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ABSTRACT

In many woz^s on Hausdorff Ueasuro Thaozy i t  has been the p rac tice  

to  place certa in  re s tr ic tio n s  on the measure functions used. These 

re s tr ic tio n s  usually  ensure both the monotonloi'fy and the o o n tin u l^  

o f the functions. The aim o f the f i r s t  four chapters o f th is  th e s is  i s  

to  find  conditions under which the re s tr ic tio n s  o f continuity  and 

monotonicity may be relaxed.

In  the f i r s t  chapter we deal with the monotonicity condition with 

respect to  both measures and pre#measures» The second and th ird  chapters 

are concerned with an investigation  o f the continuity  condition with 

regard to  measures end p re^ e asu re s , respec tive ly . Then, having found 

conditions under Which these re s tr ic tio n s  may o r  may not be relaxed, we 

are  able, in  the fourth  chapter, to  generalise some known re s u lts  to  the  

case of discontinuous and non«monotonie functions.

Some o f  the  re su lts  o f the  f i r s t  four chapters prcmpted an 

investigation  o f the p roperties o f measures corresponding to  sequence* o f 

measure functions, and th is  i s  incorporated in  the f i f t h  chapter.

The main puzpose o f the f in a l  chapter i s  to  detem ine whether o r 

not some of the re s u lts  o f  the e a r l ie r  chapters may be extended to 

H ilbert space.
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DEFINITIONS AND NOTATION 

fo r eny function VvCoĉ  we define V\Cx“) end )  as follows,

VnCo  ̂ )  = )

Vv (J3L" ;  i  Aim  Vv

We note th a t i f  V\.Q>ĉ  i s  a monotonie increasing function we have,

V\ y c

r V\

I f  i s  a point of discontinuity of W shall define the sise of

the discontinuity a t /it to he C ^  ) - UUt

We say th a t ^ 0 9  i s  a  Hausdorff measure function i f  i t  s a t is f ie s  

the following conditions,

\j. \a ^ oC )  > O -DÇ. O

'Y ' O OLi -4> o

I f  UCicy sa tisfies  »J. and u). above as well as,

Xr^O 0%_

fo r  some po sitiv e  in teg er \  ,  we say th a t U(>f^ i s  a qrddmensionel 

Hausdorff measure function.

I f  S i s  any set in a metric space say, we shall denote

by (k^%) the diameter of S that i s .



(ACS) s Vi<A \  e S ^

Also ws denote the closure ©f S by S,

By ^  we sha ll mean the space o f a l l  re a l number sequences 

such th a t i s  convergent. We sha ll denote the  po in ts o f f by i s

shore is  - Wherever ind ices occur, wo sh a ll w rite , fo r  exemple,

. I f  S i s  a set in X then we write,

I t  + S =  ̂ IS + ^

where the addition i s  perfom ed oomponent-wiso. We make & in to  a  m etric 

space by introducing the m etrio , ^ such th a t  fo r  05  ̂ ^  ^

Aal J  '%
I f  V are sets i n  Î  then,

u X }  W  ^ y qt ^ . 1C (: X I

and,

^ C x  v ;   ̂ y  ^ , "A; ' .  %(= X ; e ^ ,

A Set o f po in ts S in  Euclidean space o r A i s  said  to  be convex, i f  

whenever two po in ts belong to  S a l l  the  po in ts o f  the  form,

A ie  4 X^

where t><X<\ also belong to L I f  A i s  any set, then by A 

we mean the smallest convex set which contains A. The following resu lts



w ill be csauBied wherever necesaary,

a ) .  i i  a ccmplete m etrio space (see , fo r  example,

Sierpinski (10) ) ,

b ) .  cl A  y (see , fo r example, Egglestoa (4 ) ) ,

and, c ) ,  csA.̂  ̂ Ay ^ ol A ^

For any poin t i t  and any positive  re a l nimber t  we sh a ll w rite 

S Coc  ̂ r y fo r  the sphere centre y ,  radius t .  Suppose 1̂  i s  a se t in  a 

m etrio space JL and are  positive  re a l numbers. Then fo r  every

point we define to  be the la rg e s t number o f d is jo in t

spheres o f the form S with p which can meet ol^ We

w rite ,

= s a p  N P / .
y t P

We say th a t a function i s  blanketed i f  fo r  a l l  o(>o th ere  e x is t

positive  re e l numbers k" end K W ^U y which sa tis fy ,

fo r  a l l  O, Then, i f  k  i s  a  monotonie, increasing, blanketed,

Hausdorff measure function we w rite ,

v x v r ^ u ^ /  -  Aa- aa aaaa --------- ^— --------------------- — ' ■
f -> 0  U U /

fo r  each point o f A . F ina lly , we w rite ,

A se t A i s  said to  have f in i te  dimension i f  there  ex is ts  a monotonie



increasing, blanketed, Hausdorff measure function such th a t, KCA^rO.

A m etrio space i s  said to  be a p-space i f  there e x is t positive  rea l 

numbers «c and N^ocy such th a t ,  fo r  a l l  r  ^  a t  most

d is jo in t open spheres o f rad ius oLt can meet any givm  open sphere o f 

radius Lazman (6) has shown th a t a  oompaot se t A in  a m etrio space 

has f in i t e  dimension i f  end only I f  A i s  a ^spaoe#

I f  i s  a Hausdorff measure function and S i s  a  se t in

Euclidean space o r ! then, following Hausdozff (5 ) , we define the 

corresponding Hausdoz*ff pre-measure o f 5 denoted by as follows,

A V s  ) ' î i  ^ W C d C y .  V ,

where the lower bound i s  taken over a l l  coverings o f S by open convex 

se ts  each o f d im e te r  s t r i c t ly  le s s  than We then define the Hausdorff 

measure o f  S> as follow s,

A ' ' c s ; r
o

This w ill be re fe rred  to  as the h-measure o f S. We w ill w rite  and

when and and %dien = sc.. The

measure A  i#  defined in  a  sim ilar manner to  A  but

here we r e s t r i c t  the coverings to be open q-dlmensionel re c ta n ^ e s .

Sim ilarly A  ' re fe rs  to  coverings by open q-dimensional cubes*

and 0 !"CV w ill re fe r  to  eoverlngs by closed convex se ts  where,

fo r  we in s i s t  th a t clCV3.̂ ) < ^ fo r  a l l  L,d
Two Hausdorff measure functions klw ) and <̂ Ck) w ill be said to  be 

measure equivalent vhenever, fo r  a l l  se ts  S , jC^CSj i s  positive  end 

f in i te  i f  and only i f  i s  p o sitiv e  and f i n i t e .  Also, i f  kUc) end



/ are Hausdorff measure functions we w rite ^  ^  i f ,

â r .

For any se t ^ we denote the complement of 5  by end X t  Y by 

X ' ‘V, I f  30 i s  any ree l number we denote the g rea tes t in teger le s s  then 

or equal to ic by F inally , we shell c a ll  a null sequence i f

10^  o es A



CHAPTER 1

INTRODUCTION

The f i r s t  theorem o f th is  chapter shows th a t in  a l l  subsequent 

investigations o f the Hausdorff measures of se ts  ii^/metric as well as in  

Euclidean spaces i t  i s  su ffic ie n t to  prove theorems only fo r the case of 

monotonie Hausdorff measure functions# Theorems 2 and 3 show th a t th is  

re s u lt  cannot always be extended to  the case o f Hausdorff pre-measures* Thus 

th ro u ^o u t th is  work the theorems concerning Hausdorff measures w ill be seen 

to  be true  fo r  both monotonie end non-mono tonic measure functions*

%"hereas those conowning pre-measures w ill only be proved fo r  the case o f 

monotonie measure functions.

Theorem 1

Given any Hausdorff measure function ) there  e x is ts  a  

monotonie increasing Hausdorff measure function )  say, suoh t ^ t  fo r  

fifty se t S  we have,f ' .. f

Proof

We know th a t > o fo r  a l l  po sitive  Values of l e t  X be a

fixed p o sitiv e  re a l number. Define as follows,

and s U^Xy f o r  X - i V

i ) ,  i s  monotonie increasing , For, I f  % and vĵ  are such th a t “X b

then,

k^v.y ^ k (-cy  = Hi^^y 

z tCu^ X I  2 v C x ,X l



T

th a t is ,  y .

i i ) .  Clearly H lic / ^ U i^ y  fo r  a l l  3c, end so, from the d e fin itio n  of a 

Hausdorff measure function, we have,

H y ^  as o t o  - I t y

Also from the statement made a t  the beginning of the proof, we know th a t,

y > O whenever I t  >  Q - ( ly

Now l e t  S be any se t (in  any m etric space), we oerta in ly  have, by i i ) , ,

A  k ^ y  ^  A  /  -^4y

H V H
Clearly i f  A  then we have A  A  A  (^y.  So we may assume

th a t < od fo r  the remainder of the proof,

Given any f  > 0 and any ^ ^ choose ^ ) such th a t,

KV^y < y whenever X f  -(,$y

th is  i s  possible by ( 2) and ( 3) ,

Further, choose a covering of S by open convex se ts {  J such th a t.

5 ^  ,Y ,

y fo r  «11 ;

and ^  HLc».(.U? ) )  < ^ ^  - ( .? )

We now define a new open convex covering of 5 by se ts  \V ;^ as follows;

For each

i f  )y  : V̂ (dl,V)»5 ^y we put "S Uf y



I f  ) y #  then we have, from ($ ),

VAVdCOj^ ) y - v*K  ̂ \ \ j -  Wcw^y

since (AC VjA' )  < ^ ' .

Thus we can choose to  sa tis fy  the following conditions,

cAcv» y >  oC c  u  J  y ‘ '-Ci^y

. : -
V . c_ V . and open, convex j  (̂ v\y

V  C (AC. V ;  )  y  <r H  L  (A C /> y  ^  ‘ t i x /

end cACV:) <- ^ fo r  a l l

So, i s  an open convex covering of 5 with

(ACVc)<rç f o r a l l ,  ^

and from (8 ) and ( 12) we have,

^ V C c A C V ; ) ;  < ^  V\ Q d ^ c u / ; )  .V ^
 ̂ V

< A \ W  + r

t h a t ! . .  K X \ )  < 4 f .

Now since we know th a t,

D  ̂ ^  o  ^  ^  o

Thus frca  (14) we have,



\o.

but the f  was an a rb itra ry  positive  rea l number, and so,

V HA f  A K^)  -v»s;
which, combined with (4 ) gives us the required re su lt,

V ,  . .  &wA a ^; A u /

Thus we have shown th a t as f a r  as Hausdorff measures are concerned wo 

can always replace a non-monotonic function by a monotonie one which i s

below the o rig ina l function* Theorem 2 shows us th a t th is  replacement

cannot be effected  by using a function which i s  above the o rig ina l one. The

re su lt  i s  ac tually  a l i t t l e  stronger in  th a t i t  i s  proved using pre-measures*

Theorem 2

There e x is ts  a Hausdorff measure function such th a t i f

i s  any monotonie Hausdorff measure function with ^  fo r  a l l  Dc

then,

fo r  a rb i tra r i ly  small positive  numbers I  and fo r  a l l  se ts S on the rea l 

line*

Proof

Define fo r  A t 0, . .



u.

Put,

with A even o r sero,

and V» W  '  W ^., W  ^

with A odd#

Now l e t  be a  monotonie function with HC^J b UV*) fo r  e l l  vl. Then

c lea rly  we must have,

HQ3c) 't'ys. fo r  a l l  i t .

Thus fo r  a l l  <T end fo r  a l l  se ts  S we must have,

J C  >  A  A  - v k ;

But i t  i s  easy to  see th a t fo r  a z b itra r ily  m a ll  positive  values o f S  end 

fo r  a l l  l in e a r  se ts

- m ;
J  «

Thus cm bining ( l 6) end (17) we have,

fo r  a rb i tr a r i ly  m a ll  values o f f  and fo r  a l l  l in e a r  se ts  S. Hence the 

theorm  i s  proved#



n .

Theorem 3 now (^owa us th a t as fa r  as Hausdorff pre-measures a re  concerned, 

there e x is t functions which oennot be replaced by monotonie ones*

Theorem 3

There exists a Hausdorff measure function UCx) and a se t S such 

th a t i f  Mixy i s  any monotonie Hausdorff measure function then,

fo r  a rb i tr a r i ly  asiall p o sitiv e  values of 

Proof

l e  define the sequence o f p o sitiv e  re e l numbers as follows^

Put 1C. s \  and assm e th a t i t  ... i t  have been defined, th m  put,« I t I >.*\>| mm.

and.

« . ( - Ü -•Joe

We now define the  fonction kVxj as follows.



n .

and LK+I >
2 JE
l î t

'  w

F , ( . l X

Figure 1 i s  a rough sketch o f the ourre and va can see th a t /

la  a Hausdorff measure function#

Let S, be the u n it in te rv a l [ o ,

How, fo r  any in teger
• 'K

-  x '" "XWV4I
OCVA “VI



also,

whenever O < < 3c

Lot he any sequenee of open intervals such that,

a c o i  ) < for a l l  Ù

and.
«6

S »  c  U  O  
1=1

Then #0 have, hy (% ),

^  CÀC.U:.;.
; = •

But, sinoe S» c U  must have,

' è c x ^ o . ;  >  '
L =%

thus, oomhining these results^

therefore,

V S ^ xvk)  ^  V\  C -{XI)

a '  ^  I  >
’ V



IG

How, l e t  \\{^l he any monotonie increasing Hausdorff measure function# 

We assume th a t, fo r  a l l  la rge  values of

A•VVWL

end show th a t th is  assm ption  leads to  a  contradiction#

Now#

and so, hy ( 26) and ( 2$ ), 

th a t  i s ,

' + ’*S.-v

fo r  a l l  la rg e  values o f a ,

Thus, hy the mono to n ic ity  o f M we must have,

 ̂  ̂ C-.  ̂K s ,  {tr
Now eoDsldar any valu», x ,  in  th« open in te rv a l ’ w -. > ' 0  * •

tr m  (23),

Xt\—I



16.

Thus, fo r  any each oc,

Again, we may aaauoie th a t fo r  a l l  suoh analX values o f we have,

H

therefo re .

th a t i s .

Now, define the funotion as follow s,

^ \ - y c }  = - i -  > ' ■  ^

*'/v

W ' ^  x e  , K  1
\ - v x

V» .  ̂ K " ■ , I  S'

\ + xVA+X

k r  ,   X  I

We have shown th a t i f  Htx) i s  a  monotonia funotion such th a t fo r  any

“®* > : . - _ V  ! ,



1 .̂

fo r  a l l  saaH  values o f then,

H ^  H \ y ^ )  f o r a l l  . u q y

Also, we ean see from the above d e fin itio n  th a t,

: •Aa.Aa
H 'Cx;

X-=>o

a l l  se ts

a \ ^ )
Vx

But we know th a t.

JUax ' ± ' - '  = I

Now l e t  he a  sequence o f  p o sitiv e  in tegers such th a t  H  i s  

convergent and,

n  u - O  - o > i
I

Let be an increasing sequence of p o sitiv e  re a l numbers such th a t,

xi Cxl ^  vs -

and ^  OkU VA. - C li;

Further, we ean choose a nulX«sequence \> 0  say, such th a t each i s  a  

poin t o f continuity  o f and,

VvCx
 ^  I Û.4 A •-> od -

We inductively  define a  sequence i  o f re a l numbers as follow s,



It.

choose t ,  a rb i tr a r i ly  suoh th a t now assume th a t t^ ., have

been defined#

Choose suoh th a t,

1) . O < < *'v and t ^ t  I x J i

. - "x "x
i i ) *

i i i ) '

Denote by the  in te g ra l p e tt  o f  * Let be the se t o f points o f 

a closed in te rv a l o f length k  the re a l  line# In  construct

closed In te rv a ls  o f length equally spaced distance apart and such

th a t there  i s  an in te rv a l o f length a t  each end o f Denote by S,

the V<̂ closed in te rv a ls  so formed# In each in te rv a l o f S, construct

closed in te rv a ls  o f length equally spaced distance apart with an

in te rv a l o f Im g th  a t  each end o f the  in te rv a l o f Denote by S.̂  the 

K, closed in te rv a ls  so formed# In  general i s  a  Set o f K»** *

closed in te rv a ls  o f length suoh th a t  in  any in te rv a l o f  S^., there  a re  ^

in te rv a ls  o f equally spaced d istance ^  apart with an in te rv a l o f 

length t  a t  each end o f the  in te rv a ls  o f S . We w rite ,
vs “I ^

s  .  n  .
ACO •-

Then c le a r ly ,

■ W r ■ • -
- <  t ,  . ’  ̂  ̂  ̂ , - « 9

Sinoe ^  i s  oompaot we need only consider f in i t e  open ooverings# Also, i f



14

tV :] i s  a f in i te  covering of S by means of in te rv a ls  of fo r  d iffe ren t 

values of then wo have,

(,cLW ; % c  C. '  ' A . .  Q C „ -  V  k j '

fo r a l l  large  in tegers N.

This i s  because we may replace an in te rv a l of by the in te rv a ls  of

which i t  contains* So we have, by (30#

Kl
: s r n  u -  C I V t ; .

Ù v r i

Now l e t  be any sequence of open in te rv a ls  which form a covering of S.

Consider a p a rticu la r  in te rv a l V of th is  covering. There i s  a le a s t 

in teger say, such th a t i s  contained in  one in te rv a l of but

has points in  common with a t  le a s t  two d iffe ren t in te rv a ls  o f Let S«̂  

be the length o f the in te rv a l 0 ; and t  the number of in te rv a ls  of 

which in te rse c t 5 ^ . Then we have#

and,

Frca (37) we have,

5 c  <  - ( I V

A  - C I S )

W . '  ,  A  '  

t  P'

Also we know th a t,

**M-i "  V  , - t u . » ;

therefore , by i i i ) .  we have.



TO.

K v ," '
A*. c m )

Thus, eoDhlning ( 38) and (tO ),

( :  <^^-x) + U - i )  H
'—  ̂    --------------------
t

So that.-c
rA

rvc-1 Aa

r t

K#A + C /-  I y/
*w j

■[

i
Aa.

Kw '  ^ ' )  V " J

'V

1 'c

1 -
/• + Cr-l ) An _j

A
'A.

f- O. f
an J

^Ia a OI

\ o ^ - i  y ̂ v . '®'ù

nhera M i s  the greatest integer e<\ auoh that.

clCU^ ) < for e l l  C
An ~ i



T(.

Therefore we hove, by (36),

th a t i s ,

a \ s )  >  C;
since % -^vs as Vvv nr.«U
Also we have,

ÿ H i - . - k . . ,  f o r  a l l  integer» V\

b " '

^  b  '  IN •

Therefore, by i ) .  and (34^),

. V  . ''-V
\ A  ^  ̂ -  ( M l )

Thus, combining (30), (42) end (43), we have,

A ^ ' U ;  >  %  f W  >  %  A \ s ;  > a V v .

Renoe, fo r  e l l  small values o f f  we have,

A "  5 ^ )  "> -cm * )

' H Vn '
as required . Thus, I f  we have fo r  e l l  small values o f 6

then we must also have statement (44) and hence the theorem i s  proved.



2 1 .

CÏÏAPTM 2

INTRODUCTION

The ideas discussed lu  th is  chapter came In i t ia l ly ,  from a study of 

Dvoretsky’ s paper (2) in  which he proves th a t, given any continuous, 

monotonie Hausdorff measure function, a necessazy end su ffic ien t condition 

fo r there to he a se t In ^^dimensional Euclidean space with the property 

th a t i s  positive  end f in i te  I s  th a t should he a q-dimenslonal

Hausdorff measure function. In h is  remarks a t  tha end of the paper,

Dvoretsky earplalns how. In the one«dimenslonal case, th is  re s u lt  can be 

extended to  discontinuous functions. Following these re su lts  I t  seamed 

in te res tin g  to Investigate  whether discontinuous functions need any 

special consideration with regard to Hausdorff measures, or whether, in  

fa c t , i t  i s  su ffic ien t to consider only continuous functions* I f  we a l te r  

the d e fin itio n  o f Hausdorff measure so th a t we consider e ith e r , ju s t  

closed convex coverings, o r coverings consisting  o f any convex se ts , then 

Dvoretsky’s re su lt  generalises d ire c tly  to discontinuous functions fo r seta 

in  q-dlmenslonal Euclidean space. In fa c t we see, from Theorem 4 , th a t 

Dvoretsky’ s re su lt  does apply to discontinuous functions In q-diraensional 

Euclidean space, when only convex open coverings are permitted in  the 

d e fin itio n  of Hausdorff measure* Theorems 5 end 6 show th a t when considering 

a p a rtic u la r  se t o f f in i t e ,  positive  measure i t  i s  necessary only to 

consider continuous functions* Theorems 7 and 8 show th a t fo r  any 

discontinuous one-dimensional Hausdorff measure function there i s  a

continuous one-dimensional Hausdorff measure function ) such th a t ,  fo r
V Ka l l  l in e a r  se ts  ^  is  equal to A  But, under certa in

conditions in  q-dlmenslonal space ( «^> I ) the discontinuous functions



require  special eoneideration. This l a t t e r  re s u lt  suggests th a t setae ©f the 

theorems idiioh have been established fo r  oontinuous funetlons may not 

generalise to  the discontinuous ease*

Before proving these theorems we need to prove a leama*

lemma 1

For any se t S in  q-dimensional Euclidean space end any Hausdorff

measure function vv^x/  ̂ we have,

.W . V R((4)
jV ^ s )  > A  CC-R."^+A

Proof*

Given any t  > o and S > o  l e t  \U?][ be an ©pen covering o f i

such th a t ,

c K ^ O i  J  J  fo r  a l l  C —c\;

end, ; y  < a \ ^ ;  +
L.

;
How replace each se t U. by I J  open q-dimensionel rectangles

a i  iF^th sides p a ra lle l  to  the coordinate axes, and such

th a t,

z o l / f o r   ̂ end fo r  each I

U  C  i j  fo r  each C

3tn th is  manner we get a  covering o f S by open re o ta n ^ e s  K^. such th a t.
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fo r  e l l

S i   ̂ /  ; I  ; / '

Thus, by ( 2) ,  and the d e fin itio n  o f Hausdorff measure,

J  ■ - - : y
But, th is  r e s u l t  I s  true  fo r  a rb itra ry  J  and t  so we have,

V\ R(<v^ a  \
A  u i  (  A v .

.V
The inequality  vV (S /  ^  J v  \V  i s  t r iv i a l  and thus we have the 

required resu lt#

Theorm 4  ̂ " '• -  ̂ '

Let VvOr̂  be any Hausdorff measure fonotion# Then a  neeessary and

sufficient condition for there to exist a  set S in  q-dlmensional

Euclidean space with A  IS / p o sitiv e  and f in i te  i s ,

K  VvCm ;  ^
Aa>w . —  ̂ ^
3 .̂-=>0 ^

th a t i s ,  ) i s  a  q-dimenslonal Hausdorff measure funotion*

Proof <  ̂ -

Assumo, .

>U ^  -  Ck,

' "  ̂ OC-^O OC^

Let R be any q-dlmenslonal re o ta a ile  with longest side say. Choose a
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sequenoa o f re a l nimberm such th a t,

^  O  % L\ vA. —^  ^

and ___ -4> o  oA w b<s

For any in teg e r we may cover R with squares o f

diameter . Thus, fo r  any positive  number J  we have,

x ] w  ^

fo r  a l l  la rg e  in tegers a  . That i s ,

A M )  « W R ;  ''iï-'
But ,  ^ S— _%» (3 Cit VI--S» «6,

V, ’C
SO i s  sero fo r  every rectangle R end fo r  every J  > o , thus

A (JS ) :: (5 fo r  every se t S in  R and so by Lmma 1,  ̂ - o

fo r  a l l  se ts  S, Hence the neoessily  o f  the condition i s  proved.

We now prove the sufficiency o f the  condition.

Case I t

I .Aa Aa.    % ,
 -----  Tcac-^o  ^

where i s  a  f in i t e ,  po sitiv e  constant.

Now, given any ST > there  e x is ts  an such th a t ,

k ü c ;
« *> 0̂ - *T fo r  SH CMC 4T )C,

also  we know that.

%X



f or  in f in ite ly  many small values of X .

Now l e t  R denote not only a rectangle, bu t also  i t s  q-dlmensionel volume 

( tlia t i s ,  the product of the lengths o f i t s  sides )* Let ÎO;^ be any open 

covering o f ft with <S  < 7^^ fo r  a l l  then,

J ^ A ^ j  z  'ûo? A i '
^  l o i \  -  '

Each se t îü;Jcan be enclosed in  a q-dimenslonal cube o f side eiCOc/ with 

sides p a ra lle l  to  the coordinate axes# These cubes then cover ft and so 

we have,

^  C e A O ' j )  R
I  ■

t h u . . , h a . e ,  - « /
o

Now l e t  Î  denote the side-1 engths o f the rectangle ft then,

. . ^
n  c , :  = ft .

Also, fo r  any x  < J

A/V  ̂PA'- " T
Q I  -  '

Now choose X so small th a t ,  “A \  :

X  < J

SA.'- v\
I aC

Î j

. . .
y  ^  ,
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Then we have.

= L '+  f /  ^  9 . S !^ V
<vo t

<  y ^ l ô j y  (,&< KIT y i& - < - v

The in eq u a litie s  (3) end (4) hold fo r a l l  po sitiv e  values S  end ■f. Thus 

we have,

0 (9  r  x ' ^ ^ 9 y f  (xr

I . k b V  ^
Hence the sufficiency i s  proved fo r  AaAa — - = where we

- p t
have, O <L of < (wS, ®

Case g{

X a OA  ̂ = 06 and hence AC Aa a - 1 5 /

We sha ll now construct a se t S in  a sim ilar manner to Dvoretsky’ s 

construction end prove th a t th is  has the property th a t A  i s  positive  

and f in ite *

Since U^X J may he assumed to  be monotonie increasing, i t  has only a 

countable number of points o f discontinuity* Let these points be denoted

^  I , -

Thus frcm (5) we have,

= eé - U l

X t: ÎP**
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From (ê) i t  follow* th a t there «x ist a rb i t r a r i ly  small po sitiv e  muibere 9=-̂ 

eatimi^mg,

' ' - ■ ■ oc. ' i

fo r  a l l  t  sa tie fy iag  o  c t  ^at b t f o r  any '•.

Now l e t  be a  seqaenoe o f positive  am bers such th a t a l l  the t^m s of

the sequence are  g rea ter than two end such th a t the se ries  32 A,^J 

converges. Also, l e t  S be a  po sitiv e  number g rea ter than o r  equal to  two. 

We now proceed to  construct the sequence o f positive  numbers, as 

follows)

choose to  be any p o sitiv e  number such th a t oc.*=x^ s a t is f ie s  {?)• 

Having chosen Xp fo r  o < >  a. - i we choose ( o < ) such 

th a t,

a ) .  ( 7) holds fo r

b ) .  bvV^^./wlth

I t  i s  c le a r  th a t these choices a re  perm issible from the re s tr ic tio n s  

placed on UCx). ■ " i.. ; r ,

We assm e th a t o  as w-=> ©4.

Denote by V<̂  the in te g ra l p a r t  o f (** . Let be the se t o f po in ts o f a  

closed cube with sides p a ra lle l  to  the coordinate axes and each o f 

length . Each side o f th is  % q-dimensional cube i s  a  closed In te rv a l

o f length . From each side we remove ' open in te rv a ls  each

o f length so th a t  there  remain V , closed in te rv a ls  each o f

length  ^ . This i s  possib le  since, V j . j
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K , "j'i .  Cl 3^, V-,

K  U  S I

W# do th lo  in  auoh a  way th a t whan oonaldaring any one face o f the cube, the 

opposite face in  d ie  sec ted in  an exactly eynaaetrioal fashion. We now fora 

cloaed cubes o f  side  ̂ in side  by taking earteeian

products o f the in te rv a ls  o f length • Each one o f  these closed

cubes i s  denoted by 3% and denotes tlie se t o f points contained in  the 

cubes T |.  In each 3 ,  we oonstruot cubes 1.  ̂ each o f side 

in  a sim ilar manner, and denote by the se t o f poin ts contained in  the

olosedeubes . Continuing in  th is  way we define S  as the  se t o f 

po in ts  contained in  a l l  ( v».? Then, S i s  a p e rfec t noWimre

dense s e t .  , ' - ̂  /

Wc have now to  show th a t A  i s  positive  and f i n i t e .

Given any o , there  i s  a  su ffic ie n tly  la rg e  a  fo r  which < e. The . 

se t S being included la  5^ cam be covered by the V<̂  dosed

cubes 3^.

Now, ■ '

^  V v L ) /  = v ^ , \ . . v c ^  m a t . . ;  -

where, the \ ) i  a re  the cubes 3 #. which form the se t 9 ^ .

Using b ) .  end the f a c t  th a t VĈ  ^ in  (8) ,  weget,

Ç f  s u o c . ;  -C 4 /

Since each o f the  poin ts i»  & poin t o f continuity  o f VCw/ we can 

replace each o f the closed se ts  by open se ts  V j containing end

/ o
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such th a t j  d if fe rs  fTm ^  V\L<A(u:)/ by en a rb i tr a r i ly

small amount* Combining th is  fa c t  with (8 ) and (?) and tha d e fin itio n  of 

Hausdorff measure, we have,

Aw
and therefo re , sinoe (lO) holds fo r  a l l  J  > o,

Thus we have proved th a t A  ^ V  i s  f i n i t e .

Before proving > 0 we note the following. I f  we cover S with

the cubes then 2 i w i l l  be,

k A  - Cc..-

How we know th a t converges and th a t so ^ c o n v e r g e s

and h«aoe so does . Denoting th is  product by we have, fo r

every \  \  pv ‘ , . ,

\AL3C; ^  pU C X e./
; . r - . : ■>  ̂ _ /  : . ; ■ ''4  ̂ :

This inequality  s t i l l  holds i f  we enclose 5 in  a  f in i t e  number o f cubes 

Xv., not necessarily  bearing the same index. This follows from (9)
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— 1  I
which shows th a t i f  any i s  replaced by the cubes included in  i t  j 

the contribution to "SWCicp cannot increase*

We now prove th a t y f^  (.S ̂  >  o .

We show th a t i f  we enclose S in  any f in i t e  number o f open re c ta n ^ e s

and i f  fo r  these rectangles i s  Vî  then there  i s  a  covering of S

by cubes Xv fo r  which < c H, where c i s  a constant* Hence by

v ir tu e  o f our previous remaiks, H > 'Ai and consequently A

I f  each one of the rectangles R which does not contain any point o f S i s  

deleted, and every o ther rectangle R i s  replaced by the la rg e s t closed

rectangle 9L the in te r io r  of which i s  contained in  R and such th a t each

one o f i t s  edges contains a t  le a s t  one point o f & then the rectangles 

s t i l l  cover 9 and i s  only diminished by th is  replacement* I t  i s

su ff ic ie n t to  show th a t i f  ^  i s  any one o f the re o ta n ^ e s  thus obtained, 

then i t  Can be replaced by cubes %^with  ̂ where f

i s  the diameter o f

Consider 3\. and the se ts  . . .  there  must be a f i r s t  se t such

th a t  3L contains po in ts not belonging to  . Then 3^ i s  contained in  one 

cube but has po in ts in  oosmon with a t  most ^ cubes Jy, contained in

where r  i s  the g rea tes t number of cubes 3 ^  met by any one edge o f  3l

( r > 2  )* This i s  because every side of A  contains a t  le a s t  one po in t o f S.

Since S we have th a t,

k i ï v . ' /  ^  a w w /
i f  fo r  any L .

I f  fo r  some then there i s  an f  such th a t 'A. and

y  i s  a  point o f continuity  o f Then end hence,

  ^  — ,
V



32

Also we have.

.
where i s  the d istance between two adjacent cubes o f ,

end therefore ,

\

How,

and therefore .

u  = ^  K .X ^
•Iwv.  ; ^      c y

K X -1

Thus,

Therefore,

A.-1

r 2
. <L

S '

V s  7
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So wo have, . ,
)  >  /c  P V v U c j .

But, in  every case A f  % end hence,

^  v > (s ; ^5  t r  U 5 l7

th e re fo r,, ^  .

\ ' ... ,
Thus, using Lemma 1,

Hence the theorm  i s  proved.

We now proceed to  investigate  whether i t  i s  always possible to  

replace discontinuous functions by continuous ones.

Theorem 5

I f  UOc ) i s  any one-dimensional Hausdorff measure function and S 

i s  a se t on the  re a l l in e ,  such th a t A  i s  positive  and f in i t e ,  thmi 

there e x is ts  a  continuous one-dimensional Hausdorff measure function HUf/ 

say, such th a t ,  - -

Proof
^  , r • •• t

Let U X;. be any covering o f S by open in te rv a ls  X*; Take any
l'il



3 4 .

one o f  these In te rv a ls  X; ‘ i f  i t  overlaps another in te rv a l o f the cover  ̂

say, then l e t ,

X; % C. Q: , anâ a^<V i; say. 

Thm there  e x is t po in ts T . and such th a t,

° ' i  ^ <  I t  < > c

and both ( -  q , ) and ( -  T*̂  ) a re  points of continuity  o f U(x/.

Replace Xi  X, by the open in te rv a ls  X /  X;^fitich th a t,

X; = C a i , « ^ t y  «®a X.

Then, these two in te rv a ls  cover as much o f 3  as the o rig in a l two d id , 

th e ir  diameters are  le s s  than the  o rig ina l and a re  both a t  poin ts o f 

continuity  o f Vvix/. , ,

I f ,  however, X; does not overlap any o ther fo r  ^ *  I then, we 

proceed as follows; givm  any T > o  there  ex is ta  a such th a t ,  fo r  

in te g ra l values o f L

< % ;

cud, o  <  5 .  < C \a :-o iv ;.

The Interrsl#  X  ̂ = ^  i > OTeiiap sad coyer

as much of S as X* did, We now replace these intervals, as before, by

. v\. y , Vli+ i y

- P  i - - - y

th a t V\. -  and ^  are  poin ts o f  continuity  o f k ly  )such
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/

l a  th is  way, we get a oovering \J  ©f S such th a t ,
In

V U C K t ' V  < ÿ k l d L X j ;  + t  -" V
L Ù

fo r  any given ^ > o  and with the property th a t ^ i s  a  po in t o f

continuity  of 'Aivy.

Let . be an enumeration o f a l l  the poin ts of d iscontinu ity  of

Given any f>  o and any ^ *> o, there e x is ts  a  covering U X j  o fL
5 such th a t,

j C 'A S )  < ^  + t  -O V
0 LZl

end ciC X :j<J fo r  a l l  C.

Replace th is  covering by the  corresponding covering U o f S.

Then, we have, by ( l1 )  and ( l2 ) ,

^  < a ' ' .  (S )  I- -( .IV<j c 9

with ollXL y < J  fo r  a l l  and ^ i s  a po in t o f continuity  o f

fo r  each I.

We now choose J  such th a t,

. W \
A/LS/ ^ Aj(.s; > A vs; - -s -u v

Thus, combining (13) and (14) we see th a t ,  given any o  there e x is ts  

5 > o such th a t fo r  a l l  ^ there  i s  a  covering U Xĵ  o f S such
is»

th a t 5 fo r  a l l  i s  a point o f continuity  of

fo r  each and,

^  k  W ( . x / ; y  < X '  i s  / + 1  f  - v ^ /
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Now ohooso a seqtionoo of positive  numb era sa tisfy ing  the following

conditiona,

f or  @11 vs.

Vl ^  as -04 /

< J '  fo r  a l l  ,K -O V

and such th a t each Is  a point of continuity  of VvVot/. Then, as shown
f

above, for any «a, there exists a covering P  of S such that

fo r  a l l  L, oU.X^. )  i s  a poin t o f continuity  o f 4 be/ fo r

each V. and,

a ' ' c s ; - t  < i r u d i u ; j ;  < / h u / t i f  -1 ,4 /

Since, fo r any i s  convergent we must have,

and therefore , since W lac/^o fo r  x > o ^

-*3> o

Thus sero i s  the only possible H a l t  po in t o f the sequence of diameters
r ^t  )"} . Because o f th is ,  we can now enclose ea«^ x;. in  an in te rv a l

■■ ■ ■ , . ■ - 
% ^ 0̂ ,* th a t no contains a oL^ Y x i / ^ t f  a t  any stage

we find  th a t a poin t o f d iscontinu ity  i s  already included in  an V|. fo r

some 4'=b'- we leave i t  alone* We, fu rth e r , in s i s t  th a t and

should be po in ts of continuity  o f Vvioc/ fo r  each I end th a t no

should contain any This l a s t  re s tr ic tio n  i s  p em lss ib le  as sero
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i s  the only lim it point of the sequence

We now define the continuous function as follows,

t  i f  *x fo r  each I

) i f  X t  [y^x,

H "'' <. V  f t  ' / t ' -

where t  ^ 3 'I “ t  ^  fo r  O, 1, 2 , . .  . .

F inally  define to  he l in e a r  and continuous in  ^  fo r

SA%2 , 2 , . . .  end in  C
Thus, we have defined a continuous, increasing function such th a t

^  V\lv/ fo r  a l l  X and,

z f o r  al l  C.

So we have,

iVv
A  ^ ^ /  ^ tr  < ^  % o l L X [. ) y < / - v l f  -Cm ;

\
end,

c lC X ^ |.^  < fo r  a l l  C ,

t
We now consider the covering U of S. I f  necessary, we shrink any of

the in te rv a ls  to  in te rv a ls  contained in  ft with 9^^ "= )

and such th a t no ft\^ contains a  For those values o f I where

ft^, ’#• ^\x, ,we in s i s t  th a t . Also, i f  any of the

d iscon tinu itie s o f UC)«; becomes ’exposed* by th is  shrinking we sim ilarly  

enclose them in  a  su itab le  which does not contain any 4 .. unless
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I t  la  the diacontinulty itse lf*  Again we define the continnona, increasing 

function as follows,

s. VnCoc ) i f  V. k  -?2i for each I

i f   ̂ K c j

)  fo r  1,2,

where ^  I"" ^ ‘‘-i )  for o, i, . .

Finally define Vf̂  ^Ot) to be linear and continuous in *, ^ x i  ]  for

= and in  [

Thus, we see that,

^  for a l l

end H % o C C s ^ C c l L C X ^ v ) ^  fo r a l l  1.

Again we have,

a ' '  v s ;  -  «■ < ^  h ' ' ‘\ < a c < .  ; ;  < j ^ v y + i f

and cl C Xt. ) < for a l l  C.

Continuing in  th is manner we get continuous, increasing functions H 

such that,

H * '^Vv; >  H U ;  •% '^Viry fg r  aU  ■«.

=Vv.I<A V K ^J; for a U  I

A'^IV -   ̂ < -ÿ" H'''VjiVxL:)/< a''Is ; + i f  V-('V

and e lk  ^  for eH C.
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17e now define the function ea follows,

H(>«; s fo r  *  * " L /.

We see th a t UbF / la  continuous, Increasing and H b r /-> o  as Also

we have,

H U  / % Va U /  f o r ü l  D. - (1 3 /

end H U /  f  H '^ U /  fo r ac *VO^ 5 .^  -  uv ,;

?rcm (23), we deduce th a t / l a  also  a one-dimensional Hausdorff 

measure function. For any in teg er a ,  we have, using (24) and (22), 

u  /
A  « A  i s ;  r

But,
JU aa A , v &; z A ^ V & /,

lA 06

***"•' A " ( ^ ;  c  A ' ' i s ; * ' x r .

from ( 23) w« sea th a t, l ^ ;  % A  V^;

Hence we have shown th a t, given any 2 > o  there  I 0 a continuous 

one-dimmsional Hausdorff measure function H b«/ suoh th a t,

j C 'V s ;  <  A ^ t s ;  f  4 1 T.

Thus we get the required continuous function merely by m ultiplying RCx) 

by the appropriate constant, th a t i s ,
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a V w  /  

a" « ;

We see th a t tha proof o f th is  theoraa re lie d  very heavily ©a the 

fa c t th a t we were wozking with eete on the re a l l in e .  The next theorem 

shows th a t the re s u lt  i s  a lso  tru e  in  q-ditaonsional Euolideea space ( %> ' )

Theorm  6

I f  k W  i s  any q-dimmsional Hausdorff measure function and a i s  

a se t in  q-dimensional Euclidean space such th a t i s  positive  end

f in i t e ,  then there e x is ts  a  continuous q-dimensicnsl Hausdorff measure 

function suoh th a t,

j C u / V X A v .  1

Proof

Let he a sequence such th a t  % as and such th a t -

each ^  i s  a  point o f oontinuity o f UVnA Given any thm%

corresponding to  each there  ex is ts  a  covering U  o f i  such th a t,

/ < 4^ fo r  a l l  I,

end, A .  ^ ^ ^  < A  ^  ^ - (2 9 /
-  r - *; 4 .

We may assume th a t the  Xa; are  ordered suoh th a t,
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Define the function » ) as follows.

tor ^  0

fo r   ̂- ( , l ,  - '

Then F tx )  ^  b\0^/ fo r Ç  ̂ and,
;0/

A.  ̂ ^  F"%a.ix,y7 z ^UQotVX,.;)
«5. : • '

Thus, hy (% ) , *B have.

» F" 'r .kA , l^; < A is ;  + r
d. <3

Ceflna F «» follows,

F " '' V^V = F ‘' \ s c ;

v->c;.  v i d i x i j y )

and.

for e W(X%, ) ,  oKAi,;^ 

i f  ■>' I o iix  Ai4i / '■ -I

and F Vi(.<A

i f  1C oK X ij"^

end F ^ 'V ;  ^ UCotÜCx.;;

Then,

and, . f ''- ' >A i^i < A .i^; + f.
«iContinuing in  th is  manner we get F *’C» ) sa tis fy in g .

- C tV

V\(3c ;  f  F s F  ' v c ,; -  v i s ;
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and, ^
A ,  A .^ 2 » ;  4 t .  -V I»;

Vk 4S\

Now define Fbt ) as follows,

F H c / .  F c * ;  fo r  a c < A ( X ^ ^ ^ y ^ a U . . ; '] ,

Then, hy (28),

FCx /T>: fo r  a l l  X

and thus R x /  I s  e q-dimensional Hausdorff measure function* Also, fo r 

each A,

F v * /  S F '" '( .3 c;  fo r  X  e Co, d V K ^,)" ].

So fo r  each A we have,

F . LA,VS.; f A , I S /  < A. IS / 1  -r
and therefore ,

/ ' i s ;  f  J y  { s /  < j C ' c s ;  + f .

Thus, fo r  the proof  o f  the theorem, we need only eonsider those 

discontinuous functions which are  step functions with sero as the only

possible lim it  po in t o f th e ir  po in ts o f d iscon tinu ity , end a t  any one of

the d isco n tin u ities  soy, WCoc/ s. UCo^-o/

Now l e t  W ix/ he such a function end l e t  S be a  se t suoh th a t i s

positive  end f i n i t e .  We show th a t th is  can be replaced by a continuous 

function H ix / suoh th a t

Let V X ; be a covering of ^ by open q-dimenslonal re c ta n ^ e s  with 

sides p a ra lle l to  the coordinate axes* Then i f ,  fo r  some d lX i ^ i s  a
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point of d iscontinu ity  o f UCx) we can replace th is  re o ta n ^ e  by two 

o ther re c ta n ^ e s   ̂ Y  ̂ suoh th a t,

( i l Y j  < c llX -J  and cJLCY ;̂ < d l l X j

i^Qcjlcy^ ) ;  . U U C x^ ; /

and, Y. end Y^ together cover a t  le a s t  as much o f S as d id . f in a l ly , 

we can a lso  guarantee th a t and (AkY^/ w ill be po in ts o f oontinuity

o f WC'ii)-
#6

Thus, i f  U  X  ̂ i s  any covering of S by open rectangles we can replace
od

i t  by another suoh covering U Y. of such that c^^Y\) i s  a point of
4'*

continuity  o f R W  fo r  each  ̂ and,

£ l w u v v .  I )  ' I  
j

Further, i f  dCXt j < ^  fo r  a l l  \  then dlY^/ < 5 fo r  a l l  J . We now 

proceed to  the  construction o f the continuous function by a

diagonal argument sim ilar to  the one used in  the proof o f Theorsn 3 #

Let Î  be a sequence of positive  ntiabers such th a t b o as a -4  ̂ #& and 

each 5^ i s  a  point o f continuity  o f k l x / . Corresponding to  each ^  and 

to  any given X'>o^ there i s  a covering U o f 5, such th a t ,
Vv ^  u

A  k ^ /  ^ ^  ^  {^%) 4 t*

with fo r  a l l  i ,

Replace th is  covering by the corresponding covering U Y*%, so th a t,
4 4

given any T > o we have,

f  £ ' w c o i a . ; ;  < 1  
J -  J ■* J .



with fo r  a l l  4 , and cl i  Y*. ^ i s  a  poin t o f contlnuiutjr

fo r  oach 4. Lot . .. be an enumeration o f aH the points o f

4U.

o f

be an enumeration o f aH  the points o f

d isoontinuity  o f UCx; .

pen in te rv a l ^  , P%. ) such tl

• in  with4 V

Enolose each x .  in  an open in te rv a l such tha

and p (J are points of oontinuity of V\ lot ; there  a re  no 

j + c  and there are  no nor in  Define the

function as follow s,

H I f  4c X  B %, fo r  eaoh I

r V\lx.4-o/

fo r  ? i 1

Vjl
end define H to  be continuous, increasing and g rea ter than o r equal 

to  L i l t /  in  the  in te rv a l C ^

So we have,

H '^ ''coc/ 'S  H o c ;  fo r  a n  *

and

therefo re , by ( 30) ,  we have,

< a  + 7 r .  i ;

Now consider the covering U o f S. Saolose each in  an open 

in te rv a l contained in  J!|. suoh th a t ,  both end

are  poin ts o f continuity  o f there  are no in  with and

there  a re  no c l l \ y  in  . Define the continuous function \Y as 

follow s.



H Oty 4 k o t )  i f  X fo r  each î-,

= UUj4<^/

OV - UCnt; fo r  oc. t  ^

and define VA'^Oc.) be continuous. Increasing, g rea ter than o r equal to 

UCk; end le s s  than o r equal to in  the in te rv a l C  ̂4c

So we have,

j ^  *:> UOc)  fo r  a l l

Ri<v; ,
and, A k s ;  < 1 A  k S )  4 I f .

T A

Continuing in  th is  manner we define the continuous function H Iw; such 

th a t,

UCxj  ^ (: fo r  a l l

">4» J  < 1  /  4

F ina lly , we define the continuous function as follows,

H o c /  s. H^ / k^(/  fo r  aL t  L f  J  )1̂4-t I

How we see th a t HCy; i s  a  continuous q-dlmensional Hausdorff measure 

function with

UCit ) Ç HC^t /  , f  '(ac  J fo r  a l l  oc. and fo r  e l l  ^  

Thua, ,7  ^  . '

\  A ISi/C A l^;.



Iffc.

Also, fo r  each value of

A  o ;  ^ A  U )  < l A  k s ;  + % r

f  + l t .

So we have,

A " i ^ ;  f  1 % r .

Therefore, using Lemma 1,

A '^ IW  ^  A V s ;  <

The remainder o f the proof i s  t r iv i a l ,  since we have only to  m ultiply H lx/ 

by a constant to  get the required continuous function*

From the proofs of Theorems 5 end C we see th a t the continuous 

functions, H lx  ) a re  dependent on the  se t S under consideration* We 

sha ll now see th a t these re s u lts  can, under c e rta in  re s tr ic tio n s , be 

extended to  give a continuous function which i s  independent o f the  se t S.

Theorem 7

I f  UOc; i s  any q-dimenslonal Hausdorff measure function with the 

property th a t, :

UCmt;
—=> o  as  -9» o

then there  ex is ts  a  continuous q-dimenslonal Hausdorff measure function 

suoh th a t, r . M
A - A  ;

fo r  a l l  se ts  ^  in  q-dlmenslonal Euclidean space*



Proof,

Let C 'be a  convex se t o f diameter d in  q-dliaensional Euclidean 

space. Denote by C.' the se t \oc*. ^ ^ fo r  some <5

where S i s  the m etric in  the space. Then we can cover the se t C.\C^ with 

I q-^lmensional cubes of diameter where VC i s  a constant 

dependent on <\.. ( See Appendix 1, page 143 )♦

Let {fc] be a decreasing sequence of positive  re a l numbers such th a t 

1  j \/ 0 as C bd'. Let be a s t r ic t ly  decreasing sequence of positive

numbers such th a t \i Ci as w end each point i s  a  point of 

continuity  of UUt j  . Let J   ,  /  be those poin ts of d iscontinu ity

of s ise  g rea ter than A? with and ac* fo r

In general l e t  be those d iscon tinu itie s o f UC'ic) ©f sise

greater than  ̂ j / I w i t h  ^  ^ 9» and fo r  v».t. j"'l 4 ** 4"’* 4
Corresponding to  each define such th a t ( A. +1 s' C g

S~i

X:  ̂i s  a point o f continuity  o f ValTcJ -  (V j

 ̂ X  C ^ i  -  ‘Ac \  * c  n  fo r  aU  S
end Vc = l , _ .  for  h “t j

VtrA. f o r  3=\ .4-1

Define the  continuous q-dimensional Hausdorff measure function Mix) as 

follows^ '
I

1 ) .  fo r  snd itV  T f o r  a l l  <■'''.+*• "  ' * j



t a

define to be oontinuoue, increasing, g rea ter than o r equal to  tv^x/

and such th a t,

/

th is  i s  possible because o f the d e fin ition  o f .

i l ) ,  )  z ^ \  )  fo r  a l l   ̂ end fo r  a l l

Cz w. + i, ;
4-1 •*

i l l ) ,  H l f . / =  fo r  a l l  j  ;

I t ) ,  fo r  ^  ^ to  be increasing,

g rea ter then o r equal to  Wi.cc)^ continuous in  /  end

continuous on the l e f t  a t  with ).

Then i s  continuous end HCx; >. UCx^ fo r  a l l  thus,

j  ^  A  \ ^ )  fo r  e l l  se ts  &. -  VIS:/

How l e t  S be a se t in  q-dimensional Euclidean space, contained in  a  

qmdirnensionel cube o f d iaae te r V ,

Let be a  positive  number such th a t .

3C
V.+ I
y  < Z  / fo r  seme 4 end seme

v\, ♦ \ ^ *> f 
4-'

Let be an ©pen covering o f S with,

o lCuf  j t  a f or  *11 (



(+4.

end, * S  '> - t3 V

where i s  the le a s t  in teger 4 such th a t ,

cy
5  fo r  a l l  k t  A, y  ^

(c lea rly  3 ^  06 as J - ^ o ) ,  
o

Hew, fo r  each I,

d  w f  I €. [ f L ,  I ] fo r  scsae j.

by i )* ,  i i ) . ,  and i i i ) ,

I f  oLC/J^ ) K fo r  a l l  W = I , > . . ,  v\ *  ̂ then

«v
H C c i c o . f ) ;  < v,(LdL<.u/);  +

I f   ̂ a , y-^ Ĵ for seme then we have, by (33),

C' / ^ 1  K
How, , j  for some S > 4 , end,

a t " ' ]  for a n  C-.A;+i, . .

Therefore,

«  ' ' W J ' )  * - a » ,

Also,

and.



s o .

Replace each o f  which e a tis f ie s  ) 6 ^  fo r  erne W,

by a se t of d im e te r  together w ithR  q-dimensional
ui  * L 'Ik / j

open cubes o f diameter  ̂ denote these replacement se ts  by Vj . I f

fo r  a l l  Uzw. + i , A. weput  v /  = u f .  Thus,^ '  V U > U J 4-% 4
we get another open covering (J o f S with ciiV;^ ) < fo r  a l l  0. Row, 

since S i s  contained in  a  cube of diameter  ̂we may suppose th a t there 

are  le s s  than values dW ^ ) in  1  le ss  than

p, ^  values d  ^  in  Cp^ p. This i s  because ^  such values

of o r such values o f could a rise  fToan a

collection of sets lV;f V which would be sufficient to cover the whole cube*
r J  T

Thus, fo r  those se ts  V; fo r  which ^  U;̂  we have, from (37),

V,* $ u f  v ^ * u f  J  K

So we must have the following Inequality , involving a l l  the se ts  U ; and V ;

^  l 7 « r -

'  '  J-
Row, by the definitions of the sets V; and (38) and (39), ve have,

£ u d w - 5 v >  ^2  H i& iv / ; /  -  g  ï ! î ! ' / ' V

J ;  H * " /  ,"-i ' f '
•i

>  -  £l<> -  K J r f
L J i * '  .ÏJ+ '

Therefore,

1



5 \,

% -  - f  -  .

Thus we have shown th a t fo r  any & of the prescribed fo ra ,

^  -  -  r , /

But there  are a rb i t r a r i ly  onall 5 of thim fo ra , end so,

since -=> o as d . Eenoe, combining th is  with (35) we have the

required re s u lt  fo r  se ts  S ly ing  in  cubes o f diameter '4..

Row l e t  ^  be any se t in  q«4imensional Euclidean space# We may divide the

space up in to  A countable se t o f closed cubes {^\}x say, each of diameter 

‘4., Since we have,

those poin ts o f S  which l i e  on the in te rsec tion  o f two o f these cubes

fora  a se t such th a t A  0 . Hence we may w rits ,

-
S z  u  ,

where A t A fo r  i-- V, 1 ^ . . .  end A  ̂  ̂ .

Also we haveL,

S : ^ s ) :E 2' ) .  <[2 ;

.  A U ) .

and hence the re s u lt  extends to  a l l  se ts  3̂  in  q*dimension&l Euclidean



ST.

space,

C o r o l la r y

I f  V̂ {pc) i s  any one-dinensional Hauadorff measure function, then 

there i s  a continuous one-dimensional Eausdorff measure function such

th a t,

fo r  a l l  l in e a r  se ts  S.

The next theorem shows th a t i t  i s  not always possible to  replace

discontinuous functions by continuous ones# That i s  to say th a t  the

re s tr ic tio n s  imposed in  Theorem 7 cannot be relaxed#

T h eo rea  8

There e x is ts  a  two-dimensional Eausdorff measure function say,

w ith,

bd a s  c t 0̂

suoh th a t, fo r  any continuous two-dimensional llausdorff measure function 

say, there i s  a  se t 3 with the property th a t,

P ro o f

Let fo r  w.% o , %,T,. . .

Define VvOcy as follows, ^

bv.Cx) = ' fo r  >. 3c



SI.

end

Then, c lea rly .

c 0̂  fo r  .

where \ < < T

L lc t ;  .  V l x ^ /  for

^ 0 6  as  3C.
31

Also,

fo r  a l l  t  t

end fo r  v\% i / t ,  • • •

end fo r  e l l  b e C o . x ' ]
X  t

end f o r  a l l  x  .

Now l e t  U (x ) he any continuous Hauadorff measure function# Then fo r  each 

n we have,

e ith e r  ^

H e x . , ;  < of"" W (,x.,;

We, f i r s t ly  assume th a t ,

< v( fo r  in f in i te ly  many v\.

So, there  e x is ts  a  subsequence o f such th a t ,

) < tc“' ' )  for ell I.
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Because of the continuity  of there e x is t T : '>^  such th a t ,  fo r

a l l  I ,  ■ ■'

-1/̂
W i y )  < X VaC3c; fo r  X  e r . )

we may, fu rth e r, in s i s t  th a t .

Row l e t  he a sequence o f positive  numbers such th a t ,  $2 A j i s

convergent and,

Also l e t  \,^^s he a  sequence o f positive  numbers suoh th a t,

^  ^  a s  T ' %6  ̂ and fo r  a l l

We now construct a  sequence as follows:

choose a rb i tr a r i ly  from the open in te rv a l

Having chosen fo r   ̂ choose jnich th a t ,

i ) .  O < " t., < 'ÏA-,

l i ) .  i f  /  th«n J

, V : with  ̂ L

111)' ^  

fat I t ) .  "!«» K



Write .

We now proceed to  construct the se t S> in  two-dimensional Euclidean space.

Denote by the closed c irc le  with centre a t  the o rig in  and o f  d im e te r  .

Draw the diameters of a t  angles to  the

positive  X -a x is , where 8* . At each end o f these diameters and

a t  the in te rsec tio n s o f the x  -ax is  with the perim eter o f the c irc le  we

draw a closed c irc le  o f diameter , in side  5g , having one point o f

contact with the circumference o f and having centre on the diameter of

Denote by 5 , the union o f these X, closed c irc le s . Inside each

c irc le  o f S , we draw d im e te rs  a t  an angle ^  ap art, where

At the ends o f these d im e te rs  we draw closed c irc le s  o f diameter 't^ in  a

sim ilar manner to  th a t described above# Thus, we have K, closed c irc le s

of d im e te r  end these we denote by Continuing in  th is  manner we

get se ts  with consisting  o f closed c irc le s  of

diameter Also we have 1 ^ 3  fo r  a l l

We define the s e t  S % A  .
*=*

Row since each i s  a po in t o f continuity  of and since o as

A-:»»/ we have.

A  ^ ^ VC, . , .  fo r  a l l  y.

We, a lso , note th a t,
 ̂ .. . .

k i - - • X  ; >  <̂ c

"Or I

-OfO/



> o( ^ since A ^ .

Row, given any choose J>  Q such th a t,

whenever < j ,  -CbV

Let be an a rb itra ry  open covering o f S suoh th a t ,

< J  fo r  e l l  1.

Since S i s  ocrapaot, we may assume th a t consists o f a  f in i t e  number

of open se ts .

Let be suoh -that,

< d W c  y  fo r  a l l

I f  Uj i s  such th a t ,

X  <  <  '1 a- . - ( - w

then Is te rseo ta  a t  most one c irc le  of ( ty  t )» ) ,

I f  «IW;.; >; , tbea ,

V a C d t O i ) y  - J  by i i i ) ,

end so we can replace by the c irc le  o f which i t  in te rse c ts , 

without increasing ^ W l d C O t )  j  and the c irc le  covers a t  le a s t  as much 

o f S as U ; d id .

Now assume and th a t A)^ in te rse c ts  more than one c irc le

of . Thsn Ü; in te rse c ts  a t  most ^  c irc le s  o f where,



Since in te rse c ts  more than one of the c irc le s  o f ,

dco-..; %

So we have.

'  (c%i
^  + by iv ) ,  and v)##

( '

Kow, I f  ol(Ut) < * « : / , ,  where vx ehe^  x.^.+ ST̂  ) then.

üiua.

^ k W L u i ) ) ,

Awk"!



s e .

‘  t '  * è .  ‘  i î . - v „ . - i

< TT y) VCdCOi )y by (42) end since -^ 4 )

So we have shown th a t in  th is  case we can replace V:, by c irc le s  of 

causing ViCdlV:)/  to  increase by a fac to r o f a t  most Ĉ U t  ) and 

the c irc le s  cover a t  le a s t  as much o f S as U : d id . I f  Vj meets only one 

c irc le  of then since we may replace i t  by th is  c irc le

o f S^.

Row, i f ,

then,

> 'AVv(.vj^ J

Also, since we have assumed th a t we know th a t V7;

in te rse c ts  le ss  than '^V \  ̂ c irc le s  of 

Now, i f  there i s  a  with j  "* C and,

such th a t in te rse c ts  the same c irc le  o f S  as ^  i  does, then we may 

replace V; end by the c irc le  o f  ̂since,



SA

u u l O i ) ;  4

and  ̂ together in te rse c t le s s  than c irc le s  o f , Also i f  we 

have such a  Uj, , say, end i f  the remainder o f the c irc le  o f which 

in te rse c ts  i s  covered by m ember a o f a l l  with,

X  < '  X - ,  .

then we may replace a l l  these together with by the c irc le  o f

Thus, 80 f a r ,  we have replaced each 0^, sa tisfy ing ,

<r cX (.U v | g

except those such th a t,

X :  < < X k A -r" ^ x  ' -^<*8;

and such th a t there i s  no other Vi* meeting the seme c irc le  o f ^  as 

does end s a t is f ie s  (48) end (43)* ^

We now make sim ilar replacements with respect to  those fo r  which,

end repeat the procedure up to  and including the Case where,

'A , < <*-«^00 f  X -

Clearly we may assume th a t,

a W i )  fo r  a l l  L.
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Now RBBuae th a t there  la  a  O; which has not been replaced, l e t  a/v be such 

th a t,

then i f  the c irc le  o f which i t  in te rse c ts  has beæ  used to  replace a 

d iffe ren t member of tViV then we may ignore the se t V); . We now assume 

th a t there are  s t i l l  some U* remaining which cannot be ignored, as 

explained above and which have not been replaced# Let there be suoh a  0*̂  

^ t h ,

i •
Then i f  i s  the c irc le  o f which U. in te rse c ts , we know th a t

i s  p a r t ia l ly  covered by a 0  ̂ with and has not been

replaced# Therefore, i f  u < d ll) . ) ( aa < ia ) üien ^ "V i s  p a r t ia l ly—A* .* % r^“i
covered by a with ^ and has not been replaced# Thus we

see th a t i f  there  were to  be suoh a 0  ; then given any in teger there 

i s  a 0 ,  belonging to such th a t, clIV, ) > and has not been

replaced# I f  we take t - \  we see Idiat th is  i s  a contradiction since we 

can assume th a t,  ̂ . -

v <ACOî,y ^ '^ 6  fo r  a l l  i .

Thus we conclude th a t a l l  0 ;  with ']

have been replaced.

We now consider those remaining Oi  fo r  which.
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V .  < f

Then 1$ p a r t ia l ly  covered e ith e r ,

a ) ,  by O4 with L\^ < and which have not been replaced, or,

b ) .  by 0 ^ with and auoh th a t has not been replaced*

I t  has ju s t  been shown th a t a)* i s  impossible and we can get a  sim ilar 

contradiction frca  b)##

Continuing in  th is  manner we see th a t a l l  the U have been replaced by a  

co llec tion  l c t \  o f c irc le s  o f w such th a t,

(J r i  S  end ^^V\CcAcc‘̂y^^

We fu rth e r  note th a t the inequality  (41) holds fo r  any f in i te  co llection  

o f c irc le s  o f U which covers S ♦  th is  i s  because we may replace
*1*0

any c irc le  o f 5^^ by the  c irc le s  o f which i t  contains.

Thus,

^  VvCoil ),

«d
where ?  z

Vci

Therefore, since (Uil* was an a rb itra ry  covering o f we have, 

but the ^  was an a rb itrazy  positive  number and so.
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Also, we heve.

 ̂ fo r  a l l  »A

Therefore,

'G.1
Thus I f  Ul3c^^ < oc fo r  in f in ite ly  many m a ll  oc^j then we have

constructed a se t S suoh th a t ,

A > ’
Now assume th a t,

IIViCjx: ^ ^  \ f o r  a l l  amaU .

So we can assuse th a t, .

H c ^ . ^ ;  >, /  fo r  a l l  WV.

Then there ex is ts  o w ith,

auoh th a t ,  ■ ■■; - ■ /  :: :

H ^ y  >  o c ’̂ KCxj fo r  3c e
T \



Now define H ouch th a t,

H 'C’» )  = ^  k l % . ;  fo r  3C

Then k'C*/ s  H(.*  ̂ and,

< ^  r  H (y .,-  -Ca /

a c , - a = A - ' * ' A

Therefore,

,  H ' c t ;  , . - ,
— — "  —  fo r  a l l  t

Also, ^

X ^ -  f  A X^- .ÏA

therefore ,

y l i Z L c i v  ^  ^

a i . -  -r^ “ * "

th a t io ,  O ^ J y  ed as C>.
/DC

"^ "■ *  y U'Cav- f j  -- H '(x ,.r ÏA-, /
Thus, as in  the previous p a rt of the proof we can construct a  sequence 

and a se t S suoh th a t.

and,
J ^ ^ % )  < P h 'C v ^ ^ ;



64.

But ^ and 80 we have,

^  P H 'i-i.;,

A V M - f A " c v .

Henoe the theorem I s  proved.
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CEA-PTER 3

INTRODUCTION

We sew in  the l a s t  chapter, how, under certa in  conditions we could 

replace discontinuous functions by continuous ones without a lte r in g  the 

corresponding Hauadorff measures# In th is  chapter we investiga te  the 

p o ss ib ility  o f extending these re su lts  to  the case o f Hauadorff 

pre-measures* Theorems 9, 10, 11, 12, and 13 are  concerned with the 

extension of some re su lts  of Sion and Sjerve (11) to  the case o f discontinuous 

functions* Theoras 14 shows us some conditions under lAiioh discontinuous 

functions can be replaced by continuous ones* F ina lly , Theorem 15 shows 

th a t the replacement used in  Theorem 7 o f Chapter 2 cannot be used in  the 

case o f Eausdorff pre-measures.

Theorem 9

I f  ) i s  any monotonie increasing q-dimensional Eausdorff 

measure function with the property th a t,

3C. O

then fo r  any o and any increasing sequence o f se ts  In

q-dimensional Euclidean space we have,

k  ̂ *6 \  .U

Proof

Let C be any convex s e t , in  q-dimensional Euclidean space, with 

diameter d .  W rite,

C, = X V Ç ^
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where ç I s  the m etric in  the space. Then, as in  Theorem 7 o f Chapter 2, 

we can cover the se t ^ with ^  se ts  of d im e te r  <5̂  where K

i s  a constant.

Consider eny se t S and any positive  number Given any (  > O le t^  

be a  sequence o f open se ts such th a t,

S c  U u . ^

) < J  fo r  a l l  i

end, t .
I V

c lea rly  we have,

s c U u l

and

Thus,

C ' A s ;  < a \ ^ )  + T
d - / 0

Hence, since “Î  was a rb itra ry  and p o sitiv e , we have shown th a t,

A , ^  I J -  ( V
' \ " I

How, given any f  > we can choose a  closed covering ^  o f S with

d lO ^  /  < J  fo r  a l l  ^ , and,



t? .

For each t  ̂ ohoos« <a>  o auoh that.

0,-7—  V „ U ,

< cJ.
Uj'v -

and, '/j

Thm we can replace U. by an ©pen set of diameter ^ )
[ V< l<Alo5)Y' '̂ 1

I open seta o f diameter Hence we get a new

c  Popen covering \ \ / ^  J o f S with,

)  < ë  fo r  a l l  V

«“ 4. ^  ^  )+  '^ /  - « / >
L

Thus, ccmbining (2) and (3 ) , we have,

a ' ' < 5TkCciAv-5); < C l c s ;  + <
J  I . / ^

Combining th is resu lt with ( l )  we see that ,

and so i t  i s  su ff ic ie n t to  prove th a t,

l\ C 6 s )

We now define a  pseudo-metrio on the space o f subsets o f  q-dimensional 

Euclidean space. Denote by .S lk )  the se t,

\ -X.  • Ç.C.3',

fo r  any se t S . Define the distance between two subsets \ by,
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sC  S, \  ̂ z  \  t  S  e  T }  cxa(A T  c

We then w rite  ^ Wien,

S C S ^   ̂ S  ^ o  aa

06
F irs t ly , we suppose th a t U  I s  bounded in  q-dimensional Euclidean 

space.

How, fo r  each w, we consider a  sequence t  U . \  o f  closed se ts  with the 

following p roperties .

11). d l  ) ÿ d ( ^ O t )  fo r  a l l  I

i l l ) .  t  Vv\

iv ) .  UT — \ / i  as %A"-=> 0̂  ( ocmpact)#

We can sa tis fy  condition iv ) ,  because o f Blasohke* s Selection Theorem and 

from the fa c t  th a t we may asswie th a t the se ts  are  uniformly 

bounded (e .g . see Eggleston (4) )#

How, since UOc)> o a l l  we see frcm i i i ) .  th a t,

ci o as V 0̂ .

How l e t ,

CL -c ^ W C d L C O ;  ) )
#6 Cci

then, given any t  > o we can find  a  s t r ic t ly  increasing sequence o f



6R.

Integers suoh th a t,

y  < <K 4- i:  fo r  e l l  U. - 1 4 /
L

By Iv)* we have,

^ U ( , d W t ; - o ;  f c z  _ ( .s ;

and so.

Now define,

V)= \^C«AlVL ) -  -  4 4 /

By the  arguasnt given a t  the beginning o f the proof, using the fa c t  th a t ,

VvCjicy
-—r_ | —̂  o as oc
OC .

we can find  open se ts  V^i   ̂ such th a t  fo r  each

cK^S^i )  <  cLLV̂  ) fo r  4  -  L -
«a; ,

V. c. \ J  Â
Y-i '

n  < L ( ^ o l l V : ) - o /  t

And d  ^  ( J  J  o  a s  4

Given any ç  > o choose an in teger T  such th a t fo r  a l l   ̂ ^

dt ^  0  Ç



?0.

end, f

Further, given any in teger choose N % ( > v\ ) f©r seme such

th a t fo r  L = %

w » '
• O vaJ f

®»d, Ivcc)iivl/-o; - vecAco^))^ < t:. <v
Then,

u ^  -  u  u^,
ÙC1

but, fo r  L *>

d l U ^  /  C  ̂ ^ ^  U  VJ^ j
T 4=' /

So we have,
#6 0\

c  u  Ù  S ' ^ r w u t - o r * ; )
Ç t-.i z>X '  '

-  ^ W u ( . v , _ ; - o )  + £ !k L o iC '^ iH
l - f  C": I " '  l-z I

'■■' ■ I  ■

“  U O*? 4-

< lo 4. 3 f  using (4 ), (6) ,  (9) and (8)

Thus, le t t in g  ^ ^  o we have,

O ' l s . , \  V  u  s  V + s t .
; I - '  4’ * v :



Therefore, we have,

, :--' i> i i»« V
M: , ;■ '■ - '

beo&uee we could choose fo r  L) W  a descending sequence of open se ts
4 - '

whose in te rsec tion  i s  fo r  the eases  ̂ ,  y%, ( I t  i s  well known

th a t fo r  any ascending sequence o f se ts  we have,

,  ) .V , I yULf

So we have.

V VT» 4- ' J

Thus,

C  l 3 . , \ p V : V
^ c=l ) Ccl4-% i*:*

: < using (7) and (8 ) ,

So, le t t in g  \i C and X \  O we have,

U k
That i s ,  by H i )*  and the fa c t th a t L  \  OS^X U & Ue*. L  UV;V

tl W UW ;)-û) 4. 0  \ Os \ W ; \  f  AiA\ ;

How, we know th a t d S^iij i  J  fo r  a l l  v., Thus, given any f  > O we can 

cover V ; by closed se ts  I W s u c h  th a t,

V  U  V i  C u  V ) :
' ' ■-■ . ", iT i ,



3 t .

and,

Thua,

olLV I } s «S fo r  a l l  C

) < 5T V.C.«*.C.V; )-c>y + T.

C }  C Y <  L ' ^ l y s . ^  v ^  t

<  L j L y  Y ^  ^ / - 0 ^  + {
V

VL-^ «6

This I s  tru e  fo r  a rb itra ry  positive  and so ve have,

L ^  I  u  ;  g 
f  * f  ^

C learly,

L*' Xi<W. L A ^ A y ^ ,

thus we have shown th a t ,

Hence we have prowed the  theorem when ^  9%̂ la  bounded* Wo can, now, 

extend th is  re s u lt  to  the case of unbounded se ts  by a method o f Davies ( l)*  

Suppose th a t U i s  unbounded* The re s u lt  i s  obvious i f  Xivw A  , )

i s  in f in i te ,  so we must now assume th a t the lim it i s  f i n i t e ,

Let C be a q#dimmsionel cube, sides length p a ra lle l to  the
I \  ►

coordinate axes* Let ^ denote cubes o f side « in to  which G may be

divided. Let be an enumeration o f a l l  the d is t in c t  cubes which may
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be obtained from C by tran sla tio n s whose components are  in teg ra l 

m ultip les o f '1^ .
i

For each I ,  the cubes G  ̂ ) are  a  d istance not le s s  than S

from one another* Thus we have,

-o > ;
o r ' r~ I

Suppose th a t the se ries  In (11) were divergent fo r  a t  le a s t  one value of I.

In  th a t case we could choose R so large  th a t,
Vv ^  p

#6

Then c learly ,
bs

-U m . J V  j  ^  xA< r  ^  U  ^V  )
vs.-bis wv-2> tâ / ,

and so, from (12),

C 0  ^  U  C  J  ^  A ' \  A U  c U
d r  = i /  %6 « / ;

contradicting the theorem fo r  bounded sets* Thus, fo r  each the se ries  

in  (11) i s  convergent* Given any T > o  choose a value o f  ft such th a t .
«V1 _ »6

S ! . n

Then we have,

>^5  ^ J  ^  a V  Y  A k  Y  •" ^ Y V n î )  U c ,} )
v%f f=l f

1̂
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but the bounded case o f the theorem gives u$,
<v «V

„ Î )  u  c ; ) „  a \ s .  a U  G c J
d v = ' fr  ̂ /  ✓v-5>od rz,

^ AÀ.W\ J
vA-s> d

Keaoe,

UA V ) < t for «ory f  > 0̂
and therefore ,

f  . i

The reverse inequality  i s  t r iv i a l  and hence the theorem i s  proved*

Corollary
I f  WCx ) i s  any monotonie inoreasing one-dimmsional Hausdorff

measure function, then fo r  any ^ > o  and any inoreasing sequence o f se ts

on the rea l l in e , we have,
V ,  . A  .W

A A u s J  z k \ K ) .

Next, instead  o f considering sequences o f se ts  we look a t  convergent 

sequmoes o f values o f

9heorm 10

I f  VSô  ) i s  any monotonie increasing q-dlmensional Hausdorff



measure function with the property th a t ,

Ucjc; o  a s  '3C -=i> o

then fo r  any ^ > o any se t S in  q-diaensional Euclidean space end any 

sequence with f ^  ^ C> as we have,

A  _ A  ).

Proof

Clearly we have,

V A
k S ^ ) ^  k  ) fOPBllW. - C l V

Ü O+V*

We now assume th a t the se t ^ i s  hounded# Thus we can assume th a t S  i s  

contained in  a q-dimensional cube o f side length  C, say# Given any T* > 

fo r  each in teger l e t  be a sequence of open se ts  such th a t ,

S c  U

c t(^ 0 ^  ^ < J  4- fo r  a l l  i ,

^  V,
end, ^  V ^ l o l l u r  ) )  < \ K  4 ~0V J

w <T

Choose w 80 la rge  th a t,

< j" - U S ' /

- I ' l ;

where K i s  the constant introduced in  Theorem $ , Now we can r ^ la o e  each 

0.^ with the property <T by a se t with d  ^



together with \̂  \  / J set» of diameter . Thus, we get a  new

covering o f say, with,

d W T  /  < ^  fo r  a l l  C - Q \ 3 ;

There a re  a t  most ^J  se ts  b)^ with dbb)^ f  since, th is

number of such se ts  would be su ff ic ie n t to cover 

So we have,

^ u ( L c L c v > t ; /  <

<  + " ^  ty  (16)

<  A v  + f .  ty  ( 14) .

Therefore, fo r  a l l  large

^  < A )  ^ -s

Hence we have the required re s u lt  from ( I 8 ) ,  ( 13) and the  f e e t  th a t "f 

was an a rb itra ry  positive  number#

Thus we have proved th a t, fo r  bounded se ts ,

V* ^
A .  '^•

j t - f .  *

Now l e t  S be an a rb itra ry  se t  in  q<^dimensional Euclidean space. Then we 

w rite ,

S =  O  s -
wr 1

with each S- bounded and c  fo r  a l l
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Then by Theorem 9,

J\, ( S i )  % Aawa
L. ^  ^

= A>ioa A ^ vsa. a  ^  y?
C -î> #6 *A ̂  #6 3+ W»»

<  A r
A -=> b6 <5̂^

Thus by ( 13) and (19), we have,

b( Vv
JU«v. A  » K X ' ^ )  « r e q u i r e a .

Corollary

I f  WOp ) l 8 any monotonia Increasing caae-dimenaional Hausdorff 

measure function then fo r  any o any l in e a r  se t S and any sequence 

with "fL O as we have.

Davies ( 1) shows th a t the  re s u lt  Of Theorem 9 sometimes breaks 

down even in  the ease o f continuous functions when we don^t in s i s t  on the  

property,

_ ^ Q  «■
<V*|

3c



3 ?

But Sion and Sjerve (11 ) have ahown th a t the re s u lt  i s  true fo r the 
>

pre-measure L j  in  the continuous case even without the above property* 

Theorem 11 now shows th a t the l a t t e r  re s u lt  does not extend to the 

discontinuous case*

Theorem 11

There ex is ts  a  discontinuous two-^dimensional Hausdorff measure 

function K(x^ say, with,

U (o t;
—  O as o
I t

end a positive  number J  and an increasing sequence o f se ts  in

two-dimensional Euclidean space such th a t,

l ^ o i  ^ '

Proof

Let

Define as follow s,

W lv ; - for ot t  C’'**, ,

«na,

Then, c learly , Ub»y i s  a two-dimensional Hausdorff measure function* 

Take fo r  some positive  in teger N,

Denote by the ccmmon p a rt o f the closed d iscs .



TH.

S g \ S ' ^

Thea we have,

"Sv. (- S..+, f o r e n t .

Also we see th a t, U i s  the open diso + '^  < \  ^ together with
n»i

th a t p a rt o f the oiroumference whioh l i e s  to  the r ig h t o f the t^-axia*

So th a t we have.

I t  i s  c lea r th a t.

(  s .  /  f  3C,, f o r « U ^

L 'A  S >
O lA.'Sl /

since we can cover ^  by i t s  own closure* We now assm e th a t d l  the 

se ts  o f the covering have diameter s t r i c t ly  le ss  than J . Thus, l e t  

be any closed covering o f  such th a t ,

clCO* ^ fo r  a l l  L.

C learly , we see th a t no se t can contain po in ts on the boundary o f U 

which are diam etrically  opposite* Let be a subsequence o f such

th a t each has a t  le a s t  one point in  common with the  boundazy of Y 

Let the in te rsec tion  o f each with the boundary of U subtend an

angle *P* a t  the centre o f b)

Then,

Sim «9/ «
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end O f  (f L S "/-I. fo r  each L

Clearly w« must have,

>. '2- '^

In order th a t the seta  fora a covering of ^

Also, we know th a t,

S un (J; >  "
i>

Thus,

^  e l ( 0 ; ;  >, * C d ( . 0 ^ ,  ) :& £ ) T - < 9 i  >
:  - T: c

Hence, since Ubc )>̂  ic fo r  a l l  we must have.

Thus the theorem i s  proved.

We now show th a t we cannot always re lax  the  conditions Imposed 

in  Theorem 10.

Theorem 12

There e x is ts  a  discontinuous, two-dimensional Hausdorff measure 

function say, w ith,

-/-> O a# ^ c - »  O,
' Oc

a o and a se t S in  two-dimensional Euclidean space, such th a t,



Proof

Let,

Q 4* /*

Define,

UC.1t) = A r  oc «

Choose J  fo r  some positive  in teger and denote by S the open

d isc  3^4  ̂ XI < */y J together with th a t p a rt o f the oiroimferenoe which 

l ie *  to  the  r ig h t o f the «^-axis.

Then fo r  a l l  in tegers %A,

J+u*

end, by a sim ilar argument to  th a t given in  the previous theorem we see 

th a t,

Î

Hence the theorem i s  proved,

Next, we extend the re s u lt  of Theorem 10#

Theorem 13
. . . .  . :. : : ' - : - ; ' 

I f  i s  any monotonie inoreasing q-dimeaslonal Hausdorff
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measure function with the property th a t.

- 2> o  as -it o

then fo r  any , any se t S in  q-dimensional Euclidean space and any

sequence K'^Jh with t,s V 0 as 06 have,

J \
i  J -

Proof

Clearly we have,

A  g A r  fo r  a l l  A. - t i c )
r

.V
£0 th a t ,  i f  S i s  such th a t then we have,

a  ^  A ^ V -

So i t  i s  su ffic ien t to  prove the theorem fo r  se ts  ^  such th a t i s

fin ite*

Given any *S>o  ̂ l e t  lV)t\ be a  sequence o f open se ts  with the following 

p roperties, \

^  c. U  ^ L olL O ; y < <r fo r  a l l  I
C= % * f

■ C ' L t d W i ) )  < J ^ A ^ )  + %  - (JL i /
ÙF « ' "

Frcm ( 21) and the fa c t  th a t o fo r  a l l  * ^ 0 0  we have,

o i ^ O ; , y - > o  as

Thus, fo r  seme constant there  are  a t  most C se ts  with î - f ^ .
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Now choose N such th a t fo r  a l l

^  ~ CtA ̂

and, ^  ^  ^ <L -  b'l'^y

where K 1# the constant introduced in  Theorem 9» For each replace

each with the property J -  f ^  by an open se t with

cUbV  ̂ ^ < J -  together w i t h ^  } 1  8®ts o f diameter T^,

Thus we get another open covering o f S by se ts  , say, such th a t,

I   ̂ ^  ^  fo r  a l l  i.

Also, since there  a re  a t  most C se ts  with J -  we must

have,

i  L W w r  ) )  ^  ÿ * L W i v r  ) /  + C K ^  r V c ? . ;

' '

by ( 21) and ( 23)* 

Thus, fo r  a l l  vw >.

< j t  c s ;  •« -Î - a y
a

Therefore, using (20) and (2b) we have,



which completes the proof of the theorem#

Corollary ofTheorems 10 and 13

I f  UCx j i s  any mcnotonio Increasing q-dimensional Hausdorff 

measure function with the property th a t ,

\ \ { x /  ^  —̂  o  as -=> o

then fo r  any se t S in  q-dimonsional Euclidean space end fo r  any sequmioe 

with <5^-^ ^  as vv-=> brf fo r  some positive  re e l number <î, we have,

-  A ^ ' x s ) .
¥V-=> O

Proof

Given any we know from Theorems 10 end 13 th a t there  ex is ts
I Ia positive  in teger N such th a t fo r  a l l  w :g.

a ‘' , , „ 5 v = - a ' ; w - ‘ .

“ *• a V „ ' ^ v < a > / . v
« -  Av : » ' ■ ■ - ' : ' .

Now, since f  . as * d  there  ex is ts  a positive  In teger such

th a t, fo r  a l l  v*. >

'/w' ^  A 'L  + '4 ) '

So we have, fo r  a l l



Q!T

end. j C  CS./  >  j C  L S /  >  J \ ) ,  C S / -  %.
Vf) '

Thus we have proved th a t.

JU fw  A ^  c s ;  .  L s . ; .

We now give conditions under which i t  i s  possible to replace 

discontinuous functions by continuous ones without a lte r in g  the 

corresponding Hausdorff pre^easures*

Theorem 14

Let ) be any monotonie increasing q-diaensional Hausdorff 

measure function with the property th a t.

^^S2S  ̂ o  as o

and such th a t i t s  points of d iscontinu ity  have sero as th e ir  only l im it  

point* Then there  i s  a continuous Hausdorff measure function HVpt/ say, 

such th a t fo r  any <î> Q, end any se t ^ in  q-dlmensional Euclidean space,

A j ^  -  A j ^ ^ A

Proof

Let be an enumeration o f a l l  the points o f d iscon tinu ity  o f Vî py



We may assume th a t L* % fo r  a l l  end th a t.

Oc» -a> O as Ù 06

Choose f  ̂ a rb itra ry  positive  such th a t,

■C, V  end f ,  f r  K V x ^ : \ ,

Assume th a t we have chosen t"* we then choose f , to  beI J '  W — I V

positive  and such th a t,

oc 4- t*: < *3̂  ;

t c  <

- a s /

and,

— Vl t  ̂

^  ^ 4  ~ ^i+> ) fo r  j s l , . . . ,  C-l

<  L C ^ X i/  . ^ X 9 )

f": ^  *■: ^  1 - ( v y

^  ^  W ' -  (,3 V

fo r  a l l  v̂  e ( fcT   ̂ where X i s  the constant introduced in  Theorem 9* 

Define as follows,

=■ fo r  ^  ^ fo r some i

h

in  the in te rv a ls  )  define H (x^ to  be continuous and

monotonie increasing so th a t.



^3.

t  f or  0 < w \ < T t ^

Where W  1» a continuous inoreasing function with the following 

p roperties,

for a l l  X

, . ,  as o  - U V
I t

.  .  .  v V
and {W (x.+ T :j-V vt>c^-.^)V  - W )

This d e fin itio n  makes H{y) continuous a t  ot. because o f (32); end 

continuity  a t  y . t c  follows from (33)*

Also we have,

~  ^  ^ ^UCx'^-Ki^-U Cx—o

> V\Cl "C j by (30)*

Hence the  equations ( 3 0  end (33) ere  consistent* I t  i s  d e a r  th a t (31) 

and ( 32) a re  consisten t since,

— as X o

F ina lly , we need to  show th a t we can choose such an CX/  and m sure 

th a t,

+ s LLx» 4-%̂ ) fo r  o  c < f :  .

Now, using ( 30) ,



a-i
3  V\ y  ^  Line»  ̂V̂ /

Heno® we can chooae such a function VÂ (of A Thus, we eee th a t ,

C WOr ) fo r  03.1 3f,

and 80 we have,

a V v  ^  a ' ' C Ho u

fo r  a l l  se ts  S  and positive  nimbere J .  Let S be a se t in  q-dimenslonal

Euclidean space and J  a positive  number, then given any *Ç> o we can

choose a sequence o f open se ts  such th a t,

^  Ü vj.^ and cXCi)*̂  ) < 5 fo r  a l l  C.

ena, ^  k C t l L o / )  ) <
'  Ù

Now we assume th a t fo r  some  ̂^

then we must have,

o l l U ^ ) <k. ,3Cj 1“ *̂ 4 J  fo r  some J .

t  K. I
Let (iW;. ) t  where O f  , Then i f  \q t  Û vc /  f^ r

some W ( \<>^  ) then there  i s  a  X such th a t,



with O < A .

Chooae open aets ^ with s t  1.^ .  . .  ̂ '"j*I o^oh

th a t.

a c v /  } -. 3 . . - A

and, Iur c u  v.‘
i n

Then,

H U  Lo f ) A  K = H C.X. ;  + K 

^  H e x . )  +

^  H e x i - A j  + H  ( J À + A

' -  « < - v V  4  K n t V

>- Ç  K C i  w ( .  1 1

Also we see th a t,



•5C. -  X > X. - > a» r b y  (27)

therefore,

'X. -  X c- < ?c. 4- r .  0  ̂ )
J 4+1 4+' '  4 /

and $o we have,

H «JLC J  -  W U w A  ) j  *‘®*‘ ^ *•

Further, we note that,

cX I V  g /  < ^  for a l l  I and s.

Thu» we have,

U

d I s

So, since the f  was arbitrarily m all we have,

f  £  £ H o( c v A ) ;  <  ^ H ( . c i c o ? ) / < i T c w  + t ,
A L S  ̂ ^ «

V A V ^ A  :

Hence the theorem i s  proved*

l a  Theorem 7 of Chapter Z we showed that as far as Hausdorff 

measures are concerned, any discontinuous one-dimensionel Hausdorff 

measure function Ulx) can be replaced by a continuous function Hly ) 

with W i v ) . We now show that th is  i s  not possible for  the

pre-ffieasures*



Theorem 15

There i s  a discontinuous one-dimensional Hausdorff measure function 

Vvix say, such th a t i f  i s  a continuous function with

fo r  a l l  then there e x is ts  a  positive  number and a se t 5  on the 

rea l l in e  such th a t,

a V ^ i .
Î ®

Proof

Let

Define Va.Cx ; as follows,

U tic / = to r  g

Denote by the closed in te rv a l . Then, c le a rly ,

. t\ k. -VvN

Now l e t  ) be any continuous function such th a t ,

V\Cx; ^  UC.DC/ fo r  a l l

Then we must have,

j

So, th e re  i s  a  po sitiv e  re a l number ^ such th a t,

H(bp)>- VvN fo r  X e Cx.^-«Î, x . ,^ ,
T.

5 < '/ ,* »



4%.

Now lo t  ^  be any open covering of euch th a t,

fo r  a l l  i .

Then i f ,

^  t  x ^ y  fo r  some I

we have,

u < . A c u r « ) ;  X  %  = ^ a \ ^ .

F ina lly , we assume th a t ,  fo r  aH  I ^

c k k d ^ '"  ) < 3 c^ - <T.

Then,

^  H C o i w T ' Y  ^  j C  c a ;
: X -

5  'T"'

V

Thus, in  e ith e r  ease,

U

where c_ >  \ .

But the covering was a rb itra ry  and so we have.



. H  u
A - i c A

th a t l a ,

A / C s . ;  4  J Î *  e s . , ; .

Henoe the theorem i s  proved.



CHAPTER If

INTRODUCTION

In th is  chapter, ra th e r than considering the exact values o f the 

Hausdorff measure of certa in  se ts , we w ill only be In terested  In shether or 

not the measure I s  positive  and fin ite*  The f i r s t  theorem gives us 

su ffic ie n t conditions to  ensure the measure equivalence o f two Hausdorff 

measure functions* The following four theorems are  concerned with an 

investigation  In to  the necessity  of those conditions# In the l a s t  f iv e  

th ^ r e a s  we use the re su lts  o f the f i r s t  h a lf  o f the chapter to  extend 

seme work o f Rogers (9) end Leman (6 ,7 ,8 ) to  the ease o f  discontinuous 

functions, and to  show th a t a  re s u lt  o f Eggleston (3) does not remain true  

fo r  disoontinuous functions*

Theorem l6

Let Uioc) and Hl&c/ be two q-diaenslonal Hausdorff measure 

functions* I f  there  e x is ts  a  decreasing sequence of positive  ree l

numbers such th a t,

and i l l ) *  as A-> oO vhere o < vS,
VvC>W

Then the  functions and H W  are  measure equivalent, fo r  se ts  In

q-di#ensional Euclidean space*

IS231  , ■ ^
We know th a t fo r  any se t S in  g-dlaenslonal Biolidean space, A
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i s  p o sitiv e  ana f in i te  i f  and only i f  \Ar 7 i s  p o sitiv e  and

f in ite *  ' '

Now l e t ,

c % X o /

Let S be e se t in  q-dimensional Eaolidean space such th a t A  * J

i s  positive  end f in ite #  Let 3 and J  be two given positive  nunbers, then
j

there  e x is ts  an open covering {^3;^ o f S by cubes such th a t,

-  <  ^V iC .oiw -5^; < - ^ 1 /

and ;  < J  f e r  o U i . .  - a ;

Now assm e th a t ^ i s  so small th a t,

 ïl’*'* >  ^ for a ll A such "fâiat 9c < J-G)

Then, for each I , using (2) and (3), we have,  ̂ , r  {

T
qc < oliv). ) $' X < 1/ fo r  some in teger a . .

e(

So we can replace each cube u f  = by 4 I ^ ’ cubes V; o f

diameter "X . Thus there e x is ts  another opm cover W :\ o f S by 

cubes such th a t,

(LLVi) t  fo r  a l l  I

c l(,V :; < a  fo r a l l  I

and.
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Now we know th a t,

   -=> A as A-:> pd.
Vvty*,/

therefore  there e x is ts  an in teger N guch th a t ,

& -  T  <  ^ t  'C fo r  a l l  A .

Also, there  e x is ts  a  re a l number J  > o suoh th a t fo r  a l l  J  < we 

have, -

— f  j- ‘^  ^  ’ whenever f

Thus, since (4) holds fo r  a rb itra r i ly  anall values o f we have,

^  K w w ; ) ;  < u + r /

therefo re .

Hence the theoren I s  proved because o f the symmetry of condition lii)««.

Corollary

For any discontinuous Hausdorff measure function there

e x is ts  a continuous Hausdorff measure function H W  such th a t ,  fo r  se ts  

in  Euclidean space, Vfoc/ and UOf/ are  measure equivalent*



OR.

W6 not® th a t tho abov® résu lta  ©an easily  be ext^^sded to  ocmpaet f in i te  

dimonaional motrlo ©paces* We see th is  t r m  the foHotdng;

I f  we hawoi

fo r  seme se t o f an open covering o f then,

u f  c  ) fo r  wa*

Now there  e x is t a t  most N j  d is jo in t spheres o f radius ^  ^

meeting Thus, u 5  I s  contained In ^  spheres o f radius

^   ̂ which In  turn  are contained In j  se ts  o f d im e te r  .

The remainder o f the proof I s  analogous to  th a t given in  Theorem 16.

We now show th a t Theorem 16 would not hold true  I f  we dropped the 

condition 1 1 )..

Theorem 17

For every decreasing sequence o f  positive  numbers with o 

as A“^  oS and,

= 0 ,

there  e x is t two one-dlmenslonal Kausdorff measure functions end

. :

\ . .  * - >  d  .

u c * .;  . '
a set ^ such that A ” / Is posltlTS and finite whilst A  Isand 

sero«
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Proof

Since,

we may w rite ,

where.

Define,

\  O

Vv^C ) = C 4 ^ V  ^ ^

.  ^(Pcv

5 ,. cf ̂ - l y ^
»/-

as I  —=»" cA

fo r  o<i •> ^

and. UQ)cj % ^ ^ c . i ; ^

r C f c v  f  o - ; )

fo r  “Xi >  ^

fo r

fo r  s 3Ĉ■*•1

d e a r ly  these functions sa tis fy  the postu lates o f the theorem*

For a l l  I ,  there  e x is ts  v ^ / e  ̂ /  such th a t,

U ^ : ;  < ^  VsW j ,  WUr/

We now construct the se t S as in  Theorem 4 of Chapter 2, by means of

^ fo r  a l l
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a eequeno® c- id th  respect to  the function UCtc/ We see th a t

i s  positive  and f in i te ,  hut i s  aero.

Hence the theorem I s  proved.

C learly i f  Wiiry and are continuous functions then e ith e r ,

a .

i l ) .  a .  -^>o

or i i i ) .  there ex is ts  a segumce such th a t as A-=>

end,

0 o -----  —̂  A as wh^e 6 < X c bd.

We now see th a t th is  i s  no t true  i f  the functions a re  discontinuous.

Thoerem 18

There e x is t two q-dlmensional fiausdorff measure functions 

and Vvfoç/ such th a t,

A i/x  :  K:, fiûd Ai/X
Vv^cy

and with the property th a t there are no convergent sequences 

with non-sero l im it,  where i s  a  nu ll sequence. For these two

functions there are se ts  such th a t,

0< A



end

Proof

To prove th is  theorem I t  suffices to define two appropriate 

funotions, the constructions o f the se ts  S., can then he carried  out i 

using the methods of Theorem 4 of Chapter 2 .

Define,
I

" Q ^ <  fo r

for%t(CC%A4%/'] , Jk b V  = —
C[tAp.

H , f o r ^ ^

V\(ac; = - 1 _  fo r  -K ( L a.'-'/ '.T^ 1
QhAA/f. -*

I t  i s  easy to  see th a t these functions have the required p roperties .

Hext, we prove th a t i t  i s  possible to  have measure equivalence 

even when the conditions in  Theorem 16 are eontradioted.

Theorem 19

There e x is t two measure equivalent q-dlmensional Eausderff 

measure functions such th a t i f  ^  i

convergent fo r  some null sequence then,

Proof

Define,

Aà AA —ZZ-' ■ r- O
3C



vol.

-  VaI. fo r  X ^

HbO .  V a . ; (  f c r x .^ f ^ - U W lf ^ a w .f ^ ]

fo r  k € ^C^wx;
I

a A w iy i .

We eee from the defin ition  th a t,

< H b f j  çT V vO t; f o r  a l l

hence we c lea rly  have measure equivalence end the theorem i s  proved#

Clearly we can see th a t i f ,

AIaa —  ̂ ^  end >  o
x-=>o o wc>»y

then and ere measure equ ivalm t. But, by considering the

following exemple we see th a t there ex is t two q«dimensional Kausdorff 

measure functions V\l)r/ end HCjt/ with,

E L
o aV»;

end fo r  any se t ^ (.&/ i s  positive  and f in i t e  i f  and only i f  LS/

i s  p o sitiv e  end fin ite#

Define,

for C w Q  \

KCx / 5 fo r  3c t  [C(A+Vn % C W l ^ ^

A  i s  always positive  and f in i te ,  since UCsc/ I s  le s s  than any
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continuous function which i s  g reater then ) and because fo r  any se t ^ 

we can always find a continuous function g rea ter than fo r

which,

.V

( th is  fa c t was proved in  Theorms 5 and 6 o f Chapter 2 ) .

I t  i s  in te res tin g  to investigate  whether or not measure equivalence 

im plies the existence of a nu ll sequaace on which the r a t io  o f the 

functions i s  convergent to a non^sei^ l im it .  I t  i s  easy to  see th a t th is  i s  

the case i f  we are only considering continuous functions. For, i f  there 

i s  no n u ll sequence with the required property we ere l e f t  with only two 

p o s s ib i l i t ie s ,

4 %  AÂ,fy\ —  s- 0

o r, l i ) .  Ax a#. s M ,
Vicy)

C learly both these p o s s ib il i tie s  are inconsisten t with measure equivalence.

The next theorem shows th a t the opposite re s u lt  I s  tru e  fo r  

discontinuous functions.

Theorem 20

There ex is t two measure equivalent ©ne-dSmensional Kausdorff 

measure functions ktw/ and K U ) such th a t there i s  no convergent 

aaquanos 1» •  “"H  «equano» ) ,  n ith

non*sero l im i t .
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proof

Define

Then,

Thus,

1

Vv (3^ )
= V,

1CVy».CÂ4l)

and, /  y

oc

fo r  A- ^  f 1,3-^ - ' •

f o r x c U ,  V 1
\  V^Vv*VW3y‘' «<̂ *.u -h; J

for

fo r

'Ac I, C . . .

fo r  e l l  Ap ___

fo r  e l l  A-  1 . 1., 6,

qçL-5>o

So, we must hare,

y : / .  ^  H ^ v  ^ I,
-------  0^_->C

JV i s . /  %  for «11 eeta i .

How l e t  ^  be eny sot on the re a l l in e  end, e irea  any T >  ®, l e t  Î  \

be a  sequenoe o f open in te r re ls  suoh Ih a t,
'4, t

s  c. p  u /
V% \

dLCU * )  < J fo r  e l l



loi».

^ < A , c s /  -t ï .
o  i J

Lot be a sequence o f positive  ree l numbers suoh th a t,

Y .  —̂  Ay_ as A -*> ^
iCws

end l e t  be a subsequenoe of such th a t ,  fo r  each

W* can replace each 0 ^  by - — ~ ^ 0  ®P®« in te rra la  o f length

+ 1* Thus, we get another open eovezing o f S suoh th a t,

dSyt^J /  < S  fo r  aH  I

< 7  £dnu>; < n .
. I . ■ - •■ ^

Thus, fo r  a l l  o  there i s  an open covering o f S suoh th a t ,

) < «S' fo r  a l l  C

d i v j  /  t
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and

t û  eaa ehooaa « p o s ltlra  rea l auaber <S ' gay, auoh th a t,

Vv (.dLtVj  ̂) )_______ t  I (

r fo r  a l l  C whenever 0<«T<J

Thus, fo r  o  c J '  we have,

s £ V v U v v p / , .  i T a w . 5 ;
o V c

Hence we have,

X. f  1 A < A /

C learly, we can got the seme re s u lt  with regard to  ) and so we

have proved th a t the functions and H are measure equivalent

fo r  se ts  on the rea l l in e . Also i t  i s  c lear th a t there a re  no convergent 

sequences ^ non-»«ero l im it .  Hence the theorem i s  proved,

Eggleston (3) has shown th a t given any positive  number d and any 

function k lic /  sa tisfy ing ,

i ) .  kCx; continuous and s t r ic t ly  increasing

ox y
i i ) .  i s  an increasing function of x



and. 111), ÀÀvva X , . = j
X-4>o+ /

we can oonstz*uct a se t A In n^dimenslonal Eutelldean space so th a t 

^  c 0̂ . I t  i s  now easily  possible to extend th is  re su lt to 

functions sa tisfy ing ,

a), VvC.'5cy>o for 3v.>o

b ) . = O

and, e ) .  ^

In the same paper Eggleston defines two functions ( sa tisfy ing  i ) , ,  i i ) ,  

and i i i ) ,  ) to  be incomparable when,

= c .

Re shows th a t fo r  two incomparable functions we can construct a  se t A 

such th a t K  i s  positive  and f in i te  w hilst A  CA/t  ^  . Our next

theoraa shows th a t th is  re su lt does not extend to the case o f  discontinuous 

functions.

Theorem 21

There a re  two incomparable q-dimensional Hausdorff measure 

functions end say, such th a t i f  S  i s  a  se t i n

q-dimensional Euclidean space, them i f  i s  f in i te  we must also have

A  f in i t e .

Proof

Define the decreasing sequence as follows,



then, c lea rly ,

and -  ^  iA+i |.
[ i w , r

»

and V 0 as

Define the  function as follows,

= \ fo r  X: >

r  fo r X éC x X  n
— —  ^  .^,*1 /  " ' J  .

- - ' \ ■
Then ĉ C>< /  i s  a  q-dlmensional Hausdorff measure function#

Define V\Cxy such th a t, ;

k C u ;  ^ fo r  3c jgr

z fo r  a l l  A.

Define k ( i i /  suoh th a t,

HC^V fo r  3̂

::o^Oc^^y fo r  a i l  vA

K \ _ / =  "

Then both kW  / and WCr /  are q-dlmensional Hausdorff measure functions# 

Also,

. O.V+V .  J _
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and,

)

thus.

Oc-^o^ HCx^ X -^Q+ VvCx̂

th a t i s ,  the functions kC?c; end are incomparable.
I

Now l e t  S be any se t suoh th a t A / i s  f in i te ,  thmi since 

we have i s  f in i t e .  From Theorems 5 and 6 o f Chapter 2 we see

th a t, given any t  > u , there i s  a  continuous Hausdorff measure function 

fi-C.X / sey, such th a t \  fo r  a l l  and,

j C i & M  A s . /  < 7 ( , [ m + Y j C u / 4  Y.

Now we have <^Cx/ and and both and H(x^

are  le s s  than any continuous funotiod which i s  greater than th a t

V\Cx/ <  ( r C x /  and kCo^y ( O V  .

Thus,

and,

Hence the theorem i s  proved.
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Ccmbining th is  re su lt with the corollary to Theorem 16 o f th is  

chapter, we see th a t Eggleston*© theorem does not hold true  fo r  functions 

sa tisfy ing ,

i ) ,  i s  continuous and s t r ic t ly  increasing

ii)*  k i e f  z; 0 -----" r  O.

Since, i f  i t  held true  in  the continuous case i t  would a lso  be tru e  fo r 

discontinuous functions, and we have ju s t seen th a t th is  i s  not so. Thus 

we have a negative answer to the problem of whether we can always replace 

any Hausdorff measure function by another one k la t ;  say, with the 

property th a t ie  & decreasing function of x .

We now generalise a re su lt o f Rogers (9) to  the case of 

discontinuous functions.

Theorem 22

Let UOc / be a  qr^iaidnsional Hausdorff measure function and t

a compact se t o f non-@^»flnite h®#easure in  a  Euclidean space ( o r in  a

oonpaet. finite-dim ensional metric space )* Then there i s  a  continuous
' : -- : 

Hausdorff measure function with k  -< and such th a t t  I s  of

non-® AT- f in i  te  g-measure*

Proof

Let be an enumeration of a l l  the d iscon tinu itie s o f kC.w;.

Define the decreasing sequence as follows* Choose a rb i tra r i ly

such th a t ; having chosen , choose such th a t.



no.

and.

Define H bty to  be oontinaous tooreaaing and,

fo r  e l l

w ith, K liV  (  fo r  a l l  X.

Then we have,

i)#  ^  ^  as vA-==> 0̂

11). 3  fo r  a l l  w

i l l ) .  ^ ^ 4 ^ ,   ̂ am w -»  td.
VvVv j

Thus a l l  the eonditions o f Theorem 16 are datlsfied# So, fo r  any se t 

A  i«  positive  and f in i te  i f  and only i f  A  i s  positive  and

f in i t e .  Now, slnoe E i s  a  oompaet se t o f non- f - f i n i t e  h-measure i t  must 

be o f non- o’- f in i te  H-aeaeure. Thus, froa Rogers* re su lt  (9Ü, there 

ex is ts  a  oontinuous Hausdorff measure function with H suoh

th a t E i s  o f n o n -e - f in ite  g-measure. But K bt/ < k iw/  fo r  a l l  at and 

thus k  <  Hence the theorem i s  proved#

We, next, generalise sane re su lts  o f Laiman (6 , ?)•

Theorem 23

Let E be a f in i te  dimmsional compact m etric space, and suppose



\n

th a t i s  a Hausdorff measure function such th a t A  i s

In f in i te ,  Then i t  I s  possible to se lec t from E a closed subset o f any 

given h-measure.

Proof

I f  d  i s  any given positive number, i t  I s  su ffic ien t to  find  a 

closed subset 9  suoh th a t A  d ,  Laiman (7) proves th is  re su lt

fo r  the case when i s  a continuous ( on the r i ^ t  ) function. Proa

Theorem 16 wo can find  a continuous function with ^ k o t /

and suoh th a t HOc/ and kCw/ are measure equivalent.

Thus A -  o6 and therefore frcm Laman* s re su lt  we can find  a 

closed subset P suoh th a t,

H

But k ( jx /> .  Uot7 fo r  a l l  3̂  ̂ and therefore,

/ A 1 9 / ^  I

This om pletes the proof of the theorem.

Theorem 24

Let k ^ /  he a q-dlmensional Hausdorff measure function. Then i t  

i s  possible to  construct in  ^ a closed se t A suoh th a t,

O < A

Proof "  ̂ '

Let k(w/ be a oontinuous function with Hla*/ fo r  a l l

and suoh th a t kly)  and are measure equivalent fo r  se ts  in
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00®pact fin it©  dimensional metric spaces. Then since HCv;

know th a t k  i s  a q-dlmensionel measure function. In  p a rticu la r, we know

th a t,

Hbc;

Thus, there  ex is ts  a  decreasing sequence suoh th a t,

^  O as

and fo r  each a ,

' "7^+' fo r  a l l  E e C o . x J l
^ ^ '

since U ix / i s  continuous.

In the closed in te rval  ̂ define the continuous function H^Ocy

as follow s,

H'cx/=  ̂ .

Then H'Cxy < HCx/ fo r  a l l  be: and ^  ^ increases frcra^^

to  / q*» as decreases from to

Now consider two rea l ntmbers 3C,7. suoh th a t X>% then because o f the 

continuity  o f we have,

h 'Cx /  .  H C % , ;
q-H

% .
•her» and fo r  sone in teger *v. and,

H 'W  ^
q-H q4i '
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•here H f and e  fo r the eeme In teger w

How, I f

. H j ç x /

we muet hawe H ()t /  % H

I f ,

H e x /  H ( t /

V. "z

then we muet have, ^ 3^3.

In the in te rv a l the funetlm  takes a l l  values

frcm ^4:** to  V 4+' which ia  greajker than o r  equal to
u r  nTherefore, there exista  t  t  ux, J suoh th a t.

Thus, we have, because of the mono ton ic ity  o f

H ' W  < H U y  ^ k l ^ ^ y  ^  H'Cûcy

and so we have proved th a t the function i s  monotonie increasing*

Also, k \ y  y i s  oontinuous and ^  increases to  in f in ity  as X

decreases to  sero* Larman (6) shows th a t fo r  functions of th is  type i t  i s  

possible to  construct, in  A , a compact, perfect se t A such th a t,

C> <  k C i A / <  5^, (fo r d e fin itio n , see p j , )

and, ■ • , : ■ . -
o < A



uv,

Row Bine* HU Jx  H'Cm /  fo r  e l l  x , we hawo,

A \ A / > 0 .

Define the  function ) as follows,

e 0̂  U'Coty

then we have,

end so ft i s  a oempeot f in i te  dimensional metric space#

So, i f  A  C.A/ i s  f in i te ,  then we must have,

O < A  EA/ < od

because o f the measure equivalence of V ^ )  end K l i t ) .

Now, i f  A  -  (/ we can use the re su lt o f Theorem 23 to  se lec t a 

closed subset P o f A such th a t,

Û <  C P) <■ ws.

end again we have.

6 <

Hence the theorea i s  proved#

F inally , we s ta te  a theorem of lAiman (8) which can easily  be 

generalised to  the discontinuous case using the corollary  to  Theorem lé#
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T h e o rm  25

Let be a Rauadorff measure function and A an analy tie  se t ©f

non- (T -fln ite  h-measure in  a oonpaot f in i te  dimensional m etric space, then
X

we can construct ^  ** d is jo in t closed subsets o f A which have 

non- c - f i n i t e  h-measure#
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CRAPTM 5

INTRODUCTION ' '

In Chapter 3 we obtained sorae résu lta  re la tin g  Hausdorff 

pre-measures end convergent sequences of positive re a l numbers* 

Following th is ,  i t  seemed in te resting  to in v e s tl^ to  the p roperties o f the 

Hausdorff measures of a se t with regard to functions f  where j \

i s  a  convergent sequence of functions*

Theo3*em 26

There ex is ts  a sequence of Hausdorff measure functions suoh

th a t,

k Vx y  uniformly as

where Wc.o«/ i s  a  Hausdorff measure function, end a  se t 5  with the 

property,

AaAa a  C S )  A  ( .S /.

Proof

We fbp il in  fa c t show th a t there ex is ts suoh a  sequence of functions

\VvJicy\ with lim it Wtvy suoh that,

JUvA A  ̂  ( S> y? c bd whenever A C^/>o.

Qc. s V *1 for At I,*!, ‘ •

A
Define



WCoiy r for X t  (31 X n

V  not» th a t  o(„ I s  suoh th a t  fo r  a l l  positîT» In teg ars  e^,/

—  -=> «Û as

This ensures th a t UCjx/ I s  a  q-dimenslonal Kausdorff measure function* 

For each in teger define J as follows,

K O t   ̂ 0  + 7 ^  f®*- ,  0 ^ 1 .

Thoa each  ̂ i s  a  q-dimensional Hausdorff measure function* 

C learly,

UOc / uniformly as a

Choose any se t S such th a t,

Q ^ A  ^  V  <  06.

Consider the function / fo r  seme fixed positive in teger a . Thm, 

given any rea l nimber A  ̂ there ex ists an Integer M : MCv*./ such th a t,

^^2— >  lA fo r a l l  M.
klXvv.;

Now, given any t >  choose a sequence {. o f open se ts  suoh

th a t,

S . 0 0 -
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and,

kv

I

Then, fo r  a l l  M, we have, 

Vx

^  u < . ü ^T i y )  < 7 \ ç ; / )
■ ' ' ' , .

‘ i

th a t i s ,

A A W > A A U ? - - c .

Thus, sinos A end ï  wars e ititra x y  end beoaase, -

.

O < A  (  ^

we have,  ̂ > •

A  ^  S / :  *6.
#v-*> td

Hence the theorem i s  proved,

Corollary — - "
There ex is ts  a sequence o f Hausdorff measure functions ^k^Cv A  

and a function VvOf  ̂ such th a t,

^  1 as v\ -~> *d

- / . , .  we>»; . /  - ;  ■-' ^



( the convergence being point-wise ) ,  end e se t S such th a t .

Thus, we see th a t uniform convergence of the functions i s  not 

su ff ic ie n t to  ensure tîia t the lim it operation commutes wiiüi the Hausdorff 

measure* We, now, estab lish  su ffic ien t conditions fo r  th is  property to 

hold true*

Theorem 27

For any Hausdorff measure function and any sequence / )

o f Hausdorff measure functions suoh th a t,

k . ü V \ uniformly as -4>
u o r y

we have.

fo r  a l l  se ts  S and fo r any positive rea l number J.

Proof

Given any X > 0  we can choose a  positive in teger N such th a t ,

< 14-

fo r  a l l  vx 'ÏÇ and fo r a l l  3'-.

Thu», fo r  «11 any »et S and any poaitlye re a l nunbsr f ,  *• hare.
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th a t I s ,

6 Aà *v\ a \ s /  € ; X  c s . / .
o (6 * à

Hence, since the t  was a ib itra ry , we have,

XA<~> od à O

as required#
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CTTARTMl 6

INTRODUCTION

In th is  chapter we woî4c in  the space 9 and Investigate whether 

o r not sorae of the theorems of previous chapters can be extended to  th is  

Non-Euolldean space# In Theorems 4 and 24 of Chapters 2 and 4, respectively , 

we showed th a t, corresponding to  any q-dlmensional Hausdorff measure 

function, f i r s t ly  there I s  a se t in  q-dlmensional Euclidean space wi#i 

p o s itiv e , f in i t e  h-measure, end secondly there i s  a  se t in  1 with 

p o sitiv e , f in i t e  h-measure# The f i r s t  theorem of th is  chaptw  shows th a t 

there  a re  Hausdorff measure functions such th a t,

jua.  y f i ; .  o ,

fo r  a l l  p o s lt lto  IntegOTs and sots S in  ) suoh th a t A  i s  

po sitiv e  and fin ite#  Clearly, the se ts S could not be embedded in  any 

Euclidean space# The second theorem shows th a t there are discontinuous 

functions suoh th a t fo r seta In S there are no measure eguivelm t 

continuous functions# F inally , we show th a t Theorem 10 of Chapter 3 does not 

extend to  the space j?.

Theorem 28

There ex is ts  a compact se t S in  9^ and a Hausdorff measure function 

V \W  such th a t ,  fo r  any positive  in teger ( \ ,

fo r  which.

o



Proof

Define the ee^uenoe of positive rea l numhere bo th a t,

^  fo r AS 1 , . .  .

Define the function a$ follows,

V C * ;  r OC^ for :x: ^

then, c lea rly , sa tis f ie s  the oonditions of the theoraa*

Let be a sequence of Integers suoh th a t ^  i s  convergent and

X  fo r  a l l  (A. We now inductively define a sequence of re a l

nimbersi choose to be an arb itrary  positive number such th a t,

< 5^.

and. W

m  assum* th a t , ^ * a /

fo r  soma positive  Integer

We now suppose th a t , have been defined and th a t,

fo r  seme positive  Integer .

Choose as follows,

a ) .  0  < t * .  < '/j ,

h ) .  * ith



*nd a).

Wow put,

U  ̂= 1(^.3 for '.t,

Let S ^ a / be the collection of a l l  pointa of the fozm,

Put,

se t/ r C
(Q? .

where (/. s o  fo r e l l  \ .
 ̂ V

Let S'C\^ be the collection of e l l  pointa o f  the foim,

o ,  ‘ V j ,  , = . . - ■ / !

Put,

SCI ;  L , y .  L g[ 4 s  o / l [

where : ^  fo r  S '

end eC.

Then define,
JT

VC,

S U /  :  U  s /
l,tl

y iy



In general, l e t  SC*/  denote the set of a l l  points of the fom .

. . . .  o ,  > o .

Put,

z coK\X [

where.

• IT'
.......

V .

^^ '.....,s .)  ^

and, d ,  * O fo r a l l  other values of î
' „ I l  '■. - -  ̂ ■-.

Then define,
u . wu

SCv%/ > U  - . U
V,ZI v^z*

Having definèd fo r A= • ve need, f i r s t ly ,  to show th a t

/ <L S i * /  fo r a l l  in tegers y\. To th is  end, i t  i s  su ffio ien t to 

prove th a t ,  fo r  each * ,

fo r  1 ^5  K*.

Consider a point o f fom,



l a f

- . W
S? +  ( . 0 , . . . ,  . . .  /

where the velue eppeara in  the position We can w rite th is  in

the foim,

 ♦ 1 0 . " . , 0 . ' : ^ - ' , Û , . . . / ] + ( w r < '  J ]
w JT

where the tem  ^  In the f i r s t  square bracket i s  in  position and

th a t in  the  second square bracket in position 4 Vf i f  we

put Xz Thus by the convexity of S  ̂ ^  we have,

S (  i. I ^ e  I , , . . ' ,

fo r  as required,

Also we can see th a t,

/ ] :  fo r  a l l  * .

Thus, since ^  as end because P i s  complete, we can define

the nonempty se t,
Vi

s  % A St*»; ,
*co

We, next, prove th a t S I s  oonpaot, l e t  { l ^  be an in f in ite  sequence of

point* of S , We now construct & convergent subsequence, using the fa c t

th a t fo r  any in teg er *  there are only f in ite ly  many se ts  S Ĉa , ^

Choose suoh th a t,**

^  t  S t  1, 1, ^  fo r some \  with \ f  ^  ^



I ts.

«nd suoh th a t contains in fin ite ly  many points of the sequence

l ï e \ .
Now, assume th a t has been chosen, so tha t.

V -< ).

where \ f  f  Kj fo r j

Choose 80 th a t,

...........

*B&# ^ #̂ /k ) fo r  some with

and such th a t S C . V  contains in fin ite ly  many points

o f the sequence Thus we have defined a subsequence ( of

Now, given any f  > o there exists a positive integer M such th a t,

^  fo r a l l  A4 ^  M.

But, from the construction of the subsequence, there ex is ts , fo r eveiy 

M a se t C, such tha t,

t  .......fo r a l l  AS.

Thus,

fo r  e l l  M and fo r any positive integer %.. Thus i s  a Cauchy
"I

sequence, and, by the completeness of a has a lim it point# Also, we



*

know th a t th is  l im it  poin t must be in  S since S i s ,  o lea rly , closed. 

Hence S is  compact.

Now define.

Then we have the following,

I open @nd convex

^  ^ V. , ; . .  ^ c. I ^

cA. C '•<Mv < 3ĉ
and therefo re ,

u C  « ^ ^ . t c a a . c , ........

Also we have,

d CTCe a ^  I e e  vî

end thus,

A  C ^ iT 1^4,1,,. fo r  e l l

^ C by b ),*

Thus, we have shown th a t ,

_ ■ A V v  < ,  ,
Now, l e t  iV)‘̂  be any covering o f % by a sequence of open

"  U I , . . . , N  ' V ^ v - ■ ■ ■■ r   ̂ - ,



convex se ta . Wo need only consider f in i t e  coverings because of the 

compactness o f S.

Consider a p a rtic u la r  se t \ ) i   ̂ there  e x is ts  a p o sitiv e  in teg er i* t  v/ 

suoh th a t a l l  the po in ts o f S>aUc belong to the same ^ ^

but to  a t  le a s t  two d iffe re n t se ts  S L A#, I , ^

Thus, we may assune th a t ,

Row, fo r  i... ,

thus, we must have,

and so,

V\lcl ( .U i ) /  Ï  ) ,  b y e ) . .
I

Hence, we may replace the  s e t  0 ;  by the corresponding se t TCfA-l  ̂L,, "

Thus, since the  0 ;  m was a rb itra ry  we may assume th a t any covering of S 

consists  o f se ts  o f the fom  fo r  f in i te ly  many values

o f A. Let A* be the la rg e s t suoh value o f thm  from b)# we may 

assume th a t the covering consists  o f the K ,—  se ts  I

Now,

Va A z r  VC,.. \a C )



\

 ̂ n «.I-vai) J .
vr »

But ^*4;,* I s  convergent, thus r \C l" 'M i )  i s  convergent with

product say, and so we have.

Thus, we have shown th a t.

Also, we note th a t since P can he made a rb i t r a r i ly  close to  one by 

appropriate choice o f can construct se ts  S in  -8 o f h-measure

a rb i t r a r i ly  close to  any given value.

I t  can be seen from the  proof o f Theorem 28 th a t the only property 

o f V\ W / used in  the construction o f the se t ^ i s  th a t VvCjf/ i s  a 

monotonie increasing  step function . Now, i f  Vviit*/ ig  any monotonie 

increasing continuous function we can always find  a step function

say, suoh th a t  V\C)f/ < < 3UC.X/. Hence fo r  a l l  se ts  S we w ill

have,

Thus, we see th a t  fo r  any continuous Hausdorff measure function there

e x is ts  a se t S in  ^  such th a t ,

O



130

We have shown th a t ,  in  Euclidean space and, in  fa c t ,  in  compact, f i n i t e  

dimensional m etric spaces, given any discontinuous Hausdorff measure 

function there  i s  a continuous measure equivalent function# The next 

theorem shows us th a t th is  i s  not the case in  the space 8 ,

Theorem 29

There e x is ts  a discontinuous Hausdorff measure function Wbc/ such 
\

th a t fo r  se ts  in  there  i s  no continuous measure equivalent function . 

Proof

Lbt,

fo r  A t . . .  .

Define } as follow s.

Now, l e t  H /  be any continuous monotonie increasing  function . Then, 

e ith e r ,

i ) ,  ^  ~  " fo r  in f in i te ly  many
/  V A - l /  . wk f

values o f A,

o r, i i ) ,  W < r ~ T i  " fo r  a l l  la rge  values o f a .

Consider case i ) , ,  since k  is  continuous, there  e x is ts  a p o sitiv e  

re a l number  ̂ and a subsequence o f such th a t .



and, V-')'. i*'.
Define the funotion \4(3ry ne follow s,

I

fo r

fo r

Then we have.

:% W I x ; fo r  a l l  X .

Let tA A  be a given sequence o f in tegers suoh th a t i s  convergent#

We now define a decreasing sequence { t j t  of p o sitiv e  re a l n inbers; 

choose a rb i t r a r i ly  in  the open In te rva l  ̂ ) fo r  some

p o sitiv e  in teg e r assume th a t have been chosen end th a t

Choose suoh th a t.

a ) .  t . .  <

b ) .

o). V  -

with

W
M-» "A- »

fo r  some po sitiv e  

in teg er

Construct the  se t S  with respect to the sequence ju s t  as In  the

proof of Theorem 28, Again, we have,

H
o  < A  k s ;  < of.

Now we a lso  know th a t,



a ' "  e s  /  î t V < , . . . W ^ \ a C cA I T C m . ù ...........
o *

fo r  a rb itra ry  p o sitiv e  re a l numbers j  end fo r  e l l  la rg e  in te g ra l values 

o f

Thus we have.

where m .
^  rvk

But,

^  ^  as ^  0̂ ^

and so we have,

^  L z

Thus, the theorem i s  proved fo r  the case i ) « î  I t  i s  easy to  see th a t an

analogous proof w ill deal with oase ii)# #

V# have shown th a t i f  i s  any monotonie q*dimensional

Hausdorff measure funotion with the  property th a t ,

k l i c /
°  as ^  o ,

then fo r  any se t S in  q^im ensional Euclidean space and fo r  any sequence 

with Î  as A "9> of fo r  some p o sitiv e  re a l number f  ̂ we have,

J U ^  = a V v .
A4>%6 ^



m .

The next theorem shows th a t th is  re s u lt  does no t extend to  the space 1. 

Theorem 30

There e x is ts  a Hausdorff measure function a compact se t S

in  i  and fo r  a rb i t r a r i ly  small p o sitiv e  values of J  a sequence 

such th a t J  as A o4 with the following p ro p erties ,

UC'it/
1)# " T  ^  o  fo r  a l l  p o sitiv e  in tegers q

i i ) .  o  < A X s ;  < 06,

and, i i i ) #  Aa ^
o6

Proof

L et,

OC n (/ y .  fo r  A 5- '
A  *1

Define U C x/ as follow s,

U u ;  = fo r  A

Thus we see th a t .

o for Dt > o

Wi-K/ V o a s  oc -> o

and, , V \ ^ /  o  as o

^  fo r  a l l  p o sitiv e  in tegers c^.

Choose to be an a rb itra ry  p o sitiv e  number such th a t k a • ^ow



I3W.

assume th a t kçj. have been chosen end th a t c Oc  ̂ 6

We choose as follow s.

withi ) .

i l ) .  ^  A  with a positive

in teg er.

i i i >  t  - ' I k  >  no
* * * / •  M - l  A a  A  +  %

AA-I

Condition i i ) *  can be s a tis f ie d  since.

fA
and th is  must be in te g ra l because o f condition i)** 

We now proceed to  the construction of the  se t S, 

Choose K, po in ts o f the for®,

t . .  n J

-  v v . ' . ;

a  '■0/ o* * J Ï
> *

Denotewhere the entry  i s  in  position  v, fo r  \  Vi, .

these po in ts by Of,/ with of, & VC, .

Row, choose V<, U.,̂  po in ts  o f the form,

   )
where ^ -------

t o ^
i s  in  position % -, r e  -  r Z ùi s  in  position  W,4c,



n e

l , , \ „ .., K, end

, .J vc, end X̂  %

for

for ^v+-¥v,

for ^1 + P i ,

end la  In position 4 for Vf, end k  ̂ ,VC.̂ .

Denote these points by C o(\/ with o ^ , c . . y  V<, end %

V/e note the following faots,

.  t .

^  C t  « . o f j l ï t ,

and, ^ C S S : lp , / I  z f®** /."t" p*.

Now choose VC,K,_VĈ  points of the fom ,

........

t'" - 1'* . rt"*" t** "!**'* Vwhere, JSlI—' i s  in position i, \ L— - —h | i s  in  position K^+'-, ;
boJ? *'-b« J

^  i s  in position ^  W' + L 1(1 î.  ̂ » C — -  in
t . î T  '  1  j

position + K, tiĈ  4 - +C,V(.  ̂+  ̂ and 7 ^  Is  In position

4 1̂  + \ \+  fo r i - p  l , . . . ,K - . ,  ̂ z

Denote these points by t  W », 0<-v, where z l,.. .,V<- , - 11^%

We note the following facts,

ç  C t  ^  k^ for of, f  P , ,

^  C - X \ , A  ^ ^1/ 1 - k,  for  *^x »



136.

çC  Z ko fo r  (/% t f ,  ,

and ^ [  S W , ,  ̂ Sof%, 1^,p3 / ]  = k, fo r  of% "t

Now eaaumo th a t V(\.. .  V(^_, pointa 1 with X;. z L- -/bC ^

fo r  l  have been defined. We define the V(,. po in ts

i  Xi^k. -^kvv fo r  C % k  ' - in  a sim ilar

manner to th a t described above, so th a t we have,

Ç C - - > ‘̂ • .)  , S , Pa-; ,

whore o(^_- +  fo r  A-*,

and,

where 0( . '4“ ?  . fo r  Ù r O , - . . ^ * ^ - \ .* WV»*»-

Now, suppose th a t th is  se lec tion  o f  poin ts has been carried  out fo r  every 

p o s itiv e  in teg e r a . Then, i f  i s  any sequence of In tegers with

\ < X» X fo r  the  corresponding sequence o f po in ts

t  has the following property,

^ z S: ^  = k ^ ,

fo r  any p o sitiv e  in teg ers  *  and A Thus, since we know th a t 0 as

o6 we see th a t i s  a Cauchy sequence, and by the

completeness o f  9 must converge to  a  po in t, which we denote by S W , , ^  

We note th a t .



m .

9. C t   7 .  pA*.,

*^A4. ^  ? a 4, •
Now l e t .

s  = \ ->1'. 'k ) \

Define,

 C v ^ A i r l î S ' .  X = S: ( , < . . . . .  I< A ,^ A 4 .  , — ; 1

where the y  i  ere integers such that I  ̂ V»̂  <1^;  ̂ for  ̂ z . ,

Then,

Define,

^  I S ' .  Ç  S C . o ^ , , . . . , < y A ) j  < ' / ^ V ‘ a

then we have,

We see that S can he covered by the V\, .  , .  K  ̂ open convex sets  

T k  0^,, . positive integer *  .

Take an in f in ite  sequence of points X in S and write,

'l i"  r S ^

then y , s. o/, say, for in fin ite ly  many values of a .



n s .

Choose the subsequence \  o f such th a t,

1 W i* ,  oC , 0̂ 3 % ..  /  fo r  C = ,

Aj *
then say, fo r  in f in i te ly  many values of i . Choose the  subsequence

\yc. of such th a t,

^ z , 0^^, OĈ  V  . /  J =  .

In th is  manner we generate a convergent subsequence o f end hence we

prove the compactness o f S.

Now, l e t  J  be an a rb itra ry  p o s itiv e  number such th a t J  9^ t^ v Y L e t m 

be a p o sitiv e  number such th a t,

Let be a sequence of open convex se ts , such th a t,

< Z  fo r  a l l  I,

and, S c -  U  ^  w •ir,i
We want to  fin d  the lower bound of the  sum ^  UCcilU;)^ over a l l  such 

sequences o f s e ts , f i r s t l y ,  because o f the compactness o f  S we need only 

consider f in i t e  coverings# Now, consider a se t V); e such th a t ,

cikV)i. / t  C fo r  sone in teg er A with a >i <a .

Now U; can only contain po in ts o f S which l i e  in  the seme se t T

But, we know th a t WColCU;./^ i s  g rea ter than o r equal to  [ d k T W , , . . . A ]

and 80 we may replace the 0^  by the corresponding se t T k X , , . . .



m

Thus we need only consider coverings consisting  of seta  o f the fom

% fo r  f in i te ly  many values of * . Let N be the g rea tes t

value of these in tegers a . Then there  must be p se ts  \

where ^ i s  an in teg er, assuming none o f the  covering se ts  i s  redundant*

Now,

--

r  by 1 1 )..

Thus, we should replace each block o f se ts  * ^ C X , /  by the 

single se t T w h i c h  they a l l  in te rsec t*  Continuing in  th is  

manner we eventually ge t,

- W ,...  W.A

n  uct*/.s.
UK I

Hence,

A4
A  ^ JU.A n  

#6 '

which i s  p o sitiv e  and f in ite *

Row, consider <5 fo r  some in teg er since we are  only in te res ted

in  se ts  o f diameter le s s  than k ^  we ge t,



HvO,

by similar reasoning to that above#

Thus we have,

U 'Jl'
:  f l u + V t , x ;  u v t „ /

d Cr1
Now, l e t  be any s tr ic t ly  decreasing sequence such that,

5 as A 0 .̂

Then for a l l  large values of *  we have,

A  w='
That i s ,

Ilenoe the theorem i s  proved#
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APPFMDIX 1

Let C be a convex se t of diameter in  q-dimensional Euclidean 

space# Denote by C' the se t \ x ’. Ç Q C/  fo r  some small > 0

where Ç i s  the m etric in  the space#

Assertion

We can cover C N with K cubes of diameter 5^ where

K i s  a constant dependent only on 

Proof

Let Q be polytopes such th a t,

9 3 G and i. K : Ç C) < 3 P

0*3 Q and 4 .^ '-  Q ) < ^ /g '\  3 C'.

Then,

Since, i f  p t  {ac'. and x  % G C, then there e x is ts  ĉ , t

such th a t .

So we have,

Ç X ;  4 Ç <b/ ■% Ç c  P, t i . ;  > ^  <f,

th a t i s .



I l f4 .

Henoe Ç k  .

Now, I f  ^  G C, V Q then there  e x is ts  S  ^  k.' C. guch th a t,

Also, there  e x is ts  XCE C C such th a t ^ C s ^ x  /  ^  X end hence,

■v'S z  ,

th a t i s ,  ^  ^  C \  G and therefore  G Q .

Hence v Ç kx^ C P / > l j \  c Q  end c le a rly  Q  c. P.

Now l e t  X  G CVC^ then there  ex is ts  a t  le a s t  one po in t 'p on the f ro n tie r

o f ^  suoh th a t ,

Ç = <vvLia : <\9r f ro n tie r  o f

Let S t  /  then i  > o ,  since ac. i s  an in te r io r  po in t o f  P . Then

from the d e fin itio n  of we have S Ç x ^ s  ̂  C P. Also, since ^  Ü®* the 

f ro n t ie r  o f P  there  i s  a  support hyperplane H o f P  through 'p . C learly

W must a lso  support 5 (oc^ i  )  end hence H i s  the unique support

hyperplane through Further, we see from th is  argument th a t i f  we erec t 

a ri(s/it-cylinder o f h e i ^ t  *7- J  on each face t o f P  we w ill have a  covering 

o f C \  C '

Now l e t  he a f in i t e  covering o f C V C  ̂ by d is jo in t cubes

each o f diameter J. Then we must have,

N
u  ^ Ç  ̂ \ \ x i  cc-vn# J Y

L Z %

So, by a sim ila r argument to  the one above we have,



" t ? .

where, l e  the eurf&oe area o f the u n it q-dlmensional sphere# 

Henoe we may ohooee VC % and the  asse rtion  i s  proved#



Correction to  Pages 79 and 80.

To prove that  ( U S ) -  |  x».
6 n»T " ^

I t  is  c lear  tha t  we can cover U by i t s  ovm closure. We now
n

assume tha t  a l l  the sets  of the covering have diameter s t r i c t l y  less 

than 6 . Thus, l e t  (U.} beiclosed covering of U such th a t .

d ( u / )  < Ô for  a l l  1 .

I f  there is  more than one U.| such tha t  d(U.j) > then clearly,

Ib(d(U.)) > 2x^ .

Now assume tha t  there is  a t  most one such U. then.

d(U.j/ < 6 -  e for  a l l  i and for  a l l  small c > 0 .

Choose one such e , l e t  {U„ } be a subsequence of {U.} such thatl\j 1
2 2 1 2each has a t  leas t  one point in common with the c irc le  x + y « %(6-e) ,

Clearly, no U.| can contain diametrically opposite points of th is

c i r c le .  Let the intersection of with the c irc le  subtend an angle Z*:
i

a t  the origin then,

d(U )
sin <|)̂  £   i _  and 0 ^

-  Ï



Since the c irc le  must be covered we have,

> 2  %

24).
and using the fact  that  sin * > ' ,  , we get,

i ~  \

Z  d(Uj > Ï d ( U ) > i-î! —  12 >, 2(x,, -  e )
1 1 i ÏÏ

But th is  is  true for  al l  small values of e, so tha t .

? d(Uj) ^  2x^ .

Hence, since h(x) > x for a l l  x, we must have,


