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ABSTRACT

An e.s.r. study of the reaction between 1,4-benzoquinone 

and sodium azide.was made and spectra obtained of some novel 

triazolo-1,4-semiquinones and also some hitherto unobserved 

amino-i,4-semiquinones.

These results are interpreted in terms of two competing 

types of addition of HN^ to quinone, one being dipolar 

addition, leading to triazolohydroquinones and the other 

leading to azidohydroquinones. The decomposition of 

azidohydroquinones provides a new route to amino-substituted 

radicals.

Using the McLachlan method for calculating Hiickel 

molecular orbital energies in the anilino radical cation, 

suitable lluckel parameters for nitrogen were derived. These 

parameters were tested by calculating spin distributions in 

the aminophenoxyl series and were then used to confirm the 

assignments of experimental splitting constants in the amino- 

and heterocyclic semiquinones.

The occurrence of negative McLachlan spin densities in 

some of the radicals has been discussed and an attempt has 

been made to interpret the high-field line broadening in the 

triazolo-1,4-semiquinone spectrum.



CONTENTS

Page

CHAPTER 1 INTRODUCTION 1

1. Starting Point 2

Part A. Theory

2. Electron Spin Resonance 3

3# Nuclear Hyperfine Interaction 5

.4. Mechanism of Hyperfine Interaction in
n Radicals 9

5. Simple Molecular Orbital Theory 11

The Ilückel Method 11

The McLachlan Method 13

6 . Heteroatoms and Parameterisation 18

Part B. Nitrogen Substituted Compounds

7. Addition of Hydrogen Azide to Quinones 21

8 . Nucleophilic Substitution by Azide Ion 23

9. 1,3-Dipolar Addition of Azides 23

10. 1,2,3-Triazoles 25

11. Aminoquinones 26

12. E.s.r. of Aminoquinones 26

CHAPTER 2 E.S.R. SPECTRA 30

1. Experimental 31

Instrumental 31

Generation of Radicals 31

Materials. . 31



2. Amino-1, 4-serniquinones 36

2,5-Diamino-l,4-semiquinone 36

2-Amino-5-nie thyl-1, 4-semiquinone 42

2-Amino-l,4-naphthosemiquinone 46

Secondary Aminosemiquinone Radicals . 46

3. Triazolo-l,4-semiquinones 52

2.3-Triazolo-l,4-semiquinone 52

2,3;3,6-Bis-triazolo-1,4-semiquinone 56

2-Me thyl-triazolo-1,4-semiquinone 6l

2-t-Butyl-triazolo-1,4-semiquinone 64

2.3-Triazolo-l,4-naphthosemiquinone 68

4. Azido-1,4-semlquinones 71
I

2,3*5» 6-Te traazido-1,4-semiquinone 71

2-Azido-3»6-di-t-butyl-l,4-semiquinone 73

CHAPTER 3 NITROGEN MOLECULAR ORBITAL ' PARAMETERS 75

1. Amino Group Spin.Density Distribution 76

2, "Experimental" Spin Densities in
Anilino Radical Cation 77

3« Sigma-pi Interaction in the Amino-fragme'nt 79
4, The Aminophenoxyl Series 81

CHAPTER 4 MOLECULAR ORBITAL CALCULATIONS 85
1. Heterocyclic Semiquinones 86

2. Aminosemiquinones 88

3* Hydroxyl Protons 92



CHAPTER 5 DISCUSSION 93

1, Interaction of 1,4-Benzoquinone with
Sodium Azide 94

2, Symmetry Considerations 100

3, Amino Group Spin Densities 103

4, Line-broadening in the Spectrum of 
Triazolosemiquinone 107

REFERENCES ll4

LIST OF TABLES 123

LIST OF FIGURES 125

PUBLICATION



CHAPTER 1

INTRODUCTION



1. starting Point

1 2 3,4The e.s.r. spectra of semiquinones are well known ’ ’

and the effects upon their spin density distribution, of many
5 6 7types of substituent, have been examined. ’ * The work

reported here started from an attempt to produce a

1,4-semiquinone bearing an azido-group (-N^).

Our interest in the azido-group was two-fold. In spite

of the number and variety of organic a z i d e s , n o  e.s.r.
;

spectrum has ever been reported for an organic azide radical. 

Besides the prospect of seeing a signal from an azido- 

semiqu.inone , the azido-group itself can be regarded as a 

conveniently blocked amino-group, from which -NII.̂  may be 

released on mild reduction. The conditions required to
2generate a free radical from a quinone (or hydroquinone ) 

parent, might also be expected to lead to some hitherto 

elusive amino-semiquinones.

The second point of interest was in the observation of 

any semiquinones with substituents containing nitrogen, 

since evidence of such species is scant and poorly 

c h a r a c t e r i s e d . T h i s  would provide additional 

material for testing simple molecular orbital theory, by 

correlating calculated spin densities with appropriate 

hyperfine coupling constants.



Part A. Theory

2 , Electron Spin Resonance

For a molecule to give an e.s.r. spectrum, it must 

possess an unpaired electron. Because of its spin motion, 

the unpaired electron possesses a net angular momentum and 

associated with this, a magnetic dipole which can interact 

with an external magnetic field. The quantum mechanical 

solution to this interaction allows only two orientations 

(characterised by the quantum number, Mg = 4-̂ , of the

electron’s magnetic dipole with respect to the field. Each 

orientation represents an energy level, the separation of which 

depends upon the strength of the applied field (see Fig. 1, 

page 4).

The basis of the resonance technique is to cause 

transitions between these orientations, or energy levels, by 

supplying the appropriate energy radiation, {h-O), The resulting 

transition is then detected as an absorption of energy, which 

is described by a resonance condition, relating the radiation 

frequency to the strength of the external magnetic field.

Hr, at resonance

For transitions between electron spin energy levels, ,g is a 

constant particular to the system, near to 2.00 for most



11organic free radicals, and determines the required strength 

of the magnetic field. In Kq. 1, P is the Bohr Magneton,

the constant converting electron angular, momentum to magne tic 

moment; h is Planck’s constant. Shown in l'"ig. 1 is an e.s.r. 

transition (dotted line) for two possible spin states,

Mg = +1, , where and E^ represent the lower and higher

energy states, respectively. In this diagram, the frequency 

is constant and the energy level separation is shown as a 

function of field strength, H.

A E  = Hi
E

Fig. 1 An e.s.r. transition for Mg = -^

In order to generate the spectrum, either the separation 

of energy levels is fixed, by keeping II constant, and the 

incident radiation varied until the resonant frequency is 

found or, the frequency is held constant and the field strength 

varied. Conventionally, e.s.r, is the variation of energy



level separation by varying the external magnetic field. The 

population of two different energy states is, in conditions 

of thermal equilibrium, a Boltznian distribution.

n,
....Eq. 2

where n^ and are the number of spins in the lower and 

upper states respectively. The equation shows that as the 

field strength increases, n,^/n^ decreases and the probability 

of a net absorption increases.

3• Nuclear Hyperfine Interaction

The magnetic dipole of an electron may also interact 

with a nucleus in its vicinity, if the nucleus possesses 

intrinsic spin with a resultant nuclear magnetic moment.

Nuclear spin is also quantised and in a magnetic field, for a 

nucleus of spin I, there are (2I+l) possible spin or energy 

states, where I may be any integral multiple of ^. These can 

be aligned parallel or antiparallel to the electron spin states, 

so that the electron experiences not only the applied field,

H, but also local fields due to the magnetic nucleus.



A B  - j/3 (H + ....Eq 3

where the values in brackets are represented in the resonance 

condition (Eq. 1) by . For the simplest nucleus, I=J, 

the electron will experience two possible local fields 

corresponding to = +-̂ , and resonance will occur at two

values of the applied field, 11. When the nuclear spin is 

parallel to the applied field, the value required for resonance 

will be lower and when it opposes the field, the value 

required will be higher. Fig. 2(a) shows the four possible 

spin states in the system Mg = , Mj = - A, where is the

effective field felt by the electron in the vicinity of 

nucleus I. A selection rule, = 0, = -1, governs

the observable transitions so that only those in which Mj 

does not change are permitted. Fig. 2(b) shows the two allowed 

transitions for this system in which the single absorption 

line in Fig. 1 has become a doublet corresponding to those 

transitions. The dotted lines show the energy levels and 

single transition for the system shown in Fig. 1 where

M; =

For a particular Mg value, the energy gap between Mj 

levels is comparatively so small that the nuclear spin states 

are approximately equally populated. Transitions from both 

Mj states are approximately equally probable so that the 

absorptions are of about equal intensities and a 1:1 doublet 

is observed (Fig. 2(b) ). The spacing between the absorption
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Fig, 2(a) Four possible spin states for a system with
= i l -Mg = -il Mj = -  ̂ showing effective field,

felt by the electron in the vicinity of the nucleus

Fig. 2(b) The energy levels and allowed transitions between 
them shown as arrows, for the above system as 
a function of the applied field, H,
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lines, called the hyperfine coupling, is a function of the 

separation of the nuclear energy levels and is characteristic 

of each individual nucleus causing the splitting of the single 

absorption line, The number of splittings from a single 

magnetic nucleus depends upon the nuclear spin value I and is 

the same as the multiplicity of spin states (2I+l), The 

relative intensities of the lines depend upon the degeneracies 

of the energy levels. Where there is a coincidence of two 

levels, transitions involved with them will be reflected in 

one line, twice as intense. The degeneracy of each line of 

a set of n equivalent i>uclei is given by the coefficients of

expansion of (a + b + c ^  where the number of terms in

brackets is equal to the multiplicity value, (21+1). For a

nuclonr s i n of I, there are two terms and the (i ege ne rac ie s ,

for n of these nuclei, are tliose of the binomial expansion 

(a+b)^ and are given by Pascal's Triangle. For a atom

(l=l) the degeneracies are shown in Fig. 3*

I I

I 1 2 3 2 1

3 1 3 6 7 6 . 3 1

4- 1 if 10 M J4 lo

Fig, 3 Degeneracy ratios of a set of n equivalent nitrogens.



In general, for n equivalent nuclei of spin I, the resultant 

hyperfine splitting involves (2nl+l) lines. Where there are 

non-equivalent nuclei, each nucleus interacts with the 

unpaired electron differently, though sometimes there is a 

fortuitous equivalence of coupling constants. For a set of n 

equivalent and m equivalent nuclei, there will be a maximum 

number of possible lines given by (2nl+l)(2ml+l).

The overall spread of a spectrum is given by,

wa'iitL = . ...Eq. 4

where a^ is the coupling constant of the nucleus, i (of spin 

I^) and where the summation is over all nuclei contributing 

to the splitting pattern.

174. Mechanism of Hyperfine Interaction in n radicals

There are two types of nuclear hyperfine interaction, 

anisotropic and isotropic. Interaction between electron and 

nuclear dipoles gives rise to the anisotropic component of 

hyperfine coupling, which is dependent upon the orientation 

of the nuclear spin with respect to electron spin. In a
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liquid of low viscosity, anisotropic interactions are, through
17rapid tumbling, averaged to zero.

Isotropic (or so-called Fermi) interaction depends upon 

there being finite unpaired electron density at the nucleus 

concerned. This implies that there should be no isotropic 

interaction between the unpaired electron in a carbon 2p^ 

orbital and a nucleus situated in its nodal plane. However,

71 radicals do show hyperfine interaction with protons situated 

in this plane although this is only some five-percent of the
18maximum possible interaction for a hydrogen atom. McConnell 

found that the observed coupling with protons bonded to a 

carbon in an aromatic system, 3-qjj» is related to the unpaired 

71 electron density, , on the carbon atom by a simple linear

proportionality.

....Eq. 3

where is the proportionality constant, sometimes calledU il
18the sigma-pi parameter. This interaction arises from the 

presence of net spin density (as distinct from unpaired elec

tron density) at the proton. This is accounted for by

the unpairing, or polarising, effect which the unpaired electron 

in the carbon 2p^ orbital exerts upon the paired electrons in 

the adjacent C-H sigma bond. The spin density engendered at 

the proton is opposite in sign to that of the unpaired electron ,
II 1Hso that the sigma-pi parameter should be negative ;
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this has been confirmed experimentally by the negative sign

of some aromatic proton coupling c o n s t a n t s N e g a t i v e  spin

densities may sometimes occur at the carbon atoms however, as
3demonstrated by proton couplings which are positive in sign.

3. Simple Molecular Orbital Theory ■

The magnetic nuclei in a free radical act as sensitive 

indicators of the distribution of the unpaired electron through

out the molecule. Using molecular orbital theory, experimental 

coupling constants can be correlated with the theoretical 

spin density distribution, which may make possible predictions 

and assignments in related species,
21The business of simple molecular orbital methods is

to find approximate solutions to the Schrodinger wave equation,

corresponding to the energy states or orbitals, which lead

to values for the spin densities in the unpaired electron

orbital. One basis for this operation is the Ilückel method
22for planar conjugated systems.

The Hückel M.O. Method

The Hückel method obtains the energies of the ix electrons 

from sets of linearly combined atomic orbitals (molecular
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orbitals). The molecular orbitals are assumed to be doubly

filled and the unpaired electron assigned to the next highest

unfilled orbital, according to the Aufbau principle.

The wave function coefficients, adjusted to minimise the total
21energy of the system (Variation method ), dictate the signs 

and magnitudes of each separate atomic orbital's contribution 

to the molecular orbital, giving both a qualitative view of 

the orbital (bonding or antibonding, how many nodal planes 

it has) and also an indication of the relative distribution 

of the unpaired electron. The unpaired electron density, , 

for atom i, is given by

2Cyj •= .... Eq • 6

where is the atomic orbital coefficient of atom i in the

j molecular orbital,  ̂lup. ̂  — 2j ,

Out of the Variation method arise certain integrals
21which expand into secular equations. Two which are important 

in the Hückel method, are the coulomb and resonance integrals. 

The coulomb integral, written as a (not to be confused with 

spin state o), represents the energy of the carbon 2p orbital 

in a non-bonding state. The resonance integral, written as 

P, represents the effect of bonding upon the energy of the 

orbital. In the Hückel method, these two integrals are not 

evaluated in themselves but yield a set of roots (or solutions)
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to the secular equations, which represent a series of energy 

levels.

relative to an energy zero (in̂  = O) . Since both a and (3 

are negative quantities, positive values (a+mp) represent 

more stable (bonding) energy levels. Fig. 4 shows the 

HÜckel energies of benzene and benzoquinone, in terms of a 

and 3 .

21The McLachlan Method

The Hiickel method does not take into account the difference 

between electron spins (up or a-spin and down or P-spin, 

conventionally) and neglect of repulsions between paired and 

unpaired spins is a serious limitation of this method, failing 

to account for the appreciable negative spin densities which 

many aromatic radicals containing heteroatoms show.^^**~^

The McLachlan method accounts for negative spin densities by 

introducing a simple perturbation of the n electrons into the 

Hückel calculation.

The unpaired electron will, if say, of a-spin, affect 

a paired a-spin electron differently from the way it affects



ih

A

oi.—2.oif3 —

OC-h 1.008

OC + 2

-Z/3 -

od-*-

/3 .

•ooyj

ô -2.l(,sp

« - 1.347̂ 
<X- 1.00/9

£X+ 0.2X1/3

(X + I.OOyS 
OK + I.T.̂3/3

0C + 2.4.Î5̂ 
DC+ 2.704/3

BENZENE ^-GENZOGLLLIWONE'

Fig. 4 Hückel orbital energies for benzene and p-benzo-
quinone with the reference energy taken as a (* cal
culated with Hückel parameters = a + 1.60,

= 1.33, see 1-6).
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a paired p electron because there is an exchange interaction^^

between it and paired electrons of like spin. The unpaired

eJectron is treated as occupying a perturbed molecular 
27orbital (and by convention, designated as a-spin) so tiiat

for a system with (2n+l) electrons, (n+l) occupy perturbed

(or modified Hückel) orbitals and (n) occupy unperturbed (or

ordinary Hückel) orbitals. Fig. 5 shows the unperturbed

orbitals, obtained by normal Hückel calculation. The

perturbed orbitals, À ., are obtained by modifying the Hückel
J

coulomb integral, a^, for each atom by the appropriate 

calculated Hückel unpaired electron density (b^)^ ,

where X  is a constant set to 1.2. 23

The total a-spin density on atom r, is given by a
rsummation of the atomic orbital coefficients, a^, as

(o-Ü* + «)'■ + K)"' f  • • • -Eq. 9
J :

( j  =  n  +  l )

where a^ is the coefficient of the (n+l)  ̂orbital containing
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ORHI'l'ALS

4 —

4   h  --- 4 —  a,

4 —  f

4 —  t. — f—  ct.

B . A .1 J
(ordinary (modified
Hiickel) Hückel)

(o represents unpaired electron orbital)

Pig. 5 Showing the occupancy of the unperturbed (Huckel)
and perturbed (modified) molecular orbitals (Aufbau).
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' 27the unpaired electron. Total 6-spin density is likewise

given by,

i ( b ^ )  =  + ( H ) " '  +  ( b j f  +  . . . .  (b^)‘ 

(i = a)
....Eq. 10

A ' '

The net spin density at atom r, is then given by the 

difference between the perturbed (a) and unperturbed (p) 

spin density functions for that point. This is where the 

possibility of negative spin density arises, since the total 

p-spin density may sometimes amount to more than the total 

a-spin density at a particular point. Respltant net spin 

density, is computed from

....Eq. 11
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256. Heteroatoms and P a r a m e terisation

In applying Hückel molecular orbital theory to aromatic 

radicals, heteroatoms are treated as pseudo-carbon atoms,with 

appropriate changes made to the coulomb and resonance integrals 

by introducing two parameters, h and k, associated with the 

heteroatom and bond respectively,.

a =' a + h 3 ... .Eq, 12X X

where a and 3» without subscripts, refer to aromatic carbon 

p orbitals.
14The relation between N hyperfine coupling and spin

density at the nitrogen atom, has already been examined for

à number of free radicals, where nitrogen forms part of a

heteroaromatic or is part of a sub-
34stituent group attached to an aromatic system. Adjacent

35atom spin densities were thought to contribute to the nitrogen
28 29 81coupling constant, * * a^, but there is some evidence that

36 37 38these are insignificant and a linear dependence of

^ on nitrogen spin density,
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2 y j 39
has been established for some heteroaromatic radicals. * *

In amino-substituted radicals, the near equivalence of 

nitrogen and aminoproton hyperfine coupling.

... .Eq. 15

II
13 3 3 Ihas been observed * and rationalised in terms of a spin j

34 39 'polarisation mechanism. ’ |

Ideally, the parameters used in spin density calculations j

should be derived from first principles, but in practice are 

found empirically on the basis of the best fit to experimental 

coupling. By suitably varying h^ and (Eqs. 12,13),

excellent agreement with a small number of couplings may be 

reached, but in isolation such parameters are virtually mean

ingless. Furthermore, there are no unique values for h ^ , 

k^^ or for Q-values. For highly symmetric structures like 

p-berizosemiquinone (l) or ^-phenylenediamine (ll), more than 

one set of values can be found to reproduce the experimental 

values, (see Table 1) and the usefulness of molecular orbital 

correlation must depend on how many successful predictions 

can be made using comparatively few parameters. By deriving

better oxygen atom parameters and using the McLachlan procedure
5 6for calculation, a marked improvement over previous work 

was obtained with substituted phenoxyls^^* and we have 

used these parameters unchanged (see Chapter 3)*
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Table 1

Molecular Orbital Parameters

Experimental couplings Parameters used for calculation 
2,34a/Gauss

•0 

- O

^0 ^co ^cn ^̂ ef.

1.2 1.56 22 5

1.6 1.3 30 25

I N H
Na'" =5.29

^NH=5-88

"011=2-13

^CN N̂II ^CU

0.85 1.0 25 25 28 34

1.3 1.0 .25 30 30 4.0

II
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Part B . Nitrogen Substituted Compounds

7• Additions of Hydrogen Azide to Quinones

Reactions of benzoquinones with hydrogen azide (liX̂ ) 

in organic solvents, leading to azidoliydroquinones, were
.42 more recently it was shown that 

re effec
43,44,43

established in 1913;' 
similar additions of are effected with acidified aqueous

solutions of sodium azide.

These reactions follow a pattern of easy additions to
4 Ôa ,p-unsaturated carbonyl compounds, in which the initial

42,47 .addition 

further addition.

is followed by énolisation, oxidation and
44

Scheme 1

ow

OH

Kl:

OH

OH

NP

0

O

N
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In some cases, aminoquinones are formed directly as a result
43of reaction between sodium azide and a quinone.

Scheme 2

O

HN,
OK

N — N =  M
O

—

V

OH

0
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8. Nucleophilic Substitution by Azide Ion

Synthesis of azidoquinones by reaction between halogeno-
48quinones and sodium azide is well established, in which 

nucleophilic substitution by azide ion ( )  of a suitable 

leaving group, takes place.

9• 1,3-bipoiar Addition of Azides

Reaction between organic azides (RN^) and acetylenes to

produce 1,2,3-triazoles,49

+  U N

R.

were the first examples of what was later classified as

1,3-dipolar cycloaddition 50-51.52 (see



2h

t

a.

c

53 54Methyl and phenyl azides are known to undergo such additions 

to 1,4-quinones to form N-substituted triazole compounds.

O O

o

However, although a mechanism via a triazole intermediate

o
56

was proposed for the addition of HN^ to 1,4-naphthoquinone ,

leading to 2-amino-l,4-naphthoquinone, there is no report 

of a triazole resulting from the addition of to carbon-

carbon double bonds.
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10• 1,2,3~Triazoles

1,2,3-Triazoles have been synthesised by rin^ closure
57,58between suitable groups 

1,^-quinone.

as exemplified by bis-triazolo-

O
NHA<m.

NH

o

MONO

H o H

%

o

N

Considering the variety of chemical reactions which
58triazole compounds undergo, the triazole ring is remarkable

in its resistance to reduction, oxidation and stability to
57high temperature, although benzotriazole was reported to

59decompose explosively during distillation.
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11. Aminoquinones

Azidohydroquinones have been shown by experiment to dis-
43,44,45proportionate readily to aminoquinones. However,

pure aminoquinones are not available commercially and cannot 

be synthesised easily. Synthesis results in products of low

purity which are difficult to separate from other products of
l4,^4 . . , ^ , . ^ . , 1 ^reaction. Aminoquinones have a poor solubility,

except in concentrated acids where dissolution is accompanied

by chemical reaction^^ and in qoncentrated bases, where marked
1 1 * 1  61solvolysis also occurs.

12. E.s.r. of Aminoquinones

The first amino-substituted benzosemiquinone reported 

was 2,3-diamino-3»6-dichloro-l,4-semiquinone (ill),

11

-O

III

C m

N
-o

whose couplings were rationalised by comparison with a spectrum 

of 2-amino-3-hydroxy-3,6-dichloro-l,4-semiquinone (TV),



IV

o
NH

-0
-O

Although the latter was poorly r e s o l v e d , t h e  expected triplet
1 "I 2iof triplets ( H(2), N(i ) = 1:2:1 x 1 :1 :1) could be analysed.

More recently, the semiquinone radical anions of some 

N-subs tituted aminoquinones, C^Ii202 ( NHR ) ̂

V-IX

O

-O

(where R = methyl, ethyl, isopropyl, n-propyl, and t-butyl, 

V-IX) were reported^^ showing a general pattern of couplings 

from the amino groups and ring protons, 3 and 6. Another 

report^^ of 2,5-bis(t-butylamino)-1,4-semiquinone (IX) shows 

slightly different coupling constants, probably due to
6 2 'solvent effects.

Two separate reports^^*^ of the species

2-amino-l,4-naphthosemiquinone, (X) ,



28

N H

-O

show differing couplings from the amino groups (see Table 2) 

in different solvents.
12The radicals, in all cases but one, were generated 

from the quinone precursors and the reports suggest hampering 

of any definitive analysis by poor resolution and low signals. 

No mention has been made so far in the literature of the 

species, 2 , 5--diamino-l, ̂ -semiquinone .
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Table 2

E.s.r, Coupling Constants of Aminosemiquinones 
from the Literature.

Radical
Species

E.s.r, Coupling
H • 

^NH

Cons tants 
H

^alkyl

(a/Gauss) 
11

^ring

Ref.

III^ 2.3 1.3 11

IV* 2.5 0.6 11
3.0 2.3 3.0 0.8 l4

IX" 2.98 . 2.44 0.76 l4

ix'̂ 2.06 1.54 ().52 12

x" 1.07 1.07 13

1.37 0.78 14 .

a Radicals by sodium dithionite reduction in pyridine, 
ethylene glycol and KOII solvent mixture (see ll).

b Coupling constants averaged for series V-VIII (maximum 
deviation/Gauss, a^ -0.17, - 0.2, a^.^^ - 0.03,

c Radicals by electrolytic reduction in aqueous media at 
pH 11-13.

d Radical from both quinone and hydroquinone in DMSO/ 
tertiarybutyl alcohol solvent mixture (see Ref. 12),

e Radical by electrolytic reduction in acetonitrile.

f Radical by electrolytic reduction in aqueous ethanol.
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CHAPTER 2

E.S.R. SPECTRA
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1, Experimental

Ins trumental

E.s.r. spectra were obtained on a Varian E4 spectrometer

operating at a microwave frequency of ca. 9*5 GHz with a

linearly varied static magnetic field strength of ca, '}kOO 
. -4 \Gauss (1 G =  10 T) for the radicals under investigation 

(^-factors £a. 2.00),

Generation of radicals

Most radicals were generated in static autoxidation 
1 ■conditions at room temperature. In a typical experiment,

1 , 4 - benzoquinone (O.OOl mole), dissolved in ISf, N-dime tliylf orm- 

amide (OME) (10 cm ), was treated with excess concentrated 

aqueous sodium azide (o.Ol mole) and following a characteristic 

colour change and exothermia, the solution was investigated 

by adding aqueous, alkaline {l% NaOll) sodium dithionite 

(Na^S^O^).^ Alternatively, a precursor such as 2,3-diazido- 

hydroquinone (O.l g ) w-as dissolved in water and with colour 

change, mild exothermia and evolution of nitrogen, the radical 

was generated as described. Previous studies^^ have shown 

that some radicals have induction periods of an hour or more. 

When no spectra were obtained within a few minutes, investi

gations were made repeatedly over a period of some hours.

Materials

Materials which were available commercially were used with.



32

or without, further purification, as described below (Table 3)« 

Other materials were prepared according to literature me tliods 

(Table 4); where ever it was possible to ascertain, tlieir 

physical constants were compatible with those stated in the 

literature.

The obvious difficulties in identifying certain starting 

materials and, in some cases, analysis of reaction products,

were due to tlie hazardous nature of organic azides^^ * *
10, (and refs, within) _ ... .  ̂ ^and possibly, in spite o± their reported

58 59stability, triazoles also. We have shown in the subsequent

pages that reaction solutions of quinones and azide may con

tain triazolo-, azido- and amino- compounds. Attempts were 

made to separate the complex and tarry mixtures by tne usual 

extraction procedures, but t lie se were fruitless; one sep

aration of a purple crystalline material resulted in total 

loss by explosion and no further investigation of this kind 

was pursued. Instead we attempted to prove the identity of 

the radical species by synthesising its immediate precursor. 

Details of the preparation of starting materials and their 

identification are shown below in Table 4. .
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Table 3» Commercial Materials

The following materials were available commercially and were 

used wl t iiou t further purification:

sodium azide 

dime tiiy If ormamide 

hexamethyIphosphoramide

2,5~ciisulphohato-l,4-hydroquinone dipotassium salt 

2-sulphonato-l,4-hydroquinone potassium salt 

2-methyl-l,4-hydroquinone

2,3-Hi-t-butyl-l,4-hydroquinone 

2-t-butylhydroquinone

The following materials were purified by recrystallisation:

Compound Solvent. Physical Data

1,4-benzoquinone light petroleum 
(80-100°)

golden yellow leaflets 
m.^ll3° (lit.^7 115°)

1,4-naphthoquinone ethanol yellow needles
m.p. 123° (lit.^^ 125°)

2,3,5,b-tetra- 
-chloro-I,4-quinone

toluene and 
benzene

golden yellow leaflets
m.p.283° (lit.^^ 290°
sealed tube).
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Table 4. Syntheses of Starting Materials

1. 2,3-diazido-l,4-hydroquinone from q u i n o n e , w h i t e
- - 4 5 .needles rapidly discolouring after recovery, becoming 

red on long exposure to light or air. Deep red brown 
solution with alkaline sodium dithionite solution with
evolution of nitrogen. 1,4-diaceloxy derivative

' o 45 m.p.lbl .

2. 1,4-diace toxy-2,3-diazidobenzene from l.^^m.p. 160-161° 
(lit.  ̂ l60-l6l°) white amorphous precipitate, yellowing 
on exposure. As for 1. when treated with alkaline 
dithionite solution.

3 . 2,3;5,6-bis-triazolo-l,4-quinone from q u i n o n e , y e l l o w  
crystalline solid. Yellow solution with alkaline di
thionite solution.

4. 2,3-triazolo-l,4-naphthoguinone from 1,4-naphtho-
55quinone, colourless crystals. Red solution with 

alkaline dithionite solution.

6 7 71 7̂ ^3 . 2 , 3-dichloro-l, 4-(;uinone from quinone , *

4 36. 2,3-diamino-l,4-quinone from 1. black crystalline
solid m.pi > 360°;  ̂ also from 3* by passing gaseous Niy 
through an ethanolic suspension. Identity supported by 
elementary analysis.

677 . 2-methyl-l,4-quinone from toluhydroquinone, extracted 
with benzene, ra.p. 68° (lit.7^ 69 )•

716. 2-chloro-3-methyl-1.4-quinone from 7 .

9. 2 ,3-di-t-butyl-l,4-quinone from the h y d r o q u i n o n e ; ^7
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compound rapidly discolours and furs on exposure to air; 
bright yellow needles if suspended under glacial acetic 
acid until required. m.p. 151° (lit. 153°)»

7410. 3-chloro-2,5-di-t-butyl-l,4-quinone from 9, yellow 
oil.

6 511. 2,3,5,6-tetra-azido-1,4-quinone, lustrous blue-black 
crystals; gives bright red solution with hexamethylphos-. 
phoramide (h MPA); undergoes various colour changes
(deep cherry --> brown---clear orange) with increasingly
alkaline sodium dithionite solution, with evolution of 
nitrogen. ,

* numbering throughout refers to quinone ring positions.
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2, Amino-1,4-semiquinones

2 , 5^niamino-1 ,^t-somiqninone

Our initial experiment sought to generate a diazido- 

semiquinone which ought to give a simple hyperfine splitting 

pattern due to its symmetry.

"When an aqueous solution of 2,5-diazido-l,4-hydro- 
45quinone was treated with a trace of alkaline dithionite 

solution (see Generation of Radicals, page 31 )» ^ radical was

generated whose spectrum is shown in Fig. 6. The signal 

persisted for sometime and later experiments showed that the 

radical remained stable in solution for several liours.

The spectrum was analysed as having three coupling 

constants: a large nitrogen quintet of 2.6 Gauss and two

other couplings of 0.9 and 0.7 Gauss due to protons, a quin

tet and a triplet, respectively.

Because it is not possible to confirm the identity of
4 5 Ithe starting material, its diacetoxy derivative, 1,4-di

ace toxy-2 , 5-d iaz idobenzene was also investigated. Both 

starting materials would be expected to give rise to the same 

semiquinone anion in basic medium^ (Scheme 'J ) •

OH

OK

N

N,

N

Scheme 3

w
O'

CH,

II
0
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I
11? 11

I

Fig. 6



38

However, no signal was observed after treatment of an aqueous 

solution of the diacetoxy compound with sodium hydroxide,, 

but as with the hydroquinone starting material, treatment 

with alkaline dithionite gave a spectrum identical to that 

shown in Fig. 6.

The three coupling constants were assigned to the 

structure 2,p-diamino-l,4-semiquinone, XI.

? ...
0.7

XI Experimental

047T I 
- O

0.7 Couplings/Gauss

The assumption that the amino-substituents bore a 2,5- re

lationship with each other followed naturally from a consid

eration of the starting material, but this was confirmed later 

by the theoretical spin density distribution for this species 

(see Chapter 4). The radical XI must derive from the re

arrangement, with loss of nitrogen, of 2 , 5-diazido-1, 4- 

hydroquinone (see Scheme 4). Figure 7 siiows a wing of the 

same spectrum (Fig. 6) at the expanded field scan of 20 Gauss 

and Figure 8 shows two reconstructions of this wing from which 

the better fit of assigning the 0.7 Gauss splitting to the 

proton triplet can be seen. A simulation of this spectrum with 

a linewidth of 0.45 Gauss and a mainly Lorentzian line-shape
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0.7

û.(2H) = 
0.(4") =
a. (IN) =

Oil

O l QrkMA*
Z*5

I 1-
1 qAUis

a(2H) •= O'i 
Ûl(4H) = 0*7
d (2N/) =  2'5" G-awLf*

Pig. 8 Reconstruction of spectrum shown in Fig. 6, showing 

the effect upon theoretical line-heights of two

different assignments.
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is shown in Figure 9»

It is interesting that we did not observe this species 

when 2 , 5-d iamino-1, ̂ l-quinone was examined,

2-Amino-5-methyl-l,4-semiquinone

Azidoquinones are readily formed by displacement of

suitable leaving groups^^ by azide ion (n ” ) and when 2-chloro-
I " 4-55-me thy 1-1, 4-benzoqüinone , dissolved in aqueous DJMF , was

treated with a concentrated aqueous solution of sodium azide,

there was immediate reaction, with colour change, exothermia^

and evolution of nitrogen. Treatment with alkaline dithionite

solution gave various mixtures of radicals, but when a drop

of methanol was added to a sample of the original reaction

solution, a trace of alkaline dithionite gave the spectrum

shown in Figure 10. The spectrum consisted of a large methyl

splitting of 4.65 Gauss, a nitrogen triplet of 1.73 Gauss,

a proton quartet of 0.73 Gauss and a small proton doublet of

0 ,13. Gauss. The couplings were assigned to 2-amino-3-methyl-

1,4-semiquinone, Xll

Xll

O

C.75- 

û-*tu - ̂"'3̂

l-7i 

o-ir
075-

-o

Experimental 
Couplings/Gauss
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which must result from rearrangement, with loss of nitrogen, 

of the intermediate azido compound, (see Scheme 3 ).

Scheme 3

DMF

OH'

+ Cl

-o

The smaller proton quartet is presumably due to fortuitous 

equivalence of the two amino protons and one ring proton. 

The smaller ring proton coupling has been assigned ortho to 

the amino group by analogy with hydroxysemiquinones.^
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2 - A m l n o  -  1 , 4 -  n a | ) l i  L l i o q u  i n o n e

Vhen an aqueous DMF solution of 2-chloro-1,4-naphtho

quinone was treated with sodium azide, as described before, 

immediate reaction followed with a colour change, exothermia 

and evolution of nitrogen. Treatment of the reaction solution 

with alkaline dithionite gave a radical whose spectrum is 

shown in Figure 11 attributed to 2-ainino-l, 4-napiithosemi- 

quinone XIII, with couplings assigned by analogy with the 

corresponding 2-hydroxy compound,^

XIII
0.%-7S

i-7r Experimental 
Couplings/Gauss

Secondary aminosemiuuinone radicals

In some instances, we observed varying spectra due to 

mixtures of secondary radicals from the starting material

2 ,5-diazido-l,4-hydroquinone.

The spectrum shown in Fig. 12 consists of a single



4?

•i* • »*

Fig. 11
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Fig.12
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n i t r o g e n  t r i p l e t ,  a  p r o t o n  t r i p l e t  a n d  t w o  F u r t h e r  p r o t o n  

d o u b l e t s ,  w i t h  a  l a r g e  s u p e r  i m p o s e d  d o u b l t î t  d u e  t o  a  s e p a r a t e  

s p e c i e s .  We h a v e  t e n t a t i v e l y  a s s i g n e d  t h e  s p e c t r u m  t o  t h e  

s e c o n d a r y  s p e c i e s ,  2 - a m i n o - 5 - h y d r o x y - l , 4 - s e m i p u i n o n e ,  XIV, 

w i t h  t h e  r i n g  p r o t o n  c o u p l i n g s  a s s i g n e d  b y  a n a l o g y  w i t h  o t h e r  

s e m i q u i n o n e  s e c o n d a r y  r a d i c a l s , ^

XIV 0.1Z5

-o

I.zo 

2-2S
0-75- Ex f>e riment al 

Couplings/Gauss

Electrolytic oxidation in water of the same starting 

material generated the spectrum of a proton triplet, assigned 

to XV.

XV
D77y

-  O

- 0

0 -

0771
Experimental 
Coupling/Gauss
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A s i m i l a r  t r i p l e t  h a s  b e e n  o b s e r v e d  f r o m  t h e  s t a r t i n g  m a t e r i a l

12
2 - n - b u t y 1 - 5 - a m i n o - 1 , 4 - q u i n o n e .

T h e s e  r a d i c a l  s p e c i e s ,  X I V  a n d  XV m u s t  d e r i v e  f r o m  a

2 , 5 - d i a m i n o - s u b s t i t u t e d  . i n t e r m e d i a t e  r e s u l t i n g  f r o m  r e a r r a n g e 

m e n t ,  w i t h  l o s s  o f  , o f  2 , 5 - d i a z i d o - l , 4 - h y d r o q u i n o n e ,  w i t h  

s u b s e q u e n t  s u b s t i t u t i o n  o f  a m i n o - g r o u p s  b y  o x y g e n  ( O

C o u p l i n g s  o f  t h e  a m i n o - s e m i q u i n o n e s  a r e  s u m m a r i s e d  i n  

T a b l e  5»
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T a b l e  3* '  E . s . r ,  C o u p l i n g  C o n s t a n t s  ( a / O a u s s )  T o r  

A m i n o - 1 , -  s e m i ( q u i n o n e s

r a d i c a l  
s k e l e  t o n

a a

XI

o

-NHi
= 2.50  Ü .70

Ua_̂ .jj=0.90

=2.50 Ü.70

4 l i

XII

a ^  = 1.75 0.15

11a%u=ü.75

a
CM =^.65  0 . 7 5

XIII

a^,  = 1.75  a „ = 0.30  a _  = 0.10  a - = 0.873N

ilâ .̂jj-1.75

5

= 0.0  a ^  = 0.73

XIV
,NH: N

II

= 1.2  2 . 2 5 0.123
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3 • T r i a z o l o - l , ^ - s e m i q u i n o n e s

2 , 3 - T r i a z o l o - l , 4 - s e m i q u i n o n e

S i n c e  a n  a z i d o s e m i q u i n o n e  s p e c i e s  c o u l d  n o t  b e  d e t e c t e d  

f r o m  a z i d o  s t a r t i n ^ ^  m a t e r i a l s  i n  n o r m a l  a n  t  o x  I d a  t  i  o n ^  o r  

r e d u c t i o n  c o n d i t i o n s , ^  v a r i o u s  r e a c t i o n  s o l u t i o n s ,  i n  w h i c h  

t h e  s t a r t i n g  q u i n o n e s  a n d  s o d i u m  a z i d e  w e r e  p r e s e n t ,  w e r e  

i n v e s t i g a t e d .

R e a c t i o n  b e t w e e n  1 , 4 - b e n z o q u i n o n e  a n d  s o d i u m  a z i d e ,  i n  

a q u e o u s  D M F ,  g a v e  a  d e e p  p u r p l e - b r o w n  r e a c t i o n  s o l u t i o n  ( s e e  

G e n e r a t i o n  o f  R a d i c a l s ,  p a g e  3 1 ) f r o m  w h i c h  w a s  g e n e r a t e d  a  

r a d i c a l  w h o s e  s p e c t r u m  i s  s h o w n  i n  F i g u r e  1 3  « T h e  r a d i c a l  

w a s  p r e s e n t  i n  g o o d  c o n c e n t r a t i o n  a n d  t h e  s p e c t r u m  i s  s h a r p l y  

r e s o l v e d  ( 1 i n e w i d t h ^ 0 , 1  G a u s s )  a l t h o u g h  t h e  l i n e s  a r e  b r o a d 

e n e d  t o w a r d s  t h e  h i g h  f i e l d  e n d  o f  t h e  s p e c t r u m .

F r o m  i n s p e c t i o n ,  t h e  t l i r e e  c o u p l i n g  c o n s t a n t s  c a n  e a s i l y  

b e  p i c k e d  o u t ;  a  0 , 6 5  G a u s s  t r i p l e t  a n d  a  0 . 9  G a u s s  q u i n t e t  

f r o m  a  s i n g l e  a n d  a  p a i r  o f  e q u i v a l e n t  n i t r o g e n s  a n d  a  l a r g e  •

p r o t o n  t r i p l e t  o f  3 . 5  G a u s s .  T h e  c o u p l i n g s  r u l e d  o u t  o t h e r

4 5 ,
p o s s i b l e  p r o d u c t s  o f  r e a c t i o n ,  2 , 5 - d i a z i d o - l , 4 - s e m i q u i n o n e ,

2 - a z i d o - 5 - a m i n o - l , 4 - s e m i q u i n o n e  a n d  2 , 5 - d l a m i n o - l , 4 - s e m i —

q u i n o n e  ( S c h e m e  6 ) ,
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-o

+
K/Hj.

- O -0

S c h e m e  6

a n d  t h e  s p e c t r u m  w a s  a s s i g n e d  t o  t h e  h e t e r o c y c l i c  s e m i q u i n o n e ,

2 , 3 - t r i a z o l o - l , 4 - s e m i q u i n o n e , X V 1 ,

X V I E x p e r i m e n t a l  
C o u p l i n g s / G a u s s

p r e s u m a b l y  r e s u l t i n g  f r o m  a  d i p o l a r  a d d i t i o n  o f  l i N^ t o  o n e  o f  

t h e  q u i n o n e  c a r b o n - c a r b o n  d o u b l e  b o n d s , ( c f . C h a p t e r  1 ,  p a g e  2 3 )  

w i t h  i o n i s a t i o n  o f  t h e  l a b i l e  i m i n i c  p r o t o n ,

Scheme 7) •

77.55 ( s e e
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in the triazole ring:
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There is no report in the literature of a mono-triazole 

quinone or iiydroquinone which would be the parent of XVI but 

support tor tills assignment came from a semiquinone radical 

anion, imidazo—1,4-semiquinone, XVII, generated from the
32 78parent quinone, * wliose couplin^^s are remarkably similar:-

XVII C—H os3.82
Experimental^^ ' 
Couplin^js/Gauss

-0

A reconstruction of the spectrum of XVI (Fig. 13) is shown in 

Figure l4.

Tlie triazolo-semiquinone , XVI, was also generated by 

flowing an aqueous DMF reaction solution of 1,4-benzoquinone 

(0.03 M) and sodium azide (0 .I5 M ) against aqueous sodium 

dithionite solution (̂ /O.l M) which had been adjusted to pH 

~ 9 * 0  with sodium hydroxide.

2,3;3,b-Bistriazolo-l,4-semiquinone

Sodium azide reacted with an acidified mixture of 2,5. 

disulphonato—1,4—hydroquinone dipotassium salt and sodium 

dichfomate to give a deep purple reaction solution. Tiie
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Fig, l4 Reconstruction of spectrum shown in Fig, 13»
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reaction solution, extracted witli et lier and concentrated, 

gave a radical on treatment with alkaline dithionite whose 

spectrum is shown in Figure .1 3 • The same spectrum was also 

generated in the same way from the m ono -substituted s ta r t i ng 

material. In some instances, this spectrum was also observed 

after 1,4-benzoquinone, dissolved in aqueous DMF, had reacted 

with sodium azide, in conditions identical to those in which

the mono-triazolo-semiquinone was observed, although the two

radical s pec ies were never observed simultaneously.

The spectrum consists of 31 lines and the ends of the

spectrum had to be ascertained at liigh modulation amplitude 

(see Figure 16) since broadening of high field lines obscured 

the exact extent. The pattern was consistent with two sets 

of (four and two) equivalent nitrogens, with no proton split- 

ring. Four equivalent nitrogen atoms would give nine peaks 

of intensity ratios 1 ; 4 ; 10 :16 :19 :l6:etc. Figure 16 shows how 

many of the lines are coincident. The lack of contribution 

from protons appeared to rule out other possible products of 

reaction (see Scheme 6 page 34). The spectrum was interpreted 

in the light of the spectrum of XVI, as being due to the 

2,3;5,6-bis-triazoIo-I,4-semiquinone, XVIII,

XVIII O.M Me — *; K) D M

Experimental 
Coupling/Gauss
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i QK̂ 'Si

Fig. 15
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which must result from dipolar addition of ilN̂  to both sides 

of the quinone nucleus, followed by ionisation and délocal

isation ( S c heme 8). Confirmation of this analysis came wlien

the same spectrum (Fig. I5) was generated from an authentic 
5 5sample of 2,3;5,6-bis-triazolo-l,4-benzoquinone, XIX.

It was interesting that the signal generated from pure 

crystalline starting material, (XIX), was considerably longer- 

lived than the same signal generated from a reaction solution, 

in which the likely mixture of reaction products woulci > 

contribute to the decomposition of the observed species. When 

the signal was generated from one of the three previously 

mentioned starting materials (see Scheme 8), it persisted for 

2O-3O minutes, after which time it decayed in favour of a new 

signal, eventually strong, of the species 2,3-diamino-1,4- 

semiquinone, XI. (Spectrum shown in Fig. 6). The diamino 

species was not observed'with the bis-triazolo-quinone 

starting material (XIX).

2-Methy1-triazolo-1,4-semiguinone

An aqueous DMF solution of tolucpiinone reacted with 

sodium azide to give, with alkaline dithionite treatment, 

spectra due to a mixture of radical species. Figure 1? shows 

a spectrum in which, a proton doublet, a single and two 

equivalent nitrogen coupling’,s anci a large methyl quartet 

are discernible. Lines from another species of similar g-value 

are also visible, but these are not identified. The methyl
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quartet has a separation .of 3.43 Gauss, reminiscent of the 

rin^ proton triplet in the triazolo-i,4-semiquinone XVI, 

and the nitrogen couplings of 0.70 Gauss and 0,93 Gauss are 

also close to the triazole ring in XVI. The spectrum is 

attributed to 2-methyl-triazoIo-l,4-semiquinone, XX.

XX N 0.70

-O

Experimen tal 
Couplings/Gauss

resulting from dipolar addition of hX^ to toluquinone (cf. 

Scheme 7, pRge 55)*

2-t-Butyl-triazolo-1,4-semiquinone

Reaction between 3-chloro-2,3-di-t-butyl-1,4-quinone 

and sodium azide produced spectra due to complex mixtures, 

which were not analysed. Preceding in the usual way with

2,3-di-t-butyl-l,4-quinone, in DMF, no spectrum was obtained 

which could be attributed eitiier to a triazole- or to an 

amino-serniquinone; but when the reaction solution was boiled, 

treatment with alkaline dithionite gave rise to a species 

whose spectrum is shown in Figure 18 in which there are ten
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multiplets, due to coupling from tiiree nitrogens and a proton,

F i g . 19 shows a part ol tiiis spectrum at expanded scan

(10 Gauss). The fine structure in each multiplet is attributed

to partially resolved tertiary-buty1 splitting. Not all the

tertiary-butyl lines can be seen but they are of the same

order as the line-widths and tiiis can lead to a reduction of
79intensity or annihilation of some lines. Broadening of

high field lines is well displayed in this spectrum. The 

spectrum is assigned to 2-t-bu tyl-tr iazolo-l - semiqu inone , XXI.

XXI

ftfcS = 0.1

Experimen tal 
Couplings/Gauss

-O

No spectrum was generated when the starting material was 

2-t-butyl-1,4-benzoquinone and no trace of the mono-t-butyl 

compound could be detected in the di-t-butyl starting material 

This result suggests that, in the course of dipolar addition 

of liN , a novel dealkylation reaction has occurred. Other
 ̂ X. , . 80examples of dealkylation liave been reported.
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2 , 3-Triazolo-l, ̂ l-napht ho semiquin one

Treatment of the DMF reaction solution containing 

1,4-naphthoquinone and sodium azide, with alkaline dithionite 

gave rise to the species, shown in Figure 20, attributed to

2,3-triazolo-1,4-naphthosemiquinone, XXII,

XXII
1.10

1.100.75" -O

Experimental 
Couplings/Gauss

resulting from dipolar addition of HN^ to naphthoquinone. (The

assignments of a^, a^ and of a^, a^ are of course ambiguous).

The identity of the species was confirmed when an identical

spectrum was obtained from a crystalline sample of
5 52,3-triazolo-l,4-naphthoquinone•

Coupling constants in all the triazole species are 

summarised in Table 6.
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Table 6

h.s.r. Coupling Constants (a/Gauss) in Triazolosemiquinones

XVI

XX

CLihjl ~

— N O-lo

XVIII D'tS N I — - u D-ii

XXI

“ " t B u .  -  D . l o

— ;N onS

XXII
1.10

| . I O
—  ; N oio

DIS" -O
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4 • Azido'-l ,4-semiquinones

2,3,5,6-Te traaz ido-1 , 4-serniquinone

Tetraazido-1,4-benzoquinone dissolved in liexamethyl- 

phosphoramide (llMPA) and treated with alkaline dithionite 

solution gave rise to the spectrum shown in Figure 21, The 

pattern consists of a 9 line multiplet, the pattern expected 

of four equivalent nitrogens,’ and is tentatively assigned to 

the tetraazido-1,4-semiquinone, XXIII.

XXIII

0

I-0

Experimental 
Couplings/Gauss

with other lines due to an unidentified species.

If this assignment is correct, then only one nitrogen in 

each azido group contributes to the hyperfine pattern.

Supj>ort for tiiis assignment came from a spectrum of

m-azidophenoxy1 , in which there is coupling from only one

nitrogen atom (a = Ü.4 Gauss).
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2-Azido-3;6-di-t-butyl-l,4-semiquinone

The spectrum shown in i' i g . 22 was obtained I'rorii the

DMP reaction solution containing; 2 , 5-tü - t-bu ty 1-1 , A-<i u i none 

and sodium azide and is tentatively attributed to 2-azido- 

3,o-di-t-butyl-1,4-semiquinone, XXIV.

XXIV •

-o

a„= 0.1

Experimental 
Coupl in^;s/Gaus s

The spectrum shows four multiplets, partially resolved 

into t-butyl fine structure, probably due to coupling from 

one nitrogen and one proton of about 1 Gauss. The coupling 

cannot be measured exactly since partial resolution of the 

t-butyl splitting makes it difficult to determine the exact 

extent of each multiplet.
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CilAPTER 3

NITROGEN MOLECULAR ORBITAL PARAMETERS



76

1. Amino-group Spin Density Distribution

Well-defined trends have been observed in the spin 

density distribution of substituted piienoxyl radicals,  ̂

but these studies have not so far been extended to include the 

amino substituent Since we have observed e.s.r,

spectra of a number of amino-semiquinones, we were interested 

in seeing if the spin distribution within the amino-group 

itself could be accounted for. In the heteroatom model (see 

Chapter 1-6), the radical is regarded as a benzene positive
Q O

ion perturbed by substituent X .  ̂ Where the substituent

is nitrogen, two molecular orbital parameters are introduced,

(see Equations 12 and 13, page 18) respectively h^ and

Three aminophenoxyl cations have been observed in acidic

medium^^ and two neutral radicals in neutral solutions.

In both cases, exchange between amine protons and the medium

is slow with respect to e.s.r. transitions and hyperfine

splitting is observed from the amino-group. In order to

derive the parameters, h^ and we have used a simple

radical structure in which there is a diprotonated nitrogen

attached to a benzene ring, the aniline radical cation,

(C^H^NH^)^. The values of h^ and k^^, chosen to give the

best fit to the experimental values, were then applied to the

aminophenoxyl series, without altering the previously derived
25,41oxygen parameters.
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2. "Experimental"Spin Densities

The "experimental" spin densities of the three ring 

protons in the aniline radical cation were obtained (Table 7 ) 

via McConnell’s relation for ring protons (Eq, 5» page lO),

(y^H = -30 Gauss^^).

Table 7

Experimental Values of Coupling and Spin Densities in

Experimental couplings, 
a/Gauss

"Experimental" spin densities

ao 5.82 /"o 0.194
am 1.52 /^m 0.051
a 9.58 /Op 0.319P

= -30 O

23Using the McLachlan molecular orbital method, theoretical 

estimates of spin densities were correlated with these. 

Calculations were performed in which the parameters h^ and 

were varied over the range 0.5 4 h^ < 2,5 and 

1.0 ^ k^^ < 2.5, with an initial interval of 1 unit and later
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with finer intervals of Ü.1 - 0.3 for both parameters, before 

was set at 1.0. The effect of varying h^ with k^^ = 1.0 

is shown in Table 8.

Table 8

•K"Variation of Ring Proton Spin Densities in

with h^ value (k^^ = 1.0)

/O ortho /^me ta ./ p̂ara

1.0 .1926 -.0620 .2631
1.2 .1890 -.0372 .2890
1.3 .1861 -.0350 .3011
1.4 .1821 -.05I6 .3114
1.6 .1738 -.0432 .33U5

* cf. Table 7.

More than one pair of values gives reasonable predictions, 

but the chosen values, h^ = 1.3 and k^ ̂ = 1.0, gave spin 

densities closest to the "experimental" spin densities.

These values are reasonable: we should expect the overall 

electron density in the nitrogen 7i orbital to be somewhat 

less than that of oxygen in phenoxyl, where h^ is l.o.
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3• Sigma-pi Interaction in the Amlno-fragment

Using this pair of values for h^ and the spin

density at the nitrogen was calculated to be 0,310. Correlation

between this spin density value and the experimental coupling
84for nitrogen (a^ = 7*68 Gauss ) gives a value of +23 Gauss 

(see Table 9), assuming E q . l4 (page 18). The positive sign

Table 9

Correlation of Experimental Couplings and Theoretical Spin 

Densities for each Interacting Nucleus,

* / \ a (experimental)
/Gauss

/^calculated Q ( a ^  )

H ortho 3.82 ^3 = 0.183 -31.46

me ta 1.32 / 4  " -0.033 -27.64

H■ para 9.58 A  " 0.301 -30.90

N 7.68 = 0.310 24.77

H .amino 9.58 -0 .310^ -30.90^

* Ref. 84

**A>h = -(/>(.); using aN = G + 1.3P, — 1.0 p

NH
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‘3 5indicates the direct mechanism by wiiich positive spin
28 3 Qdensity is induced at the nucleus.

If we envisage a planar amino-fragment in which there is 

conjugation between the nitrogen 2p^ orbital electrons and 

the aromatic ring, there is a net spin density at the proton 

because of spin polarisâtion^^* (see Fig. 23)

Spin Polarisation 
in the Amino-fragment

which is opposite in sign to the nitrogen n electron density,

so that the sign of the ratio between and a^^ should be 
34.39negative.

Since yO^ is calculated to be O.3IO and the aminoproton 

coupling constant is 9 o 8  G a u s s , t h e  value of tills

ratio is approximately -30 Gauss (see Table 9 ) i.e.

Eq. 16

Other values for and are reported in the l i t e r a t u r e ^ ^ ' 3 4
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(see pp.18-20 ), but we would expect to require new Q values, 

where, the parameters h^ and ^ are different.

4. The Aminophenoxyl Series

The exercise of reproducing the experimental values in 

a single structure is a trivial one, when five parameters 

are used to reproduce five coupling constants. A severe test 

lay in applying the parameters:to the aminophenoxyl series 

in which there are sorpe thirty experimental values to be 

accounted for without recourse to further parameterisation. 

The linear relations (Eq. l4, with = 25 Gauss, and Eq. l6) 

are found to hold (see Table lO). As we would expect, the 

unsymmetrical structures present the severer test, but 

surprisingly good agreement is reached for all couplings 

(see Table 11).



82

Table 10
I

*Correlation of Experimental Aminoproton Coupling with 

Calculated Nitrogen Spin Density.

Substituents in

aĵj. ( experimental )
N^N

/G auss (calculated) /Gauss

l-NHg 9.58 0.310 30.90

i ,4-(nu 2^2 5.88 0.19 30.95
1 — 0 ,2 —NH^ 5.30 0.20 26.50
1-011,2-NH2 8.10 0.25 32.40

1-011,3- NH2 8.23 0.24 : 34.38
1-0 ,4 —NÜ2 5.56 0.195 29.26
1-011,4-NHg 8.00 0.22 29.63

* Experimental couplings from Refs. 84, 34, 61, 86.

i Parameters - see Table 11.
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(Table 11, cont.)

from = yO^ x -30 Gauss, from a^ = yO^ x 25 Gauss

H
ring “Ha^^^^ from â , = yO^ x -30 Gauss.

Hückel parameters used

= Q + 1.3P, ^CN ~ 1 * G p, Oq = oc + 1.6p, pQQ = 1.3P» 

Gq H ” G + 2.Op, ^COII “ I.IP where a and p , without

subscripts, refer to carbon p^ orbitals. (Oxygen parameter 

see references 23,4l).

s -
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CHAPTER 4

MOLECULAR ORBITAL CALCULATIONS
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1 • Heterocyclic Semiquinones

Using the parameters derived in Chapter 3, theoretical 

coupling constants are calculated for the heterocyclic semi- 

quinones, triazolo-1,4-semiquinone (XVl), bis-triazolo-1,4- 

semiquinone (XVIIl) and the analogous imidazo-1,4-semiquinone 

(XVIl), (see Table 12). The assignment of the small proton 

coupling in imidazolo-1,4-semiquinone is made by analogy with 

the triazolo-semiquinones, and from a consideration of the 

symmetry of the radical. Absence of an iminic proton would

be expected considering the mobility of the iminic hydrogen. 77

C-H •H — H

-o
XVII

Also shown in Table 12 are tlie calculated couplings for 2- 

methyl-triazolo-1,4-semiquinone (XX) and 2-methylimidazo-1,4- 

inone^^*^ (XXV), (numbering in XXV as in Ref. 78). Asemro u
H 7hyperconjugative model for the metUyl group has been

employed. The spin density on the methyl hydrogen is obtained 

directly from tlie hydrogen group orbital, which is incorporated 

in the calculation with suitable parameterisation^^ (see Fig. 24)
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Table 12

Calculated Coupling Constants for Heterocyclic Semiquinones 

(experimental, a/Gauss, in brackets)

XVI

D-IT {O.V

(3.4 LIl.
o n ^  ( p i )

XVII
NJ

-D.S-fe 
/  Ĉit "w

(p-io)

XVIII —0.10 N

XX

O 1% (PdW

K/ — O.bZ
(2.55)  3

O ' t ' i .  ^ • ‘lo j

XXV
ia.li) 3.75-

il.ii) 3.75-
C%j
-O-Si

0 61)

a^=a+1.3P 0CM=1.OP QQ=a+l.6 p 3c o =1.3|3

q J?jj=-30 Gauss Q^=+25 Gauss

For methyl parameters, see Fig, 24.
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methyl group parameters 
. h^=0.0 h2=-0.7 h^=-1.0

Fig. 24  C ^ = H j  kl2 = 0"7 k23=2.5
4lî  ̂= l/3 y0^jX508 Gauss

Calculations of methyl hydrogen coupling are on the low side,
h 1as found previously, but the other coupling constants are 

all well predicted.

2, Aminosemiquinones

Calculations of theoretical coupling constants in the 

aminosemiquinones presented an interesting problem. Most 

of the experimental couplings are well predicted, but the 

relation proposed in E q . lb (page 80) for amino proton splitting 

in aminophenoxyls and aminobenzcne radicals does not hold for 

the semiquinones. The experimental nitrogen couplings in the 

former are consistently near to, though slightly smaller than, 

their respective proton coupling and the ratio of nitrogen to
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amino proton couplings always lies between 0.80 and 0.9 4,^^’^^^^ 

(see Table 13). In the amino-semiquinones, the ratio is

T a b l e  1 3

Ratio of Experimental Nitrogen and Amino Proton Couplings in
Amino-Substituted Radicals.

Substituents in

/ ft

l-NHg 0.80

1,4_(NH2)2 0.90

l-O", 2-Nli^ ' 0.90

1-011,2-Nil 0.83

1-011,3-N1I2 0.83

1-0” ,4-NH^ 0.94

1-0H,4-NH2 0.83

l,4-(0")2,2,3-(NH2)2 2.78

l,4-(0’*)2,2-Me,5-NH2 2.47
1,4,5-(o ')^,2-NH^ 1.65

considerably higher and use of Equation 16 therefore predicts

too high a claculated proton coupling. Correlation of the

experimental proton coupling and the calculated spin density
.11on the nitrogen (see Table l4) gives a lower value, nearer
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to -10 Gauss. If we use the relation,

a 14
NH =  X —  10 Gçouû ŝ ....E q . 17

prediction of the amino proton coupling is considerably 

improved (see Table 15)»

Table l4

Correlation of Experimental Aminoproton Coupling with
Theoretical Nitrogen Spin Density (^^).

Radical skeleton aJ^^j/Gauss yO^(calc.) Q(a^o)/Gauss

NKj
0.90 0.0964 9.34

o

NHi
0.75 O.O87O 8.62

0.725 0.0998 7.26
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3• Hydroxyl Protons

The magnitude of* a^^ in the aminosemiquinones is
Hreminiscent of that of a^^ in some hydroxy•radicals• Correlation, 

as above, between proton splitting and oxygen spin, density 

indicates a similar relationship,

^DH ^ . ...Eq. 18

Table l6 shows the calculated coupling constants, using Eq. 18 

for the hydroxyl proton splitting.

Table l6

Comparison of Calculated (a^^^=y^x-10 Gauss) and Experimental

Hydroxyl Proton Splitting.

(Experimental values in parentheses)

Radical H

7 62-hydroxy-l,4-benzosemiquinone 0.38(0.31)
76 -3-hydroxy-l,2-benzosemiquinone 0 .34(0 .36)

2,6-dihydroxyphenoxyl^^ 0 .62(0 .72)
■ 82h-hydroxyphenoxy1 1.82(1.90)

253-hydroxy-2-ace tylphenoxyl 0 .98(1 .00)



93

CHAPTER 5

DISCUSSION
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1. Interaction of 1,4-Benzoquinone with Sodium Azide

We have shown in Chapter 2 that reactions between quinones 

and sodium azide lead to two different types of radical species. 

Reaction between 1,4-benzoquinone and sodium azide (see Scheme 

9) yields e.s.r. spectra of 2,3-triazolo- and 2,3»3»b-bis- 

triazolo-1,4-semiquinones (Paths 1 and 2) and a 2,3-disubstituted 

1,4-semiquinone (Path 3) and it appears that two different 

types of addition take place.

It is reasonable to assume that one of them is a straight

forward 1,4- addition of since the same

diaminosemiquinone is also generated from the related 2,p- 

diazido compound (Path 3)» but we cannot know from the spectrum

itself by wdiat mechanism the heterocyclic semiquinones arise.
8SReaction of hydrogen azide with carbon-sulphur double bonds
89and of azide ion with'aromatic carbon-nitrogen double bonds

to give triazoles, may proceed via an anionic azido-intermediate,

with cyclisation of the azido substituent occuring in preference
90to protonation, but we reject the possibility of an 

intermediate carbanion in the case of quinone since this 

would imply localisation of a negative charge ortho to a 

carbonyl group.

The other possible mechanism leading to triazolo-1,4- 

semiquinones is 1,3-dipolar addition of HN^. Although this 

type of addition of is not known to occur with quinones,

it is behaviour well established for organic azides (r N^)
49 92and for HN^ with alkynes * and may, in quinones, be

91
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favoured by the juxtaposition of electron-withdrawing groups.

A dipolar addition of , with the iminic Proton still 

attached, must proceed through a "bent" form of the azide in
52which the two outer nitrogens bear opposite charges 

(cf. page 24 ).

47

:N

H

Kf +

: N -

:n

H

This is feasible because the bending energy is no more than 

20 kcal/mole and may be as little as $-6 kcal/mole.^^ The 

two main contributors to the ground state of covalent azides 

are (i) and (ii)

94

(i) , (ii) 
< ^

N
+-
N N:-

r:

but if energy required to convert an electron pair associated
93 5?with a Ti bond to a lone pair of electrons is not very great, *  ̂

then the dipolar form (iii) may, on activation, become important.
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(iii) "

The shape of the group depends on the hybridisation of the
2middle nitrogen, and a change to near-sp would result in a

decrease in the -N- bond angle. This does not necessarily

mean that there is a single resonance fcrni. The bent form

may only figure marginally in the ground state but is still

capable of influencing the course of reaction and making the
5 2all-important facilitating transition state more likely.

If both types of addition do occur, they both take place

in the same reaction solution and probably at the same time,

although there is a delay in the build-up of sufficient

concentration of radical resulting from Path 3 (Scheme 9)«

If this delay did not occur, we would probably not see the

triazolo- radicals. When bis-triazolo-1,4-semiquinone is

generated from the corresponding quinone (Path 4), the signal

persists for hours rather than minutes and never decays in

favour of a signal of the diamino species. It may be,

therefore, that the decay of XVI or XVIII (Scheme 9) is

accelerated by the presence of other reaction products.

The function of sodium dithionite in generating the
1 11radicals is, of course, a reducing one. * Substituted aminO'

semiquinones require a very high reduction potential to be 

generated from the parent quinones^^ (in the vicinity of 

-1.0 y^.^) so that the following equilibrium , in an
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electrolytic reduction,

c.h ô (̂nh1' C--̂   ̂ QH,0,(mh1-e.

must lie well over to., the left. It is therefore interesting 

that we observe the hitherto unreported 2,3-diamipo-l,4- 

semiquinone (Paths 3 and 5» Scheme 9) with apparent ease and 

in high concentration and probably indicates that the radical 

requires the dianion

-O
I

I-o
as its precursor.

Failure to produce the radical directly from the 

diaminoquinone may be partly due to competitive reactions 

involving the sensitive a-amino-carbonyl moieties.

We did not detect an azidosemiquinone from the starting 

material 1,4-benzoquinone, but the spectrum of 2-azido-3,6- 

di-_t-butylsemiquinone (page ?4,) showed only one small nitrogen 

coupling. This suggests that the azido group is twisted out 

of the plane of conjugation so that the effects, on the 

unpaired electron, of only the nearest nitrogen are felt. It 

is interesting that 2-_t-butyI-triazolosemiquinone is observed
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after reaction between the di-_t-butyl-substituted quinone and 

sodium azide. The basic conditions required to generate the 

radical (see.Ch. 2-l), may account for the dealkylation, 

allowing a base-catalysed elimination of a t-butyl group as 

iso-butene (see Scheme 10) after addition of .

Scheme 10

-f HN:

OH
t-— H

CMe,

.N

tBi

+ Hj.0,
HiC=CMej
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2, Symmetry Considerations

Interpretation of the coupling constants in e.s.r. spectra 

does not, in principle, permit unambiguous assignments and 

here, theoretically computed spin densities are useful.

McLachlan negative spin densities are predicted for the 

3 and 6 ring positions in the diaminosemiquinone^^ (cf. Ref, 97)
ilOand for the 2 position in the triazolosemiquinones and must

correspond to the position of nodal planes when the odd
2 5electron is in an antisymmetric orbital.

O
NH

N H

0

2 N

O o

The two smaller coupling constants in the triazolo-1,4-

semiquinone (XYl) spectrum are both due to nitrogen. Thus,

we do not encounter the problem which arises in the case of

imidazo-1,4-semiquinone IT), whose small proton coupling

cannot be assigned by inspection alone and may be due either
\,to the imidazolic hydrogen / C-H or to an iminic hydrogen

\  32 78/N-il, both of which are present in the parent quinone: *
/
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o

4oThe spin density at carbon 2 is also negative and must give
25origin to a small coupling constant. If a nodal plane.

bisects this atom then the sign of the wave-function at

should be opposite to the sign at and the molecular orbital

in which the odd electron resides, antisymmetric with respect

to positions 1 and 3 and positions 5 and 6. Using the
98interleaving theorem, this result is predicted for the 

7^^ molecular orbital (the odd-electron orbital in the 

triazolo- and imidazolo- semiquinones), Fig. 25 illustrates 

the systematic development of the orbitals

of triazolo-1,4-semiquinone from simpler molecular fragments.

It is encouraging that the Uiickel parameters for nitrogen

(h^=1.3, kç^=k^^=1.0) reproduce the experimental couplings,

especially in the triazolo- and imidazolo-1,^-semiquinone,

XVI and XVII, whereas previous calculations report a 20;o
32difference between experiment and theory.

4o
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3» Amino-group Spin Densities

The amino-group .in aminophenoxyls and aminosemiquinones

ought to be strictly comparable. On theoretical grounds,

aminoproton hyperfine coupling should be an indication of the
3 Qspin density at the nitrogen atom. Eq. 15 (page 19 ) holds

for aminobenzene radical cations^^*^^ and aminophenoxyls^

(see Table 11, page 83 ) and aminoproton coupling is given by

Eq. l6 (page 8o) where is -30 Gauss. The relationship

between amino-group hyperfine couplings in 2,5-diamino-l,4-
]{seiniquinone where a^ = 2.5 Gauss and a^^ = 0.9 Gauss, is 

evidently different. Irom the theoretical spin density on

the nitrogen atom ( =  O.O96), the empirical value for
HQ^j^yis found to be about -10 Gauss. This discrepancy may

be due to a difference in the charge densities of the two 
QQsystems' or may indicate that the assumption of a planar

equilibrium configuration for the semiquinone amino-group is
•  ̂ 100 u n j u s t i f i e d .

The implications of the pairing theorem for alternate 
101hydrocarbons are that the value of Q should decrease in the

99 102case of a negatively charged radical ion. The following
1 0 pequation^ " may be written for aminoproton couplings.

where q !^(0) is an appropriate neutral parameter and is
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a correction constant for excess negative charge density.

Using the value for of -30 Gauss for Q (O), leads to a

value of +32 Gauss for , which is rather a large correction,

when the literature reports changes of the order of -15%.^^^

The low proton splitting may also be interpreted in terms

of out-of-plane movement of the C-X-H bond. There are two

m e c h a n i s m s ( s e e  Fig. 26) which may determine the extent

of the. proton's interaction with the unpaired electron and

the sign of its coupling constant. Spin polarisation (see

Fig, 23, page So ) generates negative spin density at the proton,
39proportional to ; however when the proton is pushed out

of the nodal plane of the aromatic 71 system, some direct

overlap between the proton and tiiis system would result in a

positive spin density at the proton^^^*^^^'^^^ whose magnitude

is determined by the angle 0, (see Fig. 26).

The effects of rotation about tlie C-NII^ bond would be

temperature dependent and sucii a dependence for aminoproton

coupling, has been o b s e r v e d . T h e  much reduced coupling

at high.temperature has been inrerpreted in terms of a
107contribution by positive spin density.

Unrestricted rotation about the bond would.cause

a time-averaged angle (0) of 45^ to affect the extent of these 

mechanisms (see Fig. 26). If both spin polarising and 

hyperconjugative mechanisms contribute to the proton hyperfine 

coupling at all angles except G =  0°, 90°, an equation can

be written, using previous nomenclature,^^^*^^^
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Rotation about C-N bond

0 =angle of twist of 2p%(N) 

out of plane of 2p^(C)orbital 

As 0 increases, overlap 

decreases as Cos^0.

N-H bonds and 2p^(c) become 

coplanar as function of 

Sin^0.

2 extreme conformations of C-NIL

<I

0  W   > 6 = 0[o ÇSuyJ’Q =:
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Ctw =  Q h /^N + Q k P c  Eq. 19

where the parameter would decrease as a function of Cos‘~0

and the parameter would increase as a function of Sin*~0 .

This would also imply that ^  ̂  is a decreasing function of 
2

region of maximum %-ovcrlap but this may be compensated for

Cos 0 , as the nitrogen 2p^ orbital is twisted away from the

107by an appreciable contribution to  ̂by a wagging vibration. 

Resultant proton coupling would therefore be:

(Cos Ĝ] +

0̂ ̂  and its adjacent are computed to be Ü.O96 and 0,172,

respectively. If we assume a value for B of -̂ 3̂  and use the 

phenoxyl value (-30 Gauss) for Q^, E q . 20 becomes:

whence

d a  =  +23 Q-cujdS
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so that supplying values in E q . 19, aminoproton coupling is 

given by the relation

Further experimental work on suitable amino compounds would, 

be required to investigate the scope of a relationship such 

as that proposed in E q . 20.

4• Linewidth variation in the spectrum of 

triazolo-1,4-semiquinone

Variation in the linewidths of different hyperfine lines

has been observed in the room temperature spectra of the

triazolo-radicals, in which high field lines are of lower

amplitude, and broader, than those at low field. Similar

linewidth variations have been observed^^^*^^*'^^ at low

temperatures (-30°C or below), but at higher temperatures the

effects appear to subside and all hyperfine components have
103 39essentially the same width* Since theoretical

expressions for the linewidths have been offered in the 

literature, ^ w e  have made a preliminary investigation 

of the spectrum of triazolo-1,4-semiquinone (Fig. I3 ) to see
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if such an expression can be made to fit experimental

measurements made upon this spectrum.

Pig, 27 shows the spectral lines numbered 1 to 45, from

the low field end, with the degeneracy of each line, D^. It

can be seen thiat 12 lines are overlapped. Each line is

specified by "spectral index" numbers, (see Table I7 )

which are equal in magnitutie to the quantum numbers ,
39 109associated with each coupling constant, , but are here

defined as being positive on the low field side of the spectrum. 

The experimental parameter^^^' is a measurement of the peak-to- 

peak amplitude, , of the line i, since for line shapes that 

are mainly Lorentzian the amplitudes are inversely proportional 

to the square of the w i d t h , T h e  experimental relative 

width, W^, for the i^^‘ line is defined in terms of a reference 

line, r, of degeneracy (which in this case is line 23 , the 

central line) by the relation^^^

'(DgAp(ApD^)]^ ••••Eq. 21

109According to the general theory of linewidths, an expression 

for triazolo-1,4-semiquinone may be written.

* h Â  * ....Eq. 22
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with which the data for all but overlapped lines (see Fig. 27)

may be a n a l y s e d . T h e  values of the B,C and D parameters

are obtained by fitting the expression (Eq, 22) to the
*experimental values, giving the following relation:

W., =  1 - 0.0612 ÎÏ - 0 .017s - 0.1186theo. N. N.A A B

+ 0.0207 + 0.0339 M M - 0.0249
B A B

+ 0.0178 + 0.0047 - 0,0177
 ̂A B

The values for V,, are close to the experimental datatheo. ^
(see Table I7 ) and the parameters (see Table 18) are consistent 
in magnitude with similar data for other compounds ̂ ^^^*37»109,110 

Prediction of the anisotropic data for the radical leads

to the sign of the isotropic hyperfine splittings, via the
 ̂ r. 39,103,110 109parameters B and D, Previous evidence suggests

that in the case of triazolo-1,4-semiquinone, the sign of

the parameters are negative if the spin density on the

appropriate nitrogen is positive (if the magnetogyric ratio,

is positive^^^*^^^). For the principal nitrogen lines (M^ = o ) ,

= 1 i B + C (where B<0)

* V = theoretical relative width for each line, W. theo ’ i
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Table 17

Line-width analysis data for triazolo-1,^-semiquinone at room temperature

Line ^ 
Number

Spectral Index 
Numbers^

^N b Degeneracy
■>1

Experimental Results

Measured Relative Calculated Deviation 
Ampli tude^ ,A. Vidth*-Lw. Relative xlO^

Vidthe,W^^^^_

1 1 2 1 1 3.55 0 .8336 0.7 9 3 2 -40
2 0 2 1 1 3.58 O.S3OI 0 . 8 0 3 1 -27
3 1 1 1 2 6.46 0.8739 0.8335 -40
U -1 2 1 1 3.72 0.8143 0. 7 7 3 9 -40
5 0 1 1 2 5.90 0.9144 0.8773 -37 ■
6 1 0 1 3 8.31 0. 9 4 3 7 0 . 9 1 8 7 -25
7 -1 1 1 2 5. 9 0 0.9144 0.8821 -32
8 0 0 i 3 7.70 0. 9 3 0 3 0 .9929 13
9 1 -1 1 2 4.92 1.0014 1.0418 4o

10 -1 0 1 .3 6.65 1 .0549 1 . 0316 -23
11 0 -1 1 2 3.85 1 .1320 1.1499 18
14 -1 -1 1 . 2 3.41 1.2028 1 . 2225 19
17 1 1 0 4 12.66 - 0.8828 0 . 8 5 7 1 -26
20 0 1 0 4 11.31 0 . 9 3 4 0 0 . 9 0 2 1 - 32
21 1 0 0 6 1 6 .77 0.9394 0 . 9 2 1 0 -18
22 -1 1 0 4 11.01 0.9 4 6 7 O..9 II6 -35
24 1 -1 0 4 8.95 1 .0500 1.0264 -24
25 -1 0 0 6 12,71 1.0791 .1. 0 4 3 4 -36
26 0 -1 0 4 7.09 1.1797 1. 1 3 9 3 -4o
29 -1 -1 0 4 6.58 1.2245 1.2 1 6 6 -8
32 1 1 -1 2 6.15 0.8956 0 . 9 1 2 7 17
35 0 1 -1 2 5.40 0.9558 0 . 9 6 2 5 6
36 1 0 -1 3 7.41 0 .9993 0.9589 -4o
31 -1 1 -1 2 5.10 0 .9335 0 . 9 7 6 7 -7
38 G 0 -1 3 6.96 1.0311 1.0426 11
39 1 -1 -1 2 4.31 1.0 6 9 9 1.0465 -23
4o -1 0 -1 3 5.80 1 .1295 1 . 0 9 0 3 -38
41 0 -1 -1 2 3.40 1.2046 1.1642 -40
42 1 -2 -1 1 1.72 1.1975 1 . 1 7 5 5 -22
43 -1 -1 -1 2 2.98 1.2867 1.2462 -4o
44 0 -2 -1 1 1.49 1.2867 1 .3271 ho
^5 -1 -2 -1 1 1.26 1.3992 1 . 4 4 3 1 44

a The numbering system is that of Fig. 2 7 . Lines overlapped are excluded from
the an aly sis .

b These are the same as the quantum numbers for the nitrogens and protons and
correspond in sign (Mi = Mi) if the splitting constant ai is positive but are
opposite in sign if ai is negative.

c Measured peak-to-peak amplitude of the experimental line, 1 .

d Ratio of the reduced amplitude (Ai/Di) of line i to reduced amplitude of central
line (a 23 / D 2 3 ) calculated from Eq. 21,

e Calculated from Eq, 2 2 .
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Table 18

Calculated values for the 

line-width equation parameters (see E q .22)

. -0,0612

-0.0178

-0.1186

0.0207

0.0339

-0,0249

0,0178

°Na H 0.0047

“n ^h -0.0177
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and the lower sign (i.e. negative) gives the larger W^.

Experimentally, the high field principal nitrogen lines are

broader. For a positive magnetogyric ratio, a positive
111coupling constant means that low field lines have M^>0 

so that the broadened lines indicate a^>0. The parameter B 

actually gives the sign of (ayo), as opposed to simply (a),

and the same linewidth trend is indicated for both and .

The signs of the D parameters are more difficult to

interpret. It is unclear whether the sign of  ̂ leads

directly to the relative signs of the splittings of the nuclei
39 108 109in the cross terms * * or whether to the relative signs

within the product ) (_Çf * Ref. 109 ) . The positive

sign of appears to be in contradiction with the negative

McLachlan spin density at and the antisymmetry of the odd

electron orbital for triazolo-1,4-semiquinone (see p. 102),

In any case, our other D values are inconsistent in sign; we 

should also expect that if a,̂  and a^ are of opposite 
sign^^^(^^^ Refs, within) ^ positive value for ^ would

imply a negative value for ^ .
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E.s.r. spectra of hitherto unobserved amino- and triazolo-semiquinones have been obtained by 

auto-oxidation of the products of the reaction between p-benzoquinone and hydrogen azide. The 
calculated spin distributions, using the McLachlan S.C.F. method, of aminophenoxyls, amino
semiquinones and triazolosemiquinone radicals, agree well with the experimental values. The 
observed amino proton splittings fall into two categories ; those of the radicals from amino benzene 
radical cations and from aminophenoxyls are given by the relationship oh =  Pn x  —3.0 mT, while

N H
those of the aminosemiquinones are given by oh =  —1.0 mT. An analogous relationship

N H
(oh =  poX —1.0 mT) accounts for some hydroxyl proton splittings.

OH

In Spite of the versatile part played by the azido-group in aromatic chemistry, 
no e.s.r. spectrum has been reported for any organic azido-radical. We have, 
therefore, attempted to obtain a number of azidoquinones, which on mild reduction 
we would expect to give azidosemiquinones. In addition, since the azido-group can 
be regarded as a conveniently blocked amino-group from which — NH^ is released 
on mild reduction, we anticipated that this work might lead to some hitherto elusive 
unsubstituted aminobenzosemiquinones.

A D D I T I O N  OF H Y D R O G E N  A Z I D E  TO Q U I N O N E S

Reaction of HN 3 with quinones follows the general pattern of additions to 
a,̂ -unsaturated carbonyl compounds; the initial addition  ̂is usually followed 
by énolisation, oxidation, and further addition.̂ '̂ In some cases aminosemiquinones 
are formed directly, presumably because an internal oxidation-reduction reaction is 
preferred to the énolisation step.® The reactions are summarised in Scheme 1.

HN,

2027
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OH

NH
HNa

-N,

S chem e 1

EXPERIMENTAL
In a typical experiment, p-benzoquinone (0.1 g) in water or A,A-dimethyIformaniide 

(DMF), (5 cm̂), was treated with saturated aqueous sodium azide (1-2 cm̂ ). The solution 
was investigated in the usual way for observing e.s.r. spectra using a static system, following 
auto-oxidation"̂’ ® or one electron reduction.® p-Benzoquinone, 1,4-naphthoquinone, 2- 
methyl-p-benzoquinone and DMF were commercial materials purified by the usual methods. 
2,3 ; 5,6-te-Triazolo-p-benzoquinone,® 2,3-triazolo-l,4-naphthoquinone ® and 1,4-diacetoxy-
2,5-diazidobenzene ® were prepared as in the literature. All materials used had physical 
constants which agreed well with those of the literature.

RESULTS
T R I A Z O L O S E M I Q U I N O N E S

Intense e.s.r. spectra were generated from the products obtained by allowing 
solutions of p-benzoquinone in water, and in aqueous DMF, to react with excess 
sodium azide. The spectra were those of 2,3 ; 5,6-6Wriazolo-p-benzosemiquinone(I), 
splittings ÛN = 1.22(4) and = 0.88(2) x 10"'̂ T, and 2,3-triazolo-p-benzosemi- 
quinone(II), sphttings an = 3.50(2), = 0.90(2), and = 0.65(1) x lO"'̂ T, respec
tively. Confirmation of these assignments was obtained by the generation of I from

N 0 80 

i| ©TCH 0.50

N 0.80

m
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an authentic sample of 2,3 ; 5,6-6/>triazolo-p-benzoquinone ® and from the close 
resemblance of II to its imidazole analogue III/° Radicals I and II would arise 
following one-electron reduction of the products resulting from the 1,3-dipolar 
addition of HN 3 to p-benzoquinone (see Scheme 2), analogous to the well 
characterised addition of PI1N3 to p-benzoquinone, E.s.r. spectra of triazolo-

O’lm T

F ig. 1.—E.s.r. spectrum of radical II.

semiquinones were also obtained on addition of HN 3 to 2-methyl-p-benzoquinone 
and to 1,4-naphthoquinone. 2,3-Triazolonaphthoquinone was also prepared ® and 
reduced to give a spectrum identical with that of the latter semiquinone. The e.s.r. 
parameters of the triazolosemiquinones are summarised in table 1.

A M I N O S E M I Q U I N O N E S

A well resolved e.s.r. spectrum of 2,5-diamino-p-benzosemiquinone (IV) was also 
obtained on treatment of p-benzoquinone with sodium azide in aqueous DMF, 
support for this assignment was obtained when the same spectrum resulted from the
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oxygen parameters 0^ = 1.3, kcN = 10, ho = 1.6, kco = 1.3, hon = 2.0, 
ĉoH = 1.1, Qh — — 3.0 mT, Qn = 2.5 mT) very satisfactory agreement was obtained

CH
(see table 3). The predictions obtained for the triazolo- and amino-semiquinones, 
given in tables 1 and 2, are again in good agreement with the experimental values.

T a b l e  3.— C a l c u l a t e d *  v a l u e s  o f  e . s . r .  p a r a m e t e r s  (a/lO"* T) f o r  a m in o b e n z e n e  
RADICAL c a t i o n s  AND AMINOPHENOXYLS 

[experimental values from ref. (17), (20), (21) and (22) in parentheses]
substituents in a i  az az 04  «5 «6

au =  7.70 (7.68) 5.60(5.82) -1 .6 5 (1 .5 2 ) 9.03 (9.58) -1 .6 5 (1 .5 2 ) 5.60(5.82)
an =  9.24 (9.58)
N H

a x  =  4.71 (5.3) 2 .02(2.10) 2.02(2.10) ax =  4.71 (5.3) 2 .02(2.10) 2.02(2.10)
an  — 5.65 (5.88) nn 5.65 (5.88)
N H  N H

—  ax =  5.03 (4.76) - 0 .5  (0.1) 4.24(4.25) 2.52(2.95) 1.04(1.01)
on =  6.06 (5.30)
N H

—  ax =  6.21 (6.75) 0.87 (2.6) 2.32(1.6) 5.02(6.6) - 1 .3 3  (0.9)
an =  7.94 (8.10)
N H

— -0 .5 3  ax =  2.51 13.4 -3 .2 5  11.74
an =  3.01
N H

— 0.515(3.05) ax =  5.91 (7.0) 9.66(8.6) -2 .7 8 (2 .0 5 )  11.39 (10.45
an =  7.09 (8.25)
N H

—  2.99(2.75) 1.57(1.75) ax =  4.63 (5.25) 1.57(1.75) 2.99 (2.75)
an =  5.56 (5.56)
N H

— 1.16(0.5) 2 .99(4.0) ax  =  5.61 (6.60) 2.99 (4.0) 1.16(0.5)
an =  6.73 (8.00)
N H

* an from an =  pxX —3.0 mT.
N H  N H

DISCUSSION
Previous investigations of nitrogen substituted semiquinones have revealed 

a clear pattern of stability of the radicals. Ring substitution or nitrogen substitution 
leads to stabihty and to well characterised spectra, but unsubstituted radicals are 
generally unstable and any observed spectra were poorly defined.̂ ’̂ We have
obtained four aminosemiquinones in reasonable concentration, presumably because 
the rapid decomposition is matched by fast formation from the azido-intermediates. 
As radicals II and IV are both observed following reactions in aqueous DMF, there 
is probably competition between the two types of addition of hydrogen azide 
to p-benzoquinones. If this is so, then the observed e.s.r. spectrum depends upon 
the conditions of the subsequent autoxidation or reduction ; this situation is exactly 
similar to that in the hydroxylation of aromatic substrates. This suggestion 
is acceptable because it has been estimated ̂ ® that the bending energy of the azido- 
group is no greater than 84, and may be as little as 20-25 kJ mol~L The absence of 
> NH proton splittings can be attributed to the weak acidity of the triazoles,̂ leading 
to ionisation under the experimental conditions. The unambiguous assignments of 
the nitrogen splittings in the triazolosemiquinones demonstrate that the unpaired
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electron is in an orbital which is anti-symmetrical with respect to the plane bisecting 
the C(2)— C(3) and C(5>— bonds, perpendicular to the plane of the nuclei. This 
result is easily predictable using the interleaving theorem.̂  ̂ Fig. 2 illustrates the 
systematic development of the orbitals of radical II from those of benzene.

-2(3-

-(3- 5A**-'''"""

5 " - '

'13-
0<N-

5A**----------

-
♦2f3- 5*-.......
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F ig . 2.—Schematic development of the orbitals of 2,3-triazolobenzosemiquinone using the inter
leaving t h e o r e m ,a, symmetry plane, *, odd electron orbital.

The results of the m.o. calculations showed that the set of nitrogen parameters 
chosen has given reliable predictions over a wide range of nitrogen substituted 
radicals. As in the oxygen series ̂ ̂ agreement with experimental results is good for
T a b l e  4.— C o m p a r is o n  b e t w e e n  c a l c u l a t e d  (non =  p o x  —1.0 mT) a n d  e x p e r im e n t a l

HYDROXYL PROTON SPLITTINGS
(experimental values in parentheses)

aoH/10-4Tradical

2-hydroxy-l ,4-benzosemiquinone
3-hydroxy-l ,2-benzosemiquinone
2,6-diliydroxyphenoxyl
4-hydi‘oxyphenoxyl 
3-hydroxy-2-acetylphenoxyI

0.38 (0.31) 
0.34 (0.36) 
0.62 (0.72) 
1.80 (1.90) 
0.98 (1.00)

both amino-groups and for heterocyclic nitrogen. It is of interest that the — NH^ 
proton splittings fall into two distinct groups. In the first group, typified by the 
amino-benzene radical cations and aminophenoxyl radicals the experimental splittings 
can be satisfactorily estimated by the relationship Ah = Pn x — 3.0 mT. In the second

NH
group, the aminobenzenesemiquinones, the — NH 2 proton splittings are small, and 
are given by the relationship «h = p^x — 1.0 mT. The earlier generalisation,̂^

ÛH, is not applicable.NH
NH

The explanation for the different Qu values required is
NH
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likely to be found in terms of the differing total charges on the species, as established 
for hydrocarbon radical ions. We have found that the second value can be used to 
estimate corresponding — OH proton splittings. Table 4 gives the comparison 
between experimental and calculated (goh = Po x — 1.0 mT) values for a number of 
observable — OH splittings.
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