HAUSDORFT MPASURE FUTNCTIONS

PAUL, RONALD GOODEY

ROYAL HOLLOWAY COLLEGE LONDON

SUPERVISOR:- PROFESSOR H. G. EGGLESTON

$$
\begin{array}{c|c}
\hline \text { R. H. C. LIBRARY } \\
\hline C L A B S & A S O \\
& G 00 \\
\therefore & 104832 \\
& F e b 72
\end{array}
$$

ProQuest Number: 10096764

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096764
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
Page
Abstract 0
Preface 1
Definitions and Notation 2
Chapter 1 7
Chapter 2 22
Chapter 3 65
Chapter 4 94
Chapter 5 116
Chapter 6 121
References 141
Appendix 1 143

Abstract

In many works on Hausdorff Measure Theory it has been the practice to place certain restrictions on the measure functions used. These restrictions usually ensure both the monotonicity and the continuity of the functions. The aim of the first four chapters of this thesis is to find conditions under which the restrictions of continuity and monotonicity may be relaxed.

In the first chapter we deal with the monotonicity condition with respect to both measures and premeasures. The second and third chapters are concerned with an investigation of the continuity condition with regard to measures and pre-measures, respectively. Then, having found condtions under which these restrictions may or may not be relaxed, we are able, in the fourth chapter, to generalize soce known results to the oase of discontinuous and non-monotonio functions.

Scane of the results of the first four chapters prompted an investigation of the properties of measures corresponding to sequences of measure functions, and this is incorporated in the flifth chapter.

The main purpose of the final chapter is to determine whether or not some of the resulta of the eariler chapters may be extended to Hilbert space.

PREFACR
I should like to thank my nupervisor, Frofessor H. G. Egeleston, for the advioe he has given me in our many discussions on this work. The results contained in this thesis are, to the best of my knowledge, new, al though many of them have been proved in less generel ceses; in these situations the know results are acknowledged in the introductions to the relevant chapters. Finally, I should like to express my gratitude to the Science Research Council for my studentahip.

[^0]
DEFINITIONS AND NOTATION

For any function $h(x)$ we define $h\left(x^{-}\right)$and $h\left(x^{-}\right)$as follows,

$$
\begin{aligned}
& h\left(x^{-}\right)={\underset{y i m}{y \rightarrow x}}^{\lim _{y}} h(y) \\
& h\left(x^{+}\right)=\overline{\lim }_{y \rightarrow x} h(y) .
\end{aligned}
$$

We note that if $h(x)$ is a monotonic increasing function we have,

$$
\begin{aligned}
& h\left(x^{-}\right)=h(x-0) \\
& h\left(x^{+}\right)=h(x+0)
\end{aligned}
$$

If x is a point of discontinuity of $h(x)$ we shall define the size of the discontinuity at x to be $\left(h\left(x^{+}\right)-h\left(x^{-}\right)\right)$.

We say that $h(x)$ is a Hausdorff measure function if it satisfies the following conditions,

$$
\begin{array}{ll}
\text { i). } h\left(x^{2}\right)>0 & \text { for } x>0 \\
\text { ii). } h(x) \rightarrow 0 & \text { as } x \rightarrow 0
\end{array}
$$

If $h(x)$ satisfies i) and ii). above as well as,

$$
\text { iii) } \lim _{x \rightarrow 0} \frac{h(x)}{x^{q}}>0 \text {, }
$$

for some positive integer q, we my that $h(x)$ is a q-dimensional Hausdorff measure function.

If S is any set in a metric apace (X, e) say, we shall denote by $d(S)$ the diameter of S that is,

$$
d(s)=\overline{b d}\{e(x, y): x, y \in S\}
$$

Also we denote the closure of S by \bar{S}.
By l^{2} we shall mean the apace of all reel number sequences $\left\{x_{m}\right\}$ such that $\sum x_{n}^{2}$ is convergent. Wo shall denote the points of l^{2} by \underline{x} where $\mathfrak{x}=\left\{x_{n}\right\}$. Wherever indices occur, we shell write, for example, $\underline{\alpha}^{(k)}=\left\{\alpha_{n}^{(k)}\right\}_{n=1,2, \ldots}$. If S is a set in l^{2} then wo write,

$$
\underline{x}+S=\{\underline{x}+\underline{y}: \underline{y} \in S\}
$$

where the edition is performed component-wise. We make l^{2} into a metric space by introducing the metric, ρ such that for $x, y \in l$,

$$
e(x, y)=\left[\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|\right]^{1 / 2} .
$$

If X, Y are sets in l^{2} then,

$$
e(\underline{\alpha}, X)=\underline{\underline{d}}\{e(\underline{\alpha}, \underline{x}): \underline{x} \in X\}
$$

and,

$$
e(X, Y)=b d\{e(x, y): x \in X, y \in Y\}
$$

A set of points S in buolidean space or l^{2} is said to be convex, if whenever two points x, y belong to S all the points of the form,

$$
\lambda x+(1-\lambda) y
$$

where $0<\lambda<1$ also belong to S. If A is any set, then by cons A we mean the smallest convex set which contains A. The following results
will be assumed wherever necessary,
a). $\left(l^{2}, \rho\right)$ is a complete metric space (see, for example, Sierpinski (10)),
b). $d(A)=d(\operatorname{conv} A)$ (see, for example, Egeleston (4)), and, c). $d(\operatorname{couv} A)=d(\overline{\operatorname{con} v A})$.

For any point x and any positive real number r we shall write $S(x, r)$ for the sphere centre x, radius r. Suppose P is a set in a metric spacecle and n, d positive real numbers. Then for every point $x \in P$ we define $N(x, n, d, P)$ to be the largest number of disjoint spheres of the form $S\left(p, d n^{-1}\right)$ with $p \& P$ which cen meet $S(x, d)$. We write,

$$
N(n, d, P)=\sup _{x \in P} N(x, n, d, P)
$$

W. say that a function $h(r)$ is blanketed if for all $\alpha>0$ there exist positive real numbers $K(\alpha, h)$ and $K(\alpha, h)$ which satisfy,

$$
k(\alpha, h) h(t) \leqslant h(\alpha k) \leqslant K(\alpha, h) h(t)
$$

for all $t \geqslant 0$. Then, if $h(r)$ is a monotonic, increasing, blanketed, Hausdorff measure function we write,

$$
h(P, y)=\lim _{\Sigma \rightarrow 0} \overline{\lim }_{\substack{d \rightarrow 0 \\ n \rightarrow \infty}} \frac{h\left(d n^{-1}\right) N\left(n, d, P_{n} \rho(y, \Sigma)\right)}{h(d)}
$$

for each point y of Ω. Finally, we write,

$$
h(P)=\sup _{y \in P} h(P, y)
$$

A set A is said to have finite dimension if there exists a monotonic

Increasing, blanketed, Hausdorff measure function $h(x)$ such that, $h(A)=0$. A metric space Ω is said to be a β-space if there exist positive real numbers $\delta, \alpha(</ 2)$ and $N=N(\alpha)$ such that, for all $r \leqslant \delta$, at most $N(\alpha)$ disjoint open spheres of radius αr cen meet any given open sphere of radius f. Layman (6) has shown that a compact set A in a metric space has finite dimension if and only if A is a β-space.

If $h(x)$ is a hausdorff measure function and S is a set in Euclidean space or l^{2} then, following Hausdorff (5), we define the corresponding Hausdorff pre-aeasure of S denoted by $\lambda_{J}^{h}(S)$ as follows,

$$
\Lambda_{j}^{h}(s)=\frac{b d}{\bigcup_{i} v_{i}>s} \sum_{i} h\left(d\left(v_{i}\right)\right)
$$

where the lower bound is taken over all coverings of S by open convex sets each of diameter striotiy less than δ. We then define the Hausdorff measure $\Lambda^{h}(S)$ of S as follows,

$$
\Lambda^{h}(s)=\lim _{\delta \rightarrow 0} \Lambda_{s}^{h}(s)
$$

This will be referred to an the h-measure of S. We will write $\lambda_{\delta}^{q}(S)$ and $\Lambda^{q}(s)$ when $h(x)=x^{q}$, and $\Lambda_{j}(s)$ and $\Lambda(s)$ when $h(x)=x$. The measure $\Lambda^{h-R(q)}(s)$ is defined in a similar manner to $\mathcal{\Lambda}^{h}(S)$ but here we restrict the coverings to be open q-dimensional rectangles. Similarly $\Lambda^{h, C(q)}(s)$ refers to coverings by open q-dimensional cubes. $L_{j}^{h}(S)$ and $L^{h}(S)$ will refer to coverings by closed convex sets U_{i} where, for $L_{\delta}^{h}(S)$ we insist that $d\left(U_{i}\right) \leqslant \delta$ for all i.

Two Hausdorff measure functions $h(x)$ and $g(x)$ will be said to be measure equivalent whenever, for all sets $S, \mathcal{L}^{h}(S)$ is positive and finite if and only if $\Lambda^{9}(S)$ is positive and finite. Also, if $h(x)$ and
$g(x)$ are Hausdorff measure functions we write $h<g$ if, $\lim _{x \rightarrow 0} g(x) / h(x)=0$.

For any set S we denote the complement of S by $Q S$ and $X \cap B Y$ by $X \backslash Y$. If x is any real number we denote the greatest integer less then or equal to x by $[x]$. Finally, we shell call $\left\{x_{n}\right\}$ a null sequence if $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.

CHAPTER 1

INTRODUCTION

The first theorem of this chapter shows that in all subsequent councelied
investigations of the Hausdorff measures of sets in/metric as well as in Euclidean spaces it is sufficient to prove theorems only for the case of monotonic Hausdorff measure functions. Theorems 2 and 3 show that this result cannot always be extended to the case of Hausdorff pre-neasures. Thus throughout this work the theorems concerning Hausdorff measures will be seen to be true for both monotonic and non-monotonic measure functions. Whereas those concerning pre-measures will only be proved for the case of monotonic measure functions.

Theorem 1

Given any Hausdorff measure function $h(x)$ there exists a monotonic increasing Hausdorff measure function $H(x)$ say, such that for any set S, wave,

$$
\Lambda^{H}(S)=\lambda^{h}(S)
$$

Proof
Wo know that $h\left(x^{-}\right)>0$ for all positive values of x, let X be a fixed positive real number. Define $H(x)$ as follows,

$$
\begin{equation*}
H(x)=\inf h(y) \quad \text { and } \quad H(x)=h(X) \quad \text { for } x \geqslant X \tag{1}
\end{equation*}
$$

$$
y \in[x, x]
$$

1). $H(x)$ is monotonic increasing. For, if x and y ore such that $x \geqslant y$ then,

$$
H(y)=\inf _{z \in[y, x]} h(z) \inf _{z \in[x, x]} h(z)=H(x) \text {. }
$$

that is,
$H(y) \leqslant H(x)$.
ii). Clearly $H(x) \leqslant h(x)$ for all x, and so, from the definition of a Hausdorff measure function, we have,

$$
\begin{equation*}
H(x) \rightarrow 0 \quad \text { as } \quad x \rightarrow 0 \tag{2}
\end{equation*}
$$

Also from the statement mede at the beginning of the proof, we know that,

$$
H(x)>0 \quad \text { whenever } x>0 \quad-(3)
$$

Now let S be any set (in any metric space), we certainly have, by il).,

$$
\begin{equation*}
\Lambda^{H}(s) \leqslant \lambda^{h}(s) \tag{4}
\end{equation*}
$$

clearly if $\Lambda^{H}(S)=\infty$, then we have $\Lambda^{h}(S)=\Lambda^{H}(S)$. So we may assuan that $\Lambda^{H}(S)<\infty$ for the remainder of the proof: Given any $\Sigma>0$ and any $\rho>0$ choose $e^{\prime}(<e)$ such that,

$$
\begin{equation*}
H(x)<1 / 2 H(e) \quad \text { whenever } x \leqslant e^{\prime} \tag{5}
\end{equation*}
$$

this is possible by (2) and (3).
Further, choose a covering of S by open convex sets $\left\{U_{i}^{e^{\prime}}\right\}$ such that,
and

$$
\begin{align*}
& \operatorname{s} U_{i=1}^{\infty} U_{i}^{e^{\prime}} \tag{6}\\
& d\left(U_{i}^{e^{\prime}}\right)<e^{\prime} \quad \text { for all } i \tag{7}
\end{align*}
$$

We now define a new open convex covering of S by sets $\left\{V_{i}\right\}$ as follows; For each i,

$$
\begin{equation*}
\text { if } h\left(d\left(U_{i}^{R^{\prime}}\right)\right)=H\left(d\left(U_{i}^{R^{\prime}}\right)\right) \text { we put } V_{i} \equiv U_{i}^{e^{\prime}} \tag{9}
\end{equation*}
$$

if $h\left(d\left(v_{i}^{e^{\prime}}\right)\right) \neq H\left(d\left(v_{i}^{f^{\prime}}\right)\right)$ then we have, from (5),

$$
\begin{gathered}
H\left(d\left(v_{i}^{P^{\prime}}\right)\right)=\inf _{y \in\left[d\left(U_{i}^{P^{\prime}}\right), x\right]} \quad y(y)<y_{2} \text { inf } h(y) \\
y \in[e, x]
\end{gathered}
$$

since $d\left(U_{i} e^{\prime}\right)<e^{\prime}$.
Thus we can choose V_{i} to satisfy the following conditions,

$$
\begin{align*}
& d\left(V_{i}\right)>d\left(U_{i} P^{\prime}\right) \\
& U_{i}^{R^{\prime}} \subset V_{i} \text { and } V_{i} \text { open, convex } \\
& -(10) \\
& \text { - (III) } \\
& h\left(d\left(v_{i}\right)\right)<H\left(d\left(U_{i} e^{\prime}\right)\right)+\sum / 2 i+1 \quad-(12) \\
& \text { and } \quad d\left(V_{i}\right)<p \text { for all } i \text {, } \tag{13}
\end{align*}
$$

So, $\left\{V_{i}\right\}$ is an open convex covering of S with

$$
d\left(V_{i}\right)<e \text { for all, } i
$$

and from (8) and (12) we have,

$$
\begin{aligned}
\sum_{i} h\left(d\left(v_{i}\right)\right) & <\sum_{i} H\left(d\left(u_{i}^{e^{\prime}}\right)\right)+\Sigma / 2 \\
& <\Lambda_{p^{\prime}}^{H}(S)+\Sigma
\end{aligned}
$$

that is,

$$
\begin{equation*}
\mathcal{\Lambda}_{e}^{h}(S)<\mathcal{\Lambda}_{P^{\prime}}^{H}(S)+\Sigma . \tag{14}
\end{equation*}
$$

Now since $e^{\prime}<e$ we know that,

$$
e^{\prime} \rightarrow 0 \quad \text { as } e \rightarrow 0
$$

Thus free (14) we have,

$$
\Lambda^{h}(s) \leqslant \Lambda^{H}(s)+\tau
$$

but the $₹$ was an arbitrery positive real number, and so,

$$
\begin{equation*}
\Lambda^{h}(s) \leqslant \Lambda^{H}(s) \tag{15}
\end{equation*}
$$

which, combined with (4) gives us the required result,

$$
\lambda^{h}(s)=\Lambda^{H}(S)
$$

Thus we have shown that es far as hausdorff measures are concerned we can always replace a non -monotonic function by monotonic one which is below the original function. Theorem 2 shows us that this replacement cannot be effected by using a function which is above the original one. The result is actually a little stronger in that it is proved using premeasures.

Theorem 2

There exists a Hausdorff measure function $h(x)$, such that if $H(x)$ is any monotonic Hausdorff measure function with $H(x) \geqslant h(x)$ for all x, then,

$$
\mathcal{A}_{J}^{H}(s) \geqslant 2 \mathcal{A}_{J}^{h}(s)
$$

for arbitrarily small positive numbers δ and for all sets S on the real inn.

Proof
Define

$$
x_{n}=1 / 2^{n}
$$

$$
\text { for } n=0,1,2, \ldots
$$

Put,
with n even or zero,
and

$$
h(x)=4 x_{n} \text { for } \quad x \in\left(x_{n+1}, x_{n}\right]
$$

with n odd.
Now let $H(x)$ be a monotonic function with $H(x) \geqslant h(x)$ for all x. Then clearly we must have,

$$
H(x) \geqslant 2 x \quad \text { for all } x
$$

Thus for all δ and for all sets S we must have,

$$
\begin{equation*}
\Lambda_{\delta}^{H}(S) \geqslant 2 \Lambda_{\delta}(S) \tag{16}
\end{equation*}
$$

But it ia easy to see that for arbitrarily small positive values of δ and for all Linear sets S,

$$
\begin{equation*}
\Lambda_{\delta}^{h}(s)=\Lambda_{\delta}(s) \tag{17}
\end{equation*}
$$

Thus ccsobining (16) and (17) we have,

$$
\Lambda_{\delta}^{H}(S) \geqslant 2 \Lambda_{\delta}^{h}(S)
$$

for arbitrarily small values of δ and for all Inner sets S. Hence the theorem is proved.

Theorem 3 now shows us that as far as Hausdorff pro-measures ar concerned, there exist functions which oennot be replaced by monotonic ones.

Theorem 3
There exists a Hausdorff measure function $h(x)$ and a set S such that if $H(x)$ is any monotonic Hausdorff measure function then,

$$
\Lambda_{\delta}^{h}(S) \neq \Lambda_{\delta}^{H}(S)
$$

for arbitrarily anal positive values of S.
Proof
We define the sequence $\left\{x_{n}\right\}$ of positive real numbers as follows; Put $x_{1}=1$ and assume that $x_{1}, \ldots, x_{2 n-1}$ have been defined, then put,

$$
\begin{equation*}
x_{2 n}=1 / 2 x_{2 n-1} \tag{18}
\end{equation*}
$$

and.

$$
\begin{equation*}
x_{2 n+1}=\left(\frac{25}{128}\right)^{2} x_{2 n-1} \tag{19}
\end{equation*}
$$

We now define the function $h(x)$ as follows,

$$
\begin{aligned}
h(x) & \left.=x_{2 n-1}^{1 / 2} \quad \text { for } \quad x \in\left(x_{2 n}\right)^{x_{2 n-1}}\right] \quad-(20) \\
& =4 x_{2 n-1}^{-1 / 2} x \quad \text { for } \quad x \in\left(\frac{25}{256} x_{2 n-1} x_{2 n}\right]-(21)
\end{aligned}
$$

and $\quad h(x)=\frac{25}{64} x_{2 n-1}^{1 / 2} \quad$ for $x \in\left(x_{2 n+1}, \frac{25}{256} x_{2 n-1}\right] \quad$ - (22)

Figure 1 is a rough sketch of the curve $h(x)$, and we can see that $h(x)$ is a Hausdorff measure function.

Let S, the unit interval $[0,1]$.
Now, for any integer n,
and,

$$
\frac{h\left(x_{2 n}\right)}{x_{2 n}}=\frac{2 x_{2 n-1}^{1 / 2}}{1 / 2 x_{2 n-1}}=4 x_{2 n-1}^{-1 / 2},
$$

$$
\frac{h\left(x_{2 n+1}\right)}{x_{2 n+1}}=x_{2 n+1}^{-1 / 2}=\left(\frac{128}{25}\right) x_{2 n-1}^{-1 / 2},
$$

therefore,

$$
\frac{h\left(x_{2 n}\right)}{x_{2 n}}<\frac{h\left(x_{2 n+1}\right)}{x_{2 n+1}}
$$

also,

$$
\frac{h\left(x_{2 n}\right)}{x_{2 n}} \leqslant \frac{h(x)}{x} \quad \text { whenever } \quad 0<x<x_{2 n} \quad-(24)
$$

Lat $\left\{U_{i}\right\}$ be any sequence of open intervals such that,

$$
d\left(U_{i}\right)<x_{2 n} \text { for all } i
$$

and,

$$
S_{1} c \bigcup_{i=1}^{\infty} U_{i}
$$

Then we have, by (24),

$$
\sum_{i=1}^{\infty} h\left(d\left(u_{i}\right)\right) \geqslant \frac{h\left(x_{2 n}\right)}{x_{2 n}} \sum_{i=1}^{\infty} d\left(v_{i}\right) .
$$

But, since $S_{1} \subset \bigcup_{i} U_{i}$, we must have,

$$
\sum_{i=1}^{\infty} d\left(v_{i}\right) \geqslant 1
$$

thus, combining these results,

$$
\begin{equation*}
\lambda_{x_{2 n}}^{h}\left(S_{1}\right) \geqslant x_{2 n}^{-1} h\left(x_{2 n}\right) \tag{25}
\end{equation*}
$$

Now, let $H(x)$ be any monotonic increasing Hausdorff measure function.
We assume that, for all large values of n,

$$
\begin{equation*}
\Lambda_{x_{2 n}}^{H}\left(S_{1}\right)=\Lambda_{x_{2 n}}^{h}\left(S_{1}\right) \tag{26}
\end{equation*}
$$

and show that this assumption leads to a contradiction.
Now,

$$
\Lambda_{x_{2 m}}^{H}\left(S_{1}\right) \leqslant\left(1+x_{2 n}^{-1}\right) H\left(x_{2 n}^{-}\right)
$$

and 20 , by (26) and (25).

$$
x_{2 n}^{-1} h\left(x_{2 n}\right) \leqslant\left(1+x_{2 n}^{-1}\right) H\left(x_{2 n}^{-}\right)
$$

that is,

$$
\begin{equation*}
H\left(x_{2 n}\right) \geqslant \frac{1}{1+x_{2 n}} h\left(x_{2 n}\right) \tag{27}
\end{equation*}
$$

for all large values of n.
Thus, by the monotonicity of $H(x)$ we must have,

$$
H(x) \geqslant \frac{2}{1+x_{2 n}} x_{2 n-1}^{1 / 2} \text { for } x \in\left[x_{2 n} ; \frac{25}{256} x_{2 n-3}\right] \text {-(28) }
$$

Now consider any value, $x_{\text {, in }}$ in the open interval $\left(\frac{25}{256} x_{2 n-1}, x_{2 n}\right)$ we have, from (23),

$$
\frac{h(x)}{x}=4 x_{2 n-1}^{-1 / 2}<\frac{h\left(x_{2 n+1}\right)}{x_{2 n+1}}
$$

Thus, for any such x,

$$
J_{x}^{h}\left(S_{1}\right) \geq 4 x_{2 n-1}^{-1 / 2}
$$

Again, we may assume that for all such small values of x, we have,

$$
\Lambda_{x}^{H}\left(s_{1}\right)=\Lambda_{x}^{h}\left(s_{1}\right)
$$

therefore,

$$
4 x_{2 n-1}^{-1 / 2} \leqslant\left(1+x^{-1}\right) H(x)
$$

that 18,

$$
H(x) \geq \frac{1}{1+x} h(x)
$$

Now, define the function $H^{\prime}(x)$ as follows,

$$
\begin{aligned}
H^{\prime}(x) & =\frac{2}{1+x_{2 n}} x_{2 n-1}^{1 / 2} \text { for } x \in\left(x_{2 n}, x_{2 n-1}\right] \\
& =\frac{4 x_{2 n-1}^{-1 / 2} x}{1+x^{2}} \quad \text { for } x \in\left(\frac{25}{256} x_{2 n-1}, x_{2 n}\right] \\
& =\frac{2}{1+x_{2 n+2}} x_{2 n+1}^{1 / 2} \quad \text { for } x \in\left(x_{2 n+1}, \frac{25}{256} x_{2 n-1}\right] .
\end{aligned}
$$

We have shown that if $H(x)$ is a monotonic function such that for any set S_{1},

$$
\lambda_{J}^{H}\left(S_{1}\right)=\lambda_{\delta}^{h}\left(S_{1}\right)
$$

for all small values of δ, than,

$$
\begin{equation*}
H(x) \geqslant H^{\prime}(x) \text { for all } x \tag{29}
\end{equation*}
$$

Also, we can see from the above definition that,

$$
\lim _{x \rightarrow 0} \frac{H^{\prime}(x)}{x^{1 / 2}}=5 / 4 .
$$

Thus, we have, for all sets S,

$$
\begin{equation*}
\Lambda^{H^{\prime}}(S) \geqslant 5 /_{4} \Lambda^{1 / 2}(S) \tag{30}
\end{equation*}
$$

But we know that,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{1 / 2}}=1
$$

Now let $\left\{A_{N}\right\}$ be a sequence of positive integers such that $\sum A_{n}^{-1}$ is convergent and,

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-A_{n}^{-1}\right)>\frac{9 / 10}{} \tag{31}
\end{equation*}
$$

Let $\left\{B_{m}\right\}$ be an increasing sequence of positive rel numbers such that,

$$
\begin{equation*}
B_{m} \rightarrow \infty \text { as } m \rightarrow \infty \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{m} \geqslant 2 \quad \text { for all } m \tag{33}
\end{equation*}
$$

Further, we can choose a null-sequence $\left\{x_{n}\right\}$ say, such that each x_{n} is a point of continuity of $h(x)$ and,

$$
\frac{h\left(x_{n}\right)}{x_{n}^{1 / 2}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

We Inductively define a sequence $\left\{t_{m}\right\} \frac{1}{x}$ of real numbers at follows,
choose t_{0} arbitrarily such that $t_{0} \in\left\{x_{n}\right\}$ now assume that t_{0}, \ldots, t_{m-1} have been defined.
Choose t_{m} such that,
$\begin{array}{ll}\text { 1). } 0<t_{m}<1 / 2 t_{m-1} & \text { and } t_{m} \in\left\{x_{m}\right\} \\ \text { ii). } G_{m} t_{m}^{1 / 2}=t_{m-1}^{1 / 2} & G_{m}>A_{m} \\ \text { iii). } B_{m} G_{m} t_{m}<t_{m-1} . & \end{array}$
Denote by K_{m} the integral pest of C_{m}. Let S_{0} be the set of points of a closed interval of length F_{0} on the real line. In S_{0} construct K_{1} closed intervals of length t_{1} equally spaced distance y_{1} apart and such that there is an interval of length t_{1} at each end of S_{0}. Denote by S_{1} the K_{1} closed intervals so formed. In each interval of S_{1} construct K_{2} closed intervals of length t_{2} equally spaced distance y_{2} apart with an interval of length t_{2} at each end of the interval of S_{1}. Denote by S_{2} the $K_{1} K_{2}$ closed intervals so formed. In general S_{n} is a set of $K_{1} \ldots K_{n}$ closed intervals of length t_{n} such that in any interval of S_{n-1} there are K_{n} intervals of S_{n} equally spaced distance y_{n} apart with on interval of length t_{n} at each end of the intervals of S_{n-1}. We write,

$$
S=\bigcap_{n=0}^{\infty} S_{n}
$$

Then clearly,

$$
\begin{align*}
\Lambda^{1 / 2}(S) & \leqslant K_{1} \ldots k_{m} t_{m}^{1 / 2} \text { for all } m \\
& \leqslant t_{0}^{1 / 2} \tag{35}
\end{align*}
$$

Since S is compact we need only consider finite open coverings. Also, if
$\left\{V_{i}\right\}$ is a finite covering of S by means of intervals of S_{n} for different values of n, then we have,

$$
\sum_{i}\left(d\left(v_{i}\right)\right)^{1 / 2} \geqslant\left(c_{1}-1\right) \ldots\left(c_{N}-1\right) t_{N}^{1 / 2}
$$

for all large integers N.
This is because we may replace an interval of S_{n} by the K_{n+1} intervals of S_{n+1} which it contains. So we have, by (31),

$$
\begin{equation*}
\sum_{i}\left(d\left(v_{i}\right)\right)^{1 / 2} \geqslant \prod_{i=1}^{N}\left(1-c_{i}^{-1}\right) t_{0}^{1 / 2} \geqslant 9 / 10 t_{0}^{1 / 2} \tag{36}
\end{equation*}
$$

Now let $\left\{U_{i}\right\}$ be any sequence of open intervals which form a covering of S. Consider particular interval $U_{\text {}}$: of this covering. There is a least integer m, say, such that $S_{n} U_{i}$ is contained in one interval of S_{m-1} but has points in common with at least two different intervals of S_{m}. Let l_{i} be the length of the interval U_{i} and r the number of intervals of S_{M} which intersect $S_{n} U_{i}$. Then we have,

$$
\begin{equation*}
\ell_{i} \leq t_{m-1} \tag{37}
\end{equation*}
$$

and,

$$
\begin{equation*}
l_{2} \geqslant(r-2) t_{m}+(r-1) y_{m} . \tag{38}
\end{equation*}
$$

From (37) we have,

$$
\begin{equation*}
\frac{t_{M-1}^{1 / 2}}{t_{m-1}} \leqslant \frac{l_{i}^{1 / 2}}{l_{i}} \tag{39}
\end{equation*}
$$

Also we know that,

$$
\begin{equation*}
t_{m-1}=k_{m} t_{m}+\left(k_{m}-1\right) y_{m} \tag{40}
\end{equation*}
$$

therefore, by iii). we have,

$$
\begin{align*}
y_{m} & =\frac{t_{m-1}-K_{m} t_{m}}{K_{m}-1} \\
& \geqslant \frac{\left(B_{m}-1\right)^{K_{m}} K_{m} t_{m} \geqslant\left(B_{m}-1\right) t_{m}}{} \tag{41}
\end{align*}
$$

Thus, combining (38) and (40),

$$
\frac{l_{i}}{t_{m-1}} \geqslant \frac{(r-2) t_{m}+(r-1) y_{m}}{k_{m} t_{m}+\left(k_{m}-1\right) y_{m}}
$$

So that,

$$
\begin{aligned}
& r t_{m}^{1 / 2} \leqslant \frac{r t_{m-1}^{1 / 2}}{K_{m}} \leqslant \frac{r}{k_{m}}\left[\frac{k_{m} t_{m}+\left(k_{m}-1\right) y_{m}}{(r-2) t_{m}+(r-1) y_{m}}\right]^{1 / 2} l_{i}^{1 / 2} \\
& =\left[\frac{r^{2} K_{m} t_{m}+r^{2}\left(K_{m}-1\right) y_{m}}{K_{m}^{2} r t_{m}+K_{m}^{2}(r-1) y_{m}-2 K_{m}^{2} t_{m}}\right]^{1 / 2} l_{i}^{1 / 2} \\
& \leqslant\left[\frac{1}{1-\frac{1}{r+(r-1)^{4 m} / t_{m}}}\right]^{1 / 2} l_{i}^{1 / 2} \\
& \leq\left[\frac{1}{1-\frac{2}{2+y_{m} / t_{m}}}\right]^{1 / 2} \ell_{i}^{1 / 2}, \text { since } r \geq 2 \\
& \leqslant\left(\frac{B_{m}+1}{B_{m}-1}\right)^{1 / 2} l_{i}^{1 / 2} \text { by (41) }
\end{aligned}
$$

where M is the greatest integer m such that,

$$
d\left(U_{i}\right)<y_{m-1} \quad \text { for all } i
$$

Therefore we have, by (36),

$$
\sum_{i}\left(d\left(v_{i}\right)\right)^{1 / 2} \geqslant\left(\frac{B_{M}-1}{B_{M}+1}\right)^{1 / 2} \frac{9}{10} t_{0}^{1 / 2}
$$

that is,

$$
\begin{equation*}
\Lambda^{1 / 2}(S) \geqslant 9 / 10 t_{0}^{1 / 2} \tag{42}
\end{equation*}
$$

since $B_{m} \rightarrow \infty$ as $m \rightarrow \alpha$. Also we have,

$$
\begin{aligned}
\Lambda^{h}(S) & \leqslant K_{1} \ldots K_{n} h\left(t_{n}\right) \quad \text { for all integers } n \\
& =\left(K_{1} \ldots K_{n} t_{n}^{1 / 2}\right) \frac{h\left(t_{n}\right)}{t_{n}^{1 / 2}} \\
& \leqslant t_{0}^{1 / 2} h\left(t_{n}\right) / t_{n}^{1 / 2}
\end{aligned}
$$

Therefore, by 1). and (34),

$$
\begin{equation*}
\Lambda^{h}(s) \leqslant t_{0}^{1 / 2} \tag{43}
\end{equation*}
$$

Thus, combining (30), (42) and (43), we have,

$$
\Lambda^{H^{\prime}}(S) \geqslant 5 / 4 \Lambda^{1 / 2}(S) \geqslant 9 / 8 t_{0}^{1 / 2} \geqslant 9 / 8 \Lambda^{h}(S)>\Lambda^{h}(S) .
$$

Hence, for all smell values of δ we have,

$$
\begin{equation*}
\Lambda_{\delta}^{H}(s)>\Lambda_{\delta}^{h}(s) \tag{44}
\end{equation*}
$$

as required. Thus, if we have $\mathcal{~}_{\delta}^{H}\left(s_{1}\right)=\Lambda_{\delta}^{h}\left(s_{1}\right)$ for all mall values of δ then we must also have statement (44) and hence the theorem is proved.

CTAPTPR 2

INTRODUCTION

The ideas discussed in this chapter came initially, from study of Dvoretaky's paper (2) in which he proves that, given any continuous, monotonio Hausdorff measure function, a necessary and sufficient condition for there to be a set in q-aimensional Euclidean space with the property that $h^{h}(S)$ is positive and finite is that $h(x)$ should be a q-dimensional Hausdorff measure function. In his remarks at the end of the paper, Dvoretaky explains how, in the one-dimensional case, this result can be extended to discontinuous functions. Following these results it seened interesting to investigate whether discontinuous functions need any special consideration with regard to Hausdorff measures, or whether; in fact, it is sufficient to consider only continuous functions, If we alter the definition of Hausdorff measure so that we consider either; just closed convex coverings, or coverings consisting of any convex sets, then Dvoretzky's result generalises directly to discontinuous functions for sets In q-dinensional Fuclidean space. In fact we see, fros Theorem 4, that Droreteky's result does apply to discontinuous functions in q-dimensional Euclidean space, when only convex open coverings are permitted in the definition of Hausdorff measure. Theorens 5 and 6 show that when considering a particular set of finite, positive measure it is necessary only to consider continuous funotions. Theorems 7 and 8 show thet for any discontinuous one-dimensional Hausdorff measure function $h(x)$ there is a continuous ono-dimensional Hausdorff measure function $H(x)$ such that; for all Linear sets $S, \lambda^{h}(S)$ is equal to $\Lambda^{H}(S)$. But, under certain conditions in q-dimensional space $(q>1)$ the discontinuous functions
require special consideration. This latter result suggests that sone of the theorems which have been established for continuous functions may not generalise to the discontinuous case.

Before proving these theorems we need to prove a Lena.

Lemme 1
For eng set S in q-dimensional Euclidean space and any Hausdorff measure function $h(x)$, we have,

$$
\Lambda^{n, R(q)}(S) \geqslant \Lambda^{h}(S) \geqslant([\sqrt{q}]+1)^{-q} \Lambda^{h, R(q)}(s)
$$

Proof.
Given any $\Sigma>0$ and $\delta>0$ let $\left\{U_{i}^{\delta}\right\}$ be an open covering of S such that,

$$
\begin{equation*}
d\left(U_{i}^{\delta}\right)<\delta \text { for all } i \tag{1}
\end{equation*}
$$

and,

$$
\begin{equation*}
\sum_{i} h\left(d\left(v_{i}^{\delta}\right)\right)<\Lambda^{h}(s)+([\sqrt{q}]+1)^{-q} \tag{2}
\end{equation*}
$$

Now replace each set U_{i}^{δ} by $([\sqrt{q}]+1)^{q}$ open q-dimensional rectangles $\left.R_{i}, \ldots, R_{i}(C \sqrt{q}]+1\right)^{q}$, with sides parallel to the coordinate axes, and such that,

$$
\begin{aligned}
d\left(R_{i}\right)= & d\left(U_{i}^{\delta}\right) \text { for } s=1, \ldots,([\sqrt{q}]+1)^{q} \text { and for each } i \\
& \left.U_{i}^{\delta} \subset \bigcup_{s=1}^{([\sqrt{q}]+1}\right)^{q} R_{i s} \quad \text { for each } i
\end{aligned}
$$

In this manner we get a covering of S by open rectangles R_{i} such that,

$$
\begin{gathered}
d\left(R_{i_{j}}\right)<\delta \quad \text { for all } i, j \\
\sum_{i, j} h\left(d\left(R_{i j}\right)\right)=([\sqrt{q}]+1)^{q} \sum_{i} h\left(d\left(u_{i}^{\delta}\right)\right)
\end{gathered}
$$

and

Thus, by (2), and the definition of Hausdorff measure,

$$
\lambda_{\delta}^{n, R(q)}(s) \leqslant([\sqrt{q}]+1)^{q} \Lambda^{n}(s)+\Sigma .
$$

But, this result is true for arbitrary δ and \sum so we have,

$$
\Lambda^{h, R(q)}(s) \leqslant([\sqrt{q}]+1)^{q} \Lambda^{h}(s) .
$$

The inequality $J^{h, R(q)}(S) \geqslant \Lambda^{h}(S)$ is trivial and thus we have the required result.

Theorem 4

Let $h(x)$ be any Hausdorff measure function. Then a necessary and sufficient condition for there to exist a set S in q-dimensional Euclidean space with $\Lambda^{h}(S)$ positive end finite is,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{2}}>0 .
$$

that is, $h(x)$ is a q-aimensional Hausdorff measure function. Proof

Assure,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{q}}=0 .
$$

Let R be any q-dimensional rectangle with longest side d, way. Choose a
sequence $\left\{x_{n}\right\}$ of real numbers such that,

$$
\Lambda_{\delta}^{h}(R) \leqslant\left(\left[\frac{d \sqrt{q}}{x_{n}}\right]+1\right)^{q} h\left(x_{n}\right)
$$

for all large integer: n. That is,

Bu*

$$
\begin{aligned}
& \lambda_{j}^{h}(R) \leqslant(2 d \sqrt{q})^{q} \frac{h\left(x_{n}\right)}{x_{n}^{q}} \\
& \frac{h\left(x_{n}\right)}{x_{n}^{q}} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

so $\Lambda_{\delta}^{h}(R)$ is zero for every rectangle R and for every $\delta>0$, thus $\Lambda^{h, R(q)}(S)=0 \quad$ for every set S in R and so by Leman $1, \Lambda^{h}(S)=0$ for all sets S. Hence the necessity of the conation is proved.

We now prove the sufficiency of the condition.
Cess 1:

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{q}}=k,
$$

where α is a finite, positive constant.
Now, given any $\Sigma>0$, there exists an x_{0} such that,

$$
\frac{h(x)}{x^{q}}>\alpha-\Sigma \quad \text { for all } x \leq x_{0} \text {, }
$$

also we know that,

$$
\frac{h(x)}{x^{q}}<\alpha+\Sigma
$$

for infinitely many sal values of x.
Now let R denote not only a rectangle, but also its qudinensional volume (that is, the product of the lengths of its sides). Let $\left\{U_{i}\right\}$ be any open covering of R with $d\left(U_{i}\right)<\delta<x_{\text {。 }}$ for all i, then,

$$
\Lambda_{\delta}^{h}(R)=\frac{b d}{\left\{u_{i}\right\}} \sum_{i} h\left(d\left(v_{i}\right)\right) \geqslant \frac{b d}{\left.\xi v_{i}\right\rangle} \sum_{i}(\alpha-r)\left(d\left(u_{i}\right)\right)^{q}
$$

Each set $\left\{U_{i}\right\} c a n$ be enclosed in a q-dimensional cube of side $d\left(U_{i}\right)$ with sides parallel to the coordinate exes. These cubes then cover R and so we have,

$$
\sum_{i}\left(\alpha\left(v_{i}\right)\right)^{a} \geqslant R
$$

thus we have,

$$
\begin{equation*}
\lambda_{\delta}^{h}(R) \geqslant(\alpha-\Sigma) R . \tag{3}
\end{equation*}
$$

Now let $\left\{a_{1}, \ldots, a_{q}\right\}$ denote the side -lengths of the rectangle R then, a

$$
\prod_{i=1} a_{i}=R .
$$

Also, for any $x<\delta$,

$$
\Lambda_{\delta}^{h}(R) \leqslant \prod_{i=1}^{a}\left(\left[\frac{a_{i} \sqrt{a}}{x}\right]+1\right) h(x) .
$$

Now choose x so mall that,

$$
x<\delta
$$

$\min _{1 \leq i \leq q}\left\{\left[\frac{a_{i} \sqrt{q}}{x}\right]\right\}>1 / \Sigma$,
and, $\quad \frac{h(x)}{x^{q}}<\alpha+\Sigma$.

Then we have,

$$
\begin{align*}
A_{\delta}^{h}(R) & \leqslant(1+\Sigma)^{q}(\sqrt{q})^{q} \prod_{i=1}^{q}\left(\frac{a_{i}}{x}\right) \cdot h(x) \\
& =(1+\Sigma)^{q}(\sqrt{q})^{q} R \frac{h(x)}{x^{q}} \\
& <(1+\Sigma)^{q}(\sqrt{q})^{q}(\alpha+\Sigma) R \tag{4}
\end{align*}
$$

The inequalities (3) and (4) hold for all positive values δ and Σ. Thus we have,

$$
\alpha R \leqslant \lambda^{h}(R) \leqslant \alpha(\sqrt{q})^{q} R
$$

Hence the sufficiency is proved for $\lim _{x \rightarrow 0} \frac{h(x)}{x^{q}}=\alpha$ where we
have, $\quad 0<\alpha<\infty$.
Case 2:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{h(x)}{x^{a}}=\infty \quad \text { and hence } \quad \lim _{x \rightarrow 0} \frac{h(x)}{x^{a}}=\infty \tag{5}
\end{equation*}
$$

We shall now construct a set S in a similar manner to Dvoretaky's construction and prove that this has the property that $\Lambda^{h}(S)$ is positive and finite.

Since $h(x)$ may be assumed to be monotonic increasing, it has only a countable number of points of discontinuity. Let these points be denoted by d_{1}, d_{2}, \ldots
Thus from (5) we have,

$$
\lim _{\substack{x \rightarrow 0 \\ x \neq d i \\ \text { any } i}} \frac{h(x)}{x^{a}}=\infty
$$

Frou (6) it follows that there exist erbitrarily meil positive numbers x, satiafying,

$$
\begin{equation*}
x \neq d: \quad \text { for any } i, \quad \frac{h(x)}{x^{q}}<\frac{2 h(t)}{t^{2}} \tag{7}
\end{equation*}
$$

for all t satisfying $0<t \leqslant x$ and $t \neq d_{i}$ for any i.
Now let $\left\{A_{n}\right\}$ be a sequenos of positive numbers such that all the tems of the sequence are greater than two and such that the series $\sum\left(1 / A_{n}\right)$ converges. Also, let B be a positive number greater than or equal to two. We now proceed to construet the sequence $\left\{x_{n}\right\}$ of positive numbers, as Sollows;
choose x_{0} to be any positive number such that $x=x_{0}$ satisfies (7). Having chosen x_{ν} for $0 \leqslant \nu \leq n-1$. we choose $x_{n}\left(0<x_{n}<x_{n-1}\right)$ such that,
a). (7) holds for $x=x_{n}$
b). $h\left(x_{n-1}\right)=C_{n}^{q} h\left(x_{n}\right)$ with $C_{n}>A_{n}$
0). $B C_{n} x_{n}<x_{n-1}$.

It is olear that these ohoices are permissible from the restrictions placed on $h(x)$.
Fo assume that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Denote by K_{n} the integral part of G_{n}. Let S_{0} be the set of pointa of a olosed cube J_{0} with aides parallel to the coordinate exes and each of length x^{x} / \sqrt{q}. Hech side of this 4 q-dimensional oube is a closed interval of Iength $x^{x_{0}} \sqrt{q}$. Fram each aide we remove $K_{i}-1$ open intervals each of length $\frac{Y_{1}}{1} \sqrt{q}$ so that there remain K_{1} olosed intervals eaoh of length x_{1} / \sqrt{q}. This is possible since,

$$
\frac{K_{1} x_{1}}{\sqrt{a}} \leqslant \frac{c_{1} x_{1}}{\sqrt{a}}<\frac{x_{0}}{\sqrt{a}} / B<\frac{x_{0}}{\sqrt{a}}
$$

Fe do this in suoh a way that when considering any one face of the cube, the opposite face is dissected in an exactly aymetrical fashion. We now form K_{1}^{q} closed cubes of side x_{1} / \sqrt{q}, inside. J_{0}, by taking cartesian products of the intervals of length x_{1} / \sqrt{q}. Each one of these elosed cubes is denoted by J_{1} and S_{1} denotes the set of points contained in the K_{1}^{q} cubes J_{1}. In each J_{1} we construot K_{2}^{q} oubes J_{2} each of side ${ }^{2} / \sqrt{q}$ in a sinilar mamer, and danote by S_{2} the set of points contained in the $K_{1}^{2} K_{2}^{2}$ closedeubes J_{2}. Continuing in thia way we define S as the set of points oonteined in ill $S_{n}(n=0,1,2, \ldots)$. Then, S is a perfect nowhere dence set.
We have now to show thet $\Lambda^{h}(S)$ is positive and finite. Given any $\delta>0$, there is a aufficiently large n for which $x_{n}<\delta$. The set S being inoluded in S_{n} can be covered by the $K_{1}^{q} \ldots K_{n}^{q}$ closed cubes J_{n}.

Now,

$$
\begin{equation*}
\sum_{U_{i} \in S_{n}} h\left(d\left(U_{i}\right)\right)=K_{1}^{q} \ldots K_{n}^{q} h\left(x_{n}\right) \tag{8}
\end{equation*}
$$

where, the V_{i} are the oubes I_{n} which form the set S_{n}.
Using b). and the feot that $K_{n} \leqslant C_{n}$ in (8), weget,

$$
\begin{equation*}
K_{1}^{q} \ldots K_{n}^{q} h\left(x_{n}\right) \leq K_{1}^{q} \ldots K_{n-1}^{q} h\left(x_{n-1}\right) \leq \ldots \leq h\left(x_{0}\right) \tag{a}
\end{equation*}
$$

Sinoe each of the points x_{n} is a point of continuity of $h(x)$ we can reglace each of the elosed sets U_{i} by open sets V_{i} oontaining U_{i} and
such that $\sum_{i} h\left(d\left(V_{i}\right)\right)$ differs fran $\sum_{i} h\left(d\left(v_{i}\right)\right)$ by an arbitrarily sail amount. Combining this fact with (8) and (9) and the definition of Hausdorff measure, we have,

$$
\begin{equation*}
\Lambda_{\delta}^{h}(S) \leqslant \sum_{i} h\left(d\left(v_{i}\right)\right)<2 h\left(x_{0}\right) \tag{10}
\end{equation*}
$$

and therefore, since (10) holds for all $\delta>0$,

$$
\Lambda^{h}(s) \leqslant 2 h\left(x_{0}\right)<\infty
$$

Thus we have proved that $\Lambda^{h}(S)$ is finite.
Before proving $\Lambda^{h}(S)>0$ we note the following. If we cover S with the $K_{1}^{q} \ldots K_{n}^{q}$ cubes J_{n}; then $\sum_{S_{n}} h(x)$ w111 be,

$$
\begin{aligned}
K_{1}^{q} \ldots K_{n}^{q} h\left(x_{n}\right) & >\left(c_{1}-1\right)^{q} \ldots\left(c_{n}-1\right)^{q} h\left(x_{n}\right) \\
& =\left(c_{1}-1\right)^{q} \ldots\left(\frac{\left.c_{n}-1\right)^{q}}{c_{n}^{q}} h\left(x_{n-1}\right)\right. \text { by } \\
& =n \\
& =\prod_{i=1}^{n}\left(\frac{c_{i}-1}{c_{i}}\right)^{q} h\left(x_{0}\right) .
\end{aligned}
$$

Now we know that $\sum 1 / A_{n}$ converges and that $C_{n}>A_{n}$ oo $\sum 1 / c_{n}$ converges and hence so does $\Pi\left(1-1 / c_{n}\right)^{q}$. Denoting this product by P, we have, for every n,

$$
\sum_{f_{n}} h(x) \geqslant P h\left(x_{0}\right)
$$

This inequality still holds if we enclose S in a finite number of cubes J_{m}, J_{n}, \ldots not necessarily bearing the same index. This follows from (9)
which shows that if any J_{n-1} is replaced by the K_{n}^{q} cubes J_{n} included in it the contribution to $\sum h(x)$ cannot inorease.
We now prove that $\mu^{h}(S)>0$.
We show that if we enclose S in any finite number of open rectangles R_{1}, R_{2}, \ldots and if $\sum h(x)$ for these rectangles is H, then there is a covering of S by oubes J_{n} for which $\sum h(x)<c H$, where c is a constant. Hence by virtue of our previous renarks, $H>1 / c P h\left(x_{0}\right)$ and consequently $\Lambda^{h, R(q)}(s)>0$. If each one of the rectengles R which does not contain any point of S is deleted, and every other rectangle R is replaced by the largest closed rectangle Q the interior of which is contained in R and such that each one of its edges contains at least one point of S then the rectangles Q atill cover S and $\sum h(x)$ is only diminished by this replacenent. It is sufficient to show that if R is any one of the rectangles thus obtained, then it can be replaced by r^{q} cubes J_{n} with $r^{q} h\left(x_{n}\right)<c h(l)$ where l is the aimeter of \mathbb{R}.
Consider \mathbb{R} and the sets S_{1}, S_{2}, \ldots; there must be a first set S_{n} such that R contains points not belonging to S_{n}. Then R is contained in one cube J_{n-1} but has points in camon with at most r^{q} oubes J_{n} contained in J_{n-1} where r is the ereatest number of cubes J_{n} met by any one edge of Ω $(r \geq 2)$. This is because every side of R contains at least one point of S. Since $l \leqslant x_{n-1}$ we have that,

$$
\frac{h\left(x_{n-1}\right)}{x_{n-1}^{q}}<\frac{2 h(l)}{l^{q}}, \quad \text { if } l \neq d i \text { for eny } i .
$$

If $l=d$: for scon i, then there is an l^{\prime} such that $~ Y / L<l^{\prime}<l$ and l^{\prime} is a point of continuity of $h(x)$. Then $l^{\prime}<x_{n-1}$ and hence,

$$
\frac{h\left(x_{n-1}\right)}{x_{n-1}^{q}}<\frac{2 h\left(l^{\prime}\right)}{l^{\prime q}}
$$

Also we have,

$$
l \geqslant(r-2) \frac{x_{n}}{\sqrt{q}}+(r-1) \frac{y_{n}}{\sqrt{q}}
$$

where $\frac{y_{n}}{\sqrt{q}}$ is the distance between two adjacent cubes of S_{n}, and therefore,

$$
l^{\prime}>\frac{1}{2 \sqrt{q}}\left\{(r-2) x_{n}+(r-1) y_{n}\right\}
$$

Now,

$$
x_{n-1}=k_{n} x_{n}+\left(k_{n}-1\right) y_{n},
$$

and therefore,

$$
\begin{aligned}
y_{n} & \left.=\frac{x_{n-1}-k_{n} x_{n}}{k_{n}-1}>\frac{B k_{n} x_{n}-K_{n} x_{n}}{k_{n}-1} \text { by } c\right) . \\
& >x_{n} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{l^{\prime}}{x_{n-1}} & >\frac{\frac{1}{2}\left[(r-2) x_{n}+(r-1) y_{n}\right]}{K_{n} x_{n}+\left(K_{n}-1\right) y_{n}} \\
& >\frac{1}{2 \sqrt{q}}(r-1)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
r^{q} h\left(x_{n}\right) & \leqslant \frac{r^{q}}{k_{n}^{q}} h\left(x_{n-1}\right)<\frac{2 r^{q} x_{n-1}^{q}}{k_{n}^{q} l^{\prime q}} h\left(l^{\prime}\right) \\
& <\frac{2 r^{q}}{k_{n}^{q}}\left[\frac{2 k_{n}-1}{\frac{1}{2 \sqrt{q}}(r-1)}\right]^{q} h\left(l^{\prime}\right)
\end{aligned}
$$

$$
<2(8 \sqrt{q})^{q} h\left(l^{\prime}\right)=\operatorname{ch}\left(l^{\prime}\right)
$$

So we have,

$$
\sum h\left(l^{\prime}\right)>1 / c p h\left(x_{0}\right) .
$$

But, in every case $l^{\prime} \leqslant l$ and hence,

$$
\sum h(l) \geqslant \sum h\left(l^{\prime}\right)
$$

therefore,

$$
\mathcal{A}^{h, R(q)}(s) \geqslant 1 / c \beta h\left(x_{0}\right)
$$

Thus, using Lemma i,

$$
\Lambda^{h}(S) \geqslant \frac{1}{c([\Omega q]+1)^{q}} \beta h\left(x_{0}\right)>0
$$

Hence the theorem is proved.

We now proceed to investigate whether it is always possible to replace discontinuous functions by continuous ones.

Theorem 5
If $h(x)$ is any one-dimensional Hausdorff measure function and S is a set on the real line, such that $\mathcal{\Lambda}^{h}(S)$ is positive and finite, then there exists a continuous onemimensional Hausdorff measure function $H(J f)$ say, such that,

$$
\Lambda^{h}(S)=\Lambda^{H}(S) .
$$

Proof
Let $\bigcup_{i=1}^{\alpha} X_{i}$ be any covering of S by open intervals X_{i}. Take any
one of these intervals $X_{i} ;$ if it overlaps another interval of the cover X_{j}, say, then let,

$$
x_{i} \equiv\left(a_{i}, b_{i}\right), \quad x_{j}=\left(a_{j}, b_{j}\right) \quad \text { and } a_{j}<b_{i} \text { say. }
$$

Then there exist points \mathcal{Z}_{j} and η_{i} such that,

$$
a_{j}<\xi_{j}<y_{i}<b_{i}
$$

and both $\left(\eta_{i}-a_{:}\right)$and $\left(y_{j}-\xi_{j}\right)$ are points of continuity of $h(x)$. Replace X_{i}, X_{j} by the open intervals $X_{i}^{\prime}, X_{j}{ }^{\prime}$ such that,

$$
x_{i}^{\prime} \equiv\left(a_{i}, y_{i}\right) \text { and } x_{j}^{\prime} \equiv\left(\xi_{j}, b_{j}\right)
$$

Then, these two intervals cover as much of S as the original two did, their diameters are less than the original and are both at points of continuity of $h(x)$.
If, however, X_{i} does not overlap any other X_{j} for $j \neq i$ then, we proceed as follows; given any $\Sigma>0$ there exists a $\delta_{\text {: such that, for }}$ integral values of i,

$$
h\left(f_{i}\right)<\pi / 2 i
$$

and,

$$
0<\delta_{i}<\left(b_{i}-a_{i}\right)
$$

The intervals $X_{i} \equiv\left(a_{i}, b_{i}\right)$ and $\left(b_{i}-\frac{\delta_{i}}{2}, b_{i}+\frac{\delta_{i}}{2}\right)$ overlap end cover as much of S as X_{i} aid. We now replace these intervals, as before, by
$\left(a_{i}, y_{i}\right)$ and $\left(\xi_{i}, b_{i}+\frac{\delta_{i}}{i}\right)$ with,

$$
-b_{i}-\frac{\delta_{i}}{2}<\xi_{i}<\eta_{i}<b_{i}
$$

such that $\left(y_{i}-a_{i}\right)$ and $\left.\left(b_{i}+\frac{\delta_{i}}{2}-\right\}_{i}\right)$ are points of continuity of $h(r)$.

In this way, we get a covering $\bigcup_{i=1}^{\infty} X_{i}^{\prime}$ of S such that,

$$
\begin{equation*}
\sum_{i} h\left(d\left(x_{i}^{\prime}\right)\right)<\sum_{i} h\left(d\left(x_{i}\right)\right)+\Sigma \tag{11}
\end{equation*}
$$

for any given $\Sigma>0$ and with the property that $d\left(X_{i}^{\prime}\right)$ is a point of continuity of $h(\%)$.

Let x_{1}, x_{2}, \ldots be on enumeration of all the points of discontinuity of $h(x)$. Given any $\Sigma>0$ and any $\delta>0$, there exists a covering $U_{i} X_{i}$ of S such that,

$$
\begin{equation*}
\Lambda_{\delta}^{h}(S) \leqslant \sum_{i=1}^{\infty} h\left(d\left(x_{i}\right)\right)<\Lambda_{\delta}^{h}(s)+\varepsilon \tag{12}
\end{equation*}
$$

and $d\left(x_{i}\right)<\delta$ for all i.
Replace this covering by the corresponding covering $\bigcup_{i=1}^{\infty} x_{i}^{\prime}$ of S. Then, we have, by (11) and (12),

$$
\begin{equation*}
\Lambda_{\delta}^{h}(s) \leqslant \sum_{i} h\left(d\left(x_{i}^{\prime}\right)\right)<\Lambda_{\delta}^{h}(s)+2 \leqslant, \tag{13}
\end{equation*}
$$

with $d\left(X_{i}^{\prime}\right)<\delta$ for all i, and $d\left(X_{i}^{\prime}\right)$ is a point of continuity of $h(x)$ for each i.

We now choose δ such that,

$$
\begin{equation*}
\mathcal{\Lambda}^{h}(s) \geqslant \mathcal{\Lambda}_{\delta}^{h}(s)>\mathcal{\Lambda}^{h}(s)-\Sigma \tag{14}
\end{equation*}
$$

Thus, combining (13) and (14) we see that, given any $\Sigma>0$ there exists $\delta^{\prime}>0$ such that for all $\delta<\delta^{\prime}$ there is a covering $\bigcup_{i=1}^{\infty} x_{i}^{\prime}$ of S such that $d\left(X_{i}^{\prime}\right)<\delta$ for all $i, d\left(X_{i}^{\prime}\right)$ is a point of continuity of $h(x)$ for each i, and,

$$
\begin{equation*}
\Lambda^{h}(s)-\varepsilon<\sum_{i} h\left(d\left(x_{i}^{\prime}\right)\right)<\Lambda^{h}(s)+2 \varepsilon \tag{15}
\end{equation*}
$$

Now choose a sequence $\left\{\delta_{n}\right\}$ of positive numbers satisfying the following conditions,

$\delta_{n}>\delta_{n+1}$	for all	-(16)
$\delta_{n} \forall 0$	as $n \rightarrow \infty$	$-(17)$
$\delta_{n}<\delta^{\prime}$	for all n	$-(12)$

and such that each δ_{n} is a point of continuity of $h(x)$. Then, shown above, for any n, there exists a covering $\bigcup_{i=1}^{\alpha} x_{n_{i}}^{\prime}$ of S such that $\alpha\left(X_{n}^{\prime}\right)<\delta_{n}$ for all $i, d\left(X_{n i}^{\prime}\right)$ is a point of continuity of $h(x)$ for each i, end,

$$
\begin{equation*}
\Lambda^{h}(s)-\Sigma<\sum_{i} h\left(d\left(x_{n:}^{\prime}\right)\right)<\mathcal{\Lambda}^{h}(s)+2 \Sigma \tag{19}
\end{equation*}
$$

Since, for any $n, \sum_{i} h\left(d\left(X_{n_{i}}^{\prime}\right)\right)$ is convergent we must have,

$$
h\left(d\left(X_{n i}^{\prime}\right)\right) \rightarrow 0 \quad \text { as } i \rightarrow \sigma
$$

and therefore, since $h(x)>0$ for $x>0$,

$$
d\left(X_{n_{i}}^{\prime}\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty \text {. }
$$

Thus zero is the only possible limit point of the sequence of diameters $\left\{d\left(X_{n i}^{\prime}\right)\right\}_{i=1}^{16}$. Because of this, we can now enclose each x_{i} in an interval $\ell_{1} \equiv\left(\alpha_{1}, \beta_{1 i}\right)$ such that no $l_{1 i}$ contains a $d\left(X_{1 i}^{\prime}\right)$. If at any eatage we find that point of discontinuity x_{1} is already included in an $l_{1 j}$ for some $j \neq i$ we leave it alone. We, further, insist that $\alpha_{1 i}$ and $\beta_{1 i}$ should be points of continuity of $h(x)$ for each i and that no l_{1} should contain any δ_{n}. This lest restriction is permissible as zero
is the only limit point of the sequence $\left\{\delta_{n}\right\}$.
We now define the continuous function $H^{\prime \prime \prime}(x)$ as follows,

$$
\begin{aligned}
H^{(\prime)}(x) & =h(x) & \text { if } x \propto l_{1 i} \text { for each i } \\
H^{(\prime)}(x) & =h\left(\beta_{1 i}\right) & \text { if } x \in\left[x_{i}, \beta_{1 i}\right) \\
H^{(\prime)}\left(\phi_{1 i}^{(m)}\right) & =h\left(\phi_{1 i}^{(n-1)}+0\right) & \text { for } m=1,2, \ldots
\end{aligned}
$$

where $\phi_{1 i}^{(m)}=\alpha_{1 i}+\frac{1}{2^{m}}\left(x_{i}-\alpha_{1 i}\right)$ for $m=0,1,2, \ldots$. Finally define $H^{(1)}(x)$ to be linear and continuous in $\left[\phi_{1}^{(m)}, \varphi_{1}^{(m-1)}\right]$ for $M=2,3, \ldots$ and in $\left[\varphi_{1:}^{(1)}, x_{i}\right]$.
Thus, we have defined a continuous, increasing function $H^{(1)}(x)$ such that $H^{(1)}(x) \geqslant h(x)$ for all x and,

$$
H^{(1)}\left(d\left(X_{1 i}^{\prime}\right)\right)=h\left(d\left(X_{1}^{\prime}\right)\right) \quad \text { for all }:
$$

So we have,

$$
\begin{equation*}
\Lambda^{h}(s)-\Sigma<\sum_{i} H^{(\prime \prime}\left(d\left(X_{1 i}^{\prime}\right)\right)<\mu^{h}(s)+2 \Sigma \tag{20}
\end{equation*}
$$

and,

$$
d\left(x_{1:}^{\prime}\right)<\delta_{1} \quad \text { for all }:
$$

We now consider the covering $\bigcup_{i=1}^{\alpha} X_{i}^{\prime}$ of S. If necessary, we shrink any or the intervals $l_{1 i}$ to intervals $l_{2_{i}}$ contained in $l_{1 i}$ with $l_{2_{i}} \equiv\left(\alpha_{2 i}, \beta_{2 i}\right)$ and such that no $l_{1 i}$ contains a $d\left(x_{2 i}^{\prime}\right)$. For those values of i where $\ell_{2:} \neq \ell_{12}$, we insist that $\alpha_{2}>Q_{1 i}^{(1)}$. Also, if any of the discontinuities of $h(x)$ becomes 'exposed' by this shrinking we similarly enclose them in a suitable $l_{2 \text { : }}$ which does not contain any $\varphi_{1}^{(m)}$ unless

It is the discontinuity itself. Again we define the continuous, increasing function $H^{(2)}(x)$ es follows,

$$
\begin{aligned}
H^{(2)}(x) & =h(x) \\
H^{(2)}(x) & =h\left(\beta_{2 i}\right) \\
H^{(2)}\left(\varphi_{2 i}^{(m)}\right) & =h\left(\phi_{2 i}^{(m+1)}+0\right)
\end{aligned} \quad \text { for for each } \quad m=1,2, \ldots .
$$

where $\phi_{2_{i}}^{(m)}=\alpha_{2 i}+\frac{1}{2 m}\left(x_{i}-\alpha_{2 i}\right) \quad$ for $m=0,1,2, \ldots$
Finally define $H^{(2)}(x)$ to be Linear ana continuous in $\left[\varphi_{2 i}^{(m)}, \varphi_{2 i}^{(m-1)}\right]$ for $m=2,3, \ldots \quad$ and $\operatorname{in}\left[\varphi_{2}^{(1)}, x_{i}\right]$.

Thus, we see that,

$$
H^{(1)}(x) \geqslant H^{(2)}(x) \geqslant h(x) \quad \text { for all } x \text {, }
$$

and $\quad H^{(2)}\left(d\left(X_{2 i}^{\prime}\right)\right)=h\left(d\left(X_{2 i}^{\prime}\right)\right)$ for all i.

Again have,

$$
\begin{equation*}
\Lambda^{h}(s)-\Sigma<\sum_{i} H^{(2)}\left(d\left(x_{2 i}^{\prime}\right)\right)<\Lambda^{h}(s)+2 \tau \tag{21}
\end{equation*}
$$

and

$$
d\left(X_{2 i}^{\prime}\right)<\delta_{2} \quad \text { for all } i
$$

Continuing in this manner we get continuous, increasing functions $H^{(n)}(x)$ such that,

$$
\begin{aligned}
& H^{(n-1)}(x) \geqslant H^{(n)}(x) \geqslant h(x) \text { for all } x, \\
& H^{(n)}\left(d\left(X_{n}^{\prime}\right)\right)=h\left(d\left(X_{n i}^{\prime}\right)\right) \text { for all }: \\
& \Lambda^{h}(S)-\Sigma<\sum_{i} H^{(n)}\left(d\left(X_{n i}^{\prime}\right)\right)<\Lambda^{h}(S)+2 \Sigma \quad \text { for all } i .
\end{aligned}
$$

We now define the function $H(x)$ es follows,

$$
H(x)=H^{(n)}(x) \quad \text { for } x \in\left[\delta_{n+1}, \delta_{n}\right]
$$

We see that $H(x)$ is continuous, increasing and $H(x) \rightarrow 0$ as $x \rightarrow 0$. Also we have,
end

$$
\begin{array}{ll}
H(x) \geqslant h(x) & \text { for all } x \\
H(x) \leqslant H^{(w)}(x) & \text { for } x \in\left(0, \delta_{n}\right) .
\end{array}
$$

From (23), we deduce that $H(x)$ is also one-dimensional Hausdorff measure function. For any integer n, we have, using (24) and (22),

$$
\begin{aligned}
\Lambda_{\delta_{n}}^{H}(S) & \leqslant \mathcal{\Lambda}_{\delta_{n}}^{H^{(n)}(S)} \sum_{i} H^{(n)}\left(d\left(X_{n}^{\prime}\right)\right) \\
& <\Lambda^{h}(S)+2 \Sigma
\end{aligned}
$$

But,

$$
\lim _{n \rightarrow \infty} \Lambda_{J_{n}}^{H}(s)=\Lambda^{H}(s)
$$

thus,

$$
\Lambda^{H}(s) \leq \Lambda^{h}(s)+2 \Sigma .
$$

From (23) see that, $\Lambda^{H}(S) \geqslant \Lambda^{h}(s)$.
Hence we have show that, given any, $\Sigma>0$ there is a continuous onomimensional Hausdorff measure function $H(x /$ such that,

$$
\lambda^{h}(s) \leqslant \lambda^{H}(s) \leqslant \lambda^{k}(s)+2 s
$$

Thus wet the required continuous function merely by multiplying $H(x)$ by the appropriate constant, that 18,

$$
\Lambda^{h}(s) / \Lambda^{H}(s)
$$

We see that the proof of this theorem relied very heavily on the fact that were working with sets on the real line. The next theorem shows that the result is also true in q - imonsional Euclidean space ($q>1$).

Theorem 6

If $h(x)$ is any quimensional Hausdorff measure function and S is a set in q-amensionel Euclidean space such that $\Lambda^{h}(S /$ is positive and finite, them there exists a continuous q-aimensional Hausdorff measure function $H(x)$ such that,

$$
\mathcal{L}^{H}(s)=\mathcal{N}^{n}(s)
$$

Proof

Let $\left\{\delta_{n}\right\}$ be a sequence such that $\delta_{n} \searrow 0$ as $n \rightarrow \infty$ and such that \} each δ_{n} is a point of continuity of $h(x)$. citroen any $\varepsilon>0$, then corresponding to each δ_{n} there exists a covering $\bigcup_{i=1}^{\infty} X_{n}$ of S such that,

$$
d\left(x_{n_{i}}\right)<d_{n} \quad \text { for all } i
$$

$$
\begin{equation*}
\text { and. } \Lambda_{\delta_{n}}^{h}(s) \leqslant \sum_{i} h\left(d\left(x_{u_{i}}\right)\right)<j_{\delta_{n}}^{h}(s)+\Sigma \tag{25}
\end{equation*}
$$

We may assume that the X_{n} are ordered such the,

$$
d\left(X_{n_{i+1}}\right) \leqslant d\left(x_{n_{i}}\right)
$$

Define the function $F^{(1)}(x)$ as follows,

$$
\begin{array}{ll}
F^{\prime \prime \prime}(x)=h\left(d\left(x_{1 i}\right)\right) \quad \text { for } x \in\left(d\left(x_{i+1}\right), d\left(x_{1 i}\right)\right] \\
& \text { for } i=1,2, \ldots
\end{array}
$$

Then $F^{\prime \prime}(x) \geqslant h(x)$ for $x \in\left(0, d\left(X_{1 i}\right)\right)$ and,

$$
\Lambda_{\delta_{1}}^{F^{(1)}}(s) \leqslant \sum_{i} F^{(1)}\left(d\left(x_{i_{i}}\right)\right)=\sum_{i} h\left(d\left(x_{i}\right)\right) .
$$

Thus, by (25), we have,

$$
\begin{equation*}
\Lambda_{\delta_{1}}^{F^{\prime \prime}}(s)<\lambda_{\delta,}^{h}(s)+\varepsilon \tag{26}
\end{equation*}
$$

Define $F^{(2)}(x)$ as follows,

$$
\begin{array}{ll}
F^{(2)}(x)=F^{(1)}(x) & \text { for } \quad x \in\left(d\left(x_{21}\right), d\left(x_{1,}\right)\right] \\
F^{(2)}(x)=h\left(d\left(x_{2 i}\right)\right) & \text { if } \quad x \in\left(d\left(x_{2 i+1}\right) d\left(x_{2 i}\right)\right] \\
& \text { end } F^{(1)}(x) \geq h\left(d\left(x_{2 i}\right)\right)
\end{array}
$$

and,

$$
F^{(2)}(x)=F^{(1)}(x)
$$

$$
\text { if } \quad x \in\left(d\left(x_{2_{i+1}}\right), d\left(x_{2_{i}}\right)\right]
$$

$$
\text { and } F^{(1)}(x)<h\left(d\left(x_{2 i}\right)\right) \text {. }
$$

Then,

$$
h(x) \leqslant F^{(2)}(x) \leqslant F^{(1)}(x) \quad \text { in } \quad\left(0, \alpha\left(x_{1}\right)\right]
$$

and,

$$
\begin{equation*}
\Lambda_{\delta_{2}}^{F^{(s)}(s)}<\Lambda_{\delta_{2}}^{h}(s)+\Sigma \tag{27}
\end{equation*}
$$

Continuing in this manner we get $F^{(n)}(x)$ satisfying,

$$
\begin{equation*}
h(x) \leqslant F^{(n)}(x) \leqslant F^{(n-1)}(x) \tag{28}
\end{equation*}
$$

and,

$$
\begin{equation*}
\Lambda_{\delta_{n}}^{F^{(n)}}(S)<\Lambda_{\delta_{n}}^{h}(S)+\Sigma \tag{29}
\end{equation*}
$$

Now define $F(x)$ as follows,

$$
F(x)=F^{(n)}(x) \quad \text { for } x \in\left(d\left(X_{(n+1)}\right), d\left(X_{n}\right)\right]
$$

Then, by (28).

$$
F(x) \geq h(x) \quad \text { for all } x
$$

and thus $f(x)$ is a q-aimensional Hausdorff measure function, Also, for each n,

$$
F(x) \leq f^{(n)}(x) \quad \text { for } x \in\left(0, d\left(x_{n}\right)\right]
$$

So for each n, have,

$$
\Lambda_{J_{n}}^{F}(s) \leqslant \lambda_{J_{n}}^{(n)}(s)<\lambda_{J_{n}}^{h}(s)+\Sigma
$$

and therefore,

$$
\lambda^{h}(s) \leqslant \lambda^{f}(s)<\Lambda^{h}(s)+\Sigma
$$

Thus, for the proof of the theorem, we need only consider those
discontinuous functions which are step functions with zero as the only possible limit point of their points of discontinuity, and at any one of the discontinuities x say, $h(x)=h(x-0)$.
Now let $h(x)$ be such a function and let S be a set such that $A^{h}(S /$ is positive and finite. We show that this can be replaced by a continuous function $H(x)$ such that $\Lambda^{h}(S)=\mathcal{A}^{H}(S)$.
Let $\bigcup_{i=1}^{\infty} X_{i}$ be a covering of S by open q-dimensional rectangles with sides parallel to the coordinate axes. Then if, for some $i, d\left(X_{i}\right)$ is a
point of discontinuity of $h(x)$ we can replace this rectangle X_{i} by two other rectangles Y_{j}, Y_{k} such that,

$$
\begin{aligned}
d\left(Y_{j}\right) & <d\left(X_{i}\right) \text { and } d\left(Y_{k}\right)<d\left(X_{i}\right) \\
h\left(d\left(Y_{j}\right)\right)=h\left(d\left(Y_{k}\right)\right) & =h\left(d\left(X_{i}\right)\right)
\end{aligned}
$$

and, Y_{j} and Y_{k} together cover at least as much of S as X_{i} did. Finally, we can al mo guarantee that $d\left(Y_{j}\right)$ and $d\left(Y_{k}\right)$ will be points of continuity of $h(x)$.
Thus, if $\bigcup_{i=1}^{\infty} X_{i}$ is any covering of S by open rectangles can replace it by another such covering $\bigcup_{j=1}^{\infty} y_{j}$ of S, such that $d\left(y_{j}\right)$ is a point of continuity of $h(x)$ for each j and,

$$
\sum_{j} h\left(d\left(y_{j}\right)\right) \leqslant 2 \sum_{i} h\left(d\left(x_{i}\right)\right)
$$

Further, if $d\left(x_{i}\right)<\delta$ for all $;$, then $d\left(y_{j}\right)<\delta$ for all j. Ne now proceed to the construction of the continuous function $H(x)$ by a diagonal argument similar to the one used in the proof of Theorma 5. Let $\left\{\delta_{n}\right\}$ be a sequence of positive numbers such that $\delta_{n} \geqslant 0$ as $n \rightarrow \infty$ and each δ_{n} is a point of continuity of $h(x)$. Corresponding to each δ_{n} and to any given $\Sigma>0$, there is a covering $U_{i} X_{n_{i}}$ of S, such that,

$$
\Lambda_{j_{n}}^{h, R(q)}(s) \leqslant \sum_{i} h\left(d\left(x_{n}\right)\right)<\Lambda_{J_{n}}^{h, R(q)}(s)+\Sigma
$$

with

$$
d\left(x_{n}\right)<\delta_{n} \quad \text { for all } i
$$

Replace this covering by the corresponding covering $\bigcup_{j} Y_{n_{j}}$ so that, given any $\Sigma>0$ we have,

$$
\Lambda_{\delta_{n}}^{h_{1} R(q)}(s) \leqslant \sum_{j} h\left(d\left(Y_{n_{j}}\right)\right)<2 \Lambda_{\delta_{n}}^{h_{1} R(q)}(s)+2 \Sigma-(30)
$$

with $d\left(Y_{n_{j}}\right)<\delta_{n}$ for all j, and $d\left(Y_{n_{j}}\right)$ is a point of continuiuty of $h(x)$ for each j. Let x_{1}, x_{2}, \ldots be an enumeration of all the points of discontinuity of $h(x)$.

Enclose each x_{i} in an open interval $\ell_{1_{i}} \equiv\left(\alpha_{1}, \beta_{1_{i}}\right)$ such that, both $\alpha_{1_{i}}$
and β_{1} are points of continuity of $h(x)$, there are no x_{j} in l_{1} with $j \neq i$ and there no $d\left(y_{1 j}\right)$ nor δ_{n} in l_{i}. Define the continuous function $H^{(1)}(x)$ as follows.

$$
\begin{array}{ll}
H^{(1)}(x)=h(x) & \text { if } x \not x l_{1} \text { for each } i \\
H^{(1)}\left(x_{i}\right)=h\left(x_{i}+0\right) & \\
H^{(1)}(x)=h(x) & \text { for } x \in\left(x_{i}, \beta_{1}\right]
\end{array}
$$

and define $H^{(1 \prime}(x)$ to be continuous, increasing and greater than or equal to $h(x)$ in the interval $\left[\alpha_{i}, x_{i}\right]$.
So we have,

$$
\begin{gathered}
H^{(\prime \prime}(j) \geqslant h(x) \quad \text { for all } x, \\
\text { and, } \quad h_{\delta_{1}}^{(\prime)}, R(q)
\end{gathered}
$$

therefore, by (30), we have,

$$
\Lambda_{\delta_{1}}^{H^{(1)}, R(q)}(S)<2 \Lambda_{\delta_{1}}^{h, R(q)}(S)+2 \Sigma
$$

Now consider the covering $U_{i} Y_{2}$ of S. Enclose each x_{i} in an open Interval $l_{2} \equiv\left(\alpha_{2}, \beta_{2 i}\right)$ contained in l_{1} such that, both α_{2} and β_{2}. are points of continuity of $h(x)$, there are no x_{i} in $l_{2:}$ with $j \neq i$ and there are no $d\left(Y_{i_{j}}\right)$ in $l_{L_{i}}$. Define the continuous function $H^{(2)}(x)$ as follows,

$$
\begin{array}{ll}
H^{(2)}(x)=h(x) & 11 x \ll l_{2_{i}} \text { for each } i, \\
H^{(2)}\left(x_{i}\right)=h\left(x_{i}+0\right) & \\
H^{(2)}(x)=h(x) & \text { for } x \in\left(x_{i}, \beta_{2}\right]
\end{array}
$$

and define $H^{(4)}(x)$ to be continuous, increasing, greater than or equal to $h(x)$ and less than or equal to $H^{(1)}(x)$ in the interval $\left[\alpha_{2}, x_{i}\right]$.
So we have,

$$
\begin{aligned}
& \quad H^{(1)}(x) \geq H^{(2)}(x) \geqslant h(x) \quad \text { for all } x, \\
& \text { and, } \quad \Lambda_{\delta_{2}}^{H^{(2)}, R(q)}(S)<2 \Lambda^{h, R(q)}(S)+2 \Sigma \text {, }
\end{aligned}
$$

Continuing in this manner we define the continuous function $H^{(n)}(x)$ such that,

$$
h(x) \leqslant H^{(n)}(x) \leqslant H^{(n-1)}(x) \text { for all } x
$$

and. $\lambda_{\delta_{n}}^{H^{(n)}, R(q)}(s)<2 \Lambda_{\delta_{n}}^{h, R(q)}(s)+2 \Sigma$.
Finally, we define the continuous function $H(r)$ as follows,

$$
H(x)=H^{(n)}(x) \quad \text { for } x \in\left[\delta_{n+1}, \delta_{n}\right)
$$

Now we see that $H(x)$ is a continuous q-dimensional Hausdorff measure function with

$$
h(x) \leqslant H(x) \leqslant H^{(4)}(x) \text { for all } x \text { end for all } u
$$

Thus,

$$
\Lambda^{h}(S) \leqslant \Lambda^{H}(S)
$$

Also, for each value of n,

$$
\begin{aligned}
\Lambda_{\delta_{n}}^{H, R(q)}(s) \leqslant \Lambda_{\delta_{u}}^{M^{(n)}, R(a)}(s) & <2 \Lambda_{\delta_{m}}^{h, R(q)}(S)+2 \Sigma \\
& \leqslant 2 \Lambda^{h, R(q)}(s)+2 \Sigma
\end{aligned}
$$

So we have,

$$
\Lambda^{H}(S) \leqslant \Lambda^{H, R(q)}(s) \leqslant 2 \Lambda^{h, R(q)}(s)+2 \tau
$$

Therefore, using Lena 1 ,

$$
\Lambda^{h}(s) \leqslant \Lambda^{H}(s) \leqslant 2([\sqrt{q}]+1)^{q} \Lambda^{h}(s)+2 \Sigma
$$

The remainder of the proof is trivial, since we have only to multiply $H(x)$ by a constant to get the required continuous function.

Fran the proofs of Theorems 5 and 6 we see that the continuous functions, $H(x)$, ere dependent on the set S under consideration. He shall now see that these results oan, under certain restrictions, be extended to give a continuous function which is independent of the set S.

Theorem 7

If $h(x)$ is any q-dimensional Hausdorff measure function with the property that,

$$
\frac{h(x)}{x^{q-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

then there exists a continuous q-dimensional Hausdorff measure function $H O)^{\prime}$ such that,

$$
\Lambda^{h}(s)=\Lambda^{H}(s)
$$

for all sets S in q-dimensional Euclidean space.

Proof.
Let C be a convex set of dimeter d in q-dimensional Euclidean space. Denote by C^{\prime} the set $\{x: s(x, e c)>\delta\}$ for sane $\delta>0$, where s is the metric in the space. Then we can cover the set CId' with $\left[\frac{K}{\frac{d^{q-1}}{j q-1}}\right]$ q-dimensional cubes of diameter δ, where K is a constant dependent on q. (See Appendix 1, page 143).

Let $\left\{T_{i}\right\}$ be a decreasing sequence of positive real numbers such that $\Sigma_{i} \downarrow 0$ as $i \rightarrow \mathbb{K}$. Let $\left\{P_{n}\right\}$ be a strictly decreasing sequence of positive numbers such that $P_{n} \geqslant 0$ as $n \rightarrow \infty$ and each point P_{n} is a point of continuity of $h(x)$. Let $x_{1}^{(1)}, \ldots, x_{n}^{(1)}$ be those points of discontinuity of size greater then ${ }^{\sum, 1} p_{1}^{q} / 2^{3}$ with $x_{i}^{(1)}>p_{1}$ and $x_{i}^{(1)}>x_{i+1}^{(1)}$ for $i=1, \ldots, n_{1}$. In general let $x_{n_{j-1}+1}^{(j)} \ldots, x_{n_{j}}^{(j)}$ be those discontinuities of $h(x)$ of size
 corresponding to each $x_{i}^{(j)}$ define $\eta_{i}^{(j)}$ such that $\left(n_{j-1}+1 \leqslant i \leqslant n_{j}\right)$,

$$
\begin{gather*}
\eta_{i}^{(j)} \notin\left\{x_{k}^{(s)}\right\}_{k=n+1, s=1}^{n} \text { and } x_{i}^{(j)}-y_{i}^{(j)}>\max \left(1 / x_{i}^{(j)}, x_{i+1}^{(j)}, p_{j}\right) \tag{31}\\
x_{i}^{(j)}-\eta_{i}^{(j)} \text { is a point of continuity of } h(x) \tag{32}\\
h\left(\eta_{i}^{(j)}\right) /\left(\eta_{i}^{(j)}\right)^{q-1}<\sum_{j} x_{i}^{(j)} / 2^{j+2} K \tag{33}
\end{gather*}
$$

$\eta_{k}^{(3)} \&\left(x_{i}^{(j)}-\eta_{i}^{(j)}, x_{i}^{(j)}\right]$
for all $5 \leqslant j$
and $k=n+1, \ldots, n_{s}$ for $s+j$
$k=u_{j+1}+1, \ldots, i-1 \quad$ for $s=j$.

Define the continuous q-ainensional Hausdorff measure function $H(x)$ as follows,
1). for $x \in\left(p_{j}, p_{j-1}\right)$ and $x \notin\left[x_{i}^{(j)}-\eta_{i}^{(j)}, x_{i}^{(j)}\right]$ for all $i=n_{j-1}+1, \ldots, n_{j}$
define $H(x)$ to be continuous, increasing, greater than or equal to $h(x)$ and such that,

$$
H(x) \leqslant h(x)+\varepsilon_{j} p_{j}^{q} 2^{j+2}
$$

this is possible because of the definition of $x_{i}^{(j)}$;
11). $H\left(x_{i}^{(j)}-y_{i}^{(j)}\right)=h\left(x_{i}^{(j)}-y_{i}^{(j)}\right) \quad$ for all j and for all

$$
i=n_{j-1}+1, \ldots, n_{j}:
$$

iii). $H\left(p_{j}\right)=h\left(p_{j}\right)$ for all j;
iv). For $x \in\left[x_{i}^{(j)}-y_{i}^{(j)}, x_{i}^{(j)}\right]$ define $H(x)$ to be increasing, greater than or equal to $h(x)$, continuous in $\left(x_{i}^{(j)}-y_{i}^{(j)}, x_{i}^{(j)}\right)$ and continuous on the left at $x_{i}^{(j)}$ with $H\left(x_{i}^{(j)}\right)=h\left(x_{i}^{(j /}+0\right)$.

Then $H(x)$ is continuous and $H(x) \geqslant h(x)$ for all x, thus,

$$
\begin{equation*}
\Lambda^{H}(S) \geqslant \Lambda^{h}(S) \quad \text { for all sets } S . \tag{35}
\end{equation*}
$$

Now let S be a set in q-dimensional Euclidean space, contained in a q-dinensionel cube of diameter $1 / 2$.
Let δ be a positive number such that,

$$
x_{i+1}^{(j)}<\delta<x_{i}^{(j)}-\eta_{i}^{(j)} \quad \text { for sone } j \text { and sane } i
$$

$$
n_{j-1}+1 \leq i \leq n_{j} .
$$

Let $\left\{U_{i}^{\delta}\right\}$ be an open covering of S with,

$$
d\left(u_{:}^{\delta}\right)<\delta \quad \text { for all }:
$$

and. $\quad \Lambda^{h}(S)+\Sigma_{J_{\delta}}>\sum_{i}^{h} h\left(d\left(U_{i}^{\delta}\right)\right)$
where I_{δ} is the Leas integer if such that,

$$
x_{k}^{(j)}<\delta
$$

for all $k=n_{j-1}+1, \ldots, n_{j}$,
(clearly $J_{\delta} \rightarrow \infty$ as $\delta \rightarrow 0$).
Now, for each i,

$$
d\left(U_{i}^{\delta}\right) \in\left[p_{j}, \rho_{j-1}\right) \quad \text { for ane } j
$$

If $d\left(U_{i}^{\delta}\right) \&\left(x_{k}^{(j)}-\eta_{k}^{(j)}, x_{k}^{(j)}\right]$ for all $k=u_{j+1}+\ldots, n_{j}$, then by i)., 11)., and iii).,

$$
H\left(d\left(u_{i}^{\delta}\right)\right) \leqslant h\left(d\left(u_{i}^{\delta}\right)\right)+{ }^{r_{j} p_{j}^{q} / 2^{j+2}}
$$

If $d\left(U_{i}^{\delta}\right) \in\left(x_{k}^{(j)}-\eta_{k}^{(j)}, x_{k}^{(j /}\right]$ for scan k, then we have, by (33),

$$
\begin{equation*}
h\left(d\left(u_{i}^{\delta}\right)\right)>h\left(x_{k}^{(j)}-\eta_{k}^{(i)}\right)>h\left(x_{k}^{(j)}-\eta_{k}^{(j)}\right)+h\left(\eta_{k}^{(j)}\right)-\frac{\sum_{j}\left(\eta_{k}^{(j /}\right)^{q-1}}{2^{j+2} K} x_{k}^{(j)} \tag{37}
\end{equation*}
$$

Now, $\eta_{k}^{c} \prime^{c} \in\left[p_{s}, p_{s-1}\right)$ for sore $s \geqslant j$, and,

$$
\eta_{k}^{(j)} \notin\left(x_{i}^{(s)}-\eta_{i}^{(s)}, x_{i}^{(s)}\right] \quad \text { for all } i=n_{s+1}, \ldots, n_{s} \text {. }
$$

Therefore,

$$
\begin{equation*}
H\left(\eta_{k}^{(j)}\right) \leqslant h\left(\eta_{k}^{(j)}\right)+\sum_{s} p_{s}^{q} / 2^{s+2} \tag{38}
\end{equation*}
$$

Also,

$$
x_{k}^{(j)}-y_{k}^{(j)} \in\left[p_{j}, p_{j-1}\right)
$$

and,

$$
\begin{equation*}
H\left(x_{k}^{(j)}-\eta_{k}^{(j)}\right)=h\left(x_{k}^{(j)}-\eta_{k}^{(j)}\right) \tag{39}
\end{equation*}
$$

Replace each U_{i}^{J} which satisfies $d\left(U_{i}^{j}\right) \in\left(x_{k}^{(j)}-\eta_{k}^{(j)}, x^{(j)} x_{k}\right]$ for some k, by a set of diameter $x_{k}^{(j)}-\eta_{k}^{(j)}$ together with $\left[\frac{k}{\left(x_{k}^{(j)}\right)^{q-1}}\left(\eta_{k}^{(j)}\right)^{q-1}\right]$ q-aimensional open cubes of diameter $Y_{k}^{(j)}$, denote these replacement sets by V_{i}^{δ}. If $d\left(U_{i}^{\delta}\right) \&\left(x_{k}^{(j)}-\eta_{k}^{(j)}, x_{k}^{j}\right]_{k}$ for all $k=n_{j+1}+1, \ldots, n_{j}$ we put $V_{i}^{\delta} \equiv U_{i}^{\delta}$. Thus, wo get another open covering $U_{i} V_{i}^{\delta}$ of S with $\alpha\left(V_{i}^{\delta}\right)<\delta$ for all i. Now, since S is contained in a cube of diameter $1 / 2$, we may suppose that there are less than $\left(x_{k}^{(j /}\right)^{-q}$ values $d\left(U_{i}^{j}\right)$ in $\left(x_{k}^{(j)}-\eta_{k}^{(j)}, x_{k}^{(j)}\right]$ and less than p_{j}^{-q} values $d\left(U_{i}^{\delta}\right)$ in $\left[p_{j}, p_{j-1}\right)$. This is because $\left(x_{k}^{(j)}\right)^{-q}$ such values of $\alpha\left(U_{i}^{\delta}\right)$ or p_{j}^{-q} such values of $d\left(U_{i}^{\delta}\right)$ could arise fromm a collection of sets $\left\{U_{i}^{d}\right\}$ which would be sufficient to cover the whole cube. Thus, for those sets V_{i}^{δ} for which $V_{i}^{\delta} \neq U_{i}^{\delta}$ we have, from (37),
 So we must have the following inequality, involving all the sets U_{i}^{δ} and V_{i}^{δ},

$$
\sum_{i} h\left(d\left(U_{i}^{\delta}\right)\right) \geqslant \sum_{=} h\left(d\left(V_{i}^{\delta}\right)\right)-\frac{\sum_{\delta} J_{\delta}}{2^{J_{\delta}+1}}
$$

Now, by the definitions of the sets V_{i}^{δ} and (38) and (39), we have,

$$
\begin{aligned}
\sum_{i} h\left(d\left(V_{i}^{\delta}\right)\right) & \geqslant \sum_{i} H\left(d\left(V_{i}^{\delta}\right)\right)-\sum_{j} p_{j}^{-q}\left(\frac{\Sigma_{j} p_{j}^{q}}{2^{j+2}}\right)-\sum_{k, j}\left(x_{k}^{(j)}\right)^{-q} \cdot \frac{K\left(x_{k}^{(j)}\right)^{q-1}}{\left(\eta_{k}^{(j)}\right)^{q-1}} \frac{\Sigma_{s} p_{s}^{q}}{p_{j}^{s+2}} \\
& \geqslant \sum_{i} H\left(d\left(V_{i}^{\delta}\right)\right)-\frac{\sum_{j} J_{j}}{2_{k}^{(j)}<\delta}-\frac{K \Sigma_{j} J_{\delta}}{2^{J_{s}+1}}
\end{aligned}
$$

Therefore,

$$
\sum_{i} h\left(d\left(U_{i}^{\delta}\right)\right) \geq \sum_{i} H\left(d\left(V_{i}^{\delta}\right)\right)-\frac{\Sigma_{\delta} J_{\delta}}{2^{J_{\delta}}}-\frac{K \Sigma^{\Sigma_{\delta}} J_{\delta}}{2^{J_{\delta}+1}}
$$

$$
\geqslant \Lambda_{\delta}^{H}(s)-\frac{J_{\delta}}{2^{J_{\delta}}}-\frac{K^{T^{2} J_{s}}}{2^{J_{\delta}+1}} .
$$

Thus we have shown that for any δ of the prescribed form,

$$
\Lambda^{h}(S) \geqslant \Lambda_{\delta}^{H}(S)-\frac{\Sigma_{J} J_{\delta}}{2^{J_{S}}}-\frac{K \Sigma^{\Sigma_{S}} J_{S}}{2^{J_{j}}}-\Sigma_{J_{j}}
$$

But there are arbitrarily anal δ of this form, and so,

$$
\mathcal{\Lambda}^{h}(s) \geqslant \Lambda^{H}(s)
$$

since $\Sigma_{i} \rightarrow 0$ as $i \rightarrow \infty$. Hence, combining this with (35) we have the required result for sets S lying in cubes of diameter $1 / 2$.

Now let S be any set in quifensional Euclidean space. We may divide the space up into a countable set of closed cubes $\left\{C_{i}\right\}$ say, each of diameter $1 / 2$. Since we have,

$$
\frac{h(x)}{x^{q-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0,
$$

those points of S which lie on the intersection of two of these cubes form a set S_{0} such that $\mathcal{\Lambda}^{h}\left(S_{0}\right)=0$. Hence we may write,

$$
S=\bigcup_{i=0}^{\infty} S_{i}
$$

where $\Lambda^{h}\left(S_{i}\right)=\Lambda^{H}\left(S_{i}\right)$ for $i=1,2, \ldots$ and $\Lambda^{h}\left(S_{0}\right)=\Lambda^{H}\left(S_{0}\right)=0$. Also we haver,

$$
\begin{aligned}
\Lambda^{h}(S)=\sum_{i=1}^{\infty} \Lambda^{h}\left(s_{i}\right) & =\sum_{i=1}^{\infty} \Lambda^{H}\left(s_{i}\right) \\
& =\Lambda^{H}(s)
\end{aligned}
$$

and hence the result extends to all sets S in q-dimensional Euclidean
space.

Corollary
If $h(x)$ is any oneminensional Hausdorff measure function, then there is a continuous onemdimensional Hausdorff measure function $H(x)$ such that,

$$
\Lambda^{h}(s)=\Lambda^{H}(S)
$$

for all lInear sets S.

The next theorem shows that it is not always possible to replace discontinuous functions by continuous ones. That is to age the the restrictions imposed in Theorem 7 cannot be relaxed.

Theorem 8

There exists a two -dimensional Hausdorff measure function $h(x)$, say, with,

$$
\frac{h(x)}{x} \rightarrow \infty \quad \text { as } x \rightarrow 0
$$

such that, for any continuous two -dimensional Hausdorff measure function $H(x)$ say, there is a et S with the property that,

$$
\Lambda^{h}(s) \neq \Lambda^{H}(s) .
$$

Proof
Let

$$
x_{n}=1 / 4^{n}
$$

$$
\text { for } n=0,1,2, \ldots
$$

Define $h(x)$ as follows,

$$
h(x)=1
$$

$$
\text { for } \quad x \geqslant x_{0}
$$

$$
\begin{array}{ll}
h\left(x_{n}\right)=\alpha^{-1} h\left(x_{n-1}\right) & \text { for } n=1,2, \ldots \\
& \text { where } 1<\alpha<2
\end{array}
$$

and

$$
h(x)=h\left(x_{n}\right)
$$

$$
\text { for } \quad x \in\left(x_{n+1}, x_{n}\right] \text {. }
$$

Then, clearly,

$$
\frac{h(x)}{x} \rightarrow \infty \quad \text { as } x \rightarrow 0 .
$$

Also,

$$
\begin{array}{ll}
\frac{h\left(x_{n}\right)}{x_{n}} \leqslant \frac{h(t)}{t} & \text { for all } t \in\left(0, x_{n}\right] \\
& \text { and for } n=1,2, \ldots \\
\frac{h(x)}{x} \leqslant \frac{\alpha h(t)}{t} & \text { for all } t \in(0, x] \\
& \text { and for all } x .
\end{array}
$$

and

Now let $H(x)$ be any continuous Hausdorff measure function. Then for each n we have,

$$
\begin{array}{ll}
\text { either } & H\left(x_{n}\right) \geqslant \alpha^{1 / 2} h\left(x_{n}\right) \\
\text { or } & H\left(x_{n}\right)<\alpha^{1 / 2} h\left(x_{n}\right)
\end{array}
$$

We, firstly assume that,

$$
H\left(x_{n}\right)<\alpha^{1 / 2} h\left(x_{n}\right) \quad \text { for infinitely many } n .
$$

So, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that,

$$
H\left(x_{n_{i}}\right)<\alpha^{1 / 2} h\left(x_{n_{i}}\right) \text { for all } i
$$

Because of the continuity of $H(x)$, there exist $\Sigma_{i}>0$ such that, for all i,

$$
H(x)<\alpha^{-1 / 4} h(x) \quad \text { for } x \in\left(x_{n_{i}}, x_{n_{i}}+x_{i}\right)
$$

we may, further, insist that,

$$
x_{n_{i}}+\Sigma_{i}<x_{n_{i}-1}
$$

Now let $\left\{A_{n}\right\}$ bo a sequence of positive numbers such that, $\sum A_{n}^{-1}$ is convergent and,

$$
\prod_{n=1}^{\infty}\left(1-2 / A_{n}\right)>\alpha^{-1 / 4}
$$

Also let $\left[B_{n}{ }^{2}\right.$ be a sequence of positive numbers such that,

$$
B_{n} \lambda_{\infty} \quad \text { as } n \tau_{\infty} \quad \text { end } B_{n}>2 \text { for all } n .
$$

We now construct a sequence $\left\{y_{n}\right\}$ as follows:
choose y_{0} arbitrarily from the open interval $\left(x_{n_{1}}, x_{n_{1}}+\Sigma_{1}\right)$
Having chosen y_{ν} for $\nu=1, \ldots, n-1$, choose y_{n} such that,

$$
\text { i). } \quad 0<y_{n}<1 / 2 y_{n-1}
$$

$$
\text { ii). if } y_{n-1} \in\left(x_{n_{i}}, x_{n_{i}}+\Sigma_{i}\right) \quad \text { then } y_{n} \in\left(x_{n_{j}}, x_{n_{j}}+\Sigma_{j}\right)
$$

$$
\text { with } j>i
$$

111). $y_{n-1}-2 y_{n}>x_{n}$ where $y_{n-1} \in\left(x_{n_{i}}, x_{n_{i}}+\Sigma_{i}\right)$
ix iv). $\quad C_{n} h\left(y_{n}\right)=h\left(y_{n-1}\right) \quad$ with $\quad C_{n}>A_{n}$

$$
\text { v). } \quad B_{n} C_{n} y_{n}<y_{n-1}
$$

Write $K_{n}=2\left[C_{n / 2}\right]$.
We now proceed to construct the set S in two dimensional Euclidean space. Denote by S_{0} the closed oracle with centre at the origin and of diameter y_{0}. Dram the diameters of S_{0} at angles $\theta_{1}, 2 \theta_{1}, \ldots,\left(\frac{K_{1}}{2}-1 / \theta_{1}\right.$ to the positive x-axis, where $\theta_{1}=2 \pi / K_{1}$. At each end of these diameters and at the intersections of the x-axis with the perimeter of the circle we draw a closed circle of diameter y_{1}, inside S_{0}, having one point of contact with the circumference of S_{0} and having centre on the diameter of So. Denote by S_{1} the union of these K_{1} closed circles, Inside each circle of S_{1} draw $K_{2} / 2$ diameters at an angle θ_{2} apart, where $\theta_{2}=2 \pi / k_{2}$. At the ends of these diameters we draw closed circles of diameter y_{2} in a similar manner to that described above. Thus, we have $K_{1} K_{2}$ closed circles of diameter y_{2} and these we denote by S_{2}. Continuing in this manner we get sets S_{1}, S_{2}, \ldots with S_{n} consisting of $K_{1} \ldots K_{n}$ closed circles of diameter y_{n}. Also we have $S_{n} \supset S_{n+1}$ for all n.
F io define the set $S=\bigcap_{n=0}^{\infty} S_{n}$.
Now since each y_{i} is a point of continuity of $h(x)$, and since $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ wo have.

$$
\begin{align*}
A^{h}(S) & \leqslant K_{1} \ldots K_{n} h\left(y_{n}\right) \quad \text { for all } n \\
& \leqslant h\left(y_{0}\right) \tag{40}
\end{align*}
$$

We, also, note that,

$$
\begin{aligned}
K_{1} \ldots K_{n} h\left(y_{n}\right) & >\left(c_{1}-2\right) \ldots\left(c_{n}-2\right) h\left(y_{n}\right) \\
& =\prod_{\nu=1}^{n}\left(1-2 / c_{v}\right) h\left(y_{0}\right)
\end{aligned}
$$

$$
>\alpha^{-1 / 4} h\left(y_{0}\right) \quad \text { since } c_{n} \geqslant A_{n} . \quad-(41)
$$

Now, given any $\Sigma>0$, choose $\delta>0$ such that,

$$
B_{n}>4 / \Sigma \quad \text { whenever } y_{n}<d . \quad-(42)
$$

Let $\left\{U_{i}\right\}$ be en arbitrary open cavering of S suoh that,

$$
\alpha\left(u_{i}\right)<\delta \quad \text { for all } i
$$

Sinoe S is cormact, we may assume that $\left\{U_{i}\right\}$ consists of a finite number of open sets.

Let n be such that,

$$
y_{n}<d\left(u_{i}\right) \quad \text { for all } i
$$

If U : is such that,

$$
\begin{equation*}
y_{n}<d\left(u_{i}\right) \leqslant y_{n-1} \tag{43}
\end{equation*}
$$

then U_{2} intersects at most one circle of S_{n-1} (by v).). If $\alpha\left(v_{i}\right) \geqslant y_{n-1}-2 y_{n}$, then,

$$
h\left(d\left(u_{i}\right)\right)=h\left(y_{n-1}\right) \quad \text { by 11i). }
$$

and so we can replace U_{i} by the circle of S_{n-1} which it intersects, without increasing $\sum_{i} h\left(d\left(U_{i}\right)\right)$ and the circle covers at least as much of S es U_{i} did.
Now essum $d\left(U_{:}\right)<y_{n-1}-2 y_{n}$ and that U_{i} intersects more than one circle

$$
\begin{equation*}
m-1=\left[\frac{2}{\theta_{n}} \sin ^{-1}\left(\frac{\alpha\left(v_{i}\right)+y_{n}}{y_{n-1}-y_{n}}\right)\right] \tag{44}
\end{equation*}
$$

Since U_{i} intersects more than one of the circles of S_{n},

$$
\begin{align*}
& d\left(u_{i}\right) \geqslant\left(y_{n-1}-y_{n}\right) \sin \theta_{n / 2}-y_{n} \\
& \geqslant\left(y_{n-1}-y_{n}\right) \frac{2}{k_{n}}-y_{n}, \quad \text { since } \sin x \geq \frac{2 x}{\pi} \tag{45}\\
& \text { for } 0 \leq x \leq \pi / 2
\end{align*}
$$

So we have,

$$
\begin{aligned}
m h\left(y_{n}\right) & \leqslant\left(\frac{k_{n}}{\pi} \sin ^{-1}\left\{\frac{d\left(v_{i}\right)+y_{n}}{y_{n-1}-y_{n}}\right\}+1\right) h\left(y_{n}\right) \quad \text { by }(44) \\
& \leqslant\left(\frac{k_{n}}{2}\left\{\frac{d\left(v_{i}\right)+y_{n}}{y_{n-1}-y_{n}}\right\}+1\right) h\left(y_{n}\right) \\
& \leqslant\left(\frac{d\left(u_{2}\right)+y_{n}}{y_{n-1}-y_{n}}\right) k_{n} h\left(y_{n}\right) \\
& \leqslant\left(\frac{B_{n} c_{n}\left(d\left(v_{i}\right)+y_{n}\right)}{B_{n} c_{n}-1}\right) \frac{h\left(y_{n-1}\right)}{y_{n-1}} \quad \text { by }(45)
\end{aligned}
$$

Now, if $d\left(u_{i}\right) \leqslant x_{n i / \alpha}$, where $y_{n_{-1}} \in\left(x_{n_{i}}, x_{n_{i}}+\Sigma_{i}\right)$ then,

$$
h\left(y_{n-1}\right) / y_{n-1} \leqslant h\left(d\left(u_{i}\right)\right) /_{d\left(u_{i}\right)}
$$

thus,

$$
m h\left(y_{n}\right) \leqslant\left(\frac{B_{n} C_{n}\left(d\left(u_{i}\right)+y_{n}\right)}{\left(B_{n} C_{n}-1\right) d\left(u_{i}\right)}\right) h\left(d\left(u_{i}\right)\right)
$$

$$
\begin{align*}
& <\left\{1+\frac{1}{B_{n} C_{n}-1}\left(1+\frac{y_{n-1}}{d\left(v_{i}\right)}\right)\right\} h\left(d\left(v_{i}\right)\right) \\
& \leqslant\left\{1+\frac{1}{B_{n} C_{n}-1}\left(1+\frac{y_{n-1}}{\left(y_{n-1}-y_{n}\right) \frac{2}{K_{n}}-y_{n}}\right)\right\} h\left(\alpha\left(v_{i}\right)\right) \text { by (45). } \\
& \left.\leqslant\left\{1+\frac{2}{B_{n} C_{n}}+\frac{2}{2 B_{n}-2 / K_{n}-1}\right\} h\left(d\left(v_{i}\right)\right) \quad \text { by } \nabla\right) . \\
& <(1+\Sigma) h\left(d\left(u_{i}\right)\right) \tag{46}
\end{align*}
$$

So we have shown that in this case we can replace U_{0} by m circles of S_{n} causing $h\left(d\left(U_{i}\right)\right)$ to increase by a factor of at most $(l+\Sigma)$ and the circles cover at least as much of S as U_{i} did. If U_{i} meets only one circle of S_{n} then since $d\left(U_{i}\right)>y_{n}$ we may replace it by this circle of S_{n}.

Now, if,

$$
d\left(u_{i}\right)>x_{n_{i}} / \alpha
$$

then,

$$
\begin{equation*}
h\left(\alpha\left(u_{i}\right)\right)=1 / \alpha h\left(y_{n-1}\right)>1 / 2 h\left(y_{n-1}\right) \tag{47}
\end{equation*}
$$

Also, since we have assumed that $\alpha\left(U_{i}\right)<y_{n-1}-2 y_{n}$ wo know that U_{i} intersects less than $K_{n} / 2$ circles of S_{n}.

Now, if there is a U_{j} with $j \neq i$ and,

$$
x_{n i / \alpha}<d\left(u_{j}\right)<y_{n-1}-2 y_{n},
$$

such that U_{j} intersects the same circle of S_{n-1} as U_{i} does, then we may replace $U_{:}$and U_{j} by the circle of S_{n-1}, since,

$$
h\left(d\left(u_{i}\right)\right)+h\left(\alpha\left(u_{j}\right)\right)>h\left(y_{n-1}\right)
$$

and U_{i}, U_{j} together intersect less then K_{n} circles of S_{n}. Also if we have such a $U_{i}, U_{i} *$ say, and if the remainder of the circle of S_{n-1} which $U_{i \times}$ intersects is covered by members of $\left\{U_{i}\right\}$ all with,

$$
y_{n}<d\left(v_{i}\right) \leqslant y_{n-1}
$$

then we may replace all these U_{i} 's together with $U_{i *}$ by the circle of S_{n-1}. Thus, so far, we have replaced each U_{i} satisfying,

$$
y_{n}<d\left(v_{i}\right) \leq y_{n-1}
$$

except those such that,

$$
x_{n i / \alpha}<d\left(v_{i}\right)<y_{n-1}-2 y_{n} \ldots-(48)
$$

and such that there is no other U_{j} meeting the same circle of S_{n-1} es U_{i} does end satisfies (48) end (43).
Me now moke similar replacements with respect to those U_{i} for which,

$$
y_{n-1}<d\left(v_{1}\right) \leq y_{n-2}
$$

end repeat the procedure up to and including the case where,

$$
y_{1}<d\left(v_{1}\right) \leqslant y_{0}
$$

clearly we may assume that,

$$
d\left(u_{:}\right) \leqslant y_{0}, \text { for all } i
$$

60.

Now assune that there is a U_{i} which has not been replaoed, let m be auch that,

$$
y_{m}<d\left(u_{i}\right) \leqslant y_{m-1}
$$

then if the circle of S_{m-1} which it intersects has been used to replace a different member of $\left\{U_{i}\right\}$ then we may ignore the set U_{i}. Fe now assume that there are still scrse U_{i} renaining which cannot be ignored, as explained above and which have not been replaced. Let there be such a U_{i} with,

$$
y_{n}<d\left(u_{i}\right) \leq y_{n-1}
$$

Then if S_{n-1}^{i} is the circle of S_{n-1} which U_{i} intersects, we know that S_{n-1}^{i} is partially covered by a U_{j} with $d\left(U_{j}\right)>y_{n-1}$ and U_{j} has not been replaced. Therefore, if $y_{m}<d\left(U_{j}\right) \leqslant y_{m-1}(m<n)$ then $S_{m \rightarrow-}^{j}$ is partielly covered by a U_{k} with $d\left(U_{k}\right)>y_{m-1}$ and U_{k} has not been replaced. Thus wo see that if there were to be such a U_{i} then given any integer t, there is a U_{s} belonging to $\left\{U_{i}\right\}$ such that, $d\left(U_{s}\right)>y_{t-1}$ and U_{s} has not been replaced. If re take $t=1$ we see that this is a contradiction since we cen assume that,

$$
d\left(u_{i}\right) \leq y_{0} \quad \text { for all } i
$$

Thus we conclude that all U_{i} with

$$
y_{n}<d\left(u_{i}\right) \leqslant y_{n-1}
$$

heve been replaced.
We now consider those remaining $U_{\text {: }}$ for whioh,

$$
y_{n-1}<d\left(U_{i}\right) \leq y_{n-2}
$$

Then S_{n-2}^{i} is partially covered either,
a). by U_{j} with $y_{n}<d\left(U_{j}\right) \leqslant y_{n-1}$ and which have not been replaced, or, b). by U_{k} with $d\left(U_{k}\right)>y_{n-1}$ and such that U_{k} has not been replaced. It has just been shown that a). Is impossible and we can get a similar contradiction from b).。

Continuing in this manner we see that all the U_{i} have been replaced by a collection $\left\{c_{i}\right\}$ of circles of $S_{0 u} \ldots S_{n}$ such that,

$$
\bigcup_{i} c_{i}>S \quad \text { and } \quad(1+\Sigma) \sum_{i} h\left(d\left(U_{i}\right)\right) \geqslant \sum_{i} h\left(d\left(c_{i}\right)\right)
$$

We further note that the inequality (41) holds for any finite collection of circles of $\bigcup_{n=0}^{6} S_{n}$ which covers S - this is because we may replace any circle of S_{n-1} by the K_{n} circles of S_{n} which it contains. Thus,

$$
\begin{array}{r}
(1+\Sigma) \sum_{i} h\left(d\left(U_{i}\right)\right)>\sum_{i} h\left(d\left(c_{i}\right)\right) \geqslant P h\left(y_{0}\right) \\
\text { where } P=\prod_{\nu=1}^{\infty}\left(1-2 / A_{v}\right)
\end{array}
$$

Therefore, since $\left\{U_{i}\right\}$ was an arbitrary covering of S, we have,

$$
\Lambda_{\delta}^{h}(s) \geqslant(1+\varepsilon)^{-1} P_{h}\left(y_{0}\right)
$$

thus,

$$
\Lambda^{h}(S) \geq(1+\Sigma)^{-1} P h\left(y_{0}\right)
$$

but the Σ was an arbitrary positive number and so,

$$
\Lambda^{h}(s) \geq P h\left(y_{0}\right)
$$

Also, we have,

$$
\begin{align*}
M^{H}(S) & \leqslant K_{1} \ldots K_{n} H\left(y_{n}\right) \quad \text { for all } n \\
& <\alpha^{-1 / 4} K_{1} \ldots K_{n} h\left(y_{n}\right) \\
& \leqslant \alpha^{-1 / 4} h\left(y_{0}\right) \\
& <P h\left(y_{0}\right) . \tag{50}
\end{align*}
$$

Therefore,

$$
\lambda^{H}(s) \neq \lambda^{h}(s)
$$

Thus if $H\left(x_{n}\right)<\alpha^{1 / 2} h\left(x_{n}\right)$ for infinitely many mall x_{n}, then we have constructed a set S such that,

$$
\lambda^{H}(S) \neq \lambda^{h}(S)
$$

Now assume that,

$$
H\left(x_{n}\right) \geqslant \alpha^{4_{2}} h\left(x_{n}\right) \quad \text { for all snail } x_{n}
$$

So we can assume that.

$$
H\left(x_{n}\right) \geqslant \alpha^{1 / 2} h\left(x_{n}\right) \quad \text { for all } n .
$$

Then there exists $\Sigma_{n}>0$ with,

$$
x_{n}-\Sigma_{n}>x_{n+1} \quad \frac{h\left(x_{n}\right)}{x_{n}-\Sigma_{n}}<\frac{h\left(x_{n+1}\right)}{x_{n+1}}
$$

such that,

$$
H(x)>x^{1 / 4} h(x) \quad \text { for } x \in\left[x_{n}-\Sigma_{n}, x_{n}\right]
$$

Now define $H^{\prime}(x)$ such that,

$$
H^{\prime}(x)=x^{1 / 4} h\left(x_{n}\right) \quad \text { for } x \in\left(x_{n}-x_{n}, x_{n-1}-r_{n-1}\right]
$$

Then $H^{\prime}(x) \leqslant H(x)$ and,

$$
\begin{aligned}
& H^{\prime}\left(x_{n-1}-\Sigma_{n-1}\right) \\
& x_{n-1}-\Sigma_{n-1} \frac{\alpha^{-3 / 4} h\left(x_{n-1}\right)}{x_{n-1}-\Sigma_{n-1}}<\frac{\alpha^{-3 / 4} h\left(x_{n}\right)}{x_{n}} \\
&<\frac{\alpha^{-3 / 4} h\left(x_{n}\right)}{x_{n}-x_{n}}=\frac{H^{\prime}\left(x_{n}-\Sigma_{n}!\right.}{x_{n}-x_{n}} \text { ! }
\end{aligned}
$$

Therefore,

$$
\frac{H^{\prime}\left(x_{n}-\Sigma_{n}\right)}{x_{n}-\Sigma_{n}} \leqslant \frac{H^{\prime}(t)}{t} \quad \text { for all } t \in\left(0, x_{n}-\Sigma_{n}\right]
$$

Also,

$$
\frac{H^{\prime}\left(x_{n}-\Sigma_{n}\right)}{x_{n}-\Sigma_{n}}=\frac{\alpha^{-3 / 4} h\left(x_{n}\right)}{x_{n}-\Sigma_{n}} \frac{\alpha^{-3 / 4} h\left(x_{n}\right)}{x_{n}}
$$

therefore,

$$
\begin{array}{ll}
\frac{H^{\prime}\left(x_{n}-\Sigma_{n}\right)}{x_{n}-\Sigma_{n}} \rightarrow \infty & \text { as } n \rightarrow \infty \\
H^{\prime}(x) / x \rightarrow \infty & \text { as } x \rightarrow 0 .
\end{array}
$$

that is,

Further,

$$
\alpha H^{\prime}\left(x_{n}-\Sigma_{n}\right)=H^{\prime}\left(x_{n-1}-\Sigma_{n-1}\right)
$$

Thus, as in the previous part of the proof we can construct a sequence $\left\{y_{n}\right\}$ and a set S such that,

$$
H^{\prime}\left(y_{0}\right) \geq N^{H^{\prime}}(s) \geq P H^{\prime}\left(y_{0}\right)
$$

and.

$$
J^{h}(S)<P H^{\prime}\left(y_{0}\right)
$$

But $H^{\prime}(x) \leqslant H(x)$ and so we have,

$$
\Lambda^{H}(s) \geqslant P H^{\prime}\left(y_{0}\right)
$$

therefore,

$$
\Lambda^{h}(s) \neq \Lambda^{H}(s)
$$

Hence the theorem is proved.

CHAPTER 3

INTRODUCTION
We saw in the last chapter, how, under certain condition: we could replace discontinuous functions by continuous ones without altering the corresponding Hausdorff measures. In this chapter we investigate the possibility of extending these results to the case of Hausdorff premeasures. Theorems 9, 10, 11, 12, and 13 are concerned with the extension of some results of Sion and Sjerve (11) to the case of discontinuous functions. Theorem 14 shows us some conditions under which discontinuous functions can be replaced by continuous ones. Finally, Theorem 15 shows that the replacement used in Theorem 7 of Chapter 2 cannot be used in the case of Hausdorff promeasures.

Theorem 2

If $h(x)$ is any monotonic increasing q-dimensional Hausdorff measure function with the property that,

$$
\frac{h(x)}{x^{q-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

then for any $\delta>0$ and any increasing sequence $\left\{S_{n}\right\}$ of sets in q-dimensional Euclidean space we have,

$$
\Lambda_{\delta}^{h}\left(\bigcup_{n=1}^{\infty} s_{n}\right)=\lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(s_{n}\right) .
$$

Proof
Let C be any convex set, in q-aimensional Euclidean space, with diameter d. Finite,

$$
c^{\prime}=\{x: e(x, e c)>s\}
$$

where ρ is the metric in the space. Then, as in Theorem 7 of Chapter 2, we can cover the set $c l^{\prime} c^{\prime}$ with $\left[K(d / \delta)^{q-1}\right]$ sets of diameter δ, where K is a constant.
Consider any set S and any positive number δ. Given any $\Sigma>0$ let, $\left\{U_{i}{ }^{\delta}\right\}$ be a sequence of open sets such that,
sc u U

$$
d\left(U_{:}^{J}\right)<\delta \quad \text { for all } i
$$

and,

$$
\sum_{i} h\left(d\left(v_{i}^{\delta}\right)\right)<\Lambda_{\delta}^{h}(s)+\varepsilon .
$$

Clearly we have,
and

$$
\begin{aligned}
& S c U_{i} \overline{U_{i}^{\delta}} \\
& d\left(\overline{U_{i}^{d}}\right)<J \quad \text { for all } i
\end{aligned}
$$

$$
\sum_{i} h\left(d\left(\bar{u}_{S}^{\delta}\right)\right)<\Lambda_{J}^{h}(s)+\varepsilon
$$

Thus,

$$
L_{j}^{h}(s)<\Lambda_{j}^{h}(s)+\varepsilon .
$$

Hence, since Σ was arbitrary and positive, we have show that,

$$
\begin{equation*}
\Lambda_{\delta}^{h}(s) \geqslant L_{\delta}^{h}(s) \tag{1}
\end{equation*}
$$

Now, given any $\Sigma>0$, we can choose a closed covering $\left\{U_{i}^{\delta}\right\}$ of S with $d\left(U_{i}^{\delta}\right) \leqslant \delta$ for all i, and,

$$
\begin{equation*}
\sum_{i} h\left(d\left(v_{i}^{\delta}\right)\right)<L_{j}^{h}(s)+\varepsilon / 2 \tag{2}
\end{equation*}
$$

For each i, choose $y>0$ such that,

$$
\begin{gathered}
\frac{K\left\{d\left(u_{i}^{\delta}\right)\right\}^{q-1}}{y^{q-1}} h(\eta)<\Sigma / 2^{i+1} \\
y<\delta
\end{gathered}
$$

Then we can replace U_{i}^{δ} by an open set of diameter $\left(d\left(U_{i}^{\delta}\right)-2 \eta\right)$
together with $\left[K\left\{d\left(U_{i}^{j}\right)\right\}^{q-1} \eta^{q-1}\right]$ open sets of diameter η. Hence we get a new open covering $\left\{V_{i}^{\delta}\right\}$ of S with,

$$
d\left(V_{i}^{J}\right)<J \quad \text { for all: }
$$

and. $\quad \sum_{i} h\left(d\left(V_{i}^{\delta}\right)\right) \leqslant \sum_{i} h\left(d\left(U_{i}^{\delta}\right)\right)+\Sigma / 2$
Thus, combining (2) and (3), we have,

$$
\Lambda_{\delta}^{h}(s)<\sum_{i} h\left(d\left(v_{i}^{\delta}\right)\right)<l_{j}^{h}(s)+\tau
$$

Combining this result with (1) we see that,

$$
\Lambda_{J}^{h}(S)=L_{\delta}^{h}(S)
$$

and so it is sufficient to prove that,

$$
L_{\delta}^{h}\left(\bigcup_{n=1}^{\infty} S_{n}\right)=\lim _{n \rightarrow \infty} L_{\delta}^{h}\left(S_{n}\right)
$$

We now define a psoudo-metric on the space of subsets of q-dimensional Euclidean space. Denote by.$S(t)$ the set,

$$
\{x: e(x, s)<t\}
$$

for any aet S. Define the distance between two subsets S, T by,

$$
s(S, T)=\min \{t: S \subset T(t) \text { and } T \subset S(t)\} \text {. }
$$

We then write $S_{n} \rightarrow S$ when,

$$
s\left(S_{n}, S\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Firstly, we suppose that $\bigcup_{n=1}^{\infty} S_{n}$ is bounded in q-dimensional Euclidean space.
Now, for each n, we consider a sequence $\left\{U_{i}^{n}\right\}$ of closed sets with the following properties,

$$
\begin{aligned}
& \text { 1). } \quad S_{n} c \bigcup_{i=1}^{\infty} U_{i}^{n} \\
& \text { ii). } d\left(U_{i+1}^{n}\right) \leqslant d\left(U_{i}^{n}\right) \leqslant \delta \quad \text { for all } i \\
& \text { iii). } \sum_{i} h\left(d\left(U_{i}^{n}\right)\right) \leqslant L_{\delta}^{h}\left(S_{n}\right)+1 / n \\
& \text { iv). } \quad U_{i}^{n} \rightarrow V_{i} \quad \text { as } n \rightarrow \infty \quad \text { (} V_{i} \text { compact). }
\end{aligned}
$$

Fe can satisfy condition iv). because of Blaschke's Selection Theorem and from the fact that we may assume that the sets U_{i}^{n} are uniformly bounded (e.g. see Eggleston (4)).

Now, since $h(x)>0$ for all $x>0$, we see from iii). that,

$$
d\left(u_{:}^{n}\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty .
$$

Now let,

$$
a=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} h\left(d\left(u_{i}^{n}\right)\right)
$$

then, given any $\Sigma>0$ we can find a strictly increasing sequence $\left\{n_{k}\right\}$ of
integers such that,

$$
\sum_{i} h\left(d\left(v_{i}^{n k}\right)\right)<a+\Sigma
$$

for all k.

By iv). we have,

$$
\begin{equation*}
\sum_{i} h\left(d\left(v_{i}\right)-0\right) \leqslant a \tag{5}
\end{equation*}
$$

and so,

$$
d\left(v_{i}\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

Now defIne,

$$
\begin{equation*}
b=a-\sum_{i} h\left(\alpha\left(v_{i}\right)-0\right) \tag{6}
\end{equation*}
$$

By the argument given at the beginning of the proof, using the fact that,

$$
\frac{h(x)}{x^{2-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

we can find open sets $W_{i}^{j}, j=1, \ldots M_{i}$ such that for each i,

$$
\begin{aligned}
& d\left(w_{i}^{j}\right)<d\left(v_{i}\right) \text { for } j=1, \ldots, m_{i} \\
& v_{i} \in \bigcup_{j=1}^{m_{i}} w_{i}^{j} \\
& \left.\left(w_{i}^{j}\right)\right)<h\left(d\left(v_{i}\right)-0\right)+\sum / 2
\end{aligned}
$$

and $\quad d\left(\bigcup_{j=1}^{m_{i}} w_{i}^{j}\right) \rightarrow 0 \quad$ es $i \rightarrow \infty$.
Given any $e>0$ choose an integer I such that for all $: \geqslant I$,

$$
d\left(\bigcup_{j=1}^{m_{i}} w_{i}^{j}\right)<e
$$

and

$$
\begin{equation*}
\sum_{i>I} h\left(d\left(v_{i}\right)-0\right)<\varepsilon \tag{8}
\end{equation*}
$$

Further, given any integer n, choose $N=n_{k}(>n)$ for some K, such that for $i=1, \ldots, I$,

$$
\begin{equation*}
U_{i}^{N} \text { с } w_{i}^{\prime} \cup \ldots \cup w_{i}^{m} \tag{9}
\end{equation*}
$$

end. $\quad \sum_{i=1}^{I}\left\{h\left(d\left(V_{i}\right)-0\right)-h\left(d\left(u_{i}^{N}\right)\right)\right\}<\Sigma$.
Then,

$$
S_{n} \backslash \bigcup_{i=1}^{I} \bigcup_{j=1}^{m} w_{i}^{j} c \bigcup_{i>I} U_{i}^{N}
$$

but, for $i>I$,

$$
d\left(U_{i}^{N}\right) \leqslant d\left(U_{I}^{N}\right) \leqslant d\left(\bigcup_{j=1}^{m_{I}} w_{I}^{j}\right)<e
$$

So we have,

$$
\begin{aligned}
L_{p}^{h}\left\{S_{n} \prime \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{M_{i}} w_{i}^{j}\right\} & \leqslant \sum_{i>I} h\left(d\left(U_{i}^{N}\right)\right) \\
& =\sum_{i=1}^{\infty} h\left(d\left(U_{i}^{N}\right)\right)-\sum_{i=1}^{\infty} h\left(d\left(v_{i}\right)-0\right)+\sum_{i=1}^{I} h\left(d\left(v_{i}\right)-0\right) \\
& -\sum_{i=1}^{I} h\left(d\left(U^{N}\right)\right)+\sum_{i>I} h\left(d\left(v_{i}\right)-0\right) \\
& <b+3 \Sigma_{1} \quad \text { using }(4),(6),(9) \text { and }(8) .
\end{aligned}
$$

Thus, letting e t 0 we have,

$$
L^{h}\left\{S_{n} \mid \bigcup_{i=1}^{k} \bigcup_{j=1}^{m_{i}} w_{i}^{j}\right\} \leqslant b+3 \Sigma
$$

Therefore, we have,

$$
L^{h}\left\{S_{n} \backslash\left(\bigcup_{i=1}^{I} V_{i} \cup \bigcup_{i>I} \bigcup_{j=1}^{m_{i}} w_{i} j\right)\right\} \leqslant b+3 \Sigma
$$

because we could choose for $\bigcup_{j=1}^{M_{i}} W_{i} j$ descending sequence of open sets whose intersection is V_{i}, for the cases $i=1, \ldots, I$. (It is well known that for any ascending sequence of sets $\left\{E_{n}\right\}$ we have,

$$
L^{h}\left(\bigcup_{n} E_{n}\right)=\lim _{n \rightarrow \infty} L^{h}\left(E_{n}\right)
$$

So we have,

$$
L_{\rho}^{h}\left\{S_{n} \backslash\left(\bigcup_{i=1}^{I} V_{i} \cup \bigcup_{i=I+1}^{\infty} \bigcup_{j=1}^{m_{j}} W_{i}\right)\right\} \leq b+3 \Sigma
$$

Thus,

$$
\begin{aligned}
L^{h}\left\{S_{n} \backslash \bigcup_{i=1}^{\infty} V_{i}\right\} & \leq b+3 \Sigma+\sum_{i=I+1}^{\infty} \sum_{j=1}^{M} h\left(d\left(W_{i}^{j}\right)\right) \\
& \text { using }(7) \text { and (8). }
\end{aligned}
$$

So, letting $e \searrow 0$ and $\Sigma \searrow 0$, we have,

$$
L^{h}\left\{S_{n}!\bigcup_{i=1}^{\infty} V_{i}\right\} \leq b
$$

That is, by 111). and the fact that $L^{h}\left\{\bigcup_{n} S_{n} \backslash \cup V_{i}\right\}=\lim _{n \rightarrow \infty} L^{h}\left\{S_{n} \backslash \cup V_{i}\right\}$,

$$
\sum_{i=1}^{\infty} h\left(d\left(v_{i}\right)-0\right)+L^{h}\left\{\bigcup_{n} s_{n} i U_{i} v_{i}\right\} \leqslant \lim _{n \rightarrow \infty} L_{\delta}^{h}\left(S_{n}\right)
$$

Now, we know that $d\left(V_{i}\right) \leq \delta$ for all i. Thus, given any $\leqslant>0$, we can cover $U_{i} V_{i}$ by olosed sets $\left\{W_{i}\right\}$ such that,

$$
\bigcup_{i=1}^{\omega} V_{i} c \bigcup_{i=1}^{\omega} W_{i}
$$

$$
\begin{array}{cc}
d\left(w_{i}\right) \leqslant J & \text { for ali } \\
\text { and, } \quad & \sum_{i} h\left(d\left(w_{i}\right)\right)<\sum_{i} h\left(d\left(v_{i}\right)-0\right)+\tau .
\end{array}
$$

Thus,

$$
\begin{aligned}
L_{\delta}^{h}\left(U_{n} S_{n}\right) & \leqslant L_{\delta}^{h}\left(\bigcup_{n} s_{n} \mid \bigcup_{i} V_{i}\right)+\sum_{i} h\left(d\left(w_{i}\right)\right) \\
& <L_{j}^{h}\left(\bigcup_{n} S_{n} \mid U_{i} V_{i}\right)+\sum_{i} h\left(d\left(v_{i}\right)-0\right)+\Sigma \\
& \leqslant \lim _{n \rightarrow \infty} L_{\delta}^{h}\left(S_{n}\right)+\Sigma .
\end{aligned}
$$

This is true for arbitrary positive Σ, and so we have,

$$
L_{\delta}^{u}\left(U_{n} S_{n}\right) \leqslant \lim _{n \rightarrow \infty} L_{\delta}^{n}\left(f_{n}\right)
$$

Clearly,

$$
L_{\delta}^{h}\left(U_{n} S_{n}\right) \geqslant \lim _{n \rightarrow \infty} L_{\delta}^{4}\left(S_{n}\right)
$$

thus we have shown that,

$$
L_{\delta}^{h}\left(U_{n} S_{n}\right)=\lim _{n \rightarrow \infty} L_{\delta}^{h}\left(S_{n}\right)
$$

Hence we have proved the theorem when $\bigcup_{n} S_{u}$ is bounded. Fe can, now, extend this result to the case of unbounded seta by method of Davies (1). Suppose that $\bigcup_{n} S_{n}$ is unbounded. The result is obvious if $\lim _{n \rightarrow \infty} \mathcal{\Lambda}_{j}^{h}\left(S_{n}\right)$ is infinite, so we must now assume that the innit is finite. Let C be a q-dimensional cube, sides length 2δ parallel to the coordinate axes. Let C^{i} denote 2^{q} cubes of side δ into which C may be divided. Let $\left\{c_{j}^{i}\right\}$ be an enumeration of all the distinct cubes which may
be obtained from C^{i} by translations whose components are integral multiples of 2δ.
For each i, the cubes $C_{r}^{i} \quad(r=1,2, \ldots)$ are a distance not less then δ from one another. Thus we have,

$$
\begin{equation*}
\lambda_{\delta}^{h}\left(\bigcup_{n} S_{n} \cap U_{r} c_{r}^{i}\right)=\sum_{r=1}^{\infty} \lambda_{\delta}^{h}\left(U_{n} S_{n} \cap c_{r}^{i}\right) \tag{11}
\end{equation*}
$$

Suppose that the series in (11) were divergent for at least one value of i. In that case we could choose R so large that,

$$
\mathcal{J}_{\delta}^{h}\left(\bigcup_{n} S_{n} \cap \bigcup_{r=1}^{R} c_{r}^{i}\right)=\sum_{r=1}^{R} \lambda_{\delta}^{h}\left(\bigcup_{n} S_{n} n c_{j}^{i}\right)>\lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(S_{n}\right) \quad-(12)
$$

Then clearly,

$$
\lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(S_{n}\right) \geqslant \lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(S_{n} \cap \bigcup_{r=1}^{R} c_{r}^{i}\right)
$$

and so, from (12),

$$
\mathcal{A}_{\delta}^{h}\left(\bigcup_{n} S_{n} \cap \bigcup_{r=1}^{R} c_{r}^{i}\right)>\lim _{n \rightarrow \infty} \mathcal{A}_{\delta}^{h}\left(S_{n} \cap \bigcup_{r=1}^{R} c_{r}\right)
$$

contradicting the theorem for bounded sets. Thus, for each i, the series in (11) is convergent. Given any $\Sigma>0$ choose a value of R such that,

$$
\sum_{i=1}^{2^{q}} \sum_{r=R+1}^{\infty} \lambda^{n}\left(U_{n} S_{n} C_{r}^{i}\right)<\sum
$$

Then we have,

$$
\begin{aligned}
& <\Lambda_{j}^{h}\left(\bigcup_{n} S_{n} \cap \bigcup_{i=1}^{2} \bigcup_{r=1}^{R} c_{r}^{i}\right)+\Sigma
\end{aligned}
$$

but the bounded ease of the theorem gives us,

$$
\begin{aligned}
\Lambda_{j}^{h}\left(U_{n} S_{n} n U_{i=1}^{2^{q}} U_{r=1}^{R} c_{r}^{i}\right) & =\lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(S_{n} \cap \bigcup_{i=1}^{2^{q}} \bigcup_{r=1}^{R} c_{j}\right) \\
& \leqslant \lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(S_{n}\right)
\end{aligned}
$$

Hence,

$$
\Lambda_{\delta}^{h}\left(\cup_{n} s_{n}\right)<\lim _{n \rightarrow \infty} \Lambda^{h}\left(s_{n}\right)+\varepsilon \quad \text { for every } \varepsilon>0
$$

and therefore,

$$
\Lambda_{\delta}^{h}\left(\cup S_{n}\right) \leq \lim _{n \rightarrow \infty} \Lambda^{h}\left(s_{n}\right)
$$

The reverse inequality is trivial and hence the theorem is proved.

Corollary

If $h(x)$ is any monotonic increasing one -dimensional Hausdorff measure function, then for any $\delta>0$ and any increasing sequence of sets $\left\{S_{n}\right\}$ on the real line, we have,

$$
\Lambda_{\delta}^{h}\left(U S_{n}\right)=\lim _{n \rightarrow \infty} \Lambda_{\delta}^{h}\left(S_{n}\right)
$$

Next, instead of considering sequences of sets we look at convergent sequences of values of δ.

Theorem 10
If $h(r)$ is any monotonic increasing q-dimensional Hausdorff
measure function with the property that,

$$
\frac{h(x)}{x^{a-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

then for any $\delta>0$ any set S in q-dimensional Euclidean space and any sequence $\left\{\Sigma_{n}\right\}$ with $\Sigma_{n} \downarrow 0$ as $n \rightarrow \kappa$ we have,

$$
\Lambda_{\delta}^{h}(s)=\lim _{n \rightarrow \alpha} \Lambda_{\delta+\Sigma_{n}}^{h}(s)
$$

Proof
Clearly we have,

$$
\begin{equation*}
\Lambda_{J}^{h}(s) \geqslant \Lambda_{\delta_{+2}}^{h}(s) \quad \text { for all } n \text {. } \tag{13}
\end{equation*}
$$

We now assume that the set S is bounded. Thus we can assume that S is contained in a q-dimensional aube of side length C, say. Given any $\Sigma>0$, for each integer n. let $\left\{U_{i}^{n}\right\}$ be a sequence of open sets such that,

$$
S c \bigcup_{i=1}^{\infty} u_{i}^{n}
$$

$$
\begin{equation*}
d\left(u_{i}^{n}\right)<\delta+\Sigma_{n} \quad \text { for all } \tag{14}
\end{equation*}
$$

and, $\quad \sum_{i} h\left(d\left(u_{i}^{n}\right)\right)<\lambda_{j+\Sigma_{m}}^{b}(s)+\Sigma / 2$
Choose n so large that,

$$
\begin{equation*}
\Sigma_{n}<\delta \tag{15}
\end{equation*}
$$

and: $\left(\left[\frac{c \sqrt{q}}{\delta}\right]+1\right)^{q} k\left(\frac{2 \delta}{\Sigma_{n}}\right)^{q-1} h\left(\Sigma_{n}\right)<\Sigma / 2$
where K is the constant introduced in Theorem 9. Now we can replace each U_{i}^{n} with the property $d\left(U_{i}^{u}\right) \geqslant \delta$ by a set V_{i}^{n} with $d\left(V_{i}^{n}\right)<\delta$
together with $\left[K\left(\frac{2 \delta}{\Sigma_{m}}\right)^{q-1}\right]$ sets of disaneter Σ_{n}. Thus, we get a new covering of $S,\left\{W_{i}^{n}\right\}$ say, with,

$$
\begin{equation*}
d\left(w_{i}^{n}\right)<\delta \quad \text { for all } i \tag{17}
\end{equation*}
$$

There are at most $\left(\left[\frac{c \sqrt{q}}{\delta}\right]+1\right)^{q}$ sets U_{i}^{n} with $d\left(U_{i}^{n}\right) \geqslant \delta$, since, this number of such sets would be sufficient to cover S.

So we have,

$$
\begin{aligned}
\sum_{i} h\left(d\left(w_{i}^{n}\right)\right) & <\sum_{i} h\left(d\left(v_{i}^{n}\right)\right)+\left(\left[\frac{c \sqrt{q}}{\delta}\right]+1\right)^{q} k\left(\frac{2 \delta}{\Sigma_{n}}\right)^{q-1} h\left(\Sigma_{n}\right) \\
& \leqslant \sum_{i} h\left(d\left(u_{i}^{n}\right)\right)+\Sigma / 2 \text { by (16) } \\
& <\lambda_{\delta_{+} \Sigma_{n}}^{h}(S)+\Sigma . \quad \text { by (14). }
\end{aligned}
$$

Therefore, for all large n,

$$
\begin{equation*}
\Lambda_{\delta}^{h}(s)<\Lambda_{\delta+\tau_{n}}^{h}(s)+\Sigma \tag{18}
\end{equation*}
$$

Hence we have the required result from (18), (13) and the fact that 5 was an arbitrary positive number.

Thus we have proved that, for bounded sets,

$$
\Lambda_{J_{+} \tau_{n}}^{h}(s) \rightarrow \Lambda_{j}^{h}(s) \quad \text { as } n \rightarrow \infty
$$

Now let S be an arbitrary set in q-dimensional Euclidean spans. Then we wite,

$$
S=\bigcup_{i=1}^{\infty} S_{i}
$$

with each S_{i} bounded and $S_{i} \subset S_{i+1}$ for all i.

Then by Theorem 9,

$$
\begin{align*}
\Lambda_{\delta}^{h}(s) & =\lim _{i \rightarrow \infty} \Lambda_{\delta}^{h}\left(s_{i}\right) \\
& =\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \Lambda_{\delta+\Sigma_{n}}^{h}\left(s_{i}\right) \\
& \leqslant \lim _{n \rightarrow \infty} \Lambda_{\delta_{+\Sigma_{n}}}(s) \tag{19}
\end{align*}
$$

Thus by (13) and (19), we have,

$$
\lim _{n \rightarrow \infty} \lambda_{\delta+\Sigma_{n}}^{n}(s)=\Lambda_{\delta}^{n}(s) \quad \text { ea required. }
$$

Corollary
If $h(x)$ is any monotonic Increasing onemimenaional Hausdorff measure function then for any $\delta>0$ any linear set S and any sequence $\left\{\Sigma_{n}\right\}$ with $\Sigma_{n} \downarrow 0$ as $n \rightarrow \infty$ we have,

$$
\Lambda_{j}^{n}(s)=\lim _{n \rightarrow \infty} \Lambda_{J_{+5}}^{h}(s)
$$

Davies (1) shows that the result of Theorem 9 sometimes breaks down even in the case of continuous functions when we don't insist on the property,

$$
\frac{h(x)}{x^{q-1}} \rightarrow 0
$$

$$
\text { as } x \rightarrow 0
$$

But Sion and Sjerve (11) have show that the result is true for the pre-measure L_{δ}^{h} in the continuous case even without the above property. Theorem 11 now shows that the latter result does not extend to the discontinuous case.

Theorem 11

There exists a discontinuous two -dimensional Hausdorff measure function $h(x)$ say, with,

$$
\frac{h(x)}{x} \nrightarrow 0 \quad \text { as } x \rightarrow 0
$$

and a positive number δ and an increasing sequence of sets $\left\{S_{i}\right\}$ in two-dimensional Euclidean space such that,

$$
\lim _{i \rightarrow \infty} L_{\delta}^{h}\left(s_{i}\right) \neq L_{\delta}^{h}\left(U_{i} s_{i}\right)
$$

Proof
Let

$$
x_{n}=1 / 2 n \quad \text { for } n=1,2, \ldots
$$

Define $h(x)$ as follows,

$$
h(x)=x_{n} \quad \text { for } \quad x \in\left(x_{n+1}, x_{n}\right)
$$

and.

$$
h\left(x_{n}\right)=\frac{3}{2} x_{n} .
$$

Then, clearly, $h(x)$ is a two dimensional Hausdorff measure function. Take $\delta=x_{N}$ for sone positive integer N. Denote by S_{n} the common pert of the closed discs,

$$
x^{2}+y^{2} \leq 1 / 4 \delta^{2} \text { and }(x-2 / 4)^{2}+y^{2} \leq 1 / 4 \delta^{2}
$$

Then we have,

$$
S_{n} \subset S_{n+1} \quad \text { for all } n .
$$

Also wee that, $\bigcup_{n=1}^{\infty} S_{n}$ is the open also $x^{2}+y^{2}<1 / 4 \delta^{2}$ together with that part of the circumference which lies to the right of the y-axis. So that have,

$$
L_{\delta}^{h}\left(S_{n}\right) \leqslant x_{N} \quad \text { for all } n .
$$

It is clear that,

$$
L_{\delta}^{4}\left(\bigcup_{n=1}^{\infty} S_{n}\right) \leq \frac{3}{2} x_{N}
$$

since we can cover $U_{n} S_{n}$ by its own closure. Fe now assume that all the sets of the covering have diameter strictly less than δ. Thus, let $\left\{U_{i}\right\}$ be any closed covering of $U_{n} S_{n}$ such that,

$$
d\left(u_{i}\right)<\delta \quad \text { for all } i .
$$

Clearly, we that no set U_{i} can contain points on the boundary of $U_{n} S_{n}$ which are diametrically opposite. Let $\left\{U_{n_{i}}\right\}$ be a subsequence of $\left\{U_{i}\right\}$ such that con U_{n}, has at least one point in common with the boundary of $U_{n} S_{n}$. Let the intersection of each U_{n} with the boundary of $U_{n} S_{n}$ subtend an angle $2 \varphi_{i}$ at the centre of $U_{n} S_{n}$.
Then,

$$
\sin \varphi_{i} \leqslant \frac{d\left(u_{n_{i}}\right)}{x_{N}}
$$

and

$$
0 \leq Q_{i} \leq \pi / 2
$$

for each $:$.

Clearly we must have,

$$
\sum_{i} 2 \varphi_{i} \geqslant 2 \pi
$$

in order that the seta U_{i} form a covering of $U_{n} S_{n}$. Also, we know that,

$$
\sin \varphi_{i} \geqslant \frac{2 \phi_{i}}{\pi}
$$

Thus,

$$
\sum_{i} d\left(u_{i}\right) \geqslant \sum_{i} d\left(u_{n_{i}}\right) \geqslant \frac{x_{N}}{\pi} \sum_{i} 2 \varphi_{i} \geqslant 2 x_{N}
$$

Hence, since $h(x) \geqslant x$ for all x, must have,

$$
L_{J}^{h}\left(\bigcup_{n} S_{n}\right)=3 / 2 x_{N}
$$

Thus the theorem is proved.

We now show that we cannot always relax the conditions imposed In Theorem 10.

Theorem 12
There exists a discontinuous, two -dimensional Hausdorff measure function $h(x)$, soy, with,

$$
\frac{h(x)}{x} \nrightarrow 0 \quad x \rightarrow 0
$$

a $\delta>0$ and a set S in two-dimensionel Euclidean apace, such that,

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{\delta+1 / n}^{h}(s) \neq \mathcal{A}_{d}^{h}(s)
$$

Proof
Let,

$$
x_{n}=(2 / 3)^{n} \quad \text { for } n=1,2, \ldots
$$

Define,

$$
h(x)=x_{n} \quad \text { for } x \in\left(x_{n+1}, x_{n}\right]
$$

Choose $d=x_{N}$ for some positive integer N, and denote by S the open disc $x^{2}+y^{2}<1 / 4 J^{2}$ together with that part of the circumference which Lies to the right of the y-axis.

Then for all integers n,

$$
\mathcal{N}_{\delta+1 / n}^{h}(S) \leqslant x_{N-1}=3 / 2 x_{N}
$$

end, by a similar argument to that given in the previous theorem we see that,

$$
\Lambda_{\delta}^{h}(S)=2 x_{N}
$$

Hence the theorem ia proved.

Next, we extend the result of Theorem 10.

Theorem 13
If $h(x)$ is any monotonic increasing q-dimensional Hausdorff
measure function with the property that,

$$
\frac{h(x)}{x^{q-1}} \rightarrow 0 \quad \text { as } \quad x \rightarrow 0
$$

then for any $\delta>0$, any set S in q-dimensional Euclidean apace and any sequence $\left\{\Sigma_{n}\right\}$ with $\Sigma_{n} \geqslant 0$ as $n \rightarrow \infty$ wo have,

$$
\Lambda_{\delta}^{h}(s)=\lim _{n \rightarrow \infty} \Lambda_{\delta-z_{n}}^{h}(s) .
$$

Proof
Clearly we have,

$$
\begin{equation*}
\lambda_{\delta}^{h}(S) \leqslant \Lambda_{\delta-\Sigma_{n}}^{h}(S) \quad \text { for all } n \text {. } \tag{20}
\end{equation*}
$$

co that, if S is such that $\mathcal{\Lambda}_{\delta}^{h}(S)=\infty$, then we have,

$$
\lim _{n \rightarrow \infty} \Lambda_{\delta_{-} \Sigma_{n}}^{h}(s)=\Lambda_{\delta}^{h}(s)
$$

So it is sufficient to prove the theorem for sets S such that $\mathcal{\Lambda}_{\delta}^{h}(S)$ is finite.

Given any $\sum>0$, lat $\left\{U_{i}\right\}$ be a sequence of open sets with the following properties,

$$
S c \bigcup_{i=1}^{\infty} s_{i}, \quad d\left(U_{i}\right)<\delta \quad \text { for all } i
$$

and,

$$
\begin{equation*}
\sum_{i=1}^{\infty} h\left(\alpha\left(u_{i}\right)\right)<\lambda_{j}^{h}(s)+\sum / 2 \tag{21}
\end{equation*}
$$

From (21) and the fact that $h(x)>0$ for all $x>0$ we have,

$$
d\left(U_{i}\right) \rightarrow 0 \quad \text { es } i \rightarrow \infty
$$

Thus, for some constant C, there are at most C sets U_{i} with $d\left(U_{i}\right) \geqslant \delta-\Sigma_{i}$.

Now choose N such that for all $n \geq N$,

$$
\text { and, } \quad C K\left(\frac{\delta}{\Sigma_{n}}\right)^{q-1} h\left(\Sigma_{n}\right)<\delta / 2 \quad-(22)
$$

where K is the constant introduced in Theorem 9. For each $n \geqslant N$, replace each U_{i} with the property $d\left(U_{i}\right) \geqslant \delta-\Sigma_{n}$ by an open set V_{i}^{n} with $d\left(V_{i}^{n}\right)<\delta-\Sigma_{n}$ together with $\left[K\left(\delta / \Sigma_{n}\right)^{q-1}\right]$ open sets of diameter Σ_{n}. Thus we get another open covering of S by sets W_{i}^{n}, say, such that,

$$
d\left(w_{i}^{n}\right)<\delta-\Sigma_{n} \quad \text { for all } i
$$

Also, since there are at most C sets U_{2} with $d\left(U_{i}\right) \geqslant \delta-\Sigma_{n}$ we must have,

$$
\begin{aligned}
\sum_{i} h\left(d\left(w_{i}^{n}\right)\right) & \leqslant \sum_{i} h\left(d\left(v_{i}^{n}\right)\right)+C K\left(\delta / \Sigma_{n}\right)^{q-1} h\left(\Sigma_{n}\right) \\
& \leqslant \sum_{i} h\left(d\left(v_{i}\right)\right)+C K\left(\delta / \Sigma_{n}\right)^{q-1} h\left(\Sigma_{n}\right) \\
& <\Lambda_{\delta}^{h}(S)+\Sigma^{\prime}
\end{aligned}
$$

by (21) and (23).
Thus, for all $n \geq N$,

$$
\mathcal{J}_{\delta-\Sigma_{n}}^{h}(s)<\Lambda_{d}^{h}(s)+\varepsilon
$$

Therefore, using (20) and (24) we have,

$$
\lim _{n \rightarrow \infty} \Lambda_{\delta-\Sigma_{n}}^{n}(\dot{S})=\Lambda_{\delta}^{h}(S)
$$

which completes the proof of the theorem.

Corollary of Theorems 10 and 13
If $h(x)$ is any monotonic increasing q-ainensional Hausdorff measure function with the property that,

$$
\frac{h(x)}{x^{2-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

then for any set S in q-dimensional Euclidean space and for any sequence $\left\{\delta_{n}\right\}$ with $\delta_{n} \rightarrow \delta$ es $n \rightarrow *$ for some positive real number δ, we have,

$$
\lim _{n \rightarrow \infty} \mathcal{\Lambda}_{\delta_{m}}^{h}(s)=\mathcal{\Lambda}_{\delta}^{n}(s)
$$

Proof
Given any $\Sigma>0$, we know from Theorems 10 and 15 that there exists a positive integer N^{\prime} such that for all $n \geqslant N^{\prime}$,

$$
\lambda_{\delta+1 / n}^{h}(S)>\Lambda_{\delta}^{h}(S)-\Sigma
$$

and,

$$
\Lambda_{\delta-1 / n}^{h}(s)<\Lambda_{\delta}^{h}(s)+\Sigma
$$

Now, since $\delta_{n} \rightarrow \delta \therefore$ as $n \rightarrow \infty$ there exists a positive integer N such that, for all $n \geqslant N$,

$$
\delta-1 / N^{\prime}<\delta_{n}<J_{-}+1 / N^{\prime}
$$

So have, for all $n \geq N$,

$$
\Lambda_{\delta_{n}}^{h}(s) \leqslant \Lambda_{d-1 / N^{\prime}}^{h}(s)<\Lambda_{\delta}^{h}(s)+\varepsilon,
$$

ana, $\quad \lambda_{\delta_{n}}^{h}(s) \geqslant \Lambda_{\delta+1 / N^{\prime}}^{h}(s)>\Lambda_{\delta}^{h}(s)-\Sigma$.
Thus we have proved that,

$$
\lim _{n \rightarrow \infty} \Lambda_{\delta_{n}}^{h}(s)=\Lambda_{\delta}^{h}(s)
$$

We now give conditions under which it is possible to replace discontinuous functions by continuous ones without altering the corresponding hausdorff promeasures.

Theorem 14
Let $h(x)$ be any monotonic increasing q-dimensional Hausdorff measure function with the property that,

$$
\frac{h(x)}{x^{n-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

and such that its points of discontinuity have zero as their only limit point. Then there is a continuous Hausdorff measure function $H(x)$, say, such that for any $\delta>0$, and any set S in q-afmensionel Euclidean space,

$$
\Lambda_{\delta}^{h}(s)=\Lambda_{\delta}^{H}(s)
$$

Proof
Let $\left\{x_{i}\right\}$ be an enumeration of ell the points of discontinuity of $h(x)$.

We may assume that $x_{i}>x_{i+1}$ for all i, and that,

$$
x_{i} \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

Choose Σ_{1} arbitrary positive such that,

$$
\Sigma_{1} \& S_{2} x_{i}^{2} \text { and } x_{1} \&\left\{1 / 2 x_{i}\right\}
$$

Assume that we have chosen $\Sigma_{1}, \ldots, \Sigma_{i-1}$ we then choose Σ_{i} to be positive and such that,

$$
\begin{aligned}
& x_{i}+\Sigma_{i}<x_{i-1} \\
& \Sigma_{i}<x_{i} \\
& \Sigma_{i}<x_{j}-\left(x_{j+1}+\Sigma_{j+1}\right) \quad \text { for } j=1, \ldots, i-1 \quad \text { (27) } \\
& h\left(x_{i}+\Sigma_{i}\right) \leqslant h\left(2 x_{i}\right) \quad-(28) \\
& \left.r_{i} \& s_{2} x_{i}\right\} \text { and } r_{i} \&\left\{_{1 / 2} x_{i}\right\} \text {-(29) } \\
& \text { and. } \quad h(2 \eta)<\left(\frac{\eta}{2 x_{i}}\right)^{q-1}\left\{h\left(x_{i}+0\right)-h\left(x_{i}-0\right)\right\} K^{-1}-(30)
\end{aligned}
$$

for all $\eta \in\left(0, T_{i}\right]$, where K is the constant introduced in Theorem 9 . Define $H(x)$ as follows,

$$
\begin{aligned}
& H(x)=h(x) \quad \text { for } x \in\left[x_{i}+\varepsilon_{i}, x_{i-1}\right) \text { for some } \\
& H\left(x_{i}\right)=h\left(x_{i}-0\right)
\end{aligned}
$$

In the intervals $\left(x_{i}, x_{i}+T_{i}\right)$ define $H(x)$ to be continuous and monotonic increasing so that,

$$
H\left(x_{i}+\eta\right)=H\left(x_{i}\right)+K\left(\frac{2 x_{i}}{y}\right)^{q-1} H_{i}^{*}(y) \text { for } 0<y<\Sigma_{i},
$$

where $H_{i}^{*}(x)$ is a continuous increasing function with the following properties,
$\begin{array}{ll}H_{i}^{*}(x) \geqslant h(2 x) & \text { for all } x \\ \frac{H_{i}^{*}(x)}{x^{q-1}} \rightarrow 0 & \text { as } x \rightarrow 0\end{array}$
and $\quad H_{i}^{*}\left(s_{i}\right)=\frac{1}{K}\left(\frac{s_{i}}{2 x_{i}}\right)^{q-1}\left\{h\left(x_{i}+\tau_{i}\right)-h\left(x_{i}-0\right)\right\}$
This definition makes $H(x)$ continuous at x_{i} because of (32); and continuity at $x_{i}+\sum_{i}$ follows from (33).

Also we have,

$$
\begin{aligned}
H_{i}^{*}\left(\Sigma_{i}\right) & \geq \frac{1}{K}\left(\frac{\Sigma_{i}}{2 x_{i}}\right)^{q-1}\left\{h\left(x_{i}+0\right)-h\left(x_{i}-0\right)\right\} \\
& >h\left(2 \Sigma_{i}\right) \quad \text { by (30) }
\end{aligned}
$$

Hence the equations (31) and (33) ere consistent. It is clear that (31) and (32) are consistent since,

$$
\frac{h(2 x)}{x^{q-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

Finally, we need to show that we can choose such an $H_{i}^{*}(x)$ and ensure that,

$$
H\left(x_{i}+y\right) \leqslant h\left(x_{i}+y\right) \quad \text { for } \quad 0<y<\Sigma_{i}
$$

Now, using (30),

$$
h\left(x_{i}-0\right)+K\left(\frac{2 x_{i}}{\eta}\right)^{q-1} h(2 \eta)<h\left(x_{i}+0\right) \leqslant h\left(x_{i}+\eta\right) .
$$

Hence we can choose such a function $H_{i}^{*}(x)$. Thus, we see that,

$$
H(x) \leqslant h(x) \quad \text { for all } x,
$$

end so we have,

$$
\Lambda_{\delta}^{H}(s) \leqslant \Lambda_{\delta}^{h}(s)
$$

for all sets S and positive numbers δ. Let S be a set in q-dimensional Euclidean space and δ a positive number, then given any $\Sigma>0$ we cen choose a sequence of open sets such that,

$$
S c U_{i} U_{i}^{\delta} \quad \text { and } \quad d\left(U_{i}^{\delta}\right)<\delta \quad \text { for all } i
$$

and,

$$
\sum_{i} H\left(d\left(v_{i}^{\delta}\right)\right)<\lambda_{\delta}^{H}(S)+\Sigma
$$

Now we assume that for some i,

$$
H\left(d\left(u_{i}^{\delta}\right)\right) \neq h\left(d\left(u_{i}^{\delta}\right)\right)
$$

then we must have,

$$
d\left(U_{i}^{\delta}\right) \in\left[x_{j}, x_{j}+\Sigma_{j}\right) \quad \text { for some } j
$$

Let $d\left(u_{i}^{\delta}\right)=x_{j}+\eta$ where $0 \leq y<\Sigma_{j}$. Then if $y \in\left[x_{k}, x_{k-1}\right)$ for some k ($k>j$) then there is a λ such that,

$$
y+\lambda \in\left[x_{k}+\Sigma_{k}, x_{k-1}\right)
$$

with

$$
0<\lambda \leqslant \Sigma_{K}
$$

Choose open sets $\left\{V_{i, s}^{\delta}\left\{\right.\right.$ with $s=1,2, \ldots,\left[K\left(\frac{x_{j}+\eta}{y+\lambda}\right)^{q-1}\right]+1$, such
that,

$$
d\left(v_{i, 1}^{\delta}\right)=x_{i}-\lambda
$$

$$
d\left(V_{i, s}^{J}\right)=y+\lambda \quad \text { for } s=2, \ldots,\left[k\left(\frac{x_{j}+\eta}{y+\lambda}\right)^{q-1}\right]+1
$$

$$
\text { and, } \quad U_{i}^{\delta} \subset \bigcup_{s=1}^{\left[k\left(\frac{x_{j}+y}{4+\lambda}\right)^{q-1}\right]+1} V_{i, s}^{\delta} \text {. }
$$

Then,

$$
\begin{aligned}
H\left(d\left(u_{i}^{\delta}\right)\right) & =H\left(x_{i}+y\right)=H\left(x_{i}\right)+K\left(\frac{2 x_{i}}{\eta}\right)^{q-1} H_{j}^{*}(\eta) \\
& \geqslant H\left(x_{i}\right)+K\left(\frac{x_{j}+\eta}{\eta+\lambda}\right)^{q-1} h(2 \eta) \\
& \geq H\left(x_{j}-\lambda\right)+K\left(\frac{x_{j}+\eta}{\eta+\lambda}\right)^{q-1} h(\eta+\lambda) \\
& \geqslant H\left(x_{j}-\lambda\right)+K\left(\frac{x_{j}+\eta}{\eta+\lambda}\right)^{q-1} H(\eta+\lambda) \\
& \geq \sum_{s} H\left(d\left(V_{i, s}^{\delta}\right)\right)
\end{aligned}
$$

Also wee that,

$$
x_{j}-\lambda \geqslant x_{j}-\Sigma_{k}>x_{j+1}+\tau_{j+1} \quad \text { by (27) }
$$

therefore,

$$
x_{j}-\lambda \in\left(x_{j+1}+\sum_{j+1}, x_{j}\right)
$$

and so we have,

$$
H\left(d\left(V_{i, s}^{\delta}\right)\right)=h\left(d\left(V_{i, s}^{J}\right)\right) \quad \text { for ell } i \text { and } s .
$$

Further, we note that,

$$
d\left(V_{i, s}^{J}\right)<\delta \quad \text { for all } i \text { and } s
$$

Thus we have,

$$
\mathcal{\Lambda}_{\delta}^{h}(s) \leqslant \sum_{i} \sum_{s} h\left(d\left(V_{i, s}^{J}\right)\right) \leqslant \sum_{i} H\left(d\left(U_{i}^{\delta}\right)\right)<\Lambda_{\delta}^{H}(s)+\Sigma
$$

So, since the \sum was arbitrarily mall we have,

$$
\Lambda_{\delta}^{h}(s)=\Lambda_{\delta}^{H}(s)
$$

Hence the theorem is proved.

In Theorem 7 of Chapter 2 we showed that as far as Hausdorff measures are concerned, any discontinuous one-dimensionsl Hausdorff measure function $h(x)$ can be replaced by continuous function $H(x)$ with $H(x) \geqslant h(x)$. We now show that this is not possible for the promeasures.

Theorem 15

There is a discontinuous oneminensional Hausdorff measure fiction $h(x)$, say, such that if $H(x)$ is continuous function with $H(x) \geq h(x)$ for all x, then there exists a positive number δ and a set S on the real line such that,

$$
\Lambda_{\delta}^{h}(s) \neq \Lambda_{\delta}^{H}(s)
$$

Proof
Let

$$
x_{n}=1 / 16^{n} \quad \text { for } \quad n=1,2, \ldots
$$

Define $h(x)$ as follows,

$$
h(x)=x_{n}^{1 / 2} \quad \text { for } \quad x \in\left(x_{n+1}, x_{n}\right]
$$

Denote by S_{n} the closed interval $\left[0, x_{n}\right]$. Then, oleexly,

$$
\lambda_{x_{n}}^{h}\left(S_{n}\right)=h\left(x_{n}\right)=x_{n}^{1 / 2}=2^{-2 n}
$$

Now let $H(x)$ be any continuous function such that,

$$
H(x) \geqslant h(x) \quad \text { for all } x
$$

Then we must have,

$$
H\left(x_{n}\right) \geq \frac{1}{16^{\frac{n-1}{2}}}
$$

SO, there is a positive real number δ such that,

$$
\begin{aligned}
H(x) & \geq 3 / 2 n \\
\delta & <1 / 2 x_{n}
\end{aligned}
$$

Now let $\left\{U_{i}^{x_{n}}\right\}$ be any open covering of S_{n} such that,

$$
d\left(U_{n}^{x_{n}}\right)<x_{n}
$$

for $a l 1$ i.

Then if,

$$
d\left(U_{i}^{x_{n}}\right) \in\left[x_{n}-\delta, x_{n}\right) \quad \text { for som }:
$$

we have,

$$
H\left(d\left(U_{i}^{x_{m}}\right)\right) \geqslant 3 / 2^{2 n}=3 \Lambda_{x_{n}}^{h}\left(S_{n}\right)
$$

Finally, we assume that, for all i,

$$
d\left(U_{i}^{x_{n}}\right)<x_{n}-\delta .
$$

Then,

$$
\begin{aligned}
\sum_{i} H\left(d\left(U_{i}^{x_{n}}\right)\right) & \geqslant \Lambda_{x_{n}-\delta}^{H}\left(S_{n}\right) \\
& \geqslant\left(x_{n}-\delta\right)^{1 / 2}+\delta^{1 / 2} \\
& \geqslant \frac{x_{n}}{\left(x_{n}-\delta\right)^{1 / 2}}=\left(\frac{x_{n}}{x_{n}-\delta}\right)^{1 / 2} \Lambda_{x_{n}}^{h}\left(S_{n}\right) .
\end{aligned}
$$

Thus, in either cess,

$$
\sum_{i} H\left(d\left(U_{i}^{x_{n}}\right)\right) \geqslant c \Lambda_{x_{n}}^{h}\left(s_{n}\right)
$$

where $c>1$.
But the covering $\left\{U_{i}^{x_{n}}\right\}$ was arbitrary end so wo have,

$$
\Lambda_{x_{n}}^{H}\left(S_{n}\right) \geqslant c \lambda_{x_{n}}^{h}\left(S_{n}\right)
$$

that is,

$$
\Lambda_{x_{n}}^{H}\left(S_{n}\right) \neq A_{x_{n}}^{h}\left(S_{n}\right)
$$

Hence the theorem is proved.

CIIAPTER 4

INTRODUCTION
In this chapter, rather than considering the exact values of the Hausdorff measure of certain sets, we will only be interested in whether or not the measure is positive and finite. The first theoren gives us sufficient conditions to ensure the measure equivalence of two Hausdorff measure functions. The following four theorens are concerned with an investigation into the necessity of these conditions. In the last five theorens we use the results of the first half of the chapter to extend some work of Eogers (9) and Larman $(6,7,8)$ to the case of discontinuous functions, and to show that a result of Fgeleston (3) does not remain true for disoontinuous functions.

Theoren 16
Let $h(x)$ and $H(x)$ be two q-dimensional Hausdorff neasure funotions. If there exists a decreasing equence $\left\{x_{n}\right\}$ of positive real numbers such that,

$$
\begin{aligned}
& \text { 1). } x_{n} \nless 0 \quad \text { a } n \rightarrow \infty \\
& \text { 11). } \lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}>0
\end{aligned}
$$

and 111). $\frac{H\left(x_{n}\right)}{h\left(x_{n}\right)} \rightarrow l$ as $n \rightarrow \infty \quad$ where $0<l<\infty$.
Then the functions $h(x)$ and $H(x)$ are measure equivalent, for sets in q-aimensionel Euclidean space.

Proos

We know that for any set S in q-dimenaional Erclidean space, $\Lambda^{h}(S)$
is positive and finite if and only if $\Lambda^{h, C(q)}(s)$ is positive and finite.

Now lot,

$$
\lim _{x \rightarrow 0} \frac{x_{n+1}}{x_{n}}=2 \alpha(>0)
$$

Let S be a set in q-almensionel Euclidean space such that $\Lambda^{h, C(q)}(S)$ is positive and finite. Let \sum and δ be two given positive numbers, then there exists an open covering $\left\{U_{i}^{J}\right\}$ of S by cubes such that,

$$
\begin{equation*}
\Lambda^{h, c(q)}(s)-\Sigma<\sum_{i} h\left(d\left(u_{i}^{\delta}\right)\right)<\Lambda^{h, c(q)}(s)+\Sigma \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha\left(U_{i}^{\delta}\right)<\delta \quad \text { for all } i \tag{2}
\end{equation*}
$$

Now assuan e that J is so small that,

$$
\frac{x_{n+1}}{x_{n}}>\alpha \quad \text { for all in such that } x_{n+1}<\sqrt{-(3)}
$$

Then, for each i, using (2) and (3), we have,

$$
x_{n_{i}+1}<d\left(U_{i}^{\delta}\right) \leqslant x_{n_{i}}<1 / \alpha x_{n_{i}+1} \quad \text { for sone integer } n_{i}
$$

So we can replace each cube U_{i}^{δ} by $\left(\left[\frac{1}{\alpha}\right]+1\right)^{q}$ cubes V_{i} of diameter $x_{n_{i}+1}$. Thu there exists another open cover $\left\{V_{i}\right\}$ of S by cubes such that,

$$
\begin{array}{ll}
d\left(V_{i}\right) \in\left\{x_{n}\right\} & \text { for all } \\
d\left(V_{i}\right)<\delta & \text { for all }
\end{array}
$$

and,

$$
\sum_{i} h\left(d\left(v_{i}\right)\right)<\left(\left[\frac{1}{\alpha}\right]+1\right)^{q} \sum_{i} h\left(d\left(v_{i}^{\delta}\right)\right)
$$

$$
\begin{equation*}
<\left(\left[\frac{1}{\alpha}\right]+1\right)^{q}\left(\Lambda^{n, c(q)}(s)+\varepsilon\right) \tag{4}
\end{equation*}
$$

Now we know that,

$$
\frac{H\left(x_{n}\right)}{h\left(x_{n}\right)} \rightarrow l
$$

$$
\text { as } n \rightarrow \infty
$$

therefore there mists an integer N such that,

$$
l-\Sigma<\frac{H\left(x_{n}\right)}{h\left(x_{n}\right)}<l+\Sigma \quad \text { for all } n \geqslant N
$$

Also, there exists a real number $\delta^{\prime}>0$ such that for all $\delta<\delta^{\prime}$ we have,

$$
\frac{H\left(x_{n}\right)}{h\left(x_{n}\right)}<l+\Sigma, \quad \text { whenever } x_{n}<d
$$

Thus, since (4) holds for arbitrarily small values of δ, we have,

$$
\sum_{i} H\left(d\left(V_{i}\right)\right)<(l+\varepsilon) \sum_{i} h\left(d\left(V_{i}\right)\right)<\left(\left[\frac{1}{\alpha}\right]+1\right)^{q}(l+\Sigma)\left(h^{h, c(q)}(s /+\Sigma)\right.
$$

therefore,

$$
\Lambda^{H, c(q)}(S) \leq\left(\left[\frac{1}{\alpha}\right]+1\right)^{q} \ell \Lambda^{h, c(q)}(s)
$$

Fence the theorem is proved because of the symmetry of condition iii)..

Corollary
For any discontinuous Hausdorff measure function $h(x)$, there exists a continuous Hausdorff measure function $H(x)$ such that, for sets In Euclidean space, $h(x)$ and $H(x)$ are measure equivalent.

We note that the above results cen easily be extended to compact finite dimensional metric spaces. We see this from the following;

If we have,

$$
x_{n_{i}+1}<d\left(U_{i}^{J}\right) \leqslant x_{n_{i}}<1 / \alpha x_{n_{i+1}}
$$

for some set U_{i}^{δ} of an open covering of S, then,

$$
U_{i}^{\delta} c S\left(x_{1}, x_{n i}\right) \quad \text { for scone } x \in U_{i}^{\delta}
$$

Now there exist at most $N(\alpha / 6)$ disjoint spheres of radius $\alpha / 6 x_{n}$: meeting $S\left(x_{,}, x_{n_{i}}\right)$. Thus, U_{i}^{δ} is contained in $N(\alpha / G)$ spheres of radius $\alpha_{/ 2} x_{n_{i}}$, which in turn are contained in $N(K / 6)$ sets of diameter $x_{n,+1}$. The remainder of the proof is analogous to that given in Theorem 16.

We now show that Theorem 16 would not hold true if we dropped the condition 11).

Theorem 17
For every decreasing sequence of positive numbers $\left\{x_{n}\right\}$ with $x_{n} \geqslant 0$ as $n \rightarrow \infty$ and,

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=0
$$

there exist two one -dimensional Hausdorff measure functions $h(x)$ and $H(x)$ with,

$$
\frac{H\left(x_{n}\right)}{h\left(x_{n}\right)} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

and a set S such that $\Lambda^{H}(S)$ is positive and finite whilst $\Lambda^{h}(S)$ is aero.

Proof
Since,

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=0
$$

we mes write,

$$
x_{n+1}=\varphi(n) x_{n}
$$

where,
$\varphi(i) \forall 0$
as $i \rightarrow \infty$.

Define,

$$
\begin{array}{rlr}
h(x) & =(\varphi(1))^{1 / 2} & \text { for } \quad x \geqslant x_{3} \\
& =(\varphi(1) \varphi(2))^{1 / 2} & \text { for } x_{3}>x \geqslant x_{4} \\
\vdots & & \vdots \\
& =(\varphi(1) \ldots \varphi(m-1))^{1 / 2} & \text { for } x_{m}>x \geqslant x_{m+1} \\
\vdots & & \\
H(x) & & \\
& =(\varphi(1))^{1 / 2} & \text { for } x>x_{4} \\
& =(\varphi(1)--\phi(m-1))^{1 / 2} & \text { for } x_{m+2}<x \leqslant x_{m+1} \\
\vdots & & \vdots
\end{array}
$$

and,

Clearly these functions satisfy the postulates of the theorem.
For ell $:$, there exists $y_{i} \in\left(x_{i+1}, x_{i}\right)$ such that,

$$
\frac{H\left(y_{i}\right)}{y_{i}} \leqslant \frac{H(t)}{t} \text { and } \frac{h\left(y_{i}\right)}{y_{i}} \leqslant \frac{h(t)}{t} \text { for all } t \in\left(0, y_{i}\right]
$$

Wo now construct the set S as in theorem 4 of chapter 2 , by means of
a sequence $\left\{z_{n}\right\} \subset\left\{y_{i}\right\}$ with respect to the function $H(x)$. We see that $\Lambda^{H}(S)$ is positive and finite, but $\Lambda^{h}(S)$ is zero.
Hence the theorem is proved.

$$
\begin{aligned}
& \text { Clearly if } h(x) \text { and } H(x) \text { are continuous functions then either, } \\
& \text { 1). } H(x) / h(x) \rightarrow 0 \\
& \text { is } x \rightarrow 0 \\
& \text { i). } H(x) / h(x) \rightarrow \infty
\end{aligned}
$$

or iii). there exists a sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and,

$$
\frac{H\left(x_{n}\right)}{h\left(x_{n}\right)} \rightarrow l \quad \text { as } n \rightarrow \infty \text { where } 0<l<\infty .
$$

We now see that this is not true if the functions are discontinuous.

Theorem 18

There exist two q-dimensional Hausdorff measure functions $H(x)$ and $h(x)$ such that,

$$
\lim _{x \rightarrow 0} \frac{H(x)}{h(x)}=k, \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{H(x)}{h(x)}=0 \text {, }
$$

end with the property that there are no convergent sequences $\left\{H\left(x_{n}\right) / h\left(x_{n}\right)\right\}$ With non-gero imit, where $\left\{x_{n}\right\}$ is a null sequence. For these two functions there are sets S_{1}, S_{2} such that,

$$
0<\Lambda^{h}\left(S_{1}\right) \leqslant \infty \quad \Lambda^{H}\left(S_{1}\right)=0
$$

and

$$
0<\Lambda^{H}\left(S_{2}\right)<\infty \quad \Lambda^{\mu}\left(S_{1}\right)=0 .
$$

Proof

To prove this theorem it suffices to define two appropriate functions, the constructions of the gets S_{1}, S_{2} cen then be carried out using the methods of Theorem 4 of Chapter 2.

Define,

$$
\begin{array}{ll}
H(x)=\frac{1}{(2 n-1)!} & \text { for } x \in\left[[(2 n+1)!]^{-2 / q},[(2 n)!]^{-2 / q}\right] \\
h(x)=\frac{1}{(2 n)!} & \text { for } x \in\left[((2 n+1)!]^{-2 / q},[(2 n)!]^{-2 / q}\right] \\
H(x)=\frac{1}{(2 n-1)!} & \text { for } x \in\left([(2 n)!]^{-2 / q},[(2 n-1)!]^{-2 / q}\right] \\
h(x)=\frac{1}{(2 n-2)!} & \text { for } x \in\left([(2 n) 1]^{-2 / q},[(2 n-1)!]^{-2 / q}\right] .
\end{array}
$$

It is easy to see that these functions have the required properties.

Next, we prove that it is possible to have measure equivalence even when the conditions in Theorem 16 are contradicted.

Theorem 19

There exist two measure equivalent q-dimensional Hausdorff measure functions $h(x), H(x)$ such that if $\left\{H\left(x_{n}\right) / h\left(x_{n}\right)\right\}$ is convergent for sone null sequence $\left\{x_{n}\right\}$ then,

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=0 .
$$

Proof
Define,

$$
\begin{aligned}
h(x) & =1 / n! \\
H(x) & =2 /(2 n)! \\
& =\frac{1}{2 \cdot(2 n+1)!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } x \in\left([(n+1)!]^{-2 / a},[(n)!)^{-2 / a}\right] \\
& \text { for } x \in\left([(2 n+1)!]^{-2 / a},[(2 n)!]^{-2 / q}\right] \\
& \text { for } x \in\left([(2 n+2)!]^{-2 / a},[(2 n+1)!]^{-2 / a}\right] .
\end{aligned}
$$

We see from the definition that,

$$
1 / 2 h(x) \leq H(x) \leq 2 h(x) \quad \text { for all } x
$$

hence we clearly have measure equivalence and the theorem is proved.

Clearly we can see that if,

$$
\varlimsup_{x \rightarrow 0} \frac{H(x)}{h(x)}<\infty \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{H(x)}{h(x)}>0
$$

then $h(x)$ and $H(x)$ are measure equivalent. But, by considering the following example we see that there exist two q-dimensional Hausdorff measure functions $h(x)$ and $H(x)$ with,

$$
\lim _{x \rightarrow 0} \frac{H(x)}{h(x)}=\infty
$$

and for any set $S, \Lambda^{H}(S)$ is positive and finite if and only if $\Lambda^{h}(S)$ is positive and finite.

Define,

$$
\begin{array}{ll}
h(x)=1 / n! & \text { for } x \in\left([(n+1)!]^{-2 / a},[(n)!]^{-2 / a}\right] \\
H(x)=1 / n! & \text { for } x \in\left[[(n+1)!]^{-2 / a},[(n)!]^{-2 / a}\right)
\end{array}
$$

$\Lambda^{H}(3)$
is always positive and finite, since $H(x)$ is less than any $\Lambda^{h}(s)$
continuous function which is greater than $h(x)$ and because for any set S we can always find a continuous function $g(x)$ greater than $h(x)$ for which,

$$
\lambda^{9}(s)<2([\sqrt{q}]+1)^{q} \Lambda^{n}(5)
$$

(this fact was proved in Theorems 5 and 6 of Chapter 2).
It is interesting to investigate whether or not" measure equivalence implies the existence of a null sequence on which the ratio of the functions is convergent to a non-zere init. It is easy to see that this is the case if we are only considering continuous functions. For, if there is no null sequence with the required property we are left with only two possibilities,

or, 11). $\lim _{x \rightarrow 0} \frac{h(x)}{H(x)}=\infty$.
Clearly both these possibilities are inconsistent with measure equivalence.
The next theores shows that the opposite result is true for discontinuous functions.

Theorem 20

There exist two measure equivalent onewirensional Hausdorff measure functions $h(x)$ and $H(x)$ such the there is no convergent sequence $\left\{h\left(x_{n} / / H\left(x_{n}\right)\right\}\right.$ (where $\left\{x_{n}\right\}$ is a null sequence), with non-zero imit.

Proof
Define

$$
\begin{gathered}
x_{n}=1 / 2 n \\
h(x)=\frac{1}{2^{1+1 / 2 n(n+1)}} \\
H(x)=\frac{1}{2^{1+1 / 2(n+1)(n+2)}}
\end{gathered}
$$

for $n=0,1,2, \ldots$

$$
\begin{aligned}
& \text { for } x \in\left(x_{1 / 2(n+2)(n+3)} x^{x_{42 n(n+1)}}\right] \\
& \text { for } n=3,5,7, \ldots \\
& \text { for } \left.x \in\left(x_{1 / 2(n+3)(n+4)}\right)^{x_{1 / 4}(n+1)(n+2)}\right] \\
& n=1,3,5, \ldots
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \frac{h\left(x_{1 / 2 n(n+1)}\right)}{x_{1 / 2 n(n+1)}}=1 / 2 \\
\text { and. } \quad & \frac{H\left(x_{1 / 2 n(n+1)}\right)}{x_{1 / 2 n(n+1)}}=1 / 2
\end{aligned}
$$

$$
\text { for all } n=3,5,7, \ldots
$$

$$
\text { for all } n=2,4,6, \ldots
$$

Thus,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x}=\lim _{x \rightarrow 0} \frac{H(x)}{x}=1 / 2 .
$$

So, we must have,

$$
\Lambda^{h}(S) \geqslant 1 / 2 \Lambda(S) \quad \text { for all sets } S .
$$

Now let S be any set on the real Inn and, given any $\Sigma>0$, let $\left\{U_{i}^{J}\right\}$ be a sequence of open intervals such that,

$$
\begin{aligned}
& S c \bigcup_{i=1}^{\infty} U_{i}^{\delta} \\
& \alpha\left(U_{i}^{\delta}\right)<\delta \quad \text { for all } i
\end{aligned}
$$

and, $\quad \lambda_{\delta}(S) \leqslant \sum_{i} d\left(U_{i}^{J}\right)<\Lambda_{j}(S)+\tau$.
Let $\left\{x_{n}\right\}$ be a sequence of positive reel numbers such that,

$$
\frac{h\left(x_{n}\right)}{x_{n}} \rightarrow 1 / 2 \quad \text { as } n \rightarrow \infty
$$

and let $\left\{x_{n}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that, for each i,

$$
d\left(U_{i}^{\delta}\right) \in\left(x_{n_{i}+1}, x_{n_{i}}\right] .
$$

We can replace each U_{i}^{δ} by $\left(\left[\frac{d\left(U_{i}^{J}\right)}{x_{n_{i}+1}}\right]+1\right)$ open intervals of length $x_{n_{i}+1}$. Thus, we get another open covering $\left\{V_{i}^{\delta}\right\}$ of S such that,

$$
d\left(v_{i}^{\delta}\right)<\delta \quad \text { for all } i
$$

and,

$$
\begin{aligned}
\sum_{i}\left(d\left(v_{i}^{\delta}\right)\right) & =\sum_{i}\left(\left[\frac{d\left(v_{i}^{\delta}\right)}{x_{n_{i}+1}}\right]+1\right) x_{n_{i}+1} \\
& \leqslant \sum_{i}\left(d\left(v_{i}^{\delta}\right)+x_{n_{i}+1}\right) \\
& \leqslant 2 \sum_{i} d\left(v_{i}^{\delta}\right)<2 \Lambda_{S}(s)+2 \Sigma
\end{aligned}
$$

Thus, for all $\delta>0$, there is an open covering $\left\{V_{i}^{\delta}\right\}$ of S such that,

$$
\begin{aligned}
& d\left(v_{i}^{J}\right)<\delta \quad \text { for all } i \\
& d\left(v_{i}^{J}\right) \in\left\{x_{n}\right\}
\end{aligned}
$$

and

$$
\Lambda_{\delta}(s) \leqslant \sum_{i} d\left(v_{i}^{\delta}\right)<2 \Lambda_{\delta}(s)+2 \varepsilon
$$

We can choose a positive real number δ^{\prime}, say, such that,

$$
\frac{h\left(d\left(v_{i}^{\delta}\right)\right)}{d\left(V_{i}^{\delta}\right)}<1
$$

for all i whenever $0<\delta<\delta^{\prime}$.
Thus, for $0<\delta<\delta^{\prime}$ we have,

$$
\begin{aligned}
A_{d}^{h}(S) \leqslant \sum_{i} h\left(d\left(v_{i}^{\delta}\right)\right) & \leqslant \sum_{i} d\left(v_{i}^{\delta}\right) \\
& <2 \Lambda_{\delta}(S)+2 \varepsilon .
\end{aligned}
$$

Hence we have,

$$
\frac{1}{2} \Lambda(s) \leq \Lambda^{h}(s) \leq 2 \Lambda(s) .
$$

Clearly, we can get the sem result with regard to $\Lambda^{H}(S)$ and so we have proved that the functions $h(x)$ and $H(x)$ are measure equivalent for sets on the real line. Also it is clear that there are no convergent sequences $\left\{\begin{array}{l}h\left(x_{n}\right) \\ H\left(x_{n}\right)\end{array}\right\}$ with nonasero limit. Hence the theorem is proved.

Eggieston (3) has shown that given any positive number α and any function $h(x)$ satisfying,
i). $h(x)$ continuous and strictly increasing
11). $x^{n} / h(x)$ is an increasing function of x
and, iii). $h(0)=0, \quad \lim _{x \rightarrow 0^{+}} x^{n} / h(x)=0$,
we can construct a set A in n-dimensional Euclidean space so that $\Lambda^{h}(A)=\alpha$. It is now easily possible to extend this result to functions satisfying,
a). $h(x)>0$ for $x>0$
b). $\lim _{x \rightarrow 0} h(x)=0$
and. 0). $\lim _{x \rightarrow 0} \frac{h(x)}{x^{n}}=\infty$.
In the sem paper Eggleston defines two functions (satisfying i)., ii). and 111).) to be incomparable when,

$$
\lim _{x \rightarrow 0^{+}} \frac{h(x)}{H(x)}=\frac{\lim _{x \rightarrow 0^{+}} \frac{H(x)}{h(x)}=0 . . ~ . ~}{H(x)}=0
$$

He shows that for two incomparable functions we con construct a set A such that $\Lambda^{h}(A)$ is positive and finite whilst $\Lambda^{H}(A)=\infty$. our next theorem shows that this result does not extend to the case of discontinuous functions.

Theorem 21

There are two incomparable q-dimensional Hausdorff measure functions $h(x)$ and $H(x)$ say, such that if S is a set in q-atmensional Euclidean space, then if $\Lambda^{h}(S)$ is finite we must also have $u^{H}(S)$ finite.

Proof
Define the decreasing sequence $\left\{x_{n}\right\}$ as follows,

$$
x_{1}=1 \text { and } x_{n+1}=\frac{x_{n}}{\left[2(n+1)^{2}\right]^{1 / 9}} \text {, }
$$

then, clearly,

$$
x_{n+1}<x_{n} \quad \text { and } x_{n} \geqslant 0 \quad \text { as } n \rightarrow \infty .
$$

Define the function $g(x)$ as follows,

$$
\begin{array}{ll}
g(x)=1 & \text { for } x>x_{2} \\
g(x)=\frac{g\left(x_{n-1}\right)}{n^{2}} & \text { for } x \in\left(x_{n+1}, x_{n}\right]
\end{array}
$$

Then $g(x)$ is a q-dimensional Hausdorff measure function.
Define $h(x)$ such that.

$$
\begin{array}{ll}
h(x)=g(x) & \text { for } x_{\&}\left\{x_{i}\right\} \\
h\left(x_{n}\right)=n g\left(x_{n}\right) & \text { for all } n .
\end{array}
$$

Define $H(x)$ such that,

$$
\begin{array}{ll}
H(x)=g(x) & \text { for } x<\left\{x_{i}\right\} \\
H\left(x_{2 n}\right)=g\left(x_{2 n}\right) & \text { for all } n \\
H\left(x_{2 n+1}\right)=g\left(x_{2 n}\right) & \text { for all } n .
\end{array}
$$

Then both $h(3 C)$ and $H(x)$ are q-dinensional Hausciorfi measure functions. Also,

$$
\frac{h\left(x_{1 n+1}\right)}{H\left(x_{2 n+1}\right)}=\frac{(2 n+1) g\left(x_{1 n+1}\right)}{g\left(x_{2 n}\right)}=\frac{1}{2 n+1},
$$

end,

$$
\frac{H\left(x_{2 n}\right)}{h\left(x_{2 n}\right)}=\frac{g\left(x_{2 n}\right)}{2 n g\left(x_{2 n}\right)}=\frac{1}{2 n},
$$

thus,

$$
\lim _{x \rightarrow 0^{+}} \frac{h(x)}{H(x)}=\lim _{x \rightarrow 0^{+}} \frac{H(x)}{h(x)}=0
$$

that is, the functions $h(x)$ and $H(x)$ are incomparable.
Now let S be any set such that $\Lambda^{h}(S)$ is finite, then since $h(x) \geqslant g(x)$ we have $\Lambda^{9}(S)$ is finite. From theorems 5 and 6 of Chapter 2 we see that, given any $\Sigma>0$, there is a continuous Hausdorff measure function $G(x)$ say, such that $G(x) \geqslant g(x)$ for all x and,

$$
\Lambda^{g}(s) \leq \Lambda^{6}(s)<2([\sqrt{q}]+1)^{q} \Lambda^{g}(s /+\Sigma
$$

Now wave $h(x) \geq g(x)$ and $H(x) \geq g(x)$ and both $h(x)$ and $H(x)$ are less than any continuous function which is ereater than $g(x)$, that is,

$$
h(x) \leqslant G(x) \quad \text { and } \quad H(x) \leqslant G(x) .
$$

Thus,

$$
\Lambda^{g}(s) \leqslant \Lambda^{h}(s) \leqslant \Lambda^{G}(s)<2([\sqrt{q}]+1)^{q} \Lambda^{q}(s)+\Sigma
$$

and,

$$
\Lambda^{g}(S) \leq \Lambda^{H}(S) \leqslant \Lambda^{G}(S)<2([\sqrt{q}]+1)^{q} \Lambda^{g}(S)+\Sigma
$$

Hence the theorem is proved.

Combining this result with the corollary to Theorem 16 of this chapter, we see that Eggleston's theorem does not hold true for functions $h(x)$, satisfying,
1). $h(x)$ is continuous and strictly increasing
11). $h(0)=0, \lim _{x \rightarrow 0+} \frac{x^{n}}{h(x)}=0$. since, if it held true in the continuous case it would also be true for discontinuous functions, and we have Just seen that this is not so. Thus we have a negative answer to the problem of whether we can always replace any Hausdorff measure function by another one $h(r)$, say, with the property that $h(x) / x^{q}$ is a decreasing function of x.

We now generalize a result of Rogers (9) to the case of discontinuous functions.

Theorem 22

Let $h(x)$ be a q-dimensional Hausdorff measure function and E a compact set of non- σ-finite h-measure in a Euclidean space (or in a conpeat, finite-dimensional metric space). Then there is a continuous Hausdorff measure function $g(x)$ with $h \prec g$ and such that E is of non- σ-finite g-measure.

Proof
Let $\left\{x_{n}\right\}$ be en enumeration of all the discontinuities of $h(x)$. Define the decreasing sequence $\left\{y_{n}\right\}$ as follows. choose $y_{\text {, arbitrarily }}$ such that $y_{1} \propto\left\{x_{n}\right\}$; having chosen y_{1}, \ldots, y_{n-1}, choose y_{n} such that,

$$
1 / 3 y_{n-1}<y_{n} \leqslant 1 / 2 y_{n-1},
$$

and,

$$
y_{n} \nless\left\{x_{n}\right\} .
$$

Define $H(x)$ to be continuous Increasing and,

	$H\left(y_{n}\right)=h\left(y_{n}\right)$	for all n,
with	$H(x) \leq h(x)$	for all x.

Then we have,
1). $y_{n} \backslash 0$
a $n \rightarrow \infty$
11). $3 y_{n+1}>y_{n}$ for all n
1ii). $H\left(y_{n}\right)_{h\left(y_{n}\right)} \rightarrow 1$
as $n \rightarrow \infty$.

Thus all the conditions of Theoren 16 are satisfled. So, for any set S, $\Lambda^{h}(S)$ is positive and finite if and only if $\Lambda^{H}(S)$ is positive and
 be of non- σ-finite H-measure. Thus, fron Rogers' result (9), there exists a continuous Hausdorff measure function $g(x)$ with $H \prec g$ such that E is of non- σ-finite g-measure. But $H(x) \leq h(x)$ for all x and thus $h \prec g$. Hence the theorem is proved.

Fe, next, generalise some results of Laman (6,7).

Theoren 23

Let E be a finite dimensionel ocmpact metrio space, and suppose
that $h(x)$ is a Hausdorff measure function such that $\Lambda^{h}(E)$ is infinite. Then it is possible to select from E a closed subset of any given h-measure.

Proof
If α is any given positive number, it is sufficient to find a closed subset P such that $\Lambda^{h}(P) \geqslant \alpha$. Larman (7) proves this result for the case when $h(x)$ is a continuous (on the right) function. From Theorem 16 we can find a continuous function $H(x)$, with $H(x) \leqslant h(x)$ and such that $H(x)$ and $h(x)$ are measure equivalent. Thus $\Lambda^{H}(₹)=\infty$ and therefore from Laymen's result we can find a closed subset P such that,

$$
\Lambda^{H}(P) \geqslant \alpha .
$$

But $h(x / \geqslant H(x)$ for all x, and therefore,

$$
\Lambda^{h}(p) \geqslant \alpha .
$$

This ocmpletes the proof of the theorem.

Theorem 24

Let $h(x)$ be a q-dimensional Hausdorff measure function. Then it is possible to construct in l^{2} a closed set A such that,

$$
0<\Lambda^{h}(A)<\infty
$$

Proof
Let $H(x)$ be continuous function with $H(x) \geqslant h(x)$ for all x and such that $h(x)$ and $H(x)$ are measure equivalent for sets in
compact finite dimensional metric spaces. Then since $H(x) \geqslant h(x)$ we know that H is a q-dimensional measure function. In particular, we know that,

$$
\frac{H(x)}{x^{q+1}} \rightarrow \infty
$$

$$
\text { as } x \rightarrow 0
$$

Thus, there exists a decreasing sequence $\left\{x_{n}\right\}$ such that,

$$
x_{n} \geqslant 0
$$

$$
\text { as } n \rightarrow \infty,
$$

and for each n,

$$
\frac{H\left(x_{n}\right)}{x_{n}^{a+1}} \leqslant \frac{H(t)}{t^{a+1}} \quad \text { for all } t \in\left(0, x_{n}\right]
$$

since $H(x)$ is continuous.
In the closed interval $\left[x_{n+1}, x_{n}\right]$ define the continuous function $H^{\prime}(x)$ as follows,

$$
\left.\left.H^{\prime}(x)=x^{q \in[x+1} \operatorname{in} 5 x_{n+1} x^{q+}\right] \frac{H(y)}{y^{q+1}}\right\}
$$

Then $H^{\prime}(x) \leqslant H(x)$ for all x and $H^{\prime}(x) / 3 x^{q+1}$ increases front $H(x a) / x_{n}^{a+1}$ to $H\left(x_{n+1}\right) / x_{n+1}^{a+1}$ es x decreases from x_{n} to x_{n+1}.
Now consider two real numbers $x, 2$ such that $x>z$ then because of the continuity of $H(x)$ we have,

$$
\frac{H^{\prime}(x)}{x^{q+1}}=\frac{H\left(y_{21}\right)}{y_{x}^{a+1}},
$$

where $H^{\prime}\left(y_{x}\right)=H\left(y_{x}\right)$ and $y_{x} \in\left[x_{n+1}, x\right]$ for sone integer n, and,

$$
\frac{H^{\prime}(z)}{z^{a+1}}=\frac{H\left(y_{z}\right)}{y_{z}^{a+1}}
$$

where $H^{\prime}\left(y_{z}\right)=H\left(y_{2}\right)$ and $y_{2} \in\left[x_{n+1}, 2\right]$ for the same integer n. Now, if

$$
\frac{H^{\prime}(x)}{x^{q+1}}=\frac{H^{\prime}(z)}{2^{q+1}} .
$$

we must have $H^{\prime}(x) \geq H^{\prime}(2)$.
If,

$$
\frac{H^{\prime}(x)}{x^{a+1}}<\frac{H^{\prime}(z)}{z^{a+1}}
$$

then we must have, $\quad y_{x} \in(z, x]$.
In the interval $\left[z, y_{n}\right]$, the function $H(x) / x^{q+1}$ takes all values from $H\left(y_{x}\right) / y_{x}^{q+1}$ to ${ }^{H(2)} / 2^{q+1} \quad$ which is greater than or equal to $H\left(y_{2}\right) / y_{2}^{q+i}$ Therefore, there exists $t \in\left[z, y_{N}\right]$ such that,

$$
\frac{H(t)}{t^{a+1}}=\frac{H\left(y_{2}\right)}{y_{2}^{a+1}}
$$

Thus, we have, because of the monotonicity of $H(x)$,

$$
H^{\prime}(z) \leqslant H(t) \leqslant H\left(y_{x}\right) \leqslant H^{\prime}(x)
$$

and so wo have proved that the function $H^{\prime}(x)$ is monotonic increasing. Also, $H^{\prime}(x)$ is continuous and $H^{\prime}(x) / x^{q+1}$ increases to infinity as x decreases to zero. Leman (6) shows that for functions of this type it is possible to construct, in l^{2}, a compact, perfect set A such that,

$$
0<H^{\prime}(A)<\infty \text {. (for definition, see p.4) }
$$

end,

$$
0<\Lambda^{H^{\prime}}(A)<\infty .
$$

Now since $H(x) \geqslant H^{\prime}(x)$ for all x, we have,

$$
\Lambda^{H}(A) \geqslant \Lambda^{H^{\prime}}(A)>0
$$

Define the function $g(x)$ es follows,

$$
g(x)=x H^{\prime}(x)
$$

then we have,

$$
g(A)=0,
$$

and so A is a compact finite dimensional metric space. So, if $\Lambda^{H}(A)$ is finite, then we must have,

$$
0<\Lambda^{h}(A)<\infty
$$

because of the measure equivalence of $h(x)$ and $H(x)$.
Now, if $\Lambda^{H}(A)=\infty$ we can use the result of Theorem 23 to select a closed subset P of A such that,

$$
0<\Lambda^{H}(\beta)<\infty
$$

and again we have,

$$
0<\Lambda^{h}(p)<\infty .
$$

Hence the theorem is proved.

Finally, we state a theorem of Leman (8) which can easily be generalized to the discontinuous case using the corollary to theorem 16.
115.

Theoren 25

Let $h(x)$ be a Rausdorff measure function and A an enslytic set of non- σ-finite h-measure in a conpact finite dimensional metrio space, then we can construot $2^{x_{0}}$ diajoint closed aubsets of A whioh have non- $\sigma-f$ inite h-measure.

CIMEX 5

INTRODUCTION

In Chapter 3 we obtained sone results relating Hausdorff promeasures and convergent sequences $\left\{\delta_{n}\right\}$ of positive real numbers. Following this, it seemed interesting to investigate the properties of the Hausdorff measures of set with regard to functions $h_{n}(x)$ where $\left\{h_{n}(x)\right\}$ is a convergent sequence of functions.

Theorem 26

There exists a sequence of Hausdorff measure functions $\left\{h_{n}(x)\right\}$ such that,

$$
h_{n}(x) \rightarrow h(x) \quad \text { uniformly as } n \rightarrow \leftrightarrow
$$

where $h(x)$ is a Hausdorff measure function, and a set S with the property,

$$
\lim _{n \rightarrow \infty} \Lambda^{n_{n}}(S) \neq \Lambda^{n}(S)
$$

Proof
We shall in fact show that there exists such a sequence of functions $\left\{h_{n}(x)\right\}$ with init $h(x)$ such that.

$$
\lim \lambda^{h_{k}}(S)=\infty \quad \Lambda^{k}(s />0
$$

Let
$x_{n}=1 / n$ for $n=1,2, \ldots$
and,

$$
\alpha_{n}=1 / n
$$

$$
\text { for } \quad n=1,2, \ldots
$$

Define

$$
h(x)=\alpha_{n}
$$

for $x \in\left[x_{n+1}, x_{n}\right]$.
Fie. note that α_{n} is such that for all positive integers q,

$$
\frac{\alpha_{n}}{x_{n}^{q}} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

This ensures that $h(x)$ is a q-dimensional Hausdorff measure function. For each integer n, define $h_{h}(x)$ as follows,

$$
h_{n}(x)=\left(1+\frac{m}{n}\right) \alpha_{m} \quad \text { for } x \in\left(x_{m+1}, x_{m}\right] .
$$

Then each $h_{n}(x)$ is a q-dimensional Hausdorff measure function. Clearly,

$$
h_{n}(x) \rightarrow h(x) \quad \text { uniformly as } n \rightarrow \infty .
$$

Choose any set S such that,

$$
0<\Lambda^{h}(s)<\infty
$$

Consider the function $h_{n}(x)$ for scone fixed positive integer n. Then, given any real number A, there exists an integer $M=M(u)$ such that,

$$
\frac{h_{m}\left(x_{m}\right)}{h\left(x_{m}\right)}>A \quad \text { for } m \geqslant M
$$

Now, given any $\Sigma>0$, choose a sequence $\left\{U_{n, i}^{x_{n}}\right\}$ of open seta such that,

$$
\begin{align*}
& S c \bigcup_{i=1}^{\infty} U_{n, i}^{x_{m}} \\
& d\left(U_{n, i}^{x_{m}}\right)<x_{m}
\end{align*}
$$

and,

$$
\mathcal{N}_{x_{m}}^{h_{n}}(S) \leqslant \sum_{i} h_{n}\left(d\left(U_{n, i}^{x_{m}}\right)\right)<\lambda_{x_{m}}^{h_{n}}(s)+\varepsilon
$$

Then, for all $m \geqslant M$, we have,

$$
\begin{aligned}
A_{x_{m}}^{h}(S) \leqslant \sum_{i} h\left(d\left(v_{n, i}^{x_{m}}\right)\right) & <\frac{1}{A}\left(\sum_{i} h_{n}\left(d\left(v_{n, i}^{x_{m}}\right)\right)\right) \\
& <\frac{1}{A}\left(\Lambda_{x_{n}}^{h_{n}}(s)+\varepsilon\right)
\end{aligned}
$$

that is,

$$
\mathcal{J}_{x_{m}}^{h_{m}}(s)>A \Lambda_{x_{m}}^{h}(s)-\varepsilon
$$

Thus, since n, A and Σ were arbitrary and because,

$$
0<\mathcal{L}^{h}(S)<\infty
$$

we have,

$$
\lim _{n \rightarrow \infty} \Lambda^{h_{n}} \operatorname{cs} 1=\infty
$$

Hence the theorem is proved.

Corollary
There exists a sequence of Hausdorff measure functions $\left\{h_{n}(x)\right\}$
and a function $h(x)$ such that,

$$
\frac{h_{n}(x)}{h(x)} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

(the convergence being point-wise), and a set S such that,

$$
\lim _{n \rightarrow \infty} \Lambda^{h_{n}}(s) \neq \Lambda^{h}(s)
$$

Thus, we see that uniform convergence of the functions is not sufficient to ensure that the limit operation commutes with the Hausdorff measure. Fe, now, establish sufficient conditions for this property to hold true.

Theorem 27
For any Hausdorff measure function $h(x)$ and any sequence $\left\{h_{n}(x)\right\}$ of Hausdorff measure functions such that,

$$
\frac{h_{n}(x)}{h(x)} \rightarrow!\quad \text { uniformly as } n \rightarrow \infty
$$

we have,

$$
\lim _{n \rightarrow \infty} \lambda_{j}^{h_{n}}(s)=\Lambda_{j}^{n}(s)
$$

for all sets S and for any positive real number δ.
Proof
Given any $\Sigma>0$ we can choose a positive integer N such that,

$$
1-\Sigma<\frac{h_{m}(x)}{h(x)}<1+\Sigma
$$

for all $n \geqslant N$ and for all x.
Thus, for all $n \geq N$, any set S and any positive real number δ, we have,

$$
(1-\Sigma) \Lambda_{\delta}^{h}(s) \leqslant \Lambda_{d}^{h_{n}}(s) \leqslant(1+\Sigma) \Lambda_{\delta}^{h}(s)
$$

that is,

$$
(1-\varepsilon) \Lambda_{\delta}^{h}(s) \leq \lim _{n \rightarrow \infty} \lambda_{\delta}^{h_{n}}(s) \leq(1+\varepsilon) \lambda_{\delta}^{h}(s)
$$

Fence, since the Σ was arbitrary, we have,

$$
\lim _{n \rightarrow \infty} \mathcal{\Lambda}_{s}^{n_{n}}(s)=\mathcal{\Lambda}_{s}^{h}(s)
$$

es required.

CHAPTER 6

INTRODUCTION
In this chapter work in the space l^{2} and investigate whether or not some of the theorems of previous chapters can be extended to this Non-Euclidean space. In Theorem 4 and 24 of Chapters 2 and 4, respectively, wo showed that, corresponding to any q-dimensional Hausdorff measure function, firstly there is aet in q-dimensional Euclidean space with positive, finite h-measure, and secondly there is a set in l^{2} with positive, finite h-measure. The first theorem of this chapter shows that there are Hausdorff measure functions such that,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{2}}=0,
$$

for all positive integers q, and sets S in l^{2} such that $\mathcal{l}^{h}(S /$ is positive and finite. Clearly, the sets S could not be embedded in any Euclidean space. The second theorem shows that there are discontinuous functions such that for sets in l^{2} there are no measure equivalent continuous functions. Finally, we show that Theorem 10 of Chapter 3 does not extend to the space l^{2}.

Theorem 28

There exists a compact set S in l^{2} and a Hausdorff measure function $h(x)$ such that, fer any positive integer q,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{a}}=0
$$

for which,

$$
0<\Lambda^{h}(s)<\infty .
$$

Proof
Define the sequence $\left\{x_{n}\right\}$ of positive real numbers so that,

$$
x_{n}=\frac{1}{2} \quad \text { for } \quad n=0,1,2, \ldots
$$

Define the function $h(x /$ es follows,

$$
h(x)=x_{n}^{n} \quad \text { for } x \in\left(x_{n+1}, x_{n}\right]
$$

then, clearly, $h(x)$ satisfies the conditions of the theorem.
Let $\left\{A_{n}\right\}$ be a sequence of integers such that $\sum A_{n}^{-1}$ is convergent and $A_{n} \geq 2$ for all n. Wow inductively define sequence $\left\{t_{n}\right\}$ of real numbers; choose t_{0} to be an arbitrary positive number such that,

$$
t_{0}<x_{1}
$$

and,

$$
t_{0} \in\left\{x_{n}\right\}
$$

we assume that $\quad t_{0} \in\left(x_{n_{0}+1}, x_{n_{0}}\right)$
for son positive integer n_{0}.
He now suppose that t_{0}, \ldots, t_{m-1} have been defined and that,

$$
t_{m-1} \in\left(x_{n+1}, x_{n-1}\right)
$$

for some positive integer n_{m-1}.
Choose t_{m} as follows,
a). $0<t_{m}<\frac{1}{3} t_{m-1}$,
b). $C_{m} h\left(t_{m}\right)=h\left(t_{M-1}\right) \quad$ with $\quad G_{m}>A_{m}$,
c). $\quad t_{m-1}-2 t_{m}>x_{n_{m-1}+1}$,
and d). $t_{m} \in\left\{x_{n}\right\}$.
Now put,

$$
K_{m}=\left[c_{m}\right] \quad \text { for } m=1,2, \ldots
$$

Let $S^{\prime}(0)$ be the collection of all point a of the form,

$$
\left(0, \ldots, 0, t_{0} / \sqrt{2}, 0, \ldots\right)
$$

Put,

$$
S(0)=\operatorname{cons}\left[\underline{\alpha}^{(0)}+S^{\prime}(0)\right]
$$

where

$$
\alpha_{j}^{(0)}=0 \quad \text { for all } j
$$

Let $S^{\prime}(1)$ be the collection of all points of the form,

$$
\left(0, \ldots, 0, t_{1} / \sqrt{2}, 0, \ldots\right)
$$

Put,

$$
S\left(1, i_{1}\right)=\operatorname{cons}\left[\underline{\alpha}^{\left(i_{1}\right)}+s^{\prime}(1)\right]
$$

where

$$
\begin{aligned}
& \alpha_{j}^{\left(i_{1}\right)}=0 \\
& \alpha_{i_{1}}^{\left(i_{1}\right)}=\frac{t_{0}-t_{1}}{\sqrt{2}}
\end{aligned}
$$

for $j \neq i_{1}$
and

Then define,

$$
S(1)=\bigcup_{i_{1}=1}^{k_{1}} s\left(1, i_{1}\right)
$$

In general, let $S^{\prime}(n)$ denote the set of all points of the form,

$$
\left(0, \ldots, 0, t_{n}, 0, \ldots\right)
$$

Put,

$$
S\left(n, i_{1}, \ldots, i_{n}\right)=\operatorname{conv}\left[\underline{\alpha}^{\left(i_{1}, \ldots, i_{n}\right)}+S^{\prime}(n)\right]
$$

where,

$$
\begin{aligned}
&\left(i_{1}, \ldots, i_{n}\right)=\frac{t_{0}-t_{1}}{\sqrt{2}} \\
& \alpha_{i_{1}} \\
& \alpha_{k_{1}+i_{2}}^{\left(i_{1}, \ldots, i_{n}\right)}=\frac{t_{1}-t_{2}}{\sqrt{2}}, \\
& \vdots \\
& \alpha^{\left(i_{1}, \ldots, i_{n}\right)}=\frac{t_{n-1}-t_{n}}{\sqrt{2}} \\
& k_{1}+\ldots+k_{n+1}+i_{n}=
\end{aligned}
$$

$$
\text { and, } \quad \alpha_{j}^{\left(i_{1}, \ldots, i_{n}\right)}=0
$$

for all other values of j.

Then define,

$$
S(n)=\bigcup_{i_{1}=1}^{K_{1}} \ldots \bigcup_{i_{n}=1}^{K_{n}} S\left(n, i_{1}, \ldots, i_{n}\right)
$$

Having defind $S(n)$ for $n=0,1,2, \ldots$ we need, firstly, to show that $S(n+1)$ e $S(n)$ for all integers n. To this end, it is sufficient to prove that, for each n,

$$
S\left(n, i_{1}, \ldots, i_{n-1}, i_{n}\right) \text { © } S\left(n-1, i_{1}, \ldots, i_{n-1}\right)
$$

for $i_{n}=1, \ldots, K_{n}$.
Consider a point of $S\left(n, i_{1}, \ldots, i_{n}\right)$ of the form,

$$
\underline{\alpha}^{\left(i_{1}, \ldots, i_{n}\right)}+\left(0, \ldots, t_{n /}, 0, \ldots\right)
$$

where the value $t^{t} / \sqrt{2}$ appears in the position p. We can write this in the form,

$$
\lambda\left[\underline{\alpha}^{\left(i_{1}, \ldots, i_{n-1}\right)}+\left(0, \ldots, 0, \frac{t_{n-1}}{\sqrt{\Omega}}, 0, \ldots\right)\right]+(1-\lambda)\left[\alpha^{\left(i_{1}, \ldots, i_{n-1}\right)}+\left(0, \ldots, \frac{t_{n-1}}{\sqrt{\Omega}}, 0, \ldots\right)\right]
$$

where the term $\frac{t_{n-1}}{\sqrt{2}}$ in the first square bracket is in position p and that in the second square bracket in position $K_{1}+\cdots+K_{n-1}+i_{n}$, if we put $\lambda=\frac{t_{n}}{t_{n-1}}$, Thus by the convexity of $S\left(n-1, i_{1}, \ldots, i_{n-1}^{n-1}\right)$ we have,

$$
S\left(n, i_{1}, \ldots, i_{n-1}, i_{n}\right) \subset S\left(n-1, i_{1}, \ldots, i_{n-1}\right)
$$

for $i_{n}=1, \ldots, K_{n}$ as required.
Also we can see that,

$$
d\left[S\left(n, i_{1}, \ldots, i_{n}\right)\right]=t_{n} \quad \text { for all } n
$$

Thus, since $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ and because l^{2} is complete, we can define the nonempty set,

$$
s=\bigcap_{n=0}^{\infty} s(n)
$$

We, next, prove that S is compact. Let $\left\{x_{n}\right\}$ be an infinite sequence of pointer of S. We now construct a convergent subsequence, using the fact that for any integer n there are only finitely many sets $S\left(n, i_{1}, \ldots, i_{n}\right)$. Choose $x_{n_{1}} \in\left\{x_{n}\right\}$ such that,

$$
x_{n} \in S\left(1, i_{1}\right) \quad \text { for some } i_{1} \text { with } 1 \leq i_{1} \leq K_{1}
$$

and such that $S\left(1, i_{1}\right)$ contains infinitely many points of the sequence $\left\{x_{n}\right\}$.
Now, assume that $X_{n_{m-1}}$ has been chosen so that,

$$
\underline{x}_{n} \& S\left(m-1, i_{1}, \ldots, i_{m-1}\right)
$$

where $1 \leqslant i_{j} \leqslant K_{j}$ for $j=1, \ldots, m-1$.
Choose x_{n} so that,

$$
\begin{aligned}
& {\underset{c}{n}}_{m} \in\left\{x_{n}\right\} \\
& \underline{x}_{n} \neq x_{n_{m-1}}
\end{aligned}
$$

and, $\quad x_{n_{m}} \in S\left(m, i_{1}, \ldots, i_{m-1}, i_{m}\right)$ for sone i_{m} with $1 \leq i_{m} \leqslant K_{m}$
and such that $S\left(m, i_{1}, \ldots, i_{m}\right)$ contains infinitely many points
of the sequence $\left\{\underline{x}_{n}\right\}$. Thus we have defined a subsequence $\left\{x_{n_{m}}\right\}$ of $\left\{x_{n}\right\}$.
Now, given any $\Sigma>0$, there exists a positive integer M such that,

$$
t_{m}<\Sigma \quad \text { for all } m \geqslant M
$$

But, from the construction of the subsequence, there exists, for every $m \geqslant M$ a set $S\left(m, i_{1}, \ldots, i_{m}\right)$ such that,

$$
x_{n j} \in S\left(m, i_{1}, \ldots, i_{m}\right) \quad \text { for all } j \geqslant m .
$$

Thus,

$$
e\left(x_{n}, x_{n}\right) \leq t_{m+i}<\sum
$$

for all $m \geqslant M$ and for any positive integer i. Thus $\left\{2_{n_{m}}\right\}$ is a Cauchy sequence, and, by the completeness of l^{2} has a Imit point. $A l s o$, we
know that this limit point must be in S since S is, clearly, closed.
Hence S is compact.
Now define,

$$
T\left(m, i_{1}, \ldots, i_{m}\right)=\left\{x: \rho\left(x, S\left(m, i_{1}, \ldots, i_{m}\right)\right)<1 / 4\left(x_{n_{m}}-t_{m}\right)\right\}
$$

Then we have the following,

$$
\begin{gathered}
T\left(m, i_{1}, \ldots, i_{m}\right) \quad \text { is open and convex } \\
S\left(m, i_{1}, \ldots, i_{m}\right) c T\left(m, i_{1}, \ldots, i_{m}\right) \\
d\left[T\left(m, i_{1}, \ldots, i_{m}\right)\right]=t_{m}+1 / 2\left(x_{n_{m}}-t_{m}\right)<\partial c_{n_{m}},
\end{gathered}
$$

and therefore,

$$
h\left[d\left\{T\left(m, i_{1}, \ldots, i_{m}\right)\right\}\right]=h\left[d\left\{S\left(m, i_{1}, \ldots, i_{m}\right)\right]\right]=h\left(t_{m}\right)
$$

Also we have,

$$
d\left[T\left(m, i_{1}, \ldots, i_{m}\right)\right] \rightarrow 0, \quad \text { as } \quad m \rightarrow \infty,
$$

and thus,

$$
\begin{aligned}
\Lambda^{h}(s) & \leqslant K_{1} \ldots K_{m} h\left[d\left(T\left(m, i_{1}, \ldots, i_{m}\right)\right)\right] \text { for all } \\
& \left.\leqslant C_{1} \ldots C_{m} h\left(t_{m}\right)=h\left(t_{\bullet}\right), \quad \text { by } b\right)
\end{aligned}
$$

Thus, we have shown that,

$$
A^{h}(s)<\infty
$$

Now, let $\left\{U_{i}\right\}_{i=1, \ldots, N}$ be any covering of S by a sequence of open
convex sets. We need only consider finite coverings because of the compactness of S.

Consider a particular set U_{i}, there exists positive integer $m=m(i)$ such that all the points of $S_{\cap} U_{i}$ belong to the same $S\left(m-1, i_{1}, \ldots, i_{m-1}\right)$ but to at least two different sets $S\left(m, i, \ldots, i_{m}\right)$.

Thus, we may assume that,

$$
d\left(v_{i}\right) \leq t_{m-1} .
$$

Now, for $i_{m} \neq j_{m}$,

$$
e\left[S\left(m, i_{1}, \ldots, i_{m-1}, i_{m}\right), S\left(m, i_{1}, \ldots, i_{m-1}, j_{m}\right)\right]=t_{m-1}-2 t_{m},
$$

thus, we must have,

$$
d\left(v_{i}\right) \geqslant t_{m-1}-2 t_{m}
$$

and so,

$$
\left.h\left(d\left(U_{i}\right)\right)=x_{n_{m-1}}^{n_{m-1}}=h\left(t_{m-1}\right), \quad \text { by } 0\right) \ldots
$$

Hence, we may replace the set $U_{:}$by the corresponding set $T\left(m-1, i_{1}, \ldots, i_{m-1}\right)$. Thus, since the U_{i} was arbitrary we may assume that any covering of S consists of sets of the form $T\left(n, i_{1}, \ldots, i_{n}\right)$ for finitely many values of n. Let n * be the largest such value of n, then from b). we may assume that the covering consists of the $K_{1} \ldots K_{n} *$ sets $T\left(n^{*}, i_{1}, \ldots, i_{n *}\right)$. Now,

$$
\begin{aligned}
\left.K_{1} \ldots K_{n^{*}} h\left[d\left\{T C_{n^{*}}^{*}, i_{1}, \ldots, i_{n *}\right)\right\}\right] & =K_{1} \ldots K_{n *} h\left(t_{n^{*}}\right) \\
& >\left(c_{1}-1\right) \ldots\left(C_{n^{*}}-1\right) h\left(t_{n^{*}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{i=1}^{n^{*}}\left(1-1 / c_{i}\right) h\left(t_{0}\right) \\
& \geqslant \prod_{i=1}^{\infty}\left(1-1 / A_{i}\right) h\left(t_{0}\right)
\end{aligned}
$$

But $\sum A_{i}^{-1}$ is convergent, thus $\Pi\left(1-1 / A_{i}\right)$ is convergent with product P, say, and so we have,

$$
\Lambda^{h}(S) \geqslant P h\left(t_{0}\right)>0
$$

Thus, we have shown that,

$$
0<\Lambda^{h}(s)<\infty .
$$

Also, we note that since P on be mede arbitrarily close to one by appropriate choice of $\left\{A_{n}\right\}$ we can construct sets S in l^{2} of h-measure arbitrarily close to any given value.

It can be seen from the proof of Theorem 28 that the only property of $h(x)$ used in the construction of the set S is that $h(x)$ is a monotonic increasing step function. Now, if $h(J r)$ is any monotonic increasing continuous function we can always find a step function $H(J C)$, say, such that $h(x) \leqslant H(x) \leqslant 3 h(x)$. Hence for all sets S we will have,

$$
\lambda^{h}(s) \leqslant \Lambda^{H}(s) \leqslant 3 \lambda^{h}(s) .
$$

Thus, we see that for any continuous Hausdorff measure function $h(x)$, there exists a set S in l^{2} such that,

$$
0<\lambda^{h}(S)<\omega .
$$

We have shown that, in Euclidean space and, in fact, in compact, finite dimensional metric spaces, given any discontinuous Hausdorff measure function there is a continuous measure equivalent function. The next theorem shows us that this is not the case in the space l^{2}.

Theorem 29

There exists a discontinuous Hausdorff measure function $h(r)$ such that for sets in l^{2} there is no continuous measure equivalent function. Proof

Let.

$$
x_{n}=1 / 2^{n} \quad \text { for } n=0,1,2, \ldots .
$$

Define $h(x)$ as follows,

$$
h(x)=V^{1}(n!)^{2} \quad \text { for } x \in\left(x_{n+1}, x_{n}\right] \text {. }
$$

Now, let $H^{\prime}(x)$ be any continuous monotonic increasing function. Then, either,
1). $\quad H^{\prime}\left(x_{n}\right)>\frac{1}{(n-1)!n!}$
for infinitely many values of n,
or, 11). $H^{\prime}\left(x_{n}\right) \leqslant \frac{1}{(n-1)!n!} \quad$ for all large values of n. Consider case i)., since $H^{\prime}(x)$ is continuous, there exists a positive real number x_{n}, and a subsequence $\left\{y_{n}\right\}$ of $\left\{x_{n}\right\}$ such that,

$$
y_{n+1}<y_{n}-x_{n},
$$

and, $\quad H^{\prime}(x)>\frac{1}{(n-1)!u!}$
for $\quad x \in\left[y_{n}-\Sigma_{n}, y_{n}\right]$.
Define the function $H(x)$ as follows,

$$
H(x)=\frac{1}{(n-1)!n!} \quad \text { for } x \in\left(y_{n}-\Sigma_{n}, y_{n-1}^{\left.-\Sigma_{n-1}\right]} .\right.
$$

Then we have,

$$
H^{\prime}(x) \geqslant H(x) \quad \text { for all } x \text {. }
$$

Let $\left\{A_{n}\right\}$ be a given sequence of integers such that $\sum A_{u}^{-1}$ is convergent.
We now define a decreasing sequence $\left\{t_{n}\right\}$ of positive real numbers; choose t_{0} arbitrarily in the open interval $\left(y_{n_{0}}-\varepsilon_{n_{0}}, y_{n_{0}}\right)$ for some positive integer n_{0}; assume that t_{0}, \ldots, t_{m-1} have been chosen and that

$$
t_{m-1} \in\left(y_{n_{m-1}}-\Sigma_{n_{m-1}}, y_{n_{m-1}}\right)
$$

Choose t_{m} such that,
a). $t_{m}<y_{2} t_{m-1}$
b). $G_{m} H\left(t_{m}\right)=H\left(t_{m-1}\right)$ with $C_{m}>A_{m}$
0). $t_{m-1}-2 t_{m}>y_{n_{m-1}}-\Sigma_{n_{m-1}}$
d). $\quad t_{m} \in\left(y_{n_{m}}-\Sigma_{n_{m}}, y_{n_{m}}\right) \quad$ for some positive $\quad \begin{array}{ll} & \text { integer } n_{m}>n_{m-1} .\end{array}$

Construct the set S with respect to the sequence $\left\{t_{M}\right\}$ just as in the proof of Theorem 28. Again, we have,

$$
0<\mathcal{\Lambda}^{H}(s)<\alpha .
$$

Now we also know that,
132.

$$
\Lambda_{\delta}^{h}(s) \leqslant K_{1} \ldots K_{m} h\left[d\left\{T\left(m, i_{1}, \ldots, i_{m}\right)\right\}\right],
$$

for arbitrary positive real numbers δ and for all large integral values of M.

Thus we have,

$$
\begin{aligned}
A_{j}^{h}(s) & \leqslant c_{1} \ldots c_{m} h\left(t_{m}\right) \\
& =\frac{1}{N_{m}} c_{1} \ldots c_{m} H\left(t_{m}\right)=\frac{1}{N_{m}} H\left(t_{0}\right),
\end{aligned}
$$

where $y_{u_{m}}=x_{N_{m}}$.
But,

$$
N_{\mu} \rightarrow \infty \quad \text { as } m \rightarrow \infty,
$$

and so we have,

$$
\Lambda^{h}(S)=0 .
$$

Thus, the theorem is proved for the case i).; it is easy to see that en analogous proof will deal with case ii).

We have shown that if $h(x)$ is any monotonic $q-$ dimensional Hausdorff measure function with the property that,

$$
\frac{h(x)}{x^{q-1}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

then for any set S in q-dimensional Euclidean space and for any sequence $\left\{\delta_{\mu}\right\}$ with $\delta_{n} \rightarrow \delta$ as $n \rightarrow \infty$ for some positive real number δ, we have,

$$
\lim _{n \rightarrow \infty} \lambda_{d_{n}}^{h}(s)=\lambda_{s}^{h}(s)
$$

The next theorem shows that this result does not extend to the space l^{2}.

Theorem 30

There exists a Hausdorff measure function $h(x)$, a compact set S in l^{2} and for arbitrarily snail positive values of δ, a sequence $\left\{\delta_{n}\right\}$ such that $\delta_{n} \rightarrow \delta$ as $n \rightarrow \infty$ with the following properties,
1). $\frac{h(x)}{x^{q}} \rightarrow 0$ as $x \rightarrow 0 \quad$ for all positive integers q,
ii). $0<\lambda^{h}(s)<\infty$,
end, iii). $\lim _{n \rightarrow \infty} \mathcal{\Lambda}_{\delta_{n}}^{n}(s) \neq \mathcal{\Lambda}_{\delta}^{h}(s)$.
Proof
Let,

$$
x_{n}=1 / 2^{n} \quad \text { for } \quad n=0,1,2, \ldots
$$

Define $h(x)$ as follows,

$$
h(x)=(n!)^{-2} \quad \text { for } x \in\left[x_{n}, x_{n-1}\right) \text {. }
$$

Thus we ce e that,

$h(x)>0$	for $x>0$
and,$h(x) \neq 0$ as $x>0$ $\frac{h(x)}{x^{q}}$ $\rightarrow 0$$\quad$ as $x \rightarrow 0$	
	for all positive integers q.

Choose t_{0} to be an arbitrary positive number such that $t_{0} \in\left\{x_{n}\right\}$. Now
assume that t_{0}, \ldots, t_{m-1} have been chosen and that $t_{m-1}=x_{n_{m-1}} \in\left\{x_{n}\right\}$. We choose t_{m} as follows,
1). $t_{m}=x_{n_{m}} \in\left\{x_{n}\right\}$ with $n_{m}>n_{m-1}+m$,
ii). $K_{m} h\left(t_{m}\right)=\left(1+1 / m^{2}\right) h\left(t_{m-1}\right)$ with K_{m} a positive
integer,

$$
\text { iii). } t_{m-1}-2 t_{m}>x_{n_{m-1}+1}
$$

Condition 14). can be satisfied since,

$$
\begin{aligned}
\left(1+1 / m^{2}\right) \frac{h\left(x_{n_{m-1}}\right)}{h\left(x_{n_{m}}\right)} & =\frac{m^{2}+1}{m^{2}} \frac{\left(n_{m}!\right)^{2}}{\left(n_{m-1}!\right)^{2}} \\
& =\frac{m^{2}+1}{m^{2}}\left[\left(n_{m-1}+1\right) \ldots\left(n_{m}\right)\right]^{2},
\end{aligned}
$$

and this must be integral because of condition i)..
We now proceed to the construction of the set S.
Choose K, points of the form,

$$
\left(0, \ldots, 0, t_{0} / \sqrt{\sqrt{2}}, 0, \ldots\right)
$$

where the entry $t_{0} / \sqrt{2}$ is in position i_{1} for $i_{1}=1, \ldots, k_{1}$. Denote these points by $c\left(\alpha_{1}\right)$ with $\alpha_{1}=1, \ldots, K_{1}$.
Now, choose $K_{1} K_{2}$ points of the form,

$$
\left(0, \ldots, 0, \frac{t_{0}^{2}-t_{1}^{2}}{t_{0} \sqrt{2}}, 0, \ldots, 0,\left[\frac{t_{1}^{2}}{2}-\frac{t_{1}^{4}}{2 t_{0}^{2}}\right]^{1 / 2}, 0, \ldots, 0, \frac{t_{1}}{\sqrt{2}}, 0, \ldots\right)
$$

where $\frac{t_{0}^{2}-t_{1}^{2}}{t_{0} \sqrt{2}}$ is in position $i_{1}:\left[\frac{t_{1}^{2}}{2}-\frac{t_{1}^{4}}{2 t_{0}^{2}}\right]^{1 / 2}$ is in position $k_{1}+i_{1}$,
and $t_{1} / \sqrt{2}$ is in position $2 K_{1}+i_{1} K_{2}+i_{2}$, for $i_{1}=1, \ldots, K_{1}$ and $i_{2}=1, \ldots, K_{2}$. Denote these points by $\subseteq\left(\alpha_{1}, \alpha_{2}\right)$ with $\alpha_{1}=1, \ldots, k_{1}$ and $\alpha_{2}=1, \ldots, k_{2}$. We note the following facts,

$$
\begin{aligned}
& f\left[\underline{c}\left(\alpha_{1}\right), \underline{c}\left(\beta_{1}\right)\right]=t_{0} \quad \text { for } \quad \alpha_{1} \neq \beta_{1} \text {, } \\
& e\left[\leq\left(\alpha_{1}, \alpha_{2}\right), \leq\left(\alpha_{1}, \beta_{2}\right)\right]=t_{1} \quad \text { for } \quad \alpha_{2} \neq \beta_{2} \text {, } \\
& e\left[\leq\left(\alpha_{1}, \alpha_{2}\right), \leq\left(\beta_{1}, \beta_{2}\right)\right]=t_{0} \quad \text { for } \quad \alpha_{1} \neq \beta_{1} \text {, } \\
& e\left[\subseteq\left(\alpha_{1}, \alpha_{2}\right), \varrho\left(\alpha_{1}\right)\right]=t_{1}
\end{aligned}
$$

and, $e\left[\leq\left(\alpha_{1}, \alpha_{2}\right), c\left(\beta_{1}\right)\right]=t_{0}$ for $\alpha_{1} \neq \beta_{1}$.
Now choose $K_{1} K_{2} K_{3}$ points of the form,

$$
\left(0, \ldots, 0, \frac{t_{0}^{2}-t_{1}^{2}}{t_{0} \sqrt{2}}, 0, \ldots, 0,\left[\frac{t_{1}^{2}}{2}-\frac{t_{1}^{4}}{2 t_{0}^{2}}\right]^{1 / 2}, 0, \ldots, 0, \frac{t_{1}^{2}-t_{2}^{2}}{t_{1} \sqrt{2}}, 0, \ldots, 0,\left[\frac{t_{2}^{2}}{2}-\frac{t_{2}^{4}}{2 t_{1}^{2}}\right]^{1 / 2}, 0, \ldots, 0, \frac{t_{2}}{\sqrt{2}}, 0, \ldots\right)
$$

where, $\frac{t_{0}^{2}-t_{1}^{2}}{t_{0} \sqrt{2}}$ is in position $i_{1} ;\left[\frac{t_{1}^{2}}{2}-\frac{t_{1}^{4}}{2 t_{0}^{2}}\right]^{k_{2}}$ is in position $k_{1}+i_{1}$; $\frac{t_{1}^{2}-t_{2}^{2}}{t_{1} \sqrt{2}} \quad$ is in position $2 K_{1}+i_{1} K_{2}+i_{2} ;\left[\frac{t_{2}^{2}}{2}-\frac{t_{2}^{4}}{2 t_{1}^{2}}\right]^{1 / 2}$ is in position $2 k_{1}+k_{1} k_{2}+k_{2}+i_{1} k_{2}+i_{2}$, and $t_{2} / \sqrt{2}$ is in position

$$
2\left(k_{1}+k_{1} k_{2}+k_{2}\right)+i_{1} k_{3}\left(k_{2}+1\right)+i_{2} k_{3}+i_{3}, \text { for } \quad i_{j}=1, \ldots, k_{j}, j=1,2,3 .
$$

Denote these points by $\subseteq\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ where $\alpha_{j}=1, \ldots, k_{j}, j=1,2,3$.
Fe note the following facts,

$$
\begin{aligned}
& e\left[\subseteq\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \subseteq\left(\beta_{1}\right)\right]=t_{0} \quad \text { for } \quad \alpha_{1} \neq \beta_{1} \text {, } \\
& e\left[\leq\left(\alpha_{1}, \alpha_{2}, \alpha_{2}\right), \subseteq\left(\alpha_{1}, \beta_{2}\right)\right]=t_{1} \text { for } \alpha_{2} \neq \beta_{2} \text {. } \\
& e\left[\leq\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \leq\left(\alpha_{1}, \alpha_{2}, \beta_{3}\right)\right]=t_{2} \text { for } \alpha_{3} \neq \beta_{3} \text {, }
\end{aligned}
$$

$$
e\left[\leq\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \subseteq\left(\beta_{1}, \beta_{2}, \beta_{3}\right)\right]=t_{0} \quad \text { for } \alpha_{1} \neq \beta_{1},
$$

and $\rho\left[\subseteq\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \subseteq\left\{\alpha_{1}, \beta_{2}, \beta_{3}\right)\right]=t_{1}$ for $\alpha_{2} \neq \beta_{2}$. Now assume that $K_{1} \ldots K_{n-1}$ points $e\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ with $\alpha_{i}=1, \ldots, K_{i}$ for $i=1, \ldots, n-1$ have been defined. We define the $K_{1} \ldots K_{n}$ points $e\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha_{i}=1, \ldots, K_{i}$ for $i=1, \ldots, n$ in a similar manner to that described above, so that we have,

$$
e\left[s\left(\alpha_{1}, \ldots, \alpha_{n}\right), s\left(\alpha_{1}, \ldots, \alpha_{n-i-1}, \beta_{n-i}\right)\right]=t_{n-i-1},
$$

where

$$
\alpha_{n-i} \neq \beta_{n-i}
$$

$$
\text { for } i=0, \ldots, n-1 \text {, }
$$

and,

$$
e\left[c\left(\alpha_{1}, \ldots, \alpha_{n}\right), s\left(\alpha_{1}, \ldots, \alpha_{n-i-1}, \beta_{n-i}, \beta_{n-i+1}, \ldots, \beta_{n}\right)\right]=t_{n-i-1},
$$

Where

$$
\alpha_{n-i} \neq \beta_{n-i} \quad \text { for } i=0, \ldots, n-1
$$

Now, suppose that this selection of points has been carried out for every positive integer n. Then, if $\left\{\alpha_{i}\right\}$ is any sequence of integers with $1 \leqslant \alpha_{i} \leqslant K_{i}$ for $i=1,2 \ldots$ the corresponding sequence of points $\left\{c\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\}_{n=1,2, \ldots}$ has the following property,

$$
\rho\left[s\left(\alpha_{1}, \ldots, \alpha_{n}\right), c\left(\alpha_{1}, \ldots, \alpha_{n+r}\right)\right]=t_{n},
$$

for any positive integers n and r. Thus, since we know that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ we see that $\left\{\underline{\varrho}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\}$ is a Cauchy sequence, and by the completeness of l^{2} must converge to point, which we denote by $c\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. We note that,

$$
e\left[\subseteq\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}, \ldots\right), \subseteq\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{n+1}, \ldots\right)\right]=t_{n}
$$

if $\alpha_{n+1} \neq \beta_{n+1}$.
Now let,

$$
S=\left\{\underline{x}: \underline{x}=\leq\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\}
$$

Define,

$$
S\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\overline{\operatorname{conv}\left\{\underline{x}: \underline{x}=\leq\left(\alpha_{1}, \ldots, \alpha_{n}, \gamma_{n+1}, \ldots\right)\right\}}
$$

where the γ_{i} are integers such that $1 \leq \gamma_{:} \leq K_{i}$ for $i=n+1, n+2, \ldots$. Then,

$$
d\left[S\left(\alpha_{1}, \ldots s \alpha_{n}\right)\right]=t_{n}
$$

Define,

$$
T\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left\{x_{0} \rho\left(x_{s}, S\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)<1 / 4 t_{n}\right\}
$$

then we have,

$$
h\left[d\left[T\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right]=h\left[d\left(S\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right]
$$

Ti. see that S can be covered by the $K_{1} \ldots K_{u}$ open convex sets $T\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for any positive integer n.
Take an infinite sequence $\left\{\mathfrak{c}^{n}\right\}$ of points x_{n}^{n} in S and write,

$$
\underline{x}^{n}=\leq\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots\right) \quad \text { for } n=1,2, \ldots
$$

then $\alpha_{1}{ }^{n}=\alpha_{1}^{*}$ say, for infinitely many values of n.

Choose the subsequence $\left\{x^{n}=\right\}$ of $\left\{x^{n}\right\}$ such that,

$$
\underline{x}^{n_{i}}=c\left(\alpha_{1}, \alpha_{2}^{n_{i}}, \alpha_{3}^{n_{i}}, \ldots\right) \quad \text { for } i=1,2, \ldots,
$$

then $\alpha_{2}^{n_{i}}=\alpha_{2}^{*}$ say, for infinitely many values of i. Choose the subsequence $\left\{\underline{x}^{n_{i j}}\right\}$ of $\left\{x^{n_{i}}\right\}$ such that,

$$
x^{n_{i j}}=c\left(\alpha_{1}^{*}, \alpha_{2}^{*}, \alpha_{3}^{n_{i j}}, \ldots\right) \quad \text { for } j=1,2, \ldots
$$

In this manner we generate a convergent subsequence of $\left\{\underline{c}^{n}\right\}$ and hence we prove the compactness of S.

Now, let δ be an arbitrary positive number such that $\delta \mathscr{\{}\left\{x_{n}\right\}$. Let m be a positive number such that,

$$
t_{m}<\delta<t_{m-1}
$$

Let $\left\{U_{i}\right\}$ be a sequencs of open convex sets, such that,

$$
d\left(U_{i}\right)<\delta \quad \text { for all } i
$$

and, $\quad S \subset \bigcup_{i=1}^{\infty} u_{i}$.
We want to find the lower bound of the sum $\sum_{i} h\left(d\left(U_{i}\right)\right)$ over all such sequences of sets. Firstly, because of the compactness of S we need only consider finite coverings, Now, consider a set $U_{i} \in\left\{U_{i}\right\}$ such that, $d\left(u_{i}\right) \in\left[t_{n}, t_{n-1}\right)$ for some integer n with $n \geqslant m$.

Now U_{i} can only contain points of S which lie in the seme set $T\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. But, we know that $h\left(d\left(U_{i}\right)\right)$ is ereater than or equal to $h\left[d\left\{T\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\}\right]$, and so we may replace the U_{i} by the corresponding set $T\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Thus we need only consider coverings consisting of sets of the form $T\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for finitely many values of n. Let N be the greatest value of these integers n. Then there must be ρK_{N} sets $T\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ where p is an integer, assuming none of the covering sets is redundant. Now,

$$
\begin{aligned}
K_{N} h[d & \left.\left\{T\left(\alpha_{1}, \ldots, \alpha_{N}\right)\right\}\right]=K_{N} h\left[\alpha\left\{s\left(\alpha_{1}, \ldots, \alpha_{N}\right)\right]\right] \\
& =K_{N} h\left(t_{N}\right) \\
& \left.=\left(1+1 / N^{2}\right) h\left(t_{N-1}\right) \quad \text { by } 11\right)_{0}, \\
& =\left(1+1 / N^{2}\right) h\left[d\left\{T\left(\alpha_{1}, \ldots, \alpha_{N-1}\right)\right\}\right] .
\end{aligned}
$$

Thus, we should replace each block of K_{N} sets $T\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ by the single set $T\left(\alpha_{1}, \ldots, \alpha_{N-1}\right)$ which they all intersect. Continuing in this manner we eventually get,

$$
\begin{aligned}
\mathcal{A}_{\delta}^{h}(s) & =K_{1} \ldots K_{m} h\left[\alpha\left\{T\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right\}\right] \\
& =K_{1} \ldots K_{m} h\left(t_{m}\right) \\
& =\prod_{i=1}^{m}(1+1 / i 2) h\left(t_{0}\right)
\end{aligned}
$$

Hence,

$$
\Lambda^{h}(S)=\lim _{m \rightarrow \infty} \prod_{i=1}^{m}\left(1+1 / i^{2}\right) h\left(t_{0}\right)
$$

which is positive and finite.
Now, consider $\delta=t_{N}$ for some integer N, since we are only interested in sets of diameter less than t_{N} we get,

$$
\lambda_{\delta}^{h}(S)=K_{1} \ldots K_{N+1} h\left[d\left\{T\left(\alpha_{1}, \ldots, \alpha_{N+1}\right)\right\}\right]
$$

by similar reasoning to that above.
Thus we have,

$$
\Lambda_{\delta}^{h}(s)=\int_{i=1}^{N+1}\left(1+1 / i^{2}\right) h\left(t_{0}\right)
$$

Now, let $\left\{J_{N}\right\}$ be any strictly decreasing sequence such that,

$$
\delta_{n} \rightarrow \delta \quad \text { as } n \rightarrow \infty .
$$

Then for all large values of n we have,

$$
J_{\delta_{n}}^{h}(S)=\prod_{i=1}^{N}(1+1 / i 2) h\left(t_{0}\right)
$$

That is,

$$
\lim _{n \rightarrow \infty} \lambda_{d_{n}}^{h}(s)=\prod_{i=1}^{N}\left(1+1 / i_{i}\right) h\left(t_{0}\right)=\frac{1}{1+\frac{1}{(N+1)^{2}}} j_{j}^{h}(S) \neq \lambda_{j}^{h}(S)
$$

Hence the theorem is proved.

EFFFRMOES

(10) W. Sierpinski	General Topoloey.	Toronto, 1952.
(11) M. Sion \&	Approximation properties	Mathenatika 9
D. Sjerve	of measures generated by	(1962) 145-156.
	continuous set functions.	

APPFTIDIX 1
Let C be convex set of diameter d in q-dinensional Euclidean space. Denote by C^{\prime} the set $\{x: \rho(x, e c)>\delta\}$ for sone small $\delta>0$, where ρ is the metric in the space.

Assertion
We can cover C / c^{\prime} with $K(d / \delta)^{q-1}$ cubes of diameter δ, where K is a constant dependent only on q.

Proof
Let P, Q be polytopes such that,

$$
\begin{aligned}
& P \supset C \text { and } \quad\{x: P(x, C)<\delta / 8\} \supset P \\
& C^{\prime} \supset Q \text { and } \quad\{x: 6(x, Q)<\delta / 8\} \supset C
\end{aligned}
$$

Then,

$$
P>Q>\{x: p(x, e P)>2 \delta\}
$$

Since, if $p \in\{x: \rho(x, e P)>2 \delta\}$ and $x \in B C$, then there exists $q \in B P$ such that,

$$
e(x, q)<\delta / 4
$$

So we have,

$$
e(p, x)+e(x, q) \geq e(p, q)>2 \delta
$$

that is,

$$
e(p, x)>2 \delta-\delta / 4=7 \delta / 4
$$

Hence $p \in C^{\prime}$.
Now, if $p \in C^{\prime} \backslash Q$ then there exists $S \in C \mid C^{\prime}$ such that,

$$
\rho(p, s)<\delta / 4
$$

Also, there exists $x \in l C$ such that $f(s, x) \leq \delta$ and hence,

$$
e(p, x)<\delta / 4+\delta=5 \delta / 4
$$

that is, $P \mathscr{C} C^{\prime} \backslash Q$ and therefore $p \in Q$.
Hence $\{x: e(x, e P)>2 \delta\} \subset Q$ and clearly $Q<P$.
Now let $x \in C \backslash C^{\prime}$ then there exists at least one point p on the frontier of P such that,

$$
\rho(p, x)=\min \{e(q, x): q \in \text { frontier of } p\} .
$$

Let $s=P(p, x)$ then $s>0$, since x is an interior point of P. Then from the definition of P, we have $S(x, s) \subset P$. Also, since p lies on the frontier of P there is a support hyperplane H of P through p. clearly H must also support $S(x, s)$ and hence H is the unique support hyperplane through p. Further, we see from this argument that if we erect a rightmcylinder of height 2δ on each facet of P we will have a covering of $C \backslash C^{\prime}$.
Now let $\left\{V_{-}\right\}_{i=1}^{N}$ be a finite covering of $C \mid c c^{\prime}$ by disjoint cubes V_{i} each of diameter δ. Then we must have,

$$
\bigcup_{i=1}^{N} V_{i} c\{x: \rho(x, c) \leqslant \delta\} \backslash\left\{x: e\left(x, e^{\prime}\right)>\delta\right\}
$$

So, by a similar argument to the one above wo have,

$$
N\left(\frac{\delta}{\sqrt{q}}\right)^{q} \leqslant a_{q}(2 d)^{q-1} 6 \delta
$$

where, a_{q} is the surface area of the unit quimensional sphere. Hence we may choose $K=6 a_{q} 2^{q-1} \sqrt{q}$ and the assertion is proved.

Correction to Pages 79 and 80.
To prove that $L_{\delta}^{h}\left(\bigcup_{n=1}^{\infty} S_{n}\right)=\frac{3}{2} X_{N}$.

It is clear that we can cover $\bigcup_{n} S_{n}$ by its own closure. We now
assume that all the sets of the covering have diameter strictly less than δ. Thus, let $\left\{U_{i}\right\}$ beaclosed covering of $\bigcup_{n} S_{n}$ such that,

$$
d\left(U_{i}^{\delta}\right)<\delta \quad \text { for all } i .
$$

If there is more than one $\quad U_{i}$ such that $d\left(U_{i}\right)>x_{N+1}$ then clearly.

$$
\sum h\left(d\left(U_{i}\right)\right) \geq 2 x_{N} .
$$

Now assume that there is at most one such U_{i} then,

$$
d\left(U_{i}\right)<\delta-\varepsilon \text { for all } i \text { and for all small } \varepsilon>0 \text {. }
$$

Choose one such ε, let $\left\{U_{n_{i}}\right\}$ be a subsequence of $\left\{U_{i}\right\}$ such that each $U_{n_{i}}$ has at least one point in common with the circle $x^{2}+y^{2}=\frac{1}{4}(\delta-\varepsilon)^{2}$. Clearly, no U_{i} can contain diametrically opposite points of this circle. Let the intersection of $U_{n_{i}}$ with the circle subtend an angle 2ϕ : at the origin then,

$$
\sin \phi_{i} \leq \frac{d\left(U_{n_{i}}\right)}{x_{N}-\varepsilon} \text { and } 0 \leq \phi_{i}<\pi / 2
$$

Since the circle must be covered we have,

$$
\begin{aligned}
& \text { and using the fact that } \sin \phi_{i} \geq \phi_{i} \geq 2 \pi \\
& \text { a } / \pi, \text { we get, } \\
& \sum d\left(U_{i}\right) \geq \sum_{i} d\left(U_{n_{i}}\right)>\frac{\left(x_{N}-\varepsilon\right)}{\pi} \Sigma 2 \phi_{i} \geq 2\left(x_{N}-\varepsilon\right)
\end{aligned}
$$

But this is true for all small values of ε, so that,

$$
\sum_{i} d\left(U_{i}\right) \geq 2 x_{i}
$$

Hence, since $h(x) \geq x$ for all x, we must have,

$$
L_{\delta}^{h}\left(U_{n} S_{n}\right)=3 / 2 x_{N}
$$

[^0]: $2 \mathrm{M}^{2} \mathrm{C}$
 lerpro

