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ABSTRACT

Ŷ/annier functions provide us with a means for the development 

of rigorous theorems which are analogous to the crude theorems we might 

derive with a tight binding approximation. However, a good and accurate 

Wannier function would be extremely difficult to calculate and its str 

ucture would be quite complicated^^

Excluding calculations obtained using the O.A.O. approximation 

few works exist on the mathematical properties of Wannier functions and 

only very few have been explicitly determined.

The present study attempts to provide a partial solution for this 

situation and seeks to extend the use and knowledge of these functions. 

First, a theoretical investigation is made of the mathematical properties 

of Y/annier functions and then some calculations are carried out to obtain 

some of these functions for various furms of potential fields.

The original results obtained concern;

I ) Free electron Wannier functions for many of the familiar c ry s  

tal types.

II ) A method for obtaining Wannier functions from relatively sim 

pie functions (unperturbed Wannier functions), Ibe method has been appli 

ed to several particular cases (potential field with inversional symmetry 

etc.) and has been modified for other applications,

III ) Nearly free electron Wannier functions calculated both using 

analytical methods and the method outlined in section II •

IV ) The extension of Kohn's one dimensional treatment to three 

dimensions using a nev; approach, '

1 Harrison, W.A.,Solid State Theory, McGraw-Hill,inc.,1970,



V ) The relation, that for weakly bound electrons the rate 

of exponential fall-off of the Wannier functions is given by the 

Fourier coefficients of the perturbing field.

VI ) An analytic method to find the arbitrary phases of the 

Bloch functions which yield the most localized Wannier functions.

VII ) Exact three dimensional Wannier functions for an inter

mediate potential field. The expressions for these functions have 

been given in analytic forms and can be applied by adjustment of 

parameters to similiar problems.

VIII ) Finally, the Wannier functions for tightly bound elec —  

trons for a B.C.C. lattice. The atomic analogy of these functions 

has been discussed including some miscellaneous cases involving 

the presence of different atomic species in a unit cell etc..



CHAPTER I

1. INTRODUCTION
1In 1928 Bloch made the suggestion of approximating the wave 

function of an electron in a given energy hand, by linear combinations 

of atomic orbitals (abbreviated L.C.A.O) which has greatly influenced 

subsequent development of the methods of calculating electronic ener — 

gy levels of solids. f

He was also the first to realize that solutions of Schrbdinger's 

equation for solids (Bloch functions) may be expressed in terms of a 

plane wave modulated by a function U^(k,r) which has the period of the 

lattice (Bloch's theorem), though Floquet in a purely mathematical 

sense had derived such a result much earlier ( for a discussion of 

Floquet's theorem and other related topics see for instance Y/iljon 

Whittaker and Watson^). Both the approximation and the periodicity 

condition for crystal orbitals , through which his name perpetrated 

are a result of the translation symmetry in crystals.

Bloch’s method received immediate applications because there 

were few other methods available at the time and also because of its 

conceptual clarity. However, there was a serious drawback connected 

with the method since the free atomic functions used in the usual 

Bloch summation, though normalized, were not orhogonal; for in real 

crystals the atomic orbitals extended considerable further than the 

interatomic distance hence giving rise to non-zero overlap integrals. ;

1 Bloch, F. Z. physik 52, 555 (l920).
2 Wilson, A.H.jThe Theory of lîetals, 1̂  ed# Camb, Univ. Press, New York(l$;
5 'Abittaker, E.T. and V/atson, G.N., Modem Analysis, Camb. Univ. !

Press , Wev.york (1945)«



Purthennore the wave functions constructed from these non-ortho_T

gonal basis functions were not exact solutions of Schrodinger's

equation for the one electron problem.

The existence of this difficulty was pointed out, soon

after the appearance of Bloch's suggestion, by Slater^(l930),

Yleck and Sherman^(l955)t and Inglis^(l934)*

At first, in the development of the tight binding met

hod all such overlap integrals were ignored, however, in later

years attempts were made to overcome this difficulty either by ta —
7 8king account of nonorthogonality (i.e. see Mulliken et al, Hoffman 

et al, vVohlfartĥ  et al, Coulson^^et al, etc.).or by the construe 

tion of Bloch sums from orthogonalized atomic orbitals. YTe shall 

consider here only the latter method.

In 1936 Landshoff^^worked out an expression for the ortho— 

gonalized atomic orbitals (O.A.O.) using a linear combination of free 

atomic functions, where the coefficients of the expansion were ex

pressed in terms of overlap integrals. This treatment was later on 

reformulated and developed by Ibwdir' (1950) who utilised a matrix 

notation for the cases involving larger overlap integrals. In 1951

4) Slater, J.C. Fhys.Rev, 35,509(1930)
5) Van Yleck, J.H. and Sherman, A. Rev, Mod. Phys. 7,167(1935)
6) Inglis, D.R. Phys. Rev, 46, 135(1934)
7 ) Mulliken,R.S.,Rieke,C,A.,Orloff,D.,and Orloff,K.,J.Chem.Phys,17,12i3
8) Hoffmann,T.A. and Konya,A. J.Chem.Phys.16,1172(1948) (l949)
9) Y.'ohlfarth, E.P. Proc. Phys. Soc, 66a,889(1 953)

10) Coulson, C.A. and Taylor, R. Proc. Phys. Soc. A65,B15(l952)
11) Landshoff,R. Z.Ihys. 102,201(1936)jPhys. Rev. 52,246(1937)
.4 m \ o rm • 4 rr n
I c /  l * v # $  /^JLirjquLCJ o cura v ixu ivoo  ̂ i y 40  #

u) Arkiv Mat. Astron, Pis. vol.A35,no.9(1947);no.50(1948). 
‘'OJ.Chem. Phys. 18,365(1950)*



13Lbwdin used his extended scheme to calculate the energy bands 

for sodium. This treatment was later criticised by Raimes^^(l95^).

In a rigorous study where the crystal wave function was approxima

ted by several Bloch sums of orthogonalized atomic orbitals, Sla

ter and Koster^^(1954) suggested that this scheme would be used as 

an interpolation procedure to obtain additional information about 

energy bands once certain minimum information had been obtained by 

other means.

Thus to recap;

The first approach has the disadvantage of using a 

nonorthogonal and non-complete set of functions (and hence yields 

crystal wave functions which are not exact solutions of the one 

electron Schrodinger equation) and the second method, though ortho — 

gonalized, is only an approximation to the wave function, since in 

an expansion in Landshoff's sense one only considers a finite num

ber of terms (in the general case one also approximates the crystal

wave function by a finite number of Bloch sums of O.A.O.).

A set of basis functions which have the orthogonality (and

completeness) lacking in the atomic orbitals of the tight binding
16scheme was first introduced by V/annier in 1937 which in subsequent 

literature has come to bear his name. The wave functions construe 

ted by linear combinations of V/annier functions are exact solutions

13 Lbwdin, P.O., J. Chem. Phys. I9, .1570-79 (1951)
14 Raimes, S., Proc. Plrys, Soc. A67, 52 (1954)
15 Slater, J.C. and Poster, G.P. Phys. Rev, 94. 1A9B (1954)

16 V/annier, G.K., Phys. Rev, 5 2, 191(1937)



of the one-electron Schrodinger equation. V/e will briefly deli 

neate the properties of this latter representation.

i) V/annier functions are associated with unit cells rat — 

her than atomic centers (and for each unit cell there is only one 

such function).

ii) For each band there is one and only one V/annier func—  

tion (under certain assumptions). Therefore, in expanding an ex —  

act v/ave function associated with a certain band, only a single 

sort of V/annier function is to be used.

These functions which may be approximated by orthogonali—  

zed atomic orbitals in the tight binding scheme are not, in fact, 

generally O.A.O.s as often quoted in the literature. They repre — 

sent a more general class of functions and, as we have shown in 

the text, even in the case of quasi-bound electrons only in spe

cial circumstances are they identical with an O.A.O. . However, 

the analogy is useful for a discussion of the behaviour of V/an — 

nier functions.

V/annier functions are localized; the exact nature of this 

localization is however quite complicated and as we have shown in 

the text the degree of localization will vary with the (arbitrary) 

choice made for the phases of the Bloch functions. However in or 

der to obtain a picture of the behaviour of V/annier functions one 

has to consider them for the limiting cases of bound and free elec. 

trons where in the first case they behave like free atomic func — 

tions and therefore are strongly localized aroimd lattice points



and decrease outwards exponentially, while in the second case 

they behave like sinx/x in each basic direction and therefore oscil—  

late and decrease rather slowly (extending over many unit cells). 

Returning to the historical outline, in his 1937 paper V/annier^^also 

set up an important theorem (known as Wannier's theorem) with the in_ 

tention of using it in the problem of excitons which eventually led 

to the setting up of the roots of the V/annier representation (see ap

pendices 1 and 2), Slater some twelve years later was the first to 

realize this. This development was soon followed with works by

Adams^^*^^*^^*^^(1952-1957) who generalized V/annier's theorem to
22 /take into account transitions between energy bands. Poster (l954), 

Poster and Slater^^’̂ ^^»^^(l954), James^^(l954) ,Friedel^^»^^(l954 ), 

Clcgston^^' *̂̂ (1962), des Cloizeaux^\l 965) and 0 theirs "subsequently

17 Slater, J.C., Phys. Rev. 7 6, 1592 (1949)
18 AdaiTis, E.N.,Phys. Rev, 6 5, 41 (1952)
19 Adorns, E.N.,J. Chem. Phys. 21, 2015 (l953)
20 Adams, E.N., Phys. Rev. 102, 605 (1956)
21 Adams, E,N., Phys. Rev. IO7 , 698 (1957)
22 Poster, G.E., Phys. Rev. 95, 1456 (1954)
25 Poster, G.P.and Slater, J.C. 94, 1592 (1954)
24 Poster, G.P. and Slater, J.C. 95, 1167 (1954)
25 Poster, G.P. and Slater, J.C. 96, 1208 (1954)
26 James, H.M., Phys. Rev. 7 6, 1602 (1954)
27 Friedel, J., Adv. Phys. 5, 446 (1954)
28 Friedel, J., Can. J. Idiys. 54, 1190 (1956)
29 Clogston, A.M. Phys. Rev. 125, 459 (1962)
50 Clogston, A.M. Riys. Rev, I5 6, A1643 (1964)
51 des Cloizeaux, J. Phys. Rev. 129, 554 (1965); 135,A698 (1964)
31A Also see Wolff, P.A, Fhys.Rev. 124, 1050(l96l), Lax,M. Phys.

Rev, 94, 1391 (1954) , and the references given in appendix 5»



enlarged the scope of the V/annier representation.
32In 1952 Slater proved that crystal momentum eigenfunctions 

and y/annier functions are Fourier transforms of each other; obtain^ 

ed explicitly the one dimensional V/annier functions for a cosine 

potential with the use of the momentum eigenfunctions and also indi • 

Gated how his calculations may be extended to a larger number of 

dimensions.
f

This was one of the first calculations involving V/annier func_ 

tions in the presence of a potential field (excluding the approxi_' 

mate approach of the tight binding scheme). His approach however is 

different to that used in the present work.

In 1955 Farzen^^and Koster^^derived independently a diffeu

rent ial equation (equivalent to Schrodinger's equation) as well as

a variational method appropriate to these functions.
55Wainwright and Parzen later in the same year used the vari

ational method to calculate Wannier functions (in one dimension ) 

for a square potential and also for the energy bands of lithium 

(with a/preference towards the use of momentum eigenfunctions). This 

work has been criticised. The variational principle has received 

little application since that time.
56In 1959 Kohn studied the properties of Schrodinger's equaj- 

tion in one dimension in a periodic field with inversion symmetry 

under the assumption of nondegenaracy with emphasis on the nature

52 Slater, J.C., Phys. Rev. 87, 8O7 (1952)
53 Parzen, G.,Phys. Rev. 89, 257 (l953)
54 Koster, G.P., Phys. Rev. 89, 67 (1Q55)
55 V/ainv/right, T., and Parzen, G., Phys. Rev. 92, 1129 (l953)
56 Kohn, V/., Phys. Rev. 115, BO9 (1959)



of the associated Bloch waves and V/annier functions. This was the 

first thorough investigation of the analytic properties of V/annier 

functions. It was shov/n that under the conditions imposed, there is 

one and only one V/annier function vdiich is real and symmetric (or 

antisymmetric) through an appropriate site which falls off exponen

tially with distance (see chapter 7 , where we have proved that

in the presence of a weak field the rate of exponential fall off 

is given by the Fourier coefficients of the applied field).

Inspite of its leading contribution in specifying the na-' 

lure of these functions the approach in this paper was such that, an 

extension to a larger number of dimensions would hardly be possible. 

Also this work did not provide a practical means of choosing'the 

most concentrated V/annier functions in more general circumstances.

The criteria for such a choice came from Weinreich^*^(I965) 

who by means of a variational procedure derived a differential equa

tion solutions of which provided the particular phase functions 

which yield the most localized V/annier functions. This method, how 

ever contains an approximation (see chapter 8 , where we have gi

ven an analytic method to determine the phase functions under discus - 

sion. The method is also particularly useful for understanding the 

behaviour in some particular cases.).

A recent work on the properties of V/annier functions is that 

of Ferreira and Parada^970)who showed that the V/annier functions

37) V/einreich, G., Solids, Elementary Theory for Advanced Students, 

pp. 134., h'iley, New York, 1965*

38) Ferreira, L. . and Parada, N.J., Phys. Hev.B, Vol.2, 1614(1970)*
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calculated by summing Bloch waves obtained point by point by a k.p 

perturbation are the most localized.

For an account of some related topics we refer the reader to 

an extensive review by Blount”̂ (̂l 962)

Further references to be found in the book.

39) Blount, E.I., Solid State Physics I3, 505(1962)
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CHAPTER 2

DEFINITION AND BASIC PROPERTIES OF WANNIER FUNCTIONS

2.1 DEFINITION

Bet ŷ g (k,r) be exact solutions of the one,electron

Schrodinger equation of the crystal potential,then these functions

are orthogonal (and may be normalised by multiplying by a suitable 

constant) in the following sense,

ŷ s(k',r) ĵ t(k,r) d^r = SstS(k - k) 2.1

Whole cr̂ '-stal

Then from those wave ( Bloch ) functions the Wannier function (i.e 
the one for the band and centered at lattice site R^ ) is def_

ined as follows

”'A f
as(r-Rn) = ( jig) / exp(-i.k-Rĵ ) (k,r) d^k

1/ B.z.
= —  f  exp(-tk.Rn) Ÿ  s (k,r)(ZTcft j  - - - - -

B.Z. 2.2
Where,

Jl- is the volume of the unit cell 

and c/̂ /c = c/ J k 2,5

and the integral is carried out over one particular B.Z 

only (i.e for the above case it is carried out over s^^ B.Z only)

The above equation can be put into a more convenient 

form simply by replacing the wave function with the Bloch wave form,

i.e %Q,c)=exp( i k.r) Ug(k,r) 2.4
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Then,
'A .

(r - En) = I exp(l k-(r - R^) Ug(k,r) d^k 2.5
(2 T1 ) ̂ B.-z.

*However, if the crystal considered is not sufficiently large

then the wave vectors k constitute a discrete set of vectors in recip 

rocal space in the following sense

k= (1/l) kjr +(111/11) ky + (n/N) kg 2*6

Where k% , ky , kg are the reciprocal base vectors
L , M , N are no of unit cells in x , y , and z dir_

actions
and 1 , m , n are integers ( 0 —  1 —  L etc) chosen 

such that the vector k always lies in the B.Z. concerned •

Then the Wannier function la given not by integration but 

by the following summation;

r
( r -Rn ) « ( V ) ^  exp ( -i k.Rn) r s(k ,r )

s B.Z. 2.7

Where V= N-L-M and the summation is over all poss_ 

ible k vectors which lie in the B.Z. concerned.

More generally if there are N of these vectors , one

can write
-'/i
1/ .k"

a8 ( r-Rn ) = (N ) 5  exp (-ik-R^) 'fs(k.r)

“  2 .0  
and the Wannier function centered at origin (i.e Rn = 0 ) is

given by
i  'L ^

% ( r ) = (N) ) ^  g (k,r) 2.9
B.2

where in both cases the sum is over N vectors in the B.Z. concerned.

* Note ; If L,M,N are large then k may be considered as a continuas 
function of kvt k.. . k_ (i.r nf  ̂1  \------------- --
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2.2 V/ANNIER FUNCTIONS ARE LOCALIZED FUNCTIONS

A formal proof will not be attempted considering the brief 

introductory nature of this chapter, A long and rigorous discussion 

of this matter can be found in a few articles (i.e see Blount"*), for 

the present purposes this property might be demonstrated qualitatively 

as follows. Let ag(r - Rn) be the V/annier function for the s^^ band 

centered at lattice point Rn , then

ag(r-Rn)= --- ^  exp( i k-(r-Rn)) Ug(k,r) d^k
(Zmr)

2.10

Now consider the amplitude of this V/annier function at a particular 

point, say at r=Ri , then

raa(?i-Rn)= — —  , exp( i k-(Ri-Rn)) Ug(k,_Q d^k

B.x 2.11

How , if h i  " Rnl is large then the exponential term varies

rapidly in k space ( so does the total integrand) and the integral 

value becomes small. However if lEi-Rnl is small then the integrand 

varies less rapidly in k space and the integral may attain a larger 

value.

Hence to conclude this qualitative discussion , Wannier 

functions have their peak at their lattice locations and vanish rapidly

1) Blount, E.I., Solid State Hiysics 15, 505(1962)
2)As will be shown in the later chapters this is not always the case.
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when one moves away from these points.We shall see that a Wannier function

a^(r) decays exponentially if the momentum eigenfunction and its derivati 
ves(for the same hand) are continuous.
2,5 WAhîîIER FUNCTIONS CONSTITUA: A COLN’LNTF ORTHOGONAL SET OF FUNCTIONS 

Let us consider tv/o Wannier functions belonging to bands,

say 8 and t and centered respectively at Rn and R^

+

then we have.
* (oA r  *
as(r-Rn)= -- I exp(i k'.Rn) V̂ s(k',r) d?k'

('27t)̂  ̂ j

B.Z

B.%

Now let us work out the following integral

2.12

y r

^(r_Rm)= — ' / exp( -i.k.Rr,,) Wt(k,r) d^k 2.1J
- - ( 2 n ) %  J

whole. erÿj-̂ (̂
Substituting equations (2,12 ) and (2.13 ) into equation (2.14 )

2.14

f4(r- Rn) a^(r-E^) d’r= ~  ̂ ^-*?n^ Ŷ s(k',r) Tt(k,r) d^k d̂ k'd=
J  h.n)
HfhtU er̂ s4»( 2.15
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Since

° ^ s ( F - R n )  0 - t ( ? - ? m )  d ’r  = —  1 s t  f f e  ^  ( k - k )  d ^ k  d^k'
(,zr)’ J J

2.17

= ̂  1st I e -  k-(&-Bn) 
C21T)’

mn 2.18
W K . l e  c r y s l o l

Hence Y/annier functions belonging to different bands and differ^ 

nt locations are orthogonal. For completeness see sections 2.4 and 2.8.

2,4 THE ONE ELECTRON ELÛCH FUNCTIONS CAN EE OBTAINED FROM THE 

WAIHIIER FUNCTIONS , AND VICE VERSA

A Y/annier function is obtained from the one ele£ 

tron wave function by the following expression ( see section 2.1 ) ,

° - s ( r - ? n ) =  - A L  f g - 1  B ' B n  V ^ s ( k , r )  d ^ k  2.19
(ITT)Vi

s*'’ B.Z,
Multiplying both sides of equation (2.19 ) by exp(i k̂ -Rn) and summing 

over all lattice vectors Rn one gets,

y ê  -'-n ag(r-Rn)= I Te^ V^s(k,r) d^k 2.20
h  ' ■ L

5+''6.-Z

2.21

rn
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In the last equation the sum is over reciprocal lattice vectors

However if we constrain k' to lie in the same band as k 

(i.e in the s^^ band for this case), then the only contribution 

to the sum comes from the zero reciprocal lattice vector, (i.e Kni=0)

Therefore,

h A

y  a s ( r  -R n )=  f^ (k -k ')  % ( k , r )  d ’ k 2 .23

(AN fs(k'.E) 2.24

f s { k , T ) =  —  as(r-Rn) 2 .25
(2-d)’4  L

Hence V/annier functions and one electron wave functions can be obtained

from each other by certain operations. Indeed they are connected to each 

other by means of a linear transformation (unitary).

i.e U a 2.26

where the transformation matrix is given by.

It can easily be shown that Ü is a unitary matrix and m^ing use 

of a fundamental property of unitary matrices (ie ( U ) = U ) .
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Therefore the inverse transformation is given by ,

a ) Y  2.28

*  'where (U ) stands for the complex conjugate transpose of matrix U.

Finally we would like to point out that a unitary transfor_ 

mation preserves lenghts (inner products).

i.e V̂ s(k,r) d r  = d-"r 2.29

J \  all r
Therefore if ^s(k,r) is normalized in the elementary cell

the corresponding Wannier function is normalised in the whole of space.
2.5 WANNIER FUNCTIONS AND MOMENTUM EIGENFUNCTIONS ARE FOURIER 

TRANSFORI.S OF EACH OTHER ̂

Consider the following Wannier function,

an(r-Ri)= exp(-i k-Rj_) Ŷ n(k,r) d^k 2.50

Now expanding the wave function in terms of momentum eigen__

functions

1^n(k,r)= ) yy (k + K^) exp( i( k+Kn)*r)
Kv.

Substituting equation ( 2.51 ) into equation ( 2.50 )

2.51

-'A
- ?i)= (

J KnSince

exp( -i k.Ri) ) I7n(k+Kn) exp(i(k+Kj^)-r) d^k 

K. 2.52

^(k+Kn) exp (i(k +Kn).r -i k Hi) d^k 2.55

2.54

5) This has been first shomi by Slater, see; Slater, J.C.,Phys. Rev. 
87, 607(1952)-
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We can rewrite the exponential tena in the integrand as follows,

exp(i (Mn)-r -i k.Ri ) = exp( i (k + Kn).(r - R^) ) 2.55

Therefore,

- R^)= i j l ^ )  y  / l̂ n(k + K^) exp (i (k + Kĵ ).(r-Ri))d3k

L e . . ,  2-36
Integration over one band and sum over all Kn is equivalent 

to integration over all k space. Therefore,

-  !4
a^(r - Ri)= { I i-̂ 'n(k) exp(i k.(r - Ri)) d^k 2.57

all k
To bring the last expression into a more familiar form consi_ 

der the Wannier function centered at origin.

i.e R^ = 0 

Therefore,

- y J
an( r ) » (j?̂  / Vn( k) exp (i k*r ) d^k 2.58

oil k

Hence Wannier functions are fourier transforms of momentum 

eigenfunctions and vice versa.

2.6 WANNIER FUNCTIONS ARE FUNCTIONS OF DIFFERENCE r-R^

This property of Wannier functions can easily be proved as

follows.

Say,

®n( ?-?i) =( )' M  n(B.j) d^k 2 .39

7 “
n+‘' 6and
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Adding any lattice vector Rm to both r and R^ , 

an( r+Bm -( gi+gm)) k.r+gm) k-(?i+?ra) 2.40

= ( fljiUk.y)  !?■?'» e - i  a ’ k 2,41

= ( yZ. ) / Tn(k,r) e”  ̂ d^k 2.42

&n( r- ?i) 2.43

2 ,7 WARRIER FUllCTIORS OF SAI.!E EAÎID BUT OF DIFFERENT LOCATIONS 

ARE IDENTICAL

This property of V/annier functions is a direct result 

of the proof given in section 2.6 ( See equation 2.43 )
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2.8 SUÎ.MARY

Wannier functions and one electron wave functions are 

connected by a unitary transformation . Wannier functions are four__ 

ier transforms of momentum eigenfunctions. W.F. s being localized 

functions attain their largest amplitudes in the unit cells where 

they are centered and vanish rapidly as one goes off these centres.

If one considers a crystal with N lattice points then 

for each band there are N identical Wannier functions each localised 

at a lattice site. Wannier functions of different bands are not iden_ 

tical in principle.

Wannier functions constitute a complete orthogonal set 

of functions.( To complete the set it is esential to include all 

the Wannier functions from different bands and from different loca_ 

tions). They are functions of difference r-Ri that is why it is 

costumary to write them as, i.e. aĵ ( r-Rĵ )

In general, they have a resemblance to momen.tnm 

eigenfunctions. ( See also comparision with atomic orbitals given 

in the introduction part) Wannier functions being localized at 

lattice points are functions of position vector only, while momentum 

eigenfunctions being localised at reciprocal lattice points are func__ 

tions of crystal momentum vector only.
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CHAFTER 5

THE DIFFERENTIAL EQUATION AND THE VARIATIONAL PRINCIPLE FOR THE 

WANNIER FUNCTIONS

5.1 A DIFFERENTIAL EQUATION FOR THE WANNIER FUNCTION

The Wannier functions in crystals may be defined in terms of a 

differential equation ( see G.F. Foster^ and G. Parzen^ ) which 

is in principle an alternative form of Schrodinger's equation.

This differential equation may easily be obtained as follows; 

Consider the following one electron Schrodinger equation

H  (  k , r )  r  k) Ÿn( 5.1

where )= An . Now expressing EnfA)as a Fourier series

and ^ n ( k j C ^ in terms of Wannier functions

^n(k,r)= ^  a„(r-Rp)exp( ik.Rp) 5.5
p

and substituting .3*2 and 5*3 into 3*1 we get

^2^ ûn (r - 8 p) exp (ik. Bp) -  ̂  ̂  8m) ûn ̂ r- Ba') exp ( i k.( Rj- R rr,))

Now making a fundamental condition that H operates on the position 

vector r only ( i.e H= - ) then multiplying both sides

of the last equation by exp(-i k R̂ ) and integrating over a B.Z. ,

1) Foster, G.F., Phys. Rev. 89, 67(1953)
2) Parzen, G., Phys. Rev. 89, 257(l953)
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H ^ a ^ ( r - R p ) L x p ( i k . ( R p - R „ ) ) d ^ k a„(r.R,-) Axp(i!s.(B3-5m«-Rn')V'k
P J 3 m J ■B.Z. 6.-Z.

5.5

since

J  G x p  ( l'k.( Rp-Rr,))cJ^k = f l  B Spn 3,6
B.'Z.

we have
t

^ On(r-8r,) - 2̂  5.7
m

which may he written more simply ( by letting Bn =  ̂) .̂s follows,

H On ( r ) "= % EnfRmlO-nCr-Bm) 3.8

where as pointed out before En (R̂ ) is the Fourier coefficient 

in the Fourier series of E^( k) and the summation on the right is 

over all lattice vectors .
^n(Rm) can be expressed in terms of Wannier functions simply

by multiplying both sides of the last equation by âp( r-Rm) and in 

tegrating over all r

^ pn ^  P B  m') H Cn(r) 4 3.9

or

- J ' otn(r)cî r 3.10

Nota that there are no matrix elements of the Hamiltonian between
4 f'f' V-, 4- 5

3) This applies when the bands in concern are nondegenerate.



It can be shown that if atoms are well seperated or the Wannier 

functions are strongly localized then they overlap very little, hence 

in the limiting case

H  O n C r l d  r , t O  if R „ = 0  3.11

n  0 I f  Rnr, P 0

Therefore for those isolated atoms the flattened energy levels become

equal to their first fourier coefficients , i.e Eŷ (k)= En(o) and the

Wannier functions become practically identical with the atomic functions

centred at the corresponding lattice sites •
Now instead 3«7 we have ,

H (r - Rm) - 6n(o) (r-R 3.12

where (O) is the n^^ free atomic level.

In general equation 5*7. is not of much practical use 

due to the multiplicity of the terms on the right hand side. However

for mathematical purposes it is still a fundamental equation .
The few applications which have been made so far concern

the variational principle ,



3.2 A VARIATIONAL PROCEDURE
In the previous section we pointed out that equation 3*7

was not of much practical use due to multiplicity of the terms on

the right hand side of the equation. Hence in order to work out this

equation G.F. Foster* and G. Parzen independently suggested a 
ctf

variationAprocedure . Below v,e give a description of this procedure.

To start with we will consider the following integral and 

try to malce it have an extremum.

J = T a f r )  H a ( r )  dr  3. I 3
oil r

subject to the constraints

r  a(r)a(r)Er = I 3*14
r

5.15a ( r ) a ( r — R ^ ' j d r  —  O 

o\i r

which is clearly a calculus of variation problem subject 
to a set of constraints which appear to be in the forms of integrals 

Now to generalize the problem let the Hamiltonian H be 

invariant under some group of translational operations and let T(n) 

be such a translational operator which changes the coordinates r

to r - , then . the constraints 3 .14 and 3*15 may be given

J(r i )  -  Q ( r ) T  ( n )  r)  é r  ~ \ ’.p n = 0 3«l8

_n
ty

oil

~  O  V p * 1 ^ 0

v;here l(n) represents the overlap of two Wannier functions displa

ced by R^ .
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From the fundamental properties of Wannier functions one can easily 

show that

Ja(r)T('n')a(r)dr =J"a(r)Tc’-n)alr)dr 3.1?

therefore we have

rCn) =X(-n) 3.18

Now appliying the method of Lagrangian multipliers to the 

variational problem given by equation 3*13 subject to the modified 

constraints 3*16 and 3.18 the extremum of the integral J is found 

by taking the variation of the following integral

-t- oO

J "  ĵ a( r) H Q(r) — ^ XCn)a( r )Tfn)a (r̂  J dr 3*19

Since \(n) and ]X(-n) correspond to the same constraints (see 

equations 3*17 and 3*18 ) we have

r +  CD

aCrdj^H- 2^ X(n)~r( n) J a(r)dr 3.20

Now taking the variation and equating it to zero

S / Q(r)|^H""2^ACn)TCn)Ja(r)dr — O 3*21
.. n

where the integrand has to satisfy the usual Euler equation , 

which is

- y  &  ^ , = o 3.2:
L  3 -sCDviZ-aXj )
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In the last equation and are the dependent and independent 

variables respectively . p i s  the total integrand given by

p ( r )  = : a ( r ) ^ H — 2 ^  A ( h ) T ( n ) ~ j  a  ( r ) 5.23

However if one considers the usual Hamiltonian operator

H  =  -  +  V  ( r )  2 . 2 4

the integrand p(r) may have an alternative form. This may be 

shown as follows, consider the following

+ FS dx•9X 7)X 5.25

then the first terra on the right hand side vanishes due to large 

integration limits . The integrations for the remaining y and z 

components give similiar contributions , therefore the variational 

integral and it^ integrand may be rewritten

J ^Vu(r) Va(c) 4- VCrla’fr) -2  ̂A(n) a ( rlTCnl Q(r) J d r 3.26

pCr) = Vo.(v:1 V a(r) + V(r) r) — 2^ X(n)a(r1T(n)a(r 5«27

and the }diler equation

at- — ^ 'd *■ __ -a
"d  X ' ô ( - ^ a / ' d x )  " b y  ' © ( ' b a / - D y )  - £ . ( - a  a

O

3.23
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yields

'dF■/ ~  2 V( r ) Q(r) — 2 y X(h) Tfn) a (rl 3,29
/'aa(r) k.

f 5 .50
\  *bci(rD\ j  '2>X\ b x  J 3X

 ̂ 3x /

'9 f "̂ F A _ _ 9  'a^a(r)= - 2  'àlMç/ VJ 5.31

_ ^ (  2F_______ ' ^ - 7  -a^g(c)
2)Z \ "8 ( -SOLlr) ̂

-d-z.
'bz 5 .32

Nov.' substituting 3*29 . , 3«30 , 3«31 , end 3«32 into

3.28 we obtain

. -2 V^CL(r) + ZV(r)-2. V  A(n)T(nla1r) = 0 3.55

1̂ — V  + V( r3 J a(r) = y X(n)T(n')a(r) 3 .34

The last equation may be written more simply by substituting 

H= - V  +V(z) and T(n) a(r) = a( £-Hn) » giving ;

H a(r) - y  X Cn) a( r- g,.,) 5.55

Now comparing this with equation 5*8 we see that

X ( n)=: E ( g ^ ) - T E f k  ) exp (1 k. 5 „)d^k ' 3.3&
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Equation 3«35 can be rewritten in a more general form by apply

ing to either side of the equation another translational operator which

commutes with the Hamiltonian .

However

hence

T”(m)Ha(r)=: HTfni)alr)

=  TA(’n)T(m)T(n')a1r-) 3,37

"TC m) "T( n) o(r) r: a (r — R m -*  ̂ 3*38

H a ( r R  Xfn) a( r— R rn - 8n) • 3*39

3*3 SOI,TE REI.HIRK3 ON THE APPLICATION OF THE VARIATIONAL PRINCIPLE

So far we have dealt with the extrema properties of equ* 
ation 3*13 • However it can be shown that ( See G, Parzen^ ) this

extrema corresponds to a minimum.

Therefore to summarize, the desired solutions of equation 

3*7 are the ones which minimize the integral 3*13 subject to cons 

traints 3*14 and 3*15 * Hence the differential equation given in 

section 3*1 and the variational procedure outlined in section 3*2 

are equivalent in principle ,

Although , in principle one can use either method for cal

culations the variational procedure is more convenient for practi

cal applications .

The constraints 3*14 and 3*15 not involve the or

thogonality of the Tannier functions of different bands , therefore
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the variational procedure that we illustrated in section 2 is good

for calculating the energy levels of the lowest hand only.

If one goes to higher hands then the constraints have 

to be modified in such a way that the new trial function must be 

orthogonal to the V/annier functions of lovær bands.

Hence the variational procedure for the higher bands 

( say for the one ) may be outlined as minimization of the fol

lowing integral

•=■ 3 y H Qm( r)d r 5*40

subject to the following (modified)constraints

I C X r v , ( r ) " r ( ' ^ )  0  por all  n and 5 U / l e r e  5 ^ ^

3.41
r am(rWr = I |p n = 0

J 3.42
= 0 'F

where we assume that one knows the Wannier functions of the lower

( s band ) band .

The general routine may be outlined as follows;

i) One starts by choosing the Wannier functions for the lowest band 

which minimize the integral 3*13 subject to constraints 3*14 and

3.15 *
ii) For the next band one sets up a series of trial functions all 

orthogonal to the 'Wannier functions of the lowest band ( also ortho

gonal to the Wannier functions of the same band but of different

locations) and among them one chooses the one which minimizes the 
n mt pi i’̂tegr?.! «

iii ) For the higher bands one follows a similiar routine.
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Some applications ( one dimensional ) using variational procedures
2 4have been given by G. Parzen and G. Parzen and T. Wainwright,

pThe method has been used by G. Parzen' for calculating the energy 

levels of a one dimensional periodic square potential where the Y/an-—  

nier functions for the lowest band are approximated by free atomic 

wave functions and the trial function for the next band is construe—  

ted from the linear combinations of free atomic wave functions and 

free electron V/annier functions in such a way that it is orthogonal 

to the Y/annier functions of the lower band.

In a later paper by G. Parzen and T. Y/ainwright^the variational 

principle has been used for determining the energy bands of a one dim

ensional cosine potential and and the valence band of Lithium. The choice 

of the trial functions follows a similiar routine to that already 

described .
V/e refer to the papers mentioned above for a detailed discussion 

of the calculations •

In chapters 5 and 6 (vhere we will suggest a different method for 

obtaining the V/annier functions) we will also show how the coeeffi —  

cients associated with the simpler (Y/annier) functions used in cons — 

trueting a Tannier function can be determined.

4) V/ainwright, T., and Parzen, G., Phys. Rev. $2, 1129(1953)
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CHAPTER 4

FREE ELECTRON Y/ANNIER ITOICTIONS CALCULATED FOR SEVERAL CRYSTAL 

TYPES

4.1 GENERAL

As pointed out in chapter 2 the V/annier functions are 

obtained from the one electron wave (Bloch)functions by integrating

them over the relevant Erillouin zones, ^
Hence, the V/annier function for a particular band say 

for the n^^ band is given by.

fCfa„(x,y,z,X,Y,Z) = C I 96%(k^, , x,y,z)exp(-i(k^+k^Yfk^Z))dk^dk^dk,
J j J

nt^B.Z. ' 4-1

where X,Y,Z are the coordinates of the lattice point, where the 

V/annier function is centered.

In practice to work out the above integral one needs 

to know the shape of the Brillouin zone concerned (the region of 

the integration ) and the expression for the wave function.

In the case of free electrons the wave functions have

simple forms therefore the integral for the V/annier function 

becomes comparatively easy to deal with.^However the considera

tions about the choice of the (arbitrary) phases for the v/ave 

functions (which v/e will discuss in detail in the presence of a 

crystal potential in chapters 8 , 9 and appendix 1 ) still

have to be taken into account.^
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If v/e now consider the Wannier function centered at the origin, 

then we need to work out the following integral

a % ( x , y , z )  = C ff j e x p ( i V ^ ( k ^ , k y , k g ) ) e x p ( i ( k ^ + k y ^ k g & ) ) d k ^ d k y d k .

V
n"*̂  ̂B.Z.

4.2

where exp(iV^(kx,ky,kz)) is the arbitrary phase.

i) But,the problem is separable and the arbitrary phase can be

written as ( see chapter 9 )

exp(i^fn(kx,k,kg)) = ^(kx)gn(^)^n(^z) 4.3

where gn(k%) , * and gŷ (kg) are to be chosen as either

even or odd functions of the variables k ,k , and k dependingX y z
upon the particulars of the Brillouin zone (see chapter' 9 )• 

Though in all of the functions, gjj(k̂ ) ,.«etc. we have used a com — 

mon band index n they may indeed be derived from completely 

different bands (i.e. see chapter 9 ).

ii) Also, as it is proved in chapter 8 , if we now let the

functions g^(k^), etc. have constant amplitudes (i.e. like a 

step function ) but still remaining odd or even in character,

î n+1
+a ..........    -fa

-a
-He,

then the resulting V/annier function is the best that one can .

obtain (the most localised). 7 The fundamental difficulties in
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obtaining the expressions for the V/amiier functions have been mainly 

due to;

i) Complicated integration limits arising from the shapes of the 

rel&vant Brillouin zones,

ii) A very large number of terms , mostly complex, arising from the 

partial integrations.

In general, the calculations are quite long and time consuming 

due to the multiplicity of terms involved, Hiis is particularly true 

for the multidimensional cases. Therefore in the calculations the 

general task has been to minimize the labour and the number of terms 

involved. To ensure this the coordinate systems were chosen such that 

maximum use could be made of symmetry considerations.

The first integrations have usually been carried out only in 

a convenient part of the relevant Brillouin zone , then the integra

tions for the remaining zones have been obtained by appropriate coor

dinate transformations through symmetry considerations.

It is not possible to give all the details of the calculations. 

As an example we give the details of the calculations only for the 

first band of a body-centered cubic lattice , whereas for the re —  

maining cases we give the results only.

We extended the case of the square lattice to a rectangular 

one with a variable side ratio in order to generalize the formula—' 

tions for the Wannier functions as much as possible.

The Y/annier functions that are calculated have inversionarï 

symmetry (symmetric or antisymmetric) for the position coordinates 

x,y, and z.
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4,2 ONE DILSNSIONAL LATTICE

-------------------- e'-----------------------<s----------------------,»----------------------------

-2rr/a -Tl/a

a a
(a)
0 +TT/a +2TT/(

rd nd ,3 B.Z, 2 B.Z st 1 B,Z.

(b)
Fig, 4.1 (a) Linear chain of atoms with spacing a

(b) The corresponding reciprocal lattice and the B.Z.’s

The normalised free electron Wannier functions for the above one

dimensional lattice are given by;
l) For the first(ground band) and the subsequent odd numbered 

bands,

ya sin (x - X™) - sin
&n(x =

(q - i)ir,

TT (x - Xjn)

where q (q=1,3,5,7,...**) is the band index 4.4

ii) For the second and the subsequent even numbered bands.

a,(x - r  ) =-i COS H  (x - X^) - c o s ( i ^ ( x  - X^)

where q (q=2,4,6,8,......) is the band index

In both equations X^ ( X^̂ =ma , m= +1, +2, +3,....) is the lattice trans

lation vector pointing the site where the V/annier function is localised.
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4,3 TV/0 DIMENSIONAL LATTICES

4.3.1 RECTANGULAR LATTICE V/ITIÎ a^/ai =n

Fig, 4*2 Rectangular lattice v/ith = n

Belov/, v/e give the corresponding reciprocal lattice and some of the 

B.Z. 's .

k ̂ = +
\ /----

nl< +^(n+-L')

Z2E

asnoL

k̂  =

-2S-a

_r\k)̂ -g Cn + S)

7L
-h-
<X-

— +
2TT
a

Fig. 4,3 Tl'ie first four B.Z’r of a rectangular lattice 

with ^2/ai = nCZl Î P.Z,
nd
2 B.Z. Û 3

rd I--1 th
B.Z. I__I 4 B.Z,
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For simplicity , below we give the expressions for the central ( those 

which are localised at the origin ) V/annier functions only.

If desired, any displaced V/annier function say the one localised at 

lattice site can easily be obtained by replacing the varable r

by r - .
To do so , in the following expressions one has to replace x and y

by X - and y - etc.

The normalised free electron V/annier functions for the first three

bands are given below.
■¥r

The expressions are valid for all rectangular lattices provided that 

one inserts the correct ratio n corresponding to that particular lattice.

For the first band.

L̂ ( n,x,y )= iTrT sinkoX singly
TT

4*6

where n is any positive number

For the second band.

/ \ . ain a 2 ( n , x , y ; = i

y ( c o s ^ o y s i n k o ( l

^  ( - c o s k o x s i n k ç j ^ ) + ^ ( s i n k o ( 1 + 1  / n ^ x - s i n k ^ x c o s k o ^ )
y ( y ^ - x 2 / n 2 )

/ n 2- 1) x + c o s k o ^ s i n k o x ) + ^ ( s i n ^ O y c o s k Q X - s i n ^ ^ O y c o s k o ( l / n 2 - 1 ) x )
x ( y ^ - x V ’n ^ )

where n is any positive number

4.7

* The expression for the third band is valid for n ^  1.5
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4.3.2 PARTICULAR CASE ( n = 1 ) , SQUARE LATTICE

Substituting n= 1 in expressions 4.6 and .4.7 one 

obtains the expressions for the Wannier functions of a square lattice.

This is not permissible- in case of expression 4.8 

since it is valid only for n ^  1.5 • Therefore we had to work out

separately an expression for the Wannier function of the third band

of a square lattice ,
The normalised free electron Wannier functions for the 

first three bands are given below .

For the first band,

4.9
sinkgX sinkoy

where = TT/a

For the second band,

ap(x,y)=i x c o s k ç j X s i n k Q V  4 y  ( s i n k ^ x c o s k o y  -  s i n 2 k g x )

y(x^- ŷ )

ycoskgY sinkoX +x(sinkoy coskox - sin2kov) 

x(y^- x̂ )

4.10

where ko= TT /a

For the third band,

^ : sin k, , y  s i n f k o x  -•sink,..y"r, -----     —
^  L X V

t.! J ... . . 1

- y ^  J

4.11
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4.4 TITREE DIMENSIONAL LATTICES

4.4.1 THE SIMPLE HEXAGONAL LATTICE

Below we give some details of the lattice itself and 

its first Brillouin zone .

C

Fig. 4.4 The simple hexagonal lattice in three dimensions

Tlie lattice points are shovm , marked ® , The lattice constants are

' a ’ and ' c ' ,

4ir

= 0

-0

(a) (t)
Fig. 4.5 a) First Erillouin zone for the simple hexa

gonal lattice. Some points of the reciprocal lattice are shown , marked © . 

The coordinate system ( k^ , k^ , k% axes ) is chosen as shown ,

The zone has as its faces the planes 
- TTkv. + -  = 0 V rv' _I J Cl 3 a

h) plane of the zone.



The free electron Wannier function for the first band of a simple 
hexagonal lattice is given below .

sin z 2T1 2TTcos— y cos— X -COS'— 3 a  3CX.
y sin y -sin

xz

4 .12

where C is a constant .
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4.4.2 CLOSED-PACIŒD HEXAGONAL LATTICE

Fig. 4*6 The closed-packed hexagonal lattice

Ihis closed-packed structure having hexagonal symmotr}'" is one of the 

two ways of arranging equivalent spheres in a regular array to minimize 

the interstitial volume. ( The other one is face-centered cubic with 

cubic symmetry ).

In the basal plane each sphere is in contact with six others. How 

being different from the simple hexagonal lattice a second similiar 

layer is packed on top of this by placing each sphere in contact with 

three spheres of the bottom plane ( see the figure above ).

The closed packed hexagonal lattice has the same recipro — 

cal lattice and Erillouin zones as a simple hexagonal lattice, except 

that this tinn the ratio c/a ( c and a being the lattice cons

tants ) must have a particular value which is ,

equation

-1 = 7 —  = 1.6330 or ^=1/—  ^

If we substitute 4.13 into 4.12

4 .1 5

we obtain the

4 .1 4

ai( )=C ! E J
/  ' I  ■2 / _  \xzv y - %/) ;

. O T T  . 9 T T  ^y s i n — y  s i n - ^ x - - - cos~^y cos-^lx V3a 3cx -cosZiTCxl a I

which is the free electron Wannier function for the first band of a 

closed-packed hexagonal lattice , ( Where C is a constant . )
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4,4.3 TIIE SIMPLE CUBIC LATTICE

2Tt

ü ..

Fig. 4 .7 First and second Brillouin zones of a simple ciiBic

lattice. The second zone is bet?;een the cube and the dodecaedron.

_ 2tt

Fig. 4 ,8 The usual integration can be carried out at once
over the partial zone shovm above . The free electron V.'annier 
function for the second band is constructed by considering five 

similiar contributions
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Tîie normalized free electron V/annier functions for the first two 

bands are given below,

i) For the first band,

3/2Ur -R ) = ^ sink^(z-Z^) 4.15

where k^= rr/a

ii) For the second band ( for simplicity we let R = 0 ),
4.16

/ \ . Ca (x,y,z) = 1  —
xy

(z-x)(sink (z+x)sink y)+y(cos2k z-cosk (z+x)cosk y) 

(z-x)2-y2

(z+x)(sink (z-x)sink y)+y(cos2k z-cosk (z-x)cosk y) • ' '___ o ____o  o_____ o  o

+i
yz

/ \2 2 (z+x) -y

(x-y)(sink (x+y)sink z)+z(cos2k x-cosk (x+y)cosk z) \ J / \ o o o o o, \2 2 (x-y) -z

(x+y)(sinko(x-y)sinkoZ)+z(cos2koX-cosko(x-y)coskoZ)

+i £
zx

(x+y)^-z^

(y-z)(sink^(y+z)8ink^x)+x(cos2k^y-cosk^(y+z)coskox)

2 2(y-z) -X

(y+z)(sink (y-z)sink x)+x(cos2k y-cosk (y-z)cosk x) -   O  o  ̂ o o o

(y+z)^-x^

where k^=Tr/a , C =â ^̂ /rr̂
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Fig. 4 ,9 Firnt Brillonin zone for the face-centered cubic
lattice . Some points of the reciprocal lattice are shovm* marked 

The zone is a tnmcated octahedron. The six square faces have the 

equations

+7T/a ky= + 7T/a k,=- ÎTT/;

The eight hexagonal faces have the equations

+ k + k T k  = 37T/2a
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The free electron Y/annier function for the first band of a face-cen

tered cubic lattice is given bŷ

aj(x,y,z)=

( / -^)(y-x)

cos-H^ X ( y sinkoy+zsinkoz)+xsin^2x(coskoy+cosko% )

cos— y ( z sinkoz -txsinkox)+ys5n— y (coskgZ+coskox) 
2 2

/ 2 \ (z- x)(z -X }

: os — z ( X  s i n k g X  + y s i n k o y ) + z s i n h p z  ( c o s k o +  c o s k ^ y )  
2 2

YiTiere kg =TT/a 
and C is a constant

4.17

1) See Pincherle, L, ,Electronic Energy Bands in Solids, p. 65, 

Lend on, Macdonald (1971)
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4.4.5 1'IIE BCDY-CEIITERED CUBIC LATTICE

In this section as an example we will give briefly the details 
of the calculations . Similiar arguments were used in the remaining sec

tions (Also see section 4.1 for the choice of the arbitrary phases)

+ 6T.CL

Fig. 4.10 The first Brillouin zone for the B.C.C lattice

The following knowledge is relevant to the future calculations

i) The zone has 12 equal faces in forms of rhombus with acute angles
-, 1 ^^ = 70.5 27T /- 2TT

2xTanj^ = 7 0 .5

ii) Four faces intersect at -------- »   ( 0,-f 1 , 0 } »a 3- &
iii) Three faces intersect at 21] (+1»+1,+l)

2a

> 2TL(0,0, + 1)

iV ) The equations of the faces are given in detail on the next page
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I

A

z  **

%- CL

Fig. 4.11 The , ky and the ky, kg planes of the
zone ( The shaded part shovai above makes l/4 of the total zone)

The coordinate system is chosen as shown above to make most out of 

the symmetry considerations •

Tlie usual integration will be first carried over the partial 

zone ( shaded ) shown above • The contributions of the remaining 

regions can be obtained by appropriate coordinate transformations 

due to symmetry considerations.
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The equation of the planes A-| and Ap is k^=
2TTThe equations of the planes B-j and B2 is kg = - — +kx

The contribution of the first partial zone ( the prism bounded by plane 

A1 at top and by plane B̂  at bottom , see fig. 4 .11) is

- X  t=-l
-e.

The contribution of the second partial zone ( the prism bounded by 

planes A^ and Bp , see Fig, 4 .11 ) is ,

a. 4 .19

Carrying out the relevant integrations in equations 4.18 and 4 ,19  

and then summing up and simplifying the results we obtain

Z ,  *  % 2  =  2  [  « x p ( ’ \ Wj, +-2 ' ) )4- exp Cl k f - x + y  +  ̂ i)) -  ( e x p ( -  » 2 W.X ) +- f.ATp {1 2 k „ -z ) }^

i 2

2- Cexp («■ x)4- exp f-12-k^) - (<yp ( <ko{ x+y-%j ■+ exp f ik„ Cx-y - ' j

i 2 [
4.20

Contribution of the fifth and sixth partial zones can be obtained

from equation 4 .2 0 by the following transformation

X "— X
Hence, vie have
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x̂p(ik̂ (-K~'̂  +%)) + eKp(i'k̂  X 1 %)) - ( exp {- iik̂ Kj-f-cxpf i zk,‘7.))']

2  [ € x p  C- 12-kj, x) 4- e x p  (- I —  ( exp( 1 (— % -»-y-z)-t- e x p ( - i k , ( x  + ^ +'^-) )~]

,'%[(x-z;''-/]
4.21

Suraming up the equations 4.20 and 4.21 we find the following

'Z X "Z. 5 \ A kjj X ^ S S V q "Z. —  Cc> s ^

+ (x%-z!̂ -v̂ )̂ s;/\k̂ -z_ (̂ Coik̂ X Cosk^^”

4.22

which is the total contribution of the partial zones 1,2,5» and 6

( see the figure below )

Now it is clear that the contribution of the remaining partial zones 

( the partial zones 3»4,7» and 8 ) can be obtained from equation 

by the following transformation

X *  ^ ^  A
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Hence we have

[( 2v̂ -z. s \ A ko V f (jo^k^X G&sko-z.- CoS <(,'4 )

-4- (- x V  v̂ ‘̂ 4  -Z^j 6 (  A k q % (  Cos k ^ u  U> 5 k^  X -  C o ik ^ ^ ' j

4.23

Siun of the equations 4,22 and 4,25 yields us the total V/annier 

function v.hûch is

1( x,y,% ) / 2. 2 ï Y  , X r l| x -  y  4 2  J - m X  %.J
2x2 s in kox( coskoy coskoz -cosk^x)

4  ( X  -r z — y  )sinkoZ (coskoX cosk.

/ * % .l-x -y t-z; -- _%1"J
2yzs in k  y ( coskqx ccskoz-coskoy)

{ -  X 4y^42^) sink^z (coskoy coskoX -coskoz ) I
J

4.24

Q— If/a an,
constant .
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CHAPTER 5
A PERTURBATION iMîHTIlGD FOR W/JPRISR FUI'nCÎTONS

Below we suggest a perturbation method appropriate to Wannier 

functions,

5.1. THE PERTURBATION iZTNOD IN THE GENERAL CASE

Suppose that an unperturbed system in the Wannier representa

tion is given by,

H** a ^ C r - ^  5.1
R.

where *t' and • R ’ are the band and the localization indices of— m
the ĥ annier functions.

Now let us assume that a small perturbation H’ has been app —

lied to the systein ( a general discussion of time - dependent

(independent) perturbation theory m^y be found in a number of places in

modern literature, see for instance Palgamo, a] and Morse, P.M.
2and Peshbach, II, )

Hence,

( U ° *  H ) (r-R^- ip) 5,2
S"

where ( C" ̂  and ^  (^a) the s^ligèly perturbed

Wannier functions and the energy fourier coefficients.

Now let us expand the perturbed Y/annier function in terms 

of a complete set of orthonormal functions made up of unperturbed 

Y/annier functions from different bands and locations.

1) Lalgamo, A. Quantum Tlieoi’y, vol. 1 , chap.5— 8,Academic press 

New York and London, (edited by D.R. Bates) 1961 .

2) Morse, P.M. and Peshbach,H. , Methods of Theoretical Physics, 
Mc[m'aw-hill, New York, 195). ________ __
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<  (r- ?.) = W  Q  <(:- R.- R'l 5.3
S  g p

At this stage one can make the following points about the last 

expression,

i) If H* is small, then the perturbed Wannier function is only 

slightly different from the corresponding unperturbed Wannier function .

0-t (l- Ça.) ̂  Cf- 5 .4

Hence equation 5 ,3 may be rewritten as follows by letting 

the coefficient C.̂ (o) = 1 •

/

< (r- R A  " } c A 4  8-- 5 .5
s Rp

where the prime on the summation notation denotes that the

simultaneous values of s = t and R = 0 is not included in the-P
summation.

ii) The perturbed Wannier function must be normalized.

Consider;
\

1 «X® C r-R^-Rç) 1 J V
y

4(( r Ad. r S Rç . AWr
1

=  ' + i c g y r  5.6

=  M  6 - i
In general when is small , then we have  ̂ ,

z
therefore ( Rp') | is negligible compared with unity ,
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The last steps in equation 5 .6 is valid if,

i) the series | + \ C ^ [ ^ ^ ) \ is convergent. To ensure this

we must have,

5.7

ii) However ,remembering that all of the terms in the series are 

positive and that the sura converges to a positive number we see

that Cg(Rp) must converge to zero for large s and R

5 .0

Now let us assume that the perturbed energy Fourier coefficient 

with the correction to the first order is given by,

5 .9

Substituting equations 5*5 &nd 5*9 - into equation

5 .2  and letting R^ = 0 for simplicity ( This is permissible as R 

is an arbitrary lattice vector ) we get ,
m

C h R , ) a « ( r - y
5 Rp

5 .10r fe (R + 6  (R J ra; ( r . V [ n  (e,') aV( -  e ...-g,)li_L 
s R,
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Neglecting second order terms v/e get,

W “a;(rj -4- H° ̂  ̂  cygp) <  (r-Rp) + - V
S Rp

I

\ 0 / \+

R„ 5.11
The first terms on the right and left hand sides cancel since

they are equal to each other by equation 5.1 , therefore we have

H  a ° f ( r )  H- H Q(R,)a“ ( r. gp) ^  
5 Rp

^  I

l e i  M  [ g d  a ;  ^ <  I r -

Rn J- Rp R, 5.12— ^ 
Now multiplying both sides of equation 5.12 by (r-

and integrating over all M space

I

(r- 1-1 ( r] 4- ̂  ^ (Çp) (r- -Rp)

oM r  ̂fp a# r

f  i ̂ 4  y j C s i  Çp) (r - R w f  0-5 ( 1  - g w - f p )
R a  ^ gf J r

[f - o 4. (  r  _ g a) 6̂  r . 5.15
g  A cd£. r

It can easily be shown that the unperturbed Hamiltonian does not 

have matrix elements between the Y/annier functions of different bands^^

gUllv^ a. ti. V C  y Vi iC A  C  J. C  J. C  ,

2A) See section 5*1
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/ ^ ( r - P f ) K p )
C  5.1/1

and from the orthogonality of Wannier functions we have

J (r . a°3 (r_ _ Rp") cj3r- C ^
oMC

Hence equation 5*13 can be written as
/

5.15
9.1 6..̂ + Ap

q ( r A  L s

^  5 . 1 6

Note that the matrix elements of H ̂  ( 4he perturbing potential

between the unperturbed Wannier functions of different bands gener-- 

ally do not vanish.

Now considering the effects of the Kronecker’s deltas in the 

summations equation 5*16 can be simplified to the following form.

f  a \  ( r - H d v  + J  ( T-v-

I

~  y  f - 4  C T ^ ( R f )  +
%  ~ 5.17

where as before q is the index of an arbitrary band, When q 

is compared with the index of a particular band say t . we have 

two possibilities, i) q = t ii) q / t
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i) Consider the first case q = t , 

equation 5 «17 ' becomes;

f r _  <  (r)j3r -t- ^ ( R p ) ^  (

5.18

5Ptherefore

R^) =. J  a.^ ("r . H 'a°̂  (  r )  JS

A c  ' 5.19
which is the first order correction to the energy Fourier coefficient.

Therefore the perturbed energy Fourier coefficient is given

by

=  1~) + / <  ( r - H V ^ ( r )  d V
cJl r

ii) Consider now the second case q / t , 

we have ( Using equation 5*19 )

5.20

or, R
-  y Cq^(Rç)

yO<j^(Rf) R VO - R p')'~| —
Ç,

5.22
throuah which we can obtain the coefficients of the expansion for the 

perturbed Wannier function ( See equation 5.5 ).
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Equation 5*22 can be worked out as follows;

For any particular band under consideration say the q^^ band the 

summation over N values of lattice vector R  ̂ yields only one 

inhomogenous linear equation in N unknowns which are ( R 

Now assigning N different values to the arbitrary lattice vector R w ,  

one gets a set of N inhomogenous equations in N unknowns .

The equations when written out for one dimension have the 
following form,

. N

5-23

Now we can write this system of linear equations in terms of 

of matrices,

5.24
where

fo) " 6^(4 

El(4-6;W

5.25
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’ Q  CO ’

C q k )

Cq_(2o.) 11
1
11
I

L solution of equation 5.24 for

5.26

e s IS

well known and can be written in terras of determinants (if E is a 

nonsingular matrix )

m—0,1,$# #,n 5.27

The numerators in this expression are the determinants of 

(n+1)X(n+1) matrices formed from E by replacing the m column with 

column of H's .

NOT?; Further remarks on the matrix structures are possible , i.e. Let 

us recall equation

= y t'k e.'
- i t ,  X,

5.28

5.29
thwhere the summation is over the t B.Z only.

Now let us assume that the B.Z under consideration has inversion

Kj/iiie Lry fur * k ' , Lhun equalion 5.2ÿ can be rewritten as,
3) In sec.5.5 we have shown that for a 3 dim. crystal with inversional sym 

metry, these coefficients are related to each other by
Cq(^) = y<Cq(-E,„)

where /U is either +1 or -1 (also see chap. 6)
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Eut from time reversal . we have

k.X,
5 .30

Therefore

5.31

( - ^ 4 ~  y  '̂ k ^ “ £ 4. ( ^ 4  5 .32
k

As a consequence of equation 5*32 the coefficient matrix 

E= becomes a symmetric matrix ( Cij=eji for all i and j )

and is given by

5 .33
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5.2 TUS PERTURBATION Î.STHOD IN TUS CAS S WHERE TUE WANNIER FUNCTIONS 

HAVE SMALL OVERLAP

If the Wannier functions are strongly localized or if tlie atoms 

in the lattice are well separated then the Y/annier functions concerned 

may not overlap appreciably.

The general perturbation equations developed in section 5*1 

then simplify.

Consider the general expression given by equation 5*22

Rp 5 .34

where Ruj is an arbitrary lattice vector. Let us also recall

the system of linear equations in terms of matrices which are obtained

from equation 5*54

E C = R 5.35
Now following the above assumptions ( i.e , the atoms are well 

separated etc, ) the energy bands under consideration will become so 

narrow ( Very close to a free atomic energy level ) that in the following 

equation

E<^fh)=^y e ■ 5 . 3 5

R.
only the first Fourier coefficient will be appreciably different from 

zero, in other terms

V  0  if" = o 

o if 0
also,

5 .3 7
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E: if Rp - R w
5.38

if VJ

Now let us consider the terms on the right hand side of equation

5 ,34  which are given by,

^  H Gk'^Cr) c/̂r- 5.39
o M j r  *

Since the Wannier functions do not overlap appreciably y/e have

=  0

if R w  ~ 0  

if EvxjiO
5.40

Considering equations 5.36 , 5*37 t 5.38 , and 5 .3 9 the

matrices E and II (see equations 5.25 and 5.26) will now have the 

following forms

eVo)- z \ [ o ) O

5.41

J

R'a4-(o)

U
I I

It
o
a 5 .4 2

Io
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Hence we see that for this particular case the coefficient matrix E 

becomes dlagonalized and in the matrix H all elements except the first 

have vanished,

V/e can now write the coefficient matrix E as follows

F  = C G\Co)3 . I - c<.X 5.43

where I is an n/. n unitary matrix . Substituting 5.43 into

5.34 we obtain

but

C  = H

Now writing out the last expression,

1^4 (o)- £q(o)^

Cpo)

cp?,) 0

Gil-")
1 —

0
1
1
p

5.44

5.45

5.46

5.47

we find
Cq_ ( 0 n=|,

5.48
and recalling that the perturbed V/annier function was given 

by the following expansion ( See equation 5 ,5 )

at (r_ rP) = a°p fr- R.V.V y  y Co( g h  fkgU” 5.49
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Substituting the equations ̂  5»43 1 into equation 5.49 we

find the following final expression for the perturbed Wannier function,

L  L ^ { o ) ~  £ ^ ( o )

( i/t) 5.50
Hence , for this particular case in the expansion

of the perturbed V/annier functions one has to include unperturbed Wannier 

functions from different bands only,

REf.IARK ; For a qualitative verification of the results given by 

5 .50 . consider the case of tightly bound electrons for which the

V/annier functions are given by atomic orbitals. Any small perturbation 

applied to the system would favour a perturbed function(which resembles 

the original unperturbed functicn)which does not oscillate at distant 

cells. Hence , an expansion for the perturbed function which avoids 

using V/annier functions from different locations ensures the above 
condition ,
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5.3 Tira PERTURBATION METHOD IN THE CASE WHERE THE PERTURBING * 

POTENTIAL HAS INVERSION SYl.UHSTRY

If we now assume that both the crystal and the perturbing 

potential has a center of symmetry (say at r=0), then the associa-" 

ted (perturbed) Wannier functions will also have inversion symmet-— 

ry about the same point (see chapter 7 )• Therefore if we consi

der the first (ground) and the subsequent odd numbered bands the 

associated Y/annier functions (perturbed or unperturbed) are symmet

ric in the sense,
Q° (-r) = ot(-Hr) , G^(-r) - t .. 5,51

If we impose these conditions on the expression (which we 

y have written in a form convenient for the present discussion) gi

ven for the above perturbed V/annier function,

Gs("o) O - j C - r ) g p )  ûyf-r-Çp) +2!£̂ Cy(-Pp)c>.j (-r+ Rp") + .. .. 5*52
3 P 5 -p

— Gj(Rp1aPg(r-Rp)-+^X 4-6 p) + . . . •
s s  p s - p

Tlie first terms (on both sides) cancel, the second terms

however are equal in the sense,

<lsCo) a%(’-r) ̂ Q(o)a°j(r) 5.53
and yield C^(0) =0 for s = even (since, a°(r) for this choice is

antisymmetric and not zero for all r) and C^(o) p 0 for s = odd.

Finally for the remaining terms of equation 5«52 we can

write the following (since the unperturbed V/annier functions in-

-eoncem are functions of difference only, see chapter 2)

6-3 (■*■ Bp) (-r-Rf) = Cj (- Rp) •?p)
or 5.54

C ;  ( 4 g p )  Q j - ( - r +  B p )  = G s ( - R p ”)  C i j ( r - R p )



67

which through similiar arguments yield

C (+R ) = - C (-R ) for 8 = even s —p , s —p

Ĉ (-fHp) = C^(-Rp) for s = odd 5.55

In chapter 7 we have also shorn that as a result of time rever " 

sal ŝ TTCnetry the'Cannier functions can be chosen as either real or pu

re imaginary. In the present discussion we have started with a symmet' 

ric (and real) perturbed V/annier function,therefore, in expanding this 

function the coefficients Cg(Rp)'s associated with the unperturbed Wan — 

nier functions of even numbered bands (pure imaginary) are to be chosen 

pure imaginary^in order to end up with a real functior^ Therefore con

dition 5*55 could also be written as

C (+R ) = C^(-R ) for 8 = even 5.56s' -p s' -p

Hence to summarize; symmetry in the applied potential (provided that 

the crystal has a center of inversion ) has the following implications 

on the choice of the coefficients C^(Rp)’s for;

a) The perturbed Wannier function of ar^ odd numbered band

c: (0) / 0

Cg(0) . 0

= C%(-Rp)

for s=odd is real)

5.57

for s=even (c is imaginary)

b) The perturbed Wannier function of an even numbered band

for s=odd (c is imaginary)

5.58

C (o) = 0 s' '

Cg(0) / 0
n ( xx> \ ( \i \■ ''s' Up/ '

for s=even (c is real)

Similar proofs follow for coefficients associated with the second (or 

higher) order corrections.
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5.4 SECOND ORDER CORRECTIONS

In the previous sections the effect of the perturbative 

potential Il(r) in the Hamiltonian operator for crystals on both 

the V/annier functions end eigenenergy Fourier coefficients has 

been obtained to the first order, which are

+ < -t, h ’\-t,0> 5.59
/

n  — R r r ^ ' ) =  O L ^ C r -  R m )  - t - X  ?  C j  C R  p )  ( r -  R p )  5 . 6 0" 5 p
where the coefficients 8^(Hp)'s are to be obtained through the fol— ' 

lowing set of linear simultaneous equations (see equation 5*22 )

^  -  R p )  — Efj ( R w "  =  ^ 5 ^ ( Bv,) 5»61

where ^tt(K -R_) and 6‘*ss(R -R ) as usual stand for the unperturbed —w —p —w —p
eigenenergy Fourier coefficients

i.e. (Rvj- Rp)=:< , etc. 5 .62

and Cst(R^) is an (interband) matrix element of the perturbative 

potential which is given as

( G-) = < s, Rxx, \ 5 .63

Tî e second order corrections to the Wannier functions and 

the fourier coefficients of the energy can be obtained in a way si-̂ ' 

miliar to that followed in the previous sections (by using the first 

order solutions). If we now denote these second order terms as fol

lows ( R m) 5. 64
5.65

S p » p

then substitute equations 5 .6 4 and 5 ,6 5 i%to equation 5 .2  

and let R^ = 0 (for simplicity), we get
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 ̂ ? s f

~~T. C ^-tCR f r - Ç ^ )  + ^  Cj  ( ( . r - R « ^  -  5 * 6 6
« p

or (by neglecting third and higher order terms)

H%;(r;v CXRp)oij(c-Rp)'^ HT I  6jfRfdo°rr_Rp) f
S p ' P

+ H %  W +  w'l[C/Rf)a%(r- RpJ 5.67i r

m yr\ s f

+ ll l£l<R^)Bs(!^i‘X ( r - 5 - . - S f )  -^1
m s p 

•"if
The first terms on the right and left hand sides cancel since they 

are equal to each other by equation 5*1 * Now, multiplying both 

sides of the last equation by |̂ â (r-R̂  ̂and integrating over all r 

space (and also using the orthogonality of the Y/annier functions ) 

we get
l i  C,(e,) i,f,e;(R„-Rf) fir B,(K,) S,j t°(R.-R,) •/- 4t< R-)* U  fç„- R,) =^ f  ̂f 5 P

ZZr ?̂p) ̂ 9$ p T L Ï  8̂e) Sn̂ +̂p>
»t s p «  f  p ^

 ̂S'̂) (S(̂) Ï n tn-fp '*' *̂  ̂ 5* 68
rn j  p Ml

which yields; i) for q=t

(8n- Sf>) * T  £\( B n - ^ e )  ■*■ ( Rn) •*■ t-ï. C^( f̂ p) ( R a ~ Rf) Z=

1 (̂-t(8e) ̂ USn-Re) * 6 *  f t p )  ) + f L x  f  R . )   ̂ £  C . f « h  f  ̂  f »?. _  + f'l(R.)

5.69
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or

e " ( R„) - IICjCRpUhCR.-Çp^-^CtCBpl^hBn-Bf) 5.70
S p p

Note that the coefficients C^(H^ ) * 3 for 0 ( we have C_̂ (o) = 1 )

which were not determined in section 5.1 do not appear in the'last 

expression = C . ( ( B.-8p) 5.71
TT ^ PHence, the perturbed eigenenergy Fourier coefficients to the

second order are thoroughly determined and given bŷ  5*72
!

£^(R„') =  <  +<-t,R„|H'lt,o> + n Q ( R p ) < i , R „ l H ’l t,Rp>

v/here C^(R^)* s are to be obtained from the usual set of^linear eqs.

ii) for q / t 5*73

^ C<jfRp')£®( R̂ - Rp] + Bn) +

z ̂  Rp)C^(Rf ) 4- + O •»-E £t C<5̂CiSp) ♦ O
or  ̂  ̂ ^

£ Bj{ Bp)C E%,(SA- Bf )- t (RA-Bf)-
+ C sĈ f) £ (Rrv- Sp) — ̂  iBp) 8f)

The first two terms on the r.h.s, of*the last equation cancel

by equation 5*61 , therefore v;e have ^ .P • /4

The right hand side of the last equation involve only the first
4order corrections which are readily obtained (in the previous sections) 

Therefore, if v/e now assume that p  (H*,R̂ ,q,t) is obtained from the 

first order corrections mentioned above as follows^

p ( ^ j  9,f) = Bp)“^C.jCRf)Et(Rn- R?)
5 p p

----------------------------- 5.75

4 ) In the part of the equation mentioned vie have multiplication 

of two such first order terms, therefore the magnitude of the ex ̂  

pression is secojid order,

5 ) Using equation 5.71 the expression for /S(H,R^,q,t) can alter 

natively Le gxVcii. cxa ^
P ( (Bm) (R-'-Rp)-

Iv/here  ̂t(R -R ) ' and t t(R ) are the first and second order cor-- -p -n
rections to the eigenenergy Fourier coefficients.
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then, to find the second order corrections to the Wannier function 

one has to solve the following set of linear simultaneous equations

1 -prh',8n,%t) 5.77

in a way similiar to that followed in the previous sections.

The perturbed V.'ftnnier function to the second order is now gi

ven by  ̂ 5*78

S P s Ÿ

The higher order corrections to the eigenenergj'- Fourier coef —  

ficients and the V.'annier functions can be found in a similiar way.
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CHAFTÎ'P. é

NEARLY FRiæ ELECTRON V/ANNIER FUNCTIONS BY THE PERTURBATION LSTHOD 

THAT V.T: HAVE SUGGESTED

6.1 INTRODUCTION

In chapter 5 we have suggested a perturbation method approp—- 

rrate to Wannier functions. Now v/e will use the method to calculate the 

lowest Yfannier function of the one dimensional crystal given in 

chapter nine. ( Tlie deviation of the higher band Vi'annier functions 

from those of free electrons looks insignificant.)

The purpose of the present calculations is, first, to give 

an application of the method and secondly to deduce certain remarks 

about its'feacibilty and the accuracy by comparing the Y/annier func —  
tion hence obtained with the exact Wannier function obtained by direct 
calculations.

The crystal model (one dmensional) is similiar to that as

sumed in section 9*4 ( see fig.9* ) • Hence , the perturbing potential

is a periodic square potential with a small magnitude ( = 0.10 a.u.)

and the atoms are separated from each other by a distance a = 2.0 a.u. 

Therefore the unperturbed system is represented by the Wannier functions 

corresponding to zero potential V(x)= 0 , ( free electron Wannier func

tions). It can easily be observed that these (free electron) Wannier furic- 

tions overlap appreciably, therefore referring to what we have said 

in chapter 5 ('"action 5* 1 ) ^6 have to use the following set of linear 

equations in order to obtain the coefficients of the expansion ( ^q(^p) 

for the perturbed Wannier function.

I '̂ q(Xp)
P

e > w - V -

The perturbed V/enm’er fu-ne+ion will then bc given by the fel —- 

lowing expression ( See chapter 5),
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4  (x - - 4( X- °r( Xp) - X^) 2
r,P

In this particular problem we are interested in finding 

the Wannier function of the ground band only , therefore we have 

t = 1 , and also , for simplicity we will let = 0 ( this means

that we will be calculating the Wannier function centered at the 

origin ) •

Hence, we will solve the following set of linear equations 

c^( Xp) 's

P

C{Xp) M \ - X p ) -  A(x,-Xp) = E / x  J

and then using these coefficients we will set up the following 

linear combination of the unperturbed Wannier functions ( belonging 

to different bands and locations )

a^( x) « a^(x ) + I C^(Xp) a°(x - Xp)

r,p

to obtain an expression for the perturbed Wannier function.

In order to solve the set of equations given by equation 

we need to Icnow

i) unperturbed ( free electron) energy Fourier coefficients^ 

^ q(^"* ^p) * 8

ii) the matrix elements of the perturbing potential between 

the Wannier functions of the unperturbed system .
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The perturbative potential that v/e consider has inversion 

symmetry through the origin which implies that (see chapter 7) 

the perturbed Wannier function v/ill also have inversion symmetry 

through the same point. In section 6.5 . in calculating the coeffi

cients C^(Xp)’s these restrictions will be taken into account.

In the following sections we will first calculate the unper

turbed energy Fourier coefficients and also obtain several matrix 

elements of the perturbative potential between the Wannier functions 

of different locations and bands.

In the next tables we give the results only.
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6,2 Ul'IPERTÜRBlH) (FREE ELECTRON) ENERGY FOURIER COEFFICIENTS AND

WANNIER FUNCTIONS (NOlU.tALIZED )
Below in tables 6,1 and 6,2 we quote the results only;

UNPERTURBED (FREE ELECTRON) ENERGY FOURIER COEFFICIENTS

band

2
cos(k-Xp) dk

X = 0P X = +2P X = +4 P X . +6P X = +8P X = +2nP

q = 1 7T/12 -1/2 +1/8 -1/18 +1/52
(-iF
2n2

q » 2 +7 7tV i 2 +3/2 +1/8 +1/6 +1 /52
2-(-1)
2n2

q = 5 +197tV i2 -5/2 +1/8 -10/56 +1/52 5(-d-2
2n2

q = 4 +37rrVl2 +7/2 +1/8 +7/18 +1/52
4-3(-1)"
2n2

q = 5 +61 U/12 etc.

Table 6,1 (above) Tabic 6.2 (below)

NORMALIZED, Ul̂ FERTURBED (FREE ELECTRON ) WANNIER FUNCTIONS '

a°(x -Xw) = (l/\/2) -Xy.)) -3in(((g_ -l)r/2)(x -X„))
 ̂ --Xv,)/2

where q = 1»3»5»7»*»*»* the band index

a°(x -X, )=-i(l/\/2) -X,„))-co3(((q -1)tt/2)( x  -Xw))
n(x -X,,)/2

where q =2,4»6,8,.... is the band index

In both equations ( X,^=0,+2,+4,T6,,., ) is the localization site
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6.5 iVuYTlîIX ELE:;iENT3 of the FERTURBATr/E POTENTIAL

Below, in tables 6 .5 , 6 .4 , and 6 .5 we have tabulated the matrix 

elements of the perturbative potential within each unit cell. V/e give 

only the results of the calculation, q again is the band index.

^ q1(0)=C / aB(x)v(x)a^(x) dx
iLk:

1®Vit Cell -5.840

2^^ Unit Cell -0 .179

+0 .290

-0 .195

Unit Cell -0 .126 -0.018

4^^ Unit Cell -0.045 -0 .025

th
5 Unit Cell -0.054 -0 .0065

Total 0.0000 —6*224 0.00000 +0.047

Total considerin 
constant of integ 
ration

0.00000 -0.05112 0.00000 +0.00025

Table 6.5 Matrix elements of the perturbing potential between the 

V/annier functions centered at the same lattice point ( X^ = 0 ) .

The matrix elements in the cells marked (.....) are non—zero. However^ 

we have not bothered to write them since their total effect is identi 

cally zero.

** Approximate contributions of the remaining cells are also inc/luded,
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6.4 CALCULATION OF THE COEFFICIENTS C (X )’sg p
In the previous pages we have obtained the necessary infor

mation ( the matrix elements of the perturbing potential, etc.)

for calculating the coefficients C (X )*s.q P
Now using equation 1 and the arguments given in section 

5*3 we can write at once;

1) for q = 2,4*6,8,....etc,
5

' t  Cg ( + ^ ) —  (sy+sj — E g U W I  'C.. ..

C g  A j f  E, + Cg f ° (e) _ (f°(4-q)-£®(P^U

■f ^ i C ^ - ‘ i ) [ £ ^ ( - z ) - S l h ) - ( £ ^ , ( 4 ( ) - £ t ( * 0 ) ' ] - i -   ......

Cgfo^ 4- C g  C+l}£f °(+2j - E (£°tH'*)“ Eg(+^jfJ

+ e ’c»)-E| rej-(cp+gj-.E-gC+ajnv. ...=E,g(+i
2) for q = 3,5*7,"...etc.

6

*h£̂ (+2.3-*

f re; + (> r+g)jf--------- e|^c+<
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Now y/e will start by determining these coefficients. iLe 

precision of the solutions for C^(Xp)'s will normally depend 

on the number of the terms ( on the dimensions of the coeffi

cient matrices ) that one considers in equations 5 and 6

For the present purposes we found it sufficient enough 

to deal with 3X3 matrices • Actually it has been observed 

that ( i.e. see tables 6,3 , 6,4 , and 6,5 ) the coefficients

C^(Xp)'s converges rapidly to zero for only fev/ higher values 

of q or Xp as claimed in chapter 5 * therefore to consider—

even larger matrices than v/hat we intend to use does not alter 

the present results by any appreciable amount.

how using the above arguments and the tables given 

in the previous pages the sets of equations 5 and 6 

can be written in the following matrix forms,

i) for q =2

-o.5A^ 0 0 Cg(0)
—

0
-2.0 - 0 . 5 n -16/9 CjC+s) -20,1x10^1 7
0 -16/9 2-8.5/ !cg(+4) -20.13*10^

ii) for q =3

iii) for q «=4

-1.5n^ +4.00 0 G^(0) -31.12x10^

+2.0 +20/9 C^(+2) — -1 .03 y 10^

0 +20/9 +0 .5 0 y 10^

-3.0 ^ ^ 0 0 ^4(0) 0
-4.00 -3.0/ï̂ -32/9 : (+2) -3.89x1Ô^i

0 -32/9 -3.0?f c (+4) +0.04x10̂ 1
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Solving the last three equations for the (nine) unknown 

coefficients and obtaining the remaining ones (those asso 

ciated with negative lattice vectors) through the arguments 

given in section 5*5 we have set up the following table.

The coefficients (weights) to be associated with 

each unperturbed Wennier function (from which the perturbed 

Wannier function is constructed) are shown.

Xp —4*0 - 2.0 + 2.0 +4.0
^ -
1 - 1.0 - -

2 +3.0x10^1 -3.0y10^i 0 +3.0x10^1 -3,0y10^i

3 +0.022x10^ +0.372X10  ̂ +2.2x10^ +0.372x10^ +0.022X10^

4 +0.018x10^1 -0.134x10^1 0 +0.134X10^1 -0.018X10^

Table 6.6 The calculated values of C (X )'s .

6.5 THE PHHTUTîKT) WAIHIIER FUNCTION

Using the coefficients in table 6.6 the perturbed Wannier 

function for the lov/est band is now given by,

aî[’(x )  = a g x )  + 5 .0 x 1 o h (  a ° (x + 2 )  - a ° ( x - 2 ) )  + 3 .0 x 1 ô h ( a ° ( x - 4 ) - a ° ( x + 4 ) )

4 2 , 2 x 1 ô h , ( x ) + 0 . 5 7 2 X 1 ô k a j ( x - 2 ) + a j ( x + 2 ) ) + 0 . 0 2 2 X lô k a j ( x - 4 ) + a j ( x + 4 ) )

+ 0 .1 3 4 x 1 ô h (  a , (x + 2 )  - a ^ ( x - 2 ) )  +0.018x1Ô^( a ^ ( x - 4 ) -  a ^ (x + 4 ))

(10)
In the last equation the calculated values of C^(X^)'s provi—

Lfid us with the combinations a°(x-Xp) - a°(x+Xp) for the bands



( q a 2,4,6,8,*,.. etc.) v/ith antisymmetric Vfennier functions 

and a^(x-Xp) + a^Cx+X^) 's for the bands ( q = 1,3,5,7,..etc.) 

with symmetric V.'annier functions v/hich are all even functions 

of X. This final point fulfils the requirement that the per— "

. turbed ground band V.'annier function for this problem should be 

symmetric about x=0 .

Some of the expansion coefficients that we have used on 

the right hand side of equation 10 are pure imaginary ,how 

ever this creates no problem since the unperturbed Wannier 

functions associated with these coefficients are also pure 

imaginary ( see Tables 6.4 and 6.5 ). Hence the perturbed Wan— '

nier function obtained through equation 10 is real, as it 

should be expected to be so for the lowest band.

Also, due to the signs of the calculated C^(Xp)'s,the 

combinations of the Wannier functions^used in expanding the per— - 

turbed V/annier function (see equation 10),are such as to reduce 

the spread of the (original) free electron V/annier function] The 

situation has been illustrated in figure 6.1,

1 ) This point is in agreement with the fact that the N.P.E. Wan —

nier function is (in general) more localized (in other terms has

less mean square spread) than the free electron V/annior fnnct.ion

(see, cb;apters 7 and 8)
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6.6 COI.ÎPARISON WITH THE EXACT WANNIER FUÎ CTIGN

Helov/ v/e compare the V/annier function that v/e have calculated
2le exact '/annier function.

Wan.Func.for a weakly bound elec.
X F.E. Wan. î\inc. (EXACT W.F.) (BY perturbation)

0.00 0.70710 0.71299 0 .71209

0.10 0.70410 0.70987 O.7O83I
0 .2 0 O.695/I2 0 .70075 0 .69912

0 .3 0 0.68112 0.68440  ̂0 .68402

0 .4 0 0.66138 0.66187 0 .66352

0 .5 0 0.63651 0 .63354 0 .65745
0 .6 0 0 .60686 0.60680 0.60682
0.80 0.53504 0.55227 0.55357

1.00 0.45003 0.44208 0.44799
1.20 0.35664 0.34770 0.35466
1.40 0.26001 0.25110 0.25030
1.60 O.I6525 0.15498 0 .16569
2.00 0.00000 -0.01903 -0.00300

Table 6,7 Free and nearly free electron V/annier functions (both func 
tions are normalized).

a(x)

u .c.
+4+20 +1

Fig.6.1 Free electron Wannier function

Nearly free electron Wannier function (not

to the scale).

2) Tiie considerations for obtaining the exact (N.F.E.) Wannier (cent.)
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6.7 DISCUSSION OF ras RESULTS

The N.F.E. Wannier functions that we have calculated (using 

two different methods being exact and approximate) deviate 

from the free electron ones in a similar way. The agreement is par — -

- ticularly good within the central unit cell where the Wannier func

tion is localized. This is due to the fact that the terms

(Xp)a^(x-X^) ’s associated with the(only) undetermined coeffi—

cients C,(X ), X / 0 in the series 4 have zero effect in the vi—
' P  P

cinity of the origin (in central cell) since a^(x-X^)=0 for x=0 .

The agreement is comparatively not so good, i.e. within the second 

cell for the reasons outlined above. However, in a problem where 

the Wannier functions do not spread out so far (unlike the pre—

- sent case of free electrons) this would not be the case (see secti-—  

on 5*2). The latter case would also simplify the present calculations.

cont. 2) function are similiar to those given in chapter 9» However, the

present case is comparatively more complicated for*, in obtaining , 

the ground band Wannier function the total integration (of the wave 

functions over the B.Z. concerned) had to be carried out as two par —

' tial integrations, one over the states with corresponding eigenval

ues less than the applied potential and one over the states with cor

responding eigenvalues larger than the applied potential. Also we 

had to carry out the calculations and the computational works with 

V/ a much higher precision than the previous cases, since both the app

lied potential and the deviation of the perturbed Wannier function 

from that of the free electron were very small.
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It has also been observed that the second order corrections would 

considerably improve the present results (especially those at point: 

outside the central unit cell)
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CHAPTER 7

MISCELLANEOUS PROPERTIES OP WANNIER FUNCTIONS

In the first chapter we have given the basic properties of 
Wannier functions such as orthogonality, localizations, etc. Most of 

these properties arise from the basic definition of the functions them

selves and hold true regardless of any restrictive condition, i.e. type 

of crystal symmetry etc.

However^bringing in some restrictive conditions such as assuming 

that the crystal under consideration has inversional symmetry etc,forces 

Wannier functions to have some particular shapes and properties.

In the follov/ing sections we will be particularly interested in the sha 

pes and properties of Wannier functions for a crystal field with inver_ 

sional symmetry. In handling each problem the particular conditions as 

sumed will be mentioned in detail.

Most of these properties were studied in detail by Kohn in a 

remarkable article. However the proofs given by Kohn^are based upon one 

dimensional arguments and can not be so easily generalized to three dim—  

'V ensions.( also see Weinr&ch^ and des Cloizeaux^^ and Blount^^ )

Most of the proofs that are given in this chapter are rewrit 

ten and sometimes use completely different approaches and methods ( i.e 

case of exponential fall-off of Wannier functions in three dimensions). 

Further all proofs that are given are generalized to three dimensions.

In the last section a small contribution has been made to 

Kphn’s one dimensional argument and it has been shown that for weakly

bound electrons the exponential decay of the Wannier functions can be 

expressed through the Fourier coeffcients of the perturbing potential.

1 ) Kohn, W., Fliys. Rev. 115» 809 (1959)
2) Weinreich, G., Solids, Elementary Theory for Advanced Students, 

pp. 127.» Wiley, New York, 1965*
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7 .1  REALITY OF V/ANNIER FUNCTIONS

Consider the following one electron (time independent ) 

Schrddinger equation which is a second order, linear ,

H ( r )  t i Cf)=C- &  7^+ V(r)] % k (r) = To ft) t CO
V • 1 •

homogenous,differential equation with a real operator and real parameters 

( eigenvalues). Now , by writing its solutions in Bloch wave forms, subs_ 

tituting them into the equation, taking it’s complex conjugate, and compa

ring the outcoming form with that of equation 7.1.1 where wave vector k

is replaced by -k , one can easily verify that*

£  ( ~ k )  =  E  ( k )  7 . 1 . 2  *

c u t i f r )  7 . 1 . 3

where U  ̂ ( r ) is the periodic part of the Bloch wave and C is a cons —  

tant with modulus one .
Equation "7.1.5 may alternatively be written ( by multiply

ing both sides of equation by exp( -ik-r ) ) as follows

^ / r )  = c y r j  ^

Now assume that the constant C in expressions 7.1.5 and

7.1.4 is adjusted to be unity then instead these expressions we will have

' J _ ^ ( c )  ^  U * ( r )  7.1.5

' £ k  ( r ) = ^  7.1.6

* )rhis condition is known as time reversal symmetry and it follows whet

her the point group contains inversion or not , in other terms it holds 

true immaterial of the crystal sjanmeti'y.
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The V/annier function for the n^^ band which is centered at the origin 

(R=0 ) is defined as follows

a. (r) =  ^  </'„t r-r)

where the sum is over all possible k vectors in the n^^ B.Z.

Now let us divide the B.Z. concerned into two subregions 

where one contains vectors of the sort +k only and the other contains 

vectors of the sort -k only then equation 7.1.7 may be rev/ritten as

a j c )  =  ^  'C'nk(c)  +

+ k - k
(over 4ig vectors (over -k vectors

of n^^ zone only ) of n^^zone only)

Now we will impose one more condition; that the B.Z. under consideration 

j  has inversional symetry for k , Therefore to every vector +k there cor 

responds a vector with opposite sign ( i.e. -k ) .

Hence , the equation 7.1.8 can be rev/ritten as

a n C r J =  ^  (  K k ( r ) - f - Y „ - k  ( c ) ^  '̂ •■'•9

Now considering expression 7.1.6 which states that

Ek,o(î:) = Y*u(r) 7.1.10

and substituting it into equation 7.1.9 » we have

2A) des Cloizeaux, J. Phys, Rev. 155 » A690(l964)

2B) .ulount, li. I., bo lid state physics 15 , 505 (1962)
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4- V'*1, (rjj= 2 l.l.ll

4  '
where the right hand side of equation is a real function of r .

In general the Bloch wave being a complex function can be

seperated into its real and imaginary parts •

i.e.

( K r )  yf) 7.1.12

then, the Wannier function related is given by the following expression

ar,Cr')-^12.^^(l<,r)=r reaV
+ HNote that if the constant C in expressions 7.1.3 and 7.1.4 is adjusted

to be -1 then the outcoming Wannier function is pure imaginary.

7.2 SYÎ.ÏÏ.7ETRY AÎTD ANTISYlllDTRY OF V/AJRÎIER FUNCTIONS

In addition to the above considerations if the crystal has 

an inversional symetry, 

i.e.

l/cr; = V f - r )  7.2.1

then similarly one can verify the following

4— r ̂ * 11 /. \ 7.2.2

Again assuming that C is adjusted to be unity,then we have
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and

4  ( - r )  = K  ( 4 c )  7.2.5

Now referring to the previous arguments and satisfying the condition that 
the B.Z. under consideration has inversional symetry ^then

+ k

By taking complex conjugates of Both sides equation 7*2.5 can he written 

as follov/3

iff
K k ( - r ) = Y „ , ( 4 r )  7 . 2 . 8

Substituting equations 7.2.5 and 7.2.8 into equation 7.2.7» we get

n ( - i - r ) - h  ^ n k ( + r ) )  1*2.9

7.2.10 

or simply

which means that the resulting Wannier function is symmetric (and real)
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However if C is taken to be -1 in equations 7.1.5 and 7.1.4  

then instead of equation 7.1.6 v/e have

Vlk (r ) - - 7 .2 .1 2

also

% ( - > ■ ) = v7Cr) ' 7.2 .13

using the last two identities, equation 7.2 .6 is then giv^n by^

(-rj + ViK(-r))

■hk

=  [ I ' t 'E o  -  I 'kC t ) )

or simply = -^2 Im f i , ( r ]

7 .2 .15
Q(-r')—  - aCr)

Therefore ̂ the resulting V/annier function is antisymmetric (and pure 

imaginary).
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7.3 EXPOIffiNTIAL PALL OFF OF V/ANÎIIER FUNCTIONS IN THREE DIMENSIONS 

Below we will give an original approach to the problem 

by employing momentum eigenfunctions. The usefulness of this treat

ment is that , first it generalizes the problem into three dimen 

sions and secondly it allows qualitative discussion of the behavio —  

ur of the Y/annier functions at large distances from the point at 

which they are centered.

The V/annier function for an arbitrary band is given

a { r )  -  f l ^  j u ( k )  E  7,3.1

a\\. k
Multiplying both sides of equation 7.3.1 by an arbitrary power of

say r^ we get

=  f  e ' - - - 7.3.2
B
>11 k

 ̂ 7.3.3
In general we can v/rite the following; 7 3 4

V4fu(k)e‘--) = U(E Vf e^- - v"'e
ik.1e

+ ( p ) v J ’u ( k ) V ; ' V - +  . . . . . ^
/'-P I'k.C ̂IV.. 171^) V

Intermediate terms on the right hand side of equation 7.3*4 (those 

with binomial coefficients ( !̂ ) ( )̂ , etc.) may be written as

.Epp. rVipn+.PT* 9 .
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% ;  L/(k) v j  Vk. (v(k) v j "  e ' k )  V k e ' - " -

U  K i y ( \ s w r \ ’^ ' 7 -  ^ 7 v ( ^ w r ' 7 - - 7

V ’ u(k) V j ' V  -'- =: ... e+c. +  e'-'-

e-tc........  7*3.5
Now using equations 7.3*4 and 7*3*5 we can write the following^

>-'(k) Vfc -e' - e' iy(k)-+ vT(uCl<)e''^-)

% ( u ( k ) v r ' U k V , -- )
............. e-Vc.

7 .3*6
Converting the volume integral given by 7*3*3 to & surface integral 
with radius k = oO and assuming that

Lim l 7 ( k ) « 0  7.3.7
k — oo

integrals of all the terms on the right hand side of equation 7.3.6 

vanish except the first one . Tlierefore we have

r " a ( r ) =  -( o'jlj j -e’ v j  y  (k)d^k 7 .3 .8

aVV k
Now let us define a function g ( r ) as follows

n - 14
'âC::) = r V ( r )  = - b ) y i y  I

then ,

6

7 .3 .9

cxvv V  7 .3 .1 0

4) In equation 7.3.6 we have not bothered to write down the ma.gni—"

tudes of the outcoming coefficients a,, a2, â , etc. since volume in 

tegrals of all these terms will vanish,as explained in the later para- 

graplis .
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therefore

/

2.fl ~^ ( r )  =  (-') Jl 6
:r ( k- k') n

7.3.11

U

S  / / / S  (  ^ 1< )  V  k VJ( k )  V ;^  17*( k )d5 Wd’ k r

or

o \ \  r

gCr) l^dV =  I a(r)|^d^r ̂  V^i^Ck)!

oil r all k

7.3.12

Provided that the function ( k.) may be normalized ( this

means that the right hand side of the equation 7.3.12 is finite) so 

may the function g( r).

That means

Lira g(r) = 0
r ——^ e>0

7 .3.13

or recalling

therefore

g(r) = r^ a(r) 7 .3 .14

Lira r a(r) = 0 

r — ^ co
7 .3 .15

which means that the Wannier functions fall off faster than any finite 

power of position vector r , hence they fall off exponentially at 

large r .
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/

7.4 DISCUSSION OF THE ASYî.îPTOTIC BEHAVIOR

For free electrons momentum eigenfunctions are stepwise 

functions and are not differentiable everywhere and the integral on 

the right hand side of equation 7«3.12can easily shown to be divergent. 

Hence,

Dim (r^ a(r)) = oo 7.4.1
r ——>■ cxD f

therefore the free electron Wannier functions do not fall off exponentially.

However if any small perturbing potential is applied to

these free electrons ( and provided that, the band in concern is non- 
degenerate ) then the momentum eigenfunctions become differentiable(i.e.

n times ) everywhere and the integral given by equation becomes a proper

integral and attains a finite value , therefore

Lim(r a(r)) = 0 7.4.2
r — oo

which implies that , any small field applied to the free electron Wannier 

functions ( which fall off as c  ̂ ) make them fall off exponentially. 

The above argument is valid for a potential of any magnitude (non zero).

The case of a Wannier function for a degenerate band is however 

more complicated^since degeneracy generally implies discontinuity in Vn(k) 

as a function of k,and each particular case has to be treated separately. 

In the following sections we shall try to say something about 

the rate of exponential decay.

5) Dix, B. Phys. Status Solidi (Germany) Vol. 44, No 1, p.411-24 (1971)
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7.5 rate of EXPONENTIAL DECAY OF WANNIER FUNCTIONS IN THREE DDaSIONS

Delow. we suggest an approach to this prob

lem in 3 dim,̂ . To determine the rate of exponential decay of T̂ annier

functions in three dimensions consider the average value of exp(h*r)-n-
( where h^ is a constant vector in k space related to the nth

band in a particular way ) with respect to the Wannier function of 
ththe n band ,

Then ,

where

o-n (r) = / C b) -e 7.5.2

therefore -

7 .5 .3I ̂' T (  k ' - k - l b n )

7 .5 .4

=  [ j  ^  C k ' - k - c b n ) d 3 k d = k '

' 7 .5 .5

<( e == y  ( k)  H,  ( k + i bv, ) d^k 

aW U 7"5.é

6) It is not necessarj’’ to consider the constants of integrations for 

the proof given in this section, therefore all numerical constants 

of the integrations have been ignored.
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This shows that

al l  r

O L n ( r I  e ■ ' d ^ r  —  1 1 % ^  ( b )  V n C k  +  'b-^l

7 .5.7

Now if v/e assume that ( the momentun eigenfunction for the n^^

band) treated as a function of the complex variable k can be extended into 

the complex space as far as i. <5*̂ , then the integral

u, (k + - 7 .5 .8

Oil k

is convergent if is less than the radius of convergence of the power 

series expansion of V^(k)in the complex k space .

Hence

I (f)l e'^'c/îj: — - Fmi-te :,?..5.9 
oI{  r

— kr. r
which means that Wannier functions fall off exponentially at least as e  ̂

From the arguments above we can come to the following important 

conclusions;

1 ) ■ Any small potential applied to free electrons by produ

cing forbidden energy gaps extends the v/ave functions or momentum 
eigenfunctions (also see sections 7.6 and7*7)^^4o the complex k space

as far as i 6"̂  where n refers to the index of the particular band

under consideration. Therefore as proved above the V/annier functions fall

off exponentially at least as e  ̂" where we have, -bzi 4=

2) The maximum possible rate of fall off of Wannier functions is there
_ Çfn ^ I

fore, given by " where this time we have, n _ Or^
2 '4
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Note that Wannier functions can^pot fall off faster than this limiting 

value for if integral given by equation 7 ,5 ,7 is no longer

convergent.

In section7* 7  we shall prove that for weakly bound electrons 

in the one dimensional case h n  can be expressed through the Fourier

coefficients of the perturbing potential •
In general however for multdrdimensional crystals extensions

into the complex k space are quite complicated and difficult to deal with

, so in *chapter eight^^ a method will be suggested to obtain directly

the Wannier functions with maximum possible rates of exponential fall off 

( the most localized Wannier functions ) •

7 .6  RATE OF EXPONENTIAL DECAY OF WÆNNIER FUNCTIONS IN ONE DIMENSION
Kohn in a paper mentioned previously suggests that, for a one 

dimensional crystal under the assumptions that the bands in question are 

nondegenerate and the potential has a centre of inversion, the rate of

exponential decay of the Wannier function of a particular band ( say 

the n^^ one) can be obtained from the Kramers plot as follows;

Let

- C o s  ^  7 .6.1

where k is not neccessarily real, and consider some 

particular points in the complex k plane 

i.e.

a m 7 .6 .2

m e n  the amplitudes of the Kramer’s function at these 

particular points are given by
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f  y^g_5

therefore the ^n 's which Kohn shows to he the coefficients of the expo

nential decay can he obtained from the Kramer's function by the following 

relation

-f Co^U“ ' 7.6.4

From the last expression it is apparent that 's are largest ( i.e. cor 

responding to highest possible rate of exponential decay) at the points 

where *s corresponds to the peaks of the function. We may also add

that in order to know the s we need to know the Kramer's function exp* 

licitly.

As it is apparent from expression 7 .6.4 ,the higher the value 

of the potential , the larger will be the coefficients of exponential 

decay.

We have also

. bIrn b  ̂  ^ O  7 .6 ,5

n — ► LoLrge

which means that the Wannier functions for higher bands fall off more 

slowly than those of the lower bands and for sufficiently large 

values of n the Wannier functions of these higher bands resemble those 

for free electrons. As a particular example consider the case of free

electrons, for which we have j'(W) ^  + \ , then it can easily

oe shown that , we have In̂ - O for all n , which implies that no

Wannier function falls off exponpntipiiir.
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Fig, 7.6,1 -T(l) represented as a function of complex
I TT * Lvariable k . Note that the peaks of the function corresponds to —  +-( n

and the function tends to be tangent to ^ axises for large n.

The allowed and forbidden regions are shown in the figure.
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7.7 FOR V/EAKLY BOUÎID ELECTRONS EXPONENTIAL DECAY IS GIVEN BY THE 

FOURIER COEFFICIENTS OF THE PERTURBING POTENTIAL

In this section we will prove by extending Kohn’s one

dimensional argument that for weakly bound electrons the exponential 
decay of Wannier functions is given by the fourier coefficients of the

perturbing potential.

Consider the following Kramer's plot where the regions

jj(E)|^| correspond to forbidden values of E which are the usual energy

gaps. Now j

1) As it is well known , for weakly bound electrons these gaps 

can be proved to be equal to twice the fourier coefficients of the per

turbing potential ( n gap being given by the n^^ Fourier coefficient)

2) Further for weakly bound electrons the function ̂  slightly

exceeds jT = 1 hence has it s extrima ) ^ ̂  | - I +

v/here is a small positive quantity.

5) As far as the behaviour of the function j"(e )is considered

we have two limiting conditions , i.e.

L  i no |T ( El} — ^ ^ os J CL 7*7*1

£ — > \_(xr<̂ e
o r

L_irn A (El  ̂  ̂C o S ’/ El cx 7*7*^

V  —  O
where V is the applied potential.

Hence , the forbidden region of energy between 

the (n -1 and n^^ bands is given by 2V^ where is the n^^ Fourier
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coefficient of the perturbing potential and the behaviour of the function 

E) is as shown below.

Now, we can write by approximating the part of the function (see 

the fig. above) above ([)= + 1 axis by that of Cos/È^a (This is a 

very admissible approximation as explained in the previous page).

-C — 1 =  I —  c  05 /ivj CL
J n

zr 2  -  C O s / f ^  C

- 2 - I +
X.

7.7.3

7.7.4

7.7.5
% %

However by equation 7.6.5 i- given by

- C os V^CxVn 7.7.6

7.7.7

Therefore from equations 7.7*5 s.nd 7*7.7 t

1+ ^ ,-t-
'Z- 2_ 7.7.8
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Hence

=  \V„\ op 7 ,7 .9

%
7.7.10

Hence^we conclude that for weakly bound electrons the coefficients of

exponential decay are given by fourier coefficients of the perturbing

potential , that is to say the n^^ Wannier function for weakly bound

electrons falls off as exp ( — jVnl'X ) •

Note that if V=0 then all =0 (which also means h^=0)

which means that . none of the V/annier functions fall off exponenti,^ 
ally.

Also, since, in general for an applied potential lim 0 j
n—  CO

the exponential fall off is strongest for the lower bands (n=sm.all) and 

decreases (or in other terms is effective only at larger distances than 

the origin) as one goes to higher bands (n=large).



1 Oq

CHOTEH^e

ON THE CHOICE OF THE ARBITRARY PHASES

.1 A METHOD FOR OBTAINING THE MOST LOCALIZED WANNIER FUNCTIONS IN
THRICE DIMENSIONS

Bloch functions which are solutions of Schrodinger 

equation are defined up to an arbitrary phase, that is to say if the 

Bloch functions n(k, r) satisfy the given Schoredinger equation 

then so do the functions e - ^n(k» p)

One can get more information about the arbitrary

phase gi ̂ ri(k) considering that this new set of functions must 

possess the fundamental properties of Bloch functions, 

i,e, 1) The new set of functions must satisfy the usual one electron 

Schroedinger equation, this only tells us that the function ^ n  must 

be a function of wave vector k only,

2) Bloch functions are periodic in k space, therefore, we 

must have

^i0n( k+ k;, ) ),r ) = , r)

8,1

from v.hich by a simple argument we can show that

0  n( k + K^) = (p n(k ) 8,2

.0
Hence ^ n( k) must also be a periodic function in the given _k space 

5) Bloch functions may be normalized in the r space.

i,e. / V^n( k . r) ŷ n ( k , r ) d^ r = 1 8.5
J  - -

qH r
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Then, in order that the new set of functions may be normalized 

*̂n( k,r ) must be a real function of k ,

Therefore the sets of functions ̂  n( k, r) and e^^ ̂ -̂̂ i'̂ (k,r) 

where ^  n(k) is a real and periodic function of k are equally admiss

able sets of functions .
Hence the choice of Wannier functions which are given by the 

following expression

®n( Z “ ° j  ̂ n ( k, r) e  ̂- -m d^k 8 ,4

8 z
is not unique but infinite because of the arbitrary phases which may 

be assigned to the Bloch functions • In general the shapes of the out 

coming Y/annier functions largely depend on the choice of these phases. 

Hence the present task is to find the phases which yield 

the most localized Wannier functions.

Below we will suggest an exact method for finding these 

particular phases , using the fundamental criteria that the mean squ

are extent of the corresponding V/annier functions must be a minumum, 
Y/einreicĥ  suggests a method using a similiar criteria ,

however the method is based upon an approximation ( The nature

of this approximation will be mentioned in connnection with

equation 8,12),
Parada^ as a special case considers some particular forms

of Bloch functions ( those obtained point by point by kp approximation) 

and states that for this particular case the mean spread integral of

1) V/einreich, G,, Solids , Elementary Theory for Advanced Students- 
pp. 154,, Wiley, New York, I965,

2) Parada, N,J,,and Ferreira, L,, Biys, Rev, B, Vol,2, 1614(1970)
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Wannier functions is stationary.

In order to find a general solution to 
this problem, we will start by expanding the relevant Bloch functions 

in the reciprocal vector space.

En
8.5

Assigning an arbitrary phase to the Bloch function

^i0n( k) V^nCk . r) = Ui(k + Kn) + E n ) f ^ l^ n ( k)
K n

As mentioned before *f'n(k) is periodic in k space therefore,

^A(k)^ iV^nCk + Kn) _ , = etc. 8.7

Hence we can rewrite equation 8,6 as follows

) K O s  , r)= I  ^n(k . K„) + Kn>f i^n(k + Kj

and the corresponding Wannier function ( i.e. The one centered at 

origin , R=0 ) is given by

an( r )= ^ Tn(k , r ) e^^"(  ̂ 3̂,d^k 8.9

BZ

l ^ n ( k  + Kn) e + Kn)f ^i^n(k +Kn)d^k
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which leads to

cJf k

8.11

The mean square extent of Wannier functions is defined as ̂

a ^ ( r )  d ^ r 8.12

oM r
Suhstituting equation @.10 into equation 9.12 we get

r

aM
which may alternatively be written as

8.13

fw') ê ' - - V,, c' '̂-

where one can rewrite the integrand as follows
8.14

V^(W(k)c
4)/k)

_ . k- I'kB 
e 8.15

3) The approximation in V/einreich's treatment starts here. In order to 

be able to work out this integral he considers the mean square extent 

of the discrete lattice vectors R ( i.e. <(̂R 2 ) instead of the mean 

snnare extent of the continous variable r ..



Now let us consider the integration of the first term on the right 

hand side of eqution 8 .I5 • One can use Gauss’s ( Divergence)

theorem to transform this volume integral into a surface integral,

over a surface with a very large radius ( i.e. k,k’ ^ oo) , The

exponential terms in the integrand are hounded into a finite region 

for all k and r , i.e . into a unit circle in the complex plane

Hence provided that the functions l^ n ( k ) ’ s vanish at infinity

( that means over the large spherical surface considered)

X • 0 •

8.:6

the surface integral yields zero.

. Now consider the second and the third terms on 

the right hand side of equation 8.15 . Their sum can he rewritten

as follows,

( È ‘)e j Vk' e e J 8.17

and again from similiar arguments and the fact that

k -> 00
8.18
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one can show that the surface integrals due to these terms also vanish. 

The only nonvanishing term ( The fourth term on the right 

hand side of equation 8 .1 5 ) may he written as follows

ly.iw)
k'.r

8.19

(vN( k) i e' - r.(k')e 4 t'*'' V„(V) )
_ iW.r
e

Ihrough similiar arguments the only nonvanishing part can he shown

to he

e e 8.20

Therefore we are left with the following integral to he minimized

< r . >  =/// V, (v;ft)

‘d l  k/iî'.r
hut,

cJl r  

■ therefore,

8.21

’ r-( k - & )
J V'

8.22
( The constants are 
not shown )

<r-P> 7k' [(k-k')d3UU'

h  k’

( h  7, ( u A k )
,-<Po ( U

8 .23

8.24
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or

< r 7 > \  ( N '  ( k )  €

2

8 .2 5

cUt k

In the last expression, it is apparent that the in 

tegrand is a real function of k and the task is to choose the real 

function ^  n( k ) such that the integral under consideration will 

attain its minimum.

Rewriting the integrand as

8.

where f

26

is the imaginary part of the expression

Vn(K'] and using Euler's expression for the integral, we get

(2 tJk)')  1 H (k ) l  +- (v.) 7k V„( k) =  0

8 .27

Simplifying the last expression we get

0.28

7 " <p^(k)-+  7 . (p f t ) .  [ V (k)7k VR^)]
' \  / \u„(w> r

•= 0

Now, defining

f k )  =

8 .2 9

V y  f \ M v 7 ( k ) V x  v A k j ]

\ ( k  ) i
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we finally get

^ -k 0  8.30

which is a real,second order , differential equation, solutions of 

which gives the desired phase function ^  n( k )
Q (\.\ Q (\AHence knov/ing ^L(k)and ( That means knowing the Bloch

functions or the momentum eigenfunctions n( k ) 's explicitly )

one can work out the phases through equation 8 ,3 0  ̂  which yields the 

most localized Y/annier functions for the particular problem,

SOI,IE REiMARKS; For free electrons the momentum eigenfunctions are step 

wise functions, thus the mean square extent of the corresponding V/annier 

functions (see equation 8,25 ) is infinite. However,when a periodic po

tential is introduced, the momentum eigenfunctions become differentiable 

everywhere^ so that , providing the condition 8,16 is satisfied, the 

integral in equation 8,25 attains a finite value. Then,depending upon 

the choice of the (j)̂ (k) , we have ^finite values for ^r^^ . The 

smallest is obtained when the phases of the Bloch functions satisfy equa' 

tion 6 ,3 0 ,
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8.2 THE MOST LOCALIZED WA2HÎISR FUNCTIONS FOR A CRYSTAL (THREE DBIENSIONAL)

Wira INVERSION SYNESTRY

Above we have suggested a method to obtain the most locali —

zed Wannier functions for a general three dimensional crystal.

** Hov/ever, as a special case, if the crystal in concern has in

version symmetry, then the momentum eigenfunctions ( jV (k)'s ) thatn — •
we deal with can be taken as real. Tnerefore the second term (imaginary) 

in the integrand in the equation given below (see equation S .2^ )

r

4-

8.31

vanishes, to yield

< r : >  =

8.32

h k

alV
where the integrand is made up of positive valued functions only and 

the integral attains a minimum when

VkfnOi) - 0 or (j)̂ (k) = Constant 8.33

Through above arguments we arrive at the following important

conclusion,that for a crystal with inversion symmetry it is enough to

assign constant phases to the wave functions in concern to end up with

the most localized V/annier functions.

Hence, the Wannier functions that we have calculated in the
it(b)

previous chapters (where we have chosen the pnases e ~ i 1 » vdiich 

means <p̂ (k) = j f , 2/T» etc. ) represent the best one could do in getting 

concentrated functions.

** I am indebted to Prof. L, Pincherle for bringing this result to my 
attention.



CHAPTER 9

EXACT WANNIER FUNCTIONS IN THREE DBiENSIONS (FOR AÎ/ INTSRI-IEDIATE 

POTENTIAL)

9.1 GENERAL

Excluding the cases of free and tightly bound electrons^ 

which we have studied in detail in chapters 4 andlO^the Wannier 

functions in general (for all intermediate cases of bindings) are
f

extremely difficult to computê  since to do so one needs a complete 

knowledge of Bloch functions (corresponding to all values of wave

vector k) in a given band. This difficulty has also been admit
1 2 3ted by a number of authors like Parzen , Wainwright', Slater ,

Smith^, and Harrison^ etc.̂ v/here the former three have actually

dealt with the problem.

The few reported calculations on the Wannier functions

(excluding the case of tightly bound electrons) have been main

ly on the one and two dimensional problems and include;

i) that of Parzen's using a one dimensional square potential

(which we believe involves some serious mistakes) .

ii) and also that of Slater's employing a cosine potential.

The first of these works employs the variational approach (sug

gested by the author^ himself and Koster^) which we have describ—■

ed in detail in chapter 3*
2In a second paper the authors calculate the energy bands 

of a one dimensional cosine potential and that of lithium using

1 Parzen, G. Phys. Rev. 89, 237 (1953)

2 Parzen, G. and Wainwright, T. Phys, Rev. 92, 1129 (1953)

3 Slater, J.C. Phys. Rev. 87, 807 (1952)
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the seme method. However they employ momentum eigenfunctions 

instead of the Wannier functions stating that they found it 

easier to deal with the former.

In the second of the works referred above, Slater^proves 

that the V/annier functions are the Fourier transforms of the 

momentum eigenfunctions,which he readily calculated for the 

one and two dimensional problems. Possibility of an extension 

to three dimensions has also been mentioned.

In this chapter v/e intend to calculate exact (analytical) 

V/annier functions in three dimensions. The model that we have 

chosen is a cubic lattice with square potential wells. This par-»- 

ticular choice for the model has enabled us to obtain the Bloch

waves in analytical forms for all points in each band which we

have used to calculate the V/anna cr functions. We have first started 

with the one dimensional case and extended the argument at once to 

three dimensions for a separable problem. As is shown later, the 

problem in the three dimensional case is much more involved com

pared with the one dimensional problem.

We start with a general discussion on the separability 

of the Wannier functions.

9.2 ON THE SEPARABILITY OF THE WANNIER FUl'/CTIONS

In the present literature we haven't come ac/ross a gene-^ 

ral study on the separability of the V/annier functions. However, 

as we shall prove below, the conditions for which these functions 

are seperable can be set up easily.

4 Smith, R.A. Wave Mechanics of Crystalline Solids, Chapman andT-r-.n ( 1 \

5 Harrison, Y/.A. Solid State Theory, McGAW-IIILL (19?0)

6 Koster, G.F. Phys. Rev. 89, 67 (1953)
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It is well knovm that the solutions of the following one elec 

tron Schrodinger's equation

- V'„fe (r) ^ y ( r )  ^ £„ (h) 1
is separable (in the cartesian coordinates) in the sense,

A ̂ jT) =■ Xn 2
if the potential V(r) is a sun of the terms each depending on one

coordinate only ._

'ihe V/annier function is now given by

z z ^  y^^Cr)

or « B.z.

0-ft( X-X, ÿ-Ŷ  XhCL'jî k) y„ 6fc,̂ x)eX/>((Ilcj,X-tjX- k,%)
5

Now,provided that the B.Z. in concern has such line (in case 

of a two dimensional B.Z.) or plane (in case of a three dimension 

al B.Z.) boundaries that each of which can be defined by a single 

wave vector only ( to this assumption the equations of these boun

daries would read; îr + C, =o  ̂ k^xc^ = o \  then the

above triple integral is given by the product of three integrals 

each carried out separately over the one dimensional functions 

X„ , X, ), ard . In other words, the V/annier function

in concern is separable
a^(K-X,  - T i - z ) -  a „ ( x - y ) 6
Tliis is possible only if the B.Z. in concern is a simple 

one such as a square or a rectangular one for two dimensional prob

lems or a simple cube for the three dimensional cases,etc. In eit-— 

her case the B.Z. corresponds to the lowest band.

However, for most of the familiar crystal types and par — 

lloularly for the higher energy bands the V/annier functions would 

not be separable. In sections 9 ,6 and 9 ,7 we have shown how to
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obtain the three dimensional V/annier functions also for a non- 

sepaTable case.

9.3 THE POTENTIAL FIELD

The three dimensional crystal that we shall consider consists 

of a cubic array of square potential wells as shown in figure

V , 0< z< i) = + 4

Pig. . 9.1 The potential field (a part only) for 0 ^ 2. {+1 . 

Ihe potential function V(r) is a sum of three functions,

V (r )  = V ^ x )  + Vg(y) + V , (z )  ?

each being stepwise and defined along one of the principal direc

tions, as follows

n.a ^ x,y, or z ^ (n +1 ).a q

(x), V^(y), or V^(z) = 0 for n=1,3,5,7 ,.... 9

V-j(x), Vg(y), or V^(z) = 4 .0 a.u. for n=0 ,2,4 ,6,..
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V/e have found this crystal model very useful for obtaining 

analytic expressions for the associated Bloch functions and 

hence for the V/annier functions themselves.

9.4 EXACT \m m im  FUIICTIONS for the one LBHI'TSIOIIAL problem 

VYe first intend to obtain the (exact) Wannier func — 

tions for some energy bands of the one dimensional cî i-stal. The 

results of the one dimensional calculations (though not a prere— 

qusite for extensions to higher dimensions in the method that 

we use) are particularly useful in understanding the approach 

and the nature of the higher dimensional (three dimensional ) 

V/annier functions.

The one dimensional calculations may be given in any 

one of the principal axes, say x. The one dimensional potential

energy of the crystal is then simply made up of square wells (see

equations 7 ~ 10 ) with the follovdng parameters;

Tlie intemuclear distar.ce a = 2 a.u.

Tlie potential barriers 4 a.u.



118

9.4.1 FOHMULATIONS FOR OBTAINING THE COEFFICIENTS OF THE WAVE FUNCTIONS

The solutions of the Schrodinger’s equation for the two subsequent 
regions (see equations 8,9»sjid 10) are respectively

( k-|, X ) = A cos k.j( X+O.5) + i B sin k^( x+O.5) 11

^( k 2 , X ) = C cos k^x + D sin k^x 12

where
A and B are real numbers

C and D are complex numbers

k - i/e 1 “ 13

14V^ - ̂ 0  =

The boundary conditions are choosen as follows

 ̂ 4=0 4^=0

B.C.2 V.Ck.,-!) 16

B.C.3

--1 o
From now on we will give only the results of the formulations.

Substituting the expressions 11 and 12 into the equations 

15 and 16 , we get the following relations .

A cos 0 .5 k̂  + i B sin O.5 k̂  = C 1B

- A k^sin 0 .5 k̂  + i k^B cos O.5 k^= k^D 19
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C cos kg + D sin kg= exp ( i 2 k ) ( A  cos 0.5 k̂  - i B sin 0.5 k^)

20

-C k2sinkg+ B kgCos kg=* exp( i 2 k) ( k^Asin0.5k^ + i k^B cos 0.5 k̂  )

21

In order t?iat we may have non trivial solutions for A , B , C and D 

we must have

cos 0.5 k̂  1 sin 0.5 k̂

-k sin 0.5 k i k cos 0,5 k
1 1 1 1

-1

0 -k

exp(i2k)cosO,5k -iexp(i2k)sin0.5k -cosk -sink 
1 1 2  2

k^exp(i2k)sinO,5k^ ik^exp(i2k)cos0.5k +k sink -k ccsk 
1 1 1 1 2 2 2 2

22
Working out the above determinant , we get

cos(2k) = cosk̂ coskg, -((k^ + kg)/ 2k^kg ) sinlĉ sinlig 23

Actually this is the Kramer's function for the problem( the dispersion

relation in an implicit form)

Now let us consider the equation 1? • Working out the integ
rals and after a number of algebraic simplifications , we get

+ A^- sink^ + ( ) ^in kg cos kg 24
2k 2 k.

|C f+|D|2
+ ( ReC ReD + ImC IniD ) Kg ^

k_
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where the notations Rc and Ira stand respectively for the real

and the imaginary parts of the coefficients.

In equations 10 # 1 9  , 20 > 2 1  ,

and 24 we have 8 unknov/ns , which are A , B , ReC , ImC,
ReD , IraD , , and k (we have not counted kg since it can he

obtained from k̂  ).

How eliminating k and solving the remaining equations 

for A , B , ReC , ImC  ̂ReD , and ImD (in terms of k-; and k2)

and simplifying the outcoraing equations as much as possible we get

the following analytical expressions for the above named coefficients 

( we give the results only)

2  
~ 2

A -  ( /3  ) 26

J - 1B - ( cx ) ( /3 ) 2 27

ReC = cos 0.5k̂  ( /S’ ) 29

29ImC « sin 0.5ki( )( y3 )
I

k. 2 .
ReD * — —  sin 0«5k ( yS ) 3̂

ImD « — - cosO. ( “̂  )( yS ) 31

where c< and .(3 --c functions of k̂  and k^ and are given

by the following equations
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^ '^2 (sinO.^k^ )sinkg +̂  1:2 sink^coskg +(cos0.5k,j) sinkg
k, -21 \ 1 f \( —  )(cosO,5k^Jsinkg + (— ) sink^coskg -(sin0.5k^) sinkg
kg kg

32
and

X, slnki k^sin k2 sink^
(k , kg) - 0.5( U  c<) + ( 1 - cX. )( - ^ ----- -̂--— ----- -̂)1 2kg

+sin^0.5k^ sin2k'
4k,

C<- /ki + 0,5
kg

r\

j

+cos^O.5k^ sin2k2 r

1-c<
- ) 1

+0.5 1 +
(-)l4kg kg ' .

33
So far we have obtained expressions ( explicit ) for the coeffi
cients A , B , ReC , ImC , ReD > and , ImD in terms of k^and k^
Now , it is very easy to compute these coefficients ( that means

the wave functions themselves ) for all bands and at as many 

points ( eigenvalues ) as required simply by using these direct 

expressions.
The present task is to calculate the wave functions corres —- 

ponding only to those permissible values of k̂  and k^ ( the bands). 

Below , we give the allowed regions of the energy eigenvalues 

( the bands),over which we intend to carry out the present calcula

tions.



9.4.2 ALLOV/ED RANGE OF THE PARAIŒTERS AHD k ( THE BAUDS )
We have worked out the dispersion relation given by equation 23 

both for imaginary ( V )> E ) and real ( V E ) values of the par

ameter kg • The bands correspond to the^real values of the v/ave 

vector k •

We need this information about the bands for obtaining the Wan 

nier functions.

 21.

1.280

1 .290

1,295

1.765

1 .770

 22-

1.538

1.525

1.520

0 .9 4 0

0 .9 3 0

cos2k

1.08784

1.02853
1.000

-1.000

-1.0125

imaginary 

imaginary 

0
First band

+  T T / 2  J

imaginary

2 .360

2.375

5 .430  

3 .440  

3 .490

4.880

4 .890

4 .970

6 .430

1 .250

1.280

2 .790

2.800

2.860

4 .4 5 0

-1.02971

- 1.000

+1.000

+1.00113

+1.000

- 1.000

— 1.000

+1.000

imaginary 

+ TT/2 1

+ TT

Second band

imaginary 

+ TT

Third band

+ 3 TT/2
imaginary 

+3TT/2

+  2 t T

Fourth band

Table 1
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9.4.3 fori.hjlaticiis for obtaining tie v/anitier functions

The wave function for the m band and for -1 ^ . x 0

is given by the following equation ( see equation 11 )

r̂a “ ' k2,)cosk,(x + O.5) + i B̂ (k, , k^)sink, (x + O.5)

34
Then the V/annier function for the band ( which is centered 

at origin , X^= 0 ) is given by

(x) * / A^(k^, kgjcosk^Cx+O.S) +i B^(k^ ,k2)sink̂  (x + O.5)

k 35

where the sura is over the allowed k values of the Brillouin
zone. Also note that this equation is valid only for -1 ^ x ̂  0̂

since the wave function in the sum is defined in this domain only.

If we investigate the nature of equations that we have de

veloped in the previous sections, we observe the following

1) k| and k are related to each other by equation 23 

therefore summation over k in equation 35 can be replaced 

by a summation over k^ .

2) changing sign of k ( i.e + k to -k ) changes the 

sign of k| also (i.e. +k̂  to )

3) The expressions for o(̂ , , A , B , ReC , etc.

( see equations 32,, 33 » 26 , 27 , 28 , etc, ) are invari

ant of the change of sign of k . However, these coefficients are

obtained from and jS by square root operations , therefore

they may be taken either positive or negative ( and the wave func — 

tions can be constructed by any combinations of these coefficients)



124

Above we have said that the summation over the k  values 

of the band ( equation 35 ) could be replaced by a s-om

mation over the k  ̂ values of the same barid. Therefore we have

(x) = J A (k ,k ) c o s k  (x + O . 5 ) + i B  s i n k  (x +  O . 5 )/ m 1 2 1 m l

B.Z.

Before we proceed any further , we have to have^the folio — 

wing arguments •

9,4,4 Y/AimiHR FUNCTIONS FOR THE ODD NIR.TBERED BANDS
If we assume that A (k, , k„) and B_(k, , k?) do not

( o
change their signs along the whole of the m  Brillouin zone 

( both either positive or negative all along the zone ) then 

we can easily show that

-k , X ) = +k , x ) 37

and

'̂ m( -X ) = Ym( +ki, x ) 39

Now referring to what we have said in chapter 7 we 

then conclude that the outcoming Wannier functions are real 

and symmetric • This last point can easily be verified, if we 

write the right hand side of equation 35 as two separate 

summations over the positive and the negative values of k^

% ( x )  « ) k , k , X  ) + /'I'mCk , k , x  )

L . ^  59
+ ki -ki

positive v a l u e s  negative values
( of only ) ( of only J
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The imaginary terms in the last expression cancel each other, 

therefore we have

2 \  kg) cosk^(x + O.5) -1 ^x A 0

40

which is real and sjmmietric about x = -O.5 • Actually for a 

crystal with inversion^ ŝ nmetry , one can show that the outcoraing 

wave functions satisfy either one of the symmetry requirements 

given by equations 7,2,11 and 7,2.15 • Then as we have shown in 
chapter 7 ,the associated Wannier functions are either symmetric 

or antisymmetric ( the groiuid band and the subsequent odd numbered 

bands Wannier functions being always symmetrical ) .

Therefore the present considerations correspond to the Wannier 

functions of the ground and the subsequent odd numbered bands ( i.e. 

m — 1 , 5 , 5 , 7  , etc, )

So fac we have considered some forruulations for the amplitude 

of a V/annier function' in a limited domain ( i.e. -1 ^ x ^ 0 , the 

first well) . However, we would like to calculate these functions 

for all X  .
How , using Bloch’s theorem the wave function at subsequent 

wells , say at n ̂ ^ne is given by ^

( k , x') = exp( i 2 n k ) Ym(k , % ) 41

where , y
-1 £  X  ^  0  J

-1 +2n jr x'^2 2n
and X = x+ 2n , n = 1,2,3, etc.
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How , through arguments similiar to the previous ones , vie can show 

that the Wannier functions at the subsequent wells say at the n^^ 

well is given by

a^(x' ) = 2 2  A^(k g)cos2nk cosk ̂ (x+o.5)-B^(k yk g)sin2nk sink^(x+0.5)

(râ k B.Z.)

Y/here again , we have

“•1 ̂  X ̂  0 ’and X = X + 2n , n = 1,2,3, etc •
-1 + 2n —  X* —  2n

Wannier functions at the first and the subsequent hills;

The general considerations in obtaining the expressions (43 

and 44)below,are similiar to those given in the previous sections , 

therefore we give the results of the formulations only.

The amplitude of the V/annier functions ( for the odd numbered 

bands) within the first hill is given by

ŝ ( x) = 2 ^  BeC(k^,kg) coskgX + ReD(k^, kg) sinkgX 43

+kg . /
where 0 — x ^  +1 

The amplitude of the V/annier functions for the subsequent hills

44( say for the n ̂ ^one ) is given by

a ( x') = 2 ^  cos(2nlO ^ReC(k^,k^)cosk^x + ReD(k^,k^)sink^xj

+kg

•sin(2nk)  ̂ImC(k^,kg)coskgX + lmB(k^,kg)sinkgX

0 /:x 4+1 md x'= X + 2n , n = 1,2,3,4, etc.
2n 4z X 4: 2n +1

++ When k. is imaginary__rimply_^eplece_aink^x and cosk.x by sink and cosb
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9.4.5 WAIHÏIER FUNCTIONS FOR TIE EVEN miBERED B.UE3 ( m = 2, 4, 6 , etc.)

Even numbered bands are represented by the anti symmetrical 

Wannier functions ( see also the previous argujnents) •

In chapter 7 v/e have said that if the phases of the v/ave 

functions are such choosen that

T_k(x)=-V',!(x) ' 45

then the outcoming Wannier functions are antisymmetric .

Now, if we take both coefficients »Â (k| jk̂ ) and B̂ (k̂  ,k̂ ) in 

equation 11 , as positive valued over the half Brillouin zone

containing + k̂  vectors and as negative valued over the other 

half Brillouin zone containing -k̂  vectors , then the wave functions 

constructed from these coefficients according to the combination 

• 1 satisfy the requirement 45 • Consequently, the anti sym

metric property of the outcoraing Y/annier functions can be seen more 

clearly^ if we write down the full expression for them , and work 

them out under the above assumptions , as we have done it below
46

(x) « ) A (k ,k )cosk (% + O.5) + i B (k ,kJsink (x + O.9)
[  m 1 2 I m 1 2 1
+ki

( m % . z )  4 „ (  k i . k 2 ) c o s ( - k ^ ( x T 0 . 5 ) )  + i  B _ ^ ( - k ^ , k 2 ) s i n ( - k ^ ( x 4 0 . 5 ) )

Now using the conditions imposed on the functions (k ,k ) 

and B^^^tk^fkg) , the last equation simply yields

a^ (x) « 2 i B̂nj. (k^,kg) sink^ (x + O.5) 47

where -1 x 4 : 0 

which is antisymmetrical with respect to x and around the origin

X = —0.5
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As it is apparent from equation 47 the Wannier functions

for the even numbered bands are all pure imaginary , though those 

for odd numbered bands were all real. However^ this creates no prob 

lem ; we can either divide â ^̂  (x) by i in plotting or talce the 

wave function in concern such that it will be related to the previous 

one as follows

Y ( k,x) = + i Y (k,x) 48

Through arguments , similiar to those given previously , the

Y/annier functions at several other regions of the crystal are

given as follows ;
At subsequent wells, say at the n^^ one , we have

(x) = 2i ^  Ajji (k ,k ) sin2nkcosk-j (x+0.5)+B^( k-j ,k2)cos2nksink-| (x+0.5) 

+k.
sone )

49
( \ \ m zone ;

where
-1 4  X 4  0

-1 +2n —  x' ^  2n

m • 2,4,6,.* « »

and X « X + 2n , n = 1,2,3,etc.

thAt hills ( including the first one) , say at the n one

we have

where

 ̂cos2nk^mC^ (k^,k2)cosk2X +ImI)ĵ (k̂  ,k^)sink2X
+k.

in2nk^ReC^(k^ ,kg)cvsk2X+ReB^(k^ ,k2)sink2xj

0 4  X 4  +i

2n 4" x’ 4: 2n+1

m *= 2,4,6,B, « • ••

50

and X = X + 2n , n =0,1,2,3,,.
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9.4.6 THE CALCULATED Y/MMIEH FUNCTIONS FOR THE ONE DILIENSICNAL 

PROBLEM
Below, as an illustration we give the calculated V/annier func 

tions related to the first and and the second hands of the one- di 

mensional problem.

Ground band Ground band
X V/an, Func. X V/an, Func

-1.0 0.67242 3 .2 . 0.00117

-0.9 0 .76506 3 .4 0.01132

—0.8 0.03611 5 .6 0 .01939

-0.7 0.88810 3 .8 0 .02409

-0,6 0.91931 4.0 0.02042

-0.5 0 .93046 4.2 0.01916

—0.4 0.91991 4.4 0.01792
-0.3 0.88810 4.6 0.01693
-0.2 0.83611 4.8 0.01641
-0.1 O.765O6 5 .0 0 .01662

0.0 0.67242 5 .2 0 .03196

0.2 0 .50144 5 .4 0.03134

0.4 0.36701 5 .6 0.02831
0.6 0.26115 5 .8 0.02334

0.8 0.17821 6.0 0.02216
1.0 0.11454 6.2 0.01622
1.2 0.07004 6.4 0.01195

1.4 0.02040 6.6 0.00902

1.6 -0.01827 6,8 0.00721

1,8 -0.04265 7 .0 0.00639
2.0 -0 .04 32 7 .2 -0.00249
2.2 -0.04535 7 .4 -0.00201
2,4 -O.O4O63 . 7 .6 -0.00212
2.6 -0.03390 7 .8 -0.00058

2.8 . -0.02639 8.0 -0.00250

3.0 -0.01904 8.2 0.00008

Table 2
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Second band Second band
X b'an. Func. X V/an. Func.

-1 .0 -1.12529 1.6 -0 .29116

-0.9 -1.05986 1.7 -0.22006

-0 .8 -0.86883 1 .8 -0 .14506

-0.7 -0.62411 1.9 -0.07095
—0 • 6 -O.526O2 2 .0 -0 .01260

-0.5 0.00000 2.1 0.02591

-0.4 0.52602 2 .2 0.04248
-0.5 0.62411 2 .5 0.05757
—0 • 2 0.86938 2.4 0.01545
-0.1 1.05936 2.5 -0.02011

0 .0 1.12550 2 .6 -0 .04602

0.1 1.15595 2.7 -O.O8O52

0 .2 1.10062 2 .8 -0 .10552

0.5 1.02144 2 .9 -0.12514

0.4 0 .90456 5 .0 -0.12217

0.5 0.75751 5.1 -0.11517

0 .6 0.53957 5 .2 -0 .09450

0.7 0 .41106 5 .5 -0.07625

0 .8 O.25I8O 5 .4 -0.05504

0.9 0 .06120 5 .5 -0.05184
1 .0 -0 .09246 5 .6 -0.00808
1.1 -0.21937 5.7 0.02627
1 .2 -0.51102 5 .8 0.04951

1.5 -0.57112 5 .9 O.O6258

1.4 -0.54500 4.0 0.07557

1.5 -0.29116 A.1 0 .07507

4 .2 0.07448
4 .5 O.O65OI
4 .4 0 .05452

Table 5





9. 5 KXACT GROUND 3MD WAMIRR FURCTIOÎI IN TIIRES DIÎ.3NSI0NS

The B.Z. associated with the lowest band is a simple cube 

therefore, following the arriments given in section 10.2 it 

will be understood that the V/arinicr function for this band is se

parable. That is to say the three dimensional V/arinier function 

is a product of the three one dimensional V’annier functions

a , a , and a ,all equal to the one we have calculated in X y . z
the previous sections.

Ihe situation is illustrated in table 4 

where we give the calculated values of the ’nannier function 

( for 1 /4 th of the configuration space). Entries are given 

only to three figures though they were computed to greater ac 

curacy. Y/e have cut off the tables, for the sake of brevity 

before we }iave gone to very large values of r . The tables 

repeat syjometrically in the remaining four quadrants of the 

configuration space.

It is apparent that this function has type of symmetry'-, 

that is to say it is unchanged under the following cubic group 

of operations which leave a cube invariant.

Class Operation Class Operation Class Opération
E X y z z X y 1-z -y X

C4
-X -y 2 y 2 X 1 z -y -X
X -y -Z z -X -y -y —X z

-X y -Z -y -z X -z y -X
-y X Z h ”Z "X y JCp X -z -y
y -X Z -y z '"X y X z
X -z y -z X -y 2 y X

h X z -y y -% -X X z y
z y -X J -X ~y -z -z -X -y

-z y X % y -z — V -z — Y

y X -z jc3 -X y z -Z X y
z -y X X -y z y z -X

r -X z y y -5c -z z X -y
-y -X -z -y X -z y —"Z X
-z -y -X JC4 -X z 

-X -z
-y
y z -X y

-X —z -y -y z X



154

X - 0 .5  - 0 .4  - 0 .2  0 .0  0 .2  0 .4  0 .6  0 .8  1 .0  1.20 1 .40 1 .60 1.80

-0.5

-0.4

-0.2
0.0
0.2
0.4

0.6
0.8
1.0

1.2

1.4

1.6

1.8

2.0

0.805 0.795 0.722 0.580 0.455 O.516 0.221 O.154 0 .100 O.O61 O.OI7 -0 .015  -O.037

0.795 0.785 0.715 0.575 0.452 0.513 0.220 0.152 0.098 0.060 O.OI7 -0 .0 15  -O.O36

0.772 0.715 0.650 0.525 0.595 0.284 0.200 0.158 0.089 O.O54 O.OI6 -O.OI4 - 0.055

0.500 0.575 0.525 0.420 0.514 0.228 0.160 0.112 0.072 0.044 O.OI5 -0 .011 -0 .027

0.455 0.452 0.595 0.514 0.256 0.175 0.120 0.085 O.O54 O.O55 O.OO9 -0 .0 08  -0 .020

O .5 I6  0.515 0.284 0.228 O.I75 0.125 0.089 0.062 O.O4I 0.025 0.007 -O.OO5 -O.OI5

0.220 0.220 0.200 0.160 0.120 0.089 0.065 0.042 0 .026 0.018 O.OO5 - 0.004 - 0.010

0.154 0.152 0.158 0.112 0.085 0.062 0.042 0.028 0.018 0.012 O.OO5 -O.OO5 -O.OO7

0.100 0.090 0.089 0.072 0.054 0.041 0.026 0.019 0.012 0.008 0 .002 -0 .0 02  -O.OO5

0.061 0.060 0.054 0.044 0.055 0.025 0.018 0.012 0.008 O.OO5 0.001 - 0.001 -0 .005

0.017 0.017 0.015 0.015 0.009 0 .0  7 0.005 0.005 0 .002 0.001 0 .0004 -0 .0005 -0 .0003

-0 .015  -0 .0 15  -0 .014  - 0.011 - 0.008 -0 .0 05  -0 .004  -0 .0 05  - 0.002 - 0.001 -O.OOO5 O.OOO5 O.OOO7

-0.057  -0 .0 5 6  -0 .035  -0 .027  -0 .0 20  -0.001 -0 .0 10  -0 .007  -0 .0 0 5  -0 .005  - 0.0008 O.OOO7 0.002

-0 .0 40  -0 .0 5 9  -0 .0 56  -0 .0 29  - 0.022 - 0.002 - 0.011 - 0,008 -0 .0 0 5  -0 .005  -O.OOO9 0.0003 0.002

Table 4 The ground, band Vi'annier function (three dimensional) over z=-0.5 

plane. There are three such equivalent planes ( x=-0,5» y=-0.5, and z=-0.5 ) Over 
which the function reads similiar values. The function over planes other than z=-0.5 

can be obtained from the above entries by multiplying them by a certain constant.

The oscillations outside the region considered are rather small and vanish rapidly 
as one moves away. Tliis is due to the fact that the band in concern corresponds to 

rather well bound electrons.
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9,6 KXACT TIUCCE DIEETISIOÎIAL V.7iI!NIER FUNCTIONS FOR HIGHER BAÎH33 

In this particular prohlc;n v/hen one goes to second and higher 

energy bands the situation becomes much more complex since the 

V.'annier functions associated with these bands are no longer sepe— ' 

rable. In other terms they may not be constructed from the one 

dimensional V.'annier functions as done before.

In this case as will be shovm, one has to construct a compo

site wave function from several different bands and integrate 

them over(rather peculiar) BuZ.'s while paying a great deal of 

attention to certain zone boundaries and the choices of phases 

in order to end up with a Vi’annier function with the required char __ 

acteristics. The calculation could be carried out because we had 

available the one dimensional wave functions in analytical forms.

Consider then the second band, V/e start with the construction 

of the composite wave function in three dimensions. However, since 

the constituent wave functions 11 and 12 of the one dim

ensional problem are defined within certain regions only,each time 

different combinations of them have to be considered in different 

regions of space. These regions as a consequence of the one dimen

sional analysis will be cubes of size a/2 a/2 a/2 where a is

the lattice spacing in one of the principal directions.

Let us now start with the three dimensional wave function 

defined within the central cube, -1 - x,y, o r z ^ O
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51

A ( k ^ ) A ( k , ‘̂ ) A ( U f )  C o s k ^ ( x - h 0 .5 )  C o s k ^ ( i ^  + 0 . 5 )C o s  kJ-(-z.-hO,s)

+ I A W )  B ( k.̂ ) A ( k^) Cos to .s )  Cos k.’̂ Cz + o.s)

•f tB  (  k /j  A ( k,1)A (kT)5'/b k,'^(xf-o.s)Cos ( i j fo. 's)  Cos (% + o.sj

- .6(k ,VB(k,^)A(k^)^ , 'n k,'i(ijt0.5)CoS k,"̂ (̂ +0.5)

41 A(kf)A (k,**) B( W73 Cûs k'Cx + o.ŝ Cosk,** 0.5) 5,/» k,'^(^ta.sj
-  A(k!^)B(k,V S (k^ )  Cos k f (x  + o.5)Sink,'*(^4-o.s)S,-^ kF/%+0.5;

-  6 f k/3 A( ki'f̂  f? r k,̂ 3 Sin k, (x-hO.S) Cos (ij i-û.s) S/rt k,'̂ (-2i *-o,s) 
wBfk,06('k,’‘3 8 fk /;y ;^  r^+o.s;

\Vhere , and k^ stand for the square roots of the

energy eigenvalues along the k^ , k^ , and k^ directions respec — 

tively. In the previous sections we have obtained (explicit) ex 

pressions for the functions A(k^), A(k^), A(k^), B(k^), B(k^) , 

and B(k^).

As will be made clear later on, the functional entries 

given in equation 5I are not necessarily confined to the same 

energy band,

Tlie space dependence of the wave function is given only 

by sinusoidal functions where even and odd characters of these 

functions will be of considerable use in discussions of symiaet'“ 

ries both in the configuration and the momentum spaces.

The equation 5I now has to be integrated (subject to 

certain conditions) over the whole of the second B.Z. shown in 

o figure 6 . We have already discussed the possibility of car —

rying such an integration over k^\k^, and k̂  instead k^,k^ , 

and k^ (the wave vectors) corresponding values of which are 

readily obtained through the diapered
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A numerical integration of a lenĝ fey function like this( though 

the function that we consider for the central cube is the simplest 

of all) over a peculiar zone like the one given below would be 

rather complicated and tiresome. To minimize the effort one has 

to make full use of the symmetry in the reciprocal space. Below, 

we will show how this could be done; The B,Z. in concern has been

subdivided into regions 1,2,3,.... 24 as shown in fî gxre 6 in

each of which the function 51 has different character.

Though the volume of a minimal subdivision could reach half 

of the present one, we have made the present choice for computa

tional reasons

Fig. 6 Ihe second B.Z, subdivided into regions 1,2,,,,24 

The pyramide with number 1 is shown. There are similiar pyramids 

(i/ough not in the same orientations) at places numbered 2 to 24. 

Those with numbers 16 to 24 are omitted in order not to complica- 

to the figure.
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An important point to be made here is the choice of the ar—

. bitrary phases for the wave function in concern. In our appro — 

ach we will think them as implicit in the coefficient functions 

A(k^),A(k^),A(kp,E(k^),b(k^), and B(k^). Therefore, the type 

of Y/annier function that is going to be obtained v/ill 

depend on thé symmetry properties of these coefficient func ̂  

tions. However, if v/e now stuck to the choice of the phases that

we have made in the previous sections we end up v/ith a parxicu_

lar V/annier function which in the one dimensional case we have 

found to be syrrmietric (and real) for the first and the consequ - 

ent odd numbered bands and antisymmetric (and pure imaginary ) 

for the second and the subsequent even numbered bands, then to 

this choice the coefficient functions in different regions of 

the reciprocal space transform as shown in table 5 The trans — 

formation of the total wave function is given by a combination 

of these individual transformations.

one. / . 2 3 4 a- •7 6

rai ion f I A a- - k^ kx̂  — kg - k ^  k y k^ “ kx ky —

A l k , < ) * 1 w - I - 1 - / _ /

M k ? ) +/ * f + / + / w

W w w w w

B I K ) w w ^ 1 _ / _/ - /

e ( k , i ) w w w w w + /

BfkV + / + / + / + 1 + /

Table 5 The transformation of the coefficient functions in 

the first eight regions of the reciprocal space, A negative number 

denotes that the function in concern changes sign in the particu 

lar region. Tlie reason for considering only eight of the regions 

will soon be clear.
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Y/e will now employ a short notation in order to avoid lenghty 

writings, i.e. the sinusoidal functions which represent the spa

ce dependence of the total wave function (k^,k^,k^,x,y,z) will 

be written as S(k^,x), C(k^,x) etc, where the letters S or C refer 

to sine or cosine like functions respectively. To this notation

the first term of equation 51 will now read

A(k') A(k,v A a . U  CCkf,x) C(k,l ts)C(k̂ ,i) 52

The sinusoidal functions of equation 51 which multiply 

the coefficient functions already described are even or odd func

tions of the wave vectors k ,k and k , One could therefore inX y z
elude them in the tables similiar to 5 » however, the next

thing we would like to work out is not the transformation proper

ties of the total wave function but those of the integral expres

sions arising from the integrations of it s constitituent parts

over a part of the zone.

If we now consider the integral values of all eight terms

of equation 5I in the first region only, we get i.e. for

the first berm
+2 l O M d 52

where the triple sum runs over the values of the wave 

vectors confined to the volume of the square pyramid denoted 

as region one

+ Tc/a ^ k^^ 2TT/a , 0 ^ -frr/a , 0 ^k^^ 47x/a
55

The integral expressions arising from similiar triple 

sums ( which are functions of x,y, and z only) of each of the 

eight terms in equation 51 now transform as follows
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‘Zant 1 2 3 4
pUf̂ Ct/oO Ajf Ay X'z Ay “ Ay Ag Ax — Ay “ A% Ay Ay — Az.

A fW  A a ’;A ftv c r> , ' x)C(k.i H)C(k'^-z) ■*! . / i ! f /

A  ( k,V B( k,'!] A(k'^)C((:f,x) s (  kl'j) c( k,l d - / - i i t
B (  k ‘) A ( k , V A  (k7) S (kH, x ) C ( k l  l)c( K ^ ) i-l f / il il

B(k-)B(k.'‘)A (kn^(k;,x)s(l<.l y) + 1 - / - 1 fi
A ( W A  ( k V B  (k,V C r k,] x) C (k.l y) 5 (kZ •/• / ft - 1 -1
A (k')Bil<.VP(kZ)C(k' rj 5 r k,l yjS ( k^ t ) W - / ^1 -1
B ( k . n A  (k;<)Bikz)s (kZx)c(kZ<j)S(kZ^) + ! i-l - I -1
B  k f ) B ( k , V B ( k Z ) 5 ( k Z x ) S ( k Z  ̂ )S-(kZ^) f  / -i il -I

Table 6

Zerte S 7 8

— Ay Ay A^ Ay “ Ay A ̂ -  Ay Ay — <C-I.

A(k:)A(kZ)A(k:) C r kZx)C(kZ >i)C[kZz.) - / - / - / -  /

MK)B(KVA (kl‘)C(kZx)S(k,l C(kZi.) - / w i-l - /

B(k,’)A(KVA(k7)S(kf,x)c(kZ n)c(kẐ ) i-l i l

B (kf) B ( KVa (kT) S ( kZ x) S( k,l ̂)C(kl z.) i - l -  / - / i - l

A ( A,"JA( kZ)B(kZ)C (k,Kx)C(k.'l y) 50c,» - / -/ t! i l

A  (kZjBlKVB (kz)c (kZ x) S(kZ ÿ)Sf kZz) -/ f / -/ + - /

B r K')A (k,i)B( kZ) 5lkZx)C( Kl y)  5 (klp) +  / i - l - / ~l

B(kZ) B f k V B ( k l ) 3 ( k Z x ) 3 [ K l  y J 3 ( k % z )
+  1 -  / i - l -1

Table 7
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As a result of the tables 6 and 7 - the only nonvanis — 

j' hing function (resulting from the terms in the third row of tabb

ies 6 and 7 ) of space coordinates x,y, and z is

B̂(f<,VA(k,'*)A(lC) Si>̂ k̂ (i(i'0.5)Cosk^{i^i-a.s)Ccsk^Ui0.z> 
kjr Aj 54

So far we hove integrated equation 51 only over the first

eight subzones. To find the results of integrations over the six

teen remaining subzones one has to follow a way similiar to what 

we have just done. However, here we will quote the results only.

For ninth to sixteenth subzones (resulting from the functions 

in the fifth row of the previous tables )•

'z)r=; Q A (k*) A ( Cos kf^(XiO.s) Cos A V y f

kx. Ay ( 3̂ *’ S u 55 
For seventeenth to twentyfourth subzones (resulting from the 

functions in the second row of the same tables) 

u,(x,<j,-z)=8>' y  (k.‘)BlkZ)A(.kf)CoskZ(x*o.s)Si« KV^+c-sJ Cos kZ(z.i0.s)

ky ( 17^^ 55
Tlie three dimensional V/annier function for the second band

57is now given by

The first of these functions (on the right hand side) has

V’ the some sjoametry properties as a p̂  like atomic orbital, the se —
/

cond that of a p^ like atomic orbital and finally the third that 

of a like atoirfc orbital under the point group.

Therefore the resulting V/aimier function is an antisĵ nmmetric 

function of the space coordinates (about the origin x,y,z =-0.5)

fiic- pxeoejil problem is the calculation of xhe constituent 

functions j[x,y,z), ĉ x̂,y,z), and o<'̂ (x,y,z) where to obtain each
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one has to run a seperate triple sum over the values of the 

wave vectors confined to a different region.This is not desir

able for computational reasons. However certain syrrimetry con 

sidérations simplify the calculation and the final V/annier 

function may be obtained by a single triple summation over the

values of the wave vectors k ,k .and k which are all confinedX y z
to the first region only (the latter considerations involve 

transformations on the space coordinates which follow a pemu

tational order). The final V/annier function is now giVèn by

~ ^  ̂  ̂ 8 ( A( kA)h(kA) f <5.53 Cos -hC.s) Cos k̂ (-z.i0.5)-h

 ̂ k k ̂  ̂ S'trtk^(i^ios) Cos k^(2iiû,s)Cosk'^(x+ 0.5)-^
I Sultt-omt

Sto k’̂ ('Z.+0.s) Cos k,'̂ (X *-0.s)Cos kf (ij-hO.s) J

58
In the above equation the variation of space coordinates x,y, 

and z is restricted to a single cube only, -1 ^ x,y,or z ^ 0 ,

It took us around two minutes on a modem computer to obtain 

several hundred values for the function within the cube defined 
(including all preliminary computations) , In the following tab

les (i.e. see table 10 ) we quote the results only.
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Let us now calculate the Wannier function in the next 

cube ( 0 = x,y, or z ^ +1 ) along a diagonal direction.

The total wave function is now given by ( in the folio — 

wing equation we do not write the real and imaginary parts of 

the coefficient functions and D(kg)'s separately as we

usually did in the one dimensional calculations since that 

would mean handling an expression eight times larger than the 

one given below)

=  C( k/) c( ky)c(k:)Cos Ccsk kUy Co.

C(fcJ) D( k>)C(K)Cc.U;y  CooV^z

D ( k V c  ( k/)c Ckl)5,a;x Cookk^c
D(k;] D c(k^)5r. S/oA^y 

c (  k,<; cCkzj D fk ' jCo.  kjx s;.A kyySUk^z. 
c  ( y  D ( k^)D(k:)Co 0 5/oA k/y S,„Uk̂ z 
D (k ')  C ( kj*) D  ( k^jSi'o k*x Coo kk^y SiVVk*z- 

D ( k Z ) D ( k z ) D ( k r ) S ; . k f x  s.ki, 5,-a k f z

«here k ' ^ , , and stand for the square root of

kinetic energy along the principal directions x,y, and z.

In the present case the situation is more involved 

since the coefficient functions C(k^) , D(k^)

P ( k j )  , and 0 ( ^ T ) are complex quantities.

As usual, we start by working out the transformation 

properties of the coefficient functions mentioned above ( which 

are basically different than those given earlier). In the folio

VM, * *-• X -,
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Orte / 2 3 4 s 7 8
trtx4toa  ̂y A* -ky /y "k-g — —  kg—ky— k.-g —  Ajf A,—

c(K V f/ w
c ( K V +/ +/ + / f - i *

* f/
C(k^) + ! w" 4-!^

D (k ‘) w f z'' w" 4.]^ 4.1'"

t>(ky) •h /
D(k l) w - r - r w w - I *

a

Table 8 Ihe transformations of the coefficient functions (complex) 

in the first eight regions of the reciprocal space. A positive number 

means that the function remains unchanged under the operation in concern.

A negative or a positive number with a star means a complex conjugate op

eration accompanied with or without a change in the sign of the function 

respectively.

The functions arising from integrations of each of the eight terms 

of equation 59 in the first region of reciprocal space,now transform 

as shov.Tj in the tables given below ( In the present case C and D are comp

lex quantities and the transformations do also involve complex conjuga-^ 

te operations on different parts of a constitutent term. Further, we will 

employ a different representation than we did before, the indices 1,2, 

and 5 associated with the functions given below refer to the principal 

directions x,y, and z respectively^also for shorter notation the total 

sinusoidal parts of each of the eight constitutent functions (space de

pendent) in equation 59 will now be represented by 3̂ ,Yz., « - - ^  )*
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Z ont, 1 2 3 4
ârn4ioit ky Ay Ax A* - Ay At Ax -Ay — At Ax Ay - At

rtf’ 4cftn c, Cz C 3 y, CfcTc: y, P7 Q Cj y, C/C^c^

2" c, y^ c, ot c, c, cC c * y i c, ckcTXt

3 '" D, Ct Cj z)i Cl Cj y2 p, CÏ c t  y. D) C , C; V3
4+k

0 ,D% Cs y q Di D2C3 ^ P, Dt c 3 Vq

c, Cz Os 3jr C, ct Di Xs c, c to % C.C^Djïs
a"' c, c, if, D, c, D. g  Xf

7' ' Di O3 Î17 CxDz ^ 7 p . r to r  y? A Ct Ds 3̂7

D, Dg Dj 0 . 4  Dj y« D, Oj 3̂8 D, ÂzDÎYô

(a)

ZoA« s £ 7 9
.rôr.A — Ajf i( y At — ̂JT — /ĉ

p 4c/to -c tczc , y, M--c, c-^Cf y, _c \c tc *y , ^ ^ V-C,CxCi%,

-C* £7̂ c, - d c Ic ,  Xi - C, D, C; —c, Dt ct y^

3^ -  p, Tz (Tj y. - Pi Cl Cj y. _ P, C % C j y ; “ Ct CtC; y3

- D̂ DzC, - - d o U U ^ -P, OzC,%4

s'"" - C*Ct. Dj Xs- D.ŷ r - c, Cl D3 -c t A  Pj^5

6'" -  C^Og Dj _ c %  y/ _C, y^

7" -  pXPfX? -p X p ty ? -P%pt T?
6 '̂' -P, ^0 — 0 , Oj pj y j -oT 0 » %

(b)

Table 9 Transformation of the functions arising from the integra — 

tions in the first region of the reciprocal space;a) in the first four 

zones b) fifth to eighth zones.

In the table given above we have 64 integral expressions in each 

of which there is an unlmown function (of space coordinates x,y, and z) 

appearing always under the same integral sigi. how further separating 

the coefficient functions C (k ^ )   ̂ D(kt )  D (k l )
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into their real and imaginary parts as we did in the one dimensional 

calculations and denoting them as KhC^,RFC^,lihĈ ,I:ïĜ ,Il.CĈ , and

etc, where as usual the subscripts 1,2, and 3 refer to the 

choice of these functions along the principal directions x,y, and z, 

and summing up the integral expressions (separately for each of the 

eight rows) of tables and b , we find the following

8 1  U4C;RfC 

8 i IMC,RE0 2 .REC3  y 1 

Q [  IMDjREC^ REC ,

g i  IMO.REOj^R^C^ir^ gQ

8 l I MC, REC^ R E D ,# ;

« 8 i IMC, RED% RtOs'ï^r

gt IM D ,  REC% REO3 Ï 7

8 i I M D ,  RED^RELOjXs

Substituting the expressions for and after a number

of operations the last equation can be given as the following product, 

which as before we will call o(^x,y,z)

o<,(x,3,a)=8î jy | | in c C k P C o j fk J )x  +/M0(’/tp5m(k*)x ^/?fC(l!.’X«l.fk7j‘i

f  RSO(k^)SlAl;(k^)fj  R^c( k^}
/ I ^

The results ( and ) arising from the sums of the integral equa

tions for the sixteen remaining subzones can be found through arguments 

similiar to those given in the previous section. To save space, below 

we quote the results only, the final '/.'annier fimction is now given by
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m c(k;)C os(kf)x+ lM 0(U a5 ;« (k ï)x ] rREC(k?)C<,.V(k,'>)^

^RED^k^S,v\,^k:')y]|'RECa:)Co.k(kUz +

jime(k«)r.,(k;)zi-M0Ck:)s,„nr)z Rfc(y)c=.i, ur)x

R E C ( k ! ) C o î V , ( l < î ) ^  +  R E 0 ( I < 7 )  S ; . v . ( k p y ]+ RfcD(k;)Si..v(kr)x

me(k!)C.s (k,')ij + mD(X)Sm(k;).j REC(kj)C<>ik(kr)z

+ RED(kr)S,Vv(kr): R EC ( kpC.. w ( kj) X + R E D( kr)Si A  ( k%)/

62

The variation of space coordinates x,y, and z in the above equa 

tion is restricted to the region O or z" ̂  +1 . The integral

(or the triple sum) is as usual over the first subzone only. It took 

us around three to four minutes on a modem computer to obtain sever

al hundred values for the function within the region defined.

In the following table (ll) we quote these results.
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9.13 TH3 WAimiFH FÜÎICTIOÎI AT LARGE DISTANCES FROM THE ORIGDI

As mentioned earlier, to find V/annier function)for any cubic 

region (of interest) in coordinate space one first has to construct 

the three dimensional v;ave function appropriate to the region chos — 

en. Then the wave function at a region displaced from the previous 

one by is given by

L   ̂ ^  x^yj-m) 63
where 1* 1̂ 2. , In this case the formulations as should be expected 

are more complicated than the previous cases,since in considering 

transformation properties of the total wave function in the recip—  

rocal space one must also take into account that of the exponen — 

tial functions. However once this has been done then the values 

for the V/annier function can be computed at as many cells as re — 

qui red by setting a variation (in the main progrpjm ) on the inte

gers t , and .

As an illustration we give an analytical expression for the 

VVannier function at a cell displaced from the central one by

Sx  ̂ 9y /fzSz. 5^
The formulations and the tables that have been used in obtain

ing this expression are rather lengthy to represent (and involves

use of the previous tables associated with the tables representing 

the transformation properties of the exponential functions ) there 

fore below we quote the results only.
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2ny ̂ 2nŷ 2nj.)

1 1  Afk̂jAfk,’) Cfkf,z)c(k,]̂ )c(ky-z)S/„2,>J,c,,2n,l:,a,2.X 
*’ '■ -A(k'j6fV)A0C) C(i(yz)5(k,l̂ )C(k,lz)Si,,2.A,S,Â ,̂ ,c„2.A,

+ B rk/) A am AfV) 5 (k,<zjC (k,l yjc(k,lz) 2„,L, f„z..k, + ..4.
- B(kn BfWAfkr;: rk,VJ S a,l y) CfmO c..
- B(k,y)A(KV s r k m 5 fk '; ( ) c  a , ’ y) ^(k^z) Sin l„,k,C.sZr.^
+ /̂('k;';samefk,'';c('k,'x) (k̂y) S;n2nA,S,:Zn,k^S,nZ„J^
-B(k>)Mk>)Bâ ) 5(V,0 C(k,m) j(k,U) Co,ZnA.,C.,2n,k̂ S.nZ.,K 
-B(K')B(ky)B(K)s(Ky)s(k.iy) 5Ckm; c„.2.,k, 5,-nZn,k,s.„z„j,

where 2 ^ x , 2 n y - . l y é 2ny » Ẑ -̂i ̂  x 4 z ^

and the lattice parameters along three principal directions are

Oy^a^ -=r 2 . The other two terms (that we haven’t shov/n in

the equation) are to he obtained through permutations over x , y  ̂

and zr • The equation looks rather lengtty due to the reason that 

v/e have derived it for the most general case. However in calculât 

ions associated with the cells along the principal directions (i.e 

for  ̂ fiy.n^rzo or , '»x̂'7r = o etc.) the number of terms that

one has to deal with reduces at once from 24 to 6 . Further in cal

culating the V/annier function within the cells lying on xy, xz , 

and yz planes ( r)^  ̂ ny o  ̂ n^=. o etc) one has to consider 12

teiTTis only. In the final case of calculations along any of the body 

diagonals ( ) one has to consider all of the terms

of the expression given above. For checking purposes only if one sets 

simultaneously , /?y , and /?z. = o , the expression given above be

comes identical with equation 58 which is the expression for the 

V/annier fimction within the central cell.

Neverthless, once the values of the coefficient fimctions 

have been supplied as an input in the main program (as we have done )
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then the Wannier function within any subsequent distant cell and 

for as many points as required can he obtained by means of a sin — 

gl.e program only.

However, in preparation of such a profpcam extreme care should 

be spent since one (provided that the dispersion relations and the 

coefficient fuctions are provided explicitly as inputs) has to set 

simultaneous variations on a large number of parameters (9 altoget' 

her)
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Xy -0 .500 - 0.375 -0 .2 5 0 - 0 . 1 2 5

- 0 . 5 0 0 0 .0000 0 . 3 2 8 0 0 . 6 2 3 6 0 . 8 5 7 8
-0 .575 0 .3 2 8 0 0 .6450 0 . 9 1 9 5 1 .1234

Z . - 0.500 -0 .250 0 .6 2 3 6 0 . 9 1 9 5 1.1647 1 .3 3 3 2
-0.125 0 .0 5 7 8 1.1234 1 .3 3 3 2 1.4639

0 .000 1.0078 1 . 2 3 5 2 1.4054 1.4983

-0 .500 0.3280 0 . 6 4 5 0 0 . 9 1 9 5 1 .1 2 3 4
-0 .375 0.6450 0 . 9 5 1 4 1 .2 0 5 3 1 .3 7 9 9

z=-0.375 -0 .250 0 .9 1 9 5 1 .2 0 5 3 1.4314 1 .5 7 2 5
- 0 . 1 2 5 1.1234 1 . 3 7 9 9 1 .5 7 2 5 1.6785

0 .000 1 .23 52 1.4548 1.6101 1.6819

-0 .500 0 .6 2 3 6 0 . 9 1 9 5 1.1647 1 .3 3 3 2
-0 .375 0 .9 1 9 5 1 .2 0 5 3 1 . 4 3 1 4 1 . 5 7 2 5

z=-0 .2 5 0 - 0 . 2 5 0 1.1647 1.4314 1 .6317 1.7422

- 0 . 1 2 5 1 .3 3 3 2 1 . 5 7 2 5 1.7422 1.8214
0 .000 1.4054 1.6101 1.7462 1 . 7 9 5 6

- 0 . 5 0 0 0.8578 1.1234 1 . 3 3 3 2 1.4639
-0.375 1.1234 1.3749 1 . 5 7 2 5 1.6785

z=-0 .125 - 0 . 2 5 0 1 .3332 1.5725 1.7422 1.8214
-0 .125 1 .4 6 3 9 1.6785 1.8214 1.8740

0 .000 1.4983 I.6GI9 1 . 7 9 5 6 1.8236
-0 .500 1.0078 1 . 2 3 5 2 1 .4 0 5 4 1.4983
-0 .375 1 .2 352 1.4548 1.6101 1.6819

z= C.OOO -0 .250 1 .4 054 1.6101 1 .7 4 6 2 1 .7 9 5 6
- 0 . 1 2 5 1.4983 1,6819 1 .7 9 5 6 1 .8 2 3 6

0 .000 1.4997 1 .6567 1 .7 4 6 5 1.7554

Table 10 se^ccnd ^  une hon /V» 4̂ 1 ret-

0.000

.0078

.2352

.4054

.4983

.4997

.2352 

.4548 

.6 01 

.6819 

.6567

.4054

.6101

.7462

.7956

.7465

.4983

.6819

.7956

.8236

.7554

.4997

.6567

.7465

.7554

.6724
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X
y 0.000 0 .250 0 .5 00 0 .7 50 1.000

0 .000 1.6724 1.4341 1.2094 0.9834 0.7655
0 .250 1.4541 1.1994 0 .99 16 0 .7979 0 .6239

2=0.000 0.500 1.2094 0 .9916 O.GO43 0.6363 0 .4 916
0 .750 0.9334 0 .7979 0.6363 0.4905 0 .3650
1.000 0.7655 0 .6239 0 .49 16 0.3650 0 .2512

0 .000 1.4341 1.1994 0 .99 16 0 .7979 0.6 239
0 .250 1.1994 0.9844 0.8022 0.6409 0 .5039

2=0.250 0 .500 0.9916 0.8022 0.6441 0.5076 0 .3952
0 .750 0.7979 0.6409 0 .50 76 0.3911 0 .2946
1.000 0.6239 0 .5039 0 .3952 0 .2946 0 .2076

0 .000 1.2094 0.9916 0.8043 0.6363 0 .4916
0 .250 0 .9916 0.8022 0.6441 0 .5076 0 .3952

2=0.500 0.500 0.8043 0.6441 0 .5113 0.3981 O.3O67

0 .75 0 0.6363 0.5 076 0.3981 0 .3026 0 .2242

1.000 0 .4916 0 .3952 O.3O67 0.2242 0.1525

.000 0.9834 0.7979 0 .6 363 0 .4905 0 .3650

0 .250 0.7979 0.6409 0 .5 0 7 6 0.3911 0 .2 946

2=0.750 0 .500 0.6363 0 .5076 0.3981 0 .3026 0.2242

0 .750 0.4905 0.3911 0 .30 26 0.2222 0.1537
1.000 0.3650 0.2946 0 .2 242 0.1537 0.0883

0.000 0.7655 0.6239 0 .49 16 0 .3650 0.2512

0 .250 0.6239 0.5039 0 .3952 0.2946 0 .2076

2=1.000 0 .500 0 .4916 0 .3952 0.3067 0.2242 0 .1525

0 .750 0.3650 0 .2946 0 .2242 0.1537 0.0888

1.000 0.2512 0 .2076 0 .1 525 0.0888 0 .0 236

Leinc/ iAJannie^ p ' u r \ c f j 0r\ ( i r  i  h r t t  m t - m t o n j J
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1.50

v/annier function for second band, three dimensional case,

for z (the plane through the origin)

The function in region 1 (see the fig. above) transforms as follows.

+ / + / _ /

’Iherefore if only one-fourth of the elementary cell (i.e. region 1 

of fig. 7 ) is filled then the function^can be extended by using (sue

cessively) it's symmetry or antiŝ anmetry on reflection in the 45^1i^es 

and mg' .

Ihe function is identically zero on the line m .

1) ihe combination of the symmetry operations and m̂ » results in the 
operation (or J, inversion with respect to the point (-0.5,-0.5,-0.5)), 
therefore, for this particular case the outcoming function has inversion 
sy:7inietry about the center of the plane considered.



0-

co



156

CHAPTER 10

THH APPROXIÏ.UTÏÏ V//RHÎIER FUHCTIOÎIS PGR TIGHTLY POUHP ELECTRONS

10.1 '• GENERAL
In chapter 4 we have calculated the free electron V/annier 

functions for several cr̂ ’-stal types. In this chapter we shall 

study the Wannier functions for tightly bound electrons, as opposed 

to those for free electrons. As we shall see later on,the title " 

Approximate " for the V/annier functions comes from the fact that, 

the tight binding method is only an approximation to the crystal 

problem, and further in an infinite series expansion for the Wannier 

function ( i.e. in practical calculations ) one deals with a finite nu -■ 

mber of terms only. However , in this chapter while studying certa-^ 

in properties of the Wannier functions (for mathematical purposes on

ly) we have considered the whole of these infinite series.

In some text-books the Wannier functions are said to be 

identical with the O.A.O. However , this is true in a particu

lar case only, and unfortunately this restriction has often not been ma—  

de clear, to the reader. We have also noticed that nothing much is said 

about the real nature of these fimctions in tlie more general case of 

tight bindings. • • ‘ - •• -

. » Y/e have studied this problem in the sections 10/5,10.9,10.10, 

and 10.11 and have shown that these Wannier functions are in general 

more complicated functions than the O.A.O.’s, for example they have low — 

er syrmetries etc.. Also, using certain funda:ientals of the tight binding 

approach we were able to extend the study of the Yiannier functions to 

more general problems,such as degenerate levels, crystals containing 

different atomic species , presence of several atoms within a unit 

cell, etc..
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In section 10,7 we have calculated (explicitly)the ground 

band Wannier function for a B.C.C, crystal,where we have taken 

into account the effects of the 26 nearest neighbours,
10.2 A REVIEW OF THE TIGHT BIHDIIIG APPROXIMATION

In this section v/e will review only certain princip —

les and the aspects of the tight binding method which are rela

ted to our main concern that is to say to the 'Wannier functions

themselves.

The tight binding method ( or B.C.A.O. or Bloch’s method) 

is one of the earliest methods in the history of the band theory 

and since then both the original method and il(̂ s extensions have 

been studied and used extensively. The fundamental idea of this 

method has somehow been used in other methods which were deve — 

loped later years.

T>ie technique consists of constructing a crystal wave func — 

tion from a linear combination of atomic functions each of which is 

centered on one of the constituent atoms of the solid. To keep the 

argument simpler , let us consider a monatomic crystal v/here on 

ly a single level say the ’ n̂ '̂ one contributes to the crystal wave 

function. Tiien, one has to start with the solutions to the atomic 

problem

((-h^/2m) + v(r-R )) ̂ n(r-R.) = E n  ^ ^ n ( r -R . )  10.1

where v( r-K.) is an atomic potential.
1Then, as Bloch pointed out in 1928 the crj'-stal wave function 

with the required translational symmetry can be constructed from a li .■ 

near combinations of these atomic functions

1 p. Bloch, Z. Fhysik 52, 555 (1928)



158

=(%) ^Gn(k,R^){^n (r - R̂ ) 10,2
i

where the coefficients Ĉ (̂k , R^) *s are not arbitrary. In order 

to satisfy the Bloch's periodicity requirement one has to set 

Cn( k, R. ) = exp(i,k,R.) , then

“* 1/2 I
f n  ( %' I + V  '(%) j^exp(i.k.R.) ?n(r-R.+E^)

t
- 1 / 2  ^  I

.(K) exp(i.k.E^) 2 exp(l.k.(R^-R^)jPn(r-(R^-R^)) 

» exp(i,k.R ) ̂ n(k,r) . 10.3

For the present let us further assume that the overlap 

integrals between the ^n(r-R^)’s are small enough to be neglected 

( that is what Bloch "'has assumed ) , hence provided that the A.O.'s 

are normalized

^n(r -R^) 0n(r -Rj) d^r = 10.4Ij
aCL r

In this case the orthogonality of the crystal wave function 

can also be easily verified, i.e.

ŷ n(k̂ ,r) }̂ n(k,r) d^r = (k-k') 10.5

The next thing is to substitute this crystal wave function 

into the Schrbdinger equation for the crystal and solve for the ener— 

gy level by a procedure similiar to that used in perturbation theory.

Hence,

( - ( ii^/2m)\7^+ V(r) ) ^exp(i.k.R^) Ç^n(r-R^) =

E^(k) ^  exp(i.k.R-JCg'n(r-R^)
i

10.6
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where V(r) Is the crystal potential obtained by the superposi

tion of the atomic potentials, i.e.

V(r) * / v(r - R ) 10.7
I

Now, multiplying the equation 10.6 by ^n(r - R^) , and integra

ting over the space coordinates

^ exp(i.k.R;)| ÿ^%(r-Rj)( -ChV2m)V^ + V(r) ) ̂ n(r-R. ) d^r

= ^exp(i.k.R^) 6 ij
t

= E^(k) cxp(,'. 10.8

Nov/, using equation 10.1

-(fî /2ra)y/̂ n(r -R^) = ( E°(k) - v(r - R^) ) ̂ n(r - R̂ ) 10.9

Substituting this into the equation 10.3 and rearranging the terms 

one simply gets ✓

E^(k) - E*(k)= ̂  exp(i.k(R^Aj^Wn(r-R^(V(r)-v(r--R^))^n(r--R^)d^]

 ̂ 10.10

and using the following definitions

E'(k) = E (k) -E°(k) , T(r) = V(r) - v(r -H.) 10.11n'-' n - n - - - - -i

and 0(n( R.-R.) = / ̂ n(r -R.) V ( r ) f n { r  -R.) d b  10.12 -1 -j / ' - -J - ' “ -1

this simplifies to ,

E'(k) = ) <Xn (R. -  R.) exp( i.k(R.- R,)) n -  /  - 1  - J  *“ - J

= 0<n (O) + T  c(n(R^- Rj) exp(i.k(R.-R^))

i/j 10.13
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I
In the last equation E (k) plays the role of the perturbed ener •-n —
£y ( the shift from the original atomic level) and V(r) that of the 

perturbing potential. If the atomic functions overlap only slightly, 

then n(R^- R̂ -) is appreciable ' only when R̂, =  R̂  , Hence the

equation 5*15 reduces to

En(lO = ^ n ( O )  10.14

10.5 EXTENSIONS OF THE TIGHT BINDING tlETKQD

The original tight binding method ( section 10.2 ) is 

applicable only to a limited number of problems , v/here the atomic 

functions overlap only slightly. However,in the usual crystal prob~ 

lem the atomic functions indeed.extend considerably further than 

the interatomic separations. To remedy this situation the modifi

cations on the tight binding method have proceeded in two ways;

i) Inclusion of the overlap and the interaction integrals

between more distant neighbours,

ii) or equivalently to employ a different set of functions, 

v/hich are like the atomic functions centered about the lattice sites 

but^constructed in such a way that the function centered about one 

lattice site is rigorously orthogonal to all those centered at the 

other sites.

For the present we shall start with the first of the above 

categories. Now,defining the overlap integral ( between the two 

atomic functions) by

^nn (Si-Kj) = j - Si) H  - Sj) 10.15
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the equation 10.13 is then simply given by

<(.)
/ )̂ n(k,r) )̂ n(k,r) d^r

I-L'^n(R,-IÎ.) exp(i.k(R.-R,)); - 1  - J  -  - 1  - JI£
10.17

nn(R.-R.)exp(i.k(R.-R.)) -1 -J - -1 -J

or

En(k) = E^(k) +   ^
*^n(0) + ) ‘̂ n(H,-R.)exp(i.k(R.-H.)).L_ “1 -J - -1 -J

10.18

/ Snn(R.-R .)exp(i.k(R.-R.)) -1 -J - -1 -J1 +
lift 3

The last equation is true regardless the normalization of the ciys 

tal wave function. In general one has to extend the above series 

over a few nearest neighbours. Sometimes . by adjusting the lattice

parameters calculations carried out for a crystal may be used for 

a completely different type of crystal. So far there have been nume

rous applications involving equation 10,18. For instance, J.C,Slater
2 3 »

and G.F, Koster, T.A. Hoffman and A, Konya , C. A. Coulson and R.Taylor,

and E.P, Dbhlfarth^, etc.

The overlap integrals given in the equation 10,18 are generally

three center integrals, as one can not in practise so easily write V(r)

as a single analytical function of r but puts it in a form such as a

sum of identical functions, one in each unit cell, i.e, V(p)=^v(r-R ),
- 1 -'-1

2 J,U,Slater and G.E.Koster , Phys, Rev, 94, 1498, (1954)

3 T.A,Hoffmann and A.Konya , J, Chem. Phys, 16, 1172 (1948)
4 C.A,Coulson and li.Taylor , Proc. F]\ys, See. A65, 815, (1952)

5 E.P.V/ohlfarth , Proc, Phys, Soc, 66A, 889 , (1953)
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In principle these can he reduced to two centre integrals J 

however this is a difficult and a lengÉty process. In many of the 

applications three centre integrals have been neglected. However 

as V/ohlfartĥ  (1953) has shown ,the neglect of the three centre 

integrals is not always justifiable.

Many of the two centre integrals can be obtained from the 

tables of Mulliken^ et al ( 1949) • Also a table for the two cen

tre interaction integrals (for cubic lattices) has beerd given by
2Slater and Koster , An extension of these calculations to hexa"- 

gonal structures has been given by Miasek ^(l957) «

10,4 ABOUT THE OVERLAP INTEGRALS

The quantities that we have defined as ( two centre ) over

lap integrals will be of considerable importance to us both in 

the definition of the Wannier functions and in the explicit cal

culations that we have given in section 10,7 •

In general the overlap integral S for a pair of over-^ 

lapping atomic functions 0 a and 0 b  ( where they refer to the 

atoms a and b ) with an intemuclear separation R is defin

ed by

S(0a, *ĵ b; R) « y" a 0 b d 10,19

There are great advantages of using spherical polar coor —

dinates in the problem. In this case every central field atomic

wave function is of the form 
n,l,in

6 R.S.Mulliken, C.A.Rieke, D.Orloff and H.Orloff, J, Chem, Physics 

17, 1248 (1949)
7 H.iaasek, Bhx.?. Rev. 107. 92 (1957)____________________________
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Now,using the polar coordinates for both atomic wave functions the 

position of a point P common to both atoms can be represented as

follows

If both atoms are chosen along the z direction then

the plane in which and lies is given by d p = C^a =c|Db.

In the central field problem the normalized angular wave

functions ( of s,p,and d types , etc,) are simply given by

„ , 1/2 
8 ; 1 .0 , m= 0, Yoo( 0a,Cpa ) = ( 1/ 4TT ) 10.21

1/2
p ; 1 =1 , m=0 , Y, ( ©a.Cfla) = ( 3/ 4 TT ) Cos 6  a 10.221,0

1 /2
m= +1 , Yip+i( G a,4^a) = ( 3/ 4 TT ) Sin G  a(sinra or cos'fa)

d; 1 =2, m=o , etc, ,,, 10.23

The radial wave functions however in the presence of a

single electron only take the form
n-1

^ nl( ̂ a ) = )  ̂nlk ^a exp( -z r^/ n â ) 10.24

k=l

In general for more electrons Knl 's must be of self

consistent type (i.e. see Hartree-Fock method) however they can not

be so easily given in analytical forms since the results are often 

expressed in the form of numerical tables. Slater^ has approximated 

these self consistent field type radial equations by a finite se

ries

8 J.C. Slater , Phys, Rev, 42 , 35 (1932)
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n-1

R ni ( â) *= ̂  ̂  k exp( -y^k * ^a/ ®-h ) 10.25

k=l

where andyX^k depend on n,l, and the atomic and the elec —'

tronic particulars of the system. A better representation is ob

tained if a particular term ( the one with k=n-1 ) is replaced by

a sum of two or three exponential terms as shown below 
n—2

^ nl( T‘a)-^^k r^ exp(-yUk ra/a]̂  ) + r^“ exp(-y^i r^/a^ )

 ̂ 10.26
gFor 1s, 2s, and 2p electrons Morse et al and Duncanson 

and Coulson^^ have also given improved equations to approximate the

functions ^nl^^a^ * However , being the simplest case the
11well known Slater A.O.’s are obtained by approximating these ser

ies by a single term
u n-1—  ̂

nl( â) = nl exp(-y^r / ) 10.27

where
yA^ns np = *Za,n / n- S 10.28

and • CO

1/ “ j exp(-2yUnl r^ / a^) dr 10.29

where the values for ^ has to be chosen as follows

S =0 for n *= 1,2,3 •

^ =0.3 for 4s, 4p electrons 10.30

S =1 for 5s* 5P electrons

Since the Slater A.O.’s have no nodes the A.O.'s with diffe

rent ’n’ s are not orthogonal, however it is possible to orthogo —

9 Morse, Young, and Haurwitz, Fnys. Rev. 40, 948 (1955)
10 W.E. Duncanson and C.A. Coulson, Proc. Roy. Soc. Edingburgh 62A,37(1944)
11 J.C. Slater, Phys. Rev. 36, 57 (1950)
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nalize them ( this also means the introduction of the missing nodes) 

where this time the single term approximation becomes converted into 

a similiar series given by the equation 10,25* However in quite a 

number of cases it has been observed that the orthogonalization has 

little effect on the calculated values of the overlap integrals.

Yihen we come next to the evaluation of the overlap intég

rais , the computations are often carried out by transforming from 

the polar coordinates to the spheroidal ones, 

i.e. t .( )/ R J) =( r^- )/ R 4> = a 10.31

Extensive tables and explicit expressions for the overlap 

integral S between the tv/o atomic orbitals of either sort , i.e. 

Slater or Hon-Slater (usually the latter can be obtained from a li

near combination of the first) have been given by R.S. Mulliken et al.

Eelow,as an illustration we give one such explicit expres

sion ( taken from these tables) for the overlap integral of ̂ ts

atomic orbitals , which ?/e will also use in section 10.7

S,^(/ls, $̂ 1s, E) = ( 6 ) p5 ( 3Ag -Ag) 10.32

where p= (l/2)( + Ab) H/ and,
roo /  /  k+1

ky (p) = / f exp(-p I ) d^ = exp(-p) ^  ( kl/( p (k-/^+l)! )

and ^y/^'s are to be obtained from the Slater’s equations ( i.e. eqn. 

10.28).
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10.5 the wannier FIPNCTION FOR A MONATOÎ.CTC CRYSTAL

At the very beginning of this chapter v/e had assumed that 

the atomic functions had zero overlap integrals . Tliis assumption is 

true when the intero.tomic spacings are large. However when the atoms 

are brought closer the atomic orbitals start to overlap and the crys 

tal wave fimction given by equation 10.2 is no longer normalized but,

/V"n(k,r) /̂ n(k,r) d^r = ^  Snn(R^) exp(-i.k.R^)

= 1 + y Snn(R^)exp(-i.k.Rj^)

10.33
-1~ . 10.33

SlfO

Hence in order to normalize the wave function in concern one has 

to multiply it by
'T  - 1 / 2

( 1 + ) Snn(R^) exp(-i.k.R^)) 10.34

SlfO
The normalized wave function is then given by

- 1 / 2  7  ^
T n ( k . r ) . (1!) J = J ------------------------

( 1 + ^  exp( -i.k.R^) Snn(R^))
IfO

As we have seen in Chapter 2 the Wannier function can be obtain — 

ed from this crystal wave function by the following transformation,

a n(r -R ) =(N)
“1 V  T  exp(i.k. (R.-R. )) ^  n(r -R.) 

= (lO \ ^3 - -J “1 - -3
r- C  1/2(l + ^  exp(-i.k.R^) J nn(R^))
IfO 10.56

n . G.Y.
However, making use of the following binomial expansion with remain

der
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(1 . a r= 1................. +......

10.37

-----  +A.r
r'

we can write the following
V -1 /2  y

( 1 exp(-i.k.R^)Snn(R^)) = 1 -1/2^ exp(-i.k.R^)Snn(R^)
1^0 1

+3 /0 7  exp(-i.k.(P--R ))Snn(R-)Snn(R )I— — —1 —n —X —n
l,n

- 1 5 /4 8............ . +R 10.3s

where one considers a sufficient number of terms for tlie accuracy 

reruired. Also, if

^  exp(-i,k.R^)Snn(R^) <^^ 10.39
1

then this series is absolutely convergent, and the expression 10 .56  

can be written as

(r)/(h) = y  exp(i.k.R )jn(r-R )-a Y  exp(i.k.(R -R)/n(r-R.)3nn(R ) n - - -J - -J - -3 -1 - -3 - 1

k,j k,3,l

+5/0 y" exp(i.k.(R.-R-+R ))/n(r-R.)Snn(R,)Smi(R )/  — —3 —n — —3 —1 —n
k,3,l,n

—15/43 .t.•••••••• + 0(r)
10.40

where for simplicity we have set H^= 0 .

V.'orking out the terms on the right hand side of the last equa 

tion one by one one obtains the following expression

, (r))= /n(r) -I/2 T  ̂ n(r-n.)Snn(R.) +3/8 //uCr-R )Snn(R ,+R )Snn(H ) n - -  / - -J "J L_ “ ~3 -3 -n -n
j i,n

—15/4 3 • + ......... +0 (r) 10.41



v/hich expresses the V/annier function, in terms of the atomic orbitals*
12The expression on the right is identical with that of a Landshoff -

15Lhwdin function (or an O.A.O.) in principle (in other words for a 

monatomic crystal where the atomic levels dont interact, the V/annier 

function "can he approximated by an O.A.O.) however,Lowdin^^for excjnp- 

le uses a different representation by employing matrices
L = 11I '

= - 1/2/fj Sij + 3/8 fj Sjm Smi - ..... 10.42

A3.tough these two equations are exactly the same the 

difference comes in their handling, i.e. in equation 5»52 the second 

summation on the right will be obtained by the matrix multiplication

[ fi 10-43
j m

while in the alternative form that we have used (v/here for simplicity 

we have also set H.= 0 )
10.44

/ fn(r-R.)Snn(lî.+R )Gnii(H ) L— ‘  n' -.1 -n' -n/■J - J  - n
3»n

the same sum will be obtained by a simple permutation over the vec —

tors H . , and R , This alternative approach (if the overlap integ - 0 -n
rals are small) mill enable us to pick up the most significant terras 

in the whole of the series without ever bothering with the constr"* 

uction of the matrices, etc..

Our next concern will be the ŝ nnmetry properties of these 

V/annier functions. Swnmetry properties of the O.A.O.’s have been 

7 worked out by Slater and Koster^. In the next section we will out^ 

line their approach.

12 R. Landshoff , Z. Physik 102, 201 (1956)
15 P.O. Lowdin , J. Chem. Pliys. 18, 565 (1950)
14 In case of large interatomic separations Snn(R)’s are all zero
and the V/annier function is given by a single atomic orbital(see eqn.10.41 )
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10.6 TI-IE SYI.nSTRY PROPERTIES OF THE W/PTÎÏIER FUNCTION

Aasuine that under some operation 0 of the group of the 

crystal the atomic orbitals are transformed as follows

o f n =  fm r ( 0)mn 10.45
m —1

where | (0)mn is a unitary matrix , i.e. r(0)mn = ^(0)nm .

The present task is to show that the E'annier functions obtained 

in the previous section do also transform in the ssjne way, or in 

other terms we must show that the equation given below is true

0 ^ 10 .46

m

But n is given by (see equation 5*52)

M^n (S"^)mn 10.47

m
where the overlap matrix S is defined by the elements

Smn 10.43

Now , applying the same operator 0 to equation 10.47

0 Y  n = ̂  0 ^m(3”̂ )mn = ̂  ̂  ^1 P(o)lm(S *̂ )mn 10.49

m 1 m
Now , using equations 10,46 and 10.49»

1̂ r(o)lm(S‘̂ )̂irn Y  m p (0)mn 1 0 .50

1 m m

Substituting equation 10.47 to the right hand side of the last 

equrtion

Y  r(0 )lm(S-bnm = V % ( s ‘̂')-|rn (0 )mn 1 0,

1 m 1 m
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This last equation reduces to the following form(where 1 is ar—- 

bitrary)
^  P (O)lm(S ")mn = (S ^)lm P (o)mn . 10.52

ra m

Now, multiplying both sides of the last equation by ( p(o)*"**)ql

and summing over the arbitrary values of 1

^  ^  (P(0))ql ^)mn ( r(0))ql(S"^')lm P(0)mn

I r a  1 m 10»53

[  ^qm(S-^)mn - V V  ( f (or^|(s"^)li«( f (0 ))mn 10 ,54

Ï  I

(S'^)qn . Y (r(0 )"1)ql(S-H)( [(0))mn 10.55

1 m

In general the overlap matrix S is invariant with respect to the 

unitary transformation P(o)

Smn * J '  ^ m ^  n c/"g = 0 ̂ mO ̂ n c!z 10.36

*= jT ̂ ( 0 )qm P(0 )lnj^q ̂ 1 dz 10.57

q 1

(]T(0)"^)mq Sql ( ['(0))ln 10.58

q 1
/ *4Hence, under some general conditions ( tliat the matrix S  ̂is 

also invariant with respect to the unitary transformation p(0 ) )

the Aq^ntinn 10,46 becomes verified. Therefore . the symmetry pro^ 

parties of the Wannier functions given in section 10.5 are derived 

from the symmetry properties of their constitutent atomic orbitals.
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10.7 TIK CALCULATl’ID VANNIER FUNCTION

The model that we have used is a B.C.C. lattice where the 

lattice points are occupied by hydrogen ( or hydrogen- like)

' atoms. For convenience v/e have assumed that the crjnstal is bu

ilt up of the unit cubes(cells) as shown in figure 1 , also the 

f  basis vectors have been chosen in the directions of the princi —-

pal cartesian coordinates so that they retain the symmetry of 

the unit cube (cell)

Tlie atomic separations along the principal ^1,0,oj, ̂ ,1 ,oj 

and ^0,0,1*| directions have been taken as rg= 6 aĵ ( the sepal— 

ratiAna of the remaining atoms can easily be worked out).

The Vannier function in concern has been calculated in the 

principal ^1,0,0*j , ^1,1,0^ and ^1,1,1^ directions, which

characterize the variation of the function in the 'r * space.

Finally in the calculations effects of up to the third 

nearest neighbours ( 26 neighbours all together ) have been consi

dered, . .
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i) The eight nearest neighbours are located at Rÿ r^( -fj , +-̂  ,+̂ )

and at a distance H^= 3/2 r^

ii) The six second nearest neighbours are at R2=r^( +1,0, 0 )

and at a distance R_= rd. o
iii)The twelve third nearest neighbours are at R =r ( +1, +1, 0 )

and at a distance R^= 2

For the location of these neighbours , see the figure below

2 , 3,3
3

2 , 3,3

3

' 1,1 ' 1,1

0 , 2,2
y

' 1,1 * 1,1

2 , 3,3 3

Fig, 2 The projection of the figure 1 ( including the seven neigh 

bouring unit cells which are not shov/n in the figure) on to the xy 

plane , where the numbers 1,2 and 3 denote respectively the first , 

second and the third nearest neighbours, if a number is repeated 

twice (i.e. 3,3 ) this means that at that orientation there are two 

such equivalent neighbours, O  is the origin where the V/annier func 

tion in concern is localized.
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Through the tables given by R.S. Mulliken et al ( i.e.

see equation 10.52 ) we have’found the following values for
the overlap integrals;

i)For the 8 nearest neighbours Snn( Is, 0 1 s, R̂  )=8.35X10”^

ii)For the 6 second nearest neighbours Snn( 0 Is, ̂ 1s, R^ )=4.27X10"*^

iii)l’or the 12 third nearest neighbours Snn( ̂  Is, ̂ 1s, R^ )=0.67^10*^ 

At each point where the Y/annier function has been calculated

the full effects of all of the 26 neighbours have been considered

by using several syirjnetry considerations, below, we quote the res^

ults only. Tile effects of the third (and the higher order) terms on

the right hand side of equation 10.41 have been found to be insi^i«—
1 ,1,1ficant.

Table 1 (below)

1,1,0

Point -0.5rs(^1s,^1s,I!.)9^1s(r-R^)
^ t

ÿls The V/annier 
function

P 8 nearest 
neighbours

6 second
nearest
neighbours

12 third 
nearest 
nei,'diboure

(0,0,0) -1.84x10“^ -0.3l6xlô3 -0.0079X10^ 1.000 0.99784

(Lo,o)-0.0244x10") -1.17x10"̂ -o.oiBnô 0.04979 0.04858

(1,0,0) -0.935x10 -22' 10̂ -0.033X10"" 0.002479 -0.02049
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Point -o.5^s( Ŝ 3 , ̂ 1s,E;) ;01s(r-R.) ^1s The V/annier 
function

T
8 nearest 
neighbours

6 second
nearest
neighbours

12 third
nearest
neighbours

(0 .0,0 ) -1.84v10”^ -0.316/10"^ -0 .0079x10" 1.000 0.99784

-42,0x10"3 -0.355sl0'^ -0.0555x10" 0.0056 -O.0368I

( 1 , 1 , 1 : -0.246x10"' -0.0128*10^ -0,0245/10" 0.0000167 -0.00027

Table 2

Point -o.5Vs( f ^ s { T - R ^ )

C
h .

The V/annier 
function

R
8 nearest 
neighbours

6 second
nearest
neighbours

12 third
nearest
neighbours

(0,0,0) -1.64x10"^ -0 .316x10"^ -0.0079/10^ 1.000 0.99784

(4,2,0) -4.355x10"^ -0.628x10"5 -o;o555xlô^ +0.01425 0.00921

(1,1,0) -0.468x10"" -0.054x10"^ -3.3x10“^ +0.0002 -0.00362

Table 3
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10.8 TKS ÏÏAÎJÎÎIh’H FUNCTIONS FOR TIGHTLY BOUND ELECTRONS. , THE

GENERAL CASE

In the section 10.1 v/e have said that the V/annior

functions are identical with the O.A.O. 's only in a particular 

case ( where the crystal wave function is given by a single 
gle Bloch .sum). However, in most of the problems it may be'essential 

to use several Bloch sums in constructing the crystal wave functions.

In general, the more Bloch sums one uses the better is the app

roximation to the real crystal wave function.

Hence, to get precise results;

i) One should set up a separate Bloch sum for each atomic level 

which might in some way contribute to the energy band in concern .

ii) A separate Bloch sum to be used for each of the degenerate 

atomic functions, lie. in case of the 2p atomic functions, a separate

Bloch sum to be constructed from each of the degenerate 2u^ , 2py and

2pz atomic functions,

iii) If there is more than one atom in the unit cell( may be 

same or different atomic species) then a separate Bloch sum for 

each of the atomic sites has to be included.

Hence the crystal wave function in its most general form

is a linear combination of n such separate Bloch suras.

Ÿ i  k,r ) = Cl , r) + Cgfgfk ,r ) +  .........  +
10,59

Now , expressing each separate Bloch sum in terms of the 

O.A.O. 's from which they are derived, then substitute it into the 

Schrodinger equation for the crystal one ends up with the following
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Ci( ^ Cg g 12 5̂ ^ 13  ^n^1n“ ^

^1 ^  21 ^2^ ^ 2 2 " ^ ( -^ ^    ^ n ^ 2 n "  ^

Cl %  n 1 Cg %  C^( l f n n - E ( k ))=0
10.60

where

and
10.61■^nm ( R.)= - ^  exp(i.k.(R.-R^) CX,^(R.-R.)

So-Si) = -  f  9^n(r-R^) V’fm(r- R^) d b  10.62

From the above set of linear equations a secular determinant 

is formed which has to be solved for the energy E(k).

On the assumption that all the coefficients 's have been obtained 

for any energy, one can write the crystal wave function in terms of 

the O.A.O, 's (that have been employed in the sum) as follows

f(k,gr",..g) = 7  expd.k.Rpc^ f g r - R p

5l «2

+.............. + ̂ ^exp(l.k.R^^C^X)^^itR^) 10.63

R-n

where R.J, R̂ , .....R̂  ̂, ore the position vectors pointing out to

the atomic sites that contribute to the crystal wave function (though 

some of these vectors may be identical).



r/B

Now let U3 construct a unit cell ( containing several atoms

of the same or different sort ) for the crystal.

Also let a set of translation vectors R *s be such defined

that translation through any of the vectors R is a symmetry opera

tion of the crystal ( R carries any point in the unit cell that wc 

have just defined to an equivalent point in another unit cell)

Now, if the separate sums over R, , R̂ , ...Rn are re 

placed by a common summation over the vector R , the equation 10.59 

takes the following general form,
10.64

(k,r) =Vexp(i.k.R ) +C/0%'^(r-R) + .....+C,/s9i'î (r-R)

V/here ...., represent the necessary operations

to be carried out over the space coordinates of the S^'s ( O.A.Q.’s)

when a common origin has to be used (in the unit cell ).

Hence , provided that the above procedure is followed a single

V/annier function associated with each unit cell ^and which also allows 

the representation of the crystal wave function as follows where Rq 

is an arbitrary lattice vector)
10.65

a(r -R ) = V  y^(k,r)exp(-i.k.R ) (the constant Of— —o ^ — — —o
h normalization is

is then given by( through equation 10.64) " shovTi)
10.66

a(r -R ) = yc(R-E )Tl;(r-R) + Cgî-K )X'Pir-R)+......+ C„(H-H ®(r-R)
R

where the coefficients of the superpositions to be obtained through 

the solutions of the secular equations as follows

C^(R -R̂ ) = \  exp( i )^(k) +i.k.(R-R^)) C^(k)

ÎS 10.67
^ i(k) is the arbitrary phase mentioned previously.
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As is apparent from the equation 10.66, the Cannier functions have 

in general lower symmetries than the O.A.O.*s . Their symmetry is no 

longer aerived from a particular sort of atomic function as v/e have 
shown in section 10,6 .
10.9 THE Y/AIR/IER FUNCTION FOR A DEGENERATE LEVEL

Now , let us consider a monatomic crystal where the ato 

mic level that contributes to the crystal wave function is a p 

state, and let Y 1 , Y 2 and Y 3 be three such O.A.O. *s construe — 

ted from the degenerate atomic p functions as we have shown in 

the previous sections. On the assumption that the atomic levels 

are'well separated and no additional levels need be considered in 

the wave function for the solid the crystal wave function is then 

set up as

f  (k.r) = |^exp(i.k.Rp (r -R^ + Cg j/ expfi.k.Rg) T p y ( s ' - B 2 )
I 4

+ Cj ^exp(i.k,Hj)fp^(r"-Rj)
3

10.68

But, the crystal is monatomic , and the degenerate functions 

( O.A.O.*s) Y px, ^py, and 'Ypz are all centered on the same 

atomic sites  ̂ therefore , a common space coordinate system can be 

used for all of the three functions ( such that r = t ' - r^ and the 

origin is at r = 0 ). The common translational vector R is then 

given by,
? = S r  52° 53 10.69

The equation 10,68 now becomes

Y(k»r)= ^  exp(i.k.R)( c(k)'fpx(r-R)+C,(k)Tpy(r--R)+C5(5ifpz(r--R) )
R

10.70
Therefore, the V/annier function (one for each of the degenerate 

bands) is given by
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ap(r«H ) = ^C,(R-R ) '̂ px(x’-R) + C;(R-R_)^Py(r-R) + Q(R-R (r-R)

S 10.71

Hence, for this particular problem, each of the V/annier functions 

(centered at a particular site B)is given by a linear combination 

of the degenerate O.A.O.'s centered at the same atomic site. Tlie

coefficients of the superpositions to be obtained as described in

the previous sections.

10.10 THE V/AHHIER FFHCTIOH FOR A CRYSTAL WITH DIFFERENT ATO'.TIC 

SPECIES IN THE UNIT CELL

To keep the argument simpler let us assume that there are 

t^o such atomic specimens( say, atoms A end B ) in the unit cell 

of a linear crystal. Also let only a single level from each at

om contributes to the crystal wave function( though,the follow 

ing argument is true for more general cases).

X
B
-G-

B

X
Ihe crystal wave function is then given by

10.72

f(k,x) = Cy^(k)T exp(x.k.X) V A(x  - X) + CgCkU exp(i.k.X) TB(x'-X)
L x  X

If a common space coordinate system will be used for all 

of the atomic specimens ( x* = x - a , where a is the inter at

omic separation between the atoms A and B ) then equation 10,72

becomes
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^ ( k f x ) n i - ^  exp(i.k.X) (C,.̂rk] C^Ck^̂ ECx—a—X)) 10,73

X

The 'Vannier function associated with a unit cell is then given by 

(assuming that the effects of the arbitrary phases are implicitly 

given by the equation 10,67 )

a(x-X )= ;r(A-X ) ?A(y.-X) + C(X-% ) Ve(x-X) 10.74O  / «  o  P 0

X

where C,̂ (X-a )̂ and Cĝ (X-X̂  to be determined as usual.

Hence, instead of two O.A.O.*s centered around each atom 

we have now a Vannier function for each unit cell containing these 

atom S'. Also under some general conditions the V/annier function 

a(x-X^) will not attain its peak at x=X^ , since (loosely speaking) 

at this point 'fA(x-X) and V̂ B(x-x ) do not simultaneously attain 

their maximums.
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APPErlDIX 1

AN OUTLINE OF THlil BASIC PRINCIPLES OF V/ANNIER REPRESENTATION

Al,1 INTRODUCTION

In general the term Representation^ Loth in classical and quan-' 

turn mechanics has been used as a homonym. For example in quantum mec — 

hanics one mentions Schrodinger, Heisenberg, and the interaction rep

resentations and also coordinate, momentum,and the energy représenta — 

tiono , though the former ones are sometimes referred as pictures ( 

reference can be made to any text-book in quantum mechanics) • In this 

chapter we will frequently refer ( to the latter ) to two fundamental 

representations , which are the momentum and the coordinate représenta- 

tjons of ordinar;̂ '- quantum mechanics. In the first case the momentum

operator is the generator of infinitesmal translations and provided 

that the Hamiltonian coirimute with all translations the true momentum 

is a constant of the motion • However, in general in crystals the 

usual Hamiltonian do not commute with all of the translations and the 

true momentum is no longer a constant of the motion. In this case a 

new quantity .( in some sense being a modification of the true momen

tum) has been defined what is known as crystal momentum( in the par

ticular case of the free electrons where the lattice potential is 

constant , the crystal momentum is the true momentum). In some way 

being appropriate to the realism of the crystals this nevf quantity 

generates the finite lattice translations and the Hamiltonian com — 

mutes with these finite translations . The former claim can be veri «=• 

fied as follows; Assume that an explicit function F(p) ( which may 

be written as a plynamial in p or as a Fourier series) of the 

crĵ stal momentum operator has been given. This when acted upon a 

Bloch state yields



F(p) l/'n(k,r ) = F(h k) n(k,r) A1.1

then it s action on an arbitrary wave function ^(r) (in the C.M.R.)

exp(i,p.R/h)^^(r) =T / 6n(k)exp(i,p.R/h) Ŝ n(k,r) d \  A1.2

/ jFn(k)exp(i.k.R) n(k,r) d^k A1.3

then,from Bloch's periodicity condition(i.e, exp(i.k.R)!^n(k,r)=^n(k,r+R))

exp(i.P.H/h)'f (r) = ̂  ^yn(k)  ̂ n(k,r+R ) d^k = Ÿ  (r+R) A1.4
6.%

Hence, the crystal momentum operator p does indeed generate 

finite lattice translations ( this point will later on be redisscussed

in greater detail).

The C.11.R. where one uses the energy eigenfunctions (i.e. Bloch 

waves ) as the basis function is analogous to the true momentum rep — 

resentation of continuum mechanics. In general , in this represents —  

tion as an Hamiltonian one caji use either one of the Schrodinger,

Pauli and the Dirac Hamiltonians, In appendix 2 we will give

briefly the fundamentals of the C.Ii.R, and that of 11.C.M.R. ( or 

what is known as Kohn- Luttinger's modified C.M.R.), Also a short 

reference v/ill be made to some of the mixed representations ,

In analogy with the existence of the momentum and the conjugate 

coordinate representations in continuum mechanics one might also 

look for a sort of coordinate representation ( in crystals) conju

gate to the C.M.R. • One starts by looking for an operator R 

canonically conjugate to p ,

As pointed out above , the eigenvalues of the coordinates q 

aid the conjugate momento p's of ordinary quantum mechanics 

represent a continuum from - oo to + c>o ( where the transi

tion from one representation to the other is characterised by the
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Fourier transforms with the limits of the integrations on the p’s

and the q*s extending to infinity. In crystals however because of

the existence of the bands the continuity of the eigenvalues of p

are restricted to some finite regions only , This intuitively suggests

that the eigenvalues of the conjugate operator must also be discrete,

Ihe eigenfunctions of the continous variable r (in continuum mec —

hanics ) are the ^  functions,. Then eigenfunctions of the discrete

variables R’s would also be expected to be localized,in some sense

(even though not as localized as the  ̂ functions themselves). If

conjugate operator R is chosen such that it also commutes with the

band index, then the transformations from one basis to the other will

be characterized by either integral transforms evaluated over single

B.Z.'s or by the summations over the discrete eigenvalues R.'s ,—1
Hie roots of this new crystal coordinate representation 

from now on which we will call simply V/annier representation( after 

V/annier) was first set up by Y/annier"̂  in 1937* There has been a con —  

siderable delay in realising the importance of the V/annier*s  ̂theo — 

rem and in the development of the representation itself. This may

partly be due to V/snnier's trying his method initially on a problem

(the excitons) which is a too complicated problem even in todays 

standarts,
2It was Slater who first realized the importance of Wan —

nier’s theorem and he who also initiated the development of the rep —
5,415 » 6resentation, Ihis development was followed by Adams who generalized 

V/amder’s theorem to take into account transitions between energy bands

1 G.H. V/annier, Phys. Rev, 8?. 191 (193?)

2 J,C. Slater, Phys, Rev, 7̂ , 1592(1949)

5 N.E. Adams, Phys, Rev, 05, 41(1952)

4 N.F. Adams, J. Chem, Phys. 21, 2015 (1953)
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and the others( nee the references in Ch.l The following steps 

taken in later years will he given in appendix two under the head 

ing of ’ The V/annier representation in the presence of non-periodic 

perturbations'.

A1.2 AN OUTLINE OF THE BASIC PRINCIPLES OF WAIHIIER REPRESENTATION 

As mentioned earlier the Wannier representation is analogous 

to the coordinate representation of the continuum mechanics, 

basis functions are the V/annier functions^ defined in the coordinate 

space. These functions are obtained from the basis functions of the

C.M.R. (i,e, Bloch waves) by the unitarŷ  transformation exp(i.k.R)

an(r -R) = n(k,r)exp(-i.k.R) d^k A1,5

n"̂  ̂ B.Z,

and the basis functions of the C.M.R. are obtained from the 

last equation by a reverse transformation

4̂  n(k,r) 3- n(r -R)exp(i.k.R) A1.6
R

One useful character of the V/annier representation is that 

one deals with the basis functions which do not spread to the whole 

of the coordinate space(localized functions ) as basis functions 

of the C.M.R. generally do,

B) Now, the wave function ^n(k) of C.M.R, which is given by the 

following expansion

f  (l) =Y f  2n(k)^n(k,r) d^k A1.7
" A.z.

in V/annier representation is transformed to

J n ( r )  = cxp(i.k.R)^n(k)d^k A1,S

B.Z.
5 E.N. Adams, and P.N. Argyres, Phys, Rev, 102, 605(195^)

6 E.N, Adams, Phys, Rev, 107, 698(1957)
7 For the real nature of this localization see, i.e. chapters  '1, 2 ,7,and 8
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B) then, '-f (r) in the V.'annier representation is given by (using 

the equations A1.6 ,A1»7 , and A1,8 )

"f(j) j^n(k)Yn(k,r) d^k = Y  Z  ^̂ (̂r-R) ^n(k)exp(i.k.R)
n B.Z. n R

Z f n ( R )  an(r-R) A1.9 

n R

hence
n(R)ap(r-R) A1.10

n R

C) Hie following can immediately be verified about the expan — 

sion coefficients n(R )'s ;

C1) If ^(r) is normalized then (omitting all normalization 

constants for simplification)

< £  ll> =I I  I  I  ĵ m(gj) / m(R/) <m,Rj ) m‘,R^> A1.11
m j m' j'

“ Z  I I I  pr:(R..) A1.12
m j m j

= Y  Z I I   ̂ = 1 A1.13

m j

C2) Also, using the property that the V/annier functions

have their largest amplitudes in the cells that they are loca -

lized and the assumption that fm(R.) is a slowly varying“D
function of R_, (  ̂ also see sections A2.4 - 7 ) » the proba -

bility.of finding an electron within the volume (where ^V 

is small compared with the size of the crystal but still con" 

taining several unit cells ) is given by;
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S i'- j  |^P(r)|  ̂ J  pn(Rj) j'ni(Rj')a^(r-Rpa^(r-HpFr

SV A1.14
but, due to the above assumption ( that J-rr.CR̂ ) is almost constant

over the region <̂ V ) we have

SP . |fra(R^)|^p Z  I  Z  /a^(r-Rj) a/r-R^i) d^r A1.15

m j m' j'

however, ^

I  I  I  E  j d h  = c gv A1 .1 6

m j m' j'
uhere C is a constant introduced for purposes of normalization (for 

example if one uses an expansion over a single band in equation A1.10, 

then C = n/V .( where H is thé number of the unit cells in the

crystal and V is the volume of the crystal ) , so that C.$V gives the

number of the unit cells in the volume ,SV, Therefore,

gP = E  1 fm(Rj)l  ̂ ST A1.171 juKKy 1  ̂
m

Hence, j/m(R^)’s have a similiar behaviour to that of a wave 

function. Later on we will see in detail ( in appendices 1 and 2 ) 

that under certain conditions they may be replaced by the functions 

of a continous variable r , then the probability mentioned above 

will be given by

g P = P  Jl^m(r) V r  A1.18

™ SV

y leading to the normalization of these functions ( i.e. if the expen.— 

sion A1,10 is over a single band, dropping the band index)

A1.19 
SV
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D) An operator Enn(k,k') of the C.M.R. becomes

Hnn(lJ,lj) = / exp(-i.k.R) IInn(k,k) exp(i.k.R) d^k d̂ k' A1.20
B.x

E) Now consider as a particular case the matrix elements of the

crystal momentum operator P =hk between the basis functions of—0 —
the C.M.R, which is given by

= h k &(k ^1.21

then, in the V.'annier representation the simple crystal momentum 

operator will be given by
r  . , r

p = -c
J
exp(-i.k.R) hk exp(i.k.R)d\= hk(cosk(R-R^+isink(R-R))d^k
6.x A1.22

where the integration is over a symmetric region of k , therefore

the non-zero part is given by

P^= ih sink(R- R^d^k A1.23
6.-Z.

In one dimension this yields

sinkpCX-X) _ kQCosk^(X-X)P = ih 0
(x-x)^ (x-x)

A1.24

. - ih 8inko(X-x[_)
(x-x‘ )

8Tlie proof can easily be generalized to three dimensions, now calling 

^(R -r ') = 8inkox(X-x')sinkoy(Y-Y')sinkp%(Z-Z')
(x-x') (y -y ‘) (z-z ')

A1.26

8) Note that, S(R~R*) is unity when R=R and is zero when R-R  ̂0 phere

R and R̂  are proper lattice vectors]. Hence, (̂R-p' )^(h)= ^(r ) .

In the later sections we have discussed the approximation of replacing

the crystal coordinate operator R by the ordinary r. To this assumption
(cent, )
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p = -ihILÏÏR-R' )
-° -dR̂  - - Al. 27

If Pc operates on a function of R say ç (r ) (see the foot note^ 
and also the appendix 2 )

PJ(R) = -ih A1.28

Successive applications of the operator P^ yields

2^ f (B) = (-ih 2. )^f(R) AI.29
3R

Therefore,using equations A1.28 and A1.29 any function of P^

/ say î'(Pç) which may be exparided as a polynomial in P^ may be rep

laced by the following operational foirm

'̂(?c) J(B) = F(-i ~  ) f(B) •

8}(cont.).,. ^(r -r') is a Pirac delta function ,

kç,-> ̂ . However in the present case ko is
( r - r '  )

finite • Therefore this function is not a proper Dirac delta function 

[though localized, it oscillates and decreases only as l/r ̂  .

However if j’(f) is a slowly varying function r (such 

that it varies very little over a lenght of several unit cells) then 

we may regard it as a constant over a part of the crj'stal of particu — 

lar interest ( say, over the cells that ^(r -r‘) is localized) ) 

then

-( ir ;
r=r"

V
( all r )

1 L

^(r -r‘) P(r )d"r =( j'(r ))

Tr,

^(r -r')d^r

J Ô vf -£

^(r -r') J(r )d^r =J(f)

Therefore to this assumption (that | (r) varies slowly) S(?"P') may be
J

li-Oud



190

Also consider the following exponential function of , exp(i P^K/h).

This exponential function may be expanded in terms of a power series , 

therefore, using equations A1.20 and Al .29 this will have the follow 

ing operational form on the function j"(r )

exp(i P.K/h) ^(R) = exp(g'^ ) ^(g) A1.31

So far we have shown that a function of k which may be expanded as

either a polynomial or as a Fourier series in k , may be replaced by

1̂ an operational form where k is replaced by '3/ôH (the approxima*—* 
j ~ *

tion of replacing the crystal coordinate operator R by the ordinary r 

will be discussed in the later sections)

Y/hen the energy E(k) is given as an explicit function in k 

(usually a quadratic ) it will be a common practise to replace k 's 

by the operational forms given above (i.e. see appendix 2 )

F) In the Y/annier representation an arbitrary function of k , 

say G(k) ( in the C.M.R. ) becomes,

G(R -R ) = I exp(-i.k.R ) G(k)exp(i,k,R) d^k
A1.32

7 T?r0 familiar examples of these transformations are the trans

formations of the energy E^(k) and the wave function ^n(k) of the

C.M.R. to the tn(H) (the Fourier coefficient of the energy) and the 

J*n(R) the wave function of the Wannier representation.

i.e.
ĵ n(R ~R ) = ^n(k)exp(i.k. (R -r')) d^k A1.33

t]i(R -r ') = I ^n(k)exp(i.k. (R -R)) d^k Al ..34

g ) In appendix 2 we will see in detail that the approximate one
^ ,* . .1 1 - y — - —  — » — — — - “ — -t- •* ^ ^ ^ ^ ^  ^

u c u l u  l i r L M l X X  t W l l X c U i  U X  L l i C  X O p X C O C ^ J l l  Oct W X V ^ i l  X J . X  i i c t v  e  o i i w a .  V/IAV,

of the following forms
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) - I ) + VJR ) §(R.-R ) A1.35
or j

I
\ W  - \ ( W i ' d J i h \ ( R )  A1.36

and the more general Hamiltonians ( which takes into account transitions 

between energy bands ) will be given by

+ T m (g j) V ( 0 )

or j n A1.57

l/(H) = H ( 3/13R) + V (r) + T v  (O) m ' m - A. mn '

^ A1.38
where Vmn(^) =<n,0 I V I m,OZ> and V is a non-periodic perturbation.

The difference equations and the differential equations which 

employ the above Hamiltonians are equivalent in sense , and are also to 

the same order of approximation. However in most applications the dif

ferential equations have been found to be more convenient. But, even 

though, the differential equations are simple enough to be handled 

only if H( 3/i BR) is a simple polynomial of 'B/i'dR and probab

ly is upto second order (i.e. case of spherical or elliptical energy 

surfaces ). The straightforward derivations for the above Hamiltonians 

have been given in appendix 2 .

Il) In appendix 2 we have studied in detail the problem of 

treating n'(R) as a continous function. The present discussion will 

be restricted to tlie justification of some of the principles involved.

For the moment if we define a continuum Hamiltonian (as we have 

done in equation A1.20 ) simply by replacing R and R by r and r‘

r  , , _ _ ,
H(r,r* ) = I exp(i.k.r) H(k,k')exp(-i,k.r ) à \  d"k'

A1.39
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where we can think as H(r,r') at some well defined points (i.e. 

at r--R and r=R ) is equal in value to H(R,R ) which is the 

Hamiltonian in the difference equations. Also, let ^(r^ he an 

eigenfunction of the continuum Hamiltonian H(r,r*) such that

H(r,r’) f(r) d’r' = E j:(r) AI.40

How, multiplying the last equation by exp(-i.ktr) and exp(i,k^r ) 

(where and k** are some particular points in the k space, and 

not necessarily in the B.Z, shown) then integrating over r and 

r* (they span the same space )

r.

J
exp(-i,k,r)H(r,r ’ )exp(i.k.r')d̂  rd̂ r' =

J
^(k-k*)n(k,k') ̂ (k-k"')d\ à \

. H(kfk*) A1.41

If k^ or k* are not in the B.Z. concerned then,

H(k*,k*) . J  ^(k -k*) H(k.k') (k-F)Hk d^k'= 0

AI.42
The equation A1.41 is the inverse transformation of the equation 

A1.59 . How, multiplying equation A1.40 by exp(-i.ktr ) and

integrating over r , one gets

^exp(-i,ktr ) H(r,r‘) ^(r') d^r d^r'= EJ^f^(r)exp(-i,kfr)d^r

A1.43If one now defines

^n(k^) » I j^(r)exp(-i.ktr)d^r A1.44

and
o  . ■ *.3n(kT) =

J

j (r)exp(-i.k.r')d^r‘ A1.45



193

then, equation AI.43 may he replaced hy

exp(-i,ktr)ïl(r,r ' )exp(i.ktr ' ) d^r d^r'd^k*= E J^^(r)exp(“i.lur)d"̂ ]

A1.46
Now, using equation AI.4I this reduces to

f  H(k*,7) <̂ (k*') aV'= E (̂ (k*) AI.47

Hence on the assumption that (k) satisfies the eigenvalue equation 

AI.47 in C.M.R. , then a continous function of r obtained from 

this hy the following transformation ( similiar to what v/e did in fin —' 

ding the wave function in the V/annier representation)

y (r) = ‘̂(k)Gxp(i.k.r ) d^k A1.48
J

satisfies the V/annier representation equation  ̂ replaced with a con

tinuum Hamiltonian as given hy the equation A1.40 .

Thus,we have shown in the principle.that.it is possible‘to 

define a continuum Hamiltonian and a continous wave function for the 

V/annier representation still fullfilling the requirements of the 

transformations with the C.M.R.,

However,the basic conditions that still must he satisfied 

in passing from the difference equations (with discrete solutions ) 

to the differential ones (where the solutions are continous functions) 

are
( fnk') ),; ^(5)

and
rLR - AI.49

( h'(£,r')) = H(R -r' ) AI.50
^  n

S '

Tliese final points will be discussed in appendix 2 in 

greater detail.
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l) Finally comes the justification of £ui expansion which uses

a single band only. Under some particular conditions this can
oeasily be prooved to be the case. See for example Blount 

(also see appendix 2 ), Roughly spealcing , when the energy of the 

states in concern are small compared with the separation of the 

levels then usage of a single band Hamiltonian (see equation 

A1.35 ) is justifiable.

9 E.I. Blount , Solid State Fhys. 13, 303(1962)
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Al.3 THE FROBLEi.! OF THE PHASES

In general the basis functions of the C.M.R. are defined 

upto an arbitrary phase i.e. e>:p( i^r.(h) ) . In chapters 7 

and 8 we study in detail the properties of the phase faction i.e. 

its reality , periodicity, its dependence only on the vector k 

and a differential equation which chooses its particular forms, etc.

Though the arbitrary phases must not effect any experimental 

ly verifiable results , certain equations and variables are phase 

dependent ( phase sensitive ).

One of the worst and the simplest example to this is the 

non uniqueness of the V.'annier functions which are obtained through 

the following transformation,
A1.51

3ĵ (r -ly ) = J '  exp( i'^n(k) - i.k.R̂  ) Vn(k,r)d3k 

B.Z.
where S^n(k) is an arbitrary phase function defined in the n 

band. In this case dependence of the V/annier function on the phase 

function M^n(k) is apparent, and among the infinite choice of the 

phases (that satisfies the requirements given in chapter 8 ) one

tries to choose the best according to certain criteria( see chapters 

8 and 9 , i.e. in chapter 8 we have given an original analy —  

tical method to determine the particular phases which yield the most 

localized Wannier functions )

How to generalize the problem we will work out some of the most 

familiar equations and variables and show which are phase depen

dent (phase sensitive) and which are not;
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To start with let us check the phase dependence of the matrix 

elements of an operator Q between the basis functions of 

V/annier representation .

V/e can write at once,

J  ̂“ jf ( cxp( i'fn(k) - i^n(kO) J Qnn(k,k')d\d\'
where A1.52

Qnri(k,k3 = J" ̂ nik^r) Q  /n(k,r) d ^ r  A1,33

If Q = 1

^(]S»]s) = Snn' &(k - k') A1.54

then to this choice equation A1.52 is phase independent( it is 

either a constant number or zero)

However if we now choose Q = F(r) ( where F is a function of r ) 

then O' nn(k,k̂  ) is no longer diagonal in k and n , therefore to this 

choice equation A1.32 is phase dependent (including the case 

n = n')

As a final illustration if we choose Q = F(Vk) ( where F is a

function of grad% ) in the following matrix element
A1.55

ŷ h(k',r) Q fn(k,r)d^r=jexp(-iYn(kO) V̂ n(k̂ ,r)F( ̂ )exp(i Yn(k)) ̂ n(k,r)d^r

then it is phase dependent (including the case n = n', k = k') 

i.e. if one sets Q =-i^7k » then equation A1.55 becomes

exp( i ’̂ n ( k ) ~ i  M^nfk')l.r ^  nn'^(k-k') \ / ^ Y n ( k )  f S ;(k,k^)]' • — • —  I  ̂' vq y-q ' —  y » J

AI.56
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where

which yields; for n  ̂n',.k  ̂k'

exp(iH^n(k) -i Yn(]{)).S^(k,k') AI.58

and for n = n , k = k'
r

T) 9n(k) + S^(k.k) A1.59

where both expressions are phase dependent.

V/e have worked out the phase dependence of several

familiar equations and variables in both Wannier and crystal mo

mentum representations. Below in table A1.1 we quote the results 
9only. Blount further gives explicit expressions for some of

(y the quantities given in this table , which however will not con—  

cern us.
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PHASE BEPEîlBFiTT

IN V/.R IN C.:t.R

The basis function a (r -H.)n - -0^ The basis function V̂ n(k,r)

The wave function^^-^n(lh )a^(r-R^ ) The Y/ave function^" n̂(k)'/ii(k,r) 
n j

The position mat —

.r f

< S .y r 'i

<b'k'l r"̂ 1 n,k>

(including n=n or k=k‘,but 
not both at once )

The matrix element
<n',k 1 p j n,k>

of the true momentum
( n n' )

*Note that if m = 0 the phase dependence vanishes in both represen 

tations (see also the table given below)

PHASE liH)EPan)EHT

IN W.R. IN C.M.R.

The integrals <n,H. 1 n,RZ>
- r  - J

The probabibility n(k,r) n(kir) 

distributions '^n(k,r) Ŷ n(k,r) 

and their suras <^,k{n,k> , <n,k | n,l^

The energy Pour— <n,R.l H'i n,R.’>-1 —J

ier coefficient (including i=j)

The energy eigenvalue
<^,k 1 H°| n,îÇ>

of the cryst. Ramilt.

The matrix elements

of the crystal momen <hjk'| hkl n,k> 

turn. (inc. n=n^ k=k^ J

Tlie position matrix

of r" <n,k 1 r̂ l n , ^

The matrix elements p | n,k> 

of Ihe Uuc luOiùentum <n,k ip ; n,lC>

Table A3.1 Phase dependence of some familiar equations and. variables

in both V/nnnier and Crystal momentum representations. n,n' , k,k*and
are not equal unless otherwise stated.
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APPiU'IDIX 2

V/AimiER REPfiESEÎITATIÜîï EQUATIONS .ANN THE PROBLEMS CONNECTED WITH 

POINT II.TURITIES ANN DLTERJIAL FIELDS (NON-PERIODIC PrlRTURBATIONS)

A2.1 GENERAL

In chapter 5 we have suggested a method to find out 

the perturbed \7annier functions in the presence of a periodic 

perturbation. In general , these V/annier functions which are the 

solutions to the periodic problem(and being a complete set of func - 

tions in the coordinate space) can be used as a basis in expanding 

the wave furiction of the non-periodic (defect) structures. This 

actually is the basis of the V/annier representation.

Tlie non-periodic perturbations in solids may be due to;

i) Internal imperfections as impurities , dislocations, and sur —  

facts , etc,

ii) External effects as electric fields, magnetic fields, etc.

V/e will first start with the perturbations associated 

with the time dependent Schrodinger equation. Therefore we are 

concerned with the solutions of the following time dependent equa — 

tion

f  H + V ] ^  = i h —  A2.1
 ̂  ̂ ^ -at

where H is the Hamiltonian of the periodic structure and V is a

(non-periodic) perturbation. The perturbing field V in general 

may be uniform or non-uniform (i.e. interaction of electrons with 

electromagnetic radiation) and also the system itself may be con — 

servative or non-conservative depending on whether the perturbing 

field is also a function of time or not.
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Some aspects of tlie problem has been handled by several authors]

(like V/annier , Slater , Adams , Kohn , Luttinger , Blount ,

Roth , Gibson , Zenor , Houston , Koster , Cloizeaux , etc.)

References to some of the fundamental work will be made 

during the treatment of each topic.

Tlie main classifications in the approaches depend on the 

choice of the basis functions for expanding the perturbed wave fun

ction ^  .

Til ere are only few fundamental choices (though infinite in 

principle) for the basis functions , each leading to a different 

representation like Crystal momentum representation ( C.M.R. ) or 

V/annier representation.

Modified forms of these basis functions ( i.e. Kohn-Luttinger 

functions')'.which lead to some alternative forms of the fundamental 

representations ( like, Kohn-Luttinger modified crystal momentum rep — 

resentation , M,C.M.R.),have also been suggested.

V/e can finally mention a mixed representation which employs
2 5

the principles of both representations ( i.e. Bloimt, Zak , etc. )

In the following sections though we will give a brief out 

line of the fundamental representations, the primary emphasis will 

be on the V/amier representation.

1) See the references given in chapter 1 and appendix 1
2) Blount, E.I.,Solid State Physics 13» 505(1962)

3) See for instance,!.Zak, Comments Solid State Phys. 2,209(1970)
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A2.2 CRYSTAL MOMn/TUM REPRESENTATION ( C.M.R.)

Tï)is is the one used fimdfirnentally by Adams ̂  and may be 

outlined as follows;

The eigenfunctions of the periodic system (unperturbed) 

are the Bloch functions satisfying

H fn(k,r) = En(k) f n ( k , r )  A2.2

These Bloch functions are orthonormal in the following sense

'fn(k,r)'/̂ m(k,r) d^r = ^nm  ̂(k -k ) A2.3

and they constitute a complete orthonormal set v/hich may be used as 

basis functions in expansion of the wave function of the perturbed 

system A2.1.

' p ( r ) ^n(k) 'Pn(k,r) d^k A2.4

B.Z.
Substituting equation A2.4 into the equation A2.1 and using the 

equation A2.2 one simply gets

^  I 9 n(k)Sn(k)'^V(k,r) d^k + j ^n(k)'^n(k,r) d^k

^ L . '  ■ ■ ■  " J

" i h —  Z  An(k) fn(k.r)

A2.5
Multiplying both sides of this equation by ')f̂m(k' ,r) and integra*-- 

ting over the entire ciŷ stal ( or over the unit cell depending on 

where the Bloch waves are normalized ) one gets

^En(k') -i h ^n(k') + ̂  <n,k | V | m,k‘>  ^n(k) à \  = 0

A2.6
This is the crystal momentum representation ( C.M.R.) by Adams4.

4) See the references in chapter 1 and appendix 1
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A2.3 KOHN-LUTTINGER MODIFIED CRYSTAL MOJ.UTJTUM REPRESENTATION( M .C.M.R. )

A variation of crystal nomentum representation has been given 

by Kohn and Lut linger^ in I955 , They choose a set of basis functions 

related to the Bloch functions at a particular k point in the band. 

This point is usually taken to be a minumum or a maximum. If we call 

such a point Icq then the basis functions of the Kohn-Luttinger scheme 

are obtained by,

7(n(k,r) = exp(i.(k -k ).r)'fn(k ,r) A2.7

= exp(i.k.r) U%(kQ,r) A2.8

Apparently they have the form of Bloch functions with the 

exception that U^(kQ,r) is the periodic part of the Bloch function 

of a particular crystal momentum vector k^ , and the dependence of 

% n(k,r) upon k lies entirely in the plane wave function.

In order that these functions can be used as an alternative 

basis their completeness ( and for convenience their orthonormality) 

has to be verified . In other terms the following has to be proved;

1) /n arbitrary function of r , that can be expanded in

terms of Bloch functions can also be expanded in %  n(k,r)'s

ii) ^[n(k,r)'s and (k*,r)’s must be orthogonal for n m

and k / k' and each must be square integrable.

here, we will avoid the lenghty formulations, however,these can easi — 

ly be proved to be the case (i.e. see Callaw^ay^ ) .

Now, expanding the solution of equation A2.1 in the Kohn 

Luttinger functions ^n(k,r)
/

S: (r) =Y. f %nXk) Xn(k,r) d"k A2 .9

n B.Z.

3) J.M.Lutting and V/.Kohn , Fhys. Rev. 97» 869(1935)

6) J. Callaway , Energ)̂  Band Theory ,pp.217, Academic Pre3s(l965)
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Substituting this into equation A2.1 , then multiplying both sides

of the equation by % (r) , integrating over all crystal and

working out the outconiing terms in a similiar way that we have done 

in the previous sections , one finds the following equation to be 

solved for the coefficients Cm(k)*8 .

Em + -ih ~  j Cm(k) + h.k/ra Y. PmnCn(k) A2.10

+ y  / <̂ i,klVl n,k‘> Cn(k!) d^k’ = 0 A2.11" J

ana

v/here T
Rnn ^ 2t\ I f i I u^^r)P uj[r) d^r , P = h V  /i

A2.12

< m, k  1 V 1 n,k‘>  = 2 n ̂ /ji ^ Xm(k,r) V Xn(k',r) d^r

A2.13

A2.4 V/AIUahR REPRESENTATION

In appendix 1 we have mentioned about the possibility of 

expanding the wave function ^(r) in terms of Wannier functions.

In chapter 2 we ha.ve also verified the completeness , orthogonality 

etc. of these functions. Hence, expanding (r) in the V/annier func

tions

B h )  = 1 1  -Sj) A2.14

v.here we assume that 3rn(f 's have been obtained by solving

the periodic ( unperturbed ) system. Hence, they satisfy

H «mh -!j) =I -Sj- V  A2.15
s

and
^ Em(k) exp(i.k.Rg) A2.16

h G.%
v.'liex'e E ni(û )‘s and Eri(k)’s represent the unperturbed enerĝ r 

fourier ccffic:vents and the energy itself._______________
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A2.5 V;A1INIER RI-IPRESIF/TATICN EQUATIONS

The present task is to solve the following equation

(n + V) F(r) = E 'î(r) A2.17

where H is the Hamiltonian of a perfect ciyrstal and V is a pertur i—  

bation caused by one or another disturbance of the periodic potential 

( impurities, dislocations, external fields , etc.) .

Now, substituting equation A2.14 into equation A2.17 one gets

+ vZIfn(H.)a„(r-H.) = EZIjn(R.)a (r-R.)

A2.18
multiplying both sides of this equation by ŝ (r-R,̂ ) , again integ-— 

rating over the entire ciq'-stal , and using equation A2.15 one finds

-R.) fn(n ) n̂ni -f-yVfn(R.)Ynm(R -R.) = E )n 3 -J J “0 a 3 1 "J -R “Ü J -k

or  ̂ ^2.19
Iem(l^-H.)5'm(n.) +IIfn(Rj)Vn.T.(R^-R.) - Ej:m(R^)
J n y

A2.20
The final equation can alternatively be written as

I  [£°r™(liĵ -R.) + Vmn,(Rj,-R.) ) fm(R.) + I I  Vam(Hĵ -R.) ̂ n(R.) = E

A2.21

= <*,RJH Im.sp ^ 2.22

Vnm(R„-R^) <m,RJ V | A2.25

If instead équation A2.17 a time dependent Schrodinger eqn.c

is used, i.e.
( H + V ) i ( r )  = i h miy-at A2.24

one ends up with the following equation to be solved for the coeffi —  

cients ^m(R])'s ,

Emm(R^-Rj) - ih'^/'ht ^k, j ) fm(Rj) J ’̂(Bj) =0
] n 3

/ A2.25n ̂  m  _____________ 2_______
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These are the general difference equations for v/hich

we have obtained without any approximation . Now, the perturbed energy 

E on the right and the coefficients ^n(R^)'s remain to be determined 

( we assume that the periodic problem has already been solved and the 

perturbation V has been given explicitly such that Vmm(^-R^)’s can 

be determined by equation A2.23)

In general the solution of these difference equations is quite 

difficult and the applications are limited to a number of relatively simp 

1er problems.

In the next sections v/e will show how these equations can 

be put into more practical forms using certain assumptions and approx

imations,

A2,6 SLOv.'LY VARYING PERTURBING FIEIDS( TIB FIRST APPROXII.IATION)

When the perturbing field V varies wexy slowly compared with 

the distance of atomic separations (or in other words it varies very 

little over a lenght of several unit cells) , then we may regard it 

as a constant over a part of the crystal (say over a unit cell) of par

ticular interest.

This point may schematically be illustrated as follows,
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The slowly varying function V(r) is approximated in terms of a 

stepwise function V(Rj) where V(P^) is obtained by setting 

succcsively r = in the function V(r)

V(5P = ( V(r) ^
- 1 A2.26

The difference in taking the stepwise function V(R^) instead the 

real perturbing field V(r) can be illustrated as follows (on the 

assumption that V(r) varies linearly)

v(r)-V(R.)

Clearly the slower the V(r) varies the smaller is the amplitude 

of the saw-tooth function and the more justifiable is the approxi 

mation.

Then on this assumption(that V(r) varies slowly)

Ymm(R,-R.) = Cm,!! | V | m , R >  0 if R. / R. A2.2?
— X  — T — K  — .1 —  .1 — K

and

= ( V(r) )<ra,IL lm,R> i f  R .-.Æ - -Tc -K -0 -k

= ( V(r) )  i f  <m,K lni,R̂ = 1
r=R.—  —Ic

= V
(S k)

Vmii(R-R.) = <m,R I V | n,R> ' ^ 0  i f  R V  R A2.28-k -j -k -1 -i -V-k

= <m ,n, I V I n,R>—iC —K
= Vmn(O)

j -k

if R = R 
- j  -k

Rote that, in this case it is not possible to take V out of the integ.—  
ral since thet would iiieen setting this second order term automatically 
to zero, i.e„ V , R ^ J  n,K̂ > = 0
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Using equations A2,2? and A2.28 equation A2.21can nov/ be writ 

ten as

A2.29
which is a ( modified ) difference equation for J"(R^)'s .

A2. 7 .REPLACTA'EU'T K/ DIFFERENTIAL FORES

Now, we will sliow hov/ this set of difference equations

can be reduced to differential forms. Tlie possibility c5f such a
7

conversion has fundamentally been shovax by Wannier (1937) and also 

has been rediscussed by Slater (1949) for a particular case where 

the expansion A2.14 has been restricted to a single band only,The 

development has been followed by others ( see the references in appen — 

dix 1 )
here,we will keep the argument more general and give

the differential forms for a multiband Hamiltonian first. The first

term on the left hand side of equation A2.29 may be rearranged (by

defining R = R.- R, ) as follows —s “K — j

Z  ^ mm(R^ ^  Elmm(R^) j^m(R^ -R^) A2 .50

Equation A2.29 « can now be written as follows

-Rg) + V(Rĵ )fm(R̂ ) +PVmn(0) j:n(R̂ ) = Ejra(l̂ )
^ A2.31

Let us now examine the effect of an exponential operator exp(-R^.\/ )

on an arbitrary function of r , say (r)

exp(-Rg. V  ) f ( r )  = j - ( r )  -  R g . V f ( r )  + ( R ^ . V ) ( R g . V j : ( r ) ) / 2  -

A2.92

?) see the references in chapter 1 and appendix 1 .
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.N

v/hich is simply the Taylor expansion of the function ^(r), hence 

exp(-R^. V) f(r) = ^(r -R^) A2.55

In chapter 2 , we have also shown that ^ mm(Rg.) ' s are the Fourier

coefficients of the unperturbed energy function Era(k) , hence

Em(k) £m(R^)exp(-i.k.R^) A2.M
s

Now let U3 define a fundamental operator from Era(k) by replacing 

k hy V/i ,

Em(V/i) =5̂  6m(H^)exp(-R^. v) A2.35

when this operates on an arbitrary function jlm(r)

Em( V/i) fm(r) = V  Em(R )exp(-R . V  ) fm(r) - Y  Em(R ) f m(r -R )J J —8 —8 J “* \3 —8 J — —S

Now, comparing the following equation A2.36

Em( S / / i )  j-m(r) + V(r) J m(r) + ^Vrnn(O) Jm(r) = Ejm(r)

A2.37

with the equation given below ( see equation A2.31 )

+ V(R^) + ^Vrm(o) j-m(R̂ ) = E fm(R,J

A2.38
n

r\-4.rn

where the first terns on the left hand side of the equations A2.37 and 

A2.38 are identical by equation A2.36 provided that the arbit

rary vector R]̂ which generates the crystal is replaced by r = R^ ,

the previous sections.
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\Hien one also sets r «R^in the remaining terian of the equation A2,3? 

the two equations A2.37 and A2.38 become identical,which proves 

that the last equation may be replaced by an(equivalent) differential 

equation of the form A2.37*

To solve this differential equation one has to know the func —- 

tion Em(k) explicitly. Expansions employing quadratic forms have found 

some useful applications in practice ( where the differential operator 

En(V/i) has been obtained simply by replacing ky, etc. by -i'B/oX 

-i'D/'^y , etc.).

A2.8 THE SECOND APPROXBIATION, EXPANSIONS USIîTG WANKIER FUNCTIONS 

OF A SINGLE BAND ONLY

When one deals with states where energy is small compared 

with the seperation of the bands such that

E / S E < ^ 1  A2.39
where E is the energy of the state and SB is the seperation 

of the bands then it can be proved(i.e. see Blount ) that it is not 

necessary to include in A2.14 Wannier functions of bands other than the 

one uTider consideration. Hence, when an expansion using V/annier functions 

of a single hand only is justified, i.e.

- g p  A2.40

i

 ̂ then the terms (in equations A2.37 and A2.38) containing the inter —  
band interactions vanish, i.e.

Y. Vmn(O) ̂ m(r) « 0 , ^  Vmn(O) ̂ m(R^) = 0 A2.41
n n

n ^ m n m



2b

to yiold kb'? -Tol lowing simpler aet of difference and differential 
equations

I + V(R^) j-m(ll^) .  E f  m(R, )̂ A2.42

a •
and

Ihi(’v/i) j’m(r) + V(r) ĵ m(r) « S fm(r) A2.45

These are the forms fundamentally suggested by Wannier ̂  (193?) 
and used by Slater ? (1949).
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