By

R.C.Solomon.

ProQuest Number: 10098560

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098560
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract

The topics of this thesis are properties that distinguish between the $2^{2^{\gamma_{0}}}$ isomorphism-classes (called types) of non-principal ultrafilters on ω. In particular we investigate various orders on ultrafilters.

The Rudin-Frolik order is a topologically invariant order on types; it had been shewn that there are types with $2^{\chi_{0}}$ predecessors in this order, and that, assuming the C.H., for every $n \in \omega$ there are types with n predecessors. We shew that, assuming the C.H., there is a type with χ_{0} predecessors.

The next two main results can be phrased in terms of the minimal elements of these orders. Both assume the C.H. We find an ultrafilter that is a p-point (minimal in M.E.Rudin's "essentially greater than" order) that is not above any Ramsey ultrafilter (minimal in the Rudin-iKeisler order). We also find an ultrafilter minimal in Blass' "initial segment" order that is not a p-point. These ultrafilters generate ultrapowers with interesting model-theoretic properties.

We then investigate the classification of ultrafilters when the C.H. is no longer assumed. We-find various properties of ultrafilters, sometimes by assuming some substitute for the C.H. such as

Martin's Axiom, and sometimes without assuming any additional axiom of set-theory at all. Finally we reliate the structure of ultrapowers to the existence of special sorts of ultrafilters.

Contents

Chapter 1	Intreduction		Page	5
Chapter 2	Notation and	Some	Page	10
	Basic Lemmas			
Chapter 3	Topology of	$\beta \mathrm{N}$	Page	23
Chapter 4	Model-Theory	of	Page	38
	Ul trapowers			
Chapter 5	Ultrafilters	Without	Page	70
	The Continuum	Hypoth		

Ghapter 1. Introduction.

1•1 This thesis is about the properties of non--principal ultrafilters over N, the set of naturali numbers. It is known that there are $2^{2^{*}}$ different isomorphism-types of such ultrafilters, and an obvious and important problem is to find properties that distinguish between them.

If one assumes the Continuum Hypothesis the method of induction up to ω_{1} is a very powerful tool for constructing ultrafilters with distinguishing properties, and so the classification of ultrafilters is fairly straightforward. In Chapters 3 and 4 we give an account of the model-theoretic and topological properties of ultrafilters under the assumption of the Continuum Hypothesis.

Without it, the situation is much more difficult. The most natural approach is to try and classify ultrafilter types without using any special axiom, apart from. the usual axioms of set-theory and the Axiom of Choice. In Chapter 5 we define a certain property and prove from the Axioms Z.F.C. alone that some but not all ultrafilter-types possess this property, but the property is not a particularly natural one, and cannot be used for any interesting classification of ultrafilter types. We also present some theorems obtained by using some substitute for the Continuum Hypothesis.

1.2 Contents

Chapter 2 is mostly introduction; it consists of the set-theoretic terminology in which this thesis is phrased, the definitions of ultrafilters and their topology in βN and of ultraproducts. A few busic Lemmas are proved. Various special sorts of ultrafilters are defined, several examples of non-principal filters are given and results are stated on how they relate to the special sorts of ultrafilters.

Chapter 3 discusses the topology of βN. The customary classification of points in βN is by their position with respect to a certain order, called the Rudin-Frolik order. It had been proved that there are ultrafilters with $2_{0}^{\lambda_{0}^{2}}$ predecessors in this order, and, assuming the Continuum Hypothesis, for every $n \in \omega$ there are ultrafilters with n predecessors. We extend this classification by constructing, (again assuming the C.H.) an ultrafilter with precisely χ_{0} predecessors.

In Chapter 4 we turn to the model-theory of ultrapowers. Puritz' [11] convenient notation is used. He defines the Skies and Constellations of an ultrafilter p so that (heuristically) if $f, g \in \omega_{\omega}$, and for no $n \in \omega$ does $f^{-1}[n] \in p$ or $g^{-1}[n] \in p$,
they are in the same constellation of p if they define the same partition of the integers, modulo a set in p, and they are in the same sky of p if in the ultrapower of ω with respect to p they are in clements of roughly the same magnitude.

The sky and constellation configuration of an ultrafilter p gives a very good picture of the model-theoretic structure of the ultrapower of ω with respect to p (in terms of initial segments, cofinal extensions and the like). Also, the particular sorts of ultrafilter defined in Chapter 2 have special sky and constellation sets. The two main results of the chapter can be phrased as:-

1) An ultrafilter can have one sky but no bottom constellation. (This answers a question of A.R.D.Mathias)
2) There is an ultrafilter with more than one sky but whose ultrapower of ω has no initial segments that are ultrapowers.

So far in the literature four orderings have been introduced. 2) gives an example an ultrafilter that is minimal in two of these orderings (the Rudin-Frolik ordering mentioned above and s.Blaso' "initial-ragment" ordering but not in a third (M.E.Rudin's "essentially-greater-than" ordering). At the end of the chapter we discuss the possibility of finding other classifications of ultrafilters. The simplest case is to find two Ramsey ultrafilters

(8)

which do not have the same properties. The only way I have been able to find such a distinction is by assuming some additional axion such as $\mathrm{V}=\mathrm{L}$ or Martin's Axiom $+2^{\alpha_{0}}>\boldsymbol{K}_{1}$. In fact, I doubt whether any such classification is possible in generall, and this conjecture is extended to all ultrafilters on ω.

Chapter consists of a very incomplete exposition of the properties of ultrafilters when the C.H. is no longer assumed. As mentioned above, a property is found which is sharea by some but not all ultrafilters on ω. Then we proceed to a discussion of the possible order -type of $\omega^{\omega} / \mathrm{p}$, and some results are proved relating the possible order-types to other properties of ultrafilters. The gaps in this account are stated at the end of the chapter.
1.3 The main original parts of this thesis are sections $3 \cdot 3,4 \cdot 3,4 \cdot 4,4.5$ and Chapter 5. As for the other theorems, some are due to other authors, and some are basic lemmas that have been proved by many people who have worked in this field. I have given a proof of someone else's theorem when its brevity and importance for the later developnent seemed to justiry it. When there was doubt as to who first proved a basic lemma I have not tried to credit it to anybody.

In this thesis only ultrafilters over ω and ultrapowers of the natural numbers have been considered; generalization of the theory to higher cardinals
and different structures is possible, but as the methods of proof and the flavour of the results are the same I did not feel that the extra generality justified the loss of clarity and precision it would entail.

Many of the proofs here are extremely complicated; it is unfortunate that the theory of ultrafilters often utilisus very involved combinatorics. Frequently it seems likely that a neat positive theorem will be true,but on further examination a very complicated counterexample can be found. The blame lies between me, for not finding the right theorems to prove, and a Providence which does not always arrange that the Truth is Beautiful.

Finally, my thanks are due to the S.R.C. for three years financial support, and to the staff of Bedford College, especially my supervisor, Mir J.C. Fernau, for their help and encouragement.
2.1 We work in Z.F. Set-Theory with the Axiom of Choice. When we assume further axioms (which will frequently happen) we will state them. Our notation is fairly standard. The following is a guide, which we will keep to as far as possible, for which symbols (with or without subscripts, superscripts etc). will be used for which entities:-

```
m,n,i etc for natural numbers.
\alpha,\beta,\gamma etc for ordinalls.
\kappa,\lambda etc for cardinals.
a,b,c etc for sets of natural numbers.
p,q,r etc for ultrafilters.
F,G,H etc for filters.
f,g,h etc for functions.
```

ϕ is the empty set, N or ω the set of all natural numbers, ω_{1} the set of all countable ordinals. If A is a set, $|A|$ is its cardinality, $S_{\omega}(A)$ is the set of all finite subsets of $A, P(A)$ is the powur set of A, the set of all suivsets of A. If $A \subseteq I, C_{I}(A)$ is the complement of A, i.e. $C_{I}(A)=\{x \in I: x \notin A\}$. The subscript will be omitted when no confusion can arise. For A and B sets, A_{B} or B^{A} is the set of all maps from A to B. If f is a function, $\operatorname{dom}(f)$ is its domain and ran(f) is its range. If $a \subseteq d o m(f), f[a]=\{f(x): x \in a\}$ and if $a \subseteq \operatorname{ran}(f), f^{-1}[a]=\{x: f(x) \in a\}$. If $a \subseteq \operatorname{dom}(f)$, the function obtained by restricting f to a is
written $f \mid a$. The function $f \in \omega_{\omega}$ such that $f(n)=n(11)$ for all n is called id.
$2 \cdot 2$
Now llet I be a set.

Def 2.21 for $F \subseteq P(I)$ we say F is a Filter if the following conditions hold:

1) $a, b \in F$ implies $a \cap b \in F$.
2) $a \in F, a \subseteq b \subseteq I$ imply $b \in F$.

Def 2.22 We say a filter F is proper if $\phi \notin F$. Henceforth all filters are assumed to be proper.

Def 2.23 We say a filter p.over I is an ultrafilter if it is maximal. Equivalently, p is an ultrafilter iff for all $a \subseteq I$, either $a \in p$ or $C_{I}(a) \in p$.

Def 2.24. A filter F is principal if $\cap F \in F$. Equivalently, F is principal if for some $b \in F$, $\mathrm{F}=\{\mathrm{a} \subseteq \mathrm{I}: \mathrm{b} \subseteq a\}$. In particular, an ultrafilter p Qver I is principal if for some $x \in I$, $p=\{a \subseteq I: x \in a\}$. If a filter is not principal it is called non-principal, or free.

Def 2.25 The dual to a filter is cailed an Ideal. For F a filter, the corresponding ideal is $Q=\left\{a: C_{I}(a) \in F\right\}$. Much of the literature speaks in terms of ideals rather than filters.

Def 2.26 We say $A \subseteq P(I)$ has the finite intersection
property (henceforth abbreviated to f.i.p.) if A is contained in a proper filter.

Def 2.27 If A has the f.i.p. the least proper filter containing A (this always exists) is said to be generated by A.

Then, assuming the Axiom of Choice, (or the strictly weaker hypothesis, the Boolean Prime Ideal Theorem), any set with the f.i.p. can be extended to an ultrafilter. In particular, let $\mathrm{Fr}=\{\mathrm{a} \subset \omega: \omega-\mathrm{a}$ is finite\}. Fr can be extended to an ultrafilter, in fact to $2^{2^{x_{0}}}$ ultrafilters. See [1] for details. agil $\cap \mathrm{Fr}=\phi$, these ultrafilters are all non-principal, and all non-principal ultrafilters on ω contain Fr. Our attention in this thesis will be confined to these, the non-principal: ultrafilters on ω, henceforth abbreviated to f.u.f.
2.3 Ultrafilters on ω can be regarded as the points of the Stone-N゙ech Compactification of the Integers, βN. See [7] for details. N is embedded in βN by the natural map ψ which takes $n \in N$ to the principal ultrafilter generated by $\{n\}$. When discussing βN we will identify $n \in \omega$ with its image under ψ, if no confusion can arise.
βN has the topology generated by sets of the form $W(a)=\{q \in \beta N: a \in q\}$, for each $a \subseteq N$. These are clopen sets, $\left(W\left(C_{N}(a)=\beta N-W(a)\right)\right.$ and the singleton $\{\psi(n)\}$ is an open set, for each $n \in$ i.t. $\{\dot{\psi}(n)\}=W(\{n\}) . \beta N$ is compact, (this is equivalent
to the statement that every filter can be extended to an ultrafilter) and hence so is $N^{*}=\beta N-N$. In the restriction topology on $N^{*}, W(b) \subseteq W(a)$ iff $b-a$ is finite, and $W(a)=W(b)$ ff $(a-b) \cup(b-a)$ is finite.

$2 \cdot 4$

Suppose that $\left\{{\underset{n}{n}}^{\}_{n \in \omega}}\right.$ is an indexed family of structures with the same similarity type, which for simplicity we will assume to consist of the single binary relation R. The generalization to another similarity type is straightforward. The domain of each a_{n} is written A_{n}.

Def $2.41{ }_{n E} \omega^{A} A_{n}$ is the Cartesian product of the domains, ie. it is the set of all functions f such that $\operatorname{dom}(f)=\omega$ and $f(n) \in A_{n}$ for every n. Let p be a f.u.f.

Def 2.42 For $f, g \in{ }_{n \in} \omega_{n} A_{n}$ write $f \sim_{p} g$ af $\{n: f(n)=g(n)\} \in p$. This is an equivalence relation.

Def 2.43 Write f^{\sim} for $\{g: g \sim p f\}$

Def 2.4.4 Define R^{\sim} by $f^{\sim} R^{\sim} g^{\sim}$ eff
$\{n: f(n) R g(n)\} \in p$. It is easy to check that R^{\sim} is well-defined. (Not dependent on the choice of $f \in f^{\sim}$, $g \in g^{\sim}$.)

Def 2.45 Define $\prod_{n \in \omega_{n}} I_{n} / p$ to be that structure whose domain is $\left\{f^{\sim}: f \in \prod_{n \in} \omega_{n} / p\right\}$ and with the single
binary relation R^{\sim}. This structure is called the ultraproduct of $\left\{\alpha_{h}\right\}_{n \in \omega}$ with respect to p.

The fundamental theorem of ultraproducts is as follows. (see [1] for a proof).

Theorem 2. 46 (モoš)
If $\phi\left(v_{1}, \ldots v_{n}\right)$ is a formula in the language of $\left\{C_{n}\right\}_{n \in \omega}$, (we assume that they have the same language), and the free variables of \dot{q} are among $v_{1}, \ldots v_{n}$, then
${ }_{n \in} \sigma_{n} / p \mid=\phi\left[f_{1}^{\sim}, \ldots f_{n}^{\sim}\right]$ ifs $\left\{n: Q_{n} \vDash \phi\left[f_{1}(n), \ldots f_{n}(n)\right]\right\}$ is in p.

If p is a principal ultrafilter the ultraproduct is trivial. If p is generated by $\{n\}$, then ${ }_{n \in} \prod_{n} / p$ is isomorphic to O_{n}.

A special case of the ultraproduct construction occurs when all the C_{n} are the same.

Def 2.47 If $C X_{n}=C$ for all n, write $\prod_{n \in \omega_{n}}^{Q_{n}} / p$ as $\chi^{\omega} / \mathrm{p}$. This is called the ultrapower of $C l$ with respect to p. The special case of os' theorem relevant to ultrapowers is:-

Theorem $2 \cdot 48$ If $\dot{\psi}\left(v_{1}, \ldots v_{n}\right)$ is a formula in the language of C with free variables among $v_{1}, \ldots V_{n}$, then $Q^{\omega} / p \mid=\phi\left[f_{1}^{\sim}, \ldots f_{n}^{\sim}\right]$ af $\left\{n: Q \mid=\phi\left[i_{1}(n) \ldots f_{n}(n)\right]\right\}$ is in p.

In particular, define an embedding $e: 0 \rightarrow \underset{\sim}{\omega} / \mathrm{p}$ by
$e(x)=f_{x}^{\sim}$, where $f_{x}(n)=x$ for all $n \in \omega$.
Then $C_{R}^{\omega} / \mathrm{p} \vDash \phi\left[f_{x_{1}}^{\sim} \ldots f_{x_{n}}^{\sim}\right]$ if $C \mid=\phi\left[x_{1}, \ldots x_{n}\right]$
i.e. the embedding e is elementary.

Def 2.49 If $f^{\sim} \in C^{\omega \prime} p$ is of the form f_{x}^{\sim} for some $x \in \operatorname{dom}(Q)$, we say f^{\sim} is standard. Otherwise we say f^{\sim} is non-standurd, or infinite.

$2 \cdot 5$

If p is an ultrafilter on ω, and $f \in{ }^{\omega} \omega_{\text {, }}$ write $f(p)=\left\{a \subseteq \omega: \mathrm{r}^{-1}[a] \in p\right\}$.
Then $f(p)$ is an ultrafilter, and $f(p)$ is principal
iff f is constant on some set in p.

Theorem 2.51 (W. Rudin, [15])
For p and q ultrafilter over ω, p and q are isomorphic (that is, there is a bijection ψ from p to q which preserves inclusion) iff for some permutation of the integers $\pi, \pi(\mathrm{p})=\mathrm{q}$.

Def 2.52 If there is such a permutation π, we write $p \equiv q$. This is obviously an equivalence relation, and the equivalence classes are called types. Write $p^{\sim}=\{q: p \equiv q\}$. p^{\sim} is the type of p.

Def 2.53 Write $p^{\sim} \leqslant_{R K} q^{\sim}$ if for some $f \in \omega_{\omega}^{\omega}, f(q)=p$. We shew that $\leqslant_{\text {RH }}$ is a partial order. It is called the Rudin-Keisler order.

Theorem 2.54 (Various)
If $f(p)=p$, then $\{n: f(n)=n\} \in p ;$ i.e., $f \sim_{p}$ id.

Proof Let $b_{1}=\{n: f(n)=n\}, b_{2}=\{n: f(n)<n\}$, and $b_{3}=\{n: f(n)>n\}$. We shew that $b_{1} \in p$.

If $b_{2} \in p$, let $a_{n}=\{m: n$ is the first number such that $\left.f^{n}(m) \notin b_{z}\right\}$. (Here f^{n} is the nth iterate of f). ${ }_{n} U_{1} a_{n}=b_{2} \in p$.

Precisely one of $n U_{1} a_{2 n}$ and $n \geqslant 1 a_{2 n+1}$ is in p. But $n \bigcup_{1} a_{2 n} \in p$ iff $f\left[\bigcup_{n} \sum_{1} a_{2 n}\right] \in p$ iff ${ }_{n} \bigcup_{1} a_{2 n+1} \in p$. this is impossible.

If $b_{3} \in p$, again let $c_{n}=\{m: n$ is the first number such that $\left.f^{n}(m) \notin \gamma_{3}\right\}$
Similarly, $\quad n \bigcup_{1} c_{n} \notin \mathrm{p}$. Let $\mathrm{d}=\mathrm{b} \quad-{ }_{\mathrm{n}}^{\mathrm{Y}} \mathrm{Y}_{1} \mathrm{c}_{\mathrm{n}} \in \mathrm{p}$.
$L \in t \quad d_{0}=\{n \in d: n \notin f[d]\}$
Let $d_{n}=\left\{m \in a: n\right.$ is the least number sot. $\left.m \in f^{n}\left[d_{0}\right]\right\}$
Then either $n \geqslant 0 \alpha_{2 n}$ or $n \geqslant 0 \alpha_{2 n+1}$ is in p.
But $n \geqslant 0 d_{2 n} \in p$ iff $f\left[\bigcup_{n \geqslant 0} d_{2 n}\right] \in p$ iff $n \geqslant 0 d_{2 n+1} \in p$. This is impossible, so b_{1} is in p.

Corollary 2.55
$\leqslant_{R K}$ is a partial order.

Proof. If $p^{\sim} \leqslant_{R K} q^{\sim} \leqslant_{R K} p^{\sim}$, then $f(p)=q$ and $g(q)=p$ for some $f, g \in{ }^{\omega} \omega_{\text {. }}$. So $f g(p)=p$. $f g$ is the identity on some set $a \in p$, and so g is one-to one on $a_{\text {. }}$ We can split a into two infinite halves b and b^{\prime}, and define g^{\prime} so that g^{\prime} is a permutation and $n \in b \in p$ implies that $g(n)=g^{\prime}(n)$. So $q^{\sim}=p^{\sim}$.
$\operatorname{pxq}=\{a \subseteq \omega x \omega:\{m:\{n:\langle m, n\rangle \in a\} \in p\} \in q\}$.
Then pxq is an ultrafilter over $\omega x \omega$, and if π_{1} and π_{2} denote the projections to the first and second axes respectively,

$$
\pi_{1}(\mathrm{pxq})=\mathrm{p}, \quad \pi_{2}(\mathrm{pxq})=\mathrm{q} .
$$

$2 \cdot 6$
We now define some special sorts of ultrafilter, due to Coquet $[4,5]$ and W.Rudin [15].

Def 2.61 A non-principal filter q is ... p-point if whenever $\left\langle a_{n}: n \in \omega>\right.$ is a partition of ω such that $a_{n} \notin q$ for any n there is $a \in q$ so that $\left|a \cap a_{n}\right|<\omega$ for all n.

Def 2.62 A non-principal filter q is rare if whenever $\left\langle a_{n}: n \in \omega\right\rangle$ is a partition of ω into finite sets there is $a \in q$ so that

$$
\left|a \cap a_{n}\right|=1 \text { for all } n \text {. }
$$

Def 2.63 A non-principal filter is Ramsey if it is both rare and a p-point.

Remark 2.64 The following are equivalent:

1) q is a p-point.
2.) for every $f \in{ }^{\omega}{ }_{\omega}$, either f is constant on some set in q, or else f is finite-to-one on some set in q .
2) if A is a countable subset of q, there is b in q, $|b-a|<\omega$ for all $a \in A$.

Remark 2.65 If q is a p-point, q is an ultrafilter. Proof. If $b \notin q, C_{\omega}(b)$ is infinite, as q is non-principal, so let $\left\langle a_{n}: n \in \omega>\right.$ be a partition of $C(b)$. Either $a_{n} \in q$ for some n, or else there is $a \in q, \quad\left|a \cap a_{n}\right|<\omega$ for $a l l n$ and $|a \cap b|<\omega$. As q is non principal, in either case $C(b) \in q$.

Remark 2.66 A rare filter is not necessarily an ultrafilter. One can construct, for example, assuming the C.H., a rare filter q such that every $a \in q$ contains infinitely many even numbers and infinitely many odd numbers.

Remark. 2.67 A filter q is rare iff it is nonprincipal and whenever f is a finite-to-one function in ω_{ω} there is a $\in q$ such that $f \mid a$ is one--to-one.

Remark 2.68 An ultrafilter q is Ramsey iff whenever $<a_{n}: n \in \omega>$ is a partition of ω, either $a_{n} \in q$ for some n or else there is $a \in q$, $\left|a \cap a_{n}\right|=1$ for all n. Equivalently, for every $f \in \omega_{\omega}$, there is a $\in q$ so that $f \mid a$ is either constant or one-to-one.

Now the existence theorem.

Theorem 2.69 (Choquet) The C.H. implies

1) There are Ramsey ultrafilters.
2) There are rare ultrafilters that are not p-points.
3) There are p-points that are not rare.
4) There are ultrafilters that are neither rare nor a p-point.

Proof

Examples of 2), 3) and 4) will be given later. We give a construction of 1).

Enumerate (C.H.) ω_{ω} as $\left\langle f_{\alpha}: \alpha<\omega_{1}\right\rangle$.

For each $\alpha<\omega_{1}$ we will add a set d_{α} so that $f_{\alpha} \mid d_{\alpha}$ is either constant or one-to-one. Each d_{α} is infinite, and $\alpha>\beta$ implies that $\left|a_{\alpha}-a_{\beta}\right|<\omega$, so the collection $\left\{\bar{\alpha}_{\alpha}: \alpha<\omega_{1}\right\}$ generates a proper filter:

$$
\text { Add in } \operatorname{Fr}=\{a: \omega-a \text { is finite }\}
$$

Stage 0 Assume $f_{0}=i d$, and let $\bar{d}_{0}=\omega$.

Stage α We have added $\left\{\alpha_{\beta}: \beta<\alpha\right\} . \alpha$ is countable, so the filter constructed so far is generated by countably many sets. Let them be $\left\{e_{n}: n \in \omega\right\}$.

Construct $d \subseteq \omega$ as follows:-
Let $n_{1} \in e_{1}$.
Let $n_{2} \in e_{1} \cap e_{2}, \quad n_{1} \neq n_{2}$.

Let $n_{i} \in e_{1} \cap e_{2} \cap \ldots \cap e_{i}, n_{j} \neq n_{i}$ for $j<i$.

Let $d=\left\{n_{1}, n_{2}, \ldots n_{i}, \ldots\right\}$
d is infinite, and $\left|d-e_{n}\right|<\omega$ for all n.

Let d_{α} be an infinite subset of d such that $f_{\alpha} \mid d_{\alpha}$ is constant or one- to-one. Certainly $\left|a_{\alpha}-a_{\beta}\right|<\omega$ for all $\beta<\alpha$.

Finally let q be generated by $\left\{\alpha_{\alpha}: \alpha<\omega_{1}\right\}$. q is a Ramsey ultrafilter.

Remark 2.610 At each stage α we could have added one of at least 2 disjoint candidates for d_{α}. Different choices of d_{α} would engender different q's. Hence we can construct $2^{\lambda_{i}}=2^{2^{i}}$ different Ramsey ultrafilters.

$2 \cdot 7$

This section some examples of non-principal filters, and their relations to the special sorts of ultrafilter defined in $2 \cdot 6$.

Example 2•71 Let $\left\langle a_{n}: n \in \omega\right\rangle$ be a partition of ω into finite sets so that $\left|a_{n}\right|$ is unbounded. Let $F=\left\{\omega-a:\left|a \cap a_{n}\right|=1\right.$ for all $\left.n\right\}$. F generates a proper non-principal filter that can (C.H.) be extended to a p-point but not to a rare filter. In fact, an ultrafinter qi. is non-rare iff it contains such a filter as F.
jxample $2 \cdot 72$ Let $\left\langle a_{n}: n \in \omega>\right.$ be a partition of ω into infinite sets. Let $F=\left\{C_{\omega}\left(a_{n}\right): n \in \omega\right\} u$ $u\left\{\omega-a:\left|a \cap a_{n}\right|<\omega\right.$ for all $\left.n\right\}$. Then F generates a proper filter that can (C.H) be extended to a rare filter but not to a p-point. In fact, an ultrafilter q is not a p-point iff it contains such a filter as F.

Example 2.73 Let $F=\{\omega-a$: for some n, a contains
no arithmetic progression of length $n\}$; Van der Waercen's theorem on arithmetic progressions inplies that F is a non-principal filter, and F can be extended (C.H.) to a p-point but not to a rare filter.

Example $2 \cdot 74$ For $a \subseteq \omega$, define $\left.\bar{d}(a, n)=\left\lvert\, \frac{a n \in m: m}{n} \leqslant n\right.\right\} \mid$ Let $\rho(a)=\lim _{n \rightarrow \infty} d(a, n)$ where this exists.

Let $F=\{a: \rho(a)=1\} \quad F$ is a non-principal filter that cannot be extended to either a rare filter or a p-point. This filter appeared in [13].

Lixample 2.75 Let $F=\{\omega-(a \cup\{0\})$: for all $n, m \in a$, $n+m \notin a\}$. An application of Ramsey's theorem shews that F generates a non-principal filter over ω - \{ \{ $\}$. In [8] it is shewn by a non-standard argument that F cannot be extended to a Ramsey ultrafilter. We shew that F cannot be extended to a rare ultrafilter.

Proof. Let $\left\langle a_{n}: n \in \omega\right\rangle$ partition $\omega-\{0\}$ so that 1) $a_{n}<a_{n+1}$ (i.e. $x \in a_{n}$ and $y \in a_{n+1}$ imply $x<y$) 2) $\left|a_{n}\right|=2^{n}$.

Suppose p were a rare ultrafilter extending F. sither $\underset{n \in \omega^{a} 2 n}{U}$ or $\underset{n \in \omega^{a} 2 n+1}{U}$ is in p, suppose $U_{n \in \omega^{a}} 2 n$ is in p. Let b be a choice set for $\left\langle a_{n}: n \in \omega\right\rangle$, and let $a=b \cap \bigcup_{n \in \omega^{a} 2 n} \in p$.

But if $x, y \in a$, say $x \in a_{2 m}$ and $y \in a_{2 r}$ where $r \geqslant m$.

Then $x+y \in a_{2 r}$ or $x+y \in a_{2 r+1}$.
In either case $x+y \neq a$, so a $k p$, a contradiction.

The moral of all these results seems to be:-
"Simple-to-describe filters cannot be extended to Ramsey ultrafilters."

This can be made precise as follows:-

We say a set of subsets of ωA is Σ_{1}^{1} if $x \in A$ iff $\exists y \phi[x, y, c]$

Where c is a constant set of naturall numbers and the only quantifiers in ϕ range over natural numbers.

Theorem 2.76 (A.R.D.Mathias, unpublished)
If A is a Σ_{1}^{1} set of subsets ồ ω, and q is a Ramsey ultrafilter, there is a $\in \mathrm{p}$ such that either

1) Every infinite subset of a is in A, or
2) Every infinite subset of a is outside A.

Corollary 2.77 If A is a Σ_{1}^{1} filter, (and all those mentioned above are) either A is contained in some countably generated filter or else A cannot be extended to a Ramsey ultrafilter.

Mathias' result is essentially maximal, for if $V=L$ there is a Δ_{2}^{1} well-ordering of the subsets of ω which can be used to define a Ramsey ultrafilter.

Chapter 3 Topology of $\beta \mathrm{N}$

$3 \cdot 1$
In section 2.3 we defined the space βN, the Stone-Cech Compactification of N with the discrete topology. The following are some trivial results on the topology on $N^{*}=\beta N-N$.
3.11 1) $W(a) \cap W(b)=W(a \cap b)$
2) $w(a) \cup w(b)=w(a \cup b)$
3) $W(a)=\phi$ iff a is finite.
4) $\left.n \in \omega^{W\left(a_{n}\right) \subseteq W(} \cup_{n} a_{n}\right)$ and in general they are not equal.
5) $n \in \omega^{W}\left(a_{n}\right) \supseteq W\left({ }_{n} \Theta_{\omega} a_{n}\right)$ and in general they are not equal.

If $\mathrm{X} \subseteq \beta \mathrm{N}$, we write the closure of X as $\overline{\mathrm{X}}$. Then $q \in \bar{X}$ iff $\forall a \in q \exists x \in X, a \in X$. P-points have a special topological significance. In fact, the term p-point is derived from topology.

Theorem 3.12 A f.u.f. q is a p-point iff the intersection of a countable callection of neighbourhoods of q is itself a neighbourhood of q.

Proof Let $\left\{U_{n}\right\}_{n \in \omega}$ be such a collection. We can assume that $U_{n}=W\left(U_{n}\right)$ where $U_{n} \in q$. Then there is $E \in q$, $\left|E-E_{n}\right|<\omega$ for all n. Hence $W(E) \subseteq{ }_{n \in W} W^{W}\left(E_{n}\right)$ is the neighbourhood of q required.

Conversely, suppose $E_{n} \in q$ for every n. Then
$n \in \omega^{W\left(E_{n}\right)}$ is a neighbourhood of q. Let $W(\mathbb{I}) \subseteq{ }_{n \in} \cap W\left(E_{n}\right)$ where $E \in q$. Then $\left|E-E_{n}\right|<\omega$ for all n, hence q is a p-point.

Corollary 3.13 If q is a p-point, q is not in the closure of any countable subsut X of N^{*} unless $q \in X$.

Proof For every $x \in X$, let U_{X} be a neighbourhood of q not containing x. Then $x \in X U_{x}$ is a neighbourhood of q disjoint frem X.

$3 \cdot 2$

In [15] W.Rudin used the existence of p-points (assuming the $\mathrm{C} H$ H) to prove that \mathbb{N}^{*} is not homogenous (i.e. there are two points p, q in N^{*} such that no auto-homeomorphisn maps p to q. By the Compactness of N^{*} there is some $q \in N^{*}$ which is in the closure of a countable subsct of N^{*}, and no homeomorphism can map q to a p-point.)

In [6] Z. Frolik proved the inhomogeneity of N^{*} without the C.H. by using the following ideas:-

Def 3.21 If X is a countable indexed subset of $N^{*}, X=\left\{X_{n}: n \in \omega\right\}, X$ is said to be discrete iff there are sets $\left\{c_{n}: n \in \omega\right\}$ such that $c_{n} \in X_{n}$ for all n, and $n \neq m$ implies that $c_{n} \cap c_{m}=\phi$. Topologically, X is discrete if whenever $X \in X$, $x \notin \overline{X-\{x\}}$.
(Note; we will use X, Y, Z etc to denote countable indexed subsets of N^{*}, sometimes with superscripts, erg. X^{α} or X^{n}. The $n^{\text {th }}$ member of X in the enumderation is written X_{n}.)

Def 3.22 If the conditions of 3.21 are satisfied, we say X is made discrete by $\left\{c_{n}: n \in \omega\right\}$.

Lemma 3.23 (M. i.Rudin) Suppose Z is a countable indexed discrete (henceforth abbreviated to c.i.d.) subset of $N^{*}, X \subseteq Z$ and $Y \subseteq Z$. Then if $q \in \bar{X} \cap \bar{Y}$, $q \in \bar{X} \cap \bar{Y}$.

Proof. Let Z be made discrete by $\left\{c_{n}: n \in \omega\right\}$.
Let $d=U\left\{c_{n}: Z_{n} \in X \cap Y\right\}$.
Then as $q \in \vec{X} \cap \bar{Y}$, $d \in q$. Let $a \in q$. a $\cap d \in q$, so $a \cap d \in z \in X \cap Y$. Hence $q \in \overline{X \cap Y}$.

Def $3 \cdot 24$ If X is a c.i.d. subset of \mathbb{N}^{*}, and $p \in N^{*}$, we write:-

$$
\Sigma[X, p]=\left\{a \subseteq \omega:\left\{n: a \in X_{n}\right\} \in p\right\}
$$

If $q \in \bar{X}-X$, we write:-

$$
\Omega[x, q]=\left\{a \subseteq \omega: \forall b \in q, \Xi n \in a, b \in X_{n}\right\}
$$

Then we have:

Theorem 3.25 1) $\Sigma[\mathrm{X}, \mathrm{p}]$ and $\Omega[\mathrm{X}, \mathrm{q}]$ are ultrafilter.
2) $\Sigma[\mathrm{X}, \Omega[\mathrm{X}, \mathrm{q}]]=\mathrm{q}$ and $\Omega[\mathrm{X}, \Sigma[\mathrm{X}, \mathrm{p}]]=\mathrm{p}$, i.e. the
operations Σ and Ω are inverse.

Proof. All the parts involve merely untangling the definitions, apart from shewing that $\Omega[\bar{x}, q]$ has the f.i.p. This follows however from Lemma $3 \cdot 23$.

Def 3.26 If $p, q \in N^{*}$, we say $p^{\sim}<_{R E} q^{\sim}$ inf there is a c.i.d. subset X of N^{*} such that $q=\Sigma[X, p]$ or equivalently $p=\Omega[X, q]$.

This is called the Rudin-Frolik ordering. That it is an ordering will follow from later Lemmas. The definition is well defined; egg. if $p^{2} \in p^{\sim}$ a different enumeration of X, say X^{\prime}, will give $q=\Sigma\left[X^{\prime}, p^{\prime}\right]$.

A less combinatorial definition of the ordering is as follows:
$p^{\sim}<_{R F} q^{\sim}$ iff there is some homeomorphism ψ of β IT into \mathbb{N}^{*} such that $\psi(\mathrm{p})=q$.

In fact $q=\Sigma[X, p]$ where $X_{n}=\psi(n), \psi[\beta N]=\bar{X}$.

Similarly one can shew that if ϕ is an auto--homeomorphism of $\mathrm{iV}^{*}, \phi(q)=r$, and $p^{\sim}<_{R F} q^{\sim}$, then $p^{\sim}<_{R F} r^{\sim}$. So the property of having p^{\sim} as a $<_{R F}$ predecessor is a topological invariant.

This ordering is weaker than the Rudin-Keisler ordering as follows:-

Theorem $3.27 \mathrm{p}^{\sim}<_{R F} q^{\sim}$ then $\mathrm{p}^{\sim} \leqslant_{R K} q^{\sim}$.

Proof Suppose $q=\Sigma[X, p]$ and that X is made discrete
by $\left\{a_{n}: n \in \omega\right\}$. Then if we define $f \in \omega_{\omega}$ so that $f^{-1}[n]=a_{n}$ for all n, it is easy to shew that $f(q)=p$.

Corollary 3.28 For any $q \in \mathbb{N}^{*}, q^{\sim}$ has at most $2^{\gamma_{0}}$ predecessors in the $<_{R F}$ ordering.

So for some $p, q \in \mathbb{N}^{*}, p^{\tilde{2}}$ is not a $<_{R P}$ predecessor of \mathbb{q}^{\sim}. So this proves, (without the C.H.) that N^{*} is not homogenaus.

Corollary 3.29 If $\mathrm{p}^{\sim}<_{R F} \mathrm{q}^{n}, \mathrm{p}^{\sim} \neq \mathrm{q}^{2}$. So $\mathrm{p}^{\sim}<_{\mathrm{RAI}} \mathrm{q}^{2}$.

Proof If $a \in q$, a $\in X_{n}$ for some n. As $X \subseteq N^{*}, X_{n}$ contains no finite set. So $a \cap a_{n}$ is infinite. For no $a \in q$, is $f \mid a$ a ene-to-one function. From Theorem 2.54, $\mathrm{p}^{\sim} \neq \mathrm{q}^{\sim}$.

The following gives another criterion for $p^{\sim}<_{R F} q^{\sim}$.

Lemma $3.210 \mathrm{p}^{\sim}<_{R F} q^{\sim}$ af there are countable discrete sets X and Y and $r \in \mathbb{N}^{*}$ so that

1) $Y \subseteq \bar{X}-X$.
2) $r=\Sigma \Sigma X, q]=\Sigma[Y, p]$

Proof Suppose first that $q=\Sigma[z, p]$ for some c.i.d. set Z. Let X be any c.i.d. set, and let $r=\Sigma[X, q]$. Define Y by $Y_{n}=\Sigma\left[X, Z_{n}\right] . Y$ is a countable indexed set. $Y \subseteq \bar{X}-X$ and Y is discrete.

Then $a \in \Sigma[Y, p]$ inf $\left\{n: a \in Y_{n}\right\} \in p$

Vf $\left\{n:\left\{m: a \in X_{m}\right\} \in Z_{n}\right\} \in p$
iff $\left\{m: a \in X_{m}\right\} \in q \quad$ iff $a \in r$.
So $r=\Sigma[\mathrm{X}, \mathrm{q}]=\Sigma[\mathrm{Y}, \mathrm{p}]$

Conversely suppose the conditions hold.
Define $Z_{n}=\Omega\left[X, Y_{n}\right] . Z$ is a c.i.d. set.
$a \in \Sigma[z, p]$ iff $\left\{n: a \in Z_{n}\right\} \in p$
iff $\left\{n: \forall b \in Y_{n} \exists m \in a, b \in X_{m}\right\} \in p$
jiff Vb er, $\exists m \in a, b \in X_{m}$
iff $a \in q$.

SQ: $q=\Sigma[z, p]$, and $q^{\sim}>_{R F} p^{\sim}$.

Theorem $\mathbf{3 . 2 1 1}$ If q is a f.u.f., the $<_{R F}$ predecessor of q^{\sim} are linearly ordered.

Proof Suppose that $q=\Sigma[X, p]$ and $q=\Sigma[Y, r]$
Case 1 Let $X^{\prime}=\{X \in X: X \in \bar{Y}-Y\}$.
If $q \in \bar{X} ;$ by $3 \cdot 210, r^{\sim}>_{R F} p^{2}$.

Case 2. Let $Y^{\prime}=\{y \in Y: y \in \bar{X}-X\}$
If $q \in \bar{Y}^{\prime}$, by $3.210 \quad p^{2}>_{R F} r^{2}$.

Case 3 Otherwise.
Then let $X^{*}=X-X^{\prime}, \quad Y^{*}=Y-Y^{\prime}$.
Then $X^{*} \cup Y^{*}$ is discrete, and $q \in \overline{X^{*}} \cap \overline{Y^{*}}$.
By Lemma $3 \cdot 23, q \in \overline{X^{*} \cap Y^{*}}$.
So $p^{2}=r^{2}$.

The following Lemma will be needed later:-

Lemma 3.212 If $\mathrm{p}^{\sim}<_{R F} \mathrm{q}^{\sim}$, say $\mathrm{q}=\Sigma[\mathrm{x}, \mathrm{p}]$, then q^{\sim} is $<_{R F}{ }^{- \text {minimal }}$ above p^{\sim} iff $\left\{n: X_{n}^{\sim}\right.$ is $<_{R F}-$ minimal $\} \in p$.

Proof Suppose first that $X_{n}=\Sigma\left[Y^{n}, r_{n}\right]$ where each Y^{n} is a c.i.d. set, and if X is made discrete by $\left\{c_{n}: n \in \omega\right\}$, then $c_{n} \in Y_{m}^{n}$ for alil n and m.

Then $Y={ }_{n \in \omega} Y^{n}$ is a countable discrete set. $\mathrm{X} \subseteq \bar{Y}-\mathrm{Y}$, so in particuliar $q \in \bar{Y}-\mathrm{Y}$. So if we let $r=\Omega[Y, q]$,

$$
q^{\sim} R_{p}>r^{\sim} F_{F}>p^{\sim} .
$$

Conversely, suppose $q^{\sim} R_{F}>r^{\sim} R_{P}>p^{\sim}$, where $q=\Sigma[X, p]$ and $q=\Sigma[Y, r]$. We can assume without loss of generality that $X \subseteq \bar{Y}-Y$, so if we let $Z_{n}=\Omega\left[Y, X_{n}\right]$, then $X_{n R F}^{\sim}>z_{n}^{\sim}$ for all n.
$3 \cdot 3$
Many results have been found on the possible order types embedablue in this ordering. See e.g. [3].

Assuming the C.H. there are ultrafilter types minimal in this ordering (for example p-points), and by a re-iteration of Lema 3.212, for every $n \in \omega$ we can construct an ultrafilter q such that q^{\sim} has precisely $n<_{R F}$-predecessors. In [17] A.in. and E.F. Steiner construct an ultrafilter type with $2^{\gamma_{0}}$ predecessors.(This dees not need the C.H.). They state at the end of the paper that they do not know whether there is a type with precisely \boldsymbol{N}^{\prime}, predecessors. We construct one such, assuming the C.H.

Firstly we discuss what possible countable order types can occur . Let q be a f.u.f. and let S be the set of <RE predecessors of q^{n}, ordered by ${ }^{R_{R T}}{ }^{\prime}$

Lemma 3.31 If $: i$ is countable, we can assume that if we define c.i.d. sets X^{p} for $-v e r y ~ p^{\sim} \in S$, where $\mathrm{q}=\Sigma\left[\mathrm{X}^{\mathrm{p}}, \mathrm{p}\right]$, then $\mathrm{P}^{\sim} \mathrm{RF}^{>} \mathrm{r}^{\sim} \rightarrow \mathrm{Y}^{\mathrm{r}} \subseteq \bar{X}^{\mathrm{p}}-\mathrm{X}^{\mathrm{p}}$.

Proof Re-iteration of Lemma 3.210.

Now., any infinite order type must have either an infinite ascending subset or an infinite descending subset. (Or both). Henceforth we assume that S is countable.

Case 1. 3.32 S has an infinite ascending sequence S^{\prime}.

Subcase ia. $3.321 \mathrm{~S}^{\prime}$ has a least upper bound. We shew that this is impossible.

Without loss of generality we assume that the livast upper bound is q^{\sim}, and S^{\prime} is the sequence

$$
\mathrm{p}_{0}^{\tilde{o}}<_{R F} \mathrm{p}_{1}^{\tilde{1}}<_{R F} \cdots \cdots<_{R F} \mathrm{p}_{n}^{\sim}<_{R F} \cdots \cdots<_{R F} q^{\sim} .
$$

Say $q=\Sigma\left[x^{n}, p_{n}\right]$, where $x^{n} \subseteq \overline{x^{n+1}}-x^{n+1}$ Suppose X° is made discrete by $\left\{c_{m}: m \in \omega\right\}$. Then let $Y=\left\{X_{m}^{n}: c_{n} \in X_{m}^{n}\right\}$.
Y is discrete, as each X^{n} is. Let $a \in q$, then
a $\in X_{m}^{O}$ for some m. $X_{m}^{O} \in \bar{X}^{m}-X^{m}$, so $a \in X_{r}^{m}$ for some r, where $c_{r} \in X_{r}^{\text {in }}$. Hence $q \in \bar{Y}$.

Let $p^{\prime}=\Omega[Y, q]$.
Fix $n \in \omega$. Let $z=\left\{x_{m}^{n}: m \leqslant n\right\}$.
Then $q \in \overline{X^{n}-Z}$, and $X^{n}-Z \subseteq \bar{Y}-Y$.
So $p_{n}^{\sim}<_{R F} p^{\prime \sim}<_{R F} q^{\sim}$ for all n.
This contradicts our assumption that q^{\sim} was the least upper bound.

Subcase $1 \mathrm{~b} 3.322 \mathrm{~S}^{\prime}$ has no least upper bounä. Then we can assume that $S^{\text { }}$ is of the form:
$p_{o}^{\sim}<_{R F} \cdots<_{R F} p_{n}^{\sim}<_{R F} \cdots<_{R F} q_{m}^{\sim}<_{R F} \cdots<_{R F} q_{o}^{\sim}=q^{\sim}$.

And there is no p^{\prime} such that $p_{n}^{\sim}<_{R F} p^{p \sim}<_{R F} q_{m}^{\sim}$ for all m. and n. We shew that this is impossible.

Suppose that $q=\Sigma\left[X^{n}, p_{n}\right]=\Sigma\left[Y^{m}, q_{m}\right]$ where
$X^{n} \subseteq \bar{Y}^{n}-Y^{n}, \quad X^{n} \subseteq \bar{X}^{n+1}-X^{n+1}$, and $Y^{n+1} \subseteq \bar{Y}^{n}-Y^{n}$. Let X^{0} be made discrete by $\left\{c_{n}: n \in \omega\right\}$.
Define $Z=\left\{Y_{m}^{n}: c_{n} \in Y_{m}^{n}\right\}$
Then Z is a countable discrete sequence, and $q \in \bar{Z}$. Furthermore, $X^{n} \subseteq \bar{Z}-Z$ for all: n. For all n, let $Z^{\prime}=Z-\left\{Y_{n}^{m}: m \leqslant n\right\}$
Then $q \in \bar{Z}^{\prime}$, and $Z^{\prime} \subseteq \bar{Y}^{n}-Y^{n}$.
So $p_{n}<_{R F} p^{\sim}<_{R F} q_{m}^{\sim}$ for all m and n, a contradiction.

Case 23.33 S has no infinite ascending sequence. Then it has an infinite descending sequence.

Subcase Ra 3.331 S is bounded below. As case 1 did not occur, S mast have a biggest lower bound.

Say $q^{\sim}{ }_{R F}>\cdots R^{>}>q_{n}^{\sim}{ }_{R F}>\cdots F^{\prime} p^{\sim}$.
Where $q=\Sigma\left[X^{n}, q_{n}\right]=\Sigma[Y, p]$, and
$Y \subseteq \bar{X}^{n}-X^{n}, \quad X^{n+1} \subseteq \bar{X}^{n}-X^{n}$.
But this situation cannot in fact occur. We can prove, by a method similar to the construction in Subcase ib,

Lemma 3.332 If the situation described in subcase 2a occurs, there is $p^{\prime} \in N^{*}$ so that
$q_{n}^{\sim} R_{F^{\prime}}>p^{\prime \sim}$ for all $n, p^{\prime \sim} \mathrm{RF}^{>} \mathrm{p}^{\sim}$ and $q=\Sigma\left[Z, p^{\prime}\right]$ where $Z \subseteq \underset{n \in W^{n}}{U} X^{n}$.

This leaves us with Subcase 2 b , in which S has an infinite descending sequence not bounded below. But assuming the C.H., this case can actually happen.

Theorem 3.34 (C.H.) There is an ultrafilter q such that q^{\sim} has precisely $\mathcal{\aleph}_{0}<_{R F}$-predecessors.

Proof Let $\left\{a_{m}^{n}: n, m \in \omega\right\}$ be infinite subsets of such that:

1) $a_{m}^{n} \cap a_{m}^{n}=\phi$ if $m \neq m^{\prime}$.
2) $\underset{n \in \omega^{a}}{m}=\omega$ for all m.
3) $a_{m}^{n+1}=U_{r \in b_{n m}} a_{r}^{n}$ where each $b_{n m}$ is an infinite subset of ω.
(i.e., each $\left\langle a_{m}^{n}: m \in \omega\right\rangle$ is a partition of ω into infinite sets, and $\left\langle a_{m}^{n+1}: m \in \omega>\right.$ is coarser than $\left.\left\langle e_{m}^{n}: m \in \omega\right\rangle\right)$

Now let $\left\{\mathrm{X}_{\mathrm{m}}^{\mathrm{O}}\right\}$ be p-points so that $a_{\mathrm{m}}^{0} \in \mathrm{X}_{\mathrm{m}}^{0}$ for all m. $\mathrm{X}_{\mathrm{m}}^{\mathrm{O}}$ is a c.i.d. subset of $\mathbb{N}^{\frac{2}{2}}$. We will define c.i.d. sets X^{n} for every $n \in \omega$.

Suppose we have defined X^{n}.

Let Y_{m}^{n} be p-points such that $b_{n m} \in Y_{m}^{n}$ and let $X_{m}^{n+1}=\Sigma\left[X^{n}, Y_{m}^{n}\right]$

Thus we can define X_{m}^{n} for all n and m. From the construction it is not hard to shew that $a_{m}^{n} \in X_{m}^{n}$ and X^{n} is a c.i.d. set, and $x^{n+1} \subseteq \bar{X}^{n}-X^{n}$

We wil construct an ultrafilter q such that $q \in{ }_{n \in \omega^{n}} \bar{x}^{n}$.

If $\mathrm{p}_{\mathrm{n}}=\Omega\left[\mathrm{x}^{\mathrm{n}}, \mathrm{q}\right]$, we will require that the only $<_{\text {RF }}$-predecessors of q^{\sim} are $\left\{p_{n}^{\sim}: n \in \omega\right\}$.
The following are some facts about this construction that we shall need.

2) $\mathrm{p}_{\mathrm{n}}=\Sigma\left[\mathrm{Y}^{\mathrm{n}}, \mathrm{p}_{\mathrm{n}+1}\right]$
3) If $p_{n}^{\sim} R_{F}>p_{R F}^{\sim} p_{n+1}^{\sim}$ then either $p^{\sim}=p_{n}^{\sim}$ or else $\mathrm{p}^{\sim}=\tilde{p}_{\mathrm{n}+1}^{\sim}$.
4) If $a \in X_{m}^{n+1}$ for some n and m then $\left\{r: a \in X_{r}^{n}\right\}$
is infinite.
5) If $\exists p \in \mathbb{N}^{*}$, $p_{n}^{\sim} R F^{>} p^{\sim}$ for all n, then there is $p^{\prime}, p_{n}^{\sim} R_{F}>p^{\prime \sim}$ for all n, and $q=\Sigma\left[X^{\prime}, p^{\prime}\right]$, where X^{\prime} is a countable discrete subset of $\mathrm{U}_{\mathrm{E}} \mathrm{X}^{\mathrm{X}}$.

Proofs 1) is from Lemma $3 \cdot 210,2$) is just calculation, 3) is from Lemma $3 \cdot 212$, 4) is because Y_{m}^{n} is non-principal, and 5) ic Lemma $3 \cdot 332$.

From Facts 3) and 5), to ensure that the only $<_{R H^{\prime}}$-predecessors of q^{\sim} are $\left\{p_{n}^{\sim}: n \in \omega\right\}$, it suffices to shew the following:-

If X is a countable discrete subset of $U_{n \in \omega} X^{n}$, and $q \in \bar{X}$, then if $p=\Omega[x, q], p^{\sim}=p_{n}^{\sim}$ for some n. To ensure that $p^{\sim}=p_{n}^{\sim}$ we need only ensure that $q \in{\overline{\mathrm{X} \cap \mathrm{X}^{n}}}^{n}$.

So. enumerate (C.H.) the countable discrete subsets of $\bigcup_{n \in \omega^{n}} X^{n}$ as $\left\langle X^{\alpha}: \alpha\left\langle\omega_{1}\right\rangle\right.$. For every α we will add a set d_{α} to q, such that either $a_{\alpha} \notin X_{m}^{\alpha}$ for any m, or else $\left.d_{\alpha}=U_{m} \in \alpha_{m}^{n}: X_{m}^{n} \in X^{\alpha}\right\}$ for some fixed n.

Induction Hypothesis

At every stage α we have a countably generate filter \bar{F}_{α}, so that if $a \in F_{\alpha}$, for every n,
$\left\{m: a \in X_{m}^{n}\right\}$ is infinite.

Stage _o Let $d_{0}=\omega, F_{0}=F r$.

Stage α Let F be generated by $\beta<\alpha$. As α is countable, F is countably generated. Let its generators be $\left\{\epsilon_{n}: n \in \omega\right\}$, and assume without loss of generality that $e_{n} \supseteq e_{n+1}$ for all n.

For each n, write $h_{n}=\bigcup_{m} \bigcup_{m}\left\{a_{m}^{n}: X_{m}^{n} \in X^{\alpha}\right\}$.

Case 1 The filter generated by $F \cup\left\{h_{n}\right\}$ obeys the induction hypothesis, for some n. Then let $d_{\alpha}=h_{n}$, and let F_{α} be generated by $F \cup\left\{d_{\alpha}\right\}$.

Case 2 Otherwise. We construct sets $\left\{a_{n}: n \in \omega\right\}$ as follows:-

Stage 0 The filter generated by $i v\left\{h_{0}\right\}$ does not obey the induction hypothesis. Certainly for some n_{0}, $e_{0} \cap a_{n_{0}}^{0} \in X_{n_{0}}^{0}$ and $X_{n_{0}}^{0} \notin x^{\alpha}$. Let $a_{0}=a_{n_{0}}^{0} \cap e_{0}$.

Stage j Suppose we have defined a_{i} for $i<j$. The filter generated by $\left\{h_{0} \cup \ldots \cup h_{j}\right\} \cup i$ does not obey the induction hypothesis. So for some nj,
$e_{j} \cap a_{n_{j}}^{j}-\left(h_{o} \cup \ldots \cup h_{j}\right) \in X_{n_{j}}^{j}$.
In particular $X_{n_{j}}^{j} \notin X^{\alpha}$.
Let $a_{j}=e_{j} \cap a_{n_{j}}^{j}-\left(h_{0} \cup \ldots \cup h_{j}\right)$.
Let $a_{\alpha}=j \in \omega^{a_{j}}$.

Claim 1 If $x \in X^{\alpha}, \quad d_{\alpha} \notin x$.

Proof Say $x=X_{m}^{n}$ for some $n, m \in \omega$.
If $n=0, \quad a_{\alpha} \cap a_{m}^{n}=a_{n_{0}}^{0} \cap e_{0} \cap a_{m}^{0}=\phi$.
If $n>0, d_{\alpha} \cap a_{n}^{n} \subseteq r<\cup^{a_{n}} n_{r}$ by the construction of a_{α}.

But by fact 4), if $d_{\alpha} \cap a_{m}^{n} \in X_{m}^{n}$,
$\left\{r: d_{\alpha} \cap a_{m}^{n} \in Y_{m}^{n-1}\right\}$ is infinite.
So $a_{\alpha} \cap a_{m}^{n} \notin x_{m}^{n}$.

Claim 2 The filter generated by $F \cup\left\{d_{\alpha}\right\}$ obeys the induction hypothesis.

Proof A typical member of this filter contains $d_{\alpha} \cap e_{n}$ for some n. Fix m. Let $r=\max \{n \cdot m\}+1$. Then $d_{\alpha} \cap e_{n} \in X_{n_{r}}^{r}$, so. $\left\{k: d_{\alpha} \cap e_{n} \in X_{k}^{r-1}\right\}$ is infinite. Certainly, $\left\{k: d_{\alpha} \cap e_{n} \in X_{k}^{m}\right\}$ is infinite. The induction Hypothesis is still true. So let F_{α} be the filter generated by $F_{\alpha} \cup\left\{d_{\alpha}\right\}$.

Finally let G be generated by $U\left\{F_{\alpha}: \alpha<\omega_{1}\right\}$. G is not necessarily an ultrafilter. But let f be the map such that $f^{-1}[n]=a_{n}^{o}$ for every n. As every infinite subset of X° has occured in our enumeration, $f(G)$ is an ultrafilter.

Define $q=\Sigma\left[X^{\circ}, f(G)\right]$.
Then $q \in{ }_{n \in} \omega^{X} \bar{X}^{n}$, and by our construction, the $<_{P_{n}}$-predecessors of q^{\sim} are precisely $\left\{p_{n}^{\sim}: n \in \omega\right\}$.

Remark $3 \cdot 35$ The existence of $<_{R F}$-minimal ultrafilter is necessary in this proof. In a model of set-theory in which there are no $<_{R F}$-minimal ultrafilters, every type has at least λ_{1} predecessors. For take q^{\sim}, find $p^{\sim}<_{R F} q^{\sim}$. Reiterate Lemma $3 \cdot 212$ to obtain a sequence $p^{\sim}<_{R F} \cdots<_{R F} p_{n}^{\sim}<_{R F} \cdots<_{R F} q^{\sim}$. Then re-iterate subcase $1 a$ and subcase $1 b$ to obtain \mathcal{X}_{1} ${ }_{\text {< }}$ RF predecessors.
$4 \cdot 1$
The following set of results; due to Keisler, clears up the problem of the structure of ultrapowers of a countable structure with a countable language over a countable set, assuming the C.H. Proofs are in [1].

Def $4 \cdot 11$ Let a be a. structure, $A \subseteq \operatorname{dom}(\alpha)$. A set Φ of formulae in the language of $\langle a, a\rangle_{a \in A}$ with x appearing as the only free variable, is said to be finitely satisfiable in $\langle a, a\rangle_{a \in A}$ if for every finite subset $\left\{\phi_{1}, \ldots, \phi_{n}\right\} \subseteq \Phi$,

$$
\left\langle a_{s} a\right\rangle_{a \in A} \neq \exists x\left(\phi_{1}(x) \wedge \ldots \wedge \phi_{n}(x)\right)
$$

Def 4.12π is said to be K-Saturated if whenever $A \subseteq \operatorname{dom}(a),|A|<K$, and Φ is a set of formulae, finitely satisfiable in $\left\langle a_{2} a\right\rangle_{a \in A}$, then there is $b \in \operatorname{dom}(\alpha), \alpha \mid=\phi[b]$ for all $\phi \in \Phi$.

Def $4.13 \ll$ is said to be Saturated if it is $|a|-s a t u r a t e d$.

Certain sorts of ultrafilter give rise to saturated
ulitrapowers, as follows:-

Def $4 \cdot 14$ An ultrafilter p is said to be $\underline{k-g o o d}$ if whenever $\lambda<\kappa$, and f is a map from $S_{\omega}(\lambda)$ to p, then there is a map g from $S_{\omega}(\lambda)$ to p, $g(a) \subseteq f(a)$ for $a l l a \in S_{\omega}(\lambda)$, and $g(a) \cap g(b)=g(a \cap b)$ foo all $a, b \in S_{\omega}(\lambda)$.

Def $4 \cdot 15$ An ultrafilter p is said to be ω-incomplete if there is a countable subset X of p such that $n X=\phi$.

Theorem 4.16 If p is a κ-good, ω-incomplete ultrafilter on λ, and the cardinality of the language of a is less than $k, a^{\lambda / p}$ is κ-saturated. In particular, if p is $\left|a^{\lambda}\right|$-good, α / p is saturated.

It is quite easy to check that all non-principal ulitrafilters on ω are \mathcal{N}^{\prime}-good and ω-incomplete. By a back and forth argument, any two elementary equivalent structures of the same cardinality that are saturated are isomorphic. In particular,

Theorem 4.17 (C.H) If O is a countable structure with a countable language, and p and q are f.u.f.s,
then σ^{ω} / p is isomorphic to a^{ω} / q.
$4 \cdot 2$
In view of the results of section $4 \cdot 1$, to obtain any results about ultrapowers of countable structures we shall have to consider a larger language.

Def 4.21 The full structure on ω, written ω^{*}, is the structure whose domain is ω and with all possible relations on ω.

$$
\omega^{+}=\left\langle\omega, R_{\alpha}\right\rangle\left\langle 2^{-\gamma_{0}} .\right.
$$

We now find that the structure of the ultrapower ω^{+} / p depends very much on the combinatorial properties of the ultrafilter p.

The following is the result that connects the model-theoretic properties of $\omega^{+} / \mathrm{\omega}$ to the $\leqslant_{\text {Ri s }}$ ordering mentioned in 2.5. It appears in [8] and [12].

Theorem 4.22 $\omega^{\omega^{+}} / \mathrm{p}$ can be embedded as a elementary substructure of ω^{+} / q, (written $e: \omega^{+} / \mathrm{p} \leqslant \omega^{+} / q$, where e. is the embedding), iff there is $f \in{ }^{\omega} \omega$ such that $f(q)=p, \quad(i . e . \quad q \quad R \geqslant p$).

Proof Suppose: that $f(q)=p$. Define $\phi:{ }^{\omega} \omega \rightarrow{ }^{\omega} \omega$ by $(\phi(g))(n)=g(f(n))$.

Then $g \sim_{p} g^{\prime}$ inf there is $a \in p$ such that $n \in a$ iff $g(n)=g^{\prime}(n)$. Let $b=f^{-1}[a] \in q$. For $m \in b, g(f(m))=g^{\prime}(f(m))$. Hence $\phi(g) \sim_{q} \phi\left(g^{\prime}\right)$.

So there is a well-defined map $\mathrm{e}: \omega^{+^{\omega}} / \mathrm{p} \rightarrow \omega^{+} / \mathrm{q}$, which by similar arguments is elementry.

Suppose $e: \omega^{+^{\omega}} / \mathrm{p} \leqslant \omega^{+^{\omega}} / \mathrm{q}$.
Let $f^{\sim}=e\left(i d^{\sim}\right)$. For all $a \in \operatorname{p}, \quad \omega^{+\omega} / p \quad \vDash i d^{\sim} \in$ a. $\left(\omega^{+} / \mathrm{p} . \vDash \mathrm{id}^{\sim} \in \mathrm{a}\right.$ of $\{\mathrm{n}: \operatorname{id}(\mathrm{n}) \in \mathrm{a}\} \in \mathrm{p}$ of $\left.a \in \mathrm{p}\right)$. e is ellementary se. $\omega^{+} / q \neq f^{\sim} \in$ a. So $\{n: f(n) \in a\} \in q$, i.e. $f^{-1}[a] \in q$.

Hence $f(q)=p$.

Remark From the proof of Theorem $4 \cdot 22$ it is clear that $x \in e\left[\omega^{+} / p\right]$, where $f(q)=p$ and e is the induced embedding, iff there is $g \in X,\left|g\left[f^{-1}[n]\right]\right|=1$ for all n.

A convenient notation to describe such ultrapowers was invented by Puritz in [12]. The following definitions are his.

Def $4 \cdot 23$ For $f, g \in \omega_{\omega}$, p a f.u.f. and f^{\sim} and g^{\sim} non-standard members of ω^{+} / p, we write $f \leqslant_{p} g$ iff $\exists h \in \omega^{\omega},\{n: h(g(n)) \geqslant f(n)\} \in p$.

Def 4.24 Write $f \equiv g$ diff $f \leqslant_{p} g$ and $f p \geqslant g$. The equivalence classes of \equiv p are called the skies of p.

$$
\operatorname{Sk}_{p}(f)=\left\{g: f \equiv \equiv_{p} g\right\}
$$

Def $4 \cdot 25$ For $f, g \in \omega_{\omega}$, p a f.u.f. and f^{\sim} and g^{\sim} nonstandard members of ω^{+} / p, we write $\mathrm{f} \leqslant \mathrm{p}$ of $\exists \mathrm{h} \in{ }^{\omega} \omega,\{n: \mathrm{h}(\mathrm{g}(\mathrm{n}))=\mathrm{f}(\mathrm{n})\} \in \mathrm{p}$.

Def $4 \cdot 26$. Write $f \equiv^{p} g$ iff $f \leqslant^{p} g$ and $f^{p} \geqslant g$. The equivalence classes of \equiv^{p} are called the constellations of F . $\operatorname{Con}_{\mathrm{p}}(f)=\left\{g: f \equiv^{p} g\right\}$

We order Skies and Constellations by extending $\leqslant p$ and $\leqslant p$. $k_{p}(f) \leqslant S k_{p}(g)$ iff $f \leqslant p g$, $\operatorname{Con}_{p}(f) \leqslant \operatorname{Con}_{p}(g)$ iff $f \leqslant{ }^{p} g$. It is easy to shew that these are well-defined orders. The following gives criteria for $f \leqslant p g$ and $f \leqslant^{p} g$.

Lemma $4 \cdot 27$ 1) $f \leqslant p g$ iff $\exists a \in p,\left|f\left[g^{-1}[n] \cap a\right]\right|<\omega$ for all n.
2) $f \leqslant^{p} g$ iff $\exists a \in p,\left|f\left[g^{-1}[n] \cap a\right]\right|=1$ for all n.

Proof 1) If $f \leqslant_{p} g$, let h be as given in the definition, and let $a=\{n: h(g(n)) \geqslant f(n)\} \in p$. Then $\left|f\left[g^{-1}[n] \cap a\right]\right| \leqslant h(n)<\omega$.

Conversely, if the condition holds, define h so $h(m)=\max \left\{f\left[g^{-1}[m] \cap a\right]\right\}$.

Then $\{n: h(g(n)) \geqslant f(n)\} \supseteq a \in p$.
2) If $f \leqslant^{p} g$, let h be as given in the definition, and Let $a=\{n: h(g(n))=f(n)\} \in p$. Then $f\left[g^{-1}[m] \cap a\right]$ $=\{h(m)\}$, so. $\left|f\left[g^{-1}[m] \cap a\right]\right|=1$ for all m.

Conversely, if the condition holds, define h so $\{h(m)\}=f\left[g^{-1}[m] \cap a\right]$.

Then $\{n: h(g(n))=f(n)\} \supseteq a \in p$.

Corollary 4.28 (Puritz) 1) q is a p-point of q has only one sky.
2) q is rare of the top sky of q has only one constellation.
3) q is Ramsey iff it has only one constellation.

Proof: 1) q is a p-point of every non-standard function f is, equivalent mod q to a finite-to-one function. Hence there is $a \in q,\left|i a\left[f^{-1}[n] \cap a\right]\right|<\omega$ for all n, so $S k_{q}(f) \geqslant S k_{q}(i d)$, and $i d$ is always in the top sky of q.
2) f is in the top sky of q iff f is equivalent mod q to a finite-to-one function. But q is rare if every finite-to-one function is equivalent mod q to a one-to-one function. Hence q is rare of every f in the top sky of q is in the same constellation as id.
3) This follows from 1) and 2).

Corollary 4.29 1) q is a p-point if whenever $\mathrm{e}:{\omega^{+}}^{\omega} / \mathrm{p} \leqslant{\omega^{+}}^{\omega} / \mathrm{q}, \quad \in\left[{\omega^{+}}^{\omega} / \mathrm{p}\right]$ is cofinall in ω^{+} / q.
2) q is rare iff whenever $e: \omega^{+} / p \leqslant \omega^{+} / q$ either $e\left[\omega^{+} / p\right]=\omega^{+} / \mathrm{q}$ or $e\left[{\omega^{+}}^{\omega} / \mathrm{p}\right]$ is nat cofinal in ω^{+} / q. 3) q is Ramsey inf whenever $e: \omega^{+} / p \leqslant \omega^{+} / q$, then $c\left[\omega^{+} / \mathrm{p}\right]={\omega^{+}}^{\omega} / q$.

Proof These follow from 4.28 and the fact that if $f \in S k_{q}(i d),{\omega^{+}}^{\omega} / f(q)$ is embeddablic as a cofinal substructure of $\omega^{+} /$. .

The following facts will be useful.

Lemma $4 \cdot 210$ 1) Skies are totally ordered.
2) Skies are made up of whole constellations.
3) If f is in the bottom sky of $p, f(p)$ is a
p-point.
4) The converse to 3) is not true in general.
5) $f(p)$ is rare iff f is in a minimal constellation of $S k_{p}(f)$.
6) Constellations are not necessarily totally ordered.
7) If f is in a minimal constellation of $S k_{p}(f)$, it is in the minimum constellation of $S k_{p}(f)$.

Proofs 1) 2) and 3) are in [12]. An example of 4) is in [14]. The proof of 5) is similar to that Qi 4.27. We prove 6) and 7).
6) Let $\left\langle a_{n}: n \in \omega\right\rangle$ be a partition of ω so that $\left|a_{n}\right|=n^{2}$, and we imagine each a_{n} as a nan block. Define f and g so that f is constant on each row in each a_{n} and g is constant on each column in each a_{n}. Then f and g are finite to one, and for all $m, n \in \omega, \quad\left|f^{-1}[n] \cap g^{-1}[m]\right| \leqslant 1$.

Let F be generated by:
$\left\{\omega-a: \forall n\left|f^{-1}[n] \cap a\right|=1\right\} \cup\left\{\omega-a: \forall m\left|g^{-1}[m] \cap a\right|=1\right\}$
Then F is a proper filter, and if $c \subseteq \omega$, $\left.\mid f \lg ^{-1}[n] \cap c\right] \mid=1$ for all n, then $\left|g^{-1}[n] \cap c\right|=1$ for all n, so $C_{\omega}(c) \in F$. If q is any ultrafilter extending $F, \operatorname{Con}_{q}(f) \neq \operatorname{Con}_{q}(g)$, and by similar
$\operatorname{arguments} \operatorname{Con}_{q}(g) \leqslant \operatorname{Con}_{q}(f)$.
7) Let f be in a minimal constellation of $\operatorname{Sk}_{p}(f)$, Then $f(p)$ is rare. Let $g \in \operatorname{Sk}_{p}(f)$. We can assume that $\left|f\left[g^{-1}[m]\right]\right|<\omega$ for all m. We construct disjoint finite sets $\left\{a_{n}: n \in \omega\right\}$ so that the following holds;

If $\mathrm{g}^{-1}[\mathrm{~m}] \cap \mathrm{f}^{-1}\left[\mathrm{a}_{\mathrm{n}}\right] \neq \phi$ and $\mathrm{g}^{-1}[\mathrm{~m}] \cap \mathrm{f}^{-1}\left[\mathrm{a}_{\mathrm{r}}\right] \neq \phi$, Then $n=r$ or $n=r+1$ or $r=n+1$.

Let $a_{0}=\{0\}$.
Suppose we have defined a_{n}, and a_{n} is finite.

Let $\quad a_{n+1}=\left\{m: \exists r, f^{-1}[m] \cap g^{-1}[r] \neq \phi\right.$ and
$\left.f^{-1}\left[a_{n}\right] \cap g^{-1}[r] \neq \phi\right\} \cup\left\{(n+1)-r \leq n a_{r}\right\}$. a_{n+1} is finite, as a_{n} is finite an $\left|f\left[\tilde{c}^{-1}[s]\right]\right|<\omega$ for all s.

Then $\underset{n \in \omega^{2}}{U}=\omega$, and if $n \neq m$ then $a_{n} \cap a_{m}=\phi$. As $f(p)$ is rare, let $a \in f(p)$ be such that $\left|a \cap a_{n}\right|=1$ for all n. Also either $\bigcup_{n \in \omega^{a}}^{a_{2 n}}$ or $\bigcup_{n \in \omega^{a}}^{\mathrm{a}} 2 n+1$ is in $\mathrm{f}(\mathrm{p})$. Say $\bigcup_{n \in \omega^{a}}{ }_{2 n} \in f(p)$. Let $b=a \cap \bigcup_{n \in \omega^{a} 2 n^{\prime}}$. Let $c=f^{-1}[b] \in p$.

Claim $\left|f\left[g^{-1}[n] \cap c\right]\right|=1$ for all n.

Proof. If $g^{-1}[n] \cap f^{-1}[m] \neq \phi$ and $g^{-1}[n] \cap f^{-1}\left[\mathrm{~m}^{\prime}\right] \neq \phi$, Say $m \in a_{2 r}$. Then $m^{\prime} \in a_{2 r}$ or $m^{\prime} \in a_{2 r+1}$ or $m^{\prime} \in a_{2 r-1}$. The latter two are impossible, by our choice of c. Furthermore, as $\left|a \cap a_{2 r}\right|=1, m=m$. Sa $\left|f\left[g^{-1}[n] \cap c\right]\right|=1$. So $f \leqslant g$. f is in the minimum constellation of $\mathrm{Sk}_{\mathrm{p}}(\mathrm{f})$.

Digression 4.211 It is reasonable to ask whether all the elementary substructures of ω^{+} / q are of the form $e\left[\omega^{+} / \mathrm{p}\right]$. The following gives a criterion for this to occur.

Def 4.212 For $f \in{ }^{\omega}{ }_{\omega}, \quad e q(f)=\{\langle i, j\rangle: f(i)=f(j)\}$. Then if G is a filter over $\omega x \omega$, define

$$
\omega^{+^{\omega}} / q \mid G=\left\{f^{\sim} \in \omega^{+}{ }^{\omega} / q: \exists g \in f^{\sim}, \quad e q(g) \in G\right\}
$$

It is shewn in [9] that $\omega^{+}{ }^{\omega} / q / G$ is an elementary substructure of ω^{+} / q, and that all the elementary substructures of ω^{+} / q are of this form. It is further shewn that for any G,

$$
\omega^{+}{ }^{\omega} / q \mid G \text { is isomorphic to } \omega^{+} / \mathrm{q} \mid G^{\prime} \text {, for some } G^{\prime}
$$ which is a filter over $\omega x \omega$ generated by equivalfence relations on ω.

Now, for $f^{\sim}, g^{\sim} \in \omega^{+} / \mathrm{q},\left\{\operatorname{eq}(f): f \in f^{\sim}\right\}=\left\{e q(g): g \in g^{\sim}\right\}$ iff $\operatorname{Con}_{q}(f)=\operatorname{Con}_{q}(g)$. So $\omega^{+} / q \mid G^{\prime}$ is made up of whole constellations. Then,

Theorem $4.213 \quad \omega^{+^{+}} / q \mid G \leqslant \omega^{+} / q$ is itself an ultrapower iff the set of constellations included in $\omega^{+} / \mathrm{q} / \mathrm{G}$ has a greatust element included in $\omega^{+}{ }^{\omega} / q / G$.

In particular, if q has only finitely many constellations, every elementary substructure is itself f an ultrapower. Later an example of an ultrapower with an elementary substructure that is not an ulitrapower will be presented.
$4 \cdot 3$
In [12] Purity constructs ultrafilters with various sky and constellation systems. For example, he shews that (assuming the C.H.) for every $n \in \omega$ there are ultrafilter with n skies. (The process is identical to that mentioned at the beginning of 3.3). A question that he asks is:-

[^0]This is related to a question posed by Coquet
in [4].
"Is there an ultrafilter such that for no $f \in{ }_{\omega}^{\omega}$ is $f(q)$ a p-point? ${ }^{i}$

Mathias [11] answers both questions by proving:-

Theorem $4 \cdot 31$ (C.H.) There is an ultrafilter q such that for no $f \in \omega_{\omega}$ is $f(q)$ a p-point. (This answers Purity' question because of $4 \cdot 210$ part 3) R.A.Pitt improved this to:-

Theorem 4.32 (C.H.) There is an ultrafilter q such that for no $f \epsilon^{\omega} \omega$ is $f(q)$ either rare or a p-point.

At the 1971 Logic Conference at Cambridge, Mathias asked further if there is a p-point q such that for no $f \epsilon^{\omega} \omega$ is $f(q)$ rare. Below we present a construction of one such, assuming the C.H. In Puritzian terms this ultrafilter has one sky but na bottom constellation.

Theorem $4 \cdot 33^{*}$ (C.H) There is an ultrafilter q such that for no $f \in \omega_{\omega}$ is $f(q)$ rare. *Mathias and Pitt have also proved this result.

Remark As promised in $2 \cdot 6$, this is an example of a non-rare p-point.

Proof Let $F=\left\{f \in \omega_{\omega: ~} f\right.$ is finite-to-one $\}$
Enumerate (C.H.) F as. $<f_{\alpha}: \alpha<\omega_{1}>$.
Enumerate (C.H.) $P(\omega)$ as $<S_{\alpha}: \alpha<\omega_{1}>$.
As q is a p-point, for every non-standard $x \in \omega^{+} / q$, there is $f \in F, f \in X$.

Induction Assumption.
For each $\alpha<\omega_{1}$ we will construct d_{α}, h_{α}, J_{α} so that:-

1) $\alpha_{\alpha} \subseteq \omega$, and $\alpha>\beta$ implies $\left|\alpha_{\alpha}-\alpha_{\beta}\right|<\omega$.
2) $d_{\alpha} \subseteq S_{\alpha}$ or $d_{\alpha} \cap s_{\alpha}=\phi$.
3) h_{α} is a function from d_{α} t@ ω, such that h_{α} is finite to one; and if $\alpha>\beta h_{\alpha}$ is coarser than h_{β} except on a finite set. That is, there is a finite set c such that $n, m \in d_{\alpha}-c$ implies that if $h_{\beta}(n)=h_{\beta}(m)$ then $h_{\alpha}(n)=h_{\alpha}(\mathrm{m})$.
4) J_{α} consists of at most countably many sets of subsets of ω; write $J_{\alpha}=\left\{J_{\alpha}^{n}: n \in \omega\right\} . \alpha>\beta$ implies $J_{\beta} \subseteq J_{\alpha}$.
5) For any α, and any finite subset of ω, $S=\left\{n_{1}, \ldots n_{i}\right\}$, there is $n \in \omega$ such that if $a_{1} \in J_{\alpha}^{n_{1}}$, $\ldots a_{i} \in J_{\alpha}^{n_{i}}, m \geqslant n, \quad a_{1} \cap \ldots \cap a_{i} \cap d_{\alpha} \cap h_{\alpha}^{-1}[m] \neq \phi$.
6) If q extends $\left\{d_{\alpha}\right\} \cup U J_{\alpha}, f_{\alpha}(q)$ is not rare.

Remark Conditions 1) and 2) imply that q is a p-point. For if in is a countable subset of q,

$$
\bar{K}=\left\{S_{\alpha_{i}}: i \in \omega\right\} \text {, then } \alpha_{\alpha_{i}} \subseteq S_{\alpha_{i}} \text { for all } i
$$

Take α greater than α_{i} for all i, then $d_{\alpha} \in q$ and
$\left|d_{\alpha}-d_{\alpha_{i}}\right|<\omega$ for all i.
Certainly, $\left|a_{\alpha}-b\right|<\omega$ for all $b \in \mathbb{K}$.

Now we proceed with the induction.

Stage 0 Let $h_{0}=i d, \quad d_{0}=\omega, \quad J_{0}=\phi$.

Stage $\alpha=\beta+1$ Suppose we have constructed $\alpha_{\beta}, h_{\beta}$, J_{β}. Define h as follows:-

Let $h^{-1}[1]=U\left\{\mathrm{f}_{\alpha}^{-1}[\mathrm{~m}]: \mathrm{f}_{\alpha}^{-1}[\mathrm{~m}] \cap \mathrm{h}_{\beta}^{-1}[1] \neq \phi\right\}$
$h^{-1}[1]$ is a finite set. Let $n_{1}=1$.

Suppose wo have defined $h^{-1}[i]$ for all $i<j$, and each $h^{-1}[i]$ is a finite set. Let n_{j} be the first number such that $h_{\beta}^{-1}\left[n_{j}\right] \cap h^{-1}[i]=\phi$ for all $i<j$.

Let $h^{-1}[j]=U\left\{f_{\alpha}^{-1}[m]: f_{\alpha}^{-1}[m] \cap h_{\beta}^{-1}\left[n_{j}\right] \neq \phi\right\}$ Then $h^{-1}[j]$ is a finite set.

Let $\alpha=\operatorname{dom}(h) \cap d_{\beta}$. Then h is a well-defined

Let k be a function such that $\operatorname{dom}(k)=d$ and

1) $h(n)=h(m)$ implies $k(n)=k(m)$ for $n, m \in d$.
2) $\left|\mathrm{h}\left[\mathrm{k}^{-1}[\mathrm{n}]\right]\right|$ is finite but increasing.
i.e. k is finite-to-one but coarser than h.

Define $H_{m}=\left\{\omega-a:\left|h\left[k^{-1}[n] n a\right]\right| \leqslant m\right.$ for all $\left.n\right\}$.

Claim 1 If q is a f.u.f. that contains d and ${ }_{m} \in \omega_{m}, f_{\alpha}(q)$ is not rare.

Proof h is coarser than f_{α}, so $\operatorname{con}_{q}(h) \leqslant \operatorname{con}_{q}\left(f_{\alpha}\right)$. k is coarser than h, so $\operatorname{con}_{q}(k) \leqslant \operatorname{con}_{q}(h)$. But for no set $a \in q$, is $\left|h\left[k^{-1}[n] \cap a\right]\right|=1$ for all n. So the constellation of k is strictly less than the constellation of f_{α}. By Lemma $4 \cdot 210$ part 5 $f_{\alpha}(q)$ is not rare.

Claim 2 There is an infinite $I \subseteq \omega_{\text {, }}$ and $d_{\alpha} \subseteq d$, so that either $d_{\alpha} \subseteq S_{\alpha}$ or $d_{\alpha} \cap S_{\alpha}=\phi$ and the following holds:-

If $S=\left\{n_{1}, \ldots n_{i}\right\}$ is a finite subset of ω and $r \in \omega$ there is $n \in I$ such that whenever $a_{1} \in J_{\beta}^{n_{1}}, \ldots$ $\ldots a_{i} \in J_{\beta}^{n_{i}}, b \in H_{r}$, and $m \in I, m \geqslant n$,
$a_{1} \cap \ldots \cap a_{i} \cap b \cap a_{\alpha} \cap k^{-1}[m] \neq \phi$.

Proof If not. Then there is an infinite $I_{1} \subseteq \omega$ and $m \in \omega$ and $n_{1}, \ldots n_{i} \in \omega$ and $a_{1} \in J_{\beta}^{n_{1}}, \ldots a_{i} \in J_{\beta}^{n_{i}}$ and $a \in H_{m}$ so that for all $n \in I_{1}$,
$a \cap a_{1} \cap \ldots \cap a_{i} \cap a \cap S_{\alpha} \cap k^{-1}[n]=\phi$.

Then there is an infinite $I_{2} \subseteq I_{1}$ and $r \in \omega$ and $m_{1}, \ldots m_{j} \in \omega$ and $b \in H_{r}$ and $b_{1} \in J_{\beta}^{m_{1}}, \ldots b_{j} \in J_{\beta}^{m_{j}}$, such that for all $n \in I_{2}$,
$b \cap b_{1} \cap \ldots \cap b_{j} \cap d \cap C_{\omega}\left(S_{\alpha}\right) \cap k^{-1}[n]=\phi$.

So for every $n \in I_{2}$,
$a \cap b \cap b_{1} \cap \ldots \cap b_{j} \cap a_{1} \cap \ldots \cap a_{i} \cap a \cap k^{-1}[n]=\phi$. We shew this is impossible.

Take s so big that if $s^{\prime} \geqslant s$ and if $h_{\beta}^{-1}[t] \cap k^{-1}\left[s^{n}\right]$ $\neq \phi$ then $b_{1} \cap \ldots \cap b_{j} \cap a_{1} \cap \ldots \cap a_{i} \cap a_{\beta} \cap h_{\beta}^{-1}[t] \neq \phi_{\phi}$ and $\left|h\left[k^{-1}\left[s^{\prime}\right]\right]\right|>m+r$. Then as I_{2} is infinite, there is $s^{\prime} \geqslant s, s^{\prime} \in I_{2}$, so that $a \cap b \cap b_{1} \cap \ldots \cap b_{j} \cap a_{1} \cap \ldots \cap a_{i} \cap d \cap k^{-1}\left[s^{\prime}\right] \neq \phi$. A contradiction.

Sa let d_{α} be as in the claim. Let ψ be a map from I to ω which is one-to-one and onto.

Let $h_{\alpha}(n)=\psi k(n)$.
Then h_{α} is a map from d_{α} to ω which is coarser than h_{β}. Let $J_{\alpha}=J_{\beta} \cup\left\{H_{m}: m \in \omega\right\}$. Claims 1) and 2) imply that that the induction assumption still holds.

Stage α_{2} a limit ordinal.

Let $\alpha=\left\{y_{n}: n \in \omega\right\}$, and let $\left\{\alpha_{n}: n \in \omega\right\}$ be an increasing subset of α.

Let $\mathbb{K}=\bigcup_{n \in \omega^{J} \gamma_{n}}$ and enumerate \bar{K} as $\bar{K}=\left\{\bar{I}_{n}: n \in \omega\right\}$

Define h as follows:-
Let $n_{1} \in d_{\alpha_{1}}$ be the first number such that:

1) If $\bar{h}_{1} \in J_{\alpha_{1}}, \quad a \in K_{1}, \quad$ and $m \geqslant n_{1}, \quad a \cap \alpha_{\alpha_{1}} \cap h_{\alpha_{1}}^{-1}[m]$ $\neq \phi$.
2) If $\gamma_{1} \leqslant \alpha_{1}, m, m^{\prime} \in d_{\alpha_{1}}, m, m^{\prime} \geqslant n_{1}$, then $m, m^{\prime} \in d_{\alpha_{1}}$
and $h_{y_{1}}(m)=h_{y_{1}}\left(m^{\prime}\right)$ implies that $h_{\alpha_{1}}(m)=h_{\alpha_{1}}\left(m^{\prime}\right)$.
Then let $h^{-1}[1]=h_{\alpha_{1}}^{-1}\left[n_{1}\right]$. This is a finite set.

Suppose we have defined $h^{-1}[i]$ for all $i<j$, and each $h^{-1}[i]$ is a finite set. Let $n_{j} \in d_{\alpha_{j}}$ be the first number such that:-

1) Let those $K_{i}, i \leqslant j$, which are in $J_{\alpha_{j}}$ be $K_{i_{1}}$, $\ldots K_{i_{k}}$. Then if $a_{1} \in \mathbb{K}_{i_{1}} \ldots a_{k} \in K_{i_{k}}$, and $m \geqslant n_{j}$, $a_{1} \cap \ldots \cap a_{k} \cap a_{\alpha_{j}} \cap h_{\alpha_{j}}^{-1}[m] \neq \phi$.
2) Let those y_{i}, $i \leqslant j w h i c h$ are less than or equal to α_{j} be $y_{i_{1}}, \ldots y_{i_{k}}$. Then if $m, m^{\prime} \in d_{\alpha_{j}}, m, m^{\prime} \geqslant n_{j}$, $m^{\prime} m^{\prime} \in d_{y_{i}}$, for $1 \leqslant r \leqslant k$ and $h_{y_{i_{r}}}(m)=h_{y_{i_{r}}}\left(m^{\prime}\right)$ implies $h_{\alpha_{j}}(m)=h_{\alpha_{j}}\left(m^{\prime}\right)$ for $1 \leqslant r \leqslant k$.
3) $h_{\alpha_{j}}^{-1}[m] \cap h^{-1}[i]=\phi$ for $m \geqslant n_{j}, i<j$.
(note: in the induction assumption clauses 1), 3) and 5) say that $d_{\alpha}, h_{\alpha}, J_{\alpha}$ behave regularly except on a finite set. In the definition of n_{j} we are taking n_{j} so big that all these finite sets have been exhausted in $m U_{n_{j}} h_{\alpha_{j}}^{-1}[m]$.)

Let $h^{-1}[j]=h_{\alpha_{j}}^{-1}\left[n_{j}\right]$. This is a finite set, and if we let $d=\operatorname{dom}(h)$ it is clear that h is a well-defined function on . By our construction it is also clear that:

1) $\left|\alpha-\alpha_{\beta}\right|<\omega$ for $\beta<\alpha$. In fact, $a-a_{y_{k}}$ is included in ${ }_{i \leqslant j} \mathrm{~h}^{-1}[\mathrm{i}]$, where j is the first number such that $\alpha_{j}>\gamma_{k}$ and $k<j$
2) For every $\beta<\alpha$ there is a finite set c such that if $m, n \in d-c, h_{\beta}(m)=h_{\beta}(n)$ implies $h(n)=h(m)$. In fact such a c is $i \leqslant j h^{-1}[i]$, where j is the
first number such that $\alpha_{j}>\gamma_{k}$ and $j>k,\left(\beta=y_{k}\right)$.
3) If $n_{1}, \ldots n_{i}$ is a finite subset of ω, there is $n \in \omega$ so that whenever $a_{1} \in \bar{i}_{n_{1}} \ldots a_{i} \in K_{n_{i}}$ and $m \geqslant n$, $a_{1} \cap \ldots \cap a_{i} \cap a \cap h^{-1}[m] \neq \phi$. In fact, such an n is the first number such that $\mathrm{K}_{\mathrm{n}_{1}}, \ldots \mathrm{i}_{\mathrm{n}_{\mathrm{i}}} \in J_{\alpha_{n}}$, and $n_{1}, \ldots n_{i}<n$.

So we can proceed to construct $h_{\alpha}, d_{\alpha}, J_{\alpha}$, exactly as in the successor ordinal case.

Finally leet q be generated by $\left\{d_{\alpha}: \alpha<\omega_{1}\right\} u$ $\cup \cup\left\{J_{\alpha}: \alpha<\omega_{1}\right\}$. q is a p-point such that for no $f \in{ }^{\omega} \omega$ is $f(q)$ rare.
$4 \cdot 4$
We now consider two other orderings on ultrafilters, weaker than the Rudin-ñisler order but stronger than the Rudin-Frolik order.

Suppose now that p, q are r.u.f.s and that $f(q)=p$ for some $f \in{ }_{\omega}{ }_{\omega}$.

Def 4.41 We say $q_{E G}>p$ if for no a $\in q$ is $\left|f^{-1}[n] n a\right|<\omega$ for all n. This ordering is due to M. E. Rudin in [14].

Def $4 \cdot 42$ We say q Is p if the canonical embedding $e: \omega^{+} / \mathrm{p} \leqslant \omega^{+^{\omega}} / \mathrm{q}$ is such that $e\left[\omega^{+} / \mathrm{p}\right]$ is an initial segment of $\omega^{+}+q$. This definition is due to Blase in [2].

The chain of implication is:-
$q^{\sim} R F^{>} p^{\sim} \rightarrow q^{\prime} S^{>} p \rightarrow q_{E G}>p \rightarrow q_{R K^{\prime}} p ;$ none of the reverse implications hold. Most of the proofs and counterexamples are trivial. First here is a criterion for q IS $>$.

Lemma 4.43 Suppose $f(q)=p$. Then q IS p of whenever $h \in{ }^{\omega} \omega$ is such that $\left|h\left[f^{-1}[n]\right]\right|<\omega$ for all n, there is a \in, $\left|h\left[f^{-1}[n] \cap a\right]\right|=1$ for all n.

Proof Suppose $e\left[\omega^{+} / \mathrm{p}\right]$ is an initial segment of ω^{+} / q. Let h be a function satisfying the condition of the Lemma. Define f^{\prime} so that $f^{\prime} \mid f^{-1}[n]$ is constant with value greater than $\max \left\{n\left[f^{-1}[n]\right]\right\}$. Then $f^{\prime \sim} \in \in\left[\omega^{+} / p\right]$, and $f^{\prime \sim}>h^{\sim}$. So $h^{\sim} \in \in\left[\omega^{+} / p\right]$, and so there is $h^{\prime} \in h^{\sim}, h^{\prime} \mid f^{-1}[n]$ is constant for all n. So if we let $a=\left\{m: h(m)=h^{p}(m)\right\}$, a. $\in p$ and $h\left[f^{-1}[n] \cap a=1\right.$ for all n.

Conversely, suppose the condition holds.
Let $h^{\sim} \leqslant g^{\sim} \in e\left[\omega^{+} / p\right]$. Then we can assume $h(n) \leqslant g(n)$ for all n. But $\left|g\left[f^{-1}[n]\right]\right|=1$ for all n, so $\left|h\left[f^{-1}[n]\right]\right|<\omega$ for all n. Let a be the set such that $\left|h\left[f^{-1}[n] n a\right]\right|=1$ for all n. Define h^{\prime} so that $h^{\prime} \mid f^{-1}[n]$ is constant
with the same value as $h \mid f^{-1}[n] \cap$ a.
Then $h^{\prime} \in h^{\sim}$, and $h^{\prime \sim} \in \in\left[\omega^{+} / p\right]$.
So $e\left[\omega^{+} / \mathrm{p}\right]$ is an initial segment of $\omega^{+{ }^{\omega}} / q$ Using this we can shew:-

Theorem $4 \cdot 44 \quad \mathrm{p}^{\sim}<_{R F} \mathrm{q}^{\sim}$ implies $\mathrm{p}<_{\text {IS }} q$.

Proof Let $q=\Sigma[Y, p]$, where X is made discrete y $\left\{a_{n}: n \in \omega\right\}$. Then $f(q)=p$, where $f\left[a_{n}\right]=\{n\}$.

Suppose h is a function such that $\left|h\left[a_{n}\right]\right|<\omega$ for all n. Then for all n, there is $b_{n} \in X_{n}$, $b_{n} \subseteq a_{n}$, such that $\left|h\left[b_{n}\right]\right|=1$.

$$
\begin{aligned}
& \text { If we let } b=\bigcup_{n \in \omega^{\prime}}^{b_{n},}\left\{n: b \in X_{n}\right\}=\omega \in p, \\
& \text { So } b \in q \text {. By the lemma, } p<{ }_{\text {IS }} q \text {. }
\end{aligned}
$$

The only hard pant in the chain of implication is to shew that the converse of theorem $4 \cdot 144$ does not hold. Proofs are in [2] and [14].

We will now consider the minimal elements in these four orderings. It is not hard to shew that:

1) $A \quad<_{R i}$-minimal ultrafilter is Ramsey.
2) $A<_{\text {EG }}$-animal ultrafilter is a p-point.

In [13] M.E.Rudin asked the following two quest-ions:-

1) Is there a $<_{R F^{-m i n i m a l}}$ ultrafilter that is
not a p-point?
2) If the answer to 1) is yes, is there an ultrafilter that is not in the closure of any countable discrete set, but is in the closure of some countable set?

Kunen found examples for both these conjectures, assuming the Continuum Hypothesis. His results are announced in [10]. They are:-

1) There is a f.u.f. p, not a p-point, such that p is not in the closure of any countable set.
2) There is a countable subset X of \mathbb{N}^{*}, such that if $x \in X, x$ is not in the closure of any countable discrete set, yet $x \in \overline{X-\{x\}}$.

An answer to question 1) would be found by exhibiting an ultrafilter that is $<_{R F}$-minimal but not $<_{E G}$-minimal. Rudin and Bliss both construct an ultrafilter that is $<_{R F}$-minimal but not $<_{I S}{ }^{- \text {minimal. }}$ Here we construct, assuming the C.H., an ultrafilter that is $<_{I S}{ }^{-m i n i m a l}$ but not $<_{G G}$ minimal.

Theorem 4.45 (C.H.) There is an ultrafilter q, not a p-point, such that for no $p \in \mathbb{T}^{*}$ is ω^{+} / p. embeddable as a proper initial segment of ω^{+} / q.

Proof Let f be any function such that $\left|f^{-1}[n]\right|=\omega$ for all n. Let the filter F_{0} be generated by: $\left\{\omega-a:\left|a \cap f^{-1}[n]\right|<\omega\right.$ for all $\left.n\right\} \cup\left\{\left\{_{m} \bigcup_{n} f^{-1}[m]: n \in \omega\right\}\right.$.

Then if q extends $F_{0} q$ is not a p-point.

Enumerate ${ }^{\omega} \omega$ as $<f_{\alpha}: \alpha<\omega_{1}>$. For each α we will ensure that q contains wits so that $\omega^{+1} / f_{\alpha}(q)$ is not cmbeddable as a proper initial segment of ω^{+} / q.

Def Let $H=\left\{h \in \omega_{\omega}:\left|h\left[f^{-1}[n]\right]\right|<\omega\right.$ for all $\left.n\right\}$.

Def If $h, j \in H$, a concatenation of h and j is a function $k \in H$ such that for all n, m $k(n)=k(m)$ eff $h(n)=h(m)$ and $j(n)=j(m)$. (ie. k is a finer function than both h and j).

Def If $L=\left\{h_{n}: n \in \omega\right\} \subseteq H$, a concatenation of L is a function $k \in H$ such that if $i, j \in f^{-1}[n]$, $k(i)=k(j)$ iff $h_{m}(i)=h_{m}(j)$ for $a l l \quad m \leqslant n$. (i.e. for each n, k is finer than h_{n} on $U_{m} n^{-1}[m]$, which is a set in F_{0}.)

Induction Assumption

For every α we will define $d_{\alpha}, h_{\alpha}, J_{\alpha}$ and F_{α} such that:-

1) F_{α} is a proper filter generated by $F_{0} \cup\left\{d_{\beta}: \beta<\alpha\right\} \cup \cup\left\{J_{\beta}: \beta<\alpha\right\}$.
2) $h_{\alpha} \in H$, and if $\beta<\alpha$, there is $m \in \omega$, h_{α} is finer than h_{β} on $n \geqslant m f^{-1}[n]$.
3) If $\beta \leqslant \alpha, J_{\beta} \subseteq J_{\alpha,}$, and $\alpha \in{ }^{\top}{ }^{\top}$, thur is $\square \in \omega$, for $a I I^{n} m \geqslant n$, then if $h_{\alpha}^{-1}[m] \cap$ a $\neq \phi$, then $h_{\alpha}^{-1}[m] \subseteq a$.

Stage 0 We have constructed Fo. Let $d_{0}=\omega, h_{0}=f$,

$$
\begin{equation*}
J_{0}=\phi . \tag{61}
\end{equation*}
$$

Stage $\alpha>0$ Let F be generated by $\cup_{\beta<\alpha} F_{\beta}$, and leet $J={ }_{\beta<\alpha} \mathcal{J}_{\beta}$. Let h be a concatenation of $\left\{h_{\beta}: \beta<\alpha\right\}$. Relabel $\left\{\alpha_{\beta}: \beta<\alpha\right\}$ as $\left\{e_{n}: n \in \omega\right\}$, and assume without loss of generality that $e_{n} \supseteq e_{n+1}$ for ail n.

Let $A_{n}=\left\{m:\left|f_{\alpha}\left[h^{-1}[m] \cap e_{n}\right]\right|=\omega\right\}$.
Let $B_{n}=m \in \in_{n} h^{-1}[m] \cap e_{n}$.

Case 1 For some $n, F \cup\left\{f_{\alpha}^{-1}[n]\right\}$ has the f.i.p. Let $\alpha_{\alpha}=f_{\alpha}^{-1}[n], J_{\alpha}=J, h_{\alpha}=h$. The induction hypothesis still holds.

Case $2 F \cup\left\{B_{n}: n \in \omega\right\}$ still. hc:s the f.i.p. Then we can find a set d_{α} se that $f_{\alpha} \mid d_{\alpha}$ is one-to-one, and $d_{\alpha} \cap e_{n} \cap h^{-1}[m]$ is infinite for $m \in A_{n}$.
Let $J_{\alpha}=J, h_{\alpha}=h$. The induction hypothesis still holds.

Case 3 Neither case 1 nor case 2 hold.
So for some $n \in \omega$, B_{n} cannot be added to F.
Certainly $d_{\alpha}=e_{n} \cap C_{\omega}\left(B_{n}\right)$ is already in F.
Without loss of generality we can assume that
$\left|f_{\alpha}\left[h^{-1}[m]\right]\right|<\omega$ for all m.
Let k be a concatenation of f_{α} and h. Define h_{α} as follows:-
k is finer than f_{α}.
So if $k^{-1}[n] \cap f_{\alpha}^{-1}[m] \neq \phi, k^{-1}[n] \subseteq f_{\alpha}^{-1}[m]$.
Let I be a function such that:
$\left|I\left[f_{\alpha}^{-1}[n]\right]\right|=n$ for all n.
If $k^{-1}[m] \cap \epsilon_{n} \cap f_{\alpha}^{-1}[n]$ is infinite, then
$\left|I\left[k^{-1}[m] \cap e_{n}\right]\right|=n$ and $I^{-1}[r] \cap k^{-1}[m] \cap e_{n}$ is either void or infinite.

Now leet h_{α} be the concatenation of k and 1. Let $J_{\alpha}=\left\{\omega-a: \exists m\left|h_{\alpha}\left[k^{-1}[n] \cap a\right]\right|<m\right.$ for all $\left.n\right\} \cup J$.

Claim $1 F \cup\left\{d_{\alpha}\right\} \cup \cup J J_{\alpha}$ has the f.i.p.

Proof Say ω-a is such that $\left|h_{\alpha}\left[k^{-1}[n] \cap a\right]\right|<m$ for all n, Let $n \in \omega$, and let $b \in J$.

Case 1 did not occur. Hence we can find $m^{\prime}>m$, sQ that $e_{n} \cap f_{\alpha}^{-1}\left[m^{\prime}\right] \cap k^{-1}\left[n^{\eta}\right]$ is infinite, for some n^{\prime} so that $k^{-1}\left[n^{\prime}\right] \subseteq b$. Then certainly
$\left|h_{\alpha}\left[k^{-1}\left[n^{\prime}\right] \cap e_{n} \cap f_{\alpha}^{-1}\left[m^{\prime}\right] \cap(\omega-a)\right]\right| \geqslant m^{\prime}-m$. Certainly $b \cap e_{n} \cap d_{\alpha} \cap(\omega-a) \neq \phi$.

It is easy to check that the induction hypothesis is still true.

Finally, let q be an ultrafilter extending $\beta<\omega_{1}^{F} \beta^{\prime}$ Firstly q is not a p-point. Let $g \in \omega_{\omega}$. $g=f_{\alpha}$ for some α.

Claim $2 \omega^{+}{ }^{\omega} / f_{\alpha}(q)$ is $\omega^{\text {not embeddable }}$ as a proper initial segment of ω^{+} / q.

Proof Suppose Case 1 cured. Then $f_{\alpha}(q)$ is not a f.u.f.

Suppose Case 2 occured, Then f_{α} is one-to-one on
a set d_{α} in q. So $\omega^{+}{ }^{\omega} / f_{\alpha}(q)$ is isomorphic to ω^{+} / L 。

Suppose Case 3 occured. 1 is a function such that $\left|I\left[f_{\alpha}^{-1}[n]\right]\right|<\omega$ for all n, yet for no $a \in q$ is $\left|I\left[f_{\alpha}^{-1}[n] \cap a\right]\right|=1$ for all n.
By Lemma $4 \cdot 43, \omega^{+}{ }^{\omega} / f_{\alpha}(q)$ is not embeddable as an initial segment of ω^{+} / q.
q is $<_{I S}$-minimal but not $<_{E G}$-minimal.

Remark 4.46 q has only one constellation in its top sky, so q is an example of a rare ultrafilter:: that is not a p-point.

Remark 4-47 Though $\omega^{+\omega} / q$ has no proper initial segment that is an ultrapower, it has as initial l segment that is a limit ultrapower.
viz $\omega^{+} / q / G$, where G is the filter generated by $\{e q(h): h \in H\}$

This is an example of an elementary substructure of an ultrapower that is not an ultrapower, as promised in $4 \cdot 2$.

$4 \cdot 5$

So far we have classified ultrafilter by their topological, properties and by their sky and constell.. ation sets. The question now arises: how complete is this classification?

Firstly note that neither collection of properties
is sufficient by itself to categorize all the properties of ultrafilters. In [14] an example is given of two ultrafilters with the same sky and constellation configuration yet with different topological properties, and in [15] it is shewn that any two p-points have the same topological properties, though one may be rare and the other not.

Problem If p and q are f.u.f.s with isomorphic sky and constellation sets and with an auto-homeomorphism of N^{*} mapping p to q, (so that p and q have the same topological properties), find a properiy Φ possessed by p : but not by q.

Of course, we wish to exclude the cases when Φ is of the form "a $\in \mathrm{p}$ " for some $\bar{a} \subseteq \omega$. So we require that Φ is invariant under permutations, that is, if $\Phi(p)$ holds, and π is a permatation of the integers, $\Phi(\pi(\mathrm{p}))$ holds.

The simplest case is to find some permutation invariant property possessed by some but not all Ramsey ultrafilters. I have not been successful in looking for such a property. In fact, I would conjecture that:

1) There is a model of Z.F.C. + C.F. in which every Ramsey ultrafilter has the same permutation invariant properties.
2) There is a model of Z.F.C. + C.H. in which the following holds: whenever p and q are f.u.f.s
with isomorphic sky and constellation sets and with an auto-homeomorphism of N^{*} mapping p to q then p and q possess the same permutation invariant properties.

Remark It cannot be true that in every model of Z.F.C. + C.H. every Ramsey ultrafilter has the same permutation invariant properties, for if $V=I$, there is a definable well-ordering of the subsets of ω which can be used to define a Ramsey ultrafilter p_{0}. So if we take Φ to be " p ; is isomorphic to p_{0} ". some but not all Ramsey ultrafilters possess this property.

We can find a property shared by some but not all Ramsey ultrafilters if we assume Martin's Axiom $+2^{x_{0}}>\lambda_{1}$.

Def 4.51 If P is a partially ordered set, we say $D \subseteq P$ is dense iff $\forall x \in P$, $\exists y \in D, y \leqslant x$.

Def 4.52 If $x, y \in P$, we say x and y are compatibla if there is $z \in P, z \leqslant x$ and $z \leqslant y$.

Martin's Axiom is the following statement:4.53 Whenever P is a partially ordered set, and S is a collection of dense subsets of P, and $|P|<2^{K_{0}}$, and $|S|<2^{Y_{0}}$, and every set of mutually incompatible ellements is at worst countable, then there is a set $G \subseteq P$ such that every two members of G are compatible and $G \cap D \neq \phi$ for every $D \in S$.

We abbreviate this to M.A. The set G found is said to be generic for S :

It can be shewn that C.H. implies M.A., yet it is consistent that M.A. and $2^{\chi_{0}}>\aleph_{1}$. See [16]

Def 4.54 For q a f.u.f., we say q is Super-Ramsey if it is Ramsey and whenever $S \subseteq q,|S|<2^{2} 0$, there is $a \in q,|a-b|<\omega$ for $a l l$ b b.

Theorem 4.55

1) M.A. implies there are Super-Ramsey ultrafilter.
2) M.A. $+2^{\lambda_{0}}>\boldsymbol{x}_{1}$ implies that there are Ramsey ultrafilter that are not Super-Ramsey.

Proof 1) is due to Booth [3]. It follows from the next lemma by using the construction of $2 \cdot 69$.

Lemma 4.56 M.A. implies that if F is a non-principal filter generated by $\kappa<2^{\mathcal{N}_{0}}$ sets, then there is an infinite $a \subseteq \omega,|a-b|<\omega$ for all $b \in F$.

Proof of 2) Suppose $2^{x_{0}}=\lambda>\mathbb{N}_{1}$. Let $<a_{\alpha}: \alpha<\omega_{1}>$ be a sequence of sets such that

1) $\left|a_{\alpha}-a_{\beta}\right|<\omega$ for $\alpha>\beta$.
2) $\left|a_{\beta}-a_{\alpha}\right|=\omega$ for $\alpha>\beta$.

We will construct a Ramsey ultrafilter p such that $a_{\alpha} \in p$ for all $\alpha<\omega_{1}$, yet for no $a \in p$, $\left|a-a_{\alpha}\right|<\omega$ for all $\alpha<\omega_{1}$.

Enumerate ${ }^{\omega} \omega$ as $\left\langle f_{\beta}^{\prime}: \omega_{1} \leqslant \beta<\lambda>\right.$.

For every $\beta_{2} \omega_{1} \leqslant \beta<\lambda$ we will add a set d_{β} such that f_{β} is one-to-one or constant on d_{β}, and if e is a member of the filter generated by $\left\{\alpha_{\beta}: \beta<\lambda\right\}$, then $\left|e-a_{\alpha}\right|=\omega$ for some $\alpha<\omega_{1}$. Certainly $\left|e-a_{\delta}\right|=\omega$ for all $\delta \geqslant \alpha$. For convenience leet $\mathrm{a}_{\beta}=\mathrm{a}_{\beta}$ for $\beta<\omega_{1}$.
Suppose we have found d_{γ} for all $\gamma<\beta$, $\beta \geqslant \omega_{1}$. Let $|\beta|=\kappa<2^{\kappa_{0}}$. Let F be generated by $\left\{a_{\gamma}: \gamma<\beta\right\}$. Let $\left\{e_{\gamma}: \gamma<\kappa\right\}$ be a base for F; we can assume that this base is closed under finite intersection.

Induction Assumption For every y there is $\alpha<\omega_{1}$, $\left|e_{y}-a_{\alpha}\right|=\omega$.

Consider $f_{\beta^{\prime}}$ First we try to make f_{β} constant on d_{β}.

Case 1 For some $n \in \omega$, for all γ there is α, $\left|e_{\gamma} \cap f_{\beta}^{-1}[n]-a_{\alpha}\right|=\omega_{0}$. Then let $d_{\beta}=f_{\beta}^{-1}[n]$.

Case 2 Case 1) did not occur. We will make f_{β} one-to-one on d_{β}.

Claim For all γ there is $\alpha_{y}<\omega_{1}$ such that $\left|f_{\beta}\left[e_{\gamma}-a_{\alpha_{\gamma}}\right]\right|=\omega$.

Proof Fix y. Suppose the claim does not hold at y. So $\left|f_{\beta}\left[e_{\gamma}-a_{\alpha}\right]\right|<\omega$ for all $\alpha<\omega_{1}$.

Let $A_{\alpha}=\left\{n:\left|f_{\beta}^{-1}[n] \cap\left(e_{\gamma}-a_{\alpha}\right)\right|=\omega\right\}$. Then A_{α} is finite for all α, and as $\alpha>\beta$ implies that
$\left|a_{\alpha}-a_{\beta}\right|<\omega, \quad \alpha>\beta$ implies $A_{\alpha} \supseteq A_{\beta}$.
So for some α^{*}, A_{α} must remain fixed for $\alpha \geqslant \alpha^{*}$. Case 1 did not hold. So for all $n \in \omega_{\text {, there }}$ is γ_{n}, so that for all α, $\left|e_{\gamma_{n}} \cap f_{\beta}^{-1}[n]-a_{\alpha}\right|<\omega_{0}$. Let $e={ }_{n \in A_{\alpha} * e_{\gamma_{n}}} \cdot$
Then $\left|e \cap f_{\beta}^{-1}[n]-a_{\alpha}\right|<\omega$ for atli $n \in A_{\alpha}{ }^{*}$, all α. Hence $\left|e \cap e_{\gamma}-a_{\alpha}\right|<\omega$ for all α, contradicting the induction hypothesis for $e \cap e_{\gamma}$.

Define a partially ordered set P as follows: The elements of P are of the form <st>, where $s=\left\langle\left\langle n_{1}, m_{1}\right\rangle, \ldots\left\langle n_{i}, m_{i}\right\rangle\right\rangle ;$ for $f_{\beta}\left(n_{j}\right)=m_{j}, \quad 1 \leqslant j \leqslant i$, and $n_{j}=n_{k}$ ff $m_{j}=m_{k}, 1 \leqslant j, k \leqslant i$.
t is a finite subset of κ.

We say $\left\langle s^{\prime}, t^{\prime}\right\rangle \leqslant\langle s, t\rangle$ iff

1) s^{\prime} Extends s.
2) t^{\prime} includes t.
3) if $\left\langle s^{\prime}, t^{\prime}\right\rangle \neq\langle s, t\rangle$, then for every $\gamma \in t$ there is $\langle n, m\rangle \in s^{\prime}=s, \quad n \in e_{\gamma}-a_{\alpha_{\gamma}}$.
Now, $|P|=\kappa<\lambda$.
$\langle s, t\rangle$ and $\left\langle s^{\prime}, t^{\prime}\right\rangle$ are compatible if $s=s^{\prime}$, and so every set of mutually incompatible. Elements is at worst countable.

Let $A_{\gamma}=\{\langle s, t\rangle: \gamma \in t\}$ for all $\gamma<\kappa$.
Let $B_{n}=\{\langle s, t\rangle:|s| \geqslant n\}$ for all $n \in \omega_{\text {. }}$.

By the claim, each A_{γ} and B_{n} is dense. So let G be a generic set meeting them.
Let $a_{\beta}=\{n$: for some $\langle\theta, t\rangle \in G, n \in \operatorname{dom}(s)\}$

Then d_{β} is an infinite set, as G meets every B_{n} 。

If $\langle n, m\rangle \in S$ where $\langle s, t\rangle \in G$, and $\left\langle n^{\prime}, m\right\rangle \in s^{\prime}$ where $\left\langle s^{\prime}, t^{\prime}\right\rangle \in G$, then $\left.a s<s, t\right\rangle$ and $\left\langle s^{\prime}, t^{\prime}\right\rangle$ are compatible, $n^{\prime}=n$. So $f_{\beta} \mid d_{\beta}$ is one-to-one.

Also G meets every A_{γ}. Hence for every y and every $n d_{\beta}$ will contain at least n members of $e_{\gamma}-a_{\alpha_{\gamma}}$. so $\left|a_{\beta} \cap e_{\gamma}-a_{\alpha_{\gamma}}\right|=\omega$.

The filter generated by $F \cup\left\{d_{\beta}\right\}$ is proper and obeys the induction hypothesis.

Finally let q be generated by $\left\{d_{\beta}: \beta<\lambda\right\}$. q is a Ramsey ultrafilter that is not Super-Ramsey.

Chapter 5 Ultrafilter without

the Continuum Hypothesis.

$5 \cdot 1$

Classification of ultrafilter becomes very diffcult when the C.H. is no longer assumed. The special sorts of ultrafilter discussed previously do not necessarily exist in all models of set theory. For example:

Theorem $5 \cdot 11$ (Kunen, unpublished)
If M is a model of Z.F.C. obtained by adding \mathcal{X}_{2} random reals to L, there is no Ramsey ultrafilter.

But we noted in 4.5 that M.A. implies that there are Ramsey ultrafilter.

In fact, in his thesis [2], BIas even conjectused that it is consistent with Z.F.C. that there are no special sorts of ultrafilter at all; that is, for every permutation invariant formula Φ there is a model of Z.F.C. in which either every f.u.f. possesses this property or no f.u.f. posses this property. We produce a counterexample to this conjecture. Firstly we need a result of Kunen [10].

Theorem 5.12 There is an ultrafilter which is not generated by less than $2^{x_{0}}$ sets. (Though it is consistent with Z.F.C. that $2^{x_{0}}>\mathcal{N}_{\text {, }}$ and there is an ultrafilter generated by $\mathcal{X}^{(}$sets.)

Recall that if q is a f.u.f.,
$q \times q=\{a \subseteq \omega x \omega:\{n:\{m:\langle m, n\rangle \in a\} \in q\} \in q\}$. This is then a non-principal ultrafilter over $\omega x \omega$.

Our sentence Φ is:-
$\Phi(p)$ iff "there is an ultrafilter generated by less than $2^{X_{0}}$ sets and p is one such or else every ultrafilter is generated by at least $2^{\mathcal{X}_{0}}$ sets and p is isomorphic to an ultrafilter of the form $q \times q$, for some f.u.f. q."

Theorem $5 \cdot 13 \Phi$ is permutation invariant and some but not all f.u.f.s have property Φ.

Proof The only nontrivial part is to shew that if no ultrafilter is generated by less than $2^{x_{0}}$ sets then there is an ultrafilter p not isomorphic to qua for some q. We assume that no ultrafilter is generated by less than $2^{\chi_{0}}$ sets and construct p by induction.

Enumerate the bijection from ω to $\omega x \omega$ as $\left\langle f_{\alpha}: \alpha\left\langle 2^{x_{0}}\right\rangle\right.$. For every $\alpha<2^{\pi_{0}}$ we will construct a filter F_{α} such that $f_{\alpha}\left(F_{\alpha}\right)$ cannot be extended to qua for any f.u.f. q.

Induction Hypothesis:-

1) $\alpha>\beta \rightarrow F_{\alpha} \supseteq F_{\beta^{\prime}}$
2) F_{α} is generated by at most $|\alpha|+\omega$ sets.

Suppose we have constructed F_{β} for all $\beta<\alpha$. Let F be generated by $\bigcup_{\beta<\alpha} F_{\beta} \cdot F$ is generated by at most $|\alpha|+\omega$ sets.

Let $G=f_{\alpha}(F)$. Let π_{1} and π_{2} denote the projections of $\omega x \omega$ onto the first and second coordinates respectively.

Case 1 For some i., if we let $a=\{i.\} \times \omega$, then $G \cup\{a\}$ has the f.i.p. Suppose qua extends $G \cup\{a\}$. Then $\{m:\langle m, n\rangle \in a\}=\{i\} \in q$. q is principal. Let F_{α} bc generated by $\left\{f_{\alpha}^{-1}[b]: b \in G \cup\{a\}\right\} . F_{\alpha}$ is still generated by $|\alpha|+\omega$ sets.

Case 2 For some j, if we let $a=\omega x\{j\}$, then $G \cup\{a\}$ still has the f.i.p. Suppose $q x q$ extends $\mathrm{G} \cup\{a\}$. Then $\{n:\{\mathrm{m}:\langle\mathrm{m}, \mathrm{n}\rangle \in \mathrm{a}\} \in \mathrm{q}\}=\{j\} \in \mathrm{q}$. So q is principal. Let F_{α} be generated by $\left\{f_{\alpha}^{-1}[b]: b \in G\right.$ $\cup\{a\}\} . F_{\alpha}$ is still generated by $|\alpha|+\omega$ sets.

Case 3 Neither case 1 nor case 2 occur. So neither $\pi_{1}(G)$ nor $\pi_{2}(G)$ can be extended to a principal ultrafilter. But $\pi_{1}(G)$ is generated by less than $2^{\chi_{0}}$ sets, and so cannot be an ultrafilter.

Let $a_{1} \subseteq \omega$ be such that both $\pi_{1}(G) \cup\left\{a_{1}\right\}$ and $\pi_{1}(G) \cup\left\{\omega-a_{1}\right\}$ possess the f.i.p.

The filter generated by $\pi_{1}(G) \cup\left\{a_{1}\right\}$ is still generated by less than $2^{\chi_{0}}$ sets, so let $a_{2} \subseteq a_{1}$
be such that both $\pi_{1}(G) \cup\left\{a_{2}\right\}$ and $\pi_{1}(G) \cup\left\{a_{1}-a_{2}\right\}$ possess the f.i.p.

Re-iterate this process to obtain a sequence of sets $a_{1} \supset a_{2} \supset \ldots \supset a_{n} \supset \ldots$ such that $\pi_{1}(G) \cup\left\{a_{n}\right\}$ and $\pi_{1}(G) \cup\left\{a_{n}-a_{n+1}\right\}$ possess the f.i.p., for every n. Let $b=\left\{\langle m, n\rangle: m \notin a_{n}\right\}$ 。
Let G^{\prime} be generated by $G \cup\{b\} \cup\left\{a_{n} \times \omega: n \in \omega\right\}$.

Claim $1 G^{\prime}$ is a proper filter.

Proof Let $a_{n_{1}} \times \omega, \ldots a_{n_{i}} \times \omega$ be a finite subset of $\left\{a_{n} x \omega: n \in \omega\right\}$.
Take $r>\max \left\{n_{1}, \ldots n_{i}\right\}$. Then $a_{r} \times \omega \subseteq a_{n_{j}} \times \omega, 1 \leqslant j \leqslant i$. Let $c=\omega x\{s: s>r\}$. Then $c \in G$ already, as case 2 did not occur.

Let $d \in G$. We shew that $d \cap b \cap\left(a_{r} \times \omega\right) \neq \phi$. $\pi_{1}(G) \cup\left\{a_{r}-a_{r+1}\right\}$ possesses the f.i.p. So
$G \cup\left\{\left(a_{r}-a_{r+1}\right) \times \omega\right\}$ possesses the f.i.p. In particular, $d \cap c \cap\left(a_{r}-a_{r+1}\right) \times \omega \neq \phi$
Let $\langle m, n\rangle \in d \cap c \cap\left(a_{r}-a_{r+1}\right) x \omega$.
Then $n>r$ as $\langle m, n\rangle \in c . m \notin a_{r+1}$ but $m \in a_{r}$. Certainly $m \notin a_{n}$.

So $\langle m, n\rangle \in b \cap d \cap a_{r} x \omega_{0}$

Claim 2 G' cannot be extended to an ultrafilter of the form $q \times q$, for q a f.u.f.

Proof Suppose not. Let $q x q \supseteq G^{\prime}$. Certainly
$\pi_{1}\left(G^{\prime}\right) \subseteq \pi_{1}(q \times q)=q$.
In particular $a_{n} \in q$ for every n.
Hence $\left\{m:\langle m, n\rangle \in C_{\omega \mathbb{X}}(b)\right\}=a_{n} \in q$ for every n. $\left\{n:\left\{m:\left\langle m, n>\in C_{\omega x \omega}(b)\right\} \in q\right\}=\omega \in q\right.$.
So $C_{\omega X \omega}(b) \in q \times q$, contraideting the fact that $b \in q \times q$.

Let F_{α} be generated by $\left\{f_{\alpha}^{-1}[d]: \alpha \in G^{\prime}\right\} . F_{\alpha}$ is generated by $|\alpha|+\omega+1=|\alpha|+\omega$ sets.

Finally let p extend $U\left\{F_{\alpha}: \alpha<2^{x_{0}}\right\}$. p is never isomorphic to $q \times q$, for q a f.u.f.

Remark 5.14 As noted in 3.2 the property of having p as a $\mathrm{RF}^{>-p r e d e c e s s o r ~ i s ~ a ~ t o p o l o g i c a l ~ i n v a r i a n t . ~}$ Also an ultrafilter is generated by less than $2^{K_{0}}$ sets iff in N^{*} it has a neighbourhood base of power less than $2^{\mathcal{X}_{0}}$. This is also a topologically invariant property.

So if we define Φ^{\prime} by:-
$\Phi^{\prime}(\mathrm{p})$ iff "there is a point of \mathbb{N}^{*} with a neighbourhood base of power less than $2^{\mathcal{X}_{0}}$ and p is one such or else n \propto point of N^{*} has a neighbourhood base of power less than $2^{\chi_{0}}$ and p has a $\mathrm{RF}^{\text {P-predecessor }}$ isomorphic to qxq , for some $q \in \mathbb{N}^{*} "$ 。

Then a modification of Theorem $5 \cdot 13$ will shew that some but not all ultrafilter have the property Φ^{\prime}, and that Φ^{\prime} is a topologically invariant
property.

Remark $5 \cdot 15$ These properties Φ and Φ^{\prime} are not very natural or significant, and it is doubtful whether they can be used for some interesting classification of ultrafilters.

5•2
As mentioned at the beginning of Chapter 4, if the C.H. holds, and a is a countable model with a countable language, and p is a f.u.f., α^{ω} / p is saturated.

This is not necessarily true if the C.H. is no longer assumed. Let us consider the order type of $\omega^{\omega} / \mathrm{p}$.

Def $5 \cdot 21$ An order type S is said to be an $\eta_{\alpha}=$ set if whenever $A, B \subseteq S, \quad 0 \leqslant|A|,|B|<\mathcal{X}_{\alpha}$, and $A<B$, (that is, if $a \in A$ and $b \in B$ $a<b$) then there is $c \in S, A<c<B$.
η_{α}-sets are \mathcal{K}_{α}-saturated order types. If X and Y are η_{α}-sets of cardinality \mathcal{K}_{α} they are isomorphic. As all f.u.f.s are \mathcal{K}_{1}-good, the order type of $\omega^{\omega} / \mathrm{p}$ is $\omega+\left(\omega^{*}+\omega\right) \eta$ where η is an $\eta_{1}-$ set.

Let the order type of $\omega^{\omega} / \mathrm{p}$ be denoted by $\omega+\left(\omega^{*}+\omega\right) \eta_{\mathrm{p}}$. First note that if $2^{\boldsymbol{x}_{0}}=\mathcal{K}_{\alpha}>\mathcal{X}_{1}$ it does not necessarily follow that η_{p} is not a
η_{α}-set, for every f.u.f p. In fact,

Theorem $5.22 \mathrm{M} . \mathrm{A}$. implies that there is a f.u.f. p such that η_{p} is a η_{α}-set, where $2^{x_{0}}=\mathcal{x}_{\alpha}$.

Remark 5.23 Solovay, Silver and Bucker (unpublished) have proved a stronger result, that M.A. implies that there is an ultrafilter p such that for every countable model a with a countable language, a^{ω} / p is saturated. The proof of this result is by a generalization of the proof of 5.22; we will give a sketch proof of $5 \cdot 22$.

Proof We will consider all the possible pairs <A,B> in $\omega \omega / \mathrm{p}$ such that $\mathrm{A}<\mathrm{B}$. We construct p . by induction; suppose at stage γ we have a filter generated by $s,|s|<2^{x_{0}}$, and have to consider the γ th pair <A,B>.

Define a partially ordered set P by:
an element of P is of the form $\langle r, s, u, v\rangle$ where r is a function from a finite subset of ω to ω, $s \in S_{\omega}(S), \quad u \in S_{\omega}(A), \quad v \in S_{\omega}(B)$.
Vie say $\left\langle r^{\prime}, s^{\prime}, u^{\prime}, v^{\prime}\right\rangle\langle\langle r ; s, u, v\rangle$ whenever

1) r^{\prime} extends $r, s^{\prime} \supseteq s, u^{\prime} \supseteq u, v^{\prime} \supseteq v$.
2) If $\langle n, m\rangle \in r^{\prime}-r$, then $n \in d$ for all $d \in \approx$, $f(n)<m$ for all $f \in u, m<g(n)$ for all $g \in v$.

Then P has no uncountable set of mutually
incomparable elements, and $|P|<2^{x_{0}}$.
Define dense sets as follows:
$A_{b}=\{\langle r, s, u, v\rangle: b \in s\}$ for each $b \in S$.
$B_{f}=\{\langle r, s, u, v\rangle: f \in u\}$ for each $f^{\sim} \in A$.
$C_{g}=\{\langle r, s, u, v\rangle: g \in v\}$ for each $g^{\sim} \in B$.
$D_{n}=\{\langle r, s, u, v\rangle:|r| \geqslant n\}$ for each $n \in \omega$.

Let G be a generic set meeting them all. Define a partial. function h by

$$
h(n)=m \text { iff } \exists\langle r, s, u, v\rangle \in G, \quad\langle n, m\rangle \in r .
$$

Let $\mathrm{d}=\operatorname{dom}(\mathrm{h})$. Then we can add d to the filter, and if q is a f.u.f. extending it, in ω^{ω} / q,

$$
\mathrm{A}<\mathrm{h}^{\sim}<\mathrm{B} .
$$

$5 \cdot 3$
We now introduce the notion of a scale.

Def 5.31 If $f, g \in \omega_{\omega}$, we write $f{ }_{s}>g$ iff there is $k \in \omega$, for all $n \geqslant k, f(n)>g(n)$. s is a partial order, and a Scale is a subset s of ${ }_{\omega}^{\omega}$, cofinall in ${ }_{\omega}^{\omega}$ under $\mathrm{s}^{>}$, (i.e. for all $\mathrm{g} \in{ }^{\omega}{ }_{\omega}$ there is $f \in S, f s_{s} g$, which is totally ordered by $s^{>}$.

If the C.H. holds, it is easy to construct a scale. But they do not necessarily exist. In fact, it has been pointed out by various people (nowhere published, however) that it is consistent with Z.F.C. $+2^{x_{0}}>x_{1}$ that

1) There is no scale.
2) There is a scale of cardinality less than
3) There is a scale of cardinality $2^{x_{0}}$.
M.A. implies 3), which will be shewn later.

Def 5.32 For S an ordered set, the Upward Cofinaliity of S is the least cardinal of a set $S^{\prime} \subseteq S$ such that $\forall x \in S, \exists y \in S^{\prime}, x<y$.

The downward cofinality of S is the least cardinal. of a set $S^{\prime} \subseteq S$ such that $\forall x \in S, \exists y \in S^{\prime}, y<x$.

Then obviously, if there is a scale of cardinalits κ, for any f.u.f. p; the upward cofinality of η_{p} is κ. Also,

Theorem $5 \cdot 33$ If there is a scale of cardinality κ, and q has a least sky, then the downward cofinality of η_{q} is also κ.

Proof If f is in the bottom sky of $q, f(q)$ is a p-point. Without loss of generality, we can assume that q itself is a p-point. So for every $g \in{ }^{\omega}{ }_{\omega}$, we can assume that g is finite-to-one.

Firstly suppose that $S \subseteq{ }^{\omega}{ }^{\omega},|s|<\kappa$. We can find $\psi:{ }^{\omega} \omega \rightarrow{ }^{\omega}{ }_{\omega}$ which "inverts the axes", that is $f_{s}>g$ iff $\psi(g)_{s}>\psi(f)$. Find $h \in \omega_{\omega}$ so that $h_{s}>\psi(f)$ for every $f \in S$. We can re-invert the
axes, finding a function h ' that is non-decreasing and $f_{s}>h^{\prime}$ for all $f \in S$.
So the set $\left\{f^{\sim}: f \in S\right\}$ is bounded below in $\omega^{\omega} / q-\omega_{0}$

Conversely, let the scale be S. Invert the axes by ψ to find $S^{\prime}=\psi[s]$, then for any non-decreasing function h, there is $g \in S^{\prime}, h s_{s} g$. So the downsard cofinality of η_{q} is precisely κ.

In [2], BIas uses the following hypothesis as a substitute for C.H.

Def 5.34 $\operatorname{FRH}(\omega)$ of "Any filler generated by less than $2^{\mathcal{X}_{0}}$ sets is contained in a filter generated by at mast \mathcal{X}_{0} sets."
$\operatorname{FRH}(\omega)$ is equivalent to:
If F is a non-principal. filter generated by less than $2^{\mathcal{X}_{0}}$ sets, then there is an infinite $a \subseteq \omega$, $|a-b|<\omega$ for $a l l b \in F$.

It was stated in Chapter 4 that M.A. implies $\operatorname{FRH}(\omega)$. We now shew:-

Theorem $5 \cdot 35 \mathrm{FRH}(\omega)$ implies that there is a scale of cardinality $2^{X_{0}}$.

Proof This follows from the following lemma by induction up to $2^{X_{0}}$.

Lemma $\operatorname{FRH}(\omega)$ implies that if $s \subseteq{ }^{\omega}{ }_{\omega},|s|<2^{x_{0}}$, there
is $f \in{ }^{\omega} \omega_{\omega}, f_{s} \geqslant g$ for all $g \in S$.

Proof Without loss of generality we can assume that every $g \in S$ is non decreasing. Let $\left\langle a_{n}: n \in \omega\right\rangle$ partition ω into infinite sets.

For each $g \in S$ define $a_{g} \subseteq \omega$ so that $a_{g} \cap \mathbb{a}_{n}=\left\{m \in a_{n}: m \geqslant\right.$ the $g(n) \underline{t h}$ member of $\left.a_{n}\right\}$. Then $\left|a_{g} \cap a_{n}\right|=\omega$ for all n.

Let F be the filter generated by $\left\{c_{\omega}\left(a_{n}\right): n \in \omega\right\} \cup\left\{a_{g}: g \in S\right\}$. F is a proper non-principal filter generated by less than $2^{\chi_{0}}$ sets.

Use $\operatorname{FRH}(\omega)$ to find a set $a \subseteq \omega,|a-b|<\omega$ for all $b \in F .\left|a-C C_{\omega}\left(a_{n}\right)\right|<\omega$ for $a l l n$, and a is infinite, so $\left\{n:\right.$ a $\left.\cap a_{n} \neq \phi\right\}=T$ is infinite. Enumerate T as $\left\{n_{i}: i \in \omega\right\}$. Define f as follows:-

If $n_{i}<n \leqslant n_{i+1}, f(n)=m$, where $i f r$ is the first member of $a \cap a_{n_{i+1}}, r$ is the n member of $a_{n_{i+1}} \cdot$

Claim For $g \in S, f(g$

Proof $\left|a-a_{g}\right|<\omega$. Take i_{0} so great that $a-a_{g} \subseteq \bigcup_{n<i_{0}}^{a_{n}}$. This is possible. Then if $n \geqslant i_{0}$, say $n_{i}<n \leqslant n_{i+1}$, and $f(n)=m$, the m member of $a_{n_{i+1}}$ is certainly in $a_{g} \cap a_{n_{i+1}}$.
Hence $f(n)=f\left(n_{i+1}\right) \geqslant g\left(n_{i+1}\right) \geqslant g(n)$. This proves the

Claim and the lemma.

We can obtain cofinal subsets of ω_{ω} if we have rare filters.

Theorem 5.36 If there is a rare filter generated by $s,|s|=k$, then there is a cofinal subset of ω_{ω} (under s_{s}) of power κ.

Proof For each $b \in S$, define f_{b} by $f_{b}(n)=$ the $n+1$ th member of b. Suppose $f \in \omega_{\omega}$. Without loss of generality we can assume that f is strictly increasing.

Define a partition of ω by $a_{n}=\{m: f(n-1)<m \leqslant$ $f(n)\}$. Then as S generates a rare filter, there is $b \in S,\left|b \cap a_{n}\right| \leqslant 1$ for all n.

Then certainly the nth member of b is greater than $f(n-1)$. So $f_{b}(n)>f(n)$ for all n.

Corollary 5.37 If there is a rare filter generated by \mathcal{K}_{1} sets, there is a scale of cardinality \mathcal{K}_{1}.
$5 \cdot 4$
Now we connect scales with other properties of ultrafilter.

Def 5.41 Abbreviate the hypothesis "there is a scale of cardinality $2^{\mathcal{N}_{\Theta_{11}}}$ to C.S.
C.S. is quite a powerful hypothesis.

Theorem 5.42 C.S. implies that no ultrafilter is generated by less than $2^{x_{0}}$ sets.

Proof Let F be a filter generated by S, where S is closed under finite intersections and $|s|<2^{x_{0}}$.

For $a \subseteq \omega$, a infinite, define $f_{a} \in \omega_{\omega}$ by, $f_{a}(n)=$ the nth member of a.

Then we can use C.S. to find $f \in{ }^{\omega} \omega_{,} f_{s}>f_{a}$ for every $a \in S$.

We define two sequences $\left\langle a_{n}: n \in \omega\right\rangle$ and $\left\langle b_{n}: n \in \omega\right\rangle$ of finite sets as follows:-

Let $a_{1}=\left\{\right.$ the first $f(1)$ members of $\left.\omega_{0}\right\}$ If we have defined $a_{1}, \ldots a_{n}$, let $\left|a_{1} \cup \ldots \cup a_{n}\right|=m$ and let $r=\max \left\{a_{1} \cup \ldots \cup \cup a_{n}\right\}$.

Then let $b_{n}=\{i: r<i \leqslant f(m+1)\}$ if this is non--empty, and $b_{n}=\{r+1\}$ otherwise.

If we have defined $b_{1}, \ldots b_{n}$, leet $\left|b_{1} u \ldots u b_{n}\right|=m$ and let $r=\max \left\{b_{1} \cup \ldots \cup b_{n}\right\}$.

Then let $a_{n+1}=\{i: r<i \leqslant f(m+1)\}$ if this is non-empty, and let $a_{n+1}=\{r+1\}$ otherwise.

Let $a={ }_{n} \bigcup_{1} a_{n}$, and $b={ }_{n} \bigcup_{1} b_{n}$. Then $a \cup b=\omega_{0}$.

Suppose $a \in F$. Then for some $c \in S$, $a \geq c$. Certainly $f_{a}(n) \leqslant f_{c}(n)$ for all n.

But by the construction of a, for infinitely many $m^{\prime} s$, the $(m+1)$ th member of a occurs after $f(m+1)$. So $f_{a}(m+1)>f(m+1)$. This contradicts the fact that $f_{s}>f_{c}$. So a $\ddagger F$ and by similar arguments $b \notin F$. F is therefore not an ultrafilter.

Theorem 5.43 C.S. implies that there are p-points.

Proof enumerate ω_{ω} as $\left\langle f_{\alpha}: \alpha\left\langle 2^{x_{0}}\right\rangle\right.$. At each step α we will add a set a_{α} so that f_{α} is either constant or finite-to-one on a_{α}. The filter generated at stage α is F_{α}.

Stage 0 Let $\mathrm{F}_{0}=$ Fr.

Stage α Suppose we have constructed F_{β} for all $\beta<\alpha$. Let F be generated by $\beta<\alpha \beta^{\circ}$.
F has less than $2^{X_{0}}$ generators, so let them be s. Assume that S is closed under finite intersection.

Case 1 For some $n \in \omega, f_{\alpha}^{-1}[n] U G$ has the f.i.p. Let $a_{\alpha}=f_{\alpha}^{-1}[n]$.

Case 2 Otherwise. Then for all $\mathrm{b} \in \mathrm{S}$, $\left\{n: b \cap f_{\alpha}^{-1}[n] \neq \phi\right\}$ is infinite. For each $b \in S$, definc g_{b} as follows:

$$
\text { If } b \cap f_{\alpha}^{-1}[n]=\phi, \text { then } g_{b}(n)=0
$$

If r is the first element of $f_{\alpha}^{-1}[n] \cap b$, and r is the $m^{t h}$ element of $f_{\alpha}^{-1}[n]$, then $g_{b}(n)=m$.

Here we have $|s|<2^{X_{0}}$ functions. Let $f \in{ }^{\omega}{ }_{\omega}$ be such that $f{ }_{s}>G_{b}$ for $a l l b \in S$.

Define $a_{\alpha} \subseteq \omega$ to be such that $a_{\alpha} \cap f_{\alpha}^{-1}[n]=\{$ the first $f(n)$ members of $\left.f_{\alpha}^{-1}[n]\right\}$.

Then $\left|a_{\alpha} \cap f_{\alpha}^{-1}[n]\right|<\omega$ for all n, so $f_{\alpha} \mid a_{\alpha}$ is finite-to-one. We shew $b \cap a_{\alpha} \neq \phi$ for $a l l b \in S$.

Fix b. Let k be so great that $m \geqslant k$ implies $f(m)>g_{b}(m)$. For some $n \geqslant k, \quad b \cap f_{\alpha}^{-1}[n] \neq \phi$. Then if $r \in b \cap f_{\alpha}^{-1}[n], r$ is among the first $g_{b}(n)$ elements of $f_{\alpha}^{-1}[n]$, so it is certainly among the first $f(n)$ elements of $f_{\alpha}^{-1}[n] . \quad r \in b \cap a_{\alpha}$ Let F_{α} be generated by $F \cup\left\{a_{\alpha}\right\}$.

Finally let q be generated by $U\left\{F_{\alpha}: \alpha<2^{x_{0}}\right\}$. By our construction, q is a p-point.

$6 \cdot 5$

Conclusion

This chapter has been a very incomplete exposition of the properties of ulltrafilters without using the C.H. Let us list some of the questions that have been raised implicitly.

1) Does $2^{X_{0}}>\mathcal{X}_{1}$ imply there is a f.u.f. p such that η_{p} is not a η_{α}-set, where $2^{\chi_{0}}=\mathcal{N}_{\alpha}$? In particular, does M.A. imply this?
2) If there is a scale, and p does not have a bottom sky, what is the downward cofinality of η_{p} ?
3) If there is no scale, can one find f.u.fis p and q so that the upward eofinalitios of η_{p} and ∇_{q} are different?
4) Does C.S. imply $\operatorname{FRH}(\omega)$?
[1] J.L.Bell and A.B.Sliomsan. Modells and Ultraproducts. North Holland. Amsterdam 1969.
[2] A.Blass. Orderings on Ultrafilters. Thesis. Wisconsin 1970.
[3] D.Booth. Ulltrafilters on a Ccunteblo Set. Annalis of Math. Logic 2. (1970) 1-24.
[4] G.Choquet. Construction d'Ultrafiltres sur N. Bull. Sci. Math. 92 (1968). 41 - 48.
[5] G.Choquet. Deux Cliasses Remarquables d'Ultrafiltres. Bull. Sci. Math. 92 (1968). 143 - 153.
[6] Z.Frolik. Sums of Ulitrafilters. Bull. Amer. Math. Soc. 73 (1967). 87-91.
[7] L.Gillman and M.Jerison. Rings of Continuous Functions. Van Nostrand. Princeton 1960.
[8] J.Hirschfeld and G.Cherlin. Ulitrafilters and Ultraproducts in Non-Standard Analysis. Yale University. Preprint.
[9] H.J.Keisler. Limit Ultrapowers. Trans Amer. Math. Soc, 107 (1963). 383 -408.
[10] K. Kunen. On the Compactification of the

Integers. Notices Amer. Math. Soc. 17 (1970) 299.
[11] A.R.D.Mathias. A Solution of a Problem of Choquet and Purity. Conference in Mathematical Logic London '70. Springer Lecture Notes Series 255. (1972).
[12] C.Puritz. Skies and Monads in Non-Standard Analysis. Dissertation. University of Glasgow (1970).
[13] M.E.Rudin. Types of Ultrafilters. Topology Seminar Wisconsin 1965. Annals of Math. Studies no 60. Princeton Univ. Press. (1966). 147-151.
[14] M.E.Rudin. Partial Orders on the Types in βN. Trans. Amer. Math. Soc. 155 (1971). 353-362.
[15] W.Rudin. Homogeneity Problems in the Theory of Zech Compactifications. Duke Math. J. 23 (1956) 409-419 and 633.
[16] R.M.Solovay and D.A.Martin. Internal Cohen Extensions. Annals of Math. Logic 2. (1970) 143-178.
[17] A.K. and E.F. Steiner. Relative Types of Points in $\beta N-N$. Trans. Amer. Math. Soc. $\begin{aligned} & 160 \\ & 459\end{aligned}$ (1971) 279-286.

[^0]: "Does every ultrafilter have a bottom sky?"

