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ABSTRACT

In many works on Hausdorff Measure Theory it has been the practice
to place certain restrictions on the measure functions used, These
restrictions usually ensure both the monotonicity and the continuity
of the functions, The aim of the first four chapters of this thesis is
to find conditions under which the restrictions of continuity and
monotonicity mey be relaxed,

- In the first chapter we deal with the monotonicity condition with
respect to both measures and pre-measures, The second ;md. third chapters
are concerned with an investigation of the continuity condition with
regard to measures and pre-measures, respectively, Then, having found
conditions under which these restrictions may or may not be relaxed, we
are eble, in the fourth chapter, to generalize some known results to the
ca;a of discontinuous and non-monotonis functions,

Scme of the results of the ﬁ.rgt four chapters prampted en
investigation of the properties of measures corresponding to sequences of
measure functions, end this is incorporated in the fifth chapter,

The main purpose of the final chapter is to determmine whether or
not scme of the results of the earlier chapters may be extended to
Hilbert space.
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DEFINITIONS AND NOTATION

For eny function W(x) we define W(x) and WGT) as follows,

W) = Aam Wiy)

(5—% Ax

Wad) - A V'V\Us).

W

We note that if WGe) 18 a monotonio increasing function we have,

W)

. [i]

M(x;o)

I

W ) W (x+o)
If ~ 4s e point of discontinuity of W(x) we shell define the sise of
the discontinuity at ¢ to be CwGe ) "‘\-“ ))
Ve say that \A(ﬂ) 1s & Hausdorff messure funotion if 1t satisfies
the following conditions,

i) W) >o [ ko
“}. \Abt)-—>0 as  x -=> O

Ir W) satisfies ') and ii). sbove as well as,
} ?_“\ii), X_:w:_x ’ \:_(3&) > O
' XD ' ’-\é' '
for scme positive integer o , we say that W) 1s a g-dimensional
Bausdortr measure funotion,

If S 48 eny set 4n a u!etr!.a apaoe \X {) aay, we shall denote
by AlS) the dameter of $ that is, ' -



ACS) = ok Yelyn) g ue SY

Also we denote the olosure of S by S,

By X we hall meen the space of all resl number sequences 3.}
such that 5. 4s convergent, ¥e shall denote the points of Iy by ¢
where 9¢:= 333, Wherever indices ocour, we shell write, for example,
g((k) Zol':k,f

-
-

s
_If S 4s a set in ) then we write,
d\:\"L

R

WA S = ﬁ')_g+\_5_'.' \éeS}

. PR

where the gddition is performmed component-wise, We make 4 into a metric
v

spece by introducing the metric, @ such that for 2¢ 4 « ,Q

Q')t, ‘ﬁ) {2\0&-\5 \]

if X Y are setsin R then,

Q(pﬁ, X)

"
' .y
[e 2
Pl
Ve )
N
IR
\
(5
~
N
g
a)
mn
>
(>4

and,

e (X, V) | bd 3 glar,u): % er)lrnﬁ'gy_}.ﬁ

" o e et

A set of points S 4in Muclidean space or ! 1s ssi& to be convex, if
whenever two points x,4 belong to § all the points of the form,

~Aac 4 K- )«)u,;

whero <A<\  alse belong to S 1e A is any set, then by canv A
we mean tho smallest convex set which centainu A. The following results



will be essumed wherever necessary, _ ! o

a). \Q‘L, Q) is a complets metric space (see, for example,
Sierpinski (10) ),

b), A4/ ol(counr A/ (see, for example, Eggleston (4) ),
and, ¢)s oL{ conv A} = o Qm)

For eny point 3¢ and any positive real nmber  we shell write
S(')Q, r) f&r the sphers centre *, radius [, Suppose ? isasetine
metrio space <l end m oA ere positive real numbers. Then for every
point x ¢T we define N(x,n,d, ?/. to be the largest number of disjoint
spheres of the form S \?)o\v'\"/ with q o which can meet SO, d/ . Ve
write, : ‘
N, d,®) = sup Nixw,a,f)

xeP |

We say thet a function W(x) is blanketed if for all ®/>O there exist
positive resl runbers \(\o( k) and K \o{ W / which satisfy,

k(W) Mb) \Awb) ww\«)u\:)

for all t'> O, Then, ir kb(‘} is a monotonie, inoreasing, blanketed
Hausdorfs meesure function we write,

Wi ) Nwd P, 6 ,))*

WP o) Lm Aine ) kL

>0 d->0 o Wia)
N> K

f‘or each po.’mt ) of‘A‘L Finally, we write,

Wip) = sup Wf vs)

ye P |
A set A is 8ald to have finlte dimension if there exiats a momtonic



increesing, blanketed, Hausdorff measure function . \'\(:t/ such Wt, W(A)=0.
A metrio space ML ia said to be a pcspaee if there exist positive resl
numbers & « (<h) and N= N(u./ such that, for ell I <J, at most N(wx)
disjoint open spheres of radius o/ can meet any given open sphere of -
redius & larman (6) has shown that a compaot set A in & metric space
hes finite dimension if end only if A 1s a p-space, ‘

| If Wix) is a Heusdorff measure function end S is a set in
Euolidean space or T then, following Hausdorff (5), we define the
corresponding Hausdorff pre-measure of S denoted by f\t}“) as follows,

M) = % S wddeu:)),
§ U\)')S :

where the lower bound is taken over all coverings of S by open convex
sets each of diemeter strictly less than S. We then define the Hausdorff
measure N\ (S) af of S aa follows,
W . W
J\,(S): AAM \,\J(S).
dao0
%

This will be referred to as the h-measure of 5. We will write J\,;KS) and

ACS) when WGtzoc”, and AKY) end A(S) when WGx)=ac, The
W R¢q,)

measure (S) 4s defined in & similar manner to J\ (3) tbut
here we restrict the coverings to be open q-dimensionsl rectangles.
Similarly J\,\‘ ) (S)  refers to coverings by open g-dimensional cubes,
\:“ (%) end \:'(5} will refer to eoverings by éloeed convex sets U: where,
for lf‘a(S/ we insist that oh(V;)< d for all ¢,

Two Hausdorff messure functions W) and o(rc) will be said to be
measure equivalent whenever, for all sets S J\,“(S ) is positive and
finite 4f end only 1f W'CY) 4s positive and finite. Also, if W(x) end



oa(at) sere Heusdorff measure functions we write W < 9 irf,

Lo "\("//
K~>eo \‘\(‘K)

For eny set S we denote the complement of S by €S and X €Y vy
X\Y. If 2¢ is eny reel number we denote the greatest integer less then
or equal to 3¢ by [x]. Finally, we shall call {%x.\ a null sequence if

‘)t“-%o 28 A D oS,



- CHAPTER 4
INTRODUCTION a
The firast theorem of this chapter shows that in sll subsequent

investigations of the Hausdorff measures of sets in/f\metrie as well es 4in
Euclidean spaces it 4s sufficient to prove theorems only for the case of
monotonio Hausdorff measure functions, Theorems 2 and 3 show that this
result cannot always be extended to the case of Hausdorff pre-measums. Thusg
throughout thls work the theorems concerning Hausdorff measures »ill be seen
to be true for both ;zxéﬁotonic end non-monotonis measure functions,

Whereas those concerning pre-measures will only be proved for the case of

monotonlie measure functions,

Theorem 4 ﬁ
Civen any Hausdorff measure function W(3¢) there exists a
monotonie increasing Hausdorff measure funotion H(x) sey, such that for

eny set S’ we have, v

Cs) e NS,
Proof
We know that hln")>0 for all positive values of *, let X bea
fixed positive real nmbezl'.' Define H\'A‘) as follows, |
Hix) = q‘m&- Nv&) and HGe) = LX) for x3 X ~)

welx, X7) L .
1). Hix) is monotonic increesing, For, if x and Yy ere such that % >y

then, -
Hiy) = wb W) ¢ &} Wz = Hix),
z¢(y XY Czele Xy



that 1s, Hly) € HCe),

1), Cleerly W) s\A(M} for all ¢, end so, from the definition of &

Heusdorff measure function, we have,

Hx) > o a8 2¢-DO -@)

4180 from the statement mede at the beginning of the proof, we know that,
HGQe) >0 whenever 3X»9 -(3)

Now let S be any set (in any metriec space), we certainly have, by ii).,

N'<s) € M) ~Cy)

L W H
Clearly if J\ (slz 06, then we have .A, \S)z A, (5). So we mey assume
"
that WS/ < o6 for the remainder of the proof.

Civen eny ¥>9 and any @ >© choose e ( <€ ) such that,

4

\-(bt) < '4. Hie/ vhenever X € @ -(s)

this is possible by (2) end (3).
’
Further, choose a covering of S by open convex sets { UE& such that,

“ !
s Vv, -/
’
ALY ) <=’ ‘ for ell -Q)
H
and SRALY)) < N CS) e T (%)
8 R

We now define a new open convex covering of S by sets XV;} &8 follows;

For each ¢,

12 WAWWR)): HWR))  weput V= 0¥ -@)

~



1£ WAWS) ) + H(WY)) then we have, from (5),
HEAUE)) L wmE W) < %tk W)
o (d&uf’), X] ye (e,X7]

since ACVLY ) < <.

Thus we can choose V; to satisfy the following conditions,
AWV ) > ACOS) ~Gs)

U? < V.- end V. open, convex co Y

WAV )« HCAOE)w Fhom - cay
” AWl s, )
So, V.{ 43 &n open conigt covering o} S vith - o
| | | o\“\v;_)ﬁ<e fof an,u, s
and from (8) and (12) we have,

o 2\\@0’:0, <,;_Z'VH CACu)) 4171

< j\H (8) + 7
®’ )

that 1s, (S (3) + %,
\/\g ) < J\’Q, ) * - Uy

Now since ¢'< we know that, . -
{’ = 0 o) R - 0

Thus frem (14) we heve,



lo,

\S} < (S}-tt'

but the § was an arbitrery positive resl number, end so,

,)\,&.S} J\, CS) e e
which, combined with (4) gives us the required result,

Nis) e NGs)

| Thus ie <have shown thaf a.;s far asﬁ Hausdorff measures are concerned we
can always replace a non-monotonio funotion by e monotonic one which is
below the eriginal f'unction. Theorem 2 shows us that this replacement N
cennot be effected by using a function which 1s sbove the original cne. The

result is actuzlly & 1ittle stronger in that it is proved using pre-messures,

Theorem 2 ‘ ; . , o
There exists a Hausdorff messure function (ot ), such that if HK’R}‘
is eny monotonic Heusdorff messure function with HQe) = W) for a1l x

then,

J\ ()= 1J&KS/

for arbitrarily small positive numbers ¢ end for all sets S on the real
line,
Proof

Define x, = Yow for w= 012 ...,



\,

Put, "Wk ) = x, Yor =xe K‘):M”u“’}. o
vith W even or sero,

and Wix) = L, Yor  x e (o, ,:c:l

with w odd,

Now let H(¢) be a monotonic function with H(x) > hix) for ell ©. Then

clearly we muat have,
H(q;) > 1x for ell oc,
Thus for all d end for ell sets S we must have,
NoAs) = ah ) e

But 4t 48 easy to see that for arbitrarily small positive velues of & end

for all linear sets I
W
N (8) = A KS) ¥
J J.
Thus cembining (16) end (17) ws have, .
A (S8) = LA KS)
) : J ‘
for arbitrarily small velues of § and for all linesr sets S Hemce the

theoran is proved,



.

Theorem 3 now shows us that es fer as Hausdorff pre—maaauieé ars concerned,
there exist functions which ocsnnot be replaced by monotonic ones,
Theorem

There exists a Hausdorff measure function W(x) end a set § puch

thai; ir HOt) 1is eny monotoniec Heusdorff measure funotion then, -
M (s) + ML),
for erbitrerily small paaiﬁvo valu;a of 9.
Proof o
Ve ﬁoﬁno the sequence 0.} ror positive real numbers ss follows;}

Put o =\ and essme that .

aiﬂﬂ have been defined, then put,

s

., ¢

: Waw © ARt . -Qg)
and, '
28 V&
T4 ' KX ')Q'U\_‘ ' - (\"\/

¥e now define the funotion V\\i} as follows,
h_‘.

\«()t) . = a‘x,'wa__l . }N X ¢ (')C‘b\ :’Qu\-:] ~-Q °)

=t '
R T S Oy m] - @)

Tnet T A et
Cee sl R .
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| 25 v S
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Figure 1 is ‘a rough sketch of the curve Ir;('x), 4 and we can ses that W(x)

i B . {l  ; Lo
18 @ Hausdorff measure funection,
Let S, be the unit interval . [0, V).

Kow, for any integer ;\'.1

- L - L Va
\’\\'K“\) = L .')C'Lv\-\
L
x\v\ ) T, 3ttv\~l
m’ \'\\'“uun) - 93¢ v
- ANA
i

U C 3|



therefore, . 7 .
. \’\("’c‘lv\) < \"(x\.v\-n)
I\M ’AC.‘_“_H
also, ~

i \l\\')(.\v\)v< »M()() :

Let {V:] be any sequence of cpen intervals auci; that,

ACUL) <2, Fforall

Then weo have, W(le),
2‘ Whlacto ’) m“} Zaw ).

But, since S, ¢ U U; we must have,
e

NET

*5“3. cmbining thoso reé;x‘lta,r o

W _ -
A CS) 3 Waxy)
‘_.,3(1‘; -7 “ - ,

. whenever Oc<3<< e
1A

4.

-QG3)

~0h—}

- U.S)



Now, let Hix) be any monotonic increasing Hausdorff measure function,

Ve assume that, for all large values of w,

,}\ QS) ./\ QS) -

end show that this assumption leads to a contradiction,

Now,
J\H KS‘) < (14 :)g—:“) H (‘.R:'\)-
and so0, by (26) end {25),
i, WG, ) s (L ) H Qe )
that is,

‘ \
H(ﬁ(l*)k K‘V\Kﬁt“‘) -Q3)

for all large values of W,

Thus, by the monotonicity of W (i) we must have,

n " - 'L':T ‘
H (“/ > 1+ )Q\W'l }“r k€ L aw/ 155 c'w‘-‘a] B t"g/

Tw

, 2s
Now consider any value, 3¢, in the open interval | 3. . )% ) we have,

from (23),

. Yy
\1(_1‘-) - \* ® < \’\(c\n-h)
TRt

C
btxl\ At



16,

Thus, for any such 3¢, -
N
>
\I\, (S|) -~ \+ 3Q.'L“"‘ .

3

Again, we may assume that for all such mmall values of i, we have,
M ’ “ |
A, \ S| ) L= A, K S [} )
18 *® /

therefore,

‘A

...I/,; o
obx W) HGe)

that 13,

W g,

Now, define the funotion H'0¢) as follows,

v
l *
H'QC? =, - &qr ® € \Dcu , :cu_:] S

\eae
=l oo
. WX 1
oW e }u Re | To K h]
ek
- Yy - YRS
A 'L - ¢ ,\ }“r ')QE )t ) — 3(
= ey T 156 W
\+2¢
AV

We heve shomn that if Hbc ) 13 a monotonie funotion such that for any

'et S‘ ) Lo §

My = Mo,



%

for all mall values of J then,
HGe) = H'G)  forall o ~qa)
Also, we oan see from the above definition that,

Jim  H&) 5,

il Mo
N> r » b
Thus, we heve, for all sets S
t

\/\HIQS) > 1 J\f\QS)._  -Qy)

But we know that,

. W)
h UALY -—‘ =
W-Da x

Now let $A.} be a sequence of positive integers such that iﬂ: is

econvergent and,

{:](\jA:L)? q/lol'w - =@y

Let {BM'} be an inoreasing sequence of positive resl numbers such that,

BM~>°“,°L;‘A_M—>” - __(3\)

(44

end B 51 Jor ok m. - (W)

Further, we ean choose a nullesequence 3¢} say, such that each x, is a
point of gontinuity of h(e) end,

Wiae, ) - |

l,,‘.

as w-—> o ..(-3“)
x, :

We inductively define a sequence {L % of real numbers as follows,



18.

choose. t. arbitraxily such that \: 3 \k“x now assume that t,..., %t have
been defined, o -
Choose t,. such that,

., 0 < b <Mt e toeix]
) "‘l.
i'1)0 (3 t P o CM> A

My

1), B C ok <tk

Dencte by K, the integral paﬂs of G . Let S, be the set of points of
a closed interval of length t, on the rnal line. In S construct W A
cloaea intervsls of' 1mgth t\ equally spaced aiatance W, apart and such
that there is an interval of langth t, et each en& of 3 . Denote by 3
the W, closed intervals so formed, In each interval of S eoustmct K
closed intervals of length U, equelly epaced éiatance ug apart vdth an
intervel of length t, at each end of the intervel of S - Denote by S the
K, W, cloaed intervals so formed, In genersl S 1s & set of ,...K
olosed intervals of length L, such that in any intervel of S.., there ere
K. intervels of S_equally spaced distance W _ epart with an interval of
length st each end of the intervals of § . We writs,

ﬂs_

Nl

Then olearly, ST | -
”\ | A

: s ] '{ h v B N, __(3,;)

Q - HERC

Since S 1s campact we need only consider finite open coverings. Also, if



\a,

{V:} 4s & finite covering of S by means of intervels of §  for different

values of W, then we have,
U v
SRV )) T o) Ce 1)k,

for all large integers N,
This is because we may replace en interval of S, by the K _ intervals of

Saye "hich it 6ontéins. So we have, by (31),
f Vi "_"_’ o I q,
] (Atvy)) ' ;_'U— A A ~(3¢)

Now let iU;\ be any sequence of open intervals vhich form a covering of S,
Consider a particular interval V. of this covering. 'rhéi-ez is a least
integer ™, say, such tﬁat SaV: 1s contalned in one intervel of Se., but
hes points in common with et least two different 1ntervais of $ . Let Q
be the length of the in'cerval V. end ¢ the m:mber of intervals of Sa

which intersect S U:. Then we hava,

e o< b, ; L -(33)
and, - ; .
212 (r) b, +Cean)y . - -38)
From (37) we have, .,_\7 o
M= < R:. . oo :
—_— c = - | - @)
L. p:
Also we know that, v
_tM_' = \(MEM'%(_\KM—-I)\&M’ . -(49)

therefore, by 1ii). we have,



1.0,

w . = tmu -whh"\
™ | kh_‘
(8.~
= _E_)wmtm > (B-1)t - )
K.\ B

Thus, combining (38) end (10),
' 9;_ Gr-v)k, (r—l}qM
> .

(4

to, W, b + (K~ 1) W,
So that,

Yoo, \
e e, < l‘tm_' y r [ KM‘:M 4 (wn\—‘ ) Yoo ,LQ.I\‘
™ < M < —
K Ko b )t 40t W

Ry
.~

| [ PR B 4 1), ]"Lx'“

* S 1
kM ' tM 4 WMU‘~\) ‘ﬁ.,.“l\(mt"\

U
g[ — — ] Q;«

| o, '
< [ ° ] Qll Ser >0
| - T, - '

‘ Bﬁ‘" " ‘s ‘

-1
M .

vhere M 1s the greatest integer m such that,

V) < for ell <.
: L]



2.

Therefore we have, by (36),
TR
- {
(AtV:)) > ( e A
| 2' ) i) B
that is,
Wy

J\ \3) o B - W)

’

sincsg D% as wm > «,

Also we have,
J\k\S) < K.... K, ‘I\(t“) for 21l integers w

= (W e ) W)

Uy

t\‘
I/\
. W) o -
Therefore, by 1), end (34), _ ‘ o
W ‘ll,k - | |
A(s) < by o -ey)

Thus, combining (30), (42) end (43), we ha"» o :
A (S} s % A s) = Ay t % q/g \A\‘(S} >Jt“(3/
Hence, for sll snell values of S we have, o |
A \s) . A RO R - w)

as required. Thus, 1f we have J\, ) = QS ) for al1 mall values of §
then we must also have statement (M) and haaco the theorem is pmvod.
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CHAPTER 2

INTRODUCTION

The ideas discussed in this chapter came initially, from e study of
Dvoretzky's paper (2) in which he proves that, given any continuous,
monotonic Hausdorff measure function, & necessery end sufficient condition
for there to be a set in g-dimensional Euclidean space with the property
that \A.\‘(S ) is positive end finite is that W) should be a g-dimensional
Hausdorff meesure function, In his revarks at the end of the paﬁer,
Dvoretzky explains how, in the one~dimensionel case, this reault cén be
extended to disoontinuous ﬁmctiona. Following these rosults it seemed
1nteresting to investigate whether diseontinuoua functions need eny
speclel consideration with regard to Hansdorff measures, or whether, in
fact, 1t is sufficlent to consider only cont.’s.nuoua funotions, I we elter
the definition of Heusdorff measure so that we consider either, just
closed convex coverings, or oovgringa eonsiatingre:f eny convex gets, thgr; i
Dvoretzky's result generaiise;s l;lirectly to discontinuous functions for sets
{n q-dimensional Ruclidean ‘s.i)aée-. In fact we See‘, from 'fheér;n 4, that
Dvoretzky's rea;ﬂt does apply to discontinuocus functions in gedimensional
Puclidean space, when ox;iy convex cpbn " cov;erings ers permitted in the |
definitibn of Hausdorff measure. Theorema 5 end & show that when considering
@ particular aef. of finite, positive measure it is necessary only to
consider. oontinuoua runotiona. ‘l’heorems 7 and 8 show thet for eny _
&iacontinuous one-dimensional Hausdorfr measure function k(‘r) there 1z a
continuous one-dimensional Hauadorff measure function H{x) such that, for
all linear sets S, A (S) is equal to J\« (S). But, under certain
conditions in q~dimensional space ( e\'> \ ) the disc'ontinuou"sf functions



.

require special consideration, This latter result suggests that some of the
theorens which have been established for continuous funstions may not

generalige to the diaoontinuons case,
Before proving thess theorens we need to prove a lema,

Lema ¢

For any set S in q—dimonaionel Euoliﬂean space and any Heusdorff

measure function \A(ct/ ve havo,
W, Rea) R(q.)

A (S)> A(Sh(t 'w) A

m"f{
. Civen eny >0 and 950 1let {Uf} be en open covering of I
such that,
o 5 . |
O\QU;} <d  forann G =ty
and, Zh(dw )) < J\, (S) +(C 'l+\/ - -~

Row replace sach set U; by (U'Q]*- ! ) . open gq~dimensionsl rectangles
oo ,g;‘c Rt with s}._dgs ;pafmn:.el to ﬁ?, eao@ingfé a;es, and such
that,
| d(R $)tor \ C33\+) ¥ :
Re,) - ACUL for 5=, .., (C53141) "  and for each &
(= )
U < U ﬂ for each ¢

s=

In thia menner we set [ ooverins os S by open rectangles R\J ;ﬁch that,



ARz, ) '<J ”:;”1'1' L4

4

and Z‘Mo\m )) (c n)* Zkuw %

Thus, by (2), andthe deﬂnition of Hausdorft meaauro, ,
W, KCM

() s \\. ]+\) j\,(s) + 3,

d , _
But, this result is true for arbitraxy J and % #0 we have,
W, R(a,)
(s). 121+ ') J\ <s).
W, R w)

The inequslity N’ / 2 J&W s trivial end tius we have the

roquired result,

'rlhe‘oran‘_l_;_: - =
7 Let \A‘(lf) be eny Fausdorff measure funotion, Then & necessary and
sufficient condition for there to exist & set S in g-dimensional
Euclidean space with »’\: @) penitiﬂ end finite is,

A \A(at)
A;w\ - — " > o,
r-DO x

that 1s, WR) 41a & g-dimensional Heusdorff measure funotion,

CPreef o c o FTL e reme oo

Agsune,

i MO0

L nLep e aQ
0 SR EF T e e ¢

Let R be any q-dimennional reotangle with longest side o\;. -éy. Choose a



sequence {x\.‘g of reel numbers such that,

N, > O [ T8N W —> G
S\t ' -
end, __(__’._-;o aA no=>
L7

“

a2, \*
For eny integsr W, we may cover R with ~. | squares of
diameter X . Thus, for any positive mmber J, we have, '

\/\,SQR) < ({;“}4-9 k(xﬂ)
for gll large integers w. That s,

W "
N, (R) <« Qafg) e
x
But | "_\_(__’T:_*)._;. O ot w->0&, |
W *u
80 \I\"S(R) is sero for every rectengle R and for every J >0, thus

28,

A q’“)=° for every set S in R end 80 by Lemma 1, ) ($)=©

for all sets S. Hence the necessity of the condition is proved,
¥e now prove the sufficiency of the condition.

Cass 1%

L’\M b%) = K,
x-vo x

where X is a finite, positin conatant,
Now, given any ¥>O, there exists an >c_ such that,

W) ST .
" Ta 2 ¥-T . foraell oc €%,
. o A
elso we know that,
\‘_\_(.I} < 4T .o
"

x
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t‘or infinitely many smell vaelues of oC,
Now let ﬂ denote not only a reotang;e, but also 1ts q—dimensn.onal volume
( that is, the product of the lengtha of its sides )ﬁ Let 1V; i be any open
covering of R with d(Vi) cd €2, for all {, then,
Ny(#) = s W) 3 bd 37 (k-rcatos) )
oyt B 1T UL T

Each set U:}can be enclosed in a g-dimensional cube of side ol(V:/ with

sides persllel to the ooérdinéta axes, These cubes then cover R and so .

’ 2‘ (dw:))‘%a R

we have,

thus we have, \A’ (‘R) (d f}g -(g/
Now let }a,,..., “kdenote the side-lengths ef the rectangle R then,

ﬂaz

w

Alao,, for eny <J

J» (ﬂ) ("l \L-‘;R * ’),‘\»\’\'r)‘

= '

4

Row choose X 30 mall ‘chat, O TP
x ¢ d
a: R] I
Miw § [ = % > /r ’
| s ugq
and, _K__) < lr < : RN
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Then we have,

W v Q “’ﬁ a:
A (®) «(e2)°C8R) ) )

= (\+ i)%\ﬂ\,)%ﬁ Wiat)
%

1
= a
< Qar) (Jq ) (wrt)R -y
The inequalities (3) and (4) hold for all positive velues O and ¥  Thus
we have,
“ q
R ¢« M) ¢« « g ) R,
IR Woe)
Hence the sufficiency is proved for MW P = € yhere we
have, O < < %, K>
Case 23
M ‘.\.S.’f) = ©§  end hence )N \':-EZ = o -(§5)
),':;; 'nq' x->a o 4

We shell now construct & set S in a similar manner to Dvoretzky's
construction end prove that this has the property that J\N’S ) is positive
end finite, "

sSince W(X) may be azsumed to be monotonio increasing, it has only &
countable number of points of discontinuity, Let these points be: denoted

by d,,d,,.-.
Thué from (5) f]g have. k : . S '
4 ' e
;&-»Nc\: —c\{ = -¢)
xtd; for *

Qe .
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Frau (6) 4t follows that there exist erbitrarily smell positive numbers 'x-

satisfying, )

| Wy | 2
T N S
e [ 3 : :

for all t patisfying O <t €3 gna t4d: for any L.

x+d:  foreny i, =<3

Fow let {A.} be & aaquenaok of positive numbers such that all the tems of
the sequence are greater than two and such that the series 2 (Y A,\}
converges. Also, let [ be a positive number greater than or equal to two.
We now proceed to construst the sequence 1t} of positive mumbers, as
follows; - :
: choose x_ to be any positive number such that k=3, satisfies (7).
Having ehosen X, for © € ¥ < w-| - we ghoose 2, { o< <2, ) such
that, -

~oa)e {7 hoidi' for ou=ot

'b). \AUC*-.) (. \A(R..}with C, > A

¥ N T i Ve s

o). RO w, < 2,,-
It is cleer that these cholices are pemissi‘bla from the restrictions
placed on \«(r) A
Ve asmme ﬂmt x>0 a3 w> «.
Denote by K. the integrsl part of G,. Let S_ be the set of points of &
closed ;bubo' T, with sides parsllel o the coordinate axes end eech of
length ey §3 - Bach side of this § q«dﬁmenszonal oube 1s & closed utenai
of length * °’$" . rrm ‘each side we ramove \<\"\ ' ;pen mtervals esch J
of length U”/_r;g’ © . 50 that there rmain Y, closed intervals sach of

length ?,c'/m‘. -This 4s possible since, = . - . °



A4,

\K_,_ttf‘ -\< C’.Lff < 3;:@/ o oxe
" n %k 3

¥e do this 4n suoh a way that when considering eny one face of the cube, the
opposite face .'m diesected in an exs,etly aymmatrieal fashion. Ve now form
\K,q' closed cubes of side '/ Sa, inside .Y, by taking cartesien
products of the intervels of length ’x‘/R + Each one of theszo eclosed
cubes is denoted by J, and S, denotes the set of points conteined in the
V(.q' cubes X,. In each: 'S.‘ we consiruct V(-:L cubes '_.\-.‘_ eech of side “‘/J"‘q_
in a similer mamner, and denote dy S, the set of points contained in the
W YU oclosedcubes T, . Continuing in this wey we define S as the set of
points conteined &n 11 S, {w=9,1,1,... ). Then, S is & perfect nowhere
dense set. . T
¥e have now to show that (S) 15 positive end finite,
Given eny &> O, there is a sufficlently .iérgo w for w;zieh x, < J. The .
sot S being ineluded in S, ean be cevered by the\f(,of Kr. closed
cubes T.. |
Now, - ,
Z Wy )/ K, ---\«(‘? Wiaey ) - (%)

-, eS R " e

vhere, the U, ere the gubes 1, which fom the set S..

Using b). end the fest that K, €C_ in (8), weget,
e, A F |
KW WG ) € WY W WG ) g sl -y

Sinoe each of the points ¢, is & peint of continuity of W(x) we can -
replace each of the olosed sets V. by open sets V. ocontaining U and =~
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such that 2k(d£va)) - differs fram g\nkd(ﬁﬂ/ by en arbitrarily.
snall emount, Combining this fact with (8) and (9) and the definition of

Hausdorff measure, we have, -
J\, Qs) Z' \A(o\gv )/ < 1Ma< )' ~Uo)
end therefore, sinoce (10) holds for ell >0 |
Bes) € ane) < w
Thus we have proved that NCS) i fintte.

Before proving J\,\ (S}> QO we note the following. If we cover S with
a a -
the U, K."  cubes T, then Z W) will be, -

L .3

K .. W \«(3\) > (C—|)--_(c I) \«bc)

J T ¥

- s o "\ T, f

n

e ‘}---(° A W) ey W,
- P : | 'C% T ;

LS

L*' ) I

Now we know thet 2‘//& oonvergn and that - C.> A - »0 Z‘ '/c converges
end hence o does ﬂ(\—‘/c“) . Denoting this produet by '\‘, we have, for

CsuGen) 3 Pulx.)
P

This fnequelity still holds if we enclose S in a finite number of eubes
3 T, . ... not necessarily bearing the sme 1ndox. This follows frem (9)

™, "W,



.

|
which shows that if any ) _ is replaced by the K:’ cubes 3 included in it |
the contribution to 2 \(t) cannot increase, ‘ i
Ve now prove that N(s)>o.
We show that if we enclose S in any finite mumber of open rectanglesR.%.,.-.
and 4f S'WCx) for these rectangles is H  then there is a covering of S
by cubes 3. for which 3, WGt)< <M, where ¢ is & constant, Hence by

W @)
virtue of our previous remarks, H> Y '\3\«@‘0) end consequently J\

Gu)>0
If each one of the rectangles R which does not contain eny point of S isa
deleted, and every other rectangle R 1s replaced by the largest closed
rectangle R the interior of which 1s contained in R end such that each

one of 1ts edges contains at least one point of S then the rectangles @\
st11l cover S and S W(¥F) is only diminished by this replacement, It is
sufficient to show that if 9( is eny cne of the rectangles thus cbtalned,
then it can be replaced by T v cubes T,\ with s¥hix, ) < <w(2) where R
is the diameter of 9-

Consider R and the sets S.,%.,.-- * there must be a first set S_ such
that R ocontains points not belonging to S... Then R is contsined in one
cube 3'“_\ but has points in common with at most " oubes . contained in
Y, vhere & is the greatest number of cubes T“mef by eny one edge of R
(r>7 ). This i3 because every side of R contains st least one point of S.‘

Since 2@\”. we have that,

Win,.) 2w/
< - . .
g Q“’ » iz f+oli for eny ..

=i

1 R=dy for sme i, then thers is an 2" such thet %W R<R’<A end

,\' is a point of continuity of W(R). Then £’<x*_‘ end hence,
Weru ) 2w R /'
"

"
P 3

[



Also we have,

I u-«.)’:éc_,g S A
fa.

™
where /5;;" is the distance between two adjecent cubes of S

end therefore,
ry o — {U-’L)m +(r-l) }

Row,

]

x = K“I“-!-(V\““\}‘ﬁ* )

end therefors,

\ﬁ = Iv\—l- K‘*x" EW‘AJ(“" K. Xu

b&a (.).

- >
> %
Thus,
’ — | )+ (r-l) |
.2_. > QR[ '/ S U‘\:]
xu-—l K\m& + ( w": V \'3-\ |
~\
ks 15"(r }
______’
. ;:“').Wx
ro"\n(xw} < L-E-a\:\(nc L) < nr '.)Q“' \.\(,Q}
~ Kf Q,x

.



< 1 (8%) W'/, ew)
s have, - g .‘
Tr 2‘\«(1’} > p\n(?c)
But, in every ocasze X ¢l end henoe,
Swa) s T owe

therefore, ‘ W R(ay) ' U
. . (g) > Y P\AQR‘;)

Thus, using Lemma 1, °

W . |
N (S} | c(f-i"3+I} \«bt ) > O,

Hence tho theorem 1s proved.

Ve now proceed to investigate whethe: it 13 alwéys pogsible to

replqee discontinuocus funetions by continuous ones.

Theorem 5
I W) 1s eny one-dimensional Hausdorff measure funotion and S

is a set on the real line, suoh that J\,\‘(S} is positive end finite, then

3.

there exists s contimuous one-dimensional Hausderff measume funotion - HGe) =

say, such that, ° ‘;~; e

;; . \A (S/ J\ (S}

- e 5 P -

Proof T -

%3 r e oL - g . R
Let U X. " be any covering of S by open intervals X Teke eny '

LY
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cne of these intervals X s if n overlapa another interval of the cover X,

say, then let, . S o ,
= Qay, V), K&y, \53} : and Q-‘<‘n;, say,

Then there exist pointa Tj and v, such that,

.

a: < T.’\" < 4, <Y

4

end both (v\.‘—qg ) end ( Bi - '3’-) ) ere points of continuity of W(x),
Replace X- X. by the opén intervals X:" X:"subh that, .

,x" ay, / and xi' = &';3 ,‘a_;/,

L

'.fhen, thoga two 1nterva1‘a cover g8 much of S as the briéinal tw;) aia,
their diametera are less than the originel and are both at points of
continuity of W), c N

1r, however, X does not overlap any other K- f‘or 1%: timn, we
proceed as t‘ollowss given any >0 there exists a 4, ‘such ‘that, for
integral values of <,
o \A(S;}; < f/c

o

o <> 6\ < (‘3--—q)

and,

The intervals . X\ = (Q,,\a) end (%.- ‘a +J) 5 overlep end cover
es much ¢f S as X, did, Ve now replace theso intervrala, es before, by |

. Lo J‘_
Caiyy ) e (3 bes =) with,

e *B: - ‘{; <¢?“' ‘¢ v\.‘:f'§:‘f ‘ Tl

" B N s .«j

such that (. -a:) ana (Y+9: -7, ) eve points of continuity of Wix)
- 1 - .
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In this way, we get a oovering U Y of S such that, .

b"l

T WaXy)) < ZTWx)) + T -

for any given >0 and with the property that dA(X. ) 4s a point of
oontinuity of W) .

Let ¢, ¢, ... be an emmeration of all the points of discontinuity of
W), Given eny ¥>9 and any 3> O, there exists a ooieﬁné \e X: of
S such that,

o .
Ny (S) € Zwtaex) A§Q$)+t‘ W

end d(X:)<d for all «.
Replace this covering by the eorreaponding covering U X of S.
Then, we have, by (11) and (12), '

\/\,Jﬁg) < g‘.\ﬂ(dkle)) < .A_\;(S)-\'lf: - Q3)

with d(Xi')<J for a1l i, and d(X!) 48 & point of continuity of \(x)
for eech ..

We now choose J such that,
AR = A(s) > M) -3 ~Qw)

Thus, combining (43) end (14) we see that, given any i> O there exists
5>° such that for all S<¢ d theroisaeovering\_)x ~of S such

that_aaxg) d for a1l {, A(X. ) is & point of continuity of Wix/ .
for each ¢, and,

N« E RO < N8 a8 -us)
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Now choose a sequence (J“\ of positive numdbers satisfying the following

conditions,
Jg’ Jv\k\ for allw ~is)
J“ Yo as w-> ok -\3)
J <& for all w -t\3)
L)

and such that each 3“ is a point of continuity of Wtat), Then, as shown
. o
ebove, for eny w, there exists e covering U X.. of S such that
x4 -

&KX,'A:) <§“ for all L\, oL(XL:) 'ia é point of continuity of Wix) for

each ‘, and, |
NSt WAL < AN AT ey
Since, for any w, | g}u(_dtx',-¥) / 1s convergent we must have,

k(dk)"«:)) - o | | as L-> ¥

and therefore, since Wix)so for - ®>o,

d()('v\;)-ao as ¢ > ¥,

Thus gzero ia the only possible limit point of the sequence of dismeters
{d(x )} . Because of this, we can now enclose each 3 in en intervel
,Q\ = oty ,"3‘. ) sueh that no R. eontains & oL( )(“} 1r at any ‘stage '
we fina that a point of aiacentinuity xv 1; already :lncluded m an .0‘. for
_scme 4'#- L we leave it alune. We, t‘urther, insist that oy, ana ’\3‘
should be points of cantinuity of‘ ku) for aach i and that no Qv
should contain any 5 . Thia laat mstriotion in pemiasihia as zé’o
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13 the only 1limit point of the sequence {d.3,

We now define the continuous function H“'\x) as follows,
RY () = W) if % # R, for each i
W% = W, ) 1r % el Ry)

H\\l C ‘0 (M)) \\\(?(M-dl ) " tor “e '\‘i,_,_

» N ( . ' -
where @““’ s Q(|, ‘/M(Z}\‘- oy ) for M"° (1,

-

Finally define \-\“,(1) to be linear and continuous in (CPM) Q:M —)] for
m=2,%,... enddn ( @m ey

Thus, we have defined a continuous, increasing function H“'\m) such that
! (x/ >,m§/ for ell x gnd, :

RO A (X)) = WadLXGs 1) for all @
So we have, -

Les)-x < ZHW(;‘U‘.:;)/ PRI Zts)

’olﬁx";)<§' | for all o

We now consider tha covering U Xq of S If necessary, we shrink any of
the intervals {,. to 1ntervéls 9 . contained in Q\. with 9 T (o, ,$\ )
end such that no 2\. contains a d(X,. ) For thoss values of i where

-Q-._. + Q\. ,ve insist that o(.p> tD. Alao, if any of tha

discontinuities of Wix) becones 'exposed' by this ahrinking we aimilarly

tm )
enclose them in a auitable 9.1 whieh dooa not eontain any Q unless
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it is the discontinuity itself, Again we define the continuous, increasing
function H‘t{x) as follows,

Ht«—)uc) + W) £ % 2 'Qz;' for each &
H(tluc) = \AKB-\;) 12 2 e Lacg Bl:)
(D) (m/ Mt/
H ch'l“_ ): L\(Q‘; 40 for M = \,"l’.

™)

'/
where (91; = Ky, ¥ "“““'0‘;-) for wm=0,4,1, ...

\M; \M-‘) |
Finally defins W <X) to ‘be linear and continucus in [ } for
W : ,
M"L'S,--. and in [‘p 3*—]

Thus, we see that,
'Hwbc/ > H™ o) > L.(;:) for a11 »x, "
and H“'QOA(X;;)) = WX, )} for all L.
Again we have, |
AV s) -7 < 2 H™YCa X, ) < NG)are ey
and ACKL) < &, foram i

Continuing in this manner we get con’cinuous, incressing functbons W \x)
such that, ‘ |
W oy H ") s WO gor a1
HWU(X“ )) WA QX, )) . for sl ¢
CNCS) - E < f HY (X)) < NS/ a2e -0

smd T AlXL ) <9, for a1l <,
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Ve now define the function W) es follows,

HGe) =‘H‘“’t:)e/ for X € CJM,” Ja/_

We see that Wix) is continuous, increasing end HlX)>e as 2> 0. Also

we have, '
Hh‘_’ = \Abc/ for 11 de¢ . -013)

end Hae) ¢ WGy for x ¢<o,d, ) ~try)

From (23), we deduce that H %) i3 alsc & one-dimensional Hausdorff

measure function. For sny integer W, we have, using (24) and (22),

H(‘l ‘
J\: Cs) s A () e ITRYGaxy))

I
“
e N (s/ans
Bﬁt Y] .
’ A 'A';(S) = \A'H(s/’
. W ob - : : e L e
thus, . A=) ¢ AMCs)ate,

SRR .
From (23) we see that, A (S)2 A (1),
Hence we have shcmn that, given any T>° there ia e continuous

one—dimensional Hausdorf‘f measure function Hb!/ suoh that

}\,\‘KS) « As) ¢ Jk\,*ti)n-f.
Thus we get the required continuous function merely by multiplying Hix)
by the eppropriate constant, that 1s, |
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J\ (s)
/J\ (S)

Ve sew that the proof of this theorem relied very heavily on the
faot that we wero wo:dring with mta on tha real line. The nex$ theorem
shows that the result 4s elso true 1n q-dimensional Eueliaean space (q} ).

Theoras 6

If Wix) is any q-dimensional Hausdorff mezsure function end S 4s
a set in q—dimensional Fuclidean space such that ACS) 18 positive and
finite, then there exists a continuous g-dimensionsal Hauu;lorff measure
funotion ) such thet, N S

J\KS) \S/

Proof
Let 14} ve & sequence such’ that .M ag n->o and such that -
each S, is & point of continuity of Wac). aiven W > °A then .. .

corresponding to esoh J, there exists a covering U X.., of S such that,

d\Xa; ) < 4, for all i,

w

= j\“ (s") Z\«qu“ )) < J\ (s/ cr T Lay)

¥e nay assume that tho X“ are ordered suoh thet,

. O\va\ ) € °\ KXV\; ) s TR

(S 1) : et o [



Define the function T Gt) as follows,

W) .
F/Ge) = WlakiXi)) for x edX, ) dlXi )

fOI‘ i‘z‘al:"'
then F 0)2WNGr) for  sce( 0, A(Xy )) end,

A Cs) < iF“’(a\(x.d}; Z\«(o&(x\;)),

Thus, by (25), we heve,

w)

J\Z“’\S) < J\:'KS) r T -(14)

Define F ’(x) as follows,

F G0 FY%ay for x e (X, ), dix,,))

F™ () . W(aXy,)) T IRUICTE N PC W) |

end  FY ) WA X))

end, FYx) = §¢or) 10 xe(dOG ), dxa;))

FU%a) ¢ \n(d(X'L;)).

Then,
Wi € F ™) ¢ Flee)  am (u, oL(x.|)3
a F“) - \
e, NoS) < AG)eE - |

a
Continuing in this manner we get F  '(x) satisfying,

W) £ F9%ae) ¢ FW"Q-\Q) - (238)




Y.

end, ) | ' o
\/\« (3) < A KS} + T Ly
Now define F(x) a3 follows,
)
.F(’@/ =: F (x) - for x e(a(xWh).Mx“‘)']_
Then, by (28),
Fix) = Wix) .for all x

end thus F(¢) is e q-dimensionel Heusdorff measure function, Also, for

each n,
Fix) ¢ F™0r) for 3 e (o, dtKa )],

8o for each W, we have,

F | L -
’J\ékS)'s AJ (s) < J\;(spm;

w “

and therefore,

Jk‘"&S/ s M(s) < Nes)ar,

Thus, for the proof of the theores, we need enly consider those
disoantinuous functions which are step Motibns wit;hkzerld a8 ‘tha“ only
posaible 11#1“ point of their points of discontiﬁﬁify; -and at eny one of
the discontinuities x, say, \n(at} Woe-o)

Now let W(x) be such a function and 1ot S be & set such that »A, (8) 1s
positive and finite, We show that this can be replaced by & continuona
'function H(x) such that \A' (5)- N'¢s). |

Let U X: vea covering of S by open q-&imensional reotangles vith
sidea parallal to the coordinate sxes, Then if for sume L, X ) 18 a
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point of discontinuity of W(x) we can replace this rectangle X, by two
other rectangles Y3 , Yk such that,

AlY,) < d(Xy) and  d(Yy) < &C(X;)

W(aAY;) ) = Wit ) = Wlal(X))

end, Y, end Yy together cover at least as much of S as X; d4id, Finally,
we can elso guarantes that A(Y;) aend ACY, ) will be points of continuity
of ().

Thus, if ;Q X: is eny covering of S by open rectangles we can replace
it by another such covering .6 Y, of S, such that A(Y;) is a point of

4=
continuity of W(x) for each | and,

Sty 1) £ 1 Zwax),
3

Further, if Jd(X;)<d for gll {, then “\’3) <% for all). Ve now
proceed to the construction of the continuous function Hlx ) by &
disgonal argument similar to the one used in the proof of Theormn 5,

Let 1d.} be a sequence of positive numbers such that d Vo as n-> « and
each 5, is e point of contimiity of W(x), Ceregpénﬂing to each §, and

to eny given I>O, there 18 a covering U X,. of § such that,b

W, Ry ) W, RC
QYRS .Z"‘(‘MK“:))( ‘A’,) wQs) 4

- -

with dXuy ) < 9.  for 811 &,

"

Replace this covering dy the corresponding covering U Yv\& 80 that,
3
glven eny T>Q we have, :

R : W, R(q)
n. “’(S) < fk(dk‘/‘;)) < 2N (3417 -Qe)
d * J.

A
d.




el

with ‘*Q’ui ) <9, for all 3 , end d(Y.\:‘ ) is a point of continuiuty of hoe)
for each |. Let »,,ac,,... be an enumeration of all the points of
diseontinuity of W) .

Enclose each x; in en open interval Xi\; =(d, B, ) such thet, both d,,
and &c ere points of continuity of W(%) there are no x { in RI; with
j¥i end there are no AlY,;) nor J, in ;. Define the continuous
function Hw(“} as follows,

o) ’
H7 Gy 2 W) 1 x & 9. for each .

H"'c ) = Wix o)
H( ’(3‘/ \'\UV) o for ¢ e—(.n. , B —l

snd define \‘\ (‘Jt ) to 'ba continuoua, increasing and greater tha.n or aqual
to WGit) 4n the intervel ( o(\. , 3¢ —-l : iy

S0 we have,

K .-
R s W) for a1l x=

H ﬁw

wt, N\ Z'H wav..n f\,my..))

JI
therefore, by (30), we have,

J\“‘"“ sy < ‘j\‘"‘“f”(s; + 7,

d, 4,

Now consider the covering l:’ Y.;, of S. mMoclese each >, in an cpen
tnterval Ry, = («,,, B.;) contained n L, such that, both «,, end R,
are points of continuity of _h(gt)’ there are no 3¢ in 'Q't: with \#* '»» and
there are no de,s ) in Y“ ) ﬁeﬁne the continuous function H'’(x ] as

follows,



LS.

:H Q) = \"{b‘) i ¢ ¢ xse’/?x;'ror each ¢,

Hu’('K:, = \"b(;*°)

HL\) (“.) \Abt) for 2 ¢ b‘.‘. , BH_X

. Q : )
and define W\ '(%) to be continuous, inoreasing, greater than or equal to
Wot) end less than or equal to H''Ot) ia the interval (a,  ac;].

So we have,

o) Wy et e,

ent, )\ M R “’(s) <2 J\ (s')f%’ ?’fé
Vg , $, 4 .

Continuing in this mamner we define tho continuous function W (x ) such
that,

‘/\(3‘) H“'(x/ s ﬂm ‘)(M/ fcr all 3¢,
s, v'i‘A;'R() lj\, (S)-{-'lr

-

Finally, we define the continuous function HGe) as follows,

How = WGy o gor e [0, 1))

(B

Now we see that H(x) is & continuous g-dimensional Hausdorff measure
function with -

W) s H(‘-w) ¢ H (o)  for ell ac end for ellw .

me' N

WSV TR
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Also, for each velua of w,

M, Rea ) WY Ria) Cowta)
G) ¢ A ¢) < ’L./\J ) +1
L S.. .

; 2,}\\\'“\“(3) +'Li,

8o we have,

H, Rea)

NG) ¢ A (s) s VA N5y

Therefore, using Leamma 1,
R
ANGs) « Ns) < (IR Ky s 2e

The remainder of the proof is trivial, since we have only to multiply H(x)
by a conatant to get the required continuous function,

From the proofs of Theorems 5 end 6 we see that the continucus
functions, H(x) are dependent on the set S under consideration, ¥e
shall now ses that these results can, under eertain restrictions, be

extended to give a oontinucus function which &8 independent of the set S,

Theoren

~

Ir \Wox) s any q-dimens‘ional Heusdorff measure function with the

property that,

W)

—_—_— D O . as - X~ O

q—l
x

then there exists e continucus q-dimensionel Hausdorff measure funstion Hoy)
such that, R

W' LM o
Aes) = A()
for all sets S in qedimensional Ruclideen space.



Procf.

Let C be a convex set of dismeter d in g-dimensional Euclidean
space, Denote by ¢ the set L. 5(, €c)s>d } for scme O >0,
where S 1s the metric in the space. Then we can cover the set C\C' with

K a‘v’
[ J‘V] g-dimensional cubes of diameter 5) where K 13 a constant

dependent on q,, ( See Appendix 1, page 143 ),

Let {7:] ve a decreasing sequence of positive real numbers such that
g£:Vo as {->, Let P} be a strictly decreasing sequence of positive
nusnbers such thet P, Vo as w—> and each point P, is & peint of

continuity of Wlat), Let ‘x be those points of discontinuity

* )

{9 /
of sise greater than 2 with v,

@) ) :
> ?‘ and x; s‘sc;_“ for i:),...,w,.

) G

In genersl let 2¢ TR 'x".i be those discontinuities of W) of size
S

greater then if; /.,_‘rn with ‘93_?& >9 and X i/

Q) . \
> x,;,, for CEWEL -y

Corresponding to each 'x:n define V]; such that (0\3_‘-&! §C sw; ),

W 3 <) <) )
- \ 3 -
V\L ’({ ikvu-\ $ 3\ and X, V\. > Mc‘"\/‘lx ..4- ,? ) &‘s\)
mt" 75 Vg a point of continuity of Wix) - ("S‘)
Wn'v T =
\Y) < '/ -(33)
A o
14 -
U) ) .
4 (‘J((") 3 “] for all S €} -(34)
end W=A*l, .. Ay for 5¥)

kew 41, . K- for 5=,
4"t

Define the continmuous qedimensional Hausdorf? measure function H(x) as

follows,

) . -) ¢y
1)s for %e \p:‘ , Pi-') and X y[,‘;;i_‘\-? L3¢ ) for a11 L:v\:‘:l, Mg
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define H{x) to be continuous, increasing, greater then or equal to Wix/

end such that, :
- . PW
HGe s W) ¢ 73 ;/
i

this 4s possible because of the definition of ac :3' s

. ; <) (-. o . .
1), HGU-q ) o WCGxE-qP) gor a1l | end for ent
' | Ltz +h,...,w.

- 4
111), H\f‘!:\}:\}(p:‘}_fox"allj :

1v). for e e(xiL -1“ ] =3 define Hx) to be incree.sing,
greater than or equal to k&'x) continuous in (x v‘ , e ) end
contimious on the left at x; with H(x{’) . W(xl¥4o),

Then H\‘x) is continuous end - H(1}>\n(x) forall 3¢, thus,
ACS) 2 NCS)  for el sets S -@5)

Now let S be s aet 1n q-dimensional Eaclidean spaoe, eontained :ln a

ey -

q-dimensionsl cubo of diameter '/-._ .
Let J be a positive number such that,

\’) = v . . ., - S

2 W S . [ F 4 2 ; s N

8 <k d e add R for some | end some i
el : N

v\+\<~<v\
P J-'I 4"

et (U} be an open eover:lng of S with.

TR )<§ for all
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end, Nes) s 5p > 2o Gy
s -

vhere TS is the least integer | such that,

x <3 for a1l kaw 41 ..., 4;

(clearly '36_706 as d>0),

Now, for each (,

ol(0§ ) « cf\i » Py ) for some ).
Ir ck(U ) ff\"m (i’ > x-\' for all W= "\f‘ PRGEIN then
by i)t. ii);, and 111).’
HCA(Of)) < Wldtod)) + gLy i
It d&U.f) 3 K::&'— vf‘:’ , Jc\:’}] for some W, then we have, by (33),
H’)qﬂ
) Y, H
WCAROE]) > WG ) > Mol ] ) + iy ) - T < -aw
Now, V\k e[?s)?_l) for scme s |, end, |
V]::))&’Q'Jc?)—qf“, x, ] forall Liadt,..,a.
Therefore,
T ?."
G 4) s o
H(\"kl ) € \A&v\ ) + s,l\-n_ -Q¥%)
Also,
TECY,
X -4 e [es)ph_.)
and,

- ) G ). (:\)' '\S) . . .
H(stk‘—v\: ) = WCas-9.) -(39)
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Replace each UJ which satisfies o\(U'r )c\'x V\t‘:' , et '] for sme \,
by & set of dimeter x“'- v\ ) together with[K (% /t, ﬁ_.] q-dinensional
open cubes of diameter ‘1\ denote these replacement eets by V.
(U, };Z\ t" " ‘\‘" for all kzw, 41, .. Ny we put VJ U . Thus,

; J -
we got anothor open covering U V.‘J of S with d.W ) < Jd for all . FKow,

since S is contained in a oube of diamater ‘I, we may suppose that there
! § 3/
ere less than \‘I‘ ) values oL(U ) in b‘k V\:" , t'( -_\ and less than

p; values a (U J) in (9 LB ) ’l‘his 48 because \5\1 ) % such values

J-I
of &CUS) or p?’ such velues of (U {} eould arise fromz a
collestion of sets (U } vhich would bo sufficient to cover the whole cube,

Thus, for those sets V for which V. 1'_—' U'r we have, from (37),

fkuw"/) fh&a&V"l) ﬁ\x“’)" Kew)™ W)

9 Y &
R R T
k

So we must have the following 1nequa11ty, involving all the sets U and VJ

Z‘k(aw )) fl«uw )) Tre.

.ld-l-l ’

Now, b;y the definitions of the sets V and (38) and (39), we have,

2 MatvS)) s 2 HeatvT ) - f?‘*(‘ “ ) o{;')JL K v'f; N
, 3

?<§ ' (al q- :EI{
fH(oqu)) Ty, . KTy,
T“" T"H
Therefore, L _2 s
{‘A(d(() )}) Z'H(aw")) "f__{'l}



S\,

J\ \§) - e o K
‘l ‘ 'ZT‘+‘

Thus we have shown thet for eny § of the prescribed form,

3; ” Kia' f

W .
J\'\S) \A \S)— - ,l's‘ﬂ - T"

But there ere arbitrarily amall 5 er thia form, and go,

J&&s) J\ KS)

since ;>0 a8 i-> 6. Henoe, combining this with (35) we have the

required result for sets S lying in ocubes of dimeter 'a. . - -
Fow let S be eny set in qedimensionel Euclidean space. We may divide the
space up into a countable set of closed cubes {C:) say, each of diemeter

',. Since we have,

\'\(3\/ —>Q a3 X O,
%—

'thoso points of S which lie on the intersestion of two of these cubes

forn & set S, such that J\. (S. ) Q . Hence we may mte,

S;U‘S

where J\,KS) }\,(S/ for i=\\,.... and AM\S;)=\AIH(§°);Q.
Also we have’, '

JQ‘KS); ZJ\“(S) £J\“)

N

AH“)' .

and hence the result extends to all sets 3 in qodimensional Ruclidean
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B8pace.

Corollary ‘
If W(x) 4s any one~dimensional Hausdorff measure runbtiozi, then

there is a continuous one~dimensional Hausdorff measure function W(x) such
that,

SV Sy

for all linear sets S.

The next theoremn shows that it is not always possible to replace
discontinuous functions by continuous ones. That 18 to ssy that the
restriotions fmposed in Theorem 7 cannot be relaxed,

Theorem B
There exists a two-dimensional Hausdorff messure function W(x) say,
with,

\".Sft)—-a L - as I’k > 0O
P13 ) .

suoh that, for any continuous two-dimensional Heusdorff meesure function Hix)
sey, there 1z a set I with the property that,

J\‘\Sl + J\“_&S_).
Proof

Let e s v 7 Tfor w=o0, 0\, ..

Define W) as follows, °

W) =} for =X



and

Then, clearly,

Also,

and

hx,) e & Wi,,)

W) = Wixa)

Wot)
A

Wee) o Wik
Tk

L.

e 14

for w=h,1,--.

where | <« & <1

for < \x“-n )xu:]_

as > -> 9,

forall ke QQ,*:]

end for w=\,2,...

for all k e(alxj

end for all = .

5.

Now let W(x) be any continuous Hausdorff measure function, Them for each

"  we have,

elther

or

Hix, ) s o NEW

HGx,) < o Wixy)

Ve, firstly essume that,

Hx,) < KML\'\(‘(“)

for Miniteiy ma.nyl ",

So, there exists e subsequence {30*;‘!; of (%Y such that,

l'l-
H(:c.\._) < o \r\bc“) for all L.
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Because of the continuity of HOe) there exist ;> O such that, for
all ¢,
. ..[,q ’ Lo Lo ' t :
H(xe) < P4 \AO? ) - for % e (1.\;,3%? 7 2
we may, further, insist that, .

'ﬁ“,'\’ I“\‘. <_ -;c'\,"‘ :
.

By :
-

Now let 14,1 be & sequence of positive numbers such that, iﬂ:‘l is

convergent and,
. 0"—,,41 "-'-'(Q-
M- /a.) > «.
: (" L I :
Also let (8% be a sequence of positive mumbers such that,
8, "« as . W 7‘_\6- B . end B,>2  for allw,
We now construct a sequence {‘5,:\ as followss -

choose Yy arbitrarily from the open interval (’*y\‘ ,““.‘" T, )
Having chosen v for v=1,...,a-|,  choose y ‘guch that, -
"

1)‘ ' © < ‘ﬁv\ < ‘/1' %ﬁ—'

1), if \“_;G(X“;,'x.\: {;) ~ then t&‘e(x“:‘ ,ac“; z':l)

SN with :‘)L’ Y
111), o \_&*"—1\.\“ > DQ“: Uhﬂre \S‘\-f (‘C*L) ijh f:;)
fx  4v). Cu \‘\(u\“)‘ :k(u‘\*‘_") U wth GL> A,

e Ry can
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vrite Wu.:=1 [c“’l] .
Ve now proceed to construct the set S 4n two-dimensional Fuclidean space,
Denote by 3, the cloﬁed 'ci'rolo’with centre at the origin and of diameter 9, -
Draw the diemeters of S_ at angles O.,19,,._. ,(“'/-;"‘/ ©,  to the
positive x «axis, where S_. Ly K,. At each end of these diameters and
at the intersectio:i; of the ® waxis with the perimeter of the circle we
draw & closed circle of diemeter \ , inside S,, having one point of
contact with the eircumference of S, and having centre on the dismeter of
Se. Denote by S, the uhion’.of these X, closed circles, Inside each
circle of S, we draw K‘/Q_ diameters at en angle _91 epart, where ”SJMX(\.
At the ends of these diameters we draw eloséd cimles of dlameter Y4, ina
. similar menner to that deseribed sbove, Thus, vwe have W, K, closed eircles
of diemeter y_ end these we denote by S.. Continuing in this manner we
got sets S,,5,,... with S, consisting of "K,...K olosed circles of
ddemeter 4,. Also we have S.oS,, t‘or' all n
Ve define the set S . 'Dof
Now since each W, is a poinf of centinuity of W(x ) and since u> o .“,

n->.{ we have,

J\\S) Ki- KWy, ) forend w

)

\'\Lu, ) -(4o)
Ve, alse, note that,
k\.- ~< M\S )> C, x).- (6-1}\'«%/

S, vﬂ| g\-x/cv/k('u,)



Se,

> o;"“ Wiw, ) | since (.= A.. -
Now, given any T>9, choose §>9© such thet,

R.>%e  whenever y_< 9, -t
Let {U:} be en arbitrary ocpen cdvering of § such that,

aly) <d for all .

Since S is compact, we may essume that {U;} consists of a finite number
of open sets,

Let w be such that,
y, < alv: ) for ell L.
If U: is such that,
Yy, S MO sy, -3/

then V. 4intersects at mest one circle of S__ ( by v). ).
If dWy) %y, -1y, , then,

Wedtue) ) = wey, ) by 411),

and 80 we can replace U: by the circle of S . :whiéh it intersects,

-t
without increasing Z, W(d(vy) ) and the eircle covers el least as much

of S as U did. _ i

Now saswme (V) < u\ - "-Vx‘ emd that U ‘intersects more than one circle

of .. Then U, mtersects at most w circlea of S,,, where,



£3.

Y_ T (d(\),) + q“)'}
0, ~ -l
R !
Since U; intersects more than one of the circles of S,
CCAAN Wha W ELS By -4

> - LY
. (u)vs-l ‘*}K“ = ‘ since Sk‘)t > ,11".: "('i-s.)

)

for © € € Ty,

S0 we have,

: : Kn -1 [AU) 4
st ¢ (TR e e

K {o\(\);)%-vs )
< —_ — \f\(\g
(1 \Q\A-Q_“w"} “)

dk&);) + LA )
< RN by (45)
(‘sw..- A, -
¢ (@.C.&d(vz)+m)) W/ by ). end v)..
R,C,.- Y -

‘Now, 1r o\(U )< »/o(.where W, e(-x,\ yXat T ) then,

“‘"*-‘)/ ¢ W VY vy
. “v\—l Vs

thus, -

| R, G
My, ) < U rn.) NCNY
: \g*c_-nj AU ) \




%8

. T
<14 T ZC);))X\"WU‘“’)

R B

< { |+ (14 . S\n(o\W‘) by (45) -
) A " - L - e } y o
" { “‘3\ X, ") v : .

< L L ) -.
{H&(n*lﬁ,—‘/u“—l kkuw‘)).. by ¥)s

< Qi+t ) wdeny)) 7 by (42) end since K2 —b)

So we have shown that in this case we canbriéx':lac‘e- Vs by ™ sircles of -S“ o
causing \n(dw;)) to increése by & factor of et most (l+ ¢ ) and

the circles cover at least as much of S as V. a1d, If U: meets only one
circle of S then .since AV /> v, Wwe may replace it by this circle

of S\.:

NO', 1f, s : .
d(U:) > P
. (i) > | /0( |
thenm, ' -
. < | \
Wldto:)) = /y Win, ) > Yoy, ). ~(4H
Also, since we have assuned that A(V:) {#5“_'—1-\5‘ we know that U

}¢
intersects less then /x _eircles of S
Now, if there is & U with | + { and, |
o >

w, < dk\)s} < 9, - '\-\ﬁ“,
such that U; intersects the same circle of .S“_. as U does, then we may

replace U: and U 4 by the oircle of S, since,
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W(dtue)) + Wlatv,)) > Wiy, ),

and Uy Uy together intersect less than K, ecircles of S, , Alse if we
have such a \J; '0 % 8ay, and if the remainder of the circle of S,., which
U.» fntersects is covered ‘ny menbers of XU 3 all wi’ch,

‘g&“<o\(\),

vx!"

then we mey replace all thesse U:. s together with U, s by the circle of § .

Thus, 86 far, we heve replaced each U setisfying,

YW, ¢ d(0) € 9w,.,

except thoge such that,

B P A AR Wl s W 8
and such that there is no other U meeting the same circle of S é s U:
does end satisfies (2,8) ana. (14_3)‘ ., SR R IS ,

Ve now meke sinilar replacements with respect to those V. for which,’

El

“h—‘ < oL\U ) < \\vs-'\.

and repea.t the yroceduro up to and including the case where,

M f“.?_".‘ SR

Clearly we may assune Wthat,

d (U;) s \.3‘ SR for all L



Now assune that there is a U which has not been replaced, let am be such
that, o
‘&N < dKo;) WA ~)
then 17 the circle of SM_, which it intersects has been used to replace a
differant manber of ‘LU R then we may ignore the set U;. Ve now assune
that thero are still some U; renaining which cannot be ignored, as
explained above and which have not been replaced, lLet there be such a U,
ith,

u\* < dluy) « ‘ﬁ*-.

Then if. S:-_' 1s the circle of SN: which Uk intersects, we know that S:_|
is pertially covered by a U, with d4(V;)>4,  end Vi haa not been
repiaoed. T};erefore, i W, < ay) Y, (M<v\ ) then 3 il partially
covara@ by a Uk with AV, )> A and Uk,yas not been replaced. Thus we
see that if thez'-; Qéro to be ‘such e U. then given any integer L, there
15 a U; belenging to 1V ‘, suoh that, aw )>9,, and U has not been
replaced. Ir wotako t -\ we see that: this is a contradietion since we

cen assume that, P
ALV ) SWw, o : foral}. oo
Thus we conclude that all U; with - @ ‘.. °

P

g, € A0 €

heve been replaced, , E
VWe now consider thoae maining U for which,
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w,., < dC0) ¢ WA

Then 3:,\ is partially covered either,

a), by Uj with u  <olCU;) sy, end which heve not been replaced, or,
b)e by U, with awk;; w,., &nd such that U, has not been replaced.

It hes just been shown that &), is impossible and we can get a eimilar
contradiction frem b).. |

Continuing in this menner we see that 211 the U have been replaced by e
collection ic¢:} of circles of Scu---u S,  such that,

\3 ¢, D S and Q\+t)€k(d(u;)}>, Z’\n(e\cc;;),

We further note that the inequality (41) holds for any finits collection
[
of circles of |JS. which covers § « this is because we mey replece

any circle of 5 by the K, ocircles of S, which it conteiss.
Thus,

L

o8
where D= HU"'L/A,/_

Ve

W+ 2) TTWCA0:)) > Tihldtey) > Phiy,),

Therefore, since {U} was en erbitrary covering of S, we have,

N7 Uee) " Bacay),

s, ACs) > Grg) ity ),

but the X was an arbitrary positive number end so,

| K‘( ) '>,‘ ‘P'\\kv;“) :»-.-M}



(18

Also, we heve,

NS e KooK, Heay ) forall w
< o K, Koy
¢ Wt w,)
< Buly) ~(s9)
Therefore, -
Nes)+ M),

oy _ : '
Thus if H(ac, ) < &% “'\(33..] for infinitely meny emell dc,, then we have
constructed a set S such that,

NS NS)

Now gssume that,

: N : . »
H(xw) > ¢ Wxy) for a1l mell xc,,.
80 we can assume that,
H(;\c“) > ¥ * Wi, ) for all w,
Then there exists T.> O with, T e
o= TS X &) EPRRNSNY)
o . | R

such that, °

\
HGY >

5

ly '
hx) for e (w1, xa]

kY
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Now define H'() such that,
"
H'('n) = K ‘*\-&x./ for x tb&‘-r,,,)c -~ T ]

A=y w-t

Then WG] s H(x) end,

! T -3y | =3, \
Hix, - e/ . \\(n“_./ < o b\)
xﬂ.| - rl& -3 m*.\-. t‘\"". X“

-,
< ¥ "Wz ) - H'(;;_‘..-c‘/.

R X~ T
Therefore,
W T) W)
—_—  F — te(o,x-~-%
-~ T c for a1l (o, x, .:]
u”, H' -'5/'* -‘;,
('K“- )/ - [ 4 \\(’R‘) S o q’\\(-x‘/
X.~ T, Xa- Tw xX.
therefors,
' (- 7./
~> s — of
N~ T a8~ =2
that is, H’ (’)C}/ —> & 28 NSO,
oc
Further,

4 H’(3Q“~ 'f“/ = Wil 7.,/
Thus, as in the prewious pert of the proof we cen oonstruct e sequence {1y}
and & set S such that,

Hiag) 2 A(e)2 PGy,

N‘(S)< PH"(\\._).



But W) € HO) and go we have,
H ’
ACS)= PH(4,),
therefore,

Henoe the theorem 1s proved,

)+ NG,

64,



CHAPTER

INTRODUCTION

Ve saw in the last chepter, how, under certain conditions we could
replace discontinuous funotions by continuous ones without altering the
corresponding Hausdorff measures, In this chepter we investigate the
possibility of extending these results to the case of Hausdorff
pre-measures, Theorems 9, 10, 11, 12, and 13 are concerned with the
extension of some results of Sion and Sjerve (11) to the case of discontinuous
functions, Theorem 14 shows us eome conditions under which discontinuous
functicns csn be replaced by centinuous ones, Finally, Theorem 15 shows
that the replacement used in Theorem 7 of Chapter 2 cannot be used 4n the

cass of Heusdorff pre-measures,

Theorem 9
If Wix) 4is any monotonic inoreasing qe~dimensional Hausdorff

measure function with the property that,
S O as >0
v
then for any >0 and eny increasing sequence 18. of cets 1n
q-dimensionsl Euclidesn space we have,

J\:\ O s“)= Ao J\:Q"s.‘),v

wet n-> of

Let G be eny convex set, in qwdimensional Euclidean space, with
diemeter A, Write,

¢z {x:e(x,8c)>3}
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vwhere ¢ 1s the metric in the aﬁaloe. Then, &s in Theorem 7 of Chapter 2,

we cen cover the pet (‘.\ ¢ with‘.“ kd/ ) ] sets of diemeter 3, where K
is a constant, '

Consider eny set S end any positive nuuber §. Given eny £ > O 1let, i }

bo & sequencs of open cets auch that,

S < \‘..) U:Y
FCIPR for a1
end, z_l«{t(cl(o{‘))fv<' J\}(ip 0
Clearly we have, R
s < U o}
AW ) «s o srant
ad W08 )) < ‘~j\:(s) ‘T

Thus,
CSUG) < Nnes

Hence, since % was arbitrary and positive," we have shown that, -

j\ \S} (S) I - )

Now, eiveu eny ¥>0, we can ohoose a oleaod covering {U } of S with
ol(U ) € Jforall\-f end, . :

Zhace?)) W P )
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For each \, choose 4> © such that,

q”l
K LN
v]c\"‘ \«(V\) < Y/,zln

and, q=9

3 .
Then we cen replace U, by an open set of diameter Ko\&Uf )-mm!
K {2
5 open sets of diameter V\ Hence we get @ new

open covering {Vf} of § with,

together with[

OQ.QV;J) < d | for val!.i
and, 2 W) ¢ Z‘k&aw;%p % -a)
Thus, eaubining (2) and (3), we have,

N
3 “
\/\ggs) < ;Z"\q(dgv; )< L)+ <.

Combining this result with (1) we see that ,

W “ -

J\AQS) - L:G),

end so it is sufficlent to prove that,

W, ¥ , . W '
U (Vs ) = K LGS)
J (S 1 W= b
Fe now define a pseudo-metria on the space of subsets of g-dimensional

Euclidean space, Denote by .S kE) the set,
{x ' Q(QC,S} < t"]

for any set S, Define the distance between two subsets ST vy,




3.

$CS,T) c min LE: ST/ anad Te S}
We then write S > J  when,

' o,
s(S“,S}—?O as w->

Firstly, we suppose that “CJ‘ S, 18 bounded in g-dimensional Euclideen
space, . ,

Now, for each w, we coneider a sequence {U:\} of closed pets with the
following properties,

“ LY
1, S.ac VYUl
). AU ) < OKU‘;)'seY  foram i
u1),  TWAW)) ¢ L) a

iv), U\-: - \/; as w—>u (V. gompact),
¥e can satisfy condition iv). because of Blaschke's Selection Theoren end
fron the fact that we may essuze that the sets U; are unifornly
bounded (e.g. see Eggleston (&) ). |
Now, since W(X)>© for all 2¢> O, we sse from 111). that,

aL?) >0 88 L -> od

Now let,

a = Me SThCd(o?))

AD K LR

then, given eny T >0 we can find a sﬁ'iotly increasing sequence {"k\ of




64,

integers such that,

SZWAW) ) ¢ avx forallk. -
By iv). we have, )
‘ g\c\(d(\lz)-—o) € ~-<S)
and so, N
A(V: ) - o . e > 08,
Now define,
b=a- 2 . k(dLLV;)—O), -&)
By 't‘ho»argtmmt given at the beginning of the j:roof, using the fact that,
W(c
__g__f._>o a3 2« =0
a-\ . ' b
, x- -
we can find open sets \'J;:‘ , {= \L---m; such that for eash ,
0\(\9:) < (V) " for 4= \,Q--,M‘;;
LN . T ) ) o
Vie DWW - il
:".l oL I
WAL N .
W) < Wldvi)-e) « T )
4'.’.'
- e ~ 3 ‘
and : a U\,\),)_ao es - = 0S8,
:":I“ v

Given any ¢ > ° ‘choose an hfeger T such that for all 1> T,

2 (Owi) <



7o,

and, £ WCaLV; ) - 0) < <t ~(®)
u)I .

Further, given any integer ®, choose N: "‘w (5 w ) for same X such
that for L=1V,..., T

) o o - . . 'FM:_
U_ [ w. \)“‘Uw‘
LV L S . -

I

end, ﬁ i\\u(v‘g)-o) '-\.\(;(og‘))‘g < €. ~-(a)

' I, .M; ) l - )
T

o=t 3;;
but, for > T-,’

el ) < 407 ) < AQJU Wi )<e.

So we have, : S e
v M .
LS 0 UwWY ¢ Zhw?))
Q IR LT OT v

\,-l S

Z‘ k\d\u 1)- fkuw )-8) + S‘Ad("‘lﬂ)

—Zk(dw )) fkmw - m)

o=t B »‘;‘-)I
C<laeB o ustag (), (6), (9) e (B).

Thus, letting ¢ N ©. ve have,

L{S\Ut)uﬁ<\m3z

L L—\ 3.!

9




+H,

Therefore, we have,

{s \\\)V 00 \)w )'g <\M'Sz

\.I Jt‘

because we coula choose for U AP} 1

=1
whose intersection is \J for the cases 1= \,.. ,I ( It 1s well known

a descending sequence of open sets |

that for any uemd:lng sequence of sota {t,} we havo, :

\f‘&Utw) w_)‘ (6.;/

So we have,

Thus,

s, \Uv§ Cloadre iﬁiﬁ\nkeuu )

" FI+| 5:‘

CcbaSE . using (7) ent (8),
So, letting € Vo end < N Q we have,
\S \ U V; 1{ DI

That 1s, by 111). end the fact that L 7,05 ' OV, Li Koo, ,?;S.‘.\ UV:3

ﬁww; y +L§Us\uv§ AAMLS&S)

B w—BW ; A
How, we know that d.(V ) <d for ell \. Thus, given any ¥ >0 ,we cen
cover. \eV, by olosed sets {\'J .,s such that, -

g1
\); < U\l\)
o=

EN

\
Ty [ ]



1.

AW:) €5 gorair
and, g\’*(‘*ﬁ\h’l)) < 2\\QOKV;)-Q/+{.

Thus,
W W
LS s Lrosiigu )y T

< Lkéﬁkz S,\v\ S)V;) + f\\(o\(v;)—vo)}-i

¢ hm U5(8) + .

w-> >0
This 18 true for arbitrary positive I, and so we have, |

W A"}
v w> 16 .
CJ.gaarly,

W
L‘NJ 'K\zgn) > Am L;(S"}’

~D 06

AN

thus we have ‘shown that,
N . W

Qs = B G
Hence we have prowed the theorem when \ S  is bounded, ¥e can, now,
extend this result to the case of unbounded sets by a method of Davies (1),
Suppose that 9 S. 4s unbounded, The result is obvious if ﬁ;\?‘ J\\: (S. )
is infinite, 30 we must now assune that the limit is finite,
Let C be a g-dimensionel cube, sides length 13 pamllei. to ﬁa
coordinate axea.‘Laﬁ ¢t denote " oubes of side J into which C mey be
divided, Let {C:\; be en enumeration of all the distinct cubes which may



3.

be obteined from C by trenslations whose eamponents are fntegral
multiples of 1 J. » ‘ |
For each \, the cubes C: (r=\,1,... ) ere a distance not less than §

from one another, Thus we have,
“ . =% ‘ . QY
J\,SQQS“(\QCI) :'?J\'J\?S“n(r) ~)

Suppose that the series in (11) were divergent for at least one value of \,
In that case we oould choose R so large that,

O N - \\
ol Bl gy i
Then clearly,
Lim J\ KS*/ hMJ\ KS ,\U Q‘

ND B S e 8 ) ,

and so, from (12),

w (Uswn\)c)})lmj\, Qs,,,\m)

w w ¥

contredicting the theorem for bounded sets, Thus, for each . _ the series
in (1) 45 convergent. Given any T > choose & valus of R such that,
2‘ =N Vs eh) e =
Loy TR

Then we hsve,

q,

W \ R
M C9s.) € 1005 0 U )+ (Ui o 0 Oc)

‘-
vt

\ TR,
NNVERFRVRVOO RS

LI O |



Fle.

but the bounded case of the theorem glves us,

\u-s“u Uc) Nim j\ (s, “:Q:\R_)Q;’)

: N> of

vl v

U
< MM A;an}.

w> ¥

Hence,

\/\:Qgg*) NN j\, s, /4. < for every T3> O

n->w
and therefore,

\A,QUS) AMM\/\,QS)

LI
The reverse inequality is trivial end hence the theorem is proved.,

Corollery
1 W) is eny monotonic ineoreasing one-dimemsionsl Hausdorff

measure function, then for eny J>o end eny increasing aequence of sets
1S.} on the real line, we have,

J\\‘ngs“) T J\ s, )

W= of
Next, instead of considering sequencaa of sets we look at convergent _ .
aequenoos of Valuen of 3.

Theorem 10
I WOc) 4s eny monotonie increasing q-~dimensionsl Hausdorff



3S.

meesure function with the property that,

W)
Ea
then for eny 9>° any set S 4n g-dimensional Euclidean space and any

sequence LT} with T VO as W-> G we have,

[NECYpI f\ )

w> v Je T,

—_ O as % > 0

Proof

Clearly we have,
J\, )= ]\ (S) for ell w. ~C13)

Ve now assune that the set S is bounded, Thus we can essune that S is
contained in a qe-dimensional aube of side length G, say. Given any ¥ > O,

for each integer W, iot ivtl be a sequence ¢f open sets such that,

- w .
Se DL
O ) <« dr =, © gepan !,
P | - ‘
end, S W) ) < A () + Ty Sy,
N JaT,
Choose w 80 large that, _ :
< J | -us)
'zJ -
K[ ] ) K \Au“)<f/1 Sy

where K 43 the eonatant introduced in Theorem 9, Now we can replace each
\): with the property o\kU\-:lh d by a set V-: with o\(V;“) <9



6.

k(1
together with T, agts of diameter T,. Thus, we get a new
covering of S, WY say, with,

AW ) <3 for all < ~Q13)

APy i
There are et most \[ Tw]“ ) sets U: with ACUY )y "; since, this
nunber of such sets would be sufficient to cover J.

So we have, a

Lheawt)) « T/« ([Fa) K(‘—f) W)
€ ZWaW)) + 4 by (16)

W
< )+~ by (14).
J-Q-f“

Therefore, for all large %,

j\:gs) < J\: (s)+s -8

Hence we have the required result from (18), (13) and the fect that <«
was an arbitrary positive number,
Thus we have proved that, for bounded sets,

A\:J Qg}f—$ N‘:(S} as w—> B,

Now let S be an erbitrary set in g~dimensional Buclidean spacs, Then we
write,

with each S; bounded end S; < S,  for all <,

L)



ELS

Then by Theorem 9,

Ny(s) = him N Cso)

C-D 6

= k\m NM }\\: (SL)

e wSAK d+ T,

¢ he N CS) . 1)

Thus by (13) end (19), we heve,

BV W o
Lim \A (s } . j\ y) es required,
drx, | J

w=d v

Corollary
Ir 4M(r) is any monotonic increasing cne~dimensional Hausdorff

measure funotion then for any d> © eny linesr set S and any sequence <%

with ¥.¥ O as w-> ¥ we have,
\

NS) = B N80

Davies (1) shows that the result of Theorem 9 sometimes breeks
down even in the case of continucus functions when we don't insist on the
property,

oo

T O
ch' :

as > > O,



But Sion and Sjerve (11) h&‘va gshown that the result 4s true for the
pre-measure L § in the continuous case even without the ebove property.
Theoran 11 now shows that the latter result does not extend te the

discontinuous case,

Theorem 14
There exists s discontinucus two-dimensional Hausdorff measure
function W(x) say, with,

\»\('x)
+> 0 as x> 0

and a positive number J end sn increasing sequence of sets {5} in
two-dimensional Euclidean space such that,

“ LN
Ka  LeCsi) 3 L (US)

D of
Froof
Let
-V S -
Ly = ™ for w= \2,..
Define Wlx) as follows,
k(')f = 'x V 4: | |
) “ . feor 3 Q(otm_.)::‘)
and, Wia, )« '54 x,.

Then, ’cleerxy, W(x) is a two-dimensional Hausdorff measure function.

Take d=, for some positive integer N.

Denote by S _ the ccmmon pert of the closed dises,



9.

AL A - 1, ) “ L
s d md G- ) e g 3 d
Then we have,
S“ < th A for allw,

o ~
Also we ses that, V) S. is the open disc %1'4-'-&' < %, 3 together with
et

that part of the eiroumference which lies to the right of the w-axis,
S0 that we have,

L\AS(S*) \<3QN for all n.

It 48 clear that,

“ o
LJQ k__)sw) < SQKN’

since we can cover \2 S“ by 4ts own ¢losure, We now essumne that all the
sets of the covering have diameter striotly less than J, Thus, let VA
be any olosed covering of 95‘_ such that,

AL )< d for all ..

Clearly, we see that no set U, cen contain points on the boundary of \“) S

which ere diametrically oppoeite., Let \U..} be & subsequence of YU\ such
that each U, has et least one point in common with the boundary of VS .

Let the intersection of each U, with the boundary of U S, subtend en

sngle L9, st the centre of Vs,

Then,

SiM CQ;. < d(Uv\;)

K
N



¥o,

end o ¢ d; ¢ Ty for each t.

Clearly we must have,
£7- P, > LW

4n order that the sets U:. form a covering of \3 S..
Also, we know that,

< w <0; > Qj"
™

Thus,

N <
1

S A > Ao ) 2 e 5019, » 1,
ﬁe&we, sin‘éo Woe ) e for all e, ie ﬁuat have,

“
3
Lé(\.\)&“)= AN

Thus the theorem ia; provéd.

We now show that we cannot always relax the conditions imposed
in Theorem 10,

Theorem 12

There exists s discontinuous, two-dimensionel Hausdorff measure
funotion W(W) sey, with,

oc

a d>0 and a set S in two-dimensionel Fuclidean space, such that,



L 18

_
A CS) A,

n-> o ""‘
Proof
Let,
xa: (% )“ | | for w= l,i,. _.
Define, |
‘/_\U‘) = ¢, for ¢ e b‘u.:x;}.

Choose < =X,y for some positive integér N, and denote by S the open
.y
atso W+ W <!, J  together with that part of the cirounference which
lies to the right of the yeaxis.
Then for all utogéra w,
j\, Q S) € ¢
N
Jatin
end, by a similar argument to that given in the previocus theorem we see
that, '

7.— 3/1_%'\\ )

-~

o \/\\:\(57__13,;“'
$

Hence the theorem is proved,
| Next, io oxtend‘ the result of Theorem 10,

Theorem 13 _ _
If Wix) 43 any mohotonic inerea'aing q‘-éhamiond :Hausdorffl o



|1.

measure function with the property that,

\hﬁ) —> D as -0
W-I
xR
then for any d>eo , any et S in g-dimemsional Fuclidean spsce end any
sequence 1T} with T. ¥ 0 a3 w-> o we have,
. . "
MNoCs) = ke A K8)
J W= o6 J- I,
Proof -
Cleerly we have,

\K (S) QS) for &1l n. ~Q29)

fo that, 4f S is such that A (8) o€, then we have,
(N
e A S) A (<),
N of s" Ta
So 4t is sufficient to prove the theorem for sets S such thet A QS) ie
finite,
Given any >0 1let {U:} be & sequence of open sets with the follewing

properties,
“
<« Us: dQu:}<J for all {
wd
and, fk(&ku )) < \A (S) + ¥y Ry

From (21) end the fact that W0t)>o for all >c>o we have,

AV ) > o N as > o8

Thus, for scue constant G, there are at most C sets U, with AWU:)> 3-1,.



33,

Now choose N such that for all w=2 N,
. T, <"S/1_ CLt ~Q)

. a-t _
wi, eM(g ) ) < -

where K 4s the congtent introduced in Theorem 9. For each w> N, replace
each U: with the property d(U: )2 J- T, by an open set Vi with

a-t
A(VT } < §~ T, together with[\( Qs/f") ] open sets of diemeter ¥,

w

Thus we get another open covering ¢f S by sets V"; , 8ey, such that,
Ol.KN": ) < d-T, for 211 ¢,

Also, sinoe there ere at most C sets L. with d(Uy)s J-7, ~we must
have,

Ehwawn) ¢ Zwwwr) s e Py
< Z‘k(dw)) v QW\Z)“’" REY.

. < A:QS/‘*“ z

vy (21) end (23),
Thus, for ell w = N~
\

.:\Avsirffs)f N ,GE7a= -y

éhe&eforo, using (20) and (2,) we have,



3q.

. L L" C

D g -

which ccmplotei the proof of the theorem,

Corollary ofTheorens 10 end 13

I WGe) 4s any monotonic increasing q-dimensional Hausdorff
measure function with the property that,

(x .
k-—-‘_{‘ — o - as WS Q
x

then for eny set S 4n q~dimensional Fuclidesn space end for eny sequence iJ,}

vith S, 3 as w-> « for some positive real mmber J, we have,

Mo A CS) = NiCS).
n> of J. d
Proof
Give# any ;7 o, we kuow from Theorens 10 end 13 tha;s thé:}e éxistl
a positive integer N’ such that for ell w = N: |

LS W

S)> S)-<€-
AN RN
end, N )« N(g)a+x.
TR EU AR AR | |
Now, since. J,;-) 3 S el w =D fhere exists a positive integer N such

that, forall w= N, |

5.. l/Nl < ‘S‘ < J‘—f I/,Q'

So we have, for 21l w2 N, -



« . . . . s
<) < Q) s ) + <,
\,\'JQ / : .J\'J'\/N. ) < AJ ) o

end, | J\: sl» N (5> J\\é@/-i.

Jda '/p !
Thus we have proved that,

Lo W, €8) « N8,

"D of

We now give conditions under which it is possible to replece
discontinuous functions by éonti.nuous cnes without altering the

eorrssponding Heusdorff pre-measﬁrea. : IR . T
Theorsam 1) L R B

Let W(x) be any monotonio increasing qe-dimensionel Hausdorff
measure funotion with the property that,

Wioe ) .0 - a8 YW S ©°
- -1 ) S : B ) .
x o

and such that 1ts points of discontinuity heve zerc es their only limit
point, Then there 1s & continuous Hausdorff messure function YOt) say,
such that for any d>0, end eny set S in gq~dimensionel Euclidean space,

\A H Ny
NS NG

Proof

Let Ut} be en enumeration of &ll the points of discontinuity of Wir)



v6,

We mey assume that 2¢.>7¢; for all ., and thet,
x, > O : as -S> 06
Choose T, arbltrary positive such that,
T, ¢ S>>} end T, £ thxy

Assune that we have chosen ¥, ,..., T, | we then choose T, to be

positive and such that, ;

R ~s)

T, < > . : o -@)

Toex; - v T, )  for Jeheel (R
NS r;) cwex) -g)
L Y

wdy W ) < a‘;)q’—'“\(:;ﬂ)-k(“;'QfS W - Qv)

for a1l M e (o, f;'] " where K s the constant introduced in Theorem 2

Define H(x) . as follows,
Hix) = W)  for x el "c,\“;_.) for some <
H(‘J“b)v: »\(‘&;?Q), .

in i;ha intezvais (‘K;,xz_-\- 1’;) define H(x ) 4o be continuocus and
monotonlic increasing so that,



3t

H('JC:,*"\) = H(X;) + K (I;:\—CC)%(H:Q") for O << T,

where H?Qt/ is & continucus inoreasing funotion with the following

'praperties,
HS‘O(‘}; W(ix) for all x - QY
Hf@)
— 2° a8 x> o -Q21)
n
a * LT Y
en H. (f;) = W&‘—LT;) {\Ab(:\-f;)-\nbt;—m)ss | -RR)

This definition makes H(x) econtinuous at 3¢ because of (32); and
continuity at 2.+ I  follows from (33),

Also we have,

H‘:‘ ( f;} > %(K%;:)W-‘ ik(x;«:}-\« (‘X;"; )} |

sw@ax) by (30).

Hence the equations (31) end {33) ere consistent. It 4s clear that (31)
end (32) ere consistent esince,

e/,

ot a8 x>0
e

Finally, we need to show that we can choose such en H;_"'Ot | end ensure
that,

M 4v) s Wlxgay) for Q<wy< TL,

Now, using (30),



N
_\\A(l(;-b) + A Cﬁ‘) W) < \y+o) = W(ac; +v ),
1 o

Hence we can choose such a function H:hf). Thus, we see that ,

He) < W) for ell ¢,

end so we have,

J\HJQSM J\:w,

Re.

for 21) sets S end positive numbers 3. Let S be a set in g-dimensional

Euclidean space end J a positive number, then given any €> O we can

choose a soquanoé of open sets such that,
Se Qud and d(05)<5 for a1l
end, ZRWd)) « N (s) 4w
Now we assume that for some <
Heacod)) 3 Wawdh)
then we must have,
ol(U.‘S) e [n:\ 0 ¢ 13) for some | .

Let JKU{S) = X,+W where O sy < %; , Then if v\e\.}(k?tk_‘) for
some W ( >} ) then there is & ) such that,

o> e Oomd s o )’



§q.

with O< A s T,.

J N,
Choose open sets \_Vc Sg with s= \, 1, + ) 1 | such
that, ‘ e

"ICANY IS

\',l

rlKV;i ) . v\«-\ for s:'l,—--,[k\’:\:;\ w]ﬂ

N o HET

. <= '-,5

Then,

HQCLLU.;)): HGsaun) = KO K (20 ¥ e
v AT -x)"' &v\") Hsb\)

= Hoy) » w&“ ”\)""‘m'])
Wt A

> Hog-A) + K 03'”\/*"»\@\,,;/
Nt

> HGu-A) + (™M )Yy |
3 / Q—“Ff_") \"Q]H/

Thaws,))

Also we sce that,



ao,

-xs._x > 'n..‘ - fk >‘.k.‘ﬂ+ T:‘ﬂ by (27)

therefores,

e, -~ X e (ox, T ®.
J A x,‘a—n* KL 4)

and so we have,

d | S ' .
de(v;,s)) = W(ayd,))  foran ems.
Further, we note that,
3 .
ol(V;,s) <3 for @1l { and s,
Thus we have,

W
Nis) < 3 2wyt ) ¢ STHLAW!)) <=x;(s;+:.
s ’ -

.
-

So, since the ¥ was arbitrarily small we have,
W\ W
| j\,;(S) = NS,

Hence the theorem is proved.

In Theorem 7 of Chepter 2 ie showéci that as far as Hausdorff
measures ere concerned, any discontinuous one-dimensionel Hsusdorff
measure function Wiwx) can be replaced by & continuous funetion Hix)
vith Hln)> khﬁ) . VWe now shpw that this ‘15 pot possible for the

pre~measures,



Theorem 15 o

a0,

There i3 a discontinuous one-dimensional Hausdorff meassure funetion

Wix)  eay, such that if “m,, 18 & continuous funotion with H(x)2L0¢) "

for a1l =, then there exists a positive number O and a set S on the
real line such that,

N<s)+ Nics),

;

Let

- (YN - - s
R = /l( for W ‘) L;

Define W(x) as folleﬁ,

LV

W(ae) = x, for x e (%, ,x:l

Denote by S, the closed interval [O,."), Then, cleerly,

CalM s

\
N e )ext s 0
x“

Now let R(x) be any continuous funotion such that,
W(x)» Wx)  forsllx. . "

Then we must have,

.

|-

-~

Bbc“)é

7

| 6 |
S0, there 1s a positive real number d such that,

8 < '/q_ rv\

' H(;M:)}:'z(f o for % Gb‘u'J.’°-3-

I
|



Now let. \U?_‘“\ be any open covering of S such that,

| d.(\)?“ )"< x| - for a1l L.
Then if, | | |
o\k\)?";) ¢ (x-§ )q“} for some
we have,

| 1
HCaCul™)) > 3 = 3 S
) > 7 J\R\ ).
Finally, we assume that, for all {
o\LOT“) < > -9,
SRGWW™) 2 N )
N . 'K.A-S oo

> (o &) T

x

S __:‘ ~:v A -\ W
e o 5) W)

Thus, in either case, ‘
W
STRGW™)) » A Csa),
1 X

vhere ¢ > \.

Ny
But the covering §U.~ } was arbitrary end so we have,

Q.



" .‘\\
J\. (Sv\)é C—j\ &SK/
x.. xr )y

that 1a,

Hence the theorem is proved, .

j\«\l(su) 3 }\‘,;LS“) '

a3,
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CHAPTTR
INTRODUCTION

In this chapter, rather than considering the exast values of the
Hausdorff measure of certain pets, we will only be interested in whether or
not the measure is ﬁoaitivb end finite, The first theorem gives us
suffiolent conditions to ensure the measure equivalenoo of two Hmsdorff
measure funciions. The following four theorems ere aonaerned. with an
investigation into the necessity of theso conditions. In the last five
theorems we use the results of the first half of the chapter to extend '
same work of Rogers (9) end Lemman (6,7,8) to the case of discontinuous
functions, end to show thet a result of Fgzleaton (3) does not remain true

for diaoontixmous‘ funotions,

Theoren 16 L

Let he) andAH(a‘t) be two q-dimensional Hausdorff measure
functions, If there exists a dacreasing sequence ‘L'r.ﬂs of peaitin real
numbers anch thet, - J ' '

1), ®,. VO  gag n-» oS

T

11). A_"_f_‘ ;;f" > 0
N> o w

end  1i4), ‘:{.S:*/—*»,Q-,,_, 88 N> od where © <2 < K&,
k&3‘“/ T N “e

Then the functions Wbt) and W(X) are measurs equivalent, for sets in

q-dijensionel Euclidean space.

Proof . . o | o
¥e know that for eny set S in g-dimensional Puclidean space, J\ (8 )



as.

(\q.)
is positive and finito 4f end only ir A (s) $s positive and
ﬁnit’, R ‘i- ’ o P ’_5 5 :
Now let,

Mo 2o o vp Go)
3¢-»0 RalN
E . A\, aq)
Let S be a set in q-dimensional Ruclidesn space such that J\, (s)

is positive and finite, Let I and d be two given positive mmbers, then
there exists an open covering {U ’1 of S by cubes such ’ehat,

\n C(‘\J \,\ C(q,) '
\A, ) - < i\n(dlu )) < (S}d—f ~Q)
and ouo ) <3 for all (. | ~-)
Now assume that O is so mmall that, |
- Sc'
2% > % . -, forall'w such thatx <V-Q)
r, . . )

Then, for each 1, using (2) snd (3), we have, © .

kY

4 , T :
X 'or scme inte .
K, < d(V ) « 3y, < l/“ 2 for sc toger

80 we can replaca each cube | U by ([ —‘+ I) ) cubes V; ef
diameter x, . Thua there oxiata another open cover {V\ of S by

oubos such thnt

-ou"l;)v& %} - for all L

'ol:(V:“)z s rorfan

and,

CSadwi ) < () S Waedy)



a6,

(W)

Now we know that, B
Hx L
o) - A
WG, /

therelore there exists an integer N such that,

He, ) S ' S .
-1 < "'_'/ <_,R"'f for a1l w3 N,
' Wi ) s S
Also, there exists a real mmber d >0 such that for all J< S’ we

have,

as. w> oK

— < + f B Whenevﬁr QQ“ < J‘

hix.)
Thus, since (4) holds for erbitrerily small values of <§,- we havé,‘

2 H(olw;)) < Q1) Zk(dﬁvx)) <R\t§—l+|)q(&*i/ K“«w(s/m/

therefore,.~
) P A =LY
.AH,‘C% (g) 4\\_%{]“}“’,9\)\, %(S}_ :

Hence the theorem is preved because of the symetry of condition 144)..

Corellery v
For eny discontinuous Hausdorff measure function WGt/ there

exists & ecntinucus Heusdorff measurs function HGY) such that, for sets

in Fuclidean spece, Wor) end HOt) ere measure equivelent,



a7

We note that the sbove results cen aasily be oxtended to compact finite
dimensional metric epaces, We see this from the following;
If we have,

< cMU")s nx, <V =

K )
““\’\ L K Wl“' ]

d
for some set U. of en open covering of S, then,

)
Ufr < ,3(“,3&,.) for sme eV

Now there exist at most N (¥/ } disjoint spheres of rsdius “/g X
mesting Sﬁx‘,n,\t). Thus, Uf is contained in N\“/@, ) spheres of radius
0‘4 Xw, , which 4n turn ara contained in NQ‘/S ) sets of dimmeter N,
The remainder of the proof is anelogous to that given in Theorem 16,

ALt
-

We now show that Theoras 16 would not hol{.l' true if we dmpﬁed the
condition 11)., |

Thecrem 4
For every decreasing sequence of boaitiva numbers R\ with %, X o
88 W-> o6 and, ' |
D ol RATO : ‘
there exist two one~dimensionsl Heusdorff measure functions Wix) end Hix)
. HQe,
T T
- b\(x-) .‘ -“; / . - S
end & set N such that \\ (S ) 45 positive end finite whilst J/V\>/ is

26Y0,



Proof
8ince,
i o
w=> 8 Fu
we may write,
W = QQU\/ Fu
where, '4)“-) vy o as L—»oé
Define,
, .
V\K’K) = (Q(‘\)) for xzx_s
; " ,,
= Q(OU) @0’)) ‘for x> x2XR,
. t‘" S 1 (: S
z Q@(\/'_,. <P(m—l/) for %> a2,
and, HGae) = (@U)) for XR>X
. S s . , . 'V\ ) L
- (‘pog o) for X K S35

A1}

o e
o | 2 Qqu)-~ Q) for < 38 e

ML

Clearly these functions satisfy the postulates of the theorem, . -
For all 1, thers exists o, ¢ (. = 2:) guch that,

Hiw: e Ly v
\ta0) ¢ M/ end W) ¢ Wier for 811 &t ¢ (o,
Y. B , R Y t ‘ x

Q8. .

L

.

We now construct the set S as in Theorem 4 of Chapter 2, by means of



Qqq,

e sequence {2} < {w ) with respect to the funotion WGx) We ses that
J\,H(S) is positive end finite, but J\\‘(S) is zero,

Hence the theorem is proved,

Clearly if W) and HGt) are continucus functions then either,

. He) . R
1). /km’ > O as N> O
' W (e I :
11)0 )/("Dtl > o as e > o

or 111), there exists a sequence i®.) such that X,>0 as w-> 16
and,

HQe
/ —_ R

—

88 N> ok where © < R<s,
\n(:s\/

¥o now see that this 1s not true if the functions ere discontinuous,

Thosrean 18
There exist two q-dimensional Hausdorff measure functions H(x)

and \Gc) such that,

Xf\m ‘i&?-t) = ¥, and k_’_‘_’_“\ ‘igf) =9,
°e->a ’\'\U‘/ woo W)

end with the property that there are no convergent sequences {H(.r,.’/k@t.?l
with nonesero limit, where 1%,Y 4s a null sequence, For these two

funetions there are sets S,, S, such that,

o< M(S) €K ANCs)=o



\oQ,
W W
and o< NCSy) <s N/ =o,

To prove this theorem it suffices to define two eppmpxﬁata
funotions, the construotions of the sets S, S, can then be oarried out
ugipg the methods of Theorem 4 of Chapter 2,

Define,
HGe) - Q::'J) l_ §o§ ‘JCEQ:K'M-H )l_‘.]":’ [ ﬁ(‘}
W - (,;%; ) | for x¢ (cmn)'j%',' [anl (..i(q']
Hix) = Q-i';‘. gor x. & ([ AR fi"]

It is easy to see that these functions have the required properties,

Next, we prove that 1t is possible to have measure equivalence

even when the oonditions in Theorem 16 are contradicted,

Thecren 49
: There exist two measure equivalent gedimensional Hausdorff

measure funotions W(x), HGr)  such that 4f I"H( “/\n(“‘ )} is
convergent for same null sequence V&N then,
A an a_c_.".‘-*' -Q _
n-> 4 X o L
Eroof
Define,



\o\

\?\(:v)

n

\ (e 0
[at ‘ for x e\(ﬁul)ﬂ T U*I‘..)k"

Hxe) '1/(1.»“.

ft

e V7
forx e Q[ﬁhul 1 :: ) ‘]
!

- S ————

‘ a, __-\{
- 1 . (’\_y‘* l} ‘. forxe &[(’lwo‘\.} !] ) [(1\4-&{)\_] ‘] '

We pee from the definition that,
l['\. ‘l\\)t) < H (‘)(‘) < lk()t) -~ for all %, »

hence we clearly have measure equivalence and the theorem is proved.

Clearly we cen see that if,
— K (x .
B 2k amt Ae RO Lo
p LT W/ a->a WO
then Wor) and W0t) are measure equivalent. But, by considering the
following exemple we see that there exist two g-dimensional Hausdorff
measure functions \r\w} end H(t) with,
m->a W)

‘ W
end for any set S AR (S) 4s positive and finite if and only ir A (S)

o

is positive and finite,

Define,
2y -2,
W) = ‘/vd_ s for IGKCKM»I)\_] t ((.\’q \]
E . : —1( -
Hx) = '/,\(' for x e [Com)) q: c(“l‘.']m)_
Ll . <
A Q‘} 18 alweys positive end finite, since HGc) 4s less than any



1o,

continuous function which is greater than W) and becsuse for eny set S

we oan always find a continucus funotion 9(a¢) greater than W(x) for
which,

A,KS} <1(C j+v \Sl

( this fact was proved in Theorems 5 end 6 of Chapter 2 ).

It is interesting to investigate whether or not meaaﬁ'zr-e' bquivalenc‘e
implies the existence of a null sequence on which the ratie of ’cha
functions 13 convergent to a non=zero limit, It is easy to see that thia :hi
the case if we are only considering continuous :hmotions. For, if there
is no null aequence with the requirad property we ere left with only two
possibilities, | o IR

1), Mm E‘:’ =

xpe H&)

or, 11). Am "‘("/ = S,
xS0 HOr)
Clearly both these posaib:uities are inconsistent with measure equivalence,

Tho next theorem showa tha.t the oppoaite result is true for

discontinuous functions,

Theorem 20
There axis’l; two measure equivalent one—dimensional Hausdoﬁ‘f

measure functions k(-r ) end H(‘r ) such that there ia no convergent
sequence & W /HQ )} { nhera {‘n,\ is a null sequence ), with

~

nonesero limit,




Proof
Define
'ﬁ“ < ‘/1*
\
\’\Q“/ = i nCant)
" \
) - 141 Gaar) Qaty)
Then,
r
k & ANl )) o
= /1
L (at)
and. H k‘)t I‘ln CAan) ) _ '
z /‘L
‘ ')Q‘U\w‘ ]
Thus,

)

——

x>0 ¢

nR-="0

£o, we must have,

ACS) > ACS)

o3,

for wWw=O,L,%+ ...

for Xe K‘x
A M ae3)? gntan)

for wn=73 S 3, . .

for xe &x'l,.(nﬂl(mq ) 1.&(:\0\« | (wn.)‘)

w=1,3 6 ...

for ell wz 3 57 .

. forau“: 'L."*; 6,--'

gt

for all »ta A

Now let S be eny set on the reel line end, given any ¥ > O, let. {Uf\

be a sequence of open intervels such that,

for ell «,



Loy,

end, J\étsl ¢ Tawd) < j\,J(s/ t 1.

Let {x,) be & sequence of positive resl numbers such that,
WWxa) :

e,

Ve s wie e
and let {'xv\;\ be & subsequence of 1.} such that, for each <

7 OKUg ) QIQ'QA‘._-H ’x*t—}-

o deod
We can replace each U s by ([ >/ ) open intervels of length
. w,ti
Mo 41 'Ihua, we get enother oimn covering ‘{V :\ er S such that,
ouv‘/<5 for a1l {

. Z\d.&\f; Z((‘"‘“D -/ )x»\.‘m

and,

Z\ QOLCU;S ) 4 ’)t“;m;) -

< '8 fdwé) <N J\.“(S)*l?

. 0
Thus, for ell &> ©, thers is an open ofrverigg. A ({.,o,: S ’?“"_h f,hg.t,
;‘d(\l;‘; ) < & for a1l <

&LV\,S ) e S\.)‘-\‘} R



\eS, -

and J\K(S) ¢ Tavd) < 1AG) a1
¥e can choose a positive resl mumber o ' say, such that,
W(dvd))
—" <
)

Thus, for O <S8<J’ we have,

for s11{ whenever 0 <dcd

k ! .
J\J(S) $ ;Z‘kuw.f)}g ;fouvﬁ)
<’LJ\:@)+1<.
Hence we have,

v A(S) ¢ J&\‘(_S/ < 7."4\('&"/.

H
Clearly, we cen get the seme result with regard to J\ (S) and so we -
have proved that the functions W) and H(X) ere measure equivalent

for gets on the real line, 4180 it 43 clear that there are no convergent
Wy )

sequences { ga )

S with nonegero limit, Hence the theorem is proved,
Eggleston (3) has shown that glven eny positive mumber of end eny
funotion Wlic) satisfying, SR : ' .
1), W) continucus end strictly inereasing

“ .
11). '3‘/\\(3‘} 48 sn 4increasing function of x .



LW

end, 411), Wlo)=o, A ”‘“/ =Q
’ ) 'Jt—;g+ WOt) ?

we can construct e set A in n-dimensional Euclidean spece so that

4
MR = o It 4s now easily possible to extend this result to  *
functions satisfying,

&), WG/>o for 1>

"

»)., Mwm W)
K-> a

Wer
md, o) Am = w8,
RO P

°

In the same paper Eggleston defines two functions { satisfying 1)., i),
end 111), ) to be incomparsble when,

k N\ \'.\_(.3—'-/ = A_f_v\_:_ ‘F_(_B/ = O

x.;;‘} R/ e e+ W)
He ghows that for two incomparsble functions we can construet a set A

\“ H
such that N (A) 4s positive and finite whilst A (A/= ¥ . Our next
theoren xah.o's that this result does not extend to the case of discontinuocus
functions.

Theorem 21

There ere two incampareble g-dimensionel Heusdorff measure
functions W) end WG¢)  sey, such that 4f S is e set in
qedimensionel Euelidean space, them if J\\.\ (8/ 48 finite we must aleo have
N'(3)  fintte,

Define the decreasing sequence 1.\ o8 follows, |



1073,

x,=l - end DTy i = e
) At |/ )
Lean ) ] &
then, elearly,
R, <N - emd 3('“'\4 0. e w-> &,

Define the function «\(t) as follows, -
oQy) =\ | " Avfor :)t>:'<:1md

. - Ay | _ ,
o) - — for ® e()cM”:x:J :
Then o) 48 a q-dimensicnal Hausiorff measure function,
Define W(% ) such that, » o

B NS NG Rt L E G et
WRa) = aqtRy) forell a
Define H(2t) such that, |
. .H‘(w =al) 'foz-? | 1 F IRy

TSV ELNC Y for all w

Hbf“m J: 3@%.& ) f‘;‘ar all w.

Then both W(t) and H(x) sere g-dimensional Heusdorff measure functions,

Also,
. ;.\'\Qr\v\—u} Ce s (1"\"'\/ S(‘)(u@\/ - \

RO D

- ("\wﬂ/ ch(pq,“} eyl



lo8.

end, Hﬁxmw/ . SQ.)L“) (
WO i alang) ™™

t
-

thus, -
| &‘_’_\} \':i‘s—t] = AiM ".‘_(.T.)'-_O
 x>ox  H@) R>ot+ )
that s, the functions \ﬂ()t) end Wix) are incompareble.
Now J.et S bo any set such that f\ (3) is i‘inite, then ainee \\(1}5 gb!)
we have \I\.c"(s } 13 finite. Frem Theorana % end 6 of Chapter 2 we see
that given eny i>0 there is a continuous Hausdoﬁ'r measure f‘unc’cion
G (3t ) say, such that G(3t) > 30(/ for ell "t and,

NCs) < J\G(3/ < 'lﬁmhlf]\"‘(&/« <.

Now we have W(x)> ;::\Cx[ end RGr) > a(x) end both W) and Hix)
ere less than any continuous functiog which is greater then o \(x) , ‘that

s,
W) ¢ Gex) e HOY ¢ @)
Thus,
J\%(S} J\ (s) ¢ j\(s) <’lU. c;m) /(\(;) T
ana,'

J\&S) <J\i$) < \is) <"L(k5€”&«~|)J\,(3}+~:

Henoce the thoom is proved.
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Combining this result with the corollary to Theorem 16 of this

chapter, we see that Eggleston's theom doss not held true for functions
Wix), satisfying,

1), Wx) 1s contimuous and strictly increasing
11), Wlo)=o; i X .o,
=3 04 he)
Since, if 4t held true in the continuous cmse it would also be true for
discontinuous functions, and we have Just seen that this is not eo. Thus
we ﬁavo a negative snswer to the problém of whether we can always replace
any Heusdorff messure function by ano‘cher cne \AQN ), say, with the

W
U‘)/ is a decmsing function of n

property that
¥e now generalizo a result of Rogers (9) to tho ‘case of

d1scontinucus functions,  °

Theorem 22 o
Let hae ) bo a q~dimensiona.1 Hausdorff neaaure fnnetion and C

a oanpaot set of non-e‘oﬁnito h—measure ina Enoliaean apace ( or in 2 |

ocmput, rinite-djmensional metrie upace ). 'J.‘hen thore is e oontinueus

Hausdor?f measure funotion 3@) with M -<o; and such that t 1is of

none d’—finita g-mcaaurc. ' | ' 7

Proof
Let %} be en enumeration of a.ll the discontinuitiea of Wix),

Define the dooreasing sequence {q \ as follows. Chooao u& arbih'arily
such that Y & {R.} : having ohosen u,...,w - choose v such that,

-

' \(2 u\n—g <v L\'\ s -\/'l \\t\'ﬂ ) A



no,

W, ¥ .

Define HGe) to be continuous increasing and,

Hy, ) =Wy ) ~ for all w,
with, | RGY) <) for all x.
-Then we have,
'1)'..' N w \‘°> &3 v\-$ LS
11), 3\5"“5 A, for all w
1“1:‘11")4 ‘“b\“’/h(\%;"" ‘ | a8 w—> ¥,

Thus 81l the conditions of Theoram 16 are satisfied, So, for eny set
)&‘K S) 1s positive end finite if and only if N ] 4s positive and
finite, Now, since © i3 & compact set of non~ Sefinite h-measurs 1t must
be of non- o-finite H-measure, Thus, fram Rogers' result (o), there |
exists a continuous Hausdorff measure function o(x) with H<9q guch
that € 48 of pone o-finite g-measure, But Hlx) < W) for alix and
thus W < o. Hence the theorem is proved.

¥e, next, generalisze same results of Larmen (6, 7).

Theoren 2

Let € be a finite dimensional ocompact metric space, end suppose



AW,

that W(x) is a Hauaaorff measure funotion auch that J\ (\:/ s
infinite. Then 1% :ls poaeiblo to select from E & elosad. aubsee af any _
glven h-measure,
Proof |

If o is any gﬁen ;;Véaitive nunber, it is sufficient to f£ind a
closed mbaotf ¢ usuoh that J\k&(’ > . Larmmen (7) proves this result
for the case when W) 45 a continuous { on the right ) function, From
Theoren 16 we can find a continuous function Hor ), with HGe) < Way)
and such that HOt/ and WQGt) are measure equivalent,
Thus AH (€)= o6 and thoreforo fron Larmen's result we can find a
closed subset P uuoh that, R

J\ (0)

But \'\(‘RI > Raat)  for all *, and thereforo,
N> 9‘-

This ocmpletes the proof or the theor;q.'

Let k(u ) be a qedimensional Feusdorff measure funotion. Then it

is poasiblo to eonstmct in ) a olosed set A such that,

0__<' J\' \ﬂ) _<Ab‘.

Proof SR
- Let H(x) bea continuous runction with HOx/3W0t) for ald 3

end such that hix) and < Hbt} are measure equivalent for sets in



.

éoﬁ:péct finite dimensional metrie spaceé.‘ Then since H(X) > RGU ‘A‘we
know thet H 1s a q-dimensionsl messure funotion, In perticuler, we know
that,

Hx x)

o
,)t‘\r

-> % , es ™®m—> 9O,

Thus, there exists a decreasing sequence N} such thai;

X, ¥ o as N> ok,
and for eesch w,
Hix,) WY |
at ‘ Ko for a1l t e (o, x,:'] ,

w

since W(x/) is continuous.

In the closed intervel (X

At /

HoO . H(w)
Hite)= o Wb { w}

el

at| define the continuous funotiea H'Ge)

as follows,

H gy

’ [/
then W(x) < H&/ for g1l ™ and Wi )/ 4+  increases from o &t

o “b‘“"z‘q’u a8 >t decreases from X, to XX,
[ % 1]

Now consider two real numbers X, Z such that X>2 .  then because of the

continuity of Hix) we have, _
H'ex) N H(\h,‘),

Q-+ qtt
n Aae

where W' W)= Hiy, } and o € B‘.w ,3:,\ for some integer v\," and,

H') BRASY

a : 41
- Q

)



vhere H'(y_) =Hly, ) end y_ e Cx

Now, if .
ulon) ’ :H’.(-HL}'."
' DQ.V‘-“ [ :‘;‘ ‘

H'(e ) Hi(z)

-1

we must have

1e,
H'Cry H'z)
then we mugt have, W, ¢ (=, 2],

In the interval (72,

LY

H Wy
from }/‘5&*4 to m1)/2 g+ which is greafer than or equal to

"X 2%

'ﬂ, for the same integer w.

Therefore, there exists t ¢ \:‘L, g;] such that,
Hee) o WGy,

NETL a
SN W,

Thus, we have, because of the monotonicity of W(n ]

M'(2) ¢ W) < Ky, )

< Rix)

"3,

"}, the function // LM takes all values
' K,

end 80 we have proved that the functien H'%) 1s monotonie increasing,

Mo, Wx) 18 continuous andH

"x)/““'

increases to infinity as X

decreases to gero. Lamen (6) shows that for funotions of this type 1t 1s

LS
possible to construct, in 1‘, & compact, porfgct set A such that,

o <« HI(A) <

end,

_Q_,< \/\""'(A) o .

(for definition, sse p.h)



ny.

Row since W(x)> W'Gt) pon a1 X, we have,
N s A)s o
Define the function qGt) es follows,
qe) = x W)
then we have,
o (A) =09,

end so R 1s a compact finite dimensional metrie space,
" ) ‘
so, 4f A" (A) 4s finite, then we must have,

o <J\\\(M< o8

because of the messure equivalence of W(x) and W),
h
Now, 4f N\ (&)= & we can use the result of Theorem 23 to select a

closed subset P of A such that,
"
o « M(P) < s,
and again we have,

0 <‘/\E\U‘)<o<,

Hence the theorem i3 proved,

Finelly, we state & theorem of Larmen (8) which can easily be

generalized to the discontinuous case using the corollary to Theorem 16,



ns. .

Theoren 25 _

Let WOt) be a Fausdorff messurs function end A an enalytic set of
none c=finite h-measure in e compaot finite dimensional metrio space, then
we can conatruot '7-% disjoint closed aubsets of A whioh have .

none ¢ »finite h-maessure, -
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CIAPTER 5

INTRODUCTION

In Chapter 3 we obtalned some results relating Hausdorff
pre-measures end convergent sequences 18X of positive reel numbers,
Following this, it zeemed. 1nterostins to investigate the ﬁropwtiea of the
Housdorff measures of & set with regard to functions h, () where W Gx )3

is e convergent sequence of funoticns,

eorem 26
There exists a sequence of Hausdorff measure functions {k_,('w)g such
that,

hCx) s W) uniformly a8 w—> ¥ .

vhere W) is a Heusdorff measure function, end & set S with the

property, - ‘” o .
Lo ATCs) + A (S)
w-&_\é_ ‘ k | . ,
Proof

We shell &n fﬁot ghow that there exists such & sequence of functions
()} with limit Wlae) such that,

Ko ‘A,k($}= V4 " whenever A ($/>0,
WDV v

Let x, = ‘/':i o for n:z L%, ...

and, Az Vo for w= 1,%,...

Define
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Wae) -
) = «, for Me(x,, 2]

Ve note that «, 1s such that for ell positive integers a, |

L
.xqf

w

This ensures that W(x/ is a q-diméns:lonal Heusdorff measure function,
For each integer w, define W () eas follows, |

= o as w—> 6,

W Gr)= (L« %/ o,  Pfor x G(’)&M;')CM—S

Then each h (x) 1s a q-dimensional Hausdorff measure function,
Clearly,

W ) = W) © uniformly as w—> .

Choose any set S such that,

Q < A?QS/( b,

Conaide& the function "‘uh‘, for same fixed positive integer w. Then,
given eny real number A, there exists en integsr M: M(w/ such that,

A, S A for a1l m M,
Wx,,) . N
Now, given any T> O, choose a sequencé { U“"‘,:} ~ of open sets such
that, »
se O U™
Lo A,..

Yy for a1l <
, d(\)“; ) <%, .
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and, _
SN (8 Dw ATy )« A _t8) e
X. . st ~ .
Then, for all m > M, ye have,

‘,‘xfs’ < gy&axo“f;?’,)‘f,.“;\z‘magoj;))).

< i &,A\:“\S/'tf))

x-

('
that is, | |
. _ , \«.:
AN G)s AN Gs) -z
W Kor ,
Thus, since %, A end t were arbitrary end because, - .. . -
.
o < AN C§) < o,
" h&'e’ K ":

M ARS8

w> s

Hence the theorem 1s proved,

L ome

Corvllary PO :
| There exists & sequence of Héﬁsdori‘t‘ measure functions \.C(x)%

and & function WOr) such that,
\v\,(“/ - ‘ |

——

N as w > o8
o k(-)‘) BRI T
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( the convergence being point—wise ), end a set S such that,

Ao )» ) ¢A“(S/

»\A'%ﬁ

Thus, we ses that unifom convergenoo of the functions is not
sufficlent to ensure that the limit operation omntes with the Hausdorff

measure, %e, now, establish sufficient conditions for this property to
hold true,

Theorem 27
For eny Heusdorff measure funotion W(X) end sny sequence L))

of Heusdorff measure functions such that,

W, ()
W (i)

- | uniformly as w —=> o

we have,

\
/Lm J\ () =N (3,
w=> ¥
for ell sets S and for eny positive real number d,
Proof 7

Civen any T>O we cen choose a positive integer N such that,
W )

-

-« <« — <« l+‘{’
Wix)

for ell w>=N and for all ™.
Thua, for a1l w= N eny set S and any positive real mumber & we have,

-<) \/\:’;(2) j\ (s) < (\+<}J\ Qs/



\ne,

thet 1s,
_ \ ‘ W W
Q-2) N (S) ¢ Mm ATCS/ e Qv ) NoCe )
J nw-> s & S
Hence, since the X waa arbitrary, we have,

W~ o4
es required, * .

X J\:‘& S) - JC“J(: ).
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CHADTER 6
INTRODUCTICN

) A
In this chapter ¥e work in the space 9 &end investigate whether

or not some of the theorems of previous chapters can be extended to this
Non-Euclidesn spaces In Theorems 4 end 2 of Chapters 2 and 4, respectively,
we showed that, corresponding to any q-dimensional Hausdorff measure
function, firstly thers is a eet in q~dimensional Iuclidean space with
positive, finite he-measure, and secondly there is a set in 1‘- vith
positive, finite h-measure, The first theorem of this chapter shows that

there are Hausdorff measure functions such that,

J PPV (.0 P
e, a ’
»®-o K

for all positive integers q, and sets S in ) such that '.Afk(s ) is
positive and finite, Clearly, the sets S could not be embedded in any
Fuolidean apace‘ The seoond theorem shows that there sre diascontinuous
functions such that for sets in R there are no measure squivelent
continuous functions, Finally, we show that Theorem 10 of Chapter 3 dees not

\
extend to the space D o

Theoren 28

There exists e compact set S in Q\ and a Hausdorff measure function
W(x) such that, fer eny positive integer q
: k\M ‘ ":El“) =0,
rK->o '):q'
for which, . |

o ¢ ./\.\‘(S/ < 8,




2.

Proof

Define the sequence ,,h*,‘ of positive resl numbers so that,
‘n“- 1“ for We Q; (‘1._..

Define the function hx) &s follows,

.Y
\A(‘.\c} = X,  for > v.(ocvw ,“:}

3
then, clearly, W(3t) satisfies the conditions of the theorem,

Let {A.} be a sequence of integers such that %5 A:‘ is convergent and
.21 for all W, Ve now inductively define & sequence {t“} of real

numbersj choose L. to be an arbitrary positive number such that,

to < =,
end, \:e = {3‘*3
ve mssume that to A (3“ o ;’tw‘)
[T o . . . e

£l

for some positive integer W,.
¥e now suppose that & _ ..., % _ have been defined anél thet,

t G(M“ 4D 'JQ“M.I)

My T e

\ |
for scme positive integer .,“_“““ S 1[
r

Choose ., es follows,

| .
a)e O < S ¢ /3t'“""

I
p).  C, Wlew )z Wik ) with G A . |
| . |

h,



\3,
0)¢ hu-"—'lt“> x“ﬁ-\*‘ ’
end  d). k& IR,
Now put,
‘Ku;[cnj - T for wm=VA L !

Let STS/ be the collection of all pointa of the fom,

Coyens ey Sy s |
Put, i
$C8) = tewvy Cu®as (n/’l
el A
where | 0(3 = O foxfall 3 !

tet SC\) be the collection of ell points of the fomm,

Qe ... o, € o, ...
) y /R) 2 /,

Put, |
.7 _ ‘)
SCL L, ) e comv L B T4 3
‘ ) ‘
vhers _ . : 0‘3 - =.9 o for :\ + ¢,
end =
Then define,



1.

(4
In general, let S(w ) denote the set of ell points of the form,

Put,
Sn, 4,i0) = cono (™ 7y kar)
where, T
‘:-‘. '\“) to"t‘ —
L, = =
“'"”’1‘\“, 4 ‘
. = tl't\
K+l —_—
. L
: \
(\ll . " bﬁ-‘l‘ E“
[ A TRIY 1V SR v
‘:u-"a;s) .
and, Lo, = O for all other velues of )

Then dafino,

S(\ﬁ)“ U-» U SQV\ L .,n“}

ﬁ
Having defindd S(w) for A=0Q,\\, ... we need, firstly, to show that
SCart) < Stn) for a1l integers w, To this end, it 4s sufficient to

prove that, for each w,

S(“; {' L ‘\“_. ":*) < S('“") :U"'v.\a-'), AR :‘4-,,

X T R
for v, = \,..., K.
Y

Consider a point of 3w, {,,...,{,) of the fom,




Ceeestn/ e
+Qo,..., o W9, ... }‘

1R

t
where the wvalue ‘/R eppears in the position P. Ve can write this in

the form,

(“u-" » lu\-c ] '
X[Qf +(o0,...0, t*" ,0,... ).]-l-(\—A)[ot e “"{ Qo,... u-\)o,...}—_]

x Iy
A~
where the term .\;\‘ in the first square bracket is in position f and

]

that in the second square bracket in position K‘ir s A "i .‘H‘-, if we
t - "
put A: b_.u, Thus by the convexity of SCw-1, L, .. I )  we have,

a=-t
SCh,l, i) @ S, 3,0l
for L:\,.. K, as required,

Also we can see that,”
AUSG, 3y, c )by for all w,

A
Thus, since \2“-»0 as n->o0f and because § 4s complete, we can define
the non~empty set,
S = (\ S (“).
. Wz Q
¥e, next, prove that S is compact, Let {3} be an infinite sequence of

points of S. We now construot a convergent subsequence, using the fact

that for eny integer w thers are only finitely many sets Sw,i,..,%,)

Choose % e\x"; such that,

x

==,

¢ SU,\) for sme L, with | s s\



116,

and such that SC\,

L,

Now, assume that %, has been chosen so that,

\ ) conteins infinitely many points of the sequence

x . @ - .
_“M-' S{M ‘ \.“ . ‘.LM-lJI

where | ¢ L:l SK_‘ for j:=zl,...,m-),

Choose X, so that,

e, ‘e %u,\g
x, + 25 .
end, x, sm Gy lmastm ) for some L, with | €, sk

(4,%

and such thet SQM Y ety La.) contains infinitely nany points
of the sequence {"‘.ﬁ Thus we have aeﬁned a subsequence T8, "; of IN.Y.

Now, given any ¥> 0, there exists a positive integer M such that,
k. < for all m> M,

™m

But, from the construction of the subsequence, there exists, for every
m>M a set SKM Gy gene, '-N) auch that,

'J::“,\e S\M» M); for all {3 M,
Thus,
Q&%v}“)a—\nwﬂ ) ‘t < i:

for 811 m> M and for eny positive integer . Thus {2, .} 4s & Couchy

N -
soquencé, and, by the completeness of ? has e 1limit point, Also, we



"3

know that this 1imit point must be in S since S is, clearly, closed,
Hence S 4s campsact.

Now define,
TKMDL\J"':;’M) & {‘)—‘ : ?K?—K,‘SQM. L\l"‘a"'u\)) < ‘Iu(‘lc“: t!\‘)},
Then we have the following,
T\M'L‘,...,:—m/ is open and convex
SCm, Lt ) ¢ Tla ., in/
AL TUm, Ly ta )'l__ th‘*:"m QR“M_ t“) < DC“M
end therefore,
AR SUC PRIV BN CL SO ) INTY|
Also we have,
o‘(T(M,i,,...,iN)]e;Q. a8 M -> K
and thus,
A (s) € K. ¥ k[o«mm ,\M)ﬂ for a:um

< Q‘" Com k(\-"’*} k(h ) o, by b)es -
Thiu, we h@wo ghown that,

\A‘_"Q y) <7:oé'._4

”

Now, let i\).\ be any covering of S by a uquence

of open
vilhaooN FE

1
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convex sets, We need only consider finite coverings because of the
compactness of S.

Consider & perticular set U.  there exists a positive integer ™ : mti)
such that ell the points of S U belong to the seme S (m-\, 1,,...,'»,“-.)
but to at leest two different sets SCm,v,,..., ta).

Thus, we may assume that,
alvr) < £ -

Now, for (. F1..,

R UStmtutanin), Syl 4,0 12t a —1E

™

thus, we must have,

d( U‘\-’ }. tM,.-itM ’

and so,

A ey

Wl (U)/) = 2™ & Wik, ) bye).
M-

Hence, we may replace the set U; by the ecorresponding set T (m-l,i,,..., 0., )
Thus, since the U. x was arbitrary we mey assume that eny covering of S
consists of sets of the form | (W,i,,...,\n) for finitely meny values
of n. Let n* be the lergest such velue of n, then from b), we may
essune that the covering consists of the K. .. W w sete TW Lw,)

»

Now,

K

“.

M WE TR L L] = K, USRI

SOV QAT



na.

®

14
« TIC-Ye, ) utey)
(G|

o
> N - VYa: ) Wit.).

But $'AT'  4s convergent, thus ﬂ(\"M;) is convergent with

produet ?, say, and so we have,

MNCS) s PUtl)s o,

Thus, we have shown that,
W
a < ANCS) < o6,

Also, we note that since p can be mede arbitrarily closs to one by
A
appropriate choice of {A‘\ we can construct sets § in { of h-meessure

arbitrarily close to any given value,

It can be seen from the proof of Theorem 28 that the only property
of W(at) used in the construction of the set S is that WGy 45 a
monotonic increasing step function, Now, if WQr) 4s any monotonic
increasing continuous function we cen elways find a step function H(),
say, such that WQr) ¢ HQt) ¢ 3W). Hence for all sets S we will
have,

MNes) s ANCS) € NS
]

Thus, we see that for any continuous Hausdorff measure function \'\(R)’ there

49
exists & set S 4n % such that,

o < J\‘“QS)< K.
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Ve have shown that, in Fuclidean space and, in fact, in compaot, finite
dimensional metric spaces, given any discontinuous Hausdorff measure
function there is a continuous measure equivelent function. The next

S
theorem shows us that thias is not the case in the space 9.

Theorem 2

There exists a discontinuous NMausdorff meassure function W(e) such
that for sets in 9‘ there i3 no continuous measure equivelent function,
Proof

Let,

\
e /'l.“ for V\:Q,!l‘ll.. ..

Define W(*) as follows,

Wen ) - ‘/(M. )\ for e(nw" , x "\,
Now, let \""\“) be any continuous monotonic increasing function, Then,
either, |
H'c ‘
o]\ -
1), ,\) > TN for infinitely many
values of w,

' | !

or, 1), W) ¢ —— for ell large values of w,
(W")! “ '.

Conaider case i),, since \'\'(X} 13 continuous, there exists a positive

real number T, and & subsequence Y\ of IN.| such that,

L\U\*\ < LS“ - T‘\ )



3

|
\*" NN ' for x e\us: T, xﬁ_:\.

Define the function Wlr) as follows,

and’ \"".(7t ) >

— for e e
Ht)t) £ QA_ |) ( “'. or “S: f‘\l "ls-‘ r*"..l.
Then we have,
Hioe) > Hix) for ell X,

Let {J\,}, be a given sequence of integers such that E‘A: is convergent,
¥e now define a decreasing sequence {\:v} of positive real numbers;
choose \Z° arbitrerily in the open interveal \\5‘\- Th , %N )for some

o e °

positive integer w_°, assue that t A have been chosen end that

’ My

k.., ¢ (g, - T %“M_' )

Choose \ZM such that,

a). t < \/1 th

). G Hiby) = Rk, ) vith C >A,
0). hM—\-itM>\ﬁ“ - f“

™M= M-
d). k. ¢ K\ﬁv\‘: 'i“M e YO ) for some positive

integer w, >N _ .

Construct the set S with respect to the sequence “J Juat es in the

proof of 'l’heoran 28, Again, ve have,
Q < ‘A, (s) < £,

Now we also know that,
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J\: ST ek WhddTam, o )Y

for arbitrary positive real numbers d end for gll large integral values
of ™,

Thus we have,

\\
M(S) < g vniey)

R S (O N IO

NM N
h = N
where U)““ NM'
But,
$3h~ = & s W= of

end 80 we have,

W

‘A, (S) =0,

Thus, the theorem is proved for the case 1).; it is easy to see that en
enalogous proof will deal with case ii).,

We have shown that if W(w/ 18 sny monotonic qedimensional

Hausdorff measure function with the property that,
W)

8- —> 0 e M —> O,
* .

then for eny set O in g-dimensionel Euclidean space end for any sequence

{5"? with <L-> J as w> of for some positive real number £ , Ve have,

. w “
A J\,é“&s) - J\;\.S)-..

nw> W
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Y
The next theorem shows that thias result does not extend to the gpace !

Theoren
There exists a Hausdorff measure function \A('r)‘ a compact set S
A
tn 1 end for arbitrarily smadl positive values of J; & sequence {J“E

such thet J,-> J as w-> o6 with the following properties,
1) — S a3 xo for all positive integers q ,
1S
11), O < AN'CS) < o4
. k k
end, 111). Mwm A,JK‘} +* J\.8 CS).

> o8
Proof

Let,
N, = '/'1“ for “"0'}’1'""

Define W(X) as follows,

W) = Ca! )"L ror welx, x, )
Thus we see that, |

W) >o for OUD>O

""\V-*)A \( ° | as 92¢ —>» O
end, “._(;’ PN as x>0

x for all positive integers q,-

- ‘ } : R A )
Choose t_ to be en erbitrary positive number such that bt _e (o¢}, Fow
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assume that \?.,,. .-, $ i, have beon chosen end that \'JM_‘= 'J‘““ ¢ \x‘\.
-\
Ve choose Y, as follows,
A N CTIVRT WL

L)

1), Y \I\\"?M)= U"'/M‘) \\KtM_,) with K a positive

integer,
111), tM_' —-q.\‘.‘M > ’J(‘“
A=~y
Condition 41), cen be satisfied since,
A
\ a
N lw‘\') \Abt“om) _ ™Mo\ (“m")
——————— - " "
o\

W ey, ) (n..., 1)
l\:"'\ CQ““.: |)‘ . (“M )..3'\.’

A
LY

and this must be integrel because of condition i)..

»

Ve now proceed to the construction of the set 3,

Choose K, points of the form,

t

O/R,Q'..‘)

whers the entry t“/ﬁv is in position v, for {, = |,..., K, . Denote

Co, ..., 0,

these points by ¢(o,) with of = \,... W

’ *a LI

Now, choose W, K. points of the fom,

a 1t L8 Gy L1 ‘
(Ql"': 04 t'—°':—t—:10'°"'ol['t-‘-E'L‘_-}'Q:"';O- t:l/ lol"’)
b Ty R

. 2 \
- ' . ~ tu h X \
wherl'e 3 is in position \ [\_:_._ — S| 15 4n posttion W 4¢,
B FROU Toae o
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end t'/R i1s in position W+ L W, v i for L=\, . W and {:=1,...,K,.
Denote these points by ¢ (&, ofy/) with of,=V,..., K, end & =\,... W,

Ve note the following facts,
el eu), =R )]. ¢, for o, 4R, ,
e Lo, ) e (o, B )] for K F B,
elelw, ) s @, BNk, rr %8B,
e (¢ (x,00), ¢ Cor) =k,

and, e Celo ), e, )y, for  K+3R.

Now choose k‘K\KB points of the fomm,

L b A gt \:t-t‘ A b
(0...'0 to.t‘,“.... Q E!’E.) 0,"‘.0' -'-_"I 6‘5—-, °' 5’—5],0,-.-10'21.0’_,,)
! ' e Y fu:: ’ £ 5T Tt

(R v Iy
. LY . 8 t'& U \
where, -t is in position 1, [% - = is in position K +{,;
N t°5—1\ 1ty
9 . > ¥ '
-t is in position LW + v W + i, [ E} - E-“ is in
£, ok

position WU +W i + K, +{,v\f(.,’ +i,, end ‘:"‘/S{! is in position
LW AU W) 45K (K ) ikl for L=l WGy L

I |

Denote these points by ¢ Qo(.,ot\, 0(3) where 0(3 =L Ky Ly,

¥e note the.féllowing facts,
Q[Q(v“.u"\.d‘i,, S(?ﬁnz to, for “.i*B”“
R (E K‘t. “\;‘1}: ‘Q"'(d'l %‘/1 = ¥, for ol ¥ 3\-’ o

¢ (e ta,tum), s, Padl-ty for oy ¥ Ry,
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Q(SQN,K-.,’(}), Q&Fu?t.?lﬂ-’-to for D"‘#?"
and @ Lelu,w,00), ¢S, f,By )2k, for B,

Now essume that W.... W, . points ¢Ca,. o ) with &= 1... W,
for L= \,...,~-) have been defined, Ve define the K\- -. K. points
s(u.,...,ol*} with dai=L.. W, for i:x\,...,w 1in a similar

4

manner to that described above, so that we have,

e lelu ), et o R ot

where ®ant + ‘3“-‘_ for (=09, ..., A=)

and,
Q(Q\d"“"d“}o s"(d‘)““t o(v\-(-ul”zw-t Y Pacdge s ® "o"gc\)‘] :bﬂ-:'l )

where O(“_;_ + ?“’;_ for ¢ =9,...,n-\,

Now, suppose that this selection of points has been carried out for every
positive integer w, Then, if L ¥:} 43 any sequence of integers with
\ ¢ ¥, £ Ky for =\ the corresponding sequence of points

Lo, .., 00 )% hes the following property,

LA S
Q[&(«‘,..-)xu), &K“IJ"', Kﬂ")‘] =b“)

»t‘or eny positive integers v and # Thus, since we know that t >0 as
nW-> o6 we eee that {';(\o(‘....,ol,)} is a Csuchy sequence, and by the
completeness of 0" must converge to a point, which we denote by E(K,,e(‘,...).
Ve note that,
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SN RTY N C YN SR | P

w)

i K. . P

W way -’

Now let,

.- 2.

Define,

AT A R T S S SRR AL

s W for Lzwaliwman ...,

.
~ -

where the Y. are integers such that | < ¥

Then,
alsCu, vl ))=k,.
Define,

T o, k)= R g Uy S(o(,,...,d,))< VAR

then we have,

WCd ST e, o)) » WEACS ety )]

Ve see that S can be covered by the W, ... K,  open convex sets
Ty, .o o(“') for any positive integer w,
Teke an infinite sequence {18} of points ¢ 4n S and write,

v %)

0 LY S(o(“ o .,.) for w=1,1, ...

x A
then o(:A= of, say, for infinitely meny values of w,
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Choose the subsequence {‘35“:\ of (%"} such that,

.
-

" x w: ne .
QS = S'&Vl, “1 “3 ,--.) fOP L""l'\'l""

ne *

then o, = &, sey, for infinitely many velues of ¢, Choose the subsequence

ne .
L2 ‘} of {)5“‘!‘ such that,

Wee x . 3 e
4 -3 .
1 = &&«\,0(1, 0(3 ,.../ for 1= (,1,.-..

In this manner we generate a convergent subsequence of i‘)s“} end hence we
prove the compactness of S,
Now, let § be an arbitrary positive number such that d & 37t.y.Let m
be a positive number such that,

k. < S <k, .-
Let V) be a sequence of open convex sets, such that,
o\KU:.} <3 for all .,

o
and, Sec VoL,

.

!
¥e want to find the lower bound of the sum 2 \«(olw;)} over all such
sequences of sets, Firstly, because of the compeactness of S we nesd only

conzider finite coverings, Now, consider a set U ¢ LY such that,
a(v:)el \'-Mt*_,) - for pame integer w with w>m.

Now U can enly contain points of S which lie in the seme set T\o(”...,ol.}.
But, we know that W(d(V.)) 4s greater than or equal to WlAiT(«,,.. Y]

and 830 we mey replace the U: by the corresponding set 71 («,,... o).
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Thus we need only consider coverings consisting of sets of the fomm

T «,,.., &) for finitely many values of w. Let M be the greatest
value of these integers w. Then there must be K, sets (..., o(~)
where § 4is an integer, essuming none of the covering sets is redundant,

Row,

K WLt e Y] Ko Wlatsea,,. . o0 Y]
KN \"Ktn)

1"

WY i) by 11).,

"

QY ) WCA LT oty e, oy Y)Y,
Thus, we should replace each block of K sets T(o{.,...,ot,,.) by the
single set T\ot,,..,,x et )which they all intersect, Continuing in this

manner we eventually get,

LY

w

Koo K W La T (w,, e, 1Y)

1t

Ki-o: Koy LE,)

L J

ﬁ Welin) Wby,

CE
Hence,

J\\,A(S}.—. A on ﬁ\\*".‘.\)\f\(tg}'

M- K LEe
which 18 positive and finite,

Now, consider d:t for some integer N, since we ere only interested

in sets of dlzmeter less than tN we get,



j\: G3): \K.... KNM Wid &T(d””" ’(N“n’]

by similer reasoning to that above,

Thus we have,

N4\

“
J\éﬁs) : f:! (Y ) W),

Now, let {J,} be any strictly decreasing sequence such that,

J“—éx 88 w > of,

Then for ell large values of w we have,

\ﬁ N
J\s (S) - ﬂ NERYANUN]

Lo,

That is,
N
K J\ (7 = TTa ) Wie
w ¥ u \_:| °) ‘ (N‘“) \Ar (S] :t j\- (S)-
llence the theorem is proved,
o
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APPFNDIX 1
Let C be a convex set of diameter A in q-dimensionel Fuclidesan
space, Denote by C' the set \x'. Q(‘x, 30)5 J} for some =mmall 3> o,
where Q 1s the metric in the space,
Assertion
We can cover CVC' with W \d/J)q;‘oubaa of diemeter 5, where

K 1is e constant dependent only on ¢ .

Proof
Let P’ Q ve polytopes such that,
PaGC  ana {lt!Q(M‘,C)< 518}39’
¢'2»Q ama ix gL, Q) < &/g\') ¢’
Then,

Po> Q> JacteGr,eP)51 8%

Since, if pe{x:1e(x €P)>1J} end 2 e € (, then there exists q ¢ X%

such that,
elx,a) < ‘S/q_
So we have,
(3, x)+elr,a)> e(p,a)sny
that is, | | | |

RSpx) > S- 8, LF



by,

t
Hence Q€ C.

Kow, if ?GC—'\ Q then there exists s e C! c’ sueh that,
elp,s) < ‘S/\f.
Also, there exists %xc € C such that § (s ) < d and hence,
o 8 d, + é = Sq R
e(p,x) < <, ly
that is, f 27 C'\ Q &nd therefore pPeEQ,
Hence {:ﬁ'.g(r,GP)YLJS cQ and clearly QP

Now let % ¢ C\C’ then there exists at least one point p on the frontier
of D such that,

€ (Pak) = ML {{\q”)t} : o ¢ frontier of 9}

Let sS-= Q(p,‘x} then S >0, since x 48 an interior point of P. Then
from the definition of p, we have SCx ,S ) c 9 Also, since p lies on the
frontier of ,P there is a support hyperplane H of ’!) through p. Clearly
H must also support J3(>c ,s) and hence H is the unique support
hyperplane through P. Further, we see fram this argument that if we erect
e rightecylinder of height L d on each facet of P we will have a covering
or CrC/
N 4

Now let {V:}._ be a finite covering of G\ C' by disjoint cubes V.
each of dismeter J Then we must have,

N /

UVe e 32 e, ¢) £33\ ixtelx, ¢t//s §%

(93 )

So, by a similer ergument to the one sbove we have,

d \W a-
N (=) ¢ca (Ud)” 6J
(&) <ot



S,

where, O, is the surface area of the unit qedimensionsal ephere,

q’
q—\
Hence we may choose W = Sn‘\"l R end the assertion is proved,



Correction to Pages 79 and 80.

h, ® 3
To prove that L (U Sn) = 5 Xy
§ n=l

It is clear that we can cover USn by its own closure. We now
n

assume that all the sets of the covering have diameter strictly less
any

than & . Thus, let {U;} Fe&closed covering of ‘g S, such that,
d(u,®) < : for all 1 .
If there is more than one U; such that d(Ui) > Xyl then clearly.
Zh(a(ui)) > 2y .
Now assume that there is at most one such U, then,

d(U;} < 8 - ¢ forall i and for all small e >0 .

Choose one such e , let {U 1 tbea subsequence of {Ui}; such that
i :

each Un has at least one point in common with the circle x2 + y2 =~%(6-e)2.

i
Clearly, no Ui can contain diametrically opposite points of this .

circle. Let the intersection of Un with the circle subtend an angle 2¢:

i
at the origin then,

d(u .
sin o5 < "y and 0 < o < ﬂyé

XN"E



Since the circle must be covered we have,

’ 24,

and using the fact that sin ¢ > /

; we get,
1 o ) .

(XN - 5)

12 05 2 2(xy - <)

£ d(U;) > = d(u ) >
1’.1; "i’)' 1r

But this is true for all small values of 'é, so,that,‘

Hence, sinrce h(x) > x for 211 x, we must have,

h 3,
Ls (g vsn)_= /2 *n o



