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A13I2ACT

The underlying theino of thin thenin io the investigation of 
some functions defined on graphs. In one chapter results arc 
obtained for a particular type of function. In another a known 
result on expressing graph functions multiplicatively is 
established by other r.ethods which suggest certain generalizations 
of graphs; these then enable us to see how much the properties 
depend on graphs per se, and how much on the wider nature of the 
generalizations,

Chapter 1 introduces our basic terminology and notation, 
and contains the acknowledgements.

Chapter 2 establishes the multiplicative expansion of a 
graph function by two new methods.

Chapter 3 is simply a survey of some combinatorial 
structures and the definition of some new ones. The ’old’ ones 
are introduced for the purpose of comparison with the new ones, 
which in turn afford useful generalizations of graphs which are 
utilised in later chapters.

Chapter 4- investigates interaction models on graphs that 
possess a certain additive property; this is then extended to 
hypergraphs and related to rank polynomials.

Chapter 5 pursues the notion of ’avitoids’, defined in 
chapter 3» A rank function is defined on them and some of its 
properties studied.

Chapter 6 is concerned with the idea of ’molecules', also 
defined in chapter 3» A simple way to evaluate, in general 
circumstances, an important matrix that emerged in chapter 2 is 
presented.

Chapter 7 concludes the thesis with comments on connected 
and resultant items.

More detailed summaries are provided at the beginning of 
each chanter.
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CHArT'R ]

I :tro duct ion

Section 1.1 Acknowledgements

Section 1.2 Definitions

Section 1.3 Notation

This chapter acknowledges sources and states the conventions 

used throughout the thesis. In general the terminology is standard, 

but soiLe notational innovations are used for the sake of brevity.



1,1 Acknowledgements

Chapter 2 in concerned with a known result of Tutte, In 

sections 1-3 a new proof is presented and any existing results 

are explicitly acknowledged there. Section 4 is derived from 

Whitney [%7J except that I use graph types rather than grouping 

together graphs with the same rank and nullity. The observation 

that Whitney’s theorem 7A is simply an inversion of a triangular 

matrix is mine, but the use of this to elucidate the theorem of 

Tutte is due to Biggs C3J. The development of my proof of Biggs’s 

result leans heavily on the ideas of VJhitney.

In chapter 3 the sections 1 & 2 are digests of existing 

concepts, but sections 3-5 are original. In chapter 4 

acknowledgements are made as appropriate; chapters 5 & 6 are 

entirely original.

I would like to thank my research supervisor, Norman Biggs, 

for much guidance and advice while I "was preparing this thesis.
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1.2 Definitions

The usual graph theory terms and definitions will be 

utilised. A graph will comprise a set of vertices and a family 

of unordcred pairs thereof, called edges. Thus the graphs are 

undirected, not necessarily simple, and may have isolated 

vertices. A sub/rraph will comprise the same set of vertices 

but a subfamily of edges. Graphs will be diagrammed in the 

usual way.

lie shall use some standard terminology for hypergraphs and 

matroids. When we draw hypergraphs it is sometimes clearer to 

denote edges of size greater than 2 by oval regions containing 

the points (as in chapter 4), and sometimes to represent them by 

blacked-in regions touching the points (as elsewhere).

When we first define a term it will be underlined. Also, 

note that in general we shall use minimal to mean minimal by 

inclusion and smallest to mean smallest in size.

Basic terminology not defined in the text can be found in 

the following books, according to the topic; graphs, Wilson CZS]; 

interaction models, Biggs [%]; hypergraphs, Berge Czl; and matroids, 

Welsh [261.



1,3 Notation

In general, graphs will be denoted by Greek capitals. VP 

and EP will respectively stand for the vertex-set and edge-set of 

the graph P; p' will be the dual of P(as appropriate), p^ the 

graph with the edge e deleted, and P^ that with e contracted.

A s P  will mean VA = VP, EA s EP and if in addition EA / S P  we may 

simply write A<^P; if also A is nonseparable we may v/rite A ^ P  

and A < P, respectively. This notation will be carried through 

for avitoids as well.

The symbol 2 is shorthand for ’for some’ (corresponding 

to V for ’for all') and is used as little as possible; that is, 

only in subscripts for summations or products where alternatives 

are unduly long. The symbol D  will be used to denote the end 

of a proof. We shall often use- s.t. to’stand'for ’such. that’,:.

When the edge referred to is obvious, we shall often write

P’ instead of P* and p" for r". In chapter 2 we shall use A < P' e e
to mean that A is a block of P; and will denote the set of

A < P, with P^ having a. corresponding meaning.

Other notation is either standard or will be defined as it 

is introduced.



Section 2.1 

Section 2.2 

Section 2.3 

Section 2.4 

Section 2.5

CHAFITR 2 

THE MJLTn'LICATTYE EXPANSION

The subgraph expansion 

Nonseparable graphs 

A theorem of Tutte 

Some results of Whitney 

A theorem of Biggs

This chapter proves a result of Tutte in two new ways : the 

first is shorter but the second, deriving from a simplification 

of some:ideas of Wliitney and presenting the result in Biggs’s 

form, has more applications.
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2.1 The subgraph expansion

Many graph functions F(p) are defined in terms of subgraph 

expansions of the form F(r) = f(A). In fact, any graph

function may bo expressed in this way, since once we know the 

values F takes we may define f(p) = (-1) ~ by

Mobius inversion; however, the usefulness is when f is in some 

sense simpler than F.

For instance, an important example is the Whitney rank 

polynomial. R(P;x,y) = x^^y^^. which includes the reduced

chromatic function, n*" C (f;n), when x=-l/n, y=-l. Furthermore, 

the partition function of any interaction model is of the prescribed 

type, as may be seen by putting p = q = l in lemma 2 of section 4.2.

8



2 .2  None0r a m b le  g rnuhs

A nonseparable graph is one without cut-vertices and having 

precisely one nontrivial connected component; this is equivalent 

to demanding that the gi’aph be nonseparable in the usual sense 

when we ignore any isolated vertices. The importance of this 

notion for our purposes lies in the fact that many of the useful 

graph functions defined as in 2.1 have the property that f(A) = 

^f(A) where the product is taken over the maximal nonseparable 

subgraphs of A, often called its blocks. We shall call any 

function f with this property multiplicative.

A simple consequence of f being multiplicative is that F

is too, as noted by Tutte .

LEMMA 1: If f(A) = f j  f(A) and F(r) = Z ^ f ( à ) then
A < A

F(r) = rTr'(A).
A<r

proof. Let the blocks of P  be Q,..., T; there is 

then an obvious correspondence between subgraphs A s P a n d  n-tuples 

A^,Z^,..,,Ag with Aj^^ fl for i=l,2,...,s. Using this we obtain

F(r.) = E f M  = = I d  ]hf(A.) =
A. S.C A; erf i=l
1=1,.,s 1=1,t s

fr Z d f ( A p  = frF(rp. □
i=l A. Gfl i=l1 1

COROLLARY 1: If F is multiplicative then so is f.

Proof. F being multiplicative implies that (-l)^^^^F(h) 

is, which by the above lemma and the inversion formula of 2.1 

implies that (-l)^^^^f(A) is, which implies that f is. B

Whitney rank functions and partition functions are both 

multiplicative. Also, our small and capital letters correspond Q



to Tutte*8 [Zl] where he refers to lower and upper nolynomia]s 

respectively.

Any graph function F(P) can be written as a multiplicative 

expression involving prescribed sorts of subgraph, by defining 

q(r) = F(r)/‘y ’q(A) where TF involves all the relevant proper

subgraphs of P; however, if P is not of the prescribed form we 
must ensure that the resulting q(P) equals 1. In the case we 

are dealing with, where the subgraphs we are concerned with are 

the nonseparable ones, this follows if the function is itself 

multiplicative. Also, we may encounter difficulties if some of 

the F(r) are 0, so it is clearer if we deal only with formal 
expressions for as long as possible, to defer the problems of 

convergence.

Accordingly, we shall be concerned with polynomials, 

rational polynomials and power series over the ring of integers, 

with a different variable f(A) for every nonseparable graph A,

The graph functions F will be polynomials and any f will be a 

monomial, and in both cases all terms have unit coefficients; 

the function q(A) whose properties we investigate will be a 
rational polynomial which we can formally divide out to obtain 

a power series.

For example, if Pwere a graph with only one edge we might 

have f(r) = x, F(r) = l + x and q(r) = l + x; in this case the 

denominator of q is 1. Using the graph of a triangle for another 

example, if the value of f for that is t, and for the three edges 

is X, y or z, then for that graph F = 1 + x+ y+ z d xy+ yz + zx+ t 

and q = F/(1+x) (l+y) (1+z) = 1 + (t - xyz)/(l+ x+ y+ z+ xy+ yz+ zx + xyz). 
Note that ŵ e take an indeterminate for each value of f, in contrast 

to Tutte’s treatment which assigns polynomial values; but in 1 0



common with Tutte [%5] we do not es yet introduce the notion of 

graph type (see section 2.4).

We shall introduce some notation to be used in the following 

sections of this chapter. X  will represent the set of all 

monomials, with unit coefficients, in the variables concerned, 

and a typical member will be X. To avoid lengthy repetition we 

define the function u;/{-^fgraphs} by letting u(X) be the union of 

those nonseparable graphs whose indeterrainates apoear in X, and 

defining the sets K, L by;

K(r,A;X) = {z:rL/(| ®  TJ^(0) = x);

l(A:x) = L V  0  = A, TJz(&) = x}.
at

That is, K is the set of all functions from the set of nonseparable 

proper subgraphs of P to the set of monomials with unit 

coefficients, such that the product of the values is X and 

the union of those subgraphs not sent to 1 is A; and L has as 

its domain the set of all nonseparable subgraphs of A instead.

11



2.3 A theorem of Tu tic

We establish, by a different method, a theorem of Tutte 

on the coefficients of the power series q(A). This is done by 

induction on the set of all graphs concerned, which we order 

firstly by increasing number of edges and then by increasing 

number of blocks, with the further ordering being arbitrary.

The graphs concerned might be subgraphs of some suitably large 

graph; the reason for not dealing with all possible graphs is 

that we are differentiating between isomorphic graphs with 

different edge-sets, so there would be an infinite number of 

graphs of each isomorphism type (except for the null type).

We inductively define q(P) = F(r)/JTq(A) as stated,
A<r

and note that our requirements necessitate q(p)= f(F)= F(P)= 1
^ * \ /■

if r is a null graph. We write q(r) as a power series ^  A^ ^ A  

where A is indexed firstly by elements of X  and secondly by 

nonseparable graphs. As stated in the previous section, we 

would obtain q(T) = l for P separable, so the formula F(P) =

TTq(A) holds for all FI Consequently we investigate the 

function q for nonseparable graphs only.

THEOREM 1: For any graph P: 2Z7 A . = 0 if X /  f(P).
zeL(nX) A.<r

And if r is nonseparable; A^ p = 1; p ~ Â - p = 0 if

u(X)/ Pbut X/1.

Proof. We have already remarked that we have a basis for 

induction, when P  is a null graph. We shall now prove the two 

propositions in reverse order.

If P  is nonsenarable we seek to compare terms in ,Sf(A)

and P T q  (A ). This latter may be written as Ay . X  ̂g
yA<r XtA ’ * ^

n



zfK'Piè;X) U  2(©)>®’

Now, every nonzero term in this has u(X) = S  because 3  = L V  ©
at z(0)/l

= ©  = u ( T T z (0) ) = u(X). If we omit the terms for© < r  0<r
atu(z(0))=0

which Z  = r  the sum of the remaining terms then equals

y~! X ^  . ]~7 A When and only when X = f (z) the only
X^H zéL(Z;X)©^3 scr

term is that for which z:G-»f(0) if 0<22 and ziS>-*l otherwise, which

has numerical value 1 and corresponds to the term f(s) in P I  f (A).
Aer

When X/f(s) the sum is zero by the inductive hypothesis.

Therefore the expressions ^  f (A) and TT q(A) agree in allAsr *<r
terms except those for which u(X)=P. PJf(A) has only one suchAçr
term, namely f(P), and this cannot occur in T~Tq(A) since P  isA<r
nonseparable and so the relevant terms which do arise cannot 

involve the indeterminate f(P). Consequently on formal division 

we obtain p = 1, A^^^^ p = 1, and A^ p = 0 if u(X)/ P, X /  1 

because there are no terms with u(X) / P  and X / l  in either 

expression.

For the first part of the inductive hypothesis which we

assert holds even for separable P, we consider the product PTq(A)Air
(for we have now determined q(P) if P is nonseparable). This is
2 u X  ^  T T  A which will equal the polynomial 2 3 1 (A)
XêM zeL(S;X)©^ ssr
which now accounts for all the terms with X=f(s). Hence,

comparing coefficients and using the inductive hypothesis we

establish 2  7 *pT A 0 if X/f(P), as required. D
zcL(P;X)0.<r

In Tutte’s papers [22], [25] where the important part of 

this theorem is proved, he uses a proof involving information ^ ^



about the structure of the graphs; i.i fact, he constructs the 

function q as the basis of his method. The difference between 

his two proofs of the theorem is that [35]'s is a generalized 

and modified version of [iZ]*s. In establishing the above theorem 

we have not explicitly used structural information; we could in 

principle wTite a computer programme to determine the coefficients 

Ay p based uppn the proof. This makes this treatment moreA ,1
amenable to providing estimates of the coefficients; however, 

we shall see later that another approach is even more helpful 

in these respects.

U



2.4 Como results of Whitney

An alternative approach to the result of Tutte is presented 

in this and the following section. It uses some ideas of 

Whitney Cl 71; first we present a slight adaptation of his 

theorem 7A, with a simple proof.

In this exposition we consider the type of a graph; that is, 

the family of isomorphism classes of its non-null blocks. For 

example, forests with the same number of edges have the same type; 

as another example, all three graphs shown in the accompanying

diagram have the same type. The type of a graph is completely 

determined by the numbers of blocks isomorphic to each 

nonseparable graph.

We now define three infinite matrices N, B and M, indexed 

by graph types denoted by small letters a, b, c etcetera. They 

are defined as follows: ^ is the number of subgraphs of type

c of a graph of type b; ^ is the number of ways of embedding

the blocks of a graph of type a in a graph of type b; and  ̂

is the number of ways of embedding the blocks of a graph of type 

a in a graph of type c such that their union is that latter graph. 

For instance, with the three graphs shown here we find that the

type a t)pe b

values are K , =4, B =7 and N , =50. It is obvious thatc,b a,c a,b
these entries are well-defined, since it does not matter what 
graph we choose to represent a given graph type. 1 5



1: N - T .  ic wcl 1-u -fine ; -.:j . ^ - B

[roof. The first purt of uhu statement is immediate from

the definitions when we sum B ’! , over all relevant c (thata,c c,b
is, those for which the term is nonzero). Further, if we order

graph types in a similar way to the ordering of graphs in 2.3

it is clear that 3 is lower triangular while K is upper

triangular, and so the sum of the nonzero terras in Z*B  ̂ N ,a c^a a,D
is finite for any values of c and b, and so the second part is 

established. This is another simple application of inversion. O
The terms of the matrix N are easy to calculate, using 

the following result. If p is the type of a nonseparable graph 

then we shall denote by a^ the number of blocks of type p in 

a graph of type a.

THEOPlE!' 2: K , = P T (  F b M ) ”.
’ p q °- P'S

Proof. Again, this is immediate from the definitions, 

when we consider the number of ways of embedding each block 

in turn. Q

Theorems 1 and 2 together imply Whitney’s theorem 7A,

that all the entries in the M matrix are determined once we

know all the entries M with p and q being nonsenarable tyues:p,q - '
moreover, that there is a polynomial expression for an entry

y. , in the unlsnowns N , with coefficients independent of b, c,b ' p,b

namely K = E b'I f f ’îp.b
a ' P

Theorem 1 is also proved by Biggs C5J, where the notation 

differs slightly; his 3 is the same, but his c^ is a column of 

our M (for the equivalent of which he uses N) and his UJc^ a
1 6



row of our- N. In /Intney's par cr m corresponds to our M, and N to 

our K or M since he only applies it to nonseparable types; in both 

cases the column subscript (which we have called b) is implicit. 

Further, he uses different subscripts for these two quantities, 

although the notion of 'type' does appear in the paper; this and 

the form of his proof obscure the straightforward nature of the 
result.

As a corollary to theorem 2 we note that if p and q are types 

of nonseparable graphs then N = M  . Other relations involvingp»q p>q
the entries in N, B and K are possible but we shall only need the

following, which is Whitney's 12A; the remaining results in this

section are also due to him, occurring in chapters III and IV of 

his paper.

In the following two lemmas we require the concept of 

addition of graph types; we define the sum of two types to be 

the type of a graph that is the union of two (vertex-)disjoint 

graphs of the appropriate types. Consequently the number of 

blocks of a given type in the sum is just the sum of the two 

respective numbers for the summands. With this addition, and 

remembering that we have a suitable zero type (the type of a

null graph) the set of types forms a semigroup.

1= R,b+d = S  >\,bx+y=c

Proof. From the definition of M, the left-hand side equals 
the nunher of subgraphs of type c of a graph of type b+d. 

However, any block of a subgraph of type c must be entirely 

contained in a graph of type b, on of type d; hence the required 

number equals the sum over all suitable x and y of the product 

of the number of subgrarhs of type x of a graph of type b and 17



thut of tyre y of one of ty: e d, which in the right-hand side, Q

We now derive a matrix W from M, out to do this we need some

more definitions. Let ^ be a function ciefined on graph types such

that (j>{a.) =*n^(p) with a different variable for each nonseparable

graph type p; this is similar to the multiplicative function f of

section 2.2. Then v/rite for the power series ^^(a),
a ’

and similarly let ^^(a). VJ is then defined by the
a ’

formal relation = log(M^[/l). Note that if a is the null

graph type then ^(a) = 1 from the definition of (j> and the usual 

meaning of an empty product; consequently the constant term in

is ^=1; and so we may use the formal expansion for log
p n

as an infinite sum of powers, namely log(l + Y) = Y - -g-Y + 4Y^ .

This gives only a finite sum for the coefficient of any particular

^(a), and since also the definition is independent of the function

(j>f we see that W , is well-defined.' a,b

l k :a 2:

Proof. From lemma 1 we see that J .

Therefore = log(M^^[ÿ] ) = log(K^C^^J ) =

log(M^f^]) + log(N^C^j) = , and the result is

immediate on comparing coefficients of ^(c). Q

Now, we know that ^ = Z j ®”c al f^p b ^ polynomial
’ a ' p

in the unknowns N ; it follows that W -, is also a polynomial p,b c,b
in them, since we have just remarked (prior to lemma 2) that any

entry in W is a finite sum of products of the K - .c , D

LEMfA 3 : W . is equal to a polynomial in the N , that isC,D ■ ■ P>©
homogeneous of degree 1.

18



Proof. By 1er.’ -i 2, W , - nV where nh is the sum of n’ c,nb c,o
types b; and N , = nN , . Co any nonlinear terms in a Polynomialr,nb p,b '
for VJ , must cancel for all sets of numbers N , corresponding to c,b p,b
graph types b. Therefore ^ will take the sai'e values if we 

ignore any nonlinear terms. D

In fact we could establish, as Whitney does in theorems 5A 

etcetera, that this implies that W^ ^ is precisely such a polynomial 

(instead of simply taking equal values) since the N , arep , D
independent variables; however, this lemma is enough for our 

purposes. The following theorem is now straightforward.

THEOREM 1: W , is equal to the linear terms of M , when it isc,b c,b
expressed as a polynomial in the N ..p, D

Proof. From the definition of W , we know that it is ac ,b
polynomial in the M^ the only linear term being M^ ^ itself;

hence, since all nonlinear terms cancel, VĴ  is actually equal

to the linear terras of M , . Oc ,b

19



This section concludes the chapter with a treatment of the 

result expounded by Biggs C9] for interaction models. Here we 

continue with formal expressions in variables corresponding to 

nonsepsrnble graphs.

THEOREM 1: If ë(b) = ^^{c) is a multiplicative function

then there is an e -pression for 5(b) as a product of formal power

series, namely ^(b) = *j f]̂ (p) where ^(p) = exp(^^B~^ ^(c)).
p c

Proof. i>(b) = ^ ^ ^ ( c )  = exp(2]w^ ^^(c)) = 
c * c *

exp(25î̂(c)2̂B-̂  !J ) = expĈ N̂̂  ̂ ĵfc(c) B'J ) =
c p ^ p * ’ c

20



CHAPTER 3 

STRUCTURES OTHER THAN GRAPHS

Section 3.1 Clusterings, clutters and chain-groups

Section 3.2 Hypergraphs

Section 3.3 Paragraphs

Section 3.4 Avitoids

Section 3.5 Molecules

In this chapter we study a few generalizations of graphs.

The first two sections summarize existing structures, and the last 

three introduce new ones. Paragraphs are mentioned for their use 

in generalizing oriented graphs. Avitoids provide a general 

setting for the machinery of chapter 2, and will be used again to 

investigate duality in chapter 5. Molecules too provide a general 

setting for chapter 2 but will prove useful in investigating the 

process of evaluating certain parameters in chapter 6.

21



3.1 Clusterings, clutters and chain-groups

These structures will be explained here for the purpose of 

comparison with those of later sections.

Regular clusterings were introduced by Tutte [25] in order 

to generalize the structures for which his 'theorem of the 

vanishing coefficients' ([%2] and see our chapter 2) applies, 

and were employed in the problem of vertex-reconstruction.

A regular clustering on a set Q is a set of non-null subsets 

thereof called clusters. such that every minimal non-null separator 

of any subset is a cluster, where a separator S of a subset M is 

such that any cluster contained in M is contained in either S or 

M\S. An alternative definition has been given by Manvel, who 

demands that every one-element subset of Q be a cluster and also 

that the union of tŵ o intersecting clusters be a cluster.

Clutters and their blockers were defined by Edmonds and 

Fulkerson [iCO, and further results on them have been obtained 

by Seymour [19,1?] who also defined the operations of deletion 

and contraction.

A clutter on a set E is a set L of subsets thereof such 

that none includes another; the blocker of a clutter is the set 

of minimal subsets of E having nonempty intersection with every 

element of L. The deletion of a set D from a clutter leaves those 

elements of L that do not intersect D, and the contraction of a 

set 0 results in the set of minimal sets A \ G  for elements A of 

L.

Note that the blocker, deletion and contraction of a clutter 

are themselves clutters, that deletion and contraction are 22



commutative, that the blocker o''"' o blocker io the original clutter, 

one that the blocker of a deletion io the cor-'os];ondijig contraction 

of a blocker. If we associate a suitable clutter with a matroid 

or graph then the blocker or deletion/contraction (respectively) 

of the clutter will correspond to the dual of the matroid or the 

deletion/contraction of the graph [l8j.

Chain-groups are due to Tutte CZl] and can provide a halfway 

stage between graphs and ratroids Ci?J.

A chain-priuo on a finite set E over an integral domain R 

is a set N of mappings from E to R that is closed under the (obvious)

operations of addition and multiplication by an element of R. If R

were a field this would just be a vector space, but in most 

applications R is the ring of integers. The dual chain-group 

is the set of mappings that are orthogonal to every element of 

the original chain-group; that is, the set ^:E-^R
x«E

Vgeu}. The surrort of an element of N is the set of elements of 

E whose images are not zero; and a dendroid is a minimal subset of 

E that meets the support of every nonzero element of N.

We can associate a chain-group with a given graph by letting

E be the edge-set and taking as N the set of those mappings that 

represent linear combinations of circuits of that graph when 

oriented [211. Then a dendroid will represent the complement 

of a spanning forest of the graph; it is in fact the same notion 

as an element of a blocker for a clutter.

23



3 .2  E ypcrgraphü

Hypergraphs are the generalization of graphs that is 

appropriate in many instances. The fact that they possess 

vertices means that we can build interaction models on them 

(see chapter A), However, it is not possible to define circuits 

on them in a way that satisfies the matroid axioms. In this 

section we briefly discuss hypergraphs and shall later see how 

they also lead into paragraphs (section 3) and prove useful when 

dealing with avitoids (section A ) •

A hypergraph P is a finite set VP of vertices and a finite 

family EP of nonempty subsets of V , called edges. Deletion of 

an edge is effected by removing it from the family EP and 

contraction of the edge e by identifying all the vertices it 

contains to form a new one, deleting the edge e and, in any other 

edge containing any of the coalesced vertices, removing those 

vertices and replacing them with the new one.

Note that this does not quite accord with the usual definitions 

for graphs; there it is usual to call a loop an edge with two 

identical end-points, but here it is more natural to let a loop 

be an edge of size 1. Our definition of a hypergraph does allow 

multiple edges, but we shall call a hypergraph elementary if no 

edge contains another; this precludes multiple edges and means 

that any vertex in a loop occurs in no other edge.
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3.3 Parc graphe

The definition given hy Biggs [4-] for an interaction model 

that allows him to form an equivalent flow model involves orienting 

the edges. If we wish to extend this to hypergraphs it is 

appropriate to define a structure based on the same notion as 

that for a chain-group.

A .paragraph consists of finite sets V of vertices and E of 

edges, together with an incidence matrix A, indexed by vertices

and edges, with entries being rational, such that 2^ A = 0
vcV *

VeeE. We can easily associate a paragraph with a given hypergraph

by putting A =0 if v is not included in the edge e, and giving v,e
nonzero values that sum to zero for the other entries corresponding 

to the edge e. For graphs this is achieved by assigning the values 

+1 and -1 to the two nonzero entries for each edge, which is what 

is meant by 'orienting the edges'. Note that we cannot deal with 

loops, though, because we have no way of associating them with a 

particular vertex.

i It is helpful to use 0, +1 and -1 as entries in A as much as 

possible, but other values may be better suited to given cases we 

wish to investigate. It may even be useful to allow entries in 

fields other than the rational in some circumstances.

The appropriate definition of a dual is as follows: a 

paragraph with vertex-set C, incidence matrix B but the same

edge-set E is a dual if A B = 0  VccG, vtV and the ranks
eeE

of the matrices A and B sum to |E|. We also usually require the 

ranks of each to be 1 less than the number of its rows. The 

operation of deletion is effected by removing the column 

corresponding to the specified edge e from the matrix; and 2 5



contraction involves choosin^ a vertex v incident with c, then 

adding suitable multiples of the respective row to other rows 

having a nonzero entry in the e column in order to make that entry 

zero, and then deleting the e column and the v row. This then 

ensures that deletion and contraction are dual operations, and 

that we still have paragraphs left after performing them.

We shall not pursue this topic further, but merely remark 

that this has applications in electrical network theory. Bloch, 

in C6], showed how it is possible to form networks having the 

characteristics of the duals of non-planar graph networks, by 

using 'ideal transformers'. These, in effect, simply provide 

elements representing hyperedges in the dual, as may be seen by 

considering their behaviour. Below we show paragraph duals of 

Kr and  ̂respectively; as we have drawn them the opposite 

vertices of the edges of size U have the same value (+1 or -1), 

but which pair, and which end of any other edge, has the value 

+1 depends on the orientation of the original graph.
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3./+ Avitoids

Ve shall find it helpful to deal with something having 

slightly more structure than a regular clustering; what we propose

satisfies all but one of the matroid axioms. This then allows us

to consider duals and the operations of deletion and contraction, 

although the concept of rank must be amended, and loses some of 

its power.

An avitoid is a finite set E and a set of nonempty subsets 

thereof, called circuits. such that none includes another. A 

subset of E is dependent if it possesses a circuit as a subset, 

and independent otherwise; a base is a maximal (by inclusion)

independent set. A subset S of E is separable if there exist

at least two disjoint nonempty sets whose union is S such that 

every circuit contained in S is contained in one of the sets; a 

cluster is a nonseparable set. We shall also define a loop as 

a circuit with just one element.

Not every regular clustering can be considered as an avitoid.

For instance, if we only have fa}, {b}, {c} , (a,b{ and {a,b,cj as 

clusters then these are the only candidates for circuits; but {a,b} 

and {a,b,c} cannot both be circuits and if either is not it follows 

that it must be separable. However, the converse is true.

THEOREM 1: The clusters of an avitoid define a regular clustering.

Proof. If we are given an avitoid then let us consider a 

minimal non-null separator A of any of its subsets. This means 

that for every proper non-null subset B of A there is a cluster 

C that meets both B and A \ 3; but from o'ur definition of a cluster 

we know that there must now be a circuit that meets both C n B and 

C \ B (or else C would be separable), so it also meets both B and 2  7



A \ B. Therefore A is a cluster by ouc definition, and so ve do 

have a régulai' clustering. D

Ve can see that the set of avitoids giving rise to the same 

regular clustering are those that have the same circuits of size 

greater than 1.

As an example of an avitoid let E be {a,b,c} with circuits 

{a,b] and {a,c}. For this the independent sets are jZf, {a}, {bj,

{c} and {b,c}, the bases are {a] and (b,cj , and the clusters 

happen to be just the derendent sets, namely |a,b}, /a,cj and 

{a,b,cj, plus the trivial ones fa}, fb} and fcj.

As in the case of a matroid, we may uniquely define an 

avitoid in terms of its bases or dependent or independent sets.

The defining requirement for bases is that there be at least one 

and that none includes another; for independent sets, there must 

be at least one and every subset of one is itself independent; 

and for dependent sets, they must be nonempty and every superset 

of one must also be dependent. Consequently the null set must be 

independent, can be a base but cannot be a circuit; and there may - 

be no circuits or dependent sets, but there must be some bases 

and independent sets. Once we have determined the bases we can 

define a set as independent if it is included in a base and 

independent otherwise, and a circuit will then be a minimal 

dependent set.

The dual of an avitoid comprises the same set F together 

with a set of bases that are the complements of the bases of the 

original. The result of deleting an element e ^ E  is the deletion 

avitoid which consists of a set E\{e} and as independent sets those 

that were originally independent and did not contain e. The result 

of contracting an element e e E  is the contraction avitoid which 2 8



is obtained by dualizing, deleting e, r̂.d dualizing back again.

These definitions make it evident that the order in which ve 

delete several elements is immaterial, and similarly for 

contracting; however, the operations of deletion and contraction 

do not commute. The dual of a dual is obviously the original 

avitoid.

We shall use the notations f*, PjJ to stand for the 

avitoids resulting from taking the dual, deleting the edges in 

the set A, and contracting the edges in the set A, respectively, 

of the avitoid H Since P^ = we find that, as in the case

of graphs, shall make use of this sort of interchange

in section 5.3.

Note that these definitions, in following through those of 

a matroid, do not correspond to those for a clutter. The operation 

of deletion carries through, but the blocker does not equal the 

dual, nor does contraction correspond. If we define the elements 

of a clutter as the circuits of an avitoid, then the elements of - 

the blocker will be the bases of the dual avitoid, and vice versa. 

Also, an empty set can be the set of circuits of an avitoid or the 

set of elements of a clutter but not the set of bases of an avitoid, 

whereas the set comprising the empty set can be either of the last 

two but not the first. Lastly, as we have remarked, contraction 

and deletion commute in a clutter [ig] but not in an avitoid.

Using the example introduced earlier in this section we 

observe that it is self-dual. When we delete b and then contract 

c we are left with a single element set fa} that is a circuit; 

and when we contract c and then delete b the same set remains but 

it is not a circuit.
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3.5 Molecules

Ve shall introduce the notion of a molecule to generalize the

idea of a graph type in chapter 2. ■ In investigating functions on

graphs we may wish to distinguish between subgraphs that have the 

same type; for instance, horizontal and vertical edges in a square

lattice. This treatment is couched in the widest possible terms in

order to include set-theoretic structures such as avitoids, and to 

investigate how far the results for such things depend upon their 

structure.

Suppose that we have a finite set A and a matrix N with

non-negative integral entries indexed by pairs of its elements;

and also that a positive integer-valued function w is defined on

A. Then we call the elements of A atoms and w the weight function

if N_ = 1  VacA and w(a) > w(bl 4 N , = 0  Unless a=b. A molecule is a, a ' ^ y ' ' ' ^ a , b  --------
then defined as a finite collection of atoms, or equivalently a 

vector with non-negative integral entries indexed by elements of 

A. Ve then extend w and N to deal with molecules by w(m) = ™ ^(&)
aeA ^

\ , n =  r [ ( E n , R  acA btA '

Two other notions will prove useful. The set of particles is 

P = -[peA|N^ ^ = 0 VaeA s.t a/ pj, and the atomic number is a function 

V defined on molecules by v(ra) = ̂ N  . Thus the atomic number of
p€?

a particle equals 1, and ŵ e note the following result.

LEM-IA 1: v(m) = v(a).
aeA

Proof. v(m) = - Z Z V p . a  =

= J j m  v(a).a ■ • Q 30



If v;e have a total ordering on the atoms consistent with 

non-decreasing weight we can extend this to one on molecules as 

follows. We take as our alphabetical order the given ordering of 

atoms, and write each molecule as a 'word' with its constituent 

atoms as its 'letters' in reverse alphabetical order with 

appropriate repetitions; then we order the molecules firstly 

by increasing weight and secondly by reverse lexicographical 

order, except that between atoms of the same weight we preserve 

the forwards lexicographical order. We shall denote this ordering 
by

It is worth mentioning that although this may seem unduly 

complicated, it is in fact a fairly straightforward way to specify 

the ordering completely; this is certainly true if we wish to use 

a computer (although then it is convenient to ignore the 'exception' 

which was only introduced to make the new ordering a genuine 

extension). Also, our new ordering does not agree with that on 

graph types in section 2.4 but they are both derived from the same 

partial ordering that is dictated by the nature of the mathematics.

For avitoids and regular clusterings in general the atoms 

will represent clusters. The purpose of the weight function is to 

determine the ordering of the molecules, and the most sensible 

choice is usually the atomic number, especially if there is only 

one particle. Employing more than one particle is necessary when 

we wish to differentiate between the basic elements; most 

importantly, if we are investigating hypergraphs we wish to 

distinguish elements representing edges of different sizes (say, 

for the purpose of evaluating the weak chromatic polynomial).

The important point about structures that are representable 

by molecules is in effect the unique factorizability of those 31



that arc separable. As ve remarked in section 2.2, ve can assign 

suitable values to the q-function to make the product of them for 

nonseparable graphs equal the desired value, but we must ensure 

that the values for separable graphs are what we want without 

multiplying by a 'correction factor'. This is why regular 

clusterings are suitable objects when we extend this idea to 

molecules; we can factorize a separable set into clusters in a 

unique way. However, it is sufficient that we be able to factorize 
uniquely into d u s ter-types, so that it is possible that structures 

more general still than regular clusterings may be represented by 

molecules.
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CHAPTER 4

THE ADDITIVE PROPERTY FOR INTERACTION MODELS

Section 4.1 The interaction model

Section 4.2 The additive property for graphs

Section 4*3 The extension to hypergraphs

Section A .4 The rank polynomial for hypergraphs

In this chapter we investigate the consequences of assuming 

that the partition function of an interaction model satisfies a 

certain linear relation. It is found that this necessitates the 

interaction being of a particularly simple form; and this is also 

sufficient. This is firstly done for graphs, and then generalized 

to hyper graphs; and finally the result is related to a sort of 

rank polynomial.
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4.1 The interaction model

It is a well-known fact that the chromatic polynomial of a

graph is a linear combination of that function for the two graphs

obtained by deleting or contracting any one edge that is not a 

loop; in fact, it is simply their difference. This additive 

property also arises in physical models, as demonstrated by Essam 

fllj; he also shows the relation of such functions to the rank 

polynomial. Tutte C'ÎO, 24J examined graph functions that satisfy 

this linear relation with unit coefficients, and extended the 

problem to include the case where the relation need not be 

satisfied if the edge concerned is an isthmus.

This chapter deals with the additive property quite

generally, for functions that result from interaction models

on graphs. We do not consider the aforementioned extension, 

though, because the corresponding generalization of lemma 3 in 

the next section does not hold; this is because an edge may be 

an isthmus of a subgraph A  of P while not being one of P itself.

Our definition of an interaction model will be less specific

than that used by Biggs [f]. For a graph P and a finite set A, an

interaction function is a function x:A)̂ A-»([ ; then from any function

m:Vr->A we may derive the composition x^w:EP-^C, given by (x-w)(e)

= x(w(vj^) ,0j(v2) ) where are the vertices incident with e. If

e is a loop then v^ = v^; if not, then it is in fact irrelevant

which vertex is identified as v^, but we shall assume that some

choice is consistently made. Then thé partition function associated

with this model is defined as Z(P;x) = Y  1 \  I x “w(e).
u>:Yr-*A ecEP
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4,2 Thu additiVO property for graphs

Ve start this section with a few simple lemmas concerned 

with interaction models. Lemma 1 is a result we shall refer to 

repeatedly in this and the next section, and lemmas 2 and 3 are 

straightforward adaptations of common techniques for our purpose:

LET-NiA 1; If s Y  = tz^ ^ Vr with n,rc^ and s.,t,z€dT then 
i=l 1

s^ = 0 or z for any i, and t = z j {l ̂  i 4 n| s^ = z}| if z/O.

Proof. If the right-hand side equals zero then clearly 

s. = 0  Vi, and either z or t is zero so the statement is true.
n

Otherwise we may divide by z^ to obtain (s./z)^=t Vr, and
1=1 1

this implies that all the summands are 0 or 1, which gives the 

result. D

LEi'D'IA 2: If x,y are interaction functions defined for a set A

and related by x(a,b) = py(a,b) + q Va,b«A for some p,qe£ with 

q/O, then their partition functions are related by Z(P;x) =

q|Eri7E(p/q)IE'‘̂lz(A;y).
Asp
Proof. By definition, Z(P;x) = Y  , ] [x*w(e), and by

w:VP-»A eeEP

hypothesis this equals Y T  f T  (p(ŷ '6)) (e) + q) =
ti);Vr-»A e«EP

qlEPl-)EA| pjEAl "PI" which rearranges to
w:VP-»A Asr e«EA

Eq'EE'(p/q)'E^' Z :  H  / M e )  - q'E^'Z; (p/q)'E^'Z(i;y). Q
AsP iJiYàr*k eeEA ASP

LEMMA 3: If Z(A;y) = d2(Ag,*y) + cZ(A^;y) for all graphs A and 

all edges e thereof that are not loops, and if x and y are related 

as in lemma 2, then for all graphs P and all edges e thereof that 

are not loops, Z(P;x) = (dp+ q)Z(P^;x) + cpZ(P^;x).
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Proof, If 0 - 0 then clearly Z(r;x) = p^ ^^Z(r;y) and so 

the result is immediate. Otherwise, from lemma 2, Z(P;x) =

= q ' E n r  y ]  (F/q)’̂ ^'(dZCA';y)+cZ(A";y))

+ Y  7 (p/q) Z(A;y)|. Using an obvious correspondence, this 
s.û%EL .

then equals (p/q) ^^dZ(A; y) + Y1 ( p A ) ^ ^ c Z ( A ; y )
A£T' Aer”

+ Z Z  (pA)*“'^*z(A;y)l = (op+q)q*"^^* Z 7  (pA ) z(Ajy) +
AST' Asr'

(cp)q^^^ I Z j (pA)^^^^ Z(A;y) = (dp + q)z(r';x) + cpZ(r";x) by 
Asr"

lemma 2 again, D

If A = At u A_ 1/ ...uA is a partition of the set A into 1 2  n -
equal-sized subsets and the interaction function has the property

that one value is taken when both arguments lie in the same subset 

and another value (which may however be equal to the first) when 

they do not, then we shall say that the model is weakly resonant.

The transformation in the statement of lemma 2 clearly preserves 

weak resonance.

THEOREM 1: If Z(A;y) = dZ(A';y) + cZ(A";y) for all graphs A ande e
all edges e thereof that are not loops, then the interaction model 

is weakly resonant; moreover the two values referred to above are 

d + c/k when both arguments are in the same subset and d when they 

are not, where k is the common size of the subsets; and conversely.

Proof. Given the hypothesis, let us first examine the case

where c = 0. For this, consider the graph consisting of two vertices

and r edges between them, for each of which the same vertex is

designated v,. Applying the hypothesis tells us that Z Z  y(&,b)^
a,béA

= d Z j y(a,b)^~^, which inductively gives Z Z  y(a,b)^ = d^|A|^. 
a,b«A a,beA ^
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This then implies by lem^a 1 tĥ =t y(n,b) = d Va,b€A which is 

weakly resonant and is included in the formula of the proposition 

for the special case c = 0, when of course any partition of A into 

equal-sized subsets is suitable.

Alternatively, if c / O  then we may put p=l/c, q=-d/c in

the transformation of lemma 2, and consider the interaction

function x(a,b) = (y{a,b) - d)/c instead. This will satisfy, by

lemma 3, Z(A;x )= Z(a";x); and applying this to the graph described
above gives x(a,b)^ = This already tells us by

a,beA aeA
lemma 1 that x takes only two values, one of them being 0. Further, 

if the other value is m, then j{a,b c A(x(a, b) = m}j =

(l/î̂ ) I faeA|x(a,a) = m}( ; but when r = l we obtain |{a,bcA|x(a,b) = m]| .m 

= 1a( , because the context requires x(a,a)^ = l even if x(a,a) equals 

0. Hence x(a,a)=m VaeA, and there are in all |Af/m pairs a,b e A 

with x(a,b)= m.

■How we turn our attention to the circuit graph with r vertices

and edges, for which we shall choose the v^s and v^s such that each

vertex is v^ for one of its incident edges and v^ for the other.

The, recurrence relation we have now generated for Z(A;x) implies

that the partition functions for all these graphs are the same,

because contracting an edge reduces the circuit graph with r

vertices to that with r - 1. So, inductively and writing for

the circuit graph as described above, Z(C^;x) = Z(Cq;x) = m|A|.

Also, we know that m|A| = Z(Cp;x) = Z Z  x(a,b)x(b,a), which has
a, beA

at most lA|/m nonzero terms (one for each x(a,b)/0) each equal 

to m^. Therefore it has precisely that many nonzero terms and 

we know that x(a,b) = m 4  x(b,a) = m.

However, we may evaluate the partition functions for circuit 

graphs in another way, known as the transfer matrix method (as 3  7



for instance uned by Biggs [SJ). If we form the complex-valued

matrix T indexed by elements of A and defined by ^ = x(a,b),

then Z(C^;x)= trace(T^); but since the trace of the rth power of

a matrix is simply the sum of the rth powers of its eigenvalues,

this implies that 2]XF = m |A| VreX, where the summation is over

all the eigenvalues (with appropriate repetitions). This requires,

by lemi'U 1, that all the eigenvalues be 0 or 1; now, though, we may

use the Perron-Frobenius theorem (as stated by Lancaster [16]),

which tells us that the eigenvalue of greatest absolute value of

a real nonnegative irreducible matrix has unit multiplicity. This

is applicable because the matrix T is known to be real and

nonnegative since its only entries are 0 and m, the quotient

of two positive integers; and the symmetry of the function x

implies that the matrix is symmetric, so if T is not irreducible

we may re-order the rows and columns (correspondingly) so that

there are zeros everywhere except for (maximal by inclusion)

irreducible blocks of O's and m ’s along the diagonal. The

eigenvalues of the whole matrix are then of course the eigenvalues

of these blocks; and the Perron-Frobenius theorem informs us that

each block has one eigenvalue of 1 and the rest are all 0. However,

this means that each block is equal to X ^diag(l,0,...,0)X for some

matrix X, and the (i,j)th entry of this is simply (X). ,(X~^), .;1, -L -L , J
and since none of the diagonal elements is zero, none of the other

elements can be. Therefore every block consists entirely of m's;

and if there are t blocks of sizes k.xk. for i=l,...,t then
t ^ ^

I A|/m = I {a,b e A|x(a,b) = m}| = ^ |A| ̂ /t (since Z k .  = (a I)
i=l

= IAI/m because the trace of T equals the sum of the traces of its 

blocks, and so |A|m = t.l. Hence we have equality throughout and 

this requires that k^ = )A)/t for i = l,...,t.

So we have established that there is a partition of A into ^  Q



sets of size k, with x(a,b)= m = l/k when a and b are in the sane 

subset, and x(a,b) = 0 when they are not. Transforming back to 

the y function we find that the values are d+ c/k and d respectively, 

as claimed in the statement of the theorem.

Conversely, suppose that we are given an interaction function

of such a type. If c = 0 then y(a,b) = d Va,b^A and so Z(A;y) = 

lAilVAldlEAl _ dZ(A';y)' If c / O  then make the transformation as 

before to get x(a,b) = l/k or 0 as appropriate. Then the only 

nonzero terms in the sum for Z(P;x) are those for which P assigns 

values in the same subset of A to vertices in the same component 

of P; and any nonzero term will necessarily be equal to (l/k) .

Hence Z(r;x) = | A | = Z(r";x), 
where KP and CP are the number of components and cycle number 

respectively of P. Therefore transforming back again will yield 

Z(A;y) = dZ(A';y) + cZ(A";y). Q

The fact that it is irrelevant which vertex we identify as 

v^ or Vg for a given edge e is immediate for models with the 

additive property because this choice makes no difference to the 

derived graphs P^ and P”; however, this observation is not enough

to prove that the function must be symmetric. Interaction models

are usually defined with the requirement that the interaction 

function be syr-.raetric, in any case, because this is an obvious 

property of any physical system they model.

Resonance as defined by Biggs corresponds to our weak 

resonance in the special case where A is partitioned into one- 

element sets; in fact the partition function of a weakly resonant 

model can easily be expressed in terms of that of a resonant 

model if we take into account the number of components of the 

graph concerned. g g



If ve have additional structure on the set A then ve ;;:ay 

obtain further conditions on the model. For instance, if ve know 

that A is a group and that x(a,b)= z(a-b) for some function z then 

we infer that A must be partitioned into cosets of a subgroup. In 

the definitions used by Biggs [4,5J this may be applied; however, 

whereas the dual model (see of a resonant model is also

resonant, that of a weakly resonant model is not necessarily 

weakly resonant. Alternatively, in some cases when we have 

information about the function x we can provide a more elementary 

proof of the theorem without appealing to the Perron-Frobenius 

theorem.
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4.3 The extension to hyncrji’arhs

The additive property is a strong requirement for an 

interaction model, so it is not surprising that ve can determine 

necessary and sufficient conditions from consideration of just the 

two families of graphs described. If ve further demand that our 

interaction function be defined for more than two parameters, and 

have a generalization of the additive property for this case too, 

the function is further restricted. To establish this we define 

interaction models over hypergraphs.

The basic ideas for the hypergraph case are the same as for

graphs. Ve require an interaction function x: A ->(f whose values
r=l

we shall wTite as x(r;a^,...pa^), and a consistent order, say 

v^,...,v^, of the vertices in any particular edge; then we define 

x^ic{e) = x(|e);w(v^),... ) ) and the partition function as

before, where |e| signifies the size of the edge e. Other notation 

will carry through from the graph case, but we must remember that 

contracting an edge involves deleting it and identifying all its 

vertices ; of course, this may reduce the sizes of some other edges. 

This is the most apt interpretation of contraction not only due to 

its symmetry but also because this definition is the one required 

to make the weak chromatic polynomial of a hypergraph (see Jones [l5]) 

satisfy the linear relation for the chromatic polynomial of a graph, 
with the same coefficients (Chvatal Z91, referred to by Jones).

Since we have ordered the vertices occurring in any particular 

edge, we should also specify their order in the event of two or 

more of them being identified by a contraction, say by placing 

the new vertex in the position of the earliest of the identified 

ones, and removing the others; however, as in the graph case 

this clearly can make no difference and in fact we discover



once again that the interaction function must be eyae letric.

The proof of the hypergraph version of tneorem 1 of the

previous section is basically the same, and of course will have 

that theorem as a corollary, but the extra complexity involved 

in the the hypergraph case makes it worthwhile to present the 

proofs separately. Ve need to consider several families of 

hypergraphs this time, but start by restating lemnas 2 and 3 of 

the previous section in their hypergraph forms.

LEMMA 1: If x,y are interaction functions defined for a set A

and related by x(z; â ,̂... ,a^) = py(z;a^,... ,a^) + q

a^,,..,a^cA for some p,qe£ with q/O, then their partition

functions are related by Z(r;x) = q (p/q ) Z(A;y).
Asr

Proof. Identical to that for the graph form. Q

LEM'IA 2: If Z(A;y) = dZ(&^;y) + cZ(A^;y) for all hypergraphs A

and all edges e thereof of size z, and if x and y are related as 

in lemma 1, then for all hypergraphs P and edges e thereof of 

size z, Z(r;x) = (dp+q)Z(P;x) + cpZ(P^;x).

Proof. Identical to that for the graph form. Q

Ve shall call a model weakly .resonant ^  size z if A =

A^u...vA^ is a partition into equal-sized subsets and the

interaction function x has the property that for l ^ w ^ z ,  

x(w;a^,...,a^) takes one value when a^,...,a^ lie in the same 

subset A^ and a second (which might be the same) whenever they 

do not.

THEOREM 1: If Z(A;y) = dZ(A^;y) + cZ(A^;y) with c / O  for all

hypergraphs A and all edges e thereof of size z, then the

interaction model is weakly resonant to size z; moreover the 42



tvo values referred to above arc d c / k  and d, resj;ective] y ; 
and conversely.

Proof. Since c / O  we may transform as in theorem 1 of the

previous section to obtain Z(A;x) = Z(A";x) for suitably-sized

edges. Now we consider the hypergraph with r edges, each

containing the same z vertices in the same order (see figure 1

below). This yields x(z;a^,..,a f
3-̂ ,.. ,3 A a€ A

which by lemma 1 of section /, ,2 and the special case r = l  implies

that x(l;a)=m VacA, and that x(z;a^,., ,a^) takes the value m on

IA|/m occasions and 0 on the others.

1

Next we consider the hyper graph with two edges each containing

the same z vertices, the former in the order and the latter

in the order 2 some permutation  ̂(see figure 2 above).

Then the contracted graph is the same as in the previous case for

r = 2, so that ^  x(z;a^,..,a^) x(z;a^^,..,a^^) =
^2 > • • > 3 A

2y  j x(z;a^,..,a^) , and this now requires that x(z;a^,..,a^)
a^,.., a €. A1 z
= mx(z;a^^,..,a^^) = m.

Next we examine an analogue to the circuit graph, namely the 

z-uniform hypergraph with r(z-l) vertices and r edges e^,..,e^ 

where the pairs of edges e^ and e^, e^ and e^, etcetera have 

precisely one vertex in common and no other pairs of edges have 

any common vertices (see figure 3 eelow). Calling this hypergraph ^  ̂



v;fe h'.ve arr' ve may uae the traaafer matrix

methoo by defining ^  ] x(z;a,a^,..,a^ ^,b) and

obtaining Z(C^;x)= trace(T^) for r ^ 2. Now, if we knew that 

could only take one of two values, one of which was zero, 

we could obtain as before the result that A must be partitioned 

into equal-sized subsets A^, i= 1,..., |A)/k, with ^ = l/k if 

a,b are in the same subset and. 0 otherwise. However, consideration

\ * « '\

fig. A

of the family of z-uniform hypergraphs whose rth member has r

edges and r(z-2) + 2 vertices, two of which occur in all the edges

and the rest of which occur in only one edge (see figure 4- above),

indicates that (T ^  "1 x(z-l;a,a ,..,a ,
a, be A * aeA a^,..,a^_^eA

which implies the- desired result by lemma 1 of section 4*2.

Furthermore, it informs us by the same lemma that |A|k =

kj{a£A| ^  1 x(z-l;a,a^,.. ,a _-.) = l/k}|, so that we have

x(z-l;a,a ,,.a _.) = l/k VaeA.2-1-
2''''&z-l A

Now we examine another family of h^qcergraphs; for this the 

rth member will have 2z-2 vertices and r+1 edges, r of which contain 

the same z vertices and the other contains two of these plus the 

remaining z-2 (see figure 5 below). There are two sorts of edge 

we can contract, and equating the partition functions for the two

resultant hynergraphs we get ^  . x(z-l;a,a^,. . , -
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acA
x(z 15a, , , , , )  —

x{z-l;a,a^,..,a^_^), Consequently, usingz za ,a^,■•y a^ A

lê -̂ rna 1 of section 4-,2 again, x(z-l;a,a^,.. ,a^_^) can take only 

the tvo values 0 and m, as ve wished.

fig. 6

Next ve turn our attention to the hypergraph vith tvo edges, 

one containing z vertices and the other, of size z-1, containing 

all but one of these (see figure 6 above). Vfnen ve contract the 

edge of size z ve obtain a single vertex, in a loop; on equating 

the partition functions for these tvo hypergraphs ve have

22 21, =2Zx(l;a)
a eA z as A

= m)A|. Hovever, ve know the LHS 4 |A| k(l/k)m, because

x ( z - l ; a , . ,a . ) ( m  and 2  x(z;a-,..,a ) = |Alk(l/k);
■ 1 a^qpa^aA ^

so the actual equality of the expression requires that

x(z;a^,..,a^) = m 4  x(z-l;a^,.. = m. Similarly, using

x(z;a^,.. ,a^) 4 in and x(z-l;a^,.. ,a^_^) = |A|/k ve

know the LHS 4 |A| (]/k)mk, because x(z; a^,.. ,a^) = 0. if a^,..,a^ 

are not all in the same subset A^. So, again, the equality 

necessitates x(z-l; â ,̂.. ,a^_^) = m only when aj^,..,a^_^ are all 

m  the same subs et ; and that x(z—l;a^,..,a^ 2̂ ) m, a^ in the 

same subset as ^q>**>^2;-l^ x(z;a^,.. ,a^) = m. These last two 

results then combine to tell us that x(z;a^,..,a^) = m if and

only if a ,..,a are in the same subset A^ of A, since any subset



must give rire to come nonzero terms, and ve can then rr.-nch any 

other term by changing one argu-nent at a time, and at each stage 

the new tern, is also nonzero.

Nov.̂ an evaluation of T , when a and b are in the same subseta, D
yields l/k = k 'm, and so rn=k^ Then a transformation back from 

X to y will give the values as stated in the proposition of the 

theorem, for edges of sizes z, z-1 and 1.

Finally, we may establish that if the additive property holds 

for edges of size z it does so for smaller edges too. If we have 

any hypergraph P with an edge e of size w ( K w < z ) ,  form a new 

hypergraph A that has the same edges and vertices except that e is 
replaced by an edge of size z containing the w vertices and z-w 
new ones, plus z-w other edges of size z each containing a different 

one of the z-w now vertices, any one of the v vertices originally 

contained in e, and z-2 further new ones (see figure 7 below).

fig. 7

On contracting these last z-w edges of A we simply recover P, so 
Z(A;x) = Z(r,-x). Alternatively, if we contract the other new edge 

we obtain with z-w edges of size z-1 joined at a single vertex, 

and we already know that each of these will contribute a factor of 

l/k; so we establish that Z(A,*x) = k̂'̂“^Z(p^;x). Combining these 

two results we have Z(P;x) = k̂''“^Z(P";x) for any hypergraph and 

any edge of size v^z; note that this formula works for edges of 

size 1 also.
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Therefore we can show that the positive proposition of the 

theorem holds in full, since ve have determined the values x can 

assume for edges of sizes z, z-1 and 1 by assuming the additive 

property holds for edges of size z; consequently the values of x 

for edges of size v, v-1 and 1 for any v< z have now been 

determined, and these values will of course be consistent.

Conversely, if we have an interaction that is weakly resonant 

to size z, then make the transformation from y to x as before.

Then clearly Z(P;x) = ( | Al/k)^^k*^*^*k^^"^^ * and so Z(r”;x) =

Z(P;x) for an edge of size z, since then jVP”! = IVfl - (z-l) and 

|Er»»i = lEPl-1. n

We mention two corollaries to the theorem, before giving 

partial results concerning edges of size greater than z.

COROLLARY 1: For c/O, if Z(zi;y) = dZ(A^;y) + cZ(A^;y) for all

hyper graphs A  and all edges e of size z, then Z(A;y ) = 

dZ(A^;y) + ck'^~^Z(A^;y) for all edges e of size w 4 z, for some 

integer k dividing )A|.

Proof. Direct from the proof of the theorem. D

COROLLARY 2: If an interaction model has the additive property

with the same coefficients for edges of two different sizes then 

the model is resonant, if c/O.

Proof. If the two sizes concerned are z and w, then from 

corollary 1 ve have c = ck̂ '~̂ , which implies k = l  as required. D

The above corollary indicates why the additive property 

in graphs for edges which may be loops is restrictive. Note 

that if c = 0 in the statement of the theorem we can deduce (from 

consideration of the hyper graph diagrammed in figure 1) that ^  y



y ( z; , a^) - d ,.. , A but v/e can obtain no informs tic a
et all about cdgen of other sizes.

In the following two theorems we use the hypothesis of 

theorem 1, wnich ve have seen implies that there is a partition 

of A into equal-sized subsets, with a certain property; this is 

implicitly assumed in their statements.

THEOREM 2: Given that c/O, z > 1, and Z(A;y) = dZ(A';y) + cZ(A”;y)

for all hypergraphs and all edges of size z, then for all values

of w, if a,,.,,a are in the same subset A. we have y(w:aT,..,a )1 VJ 1 1 w
= d + ck^"^.

Proof. Form a hypergraph consisting of w vertices and w-1 

edges of size 2 which make a tree; add r edges of size w, containing 

these vertices, all in the same order (see figure 8 below).

Transform y to x as before; the partition function then equals

x(v;a,,..,a )^ since if there are two(l—z)(w—l)  ̂ f \ V

a^,.. ,a ,€Â  2 i

UjS in different subsets there must be two such representing 

adjacent vertices, which means that the factor provided by the 

edge between them is zero. However, if we contract all the edges 

of size 2 we obtain a hypergraph with r edges containing just one 

vertex, and so the above expression equals ^^(A)k^^

using corollary 1. Now we note that there are |Aj k^ ^ terms in 
the sum which must total |A( ^̂ --2 )r- (l-z)(w-l) ^

|A)k'''” '̂*' so by lemma 1 of section 4.2 we must have

x(w;a^,..,a^P =k^"^ for all a^,..,a^ in the same subset. Lastly 

transform back from x to y for the result. O

THEOREM 3: Given that c/O, z > 1, and Z(A;y) = dZ(A’;y) + cZ(A”;y)

for all hypergraphs and all edges of size z, then for all values

of w, if a^,..,a^ are in t different subsets A^ with 1 < t 4 z we ^  g



have y(v;a^,..,a ) = d.

Proof. We have already shown this in theorem 1 for v 4 z; 

if v; > z then consider the hypergraph on w vertices with w-z edges 

of size 2 forming a forest, plus r edges containing all w vertices 

in the same order (see figure 9 above). Transform y to x as usual, 

and relate the partition functions for the hypergraph as it stands 

and after all the edges of size 2 have been contracted, to obtain
>r  ̂^(2-z)(u-2)m^,z-lj^(l-z)r_ where

the summation is over all a^,..,a^ not lying in more than z subsets, 

since all other terms will be zero (as in theorem 2). So we infer 

(w; a^,..,a^ = |A| ^ ̂  (l-z)r, this equals the sum in the

last theorem, when a^,..,a^ all lay in one subset; therefore terms 

in the sum corresponding to a^,..,a^ in t different subsets (with 

1 ^ z) must all be zero, using lemma 1 of section ^.2. By

choosing different forests to start our hypergraph with we can 

demonstrate that whichever of the a^s are in the same subsets the 

corresponding x(w; a^,.. ,â )̂ will be zero unless they are all in 

one subset. Finally, transform back from y to x to obtain the 

result. D

We cannot in general say any more than this because if we 

wish to be able to contract edges of sizes less than or equal to 

z in order to reduce the sizes of other edges, this will in fact 

necessitate certain of the vertices having images under w in the 
same subset, to contribute nonzero terms. A  9



The definition of an interaction nodel on a hypergrarh used 

here is the straightforward generalization of that for a graph, 

and is effectively (apart from the absence of symr.etry as a 

prerequisite) the same as that used by Grimrnett Li3l, except that 

he utilises cliques in a graph instead of edges of sizes greater 

than two in a hypergraph.
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/,./* The rani: polynomial for hypcrgraphc

Any graph function with the additive property for every edge 

that is not a loop can be expressed, as in [24l, as a sort of rank 
polynomial; and conversely. We can obtain corresponding results 

for hypergraphs.

LSMWA 1: If Z(P;y) = dZ(r';y) + cZ(r";y) for all hypergraphs and

all edges of size z, then, writing RA for the rank of the 

hypergraph A, Z(r;y) =
Asr

Proof. From lemma 1 of section 4-«3» and using the usual

relation between y and x, Z(P;y) = d^''^^^^(c/d)^^^^Z(A;x); but
AGP

Z(A;x ) = k^^ z)L-AI I so the result follows. Note

that the result holds even for d =0 if we agree to rewrite the 
expression with jl-TI-|_AI the summation. Q

LO'î'A 2: If Z(r;y) = f U r l g l v n ^ j ^ l E A i p A  2(P;y) =

fz(rpy) + (gj)'c' hhz(rpy).

Proof. We may split the summation into two, according as

the edge e is or is not in the subhj'pergraph A;then Z(r;y) =
J.I E r ' I+ lg lV f ' l  ^  ^lEAIjKA ^ jlEP 'l + lg lvr"|+|e | - i T ^  hlE/U+ljEA+lel -1  

AST' ^sr"

= fz(r:y) + (gj)'®'“ f̂hz(r";y). U

In the above, lemma 1 applies to hypergraphs with no edge

of size greater than z, and we may restrict both the condition 

and the conclusion of lemma 2 similarly. Combining these two 

and an earlier theorem results in the following.

THEORE!-' 1: The following conditions are equivalent for an 

interaction model on hypergraphs; (i) it is weakly resonant 51



to size z; (ii) it has the additive property for edges of sizes 

greater than 0 and not greater than z; (iii) it is expressible 

as a sort of rank polynomial (as in lemma 2) on hypergraphs with 

no edge of size greater than z.

Proof. Conditions (i) and (ii) are equivalent by theorem 1 

of section 4.3; if c = 0 in condition (ii) then the comment after 

corollary 2 of that section implies (i) since the additive property 

exists for all sizes of edges up to z. Condition (ii) implies (iii) 

by lemma 1, with the case c = 0 easily being true. Finally, 

condition (iii) implies (i) by lemma 2. □
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CÏÏAPTI7< 5 

AVIT0IB3; FUNCTIONS AND DUALS

Section 5.1 Diagramming by hyper graphs 

Section 5»2 The rank function for avitoids

Section 5.3 The dual function

In this chapter we pursue the idea of avitoids introduced

in section 3.4, and see how far some results on rank polynomials

for graphs can be generalized to these structures, particularly 

those relating to duality.
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5.1 Diagram; ing by hypergraphs

It is helpful to diagram avitoids using hypergraphs so that 

each (isomorphism class of) avitoid is represented by a unique 

(isomorphism class of) hypergraph. There are two simple ways of 

doing this: we represent elements of the avitoid by vertices of a 

hypergraph and then allow a hyperedge whenever the relevant vertices 

represent elements forming a circuit, or alternatively a base. We 

call these the circuit diagram and base diagram respectively of the 

avitoid. The interpretation of a null hypergraph will differ in the 

two cases, representing no circuits in the former and the empty base 

in the latter.

The circuit diagram is usually more helpful; we find that an 

avitoid is nonseparable if and only if its circuit diagram is 

connected. Also, when we delete an element from an avitoid we 

simply delete the corresponding vertex from the circuit diagram; 

this makes the identifying of subavitoids straightforward. Both 

of these facts follow immediately from the definitions.

From the definitions of circuits and bases we see that the 

diagramming hypergraphs of avitoids must be elementary. Conversely, 

every elementary hypergraph will be a diagram of either type. We 

list a few avitoid diagrams below,
©

e  0

A
©

circuit
diagram

base
diagram

circuit
diagram

base
diagram 5A



IJhen we take the dual of an avitoid it ic clearly easier to 

work with the base diagrair;, for then each new hyperedge is just the 

complement of the corresponding old one. VJhen we delete an element 

the base diagram is modified as followsJ we remove the associated 

vertex, and any hyperedges that contained it are diminished by that 

vertex. This may result in a non-elementary hypergraph, though, 

and we resolve this by deleting all edges properly contained in 

others, and deleting all but one of a family of equal edges. 

Contraction of an element is superficially similar: we again 

remove the associated vertex and diminish any hyperedges that 

contained it. If we now have a non-elementary hypergraph we delete 

all edges properly containing others, and all but one of a family 

of equal edges. Ve must momentarily remember that diminishing a 

hyperedge of size 1 will result in a hyperedge of size 0, which 

will be contained in all other hyperedges.

We can also use hypergraphs as examples of avitoids, with

circuits being defined in a way that is nonstandard, but uses the

same basic idea. For a hypergraph we define a circuit as a minimal

(by inclusion) set of edges •fe^,..,e^} such that c = l  and e^ is a

loop, or c> 1 and there are distinct vertices v^y..,v^ such that

e, 5 V, € ? v« € ... € e » v  e e^. Then some avitoids that cannot1 1 2 2 0 c 1
be realized as graphs may be as hypergraphs, as shown below.

However, we cannot provide examples of all avitoids in this way; 

for instance, the avitoid whose only circuits are {a,b,c,d} and 

{a,b,c,e} is not realizable.

0  A
circuit hypergraph circuit hypergraph
diagram diagram 55



.2 The rank function for avitoids

In this section we present a rank function for avitoids, 

preserving as far as possible the properties that hold for graphs 

(and, more generally, for matroids). The main problem lies in 

defining the rank of an avitoid usefully, since an avitoid may 

have bases of different sizes.

The rank of an avitoid is defined as the size of its smallest 

bases. Following from that definition, we let the rank function 

H(f;a,b), or simply H(f), of an avitoid P equal where
ASP

RA is the rank of A. The cycle number will be defined as C P =

(EPI -RP, and the chromatic function will be H(P;-l,l/n),

We introduce two more notions before proceeding. An element

e of an avitoid P will be said to commute if P" ! = PI " VA^EP\(el:------- eA Ae '
and an element e is regular if it occurs in a smallest base of 

P̂ VA9EPs{e].

LEMMA 1: If e is in a smallest base of A then RA” = RA - 1.e

Proof. The set of bases for A ” includes those bases of A 

that contain e, less it; therefore on contracting e some smallest 

base of ‘A  diminishes in size by one element and since no base 

can decrease by more than this it is still a smallest base. . Q

THEOREM 1: If e^ EF is regular and commutes, then the rank function

satisfies H(P) = H(Pp + ab H(P^).

Proof. Write h(A) = a^^^^b^^; then H(p) = ^X^h(A) and from
ù,s.r

lemma 1 we have h(A) = ab h(A”) if e c EA since e is regular. We

may put H(P) = 2 a h ( P ’) and then split the summation according as 
AiEP ^

e is or is not contained in A; then expressing the summations 56



differently giver, r (r) = Z Z^ ^ D  BsEf DsEf"e e
h(r'), which equals

H(r*) + ! ab h(r'") by the above. Now, since e commutes, the
D^Ef"e

(remaining) summation equals ab ̂ 7  h(Pg^) = ab H(r”); therefore
DsEf" e

H(r) = H(r^) + ab R(r^), as required. B

The definitions of rank, commuting and regularity are made 

to generalize as much as possible the results for graphs. In 

graphs, or more generally matroids, every element that is not a 

loop is regular, so the prohibition of non-regular elements is 

necessary there too. Below we show the circuit diagrams of some 

avitoids that are not matroids with elements that are regular 

and commute being denoted by white rather than black vertices; 

it is only for the last of these that all the vertices possess 

this property.

r t
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5.3 The dual function

In this section we investigate the function dual to a given 

one; we define the dual function as F*(P) = F(P^), and can establish 

a relationship in terms of the summation expression.

THEOREM 1: If F(P) = ̂  'f(A ) then the dual function satisfies

F*(r) where f*(A) = (-1)
A;B€EA '

s.t.AAR=ff

Proof. Note that we are writing f*(A) for notational

convenience, and that it is not defined as f(A*); that is only

for the capital letter functions. Now, the relation F- (P) =
f^ (a ) = y  T  f*(P! ) has the simple inversion formula f*(P) =

Asr A£EP
Z Z  (“l)*^*F«(n). Therefore f*(A) = ^  (-l)'^'F(A'*) =AsEP ^ ASEA ^
Z Z  ( - 1 ) F(a ^J) = ^  t (-l)*^*f(A*VA), and when the summation 
ASEA ^ ASEA

BsEA*%

conditions are rewritten this is the desired result. Q

For graphs, it is known that the flow polynomial is just a 

multiple of the dual function of the chromatic polynomial, and 

both are evaluations of the rank polynomial (see, for instance, 

Biggs C?l). We may pursue this relationship for avitoids in 

general; firstly we do so for matroids.

LEM-ÎA 1: For a matroid, CA^ + CA^*^ = |EAI - IA| - |B( + CA^^^g

when A rt B = 0.

Proof. Firstly, note that CAj = CA^^ + because when

we start with the matroid AĴ  and contract the elements of B one by 

one we leave the cycle number unchanged except when ve contract a 
loop, which decreases the cycle number by 1; so the total number
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of times ve have to contract a loop is simply the cycle nun,her cf 

the Gubmatroid induced by the elements of B, that is, the matroid 

Using lUis, CA- + CA-- = CA-g + CA-^^g + CA-- = 

lEA^gl + because the sum of the cycle numbers of a matroid

and its dual is the number of elements; and now expanding 

yields the result. D

THEOREM 2: If F(P) = ^'here f(A) = and G(r) =
^çr i--"'

a-lEPIb then G(P) = Z j S(^) vhere g(A) =
A&r

Proof. By simole inversion g(A) = [ ( - 1 ) )  =
AsEA

I AI -CAJ
/  .(-1) a b F(AJ*), and replacing F(A'*) with
A£EA ^ *

IEA’^‘1 RA’^’
E

BSEA'A
y  Z a ^ ^ b ^ ^ and rearranging the summation gives g(A) =

^  ,A, IEA'*‘ I-IEAM RApA-CA*
2__, (-1)' a ^ ^ ^ b ^ ^ which, by the lemma, is
A,EsE
aU«B=^ ^  ^
equal to /  ■ (-l)*^*a"*^*b Now we sum over A s EA^b

A,3sE 
at ArtB=^

and the only nonzero contribution occurs when EA\ B = 0; hence 

g(A) = a-'“^'b“U t  n

Ve would like to know if a similar property holds for some 

class of avitoids other than matroids; however, the following 

theorem shows that this does not happen.

THEOREM 3: I f  b C P ^ ^ - IE A l  ^-CA ^ ^ISAl ^RA ^  a v i t o id
Asr

r and all a,b then P is a matroid.

Proof. Since the equation holds for all a,b we may compare 

coefficients in the two expressions, Ve do so firstly by the 

powers of a.

Note that A = P in the summation on the left-hand side of 

the equation corresponds to A = jZf on the right-hand side, both ^ ^



providing the only constant, 1. For the terme ai’ising from A = ̂

and A = r^, the only ones concerning , to be equal we need
P r T) r %b = b , that is, I EPI -RP = RP-^. The only way for this to 

happen is for P to have all its bases the same size.

Next, since both sides of the equation in the statement of

the theorem are multiplicative, we need only verify the result for

nonseparable P. In such cases the terms with &IBP|-1^ resulting
lEPl —1 CPfrom A comprising a single element, sum to lEPla b on the

left-hand side and so for equality we require RP^^ = RP Ve. 

Similarly, comparing the coefficients of a^ gives jEP^lab on the 

right-hand side and so we need CPĴ  = CP - 1 Ve, that is,

RP' = RP Ve.e R ('̂ "1
Restating the above information in terms of bases, we see 

that any base less an element must be contained in another base, 

and that any base plus a new element must contain another base.

Now we examine the two sums term by terra, letting 

correspond to that A  S T such that A= ; the contribution to the 

right-hand side-will be Now suppose, inductively, that

deleting from P a  set of size less than (EAl of elements that is 

independent in P^ does not change the rank. Accordingly we delete 

from P a base, say B, of A; then RP^ = RP. Next observe that for 

any element xcEA'^B there is a subset C £ B  such that C*/{x) is a 

circuit, because B is a base; but, by a property relating bases 

of P to circuits of P-, this means that every base of P contains 

at least one member of Cw{xj ; and since the remaining bases, of P^, 

cannot contain any elements of C, we deduce that every remaining 

base contains x, and this holds for all x c EAnB. Consequently, 

when we delete all the elements of EA we reduce the rank by lEA'BI; 

note that this is true for any base B, so we have incidentally g Q



ectablirhci that all bases of A have the same size, but all that

we shall use is that = RP-CA since every base 3 is a smallest

base. Hence CPI. = CP-RA and so the contribution to the left-hand 
side is j!^r|-(lEr|-|EAl);^cr_(cr_M) ^ a'EAly%A_

The only problem remaining is if the set EA is independent

in P“, when we might obtain RP* < RP, In order to ensure thatiiA
this does not happen we must place further restrictions on the 

bases of the avitoid. Accordingly, suppose that we are given 

bases with xc B ^ " ^ , and look at the set D defined as

{d « EP| (B^\x)wd is a base of P}; we have already seen that this 

must have size at least 2. Deleting D from P will certainly 

reduce the rank by at least 1, so we must insist that D be a 

dependent set in P*; that is, D contains a circuit in P*, which 

implies that at least one element of D occurs in any base of P. 

However, B^ does not contain x so it must contain another element, 

say y, of D; and then y t B^\B^, and (B^vx)uy is a base, which 

satisfies one way of stating the additional axiom which converts 

an avitoid into a matroid.

To recap the argument: it is necessary to have the inductive 

hypothesis that deleting a set of elements independent in does 

not change the rank in P; we showed that this was necessary for 

one-element sets, and that it was inductively necessary for sets 

of increasing sizes. In the above paragraph, though, we have 

established that this requirement for all sizes implies that 

the avitoid be in fact a matroid. Q

If we write 1T(P) = H(P;a,b) = b~"^ then

the results of theorems 2 and 3 state that H(p) = H(r“) Va,b 

if and only if P  is a matroid.
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Nagle, in [l 7], showed how the chromatic polynomial of a 

graph could be expressed as a suitably adjusted sum of the flow 

polynomials of its subgraphs (although he did not remark that his 

weight function was virtually the flow polynomial). This can be 

generalized to our formulation for avitoids.

THEOI : A: H ( r )  = ( l - a ^ b ) ‘ ^ ^ * Z ]  b ^ ^ ( l -  a^b) ” .

Proof. On expanding H(A) the right-hand side equals 
^  ̂  J  EA p R  A(i _ ̂ 2b) I Erl - lEâlJ EA( lEAl ̂ -C A ^
ASr AÇA
^ a lE A l b R A ^ ( a 2 b ) IE A I - IE A I ( i _ ^ 2 b ) I E r i - |E A |  ^

ASPA2A
which equals H(p), as required. Q
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CHAPZR 6

MOLEGUTÆS; EVALUATION OF THE MATRICES

Section 6,1 The formulae

Section 6.2 General results

Section 6.3 Practical evaluation

This chapter follows through the properties of molecules as 

defined in section 3*5. The evaluation of the matrix needed 

in chapter 2 is investigated in a general setting for which the 

basic results hold even though we may not have molecules that 

represent graph types.
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6.1 The formulaG

The procedure described by Biggs [ using results by Tutte 

[Z2] makes it evident that we can evaluate the B-matrix of chapter 

2 simply by knowing the (numbers of) nonseparable graphs contained 

in a given graph, without any structural information on how these 

may fit together. All that we need is the entries in the M-matrix 

for nonseparable graphs to generate B recursively; this is precisely 

what allows us to apply these results to the graph reconstruction 

problem as Tutte [ZSl noted, since the set of subgraphs we are 

provided with in the problem contains more than enough information 

for this method. However, we do not need to go to the length of 

deriving the successive q (or even log q) functions by manipulating 

previous ones; the process we shall describe, in the more general 

setting of molecules, for determining the B-matrix and the 

consequent M-matrix is much simpler.

The operation is as follows: given the H-matri): for atoms we

extend it to cover molecules as described in section 3*5« Ve then

progressively define, for increasing m, the entries of B and M by:

)/B^ for m<n; =: 1; = 0 for
r<m r » ' ' '

“ ®m,n = “m.n “ Ç  Um.RV.n = ° ^or m< n. Ther< n ' ' '
fact that this is well-defined (i.e. that B is never zero) willm,m
be established in the next section, but for the time being we just 

note the following result.

THEOREM 1: If the atoms correspond to nonseparable graph types

and the N matrix is as in chapter 2 then the B and M matrices are 

as defined there, if the weight function is the atomic number.

Proof. If the atoms do represent graph types then the B 

and M matrices exist, are lower and upper triangular matrices 0 ^



respectively and M has l*s along the diagonal, all by definition; 

so the entries of both must be determined by the above relations 

since N = Bîi. Q

The fact that ŵ e can generalize graph types to regular 

clusterings leads to other elementary results. Given a regular 

clustering ve can represent all isomorphic sub-clusterings by the 

same molecule; where, in the obvious way, two subsets of a 

clustering are isomorphic if there is a correspondence between 

elements which preserves 'clusterhood,’. Ve might also distinguish 

some isomorphic subsets if necessary, as we suggested in 

section 3.5»

THEOREI'i 2: If the atoms correspond to types of isomorphic clusters

and the N matrix is derived as before, then the B and K matrices 

have the same meanings as for graphs. In particular, B and M are 

integral and nonnegative, and the columns of M sum to powers of 2, 

providing the weight function equals the atomic number.

Proof. This is trivial because B and K retain their meanings 

in the generalization to regular clusterings. Q

In fact we can be less strict about the weight function and 

still obtain the above result. However, by other choices of the 

weight function we can produce negative entries in B and M, and 

stop columns of M summing to powers of 2. In the next section we 

investigate whether the integrality of the coefficients of M is 

maintained in the generalization to molecules.
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6.2 General results

Ve commence this section by noting the values of the entries 

that we would derive for the B and M matrices using the procedure 

of the previous section if we started with a general N matrix, not 

necessarily one derived as in section 3.5. Ve shall, for the time 

being, use numerals as subscripts, and view the derivations as 

formal expressions. To shorten the expressions considerably, we 

shall use the notation Ju,v w,x y,z| to mean the determinant of the 

submatrix of N with rows indexed by u,w and y and columns by v,x 

and z, in that order; and so on for determinants of other sizes.

Thus, for instance, |l,2 2,Z| = *'n,2
”2 , 2

LEM!A 1: Deriving the B and M matrices from a general N gives

= |1,1 2,2 ... i,jl/|l,l 2,2 ... and

= n , l  2,2 ... j-1,3-1 j,k|/ 1,1 2,2 ... j-l,j-l j,j|.

Proof. Note, incidentally, that the above expressions

subsume the zero values for B. . when i < j  and K. , when j>k,J J
and the unit value for M, , . Now, following the procedure forK ,K
deriving the B and M matrices we obtain a unique expression for

every term; therefore it is sufficient to verify that the values

given satisfy N = BM. The resulting expressions are in effect 

the expansions of Schweins for quotients of determinants, as 

presented by Aitken ClJ.

Mimicking the proof used by Aitken, we write B. .M. , =J 9̂
(|1,1 .. i,j|/|l,l .. j-l,j-l|)(|l,l .. j,k|/|l,l .. j,j|) =
11.1 2,2 ... j—l,j—1 i,k|/|l,l 2,2 ... j-l,j—1| —
11.1 2,2 ... j-l,j-l j,j i,k|/|l,l 2,2 ... j-l,j-l j,j|,
because this equation is the extensional of the identity 

(|l,jl/l)(lj,kl/lj,j|) = |i,k|/l - |j,j i,k|/|j,j|. 56



Thn expression ve now have for B. .K. , holds as ve have 

written it for j^i,k, VJhen j = 1 we interpret the empty determinant 

as having the value 1, and the expression becomes ^ =
Ni ^ N ^

KM ^ 1  - N.* " when j equals i or k the last row or

column (respectively) of the numerator of the second term in the 

expression is a repetition of the previous row or column. Hence

on writing out ^  , B. .K.  ̂ the terms cancel out in pairs except 
j<i,k

for the first, which is H. , , and the last, which equals 0. Thus1,K
the answers as given are the correct ones. Q

Before proving the main result of this section we need one

more lemma, for which we prepare with some terminology and notation. 

We shall consider polynomials in several variables x^,X2 ,...,x^ and 

denote the point in d-dimensional space with corresponding 

co-ordinates by x. Ve shall call a set S of points with 

non-negative integral co-ordinates star-shaped if V s c S ,

O ^ r ^ s  rcS, where ' ̂  ' has the usual meaning for vectors 

(i.e. that every co-ordinate must be less than or equal to the 
corresponding one). Ve shall WTite e^ for the point with ith 
co-ordinate 1 and all others 0.

The lemma is a simple consequence of a standard result in

the calculus of finite differences, as for example stated by Fort

[1 2 ]' Ve shall extend the notation slightly: given a function f,

or just its values at suitable points, we define A  (x) =
®i

f(x+e.) - f(x). Then A (x) = f(x+e.+e.) - f(x+e.) - f(x+e.)
1 ®i®j 1 J J

+ f(x) = A (x), so that we may define A (x) uniquely in the 
J i  ^

obvious way.

LEMjjA 2: Given integral values on a star-shaped set of points S
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d
there is a unique polynomial with terms just in T[x. for s «. S

i=l
that fits them; and this is always integer-valued for integral 

arguments.

Proof. Since S is star-shaped we can evaluate A^(o) for 

all SfiS and then assume that A^(0) = 0 for all r^S. This leads

/ -jX (s.)
to the expression / A  (O) . x . /s.! for the unique polynomial

W  ^ 1=1 " 1
( s . )

of of required degree, where x^ represents the ’falling

factorial’ x^(x^-l)(.,.)(x^-s^+1). The details of this assertion 

are straightforward generalizations of the standard result.

However, we may derive the value at any desired point with 

non-negative integral co-ordinates as follows. Given such a point 

t^S, the equation A^(0) = 0 expresses the value at t as an integral 

combination of the values at the points r with 0.̂  r< t; so that if 

we have already discovered these values in the same way (or from 

the original data if rcS) we know that the value at t must be 

integral. A suitable order for determining the values at points 

r < t  would be their ’lexicographical' order when written out 

as vectors. 0

As an example, if we had to find a polynomial f(x,y) with 

terms in l,x,x^,y and xy and satisfying f(0,0) = -l, f(l,0) = 1, 

f(2,0)=A, f(0,l)=2 and f(l,l) = 5 we could derive the polynomial 

3y 1 +  -§x - 14- xy; alternatively, if we only wished to laiow the 

value f(3,2) then we could recursively evaluate f(0,2) = 5, 

f(l,2) = 9, f(2,l) = 9, f(2,2) = lA, f(3,0) = 8, f(3,l) = U a n d  

finally f(3,2) =20.

VJe now proceed to the main theorem of this section, on 

molecules.
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THEOREM 1: For any system of molecules, ^ is always nonzero

and ^ is integral.

Proof. From lemma 1 we know that M is equal tom,n
|1,1 2,2 ... j-l,j-l j,k|/ll,l 2,2 ... j-l,j-l j,jl where m is 

the jth molecule and n the kth. The denominator of this is an 

integer which we shall inductively suppose to be nonzero, and the 

numerator may be taken to be an integral polynomial in variables 

corresponding to the various atoms involved so far. In this way

we shall have a term in ] ^ for each molecule n,
a b

and each such is multiplied by an appropriate minor. In 

particular, the relevant minor for the term with r = n  is nonzero 

by the inductive hypothesis.

Now, if \re consider just the numerator we see that it is a

polynomial which is zero for j sets of values, namely when n

comprises all zeros or represents any of the first j-1 molecules.

If we now know the value tai:en when n represents the jth molecule

then a unique polynomial with appropriate terms is determined, by

lemma 2, since the data points form a star-shaped set. However,

this last value cannot also be zero for then the polynomial would

be identically zero, which cannot be the case because the jth term

is multiplied by a nonzero minor. Therefore the last value, which

is in fact the denominator of M , is nonzero.m,n'

So we have established that |l,l 2,2 ... j,j| / 0 and so the

inductive step is proved, as is the fact that B / 0; the start^ n,n ' '
of the induction is provided by the observation that ^ = 1 /  0. 

Furthermore we have shoim that ^ regarded as a polynomial has 

the value 0 at j points and 1 at another, which form a star-shaped 

region; therefore by lemma 2 again, ^ must be integral at any 

point with integral co-ordinates, i.e. for any n. □  6  9



6,3 Practical evaluation

For practical purposes of evaluating chromatic polynomials, 

interaction partition functions and the like ve need to find the 

coefficients of the matrix and for theoretical purposes of

shoving that the obvious definition of the 'thermodynamic limit’ 

of a suitable sequence of graphs of increasing size (see Biggs [$]) 

provides a convergent infinite series we want to be able to place 

bounds on the coefficients. Ve first note that a determinantal 

expression exists for the inverse of the B-matrix, similar to 

those in lemma 1 of the last section.

THEOHEK l! = |1,1 ... j-1,j-1 j,5|/|l,l ... j-1,j-1 j,j|

for j ^ k  and 0 otherwise, where we define the extra column 1c of 

N by ^ = 1 and o = 0 for i/ k.

Proof. Ve proceed as in the lemma referred to by writing

R,* T ]r ~ ••• i,k|/ll,l ... j-l,j-l| -J J J
11,1 ... j-1,j-1 j, j i,kl/|l,l ... j-1, j-1 j,j|. Vhen we sum

this over all j such that k^ j ^ i  all the terms except two cancel

in pairs; the minus term with j = i is also zero because the last

two rows of the numerator are equal, and the plus terra with j = k

is also zero unless i = k too for otherwise the last column is all

zeros. In this last case the numerator equals the denominator,

so that y  .B , = 1 if and only if i=k; hence what we havej J J
written as B ^ is genuinely the inverse of B. Q

It is a straightforward matter to vTite a computer programme 

to determine the coefficients of the N,' B, M and B ^ matrices, and 

in fact the nature of the procedure allows us to re-use the same 

storage locations for these as we proceed (which is very useful 

if we wish to deal with large matrices). If we only want to y Q



find the coefficients of B ^ given the N-::.atrix we may proceed as 

follows, putting N augmented by I into echelon form (see, for 

instance, Jones [14]) : we write the N matrix a:nd extend its rows

to twice their length with a copy of the identity matrix; then we 

subtract from each row multiples of previous rows only, to make 

the N matrix upper triangular; lastly we divide each row by a 

suitable factor to ensure that !I has unit elements on its main 

diagonal. By this process we have turned N into an upper 

triangular matrix with units on the diagonal by (in effect) 

premultiplying by a lower triangular matrix, so this latter, a 

copy of which now resides in the place formerly occupied by I, 

must have been B Ve can also re-use computer memory locations 

during this method, as before.

This operation could also be carried through for general N

matrices, as long as their nullities are zero. Ve give an example

below of the process for a system of molecules that represents

simple graphs with up to 3 edges.

1 2 3 3 1 0 0 0 1 2 3 3 1 0 0 0

N ^ 4 9 9 0 1 1 1 I 0 2 6 6 -1 1 0 0
•• 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 8 27 27 0 0 0 1 0 6 24 24 -1 0 0 1

1 2 3 3 1 0 0 0 1 2 3 3 1 0 0 0
0 2 6 6 -1 1 0 0 0 2 6 6 -1 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 6 6 2 -3 0 1 0 0 0 6 2 -3 -6 1

1 2 7 3 1 0 0 0

M 0 1 3 3 -i i 0 0 B"^
0 0 1 0 0 0 1 0
0 0 0 1 y -s' -1 i
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CHAPTER 7

CONCLUSION

Section 7.1 

Section 7.2 

Section 7.3 

Section 7.4

Comments 

On paragraphs 

On avitoids 

On molecules

The first section of this chapter summarises the main theme 

of the thesis, and indicates lines of possible further development, 

The other three sections contain further results and conjectures 

on the corresponding structures that are not directly relevant to 

the central theme.
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7.1 Comments

The original motivation for this thesis was the examination 

of graph theory models of physical phenomena, particularly 

interaction models. This suggested the problem studied in chapter 

4, and the results obtained there allow us to limit the types of 

interaction model we might use to represent a particular additive 

physical system.

If we wish to provide approximations to very large systems 

it is natural to study an appropriate infinite model. This is 

effected by taking a suitable sequence of finite models; for 

instance, the infinite plane square lattice graph is often 

approximated by a sequence of increasingly large toroidal square 

lattice graphs. The problem connected with this is giving a useful 

meaning to the partition function for the infinite model; the 

standard device (see Biggs [%]) is to take an appropriate root of 

the function for each successive member of the sequence and examine 

the limit thereof, This leads to an investigation of the 

multiplicative expansion of a graph function, as in chapter 2.

Stemming from the multiplicative formulation is the practical 

problem of working out the parameters, which suggests the material 

of chapter 6, If we derive suitable approximations for the terms 

in the matrix we may be able to justify the following definition

of the relevant function for an infinite structure. Using the 

terminology of section 2.5, we wish to examine $ (b)^^^°^ for 

large graph types b. Now we observe that for any nonseparable 

subgraph type p, |7p| ^ is simply equal to |Vb| times the

average number of subgraphs of type p a vertex of b lies in; 

call this last number therefore theorem 1 of section 2.5
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tells us that this way it seems
V

likely that a useful definition of the function for an infinite 

graph will be obtained by working out the averages and 

substituting in the above expression. For a series of graphs 

to ’tend to’ the infinite graph we might just require that their 

p vectors converge to its p  vector in some suitable way. This 

would allow discrepancies that could make the function zero at 

points where we do not wish it to be; if we desire to we could 

place further restrictions on the values of the p  vectors for 

the finite graphs.

The details of chapter 2 can be followed through for other 

set-systems, and this suggests the structures of chapter $. They 

can then be used to see whether results on duals for functions on 

graphs can be carried through.

This thesis concludes with three sections which indicate 

that the structures we introduced in chapter 3 may prove interesting 

in their own right.
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7.2 On paragraphe

Three processes described by Bloch [6] for determining an 

electrical network 'dual' to a given nonplanar one are a method 

due to Julia, its dual and the 'fictitious junction point' method, 

These correspond, in that order, to the following operations on 

graphs and paragraphs: contracting edges until a planar network 

is reached, dualizing, then introducing further edges in an 

appropriate way; deleting edges to obtain a planar network, 

dualizing and reversing the process of contraction to add the 

extra edges; and directly translating the network as it stands, 

usually using the process indicated in figure 1 below.

r

fig. lb

In the paragraph formulation we may obtain a dual of any 

graph in much the same way as we would derive that of a planar 

graph. The definition of a dual assigns the status of vertices . 

in the dual to circuits in the original, and the system of faces 

of a plane graph forms a suitable set of circuits. If we can draw 

a graph in the plane with just one crossing, and that of the sort 

in figure la, then we can obtain as its dual paragraph one that is 

planar and has only one edge of size greater than 2, as in figure 

lb. If the edges in la are as labelled (a,b,c being single edges 

and w,x,y,z possibly paths) and we take as the faces those outside 

the region shoun plus the circuits x-a-b-c, y-c-b, z-b-a and w-b 

(with the orientation as shov,u) which we denote by x, jr and S 
respectively, then we derive the dual as shown.
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The above operation sugrecto the prob]em of determining how 

'near' to a graph wc can make the dual of a nonplanar graph. If a 

graph cannot be drawn with just one crossing, and that of the sort 

shown above, then its dual cannot have just one ^-edge with other 

edges being 2-edges; for if we consider such a graph and its dual, 

then delete the ^-edge and contract the corresponding edge in the 

original, we are left with two graphs which are dual, and so they 

must both be planar. Hence we have obtained a planar graph by 

contracting one edge of a nonplanar one, and this could only have 

happened if we had contracted an edge adjacent to two edges that 

cross in some 'almost planar* drawing.

This now suggests the problem of characterising those graphs 

that have crossing number 1 but require more than one edge of size 

greater than 2 in their paragraph dual. Three small examples are 

given in figure 2 below.

We can define several graph-theoretic notions for paragraphs

as follows. A path from u to v is a vector such that

T k P is zero for v/u,v and nonzero for v = u  or v; a cycle is ~  w,e e  ̂ '--------------------------------- -----

a vector P such that / A P = 0 Vw. Then we can define connectedness
T ®   —

suitably and therefore number of components. and also cycle number.

We might also study linear dependence of paths and so on. If we 

wish to investigate colourings and flows for paragraphs we need to 

work over a suitable ring and redefine cycles accordingly; a 

colouring would be a vector such that Ve ^C^/O,

and a flow a vector (Pg with no co-ordinates zero such that y  g



V V  yX F =0. Wc can obtain the result that a paragraph has a V,e e - o xc
colouring modulo 2 if and only if it has no cycle modulo 2 of odd

weight, where the weight of a cycle P equals . Note that duality
e

becomes complicated when we work over rings; we might try to restrict 

our paragraph matrix entries to +1, -1 and 0, but there are such 

paragraphs whose duals cannot be of that form.

The above notions often differ widely from the usual ones 

for hypergraphs.
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Our development of the subject of avitoids suggests some 

further avenues of investigation. One such is the study of the 

relationship between the derived avitoids and for general 

elements a,b of an avitoid P, or between their associated regular 

clusterings. Another is to see whether we can relax the conditions 

of theorem 1 of section 5.2 to the requirements that e commute and 

be in a smallest base of P; that would be the case if e commuting 

and being in a smallest base of P implied that e was is a smallest 

base of P^ for any As EP\ W  .

In [71 Brylawski studied various functions on matroids, 

including rank polynomials and ones with an additive property.

He also exhibited two pairs of different matroids with the same 

rank polynomials. We might search for smaller pairs of avitoids 

behaving like this, although there are none with fewer than five 

elements, and Brylawski’s smaller examples contained six elements.

Below we list the circuit and base diagrams of all 

nonseparable avitoids with up to four elements, indicating their 

duals and whether they represent graphs or matroids.

graph

graph

graph

graph

graph

© each other

© ©

©
0  ©

same same

each other

each other

(©
© A

A
©  ®  T \

k :isom- same 
orphie

circuit base dual dual base circuit 
diagram diagram diagram diagram

graph

neither

graph

graph

matroid
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neither S ' %
neither N %
neither

(g 0

neither n X
neither J X

circuit base

each other

each other

each other

same same

isom- isom
orphic orphie

diagram diagram

S) neither

3 ) K neither

0
neither

u . f \ neither

X
base

diagram

h
circuit
diagram

neither
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7.4- On molecules

As we remarked in section 6.1 we can easily devise systems 

of molecules that produce negative entries in the B and M matrices.

A more interesting question is whether molecule systems producing 

nonnegative B and M entries, with columns of M summing to powers 

of 2, must always correspond to some set-theoretic structure.

If we restrict our attention to systems with only one particle 

and weight function equalling the atomic number, then we may 

examine the atoms satisfying the above by increasing weight.

With weight 1 and 2 we obtain structures that correspond to graphs, 

being a single edge and two edges forming a circuit, respectively. 

For weight 3 we get two graphs (the triangle and three edges between 

the same two vertices), one avitoid (the example in section 3.4-) 

and one clustering (also mentioned in section 3.4-). Of course, 

any of the terms graph, matroid, avitoid, clustering, molecule 

includes all previous ones, but we are using the strongest possible 

names in the above cases. • With weight 4- we appear to have a total 

of 4-1 atoms: 3 graphs, 1 matroid, 10 avitoids, 23 clusterings (2 of 

which represent the same atom) and 5 atoms. The five candidates 

to be suitable atoms are indicated in the table below (by the 

letters G, H, I, J and K), and the derived B and M matrices for 

that system satisfied our conditions for the first 160 molecules 

when tested on a computer. In the table we refer to the atoms 

with capital letters, with A, B, C, D, E, F being the six atoms 

of weight less than four mentioned above. The defining N matrix 

may be recovered from the M matrix by examining the entries with 

row and column subscripts both being atoms. In particular, G 

and H have the values 4, 5, 3, 0 and 0 in the A, B, C, D and E 

rows respectively, where I, J and K have entries 4> 4» 2, 2 and 80



0; and the entries in tlio F row for G, H, I, J anJ K are 0, 1, 0, 

1 and 2 respectively.

A B A^ 0 D E F BA A^ G H I J K FA EA DA CA 2 2 BTBA A^

A 1 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4
B 0 1 0 3 0 2 1 1 0 5 5 4 4 4 1 2 0 3 2 1 0

A^ 1 2 2 0 3 1 2 2 3 1 1 2 2 2 5 4 6 3 4 5 6
C 0 0 0 1 0 0 0 0 0 3 3 2 2 2 0 0 0 1 0 0 0
D 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
E 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
F 0 0 0 0 0 0 1 0 0 0 1 0 1 2 1 0 0 0 0 0 0

BA 0 2 0 3 0 2 1 1 0 1 0 2 1 0 1 2 0 3 4 2 0
1 6 6 6 6 6 6 6 6 0 0 0 0 0 2 1 3 0 0 2 4

G 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

FA 0 0 0 0 0 0 3 0 0 0 1 0 1 2 1 0 0 0 0 0 0
EA 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
DA 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
CA 0 0 0 3 0 0 0 c 0 3 3 2 2 2 0 0 0 1 0 0 0
B^ 0 1 0 6 0 2 0 0 0 2 2 0 0 0 0 0 0 0 2 ■ p 0

BA^ 0 4 0 15 0 10 5 5 0 10 10 s 8 8 2 4 0 6 4 2 -.0
A^ 1 14 14 36 36 36 36 36 36 24 24 24 24 24 24 24 24 24 24 24 24

For the above table we superimposed the upper triangular K 

entries arid the lower triangular 3 entries; thé diagorial terms‘ 

are those of B, because those of M are always 1. It is of course 

possible that we may be able to represent the atoms that cannot 

be clusterings as they stand by other structures with different 

weight functions. However, G, H, I, J and K cannot be represented 

by any set sti-ucture as they are, as may be seen from simple 

combinatorial arguments on the numbers of submolecules they 

contain.

In the above discussion we mentioned that two of the _ ^
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clusterings corresponded to the sane atom; these have nontrivial 

clusters fa,b), 6c,dj, ^a,b,c}, {a,b,d} and /a,b}, (c,d), {a,b,c}, 

(b,c,dj respectively. This provides a very small counterexample 

to hopes of reconstruction of clusterings from their subset details 

alone. Brylawski, in [8], showed that matroids are not 

reconstructible but we can nevertheless obtain useful information 

about a structure in this way merely by knowing the numbers of 

the various atoms.

A problem suggested by the above is what extra conditions

we must impose on a molecule system to ensure that it does

represent some set structure. Note that we can obtain stronger

results than we presented in section 6.2. For instance, the

diagonal terms of 3 are given by 3^ ^ = J~Jm^!, but the proof
* a

we have of this is rather laborious; it should also be possible 

to establish the composition rules for the M matrix as in section 

2.4 and similar ones for the B matrix.
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