PROPERTIES OF WANNIER FUNICTIONS

BY

MEHMET AKİF KÖPRÜLÜ

B.Sc., M.Sc.

THESIS SUBMITTED FOR THE DEGREE OF DOCIOR OF PHILOSOPHY IN THE UNIVERSITY OF LONDON

ProQuest Number: 10098227

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098227
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSnT: $4 C T$

CHAPTER 1. Irtroduction

CHAETMR 2. Definition and basic properties of Wannier
functions \quad it
2.1 Definitjon 11
2.2 Wannier functions are localized functions 13
2.3 Vannier functions constitute a complete.
orthogonal set of functions
2.4 The one electron bloch functions can be obtained
from the Wannier functions, and vise versa
2.5 Wannier functions and monenturn eigenfurctions are $\quad 17$
Fourier transfoms of euch: other

2.7 Wannier functions of same band but of different 19 looations are identical
2.8 Summary 20

CHAFMER 3. The differential equation and the variational
princinle for the Wannier functions 21
3.1 A differentiel equetion for the Wannier furction 21
3.2 A variational procedure 24
3.3 Sone remarks on the arplication of tie vaniational 28 principle
CHAPTPR 4. Free electron Wamier functions calculated
for several crystal types 31
4.1 General 31
4.2 One dimensional lattice 34
4.3 Two dimensional lattices 35
4.3.1 Rectangular lattice with $a_{2} / a_{1}=n$ 35
4.3.2 Particular case ($n=1$), square lattice 38
4.4 Three dimensional lattices 39
4.4.1 The simple hexaconal lattice 39
4.4.2 The closed-packed hexaconal lattice 41
4.4.3 The simple cubic lattice 42
4.4.4 The face-centered cubic la:tice 44
4.4.5 The body-centered cubic lattice 46
4.5 Graphs 51
CHAPTER 5. A perturbation method for Fannier functions 53
5.1 The perturbation method in the gene:al case 53
5.2 The perturbation method in the case where the 61
Wannier functions have small overlap
5.3 The perturbation method in the case where the 66 perturbing potential has inversion symmetry
5.4 Second order corrections 68
CHAPTER 6. Nearly free electron Fannier functions by the
perturbation method that we have succested 72
6.1 Introduction 72
6.2 Unperturbed (free electron) energy Fourier coef 75 ficients and Wannier functions (normalized)
6.3 Matrix elements of the perturbative potential 76
6.4 Calculation of the coefficients $C_{q}\left(X_{p}\right)$'s 79
6.5 The perturbed Wannier function 81
6.6 Comparison with the exact Wannier function 83
6.7 Discussion of the results 84
CHAPTER 7. Miscellaneous properties of Wannier functions 86
7.1 Reality of Wannier functions 87
7.2 Symmetry and antisymmetry of Warnier functions 89
7.3 Exponential fall off of Wannier functions in three 92 dimensions
7.4 Discussion of the asymptotic kehavior 95
7.5 Rate of exponential decay of Wannier functions in three dimensions 96
7.6 Kohn's One dimensional argument 98
7.7 For weakly bound electrons exponential decay is 101 given by the Fourier coefficients of the pertur bing potential
CHAPTHR 8. On the choice of the arbitrary phases 104
8.1 A method for obtaining the most localized Wannier functions in three dimensions 104
8.2 The most localized Wannier functions for a crys tal (three dimensional) with inversion symmetry 112
CHAPTER 9. Exact Wannier functions in three dimensions (for an intermediate potential) 113
9.1 General 113
9.2 On the separability of the Wannier functions 114
9.3 The potertial field 116
9.4 Exact Wannier functions for the one dimensional problem 117
9.4.1 Formulations for obtaining the coefficients of the prave functions 118
9.4.2 Allowed range of the parameters k_{1} and k_{2} (the bands) 122
9.4.3 Formulations for obtaining the Wannier functions 123
9.4.4 Wannier functions for the odd numbered bands 124
9.4.5 Wannier functions for the even numbered bands 127
9.4.6 The calculated Wannier functions for the one dimen sional problem 129
9.5 Exact ground band Wannier function in three dimen sions 133
9.6 Exact three dimensional Wannier functions for higher bands 136
9.7 The Wannier function at large distances from the origin 149
CHAFTER 10. The approximate Wannier functions for tightly bound electrons 156
10.1 General 156
10.2 A review of the tight binding approximation 157
10.3 Extensions of the tight binding approximation 160
10.4 About the overlap inteerals 162
10.5 The Wannier function for a monatomic crystal 166
10.6 The symmetry properties of the Wannier function 169
10.7 The calculated Wannier function 171
10.8 The Wannier functions for tightly bound elec trons, the general case 176
10.9 The Wannier function for a degenerate level 179
10.10 The Vannier function for a crystal with different atomic species in the unit cell 180APPENDIX 1. An outline of the basic principles of
Wannier representation
A1. 1 Introduction 182
A1.2 The basic principles of Wannier representation 185
A1.3 The problem of the phases 195
APPENDIX 2. Wannier representation equations and theproblems connected with point impurities and extemal
fields (non-periodic perturbations) 199
A2.1 General 199
A2. 2 Crystal momentum representation (C.M.R) 201
A2. 3 Kohn-Luttinger modified crystal momentum representation (I.C.M.R) 202
A2.4 Wannier representation 203
A2.5 Wannier representation equations 204
A2. 6 Slowly varying perturbing fields (the first appr.) 205
A2.7 Replacement by differential forms 207
A2.8 Expansions using Wannier functions of a single band only (the second appr.) 209

ABSTRACT

"Wannier functions provide us with a means for the development of rigorous theorems which are analogous to the crude theorems we might derive with a tight binding approximation. However, a good and accurate Wannier function would be extremely difficult to calculate and its str ucture would be quite complicated. ${ }^{>} 1$

Excluding calculations obtained using the O.A.O. approximation few works exist on the mathematical properties of Wannier functions and only very few have been explicitly determined.

The present study attempts to provide a partial solution for this situation and seeks to extend the use and knowledge of these functions. First, a theoretical investication is made of the mathematical properties of Wannier functions and then some calculations are carried out to obtain some of these functions for various furms of poiential fields.

The original results obtained concern;
I) Free electron Wannier functions for many of the familiar crys tal types.

II) A method for obtaining Wannier functions from relatively sim ple functions (unperturbed wannier functions). The method has been appli ed to several particular cases (potential field with inversional symmetry etc.) and has been modified for other applications.

III) Nearly free electron Wannier functions calculated both using analytical methods and the method outlined in section II .

JV) 'The extension of Kohn's one dimensional treatment to three dimensions using a new approach.

V) The relation, that for weakly bound electrons the rate of exponential fall-off of the Wannier functions is given by the Fourier coefficients of the perturbing field.

VI) An enalytic method to find the arbitrary phases of the Bloch functions which yield the most localized Wannier functions.

VII) Exact three dimensional Wannier functions for an inter mediate potential field. The expressions for these functions have been eiven in analytic forms and can be applied by adjustment of parameters to similiar problems.
VIII) Finally, the Wannier functions for tightly bound elec trons for a B.C.C. lattice. The atomic analogy of these functions ras been discussed including some miscellaneous cases involving the presence of different atomic species in a unit cell etc..

CHAPTER I

1. INTRODUCTION

In 1928 Bloch ${ }^{1}$ made the suggestion of approximating the wave function of an electron in a eiven energy band by linear combinations of atomic orbitals (abbreviated L.C.A.O) which has ereatly influenced subsequent development of the methods of calculating electronic ener gy levels of solids.

He was also the first to realize that solutions of Schrödinger's equation for solids (Bloch functions) may be expressed in terms of a plane wave modulated by a function $U_{n}(\underline{k}, \underline{r})$ which has the period of the lattice (Bloch's theorem), though Floquet in a purely mathematical sense had derived such a result much earlier (for a discussion of Floquet's theorem and other related topics see for instance wil:on ${ }^{2}$ Whittaker and Fatson ${ }^{3}$). Both the approximation and the periodicity condition for crystal orbitals, through which his name perpetrated are a result of the translation symmetry in crystals.

Bloch's method received immediate applications because there were few other methods available at the time and also because of iis conceptual clarity. However, there was a serious drawback connected with the method since the free atomic functions used in the usual Bloch sumnation, though normalized, were not orhogonal; for in real crystals the atomic orbitals extended considerable further than the interatomic distance hence giving rise to non-zero overlap integrals.

1 Bloch, F. 2. physik 52, 555 (1928).
2 Wilson, A.H.,The Theory of Metals, $1^{\text {st }}$ ed. Camb. Univ. Press, New York (19 :
3 Whittaker, E.T. and Watson, G.N., Modern Analysis, Camb. Univo Fress, Neryork (1943).

Furthermore the wave functions constructed from these non-ortho Eonal basis functions were not exact solutions of Schrödinger's equation for the one electron problem.

IThe existence of this difficulty mas pointed out, soon after the appearance of Ploch's suggestion, by $\operatorname{Slater}^{4}(1930)$, Vleck and Shemman ${ }^{5}$ (1935), and Inglis ${ }^{6}$ (1934).

At first, in the development of the tight binding met hod all such overlap integrals were ignored, however, in later years attempts were made to overcome this difficulty either by ta king account of nonorthogonality (i.e. see Mulliken ${ }^{7}$ et al, Hoffman ${ }^{8}$ et al, Wohlfarth ${ }^{9}$ et al, Coulson ${ }^{10}$ et al, etc.). or by the construc tion of Bloch sums from orthoconalized atomic orbitals. We shall consider here only the latter method.

In 1936 Landshoff ${ }^{11}$ worked out an expression for the ortho gonalized atomic orbitals (O.A.O.) using a linear combination of free atomic functions, where the coefficients of the expansion were ex pressed in terms of overlap integrals. This treatment was later on reformulated and developed by löwis: ${ }^{12}(1950)$ who utilised a matrix notation for the cases involving larger overlap integrals. In 1951
4) Slater, J.C. Fhys.Rev. 35,509 (1930)
5) Van Vleck, J.H. and Sherman, A. Rev. hod. Fhys. 7,167(1935)
6) Inglis, D.R. Phys. Rev. 46, 135(1934)
7) Hulliken,R.S.,Rieke,C.A.,Orloff,D., and Orloff,H.,J.Chem. Fhys.17,1243
B) Koffmann, T.A. and Kónya, A. J.Chem. Phys.16,1172(1948)
9) Wohlfarth, E.P. Proc. Whys. Soc. $661,859(1953)$
10) Coulson, C.A. and Taylor, R. Proc. Fhys. Soc. A65,815(1952)
11) Landshoff,R. Z.Inys. 102,201(1936);Fhys. Rev. 52,246(1937)
 ii) Arkiv Mat. Astron. Fis. vol.A35,no.9(1947);no.30(1948). iii) J.Chem. Fhys. 18,365(1950).

Löwdin ${ }^{13}$ used his extended scheme to calculate the energy bands for sodium. This treatment was later criticised by Raimes ${ }^{14}$ (1954). In a rigorous study where the crystal wave furction was approxima ted by several Bloch sums of orthogonalized atomic orbitals, Ma ter and Koster ${ }^{15}$ (1354) sugeested that this scheme would be used as an interpolation procedure to obtain additional information about energy bands once certain minimum information had been obtained by other means.

Thus to recap;
The first approach has the disadvantage of using a nonorthogonal and non-complete set of functions (and hence yields crystal wave functions which are not exact solutions of the one eleotron Schrödinger equation) and the second method, though ortho gonalized, is only an approximation to the wave function, since in an expansion in Landshoff's sense one only considers a finite num ber of terms (in the general case one also approximates the crystal wave function by a finite number of Bloch sums of O.A.O.).

A set of basis functions which have the orthogonality (and completeness) lacking in the atomic orbitals of the tight binding scheme was first introduced by "annier ${ }^{16}$ in 1937 which in subsequent literature has come to bear his name. The wave functions construc ted by linear combinations of irannier furctions are exact solutions

13 Löwin, P.O., J. Chem. Phys. 19, 1570-79 (1951)
14 Raimes, S., Proc. Phys. Soc. A67, 52 (1954)
15 Slater, J.C. and Koster, G.F. Fhys. Rev. 94. 1199 (1954)
16 Wannier, G.H., Phys. Rev. 52, 191(1937)
of the one-electron Schrödincer equation. We will briefly deli neate the properties of this latter representation.
i) Wannier functions are associated with unit cells rather than atomic centers (and for each unit cell there is only one such function).
ii) For each band there is one and only one Wannier function (under certain assumptions). Therefore, in expanding an ex act wave function associated with a certain band, cnly a single sort of Yannier function is to be used.

These functions which may be approximated by orthogonalized atomic orbitals in the tight binding scheme are not, in fact, generally O.A.O.s as often quoted in the literature. They repre sent a more general class of functions and, as we have shown in the text, even in the case of quasi-bound electrons only in spe cial circumstances are they identical with an O.A.O. . However, the analogy is useful for a discussion of the behaviour of "Tan nier functions.

Wannier functions are localized; the exact nature of this localization is however quite complicated and as we have shown in the text the degree of localization will vary with the (arbitrary) choice made for the phases of the Bloch functions. However in or der to obtain a picture of the behaviour of Wannier functions one has to consider them for the limiting cases of bound and free elec0) trons where in the first case they behave like free atomic func tions and therefore are strongly localized around lattice points
and decrease outwards exponentially, while in the second case they behave like sinx/x in each basic direction and therefore oscil late and decrease rather slowly (exterding over many unit cells). Returning to the historical outline, in his 1937 paper wannier ${ }^{16}$ alsc set up an important theorem (known as Wamnier's theorem) with the in_ tention of using it in the problem of excitons which eventually led to the setting up of the roots of the Fannier representation (see appendices 1 and 2). Slater ${ }^{17}$ some twelve years later was the first to realize this. This development was soon followed with works by Adams $18,19,20,21(1952-1957)$ who generalized Nannier's theorem to take into account transitions between eneryy bands. Koster ${ }^{22}$ (1954), Koster and Slater $23,24,25(1954)$, James $^{26}(1954)$, Friedel $^{27,28}(1954)$, Clouston ${ }^{29,30}(1962)$, des Cloizeaux ${ }^{31}(1963)$ and others ${ }^{314}$ subsequently

17 Slater, J.C., Fhys. Rev. 76, 1592 (1949)
18 Adars, E.N., Fhys. Hev. E5, 41 (1952)
19 Adams, E.N.,J. Chem. Ehys. 21, 2013 (1953)
20 Adams, E.N., Fhys. Rev. 102, 605 (1956)
21 Adams, F,N., Phys. Rev. 107, 698 (1957)
22 Kuster, G.F., Fhys. Rev. 95, 1436 (1954)
23 Koster, G.F.and Slater, J.C. 94, 1392 (1954)
24 Koster, G.F. and Slater, J.C. 95, 1167 (1954)
25 Koster, G.F. and Slater, J.C. 96, 1208 (1954)
26 James, H.M., Phys. Rev. 76, 1602 (1954)
27 Friedel, J., Adv. Fhys. 3, 446 (1954)
28 Friedel, J., Can. J. Fhys. 34, 1190 (1956)
29 Clogston, A.j.: Fhys. Rev. 125, 439 (1962)
30 Clogston, A.N. Phys. Kev. 136, A1643 (1964)
31 des Cloizeaux, J. Phys. Rev. 129, 554 (1963);135,A698 (1964)
31A Also see Wolff, P.A. Fhys.Rev. 124, 1030(1961), Lax, M. Fhys. Rev. 94, 1391 (1954), and the references given in appendix 3.
enlarged the scope of the Wannier representation.
In 1952 Slater ${ }^{32}$ proved that crystal momentum eigenfunctions and Wannier functions are Fourier transforms of each other; obtain ed explicitly the one dimensional Wannier functions for a cosine potential with the use of the momentum eigenfunctions and also indi cated how his calculations may be extended to a larger number of dimensions.

This was one of the first calculations involving "annier func_ tions in the presence of a potential field (excluding the approxi_mate approach of the tight binding scheme). IIis approach however is different to that used in the present work.

In 1953 Parzen ${ }^{33}$ and Koster ${ }^{34}$ derived independently a diffe_rential equation (equivalent to Schrödinger's equation) as well as a variational method appropriate to these functions.

Wainvright and Parzen ${ }^{35}$ later in the same year used the vari_ ational method to calculate iannier functions (in one dimension) for a square potential and also for the energy bands of lithium (with apreference towards the use of momentum eigenfunctions). This work has been criticised. The variational principle has received little application since that time.

In 1959 Kohn 36 studied the properties of Schrödinger's equa_tion in one dimension in a periodic field with inversion symmetry under the assumption of nondegenaracy with emphasis on the nature
of the associated Bloch waves and Mannier functions. This was the first thorough investigation of the analytic properties of Wannier functions. It was shown that under the conditions imposed, there is one and only one Wannier function which is real and symmetric (or antisymmetric) through an appropriate site which falls off exponen= tially with distance (see chapter 7 , where we have proved that in the presence of a weak field the rate of exponential fall off is given by the Fourier coefficients of the applied field).

Inspite of its leading contribution in specifying the nature of these functions the approach in this paper was such that, an extension to a larger number of dimensions would hardly be possible. Also this work did not provide a practical means of choosing the most concentrated Wannier functio.s in more general circumstances.

The criteria for such a choice came from Weinreich ${ }^{37}$ (1965) who by means of a variational procedure derived a differential equation solutions of which provided the particular phase functions which jield the most localized Wannier functions. This method, how ever contains an approximation (see chapter 8 , where we have given an aralytic method to determine the phase functions under discussion. The method is also particularly useful for understanding the behaviour in some particular cases.).

A recent work on the properties of Wannier functions is that of Ferreira and Parada ${ }^{38}$ (1970) who showed that the Nannier functions
37) Weinreich, G., Solids, Elementary Theory for Advanced Students, pp. 134., Wiley, New York, 1965.
38) Ferreira, L. . and Parada, N.J., Fhys. Rev.B, Vol.2, 1614(1970).
calculated by sumning Bloch waves obtained point by point by a k.p perturbation are the most localized.

For an account of some related topics we refer the reader to an extensive review by Elount ${ }^{39}$ (1962)

Further references to be found in the book.
39) Blount, E.I., Solid State Physics 13, 305 (1962)

CHAPTER 2

DEFINITION AND BASIC FROPERTIES OF WANNIER FUNCTIONS

2.1 DEFINITION

Let $\quad \psi_{s}(\underline{k}, \underline{r})$ be exact solutions of the one, electron Schrödinger equation of the crystal potential, then these functions are orthogonal (and may be nornalised by multiplying by a suitable constant) in the following sense,

$$
\int \psi_{s}\left(\underline{k^{\prime}}, \underline{r}\right) \psi_{t}(\underline{k}, \underline{r}) d^{3} r=\delta_{s t} \delta\left(\underline{k}-\underline{k}^{\prime}\right)
$$

Whole crystal
Then from those wave (Bloch) functions the Wannier function (i.e the one for the $s^{\text {th }}$ band and centered at lattice site \mathbb{R}_{n}) is def_ ined as follows

$$
\begin{aligned}
a_{s}\left(\underline{r}-\underline{R}_{n}\right) & =\left(\Omega_{B}\right)^{-1 / 2} \int \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{n}\right) \psi_{s}(\underline{k}, \underline{r}) d^{3} \underline{k} \\
& =\frac{\Omega^{1 / 2}}{\cdot(2 \pi)^{3 / 2}} \int \exp \left(-i \underline{k} \cdot \underline{R_{n}}\right) \psi_{s}(\underline{k}, \underline{r}) d^{3} \underline{k}
\end{aligned}
$$

Khere,
Ω is the volume of the unit cell and $\quad d^{3} k=d k_{x} d k_{y} d k_{z} \quad 2.3$
and the integral is carried out over one particular B.Z only (i.e for the above case it is carried out over $s^{\text {th }}$ B. Z only)

The above equation can be put into a more convenient form simply by replacing the wave function with the Bloch wave form.

$$
\psi_{s}(\underline{k}, \underline{r})=\exp (\mathrm{i} \underline{\mathrm{k}} \cdot \underline{\mathrm{r}}) u_{\mathrm{s}}(\underline{\mathrm{k}}, \underline{\mathrm{r}})
$$

$$
2.4
$$

Then,

$$
a_{s}\left(\underline{r}-\underline{R}_{n}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \int_{s^{t h}} \exp \left(i \underline{k} \cdot\left(\underline{r}-\underline{R}_{n}\right) u_{s}(\underline{k}, \underline{r}) d^{3} k\right.
$$

However, if the crystal considered is not sufficiently large*
then the wave vectors k constitute a discrete set of vectors in recip rocal space in the following sense

$$
\underline{k}=(1 / L) \underline{k}_{x}+(m / M) \underline{k}_{y}+(n / N) \underline{k}_{z}
$$

Where $\underline{k}_{x}, \underline{k}_{y}, \underline{k}_{z}$ are the reciprocal base vectors

$$
L, M, N \text { are no of unit cells in } x, y, \text { and } z \text { dir_ }
$$

ections
and $1, m, n$ are integers $(0 \leq 1 \leq I$ etc) chosen
such that the vector \underline{k} always lies in the B.Z. concerned.
Then the Wannier function is given not by integration but by the following summation;

$$
a_{s}\left(\underline{r}-\underline{R}_{n}\right)=(v)^{-1 / 2} \sum_{s^{\operatorname{th}} B \cdot Z} \exp \left(-i \underline{k} \cdot \underline{R}_{n}\right) \psi_{s}(\underline{k}, \underline{r})
$$

$$
\because \quad 2.7
$$

Where $\mathrm{V}=\mathrm{N} \cdot \mathrm{I} \cdot \mathrm{M}$ and the summation is over all poss_
ible k vectors which lie in the B. Z. concerned.
More generally if there are N of these vectors, one
can write

$$
a_{s}\left(\underline{r}-\underline{R}_{n}\right)=(N)^{-1 / 2} \sum_{\underline{k}=\underline{k}_{1}}^{\underline{k}_{n}} \exp \left(-i \underline{\underline{k}} \cdot \underline{R}_{n}\right) \psi_{s}(\underline{k}, \underline{r})
$$

and the Wannier function centered at origin (i.e $R_{n}=0$) is
given by

$$
a_{s}(\underline{r})=(N)^{-1 / 2} \sum_{s . z} \psi_{s}(\underline{k}, \underline{r})
$$

where in both cases the sum is over N vectors in the B. Z. concerned.

[^0]
2.2 WANNIER FUNCTIONS ARE LOCALIZED FUNCTIONS

A formal proof will not be attempted considering the brief. introductory nature of this chapter. A long and rigorous discussion of this matter can be found in a few articles (i.e see Blount ${ }^{1}$). for the present purposes this property might be demonstrated qualitatively as follows. Let $a_{s}\left(\underline{r}-\underline{\underline{R}}_{n}\right)$ be the Wannier function for the $s^{\text {th }}$ band centered at lattice point \underline{R}_{n}, then

$$
a_{s}\left(\underline{r}-\underline{R}_{n}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \int_{B \cdot z .} \exp \left(i \underline{k} \cdot\left(\underline{r}-\underline{R}_{n}\right)\right) u_{s}(\underline{k}, \underline{r}) d^{3} k
$$

Now consider the amplitude of this Wannier function at a particular point, say at $\underline{r}=R_{i}$, then

$$
a_{s}\left(\underline{R}_{i}-\underline{R}_{n}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \int \exp \left(i \underline{k}\left(\underline{R}_{i}-\underline{R}_{n}\right)\right) u_{S}(\underline{k}, \underline{R}) d^{3} k
$$

B. Z
2.11

Now, if $\quad\left|\underline{R}_{i}-\underline{R}_{n}\right|$ is large then the exponential term varies rapidly in k space (so does the total integrand) and the integral value becomes small. However if $\left|\underline{R}_{i}-\underline{R}_{n}\right|$ is small then the integrand varies less rapidly in k space and the integral may attain a larger value.

Hence to conclude this qualitative discussion , Wannier functions have their peak at their lattice locations ${ }^{2}$ and vanish rapidly

1) Blount, E.I., Solid State Fhysics 13, $305(1962)$
2)As will be shown in the later chapiers this is not always the case.
when one moves away from these points. We shall see that a $\begin{aligned} & \text { Fannier function }\end{aligned}$ $\mathrm{a}_{s}(\underline{\underline{r}})$ decays exponentially if the momentum eigenfunction and its derivatives(for the same band) are continuous.

Let us consider two Wannier functions belonging to bands, say s and t and centered respectively at \underline{R}_{n} and \underline{R}_{m}

then we have.

$$
a_{s}^{*}\left(\underline{r}-\underline{R}_{n}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \int \exp \left(i \underline{k^{\prime}} \cdot \underline{R}_{n}\right) \psi_{s}^{*}\left(\underline{k}^{\prime}, \underline{r}\right) d^{3} k^{\prime}
$$

B. Z

$$
a_{t}\left(\underline{r}-\underline{R}_{m}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \int \exp \left(-i . \underline{k} \cdot \underline{R}_{r n}\right) \psi_{t(\underline{k}, \underline{r})} d^{3} k
$$

B.Z

Now let us work out the following integral

$$
\begin{gathered}
\int_{\text {Whole crystal }} a_{s}^{*}\left(\underline{r}-\underline{R}_{n}\right) a_{t}\left(\underline{r}-\underline{R}_{m}\right) d^{3} r \\
\text { Substituting equations (2.12) and (2.13) into equation (2.14) }
\end{gathered}
$$

$$
\begin{align*}
& \int a_{s}^{*}\left(\underline{r}-\underline{R}_{n}\right) a_{t}\left(\underline{r}-\underline{R}_{m}\right) d^{3} r=\frac{\Omega}{(2 \pi)^{3}} \iiint e^{-i\left(\underline{k} \cdot R_{m}-\underline{k}^{\prime} \cdot R_{n}\right)} \psi_{s}^{*}\left(\underline{k^{\prime}}, \underline{r}\right) \psi_{t}(\underline{k}, \underline{r}) d^{3} k d^{3} k^{\prime} d^{3} r \\
& \text { while crystal }
\end{align*}
$$

Since

$$
\begin{align*}
& \int \psi_{s}^{*}\left(\underline{k^{\prime}}, \underline{r}\right) \psi_{t}(\underline{k}, \underline{r}) d^{3} r=\delta_{s t} \delta\left(\underline{k}-\underline{k}^{\prime}\right) \\
& \int a_{s}^{*}\left(\underline{r}-\underline{R}_{n}\right) a_{t}\left(\underline{r}-\underline{R}_{m}\right) d^{3} r=\frac{\Omega}{(2 \pi)^{3}} \delta_{s t} \iint e^{-i\left(\underline{k} \cdot \underline{R}_{m}-\underline{k^{\prime}} \cdot \underline{R}_{n}\right)} \quad \delta(\underline{k}-\underline{\underline{k}}) d^{3} k d^{3} k^{\prime} \\
& =\frac{\Omega}{(2 \pi)^{3}} \delta_{s t} \int e^{-i \underline{k} \cdot\left(R_{m}-\underline{R}_{n}\right)} d^{3} k \\
& \int a_{s}^{*}\left(\underline{r}-\underline{R}_{n}\right) a_{t}\left(\underline{r}-\underline{R}_{m}\right) d^{3} r=\delta_{s t} \delta_{m n} \\
& \text { Whale crystol }
\end{align*}
$$

Hence Wannier functions belonging to different bands and differe nt locations are orthogonal. For completeness see sections 2.4 and 2.8. 2.4 THE ONE ELECTRON ELOCH FUNCTIONS CAN BE OBTAINED FROM THE WANFIER FUNCTIONS , ATD VICE VEISA

A Wannier function is obtained from the one elec tron wave function by the following expression (see section 2.1),

$$
a_{s}\left(\underline{r}-\underline{R}_{n}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \int_{s^{+h}} e^{-i \underline{k} \cdot \underline{R_{n}}} \psi_{s(\underline{k}, \underline{r})} d^{3} k
$$

Multiplying both sides of equation (2.19) by $\exp \left(\mathrm{i} \underset{\mathrm{k}}{\prime} \cdot \mathrm{R}_{\mathrm{n}}\right)$ and suming over all lattice vectors Rn one gets,

$$
\begin{align*}
& \sum_{n} e^{i\left(\underline{k}-\underline{k}^{\prime}\right) \cdot \underline{R}_{n}}=\frac{(2 \pi)^{3}}{\Omega} \sum_{m} \delta\left(\underline{k}-\underline{k}^{\prime}-\underline{K}_{m}\right)
\end{align*}
$$

In the last equation the sum is over reciprocal lattice vectors K_{m}. However if we constrain \underline{k}^{\prime} to lie in the same band as \underline{k} (i.e in the $s^{\text {th }}$ band for this case), then the only contribution to the sum comes from the zero reciprocal lattice vector. (i.e $\underline{K}_{\mathrm{m}}=0$) Therefore,

$$
\begin{align*}
& \sum_{n} e^{i \underline{R}} \dot{n}\left(\underline{k}-\underline{k}^{\prime}\right)=\frac{(2 \pi)^{3}}{\Omega} \delta\left(\underline{k}-\underline{k}^{\prime}\right) \\
& \sum_{n} e^{i \underline{k^{\prime}} \cdot \underline{R}_{n}} a_{s}\left(r-R_{n}\right)={\frac{(2 \pi)^{3 / 2}}{\Omega^{1 / 2}}}^{3} \delta\left(\underline{k}-\underline{k}^{\prime}\right) \psi_{s}(\underline{k}, \underline{r}) d^{3} k \\
& =\frac{(2 \pi)^{3 / 2}}{\Omega^{1 / 2}} \psi_{s}\left(\underline{k}^{\prime}, \underline{r}\right) \\
& \therefore \\
& \psi_{s}\left(\underline{k}^{\prime}, \underline{r}\right)=\frac{\Omega^{1 / 2}}{(2 \pi)^{3 / 2}} \sum_{n} e^{i \underline{k^{\prime}} \cdot \underline{R}_{n}} a_{s}\left(\underline{r}-\underline{R}_{n}\right)
\end{align*}
$$

Hence :Iannier functions and one electron wave functions can be obtained from each other by certain operations. Indeed they are comnected to each other by means of a linear transformation (unitary).

$$
\text { i.e } \quad \psi=U \text { a }
$$

where the transformation matrix is given by,

$$
U=\left\{u_{s n}\right\}=N^{-1 / 2}\left\{e^{i k_{s} \cdot \underline{R}_{n}}\right\}
$$

It can easily be shown that U is a unitary matrix and making use of a fundamental property of unitary matrices (i.e $\left(U^{*}\right)^{\prime}=U^{\prime}$).

Therefore the inverse transformation is given by,

$$
a=\left(U^{*}\right)^{\prime} \psi
$$

where $\left(U^{*}\right)^{\prime}$ stands for the complex conjugate transpose of matrix U. Finally we would like to point out that a unitary transfor_ mation preserves lenghts (Inner products).

$$
\text { i.e } \quad \int_{\Omega}\left|\psi_{S}(k, r)\right|^{2} d^{3} r=\int_{a \| l}\left|a_{S}\left(\underline{r}-\underline{R}_{n}\right)\right|^{2} d^{3} r
$$

Therefore if $\psi_{\mathrm{S}}(\underline{k}, \underline{r})$ is normalized in the elementary cell the corresponding Wannier function is normalised in the whole of space. 2.5 WANIER FUNCTIONS AND MOMRNTUM EIGENFUNCTIONS ARE FOURIER TRANSFORN: OF EACH OTHER ${ }^{3}$

Consider the following Wannier function,

$$
a_{n}\left(\underline{r}-\underline{R}_{i}\right)=\Omega_{B}^{-1 / 2} \int_{n^{+h}} \exp \left(-i \underline{k} \cdot \underline{R}_{i}\right) \psi_{n}(\underline{k}, \underline{r}) d^{3} k
$$

Now expanding the wave function in terms of momentum eigen_
functions

$$
\Psi_{n}(\underline{k}, \underline{r})=\sum_{\underline{K}_{n}} V_{n}\left(\underline{k}+\underline{K}_{n}\right) \exp \left(i\left(\underline{k}+\underline{K}_{n}\right) \cdot \underline{r}\right)
$$

Substituting equation (2.31) into equation (2.30)

3) This has been first shown by Slater, see; Slater, J.C., Phys. Rev. 87, 807(1952).

We can rewrite the exponential tem in the integrand as follows,

$$
\exp \left(i\left(\underline{k}+\underline{K}_{n}\right) \cdot \underline{r}-i \underline{k} \cdot \underline{R}_{i}\right)=\exp \left(i\left(\underline{k}+\underline{K}_{n}\right) \cdot\left(\underline{r}-\underline{R}_{i}\right)\right) \quad 2.35
$$

Therefore,

$$
a_{n}\left(\underline{r}-\underline{R}_{i}\right)=\left(\Omega_{B}\right)^{-1 / 2} \sum_{\underline{K_{n}}} \int_{n+n} \nu_{n}\left(\underline{k}+\underline{K}_{n}\right) \exp \left(i\left(\underline{k}+\underline{K}_{n}\right) \cdot\left(\underline{r}-\underline{R}_{i}\right)\right) d^{3} \underline{k} 2.36
$$

Integration over one band and sum over all K_{n} is equivalent to integration over all \underline{k} space. Therefore,

$$
a_{n}\left(\underline{r}-\underline{R}_{i}\right)=\left(\Omega_{B}\right)^{-1 / 2} \int_{\text {all } \underline{k}} \nu_{n}(\underline{k}) \exp \left(i \underline{k} \cdot\left(\underline{r}-\underline{R}_{i}\right)\right) d^{3} k
$$

To bring the last expression into a more familiar form consi_ der the Wannier function centered at origin.

$$
\text { i.e } \quad R_{i}=0
$$

Therefore,

$$
a_{n}(\underline{r})=\left(\Omega_{B}\right)_{\text {oll }}^{-1 / 2} \int_{n} \nu_{n}(\underline{k}) \exp (i \underline{k} \cdot \underline{r}) d^{3} k
$$

Hence Wannier functions are fourier transforms of momentum
eigenfunctions and vice versa.
2.6 WANNIER FUNCTIONS ARE FUNCTIONS OF DIFFERENCE $\underline{r}^{-R_{i}}$

This property of Wiannier functions can easily be proved as follows.

Say,

$$
a_{n}\left(\underline{r}-\underline{R}_{i}\right)=\left(\Omega_{\underline{a}}\right)^{-1 / 2} \int_{n^{+h}} H_{\text {and }}(\underline{k}, \underline{r}) e^{-i \underline{k} \cdot \underline{R}_{i}} d^{3} k
$$

Adding any lattice voctor \underline{R}_{m} to both \underline{Y} and \mathbb{R}_{i},

$$
\begin{aligned}
a_{n}\left(\underline{r}+\underline{R}_{m}-\left(\underline{R}_{i}+\underline{R}_{m}\right)\right) & =\left(\Omega_{B}\right)^{-1 / 2} \int \psi_{n}\left(\underline{k}, \underline{r}+\underline{R}_{m}\right) e^{-i \underline{k} \cdot\left(\underline{R}_{i}+\underline{R}_{m}\right)} d^{3} k \\
& =\left(\Omega_{B}\right)^{-1 / 2} / \psi_{n}(\underline{k}, \underline{r}) e^{i \underline{k} \cdot \underline{R}_{m}} e^{-i \underline{k} \cdot\left(\underline{R_{i}+\underline{R}_{r}}\right)} d^{3} k \\
& =\left(\Omega_{B}\right)^{-1 / 2} / \psi_{n}(\underline{k}, \underline{r}) e^{-i \underline{k} \cdot \underline{R}_{i}} d^{3} k \\
& =a_{n}\left(\underline{r}-\underline{R}_{i}\right)
\end{aligned}
$$

2.7 WANHER FUNCTIOMS OF SAEE EAND BUT OF DIFFERENT LOCATIONS ARE IDEMTICAL

This property of wannier functions is a direct result
of the proof given in section 2.6 (See equation 2.43)

2.8 SUMAARY

Wannier functions and one electron wave functions are connected by a unitary transformation . Wannier functions are four_ ier transforms of momentum eigenfunctions. W.F. s being localized functions attain their largest amplitudes in the unit cells where they are centered and vanish rapidly as one goes off these centres. If one considers a crystal with N lattice points then for each band there are N identical Wannier functions each localised at a lattice site. Vannier functions of different bands are not iden tical in principle.

Wannier functions constitute a complete orthogonal set of functions. (To complete the set it is esential to include all the Wannier functions from different bands and from different loca tions). They are functions of difference $r-R_{i}$ that is why it is costumary to write them as, i.e. $a_{n}\left(\underline{r}-\underline{R}_{i}\right)$.

In Eeneral, they have a resemblance to momentum eigenfunctions. (See also comparision with atomic orbitals given in the introduction part) Wannier functions being localized at lattice points are functions of position vector only, while momentum eigenfunctions being localised at reciprocal lattice points are func_ tions of crystal momentum vector only.
ghe difrerential rguation ard mie variational principle for mie WAWNER FUNCTIONS
3.1 A DIFFERENTIAL EQUATION FOR THE wAMIER FUNCTION

The Wannier functions in crystals may be defined in terms of a differential equation (see G.F. Koster ${ }^{1}$ and G. Parzen ${ }^{2}$) which is in principle an altemative form of Schrödinger's equation.

This differential equation may easily be obtained as follows; Consider the following one electron Schrödinger equation

$$
H \psi_{n}(\underline{k}, \underline{r})=E_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r})
$$

wher: $E_{n}\left(\underline{k}+\underline{K}_{m}\right)=E_{n}(\underline{k})$. Now expressing $E_{n}(\underline{k})$ as a Fourier series and $\quad \psi_{n}(\underline{k}, \underline{r})$ in terms of ":annier functions

$$
\begin{align*}
& E_{n}(\underline{k})=\sum_{m} \varepsilon_{n}\left(\underline{R}_{m}\right) \exp \left(-i \underline{k} \cdot \underline{R}_{m}\right) \\
& \psi_{n}(\underline{k}, \underline{r})=\sum_{p} a_{n}\left(\underline{r}-\underline{R}_{p}\right) \exp \left(i \underline{k} \cdot \underline{R}_{p}\right)
\end{align*}
$$

and substituting. 3.2 and 3.3 into 3.1 we get

$$
H \sum_{p} a_{n}\left(\underline{r}-\underline{R}_{p}\right) \exp \left(i \underline{k} \cdot \underline{R}_{p}\right)=\sum_{J} \sum_{m} \varepsilon_{n}\left(\underline{R}_{m}\right) a_{n}\left(\underline{r}-\underline{R}_{J}\right) \exp \left(i k \cdot\left(\underline{R}_{J}-\underline{R}_{m}\right)\right)
$$

Now making a fundamental condition that H operates on the position vector \underline{r} only (i.e $\mathrm{H}=-\nabla^{2}+\mathrm{V}(\underline{I})$) then multiplying both sides of the last equation by $\exp \left(-i \cdot k \cdot R_{n}\right)$ and integrating over a $B . Z$.,

1) Koster, G.F., Phys. Rev. 89, 67 (1953)
2) Parzen, G., Thys. Rev. 89, $237(1953)$
$H \sum_{p} a_{n}\left(\underline{r}-\underline{R}_{P}\right) \int_{\text {B.z. }} \exp \left(i \underline{k} \cdot\left(\underline{R}_{p}-\underline{R}_{n}\right)\right) d^{3} k=\sum_{j} \sum_{m} \varepsilon_{n}\left(\underline{R}_{m}\right) a_{n}\left(\underline{r}-\underline{R}_{J}\right) \int_{\text {B.z. }} \exp \left(i \underline{k} \cdot\left(\underline{R}_{J}-\underline{R}_{m}=\underline{R}_{n}\right)\right) d^{2} k$
3.5
since

$$
\int_{\text {日.z. }} \exp \left(i \underline{k} \cdot\left(\underline{R}_{p}-\underline{R}_{n}\right)\right) d^{3 k}=\Omega_{B} \delta_{p n}, \quad 3.6
$$

we have

$$
H a_{n}\left(\underline{r}-\underline{R}_{n}\right)=\sum_{m} \varepsilon_{n}\left(\underline{R}_{m}\right) a_{n}\left(\underline{r}-\underline{R}_{n}-\underline{R}_{m}\right)
$$

which may be written more simply (by letting $\mathrm{R}_{\mathrm{n}}=0$) as follows,

$$
H a_{n}(\underline{r})=\sum_{m} \varepsilon_{n}\left(\underline{R}_{m}\right) a_{n}\left(\underline{r}-\underline{R}_{m}\right)
$$

where as pointed out before $\varepsilon_{n}\left(R_{m}\right)$ is the $m^{\text {th }}$ Fourier coefficient in the Fourier series of $E_{n}(\underline{k})$ and the summation on the right is over all lattice vectors .
$\varepsilon_{n}\left(\underline{R}_{m}\right)$ can be expressed in terms of Wannier functions simply by multiplying both sides of the last equation by $a_{p}^{*}\left(\underline{r}-\mathbb{R}_{m}\right)$ and in tegrating over all \underline{r}

$$
\delta_{p n} \varepsilon_{n}\left(\underline{R}_{m}\right)=\int a_{p}^{*}\left(\underline{r}-\underline{R}_{m}\right) H a_{n}(\underline{r}) d^{3} r
$$

or

$$
\varepsilon_{n}\left(\underline{R}_{m}\right)=\int a_{n}^{*}\left(\underline{r}-\underline{R}_{m}\right) H a_{n}(\underline{r}) d^{3} r
$$

Note that there are no matrix elements of the Hamiltonian between womion functions of aifforont bands?
3) This applies when the bands in concern are nondegenerate.

It can be shown that if atoms are well seperated or the Wannier functions are strcncly localized then they overlap very little, hence in the limiting case

$$
\begin{aligned}
\varepsilon_{n}\left(\underline{R}_{m}\right)=\int a_{n}^{*}\left(\underline{r}-\underline{R}_{m}\right) H a_{n}(\underline{r}) d r & \neq 0 \quad \text { if } \quad \underline{R}_{m}=0 \\
& =0 \quad \text { if } \quad \underline{R}_{m} \neq 0
\end{aligned}
$$

Therefore for these isolated atoms the flattened energy levels become equal to their first fourier coefficients, i.e $E_{n}(k)=\varepsilon_{n}(0)$ and the Wannier functions become practically identical with the atomic functions centred at the corresponding lattice sites. Now instead 3.7 we have, $H a_{n}\left(\underline{r}-\underline{R}_{m}\right)=\varepsilon_{n}(0) a_{n}\left(\underline{r}-\underline{E_{m}}\right)$
where $\varepsilon_{\mathrm{n}}(0)$ is the $\mathrm{n}^{\text {th }}$ free atomic level.
In general equation 3.7 is not of much practioal use due to the multiplicity of the terns on the right hand side. However for mathematical purposes it is still a fundamental equation.

The few applications which have been made so far concern the variational principle .

3.2 a Variational proceduite

In the previous section we pointed out that equation 3.7 was not of much practical use due to multiplicity of the terms on the right hand side of the equation. Hence in order to work out this equation G.F. Koster' and G. Parzen ${ }^{2}$ independently sucgested a al variationtprocedure . Below we Eive a description of this procedure. To start with we will consider the following integral and try to make it have an extremun.

$$
J=\int_{\text {oll } r} a(\underline{r}) H a(\underline{r}) d \tau
$$

subject to the constraints.

$$
\begin{align*}
& \int_{\text {all } r} a(\underline{r}) a(\underline{r}) d r=1 \\
& \int_{\text {all } r} a(\underline{r}) a\left(\underline{r}-\underline{R}_{n}\right) d \tau=0 \quad 3.14
\end{align*}
$$

which is clearly a calculus of variation problem subject to a set of constraints which appear to be in the forms of integrals No'r to ceneralize the problem let the Haniltonian H be invariant under some group of translational eperations and let $T(n)$ be such a translational operator which chances the coordinates r to $\underline{r}-\underline{R}_{\mathrm{n}}$, then . the constraints 3.14 and 3.15 may be given by

$$
\begin{aligned}
I(n)=\int_{\text {all } r} a(\underline{r}) T(n) a(r) d \tau & =1 \text { if } n=0 \\
& =0 \text { if } n \neq 0
\end{aligned}
$$

where $I(n)$ represents the overlap of two Wannier functions displaced by ${\underset{\sim}{n}}$.

From the fundamental properties of wannier functions one can easily show that

$$
\int a(\underline{r}) T(n) a(\underline{r}) d z=\int a(\underline{r}) T(-n) a(\underline{r}) d \tau
$$

therefore we have

$$
I(n)=I(-n)
$$

Now appliying the method of Lacrancian multipliers to the variational problem given by equation 3.13 subject to the modified constraints 3.16 and 3.18 the extremum of the integral J is found by taking the variation of the following integral

$$
\int\left[a(\underline{r}) H a(\underline{r})-\sum_{n=-\infty}^{+\infty} \lambda(n) a(\underline{r}) T(n) a(\underline{r})\right] d \tau
$$

Since $\lambda(n)$ and $\lambda(-n)$ correspond to the same constraints (see equations 3.17 and 3.18) we have

$$
\int a(\underline{r})\left[H-2 \sum_{n=0}^{+\infty} \lambda(n) T(n)\right] a(\underline{r}) d \tau
$$

Now taking the variation and equating it to zero

$$
\delta \int_{-} a(\underline{r})\left[H-2 \sum_{n} \lambda(n) T(n)\right] a(r) d r=0
$$

where the integrand has to satisfy the usual Euler equation ,
which is

$$
\frac{\partial F}{\partial y_{i}}-\sum \frac{\partial}{\partial x_{j}} \frac{\partial F}{\partial\left(\partial y_{i} / \partial x_{j}\right)}=0
$$

In the last equation y_{i} and x_{j} are the dependent and independent variables respectively . F is the total integrand Eiven by

$$
F(\underline{r})=a(r)\left[H-2 \sum_{n} \lambda(n) T(n)\right] a(\underline{r})
$$

However if one considers the usual Hamiltonian operator

$$
H=-\nabla^{2}+V(r)
$$

the integrand $F(\underline{r})$ may have an alternative form. This may be shown as follows, consider the following

$$
\left.-\int a \frac{\partial^{2}}{\partial x} a d x=0 \frac{\partial a}{\partial x} \right\rvert\,+\int \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} d x
$$

then the first term on the richt hand side vanishes due to large integration limits. The integrations for the remaining y and z components give similiar contributions, therefore the variational intecral and it?s integrand may be revritten

$$
\begin{align*}
& \int\left[\nabla u(\underline{r}) \nabla a(r)+V(\underline{r}) a^{2}(\underline{r})-2 \sum_{n} \lambda(n) a(r) T(n) a(r)\right] d z \\
& F(\underline{r})=\nabla a(r) \nabla a(\underline{r})+V(\underline{r}) a^{2}(r)-2 \sum_{n} \lambda(n) a(r) T(n) a(r
\end{align*}
$$

and the Puler equation

$$
\frac{\partial F}{\partial a}-\frac{\bar{\partial}}{\partial x} \frac{\partial r}{\partial(\partial a / \partial x)}-\frac{\partial}{\partial y} \frac{\partial F}{\partial(\partial a / \partial y)}-\frac{0}{\partial z} \frac{\partial F}{\partial(\partial a / \partial z)}=0
$$

yields

$$
\begin{align*}
& \partial F / \partial a(\underline{r})=2 V(\underline{r}) a(\underline{r})-2 \sum \lambda(n) T(n) a(\underline{r}) \\
& -\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial\left(\frac{\partial a(\underline{r})}{\partial x}\right)}\right)=-\frac{\partial}{\partial x}\left(2 \frac{\partial a(\underline{r})}{\partial x}\right)=-2 \frac{\partial^{2} a(\underline{r})}{\partial x^{2}} \\
& -\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial\left(\frac{\partial a(\underline{r})}{\partial y}\right)}\right)=-2 \frac{\partial^{2} a(\underline{r})}{\partial^{2} y} \\
& -\frac{\partial}{\partial z}\left(\frac{\partial F}{\partial\left(\frac{\partial a(r)}{\partial z}\right)}\right)=-2 \frac{\partial^{2} a(\underline{r})}{\partial z^{2}}
\end{align*}
$$

Now substitutin $\mathbb{O} 3.29,3.30,3.31$, and 3.32 into 3.28 we obtain

$$
\begin{gather*}
-2 \nabla^{2} a(\underline{r})+2 V(\underline{r})-2 \sum \lambda(n) T(n) a(\underline{r})=0 \\
{\left[-\nabla^{2}+V(\underline{r})\right] a(\underline{r})=\sum \lambda(n) T(n) a(\underline{r})}
\end{gather*}
$$

The lari equation may be written more simply by substituting $H=-\nabla^{2}+V(\underline{r})$ and $T(n) a(\underline{r})=a\left(\underline{r}-\underline{R}_{n}\right)$, giving ;

$$
H a(r)=\sum \lambda(n) a\left(r-\underline{R}_{n}\right)
$$

Now comparing this with equation 3.8 we see that

$$
\lambda(n)=\varepsilon\left(B_{n}\right)=\Omega_{B}^{-1} \int E(\underline{k}) \exp \left(i \underline{k} \cdot \underline{R}_{n}\right) d^{3} k
$$

Equation 3.35 can be rewritton in a more general form by apply ing to either side of the equation another translational operator which commutes with the Haniltonian .

However

$$
\begin{align*}
T(m) H a(r) & =H T(m) a(r) \\
& =\sum_{n} \lambda(n) T(m) T(n) a(\underline{r})
\end{align*}
$$

$$
T(m) T(n) a(\underline{r})=a\left(\underline{r}-\underline{R}_{m}-\underline{R}_{n}\right)
$$

hence

$$
H a\left(\underline{r}-\underline{R}_{m}\right)=\sum \lambda(n) a\left(\underline{r}-\underline{R}_{m}-\underline{R}_{n}\right)
$$

3.3 SOMR REMARS ON THE APPLICATICH OF MHE VARIATIOMAL FRINCIPLE

So far we have dealt with the extrema properties of equation 3.13. However it can be shown that (See G. Parzen ${ }^{2}$) this extrema corresponds to a minimum.

Therefore to summarize, the desired solutions of equation
3.7 are the ones which minimize the integral 3.13 subject to cons-traints 3.14 and 3.15 . Hence the differential equation given in section 3.1 and the variational procedure outlined in section 3.2 are equivalent in principle .

Although , in principle one can use either method for calculations the variational procedure is more convenient for practical applications .

The constraints 3.14 and 3.15 do not involve the orthoronality of the wannier functions of different bands , therefore
the variational procedure that we illustrated in section 2 is good for calculating the energy levels of the lowest band only.

If one goes to higher bands then the constraints have to be modified in such a way that the new trial function must be orthogonal to the Wannier functions of lower bands.

Hence the variational procedure for the higher bands (say for the $m^{\text {th }}$ one) may be outlined as minimization of the following integral

$$
\left.\varepsilon_{m}(0)=\right]=\int a_{m}(r) H a_{m}(r) d \tau
$$

subject to the following (modified)constraints

$$
\begin{aligned}
\int a_{m}(r) T(n) a_{s}(r) d r & =0 \text { for all } n \text { and } s \text { where } s<m \\
\int a_{m}(r) T(n) a_{m}(r) d r & =1 \text { iF } n=0 \\
& =0 \text { if } n \neq 0
\end{aligned}
$$

where we assume that one knows the Wannier functions of the lower ($\mathrm{s}^{\text {th }}$ band) barid. .

The general routine may be outlined as follows;
i) One starts by choosing the Wannier functions for the lowest band which minimize the integral 3.13 subject to constraints 3.14 and 3.15 .
ii) For the next band one sets up a series of trial functions all orthogonal to the Wannier functions of the lowest band (also orthogonal to the Wannier functions of the same band but of different locations) and anong them one chooses the one which minimizes the Mollol variatinnal intogrel .
iii) For the higher bands one follows a similiar routine.

Some applications (one dimensional) usinc variational procedures have been fiven by G. Parzen ${ }^{2}$ and G. Parzen and T. Yainwright. The method has been used by G. Parzen for calculatine the enercy levels of a one dimensional periodic square potential where the W wnnier functions for the lowest band are approximated by free atomic wave functions and the trial function for the next band is construc-ted from the linear combinations of free atomic wave functions and free electron Wannier functions in such a way that it is orthogonal to the Wannier functions of the lower band.

In a later paper by G. Parzen and T. Wainwright the variational principle has been used for determining the energy bands of a one dimensional cosine potential and and the valence band of Lithium. The choice of the trial functions follows a similiar routine to that already described.

We refer to the papers mentioned above for a detailed discussion of the calculations.

In chapters 5 and 6 (vhere we will suggest a different method for obtaining the Wannier functions) we will also show how the coeeffi cients associated with the simpler (ilannier) functions used in cons tructine a :7annier function can be determined.
4) Wainwright, T., end Parzen, G., Phys. Rev. 92, 1129(1953)

CHAPTER 4

frre elpcthon wanier futctions calculated for smvernl ceystal TYPES

4.1 GFNERAL

As pointed out in chapter 2 the Wannier functions are obtained from the one electron wave (Bloch)functions by integrating them over the relevant Erillouin zones.

Hence, the Wannier function for a particular band say for the $\mathrm{n}^{\text {th }}$ band is given by,

$$
\begin{align*}
& a_{n}(x, y, z, x, y, z)= C \iiint \psi_{n}\left(k_{x}, k_{y}, k_{z}, x, y, z\right) \exp \left(-i\left(k_{x} X_{+}+k_{y} Y+k_{z} z\right)\right) d k_{x} d k_{y} d k_{z} \\
& n^{t h_{B .}} .
\end{align*}
$$

where X, Y, Z are the coordinates of the lattice point, where the Wannier function is centered.

In practice to work out the above integral one needs to know the shape of the Brillouin zone concerned (the region of the integration) and the expression for the wave function.

In the case of free electrons the wave functions have simple forms therefore the integral for the Vannier function becomes comparatively easy to deal with. [However the considera tions about the choice of the (arbitrary) phases for the wave functions (which we will discuss in detail in the presence of a crystal potential in chapters 8,9 and appendix 1) still have to be taken into account.]

If we now consider the Wannier function centered at the oricin, then we need to work out the following integral

$$
\begin{align*}
a_{n}(x, y, z)= & C \iiint \exp \left(i \varphi_{n}\left(k_{x}, k_{y}, k_{z}\right)\right) \exp \left(i\left(k_{x} x+k_{y} y_{y}+k_{z} z_{z}\right)\right) d k_{x} d k_{y} d k_{z} \\
& n^{\text {th }} \text { B.Z. }
\end{align*}
$$

where $\exp \left(i \varphi_{n}\left(k_{x}, k_{y}, k_{z}\right)\right)$ is the arbitrary phase.
i) But, the problem is separable and the arbitrary phase can be written as (see chapter 9)

$$
\exp \left(i \varphi_{n}\left(k_{x}, k_{y}, k_{z}\right)\right)=g_{n}\left(k_{x}\right) g_{n}\left(k_{y}\right) \varepsilon_{n}\left(k_{z}\right)
$$

where $E_{n}\left(k_{x}\right), E_{n}\left(k_{y}\right)$, and $E_{n}\left(k_{z}\right)$ are to be chosen as either even or odd functions of the variables k_{x}, k_{y}, and k_{z} depending upon the particulars of the Brillouin zone (see chapter 9). Though in all of the functions, $\mathrm{E}_{\mathrm{n}}\left(\mathrm{k}_{\mathrm{x}}\right)$,...etc. we have used a com mon band index n they may indeed be derived from completely different bands (i.e. see chapter 9).
ii) Also, as it is proved in chapter 8 , if we now let the functions $\varepsilon_{n}\left(k_{x}\right)$, etc. have constant amplitudes (i.e. like a step function) but still remaining odd or even in character,

f then the resulting Wannier function is the best that one can. obtain (the most localised). The fundamental difficulties in
obtaining the expressions for the Wannier functions have been mainly due to;
i) Complicated integration limits arising from the shapes of the relevant Brillouin zones.
ii) A very large number of terms, mostly complex, arising from the partial integrations.

In general, the calculations are quite long and time consuming due to the multiplicity of terns involved. This is particularly true for the multidimensional cases. Therefore in the calculations the general task has been to minimize the labour and the mubex of tems involved. To ensure this the coordinate systems were chosen such that maximum use could be made of symmetry considerations.

The first integrations have usually been carried out only in a convenient part of the relevant Erillouin zone, then the intergations for the remaining zones have been obtained by appropriate coor dinate transfomations through symmetry considerations.

It is not possible to give all the details of the calculations. As an example we give the details of the calculations only for the first band of a body-centered cubic lattice, whereas for the re mainine cases we give the results only.

We extended the case of the square lattice to a rectangular one with a variable side ratio in order to generalize the formula tions for the Wannier functions as much as possible.

The Wannier functions that are calculated have inversiondi symmetry (symmetric or antisymmetric) for the position coordinates x, y, and z.

(a)

(b)

Fig. 4.1
(a) Linear chain of atoms with spacing a
(b) The corresponding reciprocal lattice and the B.Z.'s

The normalised free electron V'annier functions for the above one
dimensional lattice are given by;
i) For the first (ground band) and the subsequent odd numbered bands,

$$
a_{q}\left(x-x_{m}\right)=\frac{\sqrt{a}}{\pi} \frac{\sin \frac{q \pi}{2}\left(x-x_{m}\right)-\sin \frac{(q-1) \pi}{a}\left(x-x_{m}\right)}{\left(x-x_{m}\right)}
$$

where $q(q=1,3,5,7, \ldots \ldots)$ is the band index
ii) For the second and the subsequent even numbered bands,

$$
a_{q}\left(x-x_{m}\right)=-i \frac{\sqrt{a}}{\pi} \frac{\cos \frac{q \pi}{a}\left(x-x_{m}\right)-\cos \frac{(q-1) \pi}{a}\left(x-x_{m}\right)}{\left(x-x_{m}\right)}
$$

where $q(q=2,4,6,8, \ldots \ldots)$ is the band index
i In both equations $X_{m}\left(X_{m}=m a, m= \pm 1, \pm 2, \pm 3, \ldots\right)$ is the lattice trans lation vector pointing the site where the \#annier function is localised.
4. 3 THO DIMEMSIONAL LATTICES
4.3.1 RECTANGULAR LATTICE :UITII $a_{2} / a_{1}=n$

Fig. 4.2 Rectangular lattice with $a_{2} / a_{1}=n$

Below, we give the corresponding reciprocal lattice and some of the

Fif: 4.3 The first four B. Z^{\prime} - of a rectangular lattice
with $a_{2} / a_{1}=n$

For simplicity, below we give the expressions for the central (those which are localised at the origin) Wennier functions only.

If desired, any displaced Wannier function say the one localised at, lattice site \mathbb{R}_{w} can easily be obtained by replacing the varable \underline{r} by $\quad r-\underline{R}_{w}$.

To do so, in the following expressions one has to replace x and y by $\mathrm{X}-\mathrm{X}_{\mathrm{w}}$ and $\mathrm{y}-\mathrm{Y}_{\mathrm{w}}$ etc.

The normalised free electron Wannier functions for the first three bands are given below.

The expressions are valid for all ${ }^{*}$ rectangular latiices provided that one inserts the correct ratio n corresponding to that particular lattice.

For the first band,

$$
a_{1}(n, x, y)=\frac{a \sqrt{n}}{\pi^{2}} \frac{\sin k_{0} x \sin \frac{k_{n}}{}{ }^{2} y}{x y}
$$

where n is any positive number
For the second band,

$$
\left[\begin{array}{l}
a_{2}(n, x, y)=i \frac{a \sqrt{n}}{\pi^{2}}\left[\frac{\frac{x}{n}\left(-\operatorname{cosk}_{0} x \operatorname{sink}\right.}{0} \frac{y}{n}\right)+\frac{y}{n}\left(\operatorname{sink}_{0}\left(1+1 / n^{2}\right) x-\operatorname{sink} k_{0} x \cos k_{0} \frac{y}{n}\right) \\
y\left(y^{2}-x^{2} / n^{2}\right)
\end{array}+\right.
$$

where n is any positive number
For the third band,

4.3.2 particular case ($n=1$) , square lattice

Substituting $n=1$ in expressions 4.6 and 4.7 one obtains the expressions for the Wannier functions of a square lattice.

This is not permissible in case of expression 4.8 since it is valid only for $n \geq 1.5$. Therefore we had to work out seperately an expression for the Wannier function of the third band of a square lattice .

The nomalised free electron wamier functions for the first three bands are given below.

For the first band,

$$
a_{1}(x, y)=\frac{a}{\pi^{2}}\left[\frac{\sin k_{0} x \sin \xi_{0} y}{x y}\right]
$$

$$
\text { where } k_{0}=\pi / a
$$

For the second band,

$$
\begin{aligned}
a_{2}(x, y)=i & \frac{a}{\pi^{2}}
\end{aligned} \begin{aligned}
& \frac{x \cos k_{0} x \sin k_{0} y+y\left(\sin k_{0} x \cos k_{0} y-\sin 2 k_{0} x\right)}{y\left(x^{2}-y^{2}\right)}+ \\
& \left.\frac{y \cos k_{0} y \sin k_{0} x+x\left(\sin k_{0} y \cos k_{0} x-\sin 2 k_{0} y\right)}{x\left(y^{2}-x^{2}\right)}\right]
\end{aligned}
$$

$$
\text { where } k_{0}=\pi / a
$$

For the thical band,
4.4 THREE DINENSIONAL LATTICES

4.4.1 The smile hexagonal lattice

Below we give some details of the lattice itself and
its first Brillouin zone .

FiE. 4.4
The simple hexagonal lattice in three dimensions
The lattice points are shown, marked . The lattice constants are

Fig. 4.5 a) First Brillouin zone for the simple hexa-
gonal lattice. Some points of the reciprocal lattice are shown , marked e.
The coordinate system (k_{x}, k_{y}, k_{z} axes $)$ is chosen as shown .
The zone has as its faces the planes

$$
k_{z} \mp \frac{\pi}{n}=0, \quad k_{y} \mp \frac{2 \pi}{\sqrt{3} a}=0 \quad, \mp k_{y} \mp \frac{k_{y}}{\sqrt{3}}=\frac{4 \pi}{3 a}
$$

b) $\begin{aligned} k_{z} & =0 \\ k_{x} & =k_{y}\end{aligned}$ plane of the zone,

The free electron Wanner function for the first band of a simple hexagonal lattice is given below.

$$
a_{1}(x, y, z)=c \frac{\sin \frac{\pi}{c} z}{x z\left(y^{2}-\frac{x^{2}}{3}\right)}\left[y \sin \frac{2 \pi}{\sqrt{3} a} y \cdot \sin \frac{2 \pi}{3 a} x-\frac{x}{\sqrt{3}}\left(\cos \frac{2 \pi}{\sqrt{3} a} y \cos \frac{2 \pi}{3 a} x-\cos \frac{4 \pi}{3 a} x\right]\right]
$$

$$
4.12
$$

where C is a constant.

4.4.2 THE CLOSED-PACKED HEXAGONAL LATMICE

Fig. 4.6 The closed-packed heragonal lattice
This closed-packed structure havinc hexaconal symmetry is one of the two ways of arranging equivalent spheres in a regular array to minimize the interstitial volune. (The other one is face-centered cubic with cubic symmetry).

In the basal plane each sphere is in contact with six others. Now being different from the simple hexaconal lattice a second similiar layer is packed on top of this by placing each sphere in contact with three spheres of the bottom plane (see the ficure above).

The closed packed hexafonal lattice has the same reciprocal lattice and Erillouin zones as a simple hexagonal lattice, except that this time the ratio $c / a \quad(c$ and a being the lattice constants) must have a particular value which is ,

$$
\begin{align*}
& \frac{c}{a}=\sqrt{\frac{8}{3}}=1.6330 \quad \text { or } \quad c=\sqrt{\frac{8}{3}} a \\
& \text { If we substitute } 4.13 \text { into } 4.12 \quad \text { we obtain the }
\end{align*}
$$

equation

4.14

$$
a_{1}(x, y, z)=c \frac{\sin \sqrt{\frac{3}{3}} \frac{\pi}{a} z}{x z\left(y^{2}-x^{2} / 3\right.} ;\left[y \sin \frac{2 \pi}{\sqrt{3} a} y \sin \frac{2 \pi}{3 a} x-\frac{x}{\sqrt{3}}\left[\cos \frac{2 \pi}{\sqrt{3} a} y \cos \frac{2 \pi}{3 a} x-\cos \frac{4 \pi}{a} x\right]\right]
$$

which is the free electron Famier function for the first band of a closed-packed hexagonal lattice . (Where C is a constant .)

4.4.3 TEE SLiMPLE CUBIC LATTICE

FiE. 4.7 First and second Brillouin zones of a simple cubic lattice. The second zone is between the cube and the dodecaedron.

Fie. 4.8 The usual integration can be carried out at once over the partial zone show above . The free electron "iannier function for the second band is constructed by considering five similiar contributions

The normalized free electron pannier functions for the first two bands are given below,
i) For the first band,

$$
a_{1}(\underline{r}-\underline{k})=\frac{a^{3 / 2} \sin k_{0}\left(x-X_{m}\right) \sin k_{0}\left(y-Y_{n}\right) \operatorname{sink} k_{0}\left(z-Z_{r n}\right)}{\left(x-X_{m}\right)\left(y-Y_{m}\right)\left(z-Z_{m}\right)}
$$

$$
\text { where } k_{0}=\pi / a
$$

ii) For the second band (for simplicity we let $\underline{R}=0$),

$$
4.16
$$

$$
\begin{aligned}
& a_{2}(x, y, z)=i \frac{C}{x y}\left[\frac{(z-x)\left(\sin k_{0}(z+x) \sin k_{0} y\right)+y\left(\cos 2 k_{0} z-\cos k_{0}(z+x) \cos k_{0} y\right)}{(z-x)^{2}-y^{2}}\right. \\
& \left.-\frac{(z+x)\left(\sin k_{0}(z-x) \sin k_{0} y\right)+y\left(\cos 2 k_{0} z-\cos k_{0}(z-x) \cos k_{0} y\right)}{(z+x)^{2}-y^{2}}\right] \\
& +i \frac{c}{y z}\left[\frac{(x-y)\left(\sin k_{0}(x+y) \sin k_{0} z\right)+z\left(\cos 2 k_{0} x-\cos k_{0}(x+y) \cos k_{0} z\right)}{(x-y)^{2}-z^{2}}\right. \\
& \left.-\frac{(x+y)\left(\sin k_{0}(x-y) \sin k_{0} z\right)+z\left(\cos 2 k_{0} x-\cos k_{0}(x-y) \cos k_{0} z\right)}{(x+y)^{2}-z^{2}}\right] \\
& +i \frac{c}{z x}\left[\frac{(y-z)\left(\sin k_{o}(y+z) \sin k_{0} x\right)+x\left(\cos 2 k_{o} y-\cos k_{o}(y+z) \cos k_{o} x\right)}{(y-z)^{2}-x^{2}}\right. \\
& \left.-\frac{(y+z)\left(\sin k_{0}(y-z) \sin k_{0} x\right)+x\left(\cos 2 k_{0} y-\cos k_{0}(y-z) \cos k_{0} y\right)}{(y+z)^{2}-x^{2}}\right]
\end{aligned}
$$

where $k_{0}=\pi / a, C=a^{3 / 2} / \pi^{3}$

Fig. 4.9 First Brillouin zone for the face-centered cubic lattice . Some points of the reciprocal lattice are shown, marked . The zone is a truncated octahedron. The six square faces have the equations

$$
k_{x}=\mp \pi / a \quad, \quad k_{y}=\mp \pi / a \quad, \quad k_{z}=\mp \pi / a .
$$

The eight hexagonal faces have the equations

$$
\mp k \mp k \mp k=3 \pi / 2 a
$$

The free electron Wanner function for the first band of a face-centered cubic lattice is given by ${ }^{1}$

$$
\begin{aligned}
& a_{1}(x, y, z)=\frac{c}{\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)}\left[\cos \frac{k_{0}}{2} x\left(y \sin k_{0} y+z \sin k_{0} z\right)+x \sin \frac{k_{0}}{2} x\left(\cos k_{0} y+\cos k_{0} z^{2}\right)\right] \\
& \frac{c}{\left(y^{2}-z^{2}\right)\left(y^{2}-x^{2}\right)}\left[\cos \frac{k_{0}}{2} y\left(z \sin k_{0} z+x \sin k_{0} x\right)+y \sin \frac{k_{0}}{2} y\left(\cos k_{0} z+\cos k_{0} x\right)\right] \\
& \frac{C}{\left(z^{2}-x^{2}\right)\left(z^{2}-x^{2}\right)}\left[\cos \frac{k_{0}}{2} z\left(x \sin k_{0} x+y \sin k_{0} y\right)+z \sin \frac{k_{0}}{2} z\left(\cos k_{0}+\cos k_{0} y\right)\right] \\
& \text { Where } k_{0}=\pi / a \\
& \text { and } C \text { is a constant }
\end{aligned}
$$

1) See Pincherle, L. ,Electronic Enersy Bands in Solids, p. 65, London, Macdonald (1971)

4.4.5 THIE BODY-CENTERED CUBIC LATTICE

In this section as an example we will eive briefly the details of the calculations . Similiar arguments were used in the remainine sections (Also see section 4.1 for the choice of the arbitrary phases)

Fig. 4.10 The first Brillouin zone for the B.C.C lattice

The following knowledge is relevant to the future calculations
i) The zone has 12 equal faces in forms of rhombus with acute angles $2 \times \operatorname{Tan}^{-1} \frac{1}{\sqrt{2}}=70.5$
ii) Four faces intersect at $\frac{2 \pi}{a}(\mp 1,0,0), \frac{2 \pi}{a}(0, \mp 1,0), \frac{2 \pi}{a}(0,0, \mp 1)$
iii) Three faces intersect at $\frac{2 \pi \sqrt{3}}{2 a}(\mp 1, \mp 1, \mp 1)$
iv) The equations of the faces are given in detail on the next page

Fig. 4.11 The k_{x}, k_{y} and the k_{y}, k_{z} planes of the zone (The shaded part shom above makes $1 / 4$ of the total zone)

The coordinate system is chosen as shown above to make most out of the symmetry considerations -

The usual integration will be first carried over the partial zone (shaded) shown above . The contributions of the remaining regions can be obtained by appropriate coordinate transformations due to symnetry considerations.

The equation of the planes A_{1} and A_{2} is $k_{z}=\frac{2 \pi}{2}-k_{x}$ The equations of the planes B_{1} and B_{2} is $k_{2}=-\frac{2 \pi}{a}+k_{x}$

The contribution of the first partial zone (the prism bounded by plane A_{1} at top and by plane B_{1} at bottom, see fie. 4.11) is
$I_{1}=\int_{-\pi / 2}^{k_{y}=0} \int_{k_{x}=-k_{y}}^{k_{x}=k_{y}+2 \pi / a} \int_{k_{z}-\frac{2 \pi}{a}+k_{x}}^{k_{z}=\frac{2 \pi}{a}-k_{x}} e^{i k_{x} x+i k_{y} y+i k_{z} z} d k_{x} d k_{y} d k_{z}$
The contribution of the second partial zone (the prism bounded by planes A_{2} and B_{2}, see Fig. 4.11) is,

Carrying out the relevant integrations in equations 4.18 and 4.19 and then summing up and simplifyinz the results we obtain

$$
\begin{aligned}
I_{1}+I_{2}= & \frac{2\left[\exp \left(i k_{0}(-x-y+z)\right)+\exp \left(i k_{0}(-x+y+z)\right)-\left(\exp \left(-i 2 k_{0} x\right)+\exp \left(i 2 k_{0} z\right)\right)\right]}{i z\left[(x+z)^{2}-y^{2}\right]} \\
& \frac{2\left[\exp \left(i 2 k_{0} x\right)+\exp \left(-i z k_{0} z\right)-\left(\exp \left(i k_{0}(x+y-z)+\exp \left(i k_{0}(x-y-z i)\right)\right]\right.\right.}{i z\left[(x+z)^{2}-y^{2}\right]}
\end{aligned}
$$

Contribution of the fifth and sixth partial zones can be obtained from equation 4.20 by the following transformation

$$
x \longleftrightarrow-x
$$

Hence, we have

$$
\begin{align*}
& \frac{z\left[\exp \left(i k_{0}(-x-y+z)\right)+\exp \left(i k_{0}(-x+y+z)\right)-\left(\exp \left(-i z k_{0} x\right)+\exp \left(i 2 k_{0} z\right)\right)\right]}{i z\left[(x+z)^{2}-y^{2}\right]} \\
& \frac{2\left[\exp \left(-i 2 k_{0} x\right)+\exp \left(-i 2 k_{0} z\right)-\left(\exp \left(i k_{0}(-x+y-z)+\exp \left(-i k_{0}(x+y+z)\right)\right]\right.\right.}{i z\left[(x-z)^{2}-y^{2}\right]}
\end{align*}
$$

Summing up the equations 4.20 and 4.21 we find the following

$$
\begin{aligned}
\frac{16}{z\left[\left(x^{2}-y^{2}+z^{2}\right)^{2}-4 x^{2} z^{2}\right]}[& 2 \dot{x} z \sin k_{0} x\left(\cos k_{0} y \cos k_{0} z-\cos k_{0} x\right) \\
& \left.+\left(x^{2}+z^{2}-y^{2}\right) \sin k_{0} z\left(\cos k_{0} x \cos k_{0} y-\cos k_{0} z\right)\right]
\end{aligned}
$$

which is the total contribution of the partial zones $1,2,5$, and 6 (see the figure below)

Now it is clear that the contribution of the remaining partial zones (the partial zones $3,4,7$, and 8) can be obtained from equation by the following transformation

Hence we have

$$
\begin{gather*}
+\frac{10}{z\left[\left(-x^{2}+y^{2}+z^{2}\right)^{2}-4 y^{2} z^{2}\right]}\left[2 y z \sin k_{0} y\left(\cos k_{0} x \cos k_{0} z-\cos k_{0} y\right)\right. \\
\left.+\left(-x^{2}+y^{2}+z^{2}\right) \sin k_{0} z\left(\cos k_{0} u_{0} \cos k_{0} x-\cos k_{0} z\right)\right]
\end{gather*}
$$

Sun of the equations 4.22 and 4.23 yields us the total warier function which is

$$
\begin{aligned}
& a_{1}(x, y, z)=\frac{0}{z\left[\left(x^{2}-y^{2}+z^{2}\right)^{2}-4 x^{2} z^{2}\right]}\left[2 x z \operatorname{sink} x\left(\cos k_{0} y \operatorname{cosk} k_{0} z-\cos \cos _{0} x\right)\right. \\
& +\left(x^{2}+z^{2}-y^{2}\right) \sin \sin _{0} z\left(\cos k_{0} x \cos \cos ^{2}-\cos \pi=i\right) \\
& +\frac{c}{z\left[\left(-x^{2}+y^{2}+z^{2}\right)-2 y^{2} z^{2}\right]}\left\{2 y z \sin k_{0} y\left(\cos k_{0} x \cos x_{0} z-\cos k_{0} y\right)\right. \\
& +\left(-x^{2}+y^{2}+z^{2}\right) \sin _{0}{ }^{2}\left(\cos k_{0} y \cos k_{0} x-\cos k_{0} z\right)
\end{aligned}
$$

Fif.4.1? Vannier functions (normalised) for three lowest energy hands. Fiven function: lowest band; odd function, second band, etc.

Fio. 4.13 \#̈nnier functinns (nnmaliaod) for fourth th sivth pnorgr hends.

CHAPTER 5

A PERMURPATION MmIHOD FOR WANMIER MUNCTIONS

Below we suceest a perturbation method appropriate to Mannior functions.

5.1. THE PERTURBATION MEMIOD IN THE GDNERAL CASE

Suppose that an unperturbed system in the Wannier representation is given by,

$$
H^{0} a_{t}^{0}\left(\underline{r}-\underline{R}_{m}\right)=\sum_{\underline{R}_{n}} \varepsilon_{t}^{0}\left(\underline{R}_{n}\right) a_{t}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{n}\right)
$$

where 't' and 'R'm are the band and the localization indices of the Wannier functions.

Now let us assume that a small perturbation H^{\prime} has been app lied to the system (a Eereral discussion of time - dependent (independent) perturbation theory may be found in a number of places in modern literature, see for instance Dalgarmo, A! and Morse, P.in. and Feshbach, H_{\bullet}^{2})

Hence,

$$
\left(H^{0}+H^{\prime}\right) a_{t}^{P}\left(\underline{r}-R_{m}\right)=\sum_{\underline{R}_{n}} \varepsilon_{t}^{P}\left(\underline{R}_{n}\right) a_{t}^{P}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{n}\right)
$$

where $a_{t}^{p}\left(\underline{r}-\underline{R}_{m}\right)$ and $\varepsilon_{t}^{p}\left(\underline{R}_{n}\right)$ are the silictly perturbed Wannier functions and the enercy fourier coefficients.

Now let us expand the perturbed Wannier function in terms of a complete set of orthonormal functions made up of unnerturbed Wannier functions from different bands and locations.

1) Dalcarno, A. Quentum Theory, vol. 1 , chap.5- 8, Academic press Hew York and London, (eaited by I.R. Bates) 1961 .
2) Morse, P.M. and Feshbech,H. , Methods of Theoretical Fhysics, liceraw-hill, liew York, 1953.

$$
a_{t}^{p}\left(\underline{r}-\underline{R}_{m}\right)=\sum_{s} \sum_{\underline{R}_{p}} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{p}\right)
$$

At this stage one can make the following points about the last expression,
i) If H^{\prime} is small, then the perturbed Wannier function is only slichtly different from the corresponding unperturbed Wannier function.

$$
a_{t}^{P}\left(\underline{r}-\underline{R}_{m}\right) \cong a_{t}^{0}\left(\underline{r}-\underline{R}_{m}\right)
$$

Hence equation 5.3 may be rewritten as follows by letting the coefficient $\quad C_{t}(0)=1$.

$$
a_{t}^{p}\left(\underline{r}-\underline{R}_{m}\right)=a_{t}^{0}\left(\underline{r}-\underline{R}_{m}\right)+\sum_{s} \sum_{\underline{R}_{p}}^{1} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{p}\right)
$$

where the prime on the summation notation denotes that the simultaneous values of $s=t$ and $R_{p}=0$ is not included in the summation.
ii) The perturbed Wannier function must be normalized.

Consider;
$\int_{\text {All } r}\left|a_{t}^{p}\left(\underline{r}-\underline{R}_{m}\right)\right|^{2} d^{3} r=\int_{\text {All } \underline{r}}\left|a_{t}^{0}\left(\underline{r}-\underline{R}_{-m}\right)\right|^{2} d^{3} r+\sum_{s} \sum_{\underline{R}_{p}}^{1}\left|C_{s}\left(\underline{R}_{p}\right)\right|_{\text {All } \underline{r}}^{2}\left|a_{s}^{0}\left(\underline{r}-\underline{R}_{-}-R_{p}\right)\right|^{2} d^{3} r$

$$
=1+\sum_{s} \sum_{\mathbb{R}_{p}}^{1}\left|C_{s}\left(\underline{R}_{p}\right)\right|^{2}
$$

$=1+\varepsilon \cong 1$
In general when H^{\prime} is small, then we have $C_{S}\left(\underline{R}_{P}\right) \ll 1$, therefore $\left|C_{s}\left(\underline{R}_{p}\right)\right|^{2}$ is negligible compared with unity .

The last steps in equation 5.6 is valid if, i) the series $1+\sum_{s}^{1} \sum_{R_{p}}^{1}\left|C_{S}\left(\underline{R}_{p}\right)\right|^{2}$ is convergent. To ensure this
we must have. we must have,

$$
\lim _{s, R_{p} \rightarrow \infty} \frac{\left|C_{s+1}\left(R_{p+1}\right)\right|^{2}}{\left|C_{s}\left(R_{p}\right)\right|^{2}}<1
$$

ii) However , remembering that all of the terms in the series are positive and that the sum converges to a positive number we see that $C_{s}\left(\dot{\mathrm{R}}_{\mathrm{p}}\right)$ must converge to zero for large s and $\underline{R}_{\mathrm{p}}$.

$$
\lim _{S, \underline{R}_{p} \rightarrow l_{\text {large }}} C_{s}\left(\underline{R}_{p}\right) \rightarrow 0
$$

Now let us assume that the perturbed energy Fourier coefficient with the correction to the first order is given by,

$$
\varepsilon_{t}^{p}\left(\underline{R}_{n}\right)=\varepsilon_{t}^{0}\left(\underline{R}_{n}\right)+\varepsilon_{t}^{1}\left(\underline{R}_{n}\right)
$$

Substituting equations 5.5 and -5.9. into equation 5.2 and letting $R_{n}=0$ for simplicity (This is permissible as R_{m} is an arbitrary lattice vector) we get,

$$
\begin{aligned}
& \left(H^{0}+H^{\prime}\right)\left[a_{t}^{0}(\underline{r})+\sum_{s} \sum_{R_{p}}^{1} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(r-\underline{R}_{p}\right)\right]=
\end{aligned}
$$

$$
\begin{aligned}
& 5.10
\end{aligned}
$$

Neglecting second order terms we get,

$$
\begin{align*}
& H^{0} a_{t}^{0}(r)+H^{0} \sum_{s}^{1} \sum_{\underline{R}_{p}} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right)+H^{\prime} a_{t}^{0}(r)=\sum_{\underline{R}_{n}} \varepsilon_{t}^{0}\left(\underline{R}_{n}\right) a_{t}^{0}\left(\underline{r}-\underline{R}_{n}\right) \\
& +\sum_{\underline{R}_{n}} \varepsilon_{t}^{0}\left(\underline{R}_{n}\right) \sum_{s} \sum_{R_{p}}^{1} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{n}-\underline{R}_{p}\right)+\sum_{\underline{R}_{n}} \varepsilon_{t}^{\prime}\left(\underline{R}_{n}\right) a_{t}^{0}\left(\underline{r}-\underline{R}_{n}\right)
\end{align*}
$$

The first terms on the right and left hand sides cancel since they are equal to each other by equation 5.1., therefore we have

$$
\begin{aligned}
& H^{\prime} a_{f}^{0}(\underline{r})+H^{0} \sum_{s}^{1} \sum_{\underline{R}_{p}} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right)= \\
& \quad \sum_{\underline{R}_{n}} \varepsilon_{t}^{0}\left(\underline{R}_{n}\right) \sum_{s} \sum_{\underline{R}_{p}}^{1} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{n}-\underline{R}_{p}\right)+\sum_{\underline{R}_{n}} \varepsilon_{t}^{\prime}\left(\underline{R}_{n}\right) a_{t}^{0}\left(\underline{r}-\underline{R}_{r}\right) \\
& \text { Now multiplying both sides of equation } \quad 5.12 \text { by }\left(a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)\right)^{*} \\
& \text { and integrating over all } \underline{r} \text { space }
\end{aligned}
$$

$$
\int_{\mu \underline{r}} a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r+\sum_{s} \sum_{\underline{R}_{p}}^{1} C_{s}\left(\underline{R}_{p}\right) \int_{\text {all } \underline{r}} a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} H^{0} a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right) d^{3} r
$$

$$
\begin{align*}
&=\sum_{\underline{R}_{n}} \varepsilon_{t}^{0}\left(\underline{R}_{n}\right) \sum_{s} \sum_{\underline{R}_{p}}^{1} C_{s}\left(\underline{R}_{p}\right) \int_{\text {all } r} a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} a_{s}^{0}\left(\underline{r}-\underline{R}_{n}-\underline{R}_{p}\right) d^{3} r \\
&+\sum_{\underline{R}_{n}} \varepsilon_{t}^{\prime}\left(\underline{R}_{n}\right) \int a_{q}^{0}\left(r-\underline{R}_{w}\right)^{*} a_{t}^{0}\left(\underline{r}-\underline{R}_{n}\right) d^{3} r
\end{align*}
$$

It can easily be shown that the unperturbed Hamiltonian does not have matrix elements between the Wanner functions of different bands ${ }^{2 A}$ (nomángonerata) therefore,

2A) See section 3.1

$$
\int_{\text {all } \leq} a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} H^{0} a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right) d^{3} r=\delta_{q S} \varepsilon_{q S}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right)
$$

and from the orthogonality of Wanner functions we have

$$
\int_{\text {all } \underline{s}} a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} a_{s}^{0}\left(\underline{r}-\underline{R}_{n}-\underline{R}_{p}\right) d^{3} r=\delta_{q s} \delta_{\underline{R}_{w}, \underline{R}_{n}}+\underline{R}_{p}
$$

Hence equation 5.13 cen be written as

$$
\begin{aligned}
& \int_{\text {all } \leq} a_{q}^{0}\left(r-\underline{R}_{w}\right)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r+\sum_{s}^{\prime} \sum_{\underline{R}_{p}} C_{s}\left(\underline{R}_{p}\right) \delta_{q s} \varepsilon_{q s}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right) \\
= & \sum_{\underline{R}_{n}} \varepsilon_{t}^{0}\left(\underline{R}_{n}\right) \sum_{s} \sum_{\underline{R}_{p}} C_{s}\left(\underline{R}_{p}\right) \delta_{q s} \delta_{\underline{R}_{w}, \underline{R}_{n}+\underline{R}_{p}}+\sum_{\underline{R}_{n}} \varepsilon_{t}^{\prime}\left(R_{n}\right) \delta_{q t} \delta_{R_{w w}, \underline{R}_{n}}
\end{aligned}
$$

Note that the matrix elements of H^{\prime}, (the perturbing potential), between the unperturbed Winier functions of different bands genes ally do not vanish.

Now considering the effects of the Kronecker's deltas in the summations equation 5.16 can be simplified to the following form.
$\int_{\text {all } \leq} a_{q}^{0}\left(r-\underline{R}_{w}\right)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r+\sum_{\underline{R}_{p}}^{\prime} C_{q}\left(\underline{R}_{p}\right) \varepsilon_{q q}^{0}\left(R_{-w}-\underline{R}_{p}\right)$

$$
=\sum_{\underline{R}_{p}}^{\prime} \varepsilon_{t}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right) C_{q}\left(\underline{R}_{p}\right)+\varepsilon_{t}^{\prime}\left(\underline{R}_{w}\right) \delta_{q t}
$$

where as before q is the index of an arbitrary band. When q is compared with the index of a particular band say t. we have two possibilities, i) $q=t$ ii) $q \neq t$
i) Consider the first case $q=t$,
equation 5.17 becomes;
$\int_{\text {all } r} a_{t}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r+\sum_{\underline{R}_{p}}^{1} C_{t}\left(\underline{R}_{p}\right) \mathcal{Z}_{t t}^{0}\left(R_{-}-\underline{R}_{p}\right)$
$=\sum_{\substack{\mathcal{R}_{p} \\ \text { therefore }}}^{\prime} C_{t}\left(\underline{R}_{p}\right) \xi_{t t}^{0}\left(R_{\underline{w}}-\underline{R}_{p}\right)+\varepsilon_{t}^{\prime}\left(R_{w}\right)$

$$
\varepsilon_{t t}^{\prime}(\underline{R} w)=\int_{a l l} a_{t}^{0}(\underline{r}-\underline{R} w)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r
$$

which is the first order correction to the energy Fourier coefficient. Therefore the perturbed energy Fourier coefficient is given by

$$
\begin{align*}
\varepsilon_{t t}^{P}\left(R_{-w}\right) & =\varepsilon_{t t}^{0}\left(R_{w}\right)+\varepsilon_{t t}^{1}\left(R_{w}\right) \\
& =\varepsilon_{t t}^{0}\left(R_{w}\right)+\int_{\text {all } \underline{s}} a_{t}^{0}\left(\underline{r}-R_{w}\right)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r
\end{align*}
$$

ii) Consider now the second case $q \neq t$,
we have (Using equation 5.19)

$$
\varepsilon_{q t}^{\prime}\left(\underline{R}_{\omega}\right)+\sum_{\underline{R}_{p}}^{\prime} C_{q}\left(\underline{R}_{p}\right) \varepsilon_{q q}^{0}\left(R_{w}-\underline{R}_{p}\right)
$$

$$
=\sum_{\underline{R}_{p}}^{1} C_{q}\left(\underline{R}_{p}\right) \varepsilon_{t t}^{0}\left(\underline{R}_{\omega}-\underline{R}_{p}\right)
$$

$$
\sum_{\underline{R}_{p}}^{1} C_{q}\left(\underline{R}_{p}\right)\left[\varepsilon_{t t}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right)-\varepsilon_{q q}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right)\right]=\varepsilon_{q t}^{\prime}\left(\underline{R}_{w}\right)
$$

through which we can obtain the coefficients of the expansion for the perturbed Winier function (See equation 5.5).

Equation 5.22 can be worked out as follows;
For any particular band under consideration say the $q^{\text {th }}$ band the summation over N values of lattice vector \underline{R}_{p} yields only one inhomogenous linear equation in N unknoms which are $C_{q}\left(\underline{R}_{i}\right), i=1,2, \ldots N$ Now assigning N different values to the arbitrary lattice vector R_{w}, one gets a set of N inhomogenous equations in N unknowns.

Prince; The equations when written out for one dimension have the following form,

$$
\begin{aligned}
& C_{q}(0)\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right]+C_{q}(a)\left[\varepsilon_{t}^{0}(-a)-\varepsilon_{q}^{0}(-a)\right]+\cdots+C_{q}(n a)\left[\varepsilon_{t}^{0}(-n a)-\varepsilon_{q}^{0}(-n a)\right]=\varepsilon_{q t}^{1}(0) \\
& C_{q}(0)\left[\xi_{t}^{0}(a)-\varepsilon_{q}^{0}(a)\right]+C_{q}(a)\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right]+\cdots+C_{q}(n a)\left[\varepsilon_{t}^{0}(-n a+a)-\varepsilon_{q}^{0}(-n a+a)\right]=\varepsilon_{q t}^{\prime}\left(a^{\prime}\right)
\end{aligned}
$$

$$
\begin{align*}
& C_{q}(0)\left[\varepsilon_{t}^{0}(n a)-\varepsilon_{q}^{0}(n a)\right]+C_{q}(a)\left[\varepsilon_{t}^{0}(n a-a)-\varepsilon_{q}^{0}(n a-a)\right]+\cdots+C_{q}(n a)\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right]=\varepsilon_{q t}^{\prime}(n 0 .
\end{align*}
$$

$\therefore \quad$ Now we can write this system of linear equations in terms of of matrices,

$$
E C=H
$$

where

$$
E=\left[\begin{array}{cccc}
\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0) & \varepsilon_{t}^{0}(-a)-\varepsilon_{q}^{0}(-a) \cdots \cdots \varepsilon_{t}^{0}(-n a)-\varepsilon_{q}^{0}(-n a) \\
\varepsilon_{t}^{0}(a)-\varepsilon_{q}^{0}(a) & \varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0) \cdots \cdots \cdots \varepsilon_{t}^{0}(-n a+a)-\varepsilon_{q}^{0}(-n a+a) \\
\vdots & \vdots & \vdots & \cdots \cdots \cdots \cdots \\
1 & \vdots & 1 & 1
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{c}
C_{q}(0) \\
C_{q}(a) \\
C_{q}(2 a) \\
\vdots \\
\vdots \\
C_{q}(n a)
\end{array}\right] \quad H=\left[\begin{array}{c}
\varepsilon_{q t}^{\prime}(0) \\
\varepsilon_{q t}^{\prime}(a) \\
\vdots \\
\vdots \\
\varepsilon_{q t}(n a)
\end{array}\right]
$$

The general solution of equation 5.24 for the " $C_{q}(R)$'s is well known and can be written in terms of determinants (if E is a nonsingular matrix)

$$
C_{q}(m a)=\frac{\left|E^{(m)}\right|}{|E|}
$$

$$
m=0,1, \ldots, n
$$

The numerators in this expression are the determinants of $(n+1) X(n+1)$ matrices formed from E by replacing the $m{ }^{\text {th }}$ column with column of H's.

NoT: ; Further remarks on the matrix structures are possible. i.e. Let us recall equation

$$
\begin{align*}
& \varepsilon_{t}^{0}\left(x_{m}\right)=\sum_{k} E_{k} e^{i k \cdot x_{m}} \\
& \varepsilon_{t}^{0}\left(-x_{m}\right)=\sum_{k} E_{k} e^{-i k \cdot x_{m}}
\end{align*}
$$

where the summation is over the $t^{\text {th }}$ B. Z only.
Now let us assume that the B. Z under consideration has inversion
symeiry for : k : , inen equaiion \bar{j} ay can be rewritten as,
3) In sec. 5.3 we have shown that for a 3 dim. crystal with inversional sym metry, these coefficients are related to each other by

$$
C_{q}\left(\underline{R}_{m}\right)=\mu \cdot C_{q}^{*}\left(-\underline{R}_{n}\right)
$$

where μ is either +1 or -1 (also see chap. 6)

$$
\varepsilon_{t}^{0}\left(-X_{m}\right)=\sum_{k} E_{-k} e^{i k \cdot x_{m}}
$$

Eut from time reversal . we have

$$
E_{k}=E_{-k}
$$

Therefore

$$
\varepsilon_{t}^{0}\left(-x_{m}\right)=\sum_{k} E_{k} e^{i k \cdot X_{m}}=\varepsilon_{t}^{0}\left(x_{m}\right)
$$

As a consequence of equation 5.32 the coefficient matrix $E=\left[e_{i j}\right]$ becomes a symmetric matrix ($e_{i j=}=e_{j i}$ for all i and j) and is given by

5.2 THE PERTUREATION METHOD IN THE CASE WHERE TYE WANALER FUNCTIONS

 have síall overlapIf the Warmier functions are strongly localized or if the atoms in the lattice are well seperated then the Wannier functions concerned may not overlap appreciably.

The general perturbation equations developed in section 5.1. do then simplify.

Consider the general expression given by equation 5.22

$$
\sum_{\underline{R}_{p}} C_{q}\left(\underline{R}_{p}\right)\left[\varepsilon_{t}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right)-\varepsilon_{q}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right)\right]=\varepsilon_{q t}^{\prime}\left(\underline{R}_{w}\right)
$$

where \underline{R}_{w} is an arbitrary lattice vector. Let us also recall the system of linear equations in terms of matrices which are obtained from equation 5.34

$$
E C=H
$$

Now following the above assumptions (i.e , the atoms are well seperated etc.) the energy bands under consideration will become so narrow (Very close to a free atomic enercy level) that in the following equation

$$
E_{q}^{0}(\underline{k})=\sum_{\underline{R}_{n}} \varepsilon_{q}^{0}\left(\underline{R}_{n}\right) e^{i \underline{k} \cdot \underline{R}_{n}}
$$

only the first Fourier coefficient will be appreciably different from zero, in other terms

$$
\begin{array}{ll}
\varepsilon_{q}^{0}\left(\underline{R}_{n}\right) \neq 0 & \text { if } \\
\varepsilon_{q}^{0}\left(\underline{R}_{n}\right) \cong 0 & \text { if } \\
\underline{R}_{n} \neq 0
\end{array}
$$

also,

2700,

$$
\begin{aligned}
\varepsilon_{q}^{0}\left(\underline{R}_{\omega}-\underline{R}_{p}\right) & \neq 0 \quad \text { if } \quad \underline{R}_{p}=\underline{R}_{w} \\
& \cong 0 \quad \text { if } \quad \underline{R}_{p} \neq \underline{R}_{w}
\end{aligned}
$$

Now let us consider the terms on the right hand side of equation 5.34 which are given by,

$$
\varepsilon_{q t}^{\prime}(\underline{R} w)=\int_{\text {all } \underline{r}} a_{q}^{0}\left(\underline{r}-\underline{R}_{w}\right)^{*} H^{\prime} a_{t}^{0}(\underline{r}) d^{3} r
$$

Since the Wannier functions do not overlap appreciably we have

$$
\begin{align*}
\varepsilon_{q t}^{\prime}\left(\underline{R}_{w}\right) & \neq 0 \\
\cong 0 & \text { if } \underline{R}_{w}=0 \\
& \text { if } \quad \underline{R}_{w} \neq 0
\end{align*}
$$

Considering equations $5.36,5.37,5.38$, and 5.39 the matrices E and II (see equations 5.25 and 5.26) will now have the following forms

$$
\begin{gathered}
E=\left[\begin{array}{ccc}
\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0) \\
\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0) & \\
& \ddots & \\
& \ddots & \\
& & \ddots \\
& \\
& \\
& \\
& \\
\vdots \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

Hence we see that for this particular case the coefficient matrix E becomes diagonalized and in the matrix H all elements except the first have vanished.

We can now write the coefficient matrix E as follows

$$
E=\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right] \cdot I=\alpha \cdot I
$$

where I is an $n X n$ unitary matrix. Substituting 5.43 into 5.34 we obtain

$$
\begin{array}{ll}
& {\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right] \cdot I C=H} \\
\text { but } & I C=C \\
\therefore & {\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right] \cdot C=H}
\end{array}
$$

Now writing out the last expression,

$$
\left[\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)\right] \cdot\left[\begin{array}{c}
C_{q}(0) \\
C_{q}\left(R_{1}\right) \\
C_{q}\left(R_{2}\right) \\
\vdots \\
C_{q}^{\prime}\left(R_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\varepsilon_{q t}^{\prime}(0) \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

we find

$$
C_{q}(0)=\frac{\varepsilon_{q t}^{1}(0)}{\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)}, \quad C_{q}\left(\underline{R}_{n}\right)=0 \quad \begin{aligned}
& n=1,2, \ldots n \\
& 5.48
\end{aligned}
$$

and recalling that the perturbed Wannier function was given by the following expansion (See equation 5.5).

$$
a_{2}^{P}\left(\underline{r}-\underline{R}_{m}\right)=a_{+}^{0}\left(r-R_{m}\right)+\sum_{\mathcal{L} \underline{E}_{n}}^{1} \int_{\underline{Q}}\left(\underline{R}_{n}\right) a_{q}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{n}\right)
$$

Substituting the equations (5.43) into equation 5.49 ve find the following final expression for the perturbed Wannier function.

$$
\begin{aligned}
& a_{t}^{p}\left(\underline{r}-R_{m}\right)=a_{t}^{0}\left(\underline{r}-R_{m}\right)+\sum_{q} \frac{\varepsilon_{q t}^{1}(0)}{\varepsilon_{t}^{0}(0)-\varepsilon_{q}^{0}(0)} a_{q}^{0}\left(\underline{r}-R_{m}\right) \\
&(q \neq t)
\end{aligned}
$$

Hence, for this particular case in the expansion of the perturbed Wannier functions one has to include unperturbed Wannier functions from different bands only.

REAARK ; For a qualitative verification of the results given by 5.50 . consider the case of tightly bound electrons for which the Yannier functions are given by atomic orbitals. Any small perturbation applied to the system would favour a perturbed function(which resembles the original unperturbed functicn)which does not oscillate at distant cells. Hence, an expansion for the perturbed function which avoids using Wannier functions from different locations ensures the above condition.
5.3 The phiturbation methov in thi Case where the perturbing FOTmPIAL HAS Invergioid shmerivy

If we now assume that both the crystal and the perturbing potential has a center of symnetry (say at $\underline{r}=0$), then the associated (perturbed) Wannier functions will also have inversion symmetry about the same point (see chapter 7). Therefore if we consider the first (eround) and the subsequent odd numbered bands the associated Wannier functions (perturbed or unperturbed) are symmetric in the sense,

$$
a_{t}^{0}(-\underline{r})=a_{t}^{0}(+\underline{r}), a_{t}^{p}(-\underline{r})=a_{t}^{p}(+\underline{r}) \quad t=1,3,5, \ldots 5.51
$$

If vie impose these conditions on the expression (which we have written in a form convenient for the present discussion) given for the above perturbed Wannier function,

$$
\begin{aligned}
& a_{t}^{0}(-\underline{r})+\sum C_{s}(0) a_{s}^{0}(-\underline{r})+\sum_{s} \sum_{p} C_{s}\left(\underline{E}_{p}\right) a_{s}^{0}\left(-\underline{r}-\underline{R}_{p}\right)+\sum_{s} \sum_{-p} C_{s}\left(-R_{p}\right) a_{s}^{0}\left(-\underline{r}+\underline{R}_{p}\right)+\cdots 5.52 \\
& =a_{t}^{0}(r)+\sum_{s} C_{s}(0) a_{s}^{0}(\underline{r})+\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(r-\underline{R}_{P}\right)+\sum_{s} \sum_{P} C_{s}\left(-\underline{R}_{p}\right) a_{s} 0_{s}\left(r+R_{p}\right)+\ldots .
\end{aligned}
$$

The first terms (on both sides) cancel, the second terms however are equal in the sense,

$$
C_{s}(0) a_{s}^{0}(-r)=C_{s}(0) a_{s}^{0}(\underline{r})
$$

and yield $C_{s}(0)=0$ for $s=$ even (since, $a_{s}^{0}(\underline{r})$ for this choice is antisymmetric and not zero for all \underline{r}) and $C_{S}(0) \neq 0$ for $s=o d d$.

Finally for the remaining terms of equation 5.52 we can write the following (since the unperturbed Wannier functions in eoncern are functions of difference only, see chapter 2)

$$
\begin{aligned}
& C_{s}\left(+R_{p}\right) a_{s}^{0}\left(-r-R_{p}\right)=C_{s}\left(-R_{p}\right) a_{s}^{0}\left(r+Q_{p}\right) \\
& \quad \text { or } \\
& C_{s}\left(+R_{p}\right) a_{s}^{0}\left(-r+Q_{p}\right)=C_{s}\left(-R_{p}\right) a_{s}^{0}\left(r-R_{p}\right)
\end{aligned}
$$

which through similiar arguments yield

$$
\begin{align*}
& c_{s}\left(+R_{p}\right)=-c_{s}\left(-R_{p}\right) \text { for } s=\text { even } \\
& c_{s}\left(+R_{p}\right)=c_{s}\left(-R_{p}\right) \text { for } s=\text { odd }
\end{align*}
$$

In chapter 7 we have also shom that as a result of time rever sal symmetry the wiannier functions can be chosen as either real or pure imaginary. In the present discussion we have started with a symmetric (and real) perturbed ilannier function, therefore in expanding this function the coefficients $C_{s}\left(R_{p}\right)$'s associated with the unperturbed Wan nier functions of even numbered bands (pure imaginary) are to be chosen pure imasinary (in order to end up with a real function). Therefore conaition 5.55 could also be written as

$$
c_{s}\left(+R_{p}\right)=C_{s}^{*}\left(-\mathbb{R}_{p}\right) \quad \text { for } s=\text { even } \quad 5.56
$$

Hence to summarize; symmetry in the applied potential (provided that the crystal has a center of inversion) has the following implications on the choice of the coefficients $C_{s}\left(R_{p}\right)$'s for;
a) The perturbed Wennier function of and odd numbered band

$$
\begin{align*}
& \left.\begin{array}{l|l}
c_{s}(0) \neq 0 \\
c_{s}\left(+R_{p}\right)=C_{s}\left(-R_{p}\right)
\end{array} \right\rvert\, \text { for } s=o \text { òd (C is real) } \\
& \begin{array}{l|c}
C_{s}(0)=0 & \text { for } s=\text { even. (} C \text { is imaginary) } \\
C_{s}\left(+R_{p}\right)=C_{s}^{*}\left(-R_{p}\right) & \therefore .
\end{array}
\end{align*}
$$

b) The perturbed wannier function of an even numbered band

$$
\begin{array}{l|l}
c_{s}(0)=0 & \text { for s=odd (} c \text { is imaginary }) \\
c_{s}\left(+R_{p}\right)=c_{s}^{*}\left(-R_{p}\right) & \\
c_{s}(0) \neq 0 & \text { for s=even (} c \text { is real) } \\
c_{s}\left(R_{p}\right)=c_{s}\left(-R_{-p}\right) &
\end{array}
$$

Similar proofs follow for coefficients associated with the second (or higher) order corrections.
5.4 SECOND ONDER CORRECTIONS

In the previous sections the effect of the perturbative potential $\mathrm{H}^{\prime}(\underline{r})$ in the liamiltonian operator for crystals on both the Wannier functions and eigenenergy Fourier coefficients has been obtained to the first order, which are

$$
\begin{aligned}
& \varepsilon_{t}^{p}\left(\underline{R}_{m}\right)=\varepsilon_{t}^{0}\left(\underline{R}_{m}\right)+\left\langle t, \underline{R}_{m}\right| H^{\prime}|t, 0\rangle \\
& a_{t}^{p}\left(\underline{r}-\underline{R}_{m}\right)=a_{t}^{0}\left(\underline{r}-\underline{R}_{m}\right)+\sum_{s} \sum_{p}^{1} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{p}\right) 5.60
\end{aligned}
$$

where the coefficients $C_{s}\left(R_{p}\right)$'s are to be obtained through the following set of linear simultaneous equations (see equation 5.22)

$$
\sum_{p} C_{s}\left(\underline{R}_{p}\right)\left[\varepsilon_{t+}^{0}\left(\underline{R}_{w}-\underline{R}_{p}\right)-\varepsilon_{s s}^{0}\left(R_{w}-R_{p}\right)\right]=\varepsilon_{s t}^{1}\left(\underline{R}_{w}\right) \quad 5.61
$$

 eigenenergy Fourier coefficients

$$
\text { i.e. } \quad \varepsilon_{t t}^{0}\left(\underline{R}_{w}-R_{p}\right)=\left\langle t, R_{w}\right| H^{a}\left|t, B_{p}\right\rangle \text {, etc. } 5.62
$$

and $\mathcal{E}_{s t}^{\prime}\left(\underline{\mathrm{R}}_{\mathrm{w}}\right)$ is an (interband) matrix element of the perturbative potential which is given as

$$
\varepsilon_{s t}^{\prime}\left(\underline{R}_{w}\right)=\left\langle s, \underline{R}_{w}\right| H^{\prime}|t, 0\rangle
$$

The second order corrections to the Wannier functions and the fourier coefficients of the energy can be obtained in a way similiar to that followed in the previous sactions (by using the first. order solutions). If we now denote these second order terms as folIows $\quad \varepsilon_{t}^{p}\left(\underline{R}_{m}\right)=\varepsilon_{t}^{0}\left(\underline{R}_{m}\right)+\varepsilon_{t}^{\prime}\left(\underline{R}_{m}\right)+\varepsilon_{t}^{n}\left(\underline{R}_{m}\right) \quad 5.64$
$\left.a_{t}^{p}\left(\underline{r}-\underline{R}_{m}\right)=a_{t}^{0}\left(\underline{r}-\underline{R}_{m}\right)+\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-R_{p}-R_{m}\right)+\sum_{s} \sum_{p} B_{s}\left(R_{p}\right) a_{s}^{0} 5-65-R_{p}-R_{m}\right)$ then substitute equations 5.64 and 5.65 into equation 5.2 and let $\mathrm{R}_{\mathrm{m}}=0$ (for simplicity). we get

$$
\begin{aligned}
&\left(H^{0}+H^{\prime}\right)\left(a_{t}^{0}(\underline{r})+\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right)+\sum_{s} \sum_{p} B_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right)\right) \\
&=\sum_{m}\left[\varepsilon_{t}^{0}\left(\underline{R}_{m}\right)+\varepsilon_{t}^{\prime}\left(\underline{R}_{m}\right)+\varepsilon_{t}^{\prime \prime}\left(\underline{R}_{m}\right)\right]\left[a_{t}^{0}\left(\underline{r}-\underline{R}_{m}\right)\right.+\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}_{\underline{R}}-\underline{R}_{m}-\underline{R}_{p}\right) 5.66 \\
&+\sum_{s} \sum_{p} B_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{p}\right)
\end{aligned}
$$

or (by neglecting third and higher order terms)

$$
\begin{aligned}
& H^{0} a_{t}^{0}(r)+H^{0} \sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}(\underline{r}\left.-\underline{R}_{p}\right)+H^{0} \sum_{s} \sum_{p} B_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{p}\right) \\
&+H^{\prime} a_{t}^{0}(r)+H^{\prime} \sum_{s} \sum_{p} C_{s}\left(R_{p}\right) a_{s}^{0}\left(r-\underline{R}_{p}\right) \\
&=\sum_{m} \varepsilon_{t}^{0}\left(\underline{R}_{m}\right) a_{t}^{0}\left(r-\underline{R}_{m}\right)+\sum_{m} \sum_{s} \sum_{p} \varepsilon_{t}^{0}\left(\underline{R}_{m}\right) C_{s}\left(R_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{m}-\underline{R}_{p}\right) \\
&+ \sum_{m} \sum_{s} \sum_{p} \varepsilon_{t}^{0}\left(\underline{R}_{m}\right) B_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(r-\underline{R}_{m}-\underline{R}_{p}\right)+\sum_{m} \varepsilon_{t}^{\prime}\left(\underline{R}_{m}\right) a_{t}^{0}\left(r-R_{m}\right) \\
&+\sum_{s} \sum_{p} \varepsilon_{t}^{\prime}\left(\underline{R}_{m}\right) C_{s}\left(\underline{R}_{p}\right) a_{s}^{0}\left(r-\underline{R}_{m}-\underline{R}_{p}\right)+\sum_{m} \varepsilon_{t}^{\prime \prime}\left(\underline{R}_{m}\right) a_{t}^{0}\left(r-\underline{R}_{m}\right)
\end{aligned}
$$

The first terms on the right and left hand sides cancel since they are equal to each other by equation 5.1 . Now, multiplying both sides of the last equation by $\left[a_{q}^{0}\left(\underline{r}-R_{n}\right)\right]^{*}$ and integrating over all \underline{I} space (and also using the orthogonality of the Wannier functions) we get
$\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) \delta_{q s} \varepsilon_{s}^{0}\left(\underline{R}_{n}-\underline{R}_{p}\right)+\sum_{s} \sum_{p} B_{s}\left(\underline{R}_{p}\right) \delta_{q s} \varepsilon_{s}^{0}\left(\underline{R}_{n}-\underline{R}_{f}\right)+\varepsilon_{q t}^{\prime}\left(\underline{R}_{n}\right)+\sum_{s p} \sum_{s}\left(\underline{R}_{p}\right) \varepsilon_{q s}^{\prime}\left(\underline{R}_{n}-\underline{R}_{p}\right)=$ $\sum_{m} \sum_{s} \sum_{p} \varepsilon_{t}^{0}\left(R_{m}\right) C_{s}\left(R_{p}\right) \delta_{q s} \delta_{n, m+p}+\sum_{m} \sum_{r} \sum_{p} \varepsilon_{t}^{0}\left(\underline{R}_{m}\right) B_{s}\left(\underline{R}_{p}\right) \delta_{q, s} \delta_{n, m+p}+\sum_{m} \varepsilon_{t}^{\prime}\left(R_{m}\right) \delta_{q+} \delta_{m n}$ $+\sum_{m} \sum_{s p} \varepsilon_{t}^{\prime}\left(\underline{R}_{m}\right) C_{s}\left(\underline{R}_{p}\right) \delta_{q} s \delta_{n, m+p}+\sum_{m} \varepsilon_{t}^{\prime \prime}\left(R_{m}\right) \delta_{q t} \delta_{m n}$
which yields; i) for $q=t$

$$
\begin{aligned}
& \sum_{p} C_{t}\left(\underline{R}_{p}\right) \varepsilon_{t}^{0}\left(R_{n}-\underline{R}_{p}\right)+\sum_{p} B_{t}\left(R_{p}\right) \varepsilon_{t}^{0}\left(\underline{R}_{n}-R_{p}\right)+\varepsilon_{t t}^{\prime}\left(\underline{R}_{n}\right)+\sum_{s} \sum_{p} C_{s}\left(R_{p}\right) \varepsilon_{t s}^{\prime}\left(\underline{R}_{n}-\underline{R}_{p}\right)= \\
& \sum_{F} C_{t}\left(R_{p}\right) \varepsilon_{t}^{0}\left(\underline{R}_{n}-\underline{R}_{p}\right)+\sum_{p} B_{t}\left(R_{p}\right) \varepsilon_{t}^{0}\left(R_{n}-R_{p}\right)+\varepsilon_{++}^{\prime}\left(\underline{R}_{n}\right)+\sum_{p} C_{t}\left(R_{f}\right) \xi_{t}^{\prime}\left(R_{\ldots}-R_{p}\right)+\varepsilon_{i}^{\prime \prime}\left(R_{-}\right)
\end{aligned}
$$

or

$$
\varepsilon_{t}^{\prime \prime}\left(\underline{R}_{n}\right)=\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) \varepsilon_{s t}^{\prime}\left(\underline{R}_{n}-\underline{R}_{p}\right)-\sum_{p} C_{t}\left(\underline{R}_{p}\right) \varepsilon_{t}^{\prime}\left(\underline{E}_{n}-\underline{B}_{p}\right) \quad 5.70
$$

Note that the coefficierts $C_{t}\left(\underline{R}_{p}\right)$ is for ${\underset{-p}{p}}^{p} \neq 0$ (we have $C_{t}(0)=1$) which were not determined in section 5.1 do not appear in the 'last expression

$$
\varepsilon_{t}^{\prime \prime}\left(\underline{R}_{n}\right)=\sum_{s}^{\prime} \sum_{p} C_{s}\left(\underline{R}_{p}\right) \varepsilon_{s t}^{\prime}\left(\underline{R}_{n}-\underline{R}_{p}\right)
$$

Hence, the perturbed eigenenergy Fourier coefficients to the second order are thoroughly determined and given by, 5.72

$$
\varepsilon_{t}^{\rho}\left(R_{n}\right)=\left\langle t, R_{n}\right| H^{0}|t, 0\rangle+\left\langle t, R_{n}\right| H^{\prime}|t, 0\rangle+\sum_{s} \sum_{p}^{\prime} C_{s}\left(\underline{R}_{p}\right)\left\langle t, R_{n}\right| H^{\prime}\left|t, R_{p}\right\rangle
$$ where $C_{s}\left(\underline{R}_{p}\right)$'s are to be obtained from the usual set of linear eqs. ii) for $q \neq t$

or

$$
\sum_{p} B_{q}\left(R_{p}\right)\left[\varepsilon_{t}^{0}\left(R_{n}-R_{p}\right)-\varepsilon_{q}^{0}\left(R_{n}-R_{p}\right)=-\sum_{p} C_{p}\left(B_{p}\right)\left[\varepsilon_{t}^{0}\left(R_{n}-R_{p}\right)-\varepsilon_{q}^{0}\left(R_{n}-R_{p}\right)\right]+\varepsilon_{q}^{1}\left(R_{n}\right)\right.
$$

The first two terms on the r.h.s. of $+\sum_{\rho^{\prime}} C_{s}\left(R_{p}\right) \varepsilon_{q}^{\prime}\left(R_{n}-R_{p}\right)-\sum_{p} C_{q}\left(B_{p}\right) \varepsilon_{t}^{\prime}\left(R_{n}-R_{p}\right)$ by equation 5.61 , therefore we have 5.74 $\sum_{p} B_{q}\left(\underline{R}_{p}\right)\left[\varepsilon_{t}^{0}\left(R_{n}-\underline{R}_{p}\right)-\varepsilon_{q}^{0}\left(\underline{R}_{n}-\underline{R}_{p}\right)\right]=\sum_{s} \sum_{p} C_{s}\left(R_{p}\right) \varepsilon_{q s}^{\prime}\left(\underline{R}_{n}-\underline{R}_{p}\right)-\sum_{p} C_{q}\left(R_{p}\right) \varepsilon_{t}^{\prime}\left(R_{n}-R_{p}\right)$
The right hand side of the last equation involve only the first order corrections which are readily obtained (in the previous sections) Therefore, if we now assume that $\beta\left(H^{\prime}, \mathrm{H}_{\mathrm{n}}, \mathrm{q}, \mathrm{t}\right)$ is obtained from the first order corrections mentioned above as follows ${ }^{5}$

$$
\beta\left(H^{\prime}, R_{n}, q,+\right)=\sum_{s} \sum_{p} C_{s}\left(\underline{R}_{p}\right) \varepsilon_{q}\left(\underline{R}_{n}-\underline{R}_{p}\right)-\sum_{p} C_{q}\left(R_{p}\right) \varepsilon_{t}^{\prime}\left(\underline{R}_{n}-R_{p}\right)
$$

4) In the part of the equation mentioned we have multiplication of two such first order terms, therefore the mannitude of the ex pression is second order.
5) Using equation 5.71 the expression for $\beta\left(H^{\prime}, R_{n}, q, t\right)$ can alter natively lue eiveri as 5.76

$$
\beta\left(\mu_{1}^{\prime}, R_{n}, q,+\right)=\varepsilon_{q}^{\prime \prime}\left(B_{n}\right)+\sum_{p} C_{q}\left(R_{p}\right)\left[\varepsilon_{q}^{\prime}\left(R_{n}-R_{p}\right)-\varepsilon_{+}^{\prime}\left(R_{n}-R_{p}\right)\right]
$$

where $\varepsilon_{t\left(R_{n}-R_{p}\right)}^{\prime}$ and $\varepsilon_{t}^{\prime \prime}\left(R_{-1}\right)$ are the first and second order corrections to the eigenenergy fourier coefficients.
then, to find the second order corrections to the Wannier function one has to solve the following set of linear simultaneous equations

$$
\sum_{p} B_{q}\left(\underline{R}_{p}\right)\left[\varepsilon_{t}^{0}\left(\underline{R}_{n}-R_{p}\right)-\varepsilon_{q}^{0}\left(\underline{R}_{n}-R_{p}\right)\right]=\beta\left(H^{\prime}, R_{n}, q, t\right) \quad 5.77
$$

in a way similiar to that followed in the previous sections.
The perturbed wennier function to the second order is now given by
5.78

$$
a_{t}^{p}\left(r-R_{m}\right)=a_{t}^{0}\left(r-R_{m}\right)+\sum_{s} \sum_{p} C_{s}\left(R_{p}\right) a_{s}^{0}\left(\underline{r}-\underline{R}_{p}-R_{m}\right)+\sum_{s} \sum_{p} B_{s}\left(\mathbb{R}_{p}\right) a_{s}^{0}\left(\underline{r}-R_{p}-R_{m}\right)
$$

The higher order corrections to the eigenenergy Fourier coef ficients and the Yannier functions can be found in a similiar vay.

NFARLY frie blection wander functions by tif pfirturbation immod THAT WE HAVE SUGGESTED

6.1 Imiponucmion

In chapter 5 we have suggested a perturbation method appropriate to Wannier functions. Now we will use the method to calculate the lowest Wannier function of the one dimensional crystal given in chapter nine. (The deviation of the higher band Yannier functions from those of free electrons looks insienificant.)

The purpose of the present calculations is, first, to give an application of the method and secondly to deduce certain remarks about its feasibilty and the accuracy by comparing the Wannier function hence obtained with the exact Wannierfunction obtained by direct calculations.

The crystal model (one dimensional) is similiar to that assumed in section 9.4 (see fig.9.) . Hence, the perturbing potential is a periodic square potential with a smell magnitude ($\mathrm{V}_{0}=0.10$ a.u.) and the atoms are separated from each other by a distance $a=2.0$ a.u. Therefore the unperturbed system is represented by the Warnier functions corresponding to zero potential $V(x)=0$, (free electron Wannier functions). It can easily be observed that these (free electron) Wannier furictions overisp appreciably, therefore referring to what we have said in chapier 5 (section 5.1) we have to use the following set of linear equations in order to obtain the coefficients of the expansion ($C_{q}\left(X_{p}\right)$'s) for the perturbed Wannier function.

$$
\int_{p} c_{q}\left(x_{p}\right)\left[\varepsilon_{t}^{0}\left(x_{w}-x_{p}\right)-\varepsilon_{q}^{0}\left(x_{v}-x_{p}\right)\right]=\varepsilon_{q t}^{\prime}\left(x_{w}\right)
$$

The nerturbed Wannior function will thon bo fiven by tho following expression (See chapter 5),

$$
\begin{equation*}
a_{t}^{p}\left(x-x_{i n}\right)=a_{t}^{o}\left(x-x_{m}\right)+\sum_{r, p}^{1} \sum_{r} c_{r}\left(x_{p}\right) a_{r}^{o}\left(x-x_{m}-x_{p}\right) \tag{2}
\end{equation*}
$$

In this particular problem we are interested in finding the Wannier function of the ground band only, therefore we have $t=1$, and also, for simplicity we will let $X_{m}=0$ (this means that we will be calculating the Wannier function centered at the origin) •

Hence, we rill solve the following set of linear equations for $C_{q}\left(X_{p}\right)^{\prime s}$

$$
\begin{equation*}
\sum_{p} c\left(x_{p}\right)\left[\varepsilon_{1}^{0}\left(x_{w}-x_{p}\right)-\varepsilon_{q}^{0}\left(x_{w}-x_{p}\right)\right]=\varepsilon_{q 1}^{\prime}\left(x_{w}\right) \tag{3}
\end{equation*}
$$

and then using these coefficients we will set up the following linear combination of the unperturbed Wannier functions (belonging to different bands and locations)

$$
\begin{equation*}
a_{1}^{p}(x)=a_{1}^{o}(x)+\sum_{r, p}^{1} c_{r}\left(x_{p}\right) a_{r}^{o}\left(x-x_{p}\right) \tag{4}
\end{equation*}
$$

to obtain an expression for the perturbed Wannier function.
In order to solve the set of equations given by equation we need to know
i) unperturbed (free electron) energy Fourier coefficients, $\varepsilon_{q}^{0}\left(X_{w}-X_{p}\right)^{\prime s}$
ii) the matrix elements of the perturbing potential between the Wannier functions of the unperturbed system.

74

The perturbative potential that we consiader has inversion symmetry through the origin which implies that (see chapter 7) the perturbed Wannier function will also have inversion symmetry through the same point. In section 6.3 , in calculating the coefficients $C_{r}\left(X_{p}\right)$'s these restrictions will be taken into account.

In the following sections we will first calculate the unperturbed enerey fourier coefficients and also obtain several matrix elements of the perturbative potential between the Wannier functions of different locations and bands.

In the next tables wie give the results only.
6.2 UNPERTURBED (FREE ELECTION) MJATGY FOURIER COEFFICIENTS AND WATNIER FUNCTIONS(NORMALIZED)

Below in tables 6.1 and 6.2 we quote the results only;

UNPERTUREED (FRDE ELECTRON) EmEnGY FOURIER COEFFICIENTS						
$\varepsilon_{q}^{0}\left(x_{p}\right)=\frac{1}{\pi} \int_{\mathrm{a}}^{\text {th }} \mathrm{k}^{2} \cos \left(\mathrm{k} \cdot \mathrm{x}_{\mathrm{p}}\right) \mathrm{dk}$						
	$X_{p}=0$	$X_{p}=\mp 2$	$X_{p}=\mp 4$	$X_{p}=\overline{+} 6$	$X_{p}=\mp 8$	$\mathrm{X}_{\mathrm{p}}=\mp 2 \mathrm{n}$
$\mathrm{q}=1$	$\pi^{2} / 12$	-1/2	+1/8	-1/18	+1/32	$\frac{(-1)^{n}}{2 n^{2}}$
$q=2$	$+7 \pi^{2} / 12$	+3/2	+1/8	+1/6	+1/32	$\frac{2-(-1)^{n}}{2 n^{2}}$
$q=3$	$+19 \pi^{2} / 12$	-5/2	+1/8	-10/36	+1/32	$\frac{3(-1)^{n}-2}{2 n^{2}}$
$\mathrm{q}=4$	$+37 \pi^{2} / 12$	+7/2	+1/8	+7/18	+1/32	$\frac{4-3(-1)^{n}}{2 n^{2}}$
$\mathrm{q}=5$	$+61 \pi^{2} / 12$	etc.				
Table 6.1 (above) Table ó.2 (below)						

NOMH:ALIYED, UTPERTURBED (FREE ELECTRON) WANNIER FU!CTIONS
$a_{q}^{0}\left(x-x_{W}\right)=(1 / \sqrt{2}) \frac{\sin \left((a \pi / 2)\left(x-X_{w}\right)\right)-\sin \left(((a-1) \pi / 2)\left(x-x_{w}\right)\right)}{\pi\left(x-x_{w}\right) / 2}$
where $q=1,3,5,7, \ldots \ldots$ is the band index
$a_{q}^{o}\left(x-X_{w}\right)=-i(1 / \sqrt{2}) \frac{\cos \left((q \pi / 2)\left(x-X_{w}\right)\right)-\cos \left(((q-1) \pi / 2)\left(x-X_{w}\right)\right)}{\pi\left(x-X_{w}\right) / 2}$
where $q=2,4,6,8, \ldots \ldots$ is the band index
In both equations $X_{W}\left(X_{i v}=0, \mp 2, \mp 4, \mp 6, \ldots\right)$ is the localization site

Below, in tables $6.3,6.4$, and 6.5 we have tabulated the matrix elements of the perturbative potential within each unit cell. We give only the results of the calculation. q acain is the band index.

$\varepsilon_{q 1(0)=C}^{\prime} \int a_{q}^{0}(x) v(x) a_{1}^{0}(x) d x$				
	$\varepsilon_{12}^{\prime}(0)$	$\varepsilon_{13}^{\prime}(0)$	$\varepsilon_{14}^{\prime}(0)$	$\varepsilon_{15}^{\prime}(0)$
$1^{\text {st }}$ Unit Cell	-•... ${ }^{\text {a }}$	-5.840	+0.290
$2^{\text {nd }}$ Unit Cell	-0.179	-.....	-0.193
$3^{\text {rd }}$ Unit Cell	. \cdot.	-0.126	. \cdot.	-0.018
$4^{\text {th }}$ Unit Cell	-0.045	. \cdot....	-0.025
$5^{\text {th }}$ Unit Cell	-0.034	-0.0065
Total **	0.0000	-6.224	0.00000	+0.047
Total considering constant of integ ration	0.00000	-0.03112	0.00000	+0.00023

Table 6.3 liatrix elements of the perturbing potential between the Wannier functions centered at the same lattice point $\left(X_{w}=0\right)$. The matrix elements in the cells marked (.....) are non-zero. However, we have not bothered to write them since their total effect is identi cally zero.

	$\begin{array}{r} 5^{\text {th }} \text { Unit } \\ \text { Celt } \end{array}$	$\begin{array}{r} 4^{\text {th }} \text { Unit } \\ \text { Cell } \\ \hline \end{array}$	$\begin{gathered} 3^{\text {radnit }} \begin{array}{c} \text { Unit } \\ \text { Cell } \end{array} \\ \hline \end{gathered}$	$2^{\text {nd }} \text { Unit }$	$1_{\text {Unit }}{ }_{\text {Colt }}$	$\begin{array}{\|r\|r\|l} 1^{\text {st }} \text { Unit } \\ \text { CeIl } \end{array}$	$\begin{array}{\|cc\|} \hline \text { nd } & \\ 2 & U \leq t t \\ & \\ \hline \end{array}$	$\begin{array}{\|c} 3^{\text {rd }} \text { Unit } \\ \text { Cell } \\ \hline \end{array}$	$4^{\text {th }} \text { Unit }$	$\begin{array}{r} 5^{\text {thunit }} \\ \text { Cell } \\ \hline \end{array}$	contributions gy cells of the remain	Total	Total consiering the constart the constart of integration
$\varepsilon_{12}^{\prime}(\mp 4)$		+0.010i	-0.037i	+0.075i	-0.533i	-1.293i.	-0.310i	+0.087i	-0.033i	+0.021i	nil	-2.013i	$-20.13 \times 1 i^{3} \dot{i}$
$\varepsilon_{13}^{\prime}(\mp 4)$	-0.0055	-0.0065	-0.016	-0.019	-0.217	+0.297	$+0.296$	-0.217	-0.018	-0.016	-0.029	+0.050	$+0.50 \times 10^{-3}$
$\varepsilon_{14}^{\prime}(\mp 4$		-	+0.006i	+0.005i	+0.179i	+0.050i	-0.211i	-0.022i	-0.002i	-0.001i	nil	+0.004i	$+0.04 \times 10^{-1}$
$\varepsilon_{15}^{\prime}(\mp 4)$	-0.002	-0.0035	-0.004	-0.020	-0.011	+0.053	+0.053	-0.011	-0.014	-0.004			

6.4 CALCULATION OF The COEFFICIENTS $C_{q}\left(X_{p}\right)$'s

In the previous pages we have obtained the necessary infor mation (the matrix elements of the perturbing potential, etc.)
for calculating the coefficients $C_{q}\left(X_{p}\right)$'s.
Now using equation 1 and the arguments given in section
5.3 we can write at once;
I) for $q=2,4,6,8, \ldots$ etc.

$$
\begin{aligned}
& C_{q}(0)\left[\varepsilon_{1}^{0}(0)-\varepsilon_{q}^{0}(0)\right]+C_{q}(+2)\left[\varepsilon_{1}^{0}(-2)-\varepsilon_{q}^{0}(-2)-\left(\varepsilon_{1}^{0}(+2)-\varepsilon_{q}^{0}(+2)\right)\right] \\
& +C_{q}(+4)\left[\varepsilon_{1}^{0}(-4)-\varepsilon_{q}^{0}(-4)-\left(\varepsilon_{1}^{0}(+4)-\varepsilon_{q}^{0}(+4)\right)+\ldots=\varepsilon_{1 g}^{1}(0)\right. \\
& C_{q}(0)\left[\varepsilon_{1}^{0}(+2)-\varepsilon_{q}^{0}(+2)\right]+C_{q}(+2)\left[\varepsilon_{1}^{0}(0)-\varepsilon_{q}^{0}(0)-\left(\varepsilon_{1}^{0}(+4)-\varepsilon_{q}^{0}(+4)\right)\right] \\
& +C_{q}(+4)\left[\varepsilon_{1}^{0}(-2)-\varepsilon_{q}^{0}(-2)-\left(\varepsilon_{1}^{0}(+6)-\varepsilon_{q}^{0}(+6)\right)\right]+\ldots \ldots . .=\varepsilon_{19}^{1}(+2, \\
& C_{q}(0)\left[\varepsilon_{1}^{0}(+4)-\varepsilon_{q}^{0}(+4)\right]+C_{q}(+2)\left[\varepsilon_{1}^{0}(+2)-\varepsilon_{q}^{0}(+2)-\left(\varepsilon_{1}^{0}(+0)-\varepsilon_{q}^{0}(+6)\right)\right] \\
& +C_{q}(+4)\left[\varepsilon_{1}^{0}(0)-\varepsilon_{q}^{0}(0)-\left(\varepsilon_{1}^{0}(+8)-\varepsilon_{q}^{0}(+8)\right)\right]+\ldots \ldots \varepsilon_{i q}^{1}(+\ldots .
\end{aligned}
$$

2) for $q=3,5,7, \ldots$ etc.

$$
\begin{aligned}
C_{q}(0)\left[\varepsilon_{1}^{0}(0)\right. & \left.-\varepsilon_{q}^{0}(0)\right]+C_{q}(+2)\left[\varepsilon_{1}^{0}(-2)-\varepsilon_{q}^{0}(-2)+\varepsilon_{1}^{0}(+2)-\varepsilon_{q}^{0}(+2)\right] \\
& +C_{q}(+4)\left[\varepsilon_{1}^{0}(-4)-\varepsilon_{q}^{0}(-4)+\varepsilon_{1}^{0}(+4)-\varepsilon_{q}^{0}(+4)\right]+\ldots=\varepsilon_{1 q}^{0}(0) \\
C_{q}(0)\left[\varepsilon_{1}^{0}(+2)\right. & \left.-\varepsilon_{q}^{0}(+2)\right]+C_{q}(+2)\left[\varepsilon_{1}^{0}(0)-\varepsilon_{q}^{0}(0)+\varepsilon_{1}^{0}(+4)-\varepsilon_{q}^{0}(+4)\right] \\
& +C_{q}(+4)\left[\varepsilon_{1}^{0}(-2)-\varepsilon_{q}^{0}(-2)+\varepsilon_{1}^{0}(+6)-\varepsilon_{q}^{0}(+6)\right]+\cdots+\cdots=\varepsilon_{12}^{0}(+2) \\
C_{q}(0)\left[\varepsilon_{1}^{0}(+4)\right. & \left.-\varepsilon_{q}^{0}(+4)\right]+C(+2)\left[\varepsilon_{1}^{0}(+2)-\varepsilon_{q}^{0}(+2)+\varepsilon_{1}^{0}(+6)-\varepsilon_{q}^{0}(+6)\right] \\
& +C_{q}(+4)\left[\varepsilon_{1}^{0}(0)-\varepsilon_{q}^{0}(0)+\varepsilon_{1}^{0}(+6)-\varepsilon_{q}^{0}(+6)\right]+\cdots+\cdots=\varepsilon_{1 q}^{1}(+4)
\end{aligned}
$$

Now we will start by determinine these coefficients. Ine precision of the solutions for $C_{q}\left(X_{p}\right)$'s will normally depend on the number of the terms (on the dimensions of the coefficient matrices) that one considers in equations 5 and 6 For the present purposes we found it sufficient enough to deal with 3×3 matrices. Actually it has been observed that (i.e. see tables $6.3,5.4$, and 6.5) the coefficients $C_{q}\left(X_{p}\right)$'s converges rapidly to zero for only few higher values of q or X_{p} as claimed in chapter 5 , therefore to considereven larger matrices than what we intend to use does not alter the present results by any appreciable amount.

Now using the above arguments and the tables given

 in the previous pages the sets of equations 5 and 6 can be written in the following matrix forms.i) for $q=2$

$$
\left|\begin{array}{ccc}
-0.5 \pi^{2} & 0 & 0 \\
-2.0 & -0.5 \pi^{2} & -16 / 9 \\
0 & -16 / 9 & -0.5 \pi^{2}
\end{array}\right|\left|\begin{array}{l}
c_{2}(0) \\
c_{2}(+2) \\
c_{2}(+4)
\end{array}\right|=\left|\begin{array}{c}
0 \\
-20.1 \times 10^{-3} i \\
-20.13 \times 10^{-3}
\end{array}\right| \quad \begin{aligned}
& 7
\end{aligned}
$$

ii) for $q=3$

$$
\left|\begin{array}{ccc}
-1.5 \pi^{2} & +4.00 & 0 \tag{8}\\
+2.0 & -1.5 \pi^{2} & +20 / 9 \\
0 & +20 / 9 & -1.5 \pi^{2}
\end{array}\right|\left|\begin{array}{c}
C_{3}(0) \\
c_{3}(+2) \\
c_{3}(+4)
\end{array}\right|=\left|\begin{array}{c}
-31.12 \times 10^{-3} \\
-1.03 \times 10^{-3} \\
+0.50 \times 10^{-3}
\end{array}\right|
$$

iii) for $q=4$

$$
\left|\begin{array}{ccc}
-3.0 \pi^{2} & 0 & 0 \tag{9}\\
-4.00 & -3.0 \pi^{2} & -32 / 9 \\
0 & -32 / 9 & -3.0 \pi^{2}
\end{array}\right|\left|\begin{array}{c}
4 \\
(+2)
\end{array}\right|=\left|\begin{array}{c}
0 \\
-3.89 \times 10^{-3} \\
+0.04 \times 10_{i}
\end{array}\right|
$$

Solving the last three equations for the (nine) unknown coefficients and obtaining the remainine ones (those asso ciated with negative lattice vectors) through the arguments given in section 5.3 we have set up the folloving table. The coefficients (weights) to be associated with each unperturbed. Wannier function (from which the perturbed Wannier function is constructed) are shown.

$x_{p}-4.0$	-2.0	0	+2.0	+4.0	
1	-	1.0	-	-	
$2+3.0 \times 10^{-3} i$	$-3.0 \times 10^{-3} i$	0	$+3.0 \times 10^{-3} i$	$-3.0 \times 10^{-3} i$	
3	$+0.022 \times 10^{-3}$	$+0.372 \times 10^{-3}$	$+2.2 \times 10^{-3}$	$+0.372 \times 10^{-3}$	$+0.022 \times 10^{-3}$
4	$+0.018 \times 10^{-3} i$	$-0.134 \times 10^{-3} i$	0	$+0.134 \times 10^{-3} i$	$-0.018 \times 10^{-3} i$

Table 6.6 The calculated values of $C_{q}\left(X_{p}\right)$'s.
6.5 THE PERTURDM NANIIMR FONCTION

Usine the coefficients in table 6.6 the perturbed Wamier. function for the lowest band is now given by,

$$
\begin{align*}
a_{1}^{p}(x)= & a_{1}(x)+3.0 \times 10^{-3} i\left(a_{2}^{0}(x+2)-a_{2}^{0}(x-2)\right)+3.0 \times 10^{-3} i\left(a_{2}^{0}(x-4)-a_{2}^{0}(x+4)\right) \\
& +2.2 \times 10^{-3} a_{3}(x)+0.372 \times 10^{-3}\left(a_{3}(x-2)+a_{3}(x+2)\right)+0.022 \times 10^{-3}\left(a_{3}(x-4)+a_{3}(x+4)\right) \\
& +0.134 \times 10^{-3} i\left(a_{4}(x+2)-a_{4}(x-2)\right)+0.018 \times 10^{-3}\left(a_{4}(x-4)-a_{4}(x+4)\right) \tag{10}
\end{align*}
$$

In the last equation the calculated values of $C_{a}\left(X_{p}\right)$'s provided us with the combinations $a_{q}^{0}\left(x-X_{p}\right)-a_{q}^{0}\left(x+X_{p}\right)$ for the bands
($q=2,4,6,8, \ldots$ etc.) with antisymmetric Wannier functions and $a_{q}^{0}\left(x-X_{p}\right)+a_{q}^{O}\left(x+X_{p}\right)$'s for the bands ($q=1,3,5,7, \ldots$ etc. $)$ with symetric Wannier functions which are all even functions of x. This final point fulfils the requirement that the perturbed ground band Wannier function for this problem should be symmetric about $x=0$ -

Some of the expansion coefficients that we have used on the right hand side of equation 10 are pure imaginary , how ever this creates no problem since the unperturbed Wannier functions associated pith these coefficients are also pure imacinary (see Tables 6.4 and 6.5). Hence the perturbed Hannier function obtained through equation 10 is real, as it should be expected to be so for the lowest band.

Also, due to the signs of the calculated $C_{q}\left(X_{p}\right)$'s, the combinations of the \%annier functions, used in expanding the perturbed Wannier function (see equation 10), are such as to reduce the spread of the (original) free electron wannier function. The situetion has been illustrated in figure 6.1.

1) This point is in agrement with the fact that the IV.F.E. Wan nier function is (in ceneral) more localized (in other terms has less mean square spread) than the free electron Vannior function (see, chapters 7 and 8)

6.6 COMPARISON WITH THE EXACT WAMNIER FUNCTION

Below we compare the Wannier function that we have calculated with the exact Wannier function.

x	F.E. Wan. Func.
0.00	0.70710
0.10	0.70410
0.20	0.69512
0.30	0.68112
0.40	0.66138
0.50	0.63651
0.60	0.60626
0.80	0.53504
1.00	0.45003
1.20	0.35664
1.40	0.26001
1.60	0.16525
2.00	0.00000

Wan. Func.for a weakly bound elec. (EXACT W.F.)	(BY FERTURBATION)
$-\cdots .71299$	0.71209
0.70987	0.70831
0.70075	0.69912
0.68440	0.68402
0.66187	0.66332
0.63354	0.63743
0.60680	0.60682
0.53227	0.53357
0.44208	0.44799
0.34770	0.35466
0.25110	0.25830
0.15498	0.16369
-0.01903	-0.00380

Table 6.7 Free and nearly free electron Wannier functions (both func tions are normalized).

Fig.6.1 Free electron Warnier function
 Nearly free electron Wannier function (́not to the scale).

[^1]
6.7 DISCusision of mer mesults

The N.F.E. Wannier functions that we have calculated (using two different methods being exact and approximate) deviate from the free electren ones in a similar way. The agreement is particularly good within the central unit cell where the Fannier function is localized. This is due to the fact that the terms $C_{1}\left(X_{p}\right) a_{1}^{0}\left(x-X_{p}\right)$'s associated with the (only) undetermined coefficients $C_{1}\left(X_{p}\right), X_{p} \neq 0$ in the series 4 have zero effect in the vicinity of the origin (in central cell) since $a_{1}\left(x-x_{p}\right)=0$ for $x=0$. The agreement is comparatively not so good, i.e. within the second cell for the reasons outlined above. However, in a problem where the wannier functions do not spread out so far (unlike the present case of free electrons) this would not be the case (see section 5.2). The latter case mould also simplify the present calculations.
cont. 2) function are similiar to those given in chapter 9. However, the present case is comparatively more complicated for; in obtaining . the ground band wannier function the total integration (of the wave functions over the B.Z. concerned) had to be carried out as two par tial integrations, one over the states with corresponding eigenvalues less than the applied potential and one over the states with corresponding eigenvalues larger than the applied potential. Also we had to carry out the calculations and the computational works with
$\because \quad$ a much higher precision than the previous cases, since both the app lied potential and the deviation of the perturbed Wannier function from that of the free electron were very small.

85

It has also been observed that the second order corrections would considerably improve the present results (especially those at points outside the central unit cell)

CHAPTER 7

miscrllaneous proprrties of bammer furctions
In the first chapter we have given the basic properties of Wannier functions such as orthogonality, localizations, etc. Host of these properties arise from the basic definition of the functions them selves and hold true regardless of any restrictive condition, i.e. type of crystal symmetry etc.

However, bringing in some restrictive conditions such as assuming that the crystal under consideretion has inversional symmetry etc,forces Fannier functions to have some particular shapes and properties. In the following sections we will be particularly interested in the sha pes and properties of Fannier functions for a crystal field with inver_ sional symmetry. In handling each problem the particular conditions as sumed will be mentioned in detail.

Most of these properties were studied in detail by Kohn ${ }^{1}$ in a remarkable article. However the proofs given by Kohn ${ }^{1}$ are based upon one dimensional arguments and can not be so easily generalized to three dimensions. (also see Weinrdch ${ }^{\mathrm{el}}{ }^{2}$ and des Cloizeaux ${ }^{2 \mathrm{~A}}$ and Blount ${ }^{2 B}$)

Most of the proofs that are given in this chapter are rewrit ten and sometimes use completely different approaches and methods (i.e case of exponential fall-off of Wannier functions in three dimensions). Further all proofs that are given are generalized to three dimensions.

In the last section a small contribution has been made to Kohn's one dimensional argument and it has been shown that for weakly bound electrons the exponential decay of the Nannier functions can be expressed through the Fourier coeffcients of the perturbing potential.

1) Kohn, W., Fhys. Rev. 115, 809 (1959)
2) Weinreich, G., Solids, Elementary Theory for Advanced Students, pp. 127., Wiley, New York, 1965.

7. 1 REALITY OF WANNIER FUNCTIOES

Consider the following one electron (time independent)
Schrödinger equation which is a second order, linear,

$$
H(r) \psi_{n \underline{k}}(r)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)\right] \psi_{n \underline{k}}(r)=E_{n}(\underline{k}) \psi_{n \underline{k}}(r)
$$ homogenous, differential equation with a real operator and real parameters (eigenvalues). Now , by writing its solutions in Bloch wave forms, subs_ tituting them into the equation, taking it's complex conjugate, and comparing the outcoming form with that of equatior 7.1 .1 where wave vector is replaced by $-k$, one can easily verify that*

$$
\begin{array}{lc}
E(-\underline{k})=E(\underline{k}) & 7.1 .2 * \\
U_{-\underline{k}}(r)=c U_{\underline{L}}^{*}(r) & 7.1 .3
\end{array}
$$

where $U_{\underline{k}}(\underline{x})$ is the periodic part of the Ploch wave and C is a cons tant with modulus one .

Equation 7.1 .3 may allernatively be written (by multiply ing both sides of equation by $\exp (-i k . r)$ as follows

$$
\psi_{-\underline{k}}(r)=c \psi_{\underline{k}}^{*}(r) \quad 7.1 .4
$$

Now assume that the constant C in expressions 7.1 .3 and 7.1.4 is adjusted to be unity then instead these expressions we will have

$$
\begin{align*}
& U_{-\underline{k}}(r)=U_{\underline{k}}^{*}(r) \\
& \psi_{-\underline{k}}(r)=\psi_{\underline{k}}^{*}(\underline{r})
\end{align*}
$$

* Ihis condition is known as time reversal symmetry and it follows whether the point group contains inversion or not, in other terms it holds true imnaterial of the crystal symetry.

The Wannier function for the $n^{\text {th }}$ band which is centered at the oricin ($\mathrm{R}=0$) is defined as follows

$$
a_{n}(\underline{r})=\sum_{\underline{\underline{k}}} \psi_{n \underline{k}}(r)
$$

where the sum is over all possible \underline{k} vectors in the $n^{\text {th }}$ B.Z.
Now let us divide the B.Z. concerned into two subregions where one contains vectors of the sort $+\underline{k}$ only and the other contains vectors of the sort $-\underline{k}$ only then equation 7.1 .7 may be rewritten as

$$
\begin{aligned}
& a_{n}(r)= \sum_{\substack{+\underline{k}}} \psi_{n \underline{k}(r)}+\sum_{\substack{-\underline{k}}} \psi_{n \underline{k}}(r) 7.1 .8 \\
& \text { (over }+\underline{k} \text { vectors }-\underline{k} \text { vectors } \\
& \text { of } n^{\text {th }} \text { zone only) } \\
& \text { of } n^{\text {th }} \text { zone only) }
\end{aligned}
$$

Now we will impose one more condition; that the B.Z. under consideration $;$ has inversional symetry for \underline{k}. Therefore to every vector $+\underline{k}$ there corresponds a vector with opposite sign (i.e. -k) .

Hence, the equation 7.1 .8 can be rewritten as

$$
a_{n}(r)=\sum_{+\underline{k}}\left(\psi_{n \underline{k}}(r)+\psi_{n-\underline{k}}(r)\right) \quad 7.1 .9
$$

Now considering expression 7.1 .6 which states that

$$
\psi_{-\underline{k}, n}(\underline{r})=\psi_{n \underline{\underline{k}}}^{*}(r)
$$

and substituting it into equation 7.1 .9 , we have.
2A) des Cloizeaux, J. Fhys. Rev. 135 , A698(1964)
2B) Blount, E. I., Solid state physics 13, 305 (1962)

$$
a_{n}(\underline{r})=\sum_{+\underline{k}}\left(\psi_{n \underline{k}}(\underline{r})+\psi_{n \underline{k}}^{*}(r)\right)=2 \sum_{+\underline{k}} R_{e} \psi_{n \underline{k}}^{\prime}(r) 7.1 .11
$$

where the richt hand side of equation is a real function of \underline{x} -
In ceneral the Eloch wave being a complex function can be seperated into its real and imaginary parts .
i.e.

$$
\psi_{n \underline{k}}(\underline{r})=g_{n}(\underline{k}, \underline{r})+i f_{n}(\underline{k}, \underline{r})
$$

then, the Wannier function related is given by the following expression

$$
a_{n}(r)=\sum_{+\underline{k}} 2 g_{n}(\underline{k}, \underline{r})=\text { real }
$$

Note that if the constant C in expressions 7.1 .3 and 7.1 .4 is adjusted to be -1 then the outcoming Wannier function is pure imaginary.
7.2 Smbibtry hid antismamiy of wanier functions

In addition to the above considerations if the crystal has an inversional symetry,
i.e.

$$
V(r)=V(-r)
$$

then similarly one can verify the following

$$
\begin{align*}
& u_{\underline{k}}^{*}(-r)=C^{\prime} u_{\underline{k}}(+\underline{r}) \\
& \psi_{\underline{k}}^{*}(-r)=C^{\prime} \psi_{\underline{k}}^{\prime}(+\underline{r})
\end{align*}
$$

Again assuming that C^{\prime} is adjusted to be unity, then we have

$$
U_{\underline{k}}^{*}(-\underline{r})=U_{\underline{\underline{k}}}(+\underline{r})
$$

and

$$
\psi_{\underline{k}}^{*}(-\underline{r})=\psi_{\underline{k}}(+\underline{r})
$$

Now referring to the previous arguments and satisfying the condition that the B.Z. under consideration has inversional symetry, then

$$
\begin{aligned}
a_{n}(-\underline{r}) & =\sum_{+\underline{k}}\left(\psi_{n \underline{k}}(-\underline{r})+\psi_{-\underline{k}, n}(-\underline{r})\right), 7.2 .6 \\
& =\sum_{+\underline{k}}\left(\psi_{n \underline{k}}(-\underline{r})+\psi_{n \underline{k}}^{*}(-\underline{r})\right), 7.2 .7
\end{aligned}
$$

By taking complex conjuegates of both sides equation 7.2 .5 can be written as follows

$$
\psi_{n \underline{k}}(-\underline{r})=\psi_{n \underline{k}}^{*}(+\underline{r})
$$

Substituting equations 7.2 .5 and 7.2 .8 into equation 7.2 .7 , we get

$$
\begin{aligned}
a_{n}(-\underline{r}) & =\sum_{+\underline{k}}\left(\psi_{n \underline{k}}^{*}(+\underline{r})+\psi_{n \underline{k}}(+\underline{r})\right) \quad 7.2 .9 \\
& =\sum 2 \operatorname{Re} \psi_{n \underline{k}}(+\underline{r})=a_{n}(+\underline{r})
\end{aligned}
$$

or simply

$$
a_{n}(-r)=a_{n}(+r)
$$

which means that the resulting Wamier function is symnetric (and real).

However if C is taken to be -1 in equations $7.1 . \overline{3}$ and 7.1 .4 then instead of equation 7.1 .6 we have

$$
\begin{array}{rlr}
\psi_{-\underline{k}}(\underline{r}) & =-\psi_{\underline{k}}^{*}(\underline{r}) & 7.2 .12 \\
\text { also } & \\
& \psi_{\underline{k}}(-r)=\psi_{\underline{k}}^{*}(r) & 7.2 .13
\end{array}
$$

using the last two identities, equation 7.2 .6 is then givpn by,
or simply

$$
\begin{aligned}
a(-r)= & \sum\left(\psi_{\underline{k}}(-\underline{r})+\psi_{-\underline{k}}(-\underline{r})\right) \\
& +\underline{k} \\
= & \sum_{+\underline{k}}\left(\psi_{\underline{k}}(-\underline{r})-\psi_{\underline{k}}^{*}(-\underline{r})\right) \\
= & \sum_{+\underline{k}}\left(\psi_{\underline{k}}^{*}(\underline{r})-\psi_{\underline{k}}(\underline{r})\right) \\
= & -2 \sum_{+\underline{k}} \operatorname{lm} \psi_{\underline{k}}(\underline{r}) \\
& a(-\underline{r})=-a(\underline{r})
\end{aligned}
$$

Therefore, the resulting Wannier function is antisymmetric (and pure imacinary).
7.3 EXPONENTAL FALL OFF OF :/ANALER FUNCTIONS IN THREE DIMETGIONS Below we will give an original approach to the problem by employing momentum eigenfunction. The usefulness of this treat mont is that, first it generalizes the problem into three dimesion and secondly it allows qualitative discussion of the behaviour of the Wanner functions at large distances from the point at which they are centered.

The Wannier function for an arbitrary band is given by ${ }^{3}$

$$
a(r)=\Omega_{B}^{-1 / 2} \int_{\text {all } \underline{k}} U(\underline{k}) e^{i \underline{k} \cdot \underline{r}} d 3 k
$$

Multiplying both sides of equation 7.3 .1 by an arbitrary power of $\underline{\mathrm{r}}$ say $\underline{\mathrm{r}}^{\mathrm{n}}$, we get

$$
\begin{align*}
& r^{n} a(r)=\Omega_{B}^{-1 / 2} \int_{\text {all }} \underline{k} \\
&=(i)^{-n} \int_{B}^{-1 / 2}\left(\nu(\underline{k}) r^{n} e^{i \underline{k} \cdot \underline{r} d^{n} k} 7.3 .2\right. \\
& e^{i \underline{k} \cdot \underline{r}} d^{3} k
\end{align*}
$$

$$
\begin{aligned}
& \text { In general we can write the following; } \\
& \nabla_{k}^{n}\left(\nu(\underline{k}) e^{i \underline{k} \cdot \underline{r}}\right)=\nu(\underline{k}) \nabla_{k}^{n} e^{i \underline{k} \cdot r}+\binom{n}{1} \nabla_{k} \nu(\underline{k}) \nabla_{k}^{n-1} e^{i \underline{k} \cdot \underline{r}}+\binom{7 \cdot 3 \cdot 4}{2} \nabla_{k}^{2} \nu(\underline{k}) \nabla_{k}^{n-2} e^{i \underline{k} \cdot:} \\
& \\
& \cdots+\binom{n}{p} \nabla_{k}^{p} \nu(\underline{k}) \nabla_{k}^{n-p} e^{i \underline{k} \cdot r}+\cdots \cdots \cdots e^{i \underline{k} \cdot \underline{r}} \nabla_{k}^{n} \nu(\underline{k})
\end{aligned}
$$

Intermediate terms on the right hand side of equation 7.3.4 (those with binomial coefficients $\binom{n}{1}\binom{n}{2}$, etc.) may be written as
3) See; chanter $?$.

$$
\begin{aligned}
& \nabla_{k} \nu(\underline{k}) \nabla_{k}^{n-1} e^{i \underline{k} \cdot r}=\nabla_{k}\left(\nu(\underline{k}) \nabla_{k}^{n-1} e^{i \underline{k} \cdot r}\right)-\nu(\underline{k}) \nabla_{k}^{n} e^{i \underline{k} \cdot r} \\
& \nabla_{k}^{2} \nu(\underline{k}) \nabla_{k}^{n-2} e^{i \underline{k} \cdot \underline{r}}=\nabla_{k}\left(\nabla_{k} \nu(\underline{k}) \nabla_{k}^{n-2} e^{i \underline{k} \cdot r}\right)-\nabla_{k}\left(\nu(\underline{k}) \nabla_{k}^{n-1} e^{i k \cdot r}\right) \\
& \nabla_{k}^{3} \nu(\underline{k}) \cdot \nabla_{k}^{n-3} \cdot e^{i \underline{k} \cdot \underline{r}}=\ldots \text { etc. } \\
& \text { etc....... }
\end{aligned}
$$

Now using equations 7.3 .4 and 7.3 .5 we can write the following 4
$\nu(\underline{k}) \nabla_{k}^{n} e^{i \underline{k} \cdot \underline{r}}=-e^{i \underline{k} \cdot r} \nabla_{k}^{n} \nu(\underline{k})+\nabla_{k}^{n}\left(\nu(\underline{k}) e^{i \underline{k} \cdot r}\right)$
$-a_{1} \nabla_{k}\left(\nu(\underline{k}) \nabla_{k}^{n-1} e^{i \cdot k} \cdot \underline{r}\right)-a_{2} \nabla_{k}\left(\nabla_{k} \nu(k) \nabla_{k}^{n-2} e^{i \underline{k} \cdot \underline{r}}\right)-a_{3} \nabla_{k}(\ldots)$
........etc.
7.3 .6

Converting the volume integral given by 7.3 .3 to a surface integral with radius $\underline{k}=\infty$ and assuming that

$$
\operatorname{Lim}_{\underline{k} \rightarrow \infty} \nu(\underline{k})=0
$$

integrals of all the terms on the right hand side of equation 7.3 .6 vanirh except the first one. Therefore we have

$$
\underline{r}^{n} a(\underline{r})=-(i)^{n} \Omega_{\text {all }}^{-1 / 2} \int_{\text {all }} e^{i \underline{k} \cdot \underline{r}} \nabla_{k}^{n} \nu(\underline{k}) d^{3} k \quad 7.3 .8
$$

Now let us define a function $g(\underline{r})$ as follows

$$
g(\underline{r})=\underline{r}^{n} a(\underline{r})=-(i)^{n} \Omega_{B}^{-1 / 2} \int e^{i \underline{k} \cdot \underline{r}} \nabla_{k}^{n} \nu(\underline{k}) d^{3} k
$$

then ,

$$
g^{*}(\underline{r})=-(-i)^{n} \Omega_{B}^{-1 / 2} \int_{\text {all } \underline{k}} e^{-i \underline{k} \cdot \underline{r}} \nabla_{k}^{n} \nu^{*}(\underline{k}) d^{3} k
$$

4) In equation 7.3 .6 we have not bothered to write dorm the magni-tudes of the outcoming coefficients a_{1}, a_{2}, a_{3}, etc. since volume in tegrals of all these terms will vanish, as explained in the latex paraeraphs •
therefore

$$
\begin{aligned}
\int g(r) g^{*}(\underline{r}) d^{3} r & =(-1)^{2 n} \Omega_{B}^{-1} \iint\left(e^{i \underline{r} \cdot\left(\underline{k}-\underline{k}^{\prime}\right)} \nabla_{k}^{n} \nu(\underline{k}) \nabla_{k}^{n} \nu^{*}\left(k^{\prime}\right) d^{3} k d^{3} k^{\prime} d^{\prime 2}\right. \\
& =\Omega_{B}^{-1} \Omega_{B} \iiint \delta\left(\underline{k}-\underline{k}^{\prime}\right) \nabla_{k}^{n} \nu(\underline{k}) \nabla_{k}^{n} \nu^{*}\left(\underline{k}^{\prime}\right) d^{3} k^{\prime} d^{3} k d^{3} r
\end{aligned}
$$

or
$\int_{\text {all } \underline{r}}|g(\underline{r})|^{2} d^{3} r=\int_{\text {all } \underline{r}} \underline{r}^{2 n}|a(\underline{r})|^{2} d^{3} r=\int_{\text {all } \underline{k}}\left|\nabla_{k}^{n} \nu(\underline{k})\right|^{2} d^{3} k \quad 7.3 .12$

Provided that the function $\nabla_{k}^{n} \nu(\underline{k})$ may be normalized (this means that the right hand side of the equation 7.3 .12 is finite) so may the function $G(\underline{r})$.

That means

$$
\begin{gather*}
\operatorname{Lim} \underset{x}{\underline{x}})=0 \\
\underline{\underline{x}} \rightarrow \infty
\end{gather*}
$$

or recalling

$$
g(\underline{r})=\underline{r}^{\mathrm{n}} \mathrm{a}(\underline{r})
$$

therefore

$$
\begin{gather*}
\operatorname{Lin} \underline{\underline{r}}^{\mathrm{n}} a(\underline{r})=0 \\
\underline{\underline{r}} \rightarrow \infty
\end{gather*}
$$

which means that the Wannjer functions fall off faster than any finite power of position vector \underline{r}, hence they fall off exponentially at large $\underline{\underline{r}}$.

7.4 DISCUSSION OF THE ASYMPTOTIC BEHAVIOR

For free electrons monentum eigenfunctions are stepwise functions and are not differentiable everywhere and the integral on the right hand side of equation 7.3.12can easily shown to be divergent. Hence,

```
\(\operatorname{Lim}\left(\underline{\mathrm{r}}^{\mathrm{n}} \mathrm{a}(\underline{\mathrm{r}})\right)=\infty \quad\) 7.4.1
    \(\underset{\rightarrow}{\boldsymbol{r}} \infty\)
```

therefore the free electron Wannier functicns do not fall off exponentially. However if any small perturbinc potential is applied to these free electrons (and provided that the band in concern is nondecenerate) then the momentum eigenfunctions become differentiable(i.e. n times) everywhere and the integral given by equation becomes a proper integral and attains a finite value , therefore

$$
\begin{array}{ll}
\operatorname{Lim}\left(\underline{r}^{n} a(\underline{r})\right) & =0 \\
\underline{r} \rightarrow \infty & 7.4 .2
\end{array}
$$

which implies that, any small field applied to the free electron Wannier functions (which fall off as r^{-1}) make them fall off exponentially. The above argument is valid for a potential of any macnitude (non zero).

The case of a Hannier function for a degenerate band is however more complicated ${ }^{5}$ since degeneracy generally implies discontinuity in $\nu_{n}(\underline{k})$ as a function of k, and each particular case has to be treated separately.

In the following sections we shall try to say something about the rate of exponential decay.
5) Lix, B. Yhys. Status Solidi (Gemany) Vol. 44, No 1, p.411-24 (1971)
7.5 Rate of exponmontal decay of manner functions in three dimensions Below we suggest an approach to this prob= lem in 3 dim. ${ }^{6}$ To determine the rate of exponential decay of Wanner functions in three dimensions consider the average value of $\exp (\underline{\underline{n}} \boldsymbol{n} \underline{\underline{r}})$ (where h_{n} is a constant vector in k space related to the $n^{t h}$ band in a particular way) with respect to the Wanner function of the $n^{\text {th }}$ band.

Then ,

$$
\left\langle e^{h_{n} r}\right\rangle=\int_{\text {doll } r} a_{n}^{*}(r) e^{h_{n} r} a_{n}(r) d^{3} r \quad 7.5 .1
$$

$$
a_{n}(\underline{r})=\int_{\text {all } \underline{k}} \nu_{n}(\underline{k}) e^{i \underline{k} \cdot r} d^{3} k
$$

$$
\begin{aligned}
&\left\langle e^{\underline{\underline{G}}: \underline{r}}\right\rangle=\iiint \nu_{n}^{*}(\underline{k}) e^{-i \underline{k} \cdot \underline{r}} e^{\underline{h}_{n} \cdot \underline{r}} \nu_{n}\left(k^{\prime}\right) e^{i \underline{k}^{\prime} \cdot \underline{r}} d^{3} k d^{3} k^{\prime} d^{3} r \\
&=\iiint \nu_{n}^{*}(\underline{k}) \nu_{n}(\underline{k}) e^{i \underline{r} \cdot\left(\underline{k}^{\prime}-\underline{k}-i \underline{h}_{n}\right)} d^{3} k d^{3} k^{\prime} d^{3} r \\
& 7.5 .3
\end{aligned}
$$

$$
\int e^{i \underline{r} \cdot\left(\underline{k}^{\prime}-\underline{k}-i \underline{h}_{n}\right)} d^{3} r=\delta\left(\underline{k}^{\prime}-\underline{k}-i \underline{b}_{n}\right)
$$

$$
7 \cdot 5 \cdot 4
$$

$$
\left\langle e^{-\underline{v}_{n} \cdot \underline{r}}\right\rangle=\iint \nu_{n}^{*}(\underline{k}) \nu_{n}\left(\underline{k}^{\prime}\right) \delta\left(\underline{k}^{\prime}-\underline{k}-i \underline{h}_{n}\right) d^{3} k d^{3} k^{\prime}
$$

\therefore

$$
\left\langle e^{\left.\underline{t_{n}} \cdot \underline{r}\right\rangle}=\int_{\text {all } \underline{k}} \nu_{n}^{*}(\underline{k}) \nu_{n}\left(\underline{k}+i \underline{t}_{n}\right) d^{3} k\right.
$$

6) It is not necessary to consider the constants of integrations for the proof given in this section, therefore all numerical constants of the integrations have been ignored.

This shows that

$$
\int_{\text {all } \underline{r}}\left|a_{n}(\underline{r})\right|^{2} e^{\underline{h}_{n} \cdot \underline{r}} d^{3} r=\int_{\text {all } \underline{k}} \nu_{n}^{*}(\underline{k}) \nu_{n}\left(\underline{k}+i \underline{h_{n}}\right) d^{3} k
$$

Now if we assume that $\nu_{n}(\underline{k})$ (the momentun eigenfunction for the $n^{\text {th }}$ band) treated as a function of the complex variable k can be extended into the complex space as far as $i \underline{\sigma}_{n}$, then the integral

$$
\int_{\text {all } \underline{k}} \nu_{n}^{*}(\underline{k}) \nu_{n}\left(\underline{k}+i \underline{h}_{n}\right) d^{3} k \quad \quad \because 7.5 .8
$$

is convergent if h_{n} is less than the radius of convergence of the power series expansion of $\nu_{n}(k)$ in the complex k space.

Hence

$$
\int_{\ell r}\left|a_{n}(r)\right|^{2} e^{b_{n} r} d^{3} r \longrightarrow \text { Finite } \quad \therefore 7.5 .9
$$

which means that Wannier functions fall off exponentially at least as $e^{-\frac{h_{n}}{2} \cdot r}$ From the arguments above we can come to the following important conclusions;

1) Any small potential applied to free electrons by produ cing forbidien enercy gaps extends the wave functions or momentum eigenfunctions (2lso see sections 7.6 and7.7) into the complex k space as far as $i \underline{\sigma}_{n}$ where n refers to the index of the particular band under consideration. Therefore as proved above the Wannier functions fall off exponentially at least as $\quad e^{-\frac{t_{n}}{2} \cdot r}$ where we have, $\frac{h_{n}}{2} \leq \frac{\sigma_{n}}{2}$
2) The maximum possible rate of fall off of Wannier functions is there fore given by $e^{-\frac{\sigma_{n}}{2}-}$ where this time we have, $\frac{\sigma_{n}}{2}=\frac{\sigma_{m}}{2}$.

Note that Wannier functions cańnot fall off faster than this limitine value for if $\frac{t_{n}}{2}>\frac{\sigma_{n}}{2}$ the integral given by equation 7.5 .7 is no longer convercent,

In section 7.7 we shall prove that for weakly bound electrons in the one dimensional case \underline{h}_{n} can be expressed through the Fourier coefficients of the perturbing potential .

In general however for multi-dimensional crystals extensions into the complex \underline{k} space are quite complicated and difficult to deal with , so in "chapter eight" a method will be suggested to obtain directly the Wannier functions with maximun possible rates of exponential fall off (the most localized Wannier functions) .
7.6 RATE OF EXPONEMTAL DECAY OF WANMIER FUNCTIOMS IN ONE DIMEMSION Kohn ${ }^{1}$ in a paper mentioned previously suggests that, for a one dimensional crystal under the assumptions that the bands in question are nondegenerate and the potential has a centre of inversion, the rate of exponential decay of the Nannier function of a particular band (say the $n^{\text {th }}$ one) can be obtained from the Kramers plot as follows;

Let

$$
f(k)=\operatorname{Cos} k a
$$

where k is not neccessarily real, and consider some particular points in the complex k plane
i.e.

$$
k_{n}=n \frac{\pi}{a}+i h_{n}
$$

then the amplitudes of the Kramer's function at these
particular points are given by

$$
f\left(k_{n}\right)=f_{n}= \pm \operatorname{Cosh}\left(h_{n} a\right)
$$

therefore the h_{n} 's which Kohn shows to be the coefficients of the exponential decay can be obtained from the Kramer's function by the following relation

$$
h_{n}=\frac{1}{a} \operatorname{Cosh}^{-1}\left(f_{n}\right)
$$

From the last expression it is apparent that h_{n} 's are largest (i.e. cor responding to highest possible rate of exponential decay) at the points where f_{n} 's corresponds to the peaks of the function. We may also add that in order to know the h_{n} 's we need to know the Kramer's function explicitly.

As it is apparent from expression 7.6 .4 , the higher the value of the potential , the larger will be the coefficients of exponential decay.

We have also

$$
\underset{n \rightarrow \text { Large }}{\operatorname{Lim}_{n} h_{n}} 0
$$

which means that the Wannier functions for higher bands fall off more slowly than those of the lower bands and for sufficiently large values of n the Wannier functions of these higher bands resemble those for free electrons. As a particular example consider the case of free electrons, for which we have $-1 \leq f(k) \leq+1$, then it can casily oe shown that, we have $h_{n}=0$ for all n, which implies that no Wannier function falls off exponentiolly.

Fig. 7.6.1 $\quad f(k)$ represented as a function of complex variable k. Note that the peaks of the function corresponds to $k=n \frac{\pi}{a}+i h_{n}$ and the function tends to be tangent to $f(k)=\mp 1$ axises for large n. The allowed and forbidden regions are shown in the figure.
7.7 FOR WEAKLY EOUND ELECTRONS EXPONEMIIAL DECAY IS GIVEN BY THE fourier cobfricidits of the perturbing potential

In this section we will prove by extending Kohn's one dimensional argument that for weakly bound electrons the exponential decay of Wannier functions is given by the fourier coefficients of the perturbing potential.

Consider the following Kramer's plot where the regions $|f(E)|>\mid$ correspond to forbjdden values of E which are the usual energy gaps. Now;

1) As it is well known, for weakly bound electrons these gaps \therefore can be proved to be equal to twice the fourier coefficients of the perturbing potential ($n^{\text {th }}$ gap being given by the $n^{\text {th }}$ Fourier coefficient)
2) Further for weakly bound electrons the function f slightly exceeds $\quad f=\mp 1$ hence has it s extrima $\left|f_{n}\right|=1+\xi_{n}$ where ξ_{n} is a small positive quantity.
3) As far as the behaviour of the function $f(E)$ is considered we have two limiting conditions, i.e.

$$
\begin{align*}
& \operatorname{Lim} f(E) \rightarrow \operatorname{Cos} \sqrt{E} a \\
& E \rightarrow \operatorname{Large} \\
& \text { or } \\
& \operatorname{Lim}_{f}(E) \rightarrow \operatorname{Cos} \sqrt{E} a \\
& V \rightarrow 0
\end{align*}
$$

where V is the applied potential.
Hence, the forbidden region of energy between the $(n-1)^{\text {th }}$ and $n^{\text {th }}$ bands is given by $2 V_{n}$ where V_{n} is the $n^{\text {th }}$ Fourier
coefficient of the perturbing potential and the behaviour of the function $f(E)$ is as shown below.

Now, we can write by approximating the part of the function(see the fig. above) above $f(\varepsilon)= \pm 1$ axis by that of $\operatorname{Cos} \sqrt{E} a$ (This is a very admissible approximation as explained in the previous page).

$$
\begin{align*}
f_{n}-1 & =1-\cos \sqrt{\left|V_{n}\right|} a \\
f_{n} & =2-\cos \sqrt{\left|V_{n}\right|} a \\
& =2-1+\frac{\left|V_{n}\right| a^{2}}{2}=1+\frac{\left|V_{n}\right| a^{2}}{2}
\end{align*}
$$

However by equation $7.6 .3 \quad f_{n}$ iss giver ı by

$$
\begin{align*}
f_{n} & =\operatorname{Cosh}\left(a h_{n}\right) \\
& \cong 1+\frac{\left(a h_{n}\right)^{2}}{2}
\end{align*}
$$

Therefore from equations 7.7 .5 and 7.7.7,

$$
1+\frac{\left|V_{n}\right| a^{2}}{2}=1+\frac{a^{2} h_{n}^{2}}{2}
$$

Hence

$$
\begin{array}{rlrl}
\left(a h_{n}\right)^{2} & =\left|V_{n}\right| a^{2} & 7.7 .9 \\
h_{n} & =\left|v_{n}\right|^{1 / 2} & 7.7 .10
\end{array}
$$

Hence, ve conclude that for weakly bound electrons the coefficients of exponential decay are given by fourier coefficients of the perturbing potential , that is to say the $n^{\text {th }}$ Wannier function for weakly bound electrons falls off as $\exp \left(-\left|V_{n}\right|^{1 / 2} \times x\right)$.

Note that if $\mathrm{V}=0$ then all $\mathrm{V}_{\mathrm{n}}=0$ (which also means $\mathrm{h}_{\mathrm{n}}=0$) Which means that none of the Wannier functions fall off exponentially.

Also, since, in general för an applied potential $\lim _{\mathrm{n}_{\mathrm{n}} \mathrm{V}_{\infty}-\infty} 0$, the exponential fall off is strongest for the lower bands ($n=s m a l l$) and decreases (or in other terms is effective only at larger distances than the origin) as one goes to higher bands ($n=$ large $)$.

CHAPITR 8

Oin the choice of the arbitrary phases
8.1 A METHOD FOR OETAINIMG THE LOST LOCALIZED WANNIER FUNCTIONS IN THRIE DIITISIONS

Bloch functions which are solutions of Schrödinger equation are defined up to an arbitrary phase, that is to say if the Bloch functions $\psi_{n(\underline{k}, \underline{r})}$ satisfy the given Schoredinger equation then so do the functions $e^{i \phi_{n}(\underline{k})} \psi_{n}(\underline{k}, \underline{r})$.

One can eet more information about the arbitrary phase $e^{i} \phi_{\mathrm{n}}(\underline{k})$ by considering that this new set of functions must possess the fundamental properties of Bloch functions.
i.e. 1) The new set of functions must satisfy the usual one electron Schröedinger equation, this only tells us that the function ϕ_{n} must be a function of wave vector k only.
2) Bloch functions are periodic in k space, therefore, we
must have

$$
e^{i \phi_{n}\left(\underline{k}+\underline{K}_{n}\right)} \psi_{n}\left(\left(\underline{k}+\underline{K}_{n}\right), r\right)=e^{i \phi_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r})}
$$

from vihich by a simple argument we can show that

$$
\phi_{n}\left(\underline{k}+\underline{k}_{n}\right)=\phi_{n}(\underline{k})
$$

η Hence $\phi_{\mathrm{n}}(\underline{\mathrm{k}})$ must also be a periodic function in the given \underline{k} space
3) Bloch functions may be nomalized in the r space,

$$
\text { i.e. } \int_{\text {all } \underline{r}} \psi_{n(\underline{k} \cdot \underline{r})}^{*} \psi_{n}^{\prime}(\underline{k} \cdot \underline{r}) d^{3} r=1
$$

Then, in order that the nev set of functions may be normalized $\phi_{n}(\underline{k}, \underline{r})$ must be a real function of \underline{k}.

Therefore the sets of functions $\psi_{\left.n(\underline{k}, \underline{r}) \text { and } e^{i} \phi_{n(\underline{k})} \psi_{n(\underline{k}, \underline{r})}\right)}$ where $\phi_{n(\underline{k})}$ is a real and periodic function of \underline{k} are equally admiss able sets of functions.

Hence the choice of Wannier functions which are given by the following expression

$$
a_{n}\left(\underline{r}-\underline{R}_{-m}\right)=\int_{B . z} \psi_{n}(\underline{k}, \underline{r}) e^{-i \underline{k} \cdot \mathbb{R}_{m} d^{3} k}
$$

is not unique but infinite because of the arbitrary phases which may be assigned to the Bloch functions. In general the shapes of the out coming l"annier functions largely depend on the choice of these phases.

Hence the present task is to find the phases which yield the most localized Wannier functions.

Below we will sugsest an exact method for finding these particular phases, using the fundamental criteria that the mean squ_ are extent of the corresponding Wannier functions must be a minumum. Weinreich ${ }^{1}$ sugcests a method using a similiar criteria, however the method is based upon an approximation (The nature of this approximation will be mentioned in connnection with equation 8.12).

$$
\text { Parada }{ }^{2} \text {, as a special case considers some particular forms }
$$ of Bloch functions (those obtained point by point by kp approximation) and states that for this particular case the mean spread integral of

1) Weinreich, G., Solids , Elementary Theory for Advanced Students pp. 134., ‘illey, New Yook, 1965.
2) Parada, N.J., and Ferreira, L., Thys. Rev. B, Vol.2, 1614(1970)

Wanner functions is stationary.
In order to find a general solution to this problem, we will start by expanding the relevant Bloch functions in the reciprocal vector space.

$$
\psi_{n}(\underline{k}, \underline{r})=\sum_{\underline{K}_{n}} V_{n}\left(\underline{\underline{k}}+\underline{K}_{n}\right) e^{i\left(\underline{k}+\underline{\underline{K}}_{n}\right) \cdot \underline{r}}
$$

Assigning an arbitrary phase to the Bloch function

$$
e^{i} \phi_{n}(\underline{k}) \quad \psi_{n}(\underline{k}, \underline{r})=\sum_{\underline{K}_{n}} \nu_{n}\left(\underline{k}+\underline{K}_{n}\right) e^{i\left(\underline{k}+\underline{K}_{n}\right) S_{e^{i}} \phi_{n}(\underline{k})} \quad 8.6
$$

As mentioned before $\phi_{n}(k)$ is periodic in k space therefore,

$$
e^{i \phi_{n}(k)_{e} \phi_{n}\left(k \pm \underline{k_{n}}\right)} \quad . \quad=e^{i \phi_{n}\left(\underline{k}+k_{n n}\right)} e t c
$$

Hence we can rewrite equation 8.6 as follows

$$
e^{i} \phi_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r})=\sum_{\underline{K}_{n}} \nu_{n}\left(\underline{k}+\underline{K}_{n}\right) e^{i\left(\underline{k}+\underline{K}_{n}\right) \underline{r}_{e} i \phi_{n}\left(\underline{k}+\underline{K}_{n}\right)} \quad 8.8
$$

and the corresponding winier function (i.e. The one centered at origin, $E=0$) is given by

$$
\begin{array}{rlr}
a_{n}(\underline{r}) & =\int_{B . Z} \psi_{n(\underline{k}, \underline{r}) e^{i} \phi_{n}(\underline{k})}^{d^{3} k} & 8.9 \\
& =\sum_{\underline{K}} \int_{B . Z} \nu_{n}\left(\underline{k}+\underline{K}_{n}\right) e^{i\left(\underline{k}+\underline{K}_{n}\right) \underline{r}} e^{i \phi_{n}\left(\underline{k}+\underline{K}_{n}\right)_{d^{3} k}}
\end{array}
$$

which leads to

$$
a_{n}(\underline{r})=\int_{\text {all } \underline{k}} \nu_{n}(\underline{k}) e^{i \underline{k} \cdot \underline{r}} e^{i \phi_{n}(\underline{k})} d^{3} k
$$

The mean square extent of pannier functions is defined as ${ }^{3}$

$$
\left\langle r_{n}^{2}\right\rangle=\int_{\text {all } r} a_{n}^{*}(r) r^{2} a_{n}(r) d^{3} r
$$

Substituting equation 8.10 into equation 8.12 we get

$$
\begin{aligned}
& \left\langle r_{n}^{2}\right\rangle=\iiint_{n} \nu_{n}^{*}(\underline{k}) e^{-i \underline{k} \cdot r} e^{-i \phi_{n}(\underline{k})} r^{2} \nu_{n}\left(\underline{k}^{\prime}\right) e^{i k^{\prime} r} e^{i \phi_{n}\left(k_{*}^{\prime}\right)} d^{3} k d^{3} k^{\prime} d^{3} r \\
& \text { all } \underline{k}, \underline{k}^{\prime}, r
\end{aligned}
$$

which may alternatively be written as

$$
\left\langle r_{n}^{2}\right\rangle=\iiint \nu_{n}^{*}(\underline{k}) \nu_{n}\left(\underline{k}^{\prime}\right) e^{-i \phi_{n}(\underline{k})} e^{i \phi_{n}\left(\underline{k}^{\prime}\right)} \nabla_{k} e^{-i \underline{k} \cdot r} \nabla_{k^{\prime}} e^{i k^{\prime} \cdot r} d^{3} k d^{3} k^{\prime} d^{3} r
$$

where one can rewrite the integrand as follows

$$
\begin{align*}
& \nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})} \nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(k^{\prime}\right)} \nabla_{k} e^{-i k \cdot r} \nabla_{k^{\prime}} e^{i \underline{k}^{\prime} \cdot r}= \\
& \nabla_{k} \cdot \nabla_{k^{\prime}} \cdot\left(e^{-i \underline{k} \cdot r} e^{i k^{\prime} \cdot r} \nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})} \nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right)-e^{i \underline{k}^{\prime} \cdot r} e^{-i \underline{k} \cdot r}\left[\nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{i \phi_{n}(k)}\right) \cdot\right. \\
& \left.\cdot \nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right)\right]-\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})} e^{i k^{\prime} \cdot r} \nabla_{k} e^{-i \underline{k} \cdot r} \nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right) \\
& -e^{-i \underline{k} \cdot r} \nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)} \cdot \nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})}\right) \nabla_{k^{\prime}} e^{i \underline{k}^{\prime} \cdot \underline{r}} 8.15
\end{align*}
$$

[^2]Now let us consider the integration of the first term on the right hand side of equation 8.15 . One can use Gauss's (Divergence) theorem to transform this volume integral into a surface integral, over a surface with a very large radius (i.e. $k, \underline{k}-\ldots \infty$) . The exponential terms in the integrand are bounded into a finite region for all \underline{k} and \underline{r}, i.e. into a unit circle in the complex plane

Hence provided that the functions $V_{n}(\underline{k})$ ' s vanish at infinity (that means over the large spherical surface considered)
ie.

$$
\lim \nu_{n}(k), \nu_{n}\left(\underline{k}^{\prime}\right)=0
$$

$k, k^{\prime} \rightarrow \infty$
the surface integral yields zero.
Now consider the second and the third terms on the right hand side of equation 8.15 . Their sum can be rewritten as follows,
$-e^{i \underline{k}^{\prime} r}\left[\nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right)\right]\left[e^{-i \underline{k} r} \nabla_{k} \nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})}+\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})} \nabla_{k} e^{-i \underline{k} \underline{~}}\right]$
$=-e^{i k^{\prime} r} \nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right) \nabla_{k} \cdot\left(\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})} e^{-i \underline{k} r}\right) \quad 8.17$
and again from similar arguments and the fact that

$$
\left.\lim _{k \rightarrow \infty}\right)^{*}(\underline{k}) \rightarrow 0
$$

one can show that the surface integrals due to these terms also vanish. The only nonvanishing term (The fourth term on the right hand side of equation 8.15) may be written as follows

$$
\begin{align*}
- & {\left[\nabla _ { k } (\nu _ { n } ^ { * } (\underline { k }) e ^ { - i \phi _ { n } (\underline { k }) }] e ^ { - i \underline { k } \cdot r } \left[\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)} \nabla_{k}\left(e^{\left.i \underline{k^{\prime} \cdot r}\right)}\right] 8.19\right.\right.} \\
= & -\left[\nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})}\right)\right]\left[\left(\nabla_{k^{\prime}} e^{i k^{\prime} \cdot r} \nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right)+e^{i k^{\prime} \cdot r}\left(\nabla_{k^{\prime}} \nu_{n}\left(k^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right)\right] e^{-i k \cdot r}
\end{align*}
$$

Through similar arguments the only nonvanishing part can be shown to be

$$
e^{-i \underline{k} r} e^{i \underline{k} \cdot \underline{r}} \nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})}\right) \nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right) 8.20
$$

Therefore we are left with the following integral to be minimized

$$
\begin{aligned}
&\left\langle r_{n}^{2}\right\rangle=\iiint_{k} \nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})}\right) \nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right) e^{i \underline{r^{(}\left(\underline{k}^{\prime}-\underline{k}\right)} d^{3} k d^{3} k^{\prime} d^{3} r} \\
& \quad \text { all } \underline{k}, \underline{k}^{\prime}, \underline{r}
\end{aligned}
$$

but,

$$
\int_{\text {all } \leq} e^{i \underline{r} \cdot\left(\underline{k}^{\prime}-\underline{k}\right)} d^{3} r=\delta\left(\underline{k}-\underline{k}^{\prime}\right) \quad \begin{aligned}
& \text { (The constants are } \\
& \text { not shown) }
\end{aligned}
$$

therefore,

$$
\begin{aligned}
&\left\langle r_{n}^{2}\right\rangle=\iint \nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{-i \phi_{n}(\underline{k})}\right) \nabla_{k^{\prime}}\left(\nu_{n}\left(\underline{k}^{\prime}\right) e^{i \phi_{n}\left(\underline{k}^{\prime}\right)}\right) \delta\left(\underline{k}-\underline{k}^{\prime}\right) d^{3} k d^{3} k^{\prime} \\
& \text { all } \underline{k}, \underline{k}^{\prime} \\
&=\iint_{k} \nabla_{k}\left(\nu_{n}^{*}(\underline{k}) e^{-i \dot{\varphi}_{n}(\underline{k})}\right) \nabla_{k}\left(\nu_{n}(\underline{k}) e^{i \phi_{n}(\underline{k})}\right) d^{3} k \quad 8.24 \\
& \quad \text { all } \underline{k}
\end{aligned}
$$

or

$$
\left\langle r_{n}^{2}\right\rangle=\int_{\text {all } \underline{k}}\left|\nabla_{k}\left(\nu_{n}(\underline{k}) e^{i \phi_{n}(\underline{k})}\right)\right|^{2} d^{3} k
$$

In the last expression, it is apparent that the in tegrand is a real function of \underline{k} and the task is to choose the real function $\phi_{n}(\underline{k})$ such that the integral under consideration vill attain its minimum.

$$
\begin{array}{r}
\left\langle r_{n}^{2}\right\rangle=\int\left[\left|\nabla_{k} \phi_{n}(\underline{k})\right|^{2}\left|\nu_{n}(\underline{k})\right|^{2}+21 M\left[\nu_{n}^{*}(\underline{k}) \nabla_{k} \nu_{n}(\underline{k})\right] \cdot \nabla_{k} \phi_{n}(\underline{k})\right. \\
\left.\quad+\left|\nabla_{k} \nu_{n}(\underline{k})\right|^{2}\right] d^{3 k} \quad 8.26
\end{array}
$$

where $\operatorname{IM}\left[\nu_{n}^{*}(\underline{k}) \nabla_{k} \nu_{n}(k)\right]$ is the imaginary part of the expression $\nu_{n}^{*}(\underline{k}) \nabla_{\underline{k}} \nu_{n}(\underline{k})$ and using Euler's expression for the integral, we get

$$
\nabla_{k}\left[\left(2 \nabla_{k} \phi_{n}(\underline{k})\right)\left|\nu_{n}(\underline{k})\right|^{2}+21 M\left[\nu_{n}^{*}(\underline{k}) \nabla_{k} \nu_{n}(\underline{k})\right]\right]=0
$$

Simplifying the last expression we get
$\nabla_{k}^{2} \phi_{n}(\underline{k})+\nabla_{k} \cdot \phi_{n}(\underline{k}) \cdot\left(\frac{\nabla_{k} \cdot\left|\nu_{n}(\underline{k})\right|^{2}}{\left|\nu_{n}(\underline{k})\right|^{2}}\right)+\frac{\nabla_{k} \cdot\left[\mid m \nu_{n}^{*}(\underline{k}) \nabla_{k} \nu_{n}(\underline{k})\right]}{\left|\nu_{n}(\underline{k})\right|^{2}}=0$

Now, defining
8.29

$$
f_{j n}(\underline{k})=\frac{\nabla_{k} \cdot\left|\nu_{n}(\underline{k})\right|^{2}}{\left|\nu_{n}(\underline{k})\right|^{2}} \quad g_{n}(\underline{k})=\frac{\nabla_{k} \cdot\left[\mid m \nu_{n}^{*}(\underline{k}) \nabla_{k} \nu_{n}(\underline{k})\right]}{\left|\nu_{n}(\underline{k})\right|^{2}}
$$

we finally get

$$
\nabla_{k}^{2} \cdot \phi_{n}(\underline{k})+f_{n}(\underline{k}) \cdot \nabla_{k} \cdot \phi_{n}(\underline{k})+g_{n}(\underline{k})=0
$$

which is a real, second order , differential equation, solutions of which gives the desired phase function $\phi_{n}(\underline{k})$

Hence knowing $f_{n}(k)$ and $g_{n}(\underline{k})$ (That means knowing the Bloch functions or the momentum eigenfunction $\mathcal{V}_{n}(\underline{k})$'s explicitly) one can work out the phases through equation 8.30 , which yields the most localized pannier functions for the particular problem. SOME REARKS; For free electrons the momentum eigenfunction are step_ wise functions, thus the mean square extent of the corresponding Winier functions (see equation 8.25) is infinite. However, when a periodic potential is introduced, the momentum eigenfunction s become differentiable everywhere, so that, providing the condition 8.16 is satisfied, the integral in equation 8.25° attains a finite value. Then, depending upon the choice of the $\phi_{n}(\underline{k})$, we have, inf finite values for $\left\langle\underline{r}_{n}^{2}\right\rangle$. The smallest is obtained when the phases of the Bloch functions satisfy equaltimon 8.30 .
8.2 THE MOST LOCALIZIN WANHIER FUNCTIONS FOR A CRYSTAL (THREE DINEISIONAL) WIIH INVERSION SYRETRY

Above we have suggested a method to obtain the most locali zed Wannier functions for a general three dimensional crystal.

* However, as a special case, if the crystal in concern has in version symmetry, then the momentum eigenfunctions ($\nu_{n}(\underline{k})$'s) that. we deal with can be taken as real. Inerefore the second temn (imaginary) in the integrand in the equation given below (see equation 8.26)

$$
\begin{array}{r}
\left\langle r_{n}^{2}\right\rangle=\int\left[\left|\nabla_{k} \phi_{n}(\underline{k})\right|^{2}\left|\nu_{n}(\underline{k})\right|^{2}+21 M\left[\nu_{n}^{*}(\underline{k}) \nabla_{k} \nu_{n}(\underline{k})\right] \nabla \phi_{n}(\underline{k})\right. \\
\left.\quad+\left|\nabla_{k} \nu_{n}(\underline{k})\right|^{2}\right] d 3 k
\end{array}
$$

vanishes, to yield

where the integrand is made up of positive valued functions only and the integral attains a minimum when

$$
\nabla_{k} \varphi_{n}(\underline{k})=0 \quad \text { or } \quad \phi_{n}(\underline{k})=\text { constant } \quad 8.33
$$

Throurch above arguments we arrive at the following important conclusion, that for a crystal with inversion symmetry it is enough to assign constant phases to the wave functions in concern to end up with the most localized Ticnnier functions.

Hence, the Wannier functions that we have calculated in the $i \phi_{n}(\underline{k})$
previous chapters (where we have chosen the phases e $= \pm 1$, which means $\dot{\Psi}_{\eta}(\underline{k})=\pi, 2 \pi$, etc.) represent the best one could do in getting concentrated functions.
** I am indebted to Frof. L. Pincherle for bringing this result to my attention.

CIAAPTER 9

EXAC'P WANNIER FUSCTIOIS IN TIRER DIMTNSIONS (FOR AN INTEREDIATE POTMJTIAL)

9.1 GBIERAL

Excluding the cases of free and tightly bound electrons, which we have studied in detail in chapters 4 and 10, the Vannier functions in general (for all intermediate cases of bindings) are extremely difficult to compute, since to do so one needs a complete knowledge of Bloch functions (corresponding to all values of wave vector k) in a Eiven band. This difficulty has also been admit ted by a number of authors like Parzen ${ }^{1}$, Wainwright ${ }^{2}$, Slater ${ }^{3}$, Smith ${ }^{4}$, and Harrison ${ }^{5}$ etc., where the former three have actually dealt with the problem.

The few reported calculations on the Wannier functions (excluding the case of tightly bound electrons) have been main ly on the one and two dimensional problems and include;
i) that of Farzen's using a one dimensional square potential (which we believe involves some serious mistakes) .
ii) and also that of Slater's employing a cosine potential. The first of these works employs the variational approach (sug gested by the author ${ }^{1}$ himself and Koster ${ }^{6}$) which we have described in detail in chapter 3.

In a second paper the authors ${ }^{2}$ calculate the energy bands of a one dimensional cosine potential and that of lithium using

1 Parzen, G. Fhys. Rev. 89, 237 (1953)
2 Parzen, G. and Wainwright, T. Phys. Rev. 92, 1129 (1953)
3 Slater, J.C. Phys. Rev. 87, 807 (1952)
the same method. However, they employ momentum eigenfunctions instead of the Vannier functions stating that they found it easier to deal with the former.

In the second of the works referred above, Slater ${ }^{3}$ proves that the Wannier functions are the Fourier transforms of the momentum eicenfunctions, which he readily calculated for the one and two dimensional problems. Possibility of an extension to three dimensions has also been mentioned.

In this chapter we intend to calculate exact (analytical) Wannier functions in three dimensions. The model that we have chosen is a cubic lattice with square potential wells. This particular choice for the model has enabled us to obtain the Bloch waves in analytical forms for all points in each band which we have used to calculate the Wannior functions. We have first started with the one dimensional case and extended the argument at once to three dimensions for a seperable problem. As is shown later, the problem in the three dimensional case is much more involved com pared with the one dimensional problem.

We start with a general discussion on the separability of the wannier functions.
9.2 Oin the separability of the wanilr functions

In the present literature $w \in$ haven't come acpross a general stualy on the separability of the Wannier functions. However, as we shall prove below, the conditions for which these functions are seperable can be set up easily.

4 Smith, R.A. Wave Kechanics of Crystalline Solids, Chapman and
5 Harrison, W.A. Solid State I'heory, McGAiV-HILL (1970)
6 Koster, G.F. Fhys. Rev. 89, 67 (1953)

It is well known that the solutions of the following one alec tron Schrödinger's equation

$$
\begin{equation*}
-h^{2} / 2 m \nabla^{2} \psi_{n \underline{k}}(r)+V(r) \psi_{n \underline{k}}(r)=E_{n}(\underline{k}) \psi_{n \underline{k}}(r) \tag{1}
\end{equation*}
$$

is separable (in the cartesian coordinates) in the sense,

$$
\begin{equation*}
\psi_{n k}(r)=X_{n}\left(k_{x}, x\right) Y_{n}\left(k_{y}, y\right) z_{n}\left(k_{x}, z\right) \tag{2}
\end{equation*}
$$

if the potential $V(\underline{r})$ is a sum of the terms each depending on one coordinate only

$$
\begin{equation*}
V(r)=v_{1}(x)+v_{2}(y)+v_{3}(z) \tag{3}
\end{equation*}
$$

The Wannier function is now given by

$$
\begin{equation*}
a_{n}(\underline{r}-\underline{R})=\int_{n^{*} B . z} \psi_{n \underline{t}}(r) \exp (-i \underline{k} \cdot \underline{R}) d^{3} k \tag{4}
\end{equation*}
$$

or
$a_{n}(x-X, y-Y, z-Z)=\iiint X_{n}\left(k_{x}, x\right) Y_{n}\left(k_{y}, y\right) Z_{n}\left(k_{z}, z\right) \exp i\left(-k_{x} X-k_{y} Y-k_{z} z\right) d k_{x} d k_{y} d k_{z}$ 5
Now, provided that the B.Z. in concern has such line (in case of a two dimensional B.Z.) or plane (in case of a three dimension al R.2.) boundaries that each of which can be defined by a single wave vector only (to this assumption the equations of these boon darien would read; $k_{x} \mp c_{1}=0, k_{y} \pm c_{z}=0$, and $k_{z} \neq c_{3}=0$, then the above triple integral is given by the product of three integrals each carried out separately over the one dimensional functions $X_{n}\left(k_{x}, x\right), y_{n}\left(k_{y}, y\right)$, and $z_{n}\left(k_{z}, z\right)$. In other words, the Wanner function in concem is separable

$$
a_{n}(x-x, y-y, z-z)=a_{n}(x-x) a_{n}(y-y) a_{n}(z-z)
$$

This is possible only if the B.Z. in concern is a simple one such as a square or a rectangular one for two dimensional problems or a simple cube for the three dimensional cases, etc. In ither case the B. 2 . corresponds to the lowest band.

However, for most of the familiar crystal types and par-
 not be separable. In sections 9.6 and 9.7 we have shown how to
obtain the three dimensional Wannier functions also for a nonseparable case.

9.3 mie potmitial ribli

The three dimensional crystal that we shall consider consists of a cubic array of square potential wells as shown in figure .9.1

Fig. 9.1 The pctential field (a part only) for $0<z<+1$. The potential function $V(\underline{r})$ is a sum of three functions,

$$
\begin{equation*}
v(\underline{r})=v_{1}(x)+v_{2}(y)+v_{z}(z) \tag{7}
\end{equation*}
$$

each being stepwise and defined alone one of the principal direc tions, as follows

$$
\begin{align*}
& n \cdot a \leqslant x, y \text {, or } z \leqslant(n+1) \cdot a \tag{8}\\
& v_{1}(x), v_{2}(y) \text {, or } v_{3}(z)=0 \text { for } n=1,3,5,7, \ldots \\
& v_{1}(x), v_{2}(y) \text {, or } v_{3}(z)=4.0 \text { a.u. for } n=0,2,4,6, \ldots
\end{align*}
$$

We have found this crystal model very useful for obtaining analytic expressions for the associated Bloch functions and hence for the Wannier functions themselves.
9.4 EXACT WANHER FUICTIOMS FOR THE ONE DIMENSIONAL PROBLEM

We first intend to obtain the (exact) Wannier functions for some cnergy bands of the one dimensional crystal. The results of the one dimensional calculations (though not a prerequsite for extensions to higher dimensions in the method that we use) are particularly useful in understanding the approach and the rature of the hicher dimensional (three dimensional) Wannier functions.

The one dimensional calculations may be given in any one of the principal axes, say x. The one dimensional potential energy of the crystal is then simply made up of square wells (see equations 7-10) with the folloving parameters; The intermuclear distarce $a=2$ a.u. The potential barriers $\quad V_{0}=4$ a.u.
9.4.1 fORULATIONS FOR OBTAIMING IFE COBPFICIENTS OF THE WAVE FWNOTIONS The solutions of the Schrodinger's equation for the two subsequent reçions (see equations 8,9 , and 10) are respectively

$$
\begin{align*}
& \Psi_{1}\left(k_{1}, x\right)=A \cos k_{1}(x+0.5)+i B \sin k_{1}(x+0.5) \\
& \Psi_{2}\left(k_{2}, x\right)=C \cos k_{2} x+D \sin k_{2} x \tag{12}
\end{align*}
$$

where

$$
\begin{align*}
& A \text { and } B \text { are real numbers } \\
& C \text { and } D \text { are complex numbers } \\
& k_{1}=\sqrt{E} \tag{13}\\
& k_{2}=\sqrt{E-V_{0}}=\sqrt{k_{1}^{2}-V_{0}} \tag{14}
\end{align*}
$$

The boundary conditions are choosen as follows
B.A. $\quad \psi_{1}\left(k_{1}, 0\right)=\psi_{2}\left(k_{2}, 0\right) \quad\left(\frac{d \psi_{1}\left(k_{1}, x\right)}{d x}\right)_{x=0}=\left(\frac{d \psi_{2}\left(k_{2}, x\right)}{d x}\right)_{x=0} 15$
B.C.2 $\psi_{2}\left(k_{2},+1\right)=e^{i 2 k} \psi_{1}\left(k_{1},-1\right),\left(\frac{d \Psi_{2}\left(k_{2}, x\right)}{d x}\right)_{x=+1}=e^{i 2 k}\left(\frac{d \psi_{1}\left(k_{1}, x\right)}{d x}\right)_{x=-1} 16$
B.c. $3 \int_{-1}^{0}\left|\psi_{1}\left(k_{1}, x\right)\right|_{0}^{2} d x+\int_{0}^{+1}\left|\psi_{2}\left(k_{2}, x\right)\right|^{2} d x=1$

From now on we will give only the results of the formulations.
Substituting the expressions 11 and 12 into the equations 15 and 16 , we get the following relations.

$$
\begin{gather*}
A \cos 0.5 k_{1}+i B \sin 0.5 k_{1}=C \tag{18}\\
-A k_{1} \sin 0.5 k_{1}+i k_{1} B \cos 0.5 k_{1}=k_{2} D \tag{19}
\end{gather*}
$$

$$
C \cos k_{2}+D \sin k_{2}=\exp (i 2 k)\left(A \cos 0.5 k_{1}-i B \sin 0.5 k_{1}\right)
$$

$$
-C k_{2} \sin k_{2}+D k_{2} \cos k_{2}=\exp (i 2 k)\left(k_{1} A \sin 0.5 k_{1}+i k_{1} B \cos 0.5 k_{1}\right)
$$

In order that we may have non trivial solutions for A, B , C and D we must have

$$
\left|\begin{array}{cccc}
\cos 0.5 k_{1} & i \sin 0.5 k_{1} & -1 & 0 \\
-k_{1} \sin 0.5 k_{1} & i k_{1} \cos 0.5 k_{1} & 0 & -k_{2} \\
\exp (i 2 k) \cos 0.5 k_{1} & -i \exp (i 2 k) \sin 0.5 k_{1} & -\cos k_{2} & -\sin k_{2} \\
& & & \\
k_{1} \exp (i 2 k) \sin 0.5 k_{1} & i k_{1} \exp (i 2 k) \cos 0.5 k_{1} & +k_{2} \sin k_{2} & -k_{2} \cos k_{2}
\end{array}\right|=0
$$

Working out the above determinant, we get

$$
\begin{equation*}
\cos (2 \mathrm{k})=\cos _{1} \operatorname{cosk}_{2}-\left(\left(\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}\right) / 2 \mathrm{k}_{1} \mathrm{k}_{2}\right) \sin _{1} \sin \mathrm{~s}_{2} \tag{23}
\end{equation*}
$$

Actually this is the Kramer's function for the problem(the dispersion relation in an implicit form)

Now let us consider the equation 17 . Working out the integrals and after a number of algebraic simplifications, we get

$$
\begin{aligned}
& \frac{A^{2}+B^{2}}{2}+\frac{A^{2}-B^{2}}{2 k_{1}} \sin k_{1}+\left(|C|^{2}+|D|^{2}\right) \frac{\sin k_{2} \cos k_{2}}{2 k_{2}} \\
& \frac{|C|^{2}+|D|^{2}}{2}+(\operatorname{ReCReD}+\operatorname{ImC} \operatorname{In} D) \quad \frac{\sin ^{2} k_{2}}{k_{2}}=+1
\end{aligned}
$$

where the notations Rc and Im stand respectively for the real and the imaginary parts of the coefficients.

In equations 18 , 19 , 20 , and 24 we have 8 unlnowns, which are A, B, FeC , ImC, ReD , ImD , k_{1}, and k (we have not counted k_{2} since it can be obtained from k_{1}).

Now eliminating k and solving the remaining equations for $A, B, \operatorname{ReC}, \operatorname{ImC}, \operatorname{ReD}$, and ImD (in terms of k_{1} and k_{2}) and simplifying the outcoming equations as much as possible we get the following analytical expressions for the above named coefficients (we give the results only)

$$
\begin{align*}
A & =(\beta)^{-\frac{1}{2}} \\
B & =(\alpha)^{\frac{1}{2}}(\beta)^{-\frac{1}{2}} \\
\operatorname{ReC} & =\cos 0.5 k_{1}(\beta)^{-\frac{1}{2}} \tag{27}\\
\operatorname{ImC} & \left.=\sin 0.5 k_{1}(\alpha)^{\frac{1}{2}} \beta\right)^{-\frac{1}{2}} \tag{28}\\
\operatorname{ReD} & =-\frac{k_{1}}{k_{2}} \sin 0.5 k_{1}(\beta)^{-\frac{1}{2}} \tag{29}\\
\operatorname{ImD} & \left.=\frac{k_{1}}{k_{2}} \cos 0.5 k_{1}(\alpha)^{\frac{1}{2}} \beta\right)^{-\frac{1}{2}} \tag{30}\\
\text { whore } \therefore & 27 \tag{31}\\
\hline \text { snd } \beta & 30
\end{align*}
$$ by the following equations

$$
\alpha\left(k_{1}, k_{2}\right)=\frac{-\left(\frac{k_{1}}{k_{2}}\right)^{2}\left(\sin 0.5 k_{1}\right) \sin k_{2}+\left(\frac{k_{1}}{k_{2}}\right) \sin k_{1} \cos k_{2}+\left(\cos 0.5 k_{1}\right) \sin k_{2}}{\left(\frac{k_{1}}{k_{2}}\right)^{2}\left(\cos 0.5 k_{1}\right) \sin k_{2}+\left(\frac{k_{1}}{k_{2}}\right) \sin k_{1} \cos k_{2}-\left(\sin 0.5 k_{1}\right) \sin k_{2}}
$$

and
$\beta\left(k_{1}, k_{2}\right)=0.5(1+\alpha)+(1-\alpha)\left(\frac{\sin k_{1}}{2 k_{1}}-\frac{k_{1} \sin ^{2} k_{2} \sin k_{1}}{2 k_{2}}\right)$

$$
\begin{aligned}
& +\sin ^{2} 0.5 k_{1}\left[\frac{\sin 2 k_{2}}{4 k_{2}}\left[\alpha-\left(\frac{k_{1}}{k_{2}}\right)^{2}\right]+0.5\left[\alpha+\left(\frac{k_{1}}{k_{2}}\right)^{2}\right]\right] \\
& +\cos ^{2} 0.5 k_{1}\left[\frac{\sin 2 k_{2}}{4 k_{2}}\left[1-\alpha\left(\frac{k_{1}}{k_{2}}\right)^{2}\right]+0.5\left[1+\alpha\left(\frac{k_{1}}{k_{2}}\right)^{2}\right]\right]
\end{aligned}
$$

So far we have obtained expressions (explicit) for the coefficients $A, B, \operatorname{ReC}, \operatorname{ImC}, \operatorname{ReD}$, and, ImD in terms of k_{1} and k_{2} Now, it is very easy to compute these coefficients (that means the wave functions themselves) for all bands and at as many points (eigenvalues) as required simply by using these direct expressions.

The present task is to calculate the wave functions corres ponding only to those permissible values of k_{1} and k_{2} (the bands). Below, we give the allowed regions of the energy eigenvalues
of (the bands), over which we intend to carry out the present calculations.
9.4.2 ALLOWED RAMGE OF THE PARABETERS k_{1} AND k_{2} (THE BAITDS) We have worked out the dispersion relation given by equation 23 botin for imaginary $(V\rangle E)$ ard real $(V\langle E)$ values of the par ameter k_{2}. The bands correspond to the real values of the wave vector k.

We need this information about the bands for obtaining the Wan nier functions.

k_{1}	k_{2}	$\cos 2 \mathrm{k}$	k
1.280	1.538	1.08784	imaginary
1.290	1.525	1.02853	imaginary
1,295	1.520	1.000	0]
-	-	-	- First band
1.765	0.940	-1.000	$\mp \pi / 2$
1.770	0.930	-1.0125	imaginary
2.360	1.250	-1.02971	imaginary
2.375	1.280	-1.000	$\mp \pi / 2$
-	-	-	- Second band
3.430	2.790	+1.000	$\mp \pi$]
3.440	2.800	+1.00113	inaginary
3.490	2.860	+1.000	$\mp \pi$
-	-	-	- Third band
4.880	4.450	-1.000	$\mp 3 \pi / 2$
4.890	-		imaginary
4.970		-1.000	$\mp 3 \pi / 2$
- •	-	-	- Fourth band
6.430		+1.000	$\mp 2 \pi$ J

9.4.3 FORiUlaticis for obtaining tie wamier functions

The wave function for the m band and for $-1 \leq x \leq 0$ is given by the following equation (see equation 11)

$$
\begin{equation*}
\psi_{m}=\Lambda_{m}\left(k_{1}, k_{2}\right) \cos k_{1}(x+0.5)+i B_{m}\left(k_{1}, k_{2}\right) \sin k_{1}(x+0.5) \tag{34}
\end{equation*}
$$

Then the Wanner function for the $m^{\text {th }}$ band (which is centered at origin, $\mathrm{X}_{\mathrm{n}}=0$) is given by

$$
a_{m n}(x)=\sum_{k} A_{m}\left(k_{1}, k_{2}\right) \operatorname{cosk_{1}}(x+0.5)+i B_{m}\left(k_{1}, k_{2}\right) \sin k_{1}(x+0.5)
$$

where the sum is over the allowed k values of the $m^{\text {th }}$ Brillouin zone. Also note that this equation is valid only for $-1 \leq x \leq 0$, since the wave function in the sum is defined in this domain only. veloped in the previous sections, we observe the following

1) k_{1} and k are related to each other by equation 23 therefore summation over k in equation 35 can be replaced by a summation over k_{1}.
2) changing sign of $k(i . e+k$ to $-k)$ changes the sign of k_{1} also (i. $\epsilon_{0}+k_{1}$ to $-k_{1}$)
3) The expressions for $\alpha, \beta, A, B, \operatorname{ReC}$, etc. (see equations $32,33,26,27,28$, etc.) are invariant of the change of sign of k. However, these coefficients are obtained from α and β by square root operations, therefore they may be taken either positive or negative (and the wave func tions can be constructed by any combinations of these coefficients)

Above we have said that the summation over the k values of the $m^{\text {th }}$ band (equation 35) could be replaced by a sum mation over the k, values of the same band. Therefore we have

$$
\begin{aligned}
a_{m}(x) & =\left[A_{m}\left(k_{1}, k_{2}\right) \cos k_{1}(x+0.5)+i B_{m} \sin k_{1}(x+0.5)\right. \\
& m^{\text {th }} \text { B.Z. }
\end{aligned}
$$

Before we proceed any further, we have to have the follo wing arguments s.
9.4.1 WAMIER FUICTIONS FOR THE ODD NUBERED BAMD

If we essume that $A_{m}\left(k_{1}, k_{2}\right)$ and $B_{m}\left(k_{1}, k_{2}\right)$ do not change their signs along the whole of the $\mathrm{m}^{\text {th }}$ Brillouin zone (both either positive or negative all along the zone) then we can easily show that

$$
\begin{equation*}
\psi_{m}(-k, x)=\psi_{m}^{*}(+k, x) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{m}\left(k_{1},-x\right)=\psi_{m}^{*}\left(+k_{1}, x\right) \tag{38}
\end{equation*}
$$

Now referring to what we have said in chapter 7 we then conclude that the outcoming Wannier functions are real and symmetric. This last point can easily be verified, if we write the right hand side of equation 35 as two seperate summations over the positive and the negative values of k_{1}

$$
\begin{align*}
& a_{m}(x)=\left[\psi_{m}(k, k, x)+\sum \psi_{m}(k, k, x)\right. \tag{39}\\
& +k_{1} \\
& \binom{\text { positive values }}{\text { of } k_{1} \text { only }} \\
& \left.\begin{array}{l}
\text { negative values } \\
\text { of } k_{1} \text { only }
\end{array}\right)
\end{align*}
$$

The imacinary terms in the last expression cancel cach other, therefore we have

$$
a_{m}(x)=2 \sum_{+k_{1}} A_{m}\left(k_{1}, k_{2}\right) \operatorname{cosk}_{1}(x+0.5) \quad-1 \leq x \leq 0
$$

which is real and symnetric about $x=-0.5$. Actually for a crystal with inversiongl symetry, one can show that the outcoming wave functions satisfy either one of the symmetry requirements given by equations 7.2 .11 and 7.2 .15 . Then as we have shown in chapter 7 ,the associated Wannier functions are either symmetric or antisymmetric (the eround band and the subsequent odd numbered bands Wannier functions being always symmetrical).

Therefore the present considerations correspond to the Fannier functions of the ground and the subsequent odd numbered bands (i.e. $m=1,3,5,7$, etc.)

So fa: we have considered some fomulations for the amplitude of a Wamier function in a limited domain (i.e. $-1 \leq x \leq 0$, the first well) . However, we would lilie to calculate these functions for all x .

Now, using Bloch's theorem the wave function at subsequent wells, say at nth one is eiven by

$$
\begin{equation*}
\psi_{m}\left(k, x^{\prime}\right)=\exp (i 2 n k) \psi_{m}(k, x) \tag{41}
\end{equation*}
$$

where

$$
\begin{aligned}
-1 & \leq x \leq 0 \\
-1+2 n & \leq x^{\prime} \leq 2 n
\end{aligned} \quad \text { and } \quad x^{\prime}=x+2 n \quad, n=1,2,3 \text {, etc. }
$$

Now, through areuments similiar to the previous ones , we can show that the Wannier functions at the subsequent wells say a.t the $\mathrm{n}^{\text {th }}$ well is given by

$$
\begin{aligned}
a_{m}\left(x^{\prime}\right)= & 2 \sum_{m} A_{m}\left(k_{1}, k_{2}\right) \cos 2 n k \cos k_{1}(x+0.5)-B_{m}\left(k_{1}, k_{2}\right) \sin 2 n k \sin k_{1}(x+0.5) \\
& +k_{1} \\
& \left(m^{\text {th B.Z. })}\right.
\end{aligned}
$$

Where again, we have

$$
\begin{gathered}
-1 \leqslant x \leqslant 0 \\
-1+2 n \leqslant x^{\prime} \leqslant 2 n
\end{gathered} \quad \text { and } \quad x^{\prime}=x+2 n \quad, n=1,2,3 \text {, etc. }
$$

Wannier functions at the first and the subseouent hills;

The general considerations in obtaining the expressions (43 and 44)below, are similiar to those given in the previous sections, therefore we give the results of the formulations only.

The amplitude of the Wannier functions (for the odd numbered bands) within the first hill is Eiven by

$$
\begin{gather*}
a_{m}(x)=2 \sum_{+k_{2}} \operatorname{ReC}\left(k_{1}, k_{2}\right) \operatorname{cosk}_{2} x+\operatorname{ReD}\left(k_{1}, k_{2}\right) \operatorname{sink}_{2} x \tag{43}\\
\text { where } 0 \leq x \leq+1
\end{gather*}
$$

The amplitude of the Wannier functions for the subsequent hills (say for the $\mathrm{n}^{\text {th }}$ one) is given by

$$
\begin{array}{r}
a_{m}\left(x^{\prime}\right)=2 \sum_{+k_{2}} \cos (2 n k)\left(\operatorname{Rec}\left(k_{1}, k_{2}\right) \cos k_{2} x+\operatorname{ReD}\left(k_{1}, k_{2}\right) \sin k_{2} x\right) \\
-\sin (2 n k)\left(\operatorname{Inc}\left(k_{1}, k_{2}\right) \cos k_{2} x+\operatorname{ImD}\left(k_{1}, k_{2}\right) \operatorname{sink} k_{2}\right)
\end{array}
$$

where

$$
\begin{gathered}
0 \leq x \leq+1 \\
2 n \leq x^{\prime} \leq 2 n+1
\end{gathered}
$$

9.4.5 Wamerr functions for tre men mumirid daids ($m=2,4,6$, eic.)

Even numbered bands are represented by the antisymmetrical Wannier functions (see also the previous argunents).

In chapter 7 we have said that if the phases of the wave functions are such choosen that

$$
\begin{equation*}
\psi_{-k}(x)=-\psi_{k}^{*}(x) \tag{45}
\end{equation*}
$$

then the outcoming Wannier functions are antisymmetrio .
Now, if we take both coefficients, $A_{m}\left(k_{1}, k_{2}\right)$ and $B_{m}\left(k_{1}, k_{2}\right)$ in equation 11 , as positive valued over the half Brillouin zone containing $+k_{1}$ vectors and as negative valued over the other half Brillouin zone containing $-k_{1}$ vectors, then the wave functions constructed from these coefficients according to the combination - 1 satisfy the requirement 45 . Consequently, the ani.isym metric property of the outcoming Wannier functions can be seen more clearly, if we write down the full expression for them, and rork them out under the above assumptions, as we have done it below
$\begin{aligned} a_{m}(x) & =\sum_{m} A_{m}\left(k_{1}, k_{2}\right) \cos k_{1}(x+0.5)+i B_{m}\left(k_{1}, k_{2}\right) \sin k_{1}(x+0.5) \\ \left(m h_{B .2}^{t h}\right. & A_{m}\left(k_{1}, k_{2}\right) \cos \left(-k_{1}(x+0.5)\right)+i B_{m}\left(-k_{1}, k_{2}\right) \sin \left(-k_{1}(x+0.5)\right)\end{aligned}$

Now using the conditions imposed on the functions $A_{m+1}(k, k)$
and $B_{m+1}\left(k_{1}, k_{2}\right)$, the last equation simply yields

$$
\begin{align*}
& a_{m}(x)=2 i \quad B_{m}\left(k_{1}, k_{2}\right) \operatorname{sink}_{1}(x+0.5) \tag{47}\\
& +k_{1} \\
& \text { where } \quad-1 \leq x \leq 0
\end{align*}
$$

which is antisymmetrical with respect to x and around the origin $x=-0.5$

As it is apparent from equation 47 the liannier functions for the even numbered bands are all pure imaginary, though those for odd numbered bands were all real. However, this creates no proio lem ; we can either divide $a_{m+1}(x)$ by i in plotting or take the Weve function in concern such that it will be related to the previous one as follows

$$
\begin{equation*}
\psi^{\prime}(k, x)=+i \psi(k, x) \tag{48}
\end{equation*}
$$

Through argunents, similiar to those given previously, the Wannier functions at several other regions of the crystal are given as follows ;

At subsequent wells, say at the $n^{\text {th }}$ one, we have

$$
\begin{aligned}
a_{m}\left(x^{\prime}\right) & =2 i \sum \sum_{m}(k, k) \sin 2 n k \operatorname{cosk}_{1}(x+0.5)+B_{m}\left(k_{1}, k_{2}\right) \cos 2 n k \sin k_{1}(x+0.5) \\
& \left(\quad m_{\text {zone }}^{+k_{1}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& -1 \leq x \leq 0 \quad \text { and } \quad x^{i}=x+2 n \quad, n=1,2,3, \text { etc } . \\
& -1+2 n \leq x^{\prime} \leq 2 n \\
& m=2,4,6, \ldots
\end{aligned}
$$

At hills (including the first one), say at the $\mathrm{n}^{\text {th }}$ one we have

$$
\begin{aligned}
& a_{m}\left(x^{\prime}\right)=2 i \sum_{+k_{2}} \cos 2 n k\left(\operatorname{ImC} C_{m}\left(k_{1}, k_{2}\right) \cos k_{2} x+\operatorname{ImD} D_{m}\left(k_{1}, k_{2}\right) \operatorname{sink} x\right) \\
&+\sin 2 \min \left(\operatorname{ReC}_{m}\left(k_{1}, k_{2}\right) \cos k_{2} x+\operatorname{Re} D_{m}\left(k_{1}, k_{2}\right) \operatorname{sink} k_{2} x\right)
\end{aligned}
$$

where
50

$$
\begin{aligned}
u & \leq x \leq+i \\
2 n & \leq x^{\prime} \leq 2 n+1 \\
m & =2,4,6,8, \ldots
\end{aligned}
$$

9.4.6 THE CALCULATED WANIER FUTCTIONS FOR THE CNE DIMPNSTONAL PROBLEA

Below, as an illustration we give the calculated Hannier func tions related to the first and and the second bands of the one- dimensional problem.

| $\begin{array}{c}\text { Ground band } \\ \text { Wan. Func. }\end{array}$ | | | x |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Ground band

Wan. Func.\end{array}\right]\)| -1.0 | 0.67212 | 3.2 |
| :---: | :---: | :---: |

Table 2

x	Second band Vian. Func.	x	Second band Wan. Funce.
-1.0	-1.12329	1.6	-0.? 29116
-0.9	-1.03986	1.7	-0.22006
-0.8	-0.86333	1.8	-0.14306
-0.7	-0.62411	1.9	-0.07093
-0.6	-0.32602	2.0	-0.01260
-0.5	0.00000	2.1	0.02591
-0.4	0.32602	2.2	0.04248
-0.3	0.62411	2.3	0.03757
-0.2	0.86833	2.4	0.01343
-0.1	1.03936	2.5	-0.02011
0.0	1.12330	2.6	-0.04602
0.1	1.13593	2.7	-0.08052
0.2	1.10062	2.8	-0.10552
0.3	1.02144	2.9	-0.12514
0.4	0.90 .436	3.0	-0.12217
0.5	0.75731	3.1	-0.11317
0.6	0.53957	3.2	-0.09430
0.7	0.41106	3.3	-0.07623
0.8	0.23180	3.4	-0.05304
0.9	0.06120	3.5	-0.03184
1.0	-0.09246	3.6	-0.00808
1.1	-0.21987	3.7	0.02627
1.2	-0.31102	3.8	0.04931
1.3	-0.37112	3.9	0.06258
1.4	-0.3.4500	4.0	0.07337
1.5	-0.29116	1.1	0.07507
		4.2	0.07448
		4.3	0.06501
		4.4	0.05152

T'able 3

The B.Z. associated with the lowest tand is a simple cube therefore, following the arcunents given in section 10.2 it will be understood that the Wanier function for this band is separable. That is to say the three dimensional :Wanier function is a product of the three one dimensional Wannier functions a_{x}, a_{y}, and a_{z}, all equal to the one we have calculated in the previous sections.

The situation is illustrated in table 4
where we give the calculated values of the Wannier function (for $1 / 4$ th of the configuration space). Entries are given only to three figures though they were computed to greater ac curacy. We have cut off the tables, for the sake of brevity before we have gone to very large values of \underline{x}. The tables repeat synmetrically in the remaining four quadrants of the configuration space.

It is apparent that this function has Γ_{1} type of symmetry, that is to say it is unchanged under the following cubic group of operations which leave a cube invariant.

Class	Operation	Class	Operation	Class	Cneration
E	x y z		z x y		-z -y x
c_{4}^{2}	-x -y \quad z		$\begin{array}{llll}y & z & \\ \\ \text { c }\end{array}$		$\mathrm{z}-\mathrm{y}-\mathrm{x}$
	x-y -z		$\mathrm{z}-\mathrm{x}-\mathrm{y}$		- $\mathrm{y}-\mathrm{x}$ z
	-x y -z		-y -z \quad x		$-z \quad y-x$
	$\begin{array}{lll}-y & x & z\end{array}$	C_{3}	$\begin{array}{llll}-2 & -x & y \\ -y & & -1\end{array}$	JC_{2}	x-z--y
C_{4}	y $-\mathrm{x} \quad \mathrm{z}$		$\begin{array}{lll}-y & 3 \\ -z & x & -2\end{array}$		y x z
	$\begin{array}{ccc}x & -z & y \\ x & z & -y\end{array}$		$\begin{array}{rrr}-z & x & -y \\ y & -z & -x\end{array}$		$\begin{array}{llll}\text { a } & y & \mathrm{x} \\ \mathrm{x} & \mathrm{z} & \mathrm{y}\end{array}$
			$y-z-x$ $-x-y-z$		x z y
	z y -x	J	$\begin{array}{rrr}-x & -y & -z \\ x & y & -z\end{array}$		$-z-\mathrm{x}-\mathrm{y}$
	- ${ }^{\text {V }}$		$\begin{array}{rrrr}x & y & -z \\ -x & y & z\end{array}$		$-\mathrm{y}-\mathrm{x}-\mathrm{x}$
C_{2}	$\begin{array}{rrr}y & x & -z \\ z & -y & x\end{array}$	JC_{4}^{2}	$\begin{array}{rrr}-x & y & z \\ x & -y & z\end{array}$		$\left\lvert\, \begin{array}{rrr}-z & x & y \\ y & z & -x\end{array}\right.$
	$\begin{array}{rrrr}z & -y & x \\ -x & z & y\end{array}$		y $-\mathrm{x}-\mathrm{z}$		$\begin{array}{lll}y & z & -x \\ z & x & -y\end{array}$
	-y $-\mathrm{x}-\mathrm{z}$		$\begin{array}{llll}-y & x & -z \\ -x & z & -7\end{array}$		$y \sim z$
	$-z-y-x$		$\begin{array}{llll} & \\ -x & 2 & -y \\ -x & -z & y\end{array}$		$z-x \quad y$
	$-\mathrm{x}-2-\mathrm{y}$				-r y z $\quad \mathrm{x}$

1	x	-0.5	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	1.20	1.40	1.60
-0.5	0.805	0.795	0.722	0.580	0.435	0.316	0.221	0.154	0.100	0.061	0.017	-0.015	-0.037
-0.4	0.795	0.785	0.715	0.575	0.432	0.313	0.220	0.152	0.098	0.060	0.017	-0.015	-0.036
-0.2	0.772	0.715	0.650	0.523	0.393	0.284	0.200	0.138	0.089	0.054	0.016	-0.014	-0.033
0.0	0.580	0.575	0.523	0.120	0.314	0.228	0.160	0.112	0.072	0.044	0.013	-0.011	-0.027
0.2	0.435	0.432	0.393	0.314	0.236	0.173	0.120	0.083	0.054	0.033	0.009	-0.003	-0.020
0.4	0.316	0.313	0.284	0.228	0.173	0.125	0.089	0.062	0.041	0.025	0.007	-0.005	-0.015
0.6	0.220	0.220	0.200	0.160	0.120	0.089	0.063	0.042	0.026	0.018	0.005	-0.004	-0.010
0.8	0.154	0.152	0.138	0.112	0.083	0.062	0.042	0.028	0.018	0.012	0.003	-0.003	-0.007
1.0	0.100	0.098	0.089	0.072	0.054	0.041	0.026	0.019	0.012	0.008	0.002	-0.002	-0.005
1.2	0.061	0.060	0.054	0.044	0.033	0.025	0.018	0.012	0.008	0.005	0.001	-0.001	-0.003
1.4	0.017	0.017	0.015	0.013	0.009	0.07	0.005	0.003	0.002	0.001	$0.0004-0.0003$	-0.0003	
1.6	-0.015	-0.015	-0.014	-0.011	-0.008	-0.005	-0.004	-0.003	-0.002	-0.001	-0.0003	0.0003	0.0007
1.8	-0.037	-0.036	-0.033	-0.027	-0.020	-0.001	-0.010	-0.007	-0.005	-0.003	-0.0008	0.0007	0.002
2.0	-0.040	-0.039	-0.036	-0.029	-0.022	-0.002	-0.011	-0.008	-0.005	-0.003	-0.0009	0.0008	0.002

Table 4 The Eround band wannier function (three dimensional) over $z=-0.5$ plane. There are three such equivalent planes ($x=-0.5, y=-0.5$, and $z=-0.5$) Over which the function reads similiar values. The function over planes other than $z=-0.5$ can be obtained from the above entries by multiplyine them by a certain constant. The oscillations outside the region considered are rather small and vanish rapidly as one moves away. This is due to the fact that the band in concern corresponds to rather well bound electrons.

9.6 EXACT TMME DIMOIOMAL WhMIER FUMCTIONS FOR HIGHER EANDS

In this particular proble:n when one goes to second and higher energy bands the situation becomes much more complex since the Wannier functions associated pith these bands are no longer sepe rable. In other terms they may not be constructed from the one dimensional i"annier functions as done before.

In this case as will be show, one has to construct a composite wave function from several different bands and integrate them over(rather peculiar) B.Z.'s while paying a great deal of attention to certain zone boundaries and the choices of phases in order to end up with a Wannier function with the required char acteristics. The calculation could be carried out because we had available the one dimensional wave functions in analytical forms. Consider then the second band. Wie start with the consiruction of the composite wave function in three dimensions. However, since the constituent wave functions 11 and 12 of the one dimensional problem are defined within certain regions only, each time diffrrent combinations of them have to be considered in different regions of space. These regions as a consequence of the one dimensional analysis will be cubes of size $a / 2 \times a / 2 \times a / 2$ phere a is the lattice spacins in one of the principal directions.

Let us now start with the three dimensional wave function defined within the central cube, $-1 \leq x, y$, or $z \leq 0$

$$
\begin{aligned}
& \psi\left(k_{1}^{x}, k_{1}^{y}, k_{1}^{z}, x, y, z\right)= \\
& A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) \cos k_{1}^{x}(x+0.5) \cos k_{1}^{y}(y+0.5) \cos k_{1}^{z}(z+0.5) \\
& + \\
& +i A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) \operatorname{Cos} k_{1}^{x}(x+0.5) \sin k_{1}^{y}(y+0.5) \cos k_{1}^{z}(z+0.5) \\
& +i B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{x}\right) \sin k_{1}^{x}(x+0.5) \cos k_{1}^{y}(y+0.5) \cos k_{1}^{z}(z+0.5) \\
& -B\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) \sin k_{1}^{x}(x+0.5) \sin k_{1}^{y}(y+0.5) \cos k_{1}^{z}(z+0.5) \\
& + \\
& +i A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) \operatorname{Cos} k_{1}^{x}(x+0.5) \cos k_{1}^{y}(y+0.5) \sin k_{1}^{z}(z+0.5) \\
& -A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{x}\right) \cos k_{1}^{x}(x+0.5) \sin k_{1}^{y}(y+0.5) \sin k_{1}^{z}(z+0.5) \\
& -B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{z}\right) \sin k_{1}^{x}(x+0.5) \cos k_{1}^{y}(y+0.5) \sin k_{1}^{z}(z+0.5) \\
& -i B\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) \operatorname{Sin} k_{1}^{x}(x+0.5) \sin k_{1}^{y}(y+0.5) \sin k_{1}^{x}(z+0.5),
\end{aligned}
$$

Where k_{1}^{x}, k_{1}^{y}, and k_{1}^{z} stand for the square roots of the enercy eigenvalues along the k_{x}, k_{y}, and k_{z} directions respec tively. In the previous sections we have obtained (explicit) ex pressions for the functions $A\left(k_{1}^{x}\right), A\left(k_{1}^{y}\right), A\left(k_{1}^{z}\right), B\left(k_{1}^{\mathrm{x}}\right), B\left(k_{1}^{y}\right)$, and $E\left(k_{1}^{2}\right)$.

As will be made clear later on, the functional entries given in equation 51 are not necessarily confined to the same enerey band.

The space dependence of the wave function is given only by sinusojial functions where even and odd characters of these functions will be of considerable use in discussions of symmetries both in the configuration and the momentum spaces.

The equation 51 now has to be integrated (subject to certain conditions) over the whole of the second B.Z. shown in figure 6 . We have already discussed the possibility of car rying such an integration over k_{1}^{x}, k_{1}^{y}, and k_{1}^{2} instead k_{x}, k_{y}, and k_{z} (the wave vectors) corresponding values of which are roadily obtainoz timough tho dioporion rolations.

F A numerical integration of a lencthy function like this (though the function that we consider for the central cube is the simplest of all) over a peculiar zone like the one given below would be rather complicated and tiresome. To minimize the effort one has to make full use of the symmetry in the reciprocal space. Below, we will show hov this could be done; The B.Z. in concerm has been subdivided into regions $1,2,3, \ldots \ldots 24$ as shown in firure 6 in each of which the function 51 has different character.

Thouch the volurie of a minimal subdivision could reach half of the present one, we have made the present choice for computa tional reasons.

Fig. 6 The second B.Z. subdivided into regions 1,2,... 24 'lhe pyramide with number 1 is shown. Ihere are similiar pyramids (tough not in the same orieniations) at places numbered 2 to 24 . Those with numbers 16 to 24 are omitted in order not to complicato the figure.

An important point to be made here is the choice of the arbitrary phases for the wave function in concern. In our appro ach we will think them as inplicit in the coefficient functions $A\left(k_{1}^{\mathrm{X}}\right), A\left(k_{1}^{\mathrm{y}}\right), A\left(k_{1}^{\mathrm{Z}}\right), E\left(k_{1}^{\mathrm{X}}\right), E\left(k_{1}^{\mathrm{y}}\right)$, and $B\left(k_{1}^{\mathrm{Z}}\right)$. Therefore, the type of Wannier function that is going to be obtained will depend on the symetry properties of these coefficient functions. However, if we now stuck to the choice of the phases that we have made in the previous sections we end up with a particu lar Hannier function which in the one dimensional case we have found to be symnetric (and real) for the first and the corsequ ent odd numbered bands and antisymmetric (and pure imaginary) for the second and the subsequent even numbered bands, then to this choice the coefficient functions in different regions of the reciprocal space transform as shown in table 5 The trans formation of the total wave function is civen by a combination of these individual transformations.

zone	1	2	3	4	5	6	7	8
operation	$k_{x} k_{y} k_{z}$	$k_{x}-k_{y} k_{z}$	$k_{x}-k_{y}-k_{z}$	$k_{x} k_{y}-k_{z}$	$-k_{x} k_{y} k_{z}$	$-k_{x}-k_{y} k_{z}$	$-k_{x}-k_{y}-k_{z}$	$-k_{x} k_{y}-k_{z}$
$A\left(k_{1}^{x}\right)$	+1	+1	+1	+1	-1	-1	-1	-1
$A\left(k_{1}^{y}\right)$	+1	+1	+1	+1	+1	+1	+1	+1
$A\left(k_{1}^{z}\right)$	+1	+1	+1	+1	+1	+1	+1	+1
$B\left(k_{1}^{x}\right)$	+1	+1	+1	+1	-1	-1	-1	-1
$B\left(k_{1}^{y}\right)$	+1	+1	+1	+1	+1	+1	+1	+1
$B\left(k_{1}^{z}\right)$	+1	+1	+1	+1	+1	+1	+1	+1

Treble 5 'rhe tranaformation of the coefficient functions in the first eight regions of the reciprocal space. A negative number denotes that the function in concerm changes sign in the particu lar recion. The reason for considering only eicht of the regions will soon be clear.

We will now employ a short notation in order to avoid lenchty writings, i.e. the sinusoidal functions which represent the space dependence of the total wave function $\psi\left(k_{1}^{\mathrm{X}}, k_{1}^{\mathrm{y}}, k_{1}^{\mathrm{Z}}, \mathrm{x}, \mathrm{y}, \mathrm{z}\right)$ will be written as $\mathrm{C}\left(\mathrm{k}_{1}^{\mathrm{x}}, \mathrm{x}\right), \mathrm{C}\left(\mathrm{k}_{1}^{\mathrm{x}}, \mathrm{x}\right)$ etc. where the letters S or C refer to sine or cosine like functions respectively. To this notation the first term of equation 51 will now read

$$
A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) C\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) C\left(k_{1}^{z}, z\right)
$$

The sinusoidal functions of equation 51 which multiply the coefficient functions already described are even or odd functions of the wave vectors k_{x}, k_{y} and k_{z}. One could therefore in clude them in the tables similiar to 5 , however, the next thing we would like to vork out is not the transformation properties of the total wave function but those of the integral expressions arising from the integrations of it s constitituent parts over a part of the zone.

If we now consider the integral values of all eight terms of equation 51 in the first rezion only, we get i.e. for the first iserm

$$
+\sum \sum\left[\sum_{k_{x} k_{y} k_{x}} A\left(k_{1}^{2}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) C\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right) 52\right.
$$

where the triple sum runs over the values of the wave vectors confined to the volume of the square pyramid denoted as region one

$$
\begin{equation*}
+\pi / a \leq k_{x} \leq 2 \pi / a, 0 \leq k_{y} \leq+\pi / a, 0 \leq k_{z} \leq+\pi / a \tag{53}
\end{equation*}
$$

The integral expressions arising from similiar triple sums (which are functions of x, y, and z only) of each of the eight terms in equation 51 now transform as follows

Function	1	2	3	4
	$k_{x} k_{y} k_{z}$	$k_{x}-k_{y} k_{z}$	$k_{x}-k_{y}-k_{z}$	$k_{x} k_{y}-k_{z}$
$A\left(k_{1}^{2}\right) A\left(k_{1}^{y}\right) A\left(k_{2}^{2}\right) C\left(k_{1}^{*}, x\right) C\left(k_{1}^{4}, y\right) C\left(k_{1}^{2}, z\right)$	+1	$+1$	+1	+!
$A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) C\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right)$	+1	-1	-1	+1
$B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) \subset\left(k_{1}^{2}, 2\right)$	+1	+1	+1	+1
$B\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right)$	+1	-1	-1	+1
$A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B(k, z) C\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right)$	$+1$	+1	-1	--1
$A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) C\left(k_{1}^{1}, x\right) S\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right)$	$+1$	-1	$+1$	-1
$B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{x}\right) \leq\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) S\left(k_{1}^{x}, z\right)$	$+1$	+1	-1	-1
$\left.B k_{1}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right)$	+1	-1	+1	-1

Table 6

Function	5	6	7	8
	$-k_{x} k_{y} k_{z}$	-kx $-k_{y} k_{z}$	- $k_{x}-k_{y}-k_{z}$	$-k_{x} k_{y}-k_{z}$
$A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) C\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) C\left(k_{1}^{z}, z\right)$	-1	-1	-1	-1
$A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) C\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right)$	-1	+1	$+1$	-1
$B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) S\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right)$	+1	+1	+1	+1
$B\left(k_{1}^{x}\right) B\left(k_{1}^{4}\right) A\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right)$	+1	-1	-1	+1
$A\left(k_{1}^{x}\right) A\left(k_{1}^{y} y\right) B\left(k_{1}^{2}\right) C\left(k_{1}^{x}, x\right) C\left(k_{1}^{4}, y\right) S\left(k_{1}^{2}, z\right)$	-1	-1	$+1$	+1
$A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) C\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right)$	-1	+1	-1	+1
$B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right)$	+1	$+1$	-1	-1
$B\left(k_{1}^{x}\right) B\left(k_{1}^{4}\right) B\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) S\left(k_{1,2}^{2}\right)$	+1	-1	+1	-1

[^3]As a result of the tables 6 and 7 , the only nonvanis f' hing function (resulting from the terms in the third row of tables 6 and 7) of space coordinates x, y, and z is
$\alpha_{1}(x, y, z)=8 i \sum_{k_{x}} \sum_{k_{y}} \sum_{k_{z}\left(1^{+t} \operatorname{sub}\left(k_{1}, a\right)\right.} B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) \operatorname{Sin} k_{1}^{x}(x+0.5) \operatorname{Cos} k_{1}^{y}(y+0.5) \operatorname{Cos} k_{1}^{z}(z+0.5)$
So far we have intecrated equation 51 only over the first eight subzones. To find the results of integrations over the sixteen remaining subzones one has to follow a way similiar to what we have just done. However, here we will quote the results only.

For ninth to sixteenth subzones (resulting from the functions in the fifth row of the mevious tables).

$$
\alpha_{z}(x, y, z)=8 i \sum_{k_{z} k_{x} k_{y}\left(g^{+h} \text { Subzone }\right)} A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{x}\right) \cos k_{1}^{x}(x+0.5) \cos k_{1}^{y}(y+0.5) \sin k_{1}^{z}(z+0.5)
$$

For seventeenth to twentyfourth subzones (resulting from the functions in the second row of the same tables)

$$
\alpha_{y}(x, y, z)=8 i \sum_{k_{y}} \sum_{k_{x} k_{x}\left(17^{+h} \text { sutzone }\right)} A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) \cos k_{1}^{x}(x+0.5) \sin k_{1}^{y}(y+0.5) \cos k_{1}^{2}(z+0.5)
$$

The three dimensional "iannier function for the second band is now given by

$$
a_{2}(x, y, z)=\alpha_{1}(x, y, z)+\alpha_{2}(x, y, z)+\alpha_{3}(x, y, z)
$$

The first of these functions (on the right hand side) has the some symnetry properties as a p_{x} like atomic orbital, the se cond that of a p_{y} like atomic orbital and finally the third that of a y_{z} like atonic orbital under the point group.

Therefore the resulting damier function is an antisymetric function of the space coordinates (about the origin $x, y, z=-0.5$)

The preseni proilell is ine caicuiation of the constituent functions $\alpha_{1}(x, y, z), \alpha_{z}(x, y, z)$, and $\alpha_{3}(x, y, z)$ where to obtain each
one has to run a seperate triple sun over the values of the wave vectors confined to a different region. This is not desir able for computational reasons. However certain symmetry con siderations simplify the calculation and the final Wannier function may be obtained by a sincle triple summation over the values of the wave vectors k_{x}, k_{y}, and k_{z} which are all confined to the first recion only (the latter considerations involve transformations on the space coordinates which follow a permu tational order). The final Wannier function is now given by
 58

In the above equation the variation of space coorlinates x, y, and z is restricted to a single cube only, $-1 \leq x, y, o r z \leq 0$.

It took us around tro minutes on a modern computer to obtain several hundred values for the function within the cube defined (including all preliminary computations). In the following tables (i.e. see table 10) we quote the results only.

Let us now calculate the Wannier function in the next cube ($0 \leq x, y$, or $z \leq+1$) along a diagonal direction.

The total vave function is now given by (in the following equation we do not write the real and imaginary parts of the coofficient functions $C\left(k_{2}\right)$'s and $D\left(k_{2}\right)$'s seperately as we usually did in the one dimensional calculations since that would mean handing an expression eight times larger than the one given below)

$$
\begin{align*}
\psi_{2}\left(k_{2}^{x}, k_{2}^{y}, k_{2}^{z}, x, y, z\right)= & C\left(k_{2}^{x}\right) C\left(k_{2}^{y}\right) C\left(k_{2}^{z}\right) \operatorname{Cos} k_{2}^{x} x \operatorname{Cos} k k_{2}^{y} y \operatorname{Cos} k_{2}^{z} z \\
& C\left(k_{2}^{x}\right) D\left(k_{2}^{y}\right) C\left(k_{2}^{z}\right) \operatorname{Cos} k_{2}^{x} \times \operatorname{Sinh} k_{2}^{y} y \operatorname{Cosh} k_{2}^{z} z \\
& D\left(k_{2}^{x}\right) C\left(k_{2}^{y}\right) C\left(k_{2}^{z}\right) \operatorname{Sin} k_{2}^{x} x \operatorname{Cosh} k_{2}^{y} y \operatorname{Cosh} k_{2}^{z} z \\
& D\left(k_{2}^{x}\right) D\left(k_{2}^{y}\right) C\left(k_{2}^{z}\right) \operatorname{Sin} k_{2}^{x} x \operatorname{Sinh} k_{2}^{y} y \operatorname{Cosh} k_{2}^{z} z \\
& C\left(k_{2}^{x}\right) C\left(k_{2}^{y}\right) D\left(k_{2}^{z}\right) \operatorname{Cos} k_{2}^{x} \times \operatorname{Sinh} k_{2}^{y} y \operatorname{Sinh} k_{2}^{z} z \tag{59}\\
& C\left(k_{2}^{x}\right) D\left(k_{2}^{y}\right) D\left(k_{2}^{z}\right) \operatorname{Cos} k_{2}^{x} x \operatorname{Sinh} k_{2}^{y} y \operatorname{Sinh} k_{2}^{z} z \\
& D\left(k_{2}^{x}\right) C\left(k_{2}^{y}\right) D\left(k_{2}^{z}\right) \operatorname{Sin} k_{2}^{x} x \operatorname{Cosh} k_{2}^{y} y \operatorname{Sinh} k_{2}^{z} z \\
& D\left(k_{2}^{x}\right) D\left(k_{2}^{y}\right) D\left(k_{2}^{z}\right) \operatorname{Sin} k_{2}^{x} x \operatorname{Sinh} k_{2}^{y} y \operatorname{Sinh} k_{2}^{z} z
\end{align*}
$$

where k_{z}^{x}, k_{z}^{y}, and k_{2}^{z} stand for the square root of kinetic energy alone the principal directions x, y, and z.

In the present case the situation is more involved since the coefficient functions $C\left(k_{2}^{x}\right), C\left(k_{2}^{y}\right), C\left(k_{2}^{z}\right), D\left(k_{2}^{x}\right)$ $D\left(k_{2}^{y}\right)$, and $D\left(k_{2}^{z}\right)$ are complex quantities.

As usual, we start by working out the transformation properties of the coefficient functions mentioned above (which 9 are basically different than those given earlier). In the folloWinc tatio wo quoto the reculto

$z_{\text {one }}$	1	2	3	4	5	6	7	8
operation	$k_{x} k_{y} k_{z}$	$k_{x}-k_{y} k_{z}$	$k_{x}-k_{y}-k_{z}$	$k_{x} k_{y}-k_{z}$	$-k_{x} k_{y} k_{z}$	$-k_{x}-k_{y} k_{z}$	$-k_{x}-k_{y}-k_{z}$	$-k_{x} k_{y}-k_{z}$
$C\left(k_{z}^{*}\right)$	+1	+1	+1	+1	-1^{*}	-1^{*}	-1^{*}	-1^{*}
$C\left(k_{z}^{4}\right)$	+1	$+1^{*}$	$+1^{*}$	+1	+1	$+1^{*}$	$+1^{*}$	+1
$C\left(k_{z}^{z}\right)$	+1	+1	$+1^{*}$	$+1^{*}$	+1	+1	$+1^{*}$	$+1^{*}$
$D\left(k_{z}^{*}\right)$	+1	+1	+1	+1	$+1^{*}$	$+1^{*}$	$+1^{*}$	$+1^{*}$
$D\left(k_{z}^{4}\right)$	+1	-1^{*}	-1^{*}	+1	+1	-1^{*}	-1^{*}	+1
$D\left(k_{z}^{2}\right)$	+1	+1	-1^{*}	-1^{*}	+1	+1	-1^{*}	-1^{*}

Table 8 dihe transformations of the coefficient functions (complex) in the first eight rezions of the reciprocal space. A positive number means that the function remains unchanged under the operation in concern. A neentive or a positive number with a star means a complex conjugate operation accompanied with or without a change in the sign of the function respectively.

The functions arising from integrations of each of the eight tems of equation 59 in the fisst region of reciprocal space, now transform as shown in the tables given below (In the present case C and D are complex quantities and the transformations do also involve complex conjugate operations on different parts of a constitutent term. Further, we will employ a different representation than we did before, the indices 1,2 , and 3 associated with the functions given below refer to the principal directions x, y, and z respectively, also for shorter notation the total
4 sinusoidal parts of each of the eight constitutent furctions (space dependent) in equation 59 will now be represented by $\gamma_{1}, \gamma_{2}, \ldots \gamma_{8}$).

zone	1	2	3	4
Oporation	$k_{x} k_{4} k_{x}$	$k_{x}-k_{y} k_{z}$	$k_{x}-k_{y}-k_{z}$	$k_{x} k_{y}-k_{z}$
First term	$C_{1} C_{2} C_{3} \gamma_{1}$	$C_{1} C_{2}^{*} C_{3} \gamma_{1}$	$C_{1} C_{2}^{*} C_{3}^{*} \gamma_{1}$	$C_{1} C_{2} C_{3}^{*} \gamma_{1}$
$2^{\text {nd }}$	$C_{1} D_{2} C_{3} \gamma_{2}$	$C_{1} D_{2}^{*} C_{3} \gamma_{2}$	$C_{1} D_{2}^{*} C_{3}^{*} \gamma_{2}$	$C_{1} D_{2} C_{3}^{*} \gamma_{2}$
$3^{\text {rd }}$	$D_{1} C_{2} C_{3} \gamma_{3}$	$D_{1} C_{2}^{*} C_{3} \gamma_{3}$	$D_{1} C_{2}^{*} C_{3}^{*} \gamma_{3}$	$D_{1} C_{2} C_{3}^{*} \gamma_{3}$
$4^{\text {th }}$	$D_{1} D_{2} C_{3} \gamma_{4}$	$D_{1} D_{2}^{*} C_{3} \gamma_{4}$	$D_{1} D_{2}^{*} C_{3}^{*} \gamma_{4}$	$D_{1} D_{2} C_{3}^{*} \gamma_{4}$
$5^{\text {th }}$	$C_{1} C_{2} D_{3} \gamma_{5}$	$C_{1} C_{2}^{*} D_{3} \gamma_{5}$	$C_{1} C_{2}^{*} D_{3}^{*} \gamma_{5}$	$C_{1} C_{2} D_{3}^{*} \gamma_{5}$
$6^{\text {th }}$	$C_{1} D_{2} D_{3} \gamma_{6}$	$C_{1} D_{2}^{*} D_{3} \gamma_{6}$	$C_{1} D_{2}^{*} D_{3}^{*} \gamma_{6}$	$C_{1} D_{2} D_{3}^{*} \gamma_{6}$
$7^{\text {th }}$	$D_{1} C_{2} D_{3} \gamma_{7}$	$D_{1} C_{2}^{*} D_{3} \gamma_{7}$	$D_{1} C_{2}^{*} D_{3}^{*} \gamma_{7}$	$D_{1} C_{2} D_{3}^{*} \gamma_{7}$
8^{+h}	$D_{1} D_{2} D_{3} \gamma_{8}$	$D_{1} D_{2}^{*} D_{3} \gamma_{8}$	$D_{1} D_{2}^{*} D_{3}^{*} \gamma_{8}$	$D_{1} D_{2} D_{3}^{*} \gamma_{8}$

(a)

Zong	5	6	7	8
Oparation	$-k_{x} k_{y} k_{z}$	$-k_{x}-k_{y} k_{z}$	$-k_{x}-k_{y}-k_{z}$	$-k_{x} k_{y}-k_{z}$
First ferm	$-C_{1}^{*} C_{2} C_{3} \gamma_{1}$	$-c_{1}^{*} c_{2}^{*} c_{3} \gamma_{1}$	$-C_{1}^{*} C_{2}^{*} C_{3}^{*} \gamma_{1}$	$-c_{1}^{*} c_{2} c_{3}^{*} \gamma_{1}$
$2^{\text {nd }}$	$-C_{1}^{*} D_{2} C_{3} \gamma_{2}$	$-C_{1}^{*} D_{2}^{*} C_{3} \gamma_{2}$	$-C_{1}^{*} D_{2}^{*} C_{3}^{*} \gamma_{2}$	$-C_{1}^{*} D_{2} C_{3}^{*} \gamma_{2}$
$3{ }^{\text {rd }}$	$-D_{1}^{*} C_{2} C_{3} \gamma_{3}$	$-D_{1}^{*} C_{2}^{*} C_{3} \gamma_{3}$	$-D_{1}^{*} C_{2}^{*} C_{3}^{*} \gamma_{3}$	$-D_{1}^{*} C_{2} C_{3}^{*} \gamma_{3}$
$4^{\text {th }}$	$-D_{1}^{*} D_{2} C_{3} \gamma_{4}$	$-D_{1}^{*} D_{2}^{*} C_{3} \gamma_{4}$	$-D_{1}^{*} D_{2}^{*} C_{3}^{*} \gamma_{4}$	$-D_{1}^{*} O_{2} C_{3}^{*} \gamma_{4}$
$5^{\text {th }}$	$-C_{1}^{*} C_{2} D_{3} X_{5}^{\prime}$	$-C_{1}^{*} C_{2}^{*} O_{3} \gamma_{5}$	$-C_{1}^{*} C_{2}^{*}{ }^{*}{ }_{3}^{*} \gamma_{5}$	$-C_{1}^{*} c_{2} D_{3}^{*} \gamma_{5}$
6^{46}	$-C_{1}^{*} D_{2} O_{3} \gamma_{6}$	$-C_{1}^{*} D_{2}^{*} D_{3} \gamma_{6}$	$-{ }_{C}^{*}{ }_{1}^{*}{ }^{*}{ }_{2}{ }^{+} D_{3}^{*} \gamma_{6}$	${ }_{-C}^{*}{ }_{1}^{*} O_{2} D_{3}^{*} \gamma_{6}$
$7^{\text {th }}$	$-D_{1}^{*} C_{2} D_{3} \gamma_{7}$	$-D_{1}^{*} C_{2}^{*} D_{3} \gamma_{7}$	$-D_{1}^{*} C_{2}^{*} D_{3}^{*} \gamma_{7}$	$-D_{1}^{*} C_{2} O_{3}^{*} \gamma_{7}$
$8^{\text {th }}$	$-D_{1}^{*} D_{2} O_{3} \gamma_{8}$	$-D_{1}^{*} D_{2}^{* *} D_{3} \gamma_{8}$	$-0_{1}^{*} D_{2}^{*} D_{3}^{*} \gamma_{8}$	$-D_{1}^{*} \mathrm{O}_{2} \mathrm{D}_{3}^{*} \gamma_{8}$

(b)

Table 9 Transformation of the functions arising from the integra tions in the first region of the reciprocal space; a) in the first four zones b) fifth to eighth zones.

In the table given above we have 64 integral expressions in each of which there is an unknown function (of space coordinates x, y, and z) appearing always under the same integral sign. lrow further seperating the coefficient functions $C\left(k_{z}^{x}\right), C\left(k_{2}^{y}\right), C\left(k_{z}^{z}\right), D\left(k_{z}^{x}\right), D\left(k_{z}^{y}\right)$ and $D\left(k_{z}^{z}\right)$
into their real and imaginary parts as we did in the one dimensional calculations and denoting them as $\mathrm{PEC}_{1}, \mathrm{ROC}_{2}, \mathrm{REC}_{3}, \mathrm{IX} \mathrm{C}_{1}, \mathrm{IM} \mathrm{C}_{2}$, and $\mathrm{IN} \mathrm{C}_{3}$ INI, ${ }_{1}$, etc. where as usual the subscripts 1,2 , and 3 refer to the choice of these functions along the principal directions x, y, and z, and summing up the interral expressions (seperately for each of the eight rows) of tables $9 a$ and b, we find the following

$$
\begin{aligned}
& \text { 8i } \mathrm{HAC}_{1} \text { REC }_{2} \text { REC }_{3} \gamma_{1} \\
& 8 \mathrm{i}_{1} M C_{1} R E D_{2} R E C_{3} \gamma_{2} \\
& 8 \mathrm{~B} \mathrm{MDD}_{1} \operatorname{REC}_{2} \operatorname{REC}_{3} \gamma_{3} \\
& 8 i \text { IMO }_{1} \text { RED }_{2} \text { REC }_{3} \gamma_{4} \\
& 8 \mathrm{i} / \mathrm{MC}_{1} R E C_{2} \mathrm{RED}_{3} \gamma_{5} \\
& \text { SilMC, } \mathrm{RED}_{2} \mathrm{RED}_{3} \gamma_{6} \\
& 8 \mathrm{IMD}_{1} R E C_{2} R E D_{3} \gamma_{7} \\
& \text { BiIMD, RED } \mathrm{SED}_{3} \mathrm{X}_{8}
\end{aligned}
$$

Substituting the expressions for $\gamma_{1}, \gamma_{2} \ldots \gamma_{8}$ and after a number of operations the last equation can be given as the following product, which as before we will call $\alpha_{1}(x, y, z)$

The results $\left(\alpha_{2}\right.$ and $\left.\alpha_{3}\right)$ arising from the sums of the integral equations for the sixteen remaining subzones can be found through arguments similiar to those given in the previous section. To save space, below we quote the results only, the final liannier function is now given by

$$
\begin{aligned}
\left.a_{2}(x, y, z)=8 i\right\rangle[& {\left[\operatorname{MC}\left(k_{2}^{x}\right) \operatorname{Cos}\left(k_{1}^{x}\right) x+\operatorname{MD}\left(k_{2}^{x}\right) \operatorname{Sin}\left(k_{2}^{x}\right) x\right\}\left\{\operatorname{REC}\left(k_{2}^{y}\right) \operatorname{Cosh}\left(k_{2}^{y}\right) y\right.} \\
& \left.+\operatorname{RED}\left(k_{2}^{y}\right) \operatorname{Sinh}\left(k_{2}^{y}\right) y\right]\left\{\operatorname{REC}\left(k_{2}^{z}\right) \operatorname{Cosh}\left(k_{2}^{x}\right) z+\operatorname{RED}\left(k_{2}^{z}\right) \operatorname{Sinh}\left(k_{2}^{z}\right) z\right\} \\
& +\left\{\operatorname{MC}\left(k_{2}^{x}\right) \operatorname{Cos}\left(k_{2}^{x}\right) z+\operatorname{MD}\left(k_{2}^{x}\right) \operatorname{Sin}\left(k_{2}^{x}\right) z \operatorname{REC}\left(k_{2}^{y}\right) \operatorname{Cosh}\left(k_{2}^{y}\right) x\right. \\
& \left.+\operatorname{RED}\left(k_{2}^{y}\right) \operatorname{Sinh}\left(k_{2}^{y}\right) x\right]\left\{\operatorname{REC}\left(k_{2}^{z}\right) \operatorname{Cosh}\left(k_{2}^{z}\right) y+\operatorname{RED}\left(k_{2}^{z}\right) \operatorname{Sinh}\left(k_{2}^{z}\right) y\right\} \\
& +\left\{\operatorname{MC}\left(k_{2}^{x}\right) \operatorname{Cos}\left(k_{2}^{x}\right) y+\operatorname{IMD}\left(k_{2}^{x}\right) \operatorname{Sin}\left(k_{2}^{x}\right) y\right\}\left\{\operatorname{REC}\left(k_{2}^{y}\right) \operatorname{Cosh}\left(k_{2}^{y}\right) z\right. \\
& \left.+\operatorname{RED}\left(k_{2}^{y}\right) \operatorname{Sinh}\left(k_{2}^{y}\right) z\right\}\left\{\operatorname{REC}\left(k_{2}^{2}\right) \operatorname{Cosh}\left(k_{2}^{2}\right) x+\operatorname{RED}\left(k_{2}^{z}\right) \operatorname{Sinh}\left(k_{2}^{z}\right) x\right\}
\end{aligned}
$$

The variation of space coordinates x, y, and z in the above equation is restricted to the region $0 \leq x, y$, or $z \leq+1$. The integral (or the triple sum) is as usual over the first subzone only. It took us around three to four minutes on a modern computer to obtain several hundred values for the function within the region defined.

In the folloving table (11) we quote these results.
9.13 THE WANNIER FUHCHION AT LABGI DISTANCES FROM TIIE ORIGIN As mentioned earlier, to find Wannier functions for any cubic region (of interest) in coordinate space one first has to construct * the three dimersional wave function appropriate to the region chos en. Then the wave function at a recion displaced from the previous one by $\underline{R}_{n}=n_{x} \underline{a}_{x}+n_{y} \underline{a}_{y}+n_{z} \underline{a}_{z}$ is given by

$$
\exp \left(i k_{x} n_{x} a_{x}+i k_{y} n_{y} a_{y}+i k_{z} n_{z} a_{z}\right) \psi\left(k_{i}^{x}, k_{i}^{4}, k_{i}^{z}, x, y, z\right)
$$ where $i=1,2$. In this case the formulations as should be expected are more complicated than the previous cases, since in considering transformation properties of the total wave function in the reciprocal space one nust also take into account that of the exponen tial functions. However once this has been done then the values for the wannier function can be computed at as many cells as required by setting a variation (in the main program) on the integers n_{x}, n_{y}, and n_{z}.

As an illustration we give an analytical expression for the Wannier function at a cell displaced from the central one by

$$
\begin{equation*}
n_{x} \underline{a}_{x}+n_{y} \underline{a}_{y}+n_{z} \underline{a}_{z} \tag{64}
\end{equation*}
$$

The formulations and the tables that have been used in obtain ing this expression are rather lengthy to represent (and involves use of the previous tables associated with the tables representing the transformation properties of the exponential functions) there fore below we quote the results oniy.

$$
\begin{aligned}
& a_{2}\left(x, y, z, 2 n_{x}, 2 n_{y}, 2 n_{z}\right) \\
& =8 i \sum_{k_{x}} \sum \sum+A\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{z}\right) C\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) C\left(k_{1}^{z}, z\right) \operatorname{Sin} 2 n_{x} k_{x} \operatorname{Cos} 2 n_{y} k_{y} \operatorname{Cos} 2 n_{2} k_{z} \\
& -A\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) C\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) C\left(k_{1}^{z}, z\right) \sin 2 n_{x} k_{x} \sin 2 n_{y} k_{y} \cos 2 n_{2} k_{z} \\
& +B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) A\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right) \operatorname{Cos} 2 n_{x} k_{x} \operatorname{Cos}_{2} 2_{y} k_{y} C_{o s} 2_{n_{z}} k_{z}+\cdots \cdots+\cdots . \\
& -B\left(k_{1}^{x}\right) B\left(k_{1}^{4}\right) A\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) C\left(k_{1}^{2}, z\right) \operatorname{Cos} 2 n_{x} k_{x} \operatorname{Sin} 2 n_{y} k_{y} \operatorname{Cos} 2 n_{2} k_{2} \\
& -B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right) \operatorname{Sin} 2 n_{x} k_{x} \operatorname{Cos} 2 n y k_{y} \operatorname{Sin} 2 n_{2} k_{2} \\
& +A\left(k_{i}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{x}\right) C\left(k_{1}^{x}, x\right) \quad\left(k_{1}^{y}, y\right) S\left(k_{1}^{x}, z\right) \operatorname{Sin} 2 n_{x} k_{x} \operatorname{Sia} 2 n_{y} k_{y} \operatorname{Sin} 2 n_{x} k_{z} \\
& -B\left(k_{1}^{x}\right) A\left(k_{1}^{y}\right) B\left(k_{1}^{x}\right) S\left(k_{1}^{x}, x\right) C\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right) \operatorname{Cos} 2 n_{x} k_{x} \operatorname{Cos} 2 n_{y} k_{y} \operatorname{Sin} 2_{n_{2}} k_{z} \\
& -B\left(k_{1}^{x}\right) B\left(k_{1}^{y}\right) B\left(k_{1}^{2}\right) S\left(k_{1}^{x}, x\right) S\left(k_{1}^{y}, y\right) S\left(k_{1}^{2}, z\right) \operatorname{Cos} 2 n_{x} k_{x} \operatorname{Sin} 2 n_{y} k_{y} \operatorname{Sin} 2 n_{z} k_{z} \\
& \text { where } 2 n_{x}-1 \leqslant x \leqslant 2 n_{x}, 2 n_{y}-1 \leqslant y \leqslant 2 n_{y} \text {, and } 2 n_{z}-1 \leqslant z \leqslant 2 n_{z} \text {, }
\end{aligned}
$$ and the lattice parameters along three principal directions are

$$
a_{x}, a_{y}, a_{z}=2 \text {. The other two terms (that ve haven't showm in }
$$ the equation) are to be obtained through permutations over x, y, and \boldsymbol{z}. The equation locks rather leartoy due to the reason that we have derived it for the most gentral case. However in calculat ions assocjated with the cells alone the principal directions (i.e for $n_{x} \neq 0, n_{y}, n_{z}=0$ or $n_{y} \neq 0, n_{x}, n_{z}=0$ etc.) the rumber of terms that one has to deal with reduces at once from 24 to 6 . Further in calculating the Wannier function within the cells lying on $x y, x z$, and yz planes ($n_{x}, n_{y} \neq 0, n_{z}=0$ etc) one has to consider 12 tems only. In the final case of calculations along any of the body diaconals ($n_{x}, n_{y}, n_{z} \neq 0$) one has to consider all of the terms of the expression given above. For checking furposes only if one sets simultaneously n_{x}, n_{y}, and $n_{z}=0$, the expression given above becomes identical with equation 58 which is the expression for the Wannier function within the central cell.

Neverthless, once the values of the coefficient functions have been supplied as an input in the main progrem (as we have done)
then the Wannier function within any subsequent distant ceil and for as many points as required can be obtained by means of a sin gle program only.

However, in preparation of such a program extreme care should be spent since one (provided that the dispersion relations and the coefficient fuctions are provided explicitly as inputs) has to set simultaneous variations on a large number of paraneters (9 altogether)

	$y \quad x$	-0.500	-0.375	-0.250	-0.125	0.000
$z=-0.500$	-0.500	0.0000	0.3280	0.6236	0.8578	1.0078
	-0.375	0.3280	0.6450	0.9195	1.1234	1.2352
	-0.2.50	0.6236	0.9195	1.1647	1.3332	1.4054
	-0.125	0.8578	1.1234	1.3332	1.4639	1.4983
	0.000	1.0078	1.2352	1.4054	1.4983	1.4997
$z=-0.375$	-0.500	0.3280	0.6450	0.9195	1.1234	1.2352
	-0.375	0.6450	0.9514	1.2053	1.3799	1.4548
	-0.250	0.9195	1.2053	1.4314	1.5725	1.601
	-0.125	1.1234	1.3799	1.5725	1.6785	1.6819
	0.000	1.2352	1.4548	1.6101	1.6819	1.6567
$z=-0.250$	-0.500	0.6236	0.9195	1.1647	1.3332	1.4054
	-0.375	0.9195	1.2053	1.4314	1.5725	1.6101
	-0.250	1.1647	1.4314	1.6317	1.7422	1.7462
	-0.12\%	1.3332	1.5725	1.7422	1.3214	1.7956
-	0.000	1.4054	1.6101	1.7462	1.7956	1.7465
$z=-0.125$	-0.500	0.8578	1.1234	1.3332	1.4639	1.4983
	-0.375	1.1234	1.3749	1.5725	1.6785	1.6819
	-0.250	1.3332	1.5725	1.7422	1.8214	1.7956
	-0.125	1.4639	1.6785	1.8214	1.8740	1.8236
	0.000	1.4983	1.6319	1.7956	1.8236	1.7554
$z=0.000$	-0.500	1.0078	1.2352	1.4054	1.4983	1.4997
	-0.375	1.2352	1.4548	1.6101	1.6819	1.6567
	-0.250	1.4054	1.6101	1.7462	1.7956	1.7465
	-0.125	1.4983	1.6819	1.7956	1.8236	1.7554
	0.000	1.4997	1.6567	1.7465	1.7554	1.6724

Table 10 The second band W'anner function (in three dimensions)

Table 11 The second band wanner function (in three dimensions)

Fig. 7 "'annier function for second band, three dimensional case, for $z=-0.5$ (the plane through the origin)

The function in recion 1 (see the fig. above) trarsforms as follows,

	E	$m_{d^{\prime}}$	m_{d}	c_{2}
$a_{2}(x, y, z=-0.5)$	+1	+1	-1	-1

'herefore if only one-fourth of the elementary cell (i.e. region 1 of fig. 7) is filled then the function ${ }^{1}$ can be extended by using (suc cessively) it's symmetry or antisymmetry on reflection in the 45° lines m_{d} and m_{d}^{\prime}.

The function is identically zero on the line m_{d}.

1) The combination of the symetry operations m_{d} and m_{A} results in the operation C_{2} (or J, inversion with respect to the point ($-0.5,-0.5,-0.5$)), therefore, for this particular case the outcoinine function has inversion symnetry about the center of the plane considered.

THE APPROXINATE WHNIBR FUNCTIDIS FOR TIGHTLY EOURD ELICTRONS

10.1 "GETERAL

In chapter 4 we have calculated the free electron Wannier functions for several crystal types. In this chapter we shall study the Wamier functions for tightly bound electrons, as opposed to those for free electrons. As we shall see later on, the title " Approximate " for the Wannier functions comes from the fact that the tight binding method is only an approximation to the crystal problem, and further in an infinite series expansion for the Wannjer function (i.e. in practical calculations) one deals with a finite nu mber of terms only. However , in this chapter while studying certain properties of the Wannier functions (for mathematical purposes only) we have considered the whole of these infinite series.

In some text-boois the Wennier functions are said to be identical with the O.A.O. However, this is true in a particu$\%$ Iar case only, and unfortunately this restriction has often not been made clear. to the reader. We have also noticed that nothing much is said about the real nature of these functions in the more gencral case of tight bindjnce.
.. We have studied this problem in the sections $10.5,10.9,10.10$, and 10.11 and have shown that these Wannier functions are in general nore complicated functions than the $0 . \dot{A} \cdot 0$. 's, for example they have low er symmetriss etc.. Also, using certain fundamentals of the tight binding approch we were ableto extend the stuay of the wamier functions to more ceneral problems, such as degenerate levels, crystals containing different atomic species : presence of several atoms within a unit cell, etc..

In section 10.7 we have calculated (explicitly)the ground band Wannier function for a B.C.C. crystal, where we have taken into account the effects of the 26 nearest neighbours. 10.2 A REVIB OF the tight Binding approximarton

In this section we will review only certain princip les and the aspects of the tight binding method which are related to our main concern that is to say to the Wannier functions thenselves.

The tight binding method (or L.C.A.O. or Eloch's method) is one of the earliest methods in the history of the band theory and since then both the original method and itws extensions have been studied and used extensively. The fundamental idea of this method has somehow teen used in other methods which were deve loped later years.

The technique consists of constructing a crystal wave function from a linear combination of atomic functions each of which is centered on one of the constituent atoms of the solid. To keep the argument simpler , let us consider a moratomic crysial where only a single level say the ' $\mathrm{n}^{\text {th }}$, one contributes to the crystal wave function. Then, one has to start with the solutions to the atomic problem

$$
\left(\left(-h^{2} / 2 m\right) \nabla^{2}+v\left(\underline{r-R}_{-i}\right)\right) \phi_{n}\left(\underline{\underline{r}-R_{i}}\right)=E_{n}^{0} \phi_{n\left(\underline{r}-R_{i}\right)}
$$

where $\quad \mathrm{V}\left(\underline{\mathrm{r}}-\mathrm{K}_{\mathrm{i}}\right)$ is an atomic potential.
Then, as Iloch ${ }^{1}$ pointed out in 1928 the crystal wave function with the required translational symneiry can be constructed from a linear combinations of these atomic functions

$$
\psi_{\mathrm{n}}(\underline{\underline{k}}, \underline{\mathrm{r}})=(\mathbb{N})^{-1 / 2} \sum_{\hat{i}} \operatorname{Cn}\left(\underline{\underline{k}}, \underline{R}_{\mathrm{i}}\right) \phi_{\mathrm{n}}\left(\underline{\mathrm{r}}-\underline{R}_{\mathrm{i}}\right)
$$

where the coefficients $C_{n}\left(\underline{k}, \underline{R}_{i}\right)$'s are not arbitrary. In order to satisfy the Bloch's periodicity requirement one has to set $C_{n}\left(\underline{k}, \underline{R}_{i}\right)=\operatorname{cxr}\left(i \cdot k \cdot R_{i}\right)$, then

$$
\begin{align*}
& \psi_{n}\left(\underline{k}, \underline{r}+\underline{R}_{-m}\right)=(N)^{-1 / 2} \quad \sum_{i} \exp \left(\mathrm{i} \cdot \underline{k} \cdot \underline{R}_{\mathrm{i}}\right) \quad \phi_{\mathrm{n}}\left(\underline{\left.\underline{r}-\mathbb{R}_{i}+\mathbb{R}_{-m}\right)}\right. \\
& =(N)^{-1 / 2} \exp \left(\underline{i} \cdot \underline{k} \cdot \underline{R}_{m}\right) \sum_{i} \exp \left(\underline{i} \cdot \underline{k} \cdot\left(\underline{R}_{i}-R_{-m}\right) \phi_{n}\left(\underline{r}-\left(\underline{R}_{i}-R_{-m}\right)\right)\right. \\
& =\exp \left(\underline{\underline{i}} \cdot \underline{\underline{k}} \cdot \mathbb{R}_{-\mathrm{in}}\right) \psi_{\mathrm{n}}(\underline{\mathrm{k}}, \underline{\underline{r}})
\end{align*}
$$

For the present let us further assume that the overlap integrals between the $\phi_{n}\left(\underline{r}-\mathbb{R}_{i}\right)$'s are small enough to be neglected (that is what Bloch ${ }^{1}$ has assumed), hence provided that the A.O.'s are normalized

$$
\int_{a l l} \phi_{n}\left(\underline{r}-\underline{R}_{i}\right) \phi_{n}\left(\underline{r}-\underline{R}_{j}\right) d^{3} r=\delta_{i j}
$$

In this case the orthogonality of the crystal wave function can also be easily verified, ie.

$$
\int \psi_{n}\left(\underline{k^{\prime}}, \underline{r}\right) \psi_{n(\underline{k}, \underline{r})} d^{3} r=\delta\left(\underline{k}-\underline{k}^{3}\right)
$$

The next thing is to substitute this crystal wave function into the Schrodinger equation for the crystal and solve for the ener By level by a procedure similar to that used in perturbation theory.

Hence,

$$
\begin{aligned}
\left(-\left(\hbar^{2} / 2 m\right) \nabla^{2}+v(\underline{r})\right) \sum_{i} \exp \left(i \cdot \underline{k}_{-} \underline{R}_{i}\right) \phi_{n}\left(\underline{r}-\underline{R}_{i}\right)= \\
\quad E_{n}(\underline{k}) \sum_{i} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{i}\right) \phi_{n}\left(\underline{\left.\underline{r}-\underline{R}_{i}\right)}\right.
\end{aligned}
$$

where $V(\underline{r})$ is the crystal potential obtained by the superpositon of the atomic potentials, ie.

$$
V(\underline{r})=\sum_{i} v\left(\underline{r}-\underline{R}_{i}\right)
$$

Now, multiplying the equation 10.6 by $\oint_{n\left(\underline{r}-\underline{R}_{j}\right) \text {, and integral- }}^{*}$ ting over the space coordinates

$$
\begin{aligned}
& \sum_{i} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{i}\right) \int \phi_{n}^{*}\left(\underline{r}-\underline{R}_{j}\right)\left(-\left(\tilde{n}^{2} / 2 m\right) \nabla^{2}+V(\underline{r})\right) \phi_{n}\left(\underline{r}-\underline{R}_{i}\right) d^{3} r \\
&=E_{n}(\underline{k}) \sum_{i} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{-i}\right) \delta_{i j} \\
&=E_{n}(\underline{k}) \exp \left(i \cdot \underline{k} \cdot R_{1}\right)
\end{aligned}
$$

Now, using equation 10.1
$-\left(\hbar^{2} / 2 m\right) \nabla^{2} \phi_{n}\left(\underline{\underline{r}}-\underline{R}_{\underline{i}}\right)=\left(E_{n}^{0}(\underline{k})-v\left(\underline{x}-\underline{R}_{i}\right)\right) \phi_{n}\left(\underline{x}-\underline{R}_{i}\right)$
Substituting this into the equation 10.0 and rearranging the terms one simply gets
and using the following definitions

$$
\begin{aligned}
& E_{n}^{\prime}(\underline{k})=E_{n}(\underline{k})-\mathbb{E}_{n}^{0}(\underline{k}) \quad, \quad V^{\prime}(\underline{r})=V(\underline{r})-v\left(\underline{r}-\underline{R}_{i}\right) \quad 10.11 \\
& \text { and } \quad \alpha_{n}\left(\underline{R}_{i}-\underline{R}_{j}\right)=\int \phi_{n}\left(\underline{r}-\underline{R}_{j}\right) v^{\prime}(\underline{r}) \phi_{n}\left(\underline{r}-\mathbb{R}_{i}\right) d^{3} r \quad 10.12
\end{aligned}
$$

this simplifies to,

$$
\begin{align*}
E_{n}^{\prime}(\underline{k}) & =\sum_{i} \alpha_{n}\left(\underline{R}_{i}-\underline{R}_{j}\right) \exp \left(i \cdot \underline{k}\left(\underline{R}_{i}-\underline{R}_{j}\right)\right) \\
& \left.=\alpha_{n}(0)+\sum_{i_{i}^{\prime} j} \alpha_{n}\left(\underline{R}_{i}-\underline{R}_{j}\right) \exp \left(i \cdot \underline{k}^{(}-\underline{R}_{i}-\underline{R}_{j}\right)\right)
\end{align*}
$$

In the last equation $E_{n}^{\prime}(\underline{k})$ plays the role of the perturbed ener εy (the shift fron the original atomic level) and $V^{\prime}(\underline{\underline{r}})$ that of the perturbing potential. If the atomic functions overlap only slighty, then $\alpha_{n}\left(\underline{R}_{i}-\underline{R}_{j}\right)$ is appreciable only when $\underline{R}_{i} \cong \underline{R}_{j}$. Hence the equation 5.13 reduces to

$$
E_{n}^{\prime}(\underline{k})=\alpha_{n}(0)
$$

The original ticht bindine method $(\operatorname{section} 10.2)$ is applicable only to a limited number of problems, where the atomic functions overlap only sligntly. However, in the usual crystal problem the atomic functions indeed extend considerably further than the interatomic separations. To remedy this situation the modifications on the tight, binding method have proceeded in two ways;
i) Inclusjon of the overlap and the interaction integrals between more distant neighbours,
ii) or equivalently to employ a different set of functions, which are like the atomic functions contered about the lattice sites but, constructed in such a way that the function centered about one lattice site is rigorously orthogonal to all those centered at the other sites.

For the present we shall start with the first of the above categories. Now, defining the overlap integral (between the two atomic functions) by

$$
S_{n n}\left(\underline{R}_{-i}-\underline{R}_{j}\right)=\int \phi_{n}\left(\underline{r}-\underline{R}_{i}\right) \phi_{n}\left(\underline{r}-\underline{R}_{j}\right) d^{3} r \quad 10.15
$$

the equation 10.13 is then simply given by

$$
\begin{align*}
& E_{n}^{\prime}(\underline{k})=E_{n}(\underline{k})-E_{n}^{0}(\underline{k})=\frac{\sum_{i} \alpha_{n\left(\underline{R}_{i}-R_{j}\right)} \exp \left(i \cdot \underline{\underline{k}}\left(\underline{R}_{i}-\underline{R}_{j}\right)\right)}{\int \psi_{n(\underline{k}, \underline{r})}^{*} \psi_{n(\underline{k}, \underline{r})} d^{3} r} \\
& =\frac{\left.\sum_{i} \alpha_{n\left(\underline{R}_{i}-\mathbb{R}_{j}\right.}\right) \exp \left(i \cdot \underline{k}\left(\underline{R}_{i}-\underline{R}_{j}\right)\right)}{\sum_{i} S_{n n}\left(\underline{R}_{i}-\underline{R}_{j}\right) \exp \left(i \cdot \underline{k}\left(\underline{R}_{i}-\underline{R}_{j}\right)\right)} \\
& \text { or } \\
& E_{n}^{\prime}(k)=E_{n}^{0}(k)+\frac{\alpha_{n}(0)+\sum_{i \neq j} \alpha_{n}\left(R_{i}-R_{j}\right) \exp \left(i \cdot \underline{k_{-}}\left(R_{-}-R_{j}\right)\right)}{1+\sum_{i \neq j} S_{n n}\left(R_{-i}-R_{j}\right) \exp \left(i \cdot \underline{k}\left(R_{-i}-R_{j}\right)\right)} \\
& 10.18
\end{align*}
$$

The iust equation is true recardless the normalization of the crys tal wave function. In general one has to extend the above series over a few nearest neighbours. Sometimes by adjusting the lattice parameters calculations carried out for a crystal may be used for a completely different type of crystal. So far there have been numerous applications involving equation 10.18. For instance, J.C.Slater and G.F. Koster, ${ }^{2}$ T.A. Hoffman and A. Konya ${ }^{3}$, C. A. Coulson and R.Taylor, and E.P. Wohlfarth ${ }^{5}$, etc.

The interaction intecrals given in the equation 10.18 are generally three center interrals, as one can not in practise so easily write $V^{\prime}(\underline{r})$ as a single anolytical function of \underline{r} but puts it in a form such as a sum of identical functiors, one in each unit cell, i.e. $V^{\prime}(\underline{r})=\sum_{1} v\left(\underline{r}-\mathbb{R}_{1}\right)$.

2 J.l.slater and G.F.Koster, Phys. Rev. 94, 1498, (1954)
3 T.A.Hoffmann and A.Konya , J. Chem. Yhys. 16, 1172 (1948)
4 C.A.Coulson and ReTaylor , Froc. Fro. Soc. A65, 815, (1252)
5
E.P.Wohlfarth , Froc. Mys. Soc. 664, 889 , (1953)

In principle these can be reduced to two centre integrals;' however this is a difficult and a lenctty process. In many of the applications three centre integrals have been neglected. However as Wohlfarth ${ }^{5}$ (1953) has shown, the neglect of the three centre inteprals is not always justifiable.

Many of the two centre inteerals can be obtained from the tables of Fulliken ${ }^{6}$ et al (1949). Also a table for the two centre interaction integrals (for cubic lattices) has beer given by Slater and Koster ${ }^{2}$. An extension of these calculations to hexagonal structures has been given by Miasek ${ }^{7}$ (1957).

10.4 ABOU' THE OVERLAP INTEGRALS

The quantities that we have defined as (too centre) over lap integrals will be of considerable importance to us both in the definition of the Wamier functions and in the explicit calculations that we have eiven in section 10.7 .

In general the overlap integral S for a pair of overlapping atomic functions $\phi \mathrm{a}$ and $\phi \mathrm{b}$ (where they refer to the atoms a and b) with an internuclear separation R is defined by

$$
s\left(\phi_{a}, \phi_{b} ; R\right)=\int \phi_{a}^{*} \phi_{b} d z
$$

\because There are creat advantages of using spherical polar coordinates in the problem. In this case every central field atomic wave function is of the form

$$
\phi_{a}^{n, 1, m}\left(r_{n}, \theta_{a}, \phi_{a}\right)=R_{n l}\left(r_{n}\right) Y_{1}, m_{1}\left(\theta_{2}, \phi_{2}\right)
$$

6 R.S.Mulliken, C.A.Rieke, D.Orloff and H.Orloff, J. Chem. Physics

$$
17,1248 \text { (1949) }
$$

Now, using the polar coordinates for both atomic wave functions the position of a point P common to both atoms can be represented as follows
 the plane in which r_{a} and r_{b} lies is given by $\phi=\phi a=\phi b$.

In the central field problem the normalized angular wave functions (of s, p, and d types, etc.) are simply given by

$$
\begin{gather*}
\mathrm{s} ; \quad 1=0, m=0, \quad Y_{00}\left(\theta_{a}, \phi_{a}\right)=(1 / 4 \pi)^{1 / 2} 10.21 \\
p ; \quad 1=1, m=0, \quad Y_{1,0}\left(\theta_{a}, \phi_{a}\right)=(3 / 4 \pi)^{1 / 2} \cos \theta_{a} 10.22 \\
m= \pm 1, \quad Y_{1, \pm 1}\left(\theta_{a}, \phi_{a}\right)=(3 / 4 \pi)^{1 / 2} \operatorname{Sin} \theta_{a}\left(\sin \phi_{a} \text { or } \cos \phi_{a}\right) \\
d ; \quad I=2, \quad m=0, \quad \text { etc. } \ldots
\end{gather*}
$$

The radial wave functions however in the presence of a single electron only take the form

$$
n-1
$$

$$
R n l\left(r_{a}\right)=\sum_{k=1}^{C} n l k r_{a}^{k} \exp \left(-z r_{a} / n a_{n}\right)
$$

In general for more electrons fnl 's must be of self consistent type (i.e. see Hartree-Fock method) however they can not be so easily given in analytical forms since the results are often expressed. in the form of numerical tables. Slater ${ }^{8}$ has approximated these self consistent field type radial equations by a finite se ries

8 J.C. Slater, Pins. Rev. 42, 33(1932)

$$
R n l\left(r_{a}\right)=\sum_{k=1}^{n-1} a_{k} \quad r^{k} \exp \left(-\mu_{k} \cdot r_{a} / a_{h}\right)
$$

where d_{k} and μ_{k} depend on $n, 1$, and the atonic and the electronic particulars of the system. A better representation is ob: tained if a particular term (the one with $k=n-1$) is replaced by a sum of two or three exponential terms as shown below

$$
r_{n l}\left(r_{a}\right)=\sum_{k=1}^{n-2} d_{k} r^{k} \exp \left(-\mu k r_{a} / a_{h}\right)+r^{n-1} \sum_{i} d_{i} \exp \left(-\mu_{i} r_{a} / a_{h}\right)
$$

For $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p electrons horse ${ }^{9}$ et al and Duncanson and Coulson ${ }^{10}$ have also given improved equations to approximate the functions $R_{n l}\left(r_{a}\right)$'s. However, being the simplest case the well known Slater ${ }^{11}$ h.O.'s are obtained by approximating these series by a single term

$$
R_{n I}\left(r_{a}\right)=N_{n l} r^{n-1-\delta} \exp \left(-\mu_{r} / a_{n}\right)
$$

where

$$
\mu_{n s}=\mu_{n p}=Z_{a, n} / n-\delta
$$

and

$$
1 / N_{n I}^{2}=\int_{0}^{\infty} r^{2 n-2 \delta} \exp \left(-2 \mu_{n I} r_{a} / a_{h}\right) d \tau
$$

where the values for δ has to be chosen as follows

$$
\begin{align*}
& \delta=0 \text { for } n=1,2,3 \\
& \delta=0.3 \text { for } 4 s, 4 p \text { electrons } \\
& \delta=1 \text { for } 5 s, 5 p \text { electrons }
\end{align*}
$$

Since the Slater A.O.'s have no rodes the A.O.'s with different ' n ' s are not orthogonal. However it is possible to orthogo -
9 Morse, Young, and Haurritz, Mys. Rev. 48, 948 (1935)
10 Fite. Duncanson and C.A. Coulson, Proc. Roy. Soc. Edingburgh 624,37(1944)
11 J.C. Slater, Mhys. Rev. 36, 57 (1930)
nalize then (this also means the introduction of the missing nodes) where this time the single term approximation becomes converted into a similiar series given by the equation 10.25. However in quite a number of cases it has been observed that the orthoconalization has little effect on the calculated values of the overlap integrals.

When we come next to the evaluation of the overlap integ rals, the computations are often carried out by transforming from the polar coordinates to the spheroidal ones.

$$
\text { i.e. } \quad\left\{=\left(r_{a}+r_{b}\right) / R \quad \eta=\left(r_{a}-r_{b}\right) / R \quad \phi=\phi a=\phi b \quad 10.31\right.
$$

Extensive tables and explicit expressions for the overlap
intecral S between the two atomic orbitals of either sort, i.e.
\because Slater or llon-Slater (usually the latter can be obtained from a linear combination of the first) have been given by R.S. fulliken et al. Felow, as an illustration we give one such explicit expres sion (taken from these talles) for the overlap integral of $\phi_{1 . s}$ atomic orbitals, which we will also use in section 10.7

$$
\begin{gathered}
S_{n n}\left(\phi_{1 s}, \phi_{1 s}, R\right)=(6)^{-1} p^{3}\left(3 A_{2}-A_{C}\right) \\
\text { where } p_{k}=(1 / 2)\left(\mu_{a}+\mu_{b}\right) R / a_{h} \quad \text { and, } \\
A_{k}(p)=\int_{1}^{\infty}\left\{^ { k } \operatorname { e x p } \left(-p\{) d \xi=\exp (-p) \sum_{\mu=1}^{k+1}(k!/(p(k-\mu+1)!)\right.\right.
\end{gathered}
$$

and μ 's are to be obtained from the Slater's equations (i.e. eqn. 10.28) .

10.5 THE WANIER FUYCTION FOR A Monatomic CRYGTAL

At the very beginning of this chapter we had assumed that the atomic functions had zero overlap integrals. This assumption is true when the interatomic spacings are large. However when the atoms are brought closer the atomic orbitals start to overlap and the crytall wave function given by equation 10.2 is no longer normalized but,

$$
\begin{align*}
\int \psi_{n}^{*}(\underline{k}, \underline{r}) \psi_{n}(\underline{k}, \underline{r}) d^{3} r & =\sum_{\underline{R}_{1}} \operatorname{Snn}\left(\mathbb{R}_{1}\right) \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{-1}\right) & 10.33 \\
& =1+\sum_{\underline{R}_{1} \neq 0} \operatorname{Snn}\left(\underline{R}_{1}\right) \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{1}\right) & 10.33
\end{align*}
$$

Hence in order to normalize the wave function in concern one has to multiply it by

$$
\left(1+\sum_{\mathbb{R}_{-1} \neq 0} \operatorname{Snn}\left(\underline{R}_{-1}\right) \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{-1}\right)\right)^{-1 / 2}
$$

$$
10.34
$$

The normalized wave function is then given by

$$
\psi_{n(\underline{k}, \underline{r})}=(I T)^{-1 / 2} \frac{\sum_{j} \exp \left(i \cdot \underline{k} \cdot \mathbb{R}_{j}\right) \oint_{n\left(\underline{r}-R_{j}\right)}}{\left(1+\sum_{1 \neq 0} \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{-1}\right) S_{n n\left(\underline{R}_{1}\right)}\right)^{1 / 2}}
$$

As we have seen in Chapter 2 the Pannier function can be obtain ed from this crystal wave function by the following transformation,

$$
a_{n}(r-R)=(N)^{-1} \sum_{\underline{k}} \frac{\sum_{j} \exp \left(i \cdot \underline{k} \cdot\left(\underline{R}_{-j}-R_{i}\right)\right) \phi_{n\left(\underline{r}-\mathbb{R}_{j}\right)}}{\left(1+\sum_{1 \neq 0} \exp \left(-i \cdot \underline{k} \cdot R_{1}\right) S_{n n}\left(\underline{R}_{1}\right)\right)^{1 / 2}}
$$

$$
n^{+h} \cdot B . Z
$$

$$
10.36
$$

However, making use of the following binomial expansion with remain = der
$(1+a)^{\alpha}=1+\alpha a+\frac{\alpha(\alpha-1)}{2!} a^{2}+\ldots \ldots \cdot \frac{\alpha(\alpha-1) \ldots(\alpha-(r-1))}{r!} a^{r}+\underline{\ldots} \cdot r$ 10.37
we can write the following

$$
\begin{aligned}
& \left(1+\sum_{1 \neq 0} \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{1}\right) \operatorname{snn}\left(\underline{R}_{1}\right)\right)^{-1 / 2}=1-1 / 2 \sum_{1} \exp \left(-i \cdot \underline{k} \cdot \underline{R}_{1}\right) \operatorname{Snn}\left(\underline{R}_{1}\right) \\
& +3 / 8 \cdot \sum_{1, n} \exp \left(-i \cdot \underline{k} \cdot\left(\underline{R}_{1}-R_{n}\right)\right) \operatorname{Snn}\left(\underline{R}_{-1}\right) \operatorname{Snn}\left(R_{-n}\right) \\
& -15 / 48 \\
& 10.38
\end{aligned}
$$

where one considers a sufficient number of terms for the accuracy remuired. Also, if .

$$
\left|\sum_{1} \exp \left(-i \cdot \underline{k_{-}} \cdot \mathbb{R}_{-1}\right) \operatorname{Snn}({\underset{-1}{1}})\right|<1
$$

then this series is absolutely convergent, and the expression 10.36 carl be written as

$$
\begin{align*}
& k, j \quad k, j, l \\
& +3 / 8 \sum \exp \left(i \cdot \underline{E} \cdot\left(\underline{R}_{j}-\mathbb{R}_{-1}+\underline{R}_{-n}\right)\right) \phi_{n}\left(\underline{r}-\underline{R}_{j}\right) \operatorname{Snn}\left(\underline{R}_{-1}\right) \operatorname{Snn}\left(\mathbb{R}_{-n}\right) \\
& k, j, 1, n \\
& -15 / 43 \\
& G(\underline{r})
\end{align*}
$$

where for simplicity we have set $\underline{R}_{i}=C$.
\%orking out the terms on the right hand side of the last equa tion one by one one obtains the following expression

$$
\begin{aligned}
\left.a_{n}(\underline{r})\right)= & \phi_{n}(\underline{r})-1 / 2 \sum_{j} \phi_{n}\left(\underline{r}_{-R_{j}}\right) \operatorname{Snn}\left(\underline{R}_{j}\right)+3 / 8 \sum_{j, n} \phi_{n}\left(\underline{r}-R_{j}\right) \operatorname{Snn}\left(\underline{R}_{j}+\underline{R}_{n}\right) \operatorname{Snn}\left(\underline{R}_{n}\right) \\
& -15 / 48 \ldots \ldots \ldots \ldots+\ldots \ldots \ldots \ldots+G(\underline{r})
\end{aligned}
$$

which expressea the Wannier function in terms of the atomic orbitale. The expression on the right is identical with that of a Landshoff ${ }^{12}$ Lowdin ${ }^{13}$ function (or an 0.A.0.) in principle (in other words for a monatomic crystal where the atomic levels dor't interact, the Hannier function ${ }^{14}$ can be approximated by an O.A.O.) however, Löwdin ${ }^{13}$ for examp le uses a different representation by employing matrices

$$
\begin{aligned}
\varphi_{i}= & \sum_{i} \phi_{i}\left(s^{-1 / y_{2}^{-}}\right)_{i j} \\
& =\phi_{i}-1 / 2 \sum_{j} \phi_{j} S_{i j}+3 / 8 \sum_{j, m} \phi_{j} s_{j m} S_{m_{i}}-\ldots \ldots .10 .42 \\
& \text { Altoueh these two equations are exactly the same the }
\end{aligned}
$$ difference comes in their handliner, i.e. in equation 5.52 the second summation on the right will be obtained by the matrix multiplication

$$
\sum_{j m} \phi_{j} S_{j m} S_{m i}
$$

While in the altermative form that we have used (where for simplicity we have also set $\mathrm{R}_{-1}=0$)

$$
\sum_{j, n} \phi_{n}\left(\underline{r}_{\underline{-}}^{-R_{j}}\right) \operatorname{Snn}\left(\underline{R}_{j}+\underline{R}_{-n}\right) \operatorname{Snn}\left(\underline{R}_{n}\right)
$$

the same sum will be obtained by a simple permutation over the vectors ${\underset{-}{r}}_{j}$, and R_{n}. This altermative approach (if the overlap integ rals are small) will enable us to pick up the most significant terms in the whole of the series without ever bothering with the constr ${ }^{-}$ uction of the matrices, etc..

Our next concern will be the symmetry properties of these Wannier functions. Symetry properties of the O.A.O.'s have been worked out by Slater and Koster ${ }^{2}$. In the next section we will outline their approach.

12 R. Landshoff , Z. Fhysik 102, 201 (1936)
13 P.O. Lowdin , J. Chem. Phys. 18, 365 (1950)
14 In case of larce interatonic separations $\operatorname{Snn}(\mathrm{R})$'s are all zero and the Wannier function is given by a single atonic orbital (see eqn.0.41).

10.6 The syastry fropraties of que vanien fonction

Assume that under some operation 0 of the group of the crystal the atcmic orbitals are transformed as follows

$$
0 \phi_{n}=\sum_{m} \phi_{m} \Gamma(0)_{\mathrm{mn}}
$$

$$
10.45
$$

where $\Gamma(0)_{m m}^{m}$ is a unitary matrix, i.e. $\Gamma(0)_{m n}^{-1}=\Gamma(0)_{n m}^{*} \quad$. The present task is to show that the Wannier functions obtained in the previous section do also transform in the same way, or in other terms we must show that the equation given below is true

$$
O Y_{n}=\sum_{m} \varphi_{m} \Gamma(0)_{\mathrm{m}}
$$

But φ_{n} is eiven by (see equation 5.52)

$$
\varphi_{\mathrm{n}}=\sum_{\mathrm{n}} \phi_{\mathrm{m}}\left(s^{-\frac{1}{2}}\right)_{\mathrm{mn}}
$$

whele the overlap matrix S is defined by the elements

$$
\operatorname{Smn}=\int \phi_{m} \phi_{\mathrm{nd}} \mathrm{~d} \tau
$$

Now, applying the same operator 0 to equation 10.47

$$
0 \varphi_{\mathrm{n}}=\sum_{\mathrm{m}} 0 \phi_{\mathrm{m}}\left(\mathrm{~S}^{-\frac{1}{2}}\right) \mathrm{mn}=\sum_{1} \sum_{\mathrm{m}} \phi_{1} \Gamma(0) \operatorname{lm}_{\mathrm{m}}\left(\mathrm{~S}^{-\frac{1}{2}}\right) \mathrm{mn}
$$

Now, using equations 10.46 and 10.49,

Substituting equation 10.47 to the right hand side of the last equition

$$
\left.\sum_{1} \sum_{m} \phi_{1} \Gamma(0)_{1 m}\left(s^{-\frac{1}{2}}\right)_{m n}=\sum_{1} \sum_{m} \phi_{l}\left(s^{-\frac{1}{2}}\right) 1 m \quad(0)\right)_{m n}
$$

This last equation reauces to the following fom(where 1 is ar bitrary)

$$
\sum_{\mathrm{m}} \Gamma(0) \operatorname{lm}\left(\mathrm{S}^{-\frac{1}{2}}\right)_{\mathrm{mn}}=\sum_{\mathrm{m}}\left(\mathrm{~S}^{-\frac{1}{2}}\right) \operatorname{lm} \Gamma(0)_{\mathrm{mn}} \quad .10 .52
$$

Now, multiplying both sides of the last equation by $\left.\left(\Gamma(0)^{-1}\right) q\right]$ and sumning over the arbitrary values of 1

$$
\sum_{1} \sum_{\mathrm{m}}\left(\Gamma\left(0^{-1}\right) \mathrm{q} 1 \Gamma(0) \operatorname{lm}\left(S^{-\frac{1}{2}}\right)_{\mathrm{mn}}=\sum_{1} \sum_{\mathrm{m}}\left(\Gamma\left(0^{-1}\right) \mathrm{ql}\left(\mathrm{~S}^{-\frac{1}{2}}\right) \operatorname{lm} \Gamma(0)_{\mathrm{mn}}\right.\right.
$$

10.53
or

$$
\begin{array}{rlr}
\sum_{\mathrm{m}} \delta_{q m}\left(S^{-\frac{1}{2}}\right)_{\mathrm{mn}}=\sum_{1} \sum_{m}\left(\Gamma(0)^{-1}\right)_{q_{1}}\left(S^{-\frac{1}{2}}\right) \operatorname{lm}(\Gamma(0))_{\mathrm{mn}} & 10.54 \\
\left(S^{-\frac{1}{2}}\right)_{\mathrm{qn}} & \left.=\sum_{1} \sum_{\mathrm{m}}\left[\Gamma(0)^{-1}\right) \mathrm{ql}^{\left(S^{-\frac{1}{2}}\right.}\right)(\Gamma(0))_{\mathrm{mn}} & 10.55
\end{array}
$$

In ceneral the overlap matrix S is invariant with respect to the unitary transformation $\Gamma(0)$

$$
\text { i.e. } \begin{array}{rlr}
\operatorname{Smn} & =\int \phi_{m} \phi_{\mathrm{n}} d z=\int_{0} \phi_{\mathrm{mO}} \phi_{\mathrm{n}} d z & 10.56 \\
& =\int_{\mathrm{q}} \int_{1} \Gamma(0)_{\mathrm{qm}}^{*} \Gamma(0) \ln \left(\phi_{\mathrm{q}} \phi_{1} d z\right. & 10.57 \\
& =\sum_{\mathrm{q}} \sum_{1}\left(\Gamma(0)^{-1}\right)_{\mathrm{mq}} \operatorname{Sq} 1(\Gamma(0)) \ln & 10.58
\end{array}
$$

Hence, under some general conditions (that the matrix $S^{-\frac{1}{2}}$ is also invariant with respect to the unitary transformation $\Gamma(0)$) the onuation 10.46 hecomes verified. ITherefore , the symmetry pro $=$ perties of the Wannier functions given in section 10.5 are derived from the symmetry properies of their constitutent atomic orbitals.
10.7 mid caiculamid Mamjer furction

The model that we have used is a B.C.C. lattice where the lattice points are occupied by hydrogen (or hydrogen- like) atoms. For convenience we have assumed that the crystal is built up of the unit cubes(cells) as shown in figure 1, also the 9 basis vectors have been chosen in the directions of the princi pal cartesian coordinates so that they retain the symmetry of the unit cube (cell)

The atonic separations along the principal $\{1,0,0\},\{0,1,0\}$ and $\{0,0,1\}$ directions have been taken a.s $r_{0}=6 a_{h}$ (the separatinns of the remaining atoms can easily be worked out).

The Wannier furction in concern has been calculated in the principal $\{1,0,0\},\{1,1,0\}$ and $\{1,1,1\}$ directions, which characterize the variation of the function in the ' \underline{x} ' space.

Finally in the calculations effects of up to the third nearest reighbours (26 neighbours all together) have been considered.

Fig. 1

i) The eight nearest neighbours are located at $\underline{R}_{\bar{\gamma}} r_{0}\left(+\frac{1}{2},+\frac{1}{2},+\frac{1}{2}\right)$ and at a distance $R_{1}=3 / 2 r_{0}$
ii) The six second nearest neighbours are at ${\underset{-2}{2}}_{R_{0}} r_{0}(+1,0,0)$ and at a distance $R_{2}=r_{0}$
iii) The twelve thira nearest neighbours are at $R=r(+1,+1,0)$ and at a distance $R_{3}=2 r_{0}$

For the locaiion of these neichbours, see the figure below

Fig. 2 The projection of the figure 1 (including the seven neigh bouring unit cells which are not show in the figure) on to the xy plane, where the numbers 1,2 and 3 denote respectively the first, second and the third nearest neignbours. If a number is repeated twice (i.e. 3,3) this means that at that orientation there are two such equivalont nejchbours. O is the orisin where the wannier func tion in concern is localized.

Through the tables eiven by R.S. Mulliken et al (i.e. see equation 10.32) we have found the following values for the overlap integrals;
i) For the 8 nearest neichbours $\quad \operatorname{Snn}\left(\phi_{1 \mathrm{~s}}, \phi_{1 \mathrm{~s}}, \mathrm{R}_{1}\right)=3.35 \times 10^{-2}$
ii) Fox the 6 second nearest neighbours $\operatorname{Snn}\left(\phi 1 \mathrm{~s}, \phi 1 \mathrm{~s}, \mathrm{R}_{2}\right)=4.27 \times 10^{-2}$ iij.) I'or the 12 third nearest neighbours $\operatorname{Snn}\left(\phi_{1 \mathrm{~s}}, \phi_{1 \mathrm{~s}, R_{3}}\right)=0.67 \times 10^{-2}$ At each point where the "annier function has been calculated the full effects of all of the 26 neichbours have been considered by using several symmetry considerations. Below, we quote the results only. The effects of the third (and the hicher order) terms on the right hand side of equation 10.41 have been found to be insignificant.
Table 1 (below)

Point	$-0.5 \sum_{i}^{S}\left(\phi_{1 \mathrm{~s}}, \phi_{\left.1 \mathrm{~s}, \mathrm{R}_{\mathrm{i}}\right)} \phi_{1 \mathrm{~s}\left(\underline{\underline{r}}-\underline{-R}_{\mathrm{i}}\right)}\right.$			$\phi_{1 s}$	'Ine Yannier function
P	8 nearest noighbours	6 second nearest neishrours	12 third nearest neiknvours		
$(0,0,0)$	-1.04×10^{-3}	-0.316×10^{-3}	-0.0079×10^{-3}	1.000	0.99784
$(2,0,0)$	-0.0244 $\times 10^{-3}$	-1.17×10^{-3}	-0.013×10^{-3}	0.04979	0.04858
$(1,0,0)$	-0.935×10	$-22 \cdot 10^{-3}$	-0.033×10^{-1}	0.002479	-0.02049

Foint	$-0.5 \sum_{i}\left(\phi_{1 s}, \phi_{1 s}, \underline{R}_{i}\right) \phi_{1 s\left(r-R_{i}\right)}$			$\phi_{1 s}$	The Wannier function
T	8 nearest neighbours	6 second nearest neimbours	12 third nearest neimhbours		
($0,0,0$)	-1.84×10^{-3}	-0.316×10^{-3}	-0.0079×10^{-7}	1.000	0.99784
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	-42.0×10^{-3}	-0.355×10^{-3}	-0.0555×10^{-3}	0.0056	-0.03681
$(1,1,1)$	-0.246×10^{-3}	-0.0128×10^{-3}	$-0.0245 \times 10^{-3} 0$	0.0000167	-0.00027

Table?

Foint	$-0.5 S_{i}\left(\phi_{1 s}, \phi_{1 s}, R_{i}\right) \phi_{1 s}\left(\underline{-R_{i}}\right)$		$\phi_{1 s}$	The Fiannier function	
R	8 nearest neighbours	6 second nearest neighbours	12 third nearest neishbours		
$(0,0,0)$	-1.64×10^{-3}	-0.316×10^{-3}	-0.0079×10^{-3}	1.000	0.99784
$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	-4.355×10^{-3}	-0.628×10^{-3}	-0.0555×10^{-3}	+0.01425	0.00921
$(1,1,0)$	-0.463×10^{-3}	-0.054×10^{-3}	-3.3×10^{-3}	+0.0002	-0.00362

Table 3

10.8 THE WANIER FUNCTIONS FOR TIGHTLY BOUSD ELECTRONS, TRE GMERRAL CASE

In the section 10.1 we have said that the Yannier functions are identical with the O.A.O. 's only in a particular case (where the crystal vave function is given by a single gle Bloch sum). However, in most of the problems it may be easential to use several Eloch sums in constructing the crystal wave functions. In general, the more Bloch sums one uses the better is the approximation to the real crystal wave function.

Hence, to cet precise results;
i) One should set up a separate Bloch sum for each atomic level which might in some way contritute to the energy band in concerm .
ii) A separate Bloch sum to be used for each of the degenerate atomic functions. I'e. in case of the $2 p$ atomic functions, a separate Bloc! sun to be constructed from each of the degenerate $2 y_{x}, 2 p_{y}$ and $2 \mathrm{p}_{z}$ atomic functions.
iii) If there is more than one atom in the unit cell(may be same or different atomic species) then a separate Bloch sum for each of the atomic sites has to be included.

Hence the crystal wave function in its most general form is a lintar combination of n such separate Bloch sums.

$$
\psi(\underline{k}, \underline{r})=c_{1} \psi_{1}(\underline{k}, \underline{r})+c_{2} \psi_{2(\underline{k}, \underline{r})}+\ldots \ldots \ldots \ldots+c_{n} \psi_{n}(\underline{k}, \underline{r})
$$

Now, expressing each separate Bloch sum in terms of the O.A.O. 's from which they are derived, then substitute it into the Schrödinger equation for the crystal one ends up with the following
$c_{1}\left(\gamma_{11}-E(\underline{k})\right) \quad c_{2} \gamma_{12} \quad c_{3} \gamma_{13} \quad \ldots \ldots \ldots . c_{n} \gamma_{1 n}=0$
$c_{1} \gamma_{21} \quad c_{2}\left(\gamma_{22}-\mathbb{E}(\underline{k})\right) \quad \ldots \ldots \ldots c_{n} \gamma_{2 n}=0$
10.60
$c_{1} \gamma_{n 1} \quad c_{2} \gamma_{n 2} \quad c_{n}\left(\gamma_{n n}-\mathbb{E}(\underline{k})\right)=0$
where

$$
\gamma_{n n}\left(\underline{R}_{j}\right)=-\sum_{i} \exp \left(i \cdot \underline{k_{0}} \cdot\left(\underline{R}_{i}-R_{j}\right)\right) \alpha_{n m}\left(\underline{R}_{-i}-R_{j}\right) \quad 10.61
$$

and

$$
\left.\alpha_{n m}\left(\underline{R}_{-}-\underline{R}_{j}\right) \stackrel{\stackrel{\rightharpoonup}{i}}{=}-\int \phi_{n\left(\underline{r}-R_{i}\right.}^{*}\right) v^{\prime} \phi_{m}\left(\underline{r}-\underline{R}_{j}\right) d^{3} r \quad 10.62
$$

From the above set of linear equations a secular determinant is formed which has to be solved for the energy $E(\underline{k})$.

On the assumption that all the coerficients C_{i} 's have been obtained for any enercy, ons can write the crystal wave function in terms of the O.A.O. 's (that have been employed in the sum) as follows

$$
\begin{aligned}
& \psi\left(\underline{k}, \underline{r}^{\prime}, \underline{\underline{r}}^{\prime \prime}, \ldots \underline{\underline{r}}^{n}\right)=\sum_{\underline{R}_{1}} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{1}\right) c_{1} \varphi_{1}\left(\underline{\underline{r}}^{\prime}-\underline{R}_{1}\right)+\sum_{\underline{R}_{2}} \exp \left(i \cdot \underline{\underline{k}} \cdot \underline{R}_{2}\right) c_{2} \varphi_{2}\left(\underline{x}_{\underline{\prime \prime}}-\underline{-}_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& { }_{\mathrm{R}}^{\mathrm{R}}
\end{align*}
$$

Where $R_{1}, R_{-2}, \ldots . . \underbrace{}_{-1}$, are the position vectors pointing out to the atomic sites that contribute to the crystal wave function (though some of these vectors may be identical).

Now let us construct a unit cell (containing several atoms of the same or different sort) foi the crystal.

Also let a set of translation vectors \underline{R} 's be such defined that translation through any of the vectors \underline{R} is a symmetry opera.-. tion of the crystal (R carries any point in the unit cell that we have just defined to an equivalent point in enother urit cell)

Now, if the separate sums over $\underline{R}_{1}, \underline{R}_{2}, \ldots \underline{R}_{n}$'s are re placed by a conmon sumation over the vector R, the equation 10.59 takes the following general form,

$$
10.64
$$

$\psi_{(k, \underline{r})}=\sum_{\underline{R}} \exp (i \cdot \underline{k} \cdot \underline{R})\left(C_{1}(\underline{k}) \Gamma_{1} \varphi_{1}(\underline{r}-\underline{R})+C_{2}(\underline{k}) \mathcal{T}_{2} \varphi_{2}(\underline{r}-\underline{R})+\ldots \ldots+C_{n} \tilde{k}_{n} \varphi_{n} \varphi_{n}(\underline{r}-\underline{R})\right)$
Where $\gamma_{1}, \gamma_{2}, \ldots, \tau_{n}$ represent the necessary operations to be carried out over the space coordinates of the $\varphi_{1 s}$ ($0 . A .0 .1 s$) when a common origin has to be used (in the unit cell).

Hence, provided that the above procedure is followed a single Wannier function associated with each unit cell (and which also allows the representation of the crystal wave function as follows where \mathbb{R}_{0} is an arbitrery lattice vector)

$$
a\left(\underline{r}-\underline{R}_{0}\right)=\sum_{\underline{k}} \psi(\underline{k}, \underline{r}) \exp \left(-i \cdot \underline{k} \cdot \mathbb{R}_{0}\right)
$$

is then given by (throuch equation 10.64)
10.65

> (the constant Of nomalization is not shown)
where the coefficients of the superpositions to be obtained through the solutions of the secular equations as follows

$$
c_{i}\left(\underline{R}-\underline{R}_{0}\right)=\sum \exp \left(i \phi_{i}(\underline{k})+i \cdot \underline{k} \cdot\left(n-n_{0}\right)\right) c_{i}(\underline{k})
$$

$\phi_{i}(\underline{k})$ is the aroitrary phase mentioned previously.

As is apparent from the equation 10.66 , the Wannier functions have in general lower symmetries than the O.A.O.'s. 'Iheir symmetry is no loneer derived from a particular sort of atomic function as we have show in section 10.6 .

10.9 The wanize function for a degmerata level

Now, let us consider a monatomic crystal where the atomic level that contributes to the crystal wave function is a p state, and let φ_{1}, φ_{2} and φ_{3} be three such O.A.O.'s constructed from the degenerate atomic p functions as we have shown in the rrevious sections. On the assumption that the atomic levels are well seperated and no additional levels need be considered in the wave function for the solid the crystal wave function is then set up as

$$
\begin{aligned}
& \Psi(\underline{k}, \underline{r})=c_{1} \sum_{1} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{1}\right) \varphi_{p x}\left(\underline{r}-\underline{R}_{1}\right)+c_{2} \sum_{2} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{2}\right) \varphi_{p y}\left(\underline{r}^{\prime}-\underline{R}_{2}\right) \\
&+c_{3} \sum_{3} \exp \left(i \cdot \underline{k} \cdot \underline{R}_{3}\right) \varphi_{p z}\left(\underline{r}^{\prime \prime}-\underline{R}_{3}\right) \\
& 10.68
\end{aligned}
$$

But, the crystal is monatomic, and the degenerate functions (O.A.O.'s) $\varphi_{\mathrm{px}}, \varphi_{\mathrm{py}}$, and φ_{pz} are all centered on the same atomic sites, therefore, a common space coordinate system can be used for all of the three functions (such that $\underline{x}=\underline{\underline{r}}^{\prime}=\underline{r}^{n}$ and the origin is at $\underline{r}=0$). The common translational vector \underline{R} is then given by,

$$
\underline{R}=R_{1}=\underline{R}_{2}=\underline{R}_{3}
$$

The equation 10.68 now becomes

$$
\psi(\underline{k}, \underline{\underline{r}})=\sum_{\underline{R}} \exp (i \cdot \underline{k} \cdot \underline{R})\left(c_{1}(\underline{k}) \varphi_{\mathrm{px}}(\underline{\underline{r}}-\underline{R})+c_{2}(\underline{k}) \varphi \varphi_{\mathrm{py}}(\underline{\underline{r}}-\underline{R})+C_{j}\left(\hat{s} \varphi_{\mathrm{pz}}(\underline{\underline{r}}-\underline{R})\right)\right.
$$

Therefore, the wamier function (one for each of the degenerate bands) is given by

$$
a_{p}\left(\underline{r}-R_{0}\right)=\sum_{\underline{R}} C_{1}\left(\underline{R}-R_{-0}\right) \varphi_{p x}(\underline{r-R})+C_{2}\left(\underline{R}-\mathbb{R}_{-0}\right) \varphi_{p y}(\underline{r}-\underline{R})+C_{3}\left(\underline{R}-R_{0}\right) \varphi_{p z}(r-R)
$$

Hence, for this particular problem, each of the Wannier functions (centered at a particular site R) is given by a linear combination of the degenerate O.A.O.'s centered at the same atomic site. The coefficients of the superpositions to be ottained as described in the previous sections.
10.10 THE WANIER FUSCTION FOR A CRYSTAL WITH DIFRERENT ATOMTC SPECIES IN THE UNIT CELL

To keep the argument simpler let us assume that there are two such atomic specimens (say, atoms A and B) in the unit cell of a linear crystal. Also let only a single level from each at om contributes to the crystal wave function(though, the follow ing argument is true for more general cases).

The crystal vave function is then given by 10.72

$$
\begin{gathered}
\psi(k, x)=c_{A}(k) \sum_{X}^{\exp (i . k . x)} \varphi_{A(x-x)}+c_{B}(k) \sum_{X} \exp (i \cdot k \cdot x) \varphi_{B\left(x^{\prime}-x\right)} \\
\text { If a common space coordinate system will be used for all }
\end{gathered}
$$ of the atomic specimens ($x^{i}=x-a$, where a is the inter atomic seperation between the atoms A and B) then equation 10.72 becomes

$\psi(k, x)_{m}=\sum_{X} \exp (i . k . x)\left(C_{A}(k) \varphi_{A}(x-x)+C_{B}(k) \varphi_{E}(x-a-X)\right) \quad 10.73$

The Wannier function associated with a unit cell is then given by (assuming that the effects of the arbitrary phases are implicitly eiven by the equation 10.67)

$$
a\left(x-X_{0}\right)=\sum_{X} C_{A}\left(x-x_{0}\right) \varphi_{A}(x-X)+C_{B}\left(X-X_{0}\right) \varphi_{E}(x-X) 10.74
$$

where $C_{A}\left(x-X_{O}\right)$ and $C_{B}(x-x)_{0}$ to be determined as usual. Hence, irstead of two O.A.O.'s centered around each atom we have now a "'annier function for each unit cell containing these atoms: Also under some feneral conditions the Wannier function a ($x-X_{0}$) will not attain its peak at $x=x_{0}$, since (loosely speaking) at this point $\varphi_{A(x-X)}$ and $\varphi_{B(x-X)}$ do not simultaneously attain their maximuns.

APPMIDIX 1

A1. 1 INTRODUCTION

In general the term "Kepresentation" both in classical and quan tum mechanics has been used as a homonym. For example in quantum mec hanics ore mentions Schrödinger, Heisenberg, and the interaction rep resentations and also coordinate, monentum, and the energy representa tions, though the former ones are sometimes referred as pictures (reference can be made to any text-book in quantum mechanics). In this cheptcr we will frequently refer (to the latter) to two fundamental representations, which are the momentum and the coordinate representations of ordinary quantum mechanics. In the first case the momentum operator is the generator of infinitesmal translations and proviled that the H mailionian comute with all translations the true momentum is a constant of the motion. How ever, in general in crystals the umal Hamiltonien do not commute with all of the translations and the true momentum is no longer a constant of the motion. In this case a new quantity $($ in some eense being a modification of the true momen tum) has been derined what is known as crystal momentum? in the particular case of the free electrons where the lattice potential is constant, the crystal momentum is the true momentur). In some way beine appropriate to the realism of the crystals this new quantity generates the finite lattice translations and the Familtonian com mutes with these finite translations . The former clain can be verified as follows; Assume that an explicit function $F(\underline{p}$) (which may be written as a plynamial in p or as a Fourier series) of the crystal momentum operator has been given. This when acted upon a Eloch state yields

$$
\begin{equation*}
\left.F(\underline{p}) \psi_{n}(\underline{k}, \underline{r})=F(h \underline{k}) \psi_{n(\underline{k}, \underline{r}}\right) \tag{A1. 1}
\end{equation*}
$$

then it s action on an arbitrary wave function $\Psi(\underline{r})$ (in the c.M.R.) $\exp (i \cdot \underline{p} \cdot \underline{R} / h) \Psi(\underline{r})=\sum_{n} \int_{B . Z} f n(\underline{k}) \exp (i \cdot \underline{p} \cdot \underline{R} / h) \psi_{n}(\underline{k}, \underline{r}) d^{3} k \quad A 1.2$

$$
=\sum_{n} \int_{B .2} f_{r}(\underline{k}) \exp (i \cdot \underline{k} \cdot \underline{R}) \psi_{n}(\underline{k}, \underline{r}) d^{3} k \quad A 1.3
$$

then, from Eloch's periodicity condition(i.e. $\left.\exp (i . \underline{k} \cdot \underline{\underline{R}}) \psi_{n(\underline{\underline{k}}, \underline{r})}=\psi_{n}(\underline{k}, \underline{r}+\underline{R})\right)$
$\exp ($ i. $\underline{P} \cdot \underline{R} / h) \Psi(\underline{r})=\sum_{n} \int_{B . z} f n(\underline{k}) \psi_{n}(\underline{k}, \underline{r}+\underline{R}) d^{3} k=\Psi(\underline{r}+\underline{R})$ A1.4
Hence, the crystal momentum operator \underline{p} does indeed generate finite lattice translations (this point will later on be redisscussed in ereater detail).

The C.h.R. where one uses the energy eigenfunctions (i.e. Bloch waves) as the basis function is analogous to the true momenturn rep resentation of continum mechanics. In general , in this representa tion as an Familtonian one can use either one of the Schrödinger, Pauli and the Dirac Hamiltonians. In appendix 2 we will give briefly the fundamentals of the C.:.R. and that of M.C.M.R. (or what is known 23 Kohn- Luttinger's modified C.M.R.). Also a short reference will be nade to some of the mixed representations.

In analogy with the existence of the momentum and the conjugate coordinate representations in continuum mechanics one might also J.00k for a sort of coordinate representation (in crystals) conjugate to the C.M.R. . One starts by looking for an operator R canonically conjuceate to \underline{p} -

As pointed out above, the ejefenvalues of the coordinates \underline{q} add the conjugate momento ${ }^{\prime}$'s of ordinary quantum mechanics \because represent a continuum from $-\infty$ to $+\infty$ (where the transition from one representation to the other is characterized by the

Fourier transforms with the limits of theintegrations on the p's and the $\underline{q}^{\prime} s$ extendine to infinity. In crystals however because of the existence of the bands the continuity of the eigervalues of p are restricted to sone finite regions only . This intuitively suggests that the eigervalues of the conjugate operator must also be discrete. The eicenfunctions of the continous variable $\underset{\underline{r}}{ }$ (in continuurn mec hanics) are the δ functions. Then eifenfunctions of the discrete variables R's would also be expected to be localized in some sense (even thouch not as localized as the δ functions themselves): If conjugate operator R is chosen such that it also commutes with the band index, then the transformations from one basis to the other will be charanterized by either integral transforms evaluated over single B.Z.'s or by the sumnations over the discrete eigenvalues ${\underset{i}{i}}^{\text {'s }}$. The roots of this new crystal coordinate representation froin now on which we will call simply wannier representation(after Wannier. was first set up by Wannier ${ }^{1}$ in 1937. There has been a considerable delay in realising the importance of the "Iannier's ${ }^{1}$ theorem and in the development of the representation itself. This may partly be due to wamier's trying his method initially on a problew (the excitons) which is a too complicated problem even in todays stanảarts.

It was Slater ${ }^{2}$ who first realized the importance of Wan nier's theorem and he who also initiated the development of the rep resentation. Ihis development was followed by Adams $3,4,5,6$ generalized Wamiex's theorem to take into account transitions between energy bands

1 G.H. Vamnier, Phys. Rev. 5?: 191 (193?)
2 J.C. Slater, Phys. Rev. 76, 1592(1949)
3 N.F. Adans, Phys. Rev. 85, 41(1952)
4 N.E. Adams, J. Chem. Fhys. 21, 2013 (1953)
and the others (see the references in Ch. 1). The following steps taken in later years will be given in appendix two under the head ing of ' The Warier representation in the presence of non-periodic perturbations'.

A1.2 AN OU'LLIE OF THE BASIC PRHICIPLES OF WANDER REFRESMTMATION
As mentioned earlier the Wanner representation is analogous to the coordinate representation of the continuum mechanics. basis functions are the Manner functions ${ }^{1}$ defined in the coordinate space. These functions are obtained from the basis functions of the C.M.R. (ie. Bloch waves) by the unitary transformation $\exp (i . \underline{k} \cdot \underline{R})$

$$
\begin{equation*}
a_{n}(\underline{r}-\underline{R})=\int \Psi_{n}(\underline{k}, \underline{r}) \exp (-i \cdot \underline{k} \cdot \underline{R}) d^{3} k \tag{Al. 5}
\end{equation*}
$$

$$
\mathrm{n}^{\text {th }} \mathrm{B} . \mathrm{Z} \text {. }
$$

and the basis functions of the C.M.R. are obtained from the last equation by a reverse transformation

$$
\psi_{n(\underline{k}, \underline{r})}=\sum \quad a_{n}(\underline{r}-\underline{R}) \exp (i \cdot \underline{k} \cdot \underline{R}) \quad A 1.6
$$

R
One useful character of the warier representation is that one deals with the basis functions which do not spread to the whole of the coordinate space(localized functions 7) as basis functions of the CoM. R. generally do.
D) Now, the wave function $g_{n(k)}$ of C.R.R. which is given by the following expansion

$$
\Psi(\underline{r})=\sum_{n} \int_{B . z} g_{n}(\underline{k}) \psi_{n(\underline{k}, \underline{\underline{r}})} d^{3} k
$$

in Wannier representation is transformed to

5 E.N. Adams, and P.N. Argyres, Phys. Rev. 102, 605(1956)
6 E.N. Adams, Phys. Rev. 107, 698(1957)
7 For the real nature of this localization see, ie. chapters 1, 2,7, and 8
B) then, $\mathcal{Y}(\underline{r})$ in the Wennier representation is given by (using the equations A1.6, A1.7, and A1.8)

$$
\begin{aligned}
\Psi(\underline{r})=\sum \int_{n} \int_{\text {B.z. }} g_{n}(\underline{k}) \psi_{n}(\underline{\underline{k}}, \underline{\underline{r}}) d^{3} \underline{k} & =\sum \sum \int_{n} a_{n}(\underline{\underline{r}}-\underline{\underline{R}}) g_{n}(\underline{k}) \exp (i \cdot \underline{k} \cdot \underline{\underline{R}}) \\
& =\sum \sum f_{n}(\underline{R}) a_{n}(\underline{r}-\underline{R}) \\
& n \underline{R}
\end{aligned}
$$

hence

$$
\begin{aligned}
& \Psi(\underline{r})= \sum \sum n(\mathbb{R}) a_{n}(\underline{r}-\underline{R}) \\
& n \underline{R}
\end{aligned} \quad A 1.10
$$

C) The following can immediately be verified about the expan sion coefficients $f n(\underline{R})$'s ;

C1) If $\Psi(\underline{\underline{Y}}$) is nomalized then (omitting all normalization constants for simplification)

$$
\begin{aligned}
& \langle\underline{\underline{r}} \mid \underline{\underline{r}}\rangle=\sum \sum \sum \sum f_{m}^{*}\left(\underline{R}_{j}\right) f m_{m_{j}}^{\left(\underline{R}_{j}\right)}\left\langle\boldsymbol{m}, \underline{R}_{j} \mid m^{\prime}, \underline{R}_{j}\right\rangle \quad A 1.11 \\
& m \quad j m^{\prime} j^{\prime} \\
& =\sum \sum \sum \sum f m\left(\underline{R}_{j}\right) f m^{\prime}\left(\underline{R}_{j}\right) \quad \delta_{m, m^{\prime}}^{j, j^{\prime}} \\
& \text { A1. } 12 \\
& \text { m } j \mathrm{~m}^{\prime} \mathrm{j}^{\prime} \\
& =\sum \sum\left|f_{m}\left(\underline{R}_{j}\right)\right|^{2}=1 \\
& \text { A1. } 13 \\
& \text { m j }
\end{aligned}
$$

C2) Also, using the property that the Wannier iunctions have their largest amplitudes in the cells that they are loca lized and the assumption that $f m\left(\underline{R}_{j}\right)$ is a slowly varying If function of $\mathrm{R}_{\mathrm{J}}($, also see sections A2.4-7), the proba bility of finting an electron within the volume δv (where δv \therefore is small compared with the size of the crystal but still containing several unit cells) i.s given by;
but, due to the above assumption (that $f\left(r_{1}\left(\underline{R}_{y}\right)\right.$ is almost constant over the region δV) wie have

$$
\begin{equation*}
\left.\delta p=c^{-1}\left|f m\left(\underline{R}_{j}\right)\right|^{2} \sum_{m} \sum_{j m^{\prime}} \sum_{j} \sum_{m} a_{m}\left(\underline{x}_{\underline{x}}\right) \underline{R}_{j}\right) a_{m}\left(\underline{x}-\underline{p}_{j}\right) d^{3} r \tag{A 1.15}
\end{equation*}
$$

however,
$\sum \sum \sum \sum \int a_{m}\left(\underline{r}-\mathbb{R}_{j}\right) a_{m}\left(\underline{r}-\mathbb{R}_{-j}\right) d^{3} r=C \delta V$
A1. 16 $m \quad j \quad m^{\prime} j^{\prime} \delta V$
There C is a constant introduced for purposes of nomalization (for exarple if one uses an expansion over a single band in equation A1.10, then $C=N / V \quad$ (where N is the number of the unit cells in the crystal and V is the volume of the crystal), so that C. δV gives the number of the unit cells in the volume $\delta \mathrm{V}$. Therefore,

$$
\begin{equation*}
\delta P=\sum_{m}\left|f m\left(\underline{R}_{j}\right)\right|^{2} \delta V \tag{A1. 17}
\end{equation*}
$$

Hence, $f m\left(\underline{R}_{3}\right)$'s have a similiar behaviour to that of a wave function. Jater on we will see in detail (in appendices 1 and 2) that under certain conditions they may be replaced by the functions of a continous variable \underline{r}, then the probability mentioned above will be given by

$$
\begin{equation*}
\delta P=\sum_{m} \int_{\delta V} f m(\underline{x})^{2} d^{3} r \tag{A1. 18}
\end{equation*}
$$

leading to the normalization of these functions (i.e. if the expan sion A 1.10 is over a sincle band, dropping the band index)

$$
\begin{equation*}
\int_{\delta V}|f(\underline{r})|^{2} d^{3} r=1 \tag{A1. 19}
\end{equation*}
$$

1) An operator $\operatorname{Han}(\underline{k}, \underline{k})$ of the C.M.K. becomes

$$
\operatorname{Hnn}^{\prime}\left(\underline{R}, \underline{R}^{\prime}\right)=\int_{B . Z} \exp \left(-i \cdot \underline{\underline{k}^{\prime}} \cdot \underline{R^{\prime}}\right) \operatorname{Hnn}\left(\underline{k}, \underline{k}^{\prime}\right) \exp (i \cdot \underline{k} \cdot \underline{R}) d^{3} k d^{3} k^{\prime} \quad A 1 \cdot 20
$$

E) Now consider as a particular case the matrix elements of the
 the C.M.R. which is given by

$$
\begin{equation*}
\underline{p}_{c, n, n}\left(\underline{k}-\underline{k}^{\prime}\right)=h \underline{k} \delta\left(\underline{k}-\underline{k}^{\prime}\right) \delta_{n, n} \tag{A1. 21}
\end{equation*}
$$

then, in the W innier representation the simple crystal momentum operator will be given by
$\underline{P}_{C}=\int_{B . Z} \exp \left(-i \cdot \underline{k} \cdot \underline{R}^{\prime}\right) h \underline{k} \exp (i \cdot \underline{k} \cdot \underline{R}) d^{3} k=\int n \underline{k}\left(\operatorname{cosk}\left(\underline{R}-\underline{R}^{\prime}\right)+i \sin \underline{\underline{R}}\left(\underline{-}-\mathcal{K}^{\prime}\right)\right) d^{3} k$
Where the integration is over a symmetric region of \underline{k}, therefore the non-zero part is given by

$$
\underline{P}_{c}=\operatorname{in} \int_{B . Z} \underline{k} \operatorname{sink}\left(\underline{R}-\underline{R}^{\prime}\right) d^{3} k
$$

In one dimension this yields

$$
\begin{align*}
P_{c} & =\text { ih }\left[\frac{\sin k_{0}\left(X-X^{\prime}\right)}{\left(x-x^{\prime}\right)^{2}}-\frac{k_{0} \cos k_{0}\left(X-X^{\prime}\right)}{\left(x-X^{\prime}\right)}\right] \tag{A1. 24}\\
& =-\operatorname{in} \frac{\partial}{\partial x} \frac{\sin k_{0}\left(X-x^{\prime}\right)}{\left(x-x^{\prime}\right)} \tag{A1. 25}
\end{align*}
$$

The proof cen easily be generalized to three dinensions, now calling ${ }^{8}$

$$
\delta\left(\underline{R}-\underline{R}^{\prime}\right)=\frac{\sin \underline{k}_{o x}\left(X-\dot{X}^{\prime}\right) \sin ^{k_{0 Y}}\left(Y-Y^{\prime}\right) \sin ^{2}{ }_{o z}\left(Z-Z^{\prime}\right)}{\left(X-X^{\prime}\right)\left(Y-Y^{\prime}\right)\left(Z-Z^{\prime}\right)}
$$

8) Note that, $\delta\left(\underline{R}-\underline{B}^{\prime}\right)$ is unity when $\underline{R}=\underline{R}^{\prime}$ and is zero when $\underline{R}-\mathbb{R}^{\prime} \neq 0$ [where \underline{R} and \underline{R}^{\prime} are proper lattice vectors]. Hence, $\delta\left(R-R^{\prime}\right) f\left(R^{\prime}\right)=f(R)$.
In the later sections we have discussed the approximation of replacing the crystal coordinate operator R by the ordinary r. To this assumption

$$
\begin{equation*}
\underline{P}_{-C}=-i h \frac{\partial}{\partial \underline{R}} \delta\left(\underline{R}-R^{\prime}\right) \tag{AI. 27}
\end{equation*}
$$

If \underline{I}_{c} operates on a function of \underline{R}^{\prime} say $\quad f\left(\underline{R}^{\prime}\right)$ (see the foot note ${ }^{8}$ and also the appendix 2)

$$
\underline{p}_{c} f(\underline{R})=-i h \frac{\partial f(\hat{R})}{\partial \underline{R}} \quad \text { A1.28 }
$$

Successive applications of the operator P_{C} yields

$$
\underline{P}_{c}^{n} f(\underline{R})=\left(-i n \frac{\partial}{\partial R}\right)^{n} f(\underline{R}) \quad A 1.29
$$

Therefore, using equations $A 1.28$ and 41.29 any function of P_{c} say $F\left(\underline{p}_{c}\right)$ which may be expanded as a polynomial in \underline{p}_{c} may be replaced by the following operational form

$$
F\left(\underline{P}_{c}\right) f(\underline{R})=F\left(-i \frac{\partial}{\partial R}\right) f(\underline{R}) . \quad A 1.30
$$

8) (cont.)... $\delta\left(\underline{I}-\underline{I}^{\prime}\right)$ is a Dirac delta function, $\delta\left(\underline{r}-\underline{r}^{\prime}\right)=$ lin $\frac{\operatorname{sink}_{0}\left(\underline{r}-\underline{r}^{\prime}\right)}{k_{0} \rightarrow \infty\left(r-r^{\prime}\right)}$. However in the present case k_{0} is finite. Therefore this function is not a proper Dirac delta function [though localized, it oscillates and decreases only as $1 / \underline{\underline{y}}$].

However if $f(\underline{r})$ is a slowly varying function \underline{x} (such that it varies very little over a lenght of several unit cells) then we may regard it as a constant over a part of the crystal of particu lar interest (say, over the cells that $\delta\left(\underline{x}-\underline{\underline{r}}^{\prime}\right)$ is localized)) then

$$
\int_{\mathcal{V}^{V}} \delta\left(\underline{\underline{r}}-\underline{\underline{r}}^{\prime}\right) f(\underline{\underline{r}}) d^{3} r=(f(\underline{\underline{r}})) \underbrace{}_{\underline{r}=\underline{\underline{r}}^{\prime}} \int_{\mathrm{V}} \delta\left(\underline{\underline{r}}-\underline{\underline{r}}^{\prime}\right) d^{3} \underline{r}
$$

tut,

$$
\begin{array}{r}
\int \delta\left(\underline{x}-\underline{x}^{\prime}\right) u^{3} x=i \\
\int \delta\left(\underline{x}-\underline{r}^{\prime}\right) f(\underline{x}) d^{3} r=f\left(\underline{r}^{\prime}\right)
\end{array}
$$

Therefore to this assumption (that $f(x)$ varies slowly) $\delta\left(\underline{x}^{-x^{\prime}}\right)$ may be

Also consider the following exponential function of ${\underset{C}{C}}$, $\exp \left(i{\underset{X}{C}}^{Z} / h_{1}\right)$. This exponential function may be expended in terms of a power series, therefore, using equations $A 1.28$ and A1.29 this will have the follow ing operational form on the function $f(\underline{R})$

$$
\exp (i \underline{P} \cdot \underline{R} / h) f(\underline{R})=\exp \left(\underline{R} \cdot \frac{\partial}{\partial R}\right) f(\underline{R}) \quad A 1.31
$$

So far we have shown that a function of \underline{k} which may be expanded as either a polynomial or as a Fourier series in k, may be replaced by an operational form where \underline{k} is replaced by $\partial / \partial R$ (the approximaton of replacing the crystal coordinate operator \underline{R} by the ordinary \underline{x} will be discussed in the later sections)

When the energy $E(\underline{k})$ is riven as an explicit function in \underline{k} (usually a quadratic) it will be a common practise to replace k 's by the operational forms given above (i.e. see appendix 2)
F) In the Winier representation an arbitrary function of k, say $G(k)$ (in the C.r.R.) becomes,

$$
\begin{equation*}
G^{\prime}(\underline{R}-\underline{R})=\int \exp \left(-i \cdot \underline{k} \cdot \underline{\mathbb{R}^{\prime}}\right) G(\underline{k}) \exp (i \cdot \underline{k} \cdot \underline{R}) d^{3} k \tag{Al. 32}
\end{equation*}
$$

Two familiar examples of these transformations are the transformations of the energy $E_{n}(\underline{k})$ and the wave function $g_{n}(\underline{k})$ of the C.ia.R. to the $\varepsilon_{n}(\underline{R})$ (the Fourier coefficient of the energy) and the $f n(\underline{\text { P }})$ the wave function of the Wanner representation.
ie.

$$
\begin{align*}
& f_{n}\left(\underline{R}-\underline{R}^{\prime}\right)=\int g_{n}(\underline{k}) \exp \left(i \cdot \underline{k} \cdot\left(\underline{R}-\underline{R}^{\prime}\right)\right) d^{3} k \\
& \varepsilon_{n}\left(\underline{R}-\underline{R}^{\prime}\right)=\int E_{n}(\underline{k}) \exp \left(i \cdot \underline{k} \cdot\left(\underline{R}-\underline{R}^{\prime}\right)\right) d^{3} k \tag{AI. 34}
\end{align*}
$$

G) In appendix 2 we will see in detail that the approximate one Band Hanilunian of the wainien representation mill have either one of the following forms

$$
\begin{aligned}
& H_{m}^{\prime}\left(\mathbb{R}_{i}-\underline{R}_{j}\right)=\sum_{j} H_{m}\left(\underline{R}_{i}-R_{j}\right)+V_{m}\left(\underline{R}_{j}\right) \delta\left(\underline{R}_{i}-R_{j}\right) \\
& o x \\
& H_{m}^{\prime}(\underline{R})=H_{m}(\partial / i \partial \underline{R})+V_{m}(\underline{R})
\end{aligned}
$$

and the more Eeneral IIamiltonians (which takes into account transitions between energy bands) will be given by

$$
\begin{array}{lll}
H^{\prime}\left(\underline{R}_{i}-R_{j}\right)=\sum H_{m}\left(R_{i}-R_{j}\right)+V_{m}\left(\underline{R}_{j}\right)\left(\underline{R}_{i}-R_{j}\right)+ & \sum_{m n}(0) \\
\text { or } & \text { n }
\end{array}
$$

$H^{\prime}(R)=H_{m}(\partial / i \partial R)+V_{m}(\underline{R})+\sum V_{m n}(0)$
n
A1. 38
where $\quad V_{m n}(0)=\langle n, 0| V|m, 0\rangle$ and V is a non-periodic perturbation. The difference equations and the differential equations which employ the above Hamiltonians are equivalent in sense, and are also to the same order of approximation. However in most applications the differential equations have been found to be more convenient. Sut, even though, the differential equations are simple enough to be handed only if $H(\partial / i \partial \underline{R})$ is a simple polynomial of $\partial / i \partial \underline{R}$ and probably is upto second order (i.e. case of spherical or elliptical energy surfaces). The straightforward derivations for the above Hamiltonians have been given in appendix 2 .
II) In appendix 2 we have studied in detail the problem of treating $H^{\prime}(\underline{k})$ as a continous function. 'ine present discussion will be restricted to the justification of some of the principles involved.

For the moment if we define a continum Hamiltonian (as we have done in equation $A 1.20$) simply by replacinc \underline{R} and \underline{R}^{\prime} by \underline{r} and \underline{r}^{\prime}

$$
H\left(\underline{r}, \underline{x}^{\prime}\right)=\int \exp (i \cdot \underline{k} \cdot \underline{r}) H\left(\underline{k}, \underline{k^{\prime}}\right) \exp \left(-i \cdot \underline{\underline{k}} \cdot \underline{\underline{r}}^{\prime}\right) d^{\bar{j}_{k}} d^{\bar{j}^{\prime}}
$$

where we can think as $H\left(\underline{r}, \underline{r}^{\prime}\right)$ at some well defined points (i.e. at $\underline{r}=\underline{R}$ and $\left.\underline{r}=\underline{R}^{\prime}\right)$ is equal in value to $H\left(\underline{R}, \underline{R}^{\prime}\right)$ which is the Hamiltonian in the difference equations. Also, let $f(\underline{r})$ be an eigenfunction of the continuum Hamiltonian $H\left(\underline{r}, \underline{x}^{\prime}\right)$ such that

$$
\int H\left(\underline{r}, \underline{r}^{\prime}\right) f\left(\underline{r}^{\prime}\right) d^{3} r^{\prime}=E f(\underline{r}) \quad A 1.40
$$

 (where ${\underset{-}{*}}^{*}$ and $\underline{k}^{N^{\prime}}$ are some particular points in the $\underset{-}{k}$ space, and not necessarily in the E.Z. shown) then integrating over r and r^{\prime} (they span the same space)

$$
\begin{aligned}
\int \exp \left(-i \cdot \underline{k^{*}} \cdot \underline{r}\right) H\left(\underline{r}, \underline{r}^{\prime}\right) \exp \left(i \cdot \underline{\underline{k}}^{\prime} \cdot \underline{r}^{\prime}\right) d^{3} r d^{3} r^{\prime} & =\int \delta\left(\underline{k}-\underline{k}^{*}\right) \mathrm{H}\left(\underline{k}, \underline{k}^{\prime}\right) \delta\left(\underline{k}-\underline{k}^{*^{\prime}}\right) d^{3} k d^{3} k \\
& =H\left(\underline{k}, \underline{k}^{*}\right) \quad A 1.41
\end{aligned}
$$

If $\underline{\mathrm{k}}^{*}$ or $\underline{\mathrm{k}}^{{ }^{\prime}}$ are not in the B.Z. concerned then,

$$
\begin{equation*}
H\left(\underline{k}^{*}, \underline{k}^{*^{\prime}}\right)=\int \delta\left(\underline{k}-\underline{k}^{*}\right) H\left(\underline{k}, \underline{k}^{\prime}\right) \delta\left(\underline{k}-\underline{k}^{*^{\prime}}\right) d^{3} k d^{3} k^{\prime}=0 \tag{Al. 42}
\end{equation*}
$$

The equation A 1.41 is the inverse transformation of the equation AN. 39 . Now, multiplying equation $A 1.40$ by $\exp \left(-i \cdot \underline{k}^{*} \cdot \underline{r}\right)$ and integrating over \underline{r}, one gets

$$
\int \exp \left(-i \cdot \underline{k}^{*} \cdot \underline{r}\right) H\left(\underline{r}, \underline{r}^{\prime}\right) f\left(\underline{r}^{\prime}\right) d^{3} r d^{3} r^{\prime}=E \int \psi(\underline{r}) \exp \left(-i \cdot \underline{k^{*}} \cdot \underline{r}\right) d^{3} r
$$

If one now defines
AI. 43

$$
\begin{equation*}
g_{n}\left(\underline{k}^{*}\right)=\int f(\underline{r}) \exp \left(-i \cdot \underline{k}^{*} \cdot \underline{r}\right) d^{3} r \tag{AI. 44}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n}\left(\underline{k}^{*^{\prime}}\right)=\int f\left(\underline{r}^{\prime}\right) \exp \left(-i \cdot \underline{\underline{x}^{\prime}} \underline{\underline{r}}^{\prime}\right) d{ }^{\prime} r^{\prime} \tag{AI. 45}
\end{equation*}
$$

then, equation 1.43 may be replaced by

$$
\int \exp \left(-i \cdot \underline{x}^{*} \cdot \underline{x}\right) H\left(\underline{r}, \underline{r}^{\prime}\right) \exp \left(i \cdot \underline{k}^{*^{\prime}} \cdot \underline{r}^{\prime}\right) g\left(\underline{k}^{*}\right) d^{3} r d^{3} r^{\prime} d^{3} k^{*}=E \int f(\underline{r}) \exp \left(-i \cdot \underline{k}^{\prime} \cdot \underline{r}\right) d^{3} r
$$

Now, using equation B 1.41 this reduces to

$$
\int H\left(\underline{k^{*}}, \underline{k}^{\mu^{\prime}}\right) g\left(\underline{k}^{*^{\prime}}\right) d^{3} k^{*^{\prime}}=E g\left(\underline{k}^{*}\right)
$$

Hence on the assumption that $g(\underline{k})$ satisfies the eigenvalue equation A1.47 in C.h. K . , then a continous function of $\underline{\mathrm{r}}$ obtained from this by the following transformation (similiar to what we did in finding the wave function in the Wannier representation)

$$
f(\underline{r})=\int g(k) \exp (i \cdot \underline{k} \cdot \underline{r}) d^{3} k \quad \text { A1.48 }
$$

satisfies the Wennier representation equation, replaced with a continuum Hemiltonian as given by the equation A1.40.

Thus, we have shown in the principle that.it is possible to define a continuum Hamiltonian and a continous wave function for the Wannier representation still fullfilling the requirements of the trans?omations with the C.M.R..

However, the basic conditions that still must be satisfied in passing from the difference equations (with discrete solutions) to the differential ones (where the solutions are continous functions) are

$$
\begin{equation*}
\left(f_{n}\left(\underline{\underline{n}}^{\prime}\right)\right)_{\underline{r}=\underline{R}}=F_{n}(\underline{R}) \tag{Ai. 49}
\end{equation*}
$$

and

$$
\left(H^{\prime}\left(\underline{r}, \underline{r}^{\prime}\right)\right) \underset{r_{1}-\underline{n}-n_{1}}{ }=H\left(\underline{R}-\underline{R}^{\prime}\right) \quad \text { A1.50 }
$$

These final points will be discussed in appendix 2 in
I) Finally comes the justification of an expansion which uses a single band only. Under some particular conditions this can easily be prooved to be the case. See for example Blount ${ }^{9}$ (also see appendix 2). Rouchily speaking, when the energy of the states in concem are small compared with the seperation of the levels then usage of a single band Hamiltonian (see equation A1.35) is justifiable.

A1. 3 The FROBLER OT THE FHASES
In general the basis functions of the C.M.R. are defined upto an arbitrary phase i.e. $\exp (i \varphi r(k))$. In chapters 7 and 8 we study in detail the properties of the phase fuction i.e. its reality , periodicity, its dependence only on the vector k and a differential equation which chooses its particular forms, etc. Though the arbitrary phases must not effect eny experimental ly verifiable results, certain equations and variables are phase dependent (phase sensitive).

One of the worst and the simplest example to this is the non uniqueness of the liannier functions which are obtained throigh the followine transformation,

$$
a_{h}\left(\underline{r}-\underline{P}_{j}\right)=\int \exp \left(i \varphi_{n}(\underline{k})-i \cdot \underline{k} \cdot \underline{R}_{j}\right) \psi_{n}(\underline{k}, \underline{r}) a 3 k
$$

B.Z.
where $\varphi_{n}(\underline{k})$ is an arbitrary phase function defined in the $n{ }^{\text {th }}$ band. In this case dependence of the Fifnnier function on the phase function $\varphi_{n}(\underline{k})$ is apparent, and among the infinite choice of the phases (that satisfies the requirements ε iven in chapter 8) one tries to choose the best accoiding to certain criterial see chapters 8 and 9 , i.e. in chapter 8 we have given an original analy tical method to detemine the particular phases vich yield the most localized Wannier functions)

Now to generalize the problem we will work out some of the most familiar equations and variables and show which are phase dependent (phase sensitive) and which are not;

To start with let us check the phase dependence of the matrix elements of an operator Q between the basis functions of Wannier representation .

We can write at once,

$$
\int a_{n^{\prime}}^{*}(\underline{r}) Q a_{n}(\underline{r}) d^{3} r=\iint\left[\exp \left(i \varphi_{n}(\underline{\underline{k}})-i \varphi_{n^{\prime}}\left(\underline{k^{\prime}}\right)\right)\right] \min ^{\prime}\left(\underline{\underline{k}}, \underline{\underline{k}^{\prime}}\right) d^{3} k d^{3} k^{\prime}
$$

where A1. 52

$$
\operatorname{Qnri}\left(\underline{k}, \underline{k}^{\prime}\right)=\int \psi_{n}(\underline{k}, \underline{r}) Q \psi_{n(\underline{k}, \underline{r})} d^{3} r
$$

If $Q=1$

$$
\begin{equation*}
\operatorname{Qnn}(k, k)=\delta n^{\prime} \delta\left(\underline{k}-\underline{k}^{\prime}\right) \tag{A1. 54}
\end{equation*}
$$

then to this choice equation A 1.52 is phase independent (it is either a constant number or zero)

However if we now choose $Q=F(\underline{r})$ (where F is a function of $\underline{\underline{x}}$) then $Q m^{\prime}\left(\underline{k}, \underline{k}^{\prime}\right)$ is no loneer diagonal in \underline{k} and n, therefore to this choice equation $\mathrm{A1.52}$ is phase dependent (including the case $\mathrm{n}=\mathrm{n}^{\prime}$)

As a firai illustration if we choose $Q=F\left(\nabla_{\underline{K}}\right)$ (where F is a function of gradk) in the following matrix element

then it is phase dependert (including the case $n=n^{\prime}, k=k^{\prime}$)
i.e. if one sets $Q=-i \nabla_{\underline{k}}$, then equation $A 1.55$ becomes

$$
\exp \left(i \varphi_{n}(\underline{k})-i \varphi_{n^{\prime}}\left(k^{\prime}\right)\right)\left[\delta_{n n^{\prime}} \delta\left(\underline{k}-k^{\prime}\right) \nabla_{n} \varphi_{n(r)}+S_{n n^{\prime}}\left(\underline{k}, k^{\prime}\right)\right]
$$

where

$$
S_{n n^{\prime}}\left(\underline{k}, \underline{k}^{\prime}\right)=-i \int \psi_{n^{\prime}\left(\underline{k^{\prime}}, \underline{r}\right)} \nabla_{\underline{k}} \psi_{n}(\underline{k}, \underline{r}) d^{3} r \quad A 1.57
$$

which yields; for $n \neq n^{\prime}, \underline{E} \neq \underline{k}^{\prime}$

$$
\exp \left(i \varphi_{n}(\underline{k})-i \varphi_{n^{\prime}}\left(\underline{k^{\prime}}\right)\right) \cdot S_{n n^{\prime}}\left(\underline{k}, \underline{k}^{\prime}\right)
$$

$$
\text { AI. } 58
$$

and for $n=n^{\prime}, \underline{k}=\underline{k}^{\prime}$

$$
\begin{equation*}
\frac{\partial}{\partial \underline{k}} \varphi_{n}(\underline{k})+S_{n n}(\underline{k}, \underline{k}) \tag{Ai. 59}
\end{equation*}
$$

where both expressions are phase dependent.
We have worked out the phase dependence of several
familiar equations and variables in both Wannier and crystal momentor representations. Below in table A1. 1 we quote the results only. Blount ${ }^{9}$ further gives explicit expressions for some of
y the quantities given in this table, which however will not concern.us.

IN W.R	IN C.S.R
The basis function $a_{n}\left(\underline{r}-\underline{R}_{j}\right)$	The basis function $\psi_{n}(\underline{k}, \underline{r})$
The wave function $\sum_{n} \sum_{j} \int_{j}\left(\underline{R}_{-j}\right) a_{n}\left(\underline{r}-R_{-j}\right)$	The wave function $\sum_{n} \int g_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r})$
The position mat $r i x$ of ${\underset{r}{m}}^{m}$	$\begin{aligned} & \left\langle n^{\prime}, k^{\prime}\right\| \underline{r}^{m}\|n, k\rangle \\ & \text { (including } n=n^{\prime} \text { or } k=k^{\prime} \text {, but } \\ & \quad \text { not both } \overline{a t} \text { once) } \end{aligned}$
	The matrix element of the true momentum $\left\langle n^{\prime}, \underline{k}\right\| p\|n, k\rangle$ $\left(n \neq n^{\prime}\right)$
```Note that if m = O the phase dependence vanishes in both represen tations (see also the table given below)```	

PHASE INDEPLATDEITT

In V.R.	IN C.M.R.
$\begin{aligned} \text { The integrals } & <n, R_{i} \mid n, R_{j}> \\ & <n, R_{i} \mid n, R_{i}> \end{aligned}$	The probabibility $\psi_{r(k, r)}^{*} \quad n^{\prime}\left(\underline{k^{\prime}}, \underline{r}\right)$ distributions $\quad \psi_{n}^{*}(\underline{k}, \underline{r}) \psi_{n}(\underline{k}, \underline{r})$ and their surns $\left.\langle n, k \mid n, k\rangle,\left\langle n, k \mid n^{\prime}, 1\right\rangle\right\rangle$
$\begin{array}{ll} \text { Whe energy four } & \left\langle n, R_{i}\right\| H^{0} \mid n, R_{j}> \\ \text { ier coeficieni } & \text { (including } i=j \text { ) } \end{array}$	The energy eigenvalue of the cryst. Hamilt. $\langle\pi, k\| H^{\circ}\|n, \underline{k}\rangle$
-	The matrix elements   of the crystal momer $\left\langle\pi^{\prime}, k^{\prime}\right\|$ hkl $n, k$   tum.   (inc. $n=n^{\prime}, k=k^{\prime}$ )
	The position matrix of $\underline{x}^{\mathrm{m}}$ $\langle n, \underline{k}\| \underline{r}^{m}\|n, \underline{k}\rangle$
	The matrix elements $\langle n, k \prime p \mid n, k\rangle$ of lise inue nomeration fin:

Table i3.1 Phaec dependence of some familiar equations and variables
in both Wannier and Crystal momentum representations. $n, n^{\prime}, k, k^{\prime}$ and
$\underline{R}_{i}, \underline{R}_{j}$ are not equal unless otherwise stated.

## APYPADIX 2

 point miturities ard mytenal fiemd (hon-feriodic prrturbations) A2.1 GEMERAL

In chapter 5 we have suggested a method to find out the perturbed :Tannier functions in the presence of a periodic perturbation. In general , these Wannier functions which are the solutions to the periodic problem(and being a complete set of func tions in the coordinate space) can be used as a basis in expandinc the wave function of the non-periodic (defect) structures. This actually is the basis of the Wannier representation.

The non-periodic perturbations in solids may be due to;
i) Internal imperfections as impurities, dislocations, and surfacts , etc.
ii) External effects as electric fields, macnetic fields, etc.

We will first start with the perturbations associated
with the time dependent Schrödinfer equation. Therefore we are concerned with the solutions of the following time dependent equa tion

$$
[H+V] \Psi=i n \frac{\partial \Psi}{\partial t}
$$

where $H$ is the Hemiltonian of the periodic structure and $V$ is a (ron-periodic) perturbation. The perturbing field $V$ in general may be uniform or non-uniform (i.e. interaction of electrons with electromagnetic radiation) and also the system itself may be con servative or non-conservative depending on whether the perturbing field is also a function of time or not.

Some aspects of the problem has been handled by several authors, (like Wannier, Slater, Adams, Kohn , Luttinger , Elount , Roth , Gibson , Zener , Houston, Koster , Cloizeaux , etc.) References to some of the fundamental work will be made during the treatment of each topic.

The main classifications in the approaches depend on the choice of the basis functions for expanding the perturbed wave function $\Psi$.

There are only few fundamental choices(though infinite in principle) for the basis functions, each leading to a different representation like Crystal momentum representation (C.K.R.) or Wannier representation.
i.hodified forms of these basis functions (i.e. Kohn-Luttinger functions') which lead to some alternative forms of the fundamental representations ( like, Kohn-Luttinger modified crystal momentum representation, M.C.ii.R.), have also been succested.

We can finally mention a mixed representation which employs the principles of both representations (i.e. Blount, Zak ${ }^{2}$, etc. ) In the following sections though we will give a brief out line of the fundamental representations, the primary emphasis will be on the Kannier representation.

1) See the references given in chapter 1 and appendix 1
2) Blownt, R.I., Solid State Thysics 13, $305(1,62)$
3) See for instance, J. Zak, Comments Solid State Phys. 2,209(1970)

## A2.2 CRYSTAL momminm Representation ( C.m.r.)

This is the one used fundernentally by Adams ${ }^{4}$ and may be outlined as follows;

The ejeenfunctions of the periodic system (unperturbed)
are the bloch functions satisfying

$$
\mathrm{H} \psi_{n}(\underline{k}, \underline{x})=\operatorname{En}(\underline{k}) \psi_{n}(\underline{k}, \underline{r}) \quad A 2.2
$$

These Bloch functions are orthonormal in the following sense

$$
\int \psi_{n}^{*}(\underline{k}, \underline{r}) \psi_{m}^{\prime}(\underline{k}, \underline{r}) d^{3} r=\delta_{n m} \delta(\underline{k}-\underline{k}) \quad A 2.3
$$

and tine constitute a complete orthonormal set which may be used as basis functions in expansion of the wave function of the perturbed system A2.1.

$$
\begin{equation*}
\Psi(\underline{r})=\sum_{n} \int_{\text {B. } Z .} g_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r}) d^{3} k \tag{AR. 4}
\end{equation*}
$$

Substituting equation A2.4 into the equation A2.1 and using the equation A .2 one simply gets

$$
\begin{aligned}
& \sum_{n} \int_{\text {B. Z. }} g_{n}(\underline{k}) \operatorname{En}(\underline{k}) \psi_{n}(\underline{k}, \underline{r}) d^{3} k+v \sum_{n} \int g_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r}) d^{3} k \\
& =i \ln \frac{\partial}{\partial t} \sum \int g_{n}(\underline{k}) \psi_{n}(\underline{k}, \underline{r}) d^{3} k
\end{aligned}
$$

5. Kultiplying both sides of this equation by $\psi_{m}^{*}\left(\underline{k}^{\prime}, \underline{r}\right)$ and integra ting over the entire crystal ( or over the unit cell depending on where the Bloch waves are normalized) one gets

$$
\left[E n\left(\underline{k}^{\prime}\right)-i h \frac{\partial}{\partial t}\right] g_{n}\left(\underline{k}^{\prime}\right)+\sum_{n} \int\langle n, \underline{k}| v|m, k\rangle g_{n}(\underline{k}) d^{3} k=0
$$

$$
\text { AR. } 6
$$

This is the crystal momentum representation (C.M.R.) by Adams ${ }^{4}$.
4) See the references in chapter 1 and appendix 1

## 

A variation of crystal romentum representation has been given by Kohn and Luttineer ${ }^{5}$ in 1955 . Finey choose a set of basis functions related to the Bloch functions at a particular $\underline{k}$ point in the band. This point is usually taken to be a minumum or a maximum. If we call such a point $\underline{k}_{0}$ then the basis functions of the Kohn-Luttinger scheme are obtained by,

$$
\begin{aligned}
X_{n}(\underline{k}, \underline{r}) & =\exp \left(i .\left(\underline{k}-\underline{k}_{0}\right) \cdot r\right) \psi_{n}\left(\underline{k}_{0}, \underline{r}\right) & A 2.7 \\
& =\exp (i . \underline{k} \cdot \underline{r}) U_{n}\left(\underline{k}_{0}, \underline{r}\right) & A 2.8
\end{aligned}
$$

Apparently they have the fom of Bloch functions with the exception that $U_{n}\left(\underline{k_{0}}, \underline{r}\right)$ is the periodic part of the bloch function of a particular crystal momentum vector $\underline{k}_{0}$, and the dependence of $\dot{\lambda}(\underline{k}, \underline{r})$ upon $\underline{k}$ lies entirely in the plane wave function.

In order that these functions can be used as an alternative basis their completeness ( and for convenience their orthonormality) has to be verified. In other terms the following has to be proved;
i) in arbitrary function of $\underline{r}$, that can be expanded in terms of Eloch functions can also be expanded in $\chi_{n}(\underline{k}, \underline{r})$ 's
ii) $X_{n}(\underline{k}, \underline{r})$ 's and $X(\underline{k}, \underline{r})$ 's must be orthoconal for $n \neq m$ and $k \neq k^{\prime}$ and each must be square intecrable.

Here, we will avoid the lenghty formulations, however, these can easi ly be proved to be the case (i.e. see Callaway ${ }^{6}$ ).

Now, expanding the solution of equation A2.1 in the Kom Luttinger functions $X_{n}(\underline{k}, \underline{r})$

$$
\Psi(\underline{r})=\sum_{n} \int_{B . z .} C_{n}(\underline{k}) \lambda_{n}(\underline{k}, \underline{r}) d^{3} k \quad \text { R. } \cdot 9
$$

5) J. in. Lutting and \%.Kohn , Phys. Rev. 97, 869(1955)
6) J. Callawoy , Energy Pand Theory , pp.a17, hoanemic Press (1953)

Substitutine this into equation 12.1 , then multiplying both sides of the equation by $\Psi^{*}(r)$, integrating over all crystal and working out the outcominc terms in a similiar way that we have done in the previous sections, one firds the following equation to be solved for the coefficients $\operatorname{Cin}(\underline{k})$ 's.

$$
\begin{array}{r}
{\left[\mathrm{En}+\mathrm{h}^{2} \underline{\underline{k}} / 2 m-i h \frac{\partial}{\partial t}\right] \operatorname{Cm}(\underline{k})+\mathrm{h} \cdot \underline{k} / m \sum_{n} \operatorname{PmnCn}(\underline{k}) \quad \mathrm{A} 2.10} \\
+\sum_{n} \int\langle m, k| V\left|n, k^{\prime}\right\rangle C_{n}\left(k^{\prime}\right) d^{3} k^{\prime}=0 \quad \mathrm{~A} 2.11
\end{array}
$$

where

$$
\operatorname{Imn}=2 \pi^{3} / \Omega \int u_{m}^{*}(\underline{r}) P u_{n}(\underline{r}) d^{3} r, \quad P=h \nabla / i
$$

and

$$
\begin{equation*}
\langle m, \underline{k}| v\left|n, \underline{k^{\prime}}\right\rangle=2 \pi^{3} / \Omega \int \chi_{m}(\underline{k}, \underline{r}) \vee \lambda_{n\left(\underline{k^{\prime}}, \underline{r}\right)}^{\prime} d^{3} r \tag{A2. 13}
\end{equation*}
$$

## a2.4 Whanter peppmematation

In appendix 1 we have mentioned about the possibility of expanding the wave function $\Psi(\underline{r})$ in terms of Wannier functions. In chapter 2 we have also verified the completeness, orthoconality etc. of these functions. Hence, expandinc $\Psi(\underline{r})$ in the Wannier furctions

$$
\begin{equation*}
\Psi(\underline{r})=\sum_{m} \sum_{j} f m\left(\underline{R}_{j}\right) a_{m}\left(\underline{r}-\underline{R}_{j}\right) \tag{A2. 14}
\end{equation*}
$$

where we assume that $a_{m}\left(\underline{r}-\underline{R}_{j}\right)$ 's have been obtained by solving the periodic ( unperturbed) system. Hence, they satisfy

$$
H a_{m}\left(\underline{r}-\mathbb{R}_{-j}\right)=\sum \mathcal{E}_{m}^{0}\left(\underline{R}_{-s}\right) a_{m}\left(\underline{r}-\underline{R}_{j}-\underline{R}_{-s}\right)
$$

s
and

$$
\begin{equation*}
\varepsilon_{m}^{0}\left(\underline{N}_{-3}\right)=\sum_{\underline{k}} \operatorname{En}_{\mathrm{m}}^{0}(\underline{k}) \exp \left(i \cdot \underline{k} \cdot \underline{R}_{s}\right) \tag{A2. 16}
\end{equation*}
$$

where $\mathcal{E}^{0}\left(\mathbb{R}_{s}\right)$ 's and $\operatorname{En}^{\circ}(\underline{k})$ 's represent the unperturbed energy

The present task is to solve the following equation

$$
\begin{equation*}
(I I+v) \Psi(\underline{\Psi})=E \bar{\Psi}(\underline{r}) \tag{A2. 17}
\end{equation*}
$$

where $H$ is the Hamiltonian of a perfect crystal and $V$ is a pertur bation caused by one or another disturbance of the periodic potential ( impuritics, dislocations, external fields, etc.) . Now, substituting equation A2. 14 into equation A2. 17 one gets

$$
\begin{equation*}
H \sum_{n} \sum_{j} f n\left(\underline{R}_{j}\right) a_{n}\left(\underline{r}-\underline{R}_{j}\right)+v \sum \sum f n\left(\underline{R}_{j}\right) a_{n}\left(\underline{r}-\underline{R}_{j}\right)=E \sum \sum f n\left(\underline{R}_{j}\right) a\left(\underline{r}-\mathbb{R}_{j}\right) \tag{A2. 18}
\end{equation*}
$$

multiplyjng both sides of this equation by $\varepsilon_{m}^{*}\left(\underline{\underline{x}}-\underline{R}_{k}\right)$, again integ rating over the entire crystal, and using equation A2.15 one finds

$$
\sum_{n} \sum_{j} \varepsilon_{n m}^{0}\left(R_{-2}-R_{j}\right) f_{n}\left(\underline{R}_{j}\right) \delta_{n n}+\sum_{n} \sum_{j} f n\left(\underline{R}_{j}\right) \operatorname{Vnm}\left(\underline{R}_{k}-R_{j}\right)=E f m\left(\mathbb{R}_{k}\right)
$$

A2. 19

$$
\sum_{j} \varepsilon_{\operatorname{mn}}^{\infty}\left(\underline{R}_{-k}-R_{j}\right) f_{m}\left(\underline{R}_{j}\right)+\sum_{n} \sum_{j} f n\left(\underline{R}_{j}\right) \operatorname{Vnm}\left(R_{-k}-R_{j}\right)=E f_{m}\left(\underline{R}_{k}\right)
$$

A2. 20
The final equation can alternatively be written as

$$
\sum_{y}\left[\varepsilon_{\operatorname{mm}\left(R_{k}-R_{j}\right)}^{0}+\operatorname{Vmn}\left(R_{-k}-R_{j}\right)\right) f_{i m}\left(R_{j}\right)+\sum_{J} \sum_{n} \operatorname{Vnm}\left(R_{-k}-R_{j}\right) f_{n}\left(\mathbb{R}_{j}\right)=E f_{m}\left(P_{-k}\right)
$$

where

$$
\begin{aligned}
& \varepsilon_{m m}^{0}\left(\underline{R}_{k}-\underline{R}_{J}\right)=\left\langle m, \underline{R}_{k}\right| H\left|m, \underline{R}_{J}\right\rangle \\
& \operatorname{Vnm}\left(\underline{R}_{k}-\underline{R}_{J}\right) \quad\left\langle m, \underline{R}_{k}\right| V\left|n, \underline{R}_{J}\right\rangle
\end{aligned}
$$

$$
\text { A2. } 22
$$

$$
\text { A2. } 23
$$

## If instead equation A 2.17 a time dependent Schrodinger eqn.

 is used, i.e.$$
\begin{equation*}
(H+V) \Psi(r)=i h \partial \Psi / \partial t \tag{A 2.24}
\end{equation*}
$$

ti one ends up with the following equation to be solved for the coeffi cients $f m\left(R_{1}\right)$ 's.
$\sum_{y}\left(\varepsilon_{\min }^{0}\left(\underline{R}_{k}-\underline{R}_{j}\right)-\operatorname{ih} \partial / \partial t \delta_{k, j}\right) f_{m}\left(R_{j}\right)+\sum_{n} \sum_{y} \operatorname{Vmin}\left(\mathbb{R}_{k}-R_{j}\right) f_{n}\left(\underline{E}_{j}\right)=0$

These are the ecneral difference equations for $f\left(\underline{\Omega}_{3}\right)$ 's which we have obtained without any approximation . Now, the perturbed energy $E$ on the right and the coefficients $f n\left(R_{g}\right)$ 's remain to be determined (we assune that the periodic problem has already been solved and the perturbation $V$ has been civen explicitly such that $\operatorname{Vmm}\left(R_{-k}-R_{j}\right)$ 's can be determined by equation A2.23)

In general the solution of these difference equations is quite difficult and the applications are limited to a number of relatively simpler problems.

In the next sections we will show how these equations can be put into more practical forms using certain assumptions and approximations.

A2. 6 SLOWHY VARYIYG PETTURBIIG FIELDS (THE FIRST APPROXIMATION)
When the perturbing field $V$ varies very slowly compared with the distance of atomic seperations (or in other words it varies very little over a lencht of several unit cells), then we may regard it as a constant over a part of the crystal (say over a unit cell) of particular interest.

This point may schematically be illustrated as follows,


The slowly varying function $\mathrm{V}(\underline{x})$ is approximated in terms of a steprise function $V\left(\underline{R}_{J}\right)$ where $V\left(\underline{R}_{J}\right)$ is obtained by setting succesively $r=R_{y}$ in the function $V(\underline{x})$

$$
V\left(\underline{R}_{y}\right)=(V(\underline{r}))_{\underline{r}}=\underline{R}_{y} \quad \text { A2.26 }
$$

The difference in taking the stepwise function $V\left(R_{-}\right)$instead the real perturbing field $V(\underset{\sim}{x}$ ) can be illustrated as follows (on the assumption that $V(\underline{r})$ varies linearly)


Clearly the slower the $V(\underline{x})$ varies the smaller is the amplitude of the saw-tooth function and the more justifiable is the approximation.

Then on this assumption(that $V(\underline{x})$ varies slowly)

$$
\begin{aligned}
\operatorname{Vmm}\left(\underline{R}_{k}-R_{j}\right)=\left\langle m, R_{k}\right| V\left|m, \underline{R}_{j}\right\rangle & \cong 0 \text { if } \underline{R}_{j} \neq \underline{R}_{k} \quad A 2.27 \\
& =(V(\underline{r}))<m, R_{\underline{r}}\left|m, \underline{R}_{-k}\right\rangle \text { if } \underline{R}_{-j}=R_{k} \\
& =(V(\underline{r}))_{\underline{r}=R_{k}} \text { if }<m, \underline{R}_{k}\left|m, R_{-k}\right\rangle=1 \\
& =V\left(\underline{R}_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& =\left\langle\mathrm{m}, \mathrm{R}_{-\mathrm{k}}\right| V\left|\mathrm{n}, \mathrm{R}_{-\mathrm{k}}\right\rangle \quad \text { if } \underset{-j}{\mathrm{R}}=\underset{-\mathrm{k}}{\mathrm{R}} \\
& =\operatorname{Vim}(0)
\end{aligned}
$$

lote that, in this case it is not possible to take $V$ out of the intesral since that would neon setting this second order term automatically to zero, i.e. $V<n, r_{k}|n, \underline{k}\rangle=0$

Using equations 42.27 and 42.28 equation $A 2.21$ can now be writ ten as
which is a (molified) difference equation for $f\left(\underline{R}_{j}\right)$ 's .


Now, we will show how this set of difference equations can be reduced to differential foms. The possibility df such a conversion hes furdamentelly been shown by Hannier ${ }^{7}$ (1937) and also has been rediscussed by Slater ${ }^{7}$ (1949) for a particular case where the expansion 12.14 has been restricted to a single band only. The $r$ development has been followed by others ( see the references in appen dix 1)

Here, we will keep the argument more general and give the differential forms for a multiband Hamiltonian first. The first term on the left hand side of equation 12.29 may be rearranged (by defining $R_{-}=\underline{R}_{k}-R_{j}$ ) as follows

$$
\sum_{j} \varepsilon_{m m}^{0}\left(\underline{R}_{k}-\underline{R}_{j}\right) f m\left(\underline{R}_{j}\right)=\sum_{s} \varepsilon_{m m}^{0}\left(\underline{R}_{s}\right) f m\left(\underline{R}_{k}-R_{-s}\right) \quad A 2.30
$$

Bquation 42.29 , can now be written as follows

$$
\begin{aligned}
\sum_{S} \varepsilon_{m m}^{o}\left(\underline{R}_{s}\right) f_{m}\left(\underline{R}_{k}-\underline{R}_{s}\right)+V\left(\underline{R}_{k}\right) f_{m}\left(\underline{R}_{k}\right)+\sum_{\substack{n \\
n \neq m}} \operatorname{vmn}(0) f n\left(\underline{R}_{k}\right)=E f_{m}\left(\underline{R}_{k}\right) \\
A 2.31
\end{aligned}
$$

Let us now exemine the effect of an exponential operator $\exp \left(-R_{s} . \nabla\right)$ on an arbitrary function of $\underline{r}$, say $f(\underline{r})$

$$
\exp \left(-\underline{R}_{s} \cdot \nabla\right) f(\underline{r})=f(\underline{r})-\underline{R}_{s} \cdot \nabla f(\underline{r})+\left(\underline{R}_{s} \cdot \nabla\right)\left(\underline{R}_{s} \cdot \nabla f(\underline{r})\right) / 2-\ldots
$$

7) see the reforences in chapter 1 and appendix 1 .
which is simply the Taylor expansion of the function $f(r)$, hence

$$
\exp \left(-\mathbb{R}_{s} \cdot \nabla\right) f(\underline{r})=f\left(\underline{r}-\underline{R}_{s}\right)
$$

In chapter 2 , we have also shom that $\varepsilon_{\min }^{0}\left(\underline{R}_{5}\right)$ 's are the Fourier coefficients of the unperturbed energy function $\operatorname{Em}(\underline{k})$, hence

$$
\operatorname{Em}(\underline{k})=\sum_{S} \varepsilon_{\mathrm{M}}^{0}\left(\underline{\underline{R}}_{s}\right) \exp \left(-i \cdot \underline{\underline{k}} \cdot \underline{R}_{S}\right) \quad \text { A2.34 }
$$

Now let us define a fundamental operator from $\operatorname{En}(\underline{k})$ by replacing k by $\nabla / i$,

$$
\operatorname{mm}(\nabla / i)=\sum_{S} \varepsilon_{m}^{0}\left(\underline{R}_{S}\right) \exp \left(-\mathbb{R}_{-5} \cdot \nabla\right) \quad A 2.35
$$

when this operates on an arbitrary function $f m(r)$

$$
\operatorname{Em}(\nabla / i) f_{m}(\underline{r})=\sum_{s} \varepsilon_{m}^{0}\left(\underline{R}_{-s}\right) \exp \left(-\underline{R}_{s} \cdot \nabla\right) f_{m}(\underline{r})=\sum_{s} \varepsilon_{m}^{0}\left(\underline{R}_{s}\right) f_{m}\left(\underline{r}-\underline{R}_{s}\right)
$$

Now, comparing the following equation

$$
E m(\nabla / i) f m(\underline{r})+V(\underline{r}) \cdot f m(\underline{r})+\sum_{\substack{n \\ n \neq m}} v_{m i n}^{\prime}(0) f m(\underline{r})=E f m(\underline{r})
$$

with the equation eiven below ( see equation A2. ス1 )

$$
\begin{gathered}
\sum_{S} \varepsilon_{m}\left(R_{-S}\right) f m\left(R_{-k}-R_{-s}\right)+V\left(\mathbb{R}_{-k}\right) f m\left(R_{-k}\right)+\sum_{n} V_{r m}^{\prime}(0) f m\left(\underline{R}_{k}\right)=E f m\left(R_{k}\right) \\
A 2.38
\end{gathered}
$$

vhere the first terms on the left hand side of the equations A2.37 and
A2. 38 are identical by equation 12.36 provided that the arbitrary vector $\underline{R}_{k}$ which eenerates the crystal is replaced by $\underline{x}=\underline{P}_{k}$. Actually what thio implico hac boon dicousced in astail in
the previous sections.

When one also aets $\underline{r}=\underline{R}_{k}$ in the remaining temir of the equation $A 2.37$ the two equations A2. 37 and 42.38 become identical, which proves that the last equation may be repleced by an(equivalent) cifferential equation of the form A2. 37.

To solve this differential equation one has to know the fure tion Em(k) explicitly. Expansions employing quadratic forms have found some useful applications in practice (where the differential operator En $(\nabla / i)$ has been obtained simply by replacing $k_{x}$, $k_{y}$, etc. by $-i \partial / a x$ $-i \partial / \partial y, e t c).$.

A2. 8 THE SRCOND APPROXIMATION, FXPHUSIONS USING WANHIER FUNCTIONS OF A SINGLE BAND ONLY

When one deals with states where energy is snall compared with the seperation of the bands such that

$$
E / \delta E \ll i \quad A 2.39
$$

where F is the energy of the state and $\delta E$ is the seperation of the bands then it can be proved (i.e. see Blount) that it is not necessary to include in A2. 14 Wannier functions of bands other than the one urder consideration. Hence, when an expanston using Wannier functions of a sir.gle bind only is justified, i.e.

$$
\Psi(\underline{x})=\sum f m\left(\underline{R}_{j}\right) a_{m}\left(\underline{r}-\underline{R}_{j}\right) \quad A 2.40
$$

of then the terms (in equations A2.37 and A2.38) containing the inter band interactions vanish, i.e.

$$
\begin{array}{ll}
\sum_{\substack{n \\
n \neq m}} V_{m}^{\prime}(0) f(\underline{r})=0, & \sum V_{m n}^{\prime}(0) f m\left(\underline{R}_{k}\right)=0 \quad A 2.41 \\
n \neq m
\end{array}
$$

to yind tha following simpler get of difference and differentiol equations

$$
\sum \varepsilon_{\mathrm{m}}^{\circ}\left(\underline{R}_{\mathrm{s}}\right) \operatorname{com}^{\prime}\left(R_{k}-R_{-s}\right)+V\left(g_{-k}\right) f_{m}\left(R_{-k}\right)=\mathrm{E} f_{\mathrm{n}}\left(R_{-k}\right) \quad \mathrm{A} 2.42
$$

and

$$
\operatorname{En}(\nabla / i) f m(\underline{x})+V(\underline{x}) f m(\underline{r})=E f m(\underline{r}) \quad A 2.43
$$

These are the forms fundamentally angerested by Winnier ${ }^{7}$ (1937) and used by Slater 7 (1949).

## ACKNOWLFFDGMENTS

I would like to acknowledge gratefully my debt to Prof. Leo Pincherle for his eugeestions and guidance. Thanks are extended to the Director and Staff of the University of London Computer unit for the facilities provided. Thanks are also due to The Scientific and Technical Research Council of Turkey (Ankara) for their part in obtaining financial support.


[^0]:    * Note ; If $L, M, N$ are large then $k$ may be consjdered as a continuus
    

[^1]:    2) The considerations for obtajning the exact (N.F.E.) Wannier (cont.)
[^2]:    3) The approximation in '/einreich's treatment starts here. In order to be able to work out ins integral he considers the mean square extent of the discrete lattice vectors $\underline{R}$ ( i.e. $\left\langle\underline{R}^{2}\right\rangle$ ) instead of the mean sn mare extent of the continuous variable $\underline{r}$.
[^3]:    Table 7

