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ABSTRACT
We present a computer program tailored to the 

calculation of single particle inclusive reaction observables 
and two models for the incorporation of absorptive type 
corrections in the triple Regge region which do not require the 
inclusion of free parameters.

We conclude that the first model we present is not 
sufficiently realistic and so requires the derivation of the 
second, more sophisticated model in the Regge-eikonal 
approximation. Both models were used to examine the 
observables for pseudo-scalar meson production via charge 
exchange.
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CHAPTER I

General Introduction



I INTRODUCTION
This thesis is primarily concerned with the introduction 

of absorptive type corrections to a pure Regge pole model for 
single particle inclusive reactions in the triple Regge regions. 
Accordingly, in this introductory chapter we will briefly 
mention the theoretical and experimental stimulae that have 
led to the effort expended on single particle inclusive 
reactions which must include a slightly more extended mention 
of Mueller's Generalised Optical Theorem and the various multi- 
Regge scaling limits. We conclude this chapter with brief 
descriptions of various of the other models that have been put 
forward to introduce absorptive type corrections to 
inclusive reactions.

In chapter II a computer program is presented which was 
written in order to make the organisation, calculation and 
presentation of results for the class of reaction we consider 
a much easier process. '

Chapter III presents the derivation of a parameter free 
model for the normal Regge limit (see section VI, Multi-Regge 
Limits and scaling) which has a natural extension to the 
triple-Regge limit. We also present a fairly naive model for 
absorptive corrections but are forced to conclude that it is not 
-sufficiently realistic.

In Chapter IV we derive a more reasonable model which is 
based on the eikonal approximation to multiple Reggeon 
exchange and Chapter V contains a calculation of the differential 
cross section and target asymmetries for various charge exchange 
reactions. The main conclusion to this calculation being that, 
in contrast to the exclusive counterpart, the reaction Tr’p^ir^X 
should show no signature dip at around |t|=0.5 [GeV/c and that



the target asymmetries that we find by this method will be small 
Chapter VI gives a brief recapitulation of the conclusions we 
can draw and also a consideration of various questions that 
remain unanswered.



II INCLUSIVE PROCESSES
The production of many body final states accounts for 

75 - 80% of the total cross section at presently available 
energies 111. However, it is almost impossible to analyse a 
multiparticle production event experimentally because of the 
complexities involved in being certain that the final observed 
particles attributed to a single event are in fact all that 
resulted from it. This would normally be done for a small 
number of final particles via four momentum reconstruction and 
quantum number conservation arguments and the extreme 
difficulty of detecting all the neutral produced particles must 
invalidate this approach for higher final multiplicities.

Similarly multiparticle final states are hard to analyse 
theoretically simply because of the proliferation of independant 
variables with particle number. Accordingly some selection 
of the available information has to be made. The method that 
has received much attention is that of the inclusive process 
whereby the presence of a particular particle (or set of particles) 
is detected in a final state, but no information is retained 
concerning the remainder of the produced particles. We 
concentrate for the remainder of this thesis on single particle 
inclusive processes of the form

1 + 2 + 3 + X 1.1
which is depicted in figure 1.1. Here the particles 1 and 2 
are obviously specified by the particular beam and targetused 
in the experiment and particle 3 is of a particular type, say ïï 
or A X symbolises the sum of all final states that can occur
with 3, in order to conserve four-momentum and all the relevant 
quantum numbers embodied in the initial state. Thus 
Px = Pi + P2 - P3/ N^ = Ni + N 2 - Ns 1.2



where p denotes four-momentum and N denotes one of the set 
of conserved quantum numbers, which will certainly include

t

X
F i g u r e  1 - 1 . T h e  s i n g l e  p a r t i e  I'e i n c l u s i v e  r e a c t i o n  1 + 2 -»3 + X.

These processes have the advantage that they are extremely 
easy (comparatively) to measure experimentally, since the 
measurement of the momentum of a single final particle, and 
the knowledge of its particle type are sufficient to determine 
the event completely.

Theoretically these processes also appear fairly simple 
when viewed via a generalisation of the optical theorem due to 
Mueller [2] which will be considered in greater detail later. 
Thus the combination of ease (relative) of acquisition of data, 
of which there is a developing fund 131 and the amenability of 
these processes to theoretical analysis has greatly contributed 
to the interest and effort devoted to them.

Interesting reviews on the subject can be found in Ref.4.



Ill KINEMATICS FOR INCLUSIVE PROCESSES
We wish to analyse the process of equation 1.1 and 

figure 1.1 kinematically. For this purpose we choose the 
1 - 2  centre of mass frame in which the four momenta appear as

Pi = (El, O, O, p)
P2 = (E2 , O, O, -p)
P3 —  ( E 3 , P s i l f  P 3 i 2 /  p  3 L )
2 2 - 2  2with Pi = El -p = m.1 
2 2 2 2

P2 = E2 -p = m 2
pf = E§ “Pfi-Pi2 = m 3 1.3

We see from the above equations that there are at most 
four independant variables for this process. In the case 
where no polarisation data is recorded this number reduces to 
three since an arbitrary rotation about the Z-axis will be 
permitted. Even if this is not the case, rotation about the
"Z-axis introduces at most a kinematical phase factor, and so
there are only three independant dynamical variables. We will
introduce some of the more widely used sets in order to show
the relationship between them.

If we define
s = (pi + P 2 )^ 1.4

then simple manipulations of equations 1.3 tell us that 
1

P^ = [s-(mi + m 2>^ lis-(mi - m^)^ ]
E 1 = •̂ ■7— (s + mi — m|) 1.527F
E2 — '2/g “ nil )

We can introduce the triangle function
A(x,y,z) E x% + y V +  - 2xy - 2yz - 2xz ^ ^



and then
A (s, mi, ml) 1.7

We can also introduce
P3i = (P3?i + P 3Î2)  ̂ 1.8

then one set of variables that could be chosen is s,P3l, P 31. 
Of course not all these variables are relativistically
invariant, but they are certainly experimentally reasonable
since p 3t ranges between ± p depending on the dynamical 
mechanism for the production of particle 3 while P31 remains, 
in by far the majority of cases, below 0.5 GeV/C. 15]

We next define the missing mass, via
= (pi + P2 “ P3)  ̂ 1.92 _

= s + m| - 2E 3/S 
This variable will have a lower threshold determined by 
quantum number conservation and an upper threshold when 
particle 3 is produced at rest in the 1 - 2  C.M. frame given by 

= (/s - m 3)2 1.10
Clearly from equation 1.5 we can say

= P3? + Paî = 4 s  (s-(m3+M^)^) (s-(m3-M^)^) 1.11
and E| = 273 (s + ml _ M=)

With the approximations s,M^-^«>,p3i small, we can say
I 1 _2|P3L I 1.124s ' s

Another independant variable is defined by 
t = (pi - ps)^ = mî + m| - 2EiE3+2pp3L 1.13
this variable has thresholds reached as p 3t reaches ± its 
maximum value for particular values of s and M^. In terms of 
these variables these thresholds are given by



= I /(s + mi -  ̂ - mi' ̂  /(s + mî - m|)* - mf11 max _ _̂___________________
min [1 4 s J 4̂

- ^  [(ml - mi) - (M^ - ml)] 1.14

We can also define
u = (P2-Pa)^ = m| + m| - 2E2E 3 - 2pp3u 1.15
and in a manner analogous to the relation in two body scattering 
we find that

s + t + u = m| + m| + m§ + 1.16
So s, t and form a set of three independant dynamical 
variables, and it is this set that we make free use of in the 
remainder of this thesis.

There are however, two other variables in common use.
The first is the Feynman variable or reduced longitudinal 
momentum [6 ] defined by

^ ̂ '• max
Using equation 1.12, since Psi^ax occur for the smallest
admissible value of M^, we can write

1x 1 = 2 IP3L I :1 - "x' 1.18
~ T T -  ~

Equation 1.18 is sometimes used as the definition of x but the 
two definitions can only be equivalent when mi, m 2, m 3 and
P3i can be neglected compared to s and M^. The concept of
"fragmentation" can be introduced briefly here. If xz+1 
particle 3 is moving close to the original speed and direction 
of particle 1 and it is therefore logical to assume that it is 
a fragment of that particle. Similarly for x=-l and particle 2.



On the other hand if x z O then the produced particle is almost 
stationary in the 1-2 C.M. frame and so cannot be associated 
with either particle 1 or particle 2. So the use of s, x and 
pli provides another commonly used set of variables. We can 
relate t and pfi via equations 1.11 and 1.13 for xz+1. If 
P3L = qCos0 then 0 is the 1-2 C.M. frame scattering angle, and 

t = t^^^ - 2pq(l-Cos0) 1.19

For small 0 this can be approximated by

- q ^

Since P=P3Lĵ ^̂  and qzpsL .
The second widespread variable is the rapidity y defined by 17 

y =  ̂ log 1.20
Ea - P3L

If we also define the "longitudinal mass"
= (ml + p L  ) 

so that e | = + plu
Then = Sinh y

y
E3
—  — Cosh y 1.21y

The main property of the rapidity y is its easy transformation 
under a Lorentz boost by velocity v along the Z-axis. Since
P 3 = (yCosh y, psii, Psiz, y Sinh y) 1.22
then applying the transformation equations 

Ea+y(Ea + vpat)
P3^y(PaL+ vEa)

Where c = 1 and y = (1-v^) ^
then y+yt%log 1.23



Thus the three variables s, y and p|i also form an 
independant set.

In order to relate y to the original set of s, t and
we must return to equations 1.13 and 1.15, which show, as
s “ that

t = -/s (E3 - P3L )
U  =  - / s  ( E 3 +  P 3 U )

where we neglect m % , m| and m| with respect to s. In 
conjunction with equation 1.16 and also neglecting mi+ml+mf 
we have
y 3 - ̂  log : h log I  ̂ ^ j 1.24

10



lY SINGLE PARTICLE INCLUSIVE CROSS SECTIONS
We will use the multi-particle state normalisation, which we
give for spinless identical particles for simplicity,

n
25

perms<qi.'q_|Pi'.Pn> = % {6Mqi-P (2ïï ) ̂ 2E(q, )} 1.perms i=l ^
Of course only one term of this sum can be non zero, at most 
Use is also made of the resolution of the identity

1 = 2: 4 ^  |Pl •-Pn><Pa •-Pnl 1.26n=2 ' i=l 2E^(2ir) '

We also note that, since we insist upon conservation of four 
momentum we can write

m n
<qi'.qm|R|Pi'-Pn> = (2w)^a^(Z ^q^-Z ^py) T(qi.,q^;pi..p^)

m n
•E
j

m n
:z q -E 
i=l j=l

= (2w)'6'(E q.-E_ p.)T^^^ 1.27

Now we can write down the cross-section for two particles 
n particles as

^ d:r 
(27t)

Where F is a two particle flux factor which is equal to 151
2A% (s, mî, mi). Clearly

00
^total ^ -I *̂2-̂ n 1.29n=l

Almost in passing we can write down the two particle unitarity 
equation using the unitarity of the S - matrix i.e.

S^S = SS^ = 1 1.30
and writing the S-matrix in the form 1 + iR we have

11



<qiq 2 |piP2 > = <qi q 2 |s s|piP 2 >

= <qiq2IÎ |piP2> + < q i q 2 |R^R|PiP2>

- i<qiq2|R^|piP2> + i<qiq2 |r|piP2>
•j*Inserting the resolution of the identity between the R and R 

we have
- i(<qiq2|r|piP2> - <qiq2|r^|piP2>) =

00 _ i _  /  n  j  3 ,
Z n: n <qiq2 |R l̂ i. r ><ri . .r |r|piP2> 1.32
n=2 ' i=l 2Ei(2TT)^ " "

If we make use of the time reversal invariance property of the 
amplitudes and of the hermitian analyticity property i.e. 
T(s-ie,...) = T*(s+ie,...) 1.33
and also making use of equations 1.27, 1.28, 1.29 we will have 
2 Im(T2̂ 2 (s+ie,t=0 )) = F^total 1.33

The complete derivation is of course not quite this simple, but 
this sketch proof will be useful to indicate the manner in which 
Mueller's Generalised Optical Theorem can be motivated. The 
complete proof is found in Ref.8.

We can now define the single particle inclusive cross 
section from equations 1.28 and 1.29 by inserting the correct 
delta functions. Thus

d̂ CT 1 ” 1 -='3- "IBtt’Es = s  Z TT n (2tt)''S"* (Pi+Pj-Z r.)
a  E3 F n- J i=i (2tt) ̂ 2E^ 1=1 ^

(2w)'2E,Z 6'(E3-r«)|T, y  1.34
1=1 *

Clearly, the delta function can be used to perform one of the 
momentum integrations and since the final particles are 
identical the sum from Z = 1 to n produces only a factor of n

12



Thus we can say

16tt̂ E3 I
P3

1
F Z

, n-1 d^r. n
Z 7;r^. : “ -1 (2w)'6'(pi+P2-Z r
n=l ' J 1=1 (2ti) "2E. 1=1

2-n 1.35

This is not the only form for the cross-section that is used. 
In Appendix 3 we derive the normalisation that is used for the 
next form of cross-sections we give in a similar manner to 
that given above.
We thus find

16tt̂ E3 d^a = IGw^j d^g
dtdMj

. 16tt̂ Jf. d^g ]
'■ TT dtdM^ ■*

1.36

where the variables are defined in section III.

If we write d^p3 = tt | p 3 | d | p 3 | ̂ d (Cos0 ) which we can do 
because of rotational invariance about (with our kinematics) 
the Z-axis, then we can give the differential cross-section in 
terms of the other sets of complete variables described in 
section III namely

d = g d^g
= 16.^ --•*" 31

d^g 
d(p3^)dx 1.37

The last parts of equations 1.37 and 1.3 6 are really valid 
only as s+™.
A further point to note is that if we integrate equation 1.35

d^Dwith respect to , ̂ we do not return to equation 1.28
±  DTT r* 3

since we have cancelled an n from the n factorial. Thus

13



16tt^E3 F ^ 2-n

This gives us a method of defining an average particle 
multiplicity via

... -
OO rj

L i - z -  . “ “

This value for <n> can be seen to behave like <n(s)> = A+B log s 
[9], This shows that as interaction energy increases a 
decreasing fraction is used to produce new particles, the 
remainder staying as kinetic energy of those that are produced. 
This feature can be used to distinguish between various 
multiparticle production theories.

14



Y MUELLER'S GENERALISED OPTICAL THEOREM
Mueller [2] has indicated that there is a very strong 

heuristic correspondance between single particle 
inclusive cross-sections and the discontinuity in an 
unphysical three body amplitude. A diagrammatic derivation 
is given in figure 1 .2 .

(b)

ZX T 3"
r
2 ' 2i

3"

(c)

%
(d)

F i g u r e  1-2 - A d i a g r a m m a t i c  r e p r e s e n t a t i o n  of thie d e r i v a t i o n  of Müel l er  s  
G e n e r a l i s e d  Op t i c a l  Ttieorem.

The derivation proceeds is the same spirit as that 
sketched out in section IV for the two body case. We first 
use the completeness relation 1.26 to relate the actual 
inclusive cross-section of figure 12a to the unit 
sum of 1.2b. This is precisely as in the two body case. 
However we now make use of an analytic continuation from the 
case with particle 3 outgoing and particle 3 * incoming to 
anti particle of 3 (i.e. 3) incoming and Y' outgoing. This 
takes us from figure 1.2b to 1.2c. It is then possible to 
make use of the unitarity relation used in section IV, but 
with a three particle initial state, in order to pass from 
figure 1.2c to 1.2d. The discontinuity in this case is of 
course not in the variable s = (pi+Pz)^ but in the energy 
variable of the three body amplitude, that is M^=(pi+p2-p3)^•

15



This last expression shows that this diagrammatic derivation 
has, in fact, glossed over some of the trickier aspects 
since the amplitude of figure l,2d is clearly unphysical 
since particle 3 is constrained to have a negative energy, 
due to the analytic continuation. This can be expressed 
more clearly by realising that

Disc^{T(123;M^,s,t)} = {T (123 ;M^+ie,s ,t)-T (123 ;M^-ie,s,t)} 1.40

i.e. we should stay on the same side of the cuts in the sub
energies s and t for the physical 3-3 amplitude. However, 
figure 1 .2b makes it clear that for the inclusive cross- 
section we will be above the threshold cut in s in T but below 
it it T . Thus for us to be certain that this result holds 
we require that taking the discontinuity in one variable will 
not affect the discontinuity taken in another. While this 
has not been conclusively shown there are arguments that lead 
us to expect it in this case [loi.

We have thus managed to relate the single particle 
inclusive cross-section to the discontinuity of a three body 
amplitude in an unphysical region of one of its momenta; 
measurements of this three body cross-section in its physical 
region are in any case unlikely to be forthcoming. The 
exercise is however, not in the least pointless since we can 
also write down the expected Regge-pole forms for this 
amplitude which then gives us the expected Regge-behaviour 
of the single particle inclusive cross-section. More detail 
of these forms will be given in the next section.

16



All the discussion of the optical theorem has so far been 
without any mention of spin dependence of any kind. It is 
however possible to write down a wider form for the optical 
theorem [11] where three body helicity amplitudes are used 
which can have different helicities for the initial and 
final particles. Thus 

d^q,/ n d^q. n
^ j ^ T 2 tt) ^ 2 E ~' (2^^ G (% q i + P 3 - P i - P 2 )X ‘ i=l ^^i i=l 1

Z<XjX2[T^jXgX ><XsX |T|XiX2>Xx X X

1 ^= Y £ Disc <XiX2X3|TIXiX2Xa> 1,41

is an expression of the full Mueller generalised optical 
theorem.

If we write all the symbols concerning the summations and 
integrations as f  and making an obvious notation for the 
amplitudes this expression looks simpler as

*^3Xĵ ;XiX2} = -^ Disc M^f^XiXzXa ; X1X2X3} 1,42

We could go on to discuss the various time-reversal, parity and 
hermiticity relations which will impose various constraints 
on the Mueller amplitudes from two directions. Either from 
that of the three body amplitude [12,13] or by using the fact 
that the inclusive cross-sections can be viewed as a sum of 
non-interfering quasi-two body cross-sections, with the 
missing mass state viewed simply as the second final body.

17



We choose the latter approach [14 ] except in the case 
of time reversal, because the arguments can be given in the 
more familiar two body helicity relations [15].

We consider time reversal first and simply remark that 
because of the special continuations performed, a time 
reversed Mueller amplitude no longer satisfies the s±ie 
prescription necessary as shown in figure 1.3, and so time 
reversal gives no relations between the different helicity 
amplitudes.

3
a (b)

F i g u r e 1 - 3 . T h e  M Ü G l l e r  ampl  i t ude  and i t s  t i m e - r e v e r s e d  c o u n t e r p a r t .  The  
l a m b d a s  d e n o t e  q u a n t u m n u mb e r s  s u c h  a s  h e l i c i t y .

The hermiticity property is easiest seen by taking the 
complex conjugate of both sides of equation 1.42. This 
yields
—1  ̂  ̂  ̂ * n ^ ^ ^

(DisCj 2̂ 1A2A.8 ; X1X2^3 ) = ■Jî Disc^2 ^X1X2X3 ;XiX2X3 1.43
X X

which immediately indicates that for X^ = X^, i = 1,3 the 
discontinuity will be pure imaginary, as in the corresponding 
case for two body.

To derive the parity reversal property we must consider 
the relation for the quasi-two body amplitudes. We use the 
Jacob and Wick phase convention [15] and since we will be 
principally interested in 0 % +0 X scattering in this thesis 
we will consider the spin \  proton, which will be the target 
particle and "type 2" in the phase convention,as particle 2.

18



The parity relation can then be written as
3 ; - X  1 “ X 2 (” <j) . ) =  ^ ^ S q + s  — S i - S i + X  - X s - X , — X?

 ̂ (-1) ^ ^
(cf̂ ) 1.44

where s^ denotes the spin of a particle or conglomerate and 
the angles c|)̂ are all those internal to the particles 
comprising the state X. We will be integrating over all 
these angles and so the fact that they are reversed is no 
problem. Performing this integration then we have 
/ ̂ X3 Xx/X 1 X 2 ^X3 Xx/X 1 X 2 = j(X 1-X 1 ) + (X2” X 2 ) + (X 3“ X 3 )

^^"X3Xx;-Xi-X2^”X3X^;-Xi”X2 1.45
or

D i s C j ^ 2  ^Xi X 2 X 3 ; Xi X 2 X 3 =  2 )( X i - X  1 ) +  ( X 2 ~ X 2 ) +  ( X 3 - X 3 )

■^DisCj 2̂ ̂ ”Xi-X2”X3;-Xi-X2'"X3 1.46
X

So, since there will be Nf N2 n| distinct helicity amplitudes, 
if = 2si+l - i.e. the number of possible helicities, and so 
2N 1N 2N 3 different numbers to measure, the hermiticity 
condition reduces this by a factor, of 2, as does the parity 
relation. There are therefore ^NiNInI different 
measurements to make. If we specialise to the case of 
interest for this thesis, namely O  ̂-►0 X, we see that there 
ere enly two possible measurements to determine the 
reaction completely.

These two measurements are usually taken to be the 
unpolarised cross-section, and the polarised target 
asionmetry. The former quantity is defined in section IV> but 
the latter needs some further investigation to cast it into 
the language of s-channel helicity amplitudes.

19



-i-
2

(a) (b)

F i g u r e  1 4 . The  t wo  c r o s s - s e c t i o n  m e a s u r e m e n t s  n e c e s s a r y  for target  
a s y m e t t r y  c a l c u l a t i o n s .

The target asynunetry for a reaction is defined as the 
difference between the two cross-sections depicted in 
figure 1.4 i.e. a) - b) where the target particle is 
polarised at right angles to the incoming beam. This 
quantity is then scaled to the unpolarised cross-section.
If we define the target asymmetry as 12 we will have

' TX3\;XiT|‘+|

where we have

ÏÏ dtdM^ ^ 16tt^s(2Xi+1) ( L 2 + D I  , , ^ I ^XjX^; Xi Xj [ ̂  1.48
X  A 1A 2A 3 .

which is given in Appendix 3.A.
We now convert to the helicity frame using 116]

T> = /i (-i|+>+|->)/ 2  
1 

/2

Defining a = x^À2X3 l̂ ^X3X^;XiX2 l̂  we then obtain

1.49

Z 2 Ô  =  I ^ - i { ( ^ X 3 X ^ ;  X 1+ ^ X 3 X ^ ;  X X 3 X ^ X  1 “  ^X 3 X ^ ; X 1 +)} 1 . 5 0
X1X3
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Using equations 1.42 and 1.4 6 we can rewrite this in terms 
of discontinuities as
Z2G = DisCj 2̂ 1 “X 3 ; X 1+X 3 1.51

X

Consideration of equation 1.4 3 with equation 1.46 assures us 
that this discontinuity is pure real, as, of course it must be.

The target asymmetry Z2 also has certain kinematical 
properties, but. since they are based on angular momentium 
considerations, and are not direct results of the optical 
theorem we leave their derivation until chapter V where 
use is made of them.
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Y I MUELLER REGGE LIMITS AND SCALING
In the last section we have demonstrated a strong link 

between a discontinuity in a three body reaction and the 
single particle inclusive cross section. Therefore we can 
postulate models for the three body reaction which do not 
involve labarynthine integrals and sums over phase space.
The class of models that seem to have benefited most are 
perhaps the Regge models, and single particle inclusive 
reactions have provided an extensive testing ground for 
Regge ideas.

While it is much more complicated than the corresponding 
partial wave decomposition of two body reactions, and their 
subsequent Regge-ization, it is possible to at least strongly 
motivate this process in the case of the six-point amplitude 
117, 18 1. However, because of the multiplicity of sub
energies in this case over that in the two body case there 
are several different Regge limits and it turns out to be 
convenient to distinguish between three major regions of 
phase space. These are the beam and target fragmentation 
regions, which are further divided into three sub-sections,and 
the central region.

—I LÜ lll LÜ HI
< —I _1 . —I
21 CL <D CO (T
a: Z 3 z
o cr O
z H- (/) O I/)

ÏItr o

Ymin
Target  Central Beam

Fragmentat ion Region Fragmentat ion
Region Region

F i g u r e  1 - 5 . P h a s e  s p a c e  r e g io n s  in rapi di t y  for 1+2->3+X s h o w in g  the  r e le v a n t  
R e g g e  l imits .
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i) The Beam Fragmentation Region
We normally take particle 1 to be the beam particle and 
in this case, if particle 3 is only moving slowly in 
the rest frame of particle 1, we would expect particle 3 
to be associated with particle 1, and indeed to be a 
fragment of it. In this region clearly x : 1 and y = ymax. 
Dealing with the sub-regions in order as x departs from 1 
(x strictly equals 1 is of course elastic scattering) we 
have.
a) The fixed limit with t and fixed and small and

X X

s/M̂ -̂ oo. This is also called the normal Regge limit 
since we expect the 1-3 channel to Reggerize in a 
similar faslion to two body scattering. This limit 
is illustrated in figure 1.6 and the scattering 
amplitude then takes on the form

2 1 13 a.(t)+a.(t)
f (l+3)-i Ï. e. (t)Ç, (t) (s) 1 ]s ij 1 1

1.52

where is the forward Reggeon particle
scattering discontinuity, the Reggeon-particle 
particle coupling, the Reggeon signature factor 
and a the pole trajectory function.

F i g u r e  1 • 6 .The  t r a n s i t i o n  to the normal R e g g e  limit.
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b) As increases, for large enough values of s then
there is a region of phase space where both the 
customary 1-3 channel is capable of Regge-ization, 
but also the 2-2 channel of the corresponding 3 body 
reaction. This limit is the famous triple Regge 
limit which arises as t remains small and fixed and

. This limit is illustrated in figure 1.7. 
In this region the cross section retains the 
expression of equation 1.52, but we can now give a 
form for the forward Reggeon particle discontinuity, 
namely

22
- Zg. (O)Ira(Ç. (0))g, .. (t,t.
X

k " ■ - Ijk
a, (0) -a . (t) -a . (t)

0)

2\ k 1.53

The imaginary part of the signature factor appears 
because we have taken the discontinuity. g^j^ denotes 
the triple-Regge coupling and the other sumbols have 
been explained. The behaviour of this quantity 
can be understood by realising that large overlapping 
subenergies combine in a simple multiplicative 
manner [19 I, thus the energy of the "normal" Reggeon is 
proportional to s/M% and that of the other simply to

F i g u r e l  7 -T h e  trans i t ion  to the  t r i p l e - R e g g e  limit.
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c) As increases further we come to the situation where 
though the 22 channel can still Regge-ize , the 13 
can no longer. This is known as the single-Regge 
limit and corresponds to t and s/M^ fixed and finite 
but This limit is denoted in figure 1.8.
Note in the literature the term "fragmentation region" 
refers specifically to the single-Regge limit.
The form of the cross-section can be given as

U .22 
s 'k k X

a , , ( 0 )  1 ^ 3
F l-T-t) 
k ®

1.54

1^3
where (-~/t) takes into account the five point
upper bubble.

ii) The Target Fragmentation Region
The target fragmentation is the counterpart of the beam 
fragmentation region at the other end of phase space, 
where (pz-Ps)^ = u is fixed and finite. The discussion 
of the previous section applies with the obvious changes.

ili) The Central Region
This region is in effect what is left between the two 
fragmentation regions. At energies above about 
s = GOGeVc^ the two fragmentation regions become well 
separated 151 to leave a well defined central region, 
which,as is shown by figure 1.5, does lie in the middle 
of phase space where both x and y are close to zero.
Figure 1.9 depicts the possible Regge limit for this region, 
where we see that both subenergies (pi-pa)^ — t and

25
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(P2 Pa)^ - u should be large. To see how this arises 
we take the s->-«> limit of equations 1.13 and 1.15 to 
yield
t = -/s (E3“P3l ) / u = -/s (E3+p 3l ) 1.55
This gives where y is the "longitudinal mass"
defined for use with the rapidity variable y (equation

2
1.20). Since Pai is generally small, for small mi, 
will be about l.OGeV/c^ at best. This shows where the 
figure of s = 60 GeV/ĉ  before the onset of Regge 
behaviour occurs. We can then write down the asymptotic 
cross-section as

a,(0 ) ”
Gi.(u^) u a . (0) 22 

] g. (0) 1.56

If we write
11' 22' 33 c 2

Xij(u') = $1 (0)gj (0)G_

then

f (1,3,2)-% 
ij

t (0)-1 u Uj(0)-l 1.57
So So

Here So is the usual energy scale normally taken to be 1.0 
GeV/c^ .

J  > 2
1 >  j  >  r

Z —  2 T ° ' ® " m ’ ‘
X

Figure 1 9  The t rans i t io n  to the double Re gge  limit.
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We are now in a position to discuss the asymptotic 
energy dependence of the various kinematic regions. We 
begin with the single-Regge limit or "fragmentation region". 
Equation 1.54 gives this cross section and clearly we would 
be entitled to exchange the Pomeron with trajectory intercept 
= 1 at t = 0 as well as other trajectories with lower 
intercept. In this case (0) = 1  and

f (l̂ -»3) - Y(^x ,t) 1.58
s

Thus the cross section depends (at fixed t) only on the .
ratio of two energies and is thus independant of the energy
units used i.e. it "scales". The Mueller-Regge model then
predicts scaling in the fragmentation region, and since the
jqon-scaling terms due the exchange of Reggeons of intercept
approximately a^(0) = .5, the model also predicts the speed
of approach to scaling behaviour - namely as s ^ . We also
note that this form of scaling extends with no alterations
into the triple-Regge region, but does not extend to the
normal-Regge region, which in any case occupies an increasingly
small region of phase space as s increases.

This scaling result was predicted previously by Amati
et al [20], Yang and co-workers [21] and Feynman 16].
Yang's views were based on a model of Icrentz contracted
discs co-exciting each other and decaying. Since both and
(J were observed to be approximately constants, the modes of tot
exitation should become independant of s, and the disc—decay 
reach a limiting distribution in its own rest frame.
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The views of Amati et al,and Feynman were based on multi
peripheral models whose philosophy is that production reactions 
should look like that of figure 1.10 with each particle 
produced at small momentum transfer to those on either side 
of it.

1 >---

F i g u r e  1-10 A p r o d u c t i o n  ampl itude  w h e r e  th e  p a r t i c l e s  a r e  p r o d u c e d  
mult  i - p e r i p h e r a l l y

In the models considered the distribution of particle 3 in 
both X and p̂  ̂ became independant of s as s->«>. The result 
also extends into the central region as can be explained 
from equation 1.57. Here, if both exchanges are Pomerons 
we see that
f(l,3,2) . Xpp(y=) 1.59

again independant of s.
The scaling hypothesis seems to work very well in the 

fragmentation region 19 1, but somwhat less well in the 
central region [22]. This is perhaps not surprising since 
the approach to scaling in this case is as s  ̂which comes 
from the exchange of a Pomeron and one secondary Reggeon. 
The effects which cause the deviation of the 0^^^ from a 
constant are also clearly playing some part.
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YIITHE MUELLER-REGGE MODEL AND MULTIPLE SCATTERING
In the case of two body interactions it was rapidly 

found that the Regge-pole picture was capable of giving a 
reasonably good explanation of the experimental data. The 
effective trajectory of elastic data can be found by 
assuming

if = =a(t)-: 1.60

Plotting log against log(s) at fixed t will give us a
value for aeff(t) - the effective trajectory for that process.
For charge exchange reactions at least these trajectories 
seem consistent between reactions and also seem to be linear 151. 
However, the Regge-pole only model can be shown to be 
inadequate from the direction of theory [23] where it is seen 
that "Regge cuts" or multiple exchange of Reggeons must 
contribute to the asymptotic amplitude, and from 
phenomenology where several detailed features rule out the 
use of pure Regge poles alone. The simplest to see being the 
polarisation in the reaction n-p+n°n. A pure pole model 
would predict zero polarization while a substantial value is 
observed [24].

The same is true for single particle inclusive reactions 
in the triple-Regge Limit. Much effort has been expended, 
and with no small success on pure pole tripleRegge analyses [25] . 
However, there are again theoretical arguments [26] for the 
inclusion of multiple-Regge exchange in this region. The 
problem of Pomeron de-coupling [27] arises because of an 
anomaly in the inclusive cross-section in the triple-Regge 
region. This anomaly has been examined in the light of the 
inclusion of multiple-Reggeon exchange [28] which removes the 
anomaly for this case. 9̂



On a phenomenological level, the pure-Regge pole model 
will predict a zero target asymmetry both from the standpoint 
of a factorisable Reggeon-particle-particle coupling [291 
and also from that of a pure naturality exchange [30] .
There seems to be some evidence that this asymmetry is non
zero [31, 32], although the data exists at too low an energy
for strong conclusions to be drawn. There is also the case

' +of the reaction y+p->ïïo+X with a virtual photon. Naturality 
arguments for a pure pole exchange would dictate a forward 
dip [33] where experimental data seem to predict a forward peak 
[34] though this prediction is based on the position of only 
one data point. There has also been much work done where a 
triple Regge-model incorporating poles only has been improved 
by the inclusion of an absorption or cut model [351 .

For these reasons several groups of people have 
attempted to construct an absorption or Regge-cut model for 
single-particle inclusive reactions. This thesis sets out 
one such attempt and to conclude this introductory chapter we
-give brief summaries of some of the other models,
a) N S Craigie and G Kramer [36] constructed a model in 

order to cure the disease found in Ref .33 in the hope, 
that absorption would turn the pure pole dip into the peak
required by the data. The model takes the form of a partial
wave analysis of the quasi two body amplitude with 
integrals over the internal variables of the missing mass 
state. The type of re-scattering corrections envisaged 
are depicted in figure 1.11. The transition to impact 
parameter space is made using the usual two-body assumptions
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and it turns out to be possible to arrive at a closed 
form for the sum over the helicities of the missing mass 
state in order to arrive at the formula

) 2 tt J 2 tt r

where S (t-t i ) = 27t6 M t-t i )-cae"^ ^ 1.61

where t = ^min ” defines t as a scalar. The vector 
2 = (t '*Cosc(), T ̂Sincj) ) indicate that the internal triple-Regge
scattering need no longer take place in the (f) = O plane and 
C and a are defined via

ImF(s,t) = s e^^

C = °tot /

where ô, . is the p p total cross-section and F(s,t) the p p
elastic amplitude. The lambdas refer to the helicity of

\n
7

P

Figure  1-11.R e - s c a t t e r i n g  c o r r e c t i o n s  to the  M ü e l l er -R egg e  e x p a n s i o n  of the  
r e a c t i o n  T1+ X . ( s e e  Ref,36)

iTi fact because of the form of the approximation used for 
the d*̂  functions this derivation implicitly assumes that the 
flip of helicity into the missing mass state will be small. 
See appendix 3C for a more detailed discussion of this 
problem and as to why this approximation is reasonable and 
Ref.37 for a derivation of the two body d'̂  approximation.
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Also, in the calculation the multiple of 2 tt o f  the delta 
functions in the definition of the S-factor (equation 1.61) 
was missed off, so while a good fit to the data was obtained 
it required an inordinately large value for C. The 
parameters fitted in this paper have been used in the 
estimation of the polarised target asymmetry for this reaction 
by K Ahmed, J G Korner, G Kramer and N S Craigie [32]

b) F E Paige and T L Trueman [38) and F E Paige and 
D P Sidhu [39]. In their interesting paper, Paige and 
Trueman give an extended review of the way in which the two 
body cut can be related to a diagram in single particle 
inclusive reactions. These two diagrams are shown in 
figure 1 .12.

oc

p,
F i g u r e  1-12 a ) R e g g e - c u t  graph tor tota l  c r o s s - s e c t i o n s ,  b ) r e l a t e d  t^uelier  graph,  

( s e e  Re f .38 )

Their calculation is cast in the form of the Reggeon 
Calculus and it is possible to write down a simple closed 
expression for the contribution of the cut to the total 
cross-section, namely

Cos^ I%iTa (q̂  ̂ )]
_ I d^qx CoSTTg (Qi ̂ ) <

j ( 2 tt) s i n ^ T T a  ( q i   ̂ )
-Sin^[ ̂ Tra (q̂  ̂ )]

2a - 2  Na+(q/) Nb+(g/) 1.62
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where the choice of term in the curved brackets is made 
according to the signature of the exchanged Reggeons and the 
cut-coupling functions Na"̂  and Nb^ are just those functions 
one would expect after factoring the unwanted terms in the 
diagram of figure 1.12b. Unfortunately when a similar 
procedure is attempted with the single particle inclusive 
cut graph aid the double particle inclusive cross-section 
(see figure 1.13) the attempt is frustrated partly because 
the amplitudes in the single particle inclusive cut have 
differing boundary conditions from those in the double 
particle inclusive graph (this problem could perhaps be over
come as was a similar in the generalised optical theorem), 
but also because the distortion of contours required to 
obtain the closed form is not possible in this case due to 
cuts occuring in the other subenergies available in this 
case, though not in the two body case.

Pb

Pb
F ig u re  1-13.  a) M u e l l e r  - R e g g e  cut graph.b)Muel ler  graph for the two p ar t ic le  
c r o s s - s e c t i o n  in R e g g e  l i m i t . ( s e e  r e f . 3 8 )

It does however, turn out to be possible to make 
estimates of the cut corrections in certain specialised 
sub-regions, the main of which is the triple-Regge region. 
A cut graph in this region is shown in figure 1.14 and 
form for the discontinuity is given by
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“ï l ^  Na5«2 (qx+k^ ,k J

ga3as;a^ (qxrqx+k^ )Nai»X";a2X (k J  [-2lm ( § 2 § 5 § 3 *)]

(^2) 02+03+05-1(^^)02+04-1 1.63

where the Ns are again two particle, two Reggeon coupling 
functions, the g is a three-Reggeon coupling and the §'s are 
the usual signature factors.

Po

Pc

oc.P:

Pr
F ig u r e  1 U . A  R e g g e  cut  graph for the tr ip le -Regge  r e g i o n . ( s e e  r e f . 3 8 )

It is this formula that Paige and Sidhu apply in order to 
make estimates of the relative importance of cuts in the 
triple-Regge region. They make the assumptions that the 
cut-coupling function will be simply the product of 
appropriate Regge residues and make an exponential 
approximation for these and for the three-Reggeons coupling. 
They then make estimates of the ratio of acut/apole for the 
reactions 7r-p^7r°x,ir-p->T|x and K p+K^x. In all cases this 
ratio is greater than -1 so no large dips are predicted, and 
the average contributions are around 30%, increasing with |t|.
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Paige and Sidhu also calculate A polarizations from various 
initial states. Where data exists their results which 
are in all cases of the order of 1% or 2%, are not 
inconsistent, but the data does possess large error bars,
c) J Pumplin [40 1. Pumplin adopts a different view point 
to most of the other models for absorption in single particle 
inclusive reactions.

Figure  1-1 5 . A r e - s c a t t e r i n g  correct ion  to tlie t r i p l e - R e g g e  graph b e t w e e n
p a r t i c l e  b and p a r t i c l e  c . ( s e e  ref .^0)

He argues that since, away from x = 1, the dissociation
reaction a-»-c+R takes place over a long time, that it will be
the re-scattering between particle c and particle b that is
important (see figure 1.15), and by means of a fourier
decomposition produces the formula

M(Pi/Pi ,s) = |d^qd^q',M^ (q",q,M^ ,s)

15 (Px-q") “iM^^(Px-q'fXs)]

[5 (Px-q)+iM^j^(Px-q,xs) ] 1.64

which he specialises, using various gaussian or exponential 
approximations before applying it to the reactions 
Y+p^ïï+x and 7f+p->"iT̂ x
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in the form 
M (pî) = iM^Ojy^Jdq'F*(q')|dqF(q)

S* (q'-p J  S (q-p, ) 1.65

where the S factors are given by 

S(5) = S'(q)_^e-(^)(:q' 1.66

and

F(p) = g(t)(s/M2)0(t)

Pumplin also makes the argument, using elementary particle 
propagators, that these c-b scatterings are the only ones 
that contribute and that a-b rescatterings do not. The use 
of elementary propagators instead of Regge propagators 
however, seems slightly suspect. In the first paper 
Pumplin then calculates y+p-̂ -wtx and indicates that this model 
cannot generate a forward peak with any reasonable absorption 
parameters and the second paper is devoted to the reaction 
7T p^7T°x, the main predictions being no dips seen at around 
t = -0.5 GeV/c^, unlike the reaction tt p^ir^n and a raising 
of the effective trajectory for the exchanged p-Reggeon.
d) A Capella, J Kaplan and J TranThanh Van [411. These 
authors utilise a simplified approach to the Reggeon 
Calculus previously developed by them [42] for two body 
reactions. They make contact with the single particle 
inclusive process by allowing one triple-Pomeron coupling 
to split the simply exchanged Pomerons . This arrangement 
is illustrated in figure 1.16.
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Fig ure  1 16 A d i a g r a m  in tw o -b o d y  s c a t t e r i n g  r e l a t e d  to ttie s i n g l e - p a r t i c l e  
i n c l u s i v e  d i s t r i b u t i o n . ( s e e  ref .42)

It is a combinatorial re-arrangment of the discontinuities 
formed by cutting such diagrams through particle b and the 
"third leg" of the triple-Pomeron cluster that form the 
basis for this model of absorptive corrections. They arrive 
at a diagram of the form of figure 1.17. For various reasons 
it is clear that this formulation will hold only for x very close to
one. This is clearly demonstrated in that the form for t used
is t = -p̂ ^̂  rather than the more usual t =

F i g u r e  1 • 1 7 . The  d i scon t i nu i t y  r e l a t e d  to the  s i n g l e - p a r t i c l e  i n c l u s i v e  
d i s t r i b u t i o n . ( s e e  r e f . 42)

The detailed form of the absorptive correction is not 
transparent. It can be shown to be of the general form of 
all these models briefly described, but with a particular 
choice for the S(q,s) factors (see equations 1.66 or 1.61) to 
give an eikonal type form, but also to take account of some 
inelastic intermediate states. For this reason the form is 
not given.
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The main conclusion of this paper is that the absorptive 
corrections calculated are very large, due mainly to the 
combinatorics as opposed to those in the two body case. They 
make an estimate of the triple-Pomeron coupling, which they 
find to be significantly different from the pole only case, 
but also find that even with large absorptive corrections, the 
Pomeron factorisation property still seems to hold at a 10% 
level.
e) A Garcia Azcarate [43] studies the reaction p+p-^n+x in 
the triple-Regge region in both the framework of a 
peturbative approach to Reggeon calculus, as in the previous 
model and a system comprising small absorption corrections of 
a similar type to those proposed in Ref.36. Azcarate uses 
a Regge-ised one pion exchange mechanism with only the 
Pomeron included in the ir̂ p elastic scattering. Since the 
resultant intermediate pion are so dose to the mass-shell it 
is reasonable to use the physical values for cross-sections 
and coupling constants.

The model for O.P.E.R. without absorption shows reasonable 
behaviour, but does overestimate the normalisation (see 
Ref.44 for an alternative approach to this reaction in both 
the O.P.E.R. and weakly absorbed model). The two sorts of 
absorption now reduce this normalisation. However, the model 
of Capella et. al. produces a curve which is significantly 
below the data while the weakly absorbing model interpolates 
the data fairly well.
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f) J Bartels and G Kramer 145] . These authors again 
approach the subject from the standpoint of the Reggeon 
Calculus, and, although making various numerical approximations, 
they consider the diagrams of figure 1.18. They achieve a 
cross-section for s = 20GeV/c^ of only ^/3 the pole value, 
and because the cuts die away very slowly as s rises (This 
of course comes as a consequence of the M^/s scaling of the 
pole amplitude), this value has only increased to .44 of the 
original pole expression by s = 3000 GeV/c^.

k=0
+ +

q - k  q-k'

♦

Fig ur e l  18.The po le -only  d iagram and three l o w e s t  order  R e g g e o n  Calculus  
cut  c o r r e c  l i o n s . ( s e e  ref .65)

From this we see that the Reggeon calculus much stronger cuts 
for one additional pomeron as indicated by Ref.41 and also 
that these cuts persist to very high energy. The size of 
these cuts indicate to the authors that the investigation of 
both "enhanced" graphs where more than one triple Poneron 
vertex occurs, or perhaps higher order Pomeron vertices 
(see figure 1.19 for representations of these graphs) and 
multiple Pomeron exchange in non-enhanced graphs could well 
be important.

Figure  1-19.S e v e r a l  " E n h a n c e d " m ul t i - Po m ero n g r a p h s . ( s e e  r e f . 65)
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They calculate the enhanced contributions of figure 1.19 
and find that from a few percent at s = 20GeV/c^, some of 
these graphs, particularly those of parts a) and c) have risen 
in importance to about 20% of the pole graph by s = 3000 GeV/c^. 
They also derive the multi-Pomeron exchange for Reggeon 
calculus in the eikonal approximations and remark that at low 
energies the convergence of the resulting series expansion 
will be slow, though this will improve as energies increase.

Bartels and Kramer therefore conclude that at low energies 
enhanced graphs are not yet important, but several terms in 
the eikonal series will need to be accounted for and as 
energies increase, this series will truncate sooner, but 
enhanced graphs become important, and at energies higher than 
those achievable today enhanced will begin to dominate. All 
in all a much more complicated area than cuts in two body 
reactions.
g) G R Goldstein and J F Owens 1461. These authors 
provide us with another impact parameter/Fourier decomposition 
method. They define their impact parameter as that variable 
conjugate to the two dimensional p̂  ̂ and give references [471 to 
support its choice.

The analysis is easily performed and with the choice of 
Seff(b) = 1 - the final formula is given as

Dga^b^c ̂ abc (Pi ) - Dga^b^c^ ,abc (k̂  ,k̂  )

{Zngz (p, -kJ-2aCe"^(P: {2ir6̂  (p, -k;)-2a*Ce“^*
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This form is similar to that derived in Ref 36. The 
impact parameter in this reference is defined as the 
variable conjugate to Pc^/x, however, any phenomenological 
differences arising from this choice should be slight.

The reaction p+p->A++ + X is chosen for study. The 
motivation for this is fairly clear. The reaction should be 
dominated by pion exchange and due to the proximity of the 
pion pole to the physical, it is possible to give a good 
estimate of the relevant triple-Regge coupling. When this 
is done, the existance of good quality data allows us to 
say that the pole only model yields a normalisation 
approximately a factor of two too large (see ref.48 for an 
alternative calculation for this reaction both in the pole 
only and absorbed form. These papers also give references to 
the dala of this reaction) . This discrepancy can be 
remedied by absorption.

Of course this reaction is also interesting since it 
provides, fairly easily, a measurement of the decay density 
matrix elements of the Predictions of these quantities
should be very model sensitive.

The authors find that a good fit can be obtained to a set 
of data with reasonable absorption parameters and with the 
agreed value for the GrrNA. A pole only fit results in an 
unreasonable value for which is, after all, well
attested to.

It is therefore possible to conclude from this analysis 
that the absorptive corrections do have a definite role to play
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CHAPTER II

A Computer Program for the Calculation 
And Display of High Energy Single Particle 
Inclusive Production Reaction Observables
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INTRODUCTION

There are many different types of single particle inclusive production 

reactions of phenomenological interest. This, coupled to the need to present 

much more information than in the corresponding exclusive reaction case, 
make it desirable to be able to experiment both with the dynamic model, and 

the presentation of the calculated observables with as little computer 
reprogramming as possible. To make this possible we felt it necessary to 

write a computer program that would accept a standardized data deck for any 
of the relevant reactions, or set of reactions, and that could then perform 
calculations of almost all the relevant observables. The dynamic model 
used for these calculations is added on as a new written function, as indicated 
in fig 3, and which particular quantities are calculated and which presented 
can be completely governed by the specification of integer flags read in with 
the data deck.

We also felt that the manner in which the results are presented is 
extremely important, and to this end the program provided a line-printed 
output which contains all the relevant information. Parts or all of this 

output can be switched off using relevant flag values. We also provide 
the facility of plotting every set of results calculated, both for lucidity 
in that the user is immediately aware of effects in a suitable graph that 
are easily hidden in a long column of figures, and also for sheer convenience 
"When plotted results are required for publication. This plotting facility 

requires the attachment of a plotting package which is freely available 

from Computer Physics Communications.
The program was also written to conform to the requirements of the 

standard minimisation package MINUIT and has been successfully used with 
this package to perform minimisation for theory-data comparison.

Several people have successfully used the program (named ONCPLT) 
over a wide variety of inclusive reactions, and ONCPLT has, I hope, for
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them provided a short cut to the adequate presentation of their calculated 
results.

What follows this introduction is a Program Summary giving the relevant 
technical details in a short form and a Long Write Up which elaborates on 
the conventions and techniques used within the program.
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PROGRAM SUMMARY
Title of program: ONCPLT

Catalogue number : AAUR

Computer: CDC 6600, CDC 7600; Installation: University of London Computer Centre
Operating system: CDC SCOPE

Programming language used: FORTRAN IV

High speed core required: 25K words
No. of bits in a word: 60

Overlay structure : None

No. of magnetic tapes required: None

Other peripherals used: Card reader. Printer, Calcomp plotter with Calcomp
compatible software

No. of cards in combined program and test deck: 4,020
Card punching code: CDC

CPC Library subprograms used: AAUN, Title APLOT, Ref 49.
Keywords : Nuclear, High Energy, Single-Particle-Inclusive Cross Section,
s-Channel Helicity States, Spin Density Matrix, Effective Trajectories,
2X -Minimization, Graph Plotting 

j^mture of the physical problem
This program is concerned with the phenomenological analysis and the display 
via both the printer and graph plotter of high-energy single-particle- 

inclusive production reaction observables.

Method of solution
The program can be run under either the fixed t or the fixed M^ modes 
when calculating differential cross sections with that for fixed t being 
integrated over the t-bin by 8-point Gaussian quadrature. Total cross 

sections can be calculated using repeated 48-point Gaussian quadrature. In 
addition, effective trajectories and density matrix elements can be calculated.
The results of all these types of calculation can be plotted with the inclusion
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of the graph plotting package APLOT [ 4 9 ]. The program is compatible with 

MINUIT [ 50 1 and this combination has been used to perform minimization I 51].

R e s t r i c t i o n s  o n  the complexity of the program

The number of data points considered cannot exceed 500 in general. In the 
case where density matrix data or effective trajectory data is to be read 

in the number of data points cannot exceed 100. This is purely a dimensional 
requirement and can be altered. If density matrices are to be calculated 
the final detecting particle must have spin less than 5/2.

Typical running time
The test run took 72.2 sec. (of which 32.7 sec was compilation time on the
CDC 6600.) A recent minimization calculation I 51 ] in which the program
was used, 400 passes minimizing 3 parameters on 28 data points took 184 seconds
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long write-up

1. INTRODUCTION

The computer program described here is designed to handle calculations

for single-particle-inclusive reactions in the region s/M^ large and to
compare the theoretical predictions with the experimental data both by means
of line printer and graph plotter output.

The matrix elementsof interest are calculated in the TRACE function
subroutine and, according to various flags in the program, the program

will calculate differential cross sections in either a fixed t or a fixed 
2M mode, total cross sections integrated over a specific region of phase

space, density matrices of the observed final particle and an effective
trajectory for the exchanged Reggeon.

Since theory can often only provide a functional form with several
2Ajustable parameters the program is set up to provide-a x minimization 

on the differential cross section data when used in conjunction with the 

standard minimization program MINUIT [50] .

2. CONVENTIONS AND KINEMATICS

The kinematics we calculate for the process a + b c + X are the

usual relativistic invariants given by

S = (Pa + Pb)^. t = (Pa - Po^^> ■ (Pa * Pb " *

For single—particle—inclusive production reactions the minimum |tj effect
2is important since it is a function of both s and M . t is given by

t = m^^ + m^^ - 2EgE^ + 2qkcos9,

where q a n d  k are the three-momenta of c • and a in the a-b c e n f r e -

of-mass frame. T r a n s f o r m i n g  this to relativistic invariants we f i n d



Itlmax
min

'(s+m̂ -̂M̂ )̂  
4s

2- m ±c 2
4s

On neglecting all single particle masses we find

Itlmax : s - 4l„i„=0.

This approximation does not seem valid at presently available energies and
so throughout the program we have used the exact expression for Itl . .' 'min

The normalization is taken from the expression for the total inclusive 
cross section

<n> a = j 2Ë“  ^ * 9%  - Pa * p Ï l<c,x|T|a,b>| ,c M

where denotes d^q^/(2w)^ and #^(x) denotes (2?)^0^(x), F is
the flux factor for the particular frame of reference chosen and | denotes
all the summation and averaging over àll the helicity states, different.
particle states, etc. and integration over all three-momenta internal to 

2the M state. We can acquire the differential cross section from this 

expression by inserting appropriate delta functions, i.e.

<n> d̂ g
dtdM"̂

dM^ 2E 2E„ ' " ^a ^b

. 6(t - [p^ - p^]^) Y I |<c,x|T|a,b>| , 

which in the centre-of-mass frame of particles a and b yields

- t f |<c,x|T|a,b>
TT V JdtdM 64ir k

<n> is the average multiplicity of the detected particle and is a function of
s only. It would normally be implicitly included in the measurement of an
inclusive cross section so there is no necessity to calculate it and divide it out,
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We need now to consider in more detail the generalized optical theorem I11 ,Ul 
which gives us

i=i  ̂ I

where is the number of particles in the state, X denotes the helicity
of the appropriate single particle state and x denotes the helicity of the

2composite M state. Thus we have

'<c,x|T|a,b>| = ( L  Disc

We can obtain parity relations for this 3 3 amplitude by noting that for
the pseudo-two-body amplitude

' V b  ’

where the are labels internal to to the composite state which are flipped
by the parity operation. However, once we form the required combinations and 

integrate we find that

= Disc 2 ;-X -X -X^.M c a b ’ c a b

This formula is used in calculating spin density matrices since in forming
2bilinear combinations all the dependence of the M state must cancel out.

In calculating spin density matrix elements of the finally detected 

particle we will wish to present the results in the Gottfried—Jackson frame
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for the observed final particle. This involves a rotation from the reference 
frame depicted in fig.2.1. For the rotation calculated in the program (see 

Section 4) to be the correct one the "amplitudes" must be calculated according 
to these kinematics.

3. EFFECTIVE TRAJECTORIES

2In the regime, s ->■ «, s/M the triple-P.egge ansatz for the cross
section (see fig.22) is given by [15 1

s d a f Normalization 1
.1. I,1,3 XtX_X„ MdtdM

â (t)

1 ib"i 2 ^1^3 A <5 ô *(t). ^  Disc (t,MT)}g.l 3(t) C.(t) ^  ^

The behaviour of the normalization factor is typically 1/s.
To arrive at the effective trajectory we assume that essentially only 

one Regge exchange is involved and the expression collapses to

s d^g fNormalization\ ®
J ’ l Factors / *dtdM

Our method for calculating the effective trajectory is to calculate differential
2cross sections for the same values of the invariants t and M but different 

values of s. Then

a(t) =

[Normalization = 2
In <

[ Factor 2 TT dtdM^
f Normalization !i A .
1 Factor 1 TT dtdM^'

21n©
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Finally detected  c 
particle r

a Fragmenting particle

b " Spectator" particle

F i g . 2.1. Part i c l e s  a and b centre-of-mass coordinate syst e m 51
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Fig.2.2. The triple-Regge diagram for the process a + h + c + X
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This method has the advantage that it is possible to study the dependence 

of the effective trajectory as M varies, it is valid in both the Normal 
(s/M^ + fixed) and the triple-Regge (s/M^ -4- », -»- «) limits. In
addition it assumes nothing about the functional form of G(t,M^).

4. SPIN DENSITY MATRIX ELEMENTS

The spin density matrix elements of the observed final particle in the 
reference frame of fig.2.1 are given by

CM
XgX; X ° "b"b

where and are the density matrices of the two initial state particles.
Normally these will be the unit matrices but provision is made in the program 
to calculate spin density matrix elements with initial polarization. Returning 

to the former case for clarity we have

Px'X = , I Disc <x;x^xj |x̂ x̂ x̂ >.
C O  A A, Ma b

This matrix is then normalized by the condition that it has unit trace. To 
pass from the center-of-mass to the Gottfried-Jackson frame we must apply the 

Wigner rotation through an angle i{j which is given by

m ksinG
tan * = E^ksLe •

Thus, w e  have

These m a t r i c e s  m u s t  be hermitian, i.e.
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^m'm ”

If parity is conserved we have

m'm ”  ̂ '

These properties come from the way the matrix is constructed and the parity 
relations of the "amplitudes" used to construct them and, of course, we have 
them normalized to unit trace, i.e.

mm m
The program is dimensioned so that it is capable of calculating rotation 
■functions up to = 5/2.

CMA fairly detailed account of how p is actually calculated in the 
program will be given in Section 8.

5. TOTAL CROSS SECTIONS

The program performs the calculation

tmax max
dM^ dt <n>

min

2 dtdM̂ 9

by repeated Gauss-Legendre quatrature [52] where ^^ax’ ^ min ^max
2are set by the user and ) is calculated in the program.

The program was tested for rounding errors in this aspect of its 

calculation by evaluating

0
r 2 2 *dt f(t,M ) = 13.3 ,
g(M^)

where f(t,M^) = 1 and g(M^) = M^/50. The result was 13.333333333331.



6. MINIMIZATION

The program is written to allow it to be used in conjunction with the 

minimization program MINUIT 1501 . Since the data on polarizations and spin

density matrix elements is usually accompanied by large error bars, the 
program in its present state confines itself to minimizing on the 

generated by the data points for the differential cross sections. The variable 
parameters are passed through between the minimization program and ONCPLT 
using a user provided routine so that the only constraint on the type and 
the number of parameters is that provided by MINUIT (501 . The is
defined by

x' = 1
All Data 
Points

dtdM experiment - - > 7  AdtdM theory

Standard Deviation of <n> 2
^ dtdM experiment

For a single data point a x < 1 represents a theoretical value within the 
statistical error. Overall normalization errors are not taken into account 

in this formula.
A l o n g  w r i t e - u p  on MINUIT I 50 1 should b e  c o n s u l t e d  b e f o r e  m i n imization  

is attempted.

7. PLOTTING THE RESULTS

While the program gives a comprehensive output via line printer it is 
often useful to have a visual comparison of the theory with experiment in 

the form of graphical output.
The program contains a routine which interfaces with a plotting package 

APLOT [491 and this routine plots the differential cross sections, the density 
matrices and the effective trajectories with the data points and their error 
bars if desired. We can have up to 20 plots in columns of four plots each on
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paper 21 inches wide. It is also possible to plot total cross sections but 
in this mode only one plot is allowed. A multiplicative scaling of all plots 
is allowed by changing one card of the program.

8. THE COMPUTER PROGRAM

a) Commentation

Each routine cpntains within itself sufficient comment cards to make 
itself intelligibile. Further, in the routine FCN there is 
i) a list and a description of all the COMMON variables 
ii) a description of user provided routines
iii) a description of the data cards required.

b) List of subroutines
Fig.2.3 gives a list of all the subroutines of the program and also the 

calling sequence. The reason for inclusion of this figure is that it allows 
the user to easily identify portions of the program to be deleted if a particular 
function is not required, e.g. total cross sections. Thus, in this example,
TOTX, EMMAXX, QMULT2 , FUP, FLO and FN may be deleted but BLOCK DATA must 

remain if Gamma functions are to be calculated. .

c) Flow Chart of TCHISQ
The Schematic Flow Chart, shown in fig.2.4, is included to give an easily

read account of all the options open during a call to FCN (which will normally
call TCHISQ). Almost all the decisions are taken according to the variables 
MODE and IFLAGl - 6 a full description of which is given in the comments in 

subroutine DATIN.
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USER
LEVEL

INTERNAL
ROUTINES

FCN DATIN

SETUP

--- ------- 1i DATUP

-  - PARAM*
U66CC* ■
U66NF*
DELMIN
EMMSQ

EMMSQ 

DEL MIN

DATOUT

PARAM
TCHISQ GLQ2P8

AMPUP*
DM

EFFTRA
APLOT

TOTX

RESOUT

SIGTOT
TRACEU
TRACEN

TRACU1-5'
TRACN1-5*

RM12
RM1
RM32
RM2
RM52
MPROD

ROTANG
ROTANG
ROTANG
ROTANG
ROTANG

PLOT*
SYMBOL*
NUMBER*
LOGAX**
LINAX**
M CURVE**
ERRV**
EMMAXX
QMULT2

DELMIN
DELMIN
FUP
FLO
FN SIGTOT !

TRACEU i  TRACU1-5**
TRACEN |TRACN1-5^

GAMMA

DELTA

USER PROVIDED
PLOTTING SYSTEM ROUTINE
PLOTTING PACKAGE ROUTINE

Fig,2.3. List of subroutines incorporating calling sequences
57



( ÛBBQOTIHE TCHiTÔ"^
-(  START OF UOOP OVEA PROCESSOR

- (  START OF LOOP OVER E N E R G IE S ^

 (  START OF LOOP OVER DAT* BInT )

— ST*BT OF LOOP OVER OAT* POINT?)

TO FIXED t  OR FIXED M» MODE

I GENERATE AMPLITUDES I 

ICALCUEATE SPRI DENSITY MATRIX

(  RETURN )

Fig.2.4. Schematic flow-chart giving the structure of subroutine TCHISQ 58



d) Description of the Output

Section 2 gave the kinematics in terms of the particle labels a,b and 
c but throughout the program the particle labels 1 , 2 , 3 and 4 are used.
To calculate certain kinematics particle 1 is taken as the beam particle and 

particle 2 is the target particle. For I FLAG = 0 we make the association 
a = Ij b = 2 and c = 3; for IFLAG = 1 we make the association a = 2, b = 1 
and c - H. Apart from this complication the output is written so as to be 
self-explanatory. Any further explanation of the variables can be found 
either in DATIN or in the common block commentation.

e) Coded Normalization

The differential cross section is calculated as 
[AN0RM(lP)/(64n^k^)]& TRACEU (or TRACEN),

with ANORM(IP) = SPIN(IP)*(Normalization Factors), where SPIN(IP) = 1 for 
particle a of spin 0 and SPIN(IP) = ^ for particle a of spin 5 

OT a photon. The normalization factors will be the highest common factor 
of all the s-independent factors which need to be calculated for the various 
parts of the matrix elements. Individual differences from this value must 
be accounted for in the subroutines TRACUl-5 and TRACNl-5.

f) Numbers of Processes
Each call to FCN can deal with up to five processes with the type of 

process determining which TRACUl-5, TRACNl-5 subroutine is called and all these 
processes can be of differing or of the same type. Each process can have up

2to 5 different energies and each energy can have up to 20 different t or M
bins. The total limitation on the number of data points is 500 (or 100 if
density matrix or effective trajectory.data is read in) but,this requirement could
be relaxed simply by redimensioning certain arrays and changing the error
statements in subroutine DATIN. This allows the parameters of a model to be
determined from experimental data covering a wide range of processes and

2energies since the value of the x is taken cumulatively over energies and ̂  

processes.



g) Note on AMPUF and DM

The quantity is proportional to
c c

^==^2 'a ^ 1̂ 1 ^  ^  \> .

and it is quite feasible to perform the rotations to the Gottffied-Jackson 

frame using this formulation of the bilinear form. However, the program uses 
a factorizing technique, explained in the comment in the listing, which 
effectively treats

Disc <X* X X, It I X X X^>r< a  h  ' I r> =a K

where the sum over Y allows the effects of non-interfering exchanges to be 
fully taken into account. The dimensioning at present is for Y = 1 to 3 
and by extending this number in DM and AMPUP it would be possible to 
account for either more exchanges in a Regge pole framework or a regime where 
less factorization is possible.

h) Note on Interference Terms
In the Test Run of the program (see note (i)) we considered processes

—

where the allowed Regge exchanges are the tt, the p and for K + p A + X
and the p and the A^ for k" + p -J- K° + X, with absorption in the latter 
case. Since we have taken the p and the A^ trajectories to be strongly 
exchange degenerate throughout there will be no interference between these two 
exchanges for either pure Regge poles, or, in the particular model used for 

the test run, absorbed Regge poles.
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We also know 115 1 that in the regime of factorizahle Regge poles, the 
exchange of poles with different naturality will lead to no interference, 
for the unpolarized cross section in the normal Regge limits (s/M^

fixed). This property basically derives from the fact that a parity

transformation on 3 must take into account, for the phase factor, not
only the helicities and the intrinsic parities of the external particles, but 
also the naturality of the exchanged Reggeon i. Thus, when the sums over all 

external spins are performed the interferences between such exchanges cancel 
out. These two properties mean that in our Test Run it was not necessary to 
take into account any interference terms.

If, however, the condition of exchange degeneracy between the p and
the Ag trajectories, was removed, then all four of the diagrams of fig.2.5

*would have to be considered and not just the first two, i.e., the p - p
and the A^ - A^ diagrams. This would be perfectly possible within the
TRACEU, TRACEN framework of the program, where the appropriate TRACUl-5 
function subroutines would have to be modified suitably to take these interference 

terms into account.
Of course, when absorption corrections take place, the absorbed exchanges 

can be of mixed naturality and the TRACEU and TRACEN function subroutines are 

merely used to hand back the necessary variables.

i) The Test Run
As a Test Run the program has be on set up to calculate the tv7o processes

K" + p ^ K° + X and K~ + p + X. The results of the Calcoirp output are
shown in fig.26. In fig.2.6 we see the invariant inelastic cross section plotted 
against M^/s for fixed t and against t for fixed M /s for the reaction 

K + p ->■ + X. In addition the effective Regge trajectory
plotted for K° production. For the reaction K + p ^ A"*"̂ + X V7e have 
included a plot of the decay density matrices of the A . Details of the
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derivation of the amplitudes may be found in Mori arty and Tabor I 51 ] and 

Choudhury et al. [53] for K and single-particle-inclusive production,
respectively.

Various other calculations of a variety of single-particle-inclusive 

reactions using a number of different models I 35 ] have now been carried out 

using ONCPLT. In addition, the calculations of the DESY group(32,33,361, of 
Pumplin ( 40 1 and of Paige and Sidhu [39] are easily verified. The user 
is free to write his own TRACUl-5 and TRACNl-5 using whatever model he wishes.
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THE TOTAL CR0SS-5FCTIOM AT 27.97564? GEV**2 IS 1.4700512013A2 HTLLF-9A9WS

THE UNNATURAL PARITY CONTRIRUTION IS 6.9924756A0765 MILLE-RARNS

THE n a t u r a l PARITY CONTRIRUTION IS 1.114?3?412937 «ILLE-RARNS

THE TOTAL CHI-SOUARED AT THIS ENERGY = 127.75196194

THE t o t a l CHI-SOUAREO FOR THIS PROCESS = 127.75196194

THE TOTAL CHI-SOUAREO.FOR THIS PUN = 127.75196194

THE NUMRER OF CALLS TO TCHISQ IS 1

Fig,2.7. cont.
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CHAPTER III

Corrections to A Mueller-Regge Model 
Of The Reactions 0 % ->0 X Proceeding 

Via Charge Exchange
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INTRODUCTION

In this chapter we introduce a fairly simple Regge-pole model in the
s 2" /M large" region of single particle inclusive reactions which obviates 

the need to introduce free parameters of any form. We then make some rather 

stringent assumptions which allow us to calculate, in an extremely simple 

manner, certain absorption type corrections to our original pole-only 
distrib uti on.

To illustrate our calculations we choose certain of the reactions 

O O X proceeding via charge exchange, namely tt p -* 7r° X, tt p nX,

k "̂ P - K°X and K~p - K°X.

We choose these reactions in particular because in the case of exclusive 

reactions it is reasonably clear that while the Regge-pole picture provides 

an almost surprisingly good explanation of high energy scattering data, there 

are definite reasons, both theoretical and experimental (in terms of 

polarizations etc.) why some kind of cut correction must be included. 

Investigations of the precise form of correction required are best done in 

the simplest possible regime, and with as few free parameters as are absolutely 

necessary. The exclusive reactions ïï p -» 7r°n and tt p -► Tin have been much 

used in determining both the parameters for the p/Ag pole and also the sort 

of absorption corrections that are necessary, as well as the reactions I 54]
Kp — ^ n  and K^n K°p which are, of course, "line reversed". . These

reactions have been and will continue to be so useful precisely because they 

are so simple in the Regge-pole picture so that any humps and dips that one 

pole generates cânnot be masked by the contributions of others.

The reaction ir p ir̂ n is, however, limited in its usefulness as far as 

Regge-cut or Absorption models are concerned, since at small momentum transfers 

it is dominated by a helicity flip amplitude which does not seem to require 

significant alteration from the simple Regge-pole with Wrong Signature 

Nonsense Zeros 15 5] . The inclusive reaction tt p -► tt X is not expected to be 

dominated by flip amplitudes; we assume dominance by the helicity non flipV
m

amplitude for the main body of the calculation. Barnes et àl. [56] are
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carrying out the inclusive experiment tt p detection of two

photons, so there will be high energy data available for two of the four 

reactions in the near future.

We calculate the four reactions using strong exchange dege neracy for 

the p and Regge trajectories, and use SU(3) symmetry to relate the 

different particle couplings, since we feel that the introduction of any free 

parameters will obscure the form of the correction required, and in any case 

it can be argued that the measured deviations from exchange degeneracy 

should be precisely due to the cut correction required. We calculate all 

four inclusive reactions for completeness since the shape of the final 

absorbed curves depends not just on the size and rate of fall off of the 

cut corrections, of which we know a certain amount in advance, but very 

strongly on the relative phases of pole and cut, so that while the same poles 

contribute in a given reaction the final absorbed curves can look completely 

different.

1

= < 1 . 2 I T I 3 , X  >

2
X

F i g u r e  3 l a ) .  A R e g g e - p o l e  d i a g r a m  ( s / M*  l a r g e )  r e p r e s e n t i n g  o n e  c o m p o n e n t  
of a  s i n g l e  p a r t i c l e  i n c l u s i v e  d i s t r i b u t i o n  . wi th  X e m b o d y i n g  a l l  d i s c r e t e  a n d  
c o n t i n u o u s  o b s e r v a b l e s  c o n t a i n e d  in t h e  m i s s i n g  m a s s  s t a t e .

= —D i s c -

F i g u r e  3 1 b) . A s c h e m a t i c  r e p r e s e n t a t i o n  of t h e  g e n e r a l i s e d  o p t i c a l  t h e o r e m .
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FORMALISM

Our task in this section is first to produce a Regge-pole type expression 

for the process represented diagrammatically in Figs. 3.1(a) and (b) and then 

derive a prescription for performing absorptive type corrections to it.

Before we begin this it is reasonable here to exhibit the normalisation 

appropriate to single particle inclusive distributions.

We have, formally, for the quasi-total cross sections (we can only take 

events in which at least one particle of the type we desire is produced) 

that

3.1
f.s i.s

Where p r  represents the final phase space, E in the sum over final spin,
f.s

Z is the average over the initial spins , F is an initial state flux factor 
i.s.
and the symbol ^ represents all the integrations over the final phase space 

not accounted for in p^dI2^.

We can here make the usual definition of the appropriate relativistic 

invariants
2 2 2 2 s = (p^ + p^) , t = (p^ - q^) , = (p^ + Pg - Qg) 3.2

and in a less formal manner we have

< n > CT =
q

dM^
,3 _3

1(qg + qr^ - - Pg)  ̂%|M| . - 3.3

This form can be converted to the differential form by inserting the appropriate 

6-functions i.e.

Mx< n >
9t3M

dM

These integrations can be trivially performed to yield

3.4

< n > 2 2 8t3M 64-iïspX
z z|m|2

where p in the modulus of the initial 3-momentum in the Centre of Mass Frame 

of particles 1 and 2. j 71



It is conventional to include the term < n > with the cr since the 

product is the quaJity measured experimentally, and a more usual form would 
then be

s (s, t, M^) ^ 1 E 3.5
IT dtdI4 -.2 2

X 64tt p

This calculation can be found in greater detail in Appendix 3A.

We now return to the expression of Fig. 3. la), which can be written

formally as <1,2|t |3,X>. From now on in the derivation we will specialise

to the case where particle 1 is a tt , particle 2 a proton and particle 3

a TT°. When the final expression is obtained the changes necessary to

accommodate the other three reactions we will deal with will be fully outlined.

For the tt particle dissociating into a tt°  and an (off shell)

elementary p particle we could envisage a matrix element of the form

where, if we define

= (p̂  +

+ (p̂  - q^)^ 

we will have

G =  -̂-
(q " - mpS

with restricted to be a four vector only.X
A suitable current for the top vertex would then be

= ^  ( (f5>3 3.6

which, since
2 2 P.Q = - ny = o

maintains the required gauge invariance.
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p̂TTTT would be given by the physical coupling constant defined by [5 7]

4 =̂=■»=.
and the expression ( represents an SU(3) coefficient^ 2  3 1 1
which will assist in making the switch between reaction later on. The 
coefficients required for all four reactions are given in Table 3.1.

We can now expand the quantity | |< 1,2 |T| 3,x > |̂

X

The most general symmetric second order tensor capable of being 
constructed from the vectors available (i.e. (p^)^ and Q^) is 

An gVv' + (p^)V (p )V' +

Q^Q^' + + Q^^Pg)^') 3.8

X V V ̂and this must be precisely the form of the quantity { I  },
2here the Xs can at most be functions of t and .

X X
X

When we consider the form of the currents J and propagators G 

we arrive at the expression

: , .
(4>J )     -2.25 3  5 1 p - m )

P

{P^ A,(t. M b  + (P .p , )^  X,(t,Mb } 3.9

and since P in 0(1) and P.pg in 0(s) then in the limit we will
2wish to take, that is, t small and fixed, s “5 s/M " 5 the
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2 2 2 2 contribution from P A^^t, M^) is dominated by (P.py) and
consequently we will neglect the contribution from

to the cross-section. See Appendix 3. B for the precise reasoning for this
We can gain an insight into the normalisation and functional

2dependencies of A^Ct, M^) by considering the standard optical theorem 
for pp elastic scattering (for an off-shell p). The form we will 
finally adopt is

2 2 2 3.10A(M 5 m , m )X P P
2 2 2 1

where A has the standard form A(x,y,z) = [x*̂  + y^ + - 2xy - 2xz - 2yz]^

This form is not an exact equality. Various approximations have been
made to acquire a form which can be utilised in a practical calculation. 
Appendix 3.B contains the full motivation for this choice.

To make contact with a process for which there is an experimentally 
measured total cross-section we consider the Vector Meson Dominance model[58] 
(See fig. 3.2) and picking out the p term from the sum over the 
available vector mesons we can say

cjPoP ■ ..... 64.9 , .65  . 2 = [98.6 + x-T I . (0.27) .    n--- '
(t - m ) (M )2 (1 - / 2)p X mP

This has given us a non-Reggeized form of the matrix element we require.
2In the kinematic limit stated before i.e. t small, s ->■«>, . s/M^ ->■ » 

we can perform the required Reggeization via the replacement [571

— 2 - r(l - ./t)). a---  V - ----- (^2)
p X
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where a (t) = 0.47 + 0.905t. Combination of all the exhibited formulaeP
yields for the reaction tt p ^ tt°x

,2 r ĝ TTTT 2 2

X ^ F
8m^ PP , (1 + T )

-  - %<*» ft;) — ^ -------  ■

-ilia, (t )
3.12

On closer examination this form, is the limit we have described, 
corresponds precisely to the accepted inclusive Regge formula [16] illustrated
in Fig. 3.3a i.e.

.2
^ - ".(t) C.(t) 3.(t) Ç.(t)

dtd (My ^/s)  ̂ ^  ̂ i

a.(t) + a .(t) 2
( S J   ̂ 3 Disc^2 A.2^.2 (M^, t) 3.13
MX

In fact the form we have produced and will use henceforth is
equivalent to the Triple Regge formula illustrated in Fig. 3.3b) because

2we have introduced a "high energy" (high M^) form for the cross-section

^Tot’ thus the true kinematic limit we ,are using is
2 2s/M^ -► », ^ », t fixed. It would be possible, though, by using

a lower energy form for to lift the condition of large .
This has been done by another author for a different reaction with some

'
success [59]
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F i g u r e  3 2 .A d i a g r a m  for  t he VMD model  w h e r e  t he  %-p t o t a l  c r o s s - s e c t i o n  
is m a d e  up of a  s u m  of t e r m s  s u c h  a s  t h e  a b o v e  w h e r e  M s t a n d s  f o r  o ne  
of t h e  1" m e s o n s  which c a n  c o u p l e  d i r e c t l y  to t h e  p h o t o n .

1

Disĉ î

f o r  t h e  e x c h a n g e  of R e g g e o n s  i a n d  j

F i g u r e  3 3b) . The  two t r i p l e - R e g g e o n d i s c o n t i n u i t i e s  wh i ch  c o n t r i b u t e  to t he
fo r m of e q u a t i o n  3 13.

s
DiscMî

to
Fi g u r e  3 Ü.A R e g g e i z e d  3 - p o r t i d e  d i s c o n t i n u i t y  s h o w i n g  a d d i t i o n a l  e l a s t i c  
s c a t t e r i n g  in t he  1 - 2  c h a n n e l s ^
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since we wish to incorporate the concept of strong exchange degeneracy
and S U  (3) symmetry in order to avoid introducing any free parameters, having

gained the expression for the reaction it p^ 7t° X we can make the transition
to IT p -> nX by changing the signature of the pole from x to t , andP A2
alter only the Clebsch Gordan coefficient ((^_) (<() ) ) to ((ÿ ) (4v) ) . ,

 ̂ 3 F 3  ̂1 D
while leaving the coupling constant alone. Similarly when going to

K p K°X and K^p K°X we can simply add both the p and

contributions with their appropriate signature factors and SU(3) factors.
The set of SU(3) coeficients is presented in table 3.1.

We are now at the stage where we have a relatively conventional formula 
for the single particle inclusive matrix element which involves no free 
parameters.

The next stage is the implement a rather simplistic scheme of absorption 
type corrections. To do this we consider the full expression associated 
with the diagrammatic representation of fig 3.1b), namely 135]

"̂2 ^3 (p^ p, Pg ; Pi Pg p,)

ii A -  ^
 ̂ / i-iX(n,Ç) 2E^ 1=1

< pj Aj, ... k^|T|p^ Pg 2̂ >

■Î P 3  A g ,  kj^ k ^ | T | p ^  Ag- P g  Ag > 3.14
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Our main interest lies in the helicity behaviour of the intermediate 
missing mass state and to exhibit this more clearly we write

E
x(n,C)

( n -dr k. . n
n
i=l i i=l

-  (,%: + P3 - Pi - Pg)

|p3A3;ki...kn><p^X^;ki...knl

= : Ip3^3’Px®xV x^‘̂P3’'3>Px®x x̂''x I
Sx^x^x

where s^ and represent the spin and helicity of the intermediate

state and rî  represents all degeneracy labels not otherwise covered. This 
allows us to write

"x^AgAg (PlPzPs^PlPzPs)

= I <Pl^iP2’'2 |T|P3^3’P x ® x W
=x\x%x

<P3^3'PxSx^x%x|T|PlAlP2%2>

To perform a partial wave analysis on these amplitudes we choose the frame 
of reference where the intermediate state travels along the positive 
z-axis and to acquire independent expansions we only enforce

Pi + P2 - P3 = Pi + P2 - P3 - -

and not

Pi = PÏ, ?2 = P2» P3 V  P2

The mechanics of this analysis can be seen in Appendix 3.C and we give 
the result after transition to an impact parameter formulation as
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"A^A^Ag (PlP^PgiPlPzPs)

-i(J)(y -y, ) -i(j>’(y -y )
= Z e  ̂ e

JI.bdb J- - (bx) b'db'J. (b'x’)
b ^l"^2 Jb' ^l”^2o o

h (b ,b'5 s 5 M^) 3.17
" X ^

where

*1 = %x - %1 = %x -

2̂ ■ 2̂ \  2̂ " 2̂ "

kb^ = max {|ÿi| Jy^l) 

kb^ = max {|yi|sly^l)

where k is the three momentum of a particle in the initial C M state.
For high energies and small helicity flips we can be confident 

in setting b^, b^ = 0. Otherwise account must be taken more fully of 
the lower limit to the b-space integration.

We must now consider the use to which equation 3.17 is to be put. 

Appendix 30 makes it clear that the approximate form of 3.17 can only 
hold for small and the further approximations that b^ and b^ = 0,
which make the maniphlation of 3.17 relatively simple, are also only 
viable in a similar region. Since the formula is to be used for the 
reactions 0 X, X-,X^,X-,Xg = 0. The small angle behaviour of 3.17 can
be seen to be

X- (|S -Ï |) ' (|y -y |)
H. ~ E X x' B.

So for the case when x = x' = 0  the sum in X^ collapses down to one 

term, namely that for which^ Xg = X^ = X- when y^ - yg = 0 = y^ - Pg, 
since no compensatory flip can come from the 1-3 particle vertex.
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^2The form we will use for H posses a strong forward peak (see 
equation 3.12) at least for small M^/s. This indicates that for the 
forward reaction (t = t ’) we do not expect helicity flip into the missing 
mass state to dominate since if this were so, a forward turnover would be 

The lack of any sign of such a turnover and the small angle 
character of all approximations to this point lead us to make the 
supposition that helicity flip into the missing mass state is negligable.

In this case equation 3.17 simplifies to

bdb J (bx)
0

b'db' J (b’x’)
0

h(b, b ’ , s, M^) 3.18

where we have performed an integration over (J) and <{)’ which removes
their dependence from the L.H.S. and the factor of —^  on the

4tt
R.H.S. Equation 3.18 is the basis of the numerical calculations we will 
make.

Inverting this equation we find

2h(b,b’,s,M^) = dxx J (bx) f dx’x’ J (b’x’)
0 ° Jo

H (x,x’, s, M?) 3.19
2

We introduce absorption type corrections by taking some account 
of elastic scattering in the 1-2 and Ï-2 channels as illustrated in Fig. 3.4. I
In this scheme h(b, b ’, s, M^) is modified to the form I

^ j
S(b)h(b,b’,s,M^) S'*(b’) 3.20 I

' ' II
which is supposed to be the b-space decomposition of the absorbed discontinuity

iso I
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(t , t ’ , s, M^) =
fCO

db b J (bi)
0

S(b)S(b')
fCO

db'b’J (b’x’)
0

dx T J (bx ) [ d x’x' J (b'x')Q o o o  o o o o  o

"x, ("o-TÔ' S' «x)' 3-21

which gives the absorbed discontinuity in terms of the pure Regge 
discontinuity. The parametrization used for the elastic scattering 
matrices will be Gaussian i.e. [60]

-Xb̂S(b) = 1 - Ce 3.22
2where X = 1/R with R the radius of the interaction and C is the opacity,

Both these quantities can be calculated from experimental elastic scattering
data, and the values used are given in table 3.2.

It is worth noting here that we use the full value of C calculated
from the total cross section, Unitarity dictates that this value be less 
than, or equal to one, since a value larger than this would mean that 

the S-wave scattering would account for a negative particle flux. In 
a conventional two body inelastic absorption calculation illustrated 

by Fig. 3.5 the analogue of 3.20 would be

S?(b)h(b,S) S|(b).

which would then normally be approximated to
C. + C, 2

(1 - ( y — ) e )h(b,S).

using the power series expansion for the square root and neglecting higher
order terms. Since C., 4  1 this form does not violate unitarity

*
In our case, however, we have two separate partial wave expansions with 
independent,impact parameters, and so we can use the full value of C 

without overabsorbing the S-wave.
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R e t u r n i n g  n o w  to e q u a t i o n  3.21 and i n c o r p a r a t i n g  the form for the S 

matrices 3.22, we can p e r f o r m  i m m e d i a t e l y  t h e  two b - s p a c e  integrals 

using th e  for m u l a  [611

2
dbb J (bx) J (bx ) e 0 n n  o

and e q u a t i o n  3.21 bec o m e s

(t .t ', S, 1^) = r  dT^T^ 
-'0 ^

{
 ̂dto'To' H ( V o ’>

XX
I- lo (zf) ̂ 2 2(x'2+x'2)

fx'
e (2X^j ) 3.24

In o r der t o  evaluate the e x p r e s s i o n  in e q u a t i o n  3.24 w e  m u s t  insert
2

the fo r m  o f  e q u a t i o n  3.12 for H ( x  ,x ' , s, M ). B e f o r e  w e  can do this ^ o’ o X
there are slight problems. 3.12 includes a fact o r  r(l-Gp(t)) w h i c h

w i l l  p r e v e n t  the i n t e g r a l  from converging. This f a c t o r  arises f r o m  the

ghost e l i m i n a t i n g  m e c h a n i s m  in t h e  R e g g e i z i n g  p r ocess a n d  is t h erefore

v a l i d  o n l y  at s m a l l  t. We m a k e  the a p p r o x i m a t i o n
A t

r(l - o„(t)) ~ A. eP X
with

= 0 876886

Ag = 0 611 8 24

w h e r e  and A^ are f o u n d  u s i n g  a least squares t e c h n i q u e  o v e r  the

r a n g e  0 < (tj < 1  (GeV/c)^.

W e  m u s t  a l s o  e x t e n d  the f o r m  o f  3.12 fr o m  th e  f o r w a r d  direction.

This is e a s y  f o r  t h e  x^ an d  x ^ ’ dependence o f  the Regge legs (see

Fig. 3.4), bu t  for x^ X x^', t ^  w i l l  be n o n - z e r o  and w e  w i l l  expect
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that some dependence upon t^ should manifest itself. The form of this

dependence is not clear and the elastic scattering effects we have
;introduced will be peaked about the value = t , = t . The assumption

was made therefore to disregard any t^ dependence. This assumption 
is the most drastic, and least easy to justify of those made to this 
point, since it is only fully realised if the Reggeon-particle discontinuity 
is isotropic. We shall see later that we must pay a certain price for 
accepting this simplification.

With these approximation used and with the integral [61]

0 2^
2

dxx^ e"^* I

(J(y+n+l),y + 1; k /4a)

and taking account of the special cases

k^/4a

+ 1)

where ^F^, is a degenerate hypergeometric function, we can perform all 

the integrals necessary in 3.24 analytically.

---- >--- >  # — >— — >----
1. s '.V-

S/ 5 s/

---- >--- V J— >— e— >— L J — ^----
F i g u r e  3 - 5 . A R e g g e i z e d  2 - p a r t i c l e  ampl i t ude  s h o w i n g  a d d i t i o n a l  e l a s t i c  
s c a t t e r i n g  in t h e  ini t ial  a n d  f i n a l  c h a n n e l s .
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RESULTS

In figures 3.7 to 3.8 we present the results of applying the preceding 

scheme for absorption corrections to the four reactions

TT + P -*■ TT + x°
TT + P n + x°

+ P -v K° + X++
k " + P -K ic° + x°

for both t and Mv/i
In all cases we have made allowances for the edge of phase space which is given 
for the different mass configurations in figure 3.6. In the case of the q we 
have made no allowance for the branching ratio into yy which would possibly 
be the experimental method for detecting inclusive r\s since this is also 
the mode for detection as tt°s decay almost completely in two photons.

Figures 3.9 to 3.11 give results for the reaction K + p K ° t X° 
at an energy of p^^ = 14.3 GeV/c for which experimental data exists 162]

Turning to a detailed consideration of the figures, 3.6 shows that the
Itrain I effect leading to spurious forward turnovers should be negligible over

the whole region of interest for the ir ->■ Tr° reaction, while it should lead
to very noticeable effects for tt *> n. k"*" K° and K K ° present

2middle cases where the effect becomes noticeable only after about M^/s = 0.2, 
as seen in figure 3.7b where the M^/s fixed plot starts at |t|= |train|.
These inclusive phase space boundaries are not strictly simply a function of 
r^/s, and train 0 as s -> «> for all values of M^/sj however the approach
to the Ximit is exceedingly slow [63] and the presented figure, though valid 
at s = 100 GeV/c should be fairly accurate at attainable energies above this, 
though modification would occur at energies substahtially lower.

2, oFigure 3.7a) shows the fixed M^/s plots for tt p tt X and tt p -► ti X 

in which the allowed Regge exchanges are p and respectively. For the
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7î plots the naturality dip which occurs for the pole only graph (represented
2 - 'by long dashes) at |t| =0.51 GeV/c is moved in to about |t| =0.4 although

2this varies slightly with M^/s. It is substantially filled in, but by no

means obliterated in disagreement with the calculation of Pumplin [40] who
does not introduce a naturality dip in his pole only term and acquired no dips

via absorption. An experi ment by Burleson et al. I 54] at the energy of
2p^^ = 5 GeV/c present plots for fixed . This energy is much too low for

our triple-Regge type input model but some points of note are that a
2 2pronounced dip at t = 0.5 GeV/c occurs for < 2 GeV/c . This bin is

presumably dominated by the reactions n p ̂  n and ir p tt° A°. For
2the 2 < < 4 bin the dip is still noticeable, but considerably reduced.

2For the final bin, 4 < < 6, any dip structure, if present, is obscured

by the |t min| effect. The indication for larger that can be deduced
2from this experiment are that the dip at t = -0.5 GeV/c probably does not 

persist.
The n plots show no great difference between pole only, and absorbed

curves except for a reduction in normalization and the introduction of some
2very gentle dips for low M^/s.

Figure 3.7b shows the fixed M^/s plots for the reactions p x"*"*"
and K p -»■ K° X^. The K° reaction also has the absorbed curves not 
greatly different from the pole only curves with slight dips, as changes of
slope for low M^/s. The change in normalization again occurs. The K^reaction,

2 , 2 while behaving similarly for larger M^/s, exhibits strong dips for low M^/s.
These dips arise due to a combination of ignoring the dependence for non forward

diagrams and the method of treating p-Ag interference terms used - i.e. they
are treated as a p-p term with differing signature factors. We believe
these zeros are spurious, introduced by defects in the model. Of the two
mechanisms contributing, we believe the negligence of t^ dependence to be
the more serious.

2Considering now figure 3.8a, this shows the M^/s dependence for fixed t
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of the n and tt reactions. The tail-offs for large M^/s are due to the 
tmin effect over the t-bins which are 0.2 GeV/c^ wide. Any seeming 
discrepancy over normalization between the plots of 3.7a and 3.8a is accounted 

for by the fact that the differential cross-section point obtained for the 

centre of a fixed - t bin is found using 8-point Gaussian quadrature across 
the t-bin.

The TÎ plots show very little difference between the pole only curve 
and the absorbed curve except the change in normalization. The strange structure 
of the 7r° plots is attributable to the dip structure of pole only, and 

absorbed curves, although for small |t| the pole and absorbed curves are 

similar except for normalization changes.
Figure 3.8b gives the corresponding plots for the K° and K° reactions. 

Apart from the re-manifestation of the zero in the absorbed amplitude for 
t = - 0.7 in the K° reaction we again see little other than the now familiar 
normalization change. The slopes of pole only and absorbed curves for the 

K° at t = - 0.70 o differ slightly however.
In figure 3.9 we consider the reaction K p -»■ X° at the much lower

energy of p ^ ^  = 14.3 GeV/c or s = 28 GeV/c . We emphasise that no fitting

has been performed on the calculated curves - they are complete predictions.

As can be seen the average overall normalization of the curves is not ridiculous

which at least partly justifies our assumptions concerning this part of the
model. Also the t-dependance of the data is fairly well accounted for, at least

— 2as well by the absorbed curve as by the pole only curve. The M^/s dépendance 
is, however, not well accounted for by either the pole only or the absorbed 

curve.
Since our input pole model is essentially triple-Regge in form we would

2expect this at least to reflect the gross . M^/s behaviour, and unless the 
differences existing iû our model can account for the gross change of slope, 

we would be forced to consider changing Regge parameters to bring closer 

agreement.
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The two features of our model that could have some bearing on the overall
2 2 2 2M /s shape are the inclusion of the factors A(M , m m ) which is aX X p p

threshold effect, and causes the increase of all the curves for low M^/s.
An optimist would see justification for this in the lowest points for t = -0.50

2 2 . 2 and -0.70 GeV/c . A s  increases this factor approaches and so
2should not affect the larger behaviour. The other feature is the

inclusion of a terra proportional to in the term. This term

is indicated by the V.M.D. fit and also there is no reason to exclude it upon 
duality grounds since the pp channel would not be considered exotic. If 

this term were removed, all curves would rise more swiftly than at present; 

we cannot just take it out because we would like the look of the curves more
without it. Being dissatisfied with the fit of our curves to the data with
the predicted values to all parameters, we can change some of these parameters 
in order to obtain a better fit. The parameters we will free will be the 
overall normalization, the true Regge parameters f r the p-pole, and for the 
absorbed curve we will also free the opacity C, of the initial elastic 
scattering.

The motivation for this exercise is not just to see how good a fit we 
can obtain to the data, but also how far the parameters of the best fit are 
away from the predicted values, and indeed partly to make a thorough test of 
the minimisation facility of the program used for all the calculations, which 

is presented in Chapter II ,and which appears as ref.65.
The results of this minimisation are given in Table 3.3 and figures 3.10 

and 3.11.
The minimisation was carried out on the 28 data points which lie in the

II 2 ' 2region 0.2 < |t| < 1.0 GeV/c and 0.15 < M^/s <0.5. We do not include

the first t-bin (0.0 < |t| < 0.2) because this bin is affected by the |t min|

cut off which would be extremely (computer) time-consuming to allow for in a
2meaningful manner. We do not include lower values of M^/s since this
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2involves low values of M^/s which our model can account for at best in an

average sense. It could be argued that we should make our top M^/s cut-off
much lower to ensure that the top legs of the diagram (fig. 3.3 or 3.4) ar
properly Reggeizing. However the data seems well behaved up to the value

we use, and a substantially lower value would not yield sufficient points to
make a fit meaningful.

Model A, whose plots are presented in figure 3.10a consists of a pole
only model (C =0) with the other parameters allowed to move essentially
freely (note that for the minimisation we have removed the threshold effect 

2 2 2of A(M^, m^, m^) since it represents no physical threshold). The fitting
was performed on the fixed - t plots since integration occurs over the bin
which better reflects the way in which the data point was obtained. Because
of the scatter of dat points, which is probably statistical rather than .

2dynamical in nature, no fit could be expected to have a really low % •
2The fact that model A does have a x /( d.p) of less than 1 might be regarded 

as encouraging, but the parameter values are not. The worst parameter 
value found in that of which has a value of around 0.1. The trajectory
used in Model A seems to have little to do with the p particle. For Model B 

we constrain to be greater than, or equal to 0.3. This value is still
fairly well away from that expected for a p - trajectory, but at any rate 
slightly more reasonable. The x /(d.p.) for Model B is however much 
higher.

In Model C we allow the opacity, C, to be non-zero. The fit is almost 
as good as that for Model A, but C is reduced almost by half its predicted 
value, and the Regge parameters assigned unfamiliar values, though not

i
immediately ridiculous. A point of note is that if the data admits a slight

2curvature in the fixed M /s plots, this is better accounted for by Model CX , _
than by Model A.

The normalization changes in all three models are not excessive.
Figure 3.11 gives the effective trajectories for all three models.



A in short dashes, B in longer dashes and C solid. The A and B 

trajectories are just the input straight lines, but the trajectory for Model C 

is modified from that input. Its form is not too far removed from a straight 

line, and for a largepart of the range it lies close to that of Model A.

It is interesting to note that L.H.O'Neill et al. [66] have reported 
measurements for the reaction tt p X at 14 GeV/c and extract a fitted

p trajectory from a triple Regge fit to their data. They have only three 
points and the error bars are large but the fitted trajectory is

a (t) = 0.44 + 2.77t.
P

We cannot use this trajectory to make any excuses for the departure of 
our Regge parameters from those predicted, since our stance is that our 

absorption model will account for the difference between the effective 

trajectory and that predicted.
It does however show that the problem is not confined to one set of data, 

and that triple-Regge alone would not seem to account for the data without 
recourse to extreme Regge parameter values.

We note here also that their data does not extend to large enough values 
of |t| to resolve any questions abot dip structures.

All of the calculations for this chapter were performed by ONCPLT [65] 
and originally plotted by computer using the plotting package APLOT [49b
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CONCLUSIONS

We wish here to quickly draw together the implications of our model 

and the available data. It seems that the effective trajectory of the 

two sets of data we use do not correspond to the p trajectory found via 

two-body data, with exchange degeneracy, and some means must be found to 

account for this departure. The model we have put forward in the previous 

sections seems to go a short way towards doing this, phenomenologically, 

but by no means far enough.
—oThat is, if we take the effective trajectory of the K data to be 

that of Model A, Model C modifies its own trajectory towards that of Model A, 

but only from a halfway value to the true p trajectory.

In addition our model has various heuristic defects which are commented 

upon previously. These lead, among other things, to the spurious zeros in 

the K° plots, and also to setting all target asymmetries to zero, since we 

ignore sin 0(-m dependencies to obtain our initial formula. The target 

asymmetry of course has a factor of sin incorporated.

Some of these defects could be corrected within the basic framework 

of the model, however this framework is itself so much open to question that 

the effort does not seem justified. We therefore conclude that the model 

as presented is not sufficiently realistic, and that a less restrictive model 

must be developed.
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TABLE 3.1

Reaction Exchange D-type Coupling F-type Coupling

TT p-MT̂ X P 2

■iï p-)-r|X ^2 2//3

K"p+K°X P -/2

4 /2

K'*'p-»K°X P /2

Ao /22

SU(3) coefficients for the reactions 0 X proceeding via charge
exchange.

TABLE 3.2

Reaction 2Energy (GeV/c) C X(GeV/c"^)

TT p->-rr*̂X 100 .663 .0676

Tr+p-»nX 100 ■ .663 .0676

K+p+K^X 100 .536 .0729

K^p+K°X 100 _.553 .0676

K~p+K°X 28 .608 .0676

Absorption Coefficients
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TABLE 3.3

Parameter Model A Model B Model C

Symbol Predicted Value Limits Value Limits Value Limits
Value Enforced Enforced Enforced

C 0.608 0.0 fixed 0.0 fixed 0.362 0.0
1.0

N 1.0 3.644 0.0 2.113 0.0 2.080 0.0
6.0 6.0 6.0

*o 0.470 .099 -0.5 0.3 0.3 0.313 0.3
1.0 1.0 1.0

a* 0.905 .935 0.0 .931 0.0 1.494 0.0
2.0 2.0 2.0

X^/datc point 0.855 2.186 1.171

Minimisation parameter values with imposed limits and a x Xdata point) 
for each of the three models.
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<n> a =q dM'X

APPENDIX 3A

We have the expression for the quasi-total cross-section aq
2 f ^ ^ % x  4s‘*(q + q - p - p )

2E3 2E^ 3 1 2
X

Z Z|M|2 i  3A.1

The L.H.S. can he converted into a differential cross-section in t and 
2 by inserting their appropriate 6-function on the R.H.S. This 

ensures that integration of the differential cross-section will yield 
the correct form for the total cross section. We therefore have

r f ,3 3
8t3M X

X 2E 2E^ X
^ X

6 ( M ^  - ( p ^  t  ? 2  -  q g ) ^ ) 6 ( t  -  (p^-qg)^)

ZZ|M]2. Y . 3A.2

We can immediately perform the d^q^ integration to be left with

<n>l!za =3t3M2X
2 q dq^d Cose dj, g )

(2w) 2E3 2EM^

6(t - (p^-p^riGC^x - (Pj^+Pg-qg) ) ZZ|m | Y  - 3A.3

where q is the modulus of the three momentum of particle 3, and 8,(() 
give its spatial orientation from the line of particle 1 in the 1-2 centre

I 1 12of mass frame. Because of rotational invariance |m| will not 
depend on <J> and so the (p integration can be trivially performed to 
yield a factor of 2ir. • We also perform the integration at this stage
using the corresponding 6-function to be left with
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3t9M^ J 27T.2E 2EmX 3

We now make the transformation

2 2 Qdt dM^ = — — ^ 2pq dqdCos9 3A.5

which can be arrived at by considering

= (/I - E,)2 . 2

t -  m^ + m^ -  / s  • /nig + q^ + 2pqCos0

in the 1-2 C.M. frame, with p the modulus of the 3-momentum of particle 1, say.
It is possible to perform the t integration immediately to leave
2 2 3 a r dM

<n> ^2 - I  ----  —  • ---- <S(E + E -/s)
3t3M J 2n.2E^ sÆp ' XX M ^X

zz|m |̂ . -i

We now use the well known relation [671 that

6(f(x)) = Z — -—  6(x - a)
a |f'(a)|

where ̂ hê sum is over the zeros of f(x).
Since

3 A. 5

/”2 2" /  2 2 Eg + E - /s = vm + q + / M + q - i / s  o M 3 • XX
we have

6(E_ + E^ - /s) = 2E^ 6(M^ - %)  " 3A.73 M • MX X
This allows us to perform the final integration and inserting the form of the
flux factor for two particles i.e. F = 4/s p 3A.8
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we have

<n> = -----j zI|m |̂  . 3A.9
9t3M^ 5471 sp

A more conventional form, if symbolically incorrect for this quantity 

would be

^  zY|m |̂  3A.10
 ̂dtdM 6477 pX • ^

and it is this form that is used throughout.
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APPENDIX 3E

We consider the optical theorem which give a total cross-section as 
the discontinuity of the elastic amplitude at t = 0 , namely

2A(s,m^,m2)  ̂ ” Disc^CZ ”̂^^1^1^1^2^2^2^^ 3.B1

The case we are interested in is that of 1 elastic scattering, 
and using an M-function decomposition we can say

<Pl^l'P2^2|T|Pl^l'f^A2> = U®^2(p2>. 3.B2,

If we perform the helicity sum over and consider the available tensorial
forms for M we have

2A(s, o^oyCs) = (Z ♦ XgCpgl^Cpgl^le^Cp^)) 3.B3

Now we have

e ° ( p )  = ( I p I ; E  £ ) / m

€'(p) = (0; n- (p)) 3.B4

where - p = 0

and Z e j " (p) E^(p) = 3

we are also using C.M. helicity states and so, for this exercise,
2 22^ = - pg can easily rewrite 3.B3 as 2A(s,m^,m2) ct̂ q̂ (s) =

3X + ,A(s,m^,m^) 2 3.B5
\ 2m^ /

Translated back to the notation of Chapter H i  the s we are using here
2 2  is M . The contribution from X„ is enhanced by a factor of s over X ^

that from X̂  ̂ in equation 3.9. -Since equation 3.B5 shows that X^ can
2 2only be enhanced by a factor of (M̂ )< over X^ we see that the contribution

of X^ in equation 3.9 must be suppressed with respect to that of X^ by
2 2 2 a factor of (M /s) ,, and so in the limit s/M we can ignore theX

contribution from X^ in 3.9.
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The problem of how to decide on a reasonable form for
persists however.

We can split the contribution to the total cross section coming from the 
differing polarization of the 1" particle using 3.B4 and we have

2A(s,m2,i„2) = Disc^ \

2A(s,m̂ ,ni2) ~ Disc^ X̂^

2A(s.m^,m^) = Disc^ \

So if mass-shell 1 5^ elastic scattering were possible we could 

use the differing polarization to find a reasonable expression for Disc X^.
Without introducing free parameters then, the simple choice seems 

to be that we neglect the longitudinal cross section with respect to the 
transverse and therefore write

2
X = °̂ TOT 3.B7

2 2.A(s,m^,m2)

We also pass to the regime in which equation 3.B7 will be used, namely.
m., t without altering the threshold factors, since the simple replacement

of m^ by t results in nonsense, and no other replacement is obvious.J.
The philosophy of equation 3.B7 and 3.10 is therefore to give X^ 

a reasonable functional dependence and while the normalization is certainly 

not definitive it should not be ridiculous.
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APPENDIX 3C

We wish to perform a partial wave analysis upon the expression
„ H  2̂ ^3 , ,
“ , , , (PiP2P3 ’ P1P2P3) 
h  2̂ ^3

J, I 'P I P3 3’ Px̂ x^x^x^

<P3^3' PxSx^xPx|T|Pl^lP2̂ 2>

Now in a obvious change of notation we take, for a two particle C.M. state
I 0 4 p p > = Z /2J + 1 \&D̂ , (4,8 ,-*) IJ M y,y«>

JM I 4tt / ^

where the two particles plane wave helicity state is related to two
particle angular momentum helicity states [58]

Note that y = y^ - ŷ  ̂which defines our type 1, type 2 particle convention. 

Thus
< ©  $, y y (T| 0 (t»,y. y > = Z / 2J + 1 ©, - $)

J M I 4ir ^^f

G' - < P3 P4 IT ^(s)| > } 3.C2

where y^ = y^-y^, y^ = yg - y^ and angular momentum conservation laws 

enforce that J and M are equal on both sides of the T-matrix, and ' 

rotational invariance gives us that the T-matrix does not depend on M.

Ifhen we define ^1 ” ^x ~ ^3

Pi = ^x " 3̂ 

2̂ ■ 2̂ ' ^1 

*2 = ^2 "/i
and remember that the kinematics is,such that the missing mass state is 

travelling along the positive z axis we can write
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x_x_x
H î 2 3 _ y y 2J+1 2J»+1
Ank-X- y  ̂ _ 4tt 4tt

X J = max { |yj_|, IU2 I ̂
= max {jy^lilygl}

ü (4^6, -4)) -*')

I <X;X2|TJ(s,Mx2)|XgXx' V x >
SxPx

^^3^x V x |T 3C-3

and since (a.g.y) = e’“ “ ' di,^(B)

we have

m -i(f)(y„-y,) -i*'(y -y_)
" 4 %  = I • •X

J' = max { lŷ l̂ J p 2 U

I <XjX-|T^(s.M^b|X3X^s^n^>
V x

<A3^x:xPxlT''(%"x')|ll%2> ' 3C.4

This in fact completes the partial wave analysis of the amplitude, but as 
such is in a form that is not readily usable. We wish to make the impact 
parameter approximation which leads to a remarkably simple form in which 

to make absorption type corrections.

Defining

V  =■ i , ^ " i ^ 2l ^ ' ' < * * O l V x W  •

<A3Ax:xPxlT^( = '"x')l'l'2>

=x'Px
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and

J = max
J'= max { lŷ l̂ , lŷ l }

d;̂ ’ (8') h (J, J», s, M 2) 3C.6
^1̂ 2 '̂x

The first step towards the impact parameter approximation is to write

in an approximate form with J and J* treated as continuous parameters
. X

and the summations over J and J’ as integrals. We can justify this
2procedure physically if h. (J, J*, s ,  M ) does not have a strong

X *
variation between contiguous values of J, J ’ and so the continuous 
function can account reasonably for the J, J ’ behaviour in an average 
sense. H can then be expressed as

X

H
^x 4.2

dJ(J + i ) dJ'(J' + J) d- - (0) d*̂ ’ (0’)
^1̂ 2 ^1̂ 2

J = maxfly^llygl) J'= max {|y^||y^|} h^ (J, 3C.7
X

... The next step is to approximate the d'̂  functions since their precise 

form is very complicated. A general expression is

-m')fo'v - y I (-l)^[(j+m)I ( j-m)I Cj+m* )I (j-m* 
m*m " n i  (j-m'-n)I (j+m-n)I (n+m'-m)înî

(Cosa6)2i+m-m'-2n(_sinig)m'-m+2n I ■ 3C.8

This can be approximated to order (1 - Cos3) in the form

X(j,m',m) J^^_^^(2(l-Cos3)X(j,m',m))2j 3C.9

where X(j,m*,m) = j(j+l) - ^m’(m’+l)-^m(m-l) with j ^  |m'|, |m| and 
m' ^  tn. J is a Bessel function of the first kind. This can be seen 

using the series form for the Bessel function 15 91 110



j ,  ÏTfR Ï i )

T h i s  a p p r o x i m a t e  form w i l l  be v a l i d  for small angles 3 whatever 

val u e s  m  a n d  m ’ take on, but is still diff i c u l t  to a p p l y  because 

o f  t h e  c o m p l e x  form for the X factor a n d  th e  V functions. At high 

e n e r g i e s  a n d  f o r  small angle scattering it can b e  a r g u e d  th a t  the region 

o f interest w i l l  b e  th e  h i g h e r  pa r t i a l  waves, i.e. i n t e g r a t i o n  o v e r  regions 

w h e r e  j >> 1. Also in two b o d y  s c a t tering c l e a r l y  m  a n d  m ’ will be 

o f  the o r d e r  o f  1 , a n d  in this case a f u rther l e v e l  o f  a p p r o x i m a t i o n  

can be made. W e  w i l l  have X ( j , m ’ ,m) ^  (j + 5 ) and, fo r  m' = m  o r  

for b o t h  a r o u n d  a value of 1  w e  w i l l  have

r(j+m* +l)r(j - m + 1 )
r(j+m+l)r(j-m'+1)

an d  thus

SiniBl 3C.10

T h i s  e x t r e m e l y  ele g a n t  a p p r o x i m a t i o n  to the f u n c t i o n  has b e e n  w i d e l y

u s e d  in two b o d y  scattering, h o w e v e r  in the p r e s e n t  case t h ere is a d i f f i c u l t y  

in u s i n g  this form. It w i l l  b e  p e r f e c t l y  adequate fo r  s m a l l  values o f  the 

m s s i n g  m a s s  h e licity, Xy, b u t  t h e o r e t i c a l l y  X can b e c o m e  very l a rge  

as g r e a t e r  h e l i c i t y  flip into the m i s s i n g  mass s t a t e  takes place. We rema r k 

h e r e  that f or 3 = 0  no h e l i c i t y  flip into the m i s s i n g  m a s s  state can 

take place, a n d  h e l i c i t y  flip w i l l  b e  s u p p r e s s e d  for s m a l l  values of 3*

S e t t i n g  t h e s e  p r o b l e m s  aside w e  can say at l e ast for small values of

X thatX
H, = I dJ (J + 1)

X 4.
J=max{|y^| lŷ l } J’=niax{|yĵ | lŷ l >

J— — (2(J+g)Sin^8) J (2(J*+^)Sing8')
4l"4 2" . ^l'^2

h, (J. J'. s, 2). 3C.11
^x
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If we now define

b = (J + l ) / k  T = 2kSin20

b ’ = (J’ + &)/k t ’ = 2kSinl0'

where k is the modulus of the three momentum of the initial particles then

o o

h (b, b', s ,  M 2) 3C.12
where

kb^ = max }

kb'^ = max 3C.13

For high energy interactions k goes as / s  and so, if is small we
can set b and b ’ to zero. As the missing mass increases, so should theO O o a

available spin states, thus in our previous notation the sum extends
to larger values, and with the possible values of that can be

2attained. If the maximum s that we need consider increases as MX X
2then in a kinematic region with /s fixed we have b^ increasing as

/ s  for the largest possible values of A we need consider. If s

2 1increases only as (M^ then b^ will behave as a constant for large
2A^, and for increasing less rapidly with ' we will be able to

set b^ to zero for all values of A^ encountered.
Assuming that this is the case, or at least for small values of A^ 

we can invert 3C.12 using the orthogonality properties of the Bessel 

function, namely

x J ( a x ) J ( a ' x ) d x = — ô ( a ' - a ’). 3C.140 V y a
Thus

h^ (b', b, s, M^2) = 47̂ 2 j™dTT J-_- (bx)
1̂ 2Cdx'T» J (b'x') H, (t ,t ' , s . Ml 2) 3C.15

0 V 2̂ \  *
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CHAPTER IV

A Closed Regge-Eikonal Formula For 
Multiple Exchange Contributions to the 

Inclusive Six Point Function
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INTRODUCTION
In the previous chapter we formulated a fairly simple 

model for applying absorption type corrections to inclusive 
spectra, more on a phenomenological level then theoretical, but 
were forced at the end to conclude that it could not account, in 
the given form, for the physics of the situation. The choice 
is to persevere with the basic framework of this simple model 
and add some complexity and refinement to the structure, or to 
attempt to derive a completely new formula which will not contain 
any of the basic defects of the old.

There have been by now, many attempts at the problem of 
introducing corrections of the re-scattering or multiple exchange 
type. Several [ 35.46 ]concentrate on the initial channel as we 
did in the previous chapter. Pumplin [40] argues that 
rescattering between the final particle and the non-dissociating 
particle in the fragmentation region should be the important 
mechanism. Paige and Trueman[38] analyse the situation from 
the standpoint of Gribov calculus, but are unable to present a 
phenomenologically useful formula due to the generality of their 
method.

We wish to produce a closed formula that will be of greater 
generality than the approaches which take one or other of the 
possible rescattering channels into account. To this end we 
will work with the Regge-Eikonal Approximation, first proposed 
by Frautschi and Margolis [70l and subsequently given a certain 
amount of respectability when it was derived by summing nested 
ladder diagrams in a (j)̂ theory, with certain extra assumptions
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[71]It must be emphasised here that one of the primary 
purposes of this derivation will be to determine precisely 
which assumptions must be made in order to extend this concept 
from the two body case where kinematical considerations dictate 
that the exchanged momentum become transverse, to the 
inclusive or 3-body case where more complex considerations 
come into force.

The technique we use in order to arrive at our eikonal 
approximation will be a simple generalisation of that of 
Abarbaniel and Itzyksorl72] . They use the technique of 
functional derivation to sum up all multi-meson exchanges in 
a two body case. In Appendix 4A we present this technique in 
slightly more detail than that found in the reference.

The generalisation we use involves partly the exchange of 
four point Green's functions whose legs we composed of 
spinless mesons. We use this form since it is suggestive of 
■exchanging sums of ladders which, in a leading logarithm 
calculation add up to a Regge pole behaved exchange 1731 
which is the behaviour we require finally.
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DERIVATION IN THE THREE BODY CASE
In this section we wish to proceed with the derivation of 

a Regge-Eikonal correction to the one-particle inclusive 
reaction. We start by considering the three body "amplitude" 
shown in figure 4.1. For simplicity we consider the equal 
masses case. We do this by exchanging four point Greens 
functions between various of the legs of the six point functions. 
Since we will finally wish to go to the Regge limit of these 
four point functions, we exchange them only between legs that 
will have a large channel energy in the limit that interests us
namely s-»-», s/M̂ -̂ «>. Bearing in mind that we wish to take a
discontinuity in we need only consider exchanges between a, 
c and b legs and a, c and b legs. All other exchanges will 
either not Reggerize or, in the eikonal approximation to be taken 
later, will disappear when the discontinuity is taken.

We must then, write the analogue of equation 4A.1 for the 
three body case which interests us. This is complicated by 
the fact that we must attach not only four point Green's function 
in all combinations, but also a six-point Green's function 
which we will take to account for the,possibly,large momentum 
changes between particle a and particle c in the fragmentation 
region.

One expression we could use for this would be 

(2n)'6'(Pa + Pb - Pc ■ PS “ Pb P3'

= D*DyD Lt n(p*-m^)<p,,iGC )g"‘g {A) 1p^>
P^-m^

- 1  . . ,     - 1<pr|G(B)G% G{B) Ip. ><p-|G(A)G " G(C)|p >

A=B=C=0  ̂ 2
A=B=C=0
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where the D,D* operators would account for the exchange of the 
four point functions in all possible combinations and the term 
Dy would have the form

D, = g c W  ^

6A(yi,) 6B(ys) 6B(ye) 4.2

which could account for, say, a charge exchange reaction between 
particles a and c. The formulation of equation 4.1 would lead 
to diagrams of the form shown in figure 4.4, where the 
attachments of the legs deriving from the and are 
intermingled. Only in the case where no large momentum need 
travel through the various Green's functions i.e. the case where 

is small, could this formulation possibly eikonalise in its 
entirety. For large, at some stage large components of 
longitudinal momentum must flow away from the momentum of 
particle a to form the large missing mass.

Since our task is not to consider in detail these complex 
momentum effects we accordingly assume that our four-point 
Green's, functions G** are strongly suppressed not merely for 
large |q^|(see figure 4.2) but also for large components of 
momentum travelling down any of the legs. This assumption of 
k//i->o is after all the main content of the eikonal 
approximation. We also however, insist that the large 
components of momentum do flow down the legs of the six-point 
Green's function, G®. This treats two objects, which might 
seem superficially similar, in a completely different manner.
The main justification for this is that it allows us to 
achieve our stated end.
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We can then, either discard completely those terms which 
are represented by that of figure 4.4, or, since time ordering 
becomes unimportant in the eikonal approximation, we could 
consider gathering together the legs of the G** that inter
sperse those of the G® and separate them from the G**'s, that 
will eikonalise. This amounts to a redefinition for the 
input G®.

Whichever of these courses is adopted we utilise the 
completeness relation

/(2ïï^ 27r5‘*’(p2-m^) |pxp| = 1 4.3

since the scources act only on single particle states and can 
then write

(2m)'6'(Pa+Pb-Pc-PE -£S + Py) H(Pa'Pb'Pc'Pl'Pb'%c)

= D*ofn 3 2n6^(p*-m:)2n6+(pi-m:)
' a,a TSTT" (2TT)'’ “

T * ( p j , p ^ ; A )  T * ( p ^ , p g ; B )  T ( p g , p ^ ; C )

ï(p;.Pb'Pc'Pi' P è ’ pé>

T(p^fPpc) T(Pjj,p^;B) t (p^,p^;A)

A=B=C=0
A=B=C=0

4.4
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where
t (p ,̂P(J[;A) = <p^ |Texp{-i |dTA(X-2Px)}A(X) 1p^> 4.5

o

whose derivation can be found in Appendix 4A.

*We can now define the two operators D and D . 
We say

P " °ab(A' A)-^ac,b(A' A '  A )  °cb(A' A )

°ab = T O I T  y o

aB(ys) 6B(yn)

°ac,b = exp liJn^^d-y. &ÂTFTT TcTFIT ^'(y:, yz' y=' y-)

6B(ya) 6B(y%) 4.6

Tiie eikonal approximation can be made in equation 4.5 in a 
similar manner to that in Appendix 4A exvept that instead of 
the symmetric approximation used there we replace the operator 
P J.n each t by the external momentum. This should not lead 
to extreme errors and simplifies the calculations.
Thus

T (p/, p; A) = fd*xe^(P ^  ̂ ^ exp[-i fdTA(x-2pT)I 4.7
. “ / loa

We can also carry out the functional differentiation by noticing 
that it acts as a shift operator as in Appendix 4A and we find, 
the lengthy expression arises
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(2 7I)‘*6"(P^+Pb-Pc-Pj -Pb +P?)H(Pa'Pb'Pc'‘P?' Pb' P^)

T 2^  2w6+(p':-m:)2n6+(p^:-m:)
Y

X( n d'%, d'xâ el(Pa-Pl)'*a+i(Pb-Pb)'=b+i(Pc-Pc)'' c
 ̂6 B ® ®

ei (P^-Pg) • x^+i (Pg - pg).Xj^+i(p^ _ p_).x^

00 00

expli /dx^dx^ jax^dxg
“a “b

00 00 00 00 00

(dta jdTc A V ^ b ‘̂ L,b+^ jax^dx; /dXj^dx'G^j^ 1
“a “c %  “c \

( 2n )  6 (p;+Pb-Pc"Pi - PÉ + PÉ) %(Qac' °bb' =ab'“x^

=  ê P̂ t i A^b'^'^b-iaa— “19 av^ t> V. a— Or-a b
00 GO CO

f ^ b  ^ è è , b ^ ^  I f j E  I f j b  arg SEE ' 4-8
°̂ a “c %  c  %

where

° a c  = (P;-Pc) = <P|"P5> ' ^bB = <Pb"PB>

and

G^b = G (2pg (x^-x;) ,%a-Xb-Pa (t^+t^) +Pĵ  (Xĵ +x ') / 2p̂ , (Xĵ -x̂ ) )

Gcb = G(2p^(x^-xp,x^-xj^-p^(x^+xp+pj^(x^+xp,2pj^(x'-xj^))

Glc,b = G(x^-2p^x^-x^+2p^x^.li(x^+x^)-xj^-p^x^-p^x^+

Pb(Tb+Tb)'2Pb(Tb-Tb))
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Before we continue further there are two points of 
interest to note about the form of equation 4.8. The first 
is that, as will shortly become clear, we can define two 
independant impact parameters Bab, Bcb. In the case of 
where we have quasi-two-body scattering we would not expect 
these impact paramters to be independant. However, for 
large we would expect such independence from naive physical 
arguments. Secondly we must realise that equation 4.8 does 
not give the whole story - it forms the most complicated part 
but does not allow for diagrams where some of the possible 
elastic scatterings do not occur, and most transparently does 
not allow for the case where no intermediate scattering takes 
place. These unconnected, or partially unconnected pieces 
could be allowed for at this stage, but the resulting expression 
would be considerably longer than 4.8. The analysis for these 
pieces would also be simpler than for the expression of 4.8.
We therefore carry this analysis through and remark at a 
later stage what effect the inclusion of these pieces would be.

We simplify the expression of equation 4.8 by making 
various transformations of variables. The first will be

y&b = *a-*b'ycb = Xc-*b' X = i(*a+*b+Xc)
- 1 4.10

The Jacobeans of these transformations are unity.
Equation 4.9 tells us that there is no dependence on X or 

X in either of the exponential factors and of course Y is 
defined as translationally invariant so we immediately perform 
the d**X, d"*X integrations which produce the factors
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(2Tt)"6''(p^+Pjj-p^-p'-p^+pP (2ïï)-6‘*(p^ + P g - P g - P g - P g  +Pg)

These two 6-functions allow us, in combination with that already 
existing, both to factor of the overall conservation of 
momentum 6-function and also to perform the d^p^ and d"*py 
integration. If we also notice that, having performed these 
integrations we have

i(#(Pa-Pa) - &(Pb-Pc-Pb+Pc))-yab i^Pa'Pa^-^ab
e = e

i(|(p'-Pc) - i(Pa+Pb-Pa-Pb')-fab ^(Pc"Pc>'^ab
i = e

We can write

Sab' ^x> = l f î ^ T 2 & -  2iT6'^(p;^-m^)

2n6^(p'-mZ) 2n6^(pr^-m^)

( ^ ^ 2w6^(p— — m^)2w6^(p^^- m^) 27r5̂ P;r̂ “ )
J ITFT' T H T  ^ ^

i(p% - Pz)'y%K i(p% - P%^.y%c T  ̂   ̂  ̂ ^a a -̂ ab ^  ^  "^cb i9a_ i9a, i9a -i9a_G e a b c a

zifgz exp,lVab+iVac,b+iVcb' ’"‘Q^c'^f^'OBb'Sab'^x')

Gxpt-ivgb ■ ^^A,b " ^^5b
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where 
Vab = ^

“a
OO 00

\ c , b  = C dTa I dT^ I dT^dT^G^c^b
“a “c “b
00 00

^ c b  =  j d T c d x ;  (  d T ^ d T ^ G ^ b

“c “b
V* . ..*ib = f dTgdrg. j d T g d T ^

“¥  “E
^ 00 00 00

iT,b = (dT- I dT- I  dXydTgG^^y
“E  “E  “E

^EE = f aTgdTgG-b 4.11
“E  • “E

The next changes of variables we make are the Sudakov 
decompositions

^ab ^ab •  ̂ *̂ ab ^a  ̂ ^ab ^b

4.12cb " - 2 FU + 2 P,

vhere = B^^.Pj^ = B^j^.p^ = B̂ ĵ .Pĵ  = O

with a similar decomposition for the barred variables.
We also define the momentum transfer variables 
= (Pa - ?&)' Re ^ (Pc " Pc) and similarly for the

barred variables.
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In a completely analogous manner to the shift of 
integration variables we found in 4A19 and 20 in Appendix A 
we can now shift the x-integration variables. In the two-body 
case this accounts for all the a integrations eventually, bit 
in this case we account only for six out of the eight. We 
also rewrite the d^p^ integrations in terms of the s, which 
is a simple shift of origin and we find

H = (27t) “ ® I  d‘*Q^d‘*Q^d‘*Q^'*Q^ô'*’( p ' ^ -  m^ ) ô ' * ’ ( p ^ ^ -  m ^ )

(p'j? - m 2) - m 2) 6‘\p^ - m^) - m 2)Ĵ ĵ  '̂ cb'̂ Sb '̂ Eb

I do 2io(Q^.Pb) dg g C213(0;: . Pg)

a°ab ^  3°cb sxpliV^b + < c , b  + iVcb'

OÉE' Ogg, Sab- 

9 9 9 I * ... 5* ...3* ,
9 o ^  9 Ogg 9 ^ ab  ̂ac,b ^ cb 4,13

where; o = - a ^ ' ,  a =

and = 4 (P„ . Pg - P^ P^)^

We further define
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= p; - Pc = Qac - Qa + °ac = Pa ’ Pc

Qgg = Pi - Pg = OiE - Qg + Qg; Ogg = Pg - Pg

GbÉ = PÉ - Pb = 05- + QE - Qa - Qc
00 00

^ab = / dx; I dx^dx^G'(2pa(x;-x,),
“a • “b

®ab-Pa<TOa> + P b ^ V ^ P '  2pj^<^b'^b’

< c , b  = fdxa jdTc /aTbdTbG'(Bab-Bcb-2Pa?a + ^Pc^c-Z^Pb 
“a “c “b

^ (Bab+Bcbi-Pa^a-PcT: + Pb^^b+^P + 2apĵ «2pĵ  (t '-x ,̂) )

^cb = {dx^dx; paXbdXbG'(2Pc(Xc-X2),
“c “b

®cb - Pc(Tc+?c) + P b ^ V ^ b ' >  + 2Pb°'2Pb(Tb-Tb))

and similarly for the barred quantities.
It is now possible to carry out the integration of the 

total derivatives implied in equation 4.13. If we consider 
one half(the unbarred half) the result contains the term

explix^b + iXac,b + ^^cb>
where represents with the lower limits of integration
(~Q , -a Cy taken to - «>. This is the only term we wouldab ab
expect, however, we also obtain terms

expIiXabl explix^bl " ^
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that these terms are included arises from the formulation of 
equation 4.4 which only accounts for diagrams where all possible 
types of interaction are connected. Clearly the term 1 would 
be cancelled if no intermediate scattering took place and 
similarly the terms exp and explix^^^ are cancelled by
the terms where only a-b or c-b rescattering takes place. The 
term which does survive is then

/” IGL. B K IQU- B ,
S(Bab'Bcb'C) = (dZBabd'Bcb e

-00

expdx^b + + IXcb' 4.14

The final transformation to be made is to decompose and 
into their transverse and longitudinal parts according to

ZPyQ. 2p .Q^
Qa - 25; : ^  Pa + 2Pa-Pb ^b + ^a

c 2Pc-Pb 2p^-Pb b

where Q^.p^ = Q^.p^ = 0

Qc-Pc = °c-Pb = 0  4 -IS

We have in equation 4.15 neglected terms of order
q V s and so on. a
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Also we consider the mass-shell delta functions, for 
example

6"^(p^^m^) = 6 ( (p^-Q^) ̂ -m^)

= 5(2p .Q -Q 2)a a a

and so on.

Having done this we arrive at the expression

(2w) ® ^d23gd20cd:Ogd2Gg e'

00 OO

J dado |d(p^.Q^)d (Pĵ .Qg) 26 (2Q^ .p^-Q^^ j g (2Q^.pj^+a-(Q^+Q^) 2)

fd(Pj,.Q^)d(pj^.Q^)25 (2p^.Q^+Qj,) 6 (2pj^.Q^-a)
-00

00

f"^(Pl-Og)'^(Pb-°â'^^(^PE'°â " Qz)G(2Pb'Gl + a +(Qg+Qg)^)
- OO

00

(P^«Q^)d (fç.Q^) 26 (2p^.Q^ + Q^) <5 (2pj^.Q^ - a)

laa, -laa
S(Q^,0^,c)

In equation 4.16 we note that the Jacobeans of this most recent
calculation cancel with the Jacobeans Jab'^cb'^ab'^cb & 
previous transformation to order 1/s and also we have 
introduced the variables a and â via the insertion of
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00 00 

|da 6 (2pj^.Q^-a)J da6 (2p^.Q^ - a)

which clarifies some of the forthcoming manipulations.
It is possible to immediately perform eight of the 

integrations in equation 4.16 and we can of course note that 
since is orthogonal to both and etc, so remembering
that a = 2p^.Q^

we can rewrite equation 4.16 in the slightly simpler form
H
00

^  d 2Q- iQa-B^b+iQc-^cb-^A-^ib-^QS-^Eb
(2tt) 2 ( 2 tt)2 (2tt)  ̂ (2tt)^ ®

This formula is as far as we can proceed without detailed 
considerations of the dependences of the variables of the Y 
function. In fact the spirit of the eikonal approximations is 
present in the choice of variables made.

The full dependence of the Y function could be shown, 
after taking the forward discontinuity, as

Y(Q'^ QgJ, Qb§. s^b, m 2,

2 cannot be affected by the intermediate rescatterings 
because of overall conservation of momentum, but if we define

< b  = (p; + p p  '
^  = (PÉ + PÉ) '

128



Then these quantities will not be identically equal to 
It is not reasonable, in the light of all the other assumptions 
made, that we would expect the region where these quantities are 
severely deviated from the original value to be of any 
importance in our calculation. The expressions for s^^ and

thus tell us which quantities it is perfectly safe to 
ignore with respect to s. It turns out that a and oT are among 
these and also that and depend only on a/s and a/s at
worst. These facts are briefly demonstrated in Appendix 4B.

That we can ignore the a and a dépendance of the Y-function 
clearly leads to a great simplification of equation 4.17 since 
we are able to perform the a and a integrations and these yield 
two delta functions of the form 6'(a) and 6 (F) . We then use 
these 6-functions to perform the o and a integrations, 
effectively setting a = a = O.

If we now take the forward discontinuity and make the
definitions

tac = < Q a c - Q a  + Qc>'

to = (Qa + Oc - 0?  - oy)

t = 0  ̂ — Q—  ̂ 4.18^ac ac

We have the final form of our expression, namely
d %  d %

H(t, m2) -  j (2tt) " (2ti)2 I H p "  (2ii)'

S Y(tac' tgg, Sgb' " P  G*(%, Qg)
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where
... _i(Xab(Bab)+Xac,b(Bab'Bcb)+%cb(Bcb)'S = (d-Babd-Bcbe 

and * * *
s *  =  d ^ B  d ^ B —ab cb

4.19

We also use. Appendix 4B to show the following 
If p^ = xp^ + yp, + p.Cl

with y = ^ ^Ci - xm^
xs s

Then

®cb = x=ab' “x = (l-x)Sab 

to order 1/s, and also

t = (2-x)m2 - + 0^
X

t—  = (2-x)m‘
1.

_ -(P^ +xQr + 0%)

2t = (2-x)m/ - ^  Ĉj

to = (3: + G% - 3% - c%)' 4.20

where we note that is a four vector with only two
independant components and that p^^ is a positive quantity.

Our next task is to account for the eikonal phases of 
equations 4.19 [76].
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The expression for
OO CO

Xab = / ^ V ^ a / ‘̂ V ^ b ‘̂ "<2p^<^a"’̂a>'®abtPb<^bt^b>"Pafrat'"a>'2Pb^tb-Tb))

4.21

We can make the change of variable 

B = (T̂ a -?a)' T = (?a +

B' = (T̂ b -Tb' ' = ("̂ b +

and this has Jacobean unity. Taking the fourier transform of 
G^(x, y , x^), and its inverse we have,

G^x,y,x^) G (k,q,k')

exp [i( k . X + q.y + k^.x^)] 4.22

Substituting equation 4.22 into equation 4.21 we have

x . b -

.
j dndTdrfdT' exp (i2p^.kT+i2p^.k^T^-i2p^.qn-i2p^.qTi^) 4 . 23
-00

Performing the ri,n̂  T and t integrations we find

iq.B.
Xab 2iT6 (2pj^.q)e ab

/ l f ? A  (2w^ 2ir6(2p^.k) 2tt6 (2pj .̂k') G (k,q,k')
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We make the transformation of variables
d**q->d (2p^.q) d (2pĵ .q) where P^-Q^ = p^.Q^ = O, and this

has Jacobean 1/2 s^^ (see Appendix 4A).
We can therefore write

/ iS A  2n6(2pj^.k') G‘(k,q,k') 4.24

We use the relation

Lt +e-»-o
= 27rô (2p.k)-2p.k+ie 2p.k+ie

and also note that for s^^; k^//s, t//s^O we have

  1 ,  1 . 1 . 1
(p-k) ̂ -m^ + ie (p+k) m*̂  + ie “ -2p.k +ie 2p.k+ie

Thus the expression

2TT6(2pg.k) 2w6(2Pb.k) G%k,q,k') 4.25

represents the four diagrams shown in figure 4.5 in a high energy 
limit. In a ladder approximation these diagrams sum up to a 
signatured Regge pole, allowing for overcounting and so equation 
4.24 is the Fourier Bessel transform for this expression and 
can be written as

Xab = / A S -  (-5') s , / ' ~ '
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Pc
Pc

Pb

Pc
Pfl

Pb
F i g u r e  4 - 1 . The t h r e e - b o d y  " a m p l i t u d e "  u s e d  f o r  c o n s i d e r i n g  s i ng l e  p a r t i c l e  
i nc l us i ve  r e a c t i o n s .

X

X

k+ q / 2k - q / 2

k' - q / 2

Figure  ^ - 2 . The f o u r - p o i n t  G r e e n ' s  f un c t i o n  u s e d  a s  a  b a s i c  e x c h a n g e .

F igur e  4 - 3 . A triple l a d d e r  t y p e  s i x - p o i n t  G r e e n ' s  f unc t i on .

F i gu r e  A 4 .A d i agram which will no t  e i k o n a l i s e  in t h e  c a s e  of t h e  s i x - p o i n t  
f u n c t i o n .

+ + +

F i g u r e  4 5 .The four  d i a g r a m s  r e p r e s e n t e d  by t h e  e x p r e s s i o n  of e q u a t i o n  4-25
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where C is the signature factor, a is the trajectory of the
Regge pole and the quantities 3 and 3, are the vertex residuesa D
which arise from the integration 

/ W  2’T«(2p^.k)|-j0 ; 2.6 (2pĵ .k')

The 6-functions have the effect of keeping the interacting 
particle roughly on mass shell as it passes through the 
interaction.
The expression 4.26 also holds for Xyy with
suitable changes.
We now turn to the trickier problem of x w  The initial^ac,b
expression is given by

^ac ,b = j" dT^dT^dT^dT^G" (Bab-Bcb-2Pata+2PcTc'

We again use the fourier transform to find

X a c b  = / w -

expdk. (Bab-B^b)) j  dT^dT^dfj^dx'exp(ik.(-2PaTa+2p^T^)) 

expdq. (-PaTa-p<,VPb(Tb+Tp+ik'.2pj^(Tj^-Tp) 4.28 

We refer to figure 4.6 for the definition of some momenta.
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We can perform the and integration to yield
6-functions and we also make the transformation, 
k = ^a ^c , q = Q -Q

2 ^ c

which has Jacobean unity. We can therefore say, after some 
re-arrangement

d^Q_ d**Q
^ac , b  = I T 2# -  T 2¥7^ 2w6 (2p^.Q^) 27tS(2p_,.Q^)

2w6 (2Pb.(Qa-Qc)) exp(iB^j^.Q^+iB ^  Q^)

/ f ^ *  2ii6(2p̂ j.k') G'*((Q^+Q^)/2,Qg-Q^,k') 4.29

Next we insert a specialisation for the form of

/ t 2 ^  2w6 (2pĵ .k) Q a - Q ^ A d

Which we take as
.2

AF(Qa")Aj.(Q^=‘)6 (q") ((Qa+Qc) \  4.30

Where an appropriate form for A^fk^jmight be 
Jdap(a) [k^-a^+ie ]

We also make a further transformation namely 

Ga = 2°aPa + ^TaPb +

°o = 2a^p^ + 2t^Pĵ + Qc 4.31
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which effectively have the Jacobeans 4p^.p^ and 4p^.p^ 
We therefore acquire the form

^ac ,b = / T 2ïïf̂  T 2Ï F  GxP (iBab-Oa+lBcb-Gc)

00

4Pa-Pb 4Pc-Pb 2̂ - jdaadTadOcdTc6(4Pa.PbTa)

6 (4Pc-PbTc) « (4 (Pa-Pb'"a"Pc-Pb°c> ’ K '>

6 (g:)(2Pa.PbOa+2Pc.PbOc)"^^ > 4.32

We can now do three of the c/t integrations, say t^, t ^, a^, 
which pull down Jacobean factors and if we have xa^ = xa = a. 
from the third of these integrations then

1 / d'Qa a'Oc
%ac,b = ^ J  7 2 i T  exp(lBab.Qa+iBcb.Oc)

6(q:)(Scb)"(9=) ^  IdaA^ (0^^) ip (Q^) a“ >

where and can be expected to be functions of o but q
is not.
It is perfectly possible to make explicit the o dependence of 

and and thereby perform the da integrations.
However we must always remember that our calculation has been 
performed throughout in the eikonal approximation and we 
therefore expect the region of integration of importance to be 
that where all components of Q^//s are small with respect to 1 .
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If we consider equation 4.31 this indicates that we expect the 
region of integration of interest to be where a is small with 
respect to 1. If we consider the specialised form 4.30 used, 
the propagators Ap(Q^) will only enforce a peaking for
a small with respect to s and therefore 4.30 does not explicitly 
conform to the eikonal approximation. We can insert the 
desired peaking very crudely by hand by considering the integral

fdo6p(0 :)Ap(Q:)6 (o)a°(S  ̂
'-00

which is zero.
We can only conclude from this that in the eikonal approximation
we would expect X  , to be small.^ ac,b

137



o b

Figu re   ̂ 6 . The diagram for the  m i x e d  e ik o n a l  p h a s e .

F i g u r e  4 7.  One of t h e  c l a s s  of d i a g r a m s  f i n a l l y  c o n s i d e r e d

F ig u r e  4 - 8 . The  r e - s c a t t e r i n g  c o r r e c t i o n  d i a g r a m s  of r e f . 36 .

Figure 4 - 9 . Extra d i agram s c o n s i d e r e d  by th e  p r e s e n t  mode l  which w o u l d  
c o n t r i b u t e  to  t h e  fi l l ing of a n a t u r a l i t y  dip.
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DISCUSSION
In equation 4.19 we have derived a formula which accounts for, 
in the eikonal approximation, all corrections to a Regge-pole 
only graph of the class of which the diagram shown in figure 
4.7 is a member. We see that there are three distinct types 
of correction namely rescattering between particles a and b 
rescattering between particles c and b, and a mixed 
rescattering which we do not believe to be important in the 
eikonal approximation. In this way we fully overcome one of 
the objections raised about the formula of Chapter III. We 
are also in a position to calculate target assymetries since 
we have no need to reglect SinG^^ in the present formula 
and we would not expect spurious zeros to occur via use of the 
formula of equation 4.19.

We need to discuss two further points concerning this 
formula. Because we include two independant impact parameters 
and eikonal phases we might easily expect the absorption 
corrections that we derive to be considerably stronger than 
those found from a calculation where only one phase is present 

[40,36] , however, our formula would contain many
more second order diagrams, if cut off at this level, than 
would the model of Craigie et al I 361 which contains only 
those shown in figure 4.8. The absorption corrections of 
Ref.3 6 were introduced principally to remove a forward dip 
which was dictated via naturality considerations in the pole 
only diagram and not seen in the Yp->7r±X data. This 
calculation, when fitted to the data, produced an opacity C, 
which was considerably larger than unity.
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One reason for this large size was that only one of the 
diagrams shown in figure 4.8,namely the second order diagram, 
can contribute to filling in the naturality dip. The 
other three all have these dips.
We can now see the reason for the inordinately large value of 
C found. The one second order diagram must dominate over the 
sum of the other three at small which can only happen for

i.

values of C larger than 1.
In the present model, there are several diagrams at the 

second order level which would contribute to filling in such a 
naturality dip and so we could expect that values of C much 
closer to unity would suffice in fitting the yp+n±x data.
We will see later that the present model, for values of the 
opacity similar to those used in Chapter III, does not 
produce large absorption effects compared to those of the 
model used in the previous chapter. This is also due to the 
extra second order diagrams considered and so while we would 
not expect the present model to give rise to extremely strong 
absorption corrections we would expect the naturaltiy dips of 
Ref.35 to be much better filled in.

The second point we wish to make, almost in passing, is 
that if a full c|)̂ calculation were attempted we would expect 
only a contribution from the phase ^ in analogy with AFS/
Mandlestam cuts in two body reactions. I 74lThe eikonal 
calculation we have made, while borrowing some of the features 
o f  (p^ ladders does in fact require extra mechanism which are 
not made explicit in order to enforce the k ^ / / s  conditions 
necessary for the eikonal approximation to be valid.
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APPENDIX 4A
Abarbanel and Itzykson [7 21 wish to sum the class of 

graphs shown in fig.4A.l in the eikonal approximation their 
starting point is Schwinger's 175]expression for this set of 
graphs namely

-1
T2iT T(p',' P2»pr.Pi)«(P,+P'-P,-p;)

= Lt(p^-m^) (p2-m^) (p^^m^ ) (pz^m^ )

K(A,A")<p |g (A) Ip ><p"|G(A") |p">| 4A.1
 ̂ ' A,A=0

which is for equal mass spinless scattering.|p> is a one 
particle plane wave state, G (A) is the Greens function for 
the interaction of a spinless particle in an external scalar 
source A i.e.

G“ M a ) = P^-m^-A(X)+ie 4A.2

P and X are four dimensional momentum and space operators 
which satisfy

The term K(A,A^) is a functional derivative operator and 
determines the type of interaction which takes place between 
the two spinless particles and can account for many sorts of 
interaction, with the proviso that they attach to the interacting 
particle via a spinless intermediary. The form chosen is

6K = expjd'y d'y' D(y-y') g*'(y')

with D (x) = (2tt)*' j k'^-y^+ie 4A.4
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which is the form for exchanging spinless particles of mass y 
between the two particles.

It is important to note, as will become clear later, 
that this form already has the non-interacting part subtracted 
from it. This part is not required for this two body case, 
but we must take care to include it when considering the 
3 body case later.

We must now cast this equation into a form in which the 
introduction of the eikonal approximation is more transparent.

We will use the operator identities (751

(A+B)“  ̂ = Tdt exp (i(A+B)t)
/I -iAtexp (i ( A+B ) ) = exp(iA)Texp J dt e iBe

and the formal solution of G (A),
G(A) = 1 + G(A)A(X) 1

P^-m/+iE P^-m/+iE
when we consider 

Lt

4A.5

Pi

= Lt (pi-m^) 6** (pi“P 2) = 0 4A.6

we see that the first term of the expansion for G(A) does not
contribute. This is the mechanism for subtracting off the
non-interacting part.
Thus using 4A.5 and 4A.6 we have
<p |g (A)1p > = <p I fdt expi(P^-m^+ie)t

2 1

Xexp {-i J dxA(X-2PT)}A(X) 4A-?
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where use has been made of the fact that, with the stated 
commutation relations
exp(-iP^x)A(X) exp(iP^T) = A(X-2Pt ) 4A.8
Thus
Lt (p2-m2)(p2-m2)<p |g (A)Ip >

= Lt (p^-m^) (pZ-m^)1 2 pJ->-m̂  (p^-m^ + ie) (p^-m^+ie)
2

<p I f dti (P^-m^+ie) exp { i (P^-m^+is) t}
 ̂ o ATexp { -i J dTA(X-2PT) } A(X) |p^> 4A.9

Performing a formal integration by parts and then taking the 
limits E ^ 0^, Pĵ ->-m̂  in that order we have

Lt (p2-m2)(p2-m^)<p |g(A) jp > p^->m^ 1 2  2 1

=  <
,co

p^ I i Texp {-if dTA(X-2Px) } A(X) |p^> 4A.10

We can therefore rewrite equation 4A.1 as 

T(p-,p^;p',p^)8Mp'+P-p;-p^)

= K(A,A')<p |T(A) |p ><p"|T(X)|p'>| , _ o 4A.112 1 2  1 f

where

T(A) = i Texp {-i |dTA(X-2PT) } A(X) 4A.12

We can implement the eikonal approximation in this formulation 
simply by replacing the operators P and P^ by the c - vectors p

- ^(p^+P^)fP - ^(P^+Pg) The time ordering is no longer
important since the anticommutation properties of P and X are 
no longer in force and so we can write
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<?£ |T^(A) |Pi> = j exp [ i (p^-p^) .X 1

exp [ - i | a (x  -2pT)dT]A(x)

= (t sT i " Gxp li(p -p ).X 1 exp[-i ( A(x-2px)dT11
' 1 2 do a = 0 4A.13

The task is now to carry out the functional differentiation 
contained in K. We must evaluate the expression 
exp { | d V  d V '  D(y-y') ga/(y') } '

exp {-i [ [dTA(x-2px) + [dx^A^ (x^-2px'')]} |
/ L  A=A/=0a a

where we have
4A.14

l l g }  = 6-(x-y) 4A.15

This evaluation is necessarily formal and the technique used is 
quite tedious. Since the answer can clearly be seen to be

exp { - ̂ dx |dx (x-x^-2px+2p‘'x ̂ ) } 4A.16

we omit the detailed working.
Equations 4A.13 to 4A.16 contain most of the ideas which will be 
of use to us in the derivation of the 3-body case, however, we 
continue to a conclusion for the sake of completeness.
We can now re-write 4A.11 in the eikonal approximation as

d'̂ x d'*x̂= exp Ii(pi-P2).x + i (pi“P2) .x" 1

3^ expl- |dx |dx"D(x-x"-2px+2p"x")]
a a

a = O
a" = O 4A.17
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We can integrate over x + x" directly which effects the 
cancellation of the overall momentum 6-function.
Next we make the transformation
X - x" = b - 2pa + 2pa^ 4A.18
where b is orthogonal to both p and p"*. This has the 
Jacobean 2 s where
s = s[l-(t+4m^)/s 1 ̂ . We leave the derivation of this
Jacobean until later.
We also have
p -p = “ (p^“P^) with both orthogonal to p and p^.1 2  1 2
Whence

T (s,t) = 2is fd^b exp I -i(p -p ).b 1
E / 1 2

fdada*' exp [- fdx f dx^D (b-2p (x+y)+2p^ (t^+a^) ) I I i g
a = = 0

If we now make the shifts
x-^x+a, X ̂-*’T *'+a

we can also shift the derivatives so that

and so taking a, cl'  to zero we are able to perform the two a 
integrations directly, to obtain

T (s,t) = 2is [d^b exp I -i(p -p ).b ]
E '  ̂ 2

/ O O

expl- I dxdx(b-2px+2p''x'*) ] 4A.20I /_oo
I If we now consider the detailed form of D we need to consider
/

the integral
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exp [-iq. (b-2pT+2p'*T
(q^-y^+ie) 4A.21

We can perform the two t integrations to form 6-functions to 
yield

6 ( 2 p . q ) 6 ( 2 p ' . q ) 4A.22

We can make the transformation of variables
q = q + TIP + n^P^ 4A.23
where forms for n and rî in terms of 2p.q and 2p/.q are given 
later. This results in the form

-igZ ( d^q exp I-iq.b]
2 s  j '(2tt) ^  ( |5|

4A.24

and inserting this into equation 4A.20 we have 

T (s,t) = 2is fd^b exp I-(p -p ).b1T / 1 2

exp ii'
2 s fd^q exp[-iq.b] -1 4A.25

where (p -p )  ̂ = t
1 2

This is the final form. All that remains is to evaluate the 
Jacobeans which have been left until now.

For the transformation of 4A.18 we go to the frame where
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(E,-q/2,0,k)
(E,q/2,0,k)
(E,q/2,0,-k)
(E,-q/2,0,k) 4A.26

with
- q^/4 - k^=
= 4E^ = (p + p \ 2

=  — q^ = (P̂  - p, )

In this frame
P = (p̂  + Pj)/2 = (E,0,0,k)
P ' = (P' + p')/2 = (E,0,0,-k)

1 2

then if X = b -2pa + 2p''a^
= (p2E (a-a'') ,b^ ,b^ ,-2k (a+a^) ) 4A.27

the Jacobean is 
-2E O 0 - 2k = 8Ek 
0 10  0 
0 0 1 o
2E O O -2k

= 2s k^
E^ = 2s 1-

4m^-t1 h 4A.28

For the transformation of 4A.23 we consider 
a = 2p.q,ü^ = 2p/.q
and we wish for the transformation. 
d ‘*q->dada'*d^q
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We take
q = q + np + n^P^ where q.p = q.p^ = 0 

Then
2p.q = 2np*+ 2n^p.p^ = a
2p/.q = 2np.p^+ 2n^P^^ = o ' 4A.29

Thus

We go again to the frame given in 4A.26 
Then
p^ = m^-t/4 = p^ 2
p.p^= s/2 + (t/4 - m^)
Thus
2 ((p.p')^-p^p-) = ÿ ( i - i2^ )  = |i
So

—  (p.p^+p*) 0 0 —  (p.p^+p )
s'

s"

4A.30

q = —  (p.p^“p')(a+a^),q ,q , —  (p-p^+p')(a^-a)
§2 1 2 sf 4A.31

And the Jacobean is
2E 2E
-2 (p.p^“P') O O -2 (P.P'-P^)

0 1 0  0

0 0 1 0
2k /_ _ i_2\ 2k ^^,_2

= 8 Ek(p.p'-:) (P.P'+P ). 4A.32
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Now
(p.p"- p/')(p.p^+p') = s^/4
Ek = s/4
Thus the Jacobean is —^

2s
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p; — — f— '—  p; 

Pi — ""— "— ""—  P2
I +I I

-i— i----  ---- #— %-

i i *  i4-

Figure 4 A l . T h e  c l a s s  of d i a g r a m s  to be  sum med in t h e  e i k o n a l  a p p r o x i m a t i o n .
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APPENDIX 4B
In this appendix we present calculations of various 

variables in slightly more detail than in the main body of the 
chapter.
If we take
Pc = + ypjj +
where

Pci-Pa = Pci-Pb = °

Then
p2 = x^m/ + y'm^-pZ^ + 2xyp^.p^ 4B.2
Neglecting quantities of order y^ we find

ab  ̂ X ’

We now consider

^ ((!-%)Pa'yPb'Pc  ̂̂
so t = (1-x) ̂ m^+y^m^-2p^.Pj^ (l-x)y-p^^

= -ys(l-x)+(1-x)^m^-p^^
= ( 2 - x ) m - ~̂ ĉi j 4B.4

Where p^^ is taken as a positive quantity. 
If we consider s^^ = (p +̂Pj^) ' = 2p^:.p^
Then = 2 xp^.p^ +

= =ab
Also = (p^ + P^ - Pq )

4B.5
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2 _ ^ _ v > \ 2

\ 2
= (p_ + Pk ” P_)
= (d-x)p^ + (l-y)Pb - P^^)
= 2p^.pj^(l-x) + 0 (1)

" (l-x)=ab 4B.6

It is now necessary to examine the variable ŝ ĵ  = (p^+p^ f .

We note that with the definition implicit in equation 4,17 
and precursors
that a = 2pj^.Q^ = “2p^.Q^
Thus s;^ = (p^ - Oa + Pb + Qa + '

= (Pa + Pb + 2 (Pa + Pb>-°c + Q&

We recall the decomposition of in 4.15 to write 

®ab = Sab + “ 2Pa* ( ̂  (%2Pa + YPfa + Pcx> ) + °c

= + a + O l - ^ ]  + 0(1) 4B.7an \ Sgjj ;

Equation 4B.7 then shows us that we are perfectly entitled to 
neglect d/s^^ with respect to 1, since an eikonal approximation 
should not deviate the energy s^^ far from s^^.

We are now in a position to consider and Q^. We
refer back to the 6-function found in equation 4.16, and also 
the decomposition of equation 4.15 
Thus qU = ^  pU - ^  p^ + qU

' . ZPç-Pb _ ^2
xg . .m - “2c " 2c

Neglecting Q'/s and a / s  we havec

2& (1 + 3^ ) = - 2:
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Thus 4B ,8
where is a positive quantity,c .
In a similar fashion we also have

4B.9a '̂ a
and also for the barred quantities.

The next variable we need to consider is

Glc = (Pa - P P
= (Pa -Pc) - (2a + 2c)
T h u s  =  t ' c  =  Q a c  " 2 ( P ^ - P ^ ) • ( Q a + 2 c ) + ( 2 a + 2 o > V

= h -2Pa'2a+2Pc'2c " 2Pa'2c+2Pc'2a

+ 2= + 0: + ZQa-Qc

Using the form of the delta functions in equation 4.16 we 
have 2p^.Q^ = and 2p^.Q^ = - Q ^ , thus

t^c = t - 2Pa-2c+2Pc-2a+22a.2c 4B.10

We have from equation 4B.4 
t = (2 - x)m: - “ ”

We now proceed to calculate the other three quantities on the 
R.H.S. of equation 4B.10

0 ,
2Pa-2c = I t  (Pa-Pc) -IeI  2Pa*Pb + 2p^-2/

= Il (xm^+yp^.p^) -£| + 2p^.Q^U
X

We neglect the first term since it is of order ^
Also p^.Qc = PfQc^ = O

Thus Cxp^+ypj^+p^ ) .Q^ = O

and 2p .Q^ = -^PcP’̂ c^ ,Thus 2p .Q =— ^  -^^ci *^c 4B.11
^ a  C —  —  a  ta X

X X
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2Pc-2a = 2 (^Pa+yPb+Pcx ' ' Pa>a+yPb+Pcx > • (

+ f ' p b  + 2: )

=  2x(-a+(Q^+Q^)^)m^ 2 x p ^ . P j ^ Q ^ 2

+  2y(-“+(2a+2ç):) p^.p^+ + Zp^ .S/

Neglecting terms of order a/s or Q^/s we have
2Pc-2a = X 2= + 2pU .qU 4B.12

22a-2c = 2 (' - " % ) % ^ + % + q W ) .

Pc - 5 #  Pb + 2%)

= 2 ( Z l i W :  #; Pa.Pc - Z l i W :  2: Pa.Pb' s s xs

+ P a - V + ^  f Pb-Pc - 2 # '

+ 2i Pb-2c + Pc-2a + 2c.Qa )s xs

Neglecting all terms of order a/s or Q^/s we are left with 
2Qg.Qc = 2qU.qU 4B.13

Putting together 4B.4, 4B.11,4B.12 and 4b.13 and substituting 
them into 4B.10 we finally arrive at
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and of course  ̂ (p„''+xQ- o|) ̂
= (2-x)m:- m + -Si--- â_----- S_ 43.14

Finally we note that

t o  =  (Pb -  Pg) '

= (Oa + Gc - - % )

and using equations 4B.8, 9 and 11 we can write

tc = (q/  + q/  - _ 3_U)2 4B.15
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CHAPTER V

An Application Of The Closed Regge-Eikonal 
Formula for Multiple Exchange Contributions 

To the Inclusive Six Point Function
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INTRODUCTION
We are now in possession of a formula for absorption 
type corrections to the inclusive six-point function 
which overcomes many of the heuristic defects of the 
model proposed in chapter III and we therefore wish 
to perform certain calculations with the new model 
in order to examine it, both in its own right and
also in comparison with the old model. To do this
it is natural to choose the same family of reactions 
for the reasons stated previously - namely the 
simplicity in the Regge-pole picture. Accordingly we 
will make calculations of the cross-sections for the 
reactions

+ o
7T— + p -> TT + X 
+TT—  + p ^ n + X

+ p ^ K° + X
K” + p K° + X

We will also calculate target asymettries for all these 
interactions, which was not possible using the model of 
chapter III. We also note here that it is possible 
to extend the formula of chapter IV to cover the case 
where two of the scalar legs of the Green's functions 
(Pomercns) attach to a spin particle as is seen in 
Appendix 5A. Also the formula is derived for the case 
of the coupling of two scalar mesons to a third scalar, 
however the use of the formula for the case of a pseudo 
scalar mesons should be quite acceptable.
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The input triple-Regge type expression we will use will 
be similar to that used in Chapter III although there are 
some differences which will be made clear later. It is 
also necessary to relate various unmeasured cross-sections 
(such as 7T°p elastic scattering) to measured ones. This 
is done via the simple application of isospin, and results 
in all absorption parameters being fully predicted. Simple 
isospin ideas are also used to relate the sign of the 
flip amplitude to that of the non flip amplitude in order 
that the target asymettry be calculated.

The use of these ideas again leads to a model, as in 
Chapter III where no arbitrary parameters must be 
introduced.

FORMALISM
From the derivations of Chapter IV I 74 1 and the extension 
of appendix 5A we can write down the following formula 
which will be sufficient for the purposes of calculating 
corrections to the reactions O ^  O X via charge
exchange.

We have œ
= f  â %

(2n)2 (2tt)2 (2ir)̂

where
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- 5.3

and
s* = Id^B-gd^B-g expl-i(O-.B-g+Og.Bgg)

-i(X-5*(B-g)+Xi-^5*(Big,B-g)+x-5*(Bgg))l - 5.2

The mixed eikonal phases y , and y—  can be expectedac,b ^ac,b ^
to be small because of the basic assumptions of the 
eikonal approximation, and the other phases are given by 

Xab = J—  f exp(_lQa.Bag)ga(-Q2)gb(-Q2)
(2n)2

Xcb = exp(-iQ^.B^g)g^(-Q2)Sj^(-Q2)
Scb / (2tt)2 ,

_2 “ (-2c)
5 “ (-2c) =cb

where the notation is as for chapter IV.

To summarise this dependence of the internal momentum 
transfers on the Q variables we have

^ac = ^min - i(Pci+^2^+2^’^X

" -(23+2^-25-25)^ - 5 . 4

Here we have made a change of notation in that we
now regard and as purely* two dimensional vectors

and the inclusion of the minus sign reflects the change 
of metric. The justification for this change is given 
in the first part of Appendix 5B.
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For the parameters of the elastic scattering 
symbolised by the %s we take 

a(t) =. 1 + ttpt

where is taken henceforth as 0.25

and Ça (t) = -exp(-ima(t)/2) - 5.5
We also use g, (t)g. (t) = De®^, g (t)g, (t) =a D C D

Comparison with the absorption model allows us to relate 
the Ds and as to the quantities normally used namely [57]

D = 4ïïCa, a = 1/4X - 5.6
where C is the opacity and would be expected to take on 
a value between O and 1, and X is the inverse of the 
square of the radius of interaction . This correspondance 
can be seen in another way. Pumplin [40]' indicates that
fd̂ B , d^B , S>0 is the condition for almost total ; ab cb
absorption of the S-wave which a value of C such that 
0<C<1 brings about. With this parametrisation the 
eikonal phases of equation 5.3 become the fourier 
transforms of Gaussians and as such can be performed 
[61] to yield

X_b " -IB exp [ -Bgb/4A I 4ttA ud

X„b = -12' exp I -B^. /4A' I - 5.7“  4itA' uo
where A = a + a' log (ŝ , ) - ina'/2p =e ab p

a'= a'+ CL* log^(s , ) - i7ra'/2 p =e cD p
The traditional absorption model can be recovered if
a' is set to zero.P
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The form for the S factors in equation 5.2 is therefore 
the fourier transform of the exponential of a sum of 
Gaussians i.e.

S = exp

Jd^B^gexpliQ^.B^glexp

- D expJ-B 
4ïïA :bi

- D exp 
47tA

4A
2-Bcb

4A
- 5.8

and when the second exponential is expanded as a sum 
of powers, we can exchange the order of the summation 
and integral operations leaving a sum of Gaussian Fourier 
transforms. These are similarly easily performed and 
using a substitution from equation 5.6 we can rewrite

H(t,S^g,M2) =

(2n)2 (2w)2 (2tt)̂  (2n)2
{(2'iï) ̂ 6  ̂(Q ) + 4n % (-Ca)* expI-Q^AA 1}

) + 4ir I expt-Q^Ay&P

Y(tac.tg-.to,Sag.M|)

kk:Ak-i
2,,

{(2ïï)^6^(Q-) + 4ïï J (-Ca)^ exp[-Q“A*/m]}m

{(2tt) ̂ 6  ̂(Q-) + 4ir J (-Ca)” expl-Q^A+ZnD
u=lnn:A'*"-^ - 5.9

It is equation 5.9 with an input Y term of the 
form shown diagrammatically in figure 5.1 that we 
use to evaluate our form of absorption correction.
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The detailed form of the off-forward 3 body amplitude 
we will use is mentioned later, and given in the second 
part of appendix 5B, and because of this form it is 
possible to perform any of the integrals implied by 
equation 5.9 analytically, as is indicated in appendix 5C.

The performed integrals in this appendix show that as 
successively more external legs become connected by 
intermediate Pomerons the integral becomes suppressed 
not only by the expected factors of C or C' (always 
less than one) and reciprocals of factorials but 
also by factors (essentially) of 1/A or 1/A' ; in
the present case A and Â  have, approximately, the 
numerical value of 5. Since the infinite series of 
possible diagrams must be truncated at some point for 
a numerical calculation, and because of this suppression 
of the higher diagrams we feel justified in carrying 
through the practical calculation for diagrams arising 
from the exchange of not more than two extra, intermediate 
Pomerons. All the diagrams included in this calculation 
are shown in figure 5.2(a). It must also be noted 
that the eikonal approximation treats all the diagrams 
of, say, figure 5.2(b) similarly. The next step would 
be to include diagrams up to 4 intermediate Pomerons.
There would be very many such diagrams , with the third 
and fourth orders at least partially mutually cancelling, 
and with many of them heavily suppressed by factorials.
It was felt that the increase in programming complexity
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and computer time used in the evaluation of the 
theoretical curve would not be justified by the expected 
small change - most of the salient features of the 
model should be included by the second order.

The reaction o î^^-o X is fully determined by the 
measurement of not only the differential cross section 
but also requires measurement of the target asymmetry 
for polarised protons. This quantity, s, is given by 
116].

S = DisCj^2<-|Tl+>
Disc^2<+|T|+> 5.10

where <X|t |X> represents the forward 3-body amplitude 
for )̂ ô o ^^^o"o~ and the ' incoming ' proton has 
helicity X. The differential cross-section is, of
course, proportional to %<X|T|X>.

X

Appendix 5A gives us the clue as to how we must implement 
the inclusion of helicity flip, and equation 5A.11 
indicates just how flip and non flip amplitudes can be 
formed, where the quantity Y(t^ ,t--,t^,M is aÜ C oC O X

matrix formed from available vectors and y-matrices.

It will be possible to use a less general formulation 
than equation 5A.11 which is still sufficient for our 
purposes, as will be seen later, and to motivate the 
choice for this and our choice of Regge exchanges for
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the two quantities, differential cross-section and 
target asymmetry, we first consider an M-function 
decomposition for the three-body amplitude, where 
we use the kinematics of figure 5.3 which depicts 
the initial a-b cm. frame. (a is the incoming O , 
b the incoming proton and c the "outgoing" 0~) .

The decomposition can be given in its most general 
form as [77] H^^(t,s,M^^)

= 1_ ü^(Pj^) (A+BÏ.Pg+CY.p^+DY.PgY.PaY.Pj,l u (P^) ^
2m

where m is here the proton mass and

Pb = (Ef-P )' Pa = (E^,P )- Pc = q)

Then
H = A - ( E g + E g ) )B/m+(E^Eg+pqCos0)C/m

and

+ (E^E^-pqCosG)D/m 5.12

H = (E +E_)pqSin0e~^*D

where p and q are the moduli of p and q , three 

vectors.

Since the different spin states must have the same 
energy dependence and (E^+E^)p^s

and for CosG = 1-0(1) i.e. small t,
s

E^E^-pqCosG^O(m^)
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we see that the term in D in is kinematically

suppressed with respect to the other terms and 
therefore effectively decouples in the triple-Regge 
region. It is this behaviour that motivates our 
choice of exchanges for the third or t^ leg of the 
triple-Regge diagram (figure 5.4).

Thus for the differential cross-section we include 
the Pomeron,f-Reggeon for the t^ exchanges. These

exchanges could be expected to dominate and will not 
couple strongly to a helicity flip proton. These 
terms are shown diagrammatically in figure 5.4(a).
The O”o’’-Reggeon vertex admits only p, Ag or p and

A2 exchanges for all the different processes. Since

the Pomeron and f-Reggeon have the same signature and 
isospin properties I 78] there will be no sign changes 
between the ppf, AgAgf and ppP and A^AgP triple Regge

couplings.

The flip amplitude, to which the target asymmetry 
is proportional, is mediated by the p-Reggeon (shown 
in figure 5.4(b)) since the helicity flip coupling of 
the p to nucleons is large, and would certainly be 
expected to dominate the non flip coupling for small
to.Having decided upon the possible third exchanges we 
must incorporate the t^ threshold effects into the 
flip-coupling p-exchanges. To rewrite 5A.11 in a
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slightly different notation we require 

= U (pg) (ĝ g+m) r^g (^^+m) u"̂  (pg )

f(tac'tg5'to'Sab'Mx^) 5.13

where Ÿ(t^^, tgg/1 ,̂ is to be given by a

sum of exponentials and is the quantity discussed in 
appendix 5B. The quantity F^g is some gamma matrix,

and all the threshold behaviour is taken to reside 
in this spinor/y-matrix factor.

We can identify two facets of this behaviour. Firstly, 
consistent with our formulation of the model in the 
eikonal approximation we treat the proton-proton- 
Reggeon vertex as f actorisable, and since the vertex 
functions of spin flip Regge-vertex are required 
to go to zero as -/t^as t^Ol29lwe wish this factor to 
exhibit a /-t^ behaviour of some form* Secondly we

insist that, afterinsertion Into equation 5.9, and after 
all the integrals have been performed this factor 
produces behaviour of the form indicated in equation 
5.12 i.e. the integrals call down a factor of 

qSinGe^^
We thus replace the spinor factors by a multiplicative 
factor which is sufficiently general to produce the 
behaviour we require. Such a factor is 132]
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Pc^Cos* + + ifp^^sin* + + 0^2'

- IPc^Cos* + Q-^ + 0^1 + i(P^Sin* + 0-2 + °52)'
5.14

since it produces both the correct (p and p^^

dépendances as shown in appendix 5C and also goes 
to zero if and only if /-t^ goes to zero. The

ordering of the barred and un-barred variables 
corresponds to the +- ordering in the definition 
of the target asymmetry as can be seen using 
a simple form for the pp-p coupling and the vector 
Pg and pg.

We now have sufficient calculation machinery to 
evaluate the required contributions to the model, 
once we have derived forms for the three quantities 
Yp, Yf and Yp and also the absorption coefficients 
required i.e. C, a and a', which we now proceed 
to do. A detailed consideration of the Tnrp-»-7nrp 
off forward triple-Regge terms is given in appendix 5B, 
and the generalisation to the other reactions is 
straight forward. We use simple isospin ideas to 
relate unknown absorption parameters to known ones 
and also to determine the relative signs of the 
flip (p) to non-flip (P and f) amplitudes. Strong 
exchange degeneracy is assumed between p and A 2

in order to relate the various different reactions 
together. The detailed way in which this is done and 
also tables of the various coefficients are given in 
appendix 5B.
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The forms presented in this appendix are then sufficient 
to allow the integrals presented in appendix 5C to be 
combined in the correct forms for the calculation 
and plotting of differential cross-sections and 
target asymmetries as presented in the next section.

c'  c'

a

ac

q ;
b' b'

168



Figure 5.2(a) The classes of correction diagram 
actually used in the calculation of this chapter
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c

a

b

Figure 5.2(b) A class of diagrams treated similarly 
by the eikonal approximation used.
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Figure 5.3. The kinematics employed for the 
calculation. b is the incoming proton, a is_the 
incoming O particle and c is the outgoing O 
particle.

D isc m 2

c

Q

b

Figure 5.4(a) The two exchanges for the t^ or third 
leg giving rise to the differential cross-section.

D isc M!

C

a

b

Pb*

Figure 5.4 (b) The single third leg exchange which 
contributes to the target asymmetry
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RESULTS
In figures 5.5 to 5.10 we present the results of 
applying the new scheme for absorption corrections, 
both for differential cross sections and target 
asymmetries, to the reactions

T 0,-0TT+p-̂-TT +X
iT"̂+p-)'7r*̂+x'*"̂
TT~+p->ri+X̂
+ ++77 +p->n+x

K++p+K°+X^^
K"+p^K°+X°

2 2 at s = 100 GeV/c for both t and M /s distributions as
shown in the figures. In all cases allowance for the
edge of phase space has been made, and for the case
of the n, no allowance has been made for the branching
ratio into yy; the likely experimental detection node.

Figure 5.11 gives results for the reaction K"+p+R°+x° 
at the lower energy of " 14.3 GeV/c for which

experimental data exists. In all cases for the 
differential cross-sections, the solid curve represents 
the prediction of the Regge pole only model given above 
and the long dashes represent the prediction of the 
absorption method Chapter III which is drawn here for 
comparison purposes. The short dashed curve is the 
prediction of the present model for the target asymmetry 
the short dash curve represents the prediction of the
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present model - the two other models predict an 
identically zero target asymmetry.

Turning now to detailed consideration of the figures,
the most striking prediction of figure 5.5(a) for the
reaction tt p^w°X° is that the signature dip, si
prominent in the pole only curves, and merely shifted
in toward t=0 in the model of chapter III is now

2completely obliterated for low M /s although it does 
2reappear for M ^/s =0.5. It would be difficult to

maintain that full Reggeization had taken place at
this point, and so less than full weight can be placed

2on the predictions at this value of M ^ / s . The final

curves we produce in fact bear a fairly close 
resemblance in shape to those of Pumplin [4 0] 
even though our starting points, and methods of carrying 
through absorption corrections are dissimilar.

The plots for target asymmetry for this reaction show
quite a lot of detailed structure, showing the required

2zero as p^^^O and also a reduction as M ^/s increases,

mainly due to the fact that a Reggeon with intercept 
is used to account for the proton flip amplitude. 

However since all target asymmetries, not just those 
for this reaction remain below two percent it seems 
unlikely that any of the structure would be experimentally 
measurable except in an extremely high statistics 
experiment. All that these curves predict is that
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target asymmetry.should be "small". Figure 5.5(b) shows
the same reaction for various fixed t-bins. Any
normalisation dsicrepancy between these curves and

2those for fixed M ^/s is accounted for by the fact

that the curves for fixed t are found from integrating
the theoretical expression over the t-bin using an
8-point Gauss Legendre quadrature. This effect is

2particularly noticeable for t = -0.5 GeV/c where 
the actual pole value is below 10 shown by 
figure 5.5(a), and the integration across the bin 
raises it above this value. From figure 5.5(b) we see 
that for small t, the absorbed curves show very little 
difference in slope from the pole only curves, although
a decrease in normalisation is indicated. At t =

2-0.5 GeV/c the dip structure plays a strong part and for 
still higher |t| the slopes of pole and absorption model 
begin to separate. We note that the present model has a 
greater slope in log (M ^/s) than does the model of

Chapter III.
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Figure 5.6(a) shows a very similar picture to that of
5.5(a) mainly because we predict no differences between
p -Reggeon-proton scattering and that for p -Reggeon
and proton even though we do take account of some
differences in the absorption parameters. The target
asymmetries follow the same general slope and are the
negative of those for tt p-»-7r X purely because we take
the Gp^p^p° coupling as the negative of the Gp p p°
coupling, as predicted by isospin. Figure 5.6(b) again
shows the same similarity for the same reasons.
Turning to figure 5.7(a) for the reactions tt p+n%°,

no signature dip is predicted in the range of |t|
of interest here for the pole only graph, and the
present model follows the pole-only profile fairly
closely, although at a slightly reduced slope and
normalisation at small values of |t|. The present
model shows less structure than that of chapter III

2which predicts shallow dips at -t = 0.7 GeV/c 
2for small /s, and for this reaction the target

asymmetries do not reach above 1%. Figure 5.7(b) 
shows the same reaction for fixed values of |t| 
and for small |t| we see that the present model differs 
from the pole only graph only in normalisation, not 
greatly in slope, with a slight slope change introduced 
for -t>0.5 GeV/c^.

Target asymmetries show the same steady fall off in 

MxVs.
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Figures 5.8(a) and (b) show the reaction
and again the graphs are extremely similar to those 

" oof TT +p-^nX with the difference in sign of the target 
asymmetry.

Figure 5.9(a) gives the results for the reaction
K^P^K^X^^. We note that the present model differs
in no great extent from the pole only model throughout,
as usual. There is a great difference however between
it and the model of chapter III which predicted zeros 

2for small /s. These zeros are nowhere to be seen

for the present model which we believe is as it should
be. Target asymmetries again fall short of great
significance. Figure 5.9(b) again shows very similar 

2slopes in /s for the pole only and present model
2for small |t|, and slight deviations in slope as /s

gets larger.

Figure 5.10(a) and (b) show the reaction K”+p-»-K°+X.
This is the line-reversed reaction to that of 5.9(a) and
(b) and so the pole-only graphs are identical. The
model of chapter III showed up great differences between
them because of its simplicity in dealing with phases.
The present model however, only gives differences in

2detail (viz. the two plots for /s = O.io and the

point where pole only and absorved curves cross) while 
the basic shape is very much the same. The target 
asymmetries are of course similar to those for
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except with a sign reversal. Figures 
5.11(a) and (b) show the same reaction at the lower 
energy of P^ab “ 14.3GeY/c for which there is data for 
the differential cross-section, although not for the 
target asymmetry (62l . Considering the fixed /s

plots first we see that, in general, the model of 
chapter III gives curves that seem to exhibit too 
much curvature for the data, and that the pole only 
curves exhibit too great a slope in -t for the data.
The present model lies somewhere between the two.
It does not exhibit curvature and structure not really 
called for in the data, and because of the strongest 
change in normalisation occuring for small |t| it 
shows a lesser slope in t that of the pole only curve. 
The change is not really sufficiently great however 
since in all cases the short dashed line passes through 
the error base of only one or two data points, the 
rest being taken out of range by the slope differences. 
There is consolation to be had, however, from the fact 
that better agreement is obtained at the values of 
M ^/s of 0.125 and 0.175 than larger values since for

M^^/s = 0.375 it is possible that the upper legs

(see figure 5.1) are not fully Reggeized.

2A further point to note is that for small /s the

data points for large |t| are accounted for, while for 
larger M^^/s the points at smaller |t| have the error
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bars interpolated by the present model. This effect
is seen better in figure 5 5.11(b) where we see the
general trend that all three models do not have sufficient 

2slope in /s, although the present model is a

slight improvement on that of chapter III, and not 
greatly worse than that of pole only. Experience 
with the parameter fitting process of chapter III might 
suggest that the present model could be made to fit 
the data with less of an adjustment of Regge-Parameters 
because of its good behaviour in t.

It can be said, however, that agreement in both 
normalisation and form is surprisingly good for a model 
in which all parameters are predicted beforehand.

All the calculations of differential cross-sections and 
target asymmetries were carried out using the program 
ONCPLT [651 , and all the figures were initially
computer plotted [4 9]
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CONCLUSIONS
The strongest conclusions that we can draw from this 
calculation are that our model does not predict large 
values for the target asymmetry, the largest value 
calculated being about 2%. Secondly we do not expect 
to see the signature dips seen in the exclusive case 
in the inclusive reaction at about t = -0.5 GeV/c^.

In our case they are absolutely filled in by the 
absorption contributions.

To return to these conclusions in more detail it is 
well known that either a factorisable Regge pole 
[77,1l]or a fixed naturality exchange I77J 3] for the 
tg leg will give rise to zero target asymmetry.
Equally well known is the kinematical angular behaviour 
of any asymmetry present [77,1 LI3,14 ] which our
model properly reproduces. This kinematical behaviour 
includes a p suppression, and this fact that any 
asymmetry must vanish as p^^ . plus the lack of
contribution from factorisable poles has led to the 
belief that any target asymmetry in the inclusive case 
will be small, and therefore_difficult to measure. The 
present model then concurs with this view.

If large (^dO%) target asymmetries are seen 
experimentally, then our simple prescription for an 
off-forward, but factorisable, Regge-pole exchange 
for the to leg would have to be abandoned in favour
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of some other mechanism. One such mechanism would 
be the exchange of a pP cut down the t^ leg. This 
entity is neither factorisable, nor of fixed 
naturality and so would not be constrained to 
give zero helicity flip contribution for t^ = O, and

therefore could be considered without any absorption 
corrections of the type considered here. Soffer and 
Wray [7 9J have considered just such a mechanism 
in a way that leaves the upper Reggeon-particle 
vertices free. They were thus able to factor off these 
vertices for both flip contributions and non flip 
contributions. This approach limited them in 
calculating kinematical dependencies and they were 
forced to insert the factor by hand. Their
model is compared with data by Dick et al, [311 
This data was obtained in a tt—p ->tt—X experiment at 
p^^y = 8 GeV/c. For 0.5<x<0.8 the model of Soffer

and Wray gives a target asymmetry fairly constant 
at about 7%, rising to about 10% at x = 0.95. On the 
other hand, the data presented give an asymmetry for 
the elastic reaction (x = 1.0) of about 17%, and when 

has risen to 2 GeV/c (x=0.75) the target asymmetry

cannot be said to be significantly above zero. This
could be an indication that when Regge pole exchange

2 2is expected to dominate (i.e. >4.0 GeV/c ) in the

t^ leg then the target asymmetry does become small, as 

predicted by a factorisable pole, and our model.
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If we consider the signature dips, and lack of them,
in TT—p->iT°X there is some high energy data available,
as was mentioned in chapter III. O'Neill et al
are able to present a p-pole effective trajectory
which is significantly different from that predicted
by either elastic data or a Chew-Frautschi plot,
indicating that some form of absorption correction
would seem to be indicated, although the data does
not extend to large enough values of |t | to resolve
the questions about dip structure. Our model
normalisation and theirs at t = O certainly agree
to an order of magnitude. An experiment performed
at the much lower energy of 5 GeV/c [64] . Here
the ItI behaviour is presented out to 1.9 GeV/c^.

2 2For <2 GeV/c the cross-section shows a substantial

dep. However this cross section would almost
certainly be dominated by the reactions tt p-̂ TT°n
and TT p^w°A° which could both be expected to exhibit

2dip structures. For 2<M^ <4 the dip structure is
2much less apparent. For 4<M^ <6 the t^^^ effect

extends to obscure the region of interest. It does
seem likely though, that the dip structure will not

2extend to higher energies, and higher values of .

Our last comment is on the failure of our model to
reproduce exactly the data of ref. 77 . For lower

2values of M and for a reaction mediated by tt exchange
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instead of the present p exchange an attempt to fit the
data using Trp elastic cross-sections [5 9 ] met with
some success in fitting various dips and humps in the 

2/s spectrum. There is possibly some structure in 
2the /s data spectra, and were data, where high 

2 2values of s/M^ and were possible simultaneously,

available we might find better agreement, due to
more complete Reggeization. This argument may seem

2a trifle naive when the data for t = -0.3 GeV/c
are seen to hold to a very straight line in the log - 

2plot of /s, but the effective p trajectory given

by O'Neill et al and that given for the p in chapter 
III indicates that a simple Regge-pole picture, 
exchanging poles with physical meaning, does not 
hold up.

Several questions therefore seem to require data at a 
much higher energy to resolve than satisfactory.

182



Tl'P ^Tl°X
s»1CX)lGeV̂ l

Tl'P TC°X 
s.lOOCGeV̂ l0.02 0.02

0.01 0.01

K 0.00 
8
^  -0.01

0.00

-0.01 r
- 0.02 - 0.02

0.0 0.5 1.0 0.0 0.5 1.0

T I r-| ' I I I I I I—I—I—I—I—I—I—I—r
M^/5=0.10

T

10° V 1

0.0 0.5 0.01.0 1.0

&
002

0.01

> 0.00 
8

I
- 0.01

- 0.02

TT-r 1 1 T- l-T-T r 1 T- 1 1 1 1 —I—

1 / ' ' " V
/

0 02

0.01

0.00

1 1 1 1 T T 1 1 1 1 1 1 1 T 1 T 1 1 t .

. ;
/

......
L

M^/5*0.05
-0.01

M^/5=025 !
• 1 1 1 1 1 < 1 « 1 1_1_1_1_I—1—1—1—1—1— -0.02 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 j j— i_i_i

0.0 0.5 1.0 0.0 0 5 1.0

B 10' E
10'

Z

u»|»f 10-3

P■o 1 10'̂

1—1—I—1—1—1—I—r r 1 1 1 1 1 1 1 T r r-i I
M*/5=0.05:

r ]
■

L -
\ V -|

\ \

■ 1 1 1 1 l-_l—1_i\i ,/i 1 1 1 1 1 1 j._
0.0 0.5

-tr(GeV/c)̂ ]

M 75=0.25;

1.0 0.0
-trCGeV/cr]

Figure 5.5(a) Differential cross-sections and target  ̂
asymmetries for the reaction tt +p^wO+x at s = 100 GeV/c 
for various fixed value of M^^/s.

In figures 5.5 to 5.11 the solid curre represents a pole only calculation, 
the long dashed curve the absorption model of Chapter III and the short 
dashed curve the present model* 185



t:
%EE>1
o
%
?.o

Tl p Tl'P
0.02 0.02“ '  '  '  I I-----r—I—pi-i- i t

t=-0.30[(GeV/c)2]
0.01 0.01

0.00 0.00

0.01 - 0.01

- 0.02 - 0.02,010
10

t=-0.70[(GeV/c)̂ ] it=-0.30C(GeV/cr] !

10° 10°

10° 10°

i:
0)EI
%
P.o

InE
PT3

0.02

0.01

0.00

-0.01

■ 0.02

10̂

10̂
10°

10-1

10-2
10̂

. 1 I T ]■ T T f  I |  -  1 ■ I I 1 1 I T T

tr-0.10r(GeV/c)2]
0.02 

0 01

- - | -------T ■ 1 I 1 ITTj 1 1 1 1 1 M  1.

tT-0.50[(GeV/cf] j

000

-0.01I- - i

1 1 1 t 1 1 1 1 1 I I I  1 1 i r -0.02 1 1 I 111111 1 11 -11111-
10

r
r

2 10 -1 10' 10-2 10- 10'

.10C(GeV/c)̂ r

10-2 10-1

M^/S
10

t=-0.50[(GeV/c)*] ;
101
10°

10°,0
M^/s

Figure 5.5 (b) Differential cross sections and
target asymmetries for the reaction ir +p^^°+X
at s = 1 0 0  GeV/c^ for various fixed values of t .

184



Tl^P Tl®X Tl̂ P Tl®X
0.02 0,02

M*/s«0.50
0.01 0.01

0.00 0.00

0.01 - 0.01

- 0.02 J . - 0.020.0 0.5 1.0 0.0 0.5 1.0

.1

T3

«Itî

MVS = 0.10 ;

10°

0.0 0 .5 1.0

I I I I I I 1 I—I I I 1 I I I I I I I
M^/s*0.50

1.0 0.0

L.

B

I

0.02

0.01

0.00

- 0.01

- 0.02

.  1 1 1 T T  - r -  1 1 I  J  T r  1— r— i— i i i  i—

M^/s«0.05l

L/-\ 1
0.02

001

0.00

1 1 T r 1 1 1 1 r [ 1 1 1 1 T 1 1 1 I ;
M^/s»0.25i

: \ ; ___ " - " 1: \^ \ X 4 -0.01 -:5 :: :
■ • 1 1 1 1 1 1 1 J— L _ i— 1— 1— i _ j — i _ i — 1 I-Î -0.02 1 1 1 1 X _ 1 __ l _ l __ ___________ l _ l __ 1. ,1 1 1— L i

0.0 0 5 1.0 0.0 0.5 1.0

10°

1.00.50.0

10°
,0- r ■

1.00.500
-t[(GeV/c)*] -t[(GeV/c) = ]

Figure 5.6(a) Differential cross-sections and target ^
asymmetries of the reaction Tr'̂ +p-̂ 'ir̂ +X at s = 100 GeV/c
for various fixed values of M^^/s.

183



I

0.02

0.01

0.00

0.01

- 0.02

Tl̂ +P ---.-Tl®+X
s«100LGeV^]

1 r~T I I I I 11

Tl^X
I I— I I I 111

t»-0.3[(GeV/c)̂ ]

-J--- L—t 1 1 1 I I 1------- 1____I___ I I ■ ■ ■

0.02
Tl*+P
s.lOOtGeV ]

1— I—I I till

10-2 TO'’

t*-0.7[(GeV/c )

- 0.01

10
t=-0.3[(GeV/c)̂ ] !

10° 100n

10°

-I 1---1 I I I I I I------- 1----1-- 1 I I I |T|

t-0.7[(GeV/c)*]

_i I i_L I ■ ■
10 2 10- 10°

0.02
t=-0.5[(GeV/c)̂ ]t*-0.1[(GeV/c)‘l:

>  0.00

- 0.01

-0.02

I
1

cP"O

10̂

10'
10°

10*’OJ

2 10*2 *o
«nitf 10-3

t=-0.5[(GeV/cr] it=-0.1[(GeV/c)=̂ ] ;
10’

10°

10°10°

Figure 5.6(b) Differential cross-sections and target
asymmetries of the reaction at s = 100 GeV/c
for various fixed values of t.

186



Tl%p T) +X Tt"+P 7)>X
0.02 0.02

M*/s-0.10>»L. 0.01 0.01

E 000 

 ̂-001 0.00

- 0.01

-0.02 - 0.02
0.0 0.5 1.0 0.0 1.00.5

r—II 10°nE
CM
2TJ€
If

0.0 0.5 1.00.5 1.00.0

8
%

I

0.02

0.010.01
/ 0.000.00

- 0.01- 0.01

- 0.02- 0.02
1.00.500100.50.0

>
o

10'

10̂

n
è , 10

10° 
-1

D
•o T3 10-2

«0 I If 10-3

! , 1 1 1 1 1 1 I I 1 1 1—1 I 1 I 1 1 I 1
r M 3/s= 0 .05 l

10' f 1 1 1 1 1 1 1 ~r J~r I TT 1 1 1 IT-]
; M^/s = G.25^

r 1 10̂ r . 1

10°

-lO-i

10^ r 1

I l l ' l l ' : _1_1—1—1—1—1—1—1—>—'—'— 10-3 1 1 1 1 1 1 1 1 J—1—1 i 1—1—1—1—1—L—i—
0.0 0.5

-t[(GeV/c)̂ ]
1.0 0.0 10

t[(GeV/c)2]
Figure 5.7(a) Differential cross-sections and target 
asymmetries of the reactions tt +p^^+X° at s = 100 GeV/c 
for various fixed values of M ^/s.X

187



>*
%
i
3I

0.02

0.01

0.00

0.01

■0.02

Tl“̂ P --   7] fX
s=100B3eV̂ ]

' ' t ' ' "  I I- - - - 1— r - |  I I I r:

t = -03[(GeV/c)̂ ]|

Ti + p T| + X

0.02
s = 100D3eV*]

T  ' ' I • I » i| I I— r - |  I I fi.

t=-0.7C(GeV/c)h

10- -L ,  I 1 1 I ■ 1 I I
10' 10̂ - 0.02

I I r I I I I rj

t=-0.3C(GeV/c)̂ ]:
1

t=-0.7[(GeV/c)̂ ]i

10° 10°

10-’

■o 10'2 2
,-3

10°10°

>»
L .

I
0.02

0.01

0.00

0> -0.01 
?,2

- 0.02

L--I T T f T T » 1 J T ■ - 1 “1 -J T T T-n 0.02 :--- 1--1— i—fTTTiy - 1 » 1 1 TT-rrz
t=-O.U(GeV/c)^]i t=-0.5[(GeV/c)^]:

001 r 4

a oo
: ;

: :
-0.01 r . 4

: :
- 1__1_1_1_'I'll ■ I— 1—1. i lie . -0.02 :___ I i I Ill'll____1__ 1— 1 1 i 1 in

10 2 10 -1 10̂ 10-2 10-1 10'

t.-0.5[(GeV/c)̂ ]ts-O.UGeV/c)^]:
10’

10°10°

r

10°10° 10-'

Figure 5.7(b) Differential cross-sections and target
asymmetries of the reaction tt +p-̂ n-f-X° at s = 100 GeV/c
for various fixed values of t.

188



Tl +P  fc. T|+X
s«100[GeV̂ J

Tl*+P Tf+X
1<2 ,

0.02 0,02

0.01
E
E

o

0.01

0.00 000

- 0.01 -001

- 0.02 - 0.02
0.0 0.5 1.0 0.0 0.5 1.0

cTI 10 2 
10̂ 

10°

in

E
CM loM
ZXI•M 10^
■D

10^

! 1 1 I I r-i—1—i—i ]■ 1 1 1 1 1 I T "TT—j
M^/S=0.10 :r 1

III 11 II 11 1 1 1 1 i 1 1 1_L_l_
0.0 0.5

M^/s=0.50

1.0 0.0

?
%
E
I(0o
t
?.o

I
E

0.02 0.02

0 . 0 1  r0.01

0.00000

- 0.01- 0.01

- 0.02X-002
1.00.51.0 0.00.50.0

■D
(0 I

10 2 
10' 
10° 
10-'' 
10"2 
10-3

I 1 -r~i—n—r“i—1 1 1 I 1 1 1 1 1 1 1 1 !r M^/s*0.05-
10^ IIIIIIIT1 r 1 1 1 1 1 1 1 1 1

I M2/srQ.25i
r  1 10' r 1

10°

JO-'

10-2 r 1

' 1 1 1 1 1 L 1 1 1 1. 1 1 1 1 1 1 1 1 » 10'3 1 1 1 1 1 1 1 1 1 1 1 -1_1 1 1 1 1 1 1 -
00 0.5

-t[(GeV/c)̂ ]
Figure 5.8(a) Differential
asymmetries of the reaction
for various fixed values of

1.0 0.0 0.5
-t[(GeV/c)̂ ]

1.0

cross-sections and target
at s = 100 GeV/c^M 2/s.

X

189



T[*+P
0.02

0 0 1

0.00

 ►  7)+X
s=100[GeV^]

>(_
%
E
E

8
% - 0.01 
P
p

- 0.02
10

1 I I I i"''i 11-----1— I— I— pi III
t=-0.30[(GeV/c)̂ ]:

_i—111111
10'

TX'̂ + P --- ►
s = 100CGeV ]̂

— I—r-r-m-|----1-1-1—I |-r I r.
t=-0.70C(GeV/c)̂ ]i

10

0.00

-0.01

I
E

D(V■a
in
"O■a

10
t=-0.70r(GeV/c)2] :t=-0.30[(GeV/c)2];

10° 10°

110

-3
.0

0.02

L 0.01 (U
E
E 0.00 

o
% -0.01 
Pn*“ -0.02

- 1 1 1  ̂ 1 ' 1 ■ ■ 1 1 1 1 11 
t=-0.10((GeV/c)̂ )

0.02

0.01

0.00

-0.01

T —I—I—[ 1 1 Tr[—  r -T 1 pT T TT
t= -0.50C(GeV/c)̂ ] i

r -j

- i— ■ i i i i i i l  I i i l i i  li.: - -0.02 . 1 ■ 1 1 1 I I 1___1_1_1—1 l-l 1 K
10' 10' 10° ■ 10'" 10' 10

CM
^ 10̂ 
I  10»
n
ê  10

-I— I— I—111111 I I I I • • "]
t=-0.10[(GeV/c)̂ i:

D
eg2■o 10T3 *-•"O(0 If 10 ■ I 1 1111 I ■ 111

10-2 10̂
M^/s

10

t=-0.50[(GeV/c)̂ ]:

10°

■310
10°,0

M^/s
Figure 5.8(b) Differential cross-sections and target 
asymmetries for the reaction

190



K%p K°+X K-+P K % X

gI
X
Po

s= 27.90[GeV J0.02 0.02
M̂ /s = 0.375

0.01 0.01

0.00 0.00

0.01 0.01

-002 -002
0.0 0.5 1.0 0.50.0 1.0

M%=0.175

n

•oltf .-2
0.0 0.5 1.0

10

10°

0.0 0.5 10
0.02

MVs = 0125

E 0.00

% -0.01 - 0.01

-0.02 1.0 0.0- 0.02

M /s*0.125 :

•nllri 10"̂

I I I I— I I I I I I I I— r i l l — I— T T

M  2/S = 0.275

_i 1 I I i_i I I I I—I—I I i_i I I i_i_:
0.5 1.0

M7s=0.275

101.0 0.0> » » « I I 1 I I— 1— I— I 1— 1— 1— I— I— 1— L.0.5
-t[(GeV/c)] -t[(GeV/c) ]

Figure 5.9(a) Differential cross-sections and
target asymmetries for the reaction k p->< +X ^
at s = 100 GeV/c for various fixed values of /s.

191



K%p ---- - K%X K%p ----► K°+X

0.02 s=2798LGeV ]̂
0.02 s 27.98[GeV*]

t»-0.5C(GeV/c)̂ ]
I I 1 1 ? T—1—n

t=-0.9[(GeV/c)̂ ] :
t  001 0.01
E
i  0.00 0008

-0.01p -0.01
g -0.02 ------- '— -— 1---1— 1_III' -0.02 . _i . 1 1. Il III:

10' 10' 10 -1 10'

o
n
E

.°*o
CM
2
T)T3 

Uîltî

>»
L
%
E
E
S

10

10'

10°

lcr' 

10 

0.02 

0.01 

000

T I T 1— I— I— r

t=-0.5[(GeV/c)*]̂

“ t"— î — î'Zl

\-2 -I--------- 1______I____ I___ I___i_
10-1 10

10

t= -0.9C(GeV/cr]

10°

■110

,0 10°

I -0 01 j-

- 0.02

. 1 1 -1 |- r -T r T-
t= -0.3[(GeV/c)2]

002

001
f 1 - 1 ■■ 1 ■ r 1 1 r .

t.-0.7f(GeV/c)*] i

0.00

-001
1______ 1___ 1__ 1__1_1_1_l—L. « -0.02 1 ------- 1--- 1-- 1 1-1-1-1-1_2

10-1 10 10' 10
10

t»-0.7tCGeV/c)’]it=-0,3[(SeV/c)®]1
r.a:-: 1

I-

10°,0
M 7 S

Figure 5.9(b) Differential cross-sections and
target asymmetries for the reaction
at s = 100 GeV/c^ for various fixed values of t.

192



K"+p K°+X KT+p — ^ K®+X '
0.02 0.02

?I  0.01

I» 0.00
o

MVS *0.50
0.01

0.00

- 0.01
- 0.01

- 0.02 - 0.02
0.0 0.5 1.0 00 0.5 1.0

10

.Q

T3

tn 1 IQ- 3
0.0 0.5 1.0

10

10°

0.0 0.5 1.0

?

E
8 
X
S '.o

0.02 0.02

0.01 0.01

0000.00

- 0.01- 0.01

- 0.02X- 0.02
0.0 1.01.0 0.50.50.0

M V S  0 05 ;

I I I I ■ ■ ■ «—I I i-
0.0 0.5

-t[(GeV/c)2]

10

10°

210

1.000

Figure 5.10(a) Differential cross-sections and
target asymmetries for the reaction k”+p*^k®+X® ^
at s = 100 GeV/c for various fixed values of M /s.

195



t
%
E
E
8

I.a

0.02 

0,01 

0.00 

- 0.01 

-  0.02

K"+p — ► K°+X 
SrlOOLGeV^]

' r » ' " I I— »—I—r ’ ' »
t = -0.30[(GeV/c)̂ ]

j— t-1 » 1111___I I ■ I ■ 11 r

K%p — ^ K%X 
s=100[GeV̂ ]

1 I— '— I I I I 11-----1--1— r I iir

10 ' 10'

I I I 111 I-----1— I— [-■ I [ Ij

ts-0.30[(GeV/c)̂ ];“I t*-0.70[(GeV/cn101

10° 1
1

-22 10

10°-2

0.02 0.02T T T T T— r I T I 11 I---- 1---1— I I I II
U  -0.50[(GeV/c)*]t=-0.10C(GeV/cr]

0.01 0.01

0.000.00

- 0.010) -0 01 o>
1=

- 0.02- 0.02 -2.-2 10

jp-a "O"O

10
10'
1 0 °

10-1

10-2 
3

 1-- 1 I I ITT]------- 1----1-- 1 I I • I I]
t-0.l0[(GeV/c)̂ ]̂

%

10
10 2 10 -1

1 

10

t=-0.50[(GeV/cf] :

-3
0

M̂ /s M^/s

Figure
target
at s =

5.10(b) Differential cross-sections and 
asymmetries for the reactions k +p*̂ K_j_X
100 GeV/c^ for various fixed values of t.

194



K % p K° + X

0.02

0.01

> 0.00 
8
t  - 0.01 
?

-002
0.0 0.5 10

M7s=0.l0 ;

10°

3
10

0.0 0.5 1.0

K%p --
s = 100[GeV^]E~i r-i I n  t I i—j—I—I—I—I—I—1—|—rT"

M^/szQ.SO

- 0.01

- 0.02

M  / S s 0 . 5 0

1.0 00
0.02 0.02

0.01 0014)E
Io 000:0.00

-001- 0.01

I M/s =0.05
- 0.02- 0.02

1.0 0.5 1.0000.50.0

M /s«0.50110

10°

1.00.0

10°

1 00.0

Figure 5.11(a) Differential cross-sections and 
target asymmetries for the reaction
at p, , = 14.3 GeV/c for various fixed values of M ^/s.lab X ' •

195



K % p  ► K°+X

s=100[GeV^]
K % p  ► K%X

s = 100CGeV^]

>»L4-»0)
E
E>
o
fl;
?o

0.02

001

000

•0.01

-002
10

; 1 r I 1 t  r t  r j ----------------- 1--------- 1-------1— p - |  1 ,  ,

t=-0.30[(G eV /c)^]
002 

0 01

0.00

1 1 I 1 1 1 1 1 1 ■■ 1 r T ' f  T  T T -K

= -0.70l(GeV/c)^)i

1- -0.01

----------------- L j ------ 1------ 1— 1— t , L l  l l ----------------- 1______ 1____ 1___1__ 1 1 1 1
^ - 2  _____ 1

_ i--- 1—1— 1 1 1 1 11 1 1 1 1 1 I 1 r

10 10'̂ 10- 10" 10'

>
§!o
E

2 ■o
Ü) I ̂

t=-0.70[(G eV/c)^]t=-0.30[(GeV/c)^]
j

10° 10°1

1-210

10°
10*

10°

>L-M(D
EI
0>
?o

— I— I r- I M  I-------1---1— I I I I 11.
t= -0 .10[(G eV /c)^] :

0.02

0.02 

0.01 

000 

-0.01 r

-I 1-1-1 I I IT I-----1---1--1—p

t= -0 .50[(G eV /c)^] ;
I' I I I I I I -I___I— I_1 I L t .r

10 -1 10̂

U
> 10̂
<D
§ 10°
E 10̂|<M

tP ^ 10*2

«0 1 ^ 10'3

-l 1—I—[ I I 11 I- - - - - - 1- - - - 1 I I ' ' " J

t=-0.10[(G eV /c)^]i
1

\\

_i I I iiiJ ■ ■ I III"
10 2 10̂

M̂ /S

t= -0 .50r(G eV /c)^] :

10°

-2

-3

M̂ /s
Figure 5.11(b) Differential cross-sections^and
target asymmetries for the reactions k +p-̂ K +X
at p =14.3 GeV/c for various fixed values of t.

196



APPENDIX 5A

In this appendix we show that the eikonal approximation of Chapter 
IV can be extended to the case where the spinless intermediate exchanges 
depend from a spin  ̂particle.

We must first consider the form

t(B)=Iè Lt Lt (p^-M^)(p’̂ -M^)<p'|g(B)1p > 5A1
p, p^

in analogy with equation 4A1, but in this case

G(B) = (p - M - gB(X) + ie)"^ 5A2

or alternatively

^ g(?+M) B(x)(?+M)__________
“ 2 2  2 2  2 2P -M (P -M -(7+M)gB(x)+ie(7+M))(P -M )

5A3

where

<Pbl:2^:%IPb> (Pb2-Nf)(p2-M2) = 0 5A4

Pb'
P -M

' W
2 2 P b W

Using again the formal integral representation and operator identity of 
equation 4A5 we can write

(P^-M^-g(?+M)B(x)+ie(7+M))”^

J  /  TÎ ..2 , ■ _  /  T i  I i u r \

= r  dt Texpcf dt
Jo Jq

197



In a completely analogous fashion to the analysis performed from equation 

4A6 to equation 4A12, we can insert equation 5A5 into equation 5A1 and simplify 
to obtain

T(p^,p^;B) = <p^|i Texp {- i dx (7+M)gB(X-2Px)} g(?+M)B(X)2M|p^>. 5A6
J 0

It is at this stage that we eikonalize by replacing the operator P^ by 

the C-number vector p^^, and thus making allowance for the spin character 
of the particles we can write

,d ^  -X', ,,— rr u (pl)e
(2 -rr)

8a, exp[- ig
“b

(^+M)B(x-2p^x)dx]| ^ u  (p^) 5A7

If we make one further approximation which is consistent with the eikonal 
formulation namely 18 0]

(p̂ )(î̂ ĵ +M)̂ û (pĵ ) = û  (p̂ )(2M)̂ û (pĵ ) 5A8

we can provide the final formulation for

T^(Pb»p^;B)

5“b
exp[- i.2Mg

%
B(x-2p, T)dT] I }2Mu^(p, ) 5A9

^ “b=0

This form is the analogue of equation 4A13 and can be inserted in equation 

4.4 to yield
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( 2 7 r ) ‘* 6 \ p ^ + p j ^  -  p ^ - p . - p - + p - )  H ( p ^ , p ^ . p 2  ; P i P £ P s )

d^Pl d‘*pi* f Pâ + ' 2  2 + ' 9  2
' J -  -2*4 (p»-m^)2*a

(27r)‘*«'*(p̂ +p̂ -p̂ -pi-p̂ +p̂ )

Te^(PâfA.:Â)T^(PcPs;")TE(Pa'Pl:A)Te(PcPc;C)

Xr- f ,4 i(p^-p').x- ff»

U (pg){[ ---------------- ^ expi:+i2Mg [ B(x.2p_. T)dt] | }
> ( 2 T , y ®“E Jog  ̂ “B=0

u ®(p^){u ̂ (p&)Y(p;p^p^;p:p^.pi)u ̂ Cp^)}

- A ;  -gf- exp[-i2Mg f  B(x-2p T)dT| } u^’̂Cp )
(2x)^ %  -*otĵ P “b=0

5A10

where we use the generalization of equation 4.3 to spin 5 particles to insert 
the spinors around the Y function, which now has the character of a Dirac 
y-matrix of some general form.

So to effect the transition to one spin ^ leg we have only to make 

the replacement

^ °=ac’PiS’Po’®ab>'^^ "

Û b(pg)(p!^+M)%(tac.t-,to.Sab.M2)

X
(j(̂ +M)u P(p^). 5All

in equation 4.19.
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APPENDIX 5B
The first section of this appendix deals with the
detailed representations of the vectors and Q^.
If we take

Pa = (/s^b/Z, O, O, k)

Pb = O, O, -k)

p^ =. ( (x+y) /s^^/2, p̂ Ĉos(j), p^^Sin#, (x-y)k)
2 2 2where y = _! / m +p -xm \ - 5.B.1

s I ---- —  I
X

Then since p^.Q^ = p^.Q^ = O so we can take without 
any loss of generality

Qa = (O' Oal' °a2' " 5-8.2
If we now take

Qc = (Oco- Ocl' Qc2' 0=3) - 5.8.3
Then we can use the two conditions

Pc-Oc = Pb-°c = °
to eliminate the components and

So, Pb»Qc ” ^ gives

°C3 = °co - 5.B.4
2k

and Pç,«Qç, = O gives

O = (x+y) /s QccTGc2Pc±5in* “ " (x-y)kQ^32
- 5.B.5

Substituting for from equation 5.B.4 we have

= Pci(0clO°s* + Qc25i8*) - 5 . B . 6
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For the region that interests us x is of the order of 1
and so«equation 5.B.6 shows that the Q and Q _CO ci
components are down on the Q _ and Q _ by a factor ofcl c2
/s^b• Since the eikonal approximation assumes that the

region of importance occurs when and Q^2 (also

0^2 that matter) are small with respect

to / s ^  we are justified in neglecting the contributions

from the and components in the expression for

t and t which is what we have effectively done in ac o
equation 5.4.

The next section of this appendix deals with the 
representation of the off forward triple-Regge expression 
for Trirp-̂TTTrp scattering. This has the general form I 81]

^R^^ac'^ac' ^o' ®ab\^x  ̂ .̂ ttïïP ̂ ^ac^ ^^ac^

"x'

GppR(tac'^55'to)5R(t,) 5.B.7
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Where R stands for the Pomeron or the f- or p- 
Reggeon, and the are the proton helicities and

the Çs represent the appropriate signature factors.
Notice that for X̂ X̂ for the Pomeron and f-Reggeon

XX XXthat 3ppP/t = 0. Also for the p-Reggeon = 0.

The p-vertex factor, however, does not take cary of 
any threshold effects. These are left to be dealt 
with by the factor of equation 5.14 and is

taken to be a simple exponential in t^, after

approximations have been made.

In order to decide on the precise functional form 
of the various quantities in 5.B.7 we return to the 
form of equation 3.12.

Thus we can make the identification

+ +and 2Im{Gppp(t,t,o)yo)Bppp(0) +

PPf
( t . t , 0 ) S ,  ( 0 ) B + + f ( 0 ) / M % E  }Ppf

= 1.404 (m^p)^ (98.6 t 64.9/(M^)^

5.B.8

5.B.9

We take [57]

r(l-a^(tQ))ppf o ppf f 5.B.10

r\jwhere a is determined by considering Trp and pp elastic 
scattering [82]
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There remains thé functional dependence of G R(t , t — ,t )pp ac ac o
This could in general be expected to exhibit an extremely 
complicated behaviour 117 ] . However, at this level
of approximation we take the behaviour of G^^R to be a

constant.

2Separating out the two dependencies of the R.H.S.

in equation 5.B.9 and assigning the two terms to
Pomeron and f-Reggeon resepctively we can acquire the
normalisations at t = 0  for the Pomeron and f-Reggeono
exchanges; having assumed the functional form, we can 
then write down the terms

OTTTT "S C '^s a F p 
2

X

(t--)
2 '

^PTTTt “ p /fab\
2 \ 2 7 (^âc)

^x
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2
p'"ac' ' I ab j p ac ‘’p'^'ac'

a_(t--) *
g,PTTTT ( (<11)5 (^5)3) j,a' r(l-ap(t--)) P

Mx

81.12(m^p)5 r(l-a^(t^)) -5.B.12
r(l-a^(o))

For want of better information we take

Ypftac'tgE'to'Sab'Mx^) = (  ̂(^5> c (^5> a> P“p

l-“p>^ac’>)(îab)
»x'

‘ 2 (,^2 )

/I 81.12(m„^)5 r(l-a„(t )) (M^^)“p(^o^ -5.B.13ac v g p p o X
rd-ap(o))

where the overall normalisation derives from that of 
the f-Reggeon exchange. The numerical factor ^  and the

quantity which takes on the values ±1, come from

the differing isospin between the p and f, and is the 
ratio of the SU(2) Clebsch Gordan coefficients for 
each.

We note here that the gamma functions arise from the 
Gell Mann ghost eliminating mechanism and are only want 
for use at small values of t; accordingly we will 
approximate them by exponentials in t.
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Also, by using ideas of SU(3) symmetry and strong exchange 
degeneracy between p and A^, we need only alter the

quantity ( (^5) ^(4̂5) 3) p to (*5)3)0 ^2

exchange, or for the various different particles a and c.

Thus, table 5.B.I gives the Regge parameters for the
four exchanges considered here, table 5.B.II gives
the exponential approximations used for the gamma
functions and table 5.B.III gives the quantities
( (*c) (*c)-,)tp ^̂(3. T for all the different reactionsD c D a J?, jj ac
considered. The numbers in these tables allow
calculation of all the off forward triple-Regge
terms that are necessary for evaluation of the selected
integrals in appendix 5.C. Consideration of equations
5.B.11, 12, 13 show that the quantities Y^, and

îfp are indeed sums of exponentials of the required form,

The last, short, section to this appendix deals with 
the calculation of the various.absorption parameters 
C, C%a and a^for the various particles and interactions,

We have

where R is the radius of interaction which seems 
fairly constant over the range of energies that 
we have taken, and are given in table 5.B.IV.

205



For our purposes we relate the unknown total cross-
sections of ri/ K° and K° on protons to the known

^ — ones of 7T , ÏÏ , K and K on protons using very
simple isospin ideas.

2As changes so does s^^, for which we need

absorption parameters. To make this calculation easy 
we assume that total cross-sections of the four known 
reactions are piecewise linear between the points 
in energy given in table 5.B.IV. We can then calculate 
a value of C at any energy assuming this linearity.
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TABLE 5.B.I. - REGGE PARAMETERS FOR THE FOUR 
EXCHANGES THAT WE CONSIDER

Trajectory Intercept Slope Signature Isospin
P 1.0 0.25 +1 0
P 0.47 0.905 -1 1

0.47 0.905 +1 1

f 0.4 1.0 +1 0

TABLE 5.B.II - EXPONENTIAL APPROXIMATIONS TO 
GAMMA FUNCTIONS

Function Approximation
r(l-Op(t)) 
rd-ttf (t))

1.475605 exp (.6118244t) 
1.307707 exp (.4856229t)
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TABLE 5.B.III - S U (3) FACTORS AND RELATIVE 
SIGNS OF THE p TRIPLE REGGE COUPLING TO THAT 

FOR POMERON AND f

Reaction SU(3)
P

factor
^2

Relative
Sign

7r”p-)-TT°X 2 0 -

0 2//3 -
+ o,,7T p-̂ ir X 2 0 +
n^p^nX 0 2//3 +
K^p^X°X /2 /2 +

K'p^K^X -/2 /2 -

TABLE 5.B.IV - ABSORPTION PARAMETERS

Reaction 2Energy (GeV/c) C X (GeV/c) 2

tt“ p 100.0 0.669 0.0676
25.0 0.691 0.0676

w+p 100.0 . 0.694 0.0729
25.0 0.694 0.0729

k ”p 100.0 0.553 0.0676
25.0 0.572 0.0676
14.0 0,586 0.0676

k '^ P 100.0 0.551 0.0729
14.0 0.516 0.0729
7.0 0.516 0.0729
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APPENDIX 5C

This appendix is concerned with performing the integrals arising from 
equation 5,9 analytically. To reiterate we have

H =
2-*' 2-*“ 2-̂  2-kd Qa I Q ,  d Q- d Q.

•>9-— “ Q^A{(2n)262(Q )+d„ I U ± E ^ e x p ( - ^ ) }  
k=l k.k!(A) K

((2w)2d2(q^)+%* I l z l l ^ - ^ e x p ( - Y ^ ) }
° 4=1 A.A!(A')* ̂  ^

9 0 -. " / % ;m m m Q-A*{(2w)2g2(Q_)+4n I i~A). -Ca . e x  ( _  _a__)} 
m=l m.m'(A*)m-l

9 9 - “ (-l)"c'”a'° Q?A'*
{(2x) 5 (Q_)+4x ]] ------: — ^ exp(-------))

n=l n.nUA'*)"-^

where

SCI

f = (p Cos(|)+Q +Q -ip sin(j)-iQ -iQ ) 
^1 ^1 2̂ ^̂2

- (p Cos<|)+Q- +Q- -ip sin<j)-iQ- -iQ- ) 5C2c± C2 &2 ^2

for integrals arising from the helicity flip 3-body discontinuity and

f = 1

for integrals arising from the helicity nonflip 3-body discontinuity,
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The notation is as for the previously mentioned equations. Because
of the form chosen for Y i.e. a sum of exponential terms, we need only
consider integrals containing

tac ^Ftac ^Gto 5̂ 3

where E, F and G can have small imaginary parts. Also because the 
functions we are integrating are uniformly continuous we will be able to 
exchange summation and integration symbols where necessary.

Therefore, the integrals that must be performed in order to be able
to construct all the possible contributions to 5Cl can be listed as:-

1.

3.

7.

-*‘2
d \  exp{- M }  f(Q^)e^tac^Ftâô^Gto

-+2
2. i  [ d^Q exp{- f(Q )eEtaCgFta52GtoTT I C  ̂ £ C

d^_ exp{-

4. i  I d ^ _  exp{- ̂"c n c

5. ^  I  < , % i \ «Q..Q.)
7T

6. ij I dV ?o »-<- %  - # 1  ««,.5,).“ “ =” “ .“ “

d^Q^d^Q, exp{- - f - - -f - }

m n

-̂ 2 —+2 fQ^A QIA*a ^ }k m

-*2 -+2 . ,Q A Q_A'&a c
k n

—*2 -"2 ,
qU QIA*c a __

8. 4  J exp{- -f- -
IT ^
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—̂ 2 f —̂2 J

10. % I d % d %  exp{- M  _ f(Q^.Q_)eCtaCerta=eGto

1 f .,2- .2- , 2 - ___, V '  %*'*, , Etao FtS5 Gto11. 3 I d Q̂ d Q_d Q- exp{ ---------- ------------%— } f(Q^,Q- Q-)e e en C' 'a , c

12. ^  I d % d % d %  exp{- ̂

13. ^  f  d % d % d %  exp(- A  . ̂  f(Q^.Q,.Q,)a:^-a^^-e'

14. 3TT
-*2 —*2 • —̂ 2 -̂2Q^A Q̂ A* QfA* qIa ’*

15. Ar I d"Q̂ d"Q d"Q d"Qu exp{-

f(Q^,Q^,Qg,QL^eCtaCgFtaCgGto_ sc4

The order of these integrals are, of course 2,4, 6 and 8 but since the
dependence on the 1-components (say Q ) decouples from all the 2-components,

1̂
these integrals are made up of products of 1st, 2nd, 3rd and 4th order 

integrals.
Once the integrals listed 1 to 15 are written out the full 

Q-component dependence shown it will be seen that there are just eight 
separate integrals which must be performed, and that all the integrals of 
interest are formed from sums of products of these eight, with possibly 
different arguments. These integrals can be listed as:-

a) i p  I dz exp{- M z  ̂ -  23 z}.
^2 J Z ^

b)
TT
Ap f dz z exp{- M z^ -  23 z} ^5 J z z
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c) i I dydz exp{- M^y^ - - 2g v - 23^2 + 2Yyzyz)

d) f 2 21 J dyy&z exp{- - M^z - 23 y - 23gZ + 2Y,^yz}

e) 3/2
2 2 2 dxdydz exp{- M^x - M ”- M%9 - 23x% - 23yY - 23;:

+ 2y • xy + 2y xz + 2y y z } ' xz yz"̂

f) 3/2
2 2 2 dxxdydz exp{- M^x - - M̂ z; - 23^x - 23^y - 23^^

+ 2y^yXy + 2r^^xz + 2 y^ ^y z}

g) 2 2 2 2 dwdxdydz exp{- M^w - M^x - - M^z - 23^w - 23^x - 23^ - 23^^

+ 2r„x«x + 2r^wy + 2y^wz + 2y^^xy + 2y^̂ xz + 2 y ^ y z }

( 2 2 2 2 h) ■“ J ^wwdxdydz exp{- M^w - M^x - - M^z - 23^w - 23^x - 23^y

+ 2B ẑ + zy^^wx + 2y^wy + 2ŷ ŵz + 2y^^xy + 2y^^xz + Zy^^yz}
5C5

Now Gradsteyn and Rhyzik [611 give us that
2

C  du e^{Gu^+23u} _ y r  exp{— } for Re a > 0 5 ce

and
n  du u e +23u} = _ A  /Z exp{~} for Re a > 0J a / a ^ a

and repeated use of these two integrals is all that is necessary to evaluate 
the multiple integrals of equations 5C4.
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We list the forms of the integrals of 5C5 as

z z

5) - -372M zz

0  exp{/S)
V  ■

2where A = M M  - yyz y  z 'yz

[3 M +3 Y n B
d) - ■ ■ y S/,: y: exp{/^}

V

e) — ^  e x p { ^ }
V z

2 2 2 where A = M M M - M y  - M y  - M y  - 2y y yj^z X y z X yz  y' xz z xy xy yz xz

V z  = Ayz^x + + V ^ z

^^y^z^xyYxz  ̂^^x^z^xy^yz ^^x^y^xz^yz

f) ^^x^yz ẑ̂  xz^y ^y^xy^z ^z^xy^yz ^y^xz^zy^ ^̂ xyz^
Axyz
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g) - ■ ^ 1/2
V u z

2 2 2 2 2 2 where A = M M M M + y y  + Y Y  + Y Ywxyz w X y z 'xy'wz 'xz'wy 'xw'yz

- 2M Y Y Y - 2M y Y Y - 2M y y y - 2M y y y w xy xz 'yz x'wy'wz'yz y wx'wz xz z wx wy xy

- 2y ' y y y - 2y y y y - 2y y y y wx'wy xz yz 'wx wz'xy yz wz'xz'wy xy

2 2 2 - M M y - M M y - M M  y wx'yz wy'xz wz'xy

2 2 2 - M M y - M M y - M M y xy'wz xz'wy y z wz

and B = 3^A + g^A + 3^A + 3^Awxyz w xyz x wyz y wxz z wxy

+ 23 3 A + 23 3 Aw X wx,yz w y wy,xz

+ 23 3 A + 23 3 Aw z wzjxy X y xy,wz

^^x^z^xz,wy ^/z\z,wx

with ~ ŷ̂ z"'̂ wx ^ ^y^wz^xz ^&^wy^zy

2- y  y + y y y +y y y 'wx'yz 'wy xz'yz 'wz'xy'yz

b) ~*-̂ ŵ xyz ^x^wx.yz ^y^wy.xz ^z\z,xy^ ^.^^^wxyzy gQ?
3/2 ^wxyz

wxyz
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The form of the integrals e - h of 5C7 might suggest that the 
algebra involved in determining them was almost interminable however it was 
possible to use the symmetry properties between the integration variables 
to fix the final form without full recourse to detailed algebra. Part of 
this is brought out by the notation where any quantity with two or more 

subscripts not separated by commas is symmetric under exchange of any two 
of the subscripts in position.

To conclude this appendix we give the expanded form of all the 

integrals of 5C4 to show that they can indeed be written as sums and products 
of the integrals of 5C5 and for integrals 1 - 10 we also give the detailed 
structure of the final answer. We do not do this for integrals 11 - 15 
since these were not utilised in the actual calculations of this chapter, 
and the form would be so complex that little or no insight into the analytic 
properties would be gained from it.

1. 1 (E+F)t —  eTT dQ f(Q )

exp{-(4 + Ex + G)Q^ -2p CosijiEQ } k â _

• exp{-(^ + Ex + G)Q^ -2p Sin(j>EQ } K 2̂ ^2

for f(Q ) = 1

Po
= exp(:r^----— }

(^ + Ex.+ G) T- + Ex + G k

for f(Q_) = Q_ + iQa^ 1̂ 2̂

-p Ee 
1̂

i*

(A + Ex + G)

Pc^ e2
exp(E + F)t exp{---------- }

~  + Ex + G
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2) 1 (E+F)t —  eTT d Q o  dQ f(Q ). 1 °2 °

exp{-(|- + I + G)q2^ - 2p^^Cos,)|q ^̂ }

exp{-(f + f + G)q2̂  - 2p,^Sin^^^}

fo r  f(Q^) = 1

T _ e x p ( E + F ) t  f 1Ic.% - ' -À-'  ̂f  exp{—
(f- + i + G) %- + # + G

f o r  f(Q ) = Q  + iQo =2

—  p E / x  e^'(’ e x p { ( E + F ) t }  p^ E^/x^

= (f-+f + G)2 exp{vT E  }

3) 1  (E+F)t —  eTT dQ_ dQ- f(Q-) 3i a

exp{-(— - + F x  + G)Q? — 2p CosÿFQg } in « 2

A* 2exp{-(—  + Fx + G)Q- -2p Sin(|)FQ- } m

f or f(Q_) = 1

^ a , .  = ( Z r r +  G) FX + g ’
m  m

f o r  f(Q ) = -Q -  - IQ-a 2̂

i:
p ^  F e ^ P e x p { ( E + F ) t }  

(Al + Fx + G)̂ m
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i  e(E+F)t
TT

f or f(Q-) = 1

dQ dQ f(Q ) Cf C2 . c

,A'* F 2 Fe x p { - ( ^ -  + -  + G)Q_^ - 2 p^^Cos(f^_^}

A ' * F 2 Fexp{-(  + -  + G)Q- - 2p Sin(PQ- }n X X Cg

. e x p { ( E + F ) t }  r 1
-  7A . r . « ,  “ ' < * 2 7 X 7 7 ’n X X X

for f(Q-) = - Q- - iQ- 
=1 =2

p^ F/ x e ^ ^ e x p { ( E + F ) t }  p^ . F^/x^

= - ^ 1 7 1 7 ^ 7 —

5) ^2 g(E+F)t I ^ dQ dQ dQ f(? ,?)
TT J ®1 °1 *2 =2 ®

exp (-(A + E x  + G)Q^ - ( ^  + -  +  G)Q^ - 2p CosfEQ ^ k I X  ^

- 2p Cos A  - 2(E + G)Q^ Q }
°1 1 ®1 °1

exp{-(A + Ex + G)Q^ - (4- + f + G)Q^ " 2p„ SinfEQK â  X X Cg

- 2p Sincf^Q - 2(E + G)Q Q .} 
Cf X C2 ^ 2  ^2

f o r  f(Q^,Q^) = 1

e x p { ( E + F ) t }
a c ,k£ (A ^ + G ) ( ^  + A  + G ) -(E+G)^
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exp{
Pc + f- + - 1)2)

kx^  ̂ ^____________
(^ + Ex + G)(-^ + ̂  + G) - (E+G)2

for f(Q ,Q ) = Q + Q + i(Q + Q ). a c E2

^)e^^exp{(EtF)t} 

ac.k)l {( A ^ + g)(Al + I  + G) - (E+G)2}2

Pc + f  + - 1)̂ )..._, °1 kx^ * *
^^P A A' E 2(ĵ  + Ex + G)("^ + —  + G) - (E+G)

5) \  e(C+f)t
7T

d Q - , d Q  d Q -  d Q  f ( Q  , Q  )
dĵ  “2 2

A A 9 A ’ P 9exp{-(—  + Fx + G)Q_ - (-—  + —  + G)Qm A X

- 2p CosèFQ- - 2p Cos(j)E/xQ + 2GQ- Q }Cl ^1 Cl Cl &1 Cl

; exp{-(-^ + Fx + G)Q? - + ̂  + G)Qm 3.Q Xr X C2

- 2p Sin(f)FQ_ - 2p Sin*E/xQ + 2GQ- Q }Cl 2̂ Cl 2̂ ^2 C2

I- exp{(E+F)t>
a,c,m,£ (AL + A  + G)(—  + Fx + G)-G^ A X m

ex:p{-
P c / C ' ( f  + f  t G) + ÿ f  + FX + G)

(Al. + -  + G)(—  t Fx + G) - G^& X m

2EFG)

f o r  f C Q j . Q ^ )  =  -  Q - ^  +  I Q c g  -  I Q g .
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Il
p1  exp{(E + F)t}£ xm

S'C.m* A- E A* 2 2{(f- + ̂  + G) ( ^  + Fx + G) - G^}

2EFGi

exp{-^
2 m

+ £  + G)(^ + Fx + G) - G^

7) l, e(C+f)t
TT

dQ dQ- dQ dQ- f(Q Q_) 
2̂ 2

A 9 AA 9exp{-(- + Ex + G)Q - (—  + Fx + G)Q_ k m aj

2p CoséEQ - 2p CoséFQ- + 2GQ Q- } cj_ a^ Cl a &i ai

A 9 a A 9exp{-(—  + Ex + G)Q — (—  + Fx + G)Q_ k a« m a.

2p Sin(j)EQ - 2p Sin^FQ + 2GQ Q- }

for f(Q , Q-) = 1

I - exp{(E + F)t}
a,a,k,m (A + + G)(—  + Fx + G) - G^K m

Pc + Ex + G) + + Fx + G) - 2EFG]
exp{— — ---      }

(•ĵ + Ex + G)(—— + Fx + g ) ” G

for f(Q,, Qg) = Qg - Q- + i(Q_ ' Q= )• a a a^ *2

p l|A - SAl j e'-* exp{. (E + F)t }. ^Ci k m
I» _a,a,km + %% + G)(^ + Fx + G) - G }

p^ IF^(A + Ex + G) + E^ ( ^  + Ex + G) - 2EFG]
exp{*

Cl “k m

(A + Ex + G)(A1 + Fx + G) - G^ K m
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8. — e7  + « t  I dQa^d^_dQ,^dCL^ f(Q^,Q.)

exp{-(A + Ex + G)Q^ - (AlA + Z  + g )Q?X n X c 1

2p Cos^EQ - 2p Cosd) A  q + 2GQ Q- }Cl &i Cl X Cl &i Cl

exp(-(p + Ex + G)Q^ - ( - ^  + I  + G)qH

2p Sin*EQ - 2p Sin* A  q + 2GQ Q- }Cf a.^ Cl X Cg

for f(Q Q_) = 1 a c

I _ exp{(E + F)t}
a,c,kn (A ̂  ^ G)(—  + -  + G) - G^k n X

+ Ex + G) + E ^ ( ^  + f + 2) - - ^ 1
exp { A A * * F I 2 ^

+ Ex + G) ( ^ ' + —  + G) - G

for f(Q ,Q ) = Q - Q- + i(Q " Q= )'
2m 1 2 2

p [lA _ ^ à L t] e^*exp{(E + F)t} ^c^ xK n
I*_ - ^ac,kn ^(A + + g ) ( ^  + ̂  + G) - G^}^

p1  4 :  + EX f G) f E ^ ( f  + I  + G) -
r 1 X ____________________________________ 1exp{ . A' F 2+ Ex + G) + ~  + G) - G
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9- -
TT

dQ-^dQ-^dQ.^dQ-^ f(Q. Q_).

. ,A*& F V 2 .A* 2eKp{-(—  + - + G)Q-^ - + Fx + G)qH^

2p Cost Q- - 2p Cos*FQ_ - 2(F + G)Q_ Q- } 
1 1 "=1 ®1

, A'* F 9 A A 9exp{-(—  + -  + G)Q_ - (A_ + Fx + G)Q- 
n  X Cg m & 2

2p Sin'f-S Q- - 2p Sin^FQ- - 2(F + G)Q- Q- } 
1 2 °1 2̂ ®2 °2

for f(Q- Q_) = 1a, c

I—ac.mn
exp{(E + F)t}

(—  + A  + G)(A1 + Fx + G) - (F + G)^ n X in

o r A* 9 A ’ * F
p  [ ( ^  +  Fx +  G) +  X (A—  + 4  + G) - 2x(F + G)]

exp{- =1 x2 m n X

(—  + -  + G)(A1 + Fx + G) - (F + G)^n ■ X m

for f(Q_ Q_) = - (Q_ + Q_ )- i(Q- t Q_ )a c a^ Cl zy Cg

II-ac,mn
p F[——  + —  ] e^*exp{(E + F)t}Cl n mx
{(—  + -  + G)(—  + Fx + G) - (F + G)^}^ n X m

^  AA 9 A’ A p
p —;r l(  + Fx + G) + X ( ------- + — + G) — 2 x (F  + G)]Cl ^2 m n X

® x p { A’ A P AA 2
+ ̂  + G)(~ + Fx + G) - (F + G)^

}
n X m
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10. ^  I dQ dQ dQ dQ- f(Q ,Q )
IT J 1̂ ^1 2̂ 2̂  ̂ ^

A ’ F 9  A * A 9exp{-(-r- + V + G)Q - (A—  + Fx + G)Q-
X/ ĴL

2p Cos* Q - 2p Cos* ^  Q- + 2GQ Q- }

exp{-(^ + f  + G)Q^ - (—  + Fx + G)Q?
2̂ ^ ^2

2p Sin* —  Q - 2p Sin* —  Q_ + 2GQ Q_ } 
^ 2̂ ^1 ^ 2̂ 2̂ 2̂

I _ exp{(E + F)t>
cc,An + E ^ G)(—  + A  + G) - G^

X, X n  X

p^ /x^ + -  + G) + E^(—  + -  + G) - 2EFG]
X X XI X

(f- + i  + + I  + G) -

for f(Q .Q-) = Q - Q- + i(Q - Qg ) o c =1 =2 2

côJta + I +  G ) ( ^  + I + G )  -  G ^  2

/x^ 1 F^(-t + §  + G) + E^(-^ + ̂  + G) - 2EFG1X X  n  X

+ X + + ̂  + G) - G^
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11. e(E+r)
TT

fCQ^.Q^Q;)

e K p { - ( f  + f  + G)Q^^ - ( ^  t FX f G)q|^- ( ^  f |  . 0 ) 9 ^

E F2p Cos* —  Q - 2p Cos*FQ- - 2p Cos —  Q- 
C i  X C l C l  & i C l  X C l

+ 2GQ Qr- + 2GQ Q- - 2(F + G)Q- Q- }

exp{-(^ + ̂  + G)Q^ - (—  t Fx + G)Q? - ( ~  + -  + G)Q?2 X Cg m n x ^c^

- 2p Sin* A. Q - 2p Sin*FQ_ - 2p Sin* —  Q- 
1 2 1 2 1 ^  2

+ 2GQ Q- + 2GQ Q- - 2(F + G)Q- Q- }, 
2̂ ^2 2̂ 2̂ ^2 2̂

where f(Q ,Q-Q-) = 1  or - Q - Q_ - Q- + i(Q- - Q_ - Q- ) c a ^ c  Cl ai Cl c^ c^

12. I3
F

dQ dQ dQ dQ dQ dQ- f(Q ,Q Q ) 
®1 ^1 =1 *2 *2 =2 a a c

A 9 AA 9 A ' *  F 9exp{-(^ + Ex + G)Q - (— - + Fx + G)Q- - - + “  + G)Q_j\ n* & — XI X C»■L 1 X

- 2p Cos*EQ - 2p Cos*FQ- - 2p Cos* —  Q-
C i  a i  C l  H i C l  X C l

+ 2GQ^ Q- + 2GQ^ Q- - 2(F+G)Q- Q- } 
1 1 1 1 1 1

A 9 AA 9 A ' * F v 2exp{-(Tr + Ex + G)Q - (—  + Fx + G)Q_ - - + —  t G)Q_K ag in 3-2 “ X Cg

F- 2p Sin*EQ - 2p Sin*FQ- - 2p Sin* —  Q_Cl â  Cl a^ Cl X ĉ

+ 2GQ Q- + 2GQ Q- - 2(F + G)Q- Q- } 
^2 ^2 2̂ ^2 ^2 2
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where f(Q Q-Q-) =1 or = Q - Q_ - Q- + i(Q - Q_ - Q_ ).
a a c ^1 ^2 ^2 ^2 '

13. Ig e(C+r)t
IT

exp{-(A + Ex + G)Q^ - (7^ + - + G)Q^ - (—  + - + G)Q?X 5̂  A» X T1 X C1

E F-2p Cosd)EQ - 2p Cos* — Q - 2p Cos* — Q-
C i  a ^  C l  X C l  C l  X  C l

- 2(E + G)Q Q + 2GQ Q_ + 2GQ Q- }

exp{-(A + Ex + G)Q^ - ( ~  + - + G)Q^ - + - + G)Q?X a^ & X Cg n X ^Cg

•2p Sin*EQ - 2p Sin* — Q - 2p Sin* — Q-
^ C i  ^ ^ a ^  ^ C i  ^  X  ^ C i  ^ C i  ^ X ^ c ^

2(E + G)Q Q + 2GQ Q_ + 2GQ Q- } 
2̂ 2̂ ^2 2̂ 2̂ 2̂

where f(Q Q Q-) = 1  or = Q +Q - Q - +  i(Q + Q - Q_ ) a c c a, c, c,

TT
dQ dQ dQ- dQ dQ dQ_ f(Q Q_Q_) 

1 1 1 2 2 2

exp{-(^ + Ex + G)Q - (y— + — + G)Q - (—— + Fx + G)Q«K a_ X X c_ in1 1  a.

- 2p Cos*EQ - 2p Cos* — Q - 2p Cos*FQ-
C i  ^ 1  C l  X  C l  C l  a i

-. 2(E + G)Q Q + 2GQ Q- + 2GQ Q- }'Si'Cl Cl ai

exp{-(^ + Ex + G)Q^ - (-—  + — + G)Q - (-—  + Fx + G)Q-
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2p Sin*EQ - 2p Sin* —  Q - 2p Sin*FQ-Ci Cl X Cg Cl

2(E + G)Q Q + 2GQ Q- + 2GQ Q- } 
2̂ 2̂ ^2 2̂ 2̂ ^2

15. ^
TT

dQ dQ dQ- dQ- dQ dQ dQ_ dQ- f(Q Q Q_Q_) 
^1 ^2 ^2 ^2 ^2 a c a c

exp {-(A + Ex + G)Q^ - + A  + g )Q^ - (A- + Fx + G)Q^X 3 2̂ 36 X  in 3^

- ( ^  + I  + G)q|

E F- 2p Cos*EQ - 2p Cos* —  Q - 2p Cos*FQ- - 2p Cos* —  Q- Ci ai Cl X Cl Cl ai Ci x Ci

2(E + G)Q Q + 2GQ Q- + 2GQ Q- 
1̂ ^1 ^1 ^1

+ 2GQ Q- + 2GQ Q- - 2(F t G)Q- Q_ } 
^1 1̂ ^1 1 1

exp {-(A + Ex + G)Q - (-—  + —  + G)Q - (—  + Fx + G)Q- ^ k a^ X X c^ m a^

E F- 2p Sin*EQ - 2p Sin* —  Q - 2p Sin*FQ- - 2p Sin* —  Q-
2̂ ^2 ^1 ^ ^1 1̂ ^1 1̂ ^ 1

- 2(E + G)Q Q + 2GQ Q- t 2GQ Q- Cg 3̂ 2 ^2 ^2 2̂

+ 2GQ Q- + 2GQ Q- - 2(F + G)Q- Q- } 
2̂ 2̂ 2̂ 2̂ 2 2

where Qg) = 1 or = - Q-^ - + i(Q^^ + - Q-^ ‘ Qĝ )-
i

-5C8. !
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It is easily seen that integrals 11 - 15 of 5C8 can be performed by
repeated application of the integrals e - h of equations 5C7. We also
note that the correct kinematiùàl factor namely, p ,

1̂
multiplies all the I' integrals which contribute to the "flip" 
discontinuity, i.e. the target asymmetry. This justifies the choice of 

the form of the factor given in 5.14.
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CHAPTER VI

Reprise
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In the preceding four chapters we have developed a fairly 
sophisticated model for the evaluation of absorptive type 
corrections to so called triple-Regge distributions. This 
has proceeded via the writing of a fairly large computer 
program 155] which is intended to ease the extensive data 
handling, calculations and, not least important, display of 
results, which accompany work on single particle inclusive 
reactions. We then went on to develop and evaluate a fairly 
simplistic model for incorporating absorptive corrections with 
the basic triple-Regge formalism. This simplistic model was 
however found to be too naive in concept, and was shown up as 
unsatisfactory, both at an heuristic and phenomenological level.
The next stage was to develop a more rigorous and better 
motivated model. While the previous model was derived from the 
stand-point of considering the sums of quasi-two body 
x^eactions, the newer model was to consider absorptive type 
corrections to a three body amplitude, taking the discontinuity 
in to make contact with single particle inclusive reactions 
via the generalised optical theorem of Muller. These 
corrections were of a fairly general type, under the Regge-eikonal 
approximation, but we re-iterate that we could not hope to 
incorporate all possible corrections of the type we were 
considering, and still have been able to retrieve a reasonable, 
closed, eikonal form at the end of the calculations. We were, 
in fact, pleased and suprised at the level of approximations 
necessary in order to achieve the final closed form which does 
not come about as simply and automatically as in the two body case
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In the final chapter of these four the formula just derived 
was applied to the problem of charge exchange spinless 
meson reactions. None of the gross heuristic and 
phenomenological defects of the previous model were present 
and comparison with data was quite encouraging, although 
complete agreement was not found. This might possibly be 
put down to the- relatively low energy of the experiment for 
a "triple-Regge" type calculation. We feel that data at a 
substantially higher energy are needed in order to be able to 
resolve questions of the detailed M^^/s dependence. Such 
data should be available in a relatively short period.[56]

Quite a lot of effort has been expended on the question of 
absorptive corrections to the triple-Regge spectrum, and quite 
a few calculations have been presented in the literature. 
Those, to date, that I have found most interesting have been 
briefly considered, separately in Chapter I. It is now 
possible to "compare and contrast" these formulae with that 
derived in Chapter IV.

Perhaps the most useful form in which to view the formula 
of Chapter IV is (see 4.19)

d'Qa d'Qc 6 ^ %
(27r) ̂  (2tt) ̂  (2n) ̂  (2ïï) ̂

Our model does, in fact, make a specific, eikonal, choice for 
the form of the S factors, but we need not be concerned with this 
precise form. Equation 6.1 is enough.
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When we turn to other models we see that an equation of 
the form

Pcx- k; ) S*eff(Pci- k; ) 6.2

crops up repeatedly. Note that the slight change in
normalisation is taken up in the factors. This formula is
used by Craigie and Kramer [36] , Goldstein and Owens [46] and 
Capella, Kaplan and Tran Thanh Van [41] , although this fact is 
not transparent in tie last case. Different definitions of the 
impact parameter and hence k^ are made; such details should not 
affect phenomenology, and also different definitions of which
however, always refer to rescattering in the a-b or 1-2 channels. 
Pumplin [40] also produces a formula of this type, but in his case 
the re-scattering is deemed to occur in the c-b or 3-2 channel. 
Since in most of the detailed models the absorption paramters
will not be strongly energy dependant, even this change should
not be strongly reflected in the phenomenology.

Paige and Sidhu [39] derive a formula, not too dissimilar to 
that given in equation 6.2, from the viewpoint of the Reggeon 
calculus, however, while equation 6.2 clearly allows for the 
possibility of rescattering in both the "incoming" and "outgoing" 
1-2 or a-b channels, Paige and Sidhu discount this, and make the 
correction to the pole only graph with the sum of the two "singly 
rescattered" graphs with an extra elastic reaction in either 
the "incoming" or "outgoing" channel. Their derivation uses 
the Gribov cut coupling functions of the form +k^,ki)

for the upper 1,3 vertex and (kj for the 2-2 vertex.
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Of course in this form there is no factorization into the form 

Seff ^ S:ff

where the Y represents the pole only expression. However,
Paige and Sidhu specialise to the "absorption model" form for 
these functions, namely

(t^ ,t^) = 32 2P (t^) 6.3

and the use of this parametrization brings their model more 
nearly to the form given by equation 6.2.

Bartels and Kramer [45] also derive an absorption model in 
the Reggeon calculus. They make similar assumptions to Paige 
and Sidhu, but go much further by considering more complicated 
diagrams, including enhanced graphs (graphs with more than one 
triple-Pomeron coupling) and also by deriving an eikonal- 
approximation which gives a similar form to that of Capella et al 
Bartels and Kramer indicate that they feel at present day 
energies several terms in their eikonal expansion will be 
important while at higher energies the enhanced graphs will 
assume greater and greater importance.

We now return to a point made in the above authors 
derivation of their eikonal model; namely that in the case of 
charge exchange with also the exchange of several eikonal 
Pomerons they can see the 2 particle - n Pomeron, 1 Reggeon cut 
coupling function in either of the forms g^ g^R^ or
g^R^g^. This is of course in the eikonal approximation, and 
from their point of view the formula derived in Chapter IV and 
re-stated in equation 6.1 appears to embody some over counting.
We shall return to this point shortly.
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The above discussion then shows us that all the available 
absorption or cut correction models can be obtained almost as a 
subset of that given in Chapter IV. Of various different 
S-factors and input Y expressions would need to be used, with 
one or other of the eikonal phases % set to zero to regain either 
1-2 or 3-2 re-scattering only, and for the approach of Bartels 
and Kramer, the Y graph would have to embody various enhanced 
graphs.

There are a few further points we wish to consider however.
In the case of two body reactions the parts a) and b) of 
figure 6.1 represent two candidates for the two body cut. They are
represented in *  ̂ theory for simplicity. Diagram a) was first 
studied by Amati et.al. [20] and b) by Mandelstan [23] who showed 
that b) will dominate a) as s^“ . The rigorous argument is quite
complicated, however a simple physical argument shows the 
underlying reason. Clearly figure 6.1 a) has two Reggeons 
emitted sequentially while b) can have the two emitted 
simultaneously. As s-»-«> the two particles will spend less time 
in their mutual interaction radius and two sequential events 
become less favourably indicated.

This fact however, has not put a stop to an immense amount 
of phenomenology using figure 6.1 a) as its basis. It is the 
so-called absorption model, and whilemuch successful work has - 
resulted, there are indications in the polarisation measurements 
in TT p->iT̂ n and the line reversal breaking of K*n+K°p and 
K"p-^K°n, which could not be accounted for by the traditional 
absorption model, that the precise phase of the cut is not well 
accounted for. This led to the proposal of the i-factor model 
[84]which by a brute force adjustment of the phase of the cut 
was able to account for both these phenomena 184,85]
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More recent phenomenological analyses [ 86, 87] and a theoretical 
argument [58]in a simple multi-peripheral dual type model lend 
support to this kind of model. A corresponding calculation in 
the Reggeon Calculus [ 8 9] , where a more complicated form than the 
absorption model prescription for the cut coupling functions is 
used, is showing encouraging results.

All this points to the fact that the traditional absorption 
model is likely to be unable to reproduce the precise phase of 
the two body amplitude. Every calculation, including our own, 
however, does use the traditional prescription. It is perhaps 
slightly more justifiable since, away from x = 1 the interaction 
of the particles to produce a massive M^ state takes place over a 
relatively long time [48] , unlike at x = 1 where interaction
timings must be of the same sort as for two body reactions.

The reason why the traditional absorption model has received 
so much emphasis is, of course, because it is very easy to apply 
and does give some quite substantial successes. It will probably 
continue to be applied quite extensively where the precise, 
detailed phase of the cut is not of paramount importance.

One further point that we must consider is that of Bartels and 
Kramer where the suggestion is made of overcounting in the 
formula 6.1. A calculation has been performed in field 
theory for a single particle in the M^ state, i.e. at x = 1 [74] 
This of course gives that the eikonal phases x^b &nd%cb 
small (this is just another AFS/Mandelstan cut question) but the 
mixed eikonal phase enters with the correct weight. The
question is therefore not easily resolved, however, from the 
standpoint of our calculation we see that the question basically 
hinges on whether we are justified in choosing two independant 
impact parameters for B^^ and B^^. For x = 1 and small t it
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would seem likely that the dynamics of the situation require 
and to be similar. We are after all in a quasi-two 

body situation. Away from x = 1 it is not clear that this is so.
Consider the diagram of figure 6.2. We are again using a 

(p^ Regge coupling. If we take this sort of diagram seriously, 
the important point to note is that in the integration about 
the loop over d*k, it need not be just the small values of k, 
or those where k : p^, that contribute to building up the residue. 
Near x = 1, these values of k in the momentum picture do not 
affect the co-ordinate picture since the reaction will take 
place over short times, and this ensures that particle 3 
cannot propagate to impact parameters far removed from those 
of particle 1. As x comes away from 1, and the times of 
reaction lengthen, the integral over k will ensure that all 
impact parameters B^^ are achievable. This shows us that we 
can indeed take B^^ and B^^ independant. It is however clear 
that Bartels and Kramer's argument is sound for small

To finally conclude, then, we feel that phenomenology in the 
triple-Regge inclusive region will not be successful with a pole 
only formulation, in any detailed sense, but in much the same 
way that the absorption model in two body scattering has been able 
to provide good detailed agreement between experiment and theory 
over a wide range of processes, we feel-that its counterpart in 
the triple Regge region could be, and to an extent has been 
successful. To continue we also feel that the formula derived in 
Chapter IV provides a very flexible formulation of the "absorption 
model" in the triple Regge region, which when combined with the 
computer program outlined in Chapter II would provide a very 
interesting tool for examining the phenomenology of the triple- 
Regge region in inclusive processes.
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