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ABSTRACT

Using a computer model of a two cylinder electrostatic lens, 

some novel relationships have been found to exist between the 

input and output parameters of meridional rays. These 

relationships have been developed and used to show that, for a 

wide range of practical lens geometries, it is possible to 

represent all the third and fifth order aberrations in terms 

of just two of the normal parameters. Formulae have been 

derived to describe some of the quantities associated with 

this type of lens defect and the problems of minimising the 

aberrations are discussed.

. ,.C.
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SECTION ONE

INTRODUCTION

In the fifty or sixty years since the first electron lenses 

were produced by Busch (1926) and by Davisson and Calbick 

(1931), ion optics has become one of the most ubiquitous 

branches of physics. In addition to the well established 

cathode ray tube technology, ion lenses are essential in the 

fields of electron microscopy and spectroscopy, ion 

accelerators and the rapidly growing areas of electron beam 

lithography and ion implantation. Despite these many 

applications, the theory that describes the influence of a 

lens on an ion beam has remained particularly cumbersome.

The properties of a lens are usually described by two sets of 

parameters. The first will pertain to the ideal lens, where we 

can define ideal focussing as occuring when all rays from a 

point in object space converge to a single point in image 

space and, moreover, the geometric relationship between object 

points is reproduced in image space. A second set may then be 

needed to account for the particular defects of the system. 

These aberrations will depend not only on the type of lens 

used but also on the operating conditions.

This thesis is concerned with the imaging properties of 

cylindrically symmetric electrostatic lenses. We shall show 

how it is possible to simplify the treatment of one the most 

common aberrations of this type of lens. The discussion is in 

five parts. In the remainder of this section we will review
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the focussing properties of electrostatic lenses and establish 

some important relationships that will be used elsewhere in 

the report. Section two deals with the production and testing 

of an efficient computer model of a two cylinder lens. The 

observations that have been made on this model are discussed 

in section three and a series of novel relationships are 

deduced and investigated. Section four examines the 

application of these results to lens design and the equations 

governing the geometric aberrations are shown to be reducable 

to very simple expressions. In the concluding section the most 

important results are summarised and discussed further.

1.1) GAUSSIAN OPTICS

The branch of electron optics that is confined to ideal 

imaging is commonly called Gaussian optics. It is essentially 

the optics of paraxial rays. In this section, as indeed in the 

rest of the thesis, discussion will pertain only to systems of 

rotational symmetry about the optic axis. These will usually 

be composed of simple tubes or apertures as are shown, for 

example, in Figures 1, 2 and 3.

For all electrostatic systems the potential distribution in 

space is entirely defined by the geometry and potential of the 

electrodes. In the absence of space charge this will satisfy 

Laplace's equation

V V  (r,z) = 0
(1 )
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Apart from the most trivial of electrode structures, it is 

impossible to derive the potential distribution by analytical 

integration of this equation. However when a lens has an axis 

of symmetry, Laplace's equation can be used to show that the 

distribution of potential along this axis, ^  (z ), uniquely 

determines the potential in all space. (See, for example, 

Klemperer, 1971):-

/  ( r , z ) = (z) - r* d^/. (z ) + r^ d*^.(z ) -
dz^ ? ?  dz**

(2 )

It can be seen that for small values of r, the potential is 

similar to that on axis. It is this insensitivity to radial 

displacement that enables the focal lengths of paraxial rays 

to be calculated readily. We shall briefly outline the 

derivation of an equation of motion for such rays and show how 

this leads to the usual characterisation of a lens by 2 focal 

and 2 mid-focal lengths.

For non-relativistic systems the motion of an electron will be 

governed by the Newtonian equations:-

d̂  z = ( r , z )
dt' J 3z

(3 )

,z )
I 4.1 I 5 %dt^ J §~r

(4 )

Where is the electronic charge to mass ratio.

If we confine our discussion to paraxial rays, then we can 

neglect the potential and field terms of higher than first
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order in r. Hence we can rewrite (3) and (4) as:-

d* 2 = dgfo ( z ) 
d t*" d z

(5 )

d̂  r = - n  r d^/. (z >
dF" ' J T  dî^dt‘

(6 )

Furthermore, since (dr/dz)'‘ (Cl we can write, in the absence of 

thermal velocity:-

(dz/dt )* = 2 0 /o (z )
(7 )

A differential equation for the electron trajectory can be

derived by noting that:-

d
d t
2_[ = ^  /dr d A  
t̂  dt (̂ dz *dty

= ^  d^ z + d^r f à z  
dz dt^ dz^ldt

(8 )

(9 )

Substituting (5), (6 ) and (7) into (9):-

-r d̂  0̂0 (z ) = ^  d/fl (z ) + 2 d^ r ./^(z)
2 d z^ dz dz dz^

(1 0 )

Therefore :-

d^ r + d /o ( z ) d r 1 + d*'t̂ e ( z ) r = 0
dz'* dz dz 2/*(z) dz^ 4^o(z)

(11)
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A more usual form of the ray equation (Picht, 1939) can be 

derived from (11) by making the substitution:-

R(z ) = r( S'"(/. (z l) (1 2 )

Hence :-

d^R(z) 
d z***

+ 3 /d/o ( z ) 1 1
dz V . t z y

R(z) = 0

(13)

It can be seen that the equation of motion contains neither 

the charge nor the mass of the particle. It and all the data 

and relationships that are given here may be applied not only 

to electrons but to any non-relativistic charged particle. In 

the case of positive ions the signs of the applied voltages 

need to be reversed.

Since (11) is a linear second order differential equation its 

general solution can be obtained by a linear combination of 

two particular solutions. Typically two rays, parallel to the 

optic axis in image and object space respectively, are 

numerically integrated using equation (13).

By integration of the Picht equation or otherwise, the four 

cardinal points of the lens can be found and thus the focal 

and mid focal lengths.

It can be seen from Figure 4 that for conjugate points P and G@ 

in object and image space repectively :-
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(P'F, ) (Gp-F ) = f .f
(14)

and the linear magnification of the system is given by:-

M = -f, /(P-F, ) = - (Gg-F^ )/fa.

It follows that the asymptotic angular magnification of a 

paraxial ray is given by:-

= - (P-F, )/f% = -f*/(G,-Fi)
(16)

1.2) ABERRATIONS IN ION LENSES

The assumptions made in the last section may be valid for many 

lens systems. However, when image quality is of particular 

importance and the particle interactions cannot be so simply 

defined, the Gaussian approximation can serve only as a 

guideline to the image properties.

The aberrations of ion lenses may be loosely classified into 

those which result from the interaction of the ray with other 

than the lens' field, and into those which are geometric 

aberrations. This work is concerned with the latter type only, 

so we shall merely identify the most common non-geometric 

aberrations. A more detailed review can be found, for example.



Page 17

in the texts of Zworykin et al (1945) or Grivet (1972).

i) Chromatic aberrations will result from a spread in incident 

energies. In addition, aberrations which could be considered 

chromatic will result from fluctuations in the applied 

electrode potentials.

The longitudinal chromatic aberration for paraxial rays is 

given by:-

Aig = i 6 y , /V, )
(17)

Where Cg is the principal chromatic aberration coefficient and 

the incident particles have energy q(V,+&%). The potential of 

the first electrode is V,. (See, for example, Berger, 1982 ).

ii) lon-ion interactions could have a significant effect on 

the image definition and intensity in higher current systems.

A useful measure of the magnitude of the space charge effects 

within the beam is the perveance ( = I / V ^ f o r  electrons). For 

example, the role of space charge in an electron beam of 

perveance less than 10"^ A w o u l d  be negligible, whereas a 

perveance greater than 10*^ AV^^ could impose fundamental 

limitations on the design of the system.

Since the perveance is greatest when the beam energy is low, 

the most dramatic effect of space charge is generally in the 

extraction region of a system (for example near to the cathode 

of an electron gun). Indeed the normal operating condition for
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most practical systems is with space charge limited emission 

current (see, for example, Dahl, 1973). In the lens region 

these effects are usually much less important, although the 

Coulornbic interactions will give rise to additional transverse 

and longtitudinal forces. The former will diminish image 

quality by causing the beam to spread, whilst the latter will 

give rise to chromatic aberration.

iii) Diffraction effects will result if thes^sUm has apertures 

which are comparable to the De Broglie wavelength of the ions. 

For non-relativistic electrons this is given by:-

X 0£ 1 .23/ (nM)
(18)

Where  ̂ h the polghL'oA \lo\ts.

In practice, diffraction errors are important only in the

field of high magnification electron microscopy^ ujhert Fhe
stracbjcre. the jgivcs .rCse, tc> these .
iv) Ver̂  higK lenses W»U normally

! : j O v m < L t \ u j A i  \>€ t o  ça\cuOicxt--C. tW -'r

1st or<ier properties. The relativist ical ly corrected form of the 

Picht equation is given byl-

d^R*(z) + ^  6 (z ) f d j ^ o ( z )  1 Ÿ  R*(z) = 
d 1*“ 16 \ dz (fp (z y

(See, for example, Klemperer, 1971)

Where : -

(19)
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R*(z ) = r (ç/p̂ (z >
(20 )

G ( z ) = Z / s J z A  /l + {1 ) A
\/7TTT/ \ J (2 1 )

being the relativistically corrected axial potential, 

which is g iven by : -

gfj^i z) = (z ) ( 1 + “3/p(z)/2c^)
(22 )

of LVe e^Çects (*)'0i>) could detract from the image quality of 

certain systems. However, even when they are negligible, 

Gaussian theoryshoul^ be applied only to paraxial rays, becaiASe 

tKe- pre^ehC^ o f  geometric aberration.

1.3) GEOMETRIC ABERRATION

The Gaussian approximation may be regarded as a first order 

theory, since in its formulation terms of higher than first 

order in r were neglected. For a meridional ray (that is one 

which is contained in a plane which includes the optic axis) a 

trajectory through the system can be defined uniquely by its 

slope and radial displacement at two, non-coincident planes 

normal to the optic axis. If we take these planes as those 

which pass through the principal foci of the lens (see Figure 

5 ) and, furthermore, we define r̂ , r ^ ' , r̂  and r j  as the
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asymptotic radial displacement and slope of a ray at these two 

planes, then it follows that we could express r^ and as a 

power series of r, and r,'. Moreover, because of the 

cylindrical symmetry of the system, the coefficients of all 

the even powered terms must be null.

Hence :-

(23 I

r^/ f̂ = + m̂ r̂̂ "' +m_r/“r. /f. + m^r/r.'/f,” + m.x.'/f.

+ q , r /  + qu'','*'’. + q,//’
+ q„r.'r,‘'/f^ + q„r//f/ + .....

(24 )

Where the coefficients of the first order terms follow 

directly from the paraxial approximation.

The mjj and q- coefficients give rise to third and fifth order 

geometric aberrations respectively. These coefficients are 

system constants and depend on electrode potential and 

geometry alone. It can be seen that there are 8 third order 

and 12 fifth order coefficients. It will be shown later that 

the isotropic properties of the electrostatic field enable 

these to be reduced to 5 and 7 distinct coefficients 

respect ively.

It must be emphasised that r * is defined by:-
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= dr/dz
(25)

and it is the slope and not the angular inclination of the ray 

with respect to the optic axis. For paraxial rays these will 

be similar.

1.4) CLASSIFICATION OF GEOMETRIC ABERRATIONS

The multiplicity of coefficients in (23) and (24) give rise to 

a number of characteristic imaging defects. Verster (1963) has 

shown that it is possible to associate each of the third order 

errors with particular coefficient. Whilst it is felt that no 

useful purpose would be served here by extending this 

treatment to the fifth order, it should be realised that since 

(23) and (24) are general relationships between incident and 

emergent meridional rays, they could be used not only to 

quantify spherical aberration, but also the other geometric 

errors such as isotropic coma, field curvature, astigmatism 

and isotropic distortion.

1.5) FURTHER RELATIONSHIPS

We shall now establish some further relationships between 

incident and emergent rays that, along with (23) and (24) will 

enable us to investigate the meridional aberrations in ion
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lenses.

1.5.1) Ray Reversal

Equations (23) and (24) enable us to express the output 

parameters of a ray in terms of its slope and displacement at 

a point in object space. We shall now establish the converse 

relationship.

A ray traversing the system given in Figure 5 from right to
fsJleft will perceive a lens with focal lengths F̂  , F^ , f̂  and f% 

such that

(26 )

where F̂  , F^ , f, and f̂  ̂ are the focal lengths for a ray

travelling from left to right.

If we denote the ray parameters by r\ , r^, r^ and r̂  (the " 1 "

suffix denotes object space, which is now on the right hand 

side) then it follows that:-

«W Aj 3 fV % «V ^ ^ 'W «V 3 A/ *r,' = -r, /fj + r, /f^ + tn,,r,'r, / \  + m,̂ r, /f̂

+ + K (27 )

(28 )
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We can now consider a second ray travelling in the opposite 

direction whose trajectory, although reversed, coincides with 

the first. The input and output parameters of this ray are 

related by equations (23) and (24). Since the rays are 

coincident it follows that:-

r, = r,, r^ = ^ , r/ = -r ', r^ = -r/
(29 )

Equations (26), (27), (28) and (29) may be substituted into

equations (23) and (24), enabling us to inter-relate the m, q 

and m, q coefficients. Hence it can be shown that:-

qji = q,( + 3m* - ^vi ^ "’0%  '

(30 )

(31 )

(32 )

(33 )

Using these identities in equations (27) and (28) enables us 

to express the ray parameters in object space as a function of 

those in image space:-

r' = r^/f, + m„r^'^ - /f, + m^r^'r^/f,' - /f,̂

+ (q„ + 3iti,̂ m,j - - ------ (q,, + - 3m',)r//ff

(34 )
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- (q%, + 3m%, - +  + (q« + "',j% -
(35 I

1.5.2) The Lagrange Invariant

Consider a ray through a lens with arbitary terminal points in 

image and object space (Figure 6). The ray can be described by 

position and momentum vectors 2L &nd

Suppose that this ray suffers separately or simultaneously two 

perturbations. If we denote the generalised coordinates of the 

unperturbed ray by V, then the two resultant rays will have 

coordinates (V+dV) and (V+SV) respectively. It has been shown 

(see, for example, Sturrock, 1955) that the perturbations of 

the terminal points can be inter-related

& P , . d x ,  - d p , . f x ,  = f p _ . d x _  - d p . . ̂ x t
- -  - -  - -  -  -  (36)

Equation (36) represents the Lagrange Invariant. It is a 

general equation that is valid for all electron optic sytems 

(see Verster, 1963). We shall now proceed to express (36) in 

terms of our coordinate system.

Since we are considering meridional rays only and furthermore, 

we could, without loss of generality, restrict ourselves to 

initial perturbations in the r direction, we can write:-
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dx = i.dr

^  = ±f S'

where is a unit vector parallel to the r axis

If JL is a unit vector tangental to the ray:-

p = p s

(37 )

(38 )

(39 )

Where the magnitude of the position vector, p , is given by:- 

p = (2em/ + e'*^Vc^)^*‘
(40 )

Hence, if we express s_ in terms of its radial and axial 

components and we assume that the terminal points of all three 

rays are in field free space, then:-

dp = p (ifdSp + ix dSj )
“  ” (41)

fp = P (if + i.fs^ )
-  (42)

From (37), (38), (41) and (42):-

&p.dx - dp. Sx = p ( Ss. dr - d s.fr )
-   --------------  ' (43)



Page 28

We may eliminate from (43) by realising that since r '  is 

the gradient of the ray:-

r = r'(l + r
(44 )

Therefore

(s. = fr ' (1 + r '*■ )

d Sj. = dr' (1

(45 )

(46 )

Using (45) and (46) in (43):-

Sp.dx - dp.Sx = p (1 + r '** ) ^(Sr'dr - dr'fr)
(47 )

Substituting (47) into (36):-

p, (1+r f^(Sr/dr, -dr^'fr, ) = P ^ d  + r'^ )^(Sr^'dr. "dr^'fr^ )
(48)

If we note that :-

drj = (dr^/âr, )dr̂  + ( âr^/^r/)dr,'
(49 )

di \ '  = (3r ^ / 3r, )dr,  + ( 8r ^ / 9^ ' ) d ^ '
(50 )

)Jr + (9r
(51 )
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)Sr, + )Sr/
(52 )

Then we can write:-

Jr^'dr^ -  = [ ' ^ r ^ '  ' b r ^  -  ^  ( S r / d r ,  -  à r ^ ' S r ^  )3r/ 9r, 9r/ 9r /
f (53 )

Furthermore, since the ratio of the focal lengths and the 

ratio of the refractive indices in object and image space are 

equivalent, it follows that (See Born and Wolf, 1959):-

f, /f^ = P,/Pi
(54 )

(cf. non-relativist ic limit: f*/f^ =(V^/V^)^^).

Using (53) and (54) in (48):-

f, (1 + r = f%(l + r/'

(55 )

This differential equation represents the Lagrange Invariant 

for the system that we are considering. It will be used later 

to simplify the relationship between incident and emergent 

rays. It is important to note that its use is restricted by 

the assumptions made in its derivation. In particular, it is 

applicable only to meridional rays in a lens whose focal
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planes are in field free space.
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SECTION TWO

THE COMPUTER MODEL

In this section we shall deal with the method used for 

simulating an electrostatic lens and calculating electron 

trajectories through it.

2.1) POTENTIAL AND FIELD DISTRIBUTION

There are a number of methods which can be used for 

calculating the potential distribution of an electrostatic 

lens in the absence of space charge. They are all based on the 

solution of Laplace's equation:-

Y C r , I > = 0
(56 )

i) Probably the most readily implemented method involves 

approximating the continuous distribution by calculating the 

potential at discrete points on a mesh. (See, for example, 

Carre and Wreathall, 1964). Unfortunately the lack of 

continuity in the derived potential distribution could impose 

limitations on the accuracy to which first and second order 

derivatives can be calculated. The method was judged to be 

unsuitable for very accurate trajectory calculations.
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ii) Since it is the charge on the electrodes that is 

ultimately responsible for the potential distribution, it is 

possible to deduce the latter by firstly calculating the 

distribution of surface charge (Read et al, 1971.) The method 

enables the accurate calculation of the potential and its 

derivatives and can be used to evaluate direct raypaths (Renau 

et al, 1982).

iii) In examining aberrations it will be necessary to 

calculate a large number of trajectories through a lens using 

a direct ray tracing technique. If fifth order effects are to 

be observed then each ray will have to be numerically 

integrated using a very large number of steps (this was found 

to be in the order of 10® ). So for practical reasons the 

method used had to be not only accurate but fast. The method 

used, therefore, was based on that described by Cook and 

Meddle (1976) which we shall now outline.

2.2) VARIATIONAL METHOD FOR CALCULATING POTENTIAL DISTRIBUTION

Given an approximate solution

/(r,z) = ?  cC;
(57 )

to Laplace's equation in a volume,JL, we can define the 

fune t ion:-
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= 0.5 (Vl^fW(/) = 0.5 I (Vçrf ) djv
(58 )

Where the Variational principle would suggest

W(Y) <  W(/)
(59 )

The two cylinder lens system that we are considering is shown 

in Figure 7. The volume of the lens can be treated as three 

regions as shown. Denoting the potential in the ith region by 

/,• (r,z) it follows that:-

pT, (D/2,z) = V,
(60 )

K  (D/2 , z ) = V^
(61 )

Where V» and V^ are the electrode potentials. If the electrode 

gap, g , is small in comparison to the diameter, D, then we can 

write:-

p^/D/2,z) = (z +  g/2)(V^ - V, )/g + \Ĵ
(62 )

Where we have assumed that the boundary potential for region 2 

varies linearly with z . Cook has shown that for small gaps the 

discrepancy in axial potentials thus found and those 

calculated by a relaxation method (Natali et al, 1972) are 

negligible. This has been verified by Bonjour (1979) whose
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variational method \kseA<\ third ^or the central

boundary potential. Moreover, for thick walled lens sytems the 

linear hypothesis is directly justified. We therefore feel 

that a useful analysis of aberrations can be founded on this 

potential model. This is validated by the good agreement of 

our measuments of third and fifth order aberration coefficients 

with those produced by other authors.

Using the boundary conditions of equations (60), (61) and

(62), the coefficients, dC;, of (57) can be detemined by 

minimising the potential energy, W(/), of the system. Hence, 

it can be shown that the potential in each of the three 

regions is given by:-

(63 )

Q*J,(knR)(A^-B*)(R ,2 ) = (V. +Vz ) + (Va. -V. )Z + (VaL-V,
2 6 Q Ù

(64)

(Kj (R,Z) = V, - (V. -V, ) S  J- (ly R ) IB:' -A:' )
G n.. (65 )

Where

A^(i) = exp^k*(2z+G^, B*(z) = exp^k^(2z-G^

And : -

G = g/D, Z = z/D, R = 2r/D
(67 )



Page 36

J*(x) is the Bessel function of order zero and k ̂  is the nth 

root of J^(x). Finally:-

(68 )

The derivatives of the potential can be calculated readily 

from these equations. For example, in the central region:-

> -  2 ( V t - V ,  ) ( k , R ) ( A ; '  + B .  )
) z  CD GO Li

(69)

16. = -2(Vi-V, ) 'S Q„k^J,(k„R)(A;’ -B„) 
ar 60 L i

oo
Ü 6  = 'HVx-y. ) "SQ.k^JotkARItA;' -B*) 
az- GO' ^

OO
al6. = 4(Vi-V, ) (k„R)(AZ'-Bn)
)z"6 r GD*" ^-  r...

(70 )

(71 )

(72 )

(73 )

The values of k^ and J,(k*) to 10 decimal places were taken 

from the British Association Mathematical Tables, 1958.

The similarity between the expressions for the potential and 

each of its derivatives enables the equations to be evaluated 

simultaneously, term by term. This expedient is extremely 

beneficial to the overall time required to determine a 

raypath .
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2.2.1) Evaluation of Bessel Functions

The first and zeroth order Bessel functions (J,(x) and J^(x) 

respectively) were evaluated by a method that depended on the 

magnitude of their argument.

For x<20 the general solution of Bessel's equation was used 

(see, for example, Stephenson,1973 ) :-

j„(x) = ^  (-1 r
Z j r i  (n + r)!

(74)

For x^20 an asymptotic series solution was employed

J*(x) = Ap(x)sin(x) + B, (x)cDs(x) 

J,(x) = B, (x)sin(x) - A,(x)cos(x)

(75 )

(76 )

Where

A^ j (x ) = (x ) - Qg , (x ̂  / (ttx )''*"

B^, (x) = (X) + (xj^/(iTx)'''

(77 )

(78 )

and

P (X ) = 1 - l\3^ + l\3\5\ ?̂  - l\ 3*. 5*. 7*. 9) 1 r  +
® 2 ! (8x )' 4 ! (8x )̂ ' 6 ! (8x )̂

(79 )



Page 38

Q.(x) = + r.3' 5' - l\3'.5\7\9' + _____
l!8x 3!(8x)* 5 ! (8x

(80 )

P, (X) = 1 + 3.5 - jL-3l.5\ 7 .9 + l\3\5'.7\9\ll .13 -......
2 ! (8x )' 4 ! (Sx r 6!(8x>*

(81 )

Q,(x) = 1 .3 - 1*,3*.5 ,7 + 1'. 3 . 5% 7% 9 .11 -
l!8x sTTSxT" 5!(8x)*

(82 )

In both regions summation stopped when a precision of 10 

decimal places had been achieved or with the 80th term if x<20 

or the 20th term if x:j20. Convergence was generally much 

faster than these limits.

The accuracy of the Bessel function was tested by comparison 

with published data. The quoted precisions were derived by 

extending its accuracy until raypaths through the system were 

found to be insensitive to the inclusion of additional terms.

2.2.2) Accuracy and Speed of Calculations

The accuracy and speed with which the potential and its 

derivatives could be found depended upon the number of terms 

that were used in equations (63)-(65) and (69)-(73). Generally 

these were found to be highly convergent. Each was evaluated 

to a precision of 6 decimal places, except when this did not 

occur by the 150th term (as is the case, for example, when 

z=+- g/2). In these cases the mean of the sums of the first 

149 and 150 terms was used.

Table 1 shows the variation of axial potential for a lens with
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V, =0 and Vĵ = l, The number of terms (n ) used for the summations 

are also shown. It can be seen that the results agree well 

with the results of other authors.

TABLE 1. AXIAL POTENTIAL FOR A TWO CYLINDER LENS

(g/D = 0.1, Vx= 1, V, =0 )

I/D P^(z) n (z ) fC (z)
Present Cook,1976 Natali,1972

0 .000 0.500000 1 0.500000 0.500000
0.025 0.467103 43 0.467101 0.467115
0 .050 0.434504 150 0.434504 0.434532
0.075 0.402496 43 0.402494 0.402538
0 .100 0.371344 25 0.371343 0.371399
0.125 0.341282 18 0.341283 0.341351
0.150 0.312514 14 0.312515 0.312592
0.175 0.285195 12 0.285196 0.285279
0.200 0.259440 10 0.259440 0 .259528
0.225 0.235324 9 0.235323 0.235413
0.250 0.212879 8 0.212880 0.212969
0.300 0.172994 7 0.172994 0.173079
0.350 0.139489 6 0.139489 0 .139566
0.400 0.111785 5 0.111785 0.111851
0.450 0.089157 5 0.089157 0 .089212
0 .500 0.070851 4 0.070851 0.070897
0.600 0.044407 4 0.044407 0.044436
0.700 0.027658 3 0.027658 0.027676
0 .800 0.017168 3 0.017168 0.017178
0.900 0.010636 3 0.010636 0.010642
1 .000 0.006583 3 0.006583 0 .006586
1 .100 0.004072 2 0.004072 0.004074
1 .200 0.002518 2 0.002518 0.002519
1.300 0.001557 2 0.001557 0.001557
1 .400 0.000962 2 0.000962 0.000962
1.500 0,000595 2 0.000595 0.000595
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2.3) TRAJECTORY CALCULATION

Electron trajectories were calculated by numerically 

integrating the Newtonian equations of motion (see equations 

(3) and (4) >.

The basis of this method lies in the power series expansion of 

the electron coordinates in terms of timel-

z(t) = z. + /dz\t + 1 /d** z\ t’’ + 1 /d̂  z\ tJ +
,dt/ 2\dt’‘y 6 Id t),#0 ' *0 '■ »o

r(t) = r̂  + t + 1 fdlA t̂  + 1 /d’ A  t̂  +
dtl 2ldt^y 6 Idt),V \ /q

(83 )

(84 )

Where z ( t ) and r(t) are the coordinates of an electron, with 

initial coordinates denoted by suffix 0, after a short time, 

t .

The accuracy of this method will depend upon the number of 

terms in (83) and (84) which are used and, in turn, on the 

size of t used for integration. The accuracy of each step can 

be checked during integration by, for example, a predictor 

corrector method.

The method that was adopted initially was based on that 

described by Renau (1979), which used only the first three 

terms of (83) and (84). However, this was found to require a 

very small integration step length and, moreover, the raypaths 

were found not to converge to the Gaussian limit for paraxial 

rays. A much better method was found to be one which 

incorporated second order variations in potential and thus the
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first four terms of (83> and (84).

The electron velocities at the end of a step are given by!-

dz(t) = 
dt

^  (t ) = 
d t

+ f éL z\ t
Ldt/ Idti'O \ IQ

(dr\ + /d̂ _r) t
idtL ldt V o

(85 )

(86 )

Where the second differentials of i and r with respect to t 

are given by Newton's equations and hence:-

n  f ̂  /  I I Âl\  + n  I /  I I  _d_rV I I M*. I f I -14.

(87 )

(88 )

The final expressions are simpified if we use scaled time:-

-IT = (2 3  ) t
(89 )

Bringing together these equations allows us to derive the 

recurrence relationships for the position and velocity of the 

electron

z(t) = z^+ /dzlT + 1 / j ^ V  + __1

(90 )
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r ( t )  = r. + (drW + 1 ^ 7 %  J_ \[^ /dr \+  / V A  / d A l  t ’

dz (t ) = /dz 
dT IdT

4 \Sr/̂  12 ^Jiir^dTj

+ 1 A £ \ T  + W  + f _&lVdr\lT'
2\):1 « .UÎ^UdTj  ̂ Uzîlrjj dltl

(92 )

#" " @fi ' i(i?r *
(93 )

The values of (dz/dT )@ and (dr/dT)@ at the beginning of a 

trajectory may be derived from the angle, 0, that it makes 

with the optic axis:-

(dz/dT )g = cos (8g )

(dr/dT)^ = s i n (0̂  )

(94 )

(95 )

Equations (90)-(95) therefore enable the calculation of a 

raypath from object to image space. The accuracy of the method 

is dependent on the choice of time interval, T, for the step 

length. This interval of normalised time is related to the 

trajectory step length. As, by:-

T = As/(^^^
(96 )

2.3.1) Variation of the Integration Step Length

Two shortcomings result from integration by fixed step
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length

i) Computing time is wasted by using steps which need to be 

small enough for the regions of highest field strength and are 

therefore unnecessarily large in other regions.

ii) Whenever a lens with different electrode potentials is 

considered, new checks will have to be made to ensure optimum 

choice of step length.

By allowing the routine to have variable step length it 

becomes both more efficient and universal. In regions of low 

field the step would be large and vice versa. A number of 

methods of incorporating this modification were tried, each 

based on testing the field strength either directly, or 

indirectly by examining deviations in path direction and 

velocity. The simple method which was finally adopted ujas 

or\ the accuracy of the potential calculation routine.

Denoting initial values by suffix 0 and final values by suffix 

1, the change in electron kinetic energy during a step is 

given by:-

A E  = m(V* - )/2
(97 )

The discrepancy between the apparent and calculated potential 

difference is therefore:-

^ - A E/e I
(98 )

Since the potential at a point was calculated to a precision
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of 10 , we could use the following criteria to govern the

integration step length: If after calculating a step it was 

found that £>10 , then T was halved and the step

recalculated; If £<2*10"^ , then T was doubled for the next 

step in the integration. Minimum and maximum values of T had 

to be fixed and these were 10^ and 10 ' lens diameters 

respectively. The first step of a trajectory vj<xs calculated 

with the minimum step length.

The numeric values that have been quoted were each determined 

by variation until the raypath became stationary with respect 

to increasing precision.

2.4) TESTING THE COMPUTER MODEL

In addition to checking the accuracy of particular aspects of 

the model such as the potential and field distributions, it 

was necessary to evaluate its overall performance. We shall 

outline the two principal checks that have been made.

2.4.1) Paraxial Rays

When trajectories progressively fill the aperture of a lens, 

the resultant geometric aberrations can be considered as 

systematic perturbations of the paraxial focus. It is of 

fundamental importance to our present study that calculated 

trajectories should have a Gaussian limit to their paraxial
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focus. A simple test of the ray tracing procedure was 

therefore to compare the parameters of emergent paraxial rays 

to those predicted by Gaussian optics.

The Picht equation (13) was numerically integrated by the 

Fox-Goodwin method (see, for example, Buckingham, 1962), using 

a short step length (10*^ lens diameters). The paths of rays, 

integrated from axis with a launch angle of 10"  ̂ radians, were 

compared to those calculated by the model. The overall 

correlation was extremely good.

A typical set of results is shown in Table 2. The small 

discrepancy between the two results is a consequence of the 

finite launch angle of the rays. The presence of spherical 

aberration causes the non-Gaussian ray to have both slightly 

larger angular magnification and to be imaged nearer the lens. 

This conclusion was justified by examining rays with 

diminished launch angles. The Gaussian limit was further 

approached but never exceeded.

TABLE 2. ANGULAR MAGNIFICATION AND IMAGE 
DISTANCE OF PARAXIAL RAYS.

(Two cylinder lens. g/D=0.1 =10)

Picht ray Direct ray
P Q Q rv

1 .75 15.88 -0.05428 15.86 -0.05437
1 .80 11.95 -0.07408 11 .94 -0.07418
1 .85 9.679 -0.09389 9.622 -0.09407
1 .90 8.198 -0.1137 8.189 -0.1138
1 .95 7.156 -0.1335 7.145 — 0 .1336
2.00 6.384 -0.1533 6.378 -0 .1535
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2.4.2) Aberrated Rays

The final test of the accuracy of the model was to use it to 

calculate the aberration coefficients of equations (23), (24),

(34) and (35), In a later section we will show how the model 

has enabled all of the third and fifth order coefficients to 

be evaluated but, for the present, we seek only to show how 

the third order aberrations of parallel rays can be calculated 

and to check that they are consistent with the results of 

other authors.

We have already seen that the behaviour of a trajectory is 

governed generally by eight third order coefficients. However, 

if we consider rays from an infinitely distant object (r,' = 0), 

it follows from (23) and (24) that:-

Where we have included terms up to the third order only. 

Conversely, if a ray emerges parallel to the optic axis, then 

from (34) and (35) it follows that:-

r/ = r^/f, - mjjr’/f*
(101 I

r. ,102,

These relationships provide us with a relatively
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straightforward method of calculating four of the third order 

coefficients. Trajectories with r/=0 and r ^ - 0  were used with a 

Least Squares fitting program to obtain m,^ , m,g , m^j and m*% 

from equations (99)-(102). In order that fifth and higher 

order effects should not detract from the accuracy of the 

calculations, the fit was restricted to rays for which the 

ratio of asymptotic radial displacement at the lens centre to 

the radius of the lens (ie the filling factor) was less than 

30%.

The results are shown in Table 3 along with the results of 

other authors. The results of Read have been derived from his 

Cs coeffients using the the data and relationships that he 

gives in his book (1976). Kuyatt et al (1972) quote an 

accuracy of 10% ("with one or two possible exceptions") for 

their coefficients. Verster's results were derived from an 

electrolytic tank model (1963).

The principal limitation to the precision of the results that 

we give here is the inability to decide accurately the maximum 

filling factor that should be considered for the third order 

least squares fit. Nevertheless, although we have taken this 

(somewhat arbitarily) to be 30%, our results are generally 

consistent with those of other authors. We shall return to 

this problem later on when we make more precise calcul at i ons of 

the aberration coefficients.
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TABLE 3. THIRD ORDER ABERRATION COEFFICIENTS 
FOR PARALLEL RAYS.

v,/v.

rn

10 m 
rnIt

^26

20 m 
rn16
m
^26

Cylinder Lens. g/D = 0.1)

Present Read Kuyatt Verster
(1976) (1972 ) (1963 )

-305 -278 -285
-488 -467 -502
-362 -331 -364
-577 -553 -575

-7.86 -7.02 -7.34 -7.32
-22.9 -22.2 -23.6 -9.18
-11 .7 -10.5 -11 .0 -9.21
-33.7 -32.6 -34.7 -36.8

-1 .72 -1.46 -1 .44 -1.58
-7.54 -7.34 -7.06 -1 .48
-3.22 -2.74 -2.71 -3.37
-13.1 -12.8 -12.2 -15.7

-.570 -.470 -.460 -.480
-3.66 -3.54 -3.44 - .40
-1 .46 -1.19 -1.16 -1 .52
-7.85 -7.55 -7.27 -9.68
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SECTION THREE

RESULTS

The computer model was used to calculate trajectories for a 

large number of rays through the system shown in Figure 7.

Both accelerating and decelerating lenses were considered with 

voltage ratios ranging from near unipotential to 40:1.

Raypaths with filling factors of up to 90% and linear 

magnification anywhere from zero to infinity were calculated. 

The discussion that follows is based on the results of over 

1000 trajectories.

Throughout this discussion we shall consider each ray as 

ernerg ing from axis at a distance P to the left of the centre 

of the lens and to intercept the axis again at a distance Q to 

the right of the lens centre. When measurements are made in 

regions of finite field, P and Q correspond to the asymptotes 

of the ray. The same is true for the treatment of r and r ' 

which were defined in section two. It can be seen from Figure 

5 that:-

r/ = r, / (P-F, >
(103)

-r ' = r, / (Q-F- )
(104)

We shall use M and to refer to the linear and angular 

magnifications of a paraxial ray from P, which recrosses the 

optic axis at the Gaussian image plane, a distance Q̂ . from the
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reference plane of the lens.

All the lenses examined exhibited positive spherical 

aberration ie. Q decreased with increased filling. A typical 

set of trajectories are shown in Figure 8.

3.1) RELATIONSHIPS BETWEEN IMAGE AND OBJECT SPACE

The evaluation of the third order aberration coefficients such 

as those used in equations (23) and (24) has been the subject 

of many papers (see, for example, Kuyatt et al, 1972 or 

Harting and Read, 1976). Our initial investigations are not 

concerned directly with the evaluation of these coefficients, 

but instead we shall look at alternative connections between 

the parameters of a ray in image and object space.

The Helmholtz-Lagrange relationship suggests that the linear 

and angular magnifications of a paraxial ray are simply 

related. By examinig this relationship for aberrated rays we 

have found that for rays emerging from the same axial point

r//r/ oC Q
' ^ (105)

This relationship is illustrated in Figures (9)-(16). Although 

the gradients and the intercepts of the graphs are dependent 

on the voltage ratio and the object distance, the relationship 

between the image distance and the ratio of input and output 

slopes of the ray proved to be linear for all tested object
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points and voltage ratios. In particular equation (105) was 

found to be independent of the degree of aberration of a ray. 

We shall investigate this relationship and examine its 

limitations and see how it affects the treatment of 

aberrat ions.

We can express (105) as:-

= b(P).Q + c(P)
(106)

Which is easier to treat if we make the substitutions:-

G(P) = 1/b (P) - f

I(P) = c (P)/b(P) + Fi

(107 )

(108 )

So that (106) becomes:-

Q-F^ = -f, r//r/ - G(P)r//^/ - K P  )
(109 )

It is useful to definel-

k = r, /(ryf%) (1 1 0 )

It can be seen from equations (16) and (103) that k is simply 

, the unaberrated angular magnification of a ray from P. 

Since for a given voltage ratio this is solely a function of
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P, we can consider G(P) and K P )  as G(k) and I (k ) 

respectively. Thus, if we incorporate (104), we can rewrite 

(109) as:-

= f, r/ + G(k)^' + I (k )r%'
(111)

We may also express (23) and (24) in terms of k

= -r/k + r/*M,(k) + r/*Q,(k) 

r%/f, = r/ + r/^M%(k) + r/*Ot(k)

(112 )

(113)

where :“

M, (k) = m,5 + m,̂ k + m,gk + m,̂ k

Mj(k) = m^j + Mĝ k + m ^  + m%k*

Q, (k) = q,, + q^k + q„k‘ + CL̂ k̂  + q,,k"̂  + q%k^ 

Q^(k) = q„ + q^k + q^k* + q,,k* + q^k"' + q*k*

(114)

(115)

(116)

(117)

Substituting (112) and (113) into (111) gives us a quadratic

in r

^  (k )-kI (k^ + r/^ (k )n,(k )-f,Mj(k ̂  + r/** ̂  (k )0,(k )-f,Q̂ (k )̂ - 0

(118 )
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Since (116.) is valid for all rays from all object points:-

G(k) = kl(k)
(119)

M}(k) = M, (k)I(k)/f,
(120 )

Q^(k) = Q, (k)I(k)/f,
(121 )

It can be seen that (119)-(121) can be reconciled with 

equations (118) and (114)-(117) only if I is a lens constant 

and if :-

rn • = d'm,:
(1 2 2 )

= «5'q.j
(123)

where :-

cr = I/f,
(124)

Substituting (119) and (110) into (111) gives the very simple 

relationship between the ray parameters in object and image 

space :-

%/f, = r/ + /f% + cfr̂
^ ' (125)

Equations (122) and (123) effectively halve the number of
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unique aberration coefficients needed to describe the 

behaviour of a ray. Moreover in (125) we have a linear 

relationship, which appears to be independent of aberration, 

between the input and output parameters of a trajectory 

through the lens. The remainder of this work will be dedicated 

to the investigation of the applications and limitations of 

these fundamental relationships.

3.2) PARALLEL INPUT AND OUTPUT

(125) has been derived from trajectories with finite 

magnifications. We shall now examine its application to rays 

which enter the lens parallel to the optic axis.

For parallel incidence (125) becomes:-

If we use (104) this becomes:-

" ‘ I TTT/I
(127 )

This relationship is compared with the results of the computer 

model in Figures (17)-(21). A strongly linear relationship is 

[pearly evident for all but the 40.1 lens, where some 

deviation from the predicted result is apparent.
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The longitudinal shift in focus for a spherically aberrated 

ray is given by:-

Q = - C^r," - .....
(128 )

Where and represent third and fifth order aberrations 

respectively.

Figures (22)-(26) show the variation of Q with r,̂  for the five 

voltage ratios. It can be seen that in each case fifth order 

effects become noticeable for rays of over about 50% filling. 

This was also the observation of Harting and Read (1976).

Since graphs (17)-(21) represent fillings of up to 90%,

equation (125) must be independent of both third and fifth 

order aberrations.

The deterioration of this relationship for the near focus rays 

of the 40:1 lens suggests that (125) may be an approximation 

that is less applicable to strong lenses. We shall investigate

this in more detail later in the thesis.
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3.3) RELATIONSHIPS BETWEEN ABERRATION COEFFICIENTS

We shall now show that in the light of the observations that 

have been made, it is possible to represent all the third and 

fifth order geometric aberrations using three unique 

coefficients only.

If we incorporate the partial differentials of equation (125) 

with respect to r̂ and r/:-

S  = f, dfl. +
r, dr,y

= f, A  + tf. è rj\
h r /  \  ar, 7

1  
&r,

(129 )

(130 )

into the Lagrange Invariant which was derived in section one 

(equation (55) ), then we can show that:-

(1 + r (1 + r/'* L à".' / (131 )

If we use the binomial expansion

(1 + r'^ = 1 + 3r'^ + 3r

(132 )

then we can substitute for and its derivatives by using 

equations (112), (114) and (116). A rather lengthy calculation

will show:-
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cTm,5 = 3m,g + 3/2

crm,^ = m,2

3d’m,j = m^ -3/2

= 5q.,s - 3m,g + 3/8 

2dq^ = 4q,5 - 3m,*

3cfq„ = 3q^^ - 3m^ - 9/4

4dTq,i = 2q„ - 3m,,

ScTqi, = q,^ + 15/8

(133 ) 

(134 ) 

(135) 

(136 ) 

(137 ) 

(138 ) 

(139 ) 

(140 )

Hence, given equations (122) and (123) we can express all the 

third and fifth order geometric aberrations in terms of just 

three coefficients: m,g , q,g and cT.

To some extent we can check the validity of equations (133) - 

(140) by extending a method used by Verster (1963) which 

utilised the isotropic properties of an electrostatic field.

An extremely lengthy fifth order calculation enables three of 

the third order and five of the fifth order coefficients to be 

expressed in terms of the others:-

= 3m,^ + 3/2

3m^, = m,̂  - 3/2

(141 ) 

(142 ) 

(143 )
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+ 3m,^/2 + 3/8
(144 )

“ ^̂ 15 + 6m,̂ m,s - 6m,̂ m̂  ̂- 3m,̂
(145)

^ ^ 1} = 3q,4 + 3mJ - 9m„m;^ - 6m,̂m,,̂  - 9m,4/2 - 15m„^/2 - 9/4
(146 )

- 18m,jm,j + 2m%n^ - 12m,3 - 3m,5
(147 )

5^2, = q,i + m,̂  - 3m%/2 - 3m„m,j + 15/8
(148 )

Inspection will show that our relationships are compatible 

with these results.

3.4) CALCULATING THE ABERRATION COEFFICIENTS

It is a relatively straight forward matter to use the data 

from the trajectories to determine the value of cf for a given 

voltage ratio. We have from equation (127) that for parallel 

incidence :-

Q = F% -

(149 )

Using a Least Squares fit on the output parameters of 

trajectories of up to 60% filling the value of cT was 

determined for a range of voltage ratios. These are shown in 

Table 4.
The determination of the m,g and q,̂  coefficients was, however.
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found to be more involved. For parallel incidence the 

variation of r^ with is given by:-

(150)

Problems arise when fitting data to this fifth order 

relationship due to the presence of higher order variations.

If we are to derive the correct values for m,̂  and q,g, then it 

is necessary to consider as wide a spread in incident rays as 

possible. However, if the spread is too large then 7th and 

higher order effects will detract from the accuracy of the 

coefficients. It was found to be too haphazard to try and 

resolve this problem by attempting to determine the optimum 

maximum filling factor that should be considered.

Consequently, the m,̂  and q,g coefficients were calculated by 

fitting a higher order polynomial to r / , In fact for the 

weaker lenses it was necessary to consider 11th order 

variations before q,g became stationary.

The derived values of m,̂  and q,g are shown in Tables (5) and

(6), along with the values of all the other third and fifth 

order coefficients which have been calculated from these using 

equations (122 ),(123) and (133 )-(140 ).



Page 79

TABLE 4. THE COEFFICIENT tf AS A FUNCTION 
OF VOLTAGE RATIO.

(2 Cylinder Lens . g/D = 0 .1 )

v^/v, 2 5 10 20 40

o' 1 .187 1 .47 1 .75 2.17 2 .96

/v/'* 1.189 1 .50 1 .78 2.11 2.51

By considering the standard deviations in the Least Squares 

analysis we were able to estimate the accuracy of the quoted 

values. We believe m̂ g and q,g to be accurate to within 1% and 

5% respectively. The other coefficients are derived from these 

two and d". They are therefore less accurate. Inspection of 

equations (122), (123) and (133)-(140) will show that the

largest errors should occur in m,^ and q^ . We estimate these 

errors to range from 1% and 5% respectively for the 2:1 lens, 

to 10% and 20% respectively for the 40:1 lens. Kuyatt quotes 

accuracies of 10% for (most of) his third order coefficients 

and describes his fifth order coefficients as accurate to 

about a factor of 2.

It can be seen that the present results are generally in good 

agreement with the results of Kuyatt and Read.
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TABLE 5. ABERRATION COEFFICIENTS IN THE EXPANSION OF r̂' 

(Two cylinder lens. g/D = 0.1)

-m,3 ‘ 1̂5 -q,, -4* -4* "4,5 -4,5
Present
Kuyatt
Read

283
285
278

1010
1029
991

1190
1240
1180

473
502
467

6.7E4
1E5

4 .0E5 9 .5E5 1.1E6 6 .7E5 1 .6E5 
2E5

V^/V, =5
-rn,3 -4,2 -4n -4,4 -4.5 -4,5

Present
Kuyatt
Read

7.21
7.34
7.02

30.3 
31 .6 
30.0

44.5
47.0
44.3

22.3
23.6
22.2

82
72

600 1800 2700 2000 600
430

V^/V, =10
-•m,5 -Su -4,^ -4,1 -4/4 -4,5 -4,4

Present
Kuyatt
Read

1 .50 
1 .44 
1 .46

6 .59 
6.77 
6.70

11.5 
12.0 
11 .9

7.20
7.06
7.34

3.8
6.2

35 120 220 210 76
94

V^/V, =20
-Sn -4a -4,3 -4,4 -4,5 ”4,5

Present
Kuyatt
Read

.530

.460

.470

1 .95 
2.23 
2.06

4 .24 
4.27 
4.58

3.56
3.44
3.54

.10

.27
3.0 14 31 37 18

25

V^/V; =40
-m* -q»! -4i2 -4,3 -4.4 "4,5 -4/5

Present
Kuyatt
Read

.235

.186

.200

.590

.722

.670

1 .75 
2.03 
2.27

2.22
2.29
2.26

-.09
0

.44 2.9 8.5 14 9.7
5.9
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TABLE 6. ABERRATION COEFFICIENTS IN THE EXPANSION OF 

(Two cylinder lens. g/D = 0.1)

V^/V= 2
-^2, -"*14 -Wzt -4%, -4,1 "4,5 -4:4 -4,5 -4t6

Present
Kuyatt
Read

336
364
331

1190
1270
1180

1420
1480
1400

561
575
553

8.0E4
4E4

4.8E5 1 .1E6 1 .3E6 8.0E5 1 .9E5 
3E5

V^/V, =5
-m25 “4z, -4,1 -4:3 -4%(, -4:s -4,6

Present
Kuyatt
Read

10.6 
11 .0 
10.5

44.5
47
44.3

65.4
69
65.1

32 .8 
34.7 
32.6

120
106

890 2600 3900 2900 880
643

V^/V, =10
-^24 “^75 -42, -4„ -4,3 "4:4 -4,6 -4z6

Present
Kuyatt
Read

2 .69 
2.71 
2.74

11 .5 
11 .4 
11.9

20.1
19.6
20.5

12.6 
12 .2 
12.8

6 .6 
13.5

61 220 390 360 130
174

V^/V, =20
-mz6 -4%, -4ii -4,, -4 h "4.5 -4,t

Present
Kuyatt
Read

1 .15 
1 .16 
1 .19

4.24
5.29
4.58

9.19
8.05
9.12

7 .73 
7.27 
7 .55

.21

.79
6.4 30 67 79 39

66

V^/V, =40
-^15 -mz6 -42, -4„ ”4^ -4,5 -4,6

Present
Kuyatt
Read

.697

.65

.730

1 .75 
2.19 
2.27

5.17 
3.03 
5 .27

6.58
6.52
6.56

.29

.34
1 .3 8 .7 25 41 29

34
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3.5) RAY REVERSAL

If a ray travelling from, say, left to right has its input and 

output parameters related by equation (125) then it can be 

seen that cf i s a dimension less quantity. If we denote the 

parameters of a second ray, travelling in the opposite 

direction by then it follows that:-

(151 )

If these raypaths are coincident then, using (26) and (29):-

Tj /f, = r,' + o-'V, /f^ + f'r/

Comparison of (152) and (125) shows that:-

(152)

tf.cr = 1
(153 )

Inspection will show that given (122) and (123), this result 

is consistent with the relationships that we have shown to 

exist between the aberration coefficients of forward and 

reverse rays (equations (30)-(33) ).

All the relationships derived in this thesis have been tested 

and found to be self consistent with respect to ray reversal.
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SECTION FOUR 

FURTHER TREATMENT OF RESULTS

In this section we shall investigate the basis of our results 

and their limitations. We shall then show how, for a wide 

range of lenses, they lead to very simple expressions for many 

of the properties associated with geometric aberration.

4.1) RANGE OF APPLICATION

Earlier on we observed some deterioration in the relationships 

that we are examining in the case of a 40:1 voltage ratio 

lens. It would appear, therefore, that these relationships are 

approximations only, and may not be applicable to the 

aberrations of stronger lenses. We shall now investigate these 

limitations and derive a criterion that may be used to assess 

whether or not the results that have been obtained can be 

applied to a particular lens. We shall do this by considering 

the particular problem of spherical aberration.

If we denote the aberration of a ray from a point axial object 

by its radial displacement,Z\r, at the Gaussian image plane 

(see Figure 31), then we can define the third order spherical 

aberration coefficient, Cs(M), in terms of Ar, r /  and M (the 

linear magnification):-
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Ar  =

Where it can be shown that:-

(154)

Cs(M) = Cs.+ Cs, m''+ C s^ m'V CSgM"\ Cs^M"*
(155 )

It can also be shown that the following relationships exist 

between the Cs and the coefficients (Verster, 1963):-

Cs, =-m \
1156 1

CSj = (4m^)+ 1 . 5 ) %
(157 )

CSi= -2m %̂ /fj
(158)

Cs, = (4m,,+ 1.5)f,^/f^
(159 )

Cs. =
^ (160)

If our results are applicable, then it follows from (122) and 

(133)- (135 ) :-

Cs-= - (m,c + 0.5)f,/cr^ + 0.5f /cf
^  ̂ (1 6 1 )

Cs, = 4 (m.g + 0 .5 )f /CT - 0 .5f
' ® ' (162)

Cs, = - 6 ( m „ +  0 .5 )f * / ((ff, )
 ̂ (163)

CSj= 4 (m,g + 0.5)f,^/f^ + 0.5f, /fj
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Cs^= -(m,g + 0.5)df4/f^’ + o.5(5f.‘'/f/
(155 )

These inelegant relationships enable us to establish a very

simple test of our results. If we define:-

Y = Cs^ (dT, /fj + Cs, (cff, /fj ) + Csj,(df, /f, )

+ Cs^ (df, /f^ ) + Cs^
(166 )

then inspection will show that Y=0 if our results are valid. 

Therefore:-

Cs,+ Cs,(f%/df, ) + Cs, (fi/df, )'+ CS)(f,/df, )’

+ Cs. (fj/df, = 0
(167 )

must also be true. Comparison with (155) shows that when 

Cfi/cfiT' then the. s^sbe.m (̂ oi* uJWch oixr results
OLfe. pret»s€) will be free from spherical aberration. The value 

of the object distance, P, can be derived from (15):-

P = P. - f_/d
(168 )

where, because the linear magnification is positive, P C F,. 

Since all rays from this object point are unaberrated, they 

must all pass through the same (virtual) Q :-

Q = F - df,
^ ' (169)
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As this is true for all rays P and Q must be interchangeable, 

and since fS is single valued we must have that:-

P = -Q

Hence, from (15):-

(170 )

(P-F, ) (-P-F,) = f, f.
(171 )

Which means that if P is real and singular:-

4f,fj= (F, +F»)
(172 )

and : -

P = (F, -F, )/2

d = 2f,/(F, +F,) = (F,+F, )/2f,

= (f,/f, )'̂  = (V,/V, )'/*

(173 )

(174 )

(175 )

We have in these relationships two results of particular 

importance. Firstly, equation (172) relates the focal lengths 

of the systems for which our observations are precise.. This is 

explored in Table 7 where the focal lengths of the simple two 

tube lens are given along with the percentage error that there



Page 87

would need to be in each in order that (172) be correct. It is 

clear from these results that our observations are based on a 

weak lens model, even though they have been seen to predict 

accurately the aberrations of lenses with voltage ratios of 

twenty to one. Secondly, equation (175) enables us to derive 

the value of the coefficient tf from the overall voltage ratio. 

This will prove particularly useful in examining the 

application of our results to more complex lens geometries. In 

Table 4 we show how the value of d* (which was derived earlier 

for the two tube lens) compares to (V,/V, ) . It can be seen

that, with the exception of the 40:1 lens, there is strong 

ag reemen t .

TABLE 7. FOCAL LENGTHS OF 
(g/D

THE TWO 
= 0.1)

CYLINDER LENS

V,/V, f, F, Fz %E r r 0 r

2 1 .lOE+1 1 .56E+1 1 .32E+1 1 .30E+1 7.5E-3
5 1 .77E+0 3.95E+0 2.78E+0 2.48E+0 2.6E-1
10 8.00E-1 2.54E+0 1 .62E+0 1.19E+0 7.2E-1
20 4.60E-1 2.05E+0 1.21E+0 6.40E-1 2.4E+0
40 3.00E-1 1 .90E+0 1 .03E+0 3.20E-1 5.5E+0
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4.2) OTHER LENS GEOMETRIES

The results that we have obtained so far have been derived 

from the model of_ the simple two tube lens shown in Figure

(7). We shall now investigate their validity for the lenses of 

more complex geometries that are shown in Figures (l)-(3). For 

this purpose we shall use the accurate third order spherical 

aberration coefficients that have been derived by Harting and 

Read (1976 ) .

Using (175) to derive the value of d, we have calculated the 

value of Y given by equation (166), where, if our 

relationships are valid, we would expect Y to be zero. Tables

(8)-(14) show the results for the various lenses. The error 

that is quoted is the percentage error that there would need 

to be in each of the Cs coefficients in order that Y should be 

zero. This error should be compared with the 1% error that 

Harting and Read quote for their results.

We can summarise the results of the Tables as follows:-

i ) The relationships between the coefficients are applicable 

to weaker lenses and, hence, to systems in which the 

aberrations are large.

ii) For two element lenses the range of application is limited 

to voltage ratios of less than 40:1.

iii) The range of application for three element lenses cannot
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be 50 simply defined. It is clear that the criterion lies not 

in the overall voltage ratio but in the focussing strength of 

the lens. We have found that, as an approximate rule of thumb, 

our results are appropriate for lenses in which the value of F, 

is greater than 1/2.

iv) None of the geometries investigated showed any deviation 

from the comments that we have made. The basic rule seems to 

be that the larger the aberration coefficients then the more 

applicable are our results.
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TABLE 8. SPHERICAL ABERRATION COEFFICIENTS FOR THE TWO CYLINDER,
e q u i -d i a m e t e r  l e n s

G/D= .1

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0 
5.0 
10.0 
20 .0 
40.0

4.34E+3 -1.46E+4 
2.77E+1 -7.17E+1 
3.70E+0 -7.54E+0 
9.58E-1 -1.49E+0 
3.72E-1 -4.15E-1

1.84E+4 - 1 .03E+4 
7.03E+1 -3.10E+1 
5.99E+0 -2.21E+0 
9.45E-1 -2.93E-1 
2.15E-1 -5.62E-2

2.16E+3 
5.19E+0 
3.20E-1 
3.92E-2 
7.74E-3

-1.68E+0 
-5.13E-3 
6.07E-4 
2.30E-3 
2.59E-3

4.8E-3 
6 ,0 E “ 3 
1 .lE-2 
3.8E-1 
2.6E+0

G/D= .5

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0 
5.0 
10.0 
20 .0 
40.0

4.62E+3 — 1.55E+4 
3.01E+1 -7.90E+1 
4.03E+0 -8.47E+0 
1.04E+0 -1.68E+0 
3.94E-1 -4.73E-1

1 .96E+4 - 1 .lOE+4 
7.87E+1 -3.53E+1 
6.97E+0 -2.66E+0 
1.13E+0 -3.71E-1 
2.63E-1 -7.34E-2

2.31E+3 
6.02E+0 
4 .OOE-1 
5.16E-2 
1 .02E-2

1 .30E+1 
2.66E-3 
5.07E-3 
3.20E-3 
2.70E-3

3.5E-2
2.8E-3
8.4E-2
4.5E-1
2.2E+0

G/D= 1

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0
5.0
10.0
20.0
40.0

6.22E+3 -2.10E+4 
4.22E+1 -1 .14E + 2 
5.55E+0 - 1 .24E+1 
1 .36E + 0 -2.44E+0 
4.90E-1 -6.72E-1

2.66E+4 -1 .50E + 4 
1.18E+2 -5.48E+1 
1.09E+1 -4.43E+0 
1 .80E+0 -6.31E-1 
4.12E-1 -1.24E-1

3.17E+3 
9.67E+0 
6.98E-1 
9.08E-2 
1 .72E-2

-1.lOE+1 
1 .40E-1 
3.64E-3 
4.91E-3 
3.03E-3

2.2E-2 
9.9E-2 
3.8E-2 
4.3E-1 
1 .6E+0
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TABLE 9. SPHERICAL ABERRATION COEFFICIENTS FOR THE TWO CYLINDER,
ASYMMETRIC LENS

D2 = 2*01

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR
2.0 
5.0 
10.0 
20 .0 
40.0

6.75E+3 -2.28E+4 
4.06E+1 - 1 .08E+2 
5.08E+0 -1.09E+1 
1.23E+0 -2.06E+0 
4.50E-1 -5.59E-1

2.88E+4 - 1 .62E+4 
1 .09E+2 - 4 .91E+1 
9.05E+0 -3.46E+0 
1.39E+0 -4.50E-1 
3.07E-1 -8.42E-2

3.43E+3 
8.40E+0 
5.15E-1 
6.07E-2 
1 .12E-2

-9.80E+0 
1 .31E-1 
8.35E-4 
2.40E-3 
2.36E-3

1 .8E-2 
1 .OE-1 
1.OE-2 
2.7E-1 
1.6E+0

02 = 1.5*01

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0 
5.0 
10.0 
20 .0 
40.0

5.51E+3 - 1 .85E+4 
3.41E+1 -8.97E+1 
4.40E+0 -9.25E+0 
l.lOE+0 -1.78E+0 
4.13E-1 -4.92E-1

2.34E+4 - 1 .32E+4 
8.94E+1 -4.00E+1 
7.55E+0 -2.85E+0 
1.18E+0 -3.75E-1 
2.64E-1 -7.11E-2

2.77E+3 
6.80E+0 
4 .20E-1 
5.05E-2 
9.57E-3

-2.86E+1 
2.47E-2 

-6.15E-5 
3.81E-3 
2.43E-3

6.4E-2
2.3E-2
9.4E-4
5.1E-1
2.0E+0

02 = 01/1.5

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0 
5.0 
10.0 
20 .0 
40.0

5.51E+3 - 1 .84E+4 
3.57E+1 -9.06E+1 
4.88E+0 -9.61E+0 
1 .35E+0 - 1 .87E+0 
7.92E-1 -3.73E-1

2.31E+4 - 1 .29E+4 
8.72E+1 -3.77E+1 
7.39E+0 -2.64E+0 
1.18E+0 -3.45E-1 
3.06E-1 -6.22E-2

2.70E+3 
6 . 21E + 0 
3.76E-1 
4.70E-2 
9 .98E-3

8.97E-1 
3.97E-2 
7.41E-3 
1 .74E-2 
2.99E-2

2.0E-3 
3.8E-2 
1.lE-1 
2.3E+0 
2 .3E+1

02 = 01/2

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0
5.0
10.0
20.0
40.0

6.81E+3 -2.27E+4 
4.45E+1 -1.llE+2 
6.14E+0 -1.18E+1 
1 .66E+0 -2.33E+0 
6.86E-1 -6.45E-1

2.84E+4 - 1 .58E+4 
1.05E+2 -4.48E+1 
8.74E+0 -3.02E+0 
1 .35E+0 - 3 .84E-1 
3.02E-1 -7.17E-2

3.29E+3 
7.24E+0 
4.15E-1 
4.95E-2 
1 .02E-2

-6.83E+0 
- 5 .88E-2 
-3.80E-3 
6 .41E-3 
6.0 SE-3

1 .2E-2 
4.6E-2 
5.OE-2 
7.4E-1 
4.1E+0
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TABLE 10. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE 
CYLINDER LENS. A/D=0.5 G/D=0.1

V3/V1= 2

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR
-0.8 2.37E+0 -5.98E+0 7.78E+0 -5.20E+0 1 .81E + 0 5.67E-1 3.4E+0
-0 .6 5.69E+0 - 1 .80E+1 2.37E+1 - 1 .51E+1 4.03E+0 2.33E-1 4.9E-1
-0.4 1.48E+1 -5.00E+1 6.62E+1 -4.08E+1 9 .86E+0 3.17E-2 2.4E-2
-0 .2 3.88E+1 - 1 .34E+2 1 .77E+2 - 1 .06E+2 2.45E+1 2.46E-1 7.2E-2
0.0 1 .OlE+2 -3.51E+2 4.61E+2 -2.72E+2 6.09E+1 -5.34E-2 6.1E-3
2.0 4.39E + 3 -1 .47E + 4 1.85E+4 -1.04E+4 2.18E+3 -2.95E+1 8.4E-2
4.0 1 .53E+2 -4.93E+2 6.02E+2 -3.30E+2 6.82E+1 -2.57E-1 2.2E-2
6.0 2.33E+1 -7.23E+1 8.71E+1 -4.83E+1 1 .04E+1 3 .38E-2 2.OE-2
8 .0 7.79E+0 -2.27E+1 2.71E+1 - 1 .56E+1 3.61E+0 5.21E-2 9.7E-2

10.0 3.83E + 0 -1 .OlE+1 1.21E+1 -7.35E+0 1 .89E+0 1 .74E-1 7.1E-1

V3/V1= 5

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

-1 .2 1 .43E+0 -3.46E+0 3.93E+0 -2.29E+0 6.39E-1 1.16E-1 2.2E+0
-0 .8 3.24E+0 -8.84E+0 9.87E+0 -5.32E+0 1.18E+0 4.05E-2 3.2E-1
-0.4 6.83E+0 — 1.90E+1 2.06E+1 -1.04E+1 2.07E+0 1 .13E-2 4.4E-2
0 .0 1.26E+1 -3.45E+1 3.64E+1 -1 .75E+1 3.24E+0 1 .77E-2 4.OE-2
2.0 3.08E+1 -7.92E+1 7.78E+1 -3.46E+1 5 .89E+0 1 .84E-2 1 .9E-2
4.0 3.48E+1 -9.20E+1 9.22E+1 -4.15E+1 7.08E+0 5.95E-3 5.3E-3
6.0 2.05E+1 -5.19E+1 5.00E+1 -2.17E+1 3.60E + 0 2.72E-2 4.5E-2
8.0 1.09E+1 -2.65E+1 2.49E+1 -1.06E+1 1 .76E + 0 6.16E-2 2.OE-1
10.0 6.27E+0 - 1 .47E+1 1.36E+1 —5.85E+0 9.88E-1 1 .56E-2 9.4E-2

V3/V1= 10

V2/V1 CSO CSl CS2 CS3 CS4 Y 7oERR0R

-1.6 8.80E-1 -1.89E+0 1 .83E+0 -9.05E-1 2.08E-1 2.96E-2 1 .7E + 0
-1 .3 1.17E+0 -2.59E+0 2.45E+0 -1.16E+0 2.36E-1 1 .48E-2 6. 6E-1
— 0.8 1 .78E+0 -3.96E+0 3.60E+0 -1 .57E + 0 2.81E-1 1 .03E-2 3.2E-1
-0 .4 2.32E+0 -5.11E+0 4.48E+0 -1.86E+0 3.08E-1 2.04E-3 5.2E-2
0.0 2.86E+0 -6.15E+0 5.21E+0 -2.06E+0 3.23E-1 4.48E-3 9.9E-2
2.0 3.97E+0 -7.86E+0 6.12E+0 -2.24E+0 3.31E-1 5.94E-3 1 . lE-1
4.0 4.30E+0 -9.16E+0 7.76E+0 -3.09E+0 4.86E-1 3.38E-3 5.OE-2
6.0 4.74E+0 - 1 .03E+1 8.70E+0 -3.40E+0 5.17E-1 -1 .40E-3 1 .8E-2
8.0 4.41E+0 -9.31E+0 7.63E+0 -2.88E+0 4.25E-1 3.69E-3 5.6E-2

10.0 3.71E+0 -7.58E+0 6.02E+0 -2.22E+0 3.22E-1 3.57E-4 6.8E-3

V3/V1= 20

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

-2.0 5.20E-1 -8.89E-1 6.81E-1 -2.67E-1 4.78E-2 5.81E-3 1.3E+0
-1 .0 7.21E-1 -1 .21E + 0 8.56E-1 -2.99E-1 4.46E-2 2.72E-3 5.OE-1
0.0 8.84E-1 -1.42E+0 9.36E-1 -2.99E-1 4.05E-2 2.46E-3 4.2E-1
2.0 1 .OlE + 0 - 1 .51E + 0 9.35E-1 -2.89E-1 4.00E-2 3.24E-3 5.4E-1
4.0 1 .02E+0 - 1 .55E+0 1 .02E+0 -3.46E-1 5.23E-2 3.87E-3 5.8E-1
6.0 1 .06E+0 - 1 .73E+0 1.22E+0 -4.30E-1 6 .48E-2 4 .34E-3 5.5E-1
8.0 1 .13E+0 - 1 .91E+0 1 .37E+0 -4.79E-1 6.98E-2 4.17E-3 4.8E-1

10.0 1.17E+0 -2.01E+0 1 .42E+0 -4.83E-1 6.81E-2 3.19E-3 3. 6E-1
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TABLE 11. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE
CYLINDER EINZEL LENS. A/D=0.5 G/D=0.1

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR
-0.5 5.37E+0 - 1 .68E+1 2.38E+1 - 1 .68E+1 5.37E+0 9.40E-1 1 .3E+00.0 2.42E+2 -9.54E+2 1 .43E+3 -9.54E+2 2.42E+2 6 • OOE + 0 1 .5E-10.5 4.47E+4 -1 .79E+5 2.68E+5 - 1 .79E+5 4.47E+4 -6.00E+2 8.3E-21 .5 2.03E+5 -8.10E+5 1 .22E+6 -8.10E+5 2 .03E+5 6.OOE+3 1 .8E-12.0 5.68E+3 -2.27E+4 3.40E+4 -2.27E+4 5.68E+3 -4.00E+1 4.4E-2
3.0 2.36E+2 -9.33E+2 1 .39E+3 -9.33E+2 2 .36E+2 -4.00E+0 1 .OE-1
4.0 4.71E+1 -1.81E+2 2.67E+2 - 1 .81E+2 4.71E+1 -8.OOE-1 1 .lE-1
5.0 1 .72E+1 -6.31E+1 9.19E+1 -6.31E+1 1 .72E+1 1 .OOE-1 3.9E-2
6.0 8.65E+0 -2.97E+1 4.24E+1 -2.97E+1 8.6 5E+0 2.99E-1 2.5E-1
7.0 5.29E+0 -1 .67E+1 2.33E+1 -1.67E+1 5.29E+0 4 .79E-1 7.1E-1
8.0 3.69E+0 -1.05E+1 1.43E+1 -1.05E+1 3.69E+0 6 .80E-1 1 .5E + 0
9.0 2.83E+0 -7.17E+0 9.46E+0 -7.17E+0 2.83E+0 7 .80E-1 2.6E+0

10.0 2.33E+0 -5.14E+0 6.62E+0 -5.14E+0 2.33E+0 9.99E-1 4.6E+0
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TABLE 12. SPHERICAL ABERRATION COEFFICIENTS FOR THE TWO 
APERTURE LENS. T/D=0.05 D1=D2=D

A/D= .5

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0 5.96E+3 -2.00E+4 2.52E+4 - 1 .41E+4 2.96E+3 1 .03E+1 2.1E-2
5.0 3.95E+1 - 1 .02E+2 1 .OOE+2 -4.41E+1 7.34E+0 - 3 .52E-2 2.9E-2
10.0 5.51E+0 -1.13E+1 8.93E+0 -3.23E+0 4 .53E-1 2.09E-3 2.7E-2
20.0 1 .51E+0 -2.37E+0 1.48E+0 -4.34E-1 5.19E-2 2.51E-3 2.7E-1
40.0 6.39E-1 -7.22E-1 3.54E-1 -8.26E-2 8.59E-3 2.29E-3 1 .4E+0

A/D=: 1

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

2.0 6.08E+3 -2.05E+4 2.58E+4 -1 .45E+4 3.05E+3 -4.90E+1 1 .OE-1
5.0 4.12E+1 - 1 .09E+2 1 .lOE+2 -4.95E+1 8.48E+0 2.12E-1 1.6E-1
10.0 5.69E+0 - 1 .22E+1 1.02E+1 -3.91E+0 5.84E-1 1 .02E-2 l.lE-1
20.0 1.51E+0 -2.54E+0 1.73E+0 -5.60E-1 7.35E-2 2 .45E-3 2.3E-1
40.0 6.08E-1 -7.62E-1 4.22E-1 -1.12E-1 1 .30E-2 2.48E-3 1 . 3E+0
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TABLE 13. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE 
APERTURE LENS. A/D=0.5

V3/V1= 2

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

-1 .0 3 .72E+0 -1 .08E+1 1.41E+1 -9.24E+0 2 .75E+0 3.88E-1 1.3E+0
-0 .8 8.60E+0 -2.81E+1 3.72E+1 -2.34E+1 5.98E+0 1 .99E-1 2.7E-1
— 0.6 2.04E+1 -6.95E+1 9.22E+1 -5.64E+1 1 .35E+1 1 .43E-1 8.OE-2
-0.4 4.82E+1 - 1 .67E+2 2.21E+2 - 1 .32E+2 3.04E+1 4.73E-1 l.lE-1
0.0 2.60E+2 -9.01E+2 1 .18E+3 -6.87E+2 1 .51E+2 1 .95E+0 8.7E-2
2.0 5.63E+3 - 1 .89E+4 2.38E+4 -1.33E+4 2.80E+3 2.22E+1 4.9E-2
4.0 3.08E+2 -1.OOE+3 1 .23E+3 -6.71E+2 1 .38E+2 2.89E+0 1 .2E-1
6.0 4.91E+1 - 1 .55E+2 1 .87E+2 -1 .02E+2 2.13E+1 1 .43E-1 4.OE-2
8.0 1.62E+1 -4.92E+1 5.87E+1 -3.25E+1 7 .03E+0 5.35E-2 4.7E-2

10.0 7.75E+0 -2.23E+1 2.64E+1 -1.50E+1 3.41E+0 7.95E-2 1 .5E-1

V3/V1= 5

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

-1 .0 5.31E+0 -1.47E+1 1.64E+1 -8.54E+0 1 .78E+0 6.89E-2 3.3E-1
—0.8 7.29E+0 -2.03E+1 2.23E+1 - 1 .13E+1 2.27E+0 7.29E-2 2.6E-1
— 0.6 9.76E+0 -2.72E+1 2.94E+1 -1.46E+1 2.83E+0 3.17E-2 8.8E-2
-0.4 1.27E+1 -3.51E+1 3.75E+1 — 1.83E+1 3.43E+0 5.21E-3 l.lE-2
-0.2 1.60E+1 -4.39E+1 4.62E+1 -2.21E+1 4.06E+0 1 .29E-2 2.3E-2
0 .0 1.96E+1 -5.32E+1 5.52E+1 -2.60E+1 4 .66E + 0 -3.15E-2 4.7E-2
2.0 3.69E+1 -9.54E+1 9.39E+1 -4.17E+1 7.06E+0 1 .56E-2 1 .3E-2
4.0 4.32E+1 -1 .14E + 2 1 .14E+2 -5.08E+1 8.61E+0 1.66E-1 1 .2E-1
6.0 3.07E+1 -7.81E+1 7.52E+1 -3.26E+1 5.35E+0 -3.78E-2 4.1E-2
8.0 1.B5E+1 -4.54E+1 4.25E+1 -1.80E+1 2.92E+0 1 .14E-2 2.2E-2
10.0 1.14E+1 -2.72E+1 2.50E+1 -1.05E+1 1 .70E+0 3.8 6E—3 1 .2E-2

V3/V1= 10

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

-1.6 1 .70E+0 -3.82E+0 3.55E+0 — 1.60E+0 3.OOE-1 1 .35E-2 4.2E-1
-0.8 2.75E+0 -6.08E+0 5.34E+0 -2.21E+0 3.63E-1 2 .68E—3 5.7E-2
0.0 3.73E+0 -7.95E+0 6.63E+0 -2.57E+0 3 .89E-1 -3.59E-4 6.2E-3
2.0 4.74E+0 -9.59E+0 7.60E+0 -2.81E+0 4.13E-1 4.78E-3 7.2E-2
4.0 5.24E+0 -1 .llE+1 9.20E+0 -3.56E+0 5.40E-1 -2.52E-3 3.1E-2
6.0 5.86E+0 - 1 .26E+1 1.05E+1 -4.01E+0 5.96E-1 6.77E-3 7.5E-2
8.0 5.87E+0 - 1 .24E+1 l.OlE+1 -3.74E+0 5 .38E-1 1 .06E-2 1 .2E-1

10.0 5.36E+0 -l.lOE+1 8.70E+0 -3.15E+0 4.43E-1 2.69E-3 3.6E-2

V3/V1= 20

V2/V1 CSO CSl CS2 CS3 CS4 Y %ERROR

-2.0 7.72E-1 -1.33E+0 9.60E-1 -3.44E-1 5 .27E-2 2 .66E-3 4.3E-1
-1 .0 9.46E-1 -1.57E+0 1 .08E+0 -3.59E-1 5.02E-2 3.22E-3 4.7E-1
0.0 1 .08E+0 - 1 .73E+0 1 .14E+0 -3.61E-1 4.82E-2 3.48E-3 4.8E-1
2.0 1 .20E+0 - 1 .86E+0 1.18E+0 -3.71E-1 5.02E-2 1 .94E-3 2.6E-1
4.0 1 .26E+0 - 1 .97E+0 1 .30E+0 -4.24E-1 5.93E-2 4.18E-3 5.OE-1
6.0 1.33E+0 -2.17E+0 1 .48E+0 -4.94E-1 6.89E-2 3.29E-3 3.5E-1
8.0 1 .42E+0 -2.38E+0 1 .65E+0 -5.47E-1 7.43E-2 3.93E-3 3.8E-1

10.0 1.51E+0 -2.55E+0 1 .75E + 0 -5.68E-1 -7.50E-2 - 1 .46E-1 1.5E+1
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TABLE 14. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE APERTURE
EINZEL LENS. A/D=0.5

V2/V1 CSO CSl CS2 CS3 CS4 Y 7oERR0R

“0.6 l.lOE+1 -3.86E+1 5.56E+1 -3.86E+1 1 .lOE+1 8.OOE-1 5.1E-1
-0 .4 4.21E+1 -1.61E+2 2.38E+2 - 1 .61E+2 4.21E+1 3.99E-1 1 .2E-1
-0.2 1 .74E+2 -6.86E+2 1 .02E+3 -6.86E+2 1 .74E+2 -4.00E+0 2.9E-1
0 .0 8.11E+2 -3.23E+3 4.83E+3 -3.23E+3 8.11E+2 -8 .OOE+0 1 .2E-1
0.5 1 .31E+5 -5.25E+5 7.87E+5 -5.25E+5 1 .31E+5 -1 .OOE+3 1 .9E-1
1 .5 5.19E+5 -2.08E+6 3.11E+6 -2.08E+6 5.19E+5 -1 .20E + 4 2.8E-1
2.0 1 .40E+4 -5.59E+4 8.39E+4 -5.59E+4 1 .40E+4 1 .OOE+2 1 .7E-1
3.0 5.51E+2 -2.19E+3 3.28E+3 -2.19E+3 5.51E+2 2.00E+0 9.1E-2
4.0 1 -05E+2 -4.11E+2 6.12E+2 -4.11E+2 I.05E+2 O.OOE+0 O.OE+0
5.0 3.68E+1 -1.41E+2 2.08E+2 - 1 .41E+2 3.68E+1 -8.OOE-1 1 .4E-1
6.0 1.77E+1 -6.53E+1 9.53E+1 -6.53E+1 1 .77E+1 1 .99E-1 1 .5E-1
7.0 1.03E+1 -3.64E+1 5.25E+1 -3.64E+1 1.03E+1 5.99E-1 4.1E-1
8.0 6.80E+0 -2.29E+1 3.25E+1 -2.29E+1 6.80E+0 6 .OOE-1 6.5E-1
9.0 4.91E+0 - 1 .56E+1 2.18E+1 - 1 .56E+1 4.91E+0 8.39E-1 1 .3E+0

10.0 3.80E+0 -1.13E+1 1 .56E+1 - 1 .13E+1 3.80E+0 1 .20E+0 1 .3E+0
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4.3) FURTHER SIMPLIFICATION OF ABERRATION COEFFICIENTS

We have shown that our relationships are erroneous in the case 

of very strong lenses. It follows, therefore, that for the 

lenses to which they can be applied the aberration 

coefficients will be appreciable.

If we assume that q,g>>m,g>>0 then we can simplify equations 

(133)-(140):-

rn,g = dm,g/3 = cf*m,^/3 = tf̂ mI)

= d q %/5 = cr^q„^/10 = d ^ q,/10 = d^q,,/5 = cT*q,^

(176 )

(177 )

Incorporating these and (122) and (123) into equations 

(114)-(117):-

M , (k ) = m,g (d+k )

Mj (k ) = dm,g (d+k )'

Q,(k) = q,g (d+k )

Q , (k) = dq,g (d+k)'

(178 )

(179 )

(180 )

(181 )

Hence, from (110), (112) and (113) we have that:-

Y  = "'̂1 + r, /f, f  + q,g(r,Vd + r, /f^ )

r, /f, = r," + dm,g(r,VcT + r, / f ^  ) + dq,g(r//cT + r, /f, f

(182 )

(183 )
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Furthermore, it can be shown that the converse expressions are 

g iven by

r,' = r,/f + Ora,,(r' - r,/((3f, ))^+ rfq,,(r, - r-/(c5'f, >)2 1 . 6 1 1 1  H.t i Ï

r, / f j = -r ' + m,g(-r ' + r, / (tff, + q,^(-r^ + r^/ (cff,) f
(185 )

These greatly simplified relationships incorporate all the 

third and fifth order meridional aberrations and enable the 

output parameters of a ray to be calculated from a knowledge 

of only two aberration coefficients and the lens constant d.

We have tested the validity of these expressions by comparing 

the values of r̂  ̂ and predicted by equations (182) and (183)

to those actually produced by ray tracing through the computer 

model. These results are shown in Tables (15)-(18). In order 

to give a fair test of the practical use of equations (182) 

and (183) we have taken the focal lengths as being those 

values derived from the Picht equation (see Cook and Meddle, 

1976). Moreover we have taken the value of d to be the 4th 

root of the overall voltage ratio (equation (175) ). The 

values of m,g and q̂ g are taken from our results for parallel 

trajectories (Table 5).

In the case of zero magnification, r, , which is derived

from Q via equation (104), is very sensitive to small errors 

in the focal lengths. In spite of this, the accuracy of 

expressions (182) and (183) can be seen to be very good for a
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wide range of voltage ratios and linear magnifications
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TABLE 15. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE
COMPUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).

(TWO CYLINDER LENS. G/D=0.1 D1=D2=D V2/V1=2)

P=14 MAGNIFICATION =-12.3

COMPUTER MODEL CALCULATED
R1 ' 

4.00E-3 
8.00E-3 
1.20E-2 
1 .60E-2 
2.00E-2

^FILLING 
11 
22 
34 
45 
56

R2 '
-2.51E-4 
-6.35E-4 
-1.32E-3 
-2.49E-3 
-4.52E-3

R2 
4.35E-2 
8.54E-2 
1 .23E-1 
1 .54E-1 
1 .75E-1

R2 ' 
2.50E-4 
6.35E-4 
1 .30E-3 
2.41E-3 
4.18E-3

R2 
4.36E-2 
8.54E-2 
1 .23E-1 
1 .55E-1 
1 .79E-1

P=19 MAGNIFICATION =-1.8

COMPUTER MODEL CALCULATED
R1 ' 

4.00E-3 
8.00E-3 
1.20E-2 
1 .40E-2 
1.60E-2

^FILLING
15
30
46
53
61

R2 '
-1 .57E-3 
— 3 .50E-3 
-6.24E-3 
—8.14E-3 
-1 .06E-2

R2 
4.31E-2 
8.17E-2 
1 .09E-1 
1.16E-1 
1.16E-1

R2 '
1 .57E-3 
"3 .48E-3 
6.14E-3 
7.90E-3 
1 .OOE-2

R2 
4.31E-2 
8.18E-2 
1.lOE-1 
1 .19E-1 
1 .23E-1

P=INFINITY MAGNIFICATION=0

COMPUTER MODEL CALCULATED
R1

6 .OOE-2 
1 .20E-1 
1.80E-1 
2.40E-1 
3.OOE-1

^FILLING
12
24
36
48
60

R2 ' 
-3.89E-3 
-7.95E-3 
-1 .23E-2 
-1 .74E-2 
-2.37E-2

R2
-3.44E-4 
-2.89E-3 
-1 .03E-2 
-2.62E-2 
-5.69E-2

R2 ' 
3.89E-3 
7.95E-3 
1 .23E-2 
•1 .73E-2 
2.31E-2

R2
-3.58E-4 
-2.91E-3 
- 1 .OOE-2 
-2.46E-2 
-5.02E-2
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TABLE 16. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE
COMPUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).

(TWO CYLINDER LENS. G/D=0.1 D1=D2=D V2/V1=5)

P=2.8 MAGNIFICATION =-50.1

COMPUTER MODEL CALCULATED
R1 '

2.OOE-2 
4.OOE-2 
6.OOE-2 
8.01E-2 
l.OOE-1

^FILLING
11
22
34
45
56

R2' 
-2.32E-4 
-8.21E-4 
-2.17E-3 
-4 .79E-3 
-9.33E-3

R2 
3.49E-2 
6.90E-2 
1 .OlE-1 
1 .29E-1 
1 .53E-1

R2' 
2.34E-4 
-8.10E-4 
•2.10E-3 
■4 .57E-3 
8.77E-3

R2 
3.49E-2 
6.90E-2 
1 .OlE-1 
1 .30E-1 
1 .55E-1

P=4.2 MAGNIFICATION =-1.2

COMPUTER MODEL CALCULATED
R1 '

2.OOE-2 
4.OOE-2 
5.OOE-2 
6.OOE-2 
7.01E-2

^FILLING
17
34
42
50
59

R2 ' 
-7.50E-3 
-1 .63E-2 
-2.16E-2 
-2.80E-2 
-3.58E-2

R2
3.45E-2
6.58E-2
7.89E-2
8.95E-2
9.65E-2

R2 ' 
7.51E-3 
1 .62E-2 
2.16E-2 
2.78E-2 
3.53E-2

R2 
3.45E-2 
6.58E-2 
7.91E-2 
8 .99E-2 
9.75E-2

P=INFINITY MAGNIFICATION=0

COMPUTER MODEL CALCULATED
R1

6.OOE-2 
1 .20E-1 
1.80E-1 
2.40E-1 
3.OOE-1

^FILLING
12
24
36
48
60

R2' 
-1.53E-2 
-3.12E-2 
-4.81E-2 
-6 .69E-2 
-8.85E-2

R2
-2.27E-4 
-1 .68E-3 
-5 .96E-3 
- 1 .48E-2 
-3.12E-2

R2 '
1 .53E-2 
3.12E-2 
4.81E-2 
■6 .67E-2 
8.79E-2

R2
-2.10E-4 
- 1 .71E-3 
-5.9 6E-3 
-1 .47E-2 
-3 .02E-2
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TABLE 17. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE
COMPUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).

(TWO CYLINDER LENS. G/D=0.1 D1=D2=D V2/V1=10)

P=1.7 MAGNIFICATION =-9.3

COMPUTER MODEL CALCULATED
R1 '

3.OOE-2 
6.OOE-2 
9.02E-2 
1 .20E-1 
1.51E-1

•/.FILLING
10
20
31
41
51

R2'
1 .08E-3 
2.44E-3 
4.36E-3 
7.24E-3 
1.14E-2

R2 
2.38E-2 
4 .74E-2 
7.02E-2 
9.17E-2 
l.llE-1

R2'
1 .05E-3 
2.35E-3 
4.18E-3 
6.87E-3 
1 .07E-2

R2 
2.39E-2 
4.75E-2 
7.04E-2 
9 .23E-2 
1 .12E-1

P=2.4 MAGNIFICATION =-l

COMPUTER MODEL CALCULATED
R1 '

3.OOE-2 
7 .OlE-2 
9.02E-2 
1 .lOE-1 
1.20E-1

•/«FILLING
14
34
43
53
58

R2 ' 
9.48E-3 
2.36E-2 
3.19E-2 
■4.16E-2 
4.70E-2

R2 
2.37E-2 
5.34E-2 
6.66E-2 
7.79E-2 
8.28E-2

R2 ' 
9.44E-3 
2 .34E-2 
3.17E-2 
4.13E-2 
4.68E-2

R2 
2.37E-2 
5.35E-2 
6.67E-2 
7.81E-2 
8 .30E-2

P=INFINITY MAGNIFICATION=0

COMPUTER MODEL CALCULATED
R1

6.OOE-2 
1 .20E-1 
1.80E-1 
2.40E-1 
3.00E-1

^FILLING
12
24
36
48
60

R2 ' 
-2.38E-2 
-4.83E-2 
-7.40E-2 
-1 .OlE-1 
-1.32E-1

R2
- 1 .57E-4 
-1.16E-3 
-3.93E-3 
-9 .65E-3 
- 1 .99E-2

R2' 
2.38E-2 
-4.82E-2 
7.39E-2 
-1 .OlE-1 
■1 .32E-1

R2
-1 .37E-4 
-1 .12E-3 
-3.89E-3 
-9.58E-3 
- 1 .96E-2
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TABLE 18. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE
COMPUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).

(TWO CYLINDER LENS. G/D=0.1 D1=D2=D V2/V1=20)

P=1.25 MAGNIFICATION =-8.9

COMPUTER MODEL CALCULATED
R1 '

5.OOE-2 
1 .OOE-1 
1.51E-1 
2.02E-1 
2.55E-1

•/«FILLING
13
25
38
51
64

R2 ' 
1.34E-3 
3.11E-3 
5.73E-3 
9.68E-3

R2 
2.28E-2 
4.53E-2 
6.71E-2 
8.78E-2 
1 .06E-1

R2'
1 .31E-3 
2.96E-3 
5.35E-3 
■8 .93E-3 
1 .43E-2

R2 
2.26E-2 
4.51E-2 
6.71E-2 
8.83E-2 
1 .08E-1

P=1.65 MAGNIFICATION =-l

COMPUTER MODEL CALCULATED
R1 '

5.OOE-2 
1 .OOE-1 
1 .51E-1 
1 .76E-1 
2.02E-1

•/.FILLING
17
33
50
58
67

R2 '
-1.12E-2 
- 2 .35E-2 
-3.78E-2 
-4 .62E-2 
-5.55E-2

R2
2.26E-2
4.43E-2
6.43E-2
7.32E-2
8.12E-2

R2 '
1.12E-2 
-2.34E-2 
3.78E-2 
4.63E-2 
5.59E-2

R2
2.25E-2
4.43E-2
6.44E-2
7.34E-2
8.15E-2

P=INFINITY MAGNIFICATION=0

R1
6.00E-2 
1 .20E-1 
1.80E-1 
2.40E-1 
3.OOE-1

•/.FILLING
12
24
36
48
60

COMPUTER MODEL 
R2 ' R2

-2.96E-2 -9.99E-5
-5.98E-2 -7.33E-4
-9.11E-2 -2.55E-3

CALCULATED

-1 .24E-1 
-1.60E-1

-6.25E-3 
-1 .28E-2

R2 ' 
2.96E-2 
-5.97E-2 
9.11E-2 
■1 .24E-1 
1 .60E-1

R2
-8.82E-5 
-7.15E-4 
-2.46E-3 
-6.0lE-3 
-1 .21E-2
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4.4) SPHERICAL ABERRATION

Spherical aberration (or the aperture defect) i s probably the 

most important of all the geometric aberrations. It. for 

example, is responsible for limiting both the screen spot size 

in a cathode ray tube and, along with diffraction effects, the 

resolving power of an electron microscope (Zworykin et al, 

1945). The reason for its importance lies largely in it being 

the only geometric defect that is present even for axial 

objects. Indeed, it can be shown theoretically that it is 

impossible to eliminate it entirely from any axially 

symmetric electrostatic or magnetic lens (see, for example, 

5cK^r'Z€.r, 1436 ). However, spherical aberration is

also of particular interest because it is often taken as a 

guideline to the overall aberration of a system. This was 

investigated by Brunt and Read (1975) who found that the 

spherical aberration of an axial object could be used to 

indicate an upper limit to the total aberration of a finite 

size object at that plane. The fact that, in general, a lens 

with small spherical aberration will produce a good image of 

non-axial objects also follows from the results that we have 

obtained.

4.4.1) Relationship to Total Aberration

We have seen (Figure 4) how the ideal image of an off-axis 

object is formed by Gaussian rays. Let us now exami ne how the 

third order aberrations of a lens affect this idealised
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situation. This is shown schematically in Figure 27. The 

aberrations have resulted in the radial displacement of a ray 

at the Gaussian image plane changing from to • We can

therefore define the total aberration as:-

J  = r. - r

From the diagram we also have:-

(186 )

(187 )

Where we have used 0^ to represent the Gaussian image 

distance.

This can be expressed in terms of the ray parameters in object 

space by the use of equations (182) and (183):-

'kb ' W  *

= f,r,' -

(188)

(189 )

The last term of (189) represents the total third order 

aberration of the ray:-

A r  = . (Q.- + (ff;)

(190 )
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For a given object plane, therefore, the aberration of a ray 

is given by the following proportionality:-

r CkC (r//(f + r, /f̂ )̂

If we use equation (175) to eliminate (f:-

(191 )

A r  o<C (r̂  +
(192 )

The importance of this dependence becomes clear if one 

realises that (r, + r^'//fj^) is the radial displacement of the 

ray at a plane which is Vf,f^ lens diameters to the right of 

the first principal focus. To a good approximation (see 

section 4.1) this plane is coincident with the reference plane 

of the lens. It follows that rays from a particular object 

plane will be aberrated according to the filling as measured 

at the reference plane and independent of the axial 

displacement of the point of origin of the ray. For a given 

filling factor, the spherical aberration of a point axial 

object gives an upper limit to the total aberration of an 

object of finite size situated at the same plane. This 

conclusion can also be drawn from the investigation of Brunt 

and Read, as long as we remember that these results are not 

applicable to extremely strong lenses.
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4.4.2) Magnitude of the aberration

In Section 4.1 we showed how the spherical aberration of a 

lens may be represented by five coefficients and, in turn, how 

each of these must be related to the single m,^ aberration 

coefficient (equations 161-165). For the lenses that we are 

considering m,g>>0 and these equations can be simplified 

greatly :-

Cs, =
(193 )

Cs, = 4m,^f^ /cr^ = -4CSp/cr
(194 )

C s^  = -6 m ,^ f^  /c f^  = 6CSg / cr*
(195)

Csj = 4m,^f2/Û'^ = -4Cs^/cr^

Cs = -m,^f2_/(f^ = Cs^/cr^

(196 )

(197 )

It follows that, just as with the mg' coefficients, the third 

order spherical aberration of a lens can be represented by a 

single coefficient. Although this result is important because 

of the practical significance of spherical aberration, it is 

not surprising since spherical aberration is just one of the 

geometric aberrations which are explicitly described by the mg 

coefficients .

The size of the spherically aberrated disc at the Gaussian 

image plane becomes:-
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A r  = M.CSp (1 - l/dM)4 r
(198)

and it follows from equation (154) that the third order 

spherical aberration coefficient is given by*.-

M.Cs(M) = M . C s ^ d  - 1/CfM)^
(199 )

This expression is plotted in Figure 28 for the two cylinder 

lens at various accelerating potentials. Also plotted are the 

functions M.Cs(M) as derived from Harting and Read's 

coefficients. It can be seen that, particularly in the case of 

the weaker lenses, the agreement is excellent.

When a lens is being operated with zero magnification (object 

at infinity) equation (199) is inappropriate and the 

aberration will be given by:-

Ar(M=0) = = -Ce  ̂M  M

4.4.3) Retarding Lenses

The spherical aberration of a retarding lens (whose parameters 

we shall denote by can be deduced from equation (199):-

fv /S/ fO Z|
Cs (M) = CsQ (1 - 1/OM)

(201 )

r>J
Where Cs(M) is the aberration coefficient of the retarding
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lens operating with a magnification of M , M being equal to 1/M 

and CSg being derived from equation (193):-

fsj ^3
Csa = -m,, f, /cr16

(202 )

which can be rewritten using the results that we derived 

earli e r :-

'h.Cso = -m,s f̂  /cr = C s o (V^/V, )
(203 )

Hence

Cs(M) = Cs (M) .n** (V,/V,
(204 )

So the spherical aberation coefficient of a retarding lens can 

be derived from that of the corresponding accelerating lens 

operating at the same magnification. Vj/V^ is the overall 

voltage ratio of the accelerating lens. Since this is greater 

than unity it follows that, for a given magnification, a lens 

will always be more aberrated when used to decelerate rather 

than accelerate. This is in agreement with the experimental 

results of Klemperer and Wright (1939, see also Klemperer, 

1971, Figures 6.5 and 6.11). They used a pepperpot method to 

measure the longitudinal aberration of parallel rays entering 

a two cylinder lens. It is interesting to note, however, that 

although they found the lens to be more aberrated when used to 

retard rather than accelerate, their aberration coefficient
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was actually greater in the accelerating case. This is because 

it was defined in terms of the ray slope in image space,

(cf equation 154). It is therefore not only a function of the 

aberration and the magnification but also, in accordance with 

the He Imho 1tz-Lagrange relationship, dependent upon the 

relative potentials of object and image space.

4.5) DISC OF LEAST CONFUSION

It can be seen from Figure 8 that the image of a point axial 

object will have minimum cross section at a plane some way 

before the Gaussian image plane. This is the disc of least 

confusion and we shall now derive its size and position using 

the results of the previous work. For algebraic simplicity we 

shall consider the incoming rays to be parallel to the optic 

axis and we shall neglect fifth and higher order aberrations. 

Once again referring to Figure 8, the position and size of the 

disc of least confusion is defined by the intersection of the 

outermost ray of the object beam and one other. This is shown 

schematically in Figure 29. If the coordinates of the point in 

image space where the outermost (below axis) ray of the beam 

intercepts any other ray are given by (F%-z,d) then:-

r^ = ( r% + d ) / z
(205 )

R/ = (R -d)/z
(206)
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Therefore :-

d = (R_ - r^R^)/(r ' + R ' )
(207 )

When the magnitude of d is a maximum for this bundle of rays, 

this ink&fsec t i on will define the size and position of the disc 

of least confusion (D and Z). Setting the differential of 

(207 ) with respect to r, equal to zero and using (182) and 

(183), it can be shown that to the third order of R,

D =

(208)

Z =

(209 )

The sign of Z denotes that the disc of least confusion is to 

the left of the Gaussian image plane. The overall radius of 

the image at the Gaussian plane can be derived from equation 

(183) by letting r/=0:-

Ar = f, (fm^

(2 1 0 )

It can be seen that the image size at the minimum beam waist 

is 1/4 that at the Gaussian image plane. This is in agreement 

with the observations of other authors.
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4.6) CURVATURE OF THE PRINCIPAL SURFACES

The principal surfaces H, and H^ are defined by the loci of 

the intercepts of the incoming and outgoing rays for parallel 

incidence and emergence respectively, (See Figure 30). The 

results that we have obtained allow us to derive simple 

expressions for H,(r) and H^/r).

Using the notation defined in Figure 30, it can be seen that:-

F^ + H%(r) = (r̂  ̂ - r )/r%'
(211 )

By substituting for r̂  and from equations (182) and (183) 

we can show that, to the third order of r :-

F^ + H^(r) = f% + m,ç(fj^-fjCr) (r/fĵ )

= f^ + f,mĵ tr ( O'-1 ) ( r / 4̂ )

(212 )

(213 )

In a similar fashion it can be shown that:-

F̂  - H|(r) = f, - (mĵ /tJ) (fĵ -f,cf ) (r/fj) 

= f, - (m,̂ f, /cr') (0--1 ) (r/fj)’

(214 )

(215)

Since for accelerating voltages cf > 1, it follows that both 

principal surfaces curve towards the high voltage side of the
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lens. This is in agreement with the findings of Kuyatt (1972).

4.7) APPLICATION TO LENS DESIGN

We shall now consider how the results that we have obtained 

can be used to assist in the choice of lens geometry and 

operating conditions for a particular problem. We shall try to 

show how, subject to various design constraints, the 

aberrations of the image can be minimised. Since our aim is to 

ascertain the optimum lens without necessarily quantifying the 

magnitude of the aberrations, we shall consider the object in 

each case to be axial and of negligible cross section.

4.7.1) Optimum Magnification

There are circumstances under which a designer is given little 

freedom to minimise a system's aberrations by using 

alternative electrode geometries. For example, the need for 

uncomplicated power supplies and associated control 

electronics might mean that a lens must be limited to two 

electrodes and, as we shall see later on, there is little 

difference between the aberrations of comparable double 

element lenses. He is therefore left with the problem of how 

best to use a particular geometry. We have already seen in 

Figure 28 that the aberrations of a lens are magnification 

dependent and that there is a minimum corresponding to an 

optimum object position. We shall now derive this.
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We have from equation (198):-

r = M.CSgfl - l/tfM)" r

When Ar is a minimum:-

(216 )

^(Ar ) = 0

= Cs^ ̂ (1-1/tfM)** + (4/dM)(l-l/dM)^^r/*

(217 )

(218 )

This is satisfied by:-

M = -3/tr
(219 )

The object position corresponding to this magnification can be 

derived from equation (15). The minimum value of /\r is given 

by : -

A r  (M=-3/cf) = -9.481 (Cs^/d')r^ = 2.370Cs r/*
(220 )

In deriving (220) we have assumed that were it not for 

spherical aberration the image would be infinitesimally small. 

When the object cannot be assumed to be point axial, (219) may 

not represent the optimum magnification for minimum image 

cross section, although it is still indicative of the 

requirements for minimum image aberration.
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4.7.2) Best Lens for Finite Magnification

Consider the design problem that is illustrated in Figure 

(31). A lens is sought such that the spherical aberration, A r , 

at the image is a minimum. The object-image separation (L), 

the linear magnification (M), the maximum half angle of the 

object rays (r / ) and the potentials in object and image space 

are f ixed .

The value of is given by equation (198):-

( 221 )

Since the only constraint on our choice of lenses is the 

overall voltage ratio, we can optimise not only the lens 

geometry but also its scale size. Before we can analyse this 

we need to discuss the units of the lens parameters that we 

are using.

Most tables for focal lengths and aberration coefficients give 

the values of these parameters in terms of some principal 

length. For systems of cylindrical symmetry this is commonly 

the diameter of the narrowest cylinder or aperture, and we 

shall refer to it as D, the scale size. So if for example the 

value of F, for a particular lens is quoted as 2 then this 

means that =2*D.

If, in minimising A r , we are to allow ourselves the freedom to
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select the best scale size of the lens and we assume that all 

the Cs coefficients and the focal lengths are given in terms 

of D, then we can rewrite equation (221):-

A r  = M.Cs, ,D.(1 - 1/cfM)^ r,'̂
(222 )

If the only constraint on D is the object-image separation:-

L/D = (P + Q)/D = F, + F - f,/M - f^M
(223 )

Hence

D = L.(F, + - f, /M - fjM)"'

If we substitute for D in equation (222):-

(224 )

A r  = LCs*M(l - 1/dMf
F, + - f,/n - f^M

(225 )

Although this expression could be used for comparing lenses, 

any figure of merit derived from it in its present form would 

be dependent on the magnification of the system. It would be 

unhelpful in assessing the general quality of a lens. However, 

if the lens is not too strong, a figure of merit can be 

derived which is independent of magnification. If we 

incorporate the relationship that we derived earlier (172)
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between the focal lengths of a weaker lens then (225) 

becomes :-

i^r = LCs.M(l -
- f, /M -f^M

(226 )

And if we define:-

a = - 1 / (CM)

Then :-

(227 )

A  r = -LCso (1 + a )̂ r.
C’a (2^f, f̂  + afl'f, + f% /a O

(228 )

Recalling that d*=(fa^/fA :-

Ar = -L (Csjj/fĵ  ) ( 1 + a )̂  r^*
(229 )

H e n c e :-

û r  = -gL(l - l/rfM)’" r,'*
(230 )

Where the figure of merit for the system is given by:-

g = Cso/fi
(231 )
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since all the other terms in equation (230) are determined by 

the specifications for the system.

We have in (231) a figure of merit for this design problem 

which is independent of the system magnification. It should be 

noted, however, that in its derivation we have assumed that 

the magnification is not zero.

4.7.3) Best Lens for Zero Magnification

The results that we have just derived are inappropriate for a 

system that needs to focus a parallel beam into a minimum 

cross section (Figure 32).

The Gaussian image distance will be given by F^ for that 

lens

L = F_.D
^ (232 )

and the radius of the image can be derived from equation (190) 

by realising that r̂ ' = 0 and 0̂ , =F^ : -

(f.Dd)A r  = m,g (  r, Y/t 
IfiDj

= Mit? /Jj

(233 ) 
3

D V f,/
(234 )
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If we substitute for D from (232) and express m,^ in terms of 

the Cs coefficients (equations (193)-(197) );-

A r  = -g^r.^/L*
(235 )

where

9o= )
(236)

= Cs^Fi/f*
(237 )

The latter of these two expressions can also be derived by a 

method independent of our relationships.

4.7.4) Figures of Merit for Retarding Lenses

Most tables of lens parameters do not give data on retarding 

lenses. However, since the focal lengths and spherical 

aberration coefficients of a decelerating lens can be derived 

from those for the accelerating lens (equations 26 and 198), 

it is possible to inter-relate the figures of merit for the 

system in each mode.

The figure of merit for a lens of finite magnification is 

given by equation (231). If, as before, we denote the 

parameters of the retarding lens by then it follows that:-



Page 126

rj rsr rtt
9 = Cs./f^

= (Vi/V, Cs^/f,

Hence, using equations (175) and (197):-

(238 )

(239 )

9 = (Cs,/f4^). (Vi/V,

= (Cs,/fi ) . (Vĵ /V, )
(240 )

(241 )

(242 )

The value of g can therefore be deduced easily from that of g .

For a system with zero magnification we have from equation 

(237 ) :-

N
go= Cs^F^/f.

(243 )

= (Vj/V,
(244 )

= Cs,F'/f*
(245)

This expression enables the figure of merit for a retarding 

lens of zero magnification to be evaluated.
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4.7.5) Choice of Lens Geometry

We have evaluated the figure of merit, g , for a number of two 

element lenses of the cylinder and aperture type. The results 

are shown in Table 19. They have been derived from the values 

of Cs^ and f̂  ̂ given by Harting and Read. It is clear that, as 

far as aberrations are concerned, there is little to choose 

between these two element lenses. In the case of cylinder 

lenses, those with equidiameters are marginally better over 

the voltage range considered. Of the two aperture lenses 

considered, the one with greater electrode separation is 

slightly less aberrated.

The figures of merit of the two triple element lenses are 

plotted in Figures 33 and 34. For a particular overall voltage 

ratio, g is dependent on the potential of the intermediate 

electrode. There are two maxima in this curve corresponding to 

and =V^ . At these potentials the number of electrodes 

is effectively reduced to two and the overall voltage ratio is 

Vg/V, . It is clear therefore that a lens with three elements 

will always be less aberrated than a comparable one with two. 

This effect is particularly true when the overall voltage 

ratio is low.
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' 19. The Figure of Merit (g ) for Two Element Lensei

Voltage Ratio 2 5 10 20

Cy 1inder , D=D, (**) 278 7.02 1 .45 .468

Cy 1 inder , D=1 .50, 299 7.61 1 .56 .496

Cylinder • Dr2D, 326 8.26 1 .68 .525

Cylinder , D^D,/1.5 282 6.95 1 .44 .482

Cylinder , 0=0/2 296 7.17 1 .47 .476

Aperture , A/D=0.5 314 8.12 1.72 .571

Aperture , A/D=l.0 270 7.31 1 .58 .526

« Geometries are defined in Figures 1-3 
** Cylinder gap=0.1D
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4.8) Current Density Profiles

A designer's concern with the aberrations of a lens lies 

generally with the effect that they have upon the current 

density profile at the image plane. Whilst for high current 

systems the principal aberration will be due to space charge 

interactions (see 1.2), geometric effects will impose some 

limitation on the image definition of all lenses. It is 

useful, therefore, to be able to relate the aberration 

coefficients that have been discussed to the distribution of 

current density at the image plane. Since we can describe the 

third order aberrations in terms of one coefficient only, the 

process is rather straight forward. We shall demonstrate by 

considering the system shown in Figure 35, where the incident 

beam is parallel to the optic axis and of uniform current 

density, J | . Its overall radius is R,.

The current passing through a ring of radius r ̂ at the object 

plane will be given by:-

dl = J 2n^d^
(246 )

It follows that the current density distribution across the 

image plane (z=F^ ) is given by:-

J (r ) = dl/ (2lTrdr )
(247 )

= J ̂ ( r,/r ) (d r,/dr )
(248 )
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Where r is given by equation (183):-

r = /f^ )*

Hence

J(r> = Ji f& , 
3 (f,cTm,gr' )*'*

(249 )

(250 )

Which can be expressed in terms of Cs^ by using equations 

(175) and (193):-

J.r. . ■
(251 )

Since the overall radius of the image is given by:-

R = fcTm,j(R,/f^ ?
(252 ) 

(253 )

We can check equation (251) by calculating the total image 

current :-

I = lj(r).2?rdr = J,nR,'J (254)
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Which, as expected, is the current input into the lens.

The predicted current density distributions for a two cylinder 

lens (D,=D^=D) are shown in Figure 36 for a number of voltage 

ratios. We have taken the input beam to have diameter D/2. It 

can be seen that, as is the case for an unaberrated lens, the 

current density on axis is infinite. However the profile has a 

skirt which becomes more pronounced as the lens becomes 

weaker. It should be emphasised that space charge effects have 

not been taken into account. If they were we would expect the 

current density on axis to be finite and the profile to be 

generally broader.

It is possible to derive a figure of merit for the above 

system, where a parallel beam of uniform current density is to 

form an image at a distance L from the lens centre. The design 

criterion is that there is to be a maximum current (I,*̂ ) 

incident on a disc of radius situated at the image plane. 

This current is given by:-

Ij^ = I 2trr ,J(r),dr
Jo (255)

(256 )

Allowing ourselves the freedom to scale the diameter of the 

lens:-

/ 1,1}

(257 )
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Where :-

D = L/F.

hence :-

(258 )

(259)

Where the figure of merit is given by:-

W ) (260 )

It can be seen that g ' strongly resembles g© (equation

236) which is the figure of merit corresponding to minimum 

overall image size for this system.
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CONCLUSION

5.1) SUMMARY

We have developed a computer model that has enabled us to make 

a detailed study of the geometric aberrations of a two 

cylinder lens. We have shown that all the third order 

aberrations of this lens (at all magnifications) can be 

described by a single coefficient. This coefficient depends on 

the lens geometry and voltage ratio alone. Fifth order effects 

have also been examined and we have shown these to be fully 

described by an additional coefficient. The only constraint on 

this description is the voltage ratio. For example at 40:1 the 

lens is very strong and our results become erroneous. In 

practice this should be a minor limitation, not only because 

lenses of this strength are rarely used but also because their 

aberration coefficients are considerably smaller.

The basis of this simplified treatment of aberrations lies in 

equation (125):-

r^/f, = r '  + (fry fĝ + where (V%̂ /%)'*'*
(261 )

which accurately relates a ray's radial position and slope in 

image and object space, irrespective of the degree of 

aberration. We suggest that this should be used for describing 

aberrated rays in the same way that the Helmholtz-Lagrange
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relationship applies to paraxial rays:-

ri/f, = -fir^r//r,
(262 )

Treating the rays in this fashion, we have developed equations 

(182)-(185) which can be used to calculate the slope and 

position of any ray in image space, in terms of its slope and 

position in object space and one aberration coefficient (or two 

for fifth order effects). From these results we have been able 

to calculate the position and curvature of a lens focal 

planes. Moreover we have shown the size and position of the 

aberrated image to be readily calculable, both at the Gaussian 

image plane and at the disc of least confusion.

The particular problem of spherical aberration has also been 

examined and we have derived an expression (198) which 

descibes the aberration at all magnifications using only one 

coefficient (third order). We have also shown that this 

expression can be used to give an upper limit to the 

aberration of an object of finite size.

The application of our results to more complex lens geometries 

has been investigated and we have found them to be equally 

accurate so long as neither principal focus is within half a 

lens diameter of the reference plane (ie F, >1/2, F^>l/2). 

Although no details are given in the main text (see Appendix) 

we have also considered lenses of planar rather than 

cylindrical symmetry and found that our results are still 

applicable, within the same constraints on lens strength.
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We have given details to show how our results can be used to 

assist in the design of a lens. The criterion we have used is 

that the lens is to have minimum aberration and we have shown 

that, in general, the figure of merit is given by (equation 

231

9 = Cso/fi
(263 )

and the suitability of a lens is independent of the required 

magnification. (If the system is to have zero magnification a 

slightly modified version of this expression (236) should be 

applied.)

Finally, we have demonstrated that image current density 

profiles can be calculated readily from a knowledge of a 

single aberration coefficient. This analysis, however, 

neglects space charge interactions.

5.2) FUTURE WORK

We can see three areas in which this work might be developed 

in the future

1) The lenses that we have considered have been electrostatic 

and, for the most part, of cylindrical symmetry. A treatment 

that simplifies the eight third order aberration coefficients 

of a magnetic lens would be very useful. So indeed would an 

investigation of the lenses used in certain high current
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applications (for example ion irnplanters) where the electrodes 

are of planar symmetry with rectangular apertures. This could 

require three dimensional analysis.

2) The work that we have done on current density profiles has 

been in the absence of space charge. It would be extremely 

useful if a simple method could be devised that enabled both 

the current density and emîttance of an output beam to be 

described where space charge effects have not been neglected. 

In order to achieve this the computer model would need to be 

extended to solve Poisson's equation. However, this would 

almost certainly require an iterative solution and a great 

deal of optimisation would be necessary if the run time was 

not to be excessive.

3) Little work has been done on the aberrations of lenses 

where the object is immersed inkW f ield. This is particularly 

pertinent to electron guns and other emission systems. Such an 

investigation could be mounted using the computer although the 

model in its present form would be inappropriate. This type of 

study would be especially useful if space charge interactions 

were not neglected.
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APPENDIX

LENSES OF PLANAR SYMMETRY

We have examined briefly the relevance of our work to planar 

lens geometries (those with a plane of reflection rather than 

an axis of rotational symmetry). The results indicate that the 

aberration coefficients of these types of lenses can be 

rationalised in the same way that those of cylindrically 

symmetric lenses can be.

The two geometries that we have considerd are shown in Figure 

37. We shall refer to the five aberration coefficients 

pertaining to a point axial object by C ; . Analogous to 

equation (154) the width of the aberrated image at the 

Gaussian plane is given by:-

(264 )

W here:-

C(M) = C, + C,n'’ + CjM‘* + C j M‘* +
(265 )

and éĉ  is the maximum half angle of the object rays with 

respect to the plane of symmetry.

The values of these coefficients for the two lens geometries 

are shown in Table 20 (from Harting and Read). Also shown are 

the values of Y , which equation (166) predicts to be zero if
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the aberration coefficients are related in the same way as in 

cylindrically symmetric lenses (equations 161-165). The 

percentage error thüt is quoted is that which would need to be 

present in each of the Cj coefficients in order that Y be 

zero. This should be compared to the 1% error that Harting and 

Read give for their results.

For the rectangular tube lens the the relationship between the 

coefficients becomes too erroneous for Vi/V*=8. For the two 

slit lens the upper limit on the voltage ratio is 12:1. For 

both geometries these upper limits correspond to the voltage 

ratio at which becomes less than H / 2 .

These results indicate that the relationships that we have 

derived for cylindrically symmetric lenses may also be applied 

to planar lenses, within the same constraint on focal 

st rength.
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TABLE 20. SPHERICAL ABERRATION COEFFICIENTS FOR LENSES OF PLANAR 
SYMMETRY

TWO RECTANGULAR TUBE LENS. G/H=0.1

V2/V1 CO Cl C2 C3 C4 Y %ERROR

2.0 7.85E+2 -2.23E+3 2.37E+3 - 1 .12E+3 2.00E+2 5.73E-1 1 .2E-2
4.0 1.79E+1 -3.56E+1 2.73E+1 -9.50E+0 1.27E+0 9.09E-2 2.3E-1
6.0 5.09E+0 -8.04E+0 5.11E+0 - 1 .54E+0 1 .85E-1 3.82E-2 6.1E-1
8.0 2.61E+0 -3.44E+0 1 .92E+0 -5.30E-1 6.17E-2 2.84E-2 1 .3E+0
10.0 1 .72E+0 - 1 .93E+0 9.83E-1 -2.55E-1 2 .99E-2 2.61E-2 2.6E+0
12.0 1 .29E+0 - 1 .25E+0 5.95E-1 -1.48E-1 1.78E-2 2.36E-2 4.1E+0
14.0 1 .05E+0 -8.84E-1 4.01E-1 -9.56E-2 1 .21E-2 2.27E-2 6.2E+0
16.0 9.03E-1 -6.61E-1 2.91E-1 -6.65E-2 8.95E-3 2 .22E-2 8.7E+0
18.0 8.03E-1 -5.13E-1 2.23E-1 -4.86E-2 7 .05E-3 2.19E-2 l.lE+1

TWO SLIT LENS. A/H=0.5 

V2/V1 CO Cl C2 C3 C4 Y %ERROR

2.0 1.65E+3 -4.70E+3 5.02E+3 -2.39E+3 4 .26E+2 -3.70E+0 3.8E-2
4.0 4.01E+1 -8.00E+1 6.06E+1 -2.06E+1 2.66E+0 1 .34E-1 1 .5E-1
6.0 1.21E+1 -1.93E+1 1.18E+1 —3.31E+0 3 .59E-1 4.37E-2 3.0E-1
8.0 6.54E+0 —8.79E+0 4.5SE+0 -1.12E+0 1 .09E-1 3.19E-2 6.3E-1
10.0 4.48E+0 -5.26E+0 2.40E+0 -5.28E-1 4 .37E-2 1 .83E-2 7.3E-1
12.0 3.47E+0 -3.64E+0 1.48E+0 -2.98E-1 2.52E-2 1 .69E-2 1.lE+0
14.0 2.8SE+0 -2.75E+0 1 .OlE+0 - 1 .88E-1 1 .53E-2 1 .37E-2 1 .4E+0
16.0 2.51E+0 -2.21E+0 7.31E-1 - 1 .29E-1 1 .OlE-2 8.97E-3 1 .2E+0
18.0 2.25E+0 - 1 .85E+0 5.57E-1 -9.26E-2 7.16E-3 6.79E-3 1 .3E+0
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