
1 .

DIOPHANTINE APPROXIMATION 

AND

PRIME NUMBERS

by GLYN HARMAN

of ROYAL HOLLOWAY COLLEGE

For the Ph.D. degree (LONDON).



ProQuest Number: 10097510

All rights reserved

INFO R M A TIO N TO ALL U SER S  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10097510

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition ©  ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



2.

ABSTRACT.

In the first part of this thesis various problems in diophantine 

approximation are considered, which generalize well known theorems 

of Dirichlet and Kronecker. A brief survey is presented in the first 

chapter, including a discussion on the scope of elementary methods. It 

is demonstrated here that stronger results are possible by elementary 

means than have previously been obtained. In the subsequent chapters 

non-elementary methods are used. Results are proved *for fractional 
parts of quadratic forms in several variables which improve upon 

previous work. New theorems are demonstrated for the distribution 

modulo one of "almost all" additive forms in many variables, including 

the particularly interesting case of a linear form in positive variables 

In chapter four new bounds are given for exponential sums over primes, 

which greatly improve upon the work of I.M. Vinogradov. Some applic­
ations to diophantine approximation problems involving primes are given 

in chapters 4 and 5, the latter chapter also improving upon previous 

work on the problem of a linear form in three prime variables.

In the second section, topics in multiplicative number theory 

are discussed. It is shown that almost-primes are very well distributed 

in almost all very short intervals, improving upon previous work by a 

considerable factor. Sieve methods are then employed to tackle three 
other problems. New results are in this way obtained for prunes in 
short intervals, for the distribution of the square roots of primes 

(modulo one), and for the distribution of o( p modulo one for 

irrational a: . This last chapter contains a new method for tackling 

sums over primes which has other applications.
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NOTATION

We write )I % | | for the distance of x from the nearest 

integer. We use '{x} to denote the fractional part of x, that is the 

distance of x from the next lowest integer if x is not an integer, 

and zero if x is integral. Sometimes { } i« also used in the 

standard fashion in the definition <̂f sets. No confusion should arise 

over these different uses of notation. We write e(x) = e^^^* . We use 

the conventional o, 0, and << notations. Constants implied by
these symbols may depend on certain parameters (e, k, etc.) which are

regarded as fixed so far as the question in hand is concerned. Occasio­

nally the dependence of a constant on one of the parameters will be 

indicated by <<̂  , etc.

The letter p is reserved for a prime number. Normallv 

represents a number with precisely r prime factors. We use A(n), the 

usual von Mangoldt function, defined to be log p if n = p̂ , or zero 

otherwise. We write y(n) for the Mobius function,which is zero if n 

is not square free, and is (-1)̂ ^̂  ̂ otherwise, where w(n) is the 

number of prime factors of n. We write ïï(x ) for the number of primes 
not exceeding x, and

^(x) = E A(n)
n X

In chapters six to ten the letter s is used for a complex variable 
with s = a + it.
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PREFACE

The contents of this thesis are based on the research performed 

by myself at Royal Holloway College 1979-1982. In order to keep the 

present account as unified as possible, and also to avoid undue length, 

certain aspects of my research have been omitted (such as my k/'Oi'k on 

irregularities of distribution and the sums of /̂istances between points 

on an n-dimensional sphere). In the first section of the thesis we 
shall consider problems in diophantine approximation, including 

diophantine approximation by prime numbers. This leads naturally on 

to further questions concerning the distribution of primes, which are 

considered in section 2. Much of the work in this thesis is already 
published, or shortly to appear in various papers, references to which 

are given in the relevant chapters.

I would like to thank London University for awarding me a 

Postgraduate Studentship, which formed the main financial support for 

my three postgraduate years at Royal Holloway College. I would like 

to express my gratitude to Dr. R.C. Baker, firstly for taking me on as 

a research student, and secondly for his encouragement and advice 

(although the latter was not always heeded I). Two chapters of the 

present thesis describe work done with R.C. Baker, and further details 

of our respective contributions to that work are given in the pertinent 

places. I would also like to thank Mrs. B. Alderman, Mrs M. Brooker, 

and Mrs. M. Dixon who typed many of the preprints of my papers, which 
form the bulk of this thesis. I would also like to thank my mother,

Mrs. D.Harman, who typed the references at the back of this thesis.
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SECTION ONE

DIOPHANTINE APPROXIMATION



7.

CHAPTER ONE INTRODUCTION

1. In the first part of this thesis we shall be concerned with 

adaptations of Dirichlet’s famous theorem in Diophantine Approximation 

which may be stated in the following general way :

Given rs real numbers (i=l,...,r; ]=l,,..,s), s positive

integers N^, r positive integers with

r s
n M. <. n N.

i=i 1 - i=i ]

Then there are integers n^^...,n^, m^^...,m^ such that 

s
I I a..n. - m. I < M. (i=l,...,r)1] ] 1 ' 1

and

while

j=l

0 < m a x  In.] ,
i ] -

Isjl 4 Nj (j=l,...,s).

The proof is, of course, a simple application of the box 

principle. It appears that Hardy and Littlewood [l4bj were the first 

to conjecture what results might be possible if the n . were replaced 

by Uj for an integer k ̂  2. In the 1920’s Vinogradov proved the 

following result ; '
N

For all real a, e>0, and any integer k,

min I I an̂  | j < N for N > N(e,k).
I^n(N

Here p = k(k2^ 1)  ̂ (for example p = 2/5 for k=2),

The proof appears in |22] . Behnke ĵ 6] had earlier considered the
2distribution of the fractional parts of an . The sharpest known result 

for k = 2 is due to Heilbronn |̂ 16 J and is usually refered to as
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Heilbronn’s Theorem. He showed that one may take p = J in this case
2(Hardy and Littlewood had conjectured p = 1). The sequence an has

certain properties which make it useful for generating random numbers

for Monte Carlo procedures in computing jiv} . Danicic showed 0
1-klittle more generally, that one may take p = 2 . For large k

better results are available using Vinogradov’s methods (e.g. ^25J 

Chapter 5). In particular, R.C. Baker has recently shown [sj that 

one may take

p =(logk)/(4k(logk + l)log (klogk + 1)).

The methods have been extended to cover an replaced by f(n)

where f is a polynomial without constant term [25, 13, 20, 4 ] as

well as simultaneous approximation questions 1̂0, 11, 18, 20, 2, sj .

The general idea in the proofs is to convert the problem into a 

question of estimating exponential sums by using a function which is an 

approximation to the characteristic function of a small interval while 

possessing a convenient fourier expansion. We shall utilise this 

method also. In view of the proof of Dirichlet’s theorem it would be 

nice to have a simple proof of these results, but the only inequality 

of the above type obtained by elementary means which has appeared in 

the literature is the rather weak :

min I I an̂  | | < N for N > e^.
1< N "

This was shown by R.C. Baker [̂ ij using an ingenious repeated use of

the box principle.

It is possible, however, to obtain the exponent p given by 

Vinogradov using only elementary methods. This may be done since 

Van der Corput and Pisot set out to base the theory of uniform 

distribution modulo one on elementary considerations alone, and they 

obtained results for the discrepancy of sequences which are analogous



9.

to the Weyl sum estimates used in those proofs employing Fourier
series. They showed [s, 9 ] :

Let n > 0 and let f(x) be a polynomial of degree k and leading 

coefficient a . Suppose

I qa - a | < q ^ with (a,q) = 1.

Then , ^
  € V 2<< N ( 1/q + 1/N + q/N*

Here N
= s u p  I »  Z X j ( f ( n ) )  - |l| I 

ïc[0,l) “ 1
where Xj(x) is the characteristic function of an interval lc[0,l) 
extended to be periodic with period one.

Now put X = 2̂  . By Dirichlet's theorem there is a natural
k-Xnumber q .< N and an .integer a with

If q < N^ then
qa - a 1 < N and (a,q) = 1.

I 1 I I < qk-l II qa I I < j-k+A = N-P

However, for q ̂  N^ we have

D «  n"PN

and so there is one n with 1 ̂  n ̂  N and having

I I  I I  <  N - P  +  E
assuming N is sufficiently large. This "proves Vinogradov’s result. 

Similarly one may prove

For all real a, 3 and N > N(e) we have

min I I an̂  + 3n || < N  ̂^
1 ̂  ̂

#
and

Given e > 0,.and a polynomial f(x) of degree k with irrational

leading coefficient. Then, for infinitely many n.



10.

_l-k
f(n) I I < n ^

One appears to be handicapped when trying to prove the sharpest 

known results by completely elementary means with the need to consider 

functions which behave like the characters of the addition group modulo 

q. It is possible to prove Heilbronn’s Theorem without fourier analysis 

however, by noting that his result is equivalent to :

Let e > 0, N > N(e) ; suppose a,q are integers satisfying'

N < q ̂   ̂ , (a,q) = 1. Then there are integers n, s with

l < n < N ,  |s| < aHl? *  ̂, n^a S s (mod q) . (2)

The result (2) may be established using only Weyl’s inequality (see 

Lemma 2 below) together with the following simple results :

q r 0 if q does not divide a
 ̂e(— ) = “S

n=l ^ L q if q does divide a
N
E

n=l
E e(an) «  min(N, i i— — ri )

The above observation does not seem to have appeared in the literature 
before.

2. Other extensions of Dirichlet’s Theorem.
N

Vinogradov also demonstrated the following result (see chapter 11
of [25] ) :

Let e > 0, 3 real be.given. Then. £or an irrational number a there 
/

are infinitely many solutions in primes p of

II ap + 3 II < p

Vinogradov also established results which imply weaker inequalities for 

with k ̂  2 [23,24 J . Vinogradov did not exploit fully the strength
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3. General Lemmata

We shall state here some basic results which will be needed in 

the following chapters. The first lemma, in a less general form, was 

pointed out to the present writer and R.C. Baker by H.L. Montgomery :

LEMMA 1 Let L, M be natural numbers, 3 a real number, and let a ,̂.. 
   be real numbers such that (n = l,...,M).

Then we have 1 - cl‘”
.For any sequence of non-negative real numbers â .

-1 -1Proof Let J be the interval J = (L , 1 - L  ) with characteristic

function Xj(x). According to Montgomery J » p.559, there is a

function be L̂ (R) such that

b(x) ^ Xj(x), b(0) = |j| + L ^
and

b ( t ) = 0 for 111 L.

Here b(t) ‘is the fourier transform of b. By an easy calculation, the 
function

B{x) = I b(x + n) 
n

is in L^(0,1) with fourier series

E b(k) e(kx) ̂
his.

Now, for a non zero integer k,this implies that

I b(k) I 4 /q I B(x) - 1 I dx

4 I {(B(x) - 1) + 2(1 - Xj(x))} dx = b(0) + 1 - 2|j| = 3L"^

Hence
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of his method, however, and in the case k = 1 should have obtained the 

exponent 4* This result was first demonstrated by R.C. Vaughan [21] 

using a simpler, though essentially equivalent method. We shall consider 

problems involving ap in Chapter 4. In Chapter 3 we shall also 

consider a generalization of Vaughan’s result to simultaneous approxima­
tion for almost all s-tuples. We shall improve Vaughan’s result itself 
in chapter 10.

R.J. Cook ] proved the following extension of Heilbronn’s 

Theorem :

Let 0 > 0 be given; suppose â , â  are real. Then, for 

N > N(e), there are integers n^^ng with

having
0 4 4 N and n^ + n̂  4 0

This is near to being best possible as is shown by the following 

(unpublished) example of R.C. Baker. Let q be squarefree and have all 

its prime factors congruent to 3 (mod 4). Then, for any û with (a,q) = 1 

we have
, 2  ̂ 2.a(n^ + n̂ )

for 0 4 n̂ , 4 9. “ 1» and n^ + n^ > 0 using Theorem 366 of

[_15J . Extensions of Heilbronn’s Theorem to quadaratic forms are 

considered in Chapter 2. In Chapter 3 we shall look at generalizations 

to additive forms in kth powers as well as considering an analogue of 

Dirichlet’s Theorem where the n̂  are restricted to be positive integers. 

In Chapter 5 we shall obtain results for

I E + 3 I < (max p.)  ̂ .j=l 1 1 J

Here the p̂  are primes, and the r(j) are positive integers.
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M M M L  ̂ M
E a 4 E a B(a - 3) = E a b(0) + E b(k) E a e(k(a - 3))
n=l  ̂ n=l " * n=l ^ k=-L n=l ^ "

k/0

M M
< E a b(0) + E I b(k) I I E a e(k(o - 3)) |
~n=l  ̂ 0<|k|<Ê . n=l ^

M L _ M
4 E a b(0) + E 6L | E a e(ka ) |
n=l  ̂ k=l n=l ^ ^

-1The result follows since l-b(O) = L

The above lemma improves upon Lemma 12 of ([25] which gives an 

infinite fourier series. Lemma 1 is essentially best possible, as has 

been remarked by H.L. Montgomery (in conversation). This may be seen by 

considering the example

M-1 I M . I
E I E | = 0 .

1=1 n=l

LEMMA 2 (Weyl’s inequality) Let g ( x )  be a real valued polynomial 

of degree k with leading coefficient 3. Then, for e > 0, R = 2̂

I E e ( g ( n ) )  1^ «  c Ê* m i n  ( X, 1 )
n=i i n r r r

«  X^ + c ( i/x + q/x^ + j/q) (3).

Also, for any L,we have
L X \
E I E e(Ag(n)) «  (LX^)^  ̂ ( 1/X + q/(Lx’̂) + 1/q) (4)
&=1 n=l

Where (3) and (4) hold if j q3 - a | < q  ̂ with (q,a) = 1.

The first version of this result is due to Weyl [26̂  in his 

celebrated memoir on the uniform distribution of sequences modulo one. 

The result, as given in (3) above, was first published by Hardy and L 

Littlewood [l4 ]- . For proofs in more recent books see [12] (lemma 1) 

or [_2oJ (Chapter 10). The last reference also gives estimates for
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Weyl sums depending on the second coefficient of g(x). This work has 

been extended to cover all the coefficients of g by R.C. Baker [4 J . 

Better results are known for large k using Vinogradov’s method [̂ 25J . 

Stronger estimates are obtainable when the rational approximation to the 

leading coefficient is known to be ’’good’’. This is demonstrated by the 

following result of the author’s :

LEMMA 3 Given 6 > 0, e > 0, a real, N > N(e, ô,k). Suppose that 

there are integers q,a with (q,a)= 1, 1 4 9. = qa - a | < ^

and there is a number C with C 4 min (N̂   ̂ with

, N
I E e(an ) | > C . 
n=l

Then there is a natural number r < (N/C)̂ N̂  with

ar 11 < n’

The proof will appear in [s] . The result is interesting for it enables' 

one to prove Danicic’s result on an with k 4  ̂ by quite a weak 

argument. In [s] it is applied to a problem in simultaneous approxim-
l/gk-l

ation. To prove Danicic’s result, let L = N . Then, if the

theorem is false, by Lemma 1 we have that

L N
Z I I e(aln^) | »  N.
i=l n=l

Hence, for one
N

I E e(a&n ) | »  NL"^.
n=l

By Lemma 2 and Dirichlet’s Theorem, there is a q with 1 4 q 4  ̂ and

II ^aq II <  ̂ Hence, by Lemma 3, there is an r with

I I Zca?̂  II < ^(NL"l)"2k,

I I f V a  II < N-k + < L-1.
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Also TÜ < < N, This contradicts the assumption that the

theorem is false. The frustrating element in the above proof is that 

Lemma 2 is neededto obtain a rational approximation "good enough" to 

enable Lemma 3 to be applied. We are thus unable to improve Danicic’s 

result even though the conclusion we get from Lemma3 is much stronger 

than is required.
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CHAPTER TWO SMALL FRACTIONAL PARTS OF QUADRATIC FORMS

1. We now consider generalizations of Heilbronn's Theorem of the 

following form :

For e > 0, N > ĉ (E, s) and a quadratic form Q(x̂ , ...,x̂ )

there exist integers n^,. n̂  not all zero, with |n^|,....|n̂ | 4 N

and having

II Q(n^,..., n̂ ) II <  ̂ (l)

I. Danicic obtained a result of this type [2] with « ĉ  (s) =

s/(s+l). As was remarked in Chapter One, Cook was able to get (l) with 

0^(2) = 1 provided the quadratic form was additive. More recently A. 

Schinzel, H.-P. Schlickewei and W.M. Schmidt have shown [?] that c^Cs) 

may be taken as the maximum of

2(1 + h"^ + 4/(s - h + 1))"̂

over odd h with 1 4 ^ 4  (s+5)/3 . Taking h asymptotically equal to s/3 
gives

02(3) = 2 - (18/s) + 0(l/ŝ ).

This result improves upon Danicic’s result for s 4 7 and, as is well 

known, the "limiting" exponent - 2 is best possible. To see this we 

note that s
I I 1^2 ( n ^  + ......... + n ^ )  II > ( 3 s N ^ r ^

for any N and 6 < 'max | n. | 4 ^ .
i

The new idea in [7] is the use of an auxiliary result on

quadratic congruences. This method has been refined by R.C. Baker and

myself [ij to prove the following result :
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-Cg(s)

(2)

(3)

(4)

THEOREM 1 Let s >_ 3 and let Q(x^,...,x^) be a quadratic form .

Then there is a constant c^(s) such that for every integer N >_2 

there are integers n^,...,n^ with

0 < max ( |n^|....1"̂  |)l N ,

having

II Q(n^,...,u^)]| < c^(s)(N/log N)

Here

(2s / (s + 5) for odd s ,

2
2s (s-l)/(s + 4s - 4) for even s ,

Our exponent is the same as Danicic’s for s = 3 , apart from 

the substitution of a power of log N for . For s >̂ 4 , our 

exponent is better than that of [2] or [7] , and (4) gives

Cg(s) = 2 - (10/s) + 0(l/s^) .

In the following proof the idea to use Lemma 1 for additive forms 

came from R.C. Baker, the extension of the proof to general quadratic 

forms was made by myself. In section 4 I discuss forms with free variables, i

The key to the improvement on [7] is Lemma 1, below. This is a |

straightforward extension of the congruence result of [7] , but enables j

us to introduce successive minima explicitly. This is more economical;
\the procedure is analogous to that of Davenport and Ridout [4] .

2. Quadratic congruences

LEMMA 1. Let Q(^) = Q(x^ x^) be a quadratic form in an odd number

h of variables. Let m be a natural number .* Let K^,...,K^ be positive 

reals with
(h+l)/2m (5)
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s . < ITi1 '
(i = 0)

I Z s r . + mz.l ^ K. (j = l,...,h) WY=i k k] ] ' ^ '

Put 21 - ^1—1 __+ m z , where z = (z^,...,z^) . Then clearly

(6) holds, and (7) follows from (10) . Since < m we easily see

that (s^,__,ŝ ) / 0, say ŝ  / 0 . Since m is square free, there is

a prime factor p of m with s^  ̂0 (mod p). Because r^,...,r^ 

are linearly independent (mod p) , we have x  ̂0 (mod p) . Thus x / 0.

3 . Proof of the Theorem. The proof will be by contradiction. 

Suppose that there are no integers n^,...,n^ satisfying (2) and (3).

Let
N N

S(£) = Z ...Z e(LQ(n^,...,ng)) . (I'l)
n = l  n =1 1 s

_1 Cg(s)
Let

L = [2c^(s)"-^(N/log N) ' ] (ll)

where ĉ (s) is sufficiently large, then from Lemma 1 -of Chapter 1 

we have

r |s(£) I > N V é .  Us)
£=1

\
Let £ be a natural number , 1 4 £ 4 L , having

|S(JI)| >>N^/L, .. (n)

We define linear forms L^,...,L^ with ŝ nnmetric coefficient 

matrix via the identity

Q(x̂ ' Xg) = x^L^(x) + ... + XgL^(x) .
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Then there are integers x̂ ,...,x̂  ̂ not all zero, with

Q(x^,...,x^) E 0 (mod m) , (S>)

and having

I Xi I <_ Ki (i = l,...,h) .

The case = ... = = ^(l/2)+(l/2h) Theorem 1 of [7] .

Proof. We first observe that the result is trivial if K. >m for   1 —

some i ; hence we suppose that

< m (i = 1,... ,h) (%)

Clearly we may assume that m >1, and that m is square free. For

any m may be written in the form

m = r^a

where a is square free. If ... 4 , then
(K^/r)... (Kĵ /r) >_  ̂̂ solution (ŷ  ̂... ,ŷ ) of Q(y) E 0

(mod a) , with |ŷ l 4 K^/r , yields a solution x^ = ry^ ef (5)

satisfying (7) .

Let d = (h-l)/2 . According to [7] , for every prime p dividing m 

there are integer vectors r^^\...,r^^^ which are linearly independent 

modulo p , and for which

Q(s^ +...+s^ r̂ ^̂ ) E 0 (mod p)

whenever Sĵ ,...,ŝ  are integers. By the Chinese remainder theorem there 

are integer vectors having

r. E (mod' p)z:l =1  ̂•

for each prime p dividing m. Write r^ = .

By Minkowski’s linear forms theorem , and taking account of (5) , 

there are integers s^,...,s^ , z^,...,z^ not all zero, with
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Let be the first s successive minima of the convex body

described by

I 2£ L.(x) - Xs+.I < N

I X. I < N

-1

(j = 1,... ,s) .

with respect to the integer lattice in 2s - dimensional space. It is

established in the proof of Lemma 5 of [3] that
2

|S(£)| £ Cg(s)(Mĵ ...M̂ )"̂  N® (logN )®

In view of (14) , then ,

(M^...Mg)"^ 4 ĉ (s) l“  ̂N® (log N)"^ (It)

We now consider the cases of odd and even s separately.

Case I. Odd s. By the definition of successive minima , we can find

s linearly independent integer vectors r ’ in 2s - dimensional space .. 
Witk

| 2i  L .  ( r ^ )  -  r . + s '  J  <

I I < ('«)

for j=l   y = l,...,s . Here r' = (r ,...,r ) and—y ly 2s,y
Iw = ("ÏN •

Let us write 

K =

then

^ = c^(s) L2/S(2£)(s+l)/2s (log n )N ^ , (j?)

K, ...K > (2£)(s+l)/2 {00)'1 s -

from (16) . We also write

®yv “ }_ ^jy (y ,v - 1,... ,s) ,
3=1

so that

I I  % V  I I  ' <  =  « V
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from (17) and (18). Let be integers with

I I  ® v v  I I  ^ l®wv " ’̂ pvl (w .v  =.1 ..... s) . (22 )

By Lemma 1 and (20) there are integers x^,...,Xg not all zero , with

x̂  I < (y = l,...,s) (23)
and

s s
E E b X X E 0 (mod 2£) . (24)
y=l v=l ^

s
Put n. = Z r. X for i = l,...,s . Then

y=l ^

Q("i'-"*"s) = \  \  L l  h  ’" i v l Wy=l v=l 1=1 "

_1 s s
= (2£) Z Z 8 X X

p=l ' v=l

_1 s s _ s s
= (2£) Z z b X X + (2£) Z Z (6 - b )x x

y=l v=l  ̂  ̂ y=l v=l  ̂V
Casj

The first sum on the right hand side of (25) is an integer , in view of 

(24). Thus
_ s s

II Q(n^ n^)|| £  (2£) Z Z || 8, 1 „ - " " Ix IIx
p=l V=1 ■ y  V

^  (c^(s)) l4  (2£)(s+l)/S(iogN:L N ^

from (21) and (23). For sufficiently large c^(s), we have

II Q(n^ n̂ )|l < 2s® (C7(s))"2/s (N/logN)~®

■ < L'l .
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Moreover, we have

l"il = 1 I I < sM^ N
y -1

<,s c,(s)-l/s g2/S(2^)(stl)/2s M

1 2s c (s) j_(s+5)/2s 2ogN< N.

By hypothesis, then, we must have

("g...."g) = 0 .
S

SO that Z X r = 0 and consequently 
■ ^ =>̂  -

S
 ̂ ^u ^  = £ (] = i,...,s). (oiQ

y=l J

Combining (26) with (17) we obtain

I X  \  - j , . . .  I < 1  » .  i \ i

-1  s< N Z M K <1
- y=l V "

as we already saw above. Hence 
s
Z X r. = 0
y=l

N
is true not only for j = l,...,s but for j = s + l,...,2s also. This

contradicts the linear independence of r^’ ,...,r^b.

Thus the theorem is proved in Case I .

Case II. Even s . From (16) and M^ 4 • • • 4^s * obtain

■ > c, (s)(=-l)/s L-2(s-l)/S(N/logN)S-l .

Let r̂ ' , r̂  , 6^^ , b^^ be as in Case I. By repeating the argument 

of Case I , with s-1 instead of s , we obtain integers x^,...,Xg

such that
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s-1 s-1
I Z b X X = 0 (mod 2£)

v=l V

|x̂ | lH^=Cg(s) (2%)S/2(s-l) M^l(iog h )h‘^.

After all,
H ... H > (22)((s-l)/2) + 1/2 )1 s-1 —

provided that Cg(s) is sufficiently large. Let

........................%  i p  •y=l  ̂ ^

Continuing as before , we obtain for || Q(n̂ ,...,n̂ )|| the upper

bound

. f j  / max H M )̂  < Cg(s)
l_<y_^s-l

<

and

max ( |n I , ...,|n |) £ s  max H M N 
® l<_W<s-l *' ^

< c ^ q (s ) L^2/ s ) + (s/2(s-l))^^g N < ] ^  tSS)

for a suitable choice of ĉ (s) . The argument used in Case I can be

repeated to obtain ^
s-1
P=1 = 0 .

which is a contradiction . This proves tha theorem in Case II .
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4. Quadratic forms with "free" variables

Here we suppose that

Dg) - Q n^_^) + /  “i^s-m+i
1=1

the last m variables being termed "free", for obvious reasons.

THEOREM 2 Let e > 0, Q(n̂ , ..., n^) a quadratic form with m free

variables, and suppose that N > N(e, s). Then there exist integers, not 

all zero, bounded in absolute value by N and having

where c(s,m) is the maximum over rin O ^ r ^ m ,  r = s  + l (mod 2) of

2 - r6 + 2  ^ (30)
1 —   .

(s-r) + 5

Remarks Supposing m to be sufficiently large in terms of s we may 

choose r asymptotically equal to log s to obtain

c(s,m) = 2 - 6/s + 0(l/s^>.

In particular, for m ̂  2 we have c(5,m) = 9/8 and c(ll,m) = 3/2.

Proof We make only one alteration to the proof of Theorem 1 (working

as in case I since we have made s - r  to be odd). We suppose r is

chosen so that (30) is maximised. We assume the theorem is false and 

obtain, as before,

L
I I S(A)| »  , (31)
&=1

Here L =

Now let
N  ̂o

A.(&) = I Z e(a.&D ) I (i = l,...,m)
n=l ^

and
, N N . m

S (&) = z ... Z e(Q (n ,...,n )) | II A.(&) .
n =1 n =1 i=r+l^1 s-m
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Since we have assumed the theorem is false, by Dirichief’s theorem there 

are integers with || q^a^ || < (LN)  ̂ with N 4 q̂  4 LN

(i = l,...,r), having the associated a^ coprime to q̂ . So, by Lemma 

2 of Chapter 1 we have

Z A?(&) «  LN^ ̂
A=1 1

and, using the trivial inequality A^ (&) ;< N,

Z a : (i) «  LN  ̂ (32)

for h = 1, 2, ....

A repeated application of Cauchy’s inequality to (31) yields

r L a*' cf-i Ln ( Z A.(A) ) Z S (A) »  if .
i=l A=l  ̂ A=l

This with (32) gives, for at least one A, that

s'(i)2 »  xffs-r) + 2(1-2

We write t = s - m + r - l .  Working as in section 5 we find that

mT" n »  af-r + 2(1 - 2'") - 3«l-2 _
i=l  ̂i=t ^

Hence, putting 6 = e/4 we obtain

,(s - r . l)/2 ' M. : M. «  1 .
i=l  ̂i=t ^

This indicates that we can find integers n^,..., n , n^,..., n with1 ’ s-m’ t’ s

II Q(n^,...,n^_^,0,0,...,0,n^ n̂ ) || < + e

This is the desired contradiction which completes the proof.

THEOREM 3 Given e > 0 and a quadratic form Q in five variables, at 

least two of which are free. Then, for infinitely many N there is a



28.

a solution of the inequality

,-8/7 + eN

with 0 < max |n.| <_ N.---- I 1̂ _

Remarks By using a result of Hooley’s we could replace by

a small power of log N , W, M. Schmidt has shown that for almost all

additive forms in five variables one may take the exponent as -2 + e 

and the result is valid for all N > N(Q,e). We shall be considering 

his method in Chapter Three. Before proving Theorem 3 we require one 

more lemma which, as far as the present author is aware, is new and may 

have other applications :

LEMMA 3 Let L, N be natural numbers with L > N ̂  1. Suppose a î

real, with | qa - a | < q ,̂ * (a,q) = 1. We write

N
S(&) = I Ï e(aln ) |.

n=l
Then

L 2
z S(A)* «  (log N)^ max ( —  , N̂ , q, L)
A=1 &

Remarks This result is superior to the case h = 2 of (32) if N ̂  q ̂  NL 

or < q < L.

\ 2 2 Proof Let p(n) denote the number of solutions in x,y of :.x + y = n

subject to 1 ̂  X ̂  N, l ^ y  ̂ N. Then

L n L 2n 2
r S(iir = Ï I Z p(n) e(aHn) p  .
A=1 A=1 n=l

We now divide up the range of summation over A into at most (3L/q + 1) 

blocks of q/2 consecutive integers. Let B be one such block. From 

the hypothesis on a we see "that for A,m e B, J[./m we have
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Il (m - A)a II > (2q)‘ .̂

By the well-known large sieve inequality [s] we see that

, 2n2 2 2n2 g
z I z p(n) e(aAn) | 4 2(N + q) Z p(n) (33).
A € B n=l n=l

Now the last sum on the right of (33) is just the number of solutions 

in integers of
2 2 2 2 u + V = X + y

subject to 1 ̂  u,v,x,y ̂  N. It is well known that this number is

«  N^ (log N)2. Thus

Z S(A)^ «  N^ (log NO^ max (hf, q).
A€ B

So, altogether we have

L 
Z 
A=1
Z S(A)* «  (3Lq“  ̂ + 1) N^ (log N)^ max (N̂ , q)

«  N^ (logN)^ max ( LN^q"^, N̂ , q, L)

and the proof is complete.

Proof of Theorem 3 We write

I 2 2Q(n^,...,n^) = Q (n^,n2,ng) + a^n^ + â n^

The proof is trivial if is rational, so we assume it to be

irrational. Let a/q be a convergent to the continued fraction of â . 

There are infinitely many since is irrational. Let

N = q2/3 ,  ̂ L = - c

and suppose q is sufficiently large. We work as in the proof of Theorem 

2, but by Lemma 3 we note that

z. I Z e(a n̂ A) | «  N
A=1 n=l
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Hence

I s ' ( & )  = r I r e(Q(’n  ,n ,n )£) |
1 = 1  1 = 1  n ^ . n g ,  ^

"3

Thus, for at least one A,

s'(A) »  N^/Z - 6/2

The proof may now be easily completed as in the case of theorems 1 & 2.

5. Related results

It is appropriate here to note that Schlickewei [sj has obtained 

a similar result for an additive form of kth powers using a method of 

W. M. Schmidt [9] . The exponent of N here satisfies

c(s) = -k + 0( (logs) )̂.

It would be highly desirable to have some argument analogous to the one 

used in section 2 for kth powers which would enable one to get 

c(s) = -k + 0(s )̂. The result of Theorem 1 and Schlickewei’s 

' result have been extended by R.C. Baker and myself to simultaneous 

approximation [ibj . We proved :

THEOREM 4 Let N ̂  1. Given Quadratic forms Q̂ (̂x̂ ,.,. ,x̂  ),...,

Qh(Xi,... ,Xs ) where s ^c(h, e), there exist integers n̂ ,̂...,n̂  with 

(2), having

II il < + E (i = l , . . . , h ) .

THEOREM S Let N ̂  1, and let F^,...,F^ be additive forms of kth
tpowers in s variables with s ^ c (k,h,e). Then there exist non-negative

integers n^,..., n̂  with (2), having

II Fĵ (n̂ ,...,n̂ ) II < = (i = l,...,h).
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where f(s) 'V' as s . Schmidt makes explicit for which

particular set ^ of almost all s-tuples c may be taken this large.

It is the set of "not very well approximable s-tuples" (henceforth 

n̂.v.w.aJ) in the sense that

s
n I I a.n I I > C(e,a) n  ̂ (2)
i=l ^

for every natural n and every e > 0. Examples of such sets of numbers

include s-tuples of real algebraic numbers with 1, linearly

independent over the rationals ^6 j and s distinct rational powers of e 

[ij . We shall show in section 3 how. to prove, for kj> 2, that

c^(s) ^ f(s) Where f(s) ~ Æs ̂

by modifying Schmidt’s argument. Of course the exponent obtained seems 

to be rather artificial. It would be reasonable to conjecture that 

ĉ (s) »  s (implied constant depending on k).

The problem with k = 1 is very interesting, and here the present 

state of knowledge is quite satisfactory. As shown above, the exponent 

may not be improved beyond 1 without any further assumption on o_ . 

Schmidt has shown [[vj that if 1, a, 3 are linearly independent over 

the rationals and e is an arbitrary positive number, then there are 

infinitely many pairs x,y with x > 0, y > 0 and with

I I ax + 3y 1 I < e(max(x,y))  ̂ (3)

where y = (/s + l)/2 = 1.61803 ... In the same paper he also demonst­

rates the existence of s real numbers a^^...,a^ with l,a^,. .., 

linearly independent over the rationals and with

II a x  t ... t a x  II > C(e) (max (x_,..., x )  ̂^' ' 1 1  s s '' I s

for E > 0, x^5»..,x^ positive integers. The situation is rather
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CHAPTER THREE RESULTS FOR ALMOST ALL FORMS

1. In this chapter F̂  (n^,...,ng) ( j =1,2; k ̂  1) shall denote

additive forms with

4  = v ï  +  + V s
and

ki . I ikFk ("i....Dg) = t ......+

Let ĉ  (s) denote the supremum of numbers c such that

sup min II fi ( n ) |j < + % for R > N(e).
F̂  0<|n|<N "

Here we have written n = (n^,...,n^) and |n| = max ( | n̂ |̂ ,..., | n̂  | ) .

By Dirichlet’s Theorem c^(s) ^ s and the e may be dispensed with. Of

mentioned at the end of chapter 2, it is known [ 5 J that c^(s) = k

1 1 2  course, in actual fact c^^s) = s. Obviously, for even k ̂ c, = c

For all k the example = /q ( i = l,...,s) shows that c^(s) ^ k. The

situation is very different for c^Xs) when k is odd (see [s] ). As
i "t" T <3 VnrMJTi r ̂ ~1 +-Via-t-  ̂ '

+ 0( (log s) )̂. Now let us write a = (a.,...,a ) and A for a set= I s —
in R̂  such that y (R̂ / = 0. Here y is the normal Lebesgue measure

on R̂ . Each set A contains "almost all" points ot_, according to

the standard definition of "almost all". We write H(A) for the set
2of additive forms F, (n) such that a «e A . We now define c. (s) to be

the supremum of numbers c such that

inf sup min N̂   ̂ || F^ (_n) | | <1 (1)
- F^eH(A) 0<|n|<N

2where the * indicates that the minimum holds for all N > N(F^,e). A 

result of W.M. Schmidt ' (Theorem 20B of [s] ) shows that

CgCs) > f(s)
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different, however, if we only ask for to be n.v.w.a. In that case 

we have the following generalization of Kronecker’s Theorem :

THEOREM 1 Let e > 0. Suppose is n.v.w.a. Then̂  for any real 3,

and N > oi) there are positive integers n^,...,n^ with

n̂  4 N (i = 1,... ,s) (4)
having

I I r V n )  + g I I < + c (5)

We note that the above result is best possible apart from the factor,* 

Whether it is possible to relax the condition on a_ remains an

open question, though the result in shows that the gap in our

knowledge is quite narrow.

2. Proof of Theorem 1

The proof shall be by contradiction and, apart from Lemma 1 of 

Chapter One and the simple result

M
I Z eCym) | «  I | Y I I ,
m=l-

is quite elementary, only using a double application of the box principle. 

The proof was inspired by Chapter 20 of [s] although the details here are 

quite different. We write

s N
L = + 1 , S(&) = n Z e(a.£n.) .

1
Assuming the theorem to be false, by Lemma 1 of Chapter One

Z I SU) I »  
A=1

Thus there is a number B and a set Q such that
—

* See [4].
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B »  (6)

I S(A) I > B for A cQ , (7)

also g
B I Q I »  N (log N) ^  (8)

From (7) we find that
s _
n I I a.£ I I «  B for A ê Q . (9)
i=l ^

Put M = [log^ b J . We assume is so large that > (s log N̂ )̂ .

■If I Q I < it can be deduced from (8), (9) that there is an
integer A < with

s
A n II a.& II «  N (log N)
i=l  ̂ '

which contradicts (2) for N sufficiently large. We may thus assume 

that I Q I ^ Put

v^(A) = min ( M, [-loĝ  || ||] ) (10)
and

v(A)...... = (v (A),.. V (A)).= 1 s

We now split Q into subsets (some of which may be empty) A(_t),

where the coordinates of Jt are positive integers not exceeding M. To

this end we write

A(t) = {A : AeQ, v (A) = t } .

Given _t with max t̂  = M, then (say t̂  = M), if Â  €A(jt),then

.1 11 - I?) II < II II i  II “h h  II +  II % ^ 2

«  B  ̂ (11)

using the definition of t̂ , M,

Given t with max t. < M and Â  , A_ eA(t) thenz= . 1  1 z =
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s s
n II Il max n I1 al
i=l  ̂ k=l,2 i=l  ̂*

(12)

Here j(i) is any function taking only the values 1 and 2. (This 
follows since

J < II Vlll < 2 ).
I I

Hence

n I I a (A - A ) I I 4 n (I I a A || + || a A | | )i_l 1 ± z 1=1 1 -L 1 ^

s
«  max n 1 I a. A, II «  B~ (13)

k=l,2 i=l ^

using (9) and (12).

From a simple application of the box principle we deduce there is one jt 

with
I ^ ( 1 )  I i  »  — - — -  >  1 .M (s log N)

From a second application of the box principle, there are two integers 

Â , Â  G A(jt) with

I - «■, I «  (s log N) L _ ( 14 )
" " I Q I

Put r = I Â  - Ag I . Combining (11), (13), (14) we have that

r n I I a.r I I «  —  «  N  ̂(s log N)̂ '*'̂
i=l B I Q I _

«  (log N).

This contradicts the definition of n.v.w.a. (i.e. (2)) providing N is 

sufficiently large,since r < . The proof of Theorem 1 is thus

complete.
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3. A Generalization of Schmidt’s Result

Here we prove a lemma by adapting the proof of Theorem 20 B of 

1̂ 82 . It is also in the form of a quantitative generalization of 

Kronecker’s Thecrem. We first require the following notation :

A function is said to satisfy T(A, G, D, E) if there exist positive 

constants A, G, D, E, such that for any 6 > 0, any real a and

N > a , G, D, E) the inequality

N
I ^
n=l
Z e(af(n)) I = C > E + 6

6 Aimplies the existence of a natural number q with q < N (N/C) ,

II II .<

LEMMA 1 Let f satisfy T(A, G, D, E), let a_ ^  n.v.w.a. and 3

an arbitrary real number. Suppose s ^ ŝ fA, G, D, E). Let

N > N̂ (e, 0̂5 A, G, D, E). Then there are natural numbers n̂ ,... n̂  with
n. < N and 1 = ---

I I â f(nĵ ) + ... + o^ffn^) + 3 | | < N  ̂ (15)

where c(s) = Gh. Here h is the largest integer with h^A -f- D*h ^ s,

D' = max (A, D). In particular c(s) " G /s/A .

Proof We assume the lemma is false, so by Lemma 1 of Chapter One.

L s
E n I S.(m) I »  if , (16)

m=l i=l ^

r  )  -  NHere L =  ̂ S.(m) = E e(a.mf(n)).
 ̂ n=l ^

From (16) we deduce that there is a subset Q of the integers 1,..., 

L and a number B such that
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2B > Il I S.(m) I ^ B for m e Q
1=1  ̂ '

and

B |q | >> (log N) Hence there are numbers

and a subset q ' of Q such that

^ ± = \  Ŝ Cm) I < 2Ĉ  for m e Q* (1=1,..s),

and
s

B i n C. << B , while |q'| B »  N® (log N) ^
i=l ^

Without loss of generality, = ̂ 2 = =^s * Clearly, if
Sq(A, G, D, E) is sufficiently large,we have that

for i = 1,..., h.

Since f satisfies T(A, G, D, E), for each m € Q* there are integers
r^ = r^(m) (i = 1,..., h) with

r. < (M/C.)* n '̂1 1 '
and

I I a.r.ml I < ifII 1 1 ' I
2We choose 6 = e/4h . We put q = q(m) = rĵ ....r̂ ,̂ then

q < + 4) g-hA/s
while

II a.mq || «  if '  ̂+ &(% ' 1) + h6 g-hA/s  ̂A-0
' ' 1 ' ' 1 •

Now, since the number of divisors of mq is << N̂  , as m runs through
I s — 1. — ÔQ we deduce that >> N B W different numbers mq arise. By the

box principle there is an integer z with

z «  (nW ^ ' ^  (17)

and having
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z n 11 a.z 11 «  z n  - G + A(h-l) + h«g-hA/s (gg)
1=1  ̂ 1=1 ^

 ̂ h/sIf A 4 D we note that IIC. >> B , thus the right hand side of
1 ^

(18) is

«  + h(D-G) - s + e/2 gl - h^A/s - Dh/s

«  LN"^ since B «

«  N-e/2 (19).

Since by (17) z is bounded by a power of N, (19) contradicts the 

definition of ct̂ being n.v.w.a. for N > N(a_,e).

h
If A > D we work similarly to the above, but use II C. << if.

i=l
This completes the proof of this lemma.

We now note the values of A,G, D, E associated with two 

certain functions :

A G D E c(s )

I) f(n) - is the nth prime 2 1 2 4/5 Æ72

II) f(n) = n^ + g(n) k k k -2I-K Æs

In II) g(n) is an arbitrary polynomial of degree k-1. The result for

I) comes from [loj , that for II) comes from Theorem 3 of 2̂] . 

Results for powers of primes or polynomials in a prime variable may be 

deduced from the theorems of Chapter 4. It is interesting that on the 

Generalized Riemann Hypothesis f(p^) = p^ satisfies T(2,k,k,E) 

for some E > 0, which is a stronger condition than is given in II) 

for g(n) = 0, and gives c(s) ~ k»^/2 , so a fortiori this holds for

II) in the case g(n) = 0 on the GRH. It should be noted that the 

parameters D, E do not enter into the asymptotic formula for c(s).
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the important fact is how the rational approximation to a and the 

estimate for the exponential sum are linked when E is very small (but 

not arbitrarily small).

4. A simultaneous approximation problem with primes

The following theorem follows on from the previous work of this 

chapter in that it involves n.v.w.a. s-tuplets and uses a similar 

method of proof :

THEOREM 2 Let a_ be a n.v.w.a. s-tuplet of real numbers, and

(3ĵ9 ... s3̂ ,) any real s-tuplet. Suppose e > 0 is given, and

N > N(ô ,e). Then there is a solution of

max II a.p + B.|| < + e (20)
1 <i <s ^

with
2 < p < N .  (21)

Remarks The case s = 1 is, of course, due to R.C. Vaughan [ll] , 

and in this case one only needs the hypothesis irrational. We may

thus suppose in the following proof that s 2̂. We note that for the 

case s = 2 we get the exponent -1/12 + e.

Proof The proof 'shall be by contradiction. We write 6 = e/8 ,

A (k) = â k̂  + ... + a k for k = (k^,...,k ),= 1 1  ss = l’ ’ s ’

L = %l/(2s(s+l)) - e/2̂  s(t() = | I (log p) e(p/)(k)) | .
p<N

By a standard argument (see Chapter 15 of [8̂  ) if (20) has no solution 

subject to (21) then

E S(k) »  N. 
k/0 -
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Now there is a set Q of points k with B members (note that

B < N̂ ^̂ ) such that

S(j<) >> N(B log N)  ̂ for every ,k e Q.

We now use the result quoted in I) of section 3 to find that for every
1< G Q there is a q(j<) with

I I q(k) A(k) II «  N"1  ̂  ̂B̂

q(k) «  B^ N .

Since the number of divisors of q(k)k^ is << N̂ , there are >> BN ^
distinct points q(j<) k with

I I q(k) A(k) II «

There are thus two points a distance << L (BN apart.

Write _n for the difference between two such points. Then

I I A(n) II «  N"1  ̂  ̂ (22)
with .

|n| << B^ N^ L (BN"*) (23)

Now, by a classical transference theroem ( Sf̂ e. Cha^te.r E> of [3] ), since

a is n.v.w.a, if (23) holds then

II A(n) II »  (B̂  N® L (BN *)

»  b'2^'l -" N-2S*

»  N'^ + ® B̂  (N̂ -Ssa g-l-2s (2%)

Now g-s^l-3s6  ̂ g-(l+2s)/2(s+l) - l/2(s+l) + es/2 + 1 - 3s6
g

> N . Hence (24) contradicts (22) for N sufficiently large and 
the proof is complete.
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Chapter Four TRIGONOMETRIC SUMS OVER PRIMES

Much of the work of this chapter is contained in two papers by the 

present author [5", . Only Theorem 7 has not previously appeared. We
shall prove here the following results :

THEOREM 1. Suppose c > 0 is given. Let f(x) be a real valued

polynomial in x of degree k ^ 2. Put

y_ =
Suppose g is the leading coefficient of f and there are integers 

a-,q . such that

lqo_- a| < q ̂  with (a,q) = 1 . 0)

Then we have

I (logp)e (f(p)) «  
p<N 9 wr

THEOREM 2. Let f(x) be a real polynomial in x of degree k ̂ 2 , 

with irrational leading coefficient. Suppose e > 0 is given. Then 

there are infinitely many solutions of

I I  f ( p )  I I  <  p - T / 2  +  '  C 3 )  -
where ' y is given in Theorem 1.

HEOREM^ Let k be an integer ^ 3, and e > 0. Suppose

I g c - a I < N , (a, q) = 1. Then

E (logp) e(g p ) I << N - 
P4N

where y - (k 2̂  )  ̂ . . i

(4)
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ThEORL'y. If For e > 0 , B an arbitrary real number and a irrational 

there are infinitely many solutions of the inequality

a p V  B II < p-S+- .

Here Ç = cf+l + (2^+^ - 1 - 2k)/k) ^ and k > 3,

THEOREM 5 Let k be an integer ^ 4 and f(x) a real polynomial in 

X with irrational leading coefficient. Then, for a given £ > 0, there 

are infinitely many solutions of the inequality

f(p)|| < p--+- (6)
Here , for k ^ 11 ,

X = (2T + (2^“̂  ̂- 1 - 2k)/k)"^

where T is defined by the following table:

k 4 . 5 6 7 - 8 9 10 11

T 46 110 240 414 672 1080 1770 3000

For k ^ 12 we have

_x = (12 [k^dogk + /̂2 log log k + 1*3)])

THEOREM 6 Suppose f is a real polynomial of degree k ̂  2 with an 

irrational leading coefficient. Then, for > 0 , there are infinitely 

many solutions of

I I  f O P , ) ! !  < P 2 - " -  l 7 )

where a = (2̂  + 2) ^
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THEOREM 7 Let e > 0, k R. 3. Suppose a is real with 
   —      ------------------------

qa - a I < min(q ^, N (a,q) = 1.

Then

I E (log p) e(ap̂ ) I «  Q  ̂ , (8)
p^N

Q = q2-k/(k_l) q < xl_k"'

= ( q - V " i )2’’' if NO"'ya-*< q < Nk/2-2^k-l+^..

As already remarked in Chapter One, these improve results of 
I.M. Vinogradov. We use an identity of R.C. Vaughan’s to convert sums 

over primes into double sums, but it should be noted that it is essenti­

ally no stronger than Vinogradov’s method (see Chapter ^ of [f 1 j for 

example). The results of Theorems 1" and 2 are shown for the special 

case ap̂  by A. Ghosh . He also quotes a result for ap̂  which
is weaker than (2). The previous best result is due to Vinogradov who 

obtained the exponent

(4k+l(k+l))-l

in place of y when k is small. For large k he showed that this
2 “1expression may be improved to (25 k (2 + log k)) . We shall improve

the method of that paper to establish Theorems 3-5 and 7. The result of 
Theorem 3 is included in that of Theorem 7 and they improve upon Theorem 
1 for k ^ 3 when the added conditions in their statement are satisfied.

An application of these theorems is given in Chapter Five. In some 

circumstances the requirements of Theorems 3 and 7 will not be met and 

then the weaker result of Theorem 1 must be used instead.

If f is a monomial and a is rational, then Theorems 1,3 & 7 

can be substantially improved. It follows from Theorem 2 of [li] that

E (log p) e ( ^ f  «  q̂  (log (N̂ q̂  + Nq~^ + N^q^)
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The proof of this result requires the use of L-series. Elementary proofs

of such results had earlier been given by Vinogradov (j ̂ ] and Chen .
2/9Vinogradov obtained the estimate for q < N , while Chen showed that

Z e(^) «  for q > N®'
p<N q

It seems interesting that an elementary proof of a result nearly as strong

as that which follows from Theorem 2 of fl ij is possible improving on the

results of [z, . By ameliorating Vinograov’s analysis, or by adapting
r 1 a 1the method of [13] one can prove such a result, but with N^q weakened 

to N5/6.

No result of the type given in Theorem 6 seems to have appeared 

in the literature before, although S.W. Graham has shown [4] that there 
are infinitely many solutions of

II CtPg II < Pg-l/S (log

His method is an application of the small sieve. In section 4 we show 

that the exponent of logP^ may be reduced to 4/3 using the large 

sieve inequality. For large k it follows from Chapter 5 of 0 TJ , with 

only slight modifications, that one can get the same answer for fCP̂ ) 
as the best currently known results for f(n). In particular, one can 

modify the details of [l] to obtain

-J.
o = (2 (log k + 1)(3.25 + (k+1) log (k(logk + l)))/f(ĉ k))

which is better than the present result for k % 7. Of course we have, 

a fortiori, that there are infinitely many solutions of

II V  II < '

for a irrational. This is apparently a new result for large k, 

improving upon previous results by a factor of 4.
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2 . Proof of Theorems 1 & 2

In this section the method is to estimate double sums by

applying the Weyl differencing technique 2(k-l) times, that is k-1

times to each variable. The application to one variable is implicit

in Lemma 2, the application to the other is given explicitly in Lemma

3. The weakness of the results of Theorems 1 & 2 is due to the need

to apply the differencing to both variables. The working here is

substantially as given in [5J , though here some details are appended
kconcerning the discrepancy of the sequence ^p .

ĵ MMA 1 For any real valued function f and natural number N

we have

Z (log p) e(f(p)) = 0 (N̂ ) + S - S - S P&N 1 2  3  ̂/

where

S - Z . y(d) Z • (log A) e (f(d A) ) 
 ̂ d<N^® - £<Nd'7

S - Z 4\(r) Z e(f(rm)) 2/3 -J- _ir<N m<Nr

So - E $g(m) E A(n)e(f(mn))1 2/0-2 I/o -
N/3<m<N ' N <n<Nm

and

j^(r) «  log r , OgCn) << t(w) 0^

Proof This is essentially given in [13]

See also [l^ J . This result is usually refered 
to as Vaughan’s Identity. In the above y(d) is the Mobius function 

and x(d) denotes the number of divisors of d.



48.

LE^A 2. Let g(x) be a real valued polynomial of degree k with 
leading coefficient 3 . Then, for e > 0,

E e(g(n)) 1̂  «  X^ Z min(X, —  --  )
n=l y=l ||3y||

k-1Here R = 2

Proof This .is Lemma ̂  of Chapter One restated here for convenience 
We require the following notation in the proof of Lemma 3:

Ay (f(x))= f(x + y) - f(x) ,

and define a differencing operator inductively by

A . f(x) = A (A j=f \\
— y-t y^ —  yt-i •

For a function ip(m) write 

ÿ(n, y^,---y^) =

^(n) II]|j(n+y.) II ^(n+y.+y.)...... II^(n+ Zy.)4;(n + Zy.)
- i=l  ̂  ̂  ̂ i=l ifi 1 i=l ^

sWe note that there are 2 terms in the above product. In the 

remainder of this section we suppose f(x) = ct_x̂ + ̂ 'x^+ ... + m ,

^MMA 3 Let f(x) be as given in Theorem 1. Suppose £>0, and 

#(u), \p(v) are real functions. Put

T = max I ̂ (v)|

F = ( g ( Z ))J
u<W
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For positive integers M, W, X write 

W X
. S = E I *(u) i{j(v) e(f(uv)) 

u=l v=l “ ~

Then
c R -R -k+e Y

( ^ )  «  (WX) (X + (WX) Z min (W, — --- )) ([2)
z=l ||az||

where Y = ^ ( k ! a n d  R = 2^ ^

Proof

Without loss of generality we may assume T = F = 1 and ^(v) ^ 0  

for all V. For the moment we shall ignore the condition uv^ M in (11). 

By Cauchy’s inequality
^ X X w
S «  W Z Z ^(v ) Tp(v̂ ) Z e(f(uv ) - f(uv ))

V =1 V =1- 1 1 2

< 2 W Re (13)

Here, for a positive integer s,

X-1 X-1 W
S = Z  Z Z$(n,y^^...yg) Z e(A ... f(un))^
 ̂ y^=l y^=l n - .  ̂ u=l ^1 ŝ

the range of summation over n being 1 ̂  n < n + y^ + * « * + Yg 4 X* the

differencing operator acts on n not u, and

E, = . (I5-)

It is easily shown by induction, using Cauchy’s inequality as we did to 

obtain (13), that

S?' << E; + «2='' X?'- s - 1 |sj (16)
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l̂ W A  U Suppose we have the hypotheses of Lemma 3 and its Corollary, 

but either

4i(x) = 1 for all X

or (f)(x) = log X for all x ̂

Then

S «  (XW)1 (q‘̂  + q(WX)“’‘+vr^)^ ] (^O)

Proof The log x factor may easily be removed by partial summation

so we presume that #(x) = 1. Again we may ignore the condition

uv _<• M. By the hypotheses of this lemma together with Holder's 

inequality and Lemma 2 we have

SR _  //2 + R-l ^ )
v=l y=l ||ayv ||

«  (XH)®^** min(W. )
z=l ||az||

The estimate (20) follows easily.

Proof of Theorem 1 By Lemma 1 there are «  log hJ
sums to estimate of the form

N/X 2X \
Z <j)(u) Z \|j(v) e(f(uv))
u=l “ v=X

uv_̂ N
1 1/3where X < N^, and #(u) E 1 or log u if X ̂  N We estimate (21)

by the corollary to Lemma 3 if

X^ ^ min(N^, q, N q ) 

and by Lemma 4 otherwise. The theorem follows observing that
0  -  C k - 0 / r ) >  .



50.

for S — 2j .... k — 1.

We write

("'^1..... ^k-i^ ' ji

As is well known (Lemma 10 B of o] ),

f(un)). )

A y  y f(im) =  y^_i (•|klctu^(2n +-y^+--- + y^_^ ) + (k-l)lBu^  ̂)

k k-1= u h (y^... n) + u (k - 1) I 3 ŷ .̂. .yĵ _̂  say.

We now combine (14) - (17) (with s=k-l) with Lemma 2 to obtain

r2 r2 2 k!wk-l e-
S «  (WX) X + (WX) Z ...E Z Z W“' min(W, -n-r?------------ -riKŷ - . ŷ _̂  n z=l l|zh(ŷ ...ŷ _i,n)||

Now the number of ways of writing a number t^X^ W ^ ^(k!)^ 

as a product of the form

^ 7 ^ 7 2 --- 7]̂ (k!)(2n+y^+ ... +y^_^) = t

is «  (WX)~'̂ 2 . Thus (12) follows from (18).

The added condition uv ^ M in (11) only causes problems with 

notation, not technical difficulties in the above proof. The range of 

summation over u in (17) will depend on N,n,y^,...,y^_^ but this 

does not affect the estimate of Lemma 2, since the range for u will 

still be over no more than W consec wtive integers.

COROLLARY Let S be as in (11) and let a,q be as in (1). If T = o(X^), 

F = o(X^) for every 6 > 0, then

S «  (XW)̂ "*"- (X“^ + W"^ + q"̂  + (XW)"kq)Y ^

Proof This follows easily from (12),
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Proof of Theorem 2 Let

S = T E log p e(£ f(p) ) ,

L
Then, by Lemma 1, we may estimate E |s | by obtaining an upper bound

1=1
for sums of the form

E
1=1

W 2X
I ^(u) E #(v) e(lf(uv)) 
u=l v=X

uv < N

We may estimate this sum from Lemma 3 if

X ^ min(N^^^ , , NL^^^ q'^^^ ).

Otherwise we may add an extra summation range over 1 in Lemma 4. In 

either case we get the bound

«  (q-1 + n'® + , (As)

Now if a , the leading coefficient of f, is irrational there are

infinitely many convergents a/q to its continued fraction. Let a/q
2 y/2-ebe one such convergent with q sufficiently large. Put N = q , L = N 

Then, by (22), combining the O(logN) sums.

if q is large enough. The result now follows easily from Lemma 1 
Chapter One since this gives a 

and N tends to infinity with q.
of Chapter One since this gives a solution of (3) with N^  ̂p ^ N
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kThe discrepancy of gp We say a is of type p if there is a

constant C(x,e) such that

II qq II > q/'^CCa, e) (23)

for all integers q. By this definition almost all integers are of 

type 2, including all real algebraic numbers (by the Thue-Siegel-Roth 

Theorem). We write

D (a ) = sup I El - n|l| |

n

Then, using the Erdos-Turan Tktorem (Theorem 5.5 of [9] ) we have

<<a,c ' (24)

if the leading coefficient of f is a where a is of type 

y ^ 2k - 1. Looking forward to the results of the next section we 

may prove

ON(«P^)  ̂ ' (25)

if a is of type 2. If a is of type > 2 results may be 

obtained using Theorem 7’s method.
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3. Some lemmas required for the proof of Theorems 3-7

We first observe (working as in [l3] ) that the result of Lemma 1 

remains unaltered if we add the condition that all variables summed over 

in Ŝ , Ŝ , Sg are coprime to some integer q with log q << log N.

We shall denote such a condition by writing Z’. The improvements of 

this section come mainly from relating double sums to integrals of sums 

in accordance with Vinogradov’s method (see Lemmas 9 & 10), although we 

will make somenew refinements here. We are also able to give good bounds 

for certain subsums by making quite stringent assumptions on the diophan- 

tine approximation to -a (Lemma 7). The working of this section is 
substantially as given in [6'J, although lemma 9 in the present account 

is more general than the corresponding result in [6] .

It follows, as in section 2, that we need only estimate two types of sum 

(after applying partial summation to of Lemma 1) :

(I) Z' Ky) Z ’ ^  (x) e(f(xy )) (26)
Y<y4 2Y x^Ny'^

1/Q I/Owhere N < Y < N

(II) Z ’ ip (y) Z* e(f(xy))
Y<y^2y x^ Ny ^

^3Here Y < N . Both (J) and in (7) and (8) can be assumed

to satisfy

*(u) «  u-̂ Kv) «  V-- (28)

for every 6 > 0.

LEMMA 5 For any positive integers W, q and real number p we have , 

for e > 0 ,
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W , R e w d W 1
I Z* e(p u ) I «  max (Wq)"^ ( —  ) Z min ( ^ ,    ) . (29)

• U=1 -  d k  I Ip z II
y(d)?fO
d^W

Here R = ’2^"^ and J = (kl) d .

We remark that by the conventional method of estimating sums of the 

type which occurs on the right of the estimate is a decreasing

function of d. Thus d can essentially be thought of as 1 in 

This gives the usual Weyl inequality result, but we have removed all 

numbers from the sum on the left of (5S) not coprime to q.

PROOF It is easily shown (see Lemma 2 Chapter 9 of [ |7]) that 

W
Z ’ e(p u ) = Z y(d) S(d) (-3̂ )
u=l . d|q

where
r 0 if d > W 

S(d) = <’

Z e(p u d ) for d ^ W .

By Lemma, a.,'

| s ( d ) i " « w -  ( f )

Combining (30), (3l) and (32) gives CZ9) since the number^divisors

of q is «  qL . Similarly we may prove
L W . c- u X „ / -A
I I X' e('f(u))|« max (LWq)-(l) X min( ^ , — --- )
«=1 u=l d|q z=l ||az||

w(d)/0
d<W
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k-1 kwhere X = ( kî ) d L W , aad f(u) = au + ... + w

ly 2  q
6 . Suppose Y ^ N  , k, |q^ - al < q , (a,q) = 1

Then, for e > 0,

Z' i|)(y) Z ' <p(x) e(ay^x^)
Y < y ̂  2' x^Ny-1 (3 4 )

.k-m H  22-m-k v-m ,1 q \,22-"-k, , ,-2^’'"

where (f>(x), ^(y) are real valued functions; ^(x) =1 is an additional 

necessary condition.̂  if m is taken as 1. Here

0 if m = 1 

otherwise

ana

F = max |^(u) | max | ĵ (v) |  ̂
u V

Proof For m = 1 this is Lemma 4, while for m=k it is the corollary

to Lemma 3, When 1 < m < k the result follows by applying the Weyl

differencing technique only for the variable y m-1 times in Lemma 3,

i.e. stopping the induction at s = m - 1. For all k Lemma 5 must be 
used in place of Lemma 2.

Henceforth in this chapter the letter F is reserved for the

expression given in (35).

LEMMA 7. Suppose Y £ - a/q[ ^ (N̂ L)  ̂, (a, q) = 1 , N > L ^ 1

S = Z I Z' Ky) Z *(x) e(a£(xy) )| 
£=1 Y< y<2Y x<Nyy <2Y x^Ny

O
Then, if (j>(x) = 1 for all x.
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k
F(HL) (y:t ̂  + S ) . {3k)

Otherwise
k „k ,. 2"'"

Sl  ( ^ 2  + + r  + i  ) ) ' ( 3 ? ;

Proof We write

'L ' :i *>

and prove (36) first. By partial summation

A = E' ( X ,6 (x) S (i) + My) e(a'ly'^ ([Ny‘ ]̂ tt 1)̂ ) s /ft)
T<y<2Y xgly ^ - [Ny ],y

Here 5^(x) = ipCy) e(^’£(yx) ) - ]ĵ(y) e(ct’£(x + l) y ), ^ ’ = a - aq 

and . S (£) = E' e( - ̂  ̂  )

Clearly 6 (x) «  F £ y  ̂x̂  ^(LN^)  ̂. Thus-y

I |A I «  X' (X . S C-̂ v_ ■ I I s (A) I + F X |S _ (0|) ■
=1  ̂ Y<y^2Y x^nA' N £=1 £=1 [Ny ^],y

(38j

By (33), the fact that (y,q) =1 and Holder’s inequality we find that

Î  I s *  y ( t )  I «  ( L x ) ^ ^ - ^  (  i  +  i  +  f -  "  ( 3 4 )
2=1 * 4 x^L

It is now easy to deduce (36) from (38) and (39). 

To prove (37) we use Cauchy’s inequality to obtain

A < ( E *(x) )( E E *(v ) E *(v_) e(ax £(v^-vl$)))
£  _ç -  1 -  2 -  1 2

x< NY x^IY Y<v <H Y<v^<H=  ^  1 X 2 X

where H^ = min(2Y, Nx )̂
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4 Y max|#(u)] , say. 4̂0) v
u ~

We now remove all the terms with v_ = v„ from S„ to leave a1 2  I

sum say. The terms with v^ = v^ contribute

2
<< max]^(v)| N

V ~

to and hence

( 4 1 )

.to . We proceed to estimate A^ as we treated A^ above. We now

get sums S (£) to estimate given by
x.Yl/yg

, k, k k X a£n (y - y )
S (2) = E' e(     —  ) .

n<x 1

k kThe complication arises that y^ - y^ may not be coprime to q.

It turns out that quite a crude argument will suffice for the applications
k -1 k -k -1(the Y q term in (3?) can be improved but not the q Y N L term).

We have

( q ,  < y ^  -  1 l y ^  -  y ^  I < <  ;

Hence , ,L  , 2 Y  J k  k  2 ^ ” ' '
E A << max |̂ (v)| Y(LN) — (^ + —  + - ) 4̂%)

£=1 * V -  ^ ^ N^L

A combination of (40), (41) and (42) together with Cauchy’s inequality

then yields (37) as desired. We note that there are no technical difficulties
kinvolved in replacing an by a polynomial of degree k with leading 

coefficient a.
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-k , \ _-k
z'*(y) z' *(x) e(a£y^x^) «  FN^^- (^ + ~^ ( 1 + H | . (4Û

Y<y42Y X4Ny“  ̂ %/ \ J

Here A = (£,q) and H = LY^Q  ̂+ q(Y/N)^.

Proof. Without loss of generality Y = 2̂  where t is an integer. Some 

notation is required inorder to split the trigonometric sum in (26) into 

subsums. We define sets of integers as follows for 0 4 m 4 t : Cq ={Y},

r̂a "  ̂^m ’ ^m " ^ ^ rY2^ 0 4 r 4 2"̂ ^}. We put Y^ = Y.2 and write
0(y ) for the set of integers x with N (y t 2Y )"̂  < x < N(y + Y )"̂  for ni m m m m
m > 0 . We define 0(yo) as the set of integers x with 0 <x 4 (\̂ (2Y)
Clear/^.

V V tZ»i|;(y) Z'*(x) e(a£y x ) = E E S(y ) + 0(N/y) (4-7)mY<y42Y x4N/y m=0 y eCm m
where y +Y m m

S(y ) = E ■' \p(y) E ̂ (̂x) e(a£x y ) (48)m
y=ym+l xee(y^)

We write Ŝ (y) for the inner s.um in (28). We shall consider m fixed at the

moment and concentrate on one subsum S(y^). In the following the summation

over X will be for x e 0(y ), We note that there are «  NY /Y^ numbers inm . m
0(ŷ ), and << Y/Y^ numbers in Ĉ .

Write
X = ny'̂ .

We now relate Ŝ (y) to integrals in accordance with one of 

Vinogradov’s methods. We make one important change in that we will 

use an infinite series of integrals rather than one integral plus an 

error. The saving this apparent innovation produces is only significant 

for small k ; it makes no real difference to the result of Theorem I 

of Chapter ^ of , for instance. We have
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LEMMA 8 Let 4»(x) be an arbitrary function. Let B and A be positive

integers. Then, for 6 > 0 , we have

( 2̂  k k= I I E (̂u) e(y û ) | dy << B̂  k+^ max |̂ (u)]̂  (+3)
'0 A<u< A+B A<u<AtB

Proof
.k-1 .2" 2'' __ (1 

I = Z ...... E n ' (j)(u.) n *(u.) e(yP(u ,...,u ,))dy
<Bj=l - ] . ^k-l:T  ̂ Jo 2’̂0<u^< B 0<U2ki„ , . i = 2" -+1

2^"^ k 2"" k
where F(u ,...,u , ) = E (u.+A) - E (u.+ A) .

As the integral in i4̂ ■) is either 0 or 1 we may conclude that

2̂  (1 I 4 max |*fu)| E E e (yF(u , ...,u k))dy
A<u<A+B 0<u <B 0<u k<B '0

max 
A<u<A+B

1=  2 =

1 k
|̂ (u)|̂  f E e(y(u+A)^)  ̂ dy (45^

^0 0<u<B

]ç
The estimate B̂  for the integral in (45) is well known (see

Theorem 4 of [ 7  ]) and completes the proof of this lemma.
We remark now that the drawback of the results of Lemmas 6 and 7 is 

that their estimates become trivial for Y near (in fact the .

situation is even worse in Lemma 6  for small m ) .  The following lemma

deals with estimation of sums where both ranges are quite large,

1 V -LEMMAS Y 4 N k 2 < L < N .  Put' Q = m a x  (q, (n'̂ L)̂ ) a n d  suppose

t h a t  I a q  - a I < Q (a,q) = 1 ,  e > 0. Then
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r=0

where
Ir(y) = I Z e(ux^) ^(x)|^^ du. (5^

l(y) "

Here .  ̂ ^“k , y-k
1 (y) = [gy £ 9 . *y % + 4 3.

(The reader familiar with Vinogradov’s work should note that 

we have been able to make ^(y) somewhat larger than usual; this 

requires us to use an infinite series but it will become apparent 

that this is no real problem).

To obtain (49), note that for any u.

S^(y) = E ^(x) e(ux^) e(x^(ay^£-u))
X

- x' e(uxX) X *(x)
X r=0

The interchanges of orders of summation and integration in the 

following working are easily justified. We have

S,(y) = x M  ; x' e(x'-u) x'̂  ̂(gy^-u)’̂ (2xi)-̂  (̂x)

^3(y)



62.

, : (2wi)rxk
r=0

« X

j:y)

"• 3(y)

.r,-kr

Iu-aŷ £ Î  I E'x^^ (j>(x) e(x^u) | du

«  E k--- [ I Z' (J) (x) x^^ e(x^u) I du
r=0 3^(y) X -

By Holder’s inequality ,

|Sly)f' «  I E' Kx)x^^ e(x\) I
I r=0 "• r=0 Jg(y) X

« -rk2^
«  X E -— i  Ir

'r=0

by another application of Holder’s inequality. This establishes (49).

Our next task is to relate S(y^) to integrals over [0,1) in a manner, 

similar to Vinogradov (see [lé]), and use Lemma 8 to obtain a good estimate 
for the integrals. We say two intervals j(y^^, ^(y2) overlap mod 1 if 

there is a real number x and an integer n such that x e ^rd

n + x e ̂ (yg). We will show that not many of the j(y) overlap mod 1.

Using the periodicity of the integrand in Ir we may then get our required 

integrals.

Suppose (̂yj_), j(yg) overlap mod 1, then

at (y^ - y^) = h t 0(x"^)

where h is an integer. Thus

k k\ . „-k V . ^,„k „ _-la I (ŷ  - yP = h q + 0(q X '̂ ) + 0(Y £ Q )
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= hq + 0( H )

Since q ) = (ŷ  , q) = 1, there are

AY«  ( —  +  1 )  q -q

solutions of y^ a £ = b (mod q)

in y^, with 17^ + . Thus only

AY
( 1 + H ' ) ( — —  + 1) q—q

intervals 4(y^) overlap (mod 1) with a given ^(yg).

gk gk
Write V = max [̂ (v) | , U = max |̂ (u)| . Then we deduce with

V u
one further application of Holder’s inequality that

gk k̂ ‘ , , « k-rk2̂
15(7.) I «  Y. 4- (1 + H ) ( i  + 7 ) Y X  - 7 1 -----  I ' f ̂ m r=0

where
rl' kI* = I I E ’ x̂  ̂e(ux̂ ) (̂x) I ̂  du

^ Jo X

Y

by Lemma S. Hence

|S(yJ|^" «  Y; qkl + - H X - - ,
m

Thus

I F  S ( y J | ^ "
y eCm m

«  q- (1 + H  )(̂  + 7  ) ( ^ ) ^  X̂ +̂E. (I
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k -1£ y = C + mq , with C e b a (mod q )

0 4 C < q, 0 4 m 4 L Y^q~^ «  Y^

The number of intervals ^(y) which overlap with a given interval is thus

«  (1 + LY^k n“^) q-

1 Y%k EThis is a saving of a factor (——  t — —  ) q- over the trivial estimate.

The remainder of the proof follows without difficulty.

Proof of Theorems 3,4,6 & 7

Proof of Theorem 3 As already indicated, we need only estimate sums of 

type (I) and (II) ( (26) and (27) ). For Y ^ we use Lemma 9

(£ = L = 1). This gives an upper bound

«  ^ c/2 (%-1/k + q-l)2 «  ^l-YHE/2 (53)

For > Y 4 we use Lemma 6 with m = 2. This also leads to the

estimate (53). Finally, for Y < we apply Lemma 6 with m = 1

which also gives a suitable bound. As there are only O(log N) sums of 

the type (I) and (II) the inequality (4) follows.

1 — 1/kProof of Theorem 7 If q 4 N the proof follows as above, the

-1 _k + i,2‘IV -r(q  ̂  ̂ )̂ term coming from Lemma 9 and only being significant for

q >  ̂  ̂ For q < we use Lemma 9 for Y 4
2^ 2 2 For Q > Y > Q we use Lemma 6 with m = 2 . For Y 4 Q we use

Lemma 6 with m = 1 .

Proof of Theorem 4 Since a is irrational there are infinitely many 

different convergents
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Since
Y 2̂ -k

(y ) 6  i .

The result of Lemma folows easily from (51) since there are 0( log N) 

subsums as given in (47) to consider. Slight modifications are necessary 

in the working for the sum with y range of length since the inner

sum over x has the form 0 < x < NY , but there are no added difficulties

LEMMA \0. Suppose we have the hypotheses of Lemma with the added 

condition that

)
Then

X k j  «  (LN)^- r(i . f
£=1  ̂ N^^

where is the sum on the left hand side of (46).  — £ ---------------------------------------

Proof We shall only outline the necessary modifications to the proof of 

Lemma q. By the modulus inequality it suffices to estimate sums of the 

form (in the notation of (47), (48) )

L
X X' I t ( y ) |  X I s (y)|

YmcCm y -

We proceed as before, relating Ŝ ŷ) to the same series of integrals.

This time however, we are interested in how the intervals are distributed 

as both y and £ vary. We thus require the number of solutions of

y a £ = b (mod q )

for y in a given range of Y^ numbers, I 4 &  4 L. We have
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to its continued fraction. Let a/q be one such convergent. Pick N 

so that

q = + Ç/2 - e/2]

and put

It follows from Lemma .* 1 of Chapter One that we need only show that 

L
Z I Z ( l o g p ) e ' ( a p ^ £ ) l  =  o(N) ( 5 ' 4 )
£=1 p<N

in order to establish a solution of (5) with P ± N. Since a is

irrational and we pick a sequence of convergents with q->-«> the result 

of Theorem 4 follows. As in the c^e of Theorem 3 we need only consider 

sums of the type I and II, but we here add qn extra summation over £.

Put
p  =  k(2k + 2 t  (2^ _

Then

and

k p  -  s /2 k /2 = -2%  p -  1 < - 2\  . '

P 'We estimate sums of type (I) by Lemma 10 if N- < Y 4 N . There 

are «  log N such sums, and by (55), (52) we get an upper bound for 

the total of these sums of

«  (L ^^(S-E+p)2 (log N)

= ^ + Se/4 (log N)

= o(N).

Assuming, as we nay, that e is sufficiently sr. ill. We have used
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e/8the fact that F = 0(N- ) to obtain this result.

For 4 Y 4 N- we estimate sums of type (I) by the case of

Lemma y with #(x) ̂ 1. It follows from (56) that we get a bound which is

o(N) for these sums as well.

We estimate sums of type (II) by the case of Lemma y with <f>(x) = 1. 
Here the estimate is ;

which is certainly o(N). This establishes (54) and thus completes the 
proof of Theorem

Proof of Theorem 6 Let ci be the leading coefficient of f. Choose 

N and L as in the proof of Theorem 4, but replacing Ç by a. Write 

Y = N̂ -. Let be the collection of all numbers of the form p̂  ̂p^ 

where p̂ , p̂  are primes and

■Y < Pi < 2Y , < PiPjS. N .

We note there are »  N (log N)  ̂ such numbers. It thus suffices

’ . to prove that

L o x
Z I E e(£f(n)) | = p(N(logN) )̂ . (Tv
£=1 neN'

For k = 2 (57) follows from a suitable variant of Lemma 6 (by 

.adding an extra range of summation), taking m = 2 and making obvious . 

choices for (p and ip . For k^S (57) is established directly from

Lemma 7 (37). This completes the proof of Theorem 6.

We now include a brief demonstration of an improvement upon Graham’s 

result, namely

For irrational a and arbitrary real ^ there are infinitely many 

solutions of
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“ 2̂ +  G I I  < c Pg (log

Here c is a numerical constant which can be evaluated

To prove this, let a/q be a convergent to the continued

fraction of a, q > 10̂ , Choose X as the largest integer with
/

q > (log Xq) \

Put
N = Xq, L = (log N)

where c^ is a constant <1. We note that LX < q. 

i of Chapter One it suffices to show that

From lemma

E e^aüp^Pg)
x^<p <x x<p <q

where M is the number of P̂  numbers of the form p^p^ occuring
-2in the above sum. Clearly M »  N(log N) . We have, by the

modulus inequality.

LX
4 E h(m) 

m=l
E e(amp) 

X<p4q

Here h(m) is the number of representations of m as £p̂  with
1 5/2'2  ̂  ̂V We observe that h(m) 4 5 since m < X

-1
xz < p^4 X.

h(m) is non-zero for << LX(log X) numbers m, by Cauchy’s 

inequality we have

As

LX
S? << LX
L (logX) m=l

E e(amp) 
X<p4q

We may now use the well known large sieve inequality (see [S ]) 

to estimate the above sum. We get
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I << max |̂ (u) 1̂  I I Z e(ot,û + ... + a u) d g ... dg [54)
u Jo A<u<A+B K \

The integral in (59) is the number of solutions in integers

Xf, with A < x̂ , y^ 4 A + B of the system of equations

T/2 T/2 .
Z x^ = Z y /  (s = l,...k) [Co
i=l i=l ^

We note that the above system is invariant under a translation of 

all variables by a constant . Hence the integral in (59) is the number 

of solutions of (60) with 0 < x̂ , y^ 4 B. By Theorem 7 of [ 7 ] we 

find this number to be

«  sT-kfk+l) + ̂

when k 4 10. For k = 11 we get the above result by following Hua's 
working (£ = 40 in his notation in this case).
For k ^ 12 we may use Vinogradov’s Mean Value Theorem as given by 

Theorem 4 of [18], which gives an estimate

The proof of the lemma is thus complete.

LEMMAJ2 Under all the hypotheses of Lemma 10 with a as the leading 

coefficient of f we have

E |_aj «  F  (  A 4 )Jt — 1 W

where T is as given in Lemma 11, and is the sum of Lemma lO

with f(n) replacing an .

Proof The proof follows as for Lemmas 9 and (C with Lemma II replacing 

Lemma $. The only real difference is that (49) becomes
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3

"2(log N)

2c N
«    1+ '(log N)

By choosing c^ sufficiently small the result follows.

We remark that the above method can be adapted to prove a result 

like Theorem 6 but with the weaker exponent k((2^-l) (2k-l) + 2̂ )

4. Proof of Theorem 5 We first require some more lemmas.

LEMMA 11. Let #(x) be an arbitrary function, A and B integers

Then, for e > 0, we have

1 1
I = _ ,/ \ / k k—1 VZ *(u) e(a^ u + ^ + ... + a^u)

A<u<A+B
da., .. .da, -1 -k

<< gT-k(k+l)/2+ç

A<u<A+B

Where T is given by the table in the statement of Theorem 5 for

k < 11. For k > 12 we take

T = 4[k^(log k + 2 loglog k + 1.3)] .

Proof Proceeding as in Lemma 2 we see that
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T  - - X-%? I,(y)xk(k+l)/2
S/y) I <k rp r !̂... ^

where

R = r^ + 2r^ + ... + kr^,

I„ - .... I Z'<J>(x) e(a x^+...+ a x) ["̂ da . . .do, .
•'Ji(y) X -1 ' -1

and

3g(y) = [ Ug - f , + I ] (ssl_,...k),

where â  is the coefficient of in f(x) (so a^= a) .

LEMMA^l^ Suppose k 4 12, N^^4 q 4 %13k/24^ L 4 N, (a, q)= 1 , 

|a - a/qI 4 (N^L)"^, Y 4 . Write , for £ 4 L,

S =• Z' ^(y) Z' e(£f(xy)) . 
■ Y ^ 42Y X4W ^

Then

Proof Working analogously to Lemmas 5 and 7 we need only estimate

x/d k ,k k
S (d) = Z e( -— ^ ^  + £g(ydn)) 

n=l 4

Here x 4 NY g is a polynomial of degree k-1 and (y,q)=l. Sums 

with d > N^^ contribute «  to Ŝ  by a trivial estimate, so

we may assume d 4 N^^ . Similarly we can presume x/d 4 N̂ ^̂  . Let

a £ y^ d̂  _ b—, with (b,q') =1 .
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We have

( $ )̂  < 4 < q’ < N^k/8 k/12  ̂ ( x )k-ld — — L = ' ± =  = d

We are thus able .to apply Theorem I of Chapter 6 of [1-7] to S^(d)

to get the estimate

where _6 = 5(24 log(12k(k+l)) ) This is more than good enough to

prove this lemma. We remark that although we have thrown a lot away in 

this proof, there is no point in being more precise, since the sticking 

point in the proof of Theorem 5  is the estimation of sums of type I 
(i.e.Caé)).

Proof of Theorem S . For k 4 11 the proof follows as for Theorem 4, only

using lemma U in place of Lemma tO, As we remarked at the end of Lemma 7 ’s
kproof there is no problem in changing an to f(n).

The value corresponding to p  in the proof of Theorem 4 -  is

p’ = (T-l)(2T+(2^'^^-l-2k)/k)”^

which satisfies

p_'+T_ = Tt ; kp' - t/2 - k/2 = -2̂ t ; p' - 1<- 2̂ x . 

For k > 12 the proof follows from Lemmas 1 3 .  and 1 3 .
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CHAPTER FIVE DIOPHANTINE APPROXIMATION BY PRIME NUMBERS

1. Introduction. The main results of this chapter have appeared 
in a joint paper with R.C. Baker jj-bj , although Theorem 3 in the present 

account improves upon the corresponding theorem in that paper for 

 ̂  ̂= 3 • V/hen we wrote that paper we were unaware of certain papers by
Liu (see his survey paper [s] ), many of whose results may be substant­

ially improved by the methods of the present chapter and one such result 

described in section 8. The idea to use the new auxiliary funct­

ion came from R.C. Baker who also suggested using the method of jj.̂] .

The final form of the argument in this chapter is my own however. We 
prove :

THEOREM 1 Suppose that » 2̂ > 3̂ are non-zero real numbers not 

all of the same sign, that t\ is real, and that A1A 2 is irrational. 

Let 6 > 0 be given. Then there are infinitely many ordered triples 

of primes , p£ , P3 for which

In + AiPi + A2P2 + X3P3I < ( m a x  p J  . (1)

THEOREM 2 Given the hypotheses of Theorem 1 and assuming the 

generalized Riemannhypothesis, there are infinitely many ordered 

triples of primes p̂  , P2 , P3 with

- -  4In + AiPi + A2P2 + A3P3I < (max Pj) (log max p J . (2)

The basic method we employ can be traced back to Davenport and 

Heilbronn ([2]). They adapted the Hardy-Littlewood circle method to 

prove that if Aj , . . , Â  are non-zero real numbers , not all of the 

same sign, and with Â /Aj irrational for some i,j, then for every 

e > 0 there are infinitely many solutions in positive integers 

of the inequality
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< e (3)

%
provided s ̂  2 + 1. The minimum value of s was subsequently 

improved for k ^ 12 (see [ 3 ]) and improved again by Theorem 3 of 

[ 11] for. k ^5. Schwarz ([9]) extended the result to show that (3) 

has infinitely many solutions in primes p^. By means of a complicated 

argument A. Baker (CJJ) showed that in the case s = 3, k = 1 the € 

in (3) may be replaced by (log max for any natural number A.

This result was extended by Ramachandra ([8] ).

A more striking advance was made by R. C. Vaughan ([10] and [11]) 

who improved the c to a negative power of (max p̂ ) while reducing 

the necessary size of s for k ̂  4 to a value which is 0(k log k). 

For s = 3, k = 1 he obtained (max p̂ ) (log max py)̂ \ without

the GRH and stated without proof that the 1/10 could be improved 

to 1/5 with the GRH. Our present Theorems 1 and 2 imprSVe these 

results and we shall indicate how the exponent of (max p̂ ) may be 

improved considerably for k ̂  2.

2. Notation and explanation of method. Since Ij/^z irrational

there are infinitely many different convergents to its continued 

fraction. Let a/q be one such convergent where q is large in terms
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of Aj , A2 » Ag and n. We write, for the proof of Theorem 1,

X = (q)

C = (5)
f 3 .2

y = 384|Xip( J  J X . |  J (6)

P = ye'l • (7)

h = «/5 ,

e(x) = , (8)

S.(x) = % (log p) e (p xX.) (9)
 ̂ p < X  3

V(x) = min(|Si(x)|, jS^Cx)!) (10)

I(x) = f e(xy)dy ,
Jo
3

G(x) = H I(A . x) (11)
j =1 1

3
F(x) = H S.(x) (12)

j=l ^

T = (log X)'^ . (13)

Constants implied by «  shall depend only on Â  , A2, A3 and n . 

The following lemma converts the problem of solving inequalities of 

the form (l), (3) into a question of estimating exponential sums and 

integrals. We use this result in place of the more familiar Lemma 4 

of [2] merely to simplify certain parts of the argument; it is not a 

necessary ingredient in improving Vaughan's work.
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LEMMA 1 For any g > 0 there is a continuous function A(x) in 
L'(R) such that

A(x) ^ • (14)

While, if we write

A(t) = A(y) e (-ty)dy , (15)V —oo

then A(t) = 0 for 11| ^ g (16)

Also

I  ^[-11] " A(x)j dx = g ^  . (17)

Proof See p. 559 of [ 7]. Henceforth A(x) shall denote the function

given by Lemma 1 with g = y .

COROLLARY. Let N(X) denote the number of solutions of the inequality

I n  +  X q P i  +  X g P z  +  A 3 P 3 I <  P .

in primes p| , Pg , Pg ^ X . Then

E"^(log X)^N(X) :> j e(x n ) F(x) A (e x)dx . (18)

Proof From (10) and (12) ,

.  3  r  3
e(xn)F(x)A(ex)dx =  ̂ n(logp.) e(x(n+ E A .p . ) )A( ex) dx (19)

Pl>P2»P3=^

The integral in (19) may be estimated by a well known theorem on 

the inversion of a Fourier integral (both A and A are in L'(R), of 

course). The integral is simply
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3. Region one. Here | x | ̂  , and this part of the integral forms 

the main positive contribution to the integral.

LEMMA 2 We have

f I F(x) - G(x) I I A(e x) I dx «  /  (log X)  ̂ . (20)
J_T- .

Proof It is established in [10], Lemma 9, that

ft 2 - 1
I F(x) - G(x) I dx << X (log X) .

-̂T

From Lemma 1 A(e x) «1, so (20) follows.

LEMMA 3 We have

e(xn )G (x) A (e X )d X »  X . (21)

Proof We write D(y) = X[_i i](y) “ A(y) and put 

X r X  r X  3

Q 0̂ 0̂

r X  fX rX 3
• Q* = maxCO, e - | n+ Z A.y.j ) dy^ dy^ dŷ  .

0 0 0 j = 1 .

In the proof of Lemma 10 of [10] it is shown that

Q* > T T - V  . (22)I ^ i l  y

(That part of Vaughan's argument does not depend on the size of e). 

By an easily justified interchange in the order of integration.

fXfXfX 3
e(xn)G(x)A(ex)dx = e(x(n +  ̂X y ) )A(ex)dx dyidy2dy3

Jo Jq Jq j=l J J

'XrXfX fn + X^yi+Xgyg + Xgyĝ
J  J  - - - - -   j  d y i d y z  d y a
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3
e  ̂ A((n + E p.X.)c )̂. 

j =1 ] ]

From this and (1 ) we see that (18) follows.

We observe that the integral in (18) is really only over a finite

range (by (16)) of length P, i.e. << e The normal procedure is

to obtain an infinite integral, whose range of integration is split

into three sections, traditionally named (with variations); the

neighbourhood of the origin; the intermediate region; the trivial

region. In Vaughan's work this corresponds to | x| <. t ,

T < I xj ^ e , e  ̂< I x| , respectively. We shall split our range

of integration in three as well, but our regions are:

jxj^x; T < | x | ^ l ;  l < | x | ^ P .  We shall draw heavily on

Vaughan's analysis for the first region. It is possible to improve

Vaughan's work to reduce our present approach to two regions:

I x| ^ , X < I x[ ̂  P. However, the argument is more complicated

and the idea of using three regions enables us to further improve the

exponent of (max p̂  ) when k ̂  7. The reason for this is that the

maximum permissible value of t may not be improved beyond X  ̂,
—k /2whereas we would like | x| to exceed X throughout the "inter­

mediate region". (see section 6).

The second region with t < | x| ^ 1 is the easiest to estimate. 

For k^^ powers of primes any value of x > X will suffice.

By modifying the argument in [11] we could take x = X  ̂. The 

third region is the "sticking point" as regards improving the

exponent. Theorems 1 and 2 shall be proved by showing that the
2integral in (18) is »  X . The analysis in sections 3 and 4 is 

little affected by altering the relative sizes of X, q and e, 

which we do to prove Theorem 2.
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to: - D n+Xfy1+1272+^373
^71^72^7 3

W -... -,
0 0 0

e D(e (n + I X.y.)) dy dy dy j =1 3 D i 2 3

. -
0 0 0

e D(e (n + E X.y.))dy dy dy (since D(y) ^ 0) 
i =1 ] ] 1 2 j

3 .,2 ^> -r—— I  - X D(X y)dy by (22) and a trivial bound
l^llu J-CO ^

> T^-v—  by (17)
= bilw

»  X as required.

LEMMA 4 We have

I e(xn ) G (x) A (e x) dx »  X̂  . (23)

Proof Since A(e x) « 1  and we have the inequality (21), it suffices 

to show that

[ I G(x)| dx = o(X^) .
J|X|>T

(24)

We have

I(x) = I e(xy)dy << min(X,x ^) 
'0

Thus

'C
I I G(x)I dx «  I
J|x|>, {

dx «  I X dx
T
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— 2«  T

8/5 2= X (log X) .

Thus (24) is established and the proof complete.

LEMMA 5 We have

r  - 2e(nx) F (x) A (e x) dx »  X .

Proof This is immediate from (20) and (23).

If we are dealing wifh the problem involving powers of

primes the sizes of e and t will be different, as already remarked, 

and the lower bound of Lemma 5 will become
\

T
F^(x)A(ex) dx »  X̂  ^

-T

where

s ,
F (x) = n E e(xp .) (log p.).

j=l Pj<X ] ^

4. Region two. Here < | x| ^ 1 .

LEMMA 6 Suppose | rô  - b| < r  ̂ , (b,r) - 1. Then

 ̂ (log p) e (pô ) << (log N) (N + Nq % + N^q^) . (25)
PAN

Proof See [12].

lemma 7 For t_ < | x| ^ 1  we have

V(x) « X  (log X)  ̂ . (26)



83.

Proof We first remark that it is possible to improve (26) considerably, 

but this is unnecessary here. We observe that (26) is true for k"̂  ̂

powers of primes and any t > X by using Theorem of [ 4] in place

of Lemma 6 here. For a given x, we may choose , q̂  , â  , â

such that

|Xj X - Sj/qjl 4 X"̂  (log X)̂ ° q̂ ."̂

with (aj,qj = 1 and l ^ q ^ ^ X  (log X)^° . As t = X (log X)  ̂

we see that â  â  / 0. Now suppose that both q̂  and q̂  are less
o nthan (log X) . We have

- ^92 = l ÿ r  9i92
Xj aj/qj f aj.| â /q̂

-1 /n x/\40

-1 qj

«  X"' (log X)'■"

q^q^(v - 3
1 /3Since q = X we have

= o(q h  . (27)^2^1 r -  ^9^
■z

But I â q̂  I ^ (log X)*̂ ° = o(q) . (28)

We note that (27), (28) contradict the definition of q as the

denominator of a convergent to for q sufficiently large (see
20Lemma 9(ii)). Thus one of q^sq^ is greater than (log X) . This 

with (25) establishes (26).

lemma 8 We have

[ I , |F(x)A(ex)| dx << X̂  (log X) . (29)Jt<|x|^1 I '
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Proof We have

f |F(x)A(ex) |dx «  f |f (x )| dx
4  < I X I <.1  ̂T<| x|<l

3 2
1  V ( x )  I | s . ( x ) |  d

|x|e Ct ,1] j = 1-' 0

« /  (log X)

Here we have used (26) and

[ |S.(x)| dx << f I  ̂ log p e(xp)|^ dx
;o J Jq

«  X log X (30)

by Chebychev's upper bound.

Lemma 8 demonstrates that the contribution from region 2 is of a smaller 

order of magnitude than that from region 1. For powers of primes

the right hand side of (29) becomes

• X= -k (log X)-l

for s > s_(k). Here s_(2) = 5, s_(3) = 9 and, for k j> 4, s.(k)—  0 u u —  u
is Vaughan's 3)(k) of Corollaries 2.1 and 2.2 of ([11] ). For example, 

Sq(4) = 15, Sq (10) = 123. To establish (29) for k ̂  4 we have to

estimate an integral ( >f, (5.29) of [11]) of .the form

i =j I Sj(x)| ̂ 1̂ H(x)| ̂ I A(cx)|dx .
0

Here H(x) is a certain exponential sum (Vaughan's F^(x)). We note 

that for 0 < X < 1
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Â (e x) «  1 <<
r . ,  ̂2sin irx/2h 
. TTX J

Thus

sin ttx/2
ir X dx .

The above integral represents the number of solutions of a certain

inequality and so is bounded above by the number of solutions with p̂

replaced by n. (i.e. summing over all n in S.(x), not just ] ]
primes). We may then use Theorem 1 of [ll] with e = 1/2 to conclude 

that

«  Xs - 1 -k + 6

essentially. This is the desired form of inequality to replace (30) in 

the case k ̂  4 .

5. Region three. As we have previously remarked, this is the 

crucial region, and here we employ an argument given by G. L. Watson in 

section 10 of [14]. This enables us to improve the method we used in 

Lemma 7 of section 4 which closely followed Lemma 11 of [10] and 

Lemma 13 of [3].

LEMMA 9 Let b/r be any convergent to the continued fraction for a. 

Then the inequality

|a-(j)/v| < (4rv) -1

in which <J> , v denote integers, not necessarily coprime and v is 

positive, is not soluble
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IX^xq^ - aj < (X/Z) , (34)

(qj, aj) =1  and qj i x’’ (X/Z)^ .

We divide M(Z) into disjoint subsets M(Z, Q Q ) such that1 2

Qj < qj < 2 Qj . Qg < qg < 2

for X E M(Z,Q^, Q^). From (34) it can be seen that MfZgQ^gQg) is 

contained in intervals of length < 21^^  ̂X  ̂+ ̂  (X/Z)^ . We now

show that there are not very many of these. Working as in Lemma 7 we 

find that

\

We have q ̂ q Q ̂ P .

So, by Lemma 9(iii) â  q ̂ can take on only

QiQ2Pq'^

values. By (i) of Lemma 9 each value of q̂  defines precisely one

value of a . Since the number of divisors of a„ q, is «  X^ by a 1 2^1 ^

well known estimate, M(Z, , Q^) is contained in

- 1 h «  P q X

intervals (34). Now |S^(x)|^ «  X^^^  ̂ by (25), so

[ (Si(x)S2(x)|^dx «  (QiQ2Pq“^X^)(Q"V‘̂^ Z‘^)Z^ X̂
Jm(Z,Qi,Q2)

= PX^ + ̂ '̂ q'̂

' 3—5—h«  e X by (4), (5), (7).
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(i) for two different ^ and the same y_ ,

(ii) for any y < r ,

(iii) for any two different y differing by less than r .

Proof This is Lemma 2 of [14].

The following lemma is the most significant step in improving 

Vaughan's result in [10] (it is quite easy to improve his 1/10 to 

1/9, but a result like the following is needed to make any saving 

over 1/9).

LEMMA 10 There is a set of numbers M (%: [ 1, P] such that

(i) for |x|e[l, P), |x|^M we have

V(x) £ 6 (31)
\

(ii) f Is (x)S (x)l̂  dx ((.Y?  ̂e . (32)
; |x|sM ' ^

Proof We define M to be the set of all x e [1,P] for which (31) 

is untrue. We may also suppose |ŝ (x)| ^  |Ŝ (x)| since M can be 

split into two subsets and the proof for |ŝ (x)| < |S2(x)| will 

follow analogously. We now divide M into << log X disjoint subsets 

M(Z) such that

Z < I Ŝ (x)| 4 2 Z (33)

2 /3for X E M(Z). For each x e M(Z) we pick a^, q£ so that q2 ^ X ,

I X q̂  - â l < X , (a^, q̂ ) = 1. By the definition of M,

|Ŝ (x)| > +5/2 go ̂ by (25), q̂  < X^^^ ^ . Also, by (25) and

(33) there is a pair q^, â  with
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2 ^
The proof is completed upon noting that there are << (log X) «  X

subsets M(Z, Q^, Q )̂.

LEMMA 11 We have

f |f (x ) Â ( e x )| dx << X^ ^
J 1x1 >1

(35)

Proof By (31),

[ I F(x) A (ex) I dx «  X^ f [ |s.(x)| dx
J|x| >1

3 rP, I sj = 1 Jo 3 

•1

'0 f <X
«  x^ P I I  ̂ e(xp)(log p)|^dx

«  X2-h

Also

f |F(x)| dx 4  [ |S (x)S (x) I ̂ dx [ |S (x)| dx
J 1x1 eM JxEM h

<< (X̂  G EX P log X)

This completes the proof of (35).

6. Proof of Theorem 1 and other results. By Lemmas 5, 8 and 11,

2e(xn) F (x) A (ex) dx >’> X
J —oo

Thus, from (18), the number of solutions of ( 1) is

>> E X^ (log X) ^

»  X .
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Since X tends to infinity with q, this completes the proof

To prove results for k-th powers of primes we take q as before 

and define X, Y, W, e, by the following table :

k X e Y W

2 q x4 + 6 xi - 8h xii - 4h

3 q: X-1/28 + 6 %4/7 - 8h xl2/7 - 4h

>4 2/(k-l)q X-CkZ^)"! + 6 xl - 1/k - 8h x(k+l)/2 -4h-l/k

For k ^ 11 we may take e » X ^

The analogue of Lemma 10 for k-th powers of primes is : 

LEMMA 10 B Let M be the set of x in [l,P) such that

for X 4 Mmin (Sĵ (x), S^Cx)) «  (X'

Then

1) For 2 A k <_ 4 we have

I |Sĵ (x) ... Sg(x)| |A(ex)| dx «  X^^^ | K^Cx) (F(x)^ + G(x)^) dx^ 
xeM

Here F(x) and G(x) are any two disjoint products of (s-l)/2 of the 

moduli of the sums S^Cx),..., Ŝ (x).

2) For k ^ 5 M is emptŷ  assuming q is sufficiently large.

2/3Proof We pick q̂ , q̂ , â , â  as in Lemma 10 but replacing X by 

W. By Theorem 7 of Chapter 4* we have q̂  < Y Cj=l,2). We define

M(Z, Q̂ , Q̂ ) as in Lemma 10. By the argument of that lemma M(Z, Q̂ )

is contained in «  Q ^ Q ^ q ^  X^ intervals of length <1. If .

k ^ 5 there are therefore no such intervals, assuming q is sufficiently

large. Now we note that  ̂ for any Â  > 0,

* for k c 2 use Theorem 1.
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A+1
|S (x) ... S (x)| |a (e x)| dx << (̂ F(x) + G(x) jdx

A'

A+1

<< (F(x)^ + G(x)^)K2(x-A)dx <<
2 .

(F(x)^ + G(x)^) K^Cx) dx.
2

It thus remains to show that the number of intervals in which 

M(Z, Q̂ , Q̂ ) is contained is << Z

A), k = 2. By Theorem 1 of Chapter Four we have Z < X^  ̂^ so

Q^Qg q~^ x^ e"^ Z «  X^^ Qg xS " G «  ^̂ ë+Zh-ô ĵ l-3h

as required.

B). k = 3. This time we use Theorem 7 of the previous chapter to find 
that

Z < + h

Hence
-1 h -1 Q^Qg q  ̂X* E  ̂Z <<

as required.

x2h - 3/28 -6y31/16 %l-3h

C). k = 4. Here we note that Z < X^ * ^ 1/48^ and the proof may

be completed as above.

The following Theorem follows easily from Lemma 10b, the results already 

mentioned in this chapter, and the working in [ll]

THEOREM 3 Define Sg(k) ^

1
k L

2 3 4 5 6 7 8 9 10

SQ(k) 5 9 15 2S 37 55 75 97 123

and, for k ^ 10

ŝ Ck) = 2k + 7 + 2 (-log 2R + log (1 -5../k))/(- log(l - 1/k)) 

where R = 2̂  ^ (k ^ 12), = (2k̂ (2 log k + loglog k + 3))  ̂(k > 12)

Let s be an integer ^ SQ(k) and suppose that X̂  are non­



91.

zero real numbers not all of the same sign, that n is_real, and 

is irrational. Let 6 > 0 be given. Then there are infinitely many 

ordered s-tuples of primes p^^...,p^ with

n + E X.p. < ( max pj )-y + Ô

Here

= I if k = 2

= 1/28

= (ksf)-!

if k = 3 

if 10 > k > 4

= (25k̂  log k )  ̂ if k ̂  11.
-1

The value given by Vaughan for y is the much weaker (5.4^^^(k+l^.

To prove the result for k > 11, it is necessary to use the result 
of p.3] in place of Theorem 7 of Chapter 4*

7. Proof of Theorem 2. We now write

X = q". E = ( log X ^
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The proof for regions one and two may be completed as before. The 

following lemma, dependent on the Generalized B iemann Hypothesis is 

the only significant change in the proof of Theorem 2.

-1LEMMA 12 Suppose 3 = a ~ a/q, (a,q) = 1, 131 ^  N  ̂. Then, on the

GRH, we have

N
E A(n)e(an) << 

n = 1
1,

(log N)2
(log N) . (36)

Proof We may suppose that q ̂  N. Let x denote a Dirichlet character

modulo q. We first note the well known results on Gauss sums

(y ) = E X (n) e (n/q) = y(q) 
n = 1

if X = Xq 9 the principal 
character

<< q2 otherwise .

(37)

Write

N
cj = E A (n) e (a n) 

n = 1 
(n,q) =1

Clearly

N
E A (n) e (a n) - a «  log q . 

n = 1
(38)

We may thus work with o in order to prove (36). We have

, __ «
CT = Z x(a) ?(x)  ̂ A(n) x (n) e (n 3) .

n = 1
(39)
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formula (24) of [10].) From (41) and (42) we get

N 2 3 5 3 .
E A(n) X (n) e (nS) = 0(N^(log N)5)+0(N'^e (log N)^) - E ' 5 . (43)

n = 1 P

Here

^  p = u^  ̂e(ug) du = I u  ̂e (u3 + ̂  du ,

if Y = ^ m p . We may estimate f p by Van der Corput’s well known

methods using the size of the first and second derivatives of

u8 + (y log u)/2ir. We find that

\

Thus f p «  N^Iy I  ̂for |y| < 4ir N 3

«  N^Iy I for IYI > 4tt N 3 .

Hence

z' f  p «  NMlog N)^ + NlejMlog N). (44)

Combining (43), (44) yields

N 1 2  1 3Z A(n) x(n) e (ne) = 0(N2 (log N) + N| B | = (log N)^) . (45)
n = 1

(We here use 3 A N  ̂; by working a little more carefully we could 

dispense with this hypothesis, but it does not affect our results.)

For X “ Xq an extra term Y is necessary on the right of (40)
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Now let X be any of the non-principal characters in (39). For any 

real number Y > 1, we have the well known estimate

 ̂ A(n)x(n) = -Z Ŷ  + 0( YT"^log^Yq + Y^log Y) (4C»7
p

= - z'
p + 0(N%(log N)3/2) 0-1)

Here Z indicates summation over all zeros of L(s,x) (on s = J/since 

we assume the GRH), with |lm p| <, T. To get (41) we have put T = N®(log N)^ 
and presumed that Y < N.

Now suppose f • and g are functions possessing continuous derivatives 

and that

Z ĉ  = g(u) + h(u) 
M < n < u

Then, by partial summation/integration we find that

( g'(u)f(u)du + f(M)g(M) - [
Jm \

Z c f(n) = f (L)h(L) + I g'(u)f(u)du + f(M)g(M) - I h(u)f'(u)du. (42) 
M <n<L ”

(The present author that the formula (42) is clearer than the one

used by Vaughan who needs to integrate by.parts after application of the
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and (41). This gives

N rN l o l l
Z A (n) x_(n) e(ng) = e(u3)du + 0(N^(log N) + N | 3 | ̂ (log N)̂ ) 

n = 1 Jl

«  min(N,|3f^)+0(N2(log N)^ + N|3|2(log N)^). (46) 

Combining (37), (39), (45), (46) gives

O' << min(N,|3|  ̂ (log N) + N | 31 ̂  q̂  (log N)^ . (47)

The proof of Lemma 12 is completed by observing that (36) follows from 

(38) and (47) together with the obvious inequality <j)(q) >> q (log q) '.

LEMMA 13 On the GRH there is a set of numbers M c  [1,P] such that, 

for 1 A X ̂  P ,

(i) for X / M, V(x) ^ (log X)^ (48)

(ii) I |Sj(x) S2(x)|̂  dx «  . (49)
' M

Proof We work as in Lemma 10, but pick q^, â  with |x^q^x-a^| <X 

< xk By (36) and (48) q̂  «  X̂  (log X)‘® and Ix^qj-a^l < x’® x 

X (log X)  ̂. Also, by (36) we may find a^, q̂  with

|Xj q̂  x-a^l < Z  ̂ (log X),

1 ̂  q̂  < X Z'̂  (log X) , (â , q̂ ) = 1 .

Thus
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Sg Qq y q̂ l << X = (log X) = o(q ) . (50)

From (50) we can split M into «(log X)̂  subsets M(Z,Q^, Q̂ )

each of measure

«  P q"̂  X^/lO Z“  ̂.

(We here use the trivial inequality that a number less than X has 

<< X divisors.) Also

Qi Qg P »  q . (51)

We have, for x e M(Z, , Q^),

Is (x) S (x)l̂  «  Q  ̂ Z X̂  (log X)^ .' 1  2 ' 2 1

Thus

I |S^(x) S^(x)l^ dx «  P q'̂  (Q̂  Q^)'^ (log X)^
M(Z,Qj,Q2)

«  P^ X̂  + ̂ ÎO q"^ (log X)^ by (51)

«  X^/3 (log X)  ̂.

Hence

[ |s (x) s (x)|^ dx «  X^/3 
/ J M

as required.
The proof of Theorem 2 may now be completed easily
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' The following result may be demonstrated

easily using the methods of this chapter and Theorem 1 from the previous

one.

THEOREM 4 Let X,, X^,..., X be non-zero real numbers, not all of the  1 2  s --------------------- ------------
same sign with X^/Xg irrational. Suppose k^,...,k^ are positive

integers such that

z 2-kj > 1 + 2"'
j=l

where t = min k^. Let f̂ (x) ^e polynomials of degree k̂  with integer 

coefficients, the leading one being positive. Let n be an arbitrary 

real number. Then there are infinitely many ordered s-tuples of primes 

with
s

n + Z X. f(p.)
j=l ] ]

< (max pjj) - E(kl.k2) + «

where
l-2ki 2i-2k2

E(k ,k ) = min (   ’   ) for max (k ,k ) > 1
kl %2

= 1/6 if k^ =kg = 1,

and 6 > 0.

Undoubtedly better bounds for the number of variables required may be
found by adapting Vaughan’s argument in [llj . Also one can improve

l-2k * ■ ' 'the 2 ] terms for large k, or for k greater than two if f is a
monomial. Theorem 4 improves on the work of Liu because of the new

estimates for trigonometric sums over primes (Chapter 4 here) and also

because of the refinements we have made to the traditional (Davenport -

Heilbronn) method of tackling this type of problem. As an example, for

kq = kg = 3: jkg:=k^ = 1 Liu was only able to get an exponent of

(Æ Ï  - l)/5760 = 0.00062197...  Theorem 4 however, gives 1/16.
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SECTION TWO

SOME TOPICS IN MULTIPLICATIVE 

NUMBER THEORY
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CHAPTER SIX INTRODUCTION TO SECTION TWO

In this second part of the thesis we shall be considering topics 

in multiplicative number theory. Each of chapters 7-10 consists 

of a preprint of one of my papers ["5,6,7,81 . The present chapter 

contains some general results which are used repeatedly in the following 

chapters, but which are not quoted in an explicit form. There is also 

some general discussion on the background to the results and methods.

1 The bac%round. Legendre was apparently the first mathemat­

ician to formulate a conjecture concerning n(x). He proposed that

tt(x) =         . (1)
log X - 1.08...

Gauss, however, while still a youth, concluded that 7r(x) could be 

approximated by

&i X = dt
2 log t

The first general results to give weight to these conjectures were 

obtained by Tchebychev in 1851-2. He proved that

lim inf — — - —  <_ 1 <_ lim sup
£i X &i X

and
( 0.92 —  ) X < tt(x) < Cl.105 —  ) X

log X log X
for all sufficiently large x. Hadamard and de la Vallee Poussin

independently, in 1896, proved the celebrated prime number theorem in

the form

7t(x) = &i X + 0( X exp C'-cClog x)̂ ) (2)

(see, for example. Chapter 18 of M )• This shows that Legendre was 

wrong to conjecture (1), the 1.08... should be 1 . The important 

new feature of the work of Hadamard and de la Vallee Poussin was the 
demonstration that ç(l + it)  ̂0 for any value of t . The only
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improvement which has been made to (2) without any additional 

hypothesis is to increase the exponent 5 on the logarithm (see 

[17]). On the Riemann Hypothesis, that all the complex zeros of ç(s) 

lie on Re s = 5 , the error term in (2) may be improved to 

x̂  (log x). This is near to the best possible result since Littlewood

showed that

7t(x) - &i X = 0^(x^ (logloglog x)(log x) .i ................. -!•

One question which naturally arises in view of the above results 

is : how evenly are the prime numbers distributed in short intervals ? 

That is, what can be said about

P(x,y) = it(x + y) - 7t(x)

where y = o(x) ? From (2) it only follows that one can make a non­

trivial statement concerning P(x,y) if y = 0(x exp(-c(log x)̂ )). 

Hoheisel [ll] was the first to show that there exists an a less 

than 1 (he gave a = 1 - (3300)  ̂+ e) such that

a
P(x,x“) ~     as X . (3)

log X

This has subsequently been improved by Ingham, Montgomery and Huxley 

[14,18,12] . If N( a,T) denotes the number of zeros p = 3 + iy of
the Riemann zeta function in the rectangle |y| ^ T, 3 ^ cr, and

N(a,T) «  T^^^ Clog T)^ for i ^ o 4 1,

then the method of Ingham followed by subsequent authors shows that (3) 

holds for a > 1 - e . Huxley proved that 0 ^ 12/5 and so

obtained a ^ 7/12 + e . The limit of these methods, even assuming 

the strongest possible hypotheses is a = J. If one only requires (3) 

to be true for almost all x (in the sense that the measure of those 

X ̂  X for which (3) is untrue is o(X) ) then Selberg [19] has shown

that cne may take a > 1 - 20 In particular, Huxley's zero
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form N = p + ?2 , the method giving a similar approximation to 

question 2 above; Heath-Brown and Iwaniec [lo] have shown that

P(x, x°̂) »   —--
log X

for a > 11/20 . It is a common feature of sieve methods that one

does not arrive at an asymptotic equality, but an upper or lower bound 

which is a multiple or fraction of the "expected" number.

One result of recent years which has been important in proving 

several results (like [lol , [is]), is the improvement of the error 

term in the linear sieve (see Chapter 8 of [4] for the "old" form of 

the error term). This result is given by Iwaniec in [I6] , building

on earlier work by Motohashi, Hooley and Chen. This work provides the 

starting point for chapters $ and of the present thesis. We write 

|a^1 for the number of elements of A divisible by some squarefree 

integer d and we suppose that

|Ajl = ^ + r(A,d)

where X is a positive number independent of d, wCd) is multi­

plicative with 0 ^ w(p) ^ p for p ^ P, and r(A,d) is considered 

to be an error term, small on average. Before the new form of the error 

term was available, the error term in the sieve C R“ of Lemma 1 of 

chapter 8) was of the form

Z |r(A,d)| (4)
d<D
d[p(z)

where
P(z) = n p 

p<z 
p eP

Sometimes each term in (4) was r̂ ijl\iec{ with a factor «  d̂  . Since 

each term in (4) occurs in absolute value, there can be no cancellation 

of errors. Thus (4) limits the permissible size of the parameter D
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density estimates gives a = 1/6 + c . The "classical" techniques 

used by the above authors are adapted to give the result of Chapter 

Seven here.

Of course, many other questions are raised concerning the distr­

ibution of prime numbers. The two well-known classical problems are

1. (Goldbach) Is every (or "every sufficiently large") even 

number the sum of two primes ?

2. Are there infinitely many prime twins ?

Another conjecture is

3. (Hardy-Littlewood) If a polynomial might reasonably be expected 

to represent a prime infinitely often (i.e. it is irreducible with no

common divisor to its coefficients), does it in fact do so ?

Questions might also be asked about the distribution of primes in

residue classes modulo q (see Chapter 15 of [isj for example). Recent

progress in these problems have used sieve methods which we discuss 

briefly in the next section.

2 Sieve methods in prime number theory. The idea in an 

arithmetical sieve method (see [4] for a full account) is to remove 

(sift out) from a sequence of integers A , all numbers divisible by 

members less than z from a sequence of primes P . The members of A 
which remain will then only have prime divisors from P which are no 

less than z. In particular, depending on the relative sizes of z 

and the members of *A , the elements of A which remain will not be 

divisible by "many" primes from P . In recent years sieve methods 

have been used with great success on problems mentioned in section 1, 

or on approximations to those problems. For example, Iwaniec [l5] has 

shown that n^ + 1 is a P̂  infinitely often; Chen fl] has shown 

that every sufficiently large even number N can be represented in the
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although it is desirable to have D as large as possible (this is 

discussed more explicitly in chapters 8 and  ̂). Iwaniec replaced 

the sum in (4) with a multiple sum (see Lemma 1, Chapter 8) which 

allows for some cancellation of errors. The error term may be estim­

ated by Fourier series and using standard methods for bounding 

exponential sums, or by using the Perron integral formula (see Lemma 1 

below) and estimating mean values of Dirichlet polynomials. It is 

the latter procedure which will be used in chapters 8-10. Linnik's 

dispersion method can also be used (see [is] ). By these methods 

cancellation is allowed for and so the value of D may be increased 

beyond the apparent natural limit imposed by (4).

Even though the value of the parameter D may now be taken 

nearly as large as the members of A in certain circumstances (compare 

the working in Chapter 9), it is apparently not possible by a sieve 

method alone to give a non-trivial lower bound for the number of 

primes in A . To do so would require D to be taken larger than the 

members of A. All the sieve method gives is either a non-trivial lower 
bound for the number of almost primes in A , or a lower bound (which 

is negative) for the number of primes less a certain subset of almost 

primes in A . The latter result is used in chapters 8 and 9 here. The 

important feature of this method is that classical analytic methods may 
be used successfully to give a lower bound for the number of almost- 

primes vie have subtracted. The method presented in chapter t^n

is rather different, however, and here the sieve is employed to give 

an asymptotically "correct" result, while the Buchstah identity is 

used to decompose the original sifting function in such a manner 

that the only "awkward" sums that arise are non-negative and may be

discarded.
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3, Sonie fundamental results.

LEMMA 1 (The Perron Integral formula) Let

f(s) = Z a n  ̂ (a > 1)
n = 1 ^

where a^ = 0(ip(n)), ^(n) being non-decreasing, and

(a -1)^ Z la I n  ̂ = 0(1) as a -> 1.
n = 1 K

Then, i^ c > 0, c + a>l, x is a positive number > 1, and N  ̂is

the integer nearest to x, we have
c + iT

 ̂ = ~ à r  I f(s + w) dw +
" " c _ IT '

+ 0(- x^ T~^ (c + a - 1) “ + Ip(2x) (log x) T  ̂ •+ M)

where T _ r r  _n
M = ip(N) x T |x - Nj )

it being understood that^x"^ is taken in the minimum if x = N.

Proof This is Lemma 3.12 of [2o] essentially. In Chapters 7-10 it 

will be refered to as Lemma 3.12 of Titchmarsli's book.

LEMMA 2 (The fourth power moment of ç(s)) We have, for T ^2,

rT
I C(i + it) 1̂  dt = (i) T log^T t 0(T loĝ T)

1

Proof This result was first shown by Ingham [l3] . In fact, much more 

is known ( see {̂ 9] ).

LEMMA 3 (The mean value theorem for Dirichlet polynomials) For any
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real T and T we have   o    ------

T +T N _
1 Z a n  ̂ 1 dt

T n = 1 " o

where -1 < 0 < 1.

Proof. This is theorem 6.1 of [is] .

LEMMA 4 (Van der Corput's bounds for trigonometric sums) Let f(x) 

be real and have continuous derivatives up to the kth order, where 

k^2. Le;L %% ^f^^)(x) ^hX^ (or 4 -f^^\x) 4 hX^). Let

b - a ^ l ,  R = 2k-1 Then

Z e(f(n)) «  h^/^b - a) x4^2R-2)  ̂ _ ^^1-2/R -l/(2R-2)
a 4 n 4  b

Proof This is a combination of Theorems 5.9, 5.11 and 5.13 of [2Ĉ.

4. Some additional results required for Chapter 9. In the 

preprint that forms Chapter 9 the main theorem involves a parameter 

h, and a proof is given only for the case h = 0. For h / 0 the 

proof follows a similar pattern, but we need to express the function 

X(s) which occurs in terms of the Hurwitz zeta function. It is easily 

seen that the only properties of the Riemann zeta function used in 

Chapter 9 in connexion with X(s) are : 1) Its appearance in the Perron 

integral formula; 2) The second and fourth power moments. The n̂  

occuring in Lemma 1 may be replaced by (n+h)^ with the only alteration 

necessary being the term involving the nearest integer to x, where 

I X - N - h I replaces | x - N 1 - The second and fourth power momemts 

of the Hurwitz zeta function may be estimated using its approximate 

functional equation ( see [2] ) and modifying the proof of the mean 

value theorem for Dirichlet polynomials. It should be noted that the 

behaviour of the Hurwitz zeta function deviates in many important 

aspects from that of the Riemann zeta function, but these do not enter
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into the working as it affects X(s).

5. Thê  futurê  ? None of the results in Chapters 7- 1 0  are in 

what is believed to be their final form. The theorem of Chapter 7 is 

quite near to the "expected" result, however. There is some discussion 

in the other chapters on what details might be improved to get slightly 

better results. One frustrating respect of multiplicative number 

theory is that even on the strongest hypotheses, present methods are 

limited in many problems to giving results far worse than those believed 

to be best possible. For example, Cramer conjectured (as noted in 

Chapters 7 and 8) that every interval of the form

[n, n + f(n) (log n)^ )

contains a prime, for some f(n) ->-1 as n . Even on the Riemann

hypothesis the interval length may not be reduced below f(n) (log n) n̂  

Similarly, in Chapter 9, the exponent -q is the limit, even on the 

Riemann Hypothesis. It would be very desirable to have a new method, 

or a new plausible conjecture, that would push back these limits. To 

be plausible, of course, it must not lead to any results "which contra­

dict Littlewood*s result mentioned in section 1.



109.

References to Chapter Six.

1. Chen, Jing-run, "On the representation of a large even integer 

as the sum of a prime and the product of at most two primes", 

Sci. Sinica 16 (1973), 157-176.

2. Cudakov, N., "On Goldbach-Vinogradov’s theorem", Ann. Math.,

48 (1947), 515-545.

3. Davenport, H., "Multiplicative Number Theory, second edition,

Springer-Verlag, New York 1980 .

4. Halberstam, H. & Richert , H.-E., Sieve Methods, Academic Press 

London, 1974.

5. Harman, G., "Almost-primes in short intervals", Math. Ann.

258, 107-112 (1981).
6.  , "Primes in short intervals", HatL. Ze'.to

7.  , "The distribution of modulo one", -to

■3 "-.OH the distribution of ^p modulo one "j
H a t L  S o c . j ,  to

9. Heath-Brown, D.R., '̂The fourth power moment of the Riemann zeta 

function", Proc. London Math. Soc. ,,C3) 38 (1979) 385-422.

10.   & Iwaniec, I., "On the difference between

consecutive primes". Invent. Math. 55 (1979) 49-69.

11. Hoheisel, G. "Primzahlprôbleme in der Analysis", Sitz Preuss.

Akad. Wiss., 33 (1930), 3-11.

12. Huxley, M.N., "On the difference between consecutive primes".

Invent. Math., 15, 164-170 (1972).

13. Ingham, A.E., "Mean value theorems in the theory of the Riemann



110.

zeta-function"5 Proc. London Math. Soc. (2) 27 (1926) 273-300.

14. ------- , "On the difference between consecutive primes".

Quart. J. Math. Oxford, 8 (1937), 255-266.

15. Iwaniec, H., "Almost-primes represented by quadratic polynomials" 

Invent. Math. 47 (19 78), 171-188.

16. ----------, "A new form of the error term in the linear sieve"

Acta Arithmetica 37 (19 80) 307 320.

17. Korobov , "Estimates for trigonometric sums and their applications" 

(Russian), Uspehi Mat. Nauk 13 (1958), 82, 185-192.

18. Montgomery, H.L., Topics in multiplicative number theory, Berlin

Springer 19 71.

19. Selberg, A. "On the normal density of primes in short intervals 

and the difference between consecutive primes". Arch. Math. 

Naturvid. 47 (1943) 87-105.

20. Titchmarsh, E.C., Theory of the Riemann zeta-function. Oxford 1951.



1 1 1 .

CHAPTER SEVEN

ALMOST - PRIMES IN SHORT INTERVALS

1. Introduction.

Assuming the RiemanoHypothesis, Selberg [8] has shown that, for
2almost all n, the interval [n, n + f(n) log n ] contains a prime,

providing f(n) “ with n. Here "almost all n" indicates that the

number of exceptional n is o(n). It is convenient to extend this

definition to a real variable y so that "almost all y" signifies that

the measure of the exceptional set is o(y). Cramer conjectured [1] that

every interval of the above form contains a prime where f(n) -^1 as

n -> oo. The best unconditional results to date are due to the present

author [2] and Heath-Brown and Iwaniec [5] who show that'almost all intervals

of the form [n, n + n*®] and every interval of the form [n, n +

contain a prime, respectively. If we only ask for an interval to contain

a Pg, i.e. a number with two prime factors, a much stronger unconditional

result is possible. -Using a sieve method Heath-Brown [3] proved that

almost all intervals of the form [n, n + contain a P̂ , Y. Motohashi [7],

by a simple analytic method reduced the required interval length to n̂ ,
Cand Wolke [11] improved this to (log n ) where C is a sufficiently large 

constant (he quotes 5.10̂ ). It seems interesting that the value of C may 

be reduced to single figures by modifying Wolke's method. Here we prove:

THEOREM Let 6 > 0 be given. Then almost all intervals of the form

[ n, n + (log n) ] (1)

contain a P̂  number.
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I should like to express my gratitude to R.C. Baker for suggesting 

this problem to me and furnishing me with a simple proof of Lemma 3 below, 

I would also thank the referee for his helpful suggestions, which have 

made the paper easier to read.

2. Notation and preliminary lemmas.

Constants implied by the o, 0 and << conventions will depend at 

most on 6. We suppose x to be a sufficiently large positive number 

and y to satisfy x 4 y 4 2x. We write p = 3 + iy for a zero of the 

Riemano zeta-function and

N(a, T) = Z 1
6ic,|ï|<T

We put

L = log X , L« = log log X ,

U = [3xL 7 G] + 1/4 , -sP(s) = Z A(n)n , 
U<n<2U

$(y) = E A(n) A(n') ,
y<nn'<y(l+U
U<n<2U

e(s) = I  ( d  + -1) ,

M(s) = mind, u|s| ^ ) , X = 3/14 - 6/100 ,

J(s) = M(s)^ |P(s)x^ 1̂  , H(y,n) = ||y/n || ||y(l+U '̂ )/n-1 ,-l\ , H~1

Here || || denotes distance to the nearest integer. For s = a + it,

-1 < a < 2 we noté that

e(s) «  M(s) U-1

and we also observe that P(l) = tn2 + o(l) .

LEMMA 1 We have
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N(a,V) << ° ̂ (log when a 4 1-X

where t = t(6) < 2;

N(o,V) =0 for a 4 1  - (logV)” '̂̂  ̂ (-3)

providing V 4 L and x is sufficiently large ;

N(a, V + 1) - N(a, V) «  log V for V 4 2. (4)

Proof The result (2) may be deduced from Theorem 1 of [4] when 

a 4 49/50. For a > 49/50 we may use Theorem 12.3 of [6] together with 

Theorem 5.14 of [9] (with &=6). A stronger result than (3) is given 

on page 226 of [10]. Theorem 9.2 of [9] gives the well known result (4).

LEMMA 2 For almost all y

U<n<2U
mîn(H(y, n), n) «

Proof We note that, for U < n < 2 U ,

2x n
.^1 min( II y/n || ,̂ n) dy «  | min(i , n) dt

X 0

The result (5) clearly follows for almost all y.

LEMMA 3 Let points X̂. (j=l,,..,N) be given in [0,1). Then there is

a set S c [0,1) of measure 4 1/2 such that

max E 11 - X. I «  N log N
t e S j=l ^

I I - 1  2Proof Let Q be the subset of [0,1) for which |t - X̂  | 4 N (j=l,..N)
-1Then Q has measure > 1-2N and



\ \ 4.

N :
E 11 - X . I dt < 2N ^  - 4 N log N .

Q

The result of this lemma easily follows . 

LEMMA 4 Suppose |p| << T. Then

P(P) = P^(P) + Pgfp)

where

P^(P) «  G(1 +|y[) 1 + U G

and

PjCp ) «  z u^’-'
p' i+|y '-y 

|y-Y' liU

Proof This follows from Lemma 2 of [11], modified by changing U 

there to U.

LEMMA 5 We have

Z A(n)A(n') «  X  .
x4 nn*42x
U< n< 2U 

n,n' not both primes

Proof The sum on the left above is

«  Z + E X
2<k<2L 2<k<15L

c/2

«  ^ as required.

3. Proof of Theorem

We write E for the interval [1 - X, 1-X.+ L̂  ]. For any value of 

t with |t| 4 T we let I denote the vertical line joining a + ti
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X = (3-(l-X))L if 3eE, X =0 if 3 < 1 - X , X =1 ifP 2 p =  * p
34 1 - X + . By (4) there are << L such points X^. We

conclude, using Lemma 3, that there is a subset Ê  of E, of measure

IIS'

-14 L̂  /2, such that

E |s - p I  ̂4 L2 E I X - (a - (1 -X)) L̂  I  ̂ «  L L̂
|s-p|4 1

for s E , a E Ê  .

Since E^ has measure 4 L2̂ /2 , there exists o E Ê  such that

I J(s) I ds I 4 2L2 I j J(s) |ds|do «  L2 j I J(s)|ds|da
I E A E lo 0 0  o

Similarly, for a given value t, we may pick w with t - J 4 w 4 t + J
-1and, if Z is the horizontal line from 1 - X + iw to 1 - X + L. + iw ,w z \

(w+g)i+a
I J(s) I ds| «  j j J(s) I ds I d a ,
^w E (w-g)i+cj

and (6) holds for s e £ . We can thus make up a contour C , from parts ofw
such lines from - iT to 02 + i T where a ̂ e È (j =1,2) so that

T
I J(s) |ds| «  2̂ I I '^d+ it)dtda .

E -T

Also, by (6) and Theorem 9.6 (A) of [9] ,

r * 2Y (s) «  L L2 for SEC.

Henceforth we assume ||y/n || > 0, ||y(l + U ^)/n || > 0, for

U < n < 2U. Put c = l + L  ̂. Then, by Lemma 3.12 of [9] we have

c+iT
* ( y )  =  I  f  -  l'(s) f l s l j L  d s  (7)V<n<2U '

+ 0 ( Z A(n) (xL̂ /(Tri) + niin(x LH(y,n)/(nT),n))).
U<n<2U
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Hence, by changing the path of integration in (7) and using Lemma 2, 

for almost all y we have

*(y) = ^ P(l) - Z' P(p) 6(p) yP - 2^  [ I (s)e(s)P(s)y® ds 
n J ^

= yu 1 P(l) - Sy - Iy/2x + 0(xU 1L 1) say. (.3)

In the above we have written E ' to indicate summation over zeros

with |y | 4 T to the right of the contour C.

We now consider
3x/2 2h

I = - r j  j llyl^dydh.
^ x/2 h

Clearly if

I «  ( x / U )2 l"** 0 )

then ■ Iy << (x/U) for almost all y.

3y integrating first with respect to y then h we find that

I « f  |dsl |p(s) M(s)x® I I  |d"l |P(«)M(w)x”j 
1  1(1+ Ilm(s)-lm(w)|)

j J(s)l«  - - - T r -  I J(s)lds

,5 2 (r+l)UL_ L «»« 2 — |P(a + it)|^ dt do
l + r JL J ..^=------  E rU

x^ -2X
«  ------  (—) by Theorem 6.1 of [6] .
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«  max U x  ̂ N(B, 2T) (n)

9l'92'G3

where 3 = max(3^,32»Pg)• Here we have split the triple sum over zeros 

into three sums corresponding to 3 = 3̂ summed over

^1*^2 Pg last, respectively. The expression in (12) is an increasing 
function of 3j if 3̂  < 3* Thus the expression in (12) is

«  (^)^ max x̂ f  ̂N(3, 2 T)
3

«  L-1

using (2), and (3). Combining (10), (11), (13) gives

Sy «  (x/U) L‘^

for almost all y as required to finish the proof.
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This establishes (9) since 2X(7 + 6) > 3. It remains to prove that 

-1 -1is 0(xU ) for almost all y, because (8) then implies that

*(y) 4 y P (D/2U for almost all y. It follows that $(n) 4 n P(1)/2U - LL^ 

for almost all n e [x, 2x ]. By Lemma 5 the contribution to $(n) from 

integers which are not P̂  s is of a smaller order for almost all n, 

which completes the proof.

We write

s = + 5(3) .y y y y
Here

y  = ' 1' "  •<»> ■< :  ' ï ï>
lYll L |y |<,I.

(1) _ , .p „ ,X.

«  (x/UOLg^ (lO)
(2)using (2) and (3). We have written for the sum involving P^(p)

with |y |>L̂  and for the sum involving P^Cp). We have

“  ‘ I , , ; . »  " 1" " '

from (2) and (3) .

Also

^ Ix y Y < T

e„ + 6 - 26 26 -2
«  I I I  ---------- -------- ---

"l "2 "3
lYj t<T

- (1 +1?!- YgtKl + |Yi -Y3I) "
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CHAPTER EIGHT 

PRIMES IN SHORT INTERVALS

1. Introduction

It was conjectured by Cramer [1] that every interval of the form

[n, n + f(n) log^n] contains a prime for some f(n) 1 as n

Assuming the Riemann Hypothesis, Selberg [12] has shown that almost all

intervals of the above form contain a prime providing f(n) -> “ with n,
"Almost all" in this context indicates that the number of n 4 X for

which the statement is false is o(X). Selberg’s proof essentially gave

a relationship between the density of zeros of ç(s) and the length of

the interval. This was used by Montgomery (Chapter 14 of [11]) to show
that, for almost all n, [n,n^5^&] contains a prime. The exponent

I/5 may be improved to T/5 using the zero density estimate of Huxley [6]

which he obtained to show that p , - p << p  ̂̂  where p is^n + 1 ^n -̂n ^n
the nth prime. This result on the difference between consecutive 

primes has been improved by Iwaniec and Jutila [8j to p̂ ^̂   ̂ , and by
11/20 + EHeath-Brown and Iwaniec [5] to p^ . These last two results

were obtained by a sieve method. We shall use similar arguments to 

prove the following result:

THEOREM For almost all n , the interval

[n. n + + =) Cl)

contains a prime number.

i-t is .the hypothesis of Lemma 5 below which sets (1/10) + e as 
the limit of the present method. ..We shall in fact
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show that for almost all n the interval (l) contains >> ^^^^^Xlog n)  ̂

primes. This exhibits a common feature of sieve results: we obtain a 

lower bound which is a fraction of the "expected" number of primes under 

consideration.

2. Outline of Method

In sections 2-4 we use the following standard notation:

p(z) n P , v(z) = n (1 - 1/ ) .
p < Z p < Z

and note the well known asymptotic formula:

V(z) = --  + 0 ( ( log z )  ̂) , ( 2 )log z

where qr is Euler's constant. For a finite set of integers A write

A^ = {n e A ; d|n }

S(A,z) = |{n e A, (n, P(z)) = 1 } | ,

We shall consider the set

A = {n; x - y  < n 4 x } .

Here x is a real number satisfying X < x ^ 2X , where X will be 
assumed "large", and y = xX (̂ /lO) + ^^2, The fundamental Buchstab 

identity states that

S(A,Zĵ ) = SCAaZg) - £  S(Ap,p)

P<%2

Using this we find that, for < ẑ  < x̂ , we have
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7t(x ) - 7t(x - y) = S(A, x2)

= S(A, ẑ ) -  ̂ S(Ap, p)

= S(A, z^) - J 3(A^, ZgCp)) - I S(Ap, Zy(p))
1

Z2^P<^

■'■ I 5(Ap^, q) + I S(Apq. q)

Z3(p)<q<P<x^ Zĵ (p)̂  q < p < Zj
P t =2 P>^.

= h  ■ S  ' 3̂ + 4̂ ■" 5̂

In the above it is also necessary to have Zg(p) ^ p for p ) Zg,

ẑ (p) ^ P for z^^ p < Zg . Since we will only give a lower bound

for Tr(x) - Tr(x-y) we shall consider with x̂  replaced
1 1 1  with (2X)2, and Ê  with x̂  replaced by X̂ . Then

tt(x) - tt(x - y) 4 Eĵ - Ê  ~ Eg + Ê  + Ê . (3)

We shall give a lower bound for Ê  and an upper bound for Ê  and

Eg by means of the linear sieve (Lemma 1). It should be noted 

that one can make use of certain subsums over almost-primes which 

arise in the sieve results in [?] to improve the lower bound for 

the left hand side of (3). The inclusion of these sums has significance 

in other problems , but is unnecessary here. We deal with the 

remainder terms in Lemma 1 by bounding the integral of their square 

over fx, 2xJ , using Dirichlet polynomials (see Lemmas 2-6). The 

motivating principle here is to be able to choose the D which occurs 

in Lemma 1 as large as possible. To this end we shall pick z^, z^,

Zg(p), ẑ (p) so that the hypotheses for our estimates of mean values

of Dirichlet polynomials match the form of the remainder term given
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Iwaniec. Eventually we obtain a lower bound of the form C'y/logX 

for - 2̂ ~ 3̂ ’ valid for all x except on a set of measure
o(X). Here C  is negative, but quite small. On the other hand, 

we are able to give an asymptotic formula for a subsum of , with

an error which is also considered by its integral over [x, 2xJ ,

I , . . The remainder of the

sum, together with the whole of Ê  , being non-negative, is discarded,

’ 'A . k ' - :]■. k Ailik ■

L- 5 'ic ' " : :: t: - h:

Tk lec-.Js 'to ! a lower bound of C" y/logX , where

C" + C  >0.

In proving the theorem we may, of course, assume that the e 

in (l) is "sufficiently small". We use <j) for a positive function 

of E, and henceforth reserve the letter C for an absolute constant,
g

We write X for (Log X) where B is bounded by a function of e . 

The entities <j), C, X need not be the same at each occurrence. We 

may thus write, for example,

(X̂ )̂  >> X̂  J or X̂  << X .

The constants implied by Vinogradov's << notation depend here, and 

elsewhere in this paper, on at most e . We write

T =  % 9 ( 1  - E)/10^ Y = = X ^ G f l  - 3e)/105^

Z g  =  =  ( X ^  ■  3 C / p ) l / 3 ,  z ^ ( p )  =  ( x ( 2 6 / 3 5 )  -  2 e / p ) i .

The reason for this particular choice of ẑ , z^, Zg, z^ will become

apparent in section 5 when the remainder term of the sieve is

estimated.
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LEMMA 1. Let z 4 2, D 4 and e > 0. Then

S(A,z) 4 WV(z) {F(s) + E } + R+ (5)

S(A,z) 4 WV(z) { f(s) - E } - r" (6)

where s = (log D/(log z) and E = Cc+ O((log D) The remainder

terms R“ are of the form

R* = Z R7 , = I Z 4  (v,e) Z' r(A,vp,....p^) (7)
(D) ("> (D)v<D^

1=^1= 1

where (D) runs over all subsequences 4 .... 4 D̂ , including the

empty subsequence, of the sequence

. n > 0 ,

for which

D1D2 .... P2k + 1= ^ (0 < k < (r - l)/2)

+in the case of R , and

•••• ’̂ Zk-l °2k = °  (0 ^ k  < r/2)

in the case of R . Moreover, E* indicates that v and p̂ ,

(1 4 i 4 r), are restricted by the conditions

v|p(D^^), Pi|P(z) .

Finally, the coefficients (v,e) depend at most on (D), v, e

and the + signs and satisfy

|C(D) (v.e)| < 1 .
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3. The fundamental sieve result

We use the linear sieve result of Iwaniec [7] in the form stated 

in [5]. When we come to apply Lemma 1, the A occurring

in its statement will not always be that specified in section 2. For 

the properties of .the standard functions f(s) and F(s) see [2] 

(Chapter 8). We write

r(A,d) = |a |̂ - W/d

for the remainder term, where W is independent of d .
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4, Some preliminary resul'ts

In this section we give the relation between the remainder 

terms and integrals of Dirichlet polynomials, and various estimates 

for such integrals. For any upper case latin letter B other 

than Q, P, and H we write

B(s) = Z a b"^
B<b^2B ^

kwhere a is real and Z a «  B X, for any integer k < C, (c) " B<b<2B “ 6 = 1

For the letters L,K we stipulate other conditions. For both K

and L = 1 for some set of consecutive integers and

otherwise. For L the condition L < Jt 4 2L is to be replaced by

Cgfe) < t/L < CgCe).

For 1 ̂  H ̂  we define H“(s) by

H- (s) = Z cf^N(v,e) v”^
H<v<2H

1+eFor numbers (j = l,...r) with ly ^ P\;̂  we write

P.(s) = Z pT̂
 ̂ P.<p.<2P. ^r  ] ]

where  ̂= 1 for some set of consecutive integers n , and is 

zero otherwise.

We write (H, P^,...,P^) for that subsum of corresponding

•to P. < p. < 2P. . To consider RÎ^n for Z_ we put D “ 1 D (b) 2

P(s) = Z n  ̂A(n)/(log P)
P<n<2P 1 
n <C2X)̂
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for any number P with P< (2X)̂ . We replace A by in (5)

and write ^ ) for the sum of the remainder terms

weighted with the factor A(n)/(log P) for

P n C min (2P, (2X)̂ ). We use the same notation for the remainder 

terms from , replacing (2X)3 by ẑ  and ẑ  by ẑ .

Also we write

H(s) = min /—^ —  ? 1 j )
Ihl^i y

c = 1 + aog .

LEMMA 2 For any continuous function g(s) , and 0 < < T < X,

we have
^ ' f7>C fC+iT 2

g(s) ds
c+1Tq

d x

«  X^(logX)
c+iT

c+iTo
| g ( s ) | ^  Ids I .

Proof This is easily established by squaring out the inner 

integral on the left, integrating with respect to X first and 

making use of the inequality:

jg(ctit^) gCc + it̂ )! < |g(c + it^)|^ + IgCctitg))^.

LEMMA 3 Suppose Y X  ̂ ^ A  <, X^  ̂ , then

Z a ( C ^ ] - [ ^ ] ) = y Z  ^  + 0(yX"̂ ) + I
A<n<2A ^ " A<n<2A .

where

c-iT 'C+iT - (x-v) =, rC+1
I = ^  ( + ) L(s) A(s) " ds

2''- Jc-iT Jc+iT^

1Here L = X/A, T^ = L^, C^ie) - -3, C^Ce) = 3 .
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Proof This is demonstrated in all essentials in [5], pp. 53-54.

COROLLARY (1) Write L = X(H P, ...P ) Let A be as in section ----  1 r    — --- —
2 and let W = y. Then we have \-cr D

1-I |R(D) (H. Pp)I dx

«  X f H(s) 1h'(s)L(s)P.(s)....P (s)l̂ |ds| + Y^X (8)
JctiTo

For T = L̂  . o

COROLLARY (2) Write L = X(H P P̂ . ..P̂ ) Replace A ^  A^,

ppt D = X^ “ 3 /̂P, z = Zg(2P) for , z = z^(2P) for and let

W = y/n. Then we have

^  |R(D) (P. H, P^,...pp|^ dx

, .-o+iT 
«  Y X

/•C+lT + g 0 - é
H(s)IhCs)LCs)PCs )P̂ (s)...P̂ (s)1 |ds| + Y X  . (9)

J /-.4.-Î TC+iTo

The above corollaries follow by combining Lemmas 2 and 3 and using 

the definition of the remainder terms.

We write T̂  = X^^^^ Çand note that the presence of the H(s) factors 

in (8) and (9) indicate that it suffices to consider integrals from 

c + iTg to c + iTg where Tg - Tg :< T̂  and T̂  ^ T̂ . We write I

for such a line of integration.

We note that the classical mean value theorem for Dirichlet Polynomials 

(Theorem 6.1 of [11]) gives, for a positive integer h,

[ |M(s)|^h Ids I «  X (1 + T/M̂ ) (10)

This result shall be used repeatedly in the following. The next

lemma gives a bound for integrals of the above type when h is not

an integer, and lemma 5 continues in a similar vein.
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max |k(s)| < X , (13)
sel

This, together with (11) for h = 3 gives the following

COROLLARY If K > T^^^ X^^^^ then

I |K(s)|̂  |ds| «  X

LEMMA 5 Suppose KMN ̂  X^^^ K ^ X'̂  , N »  X̂

and max(KM,MN) x̂ '. Then

I |k(s) M(s) N(s)| |ds| «  X ^ .

Proof We assume KM ^ M N , the other case follows similarly. We

write J(a) for the largest even integer 4 a, and define 3 to 
be the smallest number not less than 8 for which

jjB+J(B) ^ _ (14)

W a  put T = 2B (B-2) then, by Holder's inequality

I |k(s) M(s)N(s) Ids I <fj |N(s)|®lds|j^/®^|^|K(s) (15)

From (14) and (11) with h = J(3)/2, together with |n(s)| «  X, 
it follows that

f |N(s)|® |ds| «  X . (16)
a

We now apply lemma to K(s) M(s) with t in place of 3 and

h = 1. Using (13) and |M(s )| «  X we obtain the inequality

I |K(s)M(s)|^ jdsj «  X~^ , (17)
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LEMMA 4 Let h be an integer _> 1 and 6 a real number with 
6h > 3 > 2h. Then

/ (B-2h)/(6h-6) T \\
j j M ( s ) n d s |  ( l + ^ ) )

where y is any number ^ max Im(s)1̂ ^
” sel

Proof Put Q(s) = M(s)^ , Q = M^ . Let s^ be any points in I 

with |sj - ^  1 for j k , and V < |Q(Sy)| ,< 2 V (r = l,...R).

By the form of the Halâsz lemma due to Huxley [6] we have

R «  X(V"^ + T̂  q"̂  V"G) .

(11)

Thus
^ y2t(3-2h)/h ^(y(3-2h)/h  ̂^ q-2 y-4 + (3-2h)/h)

1

«  X y

, , rt/(6h-6)

' ■

If (12) holds it follows that the integral over that part of I for 

which |Q(s )|>V is «  X y. For the remainder of the integral it 

follows from (10) that we get the bound 

(3-2h)/(6h-3)

Which completes the proof of (11). It should be noted that this 

result is considerably weaker than what might be expected (cf. Conjecture 

9.2 of [11]). _

By Van'der.Corput*s.bounds.for exponential.sums (see' Chapter 5
of [13] for example), for X ̂  K ̂  , we have
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after shifting the integral to the i ~ o line and using

|ç(<y + it)| «  t^^^ for o ^ 2. We write J(s) for the integral

in (20).

We have

[ |m(s)|̂  (K"l + (1 + |s|)'̂  + T'5/6)2 ]ds| «  x“*̂ 
■'I

by an easy calculation using (10). Also, using the fourth power 

moment of ç(s) (see Chapter 7 of [13], for example) we have

[ |j(s)M(s)|2 |ds| «  X «  x‘^ .
■'I ' k '̂ '

This completes the proof of (19).

S. Estimation of Ẑ , Zg

(I) The main terms. We first note the forms which the functions f(u) 

and F(u) take for the present choice of parameters. We have, for

H.) = - 1) . C  ■>«) •

In the case of Z^ u = 105/26 , so

f(u) > 2  ̂/79 )
105/26 ® ( 26/

Also, for 3 ^ u ̂  5,

1
In the case of Z^ n < 3, and here F(u) = 2 e^/u. For Zg u 

varies, but it is never more than 52/17. Thus in this case we have

2 / r^5/17 \
F(u) ^ — ---  /l + J log(t-l) dt )
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(3 1

Now, for 8 = 8, (18) follows from the hypothesis KM^ X̂ .

Otherwise we use the definition of 3 to obtain

where

6(8) = 4(|4i)(^ - g ^ )  for 8 < 8 < 10

= |- (6 - ^ )  for 8 > 10 .

It may easily be verified that 6(3) ̂ 4 for all 3 > 8. ' It 

follows that (18) holds, and so the result of the lemma follows 
from (15), (16), (17).

We require one more lemma on mean values of Dirichlet polynomials.

"I/op 1 —p p /ioLEMMA 6 For K > T ' X : KiM > X , T »  X , we have '■ ■ ' o ------

I  |m(s)K(s)|̂  |ds| «  X ^  . (19)

Proof By the well known Perron formula (Lemma 3.12 of [13]), we

have " c+iT-a
K O ) = ^ J

c-iT-a

, o(K-‘ , i5fi)

j-iT-c

+ 0(K-1 + f-S/6 + (|s| + 1 )-1 ) ,
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2 e? r35/17 \
^   J 1 - 2/t dt 1 = 2 e^u  ̂(1 + (1/17 - 2 log(35/34))s; u . .-2

In the following we write = ±Ce + 0((logX) keeping to

our convention that the C s need not be the same at each occurrence, 

By (6) the main term from is thus

^  T o / 'X (79/26) (i + E ).

To estimate the main terms for Ẑ  and Ẑ  we use the following 

trivial inequality in order to simplify the estimation of the 

remainder terms :

I S(Ap, z.(p)) I A(n) S(A^, z.(P)) (j = 3,4).
P,<pC2P P^n<2P

Thus the main term from Ẑ  using (2), (5) and the formula for F(u) is

< Y 2 yA(n) (1 + E^)
(log n) n (log(X/n))

Z2<nf(2X)5

rl/ 2
9/35  ̂ t) + ^ ^ ^ ^ X

^ 2 log(26/9) (1 + E*).

Similarly, the main term from Ẑ  is

log X (1 + (1/17 - 2 log(35/34)) (1 + E+)

Hence the main term from Z^ - Zg - Zg is
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I M

^ log X 26 j 1̂/17 - 2 log(35/34)) (l + )

> - 10  ̂y/(iog X),

assuming e is sufficiently small and X sufficiently large.

II The remainder terms. We wish to show that 
2X

R(D) ■
X

After a division of into «  X subsums (note that the

number of sequences (D) is «1), this reduces to obtaining the

same estimate for
2X 2X

X j ÿ" j l̂ (p) I

We now appeal to Lemma 3 , Corollaries (1) and (2), to reduce 

our task to obtaining the upper bound X  ̂ for the integrals which 

occur on the right in (8) and (9).

We first consider If (D) is the empty sequence or has

only 1 or 2 members then Lemma 6 may be applied since

P^Pg  ̂ < X̂ . This lemma gives the desired result
whenever H P̂  ... P̂  < ^11/20^ so we henceforth suppose this condition

is violated. If r 4 then P^ ^ X, so Lemma 5 may be applied << 1

times with K(s) as a subsum of L(s), M(s) as a subsum of

H (s) Pĵ (s) .... P̂ _^(s ) and N(s) as P̂ (s). For a sequence

consisting of three members Lemma 5 may be applied if P_ < X^^^^
2

or H > X̂  . Otherwise we note that P , P , P are all greater
2

than T^/^, while L > X^ > T^^^ (z^ was chosen so that

this last condition would hold). An appeal to Holder’s inequality.
Lemma 4 Corollary and (10) completes the proof in this case.



For Zg the empty subsequence may be dealt with simply by
1

appealing to Lemma 6 since P <̂ X̂ . If a sequence has one member then 

at least one of PD^ < < X^^^^ holds for-otherwise we
3would have PD̂  > X , which is impossible. For a sequence with r 

members where r >/ 3 we note that < X so Lemma 5 is applicable.

The remaining case of r = 2 is a little more troublesome. We may

assume

Pg > xG/35  ̂ x/(P P^ P^) <

for otherwise the proof may be completed as for with r = 3. We note

that we must have P < since Pg > In this final case

we must split P(s) by Vaughan’s identity (see |14] ) into «  X double

sums of the form
F a Z b (mn)  ̂, (23)

M<m^2M P. <mn<Q

where either:

-e®1) P. X i M i X̂  ,
or

2
2) M < X and b̂  = 1 or = logn .

In both cases

I â  «  X M , Z b^ «  XN 
M<m<2M N<n<N ^

and â  , b^ << X̂  for any p > 0.

We now write

' « 4 2 »  = P <n<24”"
4M M

Then the sum (23) may be expressed in the form
iT w w

2 ^  I ~w'^'~ ̂  Q̂ fs+w) Qg(s+w) dw + (X^ T  ̂) ̂ (25)
-iT

using the Perron formula and assuming, without loss of generality,

that II P II =  II Q II =  J.
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6, Estimating Pg s in the interval

We write

^(a) = E A(n) . 
n < a

The following lemma gives the asymptotic formula for estimating subsums 

of Eĵ. The author first proved the result of this paper using the 

method of [3] in order to establish a lemma of the following type.

Lemma 7 here is stronger and the proof is simpler^though for very short 

interval lengths the zero density method of [3] appears to be stronger.

LEMMA 7 Suppose " ̂ > PR ̂  Write

S = E E A(n)A(r)
P < n < 2P R < r < 2R

x-ynr

Then we have

fA(n)A(r)S = E E ,
P < n < 2P R < r < 2Rl

y + E, + E, (28)

where

2X
i f |E.|i dx «  yi (log x)‘ °̂ (j = 1,2).

^ x  ®

Proof. Our starting point will be the familiar formula, which follows 

from lemma 3.12 of Cl3]:
c - a + iT I

(s + w) Â (<R̂  - l)dw + 0 
 ̂ w

c - a -iT

E A(n) n 
A < n <.qA

-s 1
2Tri

A^ ^(log A)^ log A 
" A*

(29)
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Now, if we denote by Qg(s) a double sum of the form (23), 
we have, by (25)

j  |h+(s) P^(s)Q3(s) P^(s) L(s) |®|ds| (26)
I
T

«  1
-T

1
 ̂ j  Y y j t l  I  |hCs) L(s) Qj^(srit)Qg(s+it)P^(s) P̂ (s) 1̂  |ds|

+ 0 (X ).

It is easily demonstrated, using (13), that, for any value of

t, the portion of the inner integral on the right of (26) corresponding

to |s + ti| 4 is «  X . It thus suffices to prove that

I |h|*s) (s+it) Qg(s+it) P^(s) P^(s) | |ds| «  X ^ (27)
sel, [s+it|>T2

for any t with |t| 4 T. If Qg(s) is a type 1) sum then
2 T

X^ ^ min(M, P /M) 4 P? 4 

In this case Lemma 5 may be applied. For a sum of type 2) we note

2
that P/M ^ X  ̂ 2^/10^ The proof may then be

completed as in other cases by Holder’s inequality and Lemma 4 Corollary

(with slight modifications to allow for K(s) having the different form

Qg(s + it)). The motivation in the choice for Zg is now clear, 
te

We shall^brief in our discussion of Z . The only sequence to
 ̂ 2

give any trouble is, as with £[ , r = 2, H < X^ , P > In this
2 2 

case, however, X/(PP^Pg) > X^ " / (p (g^(p))2) ^ "

> T^^^ %E/10^ The proof may then be completed as for and Eg.

The reason for the choice of ẑ (p) is now (±>vious.
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Now we suppose A >> , then, using the zero free region of ç(s)

(see Corollary 11.4 of [11], for example) we may shift the integral in
(29) to

_3
Re w = 1 - (log A)  ̂- a

and only encounter the pole at s + w = 1, while on the new line of
integration

(s) << (log A)^ .

The "horizontal" parts of the contour are

«  A^  ̂(log A)^ T  ̂.

We thus find that

+ 0(A^  ̂exp(-(log A)^) (log A)̂ ).

We write

P(s) = Z A(n)n  ̂
P < n < 2P

and define R(s) similarly. We also put Q  = ^ V  ) /(4

Q(s) = Z n  ̂A(n)
Q  < n 4  c|Q
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Then

C + iT
S = ^  I P(s) Q(s) R(s) — ds + 0(YX *) + Ofe)

c-iT

l/cfrom another application of Perron’s formula. We write B = exp((log P) ) 

and tiaen ’ '

c + iB
j P(s) Q(s) R(s) ^  r y)— 3JL. ds 
c-iB

c + iB _
1 f _ 1) - - sI   p — g— " P(s)R(s) ^ - ^^ds + 0(Y(logX)2iri

c-iB

(30)

Now

^ ~ =-yx= - 1 + 0(By2 .

The expression (30) thus becomes

C + iB 3_, ai_s
- I P(s)R(s) as + 0(Y(log X)-i°)2Tri

C - i B

y Z Z M .P]A(r)_ ̂  o(Y(log X) °̂)
P < n < 2P R < r < 2R

using Perron’s formula again. To complete the proof it thus suffices to 

show that



C + iTI |p(s) Q(s) R(s)|^ |ds| «  X (logX)"i° . (31)
C + iB

The inequality (31) may be proved in the same way as lemma 5 was 

demonstrated, using the present Q(s) in the role played in lemma 5 by 
k(s) since

Q(s) «  B " i

dn the line of integration.

We are now in a position to give a lower bound for Ẑ . This sum 

counts all integers in (x - y, x] of the form pqr where p^q,r are 
primes with

1/ 9 /
(xl ^Vp)  ̂ 4 q < p < and r 4 q, p > X ^ ^ .  (32)

We divide the sum into subsums S(P,R) corresponding to P 4 p < 2P, 

R < r < 2R. Then

S(P,R) = (1 + O((log X) )̂) Z A(n)A(m) L
• ■ log (X/PR) P 4 n < 2P log P log R  ̂

R < m < 2R
mn mn 3

where

1 f2X _l/g _l/q _l/o
Y j |Eg| dx «  Y(P + R + (X/PR) ) .

27/
We may estimate S(P,R) by Lemma 7 if X^  ̂> PR 4 X . If

64P^R^ X^"^^ 4 X̂ , X /̂35 ^x^/2, and PR ̂  then (33) holds

(r 4 q since PR^ = (PR)̂  P"^ >  ̂> X) and PR < X^ " ̂  so
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t 4-1

b  + O((log + (log X)2(E^ + Egt Eg)

Here

Q _ Il du dv
4 j j uv(l - u— v)

u + v 4 -||, 2v + 3u 4 2

The integral is estimated crudely as 27 times the area of integration 
and we find that

Cn > O .  I f .

8. Conclusion

Assembling all our information, we have shown, assuming e is 

sufficiently small and X sufficiently large, that

ir(x) - ir(x-y) > y/( 3 log x)

for all x e  [x, 2x] , except on a set of measure  ̂CX(log X) 

We note that [V] takes on ^ X - CX(log X)  ̂ values, that

TT( [x]) - 7t([x ] - y) > y(10 log x)

-1
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and j: < 2 ^ . This completes the
proof of the theorem. %

' r  ̂  -V'- -ct r;- Possibly by
using a more complicated decomposition instead of (3) one could 

estimate the remainder term in a satisfactory manner with an exponent 
smaller than 1/10.

By a similar method to that used in this paper, it will be shown 

elsewhere that there are infinitely many solutions of the inequality

{/p - B) <
for any real 6. Hefe {x} denotes the fractional part of x.

The exponent ^ improves on an exponent slightly smaller than 1/6 

given by Kaufman [10].

Acknowledgements.
I would like to thank R.C. Baker for his careful checking of

my manuscript and his helpful suggestions on matters of exposition.

I would also like to thankR. Heath-Brown for an interesting discussion

on the subject, and H. Iwaniec for his encouragement.



K 3

References

1. Cramer, H.: On the order of magnitudes of the difference between
consecutive prime numbers. Acta Arith. 2, 23-46 (1937).

2. Halber- stam, H., Richert, H.E.: Sieve Methods. London: Academic Press
1974.

3. Harman, G. : Almost-primes in short intervals. Math. Ann. 3l5'3

4. Heath-Brown, D.R.: Zero density estimates for the Riemann Zeta-function
and Dir Lchlet L-functions. J.London Math.Soc. (2), 19, 221-232 (1979).

5. Heath-Brown, D.R., Iwaniec, H.: On the difference between
consecutive primes. Invent.Math. 55, 49-59 (1979).

6. Huxley, M.N.: On the difference between consecutive primes.
Invent. Math. 15, 164-170 (1972).

7. Iwaniec, H. : A new form of the error term in the linear sieve.
Acta Arith. 37, 307-320 (1980).

8. Iwaniec, H., Jutila, M.: Primes in short intervals. Ark. Mat. 17,
167-176 (1979).

9. Jutila, M.: Zero density estimates for L-functions.
Acta Arith. 32, 55-62 (1977).

10. Kaufman, R.M.: The distribution of {/p} (Russian).
Math. Zam. 26, 497-504 (1979).

11. Montgomery, H.L.: Topics in multiplicative number theory.
Berlin, Heidelberg, New York: Springer 1971.

12. Selberg, A.: On the normal density of primes in short intervals,
and the difference between consecutive primes. Arch. Math.
Naturvid. 47, 87-105 (1943).

13. Titchmarsh, E.C.: The Theory of the Riemann Zeta-function. Oxford 1951

14. Vaughan, R.C.: Sommes trigonometriques sur les nombres premiers.
Comptes Rendus Acad. Sci. Paris, Serie A. 285, 981-983 (1977).



144.

CHAPTER NINE

THE DISTRIBUTION OF MODULO ONE

1. Introduction

It was shown by Vinogradov (see Theorem 7, Chapter 4 of [9]) 

that, for e > 0, there are infinitely many solutions in primes p 

'of the inequality

IVp} < p'Y+E,

where {x} denotes the fractional part of x and y =0.1. The value 

of Y was improved to

/Ï5 2 0.1631006
2(8+/Ï5 )

by Kaufman [7]. On the Riemann Hypothesis he showed that one can take 

Y = /̂4. The method used actually shows that, for any real 3 and any 

a with 0 < a < 1, the number of primes p 4 x satisfying

{ /p - 3} < a

IS

a tt(x) + 0(x^ + ax^ ^ , 0 )

This may be restated in another form : the expression (1) represents 

I the number of primes p 4 x contained in intervals of the form

[(n+3) , (n+3) + 2a(n+3) + â ).
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THEOREM. For any h with 0 4 h 4 1 and any X, X write 

7T* (h, X, X ) for the number of primes p with

p e [(n + h)2, (n + h)^ + n^

1 1for some n with 4 n 4 (2X)2. Then, for X < J we have

.. a , (=)
for X > X^(X). Here C(X) is a decreasing function of X with 
C(4) > 0.18.

COROLLARY. For any real 3 there are infinitely many solutions of

{/F - 6} < p-s+G (3)

Remarks. As often occurs with a sieve method we are unable to give an

asymptotic formula for the number of primes under consideration, but only

a lower bound which is a fraction of the expected number (cf. Cl], [2] and

15] for example). However, it is possible to use some of the methods of

this paper to establish asymptotic formulae for a larger value of X
1 - 2Xthan that given by Kaufman. By working a little more carefully n 

could be replaced by n̂  (log n)^ for some sufficiently large constant 

A in (2). To simpliify the proof we shall assume h = 0 and X = q - e 

with e "small". For the case h / 0 it is necessary to use the 

Hurwitz zeta function at certain stages of the proof. The only properties 

we require of this function, however, are its fourth power moment and its 

appearance in an analogue of lemma 3.12 of [8] (see (11) below - the well
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This could be interpreted as an approximation to the conjecture that 

an irreducible quadratic polynomial with integer cofficients (the 

leading one being positive) takes prime values infinitely often. Sieve 

methods have enabled such conjectures to be solved with 'prime’ replaced 

by ’almost-prime’ (see, in particular, [6]). We shall use a sieve 

method here to prove the following result:
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known Perron formula). Both these properties it shares with the 
Riemann zeta function.

2. Outline of the Method .

We work similarly to [1]. We use the standard notation

p(z) = n p , v(z) = n (1 - Vp) = —  (1 + o((iog z)"^))
P < z P( < z ^

For a finite set of integers A we write

A^ = {n e A ; d|n}

S(A,z) = |{n e A ; {n, P(z))=l]|. .

The set A of interest to us with the present problem is

2 2 A = A(x) = {m; x < m 4 x +y}

with

y = x^ (2X)"(^ X 4 x^ < 2X .

The fundamental Buchstab identity states that 

S(A, ẑ ) = S(A, Zg) - Z S(A ,p).

Using this we see that

Z (tt(x̂  + y) - tt(x̂ )) 4 Z S(A, X^)
X<x^<2X X < xf < 2X

- Z 
X < x̂  < 2X

Z S(A ,p) + Z S(A ,z(p)) - Z S(A ,q) 1 3 p s i P  3 1 pq.'"X"<p<x® x ® 4 p < x 2 x 8 < p < x 2

2(p) <q<(b*— P

X <x^ <2X
(Ẑ  - Zg - Zg + Ẑ ) say. (4)
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3 1
In the above z(p) = (X̂ /p) . By we shall mean the sum of the

Zj over X.

We shall give a lower bound for and an upper bound for Zg

using the linear sieve with the error term in the form given by 

Iwaniec [5]. We give asymptotic formulae for Zg and subsums of 

Z^ using similar methods to those used for estimating the remainder 

terms in the sieve. It should be noted that we do not need weighted 

zero density estimates (as in [2]) although we do require the zero

free region of the Riemann zeta function (cf. [3]). The value q is

apparently the limit of every known method, so it is very interesting 

that, apart from the e , this limit is reached. We now write

D = X^ " , n = e /20, Y = X̂  " ̂  , T = X^^2^ Y~^

for certain parameters which shall occur. We remark that the method

may easily be extended to cover n^ replaced by n^ for any c > 1

with q replaced by X̂ (c).

3. The Sieve result.

We write ̂ fop any set of integers B̂

r(B,d) = |bJ  - |B|/d ,

r(B^,d) = |bJ  - .

We shall use the linear sieve result of Iwaniec [4] in the form stated 

in [&]. When we come to apply lemma 1 the A and D occurring in 

its statement will not always be those specified in section 2. The 

properties of the standard functions f(s) and F(s) which occur
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that are relevant here are

f(s) = log(s - 1) for 2 4 5 4 4  5

s - 1
F(s) = 2e 1 + log(t - 1) 

t dt for 3 < s < 5

In the above y is Euler’s constant. In the following the letter C 

shall denote an absolute constant, not necessarily the same at each 

occurrence.
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IjIIHMA 1. Let z ^ 2j D ^ and e > 0. Then

S(A,z) 4 WV(z) { F(s) + E } + (5)

S(A,z) ^ WV(z) {f(s) - E } - r" (6)

where s = (log D/(log z) and E = Cc+ O((log D) 3̂). The remainder
+terms R are of the form

R" = T R' , = I I C" , (v,c) I' r(A,vp----p ) (7)
(D) (D) v<D^ n . n 1+ E?

where (D) rims over all subsequences ^ ^ including the

empty subsequence, of the sequence

. i O .

for which

DjD2 .... ® (0 < k < (r - l)/2)

in the case of R^ , and

“A  •••• °2k-l ®2k (0<k<r/2)

in the case of R . Moreover, E* indicates that v and p̂ ,

(l ^ i  <; r), are restricted by the conditions

v|p(D^^), p^|p(z) .

Finally, the coefficients (v,e) depend at most on (D), v, e

and the + signs and satisfy

|C(D) (v.c)| ± 1  .
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M. Some prel5 iriinary results

In this section we give the relation between the remainder 

terms and integrals of Dirichlet polynomials, and various estimates 

for such integrals. For any upper case latin letter B other 

than X> P» and H we write

B(s) E a. b”^
B<b<2B °

’ >
where ai is real and E a «  B for any integer k < C, (e)

B<b<2B ®

For the letter L we stipulate other conditions. For _

L , = 1 for some set of consecutive integers and

otherwise. ‘ ÂlsO the condition L < Jl ̂  2L is to be replaced by 

Cgfe) < 1/L < CgCe).

For 1 ^ H ̂  we define H“(s) by

H- (s) = E C7_x(v,E) v"̂
H<v<2H

For numbers (j = l,...r) with ^ we write

P.(s) = ï
 ̂ Pj<Pj<2Pj|] h

where  ̂= 1 for some set of consecutive integers n , and is

zero otherwise.
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2 ±We write R(x ; (D); , P̂ ) for that subsum of
_L 2corresponding to P̂  ^py < 2F\, and R (x ; P; (D), P̂ , . . . , P̂ )

for subsums of R^^. for Z„ with P. < p. < 2P. summed from (D) 3 3 = 3  ]
p = P to 2P - 1. Here we are substituting Ap for A in (5) of 

course. The following lemma may be demonstrated in a similar manner 

to the corollaries of lemma 3 in [3.] .

LEMMA 2. (A) Write L = X(H P^...P̂ ) Let A be as in section

2, and z = X^. Then we have

R(x ; (D); Pp, ...,P^) = 0(YX Tl)

27Ti

c-iT^ c + iT
L(s)H (s)P̂ (s)

c-iT ctiT J o

(8)

Here c = 1 + (log X)  ̂, T^ = L  ̂.

-1(B) Write L = X(HPP^ —  P̂ ) . Replace A ^  Ap 

(5) and D ^  D/P. Put z = z(p). Then we have

R(x̂ ; (D); P, P̂ , .. P̂ ) = 0(YX

(9)

27Ti

c - ITq C + iT

c-iT C + iT

s 2s
I + 1  L(s)H^(s)P(s)P^(s) . ..Py(s) --- - ds

We now give estimates for the type of integrals which occur in 

(8) and (9) which are also applicable (subject to slight modification) to 

the establishing of the asymptotic formulae in section 6. We write I

for the line from c + i T  to c + i T .  We also puto ^
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X(s) = E ,
X2 < x  < (2X)i

3 3X E/_
X + E/2 4 " ^ "LEMMA 3. Suppose X «  M N «X. Then, if X ' < M < X

|x(s)M(s)N(s)| Ids I «  x'
- n CIO)

Proof. We may suppose, without loss of generality, that ||x̂ ||.
I I (2X)2| I > 10 3.

Then, by lemma 3.12 of [8], for s = a + it.

X(s) = 2iri
2a + c + Ti

2a + c - Ti
ç(-2s + w)X w dw + 0

CO

1
27Ti

-T

+ 0(X^"^2 log X (1 + jt| )-1

= Xp(s) + XgCs) .

Now we have

|X2 (s)M(s)N(s)| |ds| « |m (s )N(s )|^ |ds| dti (log X)X

«  X3/2- h



i - c  + iT
L(s) = 27Ti

w (cj* - (iT)ç(s + w) L -------  dww

+ 0(T + L  ̂+ (1 + |sl ) )̂.

It is easily seen, using L >  ̂ , that

C + iT 3
1m(s)N(s)X^(s)| (t"^^3 + l"1 + (1 + ls|)"^)|ds| « X ^

C + iT

An application of Holder’s inequality to

4-cfiT (C" - C")
M(s)N(s)Xt (s) I ç(s + w) L   dwJ- I w

;-c-iT
ds

thus yields the bound

fT
«  X3/o - n

which completes the proof.

I t5. The estimation of and Ê  .

We write E“ = ±(Cn + O(log X) 3̂ )

The main term for E^ is
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which is of the required size. Also, using Holder’s inequality and 

the well known result for the fourth power moment of C(s) (see 

[8], Chapter 13 for example) we arrive at the following inequality:

I |x̂ (s)M(s)N(s)|ds| «(1 + T/Mf)*(l + T/N)2 X ^

To obtain the final inequality we have used

and

4  = + 3n/2 ^^^l^g+3X/4+3n/2-i

< yi “ 3/1/4 - £/4 + I + 3X/4+ 3^/2 - i

< xS-% .

This completes the proof of the lemma.

LEMMA 4. Suppose X «  MNL «  X, L >X^* , Then
3

I |x(s)L(s)M(s)N(s)| Ids I «  X?  ̂. (12)

Proof. We work similarly to the previous lemma, but we apply the 

Perron formula to L(s) as well as X(s). The proof for X2(s) 

follows as before. We have



15-6.

2 log 3  ̂ z (2X) 28(log 3) yl ^(1 + e“)log X log X say,
X <x <2X

The main term for is

1 _ I ,120X f2 da
log X J o<(i -a)

. I

e(l-g)
3 - 4a -1

1 + log(t - 1) dt (1 + e’̂)

20X1 -X
log X 4C (1 + Ê ) say .

We now consider the remainder term for Ê  . We observe that

2 . \S 2s 2s(x +y) - X = X ((1 + Y/x) - 1)

( 1 + Y / y ) S - 1  ywhile -------------  «  — . In view of (8) it thus suffices to show thats X
the ranges of summation in a remainder term may be grouped together so that

the hypotheses of lemmas 3 or 4 are satisfied. If there are no more than

3 Pj ranges then lemma 4 is applicable since

P1P2P3 < D^DjDgX^ < ^

1 - X - eIf there are four ranges and PpF2^3^4  ̂  ̂ we note that

V2^3^4 < X 1 so P^ < X® . Thus

 ̂  ̂> P^PgPg > X^+ 2 +C/2

and so lemma 3 is applicable with M(s) = H (s)L(s)P^



15'T

1 ~ X “ CIf there are five ranges and > X we note that lemma 3

may be applied if

1 , 3X E
<P ... P, <1 4 =

and the above argument for four ranges may be invoked once more if

Pj_ . . P^ > X^  ̂ ^̂ 2

We may thus assume that

In this case, however.

while P^Pg 4 x" min(Pg^ , (X/P^PgPg) < x'’ min(Pg , X®Pg ̂  )

q - 3X/2 - e

so the hypotheses of lemma 3 are satisfied in this case as well. The proof 

for six or more ranges follows similarly.
IWe shall be brief in our discussion of . Because of our 

choice of Z(p) ' we find that

PP^Pg < X^ ” ̂

and so a remainder term with no more than two ranges of summation may be
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estimated from lemma 4. A remainder term with r ranges (r > 2) may 

be bounded in exactly the same way as the remainder term for with

r t 1 ranges (note we did not use the fact that in the

discussion for Ẑ' for r ̂  4).

6. Asymptotic formulæ.

Our starting point will be the familiar formula, which follows 
from lemma 3.12 of [8]:

Z A(n)n - .
A<n<2A 2TT1

c - a + iT
-s - 1 ■Ç (s + w)  —  dw (13)Ç w . V

c - a - iT

+ 0 + (loE A)
I  T

Now we suppose A >> T̂ , then, using the zero free region of ç(s) (see [7]) 

we may shift the integral in (13) to Re w = 1 - (log - o and only 

encounter the pole at s + w = 1, while on the new line of integration
qçVç «  (log A) . The "horizontal" parts of the contour are 

<< A^"* (log A)^t“  ̂.

We thus find that

Ï A (n)n ®------- ^ ----- —  + O(exp(-(log A)“)Â  " (log A)^)
A < n < 2A

We write
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p (s) = E A(n)n
P^<n<2P^

-s

and define PgCs) similarly, but with the range of summation extended 

from Pg/Z to yPg. Here P^Pg = X .

Then

E 1 A(n)A(m) = +
C+iT

1
27Ti P^(s)P2(s)

C-iT
(x̂  +y)S -x^^

+ 0(YX

ds

from another application of Perron’s formula. hOiO CJrTte.
5 ” -) "tCevi '

A-1 ^
c-iB

ds

1
2iri Pg(s)C>̂  ̂+ y>^1 - s

2s
-— -ds + 0(Y(logX)"^^)

c-iB

Now ix/ + y f  - = y  + 0(By^x2c-4)_

The expression (14) thus becomes

c + iB
27Ti J ^2^3)

C - i B

(x2/P^)S"l (1 - 2̂  )̂
s - 1 ds + 0(Y(log X) °̂)
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y jl t 0(Y(log X)~“ )

X X

using Perron's formula again. Thus we need only obtain the estimate

C+iT

c + iB
Pl(s)P2(s)X(s) I |ds| «  xflog X)-10

in order to establish an asymptotic formula for P̂ s, and similarly for 

PgS etc. The proof of lemma 3 holds for the above type of integral since 

the only place where T^ was used occurs in the estimate of the integral 

involving X^fs). Since the estimate involved is actually

x f l o g  xf T ^ ‘ 5  

for some Cj We thus obtain the required estimate if

1 3 . .
^  Pĵ 4 X® .

The asymptotic formula itself is

ex 1 - X
log X

1 - a
da d3

a(l - a - 3 )3

& X  + say.

Similarly we can establish an asymptotic formula for subsums of
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3 1 1  1corresponding to X® < p < X̂ , X̂  < q < (X/p)̂ . The term we get here is

1 - a

log X (1 + B ) jg « p (j - (X - p)

8 X^ ^(1 + E 1) Cg
= 5 F x -------

7. Completion of the proof.

It now only remains to verify that

2 log 3 - 2Cy - C + Cg > 0 .

We have 2 log 3 > 2.19, while simple computation shows that 

2Ĉ  < 1.15, Ĉ  < 0.81, Cg > 0.10 .

We also have 0= -— -— — > 0.6 , so C(q) > 0.18 as claimed,
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CHAPTER TEN 

ON THE DISTRIBUTION OF ap MODULO ONE

1. Introduction. In this paper we shall use a sieve method 

to prove the following result:

THEOREM 1. Suppose that a is irrational and || y II denotes

the distance of y from a nearest integer. Then, for any real

number 6, there are infinitely many primes p such that

-3/
ap - 3|| < p . (1)

The best known result of the above type which has previously 

appeared is due to R.C. Vaughan [7], who obtained I/4 in place of 

3/10 in (1), and who also required an additional factor (logp)̂  

on the right hand side of (1). D.R. Heath-Brown has obtained 

the exponent 4/15 = 0.266 .... (privd&communication) using a 

sieve method. Earlier work on this problem was done by I.M. Vinogradov 

(see Chapter 11 of [8]) who obtained the exponent 1/5 - 6 , 

essentially using the sieve of Eratosthenes. The elementary method 

introduced by Vaughan for dealing with sums over primes is no stronger 

than Vinogradov’s method however, the improved result in [7] coming 

from a more careful application of the auxiliary results on trigonometric 

sums. It should be noted that we will use exactly the same

trigonometric sum estimates as occur in [7]. We will also employ 

the linear sieve (see [5]) and the fundamental Buchstab identity 

(see (2) below). These last two tools enable us to avoid 

estimating certain "awkward" types of sums which arise in the work of 

Vinogradov and Vaughan. Because we discard these sums our present 

result is not quite so precise as theirs, for they establish an 

asymptotic formula, involving the denominators of the continued fraction
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expansion of a , for the number of primes p 4 X with 

II ap - 3 II < 6 , whereas we can only obtain a lower bound.

Of course this is a common feature of sieve results (see [4], 
for example).

It is possible to improve on the value 3/10 in (1), but, 

as should become apparent in the subsequent sections, the working 

becomes much clumsier as one increases this value, and one has 

to resort to numerical integration of a rather unwieldly nature.

The present approach provides an alternative for certain problems 

to the methods of Vinogradov and Vaughan which, instead of breaking 

down at a certain point as one attempts to strengthen the result, 

chonges smoothly from giving an asymptotic formula to giving a 

lower bound. The asymptotic formula has a much weaker error term 

than that given by the other methods however. Unfortunately 

the present method alone does not seem capable of giving improved 

results for the problem of the distribution of ap modulo one 

(for which see Cl] and [3]), although it will lead to an 

enhanced outcome for certain other problems (for example one may 

ameliorate [4] using the present approach). By using the

present approach in tandem with a more conventional use of the linear 

sieve, however, one can produce a slight improvement on the results 

on ap for k 4 3, A rough outline is given in section 4.

We also mention the following theorem which improves upon work of 

Graham [2] and follows immediately from Lemmas 2 and 3 below together 

with Theorem 4 of [5].

THEOREM 2 Let denote a number with at most r prime factors

(r 4 2 ). Then, given the hypotheses of Theorem 1, there are 

infinitely many solutions of
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a p + 6 II < 2/(r+l)+er " r

2. Notation and preliminary results.

Throughout this paper p shall denote a prime number.
Here we write

P(z) = [~ I p .
p<z

Xn the following £ is to be considered as a fixed small positive number 

Let T be a number between /̂4 and /̂3, where e is small in terms of 

1 - 3t , and let a/q be a convergent to the continued fraction for
a . We put

X = q2/(l+T)  ̂  ̂  ̂ g = X"^*= , n = c/20,

B = {n : X 4 n < 2X } ,

A = {n : n e B, II an - 3|| < 6}

A^ = {n : n e A, d|n} .

We also write

S(E,z) = {n e E, (n,P(z)) = 1}

for any set of integers E and a positive number z. The fundamental 

Buchstab identity states that

S(E,z^) = SfEsZg) - E S(E ,p) . (2)

The rest of this section will be concerned with establishing certain
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auxiliary results which will be combined to prove the following formula 
for as wide a choice of D and z(d) as is possible:

E a, S(A_, z(d)) = E a, S(B_, z(d)) 26(1 + E), (3)Q Q d d
D<d<2D D<d<2D

Here â  are numbers all of the same sign and E is an acceptable small 

error. We could then give an asymptotic formula for the right hand side 

of (3) using the prime number theorem. It will then only remain to 

use (2) to relate S(A, (2X)̂ ) to expressions such as occur on the 

left hand side of (3) with certain non-negative sums left over for which 

we cannot show that (3) holds. The proof is then completed by showing 
that not too many of these "awkward" sums occur.

Constants implied by the 0 notation may depend on z and t .

We shall use 6 to denote a constant, not necessarily the same at each 

occurence, bounded above and below by numbers independent of e, t  and D. 

LEMMA 1. Let a^ be a sequence of reals for X ̂  M < 2X , all of 

the same sign. Then we have

E a = 26 E a + 0 E 6 E a e(m£a) )m m „ , ' _ m
m e A X<m<2X I &=1 X<m<2X

+ 0 / — E a
I X<m<2X ^

(4)

Proof. Write %(%) for the characteristic function of (-6,6) 

extended to be periodic with period 1. It follows from [6] that

there exist two sequences b (k), b^(k) such that

L L
E b (k) e(xk) 4x(%)^% b^(k) e(kx.)

k = -L k = -L
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where b (0) = 26 ± (L + 1) ^±

b^(k) << 6 for k 4 0

The proof of (4) follows easily since

E 0% =  ^ a  x ( m a  - 3)
mcA X<m<2X ^

LEMMA 2. Suppose a^ all have the same sign and â  << X̂ . Then

E a |a 1 = 26 E a J + o/ E 6 1 E a E e(md&a)|) 
d < D d<D U=1 d<D X<md<2X '

+ 0()!  ̂6)

for D < X^“  ̂ .

Proof This easily follows from Lemma 1 upon noting that

Z a |A I = Z ( Z a ) ,
d < D reA d<D

dir

and

E E a f(r) = E Qj Z f(md) ,
X<r<X d|r d<D X<pj<Xx
= d<D

E 1 = -̂ + 0(1) .
X<md<2X
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LEMMA 3. Suppose that << X̂ . Then we have

E I E b E e(anm£)| «  (XRq  ̂+ RN + q)X^^ . (5)
R<£<2R N<n<2N ^ X<mn<2X

Proof. This is essentially Lemma 3 of [7]. We shall require
bounds for sums that occur on the right hand side of (5) which 

l-Tlare 0(X ). Lemma 3 thus furnishes us with a satisfactory

estimate when N < X̂   ̂.

LEMMA 4. Suppose that a , b << X̂ . Then we haven m

E â  E e(anm&)|n
R<£<2R N<n<2N X<mn<2x

«  XR(q 2 + (q/XR)2 + min((X/N)  ̂+ (rn) \  (XR/M) = t N =)) X̂ .̂

(6)

Proof. This follows from Lemma 2 of [7]. The estimate given by (6) 
is of a suitable size providing

X^ < N < X̂  or X^^ < N < X̂  ^

It is now clear that problems will arise with sums where one range is 
1—2t tbetween X and X , and it is these which we seek to avoid. The

following lemma incorporates our use of the sieve and provides the first 

version of (3). This result effectively "sifts out" numbers from 
A which have a lot of small prime factors.
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LEMMA 5 Suppose M < Then, for b << X̂= m

E b S(A ,X̂ ) = E b S(B ,X̂ ) 26(1 + E), (7)m m  m m
M<m<2M M<m<2M

where

E = 0 + 0((logX) + e e 3x)/e

Proof We write

r(A ,d) - —T - |a m md md

We do not require the new form of the error term in the linear sieve 

for the proof of our result, but we refer the reader to [5] for the

sake of convenience. We have (Theorem 4 of [5] replacing e
3 + . +there by e ), for certain sequences a“ with a~ = 0(1), that

-Y
S(A ,X̂ ) < / —   ) — ) (F(s) + E+) + 0/ Ï a+ r(A ,d)

“ Velogx/U^l/ ' ”I d<—M

while
—Y

S(A^.X^) ^  ® ( f ( s )  + E") + o /  E
(e logX) m I 1- ^

where s =
e logX e

-1/3
E =0((logX) ) ± |8| $3 ,

and
F(s) - f(s) < lele"® < |e|e(l-3T)/E
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We also have

S(Bm' X') = Ü (1 +

It therefore only remains to show that

I |b Z a, r(A_,d)| «  (8)
M^<2M 1-T

(We assume here that the right hand side of (7) is >> X^  ̂ this

in fact always holds in our applications). The bound (8) is, 

however, a simple consequence of Lemmas 2 and 3.

The following is another version of (3).

LEMMA 6. Suppose that 4 M 4 X^ or X^^ 4 M 4 X̂
Also let c = 0 for r < X^, and suppose

Z a^c^ Z S(A^^^ , r )= 2d' Z a^ cy Z b^ , r ) (1 + E)
M4nr/ N4n<2W M4nr.< '̂ M N4n<2N

whenever the right hand side above is > X^  ̂6,

Proof. This follows from Lemmas 1 and 4.

We are now in a position to prove our main version of (3).

LEMMA 7. Suppose that M j< X^ a << x̂ . Then we havem

Z a S(A , BT) - z 26 a S(R , (1 + E) (9)

whenever the right hand side of (9) is >> X^ ^6. Here

E = 0e + 0((logX)"^/3) + 0e"^ 3x)/e
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2tProof If M 4 X this follows from Lemma 5 so we may suppose

that M < X̂ .̂ By (2) we have

E a S(A , e S(A , X̂ )
M<m<2M ™ ^ M<m<2M ^ ^

 ̂  ̂ S(A ,p) .MgP<2M xC<p<xl-3T ">?

{10)

For the first sum on the right of (10) we may apply Lemma 5.
We apply Lemma 6 to any subsum of the second sum with

pM 4 X^^ (since p < X^ we have pM < X^ ^). We then apply

the Buchstab identity again to the remaining part of the subsum:

z am Z S(A ^,p) Z a I S(A , xf) fll)
M4m<2M xE<p<X /M m “ p

P<xl-3T

- Z a Z Z S(A ,r) .
” " P X^<r<p

(The ranges of summation over m and p on the right of (11) are

the same as on the left). Lemma 5 may be applied to the first sum on

the right of (11) and Lemma 5 may be used for any subsum of the second 
2twith rpM 4 X We continue this procedure, which must cease after

-1< e operations, until we have decomposed our original sum into parts 

for each of which we have given a formula of type (3). Clearly, 

upon combining all the sums of the type which occur on the right of (3) 

(reversing the decomposition), we obtain the right hand side of (9).
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3. Proof of Theorem 1. In the following q,r,s are prime 

variables of summation, q no longer appears as the denominator of the 

convergent to the conintued fraction for a. We write 

a = p = X̂ , p = X̂  V = (2X)2, We make one primary

decomposition of S(A,v) using (2) in the following way:

S(A,v) = S(A,a) - E S(A ,a) - E S(A ,p) - E S(A ,o)
P  ^  p < p <  V  P

+ E S(A q) + E S(A q) .
a<q<p<p p<f<v 1

a<a<X2X/p)2

= - Is - Be - + 4' di)

We remark that the upper bound for q in Ê  is (2X/p)^ and 
not p since the sum is clearly empty for q > (2X/p)^, and this 

value is always less than p in Ê . By Lemma 6 arid 7 we can give 

a formula of type (3) for the first four sums in (12). Also, we 

can immediately give such formulae for subsums of Ê  where 

P 4 pq 4 P and of Ê  where X/p < pq 4 X/p. This gives an overall 
lower bound for S(A,v) of

(1 - iSgX z S(B q)) , (13)26X
X piq

where the summation in (13) is over those ranges of p and q for which 

we cannot show that (3) holds. We have omitted from (13) certain

terms which either tend to zero with decreasing e or increasing X 
such as 8E-2 e-(l-3T)/c or 0 ( i s  legitimate 
provided we show that the term in brackets in (13) is bounded below by
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z f(p) < ( l t e h  j (16)
Y < P < Z ^

for a "well-behaved" non-negative function f.
2Now, for if pq < p then pq < X/p so we can decompose

this part of the sum further as in (14). The sum we are left 

with is

E S(A s) . (17)pqrs,
a 4 p <

0 4 s < r < q <  min(p,p/p)

We can give a type (3) formula for subsums of (17) with

qsr 4 p or pqr 4 p. The relevant term in (13) corresponding to the

remainder of (17) is thus

a 4P < R
04s <r<q<min(p,p/p) 
qsr > p

< 0.016.

In the above R is the four dimensional region bounded by the inequalities 

2/15 < u < ^/6, 2/15 < V < min(u, 3/10 - u), 2/5 - u - v < w < v ,

2/5 - V - w < X < w. The numerical value was obtained by replacing R 

with the larger region 2/15 < u < 1/6, 1/8 < w < ̂/20, 2/15 < v < 3/20,

1/10 < X(< 3/20 and then elementary integration gives the value

f' (|) (I) (ïï) •
All integrals will be estimated in this elementary manner, so we shall 

be more brief with the details in future.
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a constant independent of e and X. The bound (13) may be 

improved by noting that we can decompose S(A^^,q) further 

if pq^ < X/p :

S(A q) = S(A ,a) - Z S(A ,o) t E S(A s). (14)
pq,^ pq' o<r <q 9%^ pqrs.

2The condition pq < X/p is necessary for the second sum on the right 

of (14), which with the first term may then be estimated by Lemma 7.

The contribution from the "awkward" part of the final sum is smaller 

than S(A ,q) and so we have made a saving.
pq

Another way of improving (13) comes from considering what numbers

are counted by S(A^^,q) for the remaining ranges of p and q.

Clearly we cannot find a formula of the required type for the primes 
counted', but possibly for some or all almost-primes we could find such

a formula. The term S(B^^,q) in (13) could then be replaced by a

function which only counted the numbers for which we could not give a

formula. Eventually, working as efficiently as is possible, we get a

lower bound 26XC(t) , and it would be desirable to find the largest

value of T for which C(x) > 0. A moment’s thought reveals that

C(x) is a continuous decreasing function of x with C(q) = 1. To

prove our theorem we need only show that C(3/10) > a > 0, where a

is independent of X and e. It then follows that C(3/l0 + e) > a’ > 0

for some a’ which is also independent of X and e.

In fact, for x = 3/10 we do not need to work in a particularly

efficient manner to obtain a positive lower bound. We will use the

rather crude inequality

( I S )

several times in the following. We shall also employ the prime 

number theorem combined with partial summation in the form



1^5

The rest of is split into two parts. In one < p <
(X^/lO/p)^ < q < p , For this part we can give no further decomposition, 

We find that the contribution to (13) from this subsum is

^ Z S(B_ q) 4 (1 + e) 
p,q

< 0.207 .

3/10 u

7/30
dudv

u uv
20

In the other part X^^^ < p < X^^^/p < q < min(p,(X^^^^/p)^),

so we may decompose the sum further. The "left-over" sum is

E S(A .s)
< p < x3/10

X^^^/p < q < min(p,(X^/^^/p)2)

. ( i s)

We can give a type (3) formula for most of (18). The remaining part has 

pqr < X^/^, qr < X^^^^/(pqr) < s < r, qsr > X̂ ^̂ .

The corresponding four dimensional integral is < 0.100.

We may now turn our attention to what remains of Z . The
1 J. ^

part with X^^^ < p < (2X)̂ , X^^^^ < pq < (2X p)* cannot be

decomposed further.

(1 + e)

This gives a contribution 
1-u

I :2/5 - - U

dudv
uv

< 0.088.

In the final part of Z^ we have pq < ,3/5 If q > (x7/10/p)i
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we are unable to perform a further decomposition.

f dudv

This gives rise to a term
,3/5-u

(1 + E ) < 0.269.
2/5 1 _ u

20 2
uv

7/lO ^For q < (X /p) the remaining sum after decomposition is

X^/5 < p ^ ( 2 X ) 5  

X^/lO ^ s < r < q < (X^/^0/p)5

2/5Now, we can give a formula of type (3) for this if qrs < X 

This always holds if (X̂ ^̂ °/p)̂ '̂  ̂< X^^^, i.e. if p >

remaining contribution is thus
fl3/30 r̂ /20 - /̂2 (V fyj

(1 + e)
2/5 2/15 ; 21 V - -w-v 

5 ' 2  ^

du dv dw dx 
uvw^^

The

< 0.006,

Combining all the above results we have

0(3/10) > 1 - (0.016 + 0.207 + 0.1 + 0.088 + 0.269 + 0.006) = 0.314,

This completes the proof of the theorem.
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H. A note on ap . Here we shall briefly sketch the proof to the

following result.
THEOREM 3. Given the hypotheses of Theorem 1 and on integer k ^ 3, 

there are infinitely many primes p such that

II - 3 II < p

where

^ (2k+l)(2^-l)

The value of Ç improves upon

2 ( k + l ) ( 2 k - l ) + i

given in- [3].

We put A = {n: n e B , || an^ - 31| < X ,

2k 2 ( 2 k+l)(2^-l) 2k + 1

By the trigonometric sum estimates given in [3] we may estimate the sums 

which will occur of the form

L  , k k .Z I Z a% Z b^ e(a m n £) |
 ̂~ ^ N ̂ n  < 2N X^mn< 2X 

providing X^^ = N ^ X^ X^^ ^ N ^ X̂   ̂ or

X̂ ^^ < N < X^ Furthermore, if b =1 we may obtain a suitable bound= = m
kT •if N ̂  X . The basic decomposition we employ is



(-7%.

S(A,(2X)2) = S(A,X2 - Z S (A ,X̂ ) - Z S(A ,p)
x5"̂ <p<X̂  ̂  ̂ X̂ <̂p<(2X)5

.TX <a< (2x/p)

For Ẑ  we can give an asymptotic formula working similarly to 

Lemma 7. We can also give such a formula for Z^. For

Ẑ  we may use the linear sieve (here we do require the new form of 

the error term) to give an upper bound. Finally we are able to 

give an aymptotic formula for much of Ẑ  and we discard what remains 

A simple numerical calculation then completes the proof. It should 

be noted that the limit of the method is not set here by the 

point where the final constant becomes zero, but by the difficulty 

in estimating Z  ̂•
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