{ d, Xz = xzd where

(x!,x) = 1 i.e. at least one of X{,xz is not in g. This in

turn gives rise to the following two cases:
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(1) ®/ ¢ q and x} ¢ q (or x! ¢ g and x; £ q )
(i1) xi',xz' £aq.

In the first case if X/ is not a unit, x{ belongs to a
subfamily of the family of valucd primes containingbx(and
hence x; ) and so x/|x) , that is x, |x,. And in the second
case x'|d (1 =1,2.) for each n and so xilxg and lexf .

Combining all the gbove cases we conelude that (pg)
holds for x. In other words x is a packet.

Conversely let x be a packet in an HCF domain R and let
{Pﬁi be the family of all the valued primes containing x,
further let P,Q be two distinct minimal subvalued primes of

x and consider y € P - Q, then (x,y) =d ¢ P - Q ( can be

verified easily by using the fact that R is an HCF domain
and RP is a valuation domain), and 4 has P as one of its
minimal subvalued primes. We claim that there exists a posi-
tive integer n such that dn* x. For if not let d"|x for each

n, then a%|x for each n in Rp and so X € N anP = Py Rp

where P,R, is a prime ideal properly contained in PRP i.e,

P

X ¢ P4R, N R , and by the one-one correspondence between

P

primes in RP and those contained in P, X has PiRP N R as its

minimal subvalued prime a contradiction to the assumption
that P is one of the minimal subvalued primes. of x, and
hence there exists a positive integer n such that dnYX.

Now consider h = (x,d") where d"fx in Ry then a® = an
X = bh and (a,b) = 1. We claim that b g P for if b € P, then
a ¢ P and so a|b in Ry and consequently ah|bh in R, that is

dn[x in RP , a contradiction esteblishing the claim.

purther h|a™ ¢ Q and so h ¢ @ but since bh e ;b e q (Q

being a prime) that is we have x = bh where
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beQand b ¢ P e __ (1)

heP and h ¢ @ —mmmmammm e __ (2)

but since x is a packet there exists an n such that b|hn or

n n n .

h|b”. Now if b|h™ then h” ¢ 6 i.e. h ¢ Q which contradicts(2)
) n .

and if h|b™ ; b ¢ P in contradiction to (1) and this estab-

lishes that a packet x in an HCF domain R cannot have more

than one minimal subvalued primes.

Now going from packets to products of mutually co-prime

packets, we prove the following

Theorem 3. An HCF domain R is a URD iff every non zero non
unit x in R has a finite number of minimal primes. -

Proof. Let R be a URD and let x be a non zero non unit in
R. We can write

X = X XgeeeXy 3 (X{,%X;) =1 1if 1 #

where each of the x; is a packet., Being mutually co-prime,
no two of the x; have a valued prime common to them and

hence no subvalued prime, while each of the x; has a single

minimal subvalued prime(being a packet) and consequently x
has a finite number of minimal subvalued primes.
Conversely let x be a non zero non unit in an HCF

domain R and 1let QysQzseessdn DE Gll the minimal gubvalucd
primes containing x then following exactly the same lines as

in the proof of Theorem 1, of this chapter we can show that
X = X;Xg...X; 3 Where each of the x is a packet
such that (x ,x;) = 1 if 1 £ J. And to conclude the proof we
mention thet a mininal prime%gf a principal ideal is a
minimal subvalued prime. For if not let Ry be not a valuation

domain., Then since RP is an HCF domain and thus is essential
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there exists a valued prime ¢ ( # PRP) containing X. But

then x € @ N Rr g_P 4 contradiction.

Theorem 3, gives rise to the following

Definition 5. An essential domain R with the defining

family | Pa gae I~Of primes will be called *—eSsential if

cVEry  nomszero non unit x in R has a finite number of mini-
mal subvalucd primes,
Finally in view of Theorem 3, and the earlier work we
can state that a.non zero non ﬁﬁit in an HCF domain R is the
product of a finite number of mutually co-prime packets iff

X has a finite number of minimal primes.
Ly, Stability Properties of URD's.

We begin this section with results about the behaviour

of Unique Representation under the operations of adjoining

indeterminates and localization. We then go on to establish

a property of URD's which is not shared by UFD's that is if

R is a UKD X an indeterminate over R and K the field of

fractions of R then the almost integral closure
S = r + xK[x]

is a URD. Finally with the help of examples we show that the
integral domains we have considered under distinect names
are in fact distinct.

Like Unique Factorization, the concept of Unique Rep—
resentation remains stable under adjoining indeterminates
and this we prove with

Proposition 4. Let R be a URD and x an indeterminate over

R then R[x] is a URD.
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Proof, Since a URD is an HCF domain, and we have men-
tioned before that an atom in an HCF -domain is a prime. More-
over if R is an HCH domain thon so is R[x]..
Now consider an arbitrary non zero non unit
¥y = %:lrtxi s It

L
L=0
Let d be the highest common factor of ry,r, ,Ih,...r, then

€ R,

y = d(‘garfxi); the expression in braces is a primi-
tive polynomial in x, and since every non unit factor of the
expression in'braces is of degree greater than zero in i, it
has only a finite number of factors. I.e. 3 r'x> is a
product of atoms and hence of primes and since a prime power
is a packet; 2 rﬁxi is a product of a finite number of.
mutually co-prime packets.

T'inally it can be verified that (d, = r{xi) = 1. And
since d is in R ( and so is a product of mutually co-prime
packets if it is a non unit)

y=a( =z rfxi) = %Lrixi is a product of a finite
number of mutually co-prime packets. Since y is arbitrary
the result follows.

Since a prime power is a rigid element we can state the

Corollary 3. If R is a Semirigid domain and x is an
indeterminate over R, then R[x] is a Semirigid domain.

Further let R be a URD, S a multiplicative and satu-
rated set of R and let x be a packet in R then we claim
that if x is not a unit in RS then it is a packet in RS' For
if not let x = x;X5; where x are non units in RS such thatA

(%,9%X5) = 1 in R.. Now if X = /vy, Xz = Up/Ve;(since R is

S
an HCI' domain we can take (u ,vi) =1, 1 = 1,2.) then
x = (uy/vy)(ug/vy) implies that vy |u, and vy |ugi.e.

u, = ulvg, Uy = ujvsand x = ujul where uj,uz € R and
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" (uf,ul) =1 in Rge Since we are approaching from a
localization to the original ring, it is possible that
(u'sul) # 1 in R (moreover u' being non units in Rq are non
units in R) and thus there exists a positive integer n such
that u'|uwl® or u! | *(x being & sacket ). If we have
u{lugn then obviously u{lugn in Ry , but since (uf,uwl) =1
in R, which is an HCF domain, (u/,ul”) =1 in Ry, which
implies that u; is a unit in R, a contradiction to the

S

assumption that x, , X, are both non units in RS and hence X

is a packet in RS.
Now according to the definition
Rg = ir/s reRg; sesSli.

If r/s is a non unit in Ry, and if r = D, Dye«sDps

5
p, packets and(p,,p;) = 1 if i # j then

r/s =(py /8, )(Pa/85) e (Pn/5y); Where s = 8; 854408,
(pt/sL) are packets if non unit and because of the HCF pro-
perty ( (p./sy)s(p;/s;)) =1 if i #£ j, that is if R is a

URD then so is R, and so we state the

S
Proposition 5. Let R be a URD and S be a multiplicative
and saturated set in R then RS is a URD.

The concept of a rigid noniunit being simpler than
that of a packet we can easily prove the

Corollary 4, If R is a Semirigid domain and S is a multi-
plicative and séturated set in R then RS is again a Semi-
rigid domain.,

In Example 1, we showed that the almost integral
closure of a PID is a URD, we now extend this result and
state the

Theorem 6. Let R be an integral domain, K its field of

fractions and x an indeterminate over R, then R is a UrD iff

its almost integral closure S = R + xX|x] is a URD.
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Proof. If S is a URD, all the non units of R are non
units of S and hence products of mutualiy co-prime packets
and R is an HCF domain as well,

To prove the converse we first prove the

Lemma 6, Let R be an HCF domain, X its field of fractions
and X an indeterminate over R then R + xK[x] is an HCF
domain.,

Proof. A general element y € S can be written as

»”
¥y =0Ty + 2 g x
=t

i .
5 o € R and g, € K.

As we observed in Xxample 1, y can be of two types
corresponding to r, = 0 or r, # O, that is
s m-5 3
bx (1 + 2 alx"); bek

J=t

ro(1 + 3 (a/ro)x).

(a) (ro =0) 5 ¥

(B) (ro £0) 5 ¥

]

The case where one of the elements of S is zero or is
a unit, is obvious and so we consider a pair Y, s52 of arbit-

rary non zero non units of S, Let

7, . Y .
i = i :
Vi = To1+ 2 a; X Yy Vg =Top + 2 Ay X 2, the following
L=l 1 : G={ 2

cases are possible:
(a) both y, ,y» are of type (e)
(b) yo is of ﬁype (o) and y is of type (B) (or vice versa )
(¢) y1,¥2 are both of type (B).
In case (a) holds, let
vy = by x°t (1 + :élaéixji) , vy = b5x82(1 +i§:;52x32)

the expressions in braces being elements of K[x] are pro-

ducts of primes and so the HCF

”,-5 - ", =S .
d=( (1 +3al x),(1+ .2al x%2))
Lo 1 =l 92
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can be calculated.

Now if s, < s, it is easy to seé that bixsid is the
highest common factor of Yy 5¥zs Further if s, = s, = s, the
highest common factor of bixsiand bzxsz( if it exists ) must
be of degree s in x, If b, = ¢, /d, and b, = ¢;/d,( we can
assume (c;,d;) = 1 because of R being HCF) it can be veri-
fied that ((cy,cy)/[d,,d,]1)x°d is the highest common factor
of ¥415¥2s wWhere [d1,d2] denotes the least common multiple of
d, and d,.

If the case (b) holds let y,be of type (a) and y, be of
type (B), that is y,= byx°t(1 + ?%?2! xji)

=1 J1

ﬁ :
Vo= Toz (1 + Z’ai x'®) and if d is the
3l =2

HCF of the elements in the braces then rypd is the HCF of

Y1 and yz.

] <
Finally if (c) holds let y; = roy (1 + 3 aj xTt)
t,=! 1

. ne i,
J2 = Toe (1 + 2 aj X )
(= 2

and if 4 is the HCF of the elements in the braces then
(o4 sToz )d is the HCF of y;,¥z-
To sum up, each pair of non units in S has the highest
common factor and this establishes the lemma.
Now let y be a general non zero non unit element in S
n i )
then y =T + 2 8,%° ; o € Ry 8} € X, and y can be of two
l}! n-f .
types; (¢) ¥ = bx°(1 + ?.aj xJ) ; b e XK, or

(8) ¥ = ro(1 + {zﬂacxi).
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We note that the expressions within the braces in both
cases being elements of K[x] are products of powers of
primes and hence of mutually co-prime packets.

In case (B) O # 1, € R is the product of a finite
number of mutually co-prime packets (provided it is a non
unit) and (r,,1 +a§}afxi) =1 that is y is a product of a
finite number of mutually co-prime packets . And in case (o)
obviously ( bx°,1 + $ ajxj) =1 ;b ¢ K, and bx" is a
packet itself (cf Example 1,this chapter). Consequently y
is a product of a finite number of mutually co-prime packets
in case (a) as well, and this completes the proof.

Remark ! ., Thoerem 6, marks the basic difference of the
coﬁcepts of Unique Factorization and Unique Representation,
because the almost integral closure of a UFD is not complete-
ly integrally closed and hence cannot be a UFD.

We have hitherto mentioned different classes of integr
ral domains,one generalizing the other; that is 1if we take
E> to mean generalize we have

URD'slD HCF rings of Krull type > Semirigid Domains >
GUFD's b UFD's .

We have shown by Example 7, of Chapter 1,that there
exists a GUFD which is not a UFD. Similarly Example 1 of
Chapte 2, ensures the existence of a Semirigid Domain which
is not a GUFD. We have also shown, with Example 41, of this
chapter, that there exists a URD which is not on HCF ring of
wrull type and finally it remains to shpw that there exists

an HCF ring of Krull type which is not a Semirigid Domain
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and for this we consider the following
Example 2. Let R be a Semi-local PID, K the quotient
field of R and x an indeterminate over R, The almost integral
closure
S =R + x([x] , is a two dimensional Bezout
domain and is a URD ( kxample 1, this chapter).

If Py =p;Ry Pz = DR se..3P, = DyR are all the non zero
prime ideals of R then correspondingly p; S (i = 1932500esl)
are maximal ideals of R of rank 2, Noﬁ let

T={yesS|ygp$s for any i= 1,2,000,0},
then it can be shown that T is a multiplicative saturated

set, Localizing at T, S, is a two dimensional Bezout domain

T
with exactly n maximal ideals PLST (i = 152440..50n). Obviously
S is a semi quasi-local Bezout domain and so an HCF ring of

Krull type. Finally that S, is not a Semirigid Domain

T
follows from the fact that O # N p S is a prime ideal.That

is ST is our example of an HCF ring of Krull type which is
not a Semirigid Domain.

Note . S it self is an example of an HCF ring of frull
type. e have avoided S as an example on the basis that its
verification becomes very lengthy.

Remark £ . Introduction of the concept of Unique Repreéen~
tation is the result ofvan effort to study and to single out
those HCF domains in which the factorization is rather simple.
e cannot at present guess the scope of this conqept but it
can be remarked that this concept could be of some help in
the study of HCF rings of Krull type, semi quasi-local Prﬁfer‘
domains, *-essential Bezout domains etc. At least in these

cases we could start with the knowledge that the elements of

these integral domains have some factorization properties.



78
CHAPTER L

IDEAL TRANSFORMS 1.7 GUNERALIZED KRULL DOMAINS
0. Introduction, Definitions and Basic results.

Let R be a commutative integral domain with unity and
let X be the field of fractions of R. If A is an ideal of R
then the set

T(A) = §{ x ¢ FK ‘ x4"¢ R for some positive integer n |}
is & ring and is called the A-transform of R, ideal trans-
form of R or the transform of A. The notion of an ideal
transform was introduced and developed by Nagata in [26] and
[27].

Gilmer used the ideal transforms in the study of Prufer
domains in [12]. Later appeared [17] by Gilmef and Heinzer.
The efficiency of this tool in studying the Prifer domains,
soén attracted the attention of various mathematicians and
the study of properties of the ideal transform began. Brewer
in [2] put forward some striking results connecting somc
integral domains and the transforms of their proper princi=
pal ideals, while Arnold and Brewer in |3] discussed
Generalized transforms. Gilmervand Huckaba [15] discussed
some properties of ideal transforms in general and of ideal
transforms in Xrull domains in particular, |

OQur intecrest in the generalization of the concept of
Unique Factorization led us to Generalized Krull Domains (cf
Ch 1) and the rather easy formulation of Generalized Unigue
Pactorization led to the observation that, with some modifi-
cations the GKD's can be studied on the same lines as Krull
domains . The realization of Theorems 1, and 2,confirmed
our observation as far as the ideal transform is concerned,

Theorem 2, in fact has motivated much of the work included
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in this chapter.

In the first scctidn we improve Lemma 2.12 of [14] to
Theorem 1, which gives a formula for the transform of an
ideal in an integral domain which is & locally finite inter-
section of a family of overrings,while Theorem 2, providcs a
neat formula for the ideal transform of an ideal in a GgD.

In section 2, we generalize the property (u) discussed
in [15] page 207 to property (y) (cf Definition 1 ) and
record the consequences of this generalization,

Brewer's Theorem for Lrull domains which is included as
(4) of Theorem 9, establishes the relationship of an integral
domain (which is not quasi-local) and the transforms of its
proper principal ideals. In section 3, we pfovide an analogue
of this result for GKD's, and analyse the situation for
quasi'local domains.

Section 4, inciudes miscellaneous results, in other
words those results which could not find a place in the
earlier sections but seem to be interesting enough to be in-
cluded in this chapter.

The notions and notations used in this chapter are
either familiar or properly explained with the exception

that by an ideal we mean an integral idezl including (0) and

R (the integral domain) as ideais and by an invertible ideal
we mean an ideal which has an inverse in the group of
fractional ideals.

In the following we include without proof, some basic
results already in the literature, and will use them where
necessary with little or no reference.

Definition Of{cf [15])An integral domain R is called a

(1) Ty~domain if T(4B) = T(A) + T(B) for every two idsals
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A,3 of R.

(2) Ty-domain if T(AB) = T(A) + T(B) for every pair of
finitely generated ideals A,B of R.

(3) Ty-domain if T(4aB) = T(A) + T(B) for every pair of
principal ideals of R.

Proposition 0, (ef Prop. 1, [15]) Let Ayhy 4By 5eeesh, and
B be ideals of an infegral domain R

(a) if k is a positive integer such that Ak ¢ B then
T(A) > T(B) and T(4B) = T(A) = T(A) + T(B)

(p) if gy, and f; are positive integers for 1 < i < n,then

T(afr ... a8n) - m(aft ... aln)

(e) if the hypothesis is as in (b) then

T(aSt 4+ aS2 4oi.p a%0) = m(aft Lol ealn).
In particular if ( a,,...,a,) is an ideal of R then
T(afi,...asn)~= T(af%...,af")
(@) T(aB) 3 T(a) + T(B) .
(e) if A and B are such that there exists an ideal A%
such that A¥* > B and T(a*) = T(A) then
T(AB) = T(B) = T(A) + T(B)
(f) if T(A) = R or T(B) = K, the field of fractions of R
then T(AB) = T(a) + T(B)
(g) T(A n B) = T(4B)
(h) T(a) N T(B) = T(A + B).
Note . (a) and (e) of Prop. 1 of [15] are combined to
give (a) while (e) of Prop. O, is new but easy to verify.
Theorem Op (Lemma 1 [15] ) (i) Suppose that A and B are
ideals of R such that (& + B) T(4,B) = T(A,B) then for
each positive integer k, (Ak + Bk) T(A,B) = T(A,B;f

(ii) If A and B are comaximal ideals of R and if C is

any ideal of R then, T(ABC) = T(AC) + T(BC).

% T(A,B)= TA+0)
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(1iii) Suppose that A and B are ideals of R and suppose
that A is invertible then T(AB) = T(A)T(B).

(iv) If A and B are ideals of Ryand C is a finitely gene-
rated ideal of R, and if T(A) contains T(B) then T(AC) con-
tains T(BC).

Theorem Oy ( Theo. 2 [15]) If a and b are elements of &
then the following are equivalent:

(1) T(ab) = T(a) + T(b)

(2) for every positive integer k there exist asB in 2
sucﬁ that (1/ab)k = oc/ai + ,B/bj ; i,j positive integers.

(3) (a,b)T(a,b) = T(a,b).

Theorem O, (Theorem 4,[15]). Let A and B be ideals of R

(1) If A + B is an invertible ideal of R and if C is any
ideal of R then T(ABC) = T(AC) + T(BC). |

(2) If A is an invertible ideal of R and if T(A) + T(B)
is a subring of KX, then T(A) + T(B) = T(AB).

(3) Suppose that T(A) + T(B) = T(C) where A and C are
finitely generated ideals of R, then T(A) + T(B) = T(AB).

Theorem Os{Theorem 8 [15]) If x and y are non zero ele-
ments of an integral domain R such that (x) : (y) = (x),
then T(xy) = T(x) + T(y) implies that xR + yR = R.

Theorem Og (Proposition 1.4 [2]) Let 4 be a finitely
generated ideal of an integral domain R, with A = (a15s..ap)
then T(4) = aS;T(aL)' 59Muabﬁd

Theorem O, (Theorem 1.5 [3]). Suppose that A is a finitely
idsal of an integral domain R. Let ZPa} be the collection of

all prime ideals of R which do not contain A, then

T(A) =N R .
(@) =0 =

Theorem Og (Lemma 2.2 [2]). Let x be a non zero element
. o0

of an integral domain R. Then T(x) = k(1/x) = Rg 3 S = ixlk_o
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1. A Formula for the Transform of an ideal in a GKD.

In [14], Lemma 2.12 states," Let D be an inteéral domain
with identity having a quotient field K. If ZDL}?ﬂis a finite
family of overrings of D such that D = ﬁ,DL and if A is an
ideal of D, then T(A) = ﬁ‘T(ADL) ", )

In this section we generalize this result to the case
of an integral domain R which has a family iRaf of overrings
such that R =N R, and cach non unit element of R is a non

unit in only a finite number of R, .+ This generalization

appears as Theorem 1, and as a conscquence of this theorem

we prove Theorem 2, which gives a formula for the transform
of a non zero ideal of a GKD.

Theorem 1. Let R be an integral domain with identity and
let K be its field of fractions. If I = {R | is & family of
overrings of R such that

(a) R=NRy ; R, el

(b) for every non zero non unit x of R, x is a non
unit in only a finite number of members of II
then for every ideal A of R, T(A) =N T(4R,) 5 Ry ¢ I .

Proof. It is clear that for every overring R' of R,

T(A) € T(AR') and so

T(a) € 0 T(4Ry) ;5 Ry ranging over I .,

Now let y € Q T(AR,) s We can write y = r/s where
r,s € R and s £ 0. According to the hypothesis s is a unit
in all but a finite number of members of I . Let
2 = | RisesesesBnl}

be the set of all those overrings of R (in II ) in which s

is a non unit, so that

(r/s)(AR ) € R, for all R, € I = 3 ———mv (1)
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Now, y = (r/s) ¢ T(ARa) implies that
(r/s) e T(ARy) 3 1 =1,2,...n ( R, € 1), that is

there exist m; (1 = 1,2,...;n) such that

(r/s) AR, )™Mc R, .
Let m =max { my | i =1,2,...,n},then
(r/s)(ar, )™ c Ri 3 1=152,000,0 —mmmmmmmmmmmmm (2)
Combining (1) and (2)
(r/s)(ARa)m c Ry, for all R, in I , that is
(r/s)(A)" < R, » for all R, in Il , that is
(r/s)(a)"c NR, =R, and thus y € T(A). In other

words T(&) = N T(ARa) 3 Ry e 1.

For the sake of reference we shall call the ring R with

a family iRa} of overrings satisfying (a) and (b) of Theo. 1

a A-ring . The familyiRa}‘of overrings of R will be called

the defining family of R . If every member of the defining

faaily LRdl'of a. A-ring is such that R = R, for some
o

prime ideal Pa then R will be called an essential A-ring. It

is easy to see that if R is an integral .domain with a family

{P_] of prime ideals such that

o}
(1) R=0NRy Py ¢ zPai
o
(2) for every non zero non unit x in R, x belongs to
only a finite number of members of iPa}
then R is an essential 4-ring .

Moreover we can assume that no two members of iPa} are

comparable w.r.t. inclusion. The family iPa} will be called

the defining family of the essential A-ring.
As may be easily seen, an essential A-ring is a

generalization of the rings of Krull type (cf Def. 3, Ch.3)
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F'or the present we restrict our attention to the immediate

task of finding a formula for the transform of an ideal in

a GKD which is a ring of Krull type restricted still further
and state as a preliminary, the following

Theorem 1'., Let R be an essential A-ring with a defining

family {Pa} of primes, then for every ideal A of R
T(A) = n T(ARPa) 3 P € ipa}.
Corollary 1. ( Frop.7, [22]) Let R be a ring of Krull type

with the defining family.iRP !, then for every ideal A in R
a

(a) = (0 T(4Rp)) 1 (AQPRP) 3 Rp € IRy .

In the case of a generalized Krull Domain R, we find a
somewhat neater formula for the transform of a non zero :
ideal A. We recall that a GKD is a. ring of Krull t&pe in

which the defining family iPa} consists of all the minimal

non zero prime ideals of R. To bring about the said formula

we prove the

Theorem 2, Let A be a non zero ideal in a GKD R, then
T(a) = N R, Where P ranges over all non zero mini-

2

)

=AR.

mal prime ideals of R for which (ARP P

Proof. By Corollary 1, above

T(A) = §¢g RP) n icg T(ARP)

and so the task of finding the transform of A has been

reduced to that of finding the transform of ideals in a
finite number of rank one valuation rings.

Now it is well known that the maximal ideal PRP of the
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rank one valuation domain R

o is either (i) prinecipal or

(ii) idempotent (cf. e.g. [28])

(1) Let PR, be principal, then

P .
n n :
ARy = (PRP) = (PRP>, = anP for some n, that is

Il

T(ARP) = T@PRP)f)z T(PRP) T(pRP) (cf (a) Cor. 2.4[28])

]

Ry[1/p] (cf Theo. Og )

= %, thy ficld of fractions .of R.

(ii) Let PR, be idempotent, then Ry being of rank onc is

P
completely integrally closed and so T(PRP)7= RP .

Now for ARP

(a) ARy = PR, idempotent

(b) AR, c PRy non idempotent (cf (b) Cor 2.4 [28])

s there are two possibilities:

¥e -have seen that in case (a)

T(ARP) = T(PRP) = R, , and to deal with the

P

case (b) let x ¢ A, and consider xRy © AR, ¢ PRy

since R, 1s a rank one valuation domein xR, and AR, are

both PRP-primary and so, there exists a positive integer n

such that (ARP)n C xRy ¢ AR, (cf(c) Cor. 2,4 [28])

P

ll

and consequently T(ARP) T(XRP) (cf (a) Prop. O )
= RP[1/x] = K, the field of fractions
of R.

And in view of case¢ (a) we conclude that if
. 2 . .
. g _ AD - .
A c P; T(ARP) = Rp iff (AMP) = ARy ( since otherwise

T(ARP) = K, as we have shown above ). Moreover if A £ P

then AR, = Rp and so T(ARP) = Ry for minimal primes P
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N~
such that (ARP) = ARp.

To conclude our proof, we consider the expression

T(4) = ("L;ig Rp) N (AQP T(ARP))

‘ . 2
Obviously N T(AR,) = Xn (n Ry); where(ARP) = AR
AP P AP P/ | P

]

therefore  T(A) ( n RP) n(n ) 2

AZP AcP © and(ARp) = ARp

= n RP

. 2
( ARP) = 4Ry

It may be noted that in a ¥XKrull domain R, for every

minimal prime ideal P, R

D is a discrete rank one valuation

domain and thus(ARP)2 = AR

o implies that A Z P and so this

result proves to be a generalization of Nagata's Theorem (cf
Theo., 10, [15]) which we include as

Theorem 3. If A is a non zero ideal in a Krull domain R
then T(A) = N RP where P ranges over minimal prime ideals
PZA ofR.

Corollary 2. If A is an ideal in R such that A is con-
tained in no minimal prime ideal of R(a GKD) then T(A) = R.

Proof. Since for every minimal prime ideal P of R, A £ P,
therefore (ARP)2 = AR_ and so

P

T(A) = N RP = R ; because P ranges over all the
minimal primes of R.

Corollary 3, If A is a finitely generated ideal in a GKD,R

then ™4a) = N RP where P ranges over minimal primes P ZA.
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Proof., Immediate from the fact that if A is finitely gene-

rated then so is AR, and so T(ARP) = K for every prime P FA.

2. The Property (v)

‘According to Gilmer and Huckaba [15] page 207, an integ-
ral domain R is said to have property (ﬂ)‘if for every ideal
A in R there exists a finitely generated ideal A* < A such
that T(4) = T(4*) moreover T(AB) = T(A*B*) for any pair of
ideals A,B of R. Connected with this property they state the
following three results:'

(1) (cor.16,[15]). If A, B and C are ideals of an integral
domain D satisfying (u) ( having the property (u)) and if
T(A) o T(B) then T(AC) o T(BC).

(2) (cor. 17 [15]). If A and B are ideals of a domain D
with Property (u) and if T(aA) + T(B) is the transform of an
ideal of D, then T(4B) = T(a) + T(B) .

(3) (cor. 18 {15]) If D is an integral domain with pro-
perty (u) then the property T,holds iff T, holds.

These results in fact are the tools with the help of
which the behaviour of ideals in an integral domain with
property (u) can be examined. 4As may be verified easily,
Theorem 10, and Theorem 12, in [15] imply that a Krull domain
has the property (u). Theorem 12 of [15] being of interest
to us is included as

Theorem 4. If A is an ideal of a generalized Krull domain D
then there exist X,y € A such that the ideals A and (x,y)
are contained in exactly the same prime ideals of D. If D is
a Krull domain then T(a) = T(X,¥).

The last‘statement in Theorem 4, is exactly where we

get interested, and start questioning the necessity of the
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condition that x,y € A, as is imposed upon x,y in Theorem L.
Our reasons for this bshaviour being:

(1) we have generalized Theorem 10 of [15] to Theorem 2,
for generalized Krull domains, that gives a formula for the
transform of a non zcro ideal, and the formula is remari-
ably similar to that provided by Theo. 10 of [15], for Krull
domains . .

(2) ¥hile proving Cors. 16 - 18& in [15], no use has becn
made of the condition that A* c A.

And in view of these reasons and observations we put
forward the

Definition 1. An integral domain k will be said to have
the property (v) if for every ideal A of R there exists a
finitely generated ideal 4* such that T(A) = T(4*%), moreover

T(AB) = T(A*B*) for every pair of ideals A,B of R.

\ To show that this definition is consistent with the
tools used by Gilmer and Huckaba in [15], we prove the

Proposition 5. Let R be an integral domain with property
(v)

(1) If 4,B =nd C.are idcals of R and T(4) D T(B) then

T(4C) o T(BC).

(2) If A and B are ideals of R and if T(4) + T(B) is
the transform of an ideal then T(AB) = T(A) + T(B).
' (3) The property Tgholds in R iff T, holds.

Proof. (1) Let A*,B* and C+ be finitely generated idecals
of R such that T(A) = T(a*), T(B) = T(B*) and T(C) = T(C%),
then by the hypothesis T(A*) D T(B*) and since C* is finite-
ly generated T(4*C+) D T(3+C*) (ef (iv) Theo. Oz ) but
according to the definition of property (V)

T(AC) = T(A*Cx) T(B~C*) = T(BC) .
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(2) Let T(a) + T(B) = T(C), because of the property (v)
there exist finitely generated A*,B*-and C* such that
T(A) = T(A*) etc. and so T(a*) + T(B*) = T(C*). By part 3,
of Theo, 0, T(A) + T(B) = T(&*) + T(B*) = T(A*B*) = T(4B).
(3) follows from (2).

Although Proposition 5, is a mere reproduction of Cors.
16,17,18 of [15] it proves that the property (v) is a
generalization of the property (#) and provides room for
conjecturing analogues of results about domains with proper-
ty (u) in case of those with property (v) .

The gencralized Krull domains being our immediate con-
cern we state the

Proposition 6. A generalized Krull domain has property(v).

Proof. Let A be an ideal in a GKD R . If A =(0) , it is
finitely generated and so. .we may assume A #£ (0), for
general considerations.

Let 4 be a non zero ideal in R such that T(4A) = R, then
we make a convention that A*® = R = (1)(cf explanation at
the end of this section).

Now let & be a non zero ideal in R such that T(A) # R,
then T(A) = N RP where P ranges over all the minimal

primes of R for which (ARP)2 = 4R_ (cf Theorem 2).

P
Let S = | PisPesecesPn |} Dbe the set of all the prime
jideals of R which contain A, and let
S, = { P!,P3,...P4 } be the set of all those prime
ideals = for which (ARP£)2 # ARp,. Obviously T(a) = N K
where P ranges over all the minimal primes not in Si.
Now consider B = P{ N P: Nseesy N P), by Theo. 4, there

exist x,y € B, such that (x,y) is contained exactly in

P{ (i = 1,2,.-.’111). SO that .
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T(x,y) = N Rp = N Ry = T(4)
PA(x,5) PE S,
and we can take A* to be (x,¥).
Further let A,B be any two ideals in the GD R,and lot

A% ,B¥* be the finitely generated ideals such that T(A) = T(A%)
and T(B) = T(B*). To show that T(AB) = T(A*B*) we proceced as
follows: |

T(AB) = N Ry where P ranges over all those minimal

P
primes for which (ABRP)Z = ABRp. But since(ABRP)2 = ABRp

implies that (ARP)2 = AR, and (BR.D)2 = BRp; P ranges over

P
minimal primes of R for which P # A* and B* i.e. P # AB#

while N Rp (where P ranges over P Z A*B*)is the trasform

of A*B%* and to sum up T(aBR) = T(A*B%*), and a GKD has the
property (v). m

Corollary 4. A Prufer GAD is a T, domain,

Proof. Let R be a Priufer G£D, by the above Proposition, R
has property (v) and being a Prufer domain, R is a Tz domain
(ef (ii) Cor. 5 [15]). Thus applying (3) of Proposition 5,
the result follows.

Compared to Corollary % of [15], we state

Corollary 5. In a GKD R, the following are equivalent:

(1) R is a T, domain

(2) R is a T, domain

(3) R is a T3 domain

(4) R-is a Prufer GKD.

Proof. (1) == (2) => (3) follow from the definition of
T; domains (3) = (4) follows from Theorem 11 of [15], While'
(4) => (1) follows from Cor. Y4, above. ‘

In a similar fashion Cor. 14, of [15] can be restated

for GUFD's, replacing PID by GUF¥D Bezout, but a more general
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result can be brought about with the help of the

Lemma 1. An HCF domain is a Bezout .domain iff it is a
Ty domain.

Proof. Let R be a Bezout domain, then R is a Priufer
domain which is also an HCF domain, but a Prifer domain is
a T, and hence a T; domain. Conversely let R be an HCF -

T, domain., The strategy of our proof is to show that R is a
Pre-Bezout ring, we recall that an integral domain in which
(x,y) = 1 implies that xR + yR = R is a Pre-Bezout domain(
cf [5]). Once we prove that R is Pre-Bezout ,the¢ result will
follow from Proposition 3.2 of [5], which states," A ring
R is a Bugout ring iff it is a Pre-Bezout ring and an HCF
ring',

So to show that R is a Bezout ring we have to show that
any\two co~prime elements in R are co-maximal.

Let x,y be two co-prime elements in R, then obviously
(x) : (y) = (x) ('R is an HCF domain ) and since R is a
T, domain also, T(xy) = T(x) + T(y) , which by Theo. O is
possible only if xR + yR = R. Now X,y being arbitrary, the
result follows. |

The above Lemma enables us to state the

Corollary 6. In an HCF domain R with property (v), the
following are equivalent:

(1) R is a T, domain.

(2) R is a T, domain.

(3) R isra T, domain.

(4) R is a Bezout domain,

Proof., (1) = (2) == (3) obvious, (3) = (4) by Lemma 1,
above and (4) = (1) follows from the fact that R has pro-

perty (v) and is a T, domain (being Bezout).

-
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W know that in a GUFD R, each non zero minimal prime
ideal P is associated to a prime quantum (cf Ch. 1). In
other words cach minimal prime P contains an element which
belongs to no other minimal prime ideal. So that if
EQ,PE,...,EH are minimal primes associated to the prime
quanta q, sq,5...Q,, then q;qg...qn is an element contained
precisely in P, , 2 2e++sP, . This property of the GUFD's gives
rise to the

Corollary 7. The transform of every non zero ideal A in a
GUI'D R, is a localization RS of R wer.t. a set S generated
by a single element of R.

Proof. Let A be a non zero ideal in a GUFD R, and suppose
that = { My,0zs.0.5 I,} is the set of all those minimal
primes for which(ARHL72# ARHL (i =1,2y...,n) and let
Q4 50z sess5Qy bE the prime quanta contained in Hi,Hg,}..,Hn
respectively. Then k = Q4Q5...9n18 precisely the element for
(L = 1,2,...n) and thus T(4) = T(x)

. . 2
which (XRHL) # XRHL

s . ogu
where T(x) = Ry ; S = | x};_,(cf Theo. Oy ). If on the other
hand A is contained in no minimal prime ideal, T(A) = & and

so we can choose X = 1.
The property (v) being at hand we can go still further
to state the
proposition 7. If A is a non zero ideal in an HCF domain

with property (v) then there exists an element x € R such
s o0
that T(a) = T(x) = R, where S = | x*}

S (=0 °
Mainly for our convenience we first state the
Lemma 2. Let R be an HCF domain and let B be an ideal of
R generated by X4 ,Xgs.ses5Xns such that xi have a unit as
their highest common factor then T(B) - R.

n
proof. T(B) = T(X1sXzsee.%Xn) = N T(xi) (cf Theo. Og).
L=l ,
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Suppose that T(B) # R and let y = r/s € T(B) , since R
is an HCF domain we can assume that (r,s) = 1, moreover we
can assume that s is not a unit (since T(B) # R). Now
r/s ¢ T(B) implies that r/s € T(x,) for each i = 1,2,...,0,
that is(r/s)x(* e R for some n; (cf definition of the ideal
transform) but as (r,s) = 1 and R is an HCF domain s|xt
(1 =1,25..44n) for some n; (in cach case)a contradiction to
the fact that x; ,%x,,...,%X, have 1, as their highest commnon
factor and thus the lemma follows.

Proof of the Proposition. Let A be a non zero ideal in R
then, by the property (v) there exists a finitely generated
ideal A% = ( Y4sY2s..0359n) s5ay such that T(A) = T(A*). Let
d be the highest common factor of ¥, s¥sseees¥ns then

T(4a) = T(A*) = T(A(y{ sYa5.++,¥5)) where

Vi sYaseees¥s have 1 as their highest common factor, and so

1

R by the above lemma and

T(A(F!seeesy))

'I‘(y_{,yé,. ..yrv‘)
T(is)= T(F1seee¥n)

it
]

T(A) + T(¥iseeesIn)
T(d) = R[1/4] = R

g

Remark 1. Obviously in the presence of Proposition 7,
Corollary 7, becomes redundant, we have included it because
(i) it shows the extent to which we could go without the
property (v) (ii) it serves as a step towards the more gene-
ral result i.e. the Proposition 7, and (iii) an analogous
result for UFD's is known (cf [3]).

Another explanation that is due 1s to cover the conven-—
tion that if T(A) = R then we can assume that A¥ = (1) = R.
Our first reason for this convention is that there is no
clash between the convention and the requirements of the
definition; that is T(AB) = T(A%B*) . Because if T(a) =R ,

T(AB) = T(4) + T(B) = T(B) = T(B*) = T(a*B*). Thus even if
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there does exist A* £ R,there is no harm in replacing A* by
R. Secondly, we need this convention because, by defining
the property (v) we have dropped the condition that A% c 4
to qpver more general domains and as a result we come across
certain ideals A for which we cannot choose A% other than
(1) = R. kor example:; Let P be a minimal prime ideal in a

gensralized Krull domain R such that PR. is idempotent,,then

P

™P) =NR where P ranges over all the minimal prime

P
ideals of R, that is T(P) = R. And obviously thare exists no

finitely generated P* £ R such that T(P) = T(P*) = R.

3., Rings and their Principal ideal T.ransforms.

An important résult about the ideal transforms appears
in Brewer [2], as Theorem 2.1. For the sake of completeness
we\include it here as

Theorem 8. Let R be a non quasi local integral domain
(domain with more than one maximal ideals) and let {x&} be
the collection of non units of R then R =N T(xa).

Using this theorem as a tool Brewer pr%ved results -
which can be summed up as the

Theorem 9. Let R be a non quasi-local domain and let U Dbe
the set of units‘of R then

(1) (Cor.£-3 [2]) R is integrally closed iff T(x) is
integrally closed for each x € R = U,

(2) ( Proposition 2.4 [2]) R is a Prufer ring iff T(x) is
Prifer for each x € R - U.

(3) ( Proposition 2.5 [2]) R is almost Dedekind iff T(x)
is almost Dedekind for each x ¢ R - U.

(L) ( Proposition 2.6, [2]) R is a Krull domain iff T(x)

is a Krull domain for each x ¢ R - U.
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Note . "Non quasi-local domain'sounds awkward but we
adopt it as an economic equivalent of," .n integral domain
which has more than one maximal ideal " or," An integral
domain which is not quasi local'.
It may be observed that the proofs of parts (2),(3) and
(4) of Theorem 9, depend upon the selection of maximal
ideals or of certain prime ideals which have some property
in common (e.g. the property of being minimal in part(u)).sé
it is possible to push the results stated in Theorem 9, to
a greater generality. To illustrate our observation we state
Proposition 10. Let R be a non quasi local domain then
R has Krull dimension 1 iff T(x) has Krull dimension less
than or equal to 1, for each x € R - U.
Proof, If R has Krull dimcnsion 1 then every localization
of R has Krull dimension < 1, and T(x) being a localization
of R, dimension of T(x) < 1. Conversely let P be a maximal

ideal of R. Since R is non quasi local, there exists a non

. 3 (P
unit x € R - P. Now T(x) = Ry where 8 ={x*} Clearly

PNS=¢ and SO»PRS is a maximal ideal of RS

t=0*
. But as RS
is of Krull dimension 1, PRS is also minimal in RS , While
by the one-one correspondence between Primes in RS and those
primes in R which are disjoint from S » . P is minimal in
R as well.Thus every maximal ideél in R is minimal alsos
implying that R has XKrull dimension 1.
We recall that an integral domain R is a W-domain if

(1) Every non zero prime ideal of R is maximal.

(2) GBvery ideal (equivalently every principal ideal) is
contained in a finite number of maximal ideals of R(cf [10])

Corollary 8. A non quasi local domain R is a W- domain

iff T(x) is a iW-domain for every x ¢ R - U.
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Proof’. Clearly if R is a W-domain, every localization of
R is a W-domain and T(x) being a localization of R the
necessity follows. Conversely assume that T(x) is a W-domain
for each x € R-U, that every prime ideal of R is maximal
follows from Proposition 10 above. And so to prove that R is
a W=-domain, it remains only to show that every element of R
is contained in only a finite number of maximal ideals of R.
Let { P} ae I, be the family of all the maximal ideals
of R. Le¢t x be a non unit in R and let | Pﬁ] be the family
of all the maxima. ideals of R which contain x. Considering
R - H Pﬁ s two possibilities arise:
(a) R -U P, contains a non unit

B

(p) R-U Pp contains no non unit.

In case (a) holds, let y be a non unit in R - % Pﬂ and
consider T(y) = RS 5 S =1} yl} . Clearly PgN S = ¢ for
each P, e | P, {. And soi{P R, } is the family of maximal

B B BS
ideals of RS which contain x, but T(y) = RS being a W-domain

{P/RS } is finite and consequently {P_.} is finite .

B B

In case (b) it is easy to verify that {Pﬁ} is the set
of all the maximal ideals of R. Now select a maximal ideal
P of R and consider R - P. Since R is not quasi-local there
exists a non unit z in R - P. And obviously z being not in
all the maximal ideals comes under the case (a) and hence is
contaihed in only a finite number of maximal ideals of R,
Let { P, }ggibe the collection of all the maximal ideals
containing z and consider T(z) = RS’ Only those maximal
ideals P' are lost in approaching from R to RS for which
P'NS# ¢ i.e. of which z is a member. Now x is a non unit
in Rq = T(z) and T(z) being a W~-domain, x is contained in

m
only a finite number of maximal ideals of RS’ Let |} H;}Lﬂbe
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the set of all those maximal ideals of R, which contain X,

S
then the set of all the maximal ideals of R which contain x
is a subset of { P ffnu { Hjﬁzyhere I; =1} NR.

Generalized Krull domains being our immediate concern,
we abstain from probing into the matter too generally and
state an analogue for generalized Krull domains of part (L)
of Theorem 9, as the

Theorem 11. A non quasi local domain R is a GKD iff T(x)
is a GKD for each non'unit x of R.

Note . Our proof of this theorem is essentially the
same as that of Proposition 2.6 of [2}; but we treat it in
detail since some changes in the proof are needed.

Proof, Since for every x in R, T(x) = RS the necessity is
obvious. Conversely, let for every non unit x in R, T(x) be
a GKD. To show that R is a GKD we have to prove that

(1) Ry is a rank one valuation domain for every non zero
minimal prime ideal P in R.

(2) R =N R, where P ranges over all minimal prime ideals

P
of R.

(3) K¥ach non zero non unit of R is contained in only a
finite number of minimal prime ideals of R,

We first show that every proper prime ideal of R con-
tains a non zero minimal prime ideal and for every minimal
prime (1) holds.

Let P be a non zero prime ideal of R. Since R is non
quasi-local, there exists <t lcast one non unit a in R - P,

: OO

Now T(a) = Rg 5 S = tx'}.0and P N S = ¢. So PT(a) is a
prime ideal in T(a), which is a GKD and hence PT(a) contains
a minimal prime ideal of T(a) which implies that

P = PT(a) N R contains a minimal prime ideal of R.
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Now let { P, { be the collection of all the minimal |
prime ideals cf R. Select an arbitrary P e {Pa} and let x be

a non unit in R - P. Since T(x) = R 3 54 = iXif and

S1

PN Sy = ¢, PRS is a miﬁimal prime ideal in RS and so
1 1

(Re ) is a rank one valuation domain (because R, 1is a
Sy PR81 S
GKD). But
(RS1)PRS = R(PRS N R) = RP ’ that is, for every
1 i

minimal prime ideal P of R, R, is a rank one valuation ring.

P
)

‘Purther let | Ty ! be the collection of minimal

prime ideals of R (xy but

fo}
Hé” N R is the minimal prime ideal quof R,which does not

T(x); then R, = 0 (RS

Sy © St 1)n

. (2} - )
contain x, and so T(x) = Rg, = Q Rpé” (P =1I5NR ).

Now R being a non quasi-local domain

R=N T(x)=n (n RPub = N R, where P ranges
xe R-U cehv 6 70

over all the minimal prime ideals of R.

It can be easily verified that every element of R
belongs to at least one minimal prime ideal of R and so we
proceed to prove that every non zero non unit element of R
is contained in only a finite number of minimal prime ideals
of R. We firgt prove that it is sufficient to show that
there exists a non unit x in R which is contained in only a
finite number of minimal prime ideals, For let x be contained
in a finite number of minimal prime ideals PiyPsseessPnonly.
ile note that {PLiggiis the only set of minimal primes lost A
in approaching from R to T(x) = RSi and that T(x) is a GKD.
Now let y be a non zero non unit in R, clearly if y is a

unit in T(x) then y divides a power of x and hence it cannot
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belong to a minimal prime other than oceurring in the set-
{ PL}: and hence is contained in a finite number of minimal
primes, if on the other hand, y is non unit in T(x) then y

belongs to a finite number of minimal primes { i Z?gi

of
T(x) and consequently y belongs at most to the members of
{ I;N R i?:; u i PL}?=13 in other words we
have established the fact that every element of R is con-
tained in a finite number of minimal primes of R if one is.
Now let x be an arbitrary non zero non unit in R and .
let | Pﬁxl be the set of all those minimal primes of R

which contain x an¢ consider ¥ =R - U P . Two possibili-

By
ties arise:
(1) X contains a non unit for some element x € R = U
(2) X = U, the set of units of R for each non zero
non unit x of R.

If X contains a non unit z for some x then x is a non
unit in T(z) and so the family | IbITKz) ! of minimal primes
of T(z) (containing x) is finite (since T(z) is a‘GKD) and
we are through in view of the above observation. To complete
the proof assume that for each x the family iEbI} of minimal
primes containing x is such that (2) &bove holds, But if (2)
holds for an element x then x belongs to every maximal ideal
of R, because if M is a maximal ideal such that x ¢ M then
there exists an element d such that dx + m = 1 for some m ell,
but as R - U Pﬁx = U, m belongs to some Pﬁx sbut x also
belongs to %% and so 1 € %%:’ a contradiction. So if (2)
holds for each non unit x in R, each non unit x in R is con—'
tained in each maximal ideal of R, which is absurd in a non

guasi-local domain.

Corollary 9. Let R be a non quasi-local domain, then R is
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a Priifer GKD iff T(x) is a Prifer GKD for each non unit x in
R.

Now we consider the case when an integral domain R is
quasi~local. One dimensional quasi-local domainsturn# out to
be interesting enough to be treated separately and is the
subject of the following

Proposition 12. In an integral domain R with field of
fractions K # R the following statements are cquivalent:

(1) k is a one dimensional quasi-local domain,

(2) for every pair of non zero non units of R there exist
m and n such that xlym and ylxn.

(3) for every non unit x in R, T(x) = K

Proof. (1) & (2) can be easily established, -

(2) = (3) 1let x be a non zero non unit in R, then

i}"o

{x (=0

T(x) = Ry Where § but by (2) every non zero non
unit of R divides a power of x, that is § =R - {o} for each
non zero non-unit X in R,

(3)=>(2) 1If T(x) = Rg = R[1/x] = K then obviously every
element of R - {0} divides some power of x and X being arbit-
rary the result follows. |

We note that for a one dimensional quasi-~local domain R;

R#Z N T(x) ( x varying over R - U ). And on the other
hand for every GKD R which is not a rank one valuation
domain , R = f\T(x) ; X e R-U . This fact can be verified
as follows:

Let R be a generalized Krull domain which is not a
valuation domain and let P be a minimal prime ideal in R
then there exists a non unit x in R = P. But T(x) = N Rp

P minimal and x ¢ P. and since for each minimal prime P, e

above expression holds {~’T(x) = N (n RP) = N RP where
xeR-u x x¢p
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P ranges over all the minimal primes of R ( because for each
minimal P, RP appears in the intersection). Moreover if we
impose the condition upon R, that R = nﬁ E(x) , the possi-
bility of R being a one dimensional qu;;i:local domain is
automatically ruled out (cf Proposition 12).

Now to be sure of what criteria can be obtained for a
gquasi-local domain to be a GKD we state the following

Propbsition 13, Let R be an integral domain such that

(1) R= NnT(x) ;3xeR~-U

(2) T(x) is a GKD for each non unit x in R.

(3) R contains at least one non unit r which is contained
in only a finite number of minimal prime ideals of R, then
R is a GKD. |

Proof. If R is non quasi-local it is sufficient to assume
that (2) holds (cf Theorem 8).

Now let R be a quasi-local domain: (1) implies that R
is not bne dimensional and hence for each minimal prime P of
R there exists a non unit z in R = P and so (T(Z))PT(Z)
is a rank one valuation domain(by (2) above) while
CT(;))PT(Z) = Ry is obvious, in other words, for every
minimal prime P of R, RP is a rank one valuation domain.

R ;S=izi}

Now T(z) 5

1]

=N R(PT(Z) h R) = N RP where P ranges over
all the minimal primes of R which do not contain z, and
since for each minimal prime P of R, there exists a z Z P
R= NnT(x)=n (n RP) = N Ry (P ranges over all
X €R-U xeR-v Ppx
minimal primes of R). Finally as nentioned in the proof of
Theorem 11, (3) implies that every non zero non unit in R

is contained in only a finite number of minimal primes of R,

and thus we have shown that all three requirements for R to
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be a GKD are fulfilled.
Cororollary 10. A Noetherian domain R is a Krull domain
iff (1) R=nNT(x) ;3 xXeR~-T

(2) 7T(x) is & Krull domain for each x ¢ R - U.

Remarks 2,

(1) Condition (3) in Proposition 13, seems to be redun-
dant but we are unable to prove it,

(2) Local Krull domains are not difficult to find but a
quasi local GKD does not seem to have appeared in literature
before and so we provide an example as follows:

Example A. Let fRDbe the set of real numbers, @ the set
of positive rationals and construct .

T=4 S x*}reR; o ecall.
It can be easily verificd that T is a one dimensional
Bezout domain. Let ybbe an'indeterminate over T and let
D = T[y]. Obviously the elements in D are functions of y
and of (some positive rational) powers of x. Let
s =1t £f(y,x*) | £(0,0) £ 0 }.
It only needs to be pointed out that D - S is a prime

ideal and so D, is a quasi-local domain. Further since T 1is

S

a Bezout domain, T[y] = D is an HCF domain and consequently

the quasi-local domain Dg is an HCF domain{cf Lemma 9 Ch 1).
Wow let a be a non zerc non unit of DS’ Vle can write

o . o . c s
a =ry + 8Xx ; rys € D,. And since ry + sx 1s a finite sum

S
we can write a =y x (r'y + s'xﬁ) such that the expression
in braces is not divisible by y nor by some positive
rational power of x. The factorization of r'y + s'xﬁ= Zy
depends upon the highest power of y appearing in the reduced

expression for z, and so the number of factors of z is

finite i.e. 'y + s'xP is a product of atoms and hence of
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primes ( in an HCF domain every atom is a prime). Since a is
arbitrary, we conclude that every element a of DS can be
written as x?gsizg%..p?r where p; are primes. But X* is a
quantum = (cf Def. 1) and because of the HCF property is a
prime quantum (cf Lemma 8). Now each prime power being a
quantum we conclude that every element in DS is the product
of a finite number of distinct prime quanta which means that

D. is a GUFD and hence a GKD (cf Theo. 12,Ch.1)

S
(3) We feel that it only needs to be pointed out that the

construction in the above example is analogous to that of

regular local rings. But we do not know to what extent this

guasi-local GUFD or any other domain constructed like this

one should behave like a regular local ring.

L, Miscellaneous Results.

In the first part of this section we shall establish
necessary and sufficient conditions for an ideal A in a .
Prufer GKD R to be idempotent, using the ideal transfors;
where an ideal 4 is called idempotent if A2 = A. Then we go
on to consider semi quasi-local Prufer GKD's which we shall
call e~domains for the sake of brevity. Finally we provide a
negative answer to o a question left open in [15],p. 210.

To start with we prove the following

Lemma 3. Let R be a completely integrally closed integral
domain with quotient field X, and let Albe ajygggﬁﬁotent
ideal in R thenT(A) = R.

Proof. Suppose that T(A) = Ry, then obviously Ry 2 R.
Consider an element x in R,, by the definition of the trans-
form xAn c R for some positive integer n. We observe that

m
(a) R being a ring, x € R for all positive integers m
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(b) A being idempotent A™ = A, for all n, and from these
observations we infer that xmA c R for every positiye integer
m, but since R is completely integrally closed x e‘R, while
X being an arbitrary element of kR, it follows that R, c R,
and hence the lemma,

Proposition 14. An ideal A in a Prufer GKD R is idempotent
iff T(A) = R.

Proof. If A is idempotent the~%a&u&f'faﬂgvtff-from the
above lemma; because a GKD is completely integrally closed.
For the converse we recall that T(4) = N R, where P ranges
over all the minimal prime ideals of R for which(A'RP)2 = ARP
(Theorem 2 ). But T(4) = R implies that (ARP)2 = ARy for

each minimal prime P in R, while each minimal prime in a
Prufer GKD is maximal and so (ARP)2 = A?RP= ARy, for each
maximal ideal P of R, and this precisely means that A% = A
(cf Proposition 3.13 [24]).
Corollary 11. An ideal A in a Prufer GKD is idempotent
iff it is the intersection of idempotent prime ideals.
Proof. If A is expressible as the intersection of idempo=-

tent prime ideals, the result is obvious. For the converse

we recall that a Prufer GKD is a ii-domain and so
A= INI; Nese Iy where II; are Pi-primary(i = 1,..n).

- R, and so(ARP)2 = AR. that is

Now T(A) = N R o

P

(AR )2 = (IR )2= AR, = IR, which further implies that
Py P, PL Py

2. . .
HLRPL“ H“RPL“ PLRPE But P; being Pi{-primary

Ly =MiRp

NR=PR, NR=P, and thus follows the result.
L L

e— domains.,
To avoid repetition of too long a name we shall call

a Semi quasi-local Prufer GKD an e-domain.
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Before we display one or two results about e—domains,
we need to mention that, in an integral domain R the inter-

section J of maximal ideals of R is called the Jacobson

radical of R. It is also helpful to keep in view that if an

integral domain R is an intersection of a finite number of
valuation rings then R is a Bezout ring (cf [23] Theorem 107)
in other words a semi quasi-local Prufer domain is a Bezout
domain with a finite number of maximal ideals. And from
these observations it follows that an e-domain is a Bezout
GUFD. Recalling also that the intersection of all thes non
zero prime ideals of an integral domain is called its
Pseudo radical we state the

Lemma L.,

(1) A GKD R with Pseudo radical § is an €-domain.if and
only if Q £ O. |

(2) An €-domain R with Pseudo radical Q is a semi-local
PID iff T(Q) = K the field of fractions of R.

(3) In an integral domain R with property (v) (cf Def.1)
the folowing are equivalent:

(a) every overring of R is the transform of a finitely
generated ideal .

(b) wvery overring of R is the transform of an ideal of R.

Proof. (1) can be verified and (3) is just obvious.

"
(=i

(2) If R is a semi-local PID, let { p R}._, be the set of
L

all the maximal ideals of R then @ = p1Pz2...DnR and so
T(Q) = T(DiDPzeseDn) = R[1/Dip2e--Pn] = K .
Y
To prove the converse we recall that if { P f.., is the

set of all the maximal ideals of R then

n n
J=Q= NP and T(Q) = N T(QR, )
“: 1 =t P i

Now suppose that there exists a maximal ideal P, say
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which is idempotent i.e. non principal then

7
T =N T(Ni. N T{ & nT .
(Q) ),=' ( Fad ‘L)J ) ;'#)‘“ k 5 (P‘ ) (QRPM)

Obviously T(QRP ) = T(PmRP ) = Rp # K and thus T(Q) # K, a
m m m

contradiction implying that every maximal ideal in R is not

idempotent and R being a Bezout GUFD the result follows from

Theorem 16, Ch. 1.

e recall from [14] that an integral domain R is sadd

to have property (T) if every overring of R is the transform
of an ideal of R,and if e&ery overring of R is the transform
of a finitely generated ideal of R then R is said to have
the property (FT). Moreover a domain with (FT) is a scmi
quasi-local Prufer (that is Bezout) domain. And in connection
with the GKL's we collect our observations in the form of

Theorem 15. In a GKD R with the field of fractions K # &
the following wre equivalent

(1) There exists a non zero non unit element x in R such
that T(x) = K .

(2) The pseudo radical Q of R is non zero.

(3) R is an e€-domain.

(L) R has the property (T).

(5) R has the property (FT).

Proof. (1) = (3); T(x) = K implies that there exixts
no minimal prime ideal P of R such that(xRp )2 = xRy i.e.
x is contained in every minimal prime ideal of R and because
R is a GKD R must have a finite number of minimal primes

but this makes R an intersection of a finite number of rank
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one valuations domains and this obviously makes R an e-dowain.

(3) & (2) follows from Lemma L4, above.

(3) =»(5) Being an e-domain R is a Bezout GUFD with only a
finite number of minimal( also maximal) prime ideals,. Thc
3ezout property implies that every overring R, of R is a
localization of R i.e. R, = Rg where S intersects only a
finite number of minimal primes of R (because R has only a
finite number of minimal primes of its own) and the GUID
property implies that there exists an element x which
belongs precisely to those minimal primes which intersect S

and thus R,;= R, = T(x) .

S

(5)¢&> (L4) follows from (3) of Lemma 4,. And completdng
the cycle (5) = (1): An integral domain with property (ET)
is a semi quasi-local Prufer and so R being a GKD also has a
finite number of maximal ideals which implies that there
exists an element x in R which is contained in each maximal
ideal of R showing that T(x) = K.

Gilmer and Huckaba left a question open in [15] p. 210,
which can be stated as follows," If A and B are ideals of a
Krull domain D contained in no common minimal prime ideals

does T(AB) = T(a) + T(B) imply that A4 + B = D?"

Our answer to this question is,'"Not necessarily'. For
suppose that R is a Krull domain which is not a Dedekind .
domain and let A,B be two idlals of R such that

T(AB) = T(4) + T(B) and A + B = R. Since R is
not a Dedekind domain there exists a maximal ideal ! which
is not minimal, further A + B = R

T(ABM) = T(AM) + T(Bu) (cf (2) Theo. O=)
Now obviously AM and BM are contained in no common

minimal primes and T((aAM)(BM))= T(aBM) = T(AM) + T(BM)
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but (AM) + (BM) # R.
The above explanation of the answer is rather unconven=-
tional but it provides us with the
Theorem 16. A GKD R which is not a ficld is a Prifur GKD
iff for all ideals A,B of R contained in no common pminiaal
primes T(AB) = T(A) + T(B) implies that A + B = R.
Proof. Let R be a Prifer GKD and A,B be two ideals which
are contained in no common minimal primes then
(1) T(aB) = T(A) + T(B) follows from the fact that a
Priifer GKD is a T, domain (ef Cor. 4)
(2) 4 + B = R, follows from the observation that if
A + B is contained in a prime ideal P then A ¢ P and B c 2,
and since A,B are contained in no common minimal prime ideal
A + B is contained in no minimal prime ideal . But since
every non zero prime ideal -in a Priifer GKD is maximal,
A + B is contained in no maximal ideal that is A + B = R.
Conversely let R be a GKD in which the given condition
holds and let M be a maximal ideal in R which is not minimal.
Select a non zero non unit x in R - and consider the trans-
form of (xM). Since M is contained in no minimal prime ideal
of R, T(M) = R (cf Cor. 2) and the requirement that xR and H
. should be contained in no common ninimal prime ideal is |
satisfied, Moreover T(xM) = T(x) + T(M) (cf (f) Prop. Os)
so that for any non zero non unit x of R, xR + M = R, that
is if x ¢ M even then xR + M = R, a contradiction, estab-
lishing that M is also minimal. Since M is arbitrary, cvery
maximal ideal of the GKD R is minimal i.e. every non zero
prime of R is maximal and by Lemma 18 Ch. 1, R is a Priifer
GLD.
Remarks §. A careful study of [15) reveals that most of
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the interesting results stem from an effort to study the
conditions under which a pair of ideals A,B satisfics the
transform formula i.e. T(AB) = T(A) + T(B). Obviously if 4,B
satisfy the transform formula then T(A) + T(B) is a ring .
The conjecture that if T(A) + T(B) is a ring then

T(4) + T(B) = T(4B) is not correct, and part (vii) of
Corollary 23,[15] ensures the existence of the case where
T(A) + T(B) is an overring of the integral domain R but

T(AB) # T(a) + T(B). It is natural to ask that if
T(a) + T(B) is an overring of R, under what conditions

T(A) + T(B) = T(AB) ? The answer is the following simple

Statement A. Let A and B be two ideals in an integral
domain R such that T(A) + T(B) is a ring then

T(4) + T(B) = T(AB) iff T(4B) = T(A)T(B).

]

Proof. Since T(A) + T(B) is a ring T(A)T(B) ¢ T(a) + T(B)
so that T(AB) = T(A)T(B) ¢ T(4) + T(B) c T(AB) (cf (4)
Prop.0, ). Conversely T(AB) = T(4) + T(B) implies that
T(4) + T(B) is a ring and so T(4A) + T(B) = T(A)T(B) and hence
T(AB) = T(A)T(B).

According to (iii) Theorem Oy, if an ideal A is inver-
tible then T(aB) = T(4)T(B) for.any other ideal B, applying
this result directly to the Dedekind domains we find that
T(AR) = T(A)T(B) for every pair of ideals 4,B in a Dedekind
domain., And generally

Statement B, For every pair of ideals A,B of a T1 domain
R, T(AB) = T(A)T(B).

Proof., It is easy to verify that if T(A) + T(B) is an
overring then T(A)T(B) = T(4) + T(B) and since R is a T, do-
main, the statement follows.

The above observations lead to the integral domains R
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in which T(aB) = T(a)T(B) for every pair of ideals A,B of R,
we shall call these integral domains, T' domains . The T’
property is not very strong as we shall see presently and so
we content ourselves with the one or two results worth
mentioning:

Statement C. 4 T' domain R is a T, domain iff T(A) + T(B)
is an overring of R for every pair A,B of igeals of R.

The proof is obvious.

Statement D. An HCF domain R with property (v) is a
T' domain.

Proof. By the HCF and the (p) properties, for every ideal
A of R there exists an element a € R such that T(A) = T(a).
So that T(aB) = T(ab) = T(a)T(b) ; because every principal

ijdeal is invertible, and consequently T(AB) = T(A)T(B).
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