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Abstract

The +topics of this thesis are properties that

N
©
distinguish between the 22 isomorphism-classes

(called types) of non-principal ultrafilters on ,w.
In particular we investigate various orders an

ultrafilters.

The Rudin-Frolik order 1is a topologically invariant
order an types; it had Tbeen shewn that there are
types with éﬂb predecessors in +this order, and that,
assuming the q.H., for evepy n € w there are types
with n predecessors, We shew that, assuming the

C.H., there 1is a type with /X, predecessors.

The next two main results ec¢an be phrased 1in terms
of the minimal elements  of these orders, Both assume
the C.H. We find an ultrafilter that is a p-point
(minimal in M.E.Rudin's "essentially greater than"
order) that is not above any Ramsey ultrafilter
(minimal in +the Rudin~Keisler order). We also find
an ultrafilter minimal in Blass' "initial segment"
order that is not a p-point, These ultrafilters
generate ultrapowers with interesting model~theoretic

properties,

We then investigate the classification of ultra-
filters when the C.H., 1is no longer assumed. We ™~ find
various properties of ultrafilters, sometimes by

assuming some substitute for the C.H. such as
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Martin's Axiom, and sometimes without assuming any
additional axiom of set-theory at all, Pinally we

relate the structure of ultrapowers to the existence

of special sorts of ultrafilters.
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Chapter 1. Introduction. -

11 This thesis 1is about the properties of non-

—brincipal ultrafilters over N, the set of natural
X,
numbers, It 1s known that there are 22 different

isomorphism-types of such ultrafilters, and an
obvious and important problem is to find properties

that distinguish between them.

If one assumes the Continuum Hypothesis the
method - of induction up to w; 1is a very powerful
tool for constructing ultrafilters with distinguishing
properties, and so the classification of ultrafilters
is fairly straightforward. In Chapters 3 and L4 we
give an account of the model-theoretic and topolog-
ical properties of wultrafilters under the assumption

of +the Continuum Hypothesis,

#ithout it, the situation is much more difficult.
The most .natural approach 1is to try and classify
ultrafilter  types without wusing any special axiom,
apart from the wusual axioms of set-theory and the
Axiom of Choice. In Chapter 5 we define a certain
property énd prove from the Axioms Z.F.C. alone that
some but tnot all wultrafilter-types possess this
property, but the property 1is not a particularly
natural one, and cannot be wused for any interesting
classification of ultrafilter types. We also present

same theorems obtained by using some substitute for

the Continuum Hypothesis,



(6)

12 Contents

Chapter 2 1s mostly introduction; it consists of
the set-theoretic terminology in which this thesis
is phrased, the definitions of ultrafilters and their
topology in AN and of ultraproducts. A few bisgic
Lemmas are proved. Various special sorts of ultra-
filters are defined, several examples of non-principal
filters are given and results are stated on how

they relate to the special sorts of ultrafilters.

Chapter 3 discusses the topology of pN. The
customary classification of points 1in AN 1is by their
position with respect to a certain order, called the

Rudin-¥rolik order, It had %been proved that there

are ultrafilters with fi predecessors in this order,
and, assuming the Continuum Hypothesis, for every

n € w there are ultrafilters with n predecessors.

We extend this classification by constructing,

(again assuming the C.H.) ean ultrafilter with prec-

isely 7{0 predecessors,

In Chapter 4 we turn to the model-theory of
ultrapowers., Puritz' [11] convenient notation is used.

He defines the Skies and Constellations of an

ultrafilter p so that (heuristically) if f,g € ww’

and for no n e w does f-1[n] € p or g—1[n] € D,
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they are in the same constellation of p 1if they
define the same partition of the integers, modulo

a set in p, and they are in the same sky of P
if in the ultrapower of w with respect to p they

are 1in vclements of roughly the same magnitude.

The sky and constellation configuration of an
ultrafilter p gives a very good picture of the
model-theoretic structure of the wultrapower of w with
respect to p (iq terms of 1initial segments, cofinal
extensions and the 1like). Also, the particular sorts
of ultrafilter defined in Chapter 2 have special
sky and constellation sets, The two main results of

the chapter can be phrased as:-

1) An ultrafilter can have one sky but no bottom

constellation., (This answers a question of A.R.D.Mathiac)

2) There is an ultrafilter with more than one
sky but whose ultrapower of w has no initial

segments that are ultrapowers,

So far 1in the 1literature four orderings have been
introduced. 2) gives an example eff an ultrafilter
that is minimal in +two of these orderings (the
Rudin-Frolik ordering mentioned above and .i.3lacc?
"initial-cogmint ordering but not in a third
(M.k.Rudin's ‘essentislly-greater-than" ordering)e‘At the
end of the chapterr we discuss the possibility of
finding other classifications of ultrafilters. The

simplest case 1is to find two Ramsey ultrafilters
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which do not have th: same properties. The only

way I have Dbeen gble to find such a distinction

is by assuming some additional axion such as

V=1 or Martin's Axiom + 3°>X,. In fact, I doubt
whether any such classification is possible in
generall, and this conjecture is extended to &gll

ultrafilters on w.

Chapter consists of a very incomplete exposition
of the properties of wultrafilters when the C.H.
is no 1longer assumed. As mentioned above, a property
is found which 1is shared by some but not all
ultrafilters on w. Then we proceed to a discussion
of the possible order —-type of ww/p, and some results
are proved relating the possible order-types to other
properties of wultrafilters. The gaps 1in this account

are stated at the end of the chapter.

1:3 The main original parts of this thesis are
sections 3-3, L3, L-4, 45 and Chapter 5. As for
the other theorems, some are due to other authors,
and some are basic lemmas that have been praoved
by many people who have worked 1in this field., I
have given a proof of someone else's theorem when
its brevity and importance for the later developnent
seemed to Justify it. When there was doubt as to
who first proved a basic lemma I have not tried

to credit it to anybody.

In this thesis only ultrafilters over w and
ultrapowers of the naturali numbers have been consid-

ered; generalization of the theory to higher cardinals
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and different structures 1is possible, but ss the
methods of proof &and the flavour of the results

are the same I did not feel that the extra gener-
ality Justified the loss of clarity and precision

it would entail.

Many of the proofs here are extremely complicated;
it is wunfortunate that the theory of ultrafilters
often UYtiliscs very involved combinatorics. Frequently
it seems 1likely that a neat positive theorem will
be true,but on further examination a very complicated
counterexample can be found. The Dblame 1lies between
me, for not finding the right theorems to prove,
and a Providence which does not always srrange that

the Truth 1is Beautiful.

Finally, my thanks are due to the 8S.R.C. for
three years financial support, and to the staff of
Bedford College, especially my supervisor, MNr J.C.

Fernau, for their help and encouragement.
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Chapter 2 Notation and Some Basic Lemmas.

21 we work 1in Z.F. 8et-Theory with the Axiom of
Choice. When we assume further axioms (which will
frequently happen) we will state them., Our notation
is fairly standard. The following is a guide, +hich
we will keep to as far as possible, for which

symbols (with or without subscripts, superscripts etc)

will %be used for which entities:-

my,n,i etc for natural :numbers.

asfBsy etc for ordinals.

ks A etc for cardinals,

a;b,c etec for sets of natural numbers.
psq,r etc for ultrafilters.

F;G,H etec for filters.

f,g,h etec for functions.

¢ 1is the empty set, N ar w the set of all
natural numbers, w; the set of all countable ordinals.
If A is a set, |A| is its cardinality, S (4) is
the set of all finite subsets of &, P(A) is the
power set of A, the set of &all subsets of A,
If Ac I, CI(A) is the complement of A, i.e.
CI(A) = {x € I: x ¢ A}, The subscript will be omitted
when no confusion can arise., For A and B sets,
AB. or BA is the set of all mapns from A to B.
If £ is a function, dom(f) is its domain and ran(f)
is its range. If a ¢ dem(f), fla] = {£f(x): x ¢ a} and
if a ¢ ran(f), f_1[a] = {x: £(x) € al. If a c dom(f),

the function obtained by restricting £ to a is



(11)

written fla. The function f ¢ ¥ such that f(n) =n

for gll n is callea id.

Now 1let I be a set.

Def 2-21 for F ¢ P(I) we say F is

o
b
|
f—t
ﬁ
®
]

if the

following conditions hold:
1) a,b ¢ F implies anb e F,

2) aePF, acbcI imply b e F,

Def 2-.22 We say a filter F 1is proper if ¢ ¢ F.

Henceforth all filters are assumed to be proper,

Def 2:23 We say a filter p..over I 1is an ultrafilter

if it 1is maximal. ©EBquivalently, p 1is .n ultrafilter
iff for all a c I, either a e p or cI(a) € De

Def 2-24, A filter F 1is principal 1if nF ¢ F.
Equivaléntly, P is principal if for some D ¢ F,

¥ = {ac I:bcal. In particular, an ultrafilter p
aver 1 1is pfincipal if for sbme x ¢ I, |

p=1{acI:txea}l, If a filter is not principal it

is called non-principal, or free.

Def 2-25 The dual to a filter 1is cclled an Ideal.
For F a filter, the corresponding ideal 1is
Q = {a: CI(a) € F}. Much of the 1literature speaks in

terms of ideals rather than filtersS,

Def 2:26 We say A c P(I) has the finite intersection
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property (henceforth abbreviated to f.i.p.) 1if A is

contained in a proper filter.

Def 2-27 If A has the f.i.p. the 1lcast proper

filter containing A (this always exists) is said to

be generated by A.

Then, assuming the Axiom of Choice, (or the
strictly wesker hypothesis, the Boolcan Prime Ideal
Theorem), any set with the f.i.p. can be extended
to an ultrafilter. In perticular, 1let Fr = fa C wiw - a
is finitel. Fr can be extended to an ultrafilter,
in fact to 22° ultrafilters. See [1] for details.
as NFr = ¢, these wultrafilters sare =211 non-principal,
and all non-principal ultrafilters on ¢ contain Fr.
Our eattention 1in this thesis will be confined to

these, the non-principal. ultrafilters on ¢, henceforth

abbreviated to f.u.f.

2°3 Ultrafiltere on w can be regarded as the points

v
of the Stone-Tech Compactification of the Integers,

BN. Sece [7] for details., N is embedded in BN by

the natural maep Y which takes n € N to the principal
ultrafilter generated by {n}. ¥hen discussing pN

we will identify n € w with its image under vy, if

no confusion can arise.

BN has the topology generated by sets of the
form W(a) = {q € BN: a € q}, for each a ¢ N. These
are clopen sets, ( W(CN(a) = BN - W(a)) and the
singleton {y(n)! is an open set, for each n € X,

fv(n)} = w(i{n}). BN is compact, ( this is equivalent
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to the statement that every filter can be extended
to an ultrafilter) and hence so is N* = BN - N. In
the restriction topology on N*, W(b) c w(a) iff

b - a is finite, and W(a) = W(b) iff (a -b) Y (b - a)

s finite.

a . . a .
Suppese that | n;new is an indexed family of
structures with +the same similarity type, which for
simplicity we will assume to consist of the single
binary relation R. The generalization to ancther

similarity type is straightforward. The domain of

each (Ih is written An'

Def 2-41 ngwAn is the Cartesian product of the
domains, i.e. it is the set of all functions ¥
such that dom(f) = w and f(n) € A, for every n. Let

p be a f.u.f.

Def 242 Tor f,g € anAn’ write f ~5 g irff

fn: £(n) = g(n)} € p. This is an equivalence relation.

Def_2-43 Write £ for {g: g . £l

Def 2-Lly Define R by f R~ g iff

{n: f(n)Rg(n)} ¢ p. It is easy to check that R~ is
well —defined. (Not dependent on the choice of f e £,

g ecg.)

Def 2-:45 Define ngé?g/p to be that sctructure whose

domain is {f : f € ngwAn/pI and with the single

e
A}
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binary relation R". This structure is called the

ultraproduct of {C%?new with rtspect to 7.

The fuwndamental theorem of ultraproducts is as

follows., (sece [1] for a proof).

Theorem _ 2:46  (&o¥)

If ¢(vyseee.v,) 1is & formula in the langusge

of {C%}

language), and the free variables of ¢ eare among

new’ (we assume that they have the samc
VisessVp, then
ey | ¢lfe,eeefy] iff {n: Xk ¢lfy(n)yeeot, (n)]}

is in p.

If p 1is a principal ultrafilter the ultraproduct
is trivizl, If p is generated by {ni}, then ngé;; D
is isomorphic to C%f

A special case of the ultraproduct construction

occurs when all the th are the same.

Def 247 If CXﬁ::CX for all n, writc ngwcg/p as
Cf?b. This is called the ultrapower of ({ with
respect to p. The specisl case of %o8' theorem

relevant to ultrapowers is:—

Theorem 248 If ¢(Vvi,eesvn) 1is a formula in the

languege of (& with free variables among ViseeoVny
. X )

then &I/p Lk $leryeanry] ifr in: Ak ¢[f,(n),eeth (n)]3

is in p.

w
In particular, define an embedding e:( -0/ by
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e(x) = £, Where fX(n) =x for all n e w.

Then cf/p ]=¢[f;1,...f;n] itk ¢lxyse00x,]

i.e. the embedding e 1is elementary.

Def 2.L9 If £ e C%?p is of the form f_ for some

x ¢ dom(®), we say f  is standard. Otherwise we say

~

£ is non-standuard, or infinite.

2:2

If p 1is an ultrafilter on w, and f ¢ Yo, write
£(p) = { a cwt £7[a] ¢ pl.
Then f(p) is an ultrafilter, and f(p) is principal

iff £ 1is constant on some set in p.

Theorem  2:51 (W.Rudin, [15])

For p and q wultrafilters over w, Pp and q are
isomorphic (that is, there is a bijection Y from P
to q which preserves inclusion) iff for some

permutation of the integers w, w(p) = d.

Def 2-52 If there 1is such a permutation w, we
write p = q. This 1is obviously an equivalence relation,

and the equivalence classces are called types.

~

Write p = {q: p = al. p is the type of bp.

Def 2-53 Write D i q” if for some f e “w, f£(a) = p.

We shew that is &a partial order. It 1is called

<
RK
the Rudin-Keisler order.

Theorem 2-54 (Various)

If f(p) = p, then {n: £f(n) = n} € p; i.e., T ~p‘id-
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Proof Let by = {n: f(n) = n}, by, = {n: £f(n) < n}, and

bs = {n: £(n) > n}. We shew that b, € p.

If bz € p, let a, = {m: n is the first number
such that f£°(m) ¢ by}. (Here £ 1is the p jterate
of f). nY8n = bz € D.

Precisely one of ng132n and ng1a2n+1 is in pe.
But Uap, e p iff £l e, Jep iff Ya, ., €p.

this 1is impossible.

If by € p, again let c, = {m: n 1is the first
number such that f£o(m) ¢ T

Similarly, U, cp ¢ p. Let a=b - nYyCn € Do

Let do = {n e da: n 4 f£lall

Let dp, = {m e d: n is the lecast number s.t. m e £ [dg]}
Then either ngOdZn or ngod2n+1 is in ©p.

But Y4, €p iff f[ngodZn] ep iff U4, ., € D.

This 1is 1impossible, so by 1is in p.

Corollary 2-55

<., 1is a artial order
SRK P a .

~

Proof. If p <0 Q4 < D, then f(p) =q and g(q) =D
for some f,g ¢ “w. So fg(p) = p. fg is the identity
on some set a € p, and so g 1is one-to one on a.

We can split a into two infinite halves b and b',

1

and define g'' so that g' 1is a permutation and

~ ~o

nebep implies that g(n) = g'(n). So q =rp .

Def 256 If p and q are ultrafilters on w, write
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BXq = {a ¢ wxw: {m: [n: <m,n> ¢ a} e p} € al.
Then pxq 1is an ultrafilter over wxw, and 1if ¢, and
Ty denbte the projections to the first and second
axes respectively,

7w, (pxq) = p, . (Pxq) = q.

We now define some special sorts of ultrafilters,

duc to Choquet [4,5] and W,Rudin [15].

Def 2:61 A non-principal filter q idis .. p-point if
whenever <aj:n € w> 1is a partition of w such that
a, § @ for any n there is a € g so that

la nay| <w for =all n.

Def 2-62 A non-principal filter q 1is rare if

whenever <apt n € w> 1s a partition of w into finite
sets there 1is a € g so that

la nan| =1 for all n.

Def 2:63 A non-principal filter is Ramsey if it is

both rare and a p-point..

Remark 2-64 The following are equivalent:

1) q is a p-point.

2) for every f ¢ ww, either f 1s constant on some
set in q, or else f 1is finite-to-one on some set
in q.

3) if A is a countable subset of g, there is Db

in qg ]b - al < w for all a e A,
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Remark 265 'If q is a p-point, q 1is an ultrafilter.

Proof. If b { q, Cw(b) is infinite, as q 1is
non-principal, so let <a,: n e w> be a partition of
c(b). Either &, € @ for some n, or else there is
aeq |ana,| <w for all n and la n | < we As

@ is non principal, in cither case C(b) € q.

Remark 2:66 A rare filter 1is not necessarily an

ultrafilter, One can construct, for example, assuming
the C.H., a rare filter q such that cvery a € g
contains infinitely meny even numbers and infinitely

‘many odd numbers,

Remark, 2+67 A filter q 1is rare 1iff it is non-

principal and whenever f 1is a finite-to-one function

. w . .
in "w there is a € @ such that f|a 1is one-to-one.

Remark 268 An ultrafilter q 1is Ramsey iff whenever

<apn: n € w> 1is & partition of w, either an € q for

some n or else there dis a € g, anapi =1 for
. w .

all n. <quivalently, for every f € w, there is

a € ¢ so that fla 1is either constant or one-to ~-one.

Now the existence theoren.

Theorem 2:59 (Choguet) The C.H. implies

1) There are Ramsey ultrafilters.

2) There are rare ultrafilters that are not p-points.
3) There are p-points that are not rarc.

L) There are ultrafilters that are nesither rare nor

a p-point.
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Proof
Gxamples of 2), 3) and L) will be given
later. VWe give a construction of 1).

-. } w
Lnumerate (C.H.) “w as <f 100 < wy> .

For each o < w;, we will add a set d, 8o that

fa da is either constant or one-to-one, Each da is

infinite, &and o > B implies that da - dﬂl < w; 8O

the collection {da: a < wif generates a proper filter.
Add in ¥Fr = fa: w — a is finite}
Stage 0 Assume f4 = id; anda 1let 4, = w.

Stage o We have added idﬁ: B < al. o is countable,
so the filter constructed so far 1is generated by

countsbly many sets. Let them be f{en: n e wi.

Construct d ¢ w as follows:-
Let ny € es.
Let n, € e4 n'ez, ny + Ng.
Let ng € €4 N€3 N seee N €Ly Nj $ ng for Jj < 1i.
Let d = ini,ng,...ng,,..-.}

d is infinite, and |d - en| < w for all n.

Let d, be an infinite subset of d such that
falda is constant or one- to-one, Certainly

Ida - dﬁ] <w for all B < a,
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Finally 1let q be generated by {da: o< wyi.

q 1is a Ramsey ultrafilter.

Remark 2-:610 At each stage a we could have added

one of at 1least 2 disjoint candidates for da'

Different choices of da would §ngender different q's.

N A
Hence we can construct 2“' = 22 different Ramsey
ultrafilters.
27

This section some examples of non-principal fil-
ters, and their relations to the specigl sorts of

ultrafilter defined in 2-6.

Lxample 2-71 Let <a,¢ n € w> be a partition of w

into finite scts so that |a,| is unbounded.
Let F = {w -a: |ana,| =1 for all n}. P generates
a proper non-principal filter that can (C,H,) be

extended to a p-point but not to a rare Tfilter.

In fact, &an ultrafillter qi. is non-rare 1iff it contains

such a filter as F.

sxample 2.72 Let <ap: n e w> be a partition of w

into infinite sets. Let P = {cw(an): newlu

Ullw=-a: |anay| <w for all n}. Then F generates

a proper filter that can (C.H) be extended to a
rare filter but not to a p-point. In fact, an
ultrafilter q 1is not a p-point iff it contains such

a filter as F.

pxample 2+:73 Let F = {w - a: for some n, a contains
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no arithmetic progression of 1length nj; Van der
Waerden's theorem on arithmetic progressions implies
that F 1is a non-principal filter, and F can be
extended (C.H.) to a p-point but not to a rare
filter,

fxample 2:74 For a ¢ @, define d(a,n) = |a n fm:m n}'
n

Let p(a) = lim d(a,n) where this exists.
n—w

Let F = la: p(a) =1} F is a non-principal filter
that cannot be extended to e¢ither a rarec filter or

a p-point. This filter appeured in [13]. o

Lxample 2:75 Let F = fw - (2 v {0}): for all n,m € gz,

n+nm 4 al. An application of Ramsey's theorem shews
that F generates a non-principal filter over w - jol.
In [8] it 1is shewn by a non-standard argumenf that
F cannot be extended to a Ramsey ultrafilter. We

shew that F cannot %be extended to a rare ultrafilter.

Proof. Let <ap: n € w> partition w - {0} so that

1) a_< a imply x < y)

n n+1

2) lanl = 21’1.

i.e. a and a
( X € n °© Yy € n+1

Suppose p were & rare ultrafilter extending F.

sither U a or

3 is in suppose
new 2n p’ LP <

ngwa2n+1 ngwaZn

is in p. Let b Dbe a choice set for <apt: n € w>,

and let a =bn U

a € De
new 2n P

i c & Z M.
But if X,y € a, say X € 850 and ¥y € Bon where r m
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Then x + y € & or X + ¥y € a

2r 2r+1°
In either case x + ¥y % 8y, S0 a k ps a contradiction.

The moral of all these results secems to be:-

"Simple - to - describe filters cannot be extended

to Ramsey ultrafilters.?

This can be made precise as follows:-—
We say a set of subsets of w A 1is Z: if
X € A iff 3ydlx,y,c]
Where ¢ is a constant set of natural numbers and

the only quantifiers in ¢ range over natural numbers.

Theorem 2:76 (A.R.D.Mathias, unpublished)

If A 1is =& 21 set of subsets of w, and q 1is

a Ramsey ultrafilter, there 1is a € p such that either

1) Bvery infinite subset of a is in A, or

2) Every infinite subset of a 1is outside A.

Corollary 2-77 If A is a z} filter, (and all

those mentioned above are) either A is contained
in some countably generated <filter or elsc A cannot

be extended to a Ramsey ultrafilter,

Mathias' result 1is essentially maximal, for if

V=1 there is a A; well-ordering of the subsets of

w which can be used to define a Ramsey ultrafilter.
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Chapter 3 Topology of AN

21

In section 2+-3 we defined the space pgN, the
Stone - Cech Compactification of N with the discrete
topology. The following are some trivial results on

the topology on N* = BN ~ N.

3-11 1) W(a) nW(p) = W(a o Db)
2) vi(a) y W(p) = W(a u )
3) vi(a) = ¢ iff a 1is finite.

) and in general they are

L) e c iy a

not equal.

n

" . v - 3
5) nghﬁ(un) > N(ngwdn) and in general they are

not equal.

If X ¢ BN, we write the closure of X as X.
Then q € X iff Vaeq ZxeX, a € X
P-points have a special topological significance. 1In

fact, the term p-point is derived from topology.

Theorem 312 A f.u.f., q 1is a p-point 1iff the

intersection of a countable callection of neighbourhoods

of q 1is 1itself a neighbourhood of q.

Proof Let iUn;new be such a collection.,. We can
assume that Un = W(hn) where En € q. Then there 1is
Leaq, |B- in < w for all n. Hence W(E) ¢ n@@w(ﬁn)

is the neighbourhood of q required.

Conversely, suppose En e @ for every n. Then
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0 W(E ) is a neighbourhnod of q. Let W(E) ¢ n0V(E,)

where E.e q. Then |E - Enl < w for all n, hence q

is a p-point.

Corollary 3.13 If g is a p-point, q 1is not in

*
the closure of any countable subsut X of N unless

q € X.

Proof For cevery x € X, let Ux be a neighbourhood

of g not containing x. Then is a neighbour-

XQX UX
hood of q disjoint frcm X.

3.2

In [15] W.Rudin wused the existence of p-points
(assuming the C.H) t° prove that T is not homogenous
(i.e. there are two points p,q in N# guch that
no auto-homeomorphicm maps p to gq. By the Compactness
of N* there 1s some g € N* which is in the closure
of a countable subsct of N*, and no homeomorphism
can map q to & 7p-point.)

In [6] 2Z.Frolik proved the inhomogcneity of N

without the C.H. by using the following idcas:-

Def 3.21 If X is a countable indexed subset of

*

N, X={X:newj, X is said to be discrete iff
there are sets {cn: n € w} such that c, € %n for
all n, and n + m implies that c, Ne, = P
Topologically, X is discrete if whenever X ¢ X,

x ¢ X - 1.
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(Note; we will wuse X,Y,7Z ete to denote countable

. *
indexed subsets of N , sometimes with superscripts,
eege X% or X", The nth member of X 1in the enum-

eration is written Xn')

Def 3.22 If the conditions of 321 are satisfied,

we say X 1is made discrete by {cn: n e wl-

Lemma 323 (M..s.Rudin)  Suppese 2 is a  countable

indexed discrete (henceforth ‘abbreviated to c.i.d.)

subset of N*, Xc4d and ¥ c Z. Then 1if g € XnY,

qgqe XnY.

Proof., Let Z be made discrete by {cni n e w}g

Let a = U{cn: Z,eXn Yi,

Then as qe XnY, deq. Let aeq. andeq, 8O

ande ze XNY. Hence ge X nY.

* %
Def 3.24 If X is a c.i.d. subset of N, and p e N,

we write:-

3[X,p] = {a c w: {n: a e Xn} e p}
If qe X ~-X, we write:-

2X,q] = {a ¢ w: ybeq,3nea, b ¢ Xn}
Then we have:

Theorem 3%:25 1) 2Z2[X,p] and Q[X,q] are ultrafilters.

2) 3[x,92[X,q]] = ¢ and 2[X,2[X,p]] = p, i.e. the
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operations 3 and  are inverse.

Proof. All the parts involve merely untangling the
definitions, apart from shewing that q[X,q] has the

f.i.p. This follows however from Lemma 3-23,

Def 326 If p,qe N, we say p~ <pm q" iff there
. . *
is a c.i.d. subset X of N such that q = 3[X,p]

or equivalently p = 0[X,q].

This 1is called the Rudin-Frolik ordering. That it

is an ordering will follow from later Lemmas. The
definition is well defined; e.g. 1if D' ¢ p~ a different

chumeration of X, say X', will give q = g[X',p'].

A liess combinatorial definition of the ardering

is as follows:

-~

D <gpp q  iff there is some homcomorphism y of
T4 T 5 =
AT into N  such that y(p) = q.
In fact q = 3[X,p] where X, = y(n), lpN] = X,

Similarly one can shew that if ¢ dis an auto~-

-homeomorphism of NF, ¢(q) = v, and D <mp a~, then

~ ~

P <gp T -

predecessor is a topological invariant.

So ths property of having pn~ as a <REF

This ordering is weaker than the Rudin-Keisler

erdering as follows:-

~s

Theorcm 327 P <Ry q then D sRK q .

Proof Suppose q = 3[X,p] and that X is maode discrete
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by ian: n e wj, Then if we definc F « Wy 8o that

~1
£ [n] =a  for &all n, it is easy to shew that

r£(a) = p.

Corollary 3%:28 For any qe¢ N, q  has at most

VA
2 ° predecessors in the ordering.

<Ry

~

*
So for some p,q e N, p is not a <pE predcecessor
e *
of q . So this proves, (witheut the C.H.,) that N

is not homogenaus.

Corollary 329 If p <gp 45 P $a. S0 p

Proof If ae€ q, @« € X for some n. As X N, X
EI00L n c
contains no finite set. So a n a, is dinfinite. TFor
no a e q, is fla a oene—-to-one function. From

Theoren 2-54, p + q .
The following gives another criterion for pN <RF q .

Lemma  3:.210 D - q~ iff there are countsble dis-

crcte sets X @nd Y and 11 € N  so that

1) YcX - X

2) r = 3[¥%,q] = 3[¥Y,p]

Proof Suppose first that q = 3[Z,p] for some c.i.d.
set Z. Let X be any c.i.a. set, and let r = 3[X,ql.
Define Y by Y = Z[X,Zn]. Y is a countable indexed
sete Yc X - X and Y is discrete.

Then a e 3[Y¥,p] iff {n: a € Yn} €D
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iff {n: {m: a ¢ Xm} € Zn} €D

iff {m: a € Xm} € q iff a e r.
So r = 3[X,q] = Z[Y,P]

Conversely suppose the conditions hold.
Definz 2 = H[X,Yn]. 7z is a c.i.d. set.
a € 3[Z,p] iff {n: a ¢ Zn} €p
iff  {n: VbeYn 3mea, b € Xm} € p
iff Vber, Jmea, b ¢ Xy

iff a e q.

Sa: q = Z[Z,p], and q~>RF .

Theorem  3%+211 If g is a f.u.f., the <RF predecess~
ers of q are linearly ordered.
Proof Suppose that q = g[¥X,p] and g = 3[Y,r]

Case 1 Let X' ={xe X:xeY~- Y},

If q e X! by 3210, r~>RF .

Case 2. Let Y' ={y e Yiye X - X}

If qe Y', by 3-210 p~>RF r~,

Case 3 Otherwise.

Then let X =X -X', Y =Y~ Y.

Then X$ U Y* is discrete, and q € X* n Y*.
By lemmza 3-23, g € X* N Y*.

~

So pf =r.,

The following Lemma will be needed later:-
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Lemma 3-212 If p <gp 1+ B3Y @& = s[X,p]l, then g is

<gp~Binimal above p~  iff {n: X; is <, ,~minimal}l e p.

RF
Proof Suppose first that Xn = Z[Yn,rn] where each
Y® s a csi.d.s set, and if X is made discrete
by {cn:n € w}, then c, € YE for all n and m,

Then Y = Yn is a countable discrete set.

n¥w
XcY¥Y-Y, so in particular q e Y - Y.
Se if we let r = q[Y,ql,

Q" gp> T gp> P e

Conversely, suppose gq RE> r RE> p, where gq = 3[X,p]
and q = 3[Y,r]. Wc can assume without loss of
generality that X c Y - Y, =so 1if we let Zn; Q[Y,Xn],
then Xn RF> Zn for all n.

222
Many results have Dbeen found on the possible erder

types embeddable in this ordering., See e.g. [3].

Assuming the C.H. there are ultrafilter types
minimzl in this ordering (for example p-points), and
by a re-iteration of Lemma 3212, for every n €
we can construct an ultrafilter q such that qN has
-predecessers. In [17] A.X. and E.F.

<RF
Steiner construct an ultrefilter type with Qh;

precisely n

predecessors. (This decs net need ths C.H.). They state
at the end of the paper that they do not know
whether there 1is a type with precisely ‘PQ} predecessors.

We construct one such, assuming the Cl.H.
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Pirstly we discuss what possible countable order

types can occur . Let g be a f.u.f. and Llet S

be the set of <RF predecessors of qN, erdered by
<pp’
Lemma 3+ 39 If £ 1is countable, we can assume that

~

if we define c.i.d. sets Xp for <wvery p € 3, where

qQ = 3(xP,p], then p~ RE” r .2 ¥F c %P %P,
Proof Re-iteration of Lemma 3-210.
Now, any infinite order type must have either
an infinite ascending subset ar an infinite descending
subset. (Or %both), Henceforth we assume that S 1is

countable.

Cose 1., 3032 S has an infinite ascending sequence

s'.

Subcase 1a. 3-321 S8' has a least upper bound. We

shew that +this 1is impossible.

Without 1loss of gencrality we assume that the

lcast wupper bound is q~, and S' is the sequence

Po <gp P1 <gp ***** <gp Pn <gp **** <gp ¢ °

Say q = Z[Xn,pn], where X° ¢ xH P
Suppose XO is made discrete Dby {cm: m € wl.

. R _ n,
Then let Y = ixm. c, € X;}.

Y 1is discretey, as each Xn ise Let a e q, then
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0
a e Xm for some m,

0 < m £l
Xm e X' -~ X'y s0o ace Xg for some r, where ch € Xé.

Let p' = ql[¥,q].
n

Fix ne w. ILet 2 = {X ¢ m ¢ ni.

wmrac.

m
Then qe X -2, and X' -2zc ¥ -v.
S0 py <pp ' <pp @ for all n.

This contradicts our assumption that q° was the least

upper  bound.

Subcase _1b  3-322 S8' has no least upper bound. Then

we can assume that S' is of the form:

~ ~

pO <RF soee <RF pn <RF s e <RF Qn <RF e <Rl_‘ qo = Qq .
N . (] ~ ~ [ ~
And there 1is no p such that p, <gp P <pp Im

for 21l m. and n. We shew that this 1is impossible,

Supposc that g = Z[Xn,pn] = Z[Ym,qm] where
x? C - Ym, x" - in+1 - Xn+1, and Yn+1 c ¥ - Y
Let X° be madc discrete by icn: ne wl.

Define % = |¥°: ¢

€ Yn}
m n m

Then Z 1is a countable discrete sequence, and ¢ € Z.
Furthermore, X c 2 -2 for all>» n,
For all n, let 2' =2 - {Yﬁ: m < ni
' —-—
Then g € Z2', and Z cC - Y.
Soe p: <pp ' <om Qp for all m and n, a contradiction.

It

Case 2 333 S has no infinite ascending sequence.

Then it has an infinite descending seguencae,
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Subcase  2a__3+331 S is bounded Dbelow. As case 1

did not occur, S must have a biggest lower bound.
Say qNuRF> cer pp” q: RF> **c R p .

Where q = 3[x%,q,] = 2[Y,p], and

Y e X -xt, xRl xh

But this situation cannot in fact occur. We can
prove, by & method similer to the construction in

Subcase 1b,

Lemma 34332 I the situztion described in  subcase

. *
2a occurs, there is p' € N so that

~

rEp” P

an e p'" for &ll n, p" and

qa = 2[Z,p'] where Z c U X2,
= ne€
This leaves us with Subcase 2b, 1in which S has
an infinite descending scquence not bounded below.

But assuming the C.H., this case can actuzlly happen.

Theorem  3+34  (C,H,) There 1is an ultrafilter gq such

that q  has procisely X <pp-Predecessors.

Proof Let {agz n,m € w} Dbe infinite subscts of

such that:

2) U a® = w for all m.

n+1 U n ‘ .
‘ = a where each D is an
3) am rebnm r nm

infinite subsct of .
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‘e o n, ) s .
(i.e., cach <a f me w> 1s a partition of w into

. . . ~ ) n .
infinite sets, and <am+1: m € w> 1s coarser than
el m e )
&..m ° - WD
- o . o) e}
Now let ime be p-points so that a € X~ for

all m. x; is a ec.i.d. subset of N . We will defin.

c.i.d. sets Xp for every n € we.

Suppose we have defined X

Let Yg be p-points such that by, € YE and let
n+l _ oron
x 7 = lx ,Yﬁ]
Thus we can define Xg for gll n &and m. From
the construction it is ﬁof Ahard to shew +that

n -—
a € Xg and X' is a c.i.d. set, and X+ - O o

We wil construct an ultrafilter g such that

If pn = 2[Xx%,ql, we will require that the only
<pp-Predecessors  of q are {pn: n e wl.
The following are some facts about this construction
that we shall need.

~

__—FaCts 1) a = DPo RF> LA RF> Pn RF> LR

2-) Pn = Z[Ynsp ]

n+1

~

3) 1If p: RF p~ RF p;+1 then either p~ = Pn or else

L) If ac X§+1 for some n and m then {r: a e X
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is infinite.

X ~ ~
5) If IpeN , Ph pp> P for all n, thcn there is

t

p's p RE” p'” for all n, and q = 3[X',p'], where

X' is a countable discrete subset of nEan'

Proofs 1) is from Lemma 3-210, 2) is Jjust calcul-
ation, 3) is from Lemma 3-212, L) is becauss Yﬁ

1.
is non-principal, and 5) i¢ Lenna *332,

(€Y}

From PFacts 3) and 5), to ensure that the only

<RF—predecessors or qf arc Zp:: n e w}, it asuffices

to shew the following:-

If X 1is a countable discrete subset of nng R

~ ~~

and q € X, then if p = Q[X,q], p = p, for some n.

To ensure that p~ = p: we need only ensure that

qge XnNn Xn.

Sa. enumerate (C.H.) the countable discrete subsets
n “(x n - < 2Eey r H
of ngwx as <X : < wy>, For every o« we will add
a set da to q, such that ¢ither da 4 Xg for any

n

(on o
m, or else 4, :mg&dm. X €X }

for soms fixed n.

Induction Hypothesis

At every stage o we have a countably gener-

ated filter Ea’ so that 1if a ¢ Fa’ for every n,
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is infinite.
Stage 0 Let dg = wy ¥y = Fr.
Stage o Let I be generated by ﬁgaF . As o is

countable, I is countably generated. Let its gener-

ators Dbe icn: n e wl, and assume without loss of

generality that e o« for all n.
n = "n4l
. n n ~ O
(@) 5! ] 3 = IS .
For each n, writs h, mgw{ ot X, e X ]

Case 1  The filter generated by F u {h,] obeys the
induction hypothesis, for some n. Then let da = hn

and let F, be generated by F U ida}.

]
0

Cage 2 Otherwise, We construct sets {an: n e w}

follows:-

Stage O The filter generated by U iho} does not

obey the induction hypothesis, Certainly for some ng,

) 0 o . ,O o L . _ .0 .
€ N ay € xno and X ¢ X' Let ag = a, 0 co-
Stage ] Suppose we have defined a; for 1i < j. The

filter gencrated by {ho U ... U hj} U T does not obey

the induction hypothesis. ©So for some nj,
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: J_ J
eJ n anj (ho U o e o U hj) € XnJ‘-

In particular xg ¢ x%.
j

3t 8. = . A a9
Let a; = ¢; n dl'lj

ijaj'

—(hoU'a- Uhj)t

Let a
o

Clzim 1 If x e X% 4 ¢ x
(04

Proof Say x = Xﬁ for some n,m € we.
18
n o) _ o]
If n=0;, da ne, = ano neg na = ¢
. n r .
If n> 0, d na_c U.a by the construction of a4 .
o m = rinn, a

. n n
But by fact L), if d, na e X

n ,n—-1 . . ..
: 5. € X nf .
fr d, Na, € X !} is infinite
n gy .n
SO n a T .
d, N & ¢ X

Clzim 2 The filter generated Dby PF U {da} Qbeys the

induction hypothesis.

Proof A typical member of this filter contains

d, N'en for some n, Fix m. Let r = mexin.m} + 1.

r e . . . s
Then d, N en € an, sQ {k:da Nen € X !} is infinite.

Certainly, f{k: d, N en € Xﬁ} is infinit¢. The induction

Hypothesis 1is still true.

So let F, be the filter generated by F, via,j.
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Finally let G %be generated by UfFa: A< Wyl

G 1is not necessarily an ultrafilter. But let £ be

the map such that f-1[n] = ag for every n.

0

As every 1infinite subset of X has occured 1in our

enumcration, f£(G) is an ultrafilter.

Define q = 3[x°,£(a)].

Then q € ngwin’ and by our construction, the

~

<RF—predecessors of q are precisely {p;: n e w}.

Remark 3-35 The existence eof ~minimal ultrafilters

<RF

is necessury 1in this proof. In a mcdel of set—-theory

in which there are no <RF-minimal ultrafilters, every

type has at 1least ,?(, predecessors. For take q~,

find p~’ Re-iterate Lemma 3+212 to ebtain a

<RF (]_N-

SEQUENCE D  <pn eee <pp Pn <pp oece <pp @ . Then
re~-iterate subcasce 14 and subcase 1b to obtain }%i

< redecessors,
RF P
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Chapter UL Model ~ theory of Ultrapowers

~—

The following set of rosults, due to Keisler,
clears up the problem of the structure of ultra-
powers of a countable structure with a countable
language over a countable set, assuming the C.H.,. -

Proofs are in [1].

}Def 4+11 Let CC be a. structure, A ¢ dom(Q), A set
$ of formulae 1in the Janguage of <AsB>, with x
appearing as the only free variable, ‘is said to
be finitely satlisflablle in «mas> ., if for every
finite subset {¢,seeepnl g @»

<CI,a>a€A *; 3X(¢1(X) A o00'A~-¢'n (x))c

Def Le12 X is said to be geSaturated if whenever
A c dom(Q) , |A‘ <Ky and ¢ 1s a set of formulae,
finitely satisfiable in Qs> 53 then there is

b e don(®), Al ¢[b] fa all ¢ ¢ &

Def Le13 (X is said to be Saturated if it is-

|| esaturated.

Certain sorts of ultrafilter give rise to saturated
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ulitrapowers, as follows:-

Def L-14 An ultrafilter p is said to be k=-good

if whenever A<k, and f is a map from Sw(h) to

Py then there is a map g from sw(x) to p,

g(a) ¢ £(a) for all a ¢ Sw(h), and g(a) an g(b) = g(a n b)

fer all a,b ¢ sw(x).

Def L-15 An ultrafilter p is said to be g-incomp-

lete 1f +there 1is a countable subset X of p such

that X = ¢.

Theorem U4-16 If p is a «k-good, w-incomplete ultra-

filter an A,and the cardinality of the language of
X is less than «, cg/p is «k-saturated.

In particular, if p is [C%|-good, C%/p is saturated.

It is quite easy to check that all non-principal
ulitrafilters on w are ](;good and w-incomplete. By
a back and forth argument, any two elementary
equivalent structures of the same cardinality that

are saturated are isomorphic. In particular,

Theorem L+17 (C.,H) If (U is a countable structure

with a countable language, and p- and q are f.,u.f.s,
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)
then Or/p is isomorphic to o4%/q.

-2
In view of +the results of section 41, to obtain
any results about ultrapowers of countable structures

we shall have to consider a larger language.

Def 4-.21 The full structure en w, written o™, is

the structure whose domain is w and with all
possible relations on w.
+

W = <Wy,R >
o a<2x°‘

We now find that the structure of the ultrapower
w
wh /p depends very much on the combinatorisl properties

of the ultrafilter p.

The following is the result that connects the
w
model-theoretic properties of «' /p to the <K

erdering mentioned in 2-5. It appears 1in [8] and

[12].

w
Theorem L-22 @ /p can be embedded as a  elementary

w w w
substructure of o' /q, (written e:wt /p < wt /q, where
e. is the embedding), iff there is f € “w sueh that

f(Q) = P (iye- q R.Kz 2.
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Proof  Suppos: that f(q) = p. Define ¢:% —% by

(¢(g))(n) = g(£(n)).
Then g ~0 g' iff theré is a ¢ p such that
nealiff g(n) =g'(n). Let b = f-1[a] € Q.
For m e b, g(f(m))= g'(f(m)). Hence ¢(g) ~q g(g').
Se there is a well-defined map
+4 +¢
ew /pP—>w /4, which by similar arguments is elem-—

entary.

+@ +
Suppose e:w /p < w /q.
-~ ~ w ad

Let £~ = e(id”). For all a e p, w' /p E id e a

w
(ot /p E id” e a iff {n: id(n) ¢ a} e p iff a e p).

+2 ~

e 1is elementary se w /q Ff € a.
So {n: f(n) € a} € q, i.e. .f—1[a] € Q.

Hence f£(q) = p.

Remark From the proof of Theorem L+22 it is clear
w .

that x ¢ elw’ /p], where f(q) =p and e is the

induced embedding, iff there is g € x, lg[f-1[n]]l= 1

for all n.

A convenient notation to describe such ultrapowers
was 1invented by Puritz in [12]. The following

definitions are his.
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Dcf gjzg For f,g ¢ ww, p a f.u.f. and £~ and g~

w
non-standard members of o /p, we write f < 8 iff

3h € “w, {n: h(g(n)) » £(n)} e p.

Def U4-24 Write f = '
e S D g 1iff ¢ sp g and ¢ p; g. The

equivalicnce classcs of are called the skies of p.

P

Skp(f) = {g: f 5, gl

Def U4.25 For f,g e %w, p a f.u.f. and £~ and g~

nen—standard members of w+ /pPs we write f ép g 1iff

3h € “w, in: h(g(n)) = 2(n)} ¢ b

I

Def L.26 . Write £ =P g iff £ < g and f P> g. The
equivallence classes of =P are called the constellat-

ions of . Conp(f) = fg: £ =P g}

We order Skies and Constellations by coxtending
P .
< nd <5, 8k _(f) < Sk iff £ <
_ o(F) p(g) 5 &
Conp(f) < Conp(g) iff £ < g. It is easy to shew
that these are well-defined orders., The fallowing

gives criteria fcr f sp g anéd ¥ <P g

Lemma L-27 1) f <, 8 iff 3a ¢ p, If[g-1[n] nall <w
for all n.

2) r<Pg iff 3aep, |flg ' [n]lnall =1 for all n.



(43)
Proof 1) If f sp g let h be as given in the

definition, and 1let a = {n: h(g(n)) > £(n)} ¢ p. Then
|f[g_1[n] n all < h(n) < w.

Conversely, if +the condition holds, define h g0
h(n) = maxif[g-1[m] n all.

Then  {n: h(g(n)) > £(n)} > a € p.

2) If f <P g, let h be as given in the definition,
and let a = {n: h(g(n)) = £(n)} € p. Then ‘f[g—1[m] N a]
= {h(m)}, so lf[g_1[m] nal]l =1 for all mJ

Conversely, if the condition holds, define h so
in(m)l= £(g" [n] n al.

Then {n

h(g(n)) = £(n)} 2 a € p.

Corollsry L-28 (Puritz) 1) q is a p-point iff ¢

has only one skys
2) q is rare iff the top sky of q has only one

constellation,.

3) q 1is Ramsey iff it has only one constellation.

Proof : 1) q 1is a p-point iff every non-standard
function f is, equivalent mod gq to a finite-to-one
function., Hence there 1is a € q, |id[f-1[n] nall <w
for all n, s Skq(f) > Skq(id), and id 1is always

in the top sky of d.
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2) £ is in the top sky of q iff f is equivalent

moed q to a finite-to-one function. But g 1is orare
iff every finite-to-one function 1is equivalent mod
4 to a one-to-one function., Hence q is rare iff
every f in the top sky of gq 4is in the same

constellation as id,

3) This follows from 1) and 2).

Corollary L-29 1) q is a p-point iff whenever

+w +w w w
e:o /p <d /q, e[ /p] is cofinal in & /q.
w w
2) q is rare iff whenever c:at /p < ot /a either

+(JJ +OJ w w
el /p)] = & /a or e[o" /p] is nat cofinal in W /q.

w w
3) q is Ramsey iff whenever e:0" /p <" /q, then

4+ & Mt
sl /p] = o /a.
Proof These follow from 4°28 &and the fact that 1if
w
f e Skq(id), o /f(q) 1is embeddable as a cofinal
w
substructure of « /q.

The following facts will bYe useful.

Lemma  L-210 1) Skies are totally ordered.

2) skics are made up of whole constellations.

3) If f£ is in the bottom sky of p, f(p) is =&
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p-point.

L) The converse to 3) is not true in general.

5) f£(p) is rare iff f is in a minimal constellation
of Skp(f).

6) Constellations are not necessarily totally ordered.
7) If £ is in a minimal constellation of Skp(f),

it is in the minimum constellation of Skp(f).

Proofs 1) 2) and 3) are in [12]. An example of
4) is in [14]. The proof of 5) is similar to that

of 4-27. e prove 6) and 7).

6) Let <a,: ne w> be a partition of w so that
]an| = n2, and we imagine each a, as a nxn block.
Define £ and g so that f 1is constant on each rdw
in each a, and g 1is constant on each column in
each aj. Then f and g &are finite to one, and for
all mne w, |£ (0] ng ' [n]] < 1.

Let F be generated by:

fw=as vnlf-1[n] nal =1} v {w-a: vm]g-1[m] nal =1}

Then P is a proper filter, and if c¢ c w,
Ing—1{n] necl|l =1 for all n, then lg_1[n] ncl| =1
for all n, sO Cw(c) e Fo. If q is any ultrafilter

extending F, Conq(f) £ Conq(g), and by similar
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arguments Conq(g) & Conq(f).

7) Let £ be in a minimal constellation of sxp(f).
Then f(p) is rare, Let g ¢ Skp(f). Wle can assume

e e : ;
that |f[e7 [m]]| < @ for all m. We construct disjoint

finite sets f{an: ne w] se that thc following holds;

Ir g '[a] n f'1[an] + ¢ and g-1[m] n f_1[ar] + ¢

Then n=r or n=1pr+l or r = n+i.

Let ap = {0}.

Suppose we have defined ap, and a, 1is finite.

Let a .4 = {m: 3r, f—1[m] n g-1[r] + ¢ and

£ [an] 0 g [r) 4 ¢} U {(ns1) - LY acl

a is finite, as a, is finitc and lf[é-1[s]]] < w

n+1

for all s.

Then ngwa” =w, and if n % m then a, N ap = ¢

As f(p) is rare, let a e £(p) be such that

‘a n anl =1 for all n.

Also either or is in f(p). Say

ngwaZn ngwa2n+1

ngwazn e £(p). Let b=an Y a,.

Let ¢ = £ '[b] € p.

Claim |f[g-1[n] nel]l =1 for all n.
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Proof. If g_1[n] n £ n] 4 ¢ and g nl n £ n') $ ¢,

Say m e a

e« Then m' ¢ a '
op op Or m' € a or

2r+1

*

'€ a5, 4. The 1latter two are impossible, by our

choice of c¢. PFurthermorc, as |a n 8o =1, m = m',
-1
se |flg [l nec]| =1. so £ <P g. £ is in the

minimum constellation of Skp(f).

Digression U+211 It is reascnable to ask whether

w

all the elementary substructures of W' /q are of
w

the form ¢lw™ /p]. The following gives a criterion

for this to occur.

Def 4212 For f e “w, eq(f) = {<i,j>: £(i) = £(3)}.

Then if G is a filter over wxw, define
w" /q|e = {f ew' fq: 3g e £, eqlg) € G}

w
It is shewn in [9] that o' /q|G is an elementary
w
substructure of «' /g, and that all the elementary
w
substructurcs of w' /q are of this form. It is
further shewn that for any G,
w R
W' /a|G 1is isomorphic to w /ala', for some G
which is a filter over wxw generated by equival~-

ence relations on  W.
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~ ~ w ~ ~
Now, for f,g" e o' /q, feq(f): £ e £} = fea(g): g e g}
w
iff Conq(f) = Conq(g). So ot /qu' is made up of

whole constellations. Then,

w w
Theorem L2913 o /q]G < wh /g is itself an ultrapower

w
iff the set of constellations included in w" /q|G

w
has a great.st element included in o' /aG.

In particular, if q has only finitely many
constellations, every elementary substructure is
itself &an ultrapower. Later an examplec of &an
ultrapower with an elementary substructure that is

not an ultrapower will be presented.

L3

In [12] Puritz constructs ultrafilters with var-
ious sky and constellation systecms., For example, he
shews that (assuming the C.H.) for every n € w there
are ultrafilters with n skies. (The process 1is id-
entical to that mentioned at the beginning of 3-3).

A question that he asks 1isi-
"Dous every ultrafilter have a bottom sky?"

This is related to a question posed by Choquet
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in [4].

"Is there an ultrafilter such that for no f e %

is f(q) a p-point??

Mathias [11] answers both questions by proving:-

Theorem L+31 (C.H.) There is an ultrafilter q such

that for no f e % is f(q) a p-point.
(This answers Puritz' question because of UL-<210 part 3)

R.A.Pitt improved this to:-

Theorem L-32 (C.H.) There is an ultrafilter ¢ such

that for no f ¢*w is f(q) either rare or a p-point.

At the 1971 Logic Conference at Cambridge, Mathias
asked further if +there 1s a p-point g such that
for no f ¢w is f(q) rare. Below we present a
construction of ane such, assuming thc C.H. In
Puritzian terms this ultrafilter has one sky but

no bottom constellation.

Theoren u~33* (C.H) Therc is an ultrafilter q such

that for no f € “» is f£(q) rare.

#Mathias and Pitt have also proved this result.
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Remurk As promised in 2+6, this is an example of

a4 non-rare p-point.

Proof Let F = {f ¢ “%: £ is finite-to-onel

Enumerate (C.H.,) F as <F 1 o< Wi,

Enumerate (Q.ﬁ.) P(w) as <S o < wy>,

As q is a p-point, for every non-standard x € wt /s

there is f e P, f € x.

Induction Assumption.

For each o < wy we will construct da’ ha’ Ja
80 that:-
1) d,cw, and «>p implies |d, - dﬂl < w,
2) d4,¢<c8, or d, N s, = ¢.

3) h, is a function from d, te ®, such that by
is finite to one; and if a > h, 1is cearser than
hﬁ except on a finite set., That 1s, there 1s a
finite set ¢ such that n,m € da - ¢ implies that if
hﬁ(n) = hﬁ(m) then h,(n) = hy(m).

4) J, consists of at most countably many sets of
subsets of w; write J, = {ng newl, a>pf implies
5 C Tge

5) For any ©, and any finite subset of &,

S = {ni,...nL}, there is n e w such that if aj € ng,

I . -1
e e e aL EJaL’ m;n, ain"' nab ndanha [m]4;¢‘



6) If exte
) a extends {d } v ul, £ (a)

Remark Conditions

1)

p-point., For if W is a countable

and 2) imply

X = isaL: i€ w}, then daL -

Toke o
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is not rare.

that q 1is a

subset of q,

greater than o for all i, then da € ¢ and
d -4 | <w for all i.
o o
Certainly, ]da - b| <w for all b e i,
Now we proceed with the induction.
Stage o = [+ Suppecse we have constructed dﬁ’ hﬁ R
Jﬁ' Define h as follows:-
. -1 -1 -1 -1
Let h™'[1] = Uif_ ' [m]: £ '[m] n b, [1] £ ¢}
4 a o B
n"'[1] is a finite set. Let n, = 1.
Suppose we have defined hT'[i] for all i < 3,
and each h '[i] is a finite set. Let n; be the
- -1,
first number such that hﬁ1[nj] nh [i] = ¢ for all

well-defined

i< 3.

et n (3] = ulry [ml: £5'[n] 0 ng'ln] 4 6]
Then h™1[j] is a finite set.
Let 4 = dom(h) n dge Then h is a
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finite-to-one function on 4.

Let k be a function such that dom(k) = d and
1) h(n) = h(m) implies k(n) = k(m) for n,m e d.
2) |h[k—1[n]]| is finite Dut increasiﬁg.

i.e. k 1s finite-to~one bdbut cearscr than h.
Define H, = {w - a: lh[k—1[n] nal|l <m for all nj,

Claim 1 If g is a f.u.f. that contains 4 and

mngm’ fa(q) is not rare.

Proof h is coarser than f , so con_(h) <con (f ).
_— o a a‘\a

k is coarser than h, sa conq(k) < conq(h).

But for nc set a e q, is |h[k_1[n] nall =1 for all
n., So the constellation of k 1is strictly 1less than
the constellation of f_. By Lemma L4+210 part 5

fa(Q) is not rare.

Claim 2 There 1is an infinite I € wy and da C 4,
so that either da - Sa or da n Sa = ¢ and the foll-

owing holds:-

If S = {nj,e..n )} is a finite subset of w and
re¢ w there is n e I such that whenever a; ¢ Jﬁi,..

na
eveoe ai' €JBL, bEHr, and mEI, m;n,
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4 0 «eona nbnd nk [n] g,

Proof If not., Then there is an infinite I, ¢ w and
L e€w and NDyyeeely € w and a, € Jgi,...aL € JEL and

a € Hy 8o that for all ne I,,
ana; Nneena ndn Sa N k‘1[n] = ¢.

Then therc is an infinite I, cI, and r ¢ w and
My yeeemy € w and b e H and by € J%?,...bj € J%J, such

that for all n e I,,
bAby n...nb;ndnc(s)nk [n] =g
So for every n e I,

anbnb; Neee NDjyNa; Neee nNa nan x [n] = ¢.

We shew this 1is 1impossible,

Take s so big that if s'> s and 1if h;1[t] N k*1[sﬂ
} ¢ then by N.eenbjnagNees Nagndgn hB1[t] L g,
and ]h[k—1[s']]|> m+r., Then as I, is infinite,

14

there is s' > s, s' e Iy, so that
-1
2 ADND, Neee NDj Nay Naewe Ny NANk [s'] 4 ¢

A contradiction.
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Sa let da be as in the claim., Let ¥ be a map

from I to @ which is ane-to-one and onto.

Let ha(n) = yk(n).

Then ha is a map: from da to w which 1is cearser
than hﬁ‘ Let Ja = Jﬁ U i{Hy: m e wl., Claims 1) and
2) impl& that that the induction assumption still

holds.,

Stage o, a l1imit ordinal,

Let o =-{yn: n e w}, and 1let {an: n e w} be an
increasing subset of o.

Let X = _U

newan and enumerate K as K = {Kp: n € w}

Define h as follows:-

Let n, € da be the first number such that:
1

- - -1
1) If K, € Jai’ a e Ky, and m 2n, an dOci N hai[m]
+ ¢.
2) If y, <oy, m,m' € da1’ m,m' > n,, then m,n' € dai

and hyi(m) = h (m') implies that hai(m) = hai(m').

Y1
Then let h™ [1] = h;1[n1]. This is a finite sect.
1

Suppose we have defined h_1[i] for all i < J,

and each h '[i] is a finite set. Let nj € d,. be
;

the first number such that:-



1) Let those X, i< j, which are in J, be K, ,
J 1

...Aik. Then 1if a, ¢ kii,...ak € Kik, and m > nj,

: =1
8, N eoe & d
. n & n o 0 haj[m] + ¢,
2) Let those y,, i < jwhich are less than or equal
to . R . i '
o be YLi’...YLK. Then if m,m' € daj’ M, js

mym' €d , for 1 <r <k and h (n)=h (m")
i Yi - Yi

r
implies h (m) =h (m') for 1 < r < k.
aj aj

-1 -
3) hdj[m] nn 1] = ¢ for m>n;, i< j.

(note: in +the induction assumption clauses 1), 3)

and 5) say that da’ ha’ Ja behave regularly except

on a finite set., In the definition of n; we are
taking n; so big that all these Cfinite sets have

been exhausted in U h-1[m].)
men; o

1

Let h '[j] = h&?[nj]. This is a finite set, and

J

if we 1let d

i

domn(h) it is clear that h 1is a
well=defined function on d. By our construction it
is alsc clear that:

1) |a-d, <w for p<a. In fact, d-4d is

Yk

iL/th—1[i], where j is the first number

5l

included 1in
such that a; > vy and k < J

2) TFor every f < o there is a finite set ¢ such
that if m,n € 4 - C, hﬁ(m) = hﬁ(n) implies h{(n) = h(m).

In fact such a c¢ 1is igjh-1[i], where j is  the



(56)
first number such that o > yk and J > k, (B =)
3) If Niseeedy 1is a finite subset of w, there is
new so that whenever a, € X ,...8; € K and m > n,
84 N «ee na, Nndn h-1[m] 4+ ¢ In fact, such an n is
the first number such that XK_ s...8 € J_ , and
Iy g Xn

ni!"'ni, < Il

So we can proceed to construct ha’ da’ Ja’

exactly as 1in the successor ordinal case,

Finally let q be generated by ida: o< wyl U
U U{Ja: a < wif. q is a p-point such that for no

f e % is f£(q) rare.

Ve now consider two other orderings on ultra-
filters, weaker than the Rudin-feisler order but

stronger than the Rudin-Frolik order,

Suppose now that p,q are f.u.f.s and that f£(q) =D

W
for some T € “w.

Def Le41 We say 4q ga> P if for no a € q is
lf_1[n]'n al] <w for all n. This ordering is due to

M.E.,Rudin in [14].
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Def L-L2 We say q 1s> P if the canonical embedding

+ +% w
eiw /p <w /q is such that el[w’ /p] is an initial

w
o + ) . .
segment of ' /q. This definition is due to Blass

in [2].

The chain of implication is:-
@ pp> P '~>Q.IS> P —q G p-m?q_RK> p; none of the
revcerse 1mplicztions hold. Most of the proofs and
counterexamples are triviel. First here is a

criterion for g 15> P-

Lemma  4-43  Suppose f(q)= p. Then g 1g> P Iff whenever

he “w is such that lh[f-1[n]]l < w for all n,

there 1is a € q;, |h[f‘1[n] a]} =1 for all n,

Proof Supposc e[w+w/p] is an initial segment of
w+w/q; et h be a function satisfying the condition
of the Lemma. Define f' sa that f£'|f [n] is
constant with value greater then maxih[f—1[n]]}.

Then f£' « e[w+w/p], and f' >h . So h e e[w+e/p],
and so there is h' e h , h'|f-1[n] is constant for
all n., So if we let a = {m: h(m) = h'(n)}, acp

and h[f—1[n] na«] =1 for all n.

Conversely, suppose the condition holds.
Let h < g ¢ e[w+e/p], Then we can assume h(n) < g(n)
for all n. But lg[f—1[n]]] =1 for all n, so
Ih[f—1[n]]|< w for all n.
Let a be the set such that lh[f_1[n] nall =1 for

all n. Define h' so that h'|f '[n] is constant
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with the same value as h|f '[n] n a.

~ ~ m
Then h' e h', and h' € elw’ /o],

w
+ . @
So elw” /p] is an initial segment of o /a

Using this we can shew:—

Theorem  L- ~ ~s P om
@ Lb P <pp @ implies D <1g 9-

Proof Let q = 3[¥,p], where X 1is made discrete »y

{8nt n e wl. Then f(q) =p, where fla,] = {n}.

Suppose h is a function such that |hl[a,]]| < w
for all n. Then for all n, there is b, € X,,

by € a,s such that |h[p,]] = 1.

If we let b= U bn, fn: b e %,} = w € D,

So b e gq. By the lemma, p <1s de

The only hard pamt in the chain of dimplication
is to shew that the coenverse of theorem LeLl4 does

not hold. Proofs sre in [2] and [14].

We will now consider the minimal elements 1in

these four orderings. It is nat hard to shew that:

1) A <p -nminimal wultrafilter is Ranmsey.

2) A <EG~minimal ultrafilter is a p-point.

In [13] M.E.Rudin asked the following two quest-

ionss:-

1) Is there a <pp-mininal ultrafilter that is
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not a p-point?

2) If the answer to 1) is yes, is there an
ultrafilter that 1is net in the closure of any

countable discrete set, but is in the closure of

some countable sct?

Kunen found examples for both these conjectures,
assuming the Continuum Hypothesis., His results are

announced in [10]. They are:-

1) There is a f.u.f, p, not a p-point, such
that p is not in the closure of any countable set.
2) There is a countable subset X of N*, such

that 1if x e X, x 1is not 1in the closure of any

countable discrete set, yet x € X — 1Xi.

An answer to question 1) would be found Dby

exhibiting an ultrafilter that is <RF—minimal but
not <EG—minimal. Rudin and Blass Dboth construct an
ultrafilter that is <RF—minimal. but not <Is~minimal.

Here we construct, assuming the C.H., an ultrafilter

that is <.o-minimal Dbut not < .,~minimal,
IS EG

Theorem L-45 (C.H.,) There 1is an ultrafilter g, not

pel w
a p-point, such that for no pe N is w /p

w
embeddable as a proper initial segment of w+ /4.

Proof Let f be any function such that [f—1[n]| = w
for all n. Let the filter F, be generated by:

{w - a: |la n f-1[n]| < w for all n} u imgnf—1[m]: ne wh.
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Then if q extends F, q 1is not a p-point.

S LW _ ,
Eoumerate “w as <f : o < wy>. For each o we will
w
easure that q contains c.ts so thot b /f.(q). is not
&

w
cmbeddable as a proper initial segment of w' /q.

il

Def Let H={h e “%: |n[f ' [n]]] <w for all nj.

Def If h,j € H, a concatenaticn of h and J 1is a

function k € H such that for all n,m
k(n) = k(m) iff h(n) = n(n) and j(n) = j(m).
(i.e. k is a finer function than both h and J).

De

- ——

)

If L =t{h,t new)cH a concatenation of L
is a function k € H such that if i,j € f—1[n],
k(i) = kx(j) iff hp(i) = hy(j) for &all m < n.

(i.¢. for cach n, k is finer than h, on nf_1[m],

nS
which is a set in F,.)

Induction Assumption

For every o we will define da, ho’ Ja and

Fa such that:-

1) F, 1is a proper filter generated by

Fo U {d_: <oy UUid,: < at.

2) h, € H, and if B <o, there is me w, h is
. -1
finer than hy on S f [n].

3) If f<a, Jy3cd, end aedg thare is
new, fcr &ll 2 >n, then if h;1[m] nat¢, then

-1
h, [m] € a.

Stage O We have constructed Fo. Let do = wy ho =T,
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Stage o > O Let F be generated by and let

BgaFﬁ’
d = ﬁgaJﬁ' Let h be a concatenation of ihﬁz B8 < al.
Relabel {dﬁ: B<al as fe,: ne w}, and assume without

laoss of generality that en 2 for all n.

e
- n+1

Let A, = [m: |fa[h_1[m] n eyl = wl.
Let B,

mgAnh_1[m] N €ne

Case_1 For some n, Fuy {f;1[n]§ has the f.i.p. Let
-1
a = - = i ; '
o = T [n], J,=9Js h =h. The induction hypothesis
still holds.

Case _2 Fu {B,: n € w} still. hus the f.i.p. Then we
can find a set da s@ that fa da is one-to-one,
and & N e N n"'[w] is infinite for m e Ay

Let Ja = dJ, ha = h, The induction hypothesis still

holds.
Case 3 Neither case 1 nor case 2 hold.
So for some n e w, B, cannot be added to F.

Certainly d = en N Cw(Bn) is already in TF. .
Without 1loss of generality we can assume that

|£ [0 [n]]] <@ for a1l m.
Let k be a concatenation of fa and h. Define ha

as follows:~

k is finer than fa'
- —1 ~1 1
So if k '[n] n f, (m] + ¢, k [n] ¢ f [m].

Let I be a function such that:
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-1 _
If k '[mn] ne, n fa1[n] is infinite, then
-1 - -
|1[x ' [m] n ¢n]l =n and 1 1[r] nk 1[m] n e, 1is either

void or infinite.

Now 1let hd be the concatenation o¢f k and 1.

Let J_ = fw - a: Emlha[k-1[n] nall <m for all n} ud.
Claim 1 F uy ida} UUJ  has the f.i.p.

Proof Say w - a is such that Iha[k—1[n] nall <m

for all n, Let ne wy, and let D e J,

Case 1 did not occur. Hence we can find n' > m,
sa- that e, n f;1[m'] n k_1[nﬂ is infinite, for some
n' so that k-1[nﬂ c b. Then certainly
In (k" [n'] neynt'[n']n (w=-a)ll >n' -n, Certainly
bne,nd, n(w-a) i ¢.
It is easy to check +that the induction hypothesis

is s8till true.

Finally, 1let q be an ultrafilter extending
o = ] ,:.L Cl)
ﬁgwfﬁ' Firstly q dis not a p-point. Let g e w.

g = fa for some «.

w
Claim 2 w' /fa(q) is not embeddable as a proper

w
initial segment of wt /a.

Proof Suppose Case 1 eoccured. Then fG(Q) is not

a f.u.f.

Suppese Case 2 occured, Then fa is one-to-one an



a wset. d, in q. so w+w/fa(q) is isomorphic to
Wt /aq.

Suppose Case 3 occured. 1 is a function such that
Il[f;1[n]]| <w for all n, yet for no a e q is
|l[f;1[n) nall =1 for all n.

By Lemma L43, w+?/fa(q) is not embeddable as an
initial scgment of w+w/q.

q 1is

-minimal but not -minimal.

<18 <EG

Remark LeU46 g has only one constellation in its

top sky, so q 1is an example of a rare ultrafilte:x

that is not a p-point.

Remark L+L47  Though o'™/q has neo proper initial

segment that 1is an wultrapower, it has as 1initial

segment that is a 1limit ultrapower,

w
viz w' /qu, where G is the filter generated by
feq(h): h e HJ

This is an example of an eclenentary substructure
cf an ultrapower that is not an wultrapower, as

promised in L2,

-5
Sa far we have classified ultrafilters by their
topological properties and by their sky and constell--

ation sets. The question now arises: how complete

is this classification?

Pirstly note that neither collection of properties
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is sufficient by itself to categorize all the

properties of wultrafilters. In [14] an example is
given of +two wultrafilters with the same sky and
constellation configuration yet with different topol—
ogical properties, and in [15] it is shewn that

any two p-points have the same topological properties,

though one may be rare and the other not.

Problem If p and q are f.u.f.s with isomorphic
sky and constellation sets and with an auto-homeo-
morphism of il mepping p to gq, (so that p and q
have the same topological properties), find a property

® possessed Dby p- but not by g.

Of course, we wish to exclude the cases when @
is of the form "a € p" for some & ¢ we SO Wwe
require that ¢ is invariant under permutations, that
is, if &(p) holds, and # 1is a permutation of the
integers, &(w(p)) holds.

The simplest case is to find some permutation
invariant property possessed by some but not all
Ramsey wultrafilters. I have not been successful in
looking for such a property. In fact, I would

gonjegture that:

1) There is a model of Z.F.C. + C.H. in which
eyery Ramsey ultrafilter has the same permutation

invariant properties.

2) There is a model of 2Z.F.C. + C.H. in which

the following holds: whenever p and q are f.u.f.s
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with isomorphic sky and constellation sets and with

an auto-homeomorphism of N mapping p to g then
P and q possess the same permutation invariant

properties.,

Remark It cannot be true that in every model of
Z2.FeCs + C.H., every Ramsey ultrafilter has the same
permutation invariant properties, for if V = L, there
is a definable well-ordering of the subsets of w
which can be wused to define a Ramsey ultrafilter
Do So if we take ® to be "p 1is isomorphic to

"

Po.» Some bdbut not all Ramsey ultrafilters possess

this property.

We can find a property shared by some but not
all Ramsey ultrafilters if we assume Martin's Axiom

Pat
+ 20>?‘<1. -

Def L4+51 If P 1is a partially ordered sst, we say

D¢ P is dense iff Vx e P, Jdy ¢ D, ¥y < X.

Def «+52 If x,y ¢ P, we say x and y are compatibla

if there is 2z € P, 2z < x and Z < Ve

Martin's Axiom is the following statemcnt:-

!5;21 Whenever P is a partially ordered sct, and

S is a collection of dense subscts of P, and

|PI < éﬂb, and ISI < éﬂé, and every set of mutually
incompatible elements is at worst countable, then
there is a set G ¢ P such that every twa members

of G are compatible and G ND + ¢ for every D e S.



(66)
We abbreviate this to M.A., The set G found is

said to be generic for S¢

It can be shewn that C.H., implies M.A., yet it
. . ' ¢
is consistent that M.,A, and 2 °s Ry. See [16]

Def 54 For q a f.u.f., we say q is Super-Ramscy

if it 4s Ramsey and whenever S ¢ q, |S]| < éyo,

there is a € q, |a =-b| <w for all b e S,

Theoren h'55

1) M.A. implies there arec Super-Ramsey ultrafilters.
2) M.A. + éhc > X4 implies that there are Ramsey

ulitrafilters that are not Super-Ramsey.

Proof 1) is due to Booth [3]. It follows fram the

next lemma by using the construction of 2:69.

Lemma LeH56 M,A., implies that if ¥ 1is a non-prin-
7
cipal filter generated by K < 2 ° sets, then there

is an infinite a c ws, Ja = Db| < w for all b e F.

Xo
Proof of 2) Suppose 2 ~ = A > . Let <@t o < wy>
be a sequence of sets such that
1) ]aa - aﬁl < w for a > B.

2) Iaﬂ -a,] =w for o> p.

We will construct a Ramsey ultrafilter p such
that a e p for all o < w,y yet for no a € p,
a-a,| <w for all o < Wy

Enumerate “w as <fﬁ: wy € B < A>,
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Paor every B, wy; < B < A we will add a set 4

B

such that fﬁ is one-to-one or constant on 4., and

B
if e 1is a menber of the filter generated by

Idﬁ: B < A}, then le - aal =w for Some o < Wye-
Certainly |e - a,| =w for all 6 > a.

For convenience lct dﬁ =‘aﬁ for B < wye

Suppose we have found 4 for all vy < B B > wye

Let |B]= k < 2™, Let P be generated by {dy: y < pl.

Let {ey: Yy < Kk} be a base for F; we can assume

that this ©base 1is closed under finite intersection.:

Induction Assumption For every vy there 1is o < w;ss

Consider f_.. PFirst we try to meke £ constant on

P P
5

Case 1 For some n € w, for all y there is a,
-1 . -1
e nft nj - a = we Then lst 4, =T° nj.
Case 2 Case 1) did not cccur. We will make fﬁ
ene —to —-one on d,.

5

Claim Fer all y there is ay < wy such that

£ le - a 1l = we
a
B~y y
Proof Fix y. Suppese the claim does not hold at

ye S0 Ifﬁ[ey - aa]l < w for all o < wy.

. . -1 T _ N
~Let A, = in: lfﬁ [n] N (ey aa)| = w}, Then A, 1is

finite for all o, and as o > B implies that



. | . (68)
o aﬁ <w, o>pB implies Aa 2 Aﬁ.
* *
So for some o , A, must rcmain fixed for o > a .
Case 1 did not holde So for all n € w, there is
Yns SO that for all a,
le

-1
n fﬁ [n] - aal <w, Let e = _0N e .

¥Yn T neAS* Tyn

Then |e n f;;[n] - aal <w for all ne A¥, all a.

Hence |e ne_ - aa| <w for all a, contradicting the

Y
induction hypothesis for e n ey.

Define a partially ordered set P as follows:
The elements of P are of the ferm <s,t>, where
S = <<DysMy>seee<hy,m;>>; for fﬁ(nj) =m;, 1 <j<i,
and n; =n 1ff n; = m, 1 < j,k < 1.

t 1is a finite subset of «.

We say <s',t's> < <s,t> iff
1) s' extends s,
2) t' includes t.
3) if «<s',t'> ¢+ <s,t>, then for every y € t there
is <n,m> € s' - 5, n ¢ ey - aay;
Now, |P] =« < A,
<s,t> and <s',t's are compatible if s = s', and soO

every set of mutually ineompatible eclements 1is at

worst countable,

f<s,t>: vy e t} for all vy < k.

(!

Let A
Y

U

Let B, = {<s,t>: |s| > n} for all n e w.
By the claim, each Ay and B, 1is dense. So let
G be a generic set mecting them,

Let dy = in: for somec <8,t> € G, n e dom(s)}
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Then dﬁ is an infinite set, as G meets every

If <n,m> ¢ s where «<s,t> € G, and <n',m> € s' where

<s'yt'> € G, then as «<s,t> and <s',t's are compatible,
n' =n., So f_ld_ is one-to-one.
BI B
Allso G meets every Ay’ Hence for every vy and
every n dﬁ will contain at 1least n members ef

e, —a_ . Bo ld ne, - a_ I = W.
y o, B Sy T Tay

The filter gencrated by F u {d_.} is proper and

B
ebeys the induction hypothesis,

Finally 1let q be generated by {dB: B < Al

g 1is a Ramsey ultrafilter that 1is not Super-Ramsey.
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Chapter 5 Ultrafilters without

the Continuum Hypothesis,

2°1

. Classification of ultrafilters becomes very diff-
icult when the C.H., #s no 1longer assumed, The
special sorts of ultrafilters discussed previously
do. not necessarily exist in all models of set

theory. For example:

Theorem 5+11 (Xunen, unpublished)

If M 1s a model of Z,F.C. obtained by adding

7<1 random reals to L, there is no Ramsey ultrafilter.

But we noted in L4°+5 that M.A. implies that there

arc Ramsey ultrafilters.

In fact, in his thesis [2], Blass even conject-
ured that it 1is consistent with Z.F.C, that there
are no special sorts of wultrafilter at all; that
is, feor every permutation invariant formula @ there
is a model of Z.F.C, in which either every f.u.f.
possesses this property or no f.u.f. posses this
property., We produce a counterexample to this

conjecture. Firstly we need a result of Kunen [10].

Theorem 5-12 There 1is an ultrafilter which is net
x
generated by less than 2  sets. (Though it is
!
consistent with Z.F.C. that 2 ° >N, and there is

an ultrafilter generated by 7, sets.)
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Recalll that if q is a f.u.f.,

axq = {a ¢ wxw: {n: {m:<m,n> ¢ a} ¢ g} ¢ ql. This is

then a non-principal ulitrafilter over wXw.

Our sentence ¢ is:-

#(p) iff "there is an ultrafilter genergted by
less than 239 sets and p 1is one such or else
every ultrafilter is generated by at least 2?Q sets
and p is isomorphic to an wultrafilter of the form

gxq, for some f,u.f. q."

Theorem 5°:13 & is permutation invariant and some

but not all f.,u.f.s have property &

Proof The only non-trivial part 1is to shew that
if no ultrafilter is generated by 1less than 2“5
sets then there 1is an ultrafilter p not isomorphic
to qgqxq for some gq. We assume that no ultrafilter
is generated by 1less than 2’“’ sets and construct

P by induction.

Enumerate the bijections from w to wxXw as
. 7X,
<f i a <2 °s., For every o < 2 ° we will construct
a filter F_, such that fa(Fa) cannot be extended

to qxq for any f.u.f. Q.

Induction Hypothesis:-

1) a > B < F, 2 Fﬁ.

2) F, is generated by at most la] + w sets.
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Suppase we have constructed F_, for all B < o.

B

F.. F 1s generated by

Let P be enerated
& © vy ﬁL<Ja B

at most |a| +w sets.

Let G = f&(F). Let 7, and g, denote the project-
ions of wxw onto the first and second co-ordinates

respectively.

Case 1 For same i, if we 1let a = {i} X w, then

Gu {a} has the f.i.p. Suppose qxq extends G u {al.
Then {m: <m,n> € a} = {i} ¢ q. q is principal. Let

F_ bc ‘generated by {f;1[b]: b e Gu {all. F is still

generated by |a| + w sets.

Case 2 For some J, if we let a =w x {3}, then
G u {a} still has the f.i.p. Suppose qxq extends
G u {al. Then {n: {m: <m,n> € a} € q} = {j} € @« So ¢
is principal. Let F be generated by {f;1[b]: bed

a
u {all. F, is still generated by la] + w sets.

Case 3 Neither case 1 nor case 2 occur.,
So neither w,(G) ner #,(@) can be extended to a
principal wultrafilter. But w,(G) is generated by less

than 7o sets, and so cannot be an ultrafilter.

Let a, ¢ w be such that both 7y(G) U {es] and

W1(G) v lw - aii possess the f.i.p.

The filter generated by w1(G) U {ay} is still

N .
generated by less than 2 ° sets, so let as C ay
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be such that both w,(G) u {a,} and m (G) U fa, - a,}

possess the f.i.p.

Re-iterate this process to obtain a sequence of
Bets a; D 8; D eee Dy D ese such that w,(G) u {a,}

and Wﬁ(G) U ian - } possess the f.,i.p., for every

an+1
n. Let b= {<mn>: m¢ als

Let G' be generated by G u {b} u {a, x w: n € wl.
Claim 1 G' is a proper filter,

Proof Let an1 b.d Wyeoed X w be a finite subset of
L

{a, X w: n e wl.

Take r > maxi{n ,...n ). Then a. X w c-a, Xw 1 <3<
J .

Let ¢ =wx {st 8 >r}. Then ¢ ¢ ¢ already, as case

2 did not occur.

Let d e G. We shew that dnbn (a. x w) $ ¢.

m (G) v {a_ - | possesses the f.i.p. So

a

r r+1 o

G u i(ar - ar+1) X wl possesses the f,i.p. In partic-
ular, d ncn (ar - ar+1) Xw f£¢

Let <m,n> e dNnecn (ar -—a_ ,) X w.

r+1

Then n >r as <myh>» € c, m % a5, but m ¢ E
Certainly m ¢ an.

So «<«myn> € bndna. X w

Claim 2 G' cannot be extended to an ultrafilter

of the form gxq, for q a f.u.f.

Proof Suppose not. Let gxq p G's. Certainly
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7y (&) ¢ m, (axq) = q.
In particular a8, € ¢ for every n.
Hence {m: <m,n> ¢ C _ (b))} = an € @ for every n,
{n: {m: <m,ns ¢ waw(b)] € q} = w e q.

So waw(b) € axq, contradicting the fact that b e gxq.

Let F  be gencrated by if;1[d]: dea'l. F, is

generated by |a| +w + 1 = |a] +w scts.

Xo

Finally let p oxtend © UfF :a<2 . p is

negver 1isomorphic to gxq, for q a f.u.f.

Remark 5+14 As noted in 3+2 the property of having

P as a RF>—predecessor is a topological invariant.
Also an ultrafilter is generated by less than o™
sets iff in N* it has a neighbourhood basge of

pawer less than 7%, This is also a topologically

invariant property.
So if we define &' by:-

®'(p) iff "there is a point of N with a
neighbourhood base of power less than 2)% and ©p.
is one such or else ne point of N# has a
neighbourhood base of power less than 27’(‘7 and p

has. a >-predecessar isomorphic to qxq, for some

RF
-3
qQqeN",

Then a modification of Theorem 5°13 will shew
that some but not all ultraefilters have the property

®', and that @' is a topologically invariant
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property,

Remark 5-:15 These properties & and &' are nat very

natural. or significant, and it is doubtful whether

they can be wused for some interesting classification

of wultrafilters.

22
As mentioned at the beginning of Chapter L4, if
the C.H. holds, and (I is a countable mnodel with

a countable language, and p is a f.u.f., C/p is

saturated.

This 1is not necessarily true if the C.H. is no

longer assumed., Let us consider the order type of

/D,

Def 5H5¢21 An order type S is said to be an na-set
if whenever A,Bc S, O < |a|,|B] <X, and A< B,
(that is, if a e A and be B a<b) then there is

ceS, A<cc<B.

na-sets are jY&-saturated ordsr types. If X and Y
are na-sets of cardinality j<a they are isomorphic.
As all f.u.f.s are N,-good, the order type of

*
W/p is w+ (w + w)n where 7 is an n,-set.

Let the order type of «“/p be denoted by
X .
w + (a)* + w)np. First note that if 2 ° =3‘(a > N, it

does not necessarily follow that np is not a
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na—set, for every f.u.f p. In fact,

Theorem 5:22 M,A. implies that there is a f,u:fs

P such that My is a na—set, where 2K°=?(a.

Remark 5:23  Solovay, Silver and Rucker (unpublished)
have proved a stronger result, that M;A. implies
that there is an ultrafilter p such that for every
countable model (X with a countable language, Cr/D

is saturated, The proof of this result is. by a
generalization of the proof of 5.22; we will give

a sketch proof of 5.22,

Proof We will consider all the possible pairs

<A,B> inw/p such that A < B. We construct p by
induction; suppose at stage y we have a filter
generated by S, |[S] < éxo, and have to consider the

y-lEQ pair <A,B>.

Define a partially ordered set P by
an element of P 1is of the form <r,s,u,v»> where
r is a function from a finite subset of w to ws
s € Sw(S), u e Sw(A), v € Sw(B)‘

ie say <r',s',u';v'> € <r;s,u;v> whenever

¢ *

1) r' extends r, s8'2s8 u' 2>2u, v'ov,
2) If <n,m> e r' -r, then ned for all 4 ¢ &,

f(n) <m for all f e u, m< g(n) for all ge Vi

Then P has no uncountable set of mutually
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incomparable elements, and | P| < o™,

Define dense sets as follows:

A = {<rys,u,v>: b e 8] for each Db € S.
By = f<r,s,u,v>: £ ¢ u}] for each £~ ¢ A.
Cg = l<r,s,u,v>: g € v} for each g ¢ B.
D, = l<rys,u,v>: |r| > n} for each n ¢ w.

Let G be a generic set meeting them all., Define
a partial. function h by
h(n) =m iff 3<r,s,u,v> € G, <n,m> € r,
Let d = dom(h). Then we can add d to the ~filter,
and if q is a f.u.f. extending it, in «“/q,

A< h~ < B.

23

We now introduce the notion of a scale.

Def 5H+31 If f,g e ww, we write f > 8 iff there
is k e w, for all n >k, f(n) > g(n). ;> 1is a
partiall. order, and a Scale 1is a sUbset S of ww,k
cofinal in “w under &> (i.e. for all g e “w  there
is fes, £ > g), which is totally ordered by S
If the C.H. holds, it 1is easy to construct a
scale. But they do not necessarily exist. In fact,
it has been pointed out by various people (nowhere

published, however) that it 1s consistent with

Fat
Z.F.C. + 2% > X, that
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1) There is no scale.

2) There is a scale of cardinality less than
Mo
2 .

3) There is a scale of cardinality 2?%.
M.A. implies 3), which will be shewn later.

Def 5-32 For S an ordered set, the Upward Cofinal-

ity of § is the least cardinal of a set S' ¢ S
such that Vvx e S, 3y ¢ S', x < ¥,

The downward cofinality of S is the 1least

cardinali of a set S' ¢ S such that

VX € S, Iy € 8', y < x.
Then obviously, if there idis a scale of cardinal-
ity «, for any f.u.f. p, the upward cofinaliity

of g is k. Also,

Theorem 533 If there is a scale of cardinality

Ky and q has a 1least s8ky, then ths dJdownward
cofinality of nq is also k.
Proof If f is in the bottom sky of q, f(q) is
a p-point. Without loss of generality, we can
assume that q itself is a p-point. ©So for every
g € w@, we can assume that g 1is finite-to-one,

Firstly euppose that S C ww, ISl < K, We can

Ll

find w}az)_9ah) which “inverts the axes', that 1is

£ >g iff ¥(g) > ¥(f). Find he Yo so that

h > y(f) for every f € S. We can re-invert the
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axes, finding a function h' that is non~-decreasing

and f &> h' for all f e S,

So the set {f": f e 8] is bounded below in o*/q - w.

Conversely, let the scale be S. Invert the axes
by ¢ to find S' = y[S], then for any non-decreasing
function h, there is g e S', h g> 8 So the downw-
ard cofinality of nq is precisely «.

In [2], Blass uses the following hypothesis as

a substitute for C.H.

Def 5-34  FRH(w) iff "Any filter generated by less

7o . : . :
than 2 sets 1is contained in a filter generated

by at most XN, sets."

FRH(w) is equivalent to:
If F 1is a non-principal. filter generated by less
x
than 2 ? sets, then there 1s an 1infinite a € w,

Ia -b| <w for all b e F.

It was statcd in Chépter 4 that M.A. dimplies

FRH(w). We now shew:-

Theorem 535 FRH(w) implies that there 1is a scale

of cardinality 2 .

Proof This follows from the following Ilemma by

induction wup to 2ﬂ°.

x
: w
Lemma FRH(w) implies that if S ¢ “w, [S8] <2 % there
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w
is fe w, £ 3> g for all g € S.

S/
Proof Without loss of generality we can assume that
every g € S 1is non decreasing. Let <@pt n € w>

partition w 1into infinite sets.

For e¢ach g e€ S define a c w 8o that
ag N an = {m € a,: m > the g(n)EQ member of a,}.

Then |ag na,| =w for all n.

Let F be the filter generated by
ij(an): newlu {ag: g € S}. P is a proper non-prin—

cipal filter generated by less than éyb sets,

Use FRH(w) to find a set acws |28 ~-Db| <w for
all beF. |a- Cw(an)l <w for all n, and a is
infinite, so {n: ana, +¢} = T is infinite. Enumerate

T 28 {n;: i ¢ w}. Define £ as follows:-

If n; <n <Dy, f(n) = m, where if r 1s the
first member of & n an s r 1is the mﬁﬁ member of
1+
a .
Y

Claim For g e S, T s> 8

Proof la = < w, Take i, so great that

- 'hi i : ible, Then if n > i
a ag c ngioa”‘ This is possible e ) o9
Bay n; <N <Dy 4o and f(n) = m, the 2 nmember of
i S i i a n a .
ani+1 is certainly in g ny 4
Hence f(n) = f(ni+1) > g(ni+1) > g(n). This proves the
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Claim and the lemna,

We can obtain cofinal subsets of w@ if we have

rare filters,

Theorem 5:36 If there is a rare filter generated

by S, |S| =k, then there is a cofinal subset of

Yo (under S>) of power .

Proof For each b e¢ S, define fb

fb(n) = the n+1£g member of b. Suppose f e “w. With-

by

out loss of generality we can assume that £ is

strictly incrcasing,
Define a partition of w by a, = {m: £f(n-1) < m <
f(n)}{. Then as S generates a rare filter, there

is beS, |bnay| <1 for all n.

Then certainly the n:G-Q member of b 1is greater

than f(n-1). Seo fb(n) s £(n) for all n.

Corollary 5«37 If there 1is a rare filter gencrated

by N, sets, there is a scale of cardinality 7%,

2:h
Now we connect scales with other properties of

ultrafilters.,

Def 5-41 Abbreviate the hypothesis "there is a scale

Xo..
of cardinality 2 °" to C.S.
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C.S8. is quite a powerful hypothesis,

Theorem 5:42 C.S. implies that no ultrafilter is

generated by less than ZXD sets,.

Proof Let F be a filter generated by S, where

X
S 1is closed under finite intersections and |S] < 2°.

For a cw, a infinite, define e “w by,

fa(n) = the n pember of a.

Then we ecan use CeS¢ to find £ € ww, i s> fa
for every a e S,
We define two sequences «<ap: D € w> and <bp: n € w>

of finite sets as followse-

Let a, = {the first f(1) members of w.)
If we have defined aj;4...ap, let |a, U ... Ua,| =m

and let T = max{a, U see U a,}.

Then let b, = {i: r < i < £(m+1)$ if this is non-

-empty, and b, = {r+1} otherwise.

If we have dcfined by,e.ebps et |by U oue U By | =

and let r = max{b, U ... U bpl.

Then let a, ., = {i: r < 1 < £(m+1)] if this is
{

r+1} otherwise.

u

non—-empty, and 1let I

Let a = ng1an, and b ng1bn.~ Then a Ub = W,

i
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Suppose a € F, Then for some c e S, a > c. Certainly

fa(n) < fc(n) for all n.

But by the construction of a, for infinitely many
m's, the (m+1)Ell member of a occurs after f(m+1).
So fa(m+1) > f(m+1). This contradicts the fact that
r s> fc. So a % ' and by similar arguments D % F.

F is therefore not an ultrafilter.

Theorem 5-43 C.S. implies that there are p-points.

Proof inumerate %w as <fa: o < 2x°>. At each step «
we will add a sct aa so that fa is either const-
ant or finite-to-one on a . The filter generated

at stage o is Fa’

Stage o Suppose we have constructed Fﬁ for all

B < a, Let F Dbe generated by gaF

BRa” B*
7{ .
F has lcss than 2 ° gencrators, so let them be S.

Assume that 8 1is c¢losed under finite intersection.

Case 1 For some n € w, f;1[n] U G has the f.i;p. Let

-1
aa = fa [n]o

Case 2 Otherwise. JThen for all b e S,
fn: D N f;1[n] 1 ¢} is infinite, For each b e S, def-
ine g, @as follows:

Ir bnf o] =¢, then g(n)=0.
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If r 1is the first element of f;1[n] N b, and

. t -
r is the o™ element of fa1[n], then gb(n) = m.

Here we have |[s]| < 2x%functions. Let f e ® be

such that ¢ S> 8b for all b e S,

Define a, ©® to be such that a, 0 £y [n] = {the

first f(n) members of f;1[n]}.

-1
Then ]aa nfr, [n]| < w for all n, so fa_laOC is

finite-to-one. We shew b na 4 ¢ for all b e S,

Fix b, Let kX be so great that m >k implies
f(m) > gb(m). For some n >k, b N f;?[n] d ¢. Then
if r ebn f;1[n], r is ameng the first gb(n)
clements of fi?[n], so it 1is certainly among the
first f(n) elcments of f;1[n]. rebnag, Let T,

be generated by F U {aa}.

X
Finally let q be generated by UF @ o <2 °}. By

our construction, q is a p-point.

625

Conclusion

This chapter has been a very incomplete exposition
of the properties of ultrafilters without using the
C.H, Let us list some of the questions that have

been raised implicitly.
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X ) .
1) Does 2 ° » X, 1imply there is a f,u.f. p such
X
that - ° _
ha Mo is not a n,-8et, where 2 _?<a? In
particular, does M,A. imply this?

2) 1If there is a scale, and p does not have

a bottom sky, what is the daownward cofinality of

3) If there is no scale, ean one find f.u.fis
p and g so that the upwcrd eofinalities of p and
9, G&re different?

L) Does C,S. imply FRH(w)?
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