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ABSTRACT

Generalizations of Convexity

by

DAVID IAN CALVERT

I consider four generalizations of the concept cf a convex set
in Rd.
A subset X of R belongs to the family T(a) if for all
X, y € X ax+(-a)y € X where a ¢ R. Properties of elements of T(a)
are considered in Chapter 1.
Also in Chapter 1 a planar generalization of the family T(a)
is considered.
In Chapter 2 a study of m-convex sets is made and the extensive

literature is constructively reviewed.

In Chapter 3 some properties of locally starshaped sets are obtained.
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SYMBOLS
Uncommon symbols used in the text are described when they first
appear. Below more common ones are described.
The real number parameter a is underlined in Chapter 1 as are
vectors which in this thesis are points of Rd, d > 2. In Chapter 2

and Chapter 3 however, when no ambiguity results, the underlining is

usually dispensed with.

Symbol Description

R Set of real numbers.

]Xl Cardinality of the set X.

Z Set of integers.

lxl Absolute value of the real number x.

]xl or |§| Length of the vector x

aff X or aff {x} Affine hull of the set X.

S(x,6) Set of vectors y such that |x-y| < &
and y € Rd (d obvious from context).

conv X or conv {X} Convex hull of the set ¥X.

[}1,...,xn] Convex hull of {xl,.;.,xn}.

(Xl’x2) Convex hull of {xl,xz} without =x;
and Xy

Fr X ’ Frontier of X.

Int X or int{X} Interior of X in some Rd (d obvious

from context).
rel int X Interiorrof X in aff X.
Ker X Set of points y such that for all

xe X [x,yle X



CHAPTER 1

The first part of this chapter appears in my paper [ 1.11.

Definition 1.1: A subset, X, of R belongs to the family T(a)

if |%] > 2 and for all x and y belonging to X ax + (1 -a)y e X
where a e R.

Firstly, I consider the problem of determining for which values
of a>1 all elements of T(a) are dense in R.
Notation. Denote the closure of a set ¥ by cl(X). The brackets will
be omitted where no ambiguity results. Denote the set of non-negative
integers by Z+, the set of non-negative reals by R" and the set of

non-positive reals by R . Write q for a/(a - 1).

Note:

1. If X e T(a) them cl Xe T(a) and uX + X, € T(a) where
X, € R and pu e R, ¢ # 0.

2. The intersection of a family of elements of T(a) containing two
fixed points belongs to T(a). So given O and 1, since
R e T(a), there exists a smallest element of T(a) containing them
written t{a; 0, 1}.

3. Define X = {0,1} and, for n > 1, define X = {z:z = ax + (1 - a)y
where X, y € Xn_l} then ggo X, = t{a; 0, 1}.

4, If 0<a<1 an element of T(a) is dense in its convex cover.

5. Henceforth assume a > 1. The theory for a < O is essentially

the same.
THEOREM 1.1.  An uncountable elemen% of T(a) is dense in R. Moreover
if a is not an algebraic integer all elements of T(a) are dense in R.
Proof. It is sufficient to prove that, if X € T(a) and cl X # R then
cl X is countable and a 1is an algebraic integer.

If cl X# R, since RN\ cl X is open and hence a countable union
of intervals, there exist u, v e ¢l X with (u, v) ¢ R\ cl X. By

note (1), assume u = 0 and v = 1. Now there does not exist



xecl (¥)n (1, q) for

A

2_l)zl—x

al+(1-a)(l+

and (0, 1) ¢ RN cl X. I shall prove by induction, that the only

points of cl(X) n (qr, qr+l) are finite sums of the form I c.ql, c. e 2.
i i
+1-i
Note that c; < qr 1. Assume that the result has been proved for all

r <n -1 and let r =n. Let x¢ (qn, qn+l) n cl(X) then

n+l
>

_a_qn+(]_—i)x>0 and §_x+(l—§_)q 0.

Also x = (_g_qn + (1 - a)x) +Gx + (1 - g)qnﬂ). Since _giqn + (1 - a)x < q"

the inductive hypothesis gives the required expression for x if

ax + (1 - :a_)qn{L < qn which is equivalent to x < qn(l + 1/a). So if

X < qn(l + 1/a) the required expression for
. . . . . n+l n
x 1is obtained. Similarly if ax + (1 - a)q <q (1 +1/a) that

is if
1_

1
0 a

b
A
o)
o]
TR

the result follows. Since

1.,
O_ai

ne-18

i

the result concerning points of cl(X) n RY  follows. Further, since
- cl(X) +1 e T(a), cl{(X)n R f.S countéble. Finally since
a=2z ciqi, c; € Z+, a.: satisfies a monic polynomial equation.and hence
is an algebraic integer.
I now present two lemmas for
THEOREM 1.2. If a < 3(3 + V5), a # 2 and X e T(a) then cl X =R.
Lemma l If X e T(a) then X e T(_gl_2 - 2a +1). Hence if a <2, cl X =R.
Proof. Let x and y € X then ax + (1 - a)y € X and so
ax + (1 - a)(ax + (1 - a)y) = (1 - (a- Dx + (a - l)2y e X. Similarly

(a - l)2x + (1 - (a- l),z)y € X. The second part follows from note (4).



[]
Lemma 2. If X e T(1 + v¥2) then X € T(¥2) and hence cl ¥ = R.

Proof. Let x and y e ¥ then

(L+/2)x - /2y = x + 2(x - y)

and
'

(L+V2)x - /2(x + /2(x - y)) = 2y - x
S0

y(1 + v2) - /2(2y - x) = x/2 + y(1 - ¥2) ¢ X.
Similarly

(1 - /2)x +yv/2 ¢ X -

I now prove Theorem 1.2. From Lemma 1, X € T(an) where

a =a and.an=(ah_l - 12, 1f a = 0 for some smallest m, then
a 1= 1 and a9 = 2, by definition of m, hence a 3= 1+ /2

since a 2 0 for all n. Hence suppose a £ 0 for all n. Since

a >1 and a_ <a - 3(3-v5)<o0

n-1 -1
either for some n 0 < a < 1(3 - /5) and hence cl(X) = R by

. . - l
if and only if (a _; - 3(8 + v’5))(an

note (4) or {an} is decreasing and hence convergent to (3 - ¥5) in
which case X 1is dense by note (4).

Using a computer I have obtained the elements of the Xi’
0<ix<5, of note (3) for a = 3(3 + Y5) in the form m + ni(l + v5)
where m, n € Z. The output convinces me of the correctness of the following
CONJECTURE. t{2(3 + v5); 0, 1} is not dense in R.

I éhall now prove some results on uncountable sets belonging to
T(a).

The following theorem suitably modifies an argument of Theofem 3.2
of (1.2}. It extends the obvious result that if X e T(E) and X contailns
aﬁ interval then X = R.

RESULT 1.3: Let X € T(a) and let X have positive inner Lebesgue
measure then X = R.

fzggﬁ.A Let X € T(a) and let X have positive inner Lebesgue measure,
that is X contains a Lebesgue measurable set M of positive measure.

_ _ (2a-1)k+(1-a)
Choose k = max 2,9} and 1t = K(Zi'l) then 0 <t <1 as

a > 1. There exists an open interval, I, centre q of length 26 such

that m(InM) > 1 m(I).



Let Iq be the interval centre q of length 6 then I < X.
q
Suppose, on the contrary, that some point p of Iq (which I may
assume is the origin) does not lie in X. Let I_ be the interval

28
centre p, length - then Ii)c I. If Mp =Mn IP, then

m(M) =m(MnI)=m(InM -m(Mn I\ ).
b P P

Now,
m(Mn INI ) <m(INID) = m(I) - m(Z
o) 2 P) m(I) - m( P)
=(k - 1) m (1)
whence P
m(M ) >t km(I)-(x-1)m(I)
b p %
= (k(t-1)+1)m (Ip)
- (=)
= (y3=y)m (Ip)... . (1)
Now define a function f on X by,
p=af(x) +(1-ax.
Since p =0 and p é X,
f(Mp) c £(X) ¢ RWX ¢ R\M
moreover
| £(x)| =~J3£L
q
Consequently f(MP) and MP are disjoint measurable sets of IP
so,
1
m(I) > m(M) +m(£(M)) = (1 +1->2m(M)
( P) > m( b (£( b ) = ( Egm( b
2a-1
g —— ey (M)
ER

in contradiction to (1).

Thus Iq c X and hence X = R since X ¢ T(E)'

In view of Result 1.3 it is natural to ask whether there exist
uncountable, elements of T(a) with measure zero and whether there exist
Lebesgue non-measurable sets belonging to T(a). The answer to both

questions is affirmative as Examples 1.1 and 1.2 show.



Example 1.1: To construct an uncountable element of T(E) of measure
zero, the method is to construct a perfect and hence uncountable subset
X of [0, I] such that m(Xn) <1 for all n > 1 where

X =1{z:z = ax + (1 - a)y where x,y € Xn—l}' It follows that \U X

n ) ] n=0 n

is an F_ set with m(U X ) < 1. Hence U x  is a measurable
©nz0 n=0 " ®

set of T(a) with U X # R and hence, by Theorem 1.3, v X, is
n=0 n=0

an uncountable, Fo set of measure zero.

Construct, for each n, a collection of closed intervals
I(al, cens
of 0O's and 1l's, of length n, such that,

an) of [0, l] corresponding to each of the 2" sequences

I(al,. .. ,an_.l) > I(al,. .. ’an—l’an)
and

I(al,...,an_lo)n I(al,...,an_l,l) = g.

Define x e X = if there exists an infinite sequence a;...2 ...

such that, for all n, x ¢ I(al...an).
Note that if I, =[a.,b.] i=1, 2 then
i i1
m(al, + (1 - a)l,) = am(I;) + (a- l)m(12)>, so if m(I;) = m(I,)
then m(al, + (1 - g_)IQ) = (2a - Dn(I,).
Returning to the construction, for n = 1, choose from @,3-.\ two
sub-intervals I(0) and I(1) of equal length with I(0) having

its left hand end point at O and I(1) “having its right hand end

: 1
point at 1 with I(0)m I(1) =¢ and m(I(0)) ég_iﬁ .

Inductively define the 2" intervals of the nth stage, n > 2,

:O,

as follows, I(al...an) is a subinterval of I(al...an_l); if a)

I(a .an) has its left end point coincident with the left end point of

1"

I(a ); if a = 1, I(al...an) has its right end point

1"°""n-1

coincident with the right end point of I(al,... ,an_l). Take

m(I(a....a )) = d for all the finite sequences a....a . By the note
1 n n 1 n

above, it is clear that dn may be chosen sufficiently small that

m(Y ) <1 where Y = U I(al,...,a ,a ) and for m>1
n,n = o,n a....a n-1""n
1 n
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Ym,n ={z : 2z =ax + (1 - a)y where x, y ¢ Ym—l,n}' d ~ is easily chosen so
that I(al,...,an_l, 0) is d13301nt from I(al,...,an_l, 1).
Now X &Y . so m(n\:)l X)) £1. Since X/ s closed,
without isolated points it is uncountable and hence U Xn is the
n=1

required set.
The second example, of the non-measurable set which belongs to
T(a), was made known to me by H.G. Eggleston.
Example 1.2. Sierpinski's non-measurable set constructed from a
Hamel Basis for R [1.3), belongs to T(a) for all rational a.
I have no idea whether the complex number generalisation of
the family T(a) +to planar sets yields interesting results. However,
I have studied a planar, two parameter generalisation of the family T(a).

Definition 1.2: A subset, X, of R belongs to the family H(A,K) if

x| > 2 and for all x and y belonging to X Ax + (1 - M)y +Kulx - vyl e x

and Ax + (L - Ay - Xu|x - y| € X where A, KX e RK >0 and if
(yym*p2%y vy

2 2.3
((yz—x2) +(yl-xl) )

X = (Xl’x2) and y = (yl,YQ)a u =

Note
1. If X e H(A,K) then el X e H(A,K).
2. If X e H(A,K), A is an orthogonal linear transformation,
€ R p#FO0 and x € R2 then pAX + x_ = Y € H(),K).
u N 2 s
3. The intersection of a family of eléments of H(A,X) containing

two fixed points belongs to H(A,K). So given (0, 0) and

(1, 0) there exists a smallest element of H(A,K) containing
them, written h{(X,K); (0, 0), (1, 0)}. Moreover there exists
a smallest closed element of H(A,K) containing (0, 0) and
(1, 0) written clh{(2,K); (0, 0), (1, 0)}.

4, cl(h{(A,K); (0, 0), (1, 0)}) = c1h{(A,X); (0, 0), (1, 0}}
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5. The smallest element of H(A,X) containing (0, 0) and (1, O)
can be constructed as follows. Define r = {(0, 0),(1, 0)} and
for n > 1, Xn={5_:5=)\ﬁ+(l—7\)x+}13|5—xl or

=ax + (1 - - -
z x + ( My - Ku |x - y| where x,yce¢ X _y ‘then

U % =n{(,0; (0, 0), (1, 0}
n=0
6. If X e H(A, 0) then for all x and y belonging to X,
X n aff {x, y} ¢ T()).
7. Henceforth, assume K # 0 and X > O for elements of H(Xx, K).
GCeometrically, Definition 1.2 means that given X, y € X the
points z; on the half lines obtained by a clockwise or anticlockwise
rotation of the ray containing y and terminating at x or the ray
containing x and terminating at y through o = arc tan K/A, distant
(A2 + Kz)%lz(_ - X' from x or y respectively belong to X. See Fig. 1.
Consider x, y € X € H(A, K) and note that by  considering x
and Z3 (Fig. 1) and y and z, onme has 2 and Zg € X as shown
in Fig. 2. 1In other words, on identifying aff {x, y} with R,
X n aff {x, y} ¢ (A2 + k2.
It is clear from the geometric interpretation that if X € H(X, K)

contains a line then X = R?. Further, it is clear that if

A2 + K2 <1 and X is a closed set with X € H(A, K) then X is convex.

) 2
THEOREM 1.3: If k2 + K2 <1 and X e H(A,K) then cl X =R .

Proof. It is sufficient to prove that the only closed set X

. . 2 2 . 2 2 . .
with X e H(A, K) and A“ + K" <1 is R°. If X #R since X 1is
convex there exists x € Fr X and a support line, L, to X through
x. Since X # {x} there exists y_ e X with y # x. Since X e H(A, K),

. "2 23 .

there exists y, ata distance (A" + KX yﬂfo - zol on the half-line
terminating at x obtained by an anticlockwise rotation through
o = arc tan X/A < m of the half-line containing Yo and terminating
at x. It is clear that a set of y. may be generated with ¥ € X

and some y. on both sides of L. Hence there does not exist a support

line at x and so X = R2 since Fr X 1is empty.



Figure 1.

Figure 2.
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THEOREM 1.4: If X ¢ H(x, K) with % R then cl X = R2

unless (A, K) = (0, 1), (3, 12) or (-1, ig).

Proof. The method is to show that if X e H(A, X¥) with (A, K) not one
of the stated pairs, but AQ + K2 =1, then X e H(A, K) with

12 + K? < 1. To do this I consider two points X and y and show
that it is possible to generate the four other points required. Many
subcases of Case 2 below are reduced to Case 1. It is more convenient
to work with angles, o and B as shown in Fig. 3 than with A's

and K's.

Case 1. Acute o and B, o# B , where oo and B are as shown
in Fig. 3. (The circles and lines are just aids to perception).
Consider two of the generated points as shown by crosses in Fig. 3.
Generate a point w from them as shown. It is clearly possible to
generate the three other points necessary to show X € H(X, K) with

12 + K2 < 1l. (Note that there will indeed be three other points since

2

A+ (-1 -20)=222-21+1 and 22> -2A +1 =1 iff A =1)

=

Case 2. Obtuse a =90 +y. From x and z generate w as shown in
Fig. 4. Clearly for 60 < 180 - Z¢ <90 or 0 <180 - & < 60 that

is 90>y > 60 or 60 >y > 45 the result follows by Case 1 as it

is clear that the three other points required can be obtained. For

the subcase vy = 60 see Fig. 5. Generate Eﬁg,_gi) from x and

z; and v from:_ﬂ(z} EQ) and X. Clearly v and W(x, Ei) will
generate a poinf within both circles. It is clear that three similar
points may be generated. For 0 <y < U5, ¥ # 30, see Fig. 6.
Consider two cases 0 < Yy <30 and 30 <y < 45. For 30 <y < U5,
generaﬁe Zy from §; and y, z, from 2 and x and Zg from 2,
and x as shown. Since O < F <45 the result follows. For O <y < 30
consider two subcases (1) v # 10 (2) y = 10. In the first case proceed

as in 30 < y < 45 case in the second note that one can generate Case 1

with o = 40.




Figure 3.

Figure L.
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Figure 5.
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THEOREM 1.5: h{(3, '/—g); (0, 0), (1, 0)} = clh{(3}, /—2); (o, 0), (1, 0)}
={z : z = m(1, 0) +n(%,£§-) m, n e 2} .
Proof. Firstly, if x = a(l, 0) + b(3, /—g) and y = c(1l, 0) + d(3, "‘/‘23‘)
then x = (a +g—:, b_f) and y = (e +Q’ dig-). Now
§_‘1=(a"°+%(b'd)=/—g(b‘d)) and li‘lll‘_=(‘/—g(b-d),
a-c+3(b-4d) so ig—lz—ﬂg:(—%(b—d),'/—g(a—c)+'—/L3T(b-d))
=% (-3(b-4d), ¥8(2a-2c +b-d)). Further Z(x +y) =1 (2a +2c +b +d.
(b +d)¥3) so that 3(x +y) +ig-5 |x -y| = (e -b +d)(1,0) +(a~-c+b)
(3, l/%’-). Similarly, 3(x +y) - —2_25_ -yl =(a-4d+b) (1,0 +
(c - a+d)3I, Lg). Hence it is clear that {z:z = m(1, 0) + n(3, —'/—2-)
m, ne Z} e H(3, %3_)_ To prove the theorem it is sufficjent to show that
any element of H(é‘,_—,ig-) containing (0, 0) and (1, 0) contains

V3

{z:2z

it is clearly sufficient to show any element of H(3,

(0, 0) and (1, 0) contains (- ‘5,—{3-)
2, 0, - 22,03, - B, g, - D

geometrically obvious.

THEOREM 1.6: h{(o, 1); (0, 0), (1, 0)}

{z:z = m (1, 0) + n(0, 1) m, n e Z}.

Proof. Clearly h{(0, 1); (0, 0), (‘l, 0)}

m(1,0) + n(3, —-2-) m, n £ Z}. By note (2), following Definition 1.2

-{g—) containing
LB, &8 D, (1o,
and (—g—, - Lg—) which is

= c1n{(0, 1); (0, 0), (1, 0)} =

{z:z =m(l, 0) +n (0, 1) mn € Z}.

Hence it is sufficient to show that {z:z = m(1l, 0) +n(0, 1) m, n € Z} € H(O, D

Let x = a(l, 0) +b(0, 1) and y = c(1, 0) + d(0, 1) then

|x - ylu=(d - b, a-c). Hence that result is clear.

THEOREM 1.7: h{(- 3, l/—‘;’-); (0, 0), (1, 0)} = clh{(-1, —‘/—g); (0, 0), (1, 0)} =
{z:z = m(1, 0) + n(3, '%) n#m+ 1(3) my, n € Z}.

Proof. Firstly if x = a(l, 0) + b(3, —'—Ig) and y = c(1, 0) + d(3, —‘/—g)

then as in Theorem 1.5 1/% |x - ylu=3(-3 (-4, Y3 (2a - 2¢ +b - d)).
Further - 1x +—2§1 =3 (-2a-b + 6c + 3d, Y3 (3d - b)). So

_%§_+—§v_ +“i§ _}i_zlg_(a—c+d)(%,‘/—g) +a-Db + 2c +4d) (1, 0),
—%_-r—g ——'/—231 Ix—z|_1_1_'(-a—b+c+2d)(%,i§-) + (b+c-4d) (1, 0),
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%’i’ %x+'/—§ IE’ZIB_Z (a +2b - ¢ —d)(%,'/—g) + (a -b + d)(1, 0) and
gﬁ -3y - !% |x - ylu=1(-a+b+c)}, ﬁ%) + (2a +b - c - d)(1, 0).
On the assumption b Za +1(3)d Zc +1a,b,c,de 2 it is easy
to verify that these four new points belong to {z:z = m(1, 0)+ n(3. L;)
n#Zm+1(3) m, ne2} which thus belongs to H(- %, —{g). To prove
the theorem it is sufficient to prove that any element of H(- }, l/g)

V3

containing (0, 0) and (1, 0) contains {z:z = m(1, 0) + n(}, —2)

n #m+1(3)}. It is clearly sufficient to show that any element of

V3 .
H(- 3, —5) containing (0, 0) and (1, 0) contains (0, v3), (l,/3),(g,

3 V3 3 /3 3 V3 V3 1 V3
(_ _2'3 '3)3 (53 _2'), (' 25 O), (3, O), (‘ ‘2‘, ‘_2‘ ’—2), (‘ —2‘,- -5'),

Y3, 5 V3
é,— ) (5, - —5), (0, ¥3) and (1, - ¥3) which is geometrically obvious.

)s (_%9_

The situation for A% + K° > 1 appears to be more complicated.

2
However for 1 < A +K2<1§(3+/5), A2+K2#2 or A% +K? not an

algebraic integer Theorems 1.1 and 1.2 and an earlier remark imply that

if X e H(X, K) then clX = R2.

The final result I present for )\2 + 1(2 > 1 1is the following
theorem.
THEOREM 1.8. If X € H(A, K) with 0 <A <1, A #1, then clX = R°.
Proof. Without loss of generality since H(X, K) = H(1 - A, K), I may

suppose 0 < A < 3. I consider two cases

Case 1l: 0 <A

fla

1
[y

< A<

Nj=

I

Case 2:

I begin by presenting a lemma which will be useful in both
Case 1 and Case 2.
LEMMA 1. If X e H(A, K) with 0 <A <3 then. X ¢ H(J, _1«_;;—_1))
Proof. Let Xo» Yo € X and let L: and L; denote the open half
bounded by aff {_xo,_yo}.
Let }1:7\_Yo+(1‘)\)_"0+}<9_ l.’fo_jol and _le)i{o+(l-)\)_3'o+

and L; denote the corresponding

H o+

+
Ku on -_yol belong to LJ and let L

open half planes. Note that L)-{l ‘jll = (1 -20 I_xo __yol and

0 <1-2x<1.

%

3
=),

2
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Since X is closed and (1 - 22)" + 0 as n + 0 it is clear

that X e H(}, S) where § = K(1 - J (1 - 20)7) = ES%%:il

n=1

: consider

X0» ¥, = Ln—l for n > 2.

The second lemma will be used for Case 1 only.
[+.]
LEMMA 2: If a = r’ with 1 <r<1l and ) a = o then there
n=l

exists a sequence bn with b
n
o

1l or bn = -1 such that for t with

La =
a; <t S z ab = t.
n=1 .
n
Proof. Write s[n) for ) a_. Define P(j) and N(j) inductively
m=1 n
as follows P(1) =1, P(2) = the first integer n such that t < ) a
P(2)-1 P(2) m=1
then I a,<t< ] a =s[P(2)l. Define N(1) = P(2) +1 and
m=1 m=1 n-1 n
N(2) = the first integer n such that 2 a, < S[P(2)) - t < z a,.
j=N(2) 3 j=N(1) 3
Note that SLP(2)) - t < 3p(2) and so N(2) exists if r > 3 since
n
" 1 <-1§;. If r = 3 the result is clear from the r > % argument.
oo
For r > 1 define b, =1 for ne U (poL - 1), P(2L)) and b =-1
© _, L=1
for ne \U (2L - 1), N2L)ET where P(3) and N(j) are

L=1
defined in the obvious manner then bn is the required sequence.

I now complete the proof of Case 1. Choose t such that

(o) .
1-22<t< ) (1- 2))"  and such that Kz(l - t)2 + & 1is not an

' n=1l

algebraic integer. By Lemmas 1 and 2 X e H(Z, K(1 - t)) and hence

cl X = R2.

Case 2.: Note that since the algebraic integers are countable to prove

the result it is sufficient to prove that X e H{1, SA) for uncountably

. That result follows from the result that the 2w numbers

A

obtained by letting {bn} range over all possible sequences of -1

many S

and 1 ‘are distinct where a = r with O <pr=1-2X < 3.
Let {bj l} and {bj 2} be two sequences of +1 and - 1 and
2 bl

let .n be the smallest integer m such that bm 1 # bm 9 and suppose

2 b

without loss of generality, bm,l =1 and bm,2 = - 1 then,
I ) I
Yy b, ., a. 2 b.. a, - a.
TE R EE B 3] AL N



and,

Hence

fin
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Appendix to Chapter 1

The study of the denseness of sets belonging to
. 2 2
H(A,K) with A" + K® < 3(3 + V/5) is completed by Theorem 1.9.

Theorem 1.9. If X e H(A,K) with A2 + K2 = 2 then clX = R2

unless,

(A,K) = (0,v2), (-1,1), (-1, %%) or (3, %% ).

Proof. The method is to show that if X e H(A,K) with (A,K) not

one of the four exceptional values given in the statement of Theorem 1.9
then an argument based on Theorem 1.8 may be used to deduce cf X = R2.
It is assumed -v2 < A < 0, without loss of generality by
virtue of Theorem 1.8 and that fact that X & H(A,K) is equivalent

to X e H(1-2,K).
Recall that if X e H(A,K) then for all

x,y € X aff {x,z} X e T()\2 + K2). Since

My + 0% + K (x - P+ (- x

‘ : 2
= AL- 02Dy + {1 0% Dx
it is clear that if -1 <A <0, A 3 -2, Theorem 1.8. may be
applied to X to deduce cf X = R2.
. . . 2 2 2
Finally if -/2 <A < -1 with A +K =2 (A +1)" +K <1

and Theorem 1.3 may be applied to X to deduce cf2 X =R .

It is easily verified that
h{(0,7/2); Q0), (1,00} = {z : z = m (1,0) + n(0,v2) m,n ¢ Z}

{z : z = m(1,0) + n(0,1) my,n ¢ Z}

h{(-1,1); (0,0), (1,0)}

h((3, 403 (0,00, (1,00} = b{(-}, 43 (0,00, (1,0}

{z : z=m (1,0) + n(3, f%) m,n e Z}.
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Example 1.1 was an easy modification of a construction of Souslin [1.4].
A similar construction yields an uncountable set of measure zero such that
for all x and y belonging to ¥ xy, x +y, x - v and %, x#0
belong to X. TFor all x e ¥, X e T(x) and clearly a construction similar
to Example 1.2 gives a non-measurable set belonging to T(x) for all
X € X.

The construction of uncountable sets belonging to H(A,K) of zero planar
measure follows from the proposition:

If X and Y are convex and if Z = {z:z = Ax + (1 - A)X + KE]E'XI x € X,
y € Y} then Z is convex. Moreover if the diameter of X= diameter of
Y = e then Z has diameter < (T + K¥2)e where T = I)\l + ll - )\l.

Proof S{)\ﬁ + (1 - AZJ;) + KE_J;IX_ - y_ll} + (1 - s){)\i,z_ + (1 - 7\)372

+ Ku, |%, - y,|} = A{sxl + (1 - s)x2} + (1 - A){syl + (1 - s)y2} + s,1<ul|xl - Yy

+ (1 - s) Kll_glﬁ—y_z-l =l§S+(l—A)y_S+KE_S|§S—YSI where if

=(at,a ) and z’t:(bt’bt) then E’tli't—z'tl:(at -b ,b -3 )

p4
-t 1 5 1 B 2 2 5 1

t=1l,2 or s.

Moreover it is clear tl"lat ]Axl + Q@ - A)Zl + KElljl - zl - )\22 - (1 - )\)Zz

- ¥l | <Me+ti-ale+Ke 2= (T +K/2) e

- K32|§2

Uncountable sets belonging to H(A,K) can be constructed using the
Souslin argument and the fact that a planar set with diameter < 2e has

2
area < me .

Finally, a natural generalisation of the family H(A,K) is the following:

Let aff X = RS then X ¢ Hy(AK)  if for each x and y belonging

to X:

A§_+(1—A)X+KFrSd_lC X

={z: |z] 21, 2¢ rRYY}, k>0 and s lies in the

where d-1

Sa-1
hyperplane with normal x - y centre Ax + (1 - A)y.

However for d > 2 the concept is not as fruitful as the case d = 2.

The following theorem illustrates that point. Note that for d > 2 each
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non-empty planar section belongs to the family H(A,K) = HQ(A,K).

Theorem 1.10. Let X ¢ Hd(A,K) then X = Rd if d > 2.

Proof. By the note above and the fact that if X e H(A,K) and X contains

a line then X = R2, it is sufficient to show that if X e H(A,K) and

X contains Fr 82 then X = R2.

Firstly I shall show that each point ER outside Fr 82 must belong

to X. Consider rays from z meeting Fr 82 in two points. Let the

nearer one to zO be zl and let the further one be 22. As zl varies

over the frontier of the semi-circle which z, sees via the complement
2, - 2| o
of S2 the function TE——:—E—T is a continuous real valued function
' -1 =2

which 1s not bounded above. Since each line meets X in a set which can be
. e . 2 2 . 2 2 ey . .
identified with an X e T(A” + K7) with A" + K° > 1 it is possible to

choose =z so that it is clear that 2z ¢ X.
=1 —o

Now similarly take z € int 82 and consider any z) € Fr S2 and

a z, sufficiently close to 2 outside S, on aff {Eo’ } so that

2 Z

again z_ € X.
o
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CHAPTER 2

Introduction

For brevity, I shall write that a set X is in Rd if and only

if aff ¥ = Rd.

Definition 2.1: A set, X, in Rd is said to be m-convex m > 2

if for every m distinct points of X at least one of the line segments
determined by those points belongs to X.

Definition 2.2: An m-convex set, X, is said to be exactly m-convex

if it is not (m - 1) - convex.

Definition 2.3: A point x of a set X in Rd is a point of local

convexity of X if there is some neighbourhood S of x such that
if y and z belong to X NS then Ly, z1ec XNS.

Definition 2.4: If X fails to be locally convex at some point q then

g 1is a point of local non-convexity (fnc point) of X.

I denote the set of points of local non-convexity of X by Q(X)
or more usually Q when the set X is obvious. I point out the
important result that Q is a closed set and I note Tietze's Theorem,
Valentine [ 2.17] pp.48-50, that a closed, connected, locally convex set
in Rd is convex.

Following the literature terminology, I shall use the phrase
"decomposition theorem" to describe results where a set X cen be
written as a union of a, not necessarily least, number of convex sets.

Valentine introduced the concept of 3-convexity in [ 2.27) where he
proved that a closed, 3-convex set in R2 could be decomposed into a
union of three convex sets, in Theorem 2. Further he showed that if
Q] was one, even or infinite then X was the union of two convex sets in
Theorem 3.- He also proved that for a closed, connected 3-convex set in
Rd, Q & Ker X. Breen notes in £2.3] that it follows from Lemma 5 of
[2.2) that for a closed, planar set, X, with IQ! >4, Q¢ Ker X

implies X is 3-convex. Note that the result is false if ]Q[ =3
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as Example 2.1, which will be used again later shows. Example 2.1 is

shown in Fig. 2.1.

V3 3 V3

Example 2.1: Let Xl = conv {(0, 0),(1, 0), (1, - —2), (5’ - —2)},

V3 3
X, = conv (3, —5)a (55 Lg), (1, 0), (;, 0)}and let Xq = {z:z = A(1, 0) +
(1 - M (0, 0) + (1 - w3, /—2)) A <1l O0<wu <1} Then if

X=X XU X, Q(x) = {(0, 0), (1, 0), (3, —‘%3—)} C Ker X but X

is not 3-convex. Note that X may be modified to ensure X is compact
while maintaining Q(X)< Ker X and X not 3-convex.

In his concluding remarks of( 2.27) Valentine pointed out that the
theory in R3 needed to be settled. That is still true twenty yemrs later.
Eggleston L 2.47 has given an example of a compact, 3-convex set, X, in
R’4 such that X is not the union of finitely many convex sets. In[2.4]}
he also proved that if Ker X is of lower dimension than X and X
is a compact, 3-convex set in Rd, then X 1is the union of two convex
sets. Exactly the same method can be used to show that the consequence
follows if the hypothesis is replaced by conv Q@ is of lower dimension
than X where X 1s a closed 3-convex set in Rd, a result also -pr’oved
in Breen [ 2.51 with a generalisation to m-convex sets in the unpublished
Breen [ 2.6). Another greater than two dimensional decomposition theorem
for 3-convex sets also restricts Q. BuchmannU2.7]) has proved that if
X 1is a compact 3-convex set in Rd, d > 3, such that Q< int (conv X)
and int (Ker X) # ¢ then X is the union of two convex sets. He gives
one example to show the result is false for d = 2  and another to show
that compact may not be replaced by closed. Buchmann uses a result of
Valentine [2.871 that, if X 1s a compact 3-convex set in Rd with
int (Ker X) # ¢ and Q¢ int (conv X) then Q can be expressed as
a finite union of disjoint (d-2)-dimensional ‘manifolds. For completeness,
I mention Breen £2.97) and Breen[ 2.10) which give decomposition theorems

for sets whose fnc points satisfy very restrictive conditioms...
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Figure 2.1

(%,0)

(x,-3)
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Theorem 3 of [ 2.2} suggests the problem of characterising those
closed, planar 3-convex sets with IQI =2n +1n>1 which are the
unions of two convex sets. Stazmey and Marr[ 2.110 have proved that if ¥
is a compact, planar 3-convex set with |Q] =2n+1 n2>1 then X
is the union of two convex sets if and only if (X \N Q)N Ker X WFr X # ¢.
They give an example to show that the only if result is false if compact
is replaced by closed in the hypotheses.

Breen 0 2.127) generalised Stamey and Marr's result to: Let X be
a closed m-convex subset of the plane with conv Q & X. If there is
some point p e(X \ Q)n Ker Xn Fr ¥ then X 1is a union of m - 1 closed,
convex sets. Thus the "if" part of the Stamey and Marr result holds if
compact is replaced by closed in the hypotheses.

Breen's result in[2.127) was strengthened in Breen and Kay 12.13],
Theorem 1, where it was shown that the hypothesis conv Q ¢ X was
superfluous and that it was sufficient for X to be supported at
p e Ker X. InU2.13) Breen and Kay found a bound for o(m), the number
such that every closed, plenar, m-convex set is decomposable into o(m)
convex sets. The existence of o(m), Eggleston's Theorem, was established
in[2.14]. The closed case follows immediately from the compact by
Lawrence, Hare ..and Kenelly L2.15), Theorem 2 which is:

Let S be a subset of a linear space such that each finite subset
Fec S has a K-partition {F]_""FK} where conv F,e81<1i<K.

Then -S 1is the union of K convex sets.

Eggleston's methoas give a worse bound than Breen and Kay's
(m - 1)3 2m—3' Breen and Kay cbtain much better bounds by considering
the effect of Ffurther restrictions on X; for closed, starshaped, m-convex
planar sets [—3-(—2-&2-] <o(m) <2(m - 1) as an example in[L2.16) and
Coroliary 3 of [ 2.13)show. However a beautiful example, due to Perles,
is given in£2.1301 of a class of m-convex sets for m taking a sequence
of values approaching infinity which are not the union of 3 m3/2 convex

sets. Note that while Theorem & of L 2.13Vis true the proof is false.
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I prove the result and state their error in Thecrem 2.7 below.
Two unsolved problems suggested by 02.13)are:

Conjecture 2.1. Let X be a closed, planar, 4-convex set then X is the

union of five convex sets. See Guay [2.17), Tattersall [2.18], Kay
and Guay L 2.16) and Breen and Kay [ 2.13) for partial results.

Unsolved Problem 2.1. Given a closed, m-convex set, X, how many bounded

components of the complement of ¥ may there be?

Decomposition Theorems I now turn to the decomposition theorems due to

Breen [ 2.19Y) for planar, 3-convex sets, which are not closed. Breen £2.19],
Theorem 7, showed that a planar 3-convex set is a union of six convex
sets which she claimed was best possible. Her, otherwise admirable,
paper containes three serious errors. Example 1 and Example 3 are both
unions of three convex sets and Example 4 is a union of four convex sets
contrary to her claims. Her Example 1 may be replaced by my Example 2.2.
However her Theorem 6 is not best possible as she claims. I shall prove
4 bound of three in Theorem 2.3 below. Whether Theorem 7 is best possible
is an open question.
Example 2.2: Let X be the compact set bounded by the Jordan curve
in Fig. 2.2. Then X \ {p} 1is 3-convex but it is not the union of three
convex sets for if it were then one of them must contain three of the
extreme pdints of X which is clearly impossible.

I note that £2.167] includes an exampie, announced in Kay [2.20],
of a planar 4-convex set, X, which is not the union of finitely many
convex sets. That example stimulated Breen U 2.21)to prove: If X is
an m-convex set in the plane, m > 3, having the property that

(int cl X) \ X contains no isolated points then X 1is expressible as a

union of (m - l)’+ 2m—3 {1+ (2m—2 - l)2m—3} convex sets. In fact her proof

requires that (int cl X) \ X has no single point components.
In fact, with the hypothesis, that (int cl X) \ X has no single

point components Breen's bound in[2.211 may be easily improved to

-3
(m - 1)F 2™ 3,



Figure 2.2

29.
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By Theorem 7 of [2.15) assume m > 4+ By the argument of Lemma U4
of L2.21) which stated: Let ¥ be an m-convex set in the plane if
x € int (cl X) \ X and x is not an isolated point then =x 1lies in a
segment of (int cl X) \ X; either (int cl X)\ ¥ contains a
segment (r, s) or (int cl X)\ ¥ = ¢. In the former case let
L = aff (r, s) and let Lt and L denote the open half spaces,
bounded by L. Then L A X is a union of 4t most m - 1 convex sets

and if Xl=L+r\ X and X, =L°n X then X

, and A2 are (m - 1)-

convex and (int cl Xi)\ X i =1, 2 contains no single point components.

Hence by induction X is the union of (m - l)4 2m—3 convex sets since

(m-*2"% (m-2)% ™%, n- 1.
Consider now the second case, since cl X is m-convex, cl X may
be decomposed into 2m-3 (m - l)3 gonvex sets, [2.13] .
If C 1is one of these sets let T = Cn X. Then T is m-convex.
There are two subcases to consider.
Case 1: If C is.l-dimensional, T contains at most m - 1 convex
components.
Case 2: If C is not l-dimensional C = ¢l T as Breen shows in the
corollary to Theorem 1. Note that (cl T)\N\ Te Frcl T = Fr C since
x € (int ¢l T)\ T implies x e int cl X implies x € X implies x ¢
a ccntradiction. Hence the result follows by Breen's Lemma which is :
Let T be an m-convex set in the pléne m > 3 such that ¢l T is
convex. If all points of (c1 T)\V T are in Fr (¢l T) then T is
a union of max (m - 1, 3) or fewer convex sets.
Civen an (m + l)-convex set X, without isolated points and p

points in X, it is natural to ask how many, gq, of the associated

segments must belong to X. As Breen shows in{2.22) the answer is
m .

a(p, m) = ) {_Biﬂlla where p =Km+r O<r <m-1l. Note that
i=1 9

as she points out, at the end of the paper, the result follows from a

remark in t2.163.p 42 as do her results on minimal p subsets. Note
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that the result is best possible for closed sets ¥ without isolated

points.

The problem suggests the study of (p, q)-convexity a concept due to

Kay [ 24 20].

Definition 2.5: A set X in RY is said to be (p, gq)-convex if

given any p points of X at least q of the associated segments belong

to X for p2>2 and 1 <q éz(g).

Definition 2.6: A (p, gq)-convex set is said to be exactly (p, q)-convex

if it is not (p, q + 1)-convex.
In[2.16) puo examples are given of exactly (p, q)-convex sets.

The examples can be slightly modified to achieve connected, exactly
(p, q)-convex sets. For closed sets the situation is different Kaapke
[2.23] has shown that if K(p, q) denotes the class of closed (p,q)-
convex sets without isolated points, K(p,q) = K(p-1, g-K-1) where K
K =[£15%1_Q‘l . Moreover a closed (p,q)-convex set without isolated
points is exactly (m,l)-convex for some ma result false for non-closed
sets as Kaapke notes, and '"m" can be calculated using Kaapke's result.

“EQQven_gly,g;nen——p——peints—;n—a closed; m-convex set X without
isolated p01ﬁtsathe number of segments q in X can be calculated by a

Q) =K(p +1,q+ Kl/j/l%//ﬁhere Ky =[ EQ]

e's results as follows. Kaapke proves

second method using

which can be deduced from Kaa

K(p, )& K(p + 1, q + K +1) an t K(p, q) =K(p -1,q-K, - 1)

2(g-1)
where KQ. [ P*l

2 "’_u2+r+2u -
fggiﬁﬁs_frnma_u_ 42 <—-g——where—2¢—=—up~

] so it is sufficient prove K, -X, <0 which

I shall consider (3, 2)-convexity briefly below. Before I do, I
think it is valuable to make some remarks on the literature. InL2.16)
Kay and Guay prove that if X 1is a closed (p, g)-convex set with
q > &(p - l)2 then X is either convex or the union of a closed convex
set X. and s isolated points where s <p - 3 (1 + A8q+ 1)). In

1

; = <
[2.18), Tattersall proves that a (p, (g) 1) set in R 3s a union

1

of two convex sets for p > 3 and thit a planar, bounded (p, gq)-convex
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. p-1 . .
set with q > ( 2 ) is a union of (1 + /(8p - 15)) convex sets, a
best possible result.
The first theorem of this chapter is simple but pleasing.

THEOREM 2.1: A (3, 2)-convex set, X, in Rd is a union of two convex

sets.

Proof. Note that each point of X fails to see at most one point of X

and that by the (3, 2)-convexity of X if x> X, € X and Cx , XB-.\G"-X
o

g
then X n aff {xa, XB} = {Xa’ xB}. Now consider the collection C of

segments fxa, xé] such that X,» ¥, € X and [Xa’ xéj ¢ X where

B

Xy < %g in the sense that (Xa)j < (xB)j where Jj = min {i:(xa)i 7 (XB)i}-

Note that if txa, xé] e C then [xa, xél ¢ C for any y. Define Xl =

conv {xa: [xaxé] € C} = conv A and X, = X\ A. Clearly X, is a

convex subset of X. To prove )S_c X it is sufficient to show that

every simplex with n vertices, XpeeeX s belonging to A 1is a subset
of X. TFor n = 2, the result follows from a remark above. By an

induction hypothesis concerning S I may assume the frontier of Sn

n-1°
belongs to X. Now suppose some interior point, t, of Sn does not
belong to X; aff{xl,t} meets conv {x2...xn} in u e X. Now u sees
every point of Fr Sn except x; via X. Hence Sn\ (xl,u) = X}\ Sn
but then XN Sn is not  (3,2) - convex, a contradiction, so Sn‘:.x'
Note that a planar, exactly (3,2);convex set is a convex set with,
an at most countable, collection of segmehts removed from its frontier.
Together, the next two theorems prove that a simply connected, planar
3-convex set is the union of three convex sets.
THEOREM 2.2: Let ‘X be a simply connected, planar, 3-convex set. If
(int c1 X)\ X # ¢ then X 1is a union of three convex sets but it may
not be the union of two convex sets.

Proof. By Theorem 1 ofl2.19)which states: If X is a planar 3-convex

set and cl X # cl (int X) then X is the union of two convex sets;

suppose cl (int X)D X.
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Furthermore, since X 1is simply connected, by Lemma 3 of [2.19],
(cl X) N ¥ contains an interval (r,s) disjoint from Fr(cl X). Lemma
3 of [2.19]) states that: If ¥ is a planar, 3-convex set and if T is
(int cl X)\ X. Then every connected component of T 1is either an
isolated point of (cl X)\ X or an interval.

Let aff{r,s} = L and let L, and L, denote the open half
spaces bounded by L. X = (X n Cl(Lln My (Xn Cl(L2ﬂ X)).

Consider u e (r,s) then for 6 sufficiently small S(u,§) meets
Lif\ X 1 =1,2, is an open half disc that is S(u,s) 0 (RQ\ X) = (r,s) N
S(u,8). Hence L. & X 1=1,2, is convex by the 3-convexity of X.

By the 3-convexity of X, Ln X has at most two components.

If L n X has exactly one component C, then X is a union of
three convex sets (€, Llﬂ X and L2ﬂ X. That X need not be the union

of two convex sets may be seen from Example 2.3 below.

Paracoxically if L N X has two components, Cl and 02, X 1is

the union of two convex sets.

If ¢, ¢'cl(Lln X) then C,€ cl (Lln X) by the 3-convexity of X.

1
By the simply connectedness of X mnot both cl(Lln X) and cl(L2r\ X)

meet both C, and C2. Suppose without loss of generality Cl c cl(Lln X)

1
and C, A cl(L; N X) = ¢. Then C, U (L;N X) is convex by the 3-convexity
of X. Further C,V (L2n X) is convex for suppose there exists an
xeC,ye L2n, Xwith Txy]d 9‘=C20 (L2n X) which implies Lxy) X,
then for all z e L;Nn X Lyzl ¢ X. That is easily seen to be impossible

by considering a point z in L, N X sufficiently close to u.

1
V3
Example 2.3. Let Y, = conv {(o, 0), (3, —-2—), (1, 0)} and let Y, =
Y3 V3
conv {(0, 0), (2, 0), (2, - ——5), 1, - _5)}' From Y,V Y2 remove the
V3 Y3

open segments joining (3, —2—) to (0, 0), (0, 0) to (3, - —5) and

(2, 0) to (2, 0) and remove the point (2, 0). The resulting set

satisfies the conditions of Theorem 2.2 but it is not the tnion of two

Y3

convex sets. Consider the five points x, = (3, —2-), X, = (o, 0),



3y,

x5

F“&‘ 23
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-

_ 1
X3 - (%, 2)’ 5 V3

= (=2 ¥Ys - 1 . .
%, = (16’ T¢) and % = (2, -~I€) shown in Fig. 2.3.

The next theorem improves Theorem 6 of [2.191].
THEOREM 2.3: Let X be a simply-connected, planar 3-convex set with
(c1 ¥)V Xe Fr(cl X) then X is the union of three convex sets.
Proof: Firstly consider the graph G on 3n vertices n > 3 described

below. On the unit circle consider n points x,...x , forming an
n

10"

n-cycle in clockwise order. With each X, associate two points Y1 p
2
and on S((0, 0),2 i i i
y2,r ((o, 0),2) with V1 p < y2,r that is yl,r’ Y2,p in
clockwise order. Let yK’i < ym,j kym = 1,2 identifying yK’j and

Ve L if L = 3(n), if i <. Let Vei K 1,2 form a 2n-cycle

with yl,i joined to y2’i and y2,i_ and y2,i joined to yl,i and

1

yl,i+l° Finally join x; to y2,i—l and yl,i+l' .Diagram 2.3.1 shows
the case n = 5.
I shall show that G 1is three colourable. The subgraph generated
by {xl...xn} is three colourable. Colour Vi1 with the colour of
2
X and y2,i with a colour different from X, and x;,, g&lving a

three colouring of G.

Note that only two colours are used on each triple {x,, y, ., ¥y, :}-
1 1,1 2,1

By Lawrence, Hare and Kenelly £ 2.15) , Theorem 2, assume without
loss of generality that ¢l X has finitely many leaves, [2.19) p.43
and p.51. Hence |Q(cl X)| = n is finite and each point of Q(cl X) is
isolated.

If |Q(cl X)] = 0, X ‘is the union of three convex sets which is

Theorem 5 of (2.19].

Some care is needed with the case |Q(cl X)| =1 and X\ g not
connectedwhere Q = {q}.

Let X\ q, have components Xi where clearly 2 <1 <6 by
Ramsey's Theorem and the 3-convexity of X. If X, has interior points for
some i then for each j #1 Xj is convex again by the 3-convexity of

X. If X\ q had two full dimensional components X, and X, then

XK =¢ for k #1, 2 as X 1is 3-convex. So X 1s a union of two
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convex sets since q fails to see points in at most one of Xi or .
]

via X as ¥ 1is 3-convex.

Suppose X \N q@ has a component Xy with int(Xi) = ¢. Since
X\ g has finitely many components ¥ ¢ cl(int ¥) in that case and
hence by Theorem 1 of [2.19) X is a union of two convex sets.

In 2.19 p.55 Breen proves that if [Q(cl X)| =1 and X\ Q
is connected or |Q(cl X)] = 2 then X is a union of three convex sets.

So assume IQ(cl X)| > 3. Using the terminoclogy of Eggleston [ 2.247)
n
Theorem 3, Q = }:i C; - Let CiCiy bound a leaf Wi of X. Li is

still a support line to Ji' at c. and Yi is convex by the 3-convexity

of ¥. Similarly for Zi and m, .

Consider Wi, classify Wi according as e. occurs after or

-

e; occurs after d, see Diagram 2.3.2.

before di+l' Wi is of Type 1 if R
Wi is of Type 2 if e, occurs before di+l or e. = di+l’ see Diagram
2.3.3.

I shall show that whether W. is of Type 1 or Type 2 it is possible

to express Wi as a union of three convex sets such

%12 Y1,i° V2,1

that if conv {a,b} & X then {a,b} is an edge of G where
n

3 be 1\-)1 By 1,10 Y5 51

Consider Type 1 leaves shown in Diagram 2.3.2. e, occurs after,

di+l' Let Yl,i = Yic X and Yl,i = Zi+lc X. If aff meq meets
X 1in a component not containing (Ci+l’ di+l) let Xs be the closed
(in X) sets bounded by Li ard meoq containing e and di+l in its

closure in R2. Similarly if aff Li meets X in a component not containing
(Ciei) define x, in the same way. In either of the above cases define

. =(chlYl i)\ x; and Yo .5 =(¥necly

y .)\N x.. Note that
1,1 . 1 1

2,

X:5 ¥, . and y,. . are convex sets. If neither of the above cases
1 1,1 2,1

holds define: x; = (c1 Yl,i) ny 1._\ {ei, 4, .} = (Cl(Yl,i) n X))\

2, 14172 V1,1

{xi, ei} and y2’i = ej-U cl(Y2 i)r\ XN\ {xi\) yl,i}' Note that Xs

Vy,i° ¥p,; are convex and that W.\ {xiu ¥y,iY yz,i}c Ker X.

Now consider Type 2 leaves shown in Diagram 2.3.3 e, occurs



Diagram 2.3.2

Diagram 2.3.3
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bef . . =d. .. e K. = W.
efore d1+l or e, d1+l Let /l Wl (Yl,i Y2,i) then each

point of Xi except possibly e; and di+ sees every point of X\ Hi

1
by Lemma 5 of £ 2.21 and each interior point of Xi e Ker ¥.
The result now follows from the three colouring of G described

above, Caratheodory's Theorem the simply connectedness of X and Lemmad

of L 2.2). That is clear if all leaves are of Type 1. If W. is of Type 2

one has a two colouring of Yl : Y2 3 from G and if one colours
2 2
(ciei)f\ X with the colour of Yl,i and (di+l Ci+l) with the colour
of Y2 ; one may three colour the points of X, 0 Fr (cl X) so that
3

x and y are coloured differently if [x,yl ¢ X for all x and y
belonging to X.

Note that if |Q(cl X)| is even 2 4 or infinite then X need
not be the union of two canvex sets as Example 2.4 shows. The case n =4
is given but the example may be modified for the other cases.

Example 2.4: Let X be the compact sét bounded by the Jordan curve in

Fig. 2.4. with the four open segments ( ) 0<i <3 removed

Xoi41 ®2i42
from its frontier. Then X satisfies the conditions of Theorem 3.3. with

lQ(cl X)l =4 but X is not the union of two convex sets.

Intersection of s-convex and t-convex sets: I shall now consider the

intersection of an s-convex and a t-convex set. It follows from Ramsey's
Theorem, Behzad and Chartrand £2.25) p240-244 that the intersection of
an s-convex and a t-convex set is R(s,t)-convex. The first non-trivial
and the only case I shall consider is s =t = 3. |

Recall that R(8, 3) = 6. I shall show that there exists two
planar 3-convex sets with one closed and hence simply connected with
intersection which is not 5-convex, Example 2.5. However if béth sets
are planar ans simply-connected then I prove, Theorem 2.4, that the
intersection is 5-convex which is best possible, Example‘2.6. Finally I
shall give an example of two compact 3-convex sets in R& with intersection

which is not 5-convex, Example 2.7.
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Example 2.5: Let Xl be the compact set bounded by the Jordan Curve
ABCDEFC shown in Fig. 2.5 top and let P be the point of intersection of
AD and BG. Let S, F, Q and R be as shown. Let X2 be the compact
set shown in Fig. 2.5 below bounded by the Jordan curve AKBDLEGM where
K,M lie on BG, M lies DL produced and K on EL produced. Then
XN {p} and X, are 3-convex but X, W (X1 \ {p}) has five visually
independent points A, B, D, E and G.

The last assertion follows from the fact that each of the
associated segments fails to lie in ¥, or X2.

Consider three supposedly visually independent points of Xl\ {p}.

None of thembelongsto Ker X

10 since, as the other two points fail

to see each other, one of them must see the point in Ker Xy via
X\ {p}. So the three points lie in the union of the regions bounded by
the curves FGAR, SBC, CDQ and QEF. That X\ {p} is 3-convex is now
clear.

I shall now prove a sequence of Lemmas leading to Theorem 2.4.
For the graph theory notation and terminology used and undefined below
see £2.25].
Lemma 2.4.1: The only graph, G, of order five such that neither G nor
its complement contains a triangle is CS'
Proof: If some vertex of G has valency 2 3, since the complement of
G contains no triangle, G contains a triangle. Thus each vertexof G

and similarly of the complement on G has valency two. Hence G = CS'

Definition 2.7. The non-visibility graph G(S, X) of a subset S,

of a set X relative to X is the graph whose vertices are points of

ES

S and whose edges .are defined by: if x and y belong to S then

anéd y are joined by an edge in G(S, X) if Cx,y) X If S =X

write G(X) for G(X, X) and call G(X) the non-visibility graph of X.
G(X) was introduced in Hare and Kenelly L2.26]1.

Lemma 2.4.2: Let Xl and X2 be 3-convex sets. If RyseoXg € Xlt\ X2

are such that ['xi,xj-.l¢ Xlﬂ X2 forall i #3j 1 <i, J <5 then
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txixj—.\ c 2y or [xixj-lckz.

Proof: Let S = {x

l,...,xs} then G(S, Xl) has no triangles and since

X2 is 3-convex and S has five visually independent points of Xl(\ XQ,

G(s, Xl) = C5 by Lemma 2.4.1. Similarly G(S, X2) = C5 and the result

follows.

Note that it follows from Lemma 2.4.2 that if either X or X%

1 2

is a union of two convex sets then Xll\ X2 is 5-convex and that with the

hypotheses of Lemma 2.4.2 G(S, Xl) and G(S, X2) are complementary
5 cycles.

Lemma 2.4.3 If X,, %, and {x

1 %y XS} are as in Lemma 2.4.2 then

ERRRE

no three members of {Xl""XS} are collinear.
Proof. The result follows trivially from Lemma 2.4.2.
A proof of the next Lemma appears in ErdBs and Szekeres [2.27].
Lemma 2.4.4: "From five points in the plane of which no three lie on
the same straight line it is always possible, to select four points determining
a convex quadrilateral".
I now come to the proof of

THEOREM 2.4. If Xl and X2 are simply connected, planar, 3-convex

sets then Xll\ X2 is 5-convex.

~ Proof. The proof is by contradiction. The method is to select four points
Xyseees¥y determining a convex quadrilateral, P, from the five supposedly

visually independent points of le\ X2 and then to show that wherever

X. 1s placed one gets some segment Xs s xj in both X, and X2.

5 1

Suppose P has vertices A, B, C, D in clockwise order. If
[A,B) and [B,C) belong to X consider two cases. Firstly, LaB),[BC},

Lcp), CDAY all belong to X, when, since X, is simply connected [Bp)

also belongs to Xl and by the 3-convexity of X2 one of the segments

[2B), [BDU), DA\ belongs to X, when by the 3-convexity of X, facdc X, and

by the 3-convexity of Xl [AC]ch. Hence it is to consider two cases:

Case 1l: three edges of P belong to Xl.

Case 2: two non-adjacent edges of P belong to Xl’



Ly,

Case 1: Note that no Xj may see more than two other Xy via

X, for each i. Without loss of generality one has the configuration

in Diagram 2.4.1 though possibly A, may be unbounded if aff{xl,x2}

3
is parallel to aff{xs,xu}. In Diagram 2.4.1 () indicates the X
which contains [Xi,Xj], K =1,2. It was assumed that [xlxz-l, [xz,xa—l

and[xl,xur] belonged to ¥, and it was deduced from the 3-convexity of

1

X, that [xl,xs'l and [XQ,XL;l belonged to X

2 2°

Remembering that no three x, are collinear I define regions

Ai as follows:

Let Al be the open half-plane bounded by aff{xl,x2} not containing P.

Let A, be the open half-plane bounded by aff{xs,xq} not containing P.

2
Let A, be the open half-plane bounded by aff{xz,xa} not containing P
without «cl Alu cl A2.
Let A, De the open half-plane bounded by aff{xl,xq} not containing P
without «cl AlU cl A2.
Let A5 be the interior of P.

Then as can easily be seen from Diagram 2.4.1, using the simply
connectedness of Xl and X2 and the result in the proof of Lemma

2.4.2 that G(S, Xl) and G(S, X2) are complementary 5 cycles if:

1. Xg € Al then [xl,xz.sc Xlﬂ X2,
2. Xc € A2 then fxs,xu:\c X 0 Xy
3. Xg € A3 then’ ‘txz ;xu] c Xl n X2,
4, Xz € A, then [xl,xsl e X nXx,,
or 5. Xg € AS then [xs,xl] c Xlr\ X2.

Thus if the theorem is false Case 2 must occur.
Case 2: Withoﬁt loss of generality one has the configuration shown in
Diagram 2.4.2 though possibly B5 and/or B6 may be unbounded. In
Digram 2.4.2, ® indicates the XK which contains [xixj']. It was
assumed that [xlx2], [xs,xq-_\ lay in X, and [xlxu-.\ [x2,x3-\ lay in X;
from which, without loss of generality, it was deduced‘ that [xl,xs'l lay in

X, and [x2,x4_.l lay in X,.
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Diagram 2.4.1
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Diagram 2.4.2
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As in Case 1 one may define the ten regions as shown in Diagram

2.4.2 in terms of open half-planes determined by the aff{xi,xj}. However

the following results which complete the proof of the theorem can easily be

seen from Diagram 2.4.2.

If Xs € By then [XB,XQ] c Xn X,
If X; € B, then [x2,xi] cxn X2
If X € By then txl,xu] cXn X,
If Xg € B4 then [xu,xé] c XI n X2
If Xg € B5 then [XS’Xi] c Xl n X2
If Xg € BG then [xs,xu] c Xlr\ X2
If X € B, then [xS,XQ] CXn X,
If Xg € B8 then [xs,xs] c Xlr\ X2
If X € Bg then [XS’XS 1c Xl n X2
If % € Bjj  then EXS’,Xll <X nx,

Thus Case 2 cannot occur and the assumption ¥, ¥V X_ 1is not S5-convex

is false and Theorem 2.4. is proved.

1 2

Corollary 2.4.1 If X, and X, are closed, planar 3-convex sets then

1 2

Xln X2 is 5-convex.

Proof It is sufficient to prove that a

closed, planar, 3-convex set, X,

is simply connected. That result follows from Tietze's Theorem and the

fact that a closed 3-convex set is starlike from each of its 1nc points

[2.2], Theorem 1.

Corollary 2.4.1 1is the best possible result for closed, planar,

3-convex sets even if Xl and X2 are

convex sets as Example 2.6 shown in Fig.

Example 2.6: Let S = conv {(0, 0), (1,

conv {(§, 1), (3, )} v conv {(3, 32), (&,

(2, 'l)}}. and let X, = conv {(3, —g—), (0

2
11
conv {(1, 15
11 5 11
(o, 1‘2—)}\) conv {(32, _6_)’ (1, -1—2-), (1, 2

> 12
), (2, DIV conv {(1, D, (3, D} U 8N (conv {(}, D), (0, D,

connected and the union of two
2.6 demonstrates.

o), (1, 1), (0, 1)}. Let X, =

[

1)}v {S\ conv {(3, 3). (&, 1),

1y} U conv {((, —g—), (0, N} v

Hi. x.a X, is not 4-convex

1
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(0,4) (£.1) (2.1 (1,1)

(0,0) (1,0)

(0,4) (1,1)
(%, £) (*2&,‘3

(0,0) (LJ o)

F-\% 3.6
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1
> 12

11

since (1 > 15

), (1, 2), (0 ) and (0, 2) are visually independent.

The next example was inspired by Eggleston's Example in [2.4].

Example 2.7: Let S = {xl,...,xs} be a set of five points on the moment

2 2 L . .
curve p(B) = (6, 67, 6, 6 ) with x; = p(ei) with 0 <6, <1. As

in Eggleston [ 2.4} it is possible to construct a compact 3-convex set

X, D S such that G(S, Xl) = C

1 and a compact 3-convex set X D S

5 2

such that G(S, X2) is the complementary C Hence X;mn X, is not

5
5-convex.

Note that Eggleston's Example [2.4) shows that, given a countable
graph G with no triangles there exists a compact 3-convex set in R
which contains G as a subgraph of its non-visibility graph.

Note that a most important step in the proof of Theorem 2.4 was

to show that if Xl|\ X was not 5-convex then both Xl and X had

2 2

to contain five cycles in their non-visibility graphs.

Consider the Minkowski or vector sum, X, + X

1 0> of two planar

3-convex sets. Clearly if one of them has no five cycles in its non-visibility

graph then Xt X2 is 5-convex. This suggests the following

Conjecture 2.2. If X, and X, are closed, planar 3-convex sets Xt X

1 2

is 5-convex.

Note that by Ramsey's Theorem if Xl is s-convex and X2 is t-convex

Xl + X, is R(s,t)-convex. Note also that if |Q(Xi)| i=1, 2 is not
equal to 3 or 5 then Conjecture 2.2 is true by Lemma 2.4.2 and Lemma 5

of [ 2.2\.

Miscellaneous Properties of M-convex Sets

Theorem 2.5 generalises a 3-convex result of Eggleston. His,
informally presented, proof of that most important case did not generalise.

- THEOREM 2.5 Let X be a closed, m-convex set in R@ and p é X then

there exists a d - m + 1 flat through p not meeting X if d >m - 1.
Proof. For m = 2 the result is known. Assume the result is true for

m<s and forall d>m- 1. Let X bea closed (s + l)-convex set in
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Rd, d>s. Let q be a nearest point of X to p. Let H be a

hyperplane through p with normel p - q. Then X A H 1is s=convex
and by the inductive hypothesis there exists a (d - 1) -~ s +1 =d- (s +1) +1
flat through p in H not meeting X0 H.

Corollary 2.5.1 If X 1is a closed m-convex set in Rd and x € Fr X

then there exists a d - m + 1 flat through x which does not meet

int ¥ if d > m - 1.

Proof  Suppose firstly x 1is a nearest point of X to p ¢ X. Let

H be the hyperplane through x with normal p - xX. Let Hl denote the

open half-space bounded by H containing p. Then X®n Hl is (m - 1)-convex

for suppose there exist m - 1 visually independent points in Xn H;, since

X is m-convex, one of them can see x via X but then x is not a

nearest point of X to p. Let S =cl (X0 Hl). Then S is a closed

(m - 1)-convex subset of X. Since a closed, m-convex set is locally

starshaped, Kay and Guay £2.16) Lemma 2, x * S for otherwise =x 1is not

a nearest point of X to p. Now SM H is (m - 1l)-convex and by

Theorem 2.5 there exists a (d - 1)-(m - 1) +1 =d -m+ 1 flat, in H,

through x not meeting SN H. Now this d - m + 1 flat does not meet

the interior of X for suppose it did at y then y € SN H a contradiction.
Now et x € Fr X and let {xi} be a sequence of points of RN ¥

with Xs ¥ X Let y. be the nearest point of X to s Then y, = X.

Now through each y3 there exists a d - m + 1 flat, Fi’ through y;

which does not meet int X. Let x?, K=1,...d -m +1 be vectors in Fi

with xi x? =36 where § is the Kronecker delta. Now by taking,

K,L K,L
an appropriate subsequence {Ij} of the integer sufficies "I" there

K
exists an XK such that x? - xK for 1 < K<d-m+1 and X xL = GK L
3 H)

]
1 <K,L<d-m+1l. Now the d-m+ 1 flat through x spanned by the

d-m+1 vectors xK does not meet the interior of X. TFor suppose it

d-m+l K
did at y with S(y, §)c int X and y =x + X A, X . Then for j
o K
i d-m+l K=1
sufficiently large y' = vy, * 2 AKXI is such that y' € S(y, §) which
j K=l 3
is a contradiction.
Definition 2.8: A subset S of a set X in Rd is relatively m-convex

if for every set of m-points in S at least one of the associated

segments lies in X.
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Definition 2.8 given by Tattersall in [2.28] is stated because
of my observation that if X 1is a compact set in Rd with Fr X relatively
3-convex then X is 3-convex. Note that if the frontier of X 1is relatively
3-convex Q(X)c Ker ¥ since X 1is closed. Since X 1is compact, if
there exist three visually independent points X1s %55 Xg of X one
can obtain three relatively visually independent points of the frontier
of X by considering its intersection with three rays one passing through
each x. having common end-point q e Q(X) 1if Q(x) * ¢6. If Q(X) = ¢
X 1s the union of two convex sets by Tietze's Theorem. Note that for closed
planar sets X, by virtue of Breen's note in[ 2.3 mentioned earlier, if
|Q| > 4 and the frontier of X is relatively 3-convex then X is 3-convexX.
Finally note that Example 2.1 shows that the hypothesis [Q| > 4 is not
superfluous

It has been noted by several writers that if X 1is m-convex
then ¢l X 1s m-convex. The next theorem is an analogous result for
the interior of a 3-convex set.
THEOREM 2.6. Let X be a 3-convex set in Rd then int X is 3-convex .

Proof Firstly I prove the following:

Lemma 2.6.1 Suppose O < A, u, v <1 and three points X i=1,2,3,
in R2 forming a non-degenerate triangle are given. Then there exists

a triangle conv{zi, Yo X3} with

1. X =uy; + (1 - wy,
2. X, = ay; + (1 - Ny,
3. 53 = vy, + (1 - v)¥,

Moreover if x. = (%,:5 X,4) and y. = (yy4, ¥,3) them the Yy 2Te
linear combinations of Xet and hence continuous functions of the Xys
for 0 <i, 0 <3 j=1,2 and K 1,2

Proof of Lemma. The statements (1), (2), and (3) yield six equations
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ru 0 0] 0 l-u 0 W /yllw ,le}
0 u 0] 0 0 1-p Vo1 X5,
0 O \Y 0 1-v 0 V1o _ Xl? 3
0o O 0 \Y o 1-v Yoo ] XQ? 5
A 0 1-x 0 0] 0 Y13 X%S 2
\O A 0 1-x 0 0 y \y23, \XQIB/ 2

By inspection the six by six matrix A has linearly dependent rows if

and only if
1y Ve Q-0 (-8 =0

1-

<

that is vA(l - p) + p(1l - A)(1 - v) = 0 which is impossible since
0 <A, 4, v <1l. Hence A is invertible and the result follows.

Proof of Theorem. Let Zys Zys Zg be three, supposedly visually

independent, points of int X. Then each segment Z:s Ej with
1 <i<j<3 meets Fr X. Let z;2. meet Fr X in x(i,j).
Let x(1,2) = Agi + (1 - A)EQ, x(1,3) = s 2 (1 - u)gG and let

+ (1 - v)z, where 0 <X, i, v <1l. Let x(i,jsn) for

x(2,3) = vz 3

1
n=1, 2,... be a sequence of points Rd\ X converging to x(i,j).

For n sufficiently large x(1,2;n) x(1,3;n) and =x(2,3;n) determine

F o a flat of dimension at least equal to that of aff Zys Zys Zg o

In the case where aff Z)s Zys Z3 is one dimensional and
without loss of generality 3z, e (El53)’ consider the line L determined
by x(1,2;n) and x(2,3;n). Note that for n sufficiently large, since
Z; € int X, Ln will contain three visually indepéndent points of X.

In the case where aff 215 255 2Zg is two dimensionai for n
sufficiently large F is of dimension 2. It is then clear that three
visually, independent of int X, one close to each z, 1 £1i<3, can

be obtained by an application of Lemma 2.6.1 or its extension to Rd.
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A false proof of Theorem 2.7 appeared in [2.13) as Theorem 4.
THOEREM 2.7. Let X be a closed planar m-convex set. If conv Qc ”
and int (conv Q) = ¢ then X 1is a union of m - 1 convex sets.
Proof. The érgument of Breen and Kay [2.13] is correct for the case
XV Q disconnected. However it is not true that X has at most m - 2
lnc points when X\Q is connected.

I prove the result under the assumption X \ Q is connected. For
m =3 ]Q| < 2 and the result was proved by Valentine in [2.27. <o

assume m > 4,

Now X = cl (int X) and int X is connected since ¥ is m-convex

and hence locally sitarshaped so that X = el (X \ Q) see Lemma 3.1.2.
and Corollary 3.1.

Let aff Q = L and let Ll and L2 denote the open half-planes
bounded by L. It is clear that Lln ¥ may be at most m - 1 disjoint

.. . . . 2
convex sets C ...Cm_ containing interior points of R® whose closures

1 1

meet L in one dimensional convex sets with disjoint relative interiors.

Similarly for L, with C_...C

5 - om—p® It is clear Q] < 4 (m-1).

Let LNnQ-= {ql...qt} in that order. It is clear that q; lies on the
closure of precisely one C; on each side of L. ' Let them be Cl and
Cs. Let S(qi) = {x:x £ X, Txqd eX} then X S(ql) is relatively

(m - 2)-convex. Furthermore cl(¥X \ S(ql,)) is (m - 2)-convex. It is
sufficient to show that if x, y € X \ S(ql) and [x,y) ¢ X then
sy)ecl (x 2 s(qy)). If =x,y ¢ Lyn Xy s(q)) [x,yde x N\ S(ql) since
both x and y belong to the same C, i # l. Similarly if

Xy € L, A X\ S(qy). If xce L, and y e L, and [xydaL = z then

Cxz) v (zydc X\ S(ql). Hence cl(X \ S(ql)) is (m - 2)-convex.
Clearly cl C; U cl C v cl(X\ S(ql))z X. Thus, since the 1lnc points
of X\ S(ql) belong to L, X is a union of (m - 1) convex sets

by induction.

I note that if X is a connected, closed, planar m-convex

set and int (conv Q) = ¢ then conv Q € X. For if (u,v) € (conv Q) \ X

then (uv) e (qsqs+l) for some s and by Lemmas 1 and 2 of Guay and

Kay [2.2*:\ one can partition X into two disjoint non-empty closed




FLE

sets FJ S(qi) and U S(qi), a contradiction. Thus by considering
i<s i>s+l
the components of ¥, the hypothesis conv Q € ¥ may be deleted.

Notice that while a closed m-convex set in R2 with int(conv Q)= ¢
is a union of m - 1 convex sets and a closed, 3-convex set in Rd with
int (conv Q) = ¢ is a union of two convex sets, the analogous result
for closed m-convex sets in Rd is false as easily constructed examples
show.

I sent a copy of the proof of Theorem 2.7 to Breen which she
acknowledged in a letter of October 4th, 1976. Breen proved Theorem 2.6
again in £2.5) and extended the idea in L 2.6

The next theorem generalises a result of Valentine € 2.8) Lemma 1.
THEOREM 2. 8. Let X be an m-convex set in Rd then if =x € conv X

% € conv {x ...xr} where x. e X and r <m-1, m> 3.

1
Proof. The result is known if d <m - 2, see Egglestcm1[2.30] pages

35 and 36.

The proof is by induction on d. Suppose the result is true for
all d <n-1 and let X be an m-convex set, in RY. Let x e conv X
and suppose X é X. By Caratheodory's Theorem X belongs to a simplex
S of dimension n with vertices in X. If =x belongs to some facet
F of S then the result is immediate by considering (aff F) N X.
So assume x belongs to the interior of S. Let S = conv Xje..X .,

and let aff{xn+l, X } meet conv xl...xn at y. Then by the inductive

hypothesis there exist Yye++Yp € X with r <m -1 such that

y € conv{yl...yr}. If »r <m - 1 the result follows immediately.
m-1 m-1

So suppose r =m - 1 with y = A.y. with 2 A, =1 X, >0
;. Tt i;n * *

1 <i<m-=-1. By the m-convexity of X either for some i # j

l<i,j<m-1 [yiy.]c X or [yi’xn+l] ¢ X. In the first case suppose
) A

3 5 _ .
[yiyj'lc X then )‘iﬂ‘j y; * TN Yy Ty € X an

m-1
y = Z Ay, + (A,+r.)y. .. Hence y belongs to the convex cover of m-2
K=1 K'K i 73771,]

K#i,J
points of X and hence x belongs to the convex cover of m- 1 points

of X. In the second case suppose txn+l, y{]tz X and x =iy + (1 - A)xn+l
AA.
1-)

1 —_— ___:]_ = .
then since l—A+AXj X411 l—A+AAj yj Yn+l,3 e X and
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m-1 m-1
= A 1- = -
X (Kzl Ayy) + ( Mx o A(Kzl A+ (L -2 4 *Aj)yn+1,j
K#3

X Dbelongs to the convex cover of m - 1 points of X.

I remark that r <m - 1 is best possible for d > m - 1.
Consider m - 1 mutually perpendicular line segments through the origin.
Definition 2.9: The visibility graph of a subset S of a set ¥ in

Rd written CG[S,X) is the graph with vertex set S and {x,y} and

edge of CG[S,X]) if and only if [x,j] c X.

For the other graph theoretic terminology and results used below see
Harary [ 2.317 p 155-165.
THEOREM 2.9 Let X be a closed set in Rd and let T(X) = {[x,y} : x,y € X

and [x,y) e X}. If for every three segmznts (possibly

12 52> 83
degenerate) of T(X) at least one of the corresponding convex hulls

conv {si u sj} 1 <i<j<3 lies in X then X is the union of two convex
sets.

Proof. For every finite subset S of X a(CG[S,X)) = 2. By considering
three adjacent edges of 2 cycle in cGl5,X) it follows that CGES,X]

is triangulated and hence perfect. Hence 6(CG S,X ) = 2.

Hence by Theorem 3 of {2.15) X is the union of two convex sets.

Theorem 3 of ELIS] is: Let S be a closed subset of a topological

linear space such that for every finite subset FC€ S there is a
2-partition {Fl’Fz} such that if X,y e Fy (L <i<2) then [xj]é:S.
Then S 1is the union of two convex sets.

For completeness I mention Breen [ 2.32] and the two papers
concerned with the intersection of maximal m-convex subsets of a
closed set in rd Breen [2.33) and Tattersall [ 2.28].

I note that Kay and Guay[2.16], Lemma 2, have shown that a
closed m-convex set is locally starshaped. I shall consider closed, locally

starshaped sets in Chapter 3.
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Appendix to Chapter 2

The following theorem and examples may be of interest in

view of Theorem 2.6.

d . .
Theorem 2.10. In R, the interior of a set X which is the union

of two convex sets, may be expressed as the union of two convex subsets

of int X.

Proof. Let X =X, U X with X X.€ X and X X convex.

1 2 1° 72 1 “2
Assume dim Xl = dim X2 = dim @ff X) since if dim Xl and
dim X, < dim (aff X) then int X = ¢ and if dim X, < dim X, = dim (aff X)

int X = int X2

To prove the theorem it is to prove that if
x € Fr Xl nint X or x g Fr X2 N int X then x belongs to a
convex subset of int X containing int Xl or int X_ respectively.

2

Let x e int X \ int X. \N int X2 then it follows that

1
x € Fr Xl N fr X2 since x € int X. Since there exists a support
hyperplane Hl to Xl at x and a support hyperplane to X2 at x
and x e int X, Hl = H2 = H and . (Fr Xli\ Fr X2) Nint X = HNint X .

Hence int X = int Xl V int X, L (Hnint X).

2
Now Hnint X = (Hnint anl) v (H nint X NX,). I shall prove

H Nint X N Xy is a convex subset of = int X.

It is sufficient to prove that tﬁe line segment joining each pair

of‘points x,y of Hn int X O Xl lies in int X which is clear

since x and y belong to int X and H separates Xl and X2.
Hence (Hn int X n Xl) U int Xl is a convex subset of int X.

Similarly for Hn int Xn X2\J int X2. .Henge the theorem follows.
Note that it is not possible to insist that the convex

subsets of int X in Theorem 2.10 are open even if X 1is compact

as easily constructed examples show.
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Example 2,8 shows that the interior of a union of three convex

sets need not be 4-convex.
Example 2.8: Let X be the compact set bounded by the

Jordan Curve ABCDEFA shown in Figure 2.8 without Pl and P2 where

ABCDEFA shown in Figure 2.8 without Pl and P2 where

A =(0,00, P, = (3,00, C=(1,0), P, = (%,0) and E = (2,0).

Also for definiteness suppose

v - .
B = (3, -%) D= (g . {% ) and F = (3, /%) as shown in Fig. 2.8.

Then X 1is the union of three convex sets but int X is not UY-convex.

For a compact set X 1if Fr X 1is relatively 4-convex then X
is not necessarily u4-convex as the compact set bounded by the

Jordan Curve ABCDEFGHJKLMN shown in Fig. 2.9 demonstrates.



Figure 2.8
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Figure 2.9
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CHAPTER 3

In this chapter I shall prove some results on locally starshapec
sets.
Eifinition 3.1: A set, X, is locally starshaped if for each x e X
there exists § > O such that S(x,8) N X is starshaped from x that
is for all y e S(x,8) » X [x,y) ¢ S(x,86)n X.

Closed, locally starshaped sets seem to be a fruitful generalisation

of finite unions of closed, convex sets.

THEOREM 3.1 Let X be a closed, locally starshaped set in Rd, d <3,
-

then X U «a C; where dl C. is the closure in Rd of an open

i=1
(in aff Ci) connected set int(cl Ci). Moreover cl Ci is the closure
of a component of X \ Q.

I prove the result using a sequence of lemmas. Note that X need

not be a finite unicn of cl Ci as the following example shows
o

1 1
x=\U (0,0), (=, —=).
n n-1
n=0 2 o
Lemma 3.1.1: For a closed set X in R°, X\ Q, has at most

countably many components.

Proof. Take a countable dense sequence {yi} in X. Suppose X\ Q has
uncountably many components. Let x belong to one of them so that

no y. belongs to the same component. Since Q is closed there exists
8§ > 0 such that S(x,8) N Q = ¢. Now let y; %% Since x does not
belong to Q for :'Lj sufficiently large txyi:.l] XNQ so x and

y; belong to the same component of XN Q, .i contradiction.

J -

Lemma 3.1.2: Let X <€ Rd be locally starshaped then X e cl(X\ Q).

Proof. Let x € X and let S(xo,ao) be starshaped f?om X - Since without
léss of generality X € Q- and for all § > 0 S(x_,8) \ {x }# ¢

choose y e S(x_, 8§ ) and let x; € (x,,y) € X. Now choose §, so
that O < 61 < min {60 - p(xo,xl), 3 D(Xo:Xl)s le p(xlay)} and S(Xl’él)
is starshaped from x;. Let dim(aff S(x;,8,)0 X) =n>1. If
dim (aff S(x,, §;) M X) =1 it is clesr that S8(x), §)N Xe (x,,y)

and so S(x , 8 ) contains a locally convex point of X. Thus, assume
&) o
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. . 1 1
S(xl, Gl)r\ X contains a point Yos %, # aff {xo, %

'_ 1
[xlejc S(xo, 60) and [xo, X x2]c X. Take x

l}. lotice that

5 belonging to the

relative interior of [xo, X x;j such that X, € S(xl, §.) (and

1

hence X, € S(xo, 60)). Now choose 62 such that 0 < 62 < 61 - p(xlx2)

. . . .
and such that S(x2, 62) N aff {xo, X }c rel intC X s Xps X, 1 with

1° %2

S(xz, 62)f\ X starshaped from x Clearly dim(aff{S(xz, 62)t\ X} > 2

x
and if dim(aff {S(xz, GQ)T\ X}) = 2 then %, is a locally convex point

of X in S(xo, 60). Proceeding in the obvious way I can find an

r-simplex in S(x , 6 ) with vertices x , X, ...x_' such that either the
o’ o o r

1

simplex contains a locally convex point of X or it is possible to
construct an r + 1 - simplex in S(xo, Go)f\ X. Clearly if r =d a

relative interior point of X oo X is a locally convex point of X

d

in S(xo, GO)-

| A
w
v

Lemma 3.1.3: Let X be a closed, locally starshaped set in Rd, d <
then for all q e Q g g cl Ci where Ci is a component of X\ Q.
Proof. For d =1, Q = ¢. Assume d = 2 or 3. By Lemma 3.1l.2.
q e cl{(X\ Q). Let y e S(q, §) where y ¢ C; and S(g, )N X 1is
starshaped from q. _If (ay ¢ XN Q qecl Ci otherwise there exists
q; € (qvd, q, € Q. Hence by‘the argument of Lemma 3.1.2. construct a
non-degenerate triangle T contained, in S(g, )N X. TFor d =2 the
result is clear. For d =3 if 7rel int Tm Q = ¢ the result follows,
otherwise note that for each point, x, of Qmnrel int T a disc, D,
. centre x starshaped from x meets Q A rel int T in a subset H of
aff_{q, x}n D since otherwise one clearly has a 3-dimensional tetrahedron
with q as a vertex since Te¢ S(g, 6)W X. Thus Qn rel int T is at
most é countable union of segments each of whose affine hulls contains
q. Hence the result follows since T ¢ S(q, 8) N X.

The case d = 3 in Lemma 3.1.3. is due to H.G. Eggleston.

0

Returning to Theorem 3.1, it is now clear that X = U ca Ci
i=1
where cl Ci is the closure of a component of X\ Q. Consider cl C.

and Q(cl Ci)’ note that if x € Ci then x ¢ Q(cl Ci) for x € Ci



bY.

implies there exists 6 > 0 such that cl(S(x, §) N ¥)e X \ § and
cl(S(x, 8§))n ¥ 1is starshaped from =z so that by Tietze's Theorem
cl(S(x, 8)) N X is convex hence ¢cl(S(x, 8))n X c C. but cl(S(x, 6))n ¥
is convex and cl(S(x, 6))n X = cl(S(x, §))n Ci = cl(S(x, 8))n cl Ci'
Hence cic_cl C;\NQlel Ci) c d Ci and so cl Ci\ Q(cl Ci) is connected.
Note that cl Ci =cl (cl(Ci) N Q (cl Ci))'

I now prove Theorem 3.1 with two further lemmas. ..A proof of the
first, in the case d = 3, wusing Zorn's Lemma, has been given by Stavrakas Y3.i)
Lemma 3.1.4: Let dim(aff X) = d then if X e¢cl(X N Q) and XN Q
is connected then X € cl(int X) where the interior is taken in Rd = aff X.
Proof It is sufficient to prove that X \ Q € cl(int ¥). Let ue X\ Q
and let S(u, 8) be such that S(u, §)N X is convex. If u ¢ cl(int X),
dim (S(u, 8) n X) < d. Then there exists v e X \ aff (S(u, 8§) n X) and
since X € cl(X\ Q) suppose v e X\ Q. Since XN Q is locally convex
and connected itis polygonally connected. Let £ be a polygonal arc
joining u and v, & = {x: x = f(t) t ¢ [0,1}} with £(0) = u and
f(1) = v. Let Ca be the component of X N Q A aff(S(u, §) n X)
containing wu. Suppose £ meets some other component CB of
X\ Q naff {S(u, §) N X} at w = f(s) then there exists r with r <s
such that f(r) ¢ aff(S(u, §) m X) since otherwise c, = CB. Let
t, = sup {t:£(t) € aff(S(u, §)n X) and £(s) e aff(s(u, §) N X) for
all s < t} then f(to) e aff S(u, 8) n X | &and for all s é=tof(s) e C, .
However f(to) € cl(X \ aff{S(u, 8§) N X}) for let tn ¥ to thep there
exists s, vty with t, <s £t such that f(sn) é aff S(u, §) O X.

So one may partition Ca into two sets Cl and C2_ both open and

closed in Ca thus contradicting Ca connected

(@]
I

= {x:x € Ca’ X € Cl(X_\ aff(S(u, §) N\ X))}

c, = fix e, x ¢ cl(X \ aff(S(u, 8§) N X)}
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Now f(to) € Cl and u ¢ C2 moreover Cl is clearly closed in Ca'

It only remains to show C

1 is open in Ca. Let x € C, then

1

x € XV Q. There exists n > O such that Xn S(x, n) is convex,
and contains a point = € X N aff (S(u, §) ™ X) then for all

x' € S(x, )N ch [zx') ¢ X which implies x' ¢ Cl

The final lemma completes the proof of Theorem 3.1.

Lemma 3.1.5: Let X e Rd X ¢ cl(int X) then X N Q 1is connected

if end only if int X 1is connected.

Proof. The "if" part is trivial. To prove the '"only if" part suppose

x and y belong to int X. Since XN Q is connected and locally

convex it is polygonally connected. Let P be a polygonal arc

joining x to y wvia XV Q consisting of finitely many segments. I

shall prove that such an arc exists joining x to y wvia int X.
Suppose n the number of segments in P 1is one P =Ux,y).

Since P 1is compact let P € \tJ S(Xi’ Si)r\ X where S(Xi’ Gi)n X

is a full dimensional convex sz;lsince Pe XNQ and X ¢ cl(int X)

with x, = %, X =y and if i <J then x; € txj xl'.]. Now

S(xl, dl)n P meets S(xj, Gj) for some j > 2, with highest suffix,

k, otherwise P 1is not connected. Let x2' € S(xl,

Gl) N X then

6,0 S(x _,6 )N P.
Take.an interior point, o of S(x
Copy %,

point there exists 6 > O such that S(xz', )N X is a full

11° 1

") Ufall x) ¢ int ®. Further since x2' is a locally convex

dimensional convex set. Hence there clearly exists a polygonal arc from

1 % (having five segments) in the interior of X apart possibly

X
from x .
K
Noting that the argument “applied at x2' may be applied at X >
it is clear by considering L X, 0 y) that there exists a polygonal
arc in the interior of X Jjoining x and y. (It is assumed that for

all i %73 S(x;, 85) ™ P & S(x;, 6;)n P.)

For n > 1, the argument can be applied to each segment of P and
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the %, argument can be applied at the vertices of P completing the

proof.

Corollary 3.1. X 1is the closure of an open connected set if and only

if XN Q 1is connected and X = cl(X\ Q).
Proof. The result follows from Lemma 3.1.4 and Lemma 3.1.5.

Definition 3.2 A point x e Fr X, Xc¢ Rd, is a point of mild convexity

if no segment Cuvl , u # v, exists having x as midpoint and having
fud\ {x} c int X.

Corollary 3.2. Let X be a locally starshaped set in Rd with XN Q

connected and let each point of the frontier of X be a point of mild
convexity then int ¥ and ¢l X are convex.
Proof. The result follows from Lemmas 3.l.4%. and 3.1.5. and Theorem 4.9,
p.53, of Valentine £3.2) which states:

Let S be an open connected set in a topological linear space L,
and suppose each point x € Fr S is a point of mild convexity of S. Then
S 1is convex.

It is easy to construct examples to show thHat for X< Rd none of

the three hypotheses about X 1is superfluous if the same conclusion is

to be obtained in Corollary 3.2.

The final result of this chapter is
THEOREM 3.2. Let X be a compact, locally starshaped set in R2 then
Q(X) has finite l-dimensional measure. |
Proof. Since X 1is compact and locally starshaped it may be written as a
finite union of compact, starshaped,locally starshaped sets ;3 Xi
with Xi = cl (S(Xi’ Gi)t\ X ) starshaped from X If qe ;Ei)
q € ;3 Fr (S(Xi’ Gi)) which is of finite one dimensional measure or
q € ;Eii’ Gi). In the latter case q ¢ Q(Xi) for otherwise there exists

a neighbourhood, S(gq, 8), with S(q, §)N Xy convex and S(g, §)n X c X

so that q ¢ Q(X).
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Hence it is sufficient to show that the result is true for compact,
starshaped, locally starshaped sets. Let X be such a set starshaped
frem x with Y« S(x, §). Firstly I show that X may have at most
countably many segments [ai, bi] c Fr X and x ¢ aff[ai, b{\. Let
[ak, bi] A € A be a collection of such segments. If there are
uncountably many, for n sufficiently large, uncountably many contain

an interval of length > b

. It follows that uncountably many a,s by

=N E=RE=NT M)

§ <t < m+l

contain x + tea where § for some me {l...n-1} and

e . .
o 1s a unit vector along afT:[aa, bé\. Now some sequence of e,

{ei}, containing infinitely many elements converges to e. Let

m m+l

[yi, z{] € Fr X with [yi, zi] = x + te,,o § < t<—/ 8. Let
vV = X + se, Zs§5<s < mtl 8. Note that x + te,m-é <t 5_Ei— §,1is a
n n n — = n

segment in Fr X since Fr X 1is closed. It is clear that since X is
starshaped from x and X 1is locally starshaped from v eventually
some points of ['yi zi'] lie in int X, a contradiction.

So, since each segment in Fr X with x in its affine hull contains
at most three points of Q(X), by discarding a countable subset of Q(X),
one may assume that for each gq € Q the ray from x throuéh q meets
Fr X in at most q and =x. Since X is bounded Fr X\ S.i y; %4
is the image of a subset of Pr S(x,8) under a Lipschitz m;; and hence Q has
finite one dimensional measure.

For completeness, I note that H.G. Eggleston has constructed a
compact, planar set, X, which is the union of two convex sets for which
Q(X) has positive l-dimensional measure. He has also proved that a

closed, locally starshaped set in 'Rd is a countable union of convex

sets.
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Appendix to Chapter 3

Note that the example given at the beginning of
this chapter can be easily modified to produce a compact subset X,

2 . . . .
of R® which is a countable union of convex sets with Q(X)

having infinite one dimensional measure.
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