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ABSTRACT

Constructing estimators for the parameters of a mixture of
distributions has attracted many statisticians. Given that the
distribution function Gg(.) of a random variable X is a mixture of
k (l < k < ®) known distribution functions F (.) with mixing
proportions 8 ,...,8 respectively where 0 ^ 8 .  _< 1 for j = l,...,k 

k ^
and Z 8. = 1, and given that G (.) determines 8 ,...,8, uniquely,

j=i J 2 1 ^
estimation of the mixing proportions is considered. Different estima­
tion techniques are studied in depth and the properties of the 
resulting estimators are discussed.

The necessary background to mixtures of distributions is first 
given and an extension of the method of moments for estimating 
8^,..., 8^ is then proposed. The generalized (weighted) least squares 
method, when the observations -are grouped into (m+l) intervals, is 
considered and it is shown that the estimators possess certain desired 
asymptotic properties. The case when m » is also investigated. Since 
the set of equations leading to the generalized least squares estimators 
are not in general solvable, an iteration process is proposed and is 
shown to produce satisfactory results after even one cycle. Finally, 
when k = 2, 8^ = 8 and 8^ = 1-8, the problem of maximum likelihood esti­
mation of 8 is considered and the Fisher's scoring method is suggested 
to solve the likelihood equation. Properties of the first and second 
cycle solutions are derived.
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CHAPTER 1 
INTRODUCTION

1.1 General
In recent years, mixtures of distributions have received an 

increasing amount of attention in statistical literature, partly 
because of interest in their mathematical aspects and partly 
because of a considerable number of applied problems in which 
mixtures of distributions are encountered. In this thesis we 
consider a mixture of k (l<k<™) distinct distribution functions 
F^(.),...,F^(.) defined as

k
C-a(x) = r 9 F.(x)
: 3=1 ̂ ^

for every x belonging to some measurable subset of the real line
k

with the condition that 0 < 0 < 1 for j = l,...,k and Z 0. = 1.
- /  - . 3=1 J

We assume that the distribution functions F^(.),...,F^(.) involve
no unknown parameters and further that Gg(x) determines uniquely

and F^(.),...,F^(.), i.e. Gg(xj is "identifiable" We
pose the problem of estimating the unknown parameters 0^^...,0^.

In this chapter, however, we give the preliminaries and the 
background to mixtures of distributions. In Section 1.2, we state 
our definitions and notations along with some of the elementary 
properties of mixtures of distributions. In 1.3 we give a formal 
statement of our problem together with a brief summary of the 
subsequent chapters of the thesis. In Sections 1.4, 1,5 and 1.6, 
we outline some of the problems arising in mixtures of distributions 
together with a summary of the work of previous authors. In 1.7 
we look at some applications.



1.2 Definitions and TermirKilogies
Let y  = (F(x;a); x a Ec/)} be a family of one—dimensional

cumulative distribution functions F(x;a) in the variable x E %  

where X  is a measurable subset of the real line to which every 
member of assigns probability one. Each member of J* is 
indexed by a finite dimensional parameter a = ) '
belonging to some measurable subset c/4 of , the o-field of the 
Borel sets in R^. Suppose that for each a Ec/4  ̂the set of points
to which F(.;a) assigns positive probability is independent of 

,,.. ̂̂  and that F(x;a) is measurable on the product space
X  xeA , a measurable subset of the (s+l)-dimensional Euclidean space
S IR . For this, it suffices to stipulate that F(x;a) be measurable 
in a for all x E X  (Teicher [55] ).

Denote by ̂  the class of non-de generate s-dimensional cumulative 
distribution functions Q(a) whose induced Lebesgue-Stieltjes
measure assigns measure one toe/t- . Then

G(x ) = G_(x) = / F(x;a) dQ(a) x E X  (l.2.l)
aE<s4'

is a one-dimensional cumulative distribution function (Robbins [4T] )
called a "Q-mixture" or more briefly a "mixture" of ÿ  . The family ÿ
is called the "kernel" of the mixture while Q(. ) is referred to as the
"mixing distribution". Following Teicher [54] , the family
^  ) of mixtures G(. ) of 5^ resulting as Q(. ) ranges over Q.
is called the class of mixtures of^^ .

Now, in particular, if each Q E ̂ i s  a step function with steps
at a ,a ,... say, or equivalently if for each Q E ^ , y  is discrete 1 c Q
assigning positive measure only to (a countable number of
points in R^), then (1,2.1) reduces to



Gq(x ) = Z 0. F(x;a.) x E X  (1.2.2)
: j=l J ^

where 0. is the mass assigned hy Q(.) to a. for j = 1,2,... callec
the "mixing proportions" and 0 = (0^^02,...)'. It is clear thai
0 ̂  0. ^  1 for j = 1,2,.., and Z 0. =1. Distributions of the 

 ̂ j=i _type (1.2.2) are called "countable" mixtures of distributions.
Moreover if for each Q e Q, the set {a^ja^j...} E R^ contains only
a finite number of elements a^,...,a^ then the resulting mixture of
distributions is

Gq(x) = Z 0. F(x ; a.) x E X  (1.2.3)
: j=i J J

where 0 ̂  0. ^  1 for j = l,...,k, Z 0. = 1 and 0 = ( 0 , . . . , 0 ) ' =  .
k J j=l J
Z 0. e. with e., 1 ̂  j k being the k-dimensional vector with 1 at J - J •'J

the jth position and zero, elsewhere.
Distributions of the type (1.2.3) are called "finite" mixtures 

of distributions. The individual distribution functions F(.;a^);
j = l,...,k being mixed to produce a particular Gg(.) will be called
the "components" of Gq(.). Finally, if in (1.2.3), the values of 
a^,...,a^ are known, (1.2.3) takes the form

k
G (x) = Z 0. F.(x) x E X  (1.2.4)
: j=i J J

where F.(.) = F(.;ot.) for j = l,...,k.
The following two special cases are noted:

(i) Let s=l, F(x;a) = F(x-a) in (l.2.l), then

G^(x) = / F(x-a) d Q(a) x E X
^ ctE

and it is well-known that in this case Gq(.) is called the convolution
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of F(.) and Q(. ) written as G«(x) = F«Q(x) for x E jE , I::' X
and Y are two independent random variables with respective 
distribution functions F(.) and Q(.) in R, then (Robbins [47] ) 
the distribution G_(.) of Z = X+Y isy

Gq(x) = Prob [X+Y _< x] = F*Q(x ) x E X  . (1.2.5)

However (1.2.5) is only necessary and not sufficient condition for 
independence of X and Y.

Further, if we denote by 4>̂ (t), ^^(t) and 4>(t) the characteristic 
functions corresponding to the distribution functions F(x), Q(x) and 
G Ax) respectively then G (x) = F*Q(x) if and only if

$(t) = <j)̂ (t) • O^b) . -

(ii) If in (l.2.l), F(x;a) is defined for non-negative integers 
a = 0,1,2,... and it is the a-fold convolution of a given distribution 
function F(x) with itself, i.e. F(x;a) = F*^(x) and Q(a) is the uni­
variate Poisson distribution with mean X, then the resulting mixture 
of distributions

-X a 
a=0 ^ *

is called a generalized Poisson distribution.

1.3 Statement of the Problem and Outline of the Thesis
In this thesis we shall be concerned with finite mixtures of 

distributions of the type (1.2.4), i.e. a mixture of the one­
dimensional distribution functions F^(.),...,F^(,). It will be 
assumed that these distribution functions are all continuous to the 
right so that
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F.(x) = F.(x+0) X

for j = l,...,k and therefore G^fx) given hy (1.2.4) is also
continuous to the right. Further, we will assume that the
component distribution functions F^(.),...,F^(.) of Gg(.) are
completely known and involve no unknown parameters, but no
knowledge about the mixing proportions is available
except that they are k non-negative parameters adding up to unity.
The number of components k giving rise to the finite mixture of
distributions will always be assumed to be known.

The problem that we deal with in this thesis is the problem
of estimating the mixing proportions 8̂ ^...,8̂  on the basis of n
observations from a finite mixture of distributions. However,
before the problem of estimation can meaningfully be considered,
the identifiability that is the question of unique characterization
of the mixture of distribution has to be established. Identifiability
of mixtures of distributions will be dealt with in Section 1.4 and
necessary and sufficient conditions will be given for the identifiability
of finite mixtures of distributions due to Teicher [56] and Yakowitz and
Spragins [60] . We assume throu^out this thesis that the mixture of
distributions, whose mixing proportions are to be estimated, is known
a pr-iort. to be identifiable. We state the problem formally as follows:

"Given a set of n independently and identically distributed
random variables X^,...,X with a common distributionI n
function Gg(.) given by (1.2.4), and with observed values 
x^,...,x^ and given that Gg(.) is identifiable, it is 
required to estimate the vector of the unknown mixing 
proportions 0 = (0^,...,0̂ )'."
Our estimate of 0 will be based on the empirical distribution 

function G^(,) defined as
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G (x) = —  [ no. of x_,...,x < x] n n 1 n — X (1.3.1)

i.e. G^(x) is the proportion of the observations which do not exceed 
X. We denote by T (x) a random function whose realization is G (x)n n
for all X eX, s o  that

r^(x) = ̂  [no. of X^,... ,X̂  x]n n e 3C . (1.3.2)

The functions G^(.) and F^(.) can also be represented in the 
following forms: Let n(x) be the well-known Heaviside function
defined as

n(x) = '
X _> 0 

X < 0
then

n
G (x) = —  Z n(x - X.) n K j=i J

and similarly

6 X  (1.3.3)

1 ^r^^x) = -  z n(x - X.)
^ j=i

E 36 (1.3.4)

The statistical properties of F (x) are well-known (Darling [ l6] )n
and we state here (without proof) some of its more important properties

(i) The expected value of F^^x) is Gg(x) for every x E %  and the
~1covariance of F (x) and F (y) is — c (G_(x), G (y)) for every n n n 0 o

X, y E X  J where

c(s,t) = min(s,t)-st =
s (1-t) s t
t (l-s) s > t

(1.3.5)

for 0 ^ s ,t _< 1

(ii) By the strong law of the large numbers



r^(x) - Gg(x)

with probability 1 as n-x» for each x E %

(iii) By the law of iterated logarithm,

- Gg(x)|
lim sup Æ" — ~ Z Z Z Z H Z H —  “ v̂ Gq(x) (l - G^tx)) 

/2 log log n

with probability 1 for each x E %  .

(iv) By the multidimensional central limit theorem, for any set
of values {t.}^ such that t. e X  for i = l,...,m, the 

 ̂i=l ^
random variables

have a joint asymptotic m-dimensional normal distribution 
with mean vector 0 _ = (0 ,0,...,O)* and an mxm covariance
matrix having c(GQ(t^), GQ(t^)).with c given by (1.3.5) as 
its (i,j)th element for i,j = 1,... ,m.

(v) By Glivenko-Cantelli lemma

sup |r (x) - G„(x)| ̂  0 
x 6 X  " :

with probability 1 as n-x».
In Chapters 2 to 5, estimators of 0 will be derived and their 

properties will be analysed. The results of some numerical studies 
will also be used to provide further illustrations. In Chapter 2, 
we consider estimating 0 by using the method of moments. This method 
which has attracted many statisticians dealing with mixtures of 
distributions (c.f. Section 1.5), consists of equating as many sample
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moments to their corresponding expected values as there are un­
known parameters. We consider somewhat a generalization of this 
method. Assuming that the distribution of the random variable X 
is given by (1.2,4), the conventional method of moments is based
upon solving the set of equations resulted from equating
1 ^ t—  E X. for t = 1,... ,k to their corresponding expected values, i.e.
i=l  ̂ ^

the expectation of X for t = l,...,k. Instead of using the function
X^, we define a real-valued function h(X,t) of X and t E R with the
property that h(x,t) be a ri^t-continuous function of t E r for
each X E 3E . Also h(x,t) has to satisfy some further mild
restrictions (see Lemma 2.2.1). Instead of choosing t = l,...,k,
as in the method of moments, we choose a finite set of real values
t^,...,t^ where m >1 k. Since m may be greater than k, the set of
equations resulted from equating the sample moments of h(X,t^);
r = l,...,m to their corresponding expected values, will have no
solution and so we use the method of least squares to find an estimate of

9. The properties of our estimate will be investigated and it will
be discussed that using a generalized least squares, that is taking
the covariances between h(X,t^) and h(X,t^) for r,s = 1,... ,m into
consideration,will improve our estimate. This will, however, cause
some difficulties unless the exact form of h(x,t) for x E 3£ and t E r
is known.

In Chapter 3 we consider a special form of h(x,t) namely

h(x,t) = l t E 3È , x £ t
= 0 otherwise

and will see that for this special case we are led to fitting the 

values ’ * * * **̂ n̂ m̂̂  to Gg(t^),,.. ,Gg(t^) respectively by the
method of generalized least squares. The underlying equations 
whose root forms the generalized least squares estimator of 0
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give rise to equations whose solution constitutes the minimum 
estimate of 0 and we can thus establish the properties of our 
estimator. Unfortunately the resulting equations are very 
difficult to solve in general, and we consider a special case 
namely that the mixture of distributions (x) given by (1.2.4) 
consists only of two components and each component is the distribution 
function of a uniformly distributed random variable. We study the 
properties of the estimate of the mixing proportion in more detail.
We finally let m, the number of chosen values of t*s, become very 
large and consider the case when m-x» and establish the properties 
of the generalized least squares estimator of 0 in this case.

In view of the fact that the set of equations having the 
generalized least squares estimator of 0 as their solution are 
very difficult to solve, even in simple situations, we propose an 
iteration procedure in Chapter 4. Starting with a consistent but 
inefficient estimator of 0, the iteration process after one iteration 
yields an estimator which is consistent asymptotically normally 
distributed and asymptotically fully efficient with respect to a 
given set of values t^,...,t^. Analogous to Chapter 3, we consider 
the situation when m-x» and will see that the iteration process 
converges to the maximum likelihood estimator of 0.

Finally in Chapter 5, we deal with the problem of maximum 
likelihood estimation of 0 in the special situation when Gg(x) 
given by (1.2.4) consists only of two components F^(x) and F^(x) 
with respective mixing proportions 0^ = 0 and 0^ = 1-0. Thus we 
have

Gg(x) = 0 F^(x) + (1-0) F^(x) X E j0

for 0 j< 0 _< 1. It is seen that the identifiability (uniqueness) of
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Gg(x) is evident in this case for if

Gg*(x) = e* F^(x) + (1-8*) Fg(x) X E 3£

for 0 e* 1, then G^Cx) = Gg*(x), i.e.

6(F^(x)-F2(x)) + Fg(x) 5 0* (F^(x)-F^(x)) + Fg(x)

for all X E %  if and only if 0 = 0* unless F^(. ) = F^C.). We 
discuss the properties of the equation whose root constitutes the 
maximum likelihood estimator of 0 (likelihood equation) and show 
that certain regularity conditions are satisfied for O<0<1 so that 
the well-known properties of maximum likelihood estimators are 
applicable to our estimate in such situations. We also discuss 
the properties of the Fisher's information function 1(8) and give 
sufficient conditions for the existence of a unique root of the 
likelihood equation in (0,l). It turns out that the root of the 
likelihood equation cannot, in general, be obtained directly. We 
propose the use of an iteration process commonly known as Fisher's 
scoring method (Rao [4-5] ). We discover the properties of the 
solutions given by the first and second cycles of the iteration 
process when the process is started with an arbitrary value chosen 
in (0,l) (independent of the observations). We see that the 
properties of the solution provided by two cycles of the iteration 
process are also applicable to the solutions obtained by the 
subsequent cycles of the process.

Concluding our investigations in Chapter 6, we suggest a few 
areas, related to mixtures of distributions, in which further 
research could be carried out.
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1.4 Identifiability of Mixtures of Distributions
The question of identifiability of mixtures of distzibutions 

concerns their unique characterization. Teicher [ p4] vas the firs' 
to use this term and it has since been used by others.

Definition 1.4.1 (Teicher [ 551 ) : The mixture Gg(x) of ^  

given by ( 1.2.1) is said to be identifiable in O' if the relation­
ship

G^(x) = G *(x)
1 . e.

/ F(x;a) d Q(a) = / F(x;a) d Q*(a)

holds for all x E %  if and only if Q(. ) = Q*(.) for all Q and Q* 
belonging to Q  U ̂  where ̂  denotes the family of degenerate 
distribution functions, i.e. ^  is the family of distribution 
functions whose corresponding Lebesgue-Stielt jes measures assign . 
measure one to a single point in If every F(x,a) E ;
X E 36 , a E o4 induces an identifiable mixture of distributions in 
(Q, then the corresponding class of mixtures of distributions 
is called identifiable in Q  (with respect to 5^ ).

Rote that the identifiability of countable and finite mixtures 
of distributions can be defined in a similar way. In particular 
a countable mixture of distributions given by (1.2.2) is said to be 
identifiable if the relationship

Gg(:c) = Gg*(x)
I.e.

E 0. F(x;a.) = E 0* F(x;a*) 
i=l  ̂  ̂ j=l  ̂ ^

holds for all x E %  if and only if for each positive integer i, 
there is another positive integer j such that 0  ̂= 0^ and
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and similarly (1,2.3) is identifiable if the relaticns'ii:i

k k*
Z 0. F(x;a.) = E 0* F(x;a*) 
i=l  ̂  ̂ j=l  ̂ ^

holds for all x ^ 36 if and only if k = k* and for each 1 ̂  i ̂  k
there is some 1 < j < k such that 0. = 0^ and a. = a*.

-  -  1 J 1 J

The lack of identifiability of a mixture of distributions is
not uncommon. Consider as an example the family of binomial 
distributions with density function

f(x;a) = (̂ ) a (l-a) x = 0 ,1 ,...,n

where 0 _< a <_ 1 is unknown and n is a fixed positive integer. Then

1
g (x) = / f(x;a) dQ(a) 
^ 0

is a linear function of the first n moments of Q(ct) given by

- f cA dQ(a) 
^ 0

for r = l,...,n. Consequently, a necessary and sufficient condition 
for any other g^^(x) with mixing distribution Q*(a) be identical to 
gq(x) for X = 0,1,...,n is that the first n moments of Q*(a) given by

yi*^ = f gA  dQ*(a)
^ 0

(r)for r = l,...,n, be identical to y„ for r = 1,...,n.
The most thorough investigation of the problem of identifiability 

of a mixture of distributions has been undertaken by Teicher [54, 55 > 
56]. Some conditions of identifiability are given in [ 54, 55] as
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well as a discussion of the question of identifiabili~’ for several 
specific classes of mixtures of distributions. In [56] he considers 
the problem of identifiability of finite mixtures of distributions 
and shows that a necessary and sufficient condition for the class

k k
= { Z 0.F.(x) ; xE3C, O<0.<1 for j = l,...,k, E 0 . = 1 }

j=i J J -  0=1 J
(1.4.1)

of all finite mixtures of the finite family of distribution functions
J* = {F^(x),...,F^(x); X e3E} be identifiable is that there exists
k real values x^,...,x^ with Xj E %  for j = l,...,k for which the
determinant of the kxk matrix with F.(x.) as its (i,j)th element for ̂ J
i,j = l,...,k, is non-zero. Using this result, the author establishes 
the identifiability of the class of finite mixtures of normal 
distributions and finite mixtures of gamma distributions.

Yakowitz and Spragins [ 60] have shown that a finite mixture 
of distributions is identifiable if and only if the components are 
linearly independent cumulative distribution functions, i.e. the 
class (1.4.1) is identifiable if and only if

k
E c.F.(x) = 0 for c. E R and x E 36<=i» c =c =. .=c =0 . 0 J J 1- k

In fact they proved a rather more general result than stated, by 
considering 36 to be a measurable subset of R^, i.e. each component 
of the finite mixture of distributions is the distribution function 
of an m-dimensional random variable. From their important result, 
they obtained the identifiability of finite mixtures of distributions 
with each component being
(i) an m-dimensional normal distribution,
(ii) the product of m negative exponential distributions,
(iii) one dimensional Cauchy distribution.
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(iv) the negative binomial distribution,
(v) either an m-dimensional normal distribution or vhe 

product of m negative exponential distributions.
Notable contributions have been made by other authors such as 
Blischke [8] who gives a necessary and sufficient condition for the 
identifiability of mixtures of binomial distributions.

1.5 Estimation for Mixtures of Distributions
VJhen the identifiability of a family of mixtures of distributions 

has been established, one can discuss the problem of estimating the 
unknowns. In the mixture of distributions G^(.) defined by (l.2.l),y
Q(a) ; a E c4 (and thus G^(. ) ) is not in general known exactly, although 
the form of F(.;a) ; a E cA will usually be assumed known. Direct < 
information on Gg(x) is supplied only by n observations x^,...,x^ being 
the realizations of X̂ ,̂..-. respectively of the random variable X 
whose distribution is Gq ( . ). The observations are then used to 
construct an empirical distribution function say G^(.) being an 
estimate of Gq(.).

The problem of exact estimation of the mixing distribution Q(. ) 
when Q could be any continuous distribution is of course an impractical 
task and this problem is closely related to the empirical Bayes 
Procedures, proposed first by Robbins [48] , where the mixing distribution 
Q( . ) corresponds to the a priori, distribution. Robbins [48] suggests 
that if the a priori distribution function is known to the experimenter, 
he can perform a Bayesian analysis of his experiment, but if such 
information is not available then the a priori distribution function 
has to be estimated. This is equivalent to estimating the mixing 
distribution Q(. ) in (l.2.l). As an exact estimate of Q cannot be 
obtained, one constructs a sequence of random step functions 
Q^(. ) = Q^(X^,...,X^ ; .) and requires Q^(. ) to converge weakly to Q(. )
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with probability 1, i.e. that Prob [lim Q (a) = Q(a) at every
. n-x»

continuity point a of Q] = 1.
A common method of constructing a sequence of estimators for

Q( . ) is to determine Q^(. ) such that a suitable measure of distance
between G_(.) and the empirical distribution function G ( .) is Q n
minimized. The motivation of such an approach is found in Deely 
and Kruse [l8] who suggest the use of Kolmogorov-Smimov distance 
defined as

II Gn - G II = sup 1 G (x) - G (x) j . (l.5.l)« n Q n

Apparently, the amount of publication on the general problem
of estimating the mixing distribution is very few and in view of the
fact that some important families of distributions, while not
generating identifiable arbitrary mixtures of distributions (of the
type (l.2.l)), generate identifiable finite mixtures of distributions
(e.g. the family of normal distributions with mean and variance both
considered as parameters), most of the publications on problems of
estimation in mixtures of distributions are concerned with finite
mixtures of distributions. The estimation problems in this case
arise, for example, in the situation in which a finite set of experiments
{E-,,...,E, } gives rise to a sequence of random variables {X.}^ as,

 ̂i=l
follows: At each observation time 1 j ^  k with probability 0 ., at
the exclusion of the other experiments, experiment Ej is selected and
an observation x^, the realization of X^ with distribution function
F.(.), is made. This value x. is taken to be the observed value of 
J 1 . •

the ith element of the sequence {X. . The statistician does not
 ̂i=l

know the parameters 0̂ ,...,0ĵ . He may not know the distribution 
fuctions F^(.),...,F^(.), or even the value of k. He is told that 
the component distribution functions are distinct and are all members
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is then to determine the unknowns solely on the available inform­
ation. It is to be emphasized that the statistician knows that 
the mixture of distributions generated by with mixing
proportions respectively is identifiable, but he is never
told which of the experiments E^,...,E^ was performed at any time.
We devote the remainder of this section to an outline of some of 
the estimation problems in finite mixtures of distributions considered 
by previous authors. For this reason, the term "mixture of 
distributions" or simply "mixture" will refer to a finite mixture of 
distributions.

The estimation problems dealt with in the past, all assume that 
k is known (often taken equal to 2) and F^,...,F^ may or may not 
depend on some unknown parameters. The method of minimizing some 
measure of distance between the true distribution (.) given by 
(1.2.3) and the empirical distribution function,has been considered 
by some authors. Choi and Bulgren [11] use the Wolfowitz's distance 
given by

W(Gg,G^) = / (Gg(x) - G^(x))2 d G^(x) (1.5.2)

and Bartlett and Macdonald [4] suggest the method of weighted least 
squares using

(dG (x) - dG@(x))2
' —  (1.5.3)dU(x)

where W(.) is a suitable increasing function. Macdonald [34] uses the 
Cramer-Von Mises distance

f
(G^(x ) - Gg(x))^ d Gg(x) . (1.5.4)
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Deely and Kruse [l8] use Kolmogorov-Smirnov distance given by 
(1.5.1) and their solution is based upon solving a two-person 
zero sum game after each observation. Macdonald [35] compares 
the method of estimation suggested in Macdonald [34] with that of 
Choi and Bulgren [11] with regard to some numerical studies based 
on a mixture of two normal distributions.

The earliest attempt to separate a mixture of distributions 
into its components was made by Karl Pearson . [4l] in 1894.
Pearson attempted to estimate the means, the variances and the mixing 
proportions of a mixture of two normal densities

1 pi r  ^1
7  [—

2 . 2̂
(1.5.5)-2+ —  exp “2a. - L

where 0 <_ 0^ <_ 1 and 0^ = 1-0^ for - «»<x<«>, by using the method 
of moments and equating the first five population moments to their 
corresponding sample values. Solving these five equations in the 
five unknowns y^, and 0^ leads to a ninth degree polynomial
equation having at least one real root. Each real root of the nonic 
gives a set of estimates for the parameters. Pearson proposed that 
the set of solutions making the sixth population moment nearest to the 
sixth sample moment be used as the final estimate. Although the 
computations are not difficult on a modern computer, the results are 
only optimal in the sense of fitting the first six moments. Also the 
procedure does not generalize easily to the case of a mixture of more 
than two populations. Rao [ 45] applied the method of moments to a 
mixture of two normal distributions with equal variances and showed that 
Pearson’s nonic reduces, to a cubic and the computation is considerably 
simplified and Cohen [l2] also showed how the computation of Pearson’s 
method can be lightened to some extent.

The most exhaustive statistical approach to mixtures of binomial
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distributions has been given by Blischke [3] who emplcyed the 
first (2k-l) factorial moments of a mixture of k (k>2) binomial 
distributions,

,(x) = E 0 a  (1 - p,)"-x (1.5.6)
I 0 X J J

for X = 0,l,...,n, 0 < p., 0. < 1; j = l,...,k and Z 0. = 1, to
J J j=l ^

obtain estimates of p^^...,p^ and 0^^...,8^. He then showed that
the estimates have joint asymptotically normal distribution and also 
investigated the asymptotic efficiency relative to the Cramer-Rao 
lower bound, Blischke found that if the mixing proportions are unknown 
then the joint asymptotic relative efficiency of the estimates tends to 
unity as the binomial parameter n ->• «°. However, if the mixing proportions 
are known, the relative efficiency approaches zero. No intuitive explan­
ation was offered for this apparent anomaly.

The method of moments has also been used by Falls [20] to 
estimate the five parameters of a mixture of two Weibull distributions,

—1 ”̂1~^ ^1 —1 ^2 ^ 72gg(x) = 0^Y^a^ X exp(- x /h^) + ® 2̂ 2°̂ 2 ^ exp(- x
(1.5.7)

for X 2  0, 0 ̂  ^  1, 0 2 “ 1-02̂ , ^l’"̂ 2  ̂ 1968, Tallis and
Light [52] suggested the use of the fractional moments. Considering 
a mixture of two exponential distributions, they showed, by some 
numerical studies, that if a so called "optimal combination of 
moments" is used, the efficiency of the estimates will increase.

A study of the bias and accuracy of the moment estimators with 
particular reference to mixtures of two normal distributions has 
been given by Robertson and Fryer [49]. Their results suggest that 
although the method of moments generally leads to estimators which 
are less efficient than the maximum likelihood estimates, their use
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can be justified vhen the absolute maxima of the likelihood
function is unobtainable.

The method of Maximum Likelihood has also played an important
role in the estimation problems of the theory of mixtures of
distributions. The likelihood function of a mixture of
distributions based on the observations x^,...,x from the mixture1 n
is of the form

n k A
L = n E.0. f(x. ; a.) a. ^ cn x. (1.5.8)

i=l j=l J  ̂ J  ̂ ^

where f(. ; ) is the density function corresponding to the
distribution function F(. ; o^) for j = l,...,k. Recall from Section
1.2 that each is an s-dimensional vector. The maximum likeli­
hood estimators of and are those values which
maximize (1.5.8) for fixed x^,...,x^. The equations for the 
estimates usually turn out to be non-linear and difficult to solve.

A mixture of two or more normal densities has again been the 
centre of attraction for many investigators. It is to be stressed 
that in such cases if means, variances and mixing proportions are 
unknown, the likelihood function becomes unbounded near many points 
in the parameter space (c.f. Section 5.1) and hence the method of 
maximum likelihood breaks down. This important fact has been 
observed by Day [17] » Fryer and Robertson [21] and Behboodian [5] . 
(incidently, a similar feature characterizes other mixtures of 
distributions such as mixtures of displaced exponential densities).
By imposing sufficient restrictions on the parameter space (e.g. 
equality of variances of the component distributions), or using 
coarsely grouped observations, the method of maximum likelihood can 
meaningfully be used and it often leads to efficient estimates.
The example given by Behboodian [5] is that if in a nixture of two
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normal densities given by (1.5.5), y = = y^, then as an estimate
of y, the efficiency of the sample mean against the sample median 
tends to zero as o^/Og is made arbitrarily small or large. On 
the other hand for the sample mean is fully efficient for
the true mean.

Rao [k2] was first to use maximum likelihood estimation in 
mixtures of distributions. He considered a mixture of two normal 
densities with equal variances and obtained grouped maximum likeli­
hood estimates for the means and the common variances of the 
components and the mixing proportion of the mixture of densities.
He applied the method to a sample of size ^5^, tested his results 
with a chi-squared goodness of fit test. The fit turned out to be 
reasonably good. Hasselblad [25] has proposed a general method of 
iteration to obtain the maximum likelihood estimates of the k means, 
k variances and k-1 mixing proportions of a mixture of k normal 
densities from grouped data. In view of the fact that the likelihood 
function for ungrouped data is unbounded for this problem, Behboodian 
[ 5] has proposed using the values corresponding to the largest 
stationary maximum of the likelihood function as the estimates.
The method may well lead to 'reasonable* estimates in many cases, but 
the estimates will clearly not possess the optimal asymptotic 
properties of the maximum likelihood estimates. Fryer and Robertson 
[ 21] claim that Behboodian*s method is what Hasselblad [25] has proposed 
in effect, since although Hasselblad starts by considering grouped 
maximum likelihood estimates, he then assumes the width of each group 
to be sufficiently small to allow us to replace each group probability 
divided by its length by the appropriate value of the density function. 
They believe that the effectiveness of Hasselblad* s method will vary 
a great deal depending on the parameter values. They discuss and 
compare the estimates of the parameters of a mixture of k normal
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distributions obtained by (i) the method of moments, (ii) the 
method of maximum likelihood from grouped observations and (iii) 
the method of minimum again when the data is grouped. Their 
comparison is based upon the bias and the mean squared error of 
the estimates and they concluded, from some numerical studies, 
that as regards the bias, minimum estimators seem to be slighly 
better than grouped maximum likelihood estimators, but the 
difference between the two is often very small. Moment estimators 
are sometimes better and sometimes worse than the grouped estimators, 
and furthermore the differences are often considerable. Comparing 
the mean squared errors, they found that the grouped estimators are 
usually markedly superior to the moment estimators. This 
superiority, however, is not completely uniform, since the performances 
of the moment estimators are often preferred to that of the grouped 
estimates when the components of a mixture of distributions are not 
well separated.

A comparison of the method of moments and the method of maximum 
likelihood in estimation of the parameters of a mixture of two normal 
densities has also been done by Tan and Chang [53] . To ensure the 
existence of the maximum likelihood estimators, they restrict them­
selves to the case when the components have equal variances. Their, 
comparison is based upon the asymptotic efficiencies of the 
estimates and they concluded that maximum likelihood generally 
results in better estimators especially when A = is
small. Here and y^ denote the means of the components and a 
denotes their common standard deviation.

Maximum likelihood estimators of the parameters of a mixture of 
two normal densities have also been used by Dick and Bowden [I9] and 
Eosmer [28] . They use numerical techniques to derive their estimators 
vhen independent samples from one or b oth components are available.
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Macdonald [3̂ ] uses an iteration technique to derive the 
maximum likelihood estimates of the parameters of a mixeure 
of k>̂2 normal densities when (i) the mixing proportions are 
the only unknown parameters, (ii) the means and the common 
variance of the components are also unknown. He provides 
FORTRAN computer programs for the calculations. Day [IT] has 
considered a mixture of two multivariate normal densities with 
identical but unknown covariance matrices. He derives 
estimates for the mean vectors and the common covariance matrix 
and also for the mixing proportions. He uses both the method of 
moments and the method of maximum likelihood and finds that the 
maximum likelihood estimators are generally better.

Unfortunately, the Bayesian analysis of the estimation 
problems of finite mixtures of distributions has not been yet 
fully investigated. The only publication on the subject is due 
to Behboodian [6] . He considers a mixture of two densities 
f^(.) and fg(.) viz :

gg(x) = 0^ f^(x) + (l-8̂ )f2(x) X e  X  (1.5.9)

for 0 < 8^ < 1, in which the mixing proportion 8^ is the only unknown 
parameter. By taking a beta distribution as the prior distribution 
of the mixing proportion, he derives its posterior distribution based 
on a sample of size n from the mixture (1.5.9). He shows that the 
posterior distribution is a mixture of (n+l) beta distributions and 
derives its mean and variance. Generalization to mixtures of more 
than two components is considered. The following comment illustrates 
a somewhat unusual characteristic of the Bayes estimator for the 
mixing proportion in a mixture of two densities given by (1.5.9).
Let y(8) ; 0 ̂  8 £ 1 be the prior distribution function of 6 .̂ Then
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the Bayes estimator under the square error loss function (being 
the mean of the Posterior distribution) based on the cbserratic:

9 • • • , IS

1 n 
/ 6]̂ H gg(x.) d y(8 )̂
0 i=l

1 n
/ n gû(x.) d y(6 )
0 j=i : J 1

(1.5.10)

But

where

n n
n go(x-) = n [6 (f (x.) - f„(x.)) + f„(x.)] 
j=i . j=i ^ ^ J  ̂ ^ ^

r n
I = r n f (x.) n (f (x ) - f (x.))
' j=i J j=i J

1r

for r = 0,...,n, so that (I.5.IO) gives, as the Bayes estimator of 8^,

Z A / 0“ a r(e)
r=0 ' 0______________
r A / 8°'^ a y (9)

r=0 ' 0

and it is seen that the Bayes estimator depends only on the first 
(n+l) moments of the a priori, distribution and not on the a priori 
distribution itself. Hence the class of all Bayes estimators can 
be represented by the class of all vectors where

i = l,...,n+l denotes the ith central moment of some a priorî  

distribution on [0,l].

1.6 Other Aspects of Mixtures of Distributions
Apart from estimation and identifiability of mixtures of 

distributions, there have been comparatively very few publications 
about other problems related to mixtures of distributions. In the
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area of hypothesis testing, Tiago De Oliveira [58] has proposed 
a procedure to test whether the distribution function of a given 
random sample is either of the given discrete distribution 
functions F^(x) and Fg(x) or a mixture of them. His method, 
however, is not efficient but only provides a rapid procedure. 
Given three random samples from three distinct populations,
Thomas [5Tl gives a distribution free procedure to test whether 
the distribution function of one of the populations is a mixture 
of the distribution functions of the remaining two populations.
His test statistic is based upon a function of the ranks of the 
observations. Consistency and asymptotic normality of the test 
statistic is proved. The author also gives a test statistic 
for the hypothesis that the mixing proportion is a constant 
parameter against the alternative that it is a function whose 
domain is the sample space of the three populations.

Another area which has interested some statisticians is the 
problem of finding lower bounds for the variance of the estimate 
of the mixing proportion 0̂  in a mixture of two densities (I.5.IO) 
and their generalizations to mixtures of k (2 k < «>) densities. 
It is known that under certain regularity conditions (Zacks [61I ), 
the variance of any unbiased estimator of 0^̂ based on a random 
sample of size n, cannot be less than the Cramer-Rao lower bound 

^ where l(0,) is the Fisher’s information function in an I(e^) "'"I
single observation. Hill [261 showed that the Cramer-Rao lower
bound is

h  '  h )
n (1 - S(0^)) (1.6.1)

where

s(e^) =
f (x) f_(x)
— — —  d x  gn(x)
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and further derived series expansions for S(0 )̂ vhen the densities 
f^(x) and fgtx) are density functions of (i) normal distributions 
with equal scale parameters, (ii) exponential distributions.
Boes [lO] derived necessary and sufficient conditions for the 
attainment of the bound (I.6.I). He generalized his results 
to mixtures of k (2 k < ») densities.

When the Cramer-Rao bound is not attained, it is sometimes 
possible to derive greater lower bounds based on Bhattacharyya 
matrix (Zacks [61] ). Denote by L(0^) the likelihood function of 
the mixing proportion 0^ based on a sample of size n from the 
mixture of densities (1.5.13). Let T be an estimate of some 
function of 0^ having expected value x(0^), then Var(T) _> t’J ^t 
where

t =
m

90^ t(0^) j .. r, —  t(0^)

and J is the m^m matrix with its (r,s)th element being the expected 
value of

'■3’̂ L(e^) 3° L(e^)
38: 38:

(L(8^))2

for r,s = l,...,m, provided, of course that the derivatives exist. 
Matrix J is called the Bhattacharyya matrix of order k. tThittaker 
[59] derived the Bhattacharyya matrix for a mixture of two 
distributions.

Behboodian [T] has given a numerical method for computation of 
the Fisher’s information matrix about the five parameters (two means, 
two variances and the mixing proportion) of a mixture of two normal 
densities. He shows that the computation of the information matrix
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leads to the numerical evaluation of an integral and 'jiaes various 
numerical techniques to solve the integral.

1.7 Applications of Mixtures of Distributions
Practical problems involving mixtures of distributions arise 

in many different fields of study. These include biology, 
engineering, fisheries, psychology and medicine. A useful 
account of some of these applications can be found in Blischke [9] 
and in this section we refer to some of the authors who have used 
mixtures of distributions in their investigations of various 
applied problems.

For example, length-frequency data from a fish population is 
known to be best approached as a mixture of distributions. The 
population is composed of a number of component age groups mixed to­
gether in some proportions; "each age group has a distinct length- 
frequency curve and the length-frequency curve for the population is 
a mixture of these component distributions. Macdonald [3^^, Eosmer 
[28] and Dick and Bowden D-9] discuss these situations with respect 
to sampling from a normal populations. Another area of biology in 
which mixtures of distributions are frequently encountered is genetics 
where one is concerned with the study of inheritance in both natural 
and man-made populations. A proper genetic analysis of such 
populations sometimes involves mixtures of distributions. Rushforth 
et al [ 50] have used a mixture of two normal distributions as a 
model for the blood glucose level of a sample of Pima Indians, a 
population known to have an extremely high prevalence of diabetes 
mellitus.

A number of non-biological applications of mixtures of 
distributions, mostly from the chemical industry, have been discussed 
by Medgyessy [37 These include the use of finite mixtures of
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normal distributions in the investigation of absorption spectra, 
and of electrophoretical separation of proteins of different 
molecular weight contained in a solution. Medgyessy also gives 
some applications of finite mixtures of binomial distributions.

Mixtures of distributions are known to fit adequately many 
distributions arising in technological and physical applications, 
particularly in the field of life-testing. Kao [31] , for example, 
discusses a problem in life-testing of the electron tubes subjected 
to a sudden and delayed failure. Mendenhall and Hader [33] and 
Cox [lU] discuss a similar problem in life testing of radio equip­
ments . Falls [ 20 ] mentions that a mixture of two "Weibull 
distributions , as well as being an appropriate model in life- 
testing, is also commonly used in the analysis of atmospheric data 
and consequently is of interest to aerospace scientists.

Amongst important applications of mixtures of distributions, 
is its appropriateness as a model in various psychological 
experiments. Lord [33] has discussed such applications in relation 
to mental test theory and Thomas [57 ] uses a mixture of two 
distributions as a model for psychological reaction time experiments
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CHAPTER 2 
THE METHOD OF MOMENTS

2.1 Introduction
The method of moments is probably the oldest method of estimating 

the unknown parameters in a distribution. It often leads to equations 
which are more tractable than those derived from other methods. It 
is mainly for this reason that the method is still being used although a 
main disadvantage is the fact that it often results in inefficient 
estimates.

In the context of estimation problems related to mixtures of 
distributions, K. Pearson [1+1] was first to use the method to 
estimate the five parameters of a mixture of two normal distributions. 
The method consists of equating as many sample moments to their 
corresponding expected values as there are unknown parameters and 
solving the resulting equations. Tallis and Light [52] considered a 
rather different version of the method by taking fractional moments.
They showed that by using a so called "optimal combination of moments", 
the efficiency of the estimates would increase.

In this chapter, we take a somewhat more general approach.
Denote by Gg (. ) the distribution function of a mixture of distributions
with k components F^(.), ..., F̂ (̂. ) and with mixing proportions
0^, 0^ respectively. Let the random variables X^, ..., have
common distribution function Gg(.) with respective realizations
x^, ..., x^. Then the conventional moment estimators of 0^, ...» 0ĵ
are the solutions of

x^dGg(x) = x^dG^(x) t = 1, ..., k
X E %  -

where G (,) is the empirical distribution function and X is that sub­
set of the real line to which each F.(.); 1 j k (and hence
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Gg(.)) assigns probability one. Instead of using tbs sample and 
population moments of for t = 1, k, we define a real-valued
function h(x,t) of x E 3C and the real value t G R and evaluate the 
two quantities Xg(t) = h(x,t) dGg(x) and X (t) = h(x,t) dG (x)
at t^, ..., t^; m 2. K, chosen such that the rank of the matrix A
formed with h(x,t^) dP.(x) for i = 1, . m, j = 1, k as
its (i,j)th entry is k. The estimators of 0^, are then
obtained by fitting X^^t^), . to Xg(t^) by
the method of least squares.

It is shown that our estimates possess certain desired properties 
and special attention is given to the more amenable case k = 2. At 
the end of the chapter, we shall see how our estimators work in practice 
in the light of some Monte Carlo studies.

2.2 Method of Estimation
Let

k
G„(x) E Z 0. F.(x) X e 3E , (2.2.1)
- j=l ^

where 0 9. ^  1 for j = 1, ..., k and E 0. = 1, denote a mixture of
 ̂ j=l ^

k known distribution functions F^, ..., F^. Let e^, 1 _< j j< k be
the standard k-dimensional unit vector, i.e. a k-dimensional vector

k
with 1 at the jth position and zero elsewhere and 0 = E 0- e. =

~ 3=1 ^
(0 , ..., 0 )» be the vector of the unknown mixing proportions1 k.

9 ..., 9 For a function a(.), integrable over with respect to1 k

F^, ..., F^, we define

Eg (a(X)) =
-j

and
EJa(X)) =

a(x) dFj(x) 3 = i, •••» k

a(x) dG„(x)

where X is a random variable whose distribution function is given by
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(2.2.1).

Let h(x,t) be a real-valued function, right-conxinucus in t - ?. 
for each x ̂  X  i.e.

h(x,t) = h(x, t + O) t G R

for each x gX. Let = it : t E R, (|h(X,t)|) < “} for 
j = 1, .. , k, so that 3^= n 3^ = (t : t G R , Eg( |h(X,t) | ) < “}.

j=l •Then
Xg(t) = Eg(h(X,t)) =

and
h(x,t) dG„(x) (2.2.2)

X (t) = E (h(X,t)) = h(x,t) dF.(x) (2.2.3)
-j -j J J

for j = 1, ..., k are right-continuous functions of t S . For the 
rest of this chapter, the variable t, defined in this way, will be ' 
confined to t E unless otherwise stated.

Now, from (2.2.2) and (2.2.3), we have 
k

X (t) = E 8. X (t) (2.2.1+)
- j=i -j

and we estimate Xg(t) by

X^(t) = h(x,t) dG^(x) = -  Z h(x. ,t) (2.2.5)
" " i=l

where x., i = 1, ..., n is the realization of the random variable X. 
whose distribution is given by (2.2.1) and as before G^(. ) is the 
empirical distribution function being the realization of the random 
function f^(.). Denoting by L^(t) the random function whose realized 

value is X^(t), we have
n

Ln(t) = h(x,t) aq(x) = ̂  z h(X_,t) (2.2.6)
1=1

and
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E„(L (t)) = E„(h(X,t)) = X (t) = ï 5. X (t). (2.2.7,
- “ : H .1=1 J E =

We now write
- 2 G: X (t) + c(t)

j=i  ̂ Ej
(2.2.8)

where n(t) is the realization of a random function &(t) such that

Eg(&(t)) = 0 .

Note also that since Eg{]h(X^,t)|} < “ for i = 1, n, it follows
from the strong law of large numbers that L^(t), being the sum of 
independently and identically distributed random variables, converges 
almost surely to Eg(h(X^,t)) as n ^ ™ i.e.

L^(t) tlLl %Q(t) as n

Choose distinct values t̂  , ..., t G 'ÛT, m > k in such a way1 ’ m —
that the rank of the matrix ..

A =

(t^) .....  ̂ (t^)
!l !k

X^^(tm) ..... Xg^(tJ
(2.2.9)

is k and therefore det(A'A) ^ 0 and A ’A is invertible. It is shown 
in the following lemma that by suitably restricting h(x,t), such 
choices of t^, ..., t^ are always possible. Evaluating (2.2.8) at 
t^, t^, the linear model

X = Xn + E = AG + G (2.2.10)

where X = (X (t ), ..., X (t ))', X = (X_(t ), ..., X.(t ))’ and ..n n l  n m ~o d j l  o m
e = (s(t ), ..., e(t ))* is of full rank and G may be estimated by• v i m  ~
using the least squares theories. Upon minimizing (X - X )'(X - Xq)
with respect to 0, we obtain
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9„ = (A'A)”^ A'X (2.2.11)II a# n

as an estimator of 0.

Lemma 2.2.1: If
(i) the mixture G^(x), given hy (2.2.1), is identifiable,
(ii) for each x belonging to a compact subset S of 36 , the set

I
T = {h(x): h(x) = E a. h(x,t.); il G z"**,

i=l  ̂ "■

a = (a^9 . a^) ’ G t^ G^T , i = 1, ... , &}

is everywhere dense in C(S), the space of all the continuous
functions on S with the property that

|h(x) I £  M^(x)

where M^(x) is an integrable function with respect to 
F^(.), ..., F^C.), i.e.

M^(x) dFj(x) exists for j = 1, ..., k,

then we can choose distinct values t^, ..., t^ G 3^ , m 2. K such that
the vectors

ie. = (Ae.(ti), •••. j = 1» •••’ ^•*«] ~«3
are linearly independent.

Here, Z^ denotes the space of all positive integers. Note also
that the condition (ii) is equi\'alent to saying that every element of
C(S) is the limit as £ « of a member of T.

Proof: If suffices to show that there exists values t , ..., t ^ 3T*  k ± . m
such that for c,, ..., c, G R, the relation E c. (t^) = 0 holds

j=l
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if and only if = ... = = 0 for i = 1,---   n.
The essence of the proof is the use of a fundamental property of 

Stieltjes integrals. It is known (e.g. Riesz and lîagy [U6] ) 
that a necessary and sufficient conditon that the Stieltjes integral

3(x) dp(x)

where S is compact, formed with a fixed function of hounded variation 
p(x), he zero for every continuous function g(x) is that the function 
p(x) he constant on a set everywhere dense in S.

Suppose now that on the contrary there exists real values 
c^, ..., c^ E R not all zero such that

Z c . X (t) = 0
j=i  ̂ -i

for every t e T  (2.2.12)

then from (2.2.3), we have

h(x,t) d( Z c . F.(x)) = 0 for every t E • (2.2.13)
j=i J

Since F.(x) j = 1, ..., k are hounded monotonie functions, 
k ^
Z c. F.(x) is of hounded variation. Let S he a compact subset of

j=l  ̂ ^
3Q, then for any 3(.) E C(S), there exists h(. ) E T such that g(x) = 
lim h(x) for every x E S and thus

e(x) d( X C. F.(x)) = 
S j=l ^

lim h(x) d( Z c. F.(x)). 
S j=l  ̂ ^

Row since |h(x)| <_ I^(x) i.e. h(x) is bounded by an integrable function, 
it follows from the Lebesgue dominated convergence theorem that

lim h(x) d( Z c. F.(x)) = lim 
S j=l ^

Z k

h(x) d( Z c. F.(x)) 
S j=l J J

= lim 
Z-^

Z a. h(x,t.) d( Z c. F.(x)) 
S i=l  ̂  ̂ j=l  ̂ ^
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for some ...» E R and t^, . t E^^, and so

k I r ^3(x) d( Z c. F. (x) ) = lim Z a- h(x,t.) d( Z c. F.(x))
S j=l ^  ̂ Jt-Xo i=l .s j=i ^

= 0 using (2.2.12) .

Thus hy the (above mentioned) property of Stieltjes integrals,
k
Z c. F.(x) is constant on a dense set of every coznpact subset of 36 . 

j=l  ̂ ^
Now, given any x e X  , there is a compact subset K of X

k
containing x and therefore Z c. F.(x) is constant on a dense set

j=i  ̂ ^
D of K i.e.

k
Z c . F.(x) = c 

j=i  ̂ ^

for every x E D. If x^ ^ D, we can construct a sequence {x^} CD,,
r = 1, 2, ... such that lim x^ = x^ and by letting r-^ in

p-x»
k
Z c. F.(x ) = c r = 1, 2, ...J J r

we have

k k
c = lim Z c. F.(x ) = Z c. F.(x ) (2.2.lU)

r*» j=l  ̂ ^ j=l J J

for every x E 3E that is a continuity point of F^. If, on
the other handjX^ is a discontinuity point of at least one of the
distribution functions F , ..., F , then from the sequence {x } C D,
we can construct an increasing subsequence {x } C D and a decreasing

^i
subsequence {x^,} C D such that 

i

X r .  t  Xq as r . ^

and
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k
and by letting r. and r! tend to infinity in Z c . ?-(x^ ) = c and 
k I D .  j=l  ̂ " -d
Z c. F.(x , ) = c respectively, we find that (2.2.1-̂ ) also holds an

j=l J J
the discontinuity points. In particular, by letting x in
k
Z C.F.(x) = c, we get 

j=X  ̂ •’
k
Z c. F.(x) = 0  X G X  . (2.2.15)
0=1'’ ^

But (2.2.15) violates the identifiability assumption of Gg(.).
We mentioned in Chapter 1 that it is shown by Yakowitz and Spragins [60] 
that a necessary and sufficient conditon for the mixture of distribution 
Gq (.) given by (2.2.1) to be identifiable is that the components 
F^, ..., F^ are linearly independent. Thus (2.2.1^) holds if and only 
if c = ... = c = 0 which contradicts (2.2.12) and therefore there 
exists at least one point t G J such that Z c. X (t ) = 0 with

^ j=i -j ^
c. ^ R for j = 1, ..., k, if and only if c = c_ = ... c = 0.

Finally, by the right continuity of X (t) for j = 1, ..., k 
on J , it follows that the points neighbouring t^ and to the right 
of it have the same property as t^ and hence we can find t^, ..., t^ E 
such that the relation

k
Z c.X (t.) = 0 c. E R, i = 1, ..L, m
j=i -j  ̂ ^

holds if and only if c^ = Cg = • • • = c^ = 0 which completes the proof 
of the lemma.

2.3 Properties of the Estimates
Let Z denote a random vector whose realization is given by -n

(2.2.10). Then .

Z = (A'A)“^ A'L (2.3.1)..n ~n
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where L - (L (t^), L (t ))'. It is clear that 5 is a:•w XX u X n jn
•unbiased estimator of e for

-1E [2 ] = (A'A) "A' E^ [LJ = (A'A) ^A' = (A'A) ^A'A 8 = eU~xi 0 .vn .,9 w ..~ ~ ~
(2.3.2)

from (2.2.6).

Proposition 2.3.1: If

Cg(r,s) = Cov^(h(X,t^), h(X,t^)) r,s =1, ..., m

then

= Eg(h(X,t^) - Ag(t^;)(hk,ts) -Xg(tg))

Proof: From (2.2.5),

1 “ 1 n(—  Z b(X. ,t_) - X.(t ))(—  z h(X. ,t^)

n n

r -n 1' s

X (h(x.,t ) - X (t )) Z (b(X t ) - X (t )) 
i=l  ̂ ^ ^ i=l ^ ^  2 ®
n
Z: (H(x^,t^) - Xg(ty))(h(X.,tg) - Xg(tg))
1=1 -V ~

1
n2

n n
+ Z _Z (h(x^,tp) - Xg(tp))(h(Xj,tg) - Xg(tg))

if j

I Eg(h(X.,ty) - Xg(tp)(h(X,t^) - Xg(t^))
1=1 .. ~ .

n n
+ Z Z E (h(X:,t ) - X (t )) E (h(X t ) - X  (t ))
1=1 j=i ; . 2 J ® ®
if j

since X̂ , ..., X^ are independent. The term in the double sum -vanishes 
by (2.2.2) and the result follows.
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Proposition 2.3.2: With *;he notation of the previous proposition.

and

.(r,s) = Z 8. c. (r,s) + z 6-(l-6-) (t )
j=i  ̂ sj=i ^

k k
Z Z 0.6. X (t ) X_ (t )

i=i j=i 1 J !i f :j s 
ifj

(2.3.3)

Cg(r,s) = Z 0. c (r,s) + Z 0.0. a. .(r) a. .(s) (2.3.%)
j=i ~i 1 J IJ IJ

where

and

Ce (r,s) = Cov^ (h(X,t^), h(X,t^))

= (h(X,t^) - Xg (t^))(h{X,tg) - Xg (tg))(2.3.5)
"j ~j

a (r) = X^ (t^) - X ^ ( t ^ )  
-1 ~J

Proof;
Cg(r,s) = h(x,t ) h(x,t ) I 0- dP.(x) . r s J J

k k
- Z 0. A. (t ) Z 0. A (t )

j=l  ̂ j=l ^

= Z 0.(c (r,s) + A (t ) A (t )) - Z 0? A (t ) A (t )
j=l !j j=l ^

k k
- Z Z 0.0. A (t ) A (t, )

i=l j=l 1 J e. r e . s
ifj k

= Z 0. c (r,s) + Z 0.(l-0-) A (t ) A (t ) J G . j J J G . r e . s
k k- Z Z 8.8 X ( t J  X (t )

i=l j=l 1 J Ei ^ :j 
if j

which proves (2.3.3) k
Upon substituting Z 0. = 1 - 0. in (2.3.3),i=l ^ ^

if j
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k k k
c (r,s) = Z 0 c (r,s)+ Z £ 6.6. {tj (t.)
: j=i ̂ Ej i=i j--i - J :i - :i =

ifj
■ A e . ( t s ) ]•'j

= ) ^ i®i®j (^e.(tr) %e.(ts)J--L ~J 1>J -1

-1 ~J ~J "J -J ~1
k k

= Z 8. c (r,s) + Z 0.0. a.-(r) a.-(s)
j=i •’ Ej i>j 1 J

establishing (2.3.%).
Denoting by V the covariance matrix of we have, by using 

the result of the Proposition 2.3.1,

V = C o V g (^ )  = ( A ' A ) ' h '  p o V g ( L j t ^ ) ,  L ^ ( t g ) ) ] A ( A ' A ) " ^  .

= i  ( A 'A ) " h 'C A ( A ' A ) ~ ^  ( 2 . 3 . 5 )

where [Cov (L (t ), L (t ))] and C are m x m matrices with Cov (L (t ),V H 3T n S 0 H  3T
Ln(ts)) and c^(r,s) respectively as their (r,s)th entry for r,s =1, ..., m.
Thus 0 is also a consistent estimator of 6.

Further, it follows from (2.2.5) that since E (h(X,t)) and6
E (h^(X,t)) both exist and are finite, L (t) is the sum of independently 0 n
and identically distributed random variables with finite first and
second moments and thus by the central limit theorem, the distribution
of D^(t) approaches normality as n-> «», Hence it follows from (2.3.1)
and by the standard properties of normal distributions that the
asymptotic distribution of Z^, being a linear function of independent
normally distributed random variables, is a k-variate normal distribution
with mean vector 0 and covariance matrix V, Therefore Z is a consistent ~ a
asymptotically normal (CM) estimator of 0.
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2.k Adjustment of the Lstumators
We can adjust the estimating procedure to take into account the 

k
linear constraint Z 0 . = 1. To incorporate this informât ion the

j=l J
method of restricted least squares is used. We seek that value of 
0 which minimizes (X - - X ) subject to the restriction'"“n <vD ««n «vD
1’0 = 1, where 1 = (l, 1, ..., l)' is a k-dimensional vector of l*s,
and X and X̂  are as defined in Section 2.2. Therefore we minimize -n -o

$(e,C) = (X„ - A0)'(x - AS) - 2Ç(1'8 - 1) ,

where Ç is a Lagrange multiplier, with respect to 0 and Setting 
the derivative of $(0,Ç) with respect to 0 equal to zero gives for 
the minimizing value 0*

i l f  = - A'ïn + (A'A) ê*- 5*1 = 0

whence
0* = (A»A)"^A'X + C*(A'A)"^1 = 0 + Ç*(A’A)"H (2.%.1)• n *»n ~ "=n -

where 0 , given by (2.2.11) is the unrestricted least squares estimator. 
Premultiplying (2.%.l) by 1’ gives

110* = 118 + Ç*l'(A’A)“^l ;«W ri ri

imposing the restriction 1*0* = 1 gives 

l’(A’A) 1

where we note that 1’(A’A)”^1 is only a scalar factor. Inserting this 
back into (2.U.1) yields

. . (A'A)"h(l-l'0 )
0 *  =  0 +  ""~n ~n i »(A’A)“H

(A’A)"^11’
I -

1»(A’A)"^1
(A’A) \

0 +  zy- (2.U.2)
l’(A’A) 1
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where I is the k x ^ identity matrix.
It is neen that the restricted estimator 6* differs from~n

unrestricted one 6 hy a linear function of the amo'ont (l - 1’3 )~n „ «n
hy which the unrestricted estimator fails to satisfy the restriction
The sampling properties of 8* may he derived as follows. Denote hy~ n
Z* the random vector whose realization in 8 then from (2.%.2)«• n ..n

(A’A)
I -

l’(A’A)“ l̂j En [Z ] +
(A’A) \ 

l’(A’A)"^l

which from (2.3.2) gives

E [Z*] = u ~n
(A’A) \ l ’'

I -
1’(A’A)“H

0 +
(A’A)'^l

1’(A’A)"H

and hy using 1’8 = 1, we have

proving the unhiasedness ^f 0*. Further, the covariance matrix V*n
of Z* is given hy

V* = Cov.(Z*) = 0 ~n
(A’A) ^11’'

I -
l’(A’A) \j

(A’A) ^11’;
I -

l’(A’A) \

where V is the covariance matrix of Z^ given hy (2.3.5) and therefore

V* = — n
(A’A) ^11’1

I -
l’(A’A)~^l

(A’A) ^A’ C A(A’A)-1
11’(A’A)

I -
1’(A’A)“H  

(2.%.3)
The asymptotic normality of Z* follows almost immediately from the

fact that Z* is a linear function of Z which was shown to have a n - n
k-variate normal distribution as its limiting distribution.

In practice it may be more convenient to compute 0* by first using
k k-1  ̂  ̂ _

the restriction I 0. = 1 and substituting 0^ = 1 - Z 0. in (2.2.7) (
0=1 0=1
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to obtain

k—1
- X (t) = Z 0. (X (t) - X (t)) + s(t) . (2.%.%)

:k j=i J !j !k

Evaluating (2.It.It) at distinct values t , ..., t E "J'm  ̂  k chosen, 
as before, so that the rank of matrix A given by (2,3.8) is k, we can 
write

X* = A* 0 + em# .w (2.4.5)

where X * = X  - X  ,0 =(0,,.-n -n eĵ ’ . 1’
matrix given by

, 0̂ _Q_) ' and A* is the m x (k-l)

A* =

'x (t ) ..... X (t )) K / h )  •• ... X (tpl
~1 -k-1 -k -k

ê ••••'• ^e ...  ̂ (\)
-1 -k-1 ~k -k

(2.%.6)
We show in the following lemma that A* has rank k - 1 ,  so that 
(A*)'(A*) is invertible. Thus from (2.%.5), the least squares
estimator of 8^ is

8"̂ = [(A-)’(A*)] ^(A*)' X* 

giving estimates 0*, 0|, ..., 0*_^ of ê , ..., 0^_^. We finally

estimate 0^ by
k-1 . 

)* = 1 - Z 0|
0=1

Lemma 2.4.1: Given that the rank of A in (2.3.8) is k, then the rank
of A* in (2.4.6) is k - 1.
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Proof: <fJe prove that the columns of A* are linearly independent•
Suppose that on the contrary there is a linear relationship between 
the columns of A*,i.e. there are real values c^, ..., c^^^ G h , not 
all zero, such that

k-1 
Z
j=l " -0
Z c.(X (t.) - X (t.) = 0  1 = 1 ,  ..., n . (2.4.7)
3=1 J Ej  ̂ Ek 1

Choose - - (c^ + ... + c, then (2,4,7) can he written as 

k
Z c. X (t.) = 0 i = 1, ..., m . (2.4.8)
j=i Ej

But since the rank of A is k, (2.4.8) holds if and only if c^ = Cg = 

... = c^_^ = ĉ  ̂= 0 contradicting (2.4.7).

2.5 Relation to Multinomial Distribution
Let s. = {x : X  is a point of increase of F.(.)} for j =1, ..., k, 

J i  « J

Assume that each x G %  is the point of increase of at most one of 
F^(.), ..., F^(.) so that S^, ..., are disjoint i.e.

Sj S^ = 4) r 7̂ j
= S r = j

“ 'i k

Let n. be the number of observations contained in S. and denotej 0
by N. the random variable whose realized value is n...J J

Now
Gg(x) — 0^ F^(x) for X  G 8^ r 1, ..., k

and
Pg(xe s^) = liG.(x) = 

S Z
8 aEjx) = 0

Sr
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where Pg is the probability measure corresponding to xhe distributic 
function G.(x). Theno

Pg(N^ = = n j  = - ^ - 4 ^  8^2 ... 6 ^

which is the familiar multinomial distribution. In this case it is 
known that the minimum attainable covariance matrix of an unbiased 
estimator of 6 is

I = in

-8

■®1®2
1 2 
(l-0o)

1 k 
'2®k

-®2®k.......■ 9k(l-8k)

(2.5.1)

in the sense that if Z* is the covariance matrix of any other unbiased 
estimator of 0, then (Z* Z% is a positive semidefinite matrix. This 
provides a practical check on (2.4.3).

Let m = k and define h(x,t) at t^, ..., t^ as follows

h(x,tj) = 1 
= 0

if X G S.J
X ̂  S. j =1, ... a k

then from (2.2.5),

A^(tj) = ̂  [number of x^’s in Ŝ ] j = 1, .. ., k
i = 1, ..., n

and from (2.2.3),

=- J
h(x,ty) dPj(x) = 1 if r = j 

= 0 otherwise

so that from (2.2.9), A = I and thus from (2.4.3),
llS r  I V '

I - I - k (2.5.2)
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Now, from (2.3.5),

(r,s) = 1 - 1 = 0 r = s
= 0 r r s

and therefore from (2.3.3),

Cg(r,s) = 0^(l-0^) r = s
- “ 8y0g r f s

and so the matrix C whose (r,s)th element is ^  Cg(r,s) reduces to 
E in (2.5.1). But 1’ E = 0’ and E 1 = 0 where 0 is a k-dimensional 
vector of G’s. Hence (2.5.2) is identical to (2.5.1) and V* is the 
minimum attainable covariance matrix in the sense defined above.

2.6 The Case k = 2
We now focus our attention on the case where the distribution

function of the mixture Gg(x) consists of two components F^(x) and

FgCx). We have

Gg(x) = F^(x) + 8g F2(x)

where 0 = (S^jG^)', 0 £ 0̂  £  1, j = 1, 2 and 8^ + Gg = 1 and further

lQ(t) = Xg (t) + Gg X^^ft).

Let a^g(t^) = X^ (t̂ ) - X^ (t^) r = 1, , m and a^g =
, &i2(t^^)*. Also denote by j = 1, 2, the m x m matrix with

Cg (r,s) as its (r,s)th r,s = 1, ..., m entry. 
From (2.U.2), we can write

G* = ~n I -
(A'A)~^11'1 . (A’A) \

(A'A) A ’X +
l'(A'A) \ 1*(A*A) H

= HA’X + b (2.6.1)
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vnere

and
H =

b =

(A'A)-1
(A'A)“^11’(A'A)

l'(A'A) \
(A'A) ^1 

1'(A'A)"H

We note that H is a 2 x 2 matrix with the property that

I'H = (0,0) and HI = where 1 = (l,l)'

and therefore H must take the form

H = ot
1 -1
-1 1

where a is a constant (possibly zero). If we write

we can express H and b as

H = det(Ahi) (A'A) -
adj (A'A)ll' adj(A'A)--

l'adj(A'A)l

and
adj(A'A)!

5 ^ l'adj(A'A)l

But from (2.2.9), since k = 2, we have

(A'A) =

X' X 
-!i -!i

X' X 
~!l ~Î2

X' X 
~!i -:2

X' x^
~Î2 ~S2

and so

adj(A'A) =

X' X 
~~2 “~2

-X' X^
~!l ~Î2

-X' X
~fl ~~2
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which gives

adj(A'A)! = (l’adj(A'A))' =

X» X - X»
~S2 -!2

X» X X» X 
~!i ~:2

- A' )X
~Î2 ~Î2

- )\ «12 -e_ '-1 ~Î2 '!l
and l'adj(A>A)l = a{g = a-^

Hence the leading diagonal element of H is

det(A'A) X' X e _ ~ e
(Ü2

:2 "Z2 ^12 ^12

which after some elementary algebra leads to — :-----
- T ' -12 -12

a =
-12 -12

and we have
Therefore

H =
Sl2 «12

1 -1
-1 1

and b =
«12 «12

«12 «e«2
!l2 %e.

Substituting these values into (2.6.1) and writing A' = 
. -for 6* = (6J, 8*)' the following form, , %, we get

6* = -n
ef 1 1 -1 [X'

~!i
X'
;S2

^n + _ 1 X 1 -e
«12 «12 -1 1 X«n «12 -12 -12 X

-!i

«12 -12

(X - X )a, ̂-12 -n -eg

"Ï12

(2.6.2)

where it is seen that 0* + 8* = 1. The estimates 8* and 8| are clearly 
unbiased for if Z| and Z| denote random variables with realizations
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6* and 6;̂ respectively, then

-12 -12

-12 -12 (̂ a “ )-12-0 ~-2
and similarly

Eg(Z|)
Sl2 Sl2

-12 «12

Further, hy the use of proposition (2.3.1), we have VarQ(Z|) 
where, as before, C is the m x m matrix with Cg(r,s) as its 
(r,s)th entry. Now, from (2.3.4), we can write

!l2 !l2
n(5l2 -12 ‘

CgCr.s) = 0 (r,s) + 8^ o (r,s) +
r,s = 1, ..., m

so that C becomes

C = 9. C, + 8_ C_ + a, _ aJ1 1  2 2 1 2  ..12 «12 '

and therefore

Var^(Z*) = 9i(l-0i) + ®1 «12 ^1 «12 ®1^ «12 ^2 -12
^«12 «12̂ '

(2.6.3)

It is interesting to note that the variance of the estimator of 0^

depends only on the two quantities (a^g «12^^^«12 «12^^ j “ i, 2.
Thus in practice, to increase the efficiency of the estimator, h(x,t) 
and the values t^, ..., t^ should be chosen so that these two quantities 

become as small as possible.
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2,7 Monte Carlo Studies
In order to investigate the practical value of the method of

estimation discussed in this chapter, a small Monte Carlo experiment
vas carried out. A mixture of two normal distributions N(y^, o^) and
N(yg, a|), i.e. normal distributions with means and y^ and variances

and respectively, was considered. The function h(x,t) vas
chosen to be e , so that X (t), j = 1, 2 is the conventional moment
generating function of a random variable whose distribution is
N(y., cT?),i.e.J J

a? t2
X (t) = exp {y .t + —  }e . J ^— j

(2.T.1)

existing for all real values of t. Consequently

X-(t) = 0 X (t) + 0 X (t)0 1 e 2 e

where 0̂  + 0_ = 1, t E R and X (t) j = 1, 2 is given by (2.7.1) is 1 2 ■’ e.
the moment generating function of the random variable X whose distribution 
is the mixture of the two components N(y^, a^) and ̂ (y^, Og).

Recall that the distinct values t^, ..., t^ e R, m £  2 have to be 
chosen in such a way that the rank of the matrix A given by

A' =

is exactly 2. Thus it suffices to ensure that there are at least

two values t^ and t^, say, such that

(tf) (ts)
fV) ^

which after substituting for X̂  (t̂ ) and  ̂ is ^ from (2.7»l)
—J — J

gives



(“2 - t'l) + -  2 ( k  + tg) # 0 (2.T.2)

for some 4 t^, t^, ^ R and 1 £ r,s £  m.
Further, we can a-ssume without loss of generality that one of the

component distributions in the mixture, say N(p^, t?̂ ),is the standard
normal distribution, i.e. U = 0 and = 1. This condition can always

X - y
be maintained by the use of the transformation Y = —    . That is,
if the distribution of X is the mixture of N(y^ , o^) and N(y^, cr?),

X - y ^ ^ ^ ^
then the distribution of Y = ------ is the mixture of N(0,l) and2'\ 9

£- ju 2 ^2 ^1 o ^2N  r  . —Ô- . Letting y = -------  and , the required
condition is maintained.

A sample of size n was generated from the mixture by sampling with 
probability 0^ from R(0,l) and with probability ~ ^ ^1
N(y, 0%). Choosing the values t^, ..., t^ E R satisfying (2.7.2), 
the estimates 0* and 0* were found according to (2.6.2) and the experiment 
was repeated n^ times with n . n^ = N being a fixed number. Note also 
that from (2.3.5),

Xt Xt Xt_ Xt
c (r,s) = E (e ^ . e )-E (e ) E (e )

-j -j -j
= (2.7.3)

-j -j -J

for r,s = 1, ..., m and j = 1, 2. So, c (r,s) may be estimated by
substituting the estimates 0* and 6* in (2.7.3). Having estimated 
c (r,s), we can then estimate Varg(Z*) by using (2.6.3).
- j -Throughout the thesis, our numerical results will be compared 

with Table 1 of Macdonald [35] where, as mentioned in Chapter 1, a 
Monte Carlo comparison of two methods of estimation are given. The 
first method is due to Macdonald [34] who minimizes

(G (x )  -  G^(x ))2  dGg(x)
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and the second method is due to Choi and Bulgren [11] where

(Gq(x ) - G^(x))Z dG^(x)

is minimized. For completeness, we produce Table 1 of Macdonald [35] 
here (Table "l.l) in which the standard error and the mean-square-error

Table 1.1

n 'l

Estimate of0^

Macdonald Choi & Bulgren
Mean MSE Msan MSE

50 0.25 1 0.5 0.438 ± 0.038 0.392 0.559 + 0.038 0.392
10 0.5 1 0.5 0.536 ± o.o4o 0.473 0.852 ± o.o4o 0.596
10 1 1 0.5 0.495 + 0.017 0.137 0.660 ± 0.017 0.163
10 1 1 0.8 0.804 + 0.019 0.112 0.968 ± 0.020 0*142
20 5 1 0.5 0.493 + 0.011 0.017 0.530 ± 0.011 0.018
10 0 2 0.5 0.372 ± 0.030 0.290 0.367 + 0.032 0.324
50 0 2 0.5 0.484 ± 0.021 0.044 0.485 ± 0.020 o.o4i

10 0.5 2 0.5 0.504 ± o.o4i 0.262 0.695 ± o.o4o 0.275

Each case is based on 100 to 500 samples of size n.

of each estimate is also given. These quantities are calculated by 
letting 8^ , i = 1, n^ be the estimator of 0^ obtained by using
the ith sample of size n and

_ ^1  ̂ 1 *(i)0 =. Mean = —  E 0,
i=i ^

where n^ is the number of times a particular experiment is repeated.

Then if

S = '
n.

-kr I - ef
i=i ^



57

CM
CM
<DfH
I

cnCO•H
"ërÛ•HÎH-Pen

OC
o
-p
(Ho
tn<u

•Hg
ë.2
g
c•H
Co• H
o
&
up.
tec•HX
*g
(UrC-p
<po
p01+3enH

«H0 
<ü
1•H-penH

00 LPv o __ OvH CM 1—i pCM -- "W p P o c
O o o O o c o o

O00 CM OO IPv LPv t— o. o LPv
i r \ CM p 1—1 o  . 1—1 CJ CMII O O o O o o o O

g rj O O o o o o o O
cd +1 +1 +1 +1 +1 +1 +1 4-10 CM b- LPv C7\ o\ p (ON ONCM IPv t- OO OO o (ON VOp- p p tP- p LPv p P

O o o o o o o O

CM LPv o p p CO p (ONH OO t—l CM p p (ON p LPvCM p P 1—1 o p o CO
O o O o o o o O

o CM OO LPv IPv t>- cr\ p VOCM ir\ CM P p o 1—1 CM CMO O O o o o o OII
g O O o o o o o o

cj +1 +1 +1 +1 +l +1 +1 4*10S O MO IPV Ov o\ LPv p LPvCM LPv OO OO o ON PP" P P t— p LTV p P
O O O o o o o O

CM VD o LPv p CO p CM.H OO 1—1 CM p p C0\ p tPM CM P P p o p o m
O O O o o o o o

O1—i CM OO IPv LPv t— o p pir\ CM p p o CM CM CMII O o- o o o o o O
g . r* O o o o o o o O

g +1 +1 +1 +1 +1 +1 +1 +1
o\ VD p CA (ON 00 p 00p LPv [— OO OO ON ON pp p t— p p p p
o O o O o o o o

co t— p LPv p p o 00H OO 1—1 CM P p 1—1 p OOCM P 1—1 P o p p p
O O O O o o o o

CM CM o\ IPv IPv t— IP CO pLPv CM P p o CM vo 00II O O O o o o o o
g O O o o o o o oPcd +1 +1 +1 +1 +1 +1 4-1 +10S CT\ vo p o\ (On VD o OOr4 LPv t— OO OO P CM pP p p t— p P LPV p

O o o O o O O o

ir\ LPv IPv OO IPv LTN LPv LPv
o O O o O o O O o

PG
t—i 1—1 p P p CM CM CMCMD

iH
iS \p CM LPv LPv

n . p 1—1 IPv O O1 O O OCM

O O o O o O O oLPv p 1—1 p CM p IPv 1—1

•P
0
o•H
a•H
0 
•P

§
1
o(d0
g
î
en•ri
O
h0
ndP
§
•g
eâ
nd

0ec•Hen
<*HO
m
0
■â

o8Lf\

g
Td0en
(àP
m•H
0enedo
ü

§•H
*S
"ë
to
o
7lojo
0

S
Mp
«Mo
g•H
m  • HO
2A



58

0.1k

0.12

0.10

0.08

0.06

Estimate of Var(Z*)
0.0k

MSE of e

0.02

60 80Uo 100 12020 n
Fig. 2.1 - Mean-Square-Error and Estimate of variance of the estimator of 6̂ , 
the mixing proportion in a mixture of two normal distributions N(0,l) and . 
N(l,l), for varying n.
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the standard error of 0 is defined by and

Mean-Square-Error = Z (8^^^ - 6)2 [ ,
"̂ 1 i=l ^

In our Monte Carlo studies, ve took m to be an even integer and 
t^, t^ were chosen as follows;

j = 1. .... (m/2)

= j = (m/2) +1, m

where it is clear that these choices are merely arbitrary and bear
no optimal properties. Table 2.2 gives estimates of 0^, corresponding
to Table 2.1, using the method of moments, described in this chapter,
for different values of m and for N = 5000.

Further, taking — --- =1, —  = 1  and 8 = 0.5, the mean-square-
1 " ^1

error of 8* and estimate of Var^( )  were plotted against n when 
N = 5000 and m = 6. This is shown in Figure 2.1 where it is clearly 
seen that as n becomes larger than 20, both quantities Var^Czj) and

A ^
mean-square-error of 8* decrease rapidly.

2.8 Conclusions
The asymptotic properties of the estimator of 8 derived in this 

chapter, together with the Monte Carlo studies, indicate that the 
estimates (2.2.11) and (2.U.2) are reliable and the method of estimation 
works ^ell in practice for moderate sample sizes. The first feature 
of the method is its simplicity. It provides unbiased C M  estimates 
in a very simple manner. However its rather general nature indicates 
that we cannot hope for very efficient estimates in small samples.

The efficiency will, however, be improved if the generalized sum 
of squares
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(X^ - A8)' C 1 (X - A0) (2.3.x)*«* n "w «w n ^

is minimized with respect to 6. Indeed the value of 6 minimizing
(2,8,1) is, hy the Gauss î-larkoff theorem, the minimum variance linear
unbiased estimator of 0 for a given set of values t , t , ButM 1 m
minimizing (2.8.1) requires full knowledge (up to a constant multiple) 
of C which is not available, since the elements c (r,s) r,s = 1, m
of C depend on the unknown vector 8. Thus some problems are caused 
which will be discussed in the next chapter.
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CHAPTER 3 
LEAST SQUARES ESTIMTION

3.1 Introduction
It was indicated in the last chapter that to increase the effi­

ciency of the estimate of 6, the vector of the mixing proportions in 
the mixture of distributions Gg(.) given by (2.2.1), the generalized 
sum of squares given by (2.8.1) should be minimized. But since the 
covariance matrix C with Cg(r,s), given by (2.3.3), as its (r,s)th 
element depends on 9, the minimization procedure becomes more complica­
ted than usual. In practice, however, it is suggested by some authors 
that if the covariance matrix is not available, one should use an 
estimate of it. Rao [UU] showed that by merely substituting an 
estimate of the covariance matrix in the least squares estimate, the 
optimal properties are not necessarily preserved and improvements, 
depending on the structure of the covariance matrix, can be made.
Gleser and Olkin [23] discuss the problem of maximum likelihood estima­
tion of the covariance matrix in a linear model when the residual error 
vector has a multivariate normal distribution.

In this chapter, we consider a special case of the method of 
estimation suggested in the last chapter which is of particular 
interest in itself. We define

h (x,t) = 1 t X <_ t

= 0 otherwise

so that the X (t) j = l,...,k given by (2.2.3) become identical to the 
component distribution functions Fj(t) for t E X  and also X^^t) given 
by (2.2.5) becomes the empirical distribution function G^^t) for t 
We shall see that in this case the elements C g ( r , s ) ;  r , s  = l,...,m of 
the covariance matrix C become quadratic functions of 8. Using this 
property, C is inverted and the generalized Least Squares (C-LS) 

estimation of 0 is discussed.
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After the explanation of the GLS estimation of S in section 3.2, 
the properties of the estimate are investigated in section 3.3. In 
section 3.^, the GLS estimator is derived for the class of mixtures 
of two rectangular distributions and section 3.5 compares the method 
of estimation discussed in this chapter with that of the previous 
chapter in the light of some Monte Carlo studies. Section 3.7 is 
devoted to the discussion of the GLS estimator of 0 from ungrouped 
data.

3.2 Method of Estimation
Define h(x, t) = 1 t E 3C and x t

= 0 otherwise ,
then from the definition of X (t) j = l,...,k given in (2.2.3), we

-jhave

X ( t ) = E  (h(X,t))=P (X_<t)=F.(t) t ^ X  j = l,...,k

where P is the probability measure corresponding to the distribution
function F. for j = l,...,k. Similarly from (2.2.2), X (t) = G_(t) and J 0 y
further from (2.2.5),

X (t) = —  E h(x.,t) = — (no. of X. < t) = G (t) t E X  n n._, 1 n i —  n1—-L

where x. is the realization of the random variable X. with G.(.) as its 1 I t )

distribution function. Thus we can write (2.2.8) as

k
G (x) = Z 0. F.(x) + e(x) X E X  - (3.2.1)
n j=l J J

Choose distinct values t^,...,t^; t; E ^  for j = l,...,m and m ^  k 
such that the rank of the matrix A in (2.2.9) which now becomes
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A =

F^(t^) ...

•••
(3.2.2)

is exactly k. For this condition to hold, it suffices to ensure that 
t^,,..,t^ are chosen so that for each pair of distribution functions 
F^ and Fj i,j = l,...,k i j, there is at least one value t^;
1 ^  r ^  m such that F^(t^) F^(t^). Since the choice of the values
t^,,..,t^, m ^  k is not in general unique, the term "partition" or 
"grouping" will be used to refer to any particular choice of these 
values.

Evaluating (3.2.1) at t ,... ,t , we obtain the linear model1 m

G = A0 + e ..n (3.2.3)

where A is given hy (3.2.2), G = (G (t,), — , G (t ))' and as before~n n J. n m
e = (e(t ), ..., e(t ))’ and 0 = (6 ,...,0 )*. Note that AS = G =JL in -i. m# «V 9
(Gg(ti),...,Gg(t^))’.

The generalized least squares (GLS) estimator of 0 is defined as 
that value of 0 minimizing the generalized sum of squares (GSS) given

"by

$(0) = c'C = (G - A0)' C”-̂ (G - A0) ̂ H m0
.-1 (3.2.U)

and thus it is clear that the covariance matrix C has to be inverted so 
that (3.2.^) can be minimized. But note that the (r,s)th element of 
C is

c_(r,s) = Cov (h (X,t ), h(X,t )) r,s = 1,.. .,m

= Eg(h(x,t^) . h(X,tg)) - Eg(h(X,t^)) Eg(h(.X,t^))
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= P (x lmin(t ,t )) - P.(x 1 1 ) r.fv

Gg(min (tp^tg))- Gg(ty) Gg(t^) (.3.2.5)

C X £  

V <

X £  y
where min(x,y) = ■< . Therefore, we can see that since

V  y ^  X
Gg(.) is a linear function of 8, Cg(r,s) is a quadratic in 9. We now 
discuss the inversion and some of the interesting properties of the 
covariance matrix C.

Without loss of generality, we can assume

ti < < ... < ,

and hereafter we suppose that t^,...,t^ are chosen in such a way that 
F j (. ) ; 1 ^  j ^  k attains two distinct values when evaluated at t^ and
t r ^ s, r,s = l,...,m, i.e.

s

Fj(t^^ ^ (tg) r 7̂ s r,s = l,...,m j = l,...,k . 

Then hy the monotonicity of F^(.), we have

Fj(t^) < Fj(tg) < ... < F X t J  j = l,...,k (3.2.6)

and consequently,

Gg(t^) < Gg(tg) < ... < Gg(t^) . (3.2.T)

Thus from (3.2.5) ,

Cg(r,s) = min(Gg(ty), Gg(t^)) - Gg(t^) Gg(t^) (3.2.8)

and so the matrix C may he written as

C = B - D (3.2.9)

where
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B =

Gg(t^) GgCt^) GgCt^) ... Gg(t^) îjit. )

Gg(t^) w GgCtg) Gg(t2) C-g'.tg)

Gg(t^) GgCtg) Gg(t3) Gg(t_) Gg'(t3)

Gg(t^) Geitg) Gghs)

••• Ge(tm-l)

(3.2.10)

and D = G_ . G' ..9

Lemma 3.2.1: If G„(t, ) > 0, then' o 1

B-1

Pl+Pg
-p,

“P,

P2+P3
-p.

-p.

Pg+Pk -Pi

- -pm-1

-Pm

-pm

m

(3.2 .11)

where =[Gg(t^)] ^ and = [Gg(t^) - G^Ct^^)] ^
r = 2, ..., m (3.2.12)

and therefore hy (3.2.7) Pj > 0 j = l,...,m .

Proof: If Gg(t^) > 0, then hy (3.2.7) the rank of B is exactly m and
 -1 ~

thus B exists. Define an mxm matrix R as follows

R =

1
■1 1 

-1 1

-1
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Note that the rank of R is m and E exists. Consider

Q = RBR' = Ge(t2)-Gg(t^)

i.el Q is a diagonal matrix with G-ft^) and G (t ) - G_(t ^)0 1 O r  0 r~l
r = as its diagonal elements. Therefore we have
Q~^ = b"^ r"^ and so b“^ = R'Q~^ R. But

Q-1

m
with given hy (3.2.12). Premultiplying Q ^ hy R ’ and post-
multiplying hy R, the result follows immediately.

Theorem 3.2.1: If Gg(t^) > 0 and Gg(t^^ < 1, then the covariance
matrix C possesses an inverse of the form

(3.2.13)

where L is an m^m matrix with zero in all the entries except the last 
element of the last column which is unity.

Proof: From (3.2.9), we can write

C = B [I - B D̂]

so that
-1 -1 ,-l -1C = [I - B D] B (3.2.1k)
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Let

and observe that the elements of the last column of B are identical
_nto the elements of Gg. Thus B Gg gives the last column of the 

identity matrix and hence

H =
0 0 
Gg(t^) Gg(tg) • w

The m eigenvalues of H are the roots of the determinëntal equation
det (ÇI-E) = 0  i.e. - G (t )) =0. Thus the eigenvalues ofo m
H are Ç = Ç = . . . = Ç   ̂ = 0 and  ̂ = G_(t ) < 1 i.e. all theX d m~x m 0 m
eigenvalues of H have moduli.< 1. Therefore

(I - H) 1 = I + a + + ...

It is easy to see that the higher powers of H are given hy

h ’" = [G (t H  r = 1,2,o in

so that

(I-H) 1= I + H + (G (t ))H + (G (t ))2 H +o m 0 m

= I + E

and substituting in (3.2.lU),

,-l I + E B-1 (3.2.15)
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Finally, let L = H B ^ = B ^ D B ^ = B ^  (Ĝ  . G ' ) B ~

i.e.,L - (b ^Gq)(B ^Gq)’ since B ^ is a symmetric matrix. Further,
,-lsince B Gg is the last column of the identity matrix, we have

0 0 
0 0

0 0 
0 0

and therefore from (3.2.15) we have

" ■ [”■' * ■-] (3.2.16)

which is the required result.

Having obtained the^inverse of C, we now substitute (3.2.l6) into 
(3.2.k) to obtain the GSS. Thus

-1 - Ge(ta))"
.(6) = (G^ - Gg)' B (G^ - Gg) + ----- r m W ( t  )

0 m

and by substituting for B ^ from (3.2.11), after some algebraic mani­
pulations , we get

(3.2.17)
r=l Ge(t^) - Gg(v^)

where t^ is very small (possibly -“) so that F^(t^) = G^Ct^) = 0 for
j = l,...,k and t is very large (possibly +“) so thatm+l k
F.(t _) = G (t .,) = 1 for j = l,...,k. Therefore Gq(t ) = Z 0. F.(t ) J m+l n m+l o o J J o

k k
and Ga(t = Z 6. F.(t .J = Z 0. = 1. Note that also 6 m+l J 0 J

=  0
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G^(t^) - > 0 since for r = 1,... ,n+l.
Hence the GLS estimator of 0 can be obtained by minimizing 

(3.2.17) with respect to 0.

3.3 Properties of the GLS Estimator
Let 0 denote the k-fold Product space

0 = [0,1] X [0,1] X ... X [0,1] .

Then it is clear that $(0) is a continuous function of 0 E 0,

Theorem 3.3.1: $(0) is a convex function of 0 E 0.

Proof: It is known (Hardy, Littlewood and Polya [2k]) that a necessary
and sufficient condition that 0(0) should be convex in 0 is that

(i) the second partial derivatives — exists for i,j = l,...,k.db• db .1 J>!
(ii) The matrix of the second partial derivatives is positive 

senidefinite.
Differentiating (3.2.17) with respect to 0  ̂and 0 j where 

l ^ i ,  j ^  k, it is easy to see that

^ ^ v ® r r = i  ( w - W P F
(3.3.1)

which exists for all i,j = l,...,k and is finite for every 0 E 0,
Denote by S a kxk matrix whose (i,j)th element is given by (3.3.1) 

Then for any b = (b^^...,b^)' 7̂ 0,

k m+l h? (F.(t ) - Pi(tr_i))2(G (t )-G (t _ ))2 
b ' S b =  Z Z — — —  -------------------

j=lr=l [«.(ty) - Gg(ty_i)]
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k m+l b. (f . (t^)-F. ■
i.â=l r=l (Gg(t^) - Gg(t^_^))3

If J

m+l 
Z i 
r=l

(Gn(t^) - G„(Vi))^
(G ft J  - G,(t_ J)3

(3.3.2)

which by using (3.2.7) shows that b' S b ^0, proving the positive semi- 
definiteness of S- Hence the theorem is proved.

Corollary 3.3.1: If t^,...,t^ are chosen so that r G^(t^^) for
every 1 < r < m+l, i.e. if each of the intervals A = t -t _—  r r r-1
r = l,...,m+l contains at least one observation, then 0(6) is a 
strictly convex function of 0 E 0,

Proof: 0(0) becomes a strictly convex function of 0 E 0 whenever
(3.3.2) is strictly positive,i.e. when S , the matrix of the second
partial derivatives of 0(0) , is positive definite. Thus assuming
G (t ) ^ G (t _) for every r = l,...,m+l, it suffices to show that n r  n r-1

J=1

for at least one 1 £  r £  m+l. Suppose on the contrary that

j=i
for every r = l,...,m+l. Then

= 2b. F.(t^ )
j=l •’ ^

= 2 b. F.(t ) = 0
j=i J : °
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But since the rank of the natrix A given hy (3.2.2) is exactly k , 
k
Z h . F.(t ) = 0 for r = 1,...,m+l if and only if c = h = ... =J J r 1 2

h^ = 0, contradicting the fact that h = (h^,... ,ĥ )* ̂  0. Hence there 
is at least one r, 1 £  r £  m+l, such that

"j ("j (h) - "j < V i »  ^ °

proving the positive definiteness of S.
We conclude therefore, from the standard properties of convex 

functions, that if 0(0) has any stationary points then they must he 
minimum points. Further any local minimum of 0(0) is an absolute 
minimum for if 0(0) has a local minimum at 0^ E G, then given any 
0 E G, 0(Og) £  0((l-a)0Q + a0] for sufficiently small 0 < a < 1. By 
using the convexity of 0(0), 0(0^) £  (l-a) 0(0^) + a 0(0) for all 
0 E 0, Thus 0(0^) £  0(0) for all 0 E 0 showing that 0^ is an absolute 
minimum point.

It is also worth noting that the condition of the corollary 3.3.1
for 0(0) becoming a strictly convex function of 0 E 0 is sufficient and
not in general necessary. However if 0(0) is a strictly convex function
of 0 E 0, then 0(0) has at most one unique minimum in 0. This is easy to see
for if there are two points 0 and 0* in 0 at which the derivative with..0 _o
respect to 0 of 0(0) vanishes, then 0̂  and 0* are both absolute minimum 
points and thus 0(0 ) < 0 (a 0 + (l-a) 0*) and 0(0*) < 0 (a 0 + (l-a)0*)0 u ## O m# O O m»0

for every 0 < a < 1. Now

a 0(0 ) + (l-a)0(0*) < a 0(a 0 + (l-a)0*) + (l-a) 0(a 0 + (l-a)0*)0 «*0 «*0 o o

= 0(a 0̂  + (l-a) 0*)

for every 0 < a < 1. This contradicts the strict convexity of 0(0). 
The asymptotic properties of the GLS estimator, obtained by
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minimizing <(6) in (3.2.17), can readily be established. Let ?.(8)
be the probability of having an observation in the interval

= t^ - t^_^; i = l,...,m+l and let n. be the corresponding group
n.

frequencies. Note that A. carries the mass p. = — in the sample1 " i n
distribution and the mass n\(0) in the hypothetical distribution. 
Then it is immediately seen from (3.2.17) that

m+l ( IT. ( 0 ) -p.)2 m+l p ?
= .b ■ - V (e) ' = .t v k  - 1 (3.3.3)1=1 1 >  1=1 1 _

and it is well-known that n
rm+l p?

-  1 has, for large n , a central
*■1=1

distribution with m degrees of freedom ( Cramer [15] ). Hence minimizing
(3.3.3) constitutes the celebrated minimum method of estimation.
The estimating equations are then obtained, by differentiating (3.3.3) 
with respect to 0. for j = l,...,k, to be

m+l p? 9tt . ( P )
Z ---—   ̂ = 0 j = l,...,k . (3.3.k)
i=l 7T?(0) 90.1 - J

Rao [k3] has proved that the estimating equations (3.3.k) have the 
following properties ;

(i) With probability approaching unity, there is a root 0^ = (0^,...,0^)’ 
of the set of equations (3.3.k) with the property that if we denote 
by = (Z^,...,Z^)’, the random vector whose realization is
0^, then Z^ converges in probability to the true parameter value
6* = (0*,.. . ,6*)* , i.e. 0 is a consistent estimator of 0*.. . . I k  ..n ~

(ii) This consistent estimator is unique in the sense that if there is
another root 0^ = (0^\ ...,0^)' ^ 0 of the set of equations (3.3.k) «,n -L K —n
which is also a consistent estimator of 0* and if 0^ is the reali­
zation of the random vector =(Z^,...,Z^)', then Æ  (Z - Z^) ^ 0

•• n  Am il n

in probability as n->
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(iii) The distribution of the random vector /n is asymptctica.ly
normal with mean vector 0 and covariance matrix equal to the 
inverse of the Fisher's information matrix (Cramér-Pao lower 
bound).

(iv) With probability approaching unity, the absolute minimijm of
(3.3.3) is attained at a root of (3.3.k).

3.k An Example

The estimating equations given by (3.3.k) cannot in general be 
solved analytically. However, for the class of mixtures of rectangular 
distributions analytic solutions may be obtained. In this section, we 
consider a mixture of two rectangular distributions and obtain the 
GLS estimator of 0 = (0^,02)’, the vector of the mixing proportions.'

Let F^(x) and F^(x) be the distribution functions of two rectangu­
lar distributions. Then ‘the mixture of F^(x) and F^(x) with mixing 
proportions 0^ and 0^ = 1-0^ with 0 <_ 0^ £  1 respectively, will depend 
on the scalar parameter 0^ only and may be written as

Gg(x) = 6^ Fĝ (x) + (1-8^) Fgtx) 0 1  q  5.1

where we assume that the ranges of F^(x) and Fp(x) are independent of 
0^. We further assert that, without loss of generality, one of the 
component distributions, say F^(x), can be assumed to be the distribution 
function of a random variable, uniformly distributed over the interval 
[0,1]. This condition can always be maintained by the use of the 
transformation Y = F^(X). That is if the distribution function of a 
random variable X is the mixture of F^(x) and F^Cx) with ranges [a^,b^] 
and [ag/bg] respectively with â  and b^ j = 1,2 being finite and 

independent of 0^ so that
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F^(x)
x-a.

a_ < X < b_ 1 —  —  1
X > b_ 

—  1

and

Fg(x) = •
x-a^
V ^ 2

X 1 & 2

a^l X < bg

X > bg

then the distribution function of the random variable Y = F.(X) is 
the mixture of two rectangular distribution functions with ranges

[b,l] and respectively.

^2 ^1 ^2 ^1 Letting a =  ---- and b̂ = —---- , the required condition isb^-ai
maintained. 

So let

bi-a^

F^(x) = '
rO

X

1

X £  0 
0 £  X £  1 

X > 1

and

x-a
b-a
1

X £  a

a £  X £  b 

X > b

where a and b are finite and independent of 0̂ . The following three 
distinct possible situations are considered.

(i) b > a 1 (see Fig. (i)) 
then
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G.(x) =

ro
0lX

0, + (1-0J

X < 0

0 £  X < 1
1 <_ X £  a

_ , , a < X < ^ 1  b — a  —  —

X > b

x-a

Choose
and

1 a
Fig. (i)

0 = t < t_ < ; ., < t = 1  o 1 a
^ ^ V l  " to+2 " < \+l

1 < a < m

Note that no values of {t.  ̂ can be chosen in the interval1 1=1
(l,a] since in such a case the condition (3.2.7) will not be satisfied. 
Also since the probability of having an observation in that interval 
is zero, the number of observations not exceeding 1 in magnitude is 
equal to the number of observations not exceeding a. Hence we have
G (1) = G (a)EL n

Now

- Gg(t^) Gg(t^_^) 0^(t^ t^_^) i = 1,... ,a

- Gg(t^) = 9^+9' o' 1 b-a
tp+i-a
b - a
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i = a+2, ,n+l

Substituting the above values in (3.3.^), we get

b—a rv
t.-t1=1 i i-1 (i-e_)'

a+1 m+1 P T
+ Z

’̂ct+1 ^ i=a+2 ^i "i-1̂
= 0 (3.U.1)

where 0-̂ denotes the least squares estimate of 0^, and 9^ is estimated 
by 1-0^. The solution of (3.^.1) is

®i =
-i=l ^i ^i-J

2 ,1/2 . a+1 m+1 p? ^
(3.i|.2)

+ Z
^a+1 ^ i=a+2 ^i ^i-T

TA
In particular if we choose a = 1, i.e. t^ = 0, t^ = 1 and tg = b, 

we have

P = G (1) - G (0) = G (1)JL n n n
P„ = G (b) - G (1) = G Cb) - G (a)2 n n n n

so that (3.^.2) gives

G (1)n ______
'1 G (1) + G (h) - G^(a) G„(b)n n n n

(3A . 3)

which we now show is the maximum likelihood estimator of 0. 
The logarithm of the likelihood function is

L = n G^(l) Zn 0^ + n(G^(b) - G^(a))( (l-0^) -&n (b-a) )

(3Land upon differentiating L with respect to 0^ and solving = 0,
1
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we obtain the root

Gn(l) Gn(l)
'l “ G (1) + G (b) - G (a) ~ G (b)n n n n

which is identical to (3.U.3). Hence the estimator (3.^.3) has R.11 
the well-known asymptotic properties of the maximum likelihood 
estimator (Cramer [15] )

(ii)
then

a > 0 b < 1 (See Fig. (ii))

G„(x) =

9lX
X-a

0^x + (1-0^)

X £  0
0 £  X £ a

a £  X £  b

b £  X £  1

X > 1

o a b 1 
Fig. (ii)

Choose 0 = t < t, < ... < t^ = a < t_, ̂ < ... < t^ = ̂  ^a+1
0 < a < 6 < m

m+1

If either a = 0 or b = 1 (but not both), obvious adjustments are made

in the choice of {t_.} 

We therefore have

m
" i=i
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TT. (0) = 0 (t. - t. ) = 0 A.1 m, -L 2. l i  1 1
A.

= Ai + (1-ep ^

= 0, A.1 1

. = 1 5 ...

i = a+1, —  ,3 

i = 3+1,...,m+l

Substituting in (3.3.U), ve get

fc- J1 “ 4—  E t--
0^ i=l i [va

B pî m+1 p?z —  + —  z —
 ̂ i=a+l i 0^ i=3+l i

=  0

giving the least squares estimator of 0^ as

r a pt m+1 p
Z + I . 
î=l i i=3+l i-i

2,1/2 
i

0, =
[ l-(b-a)]

r a p? m+1 p^ i 1/2 ■ 3 p?-
+ (b-a)[ l-(b-a)]  ̂ T~k=l i i=3+l i ̂ k=a+l iJ

In particular if m = 2, so that t = 0 , t  = a, t = b and t = 1, we
get

pG^(a) (l - G_(b))^
1-b

0. =

[l-(b-a)]
rĜ (a) (1-G (b))2-̂  n  + n

1-b
1/2 1/2+ [l-(b-a)] (G^(b)-G^(a) )

Let Zî  be a random variable whose realization 0^ is given by 
(3.U.I+). We prove that has the same limiting distribution as the 
maximum likelihood estimator of 0^ as n +■ “. Recall that f^(x), being 
the random function with realization G^(x), converges in probability to

Gg(x).
Now, the logarithm of the likelihood function of 0^ is

r l"8n^L = n G (a) în ( 0 j  + n(G (b) - G^(a)) )ln 0,+ r— -  + n(l-G (b) ) «n ( 0 ).n 1 n n i i u a j  n ±
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Differentiating with respect to 0̂ ,

dL ° 
d0, 0, + n(G (h) - G (a)) n n 1- (3.U.5)

1 h-a
from which 0^, the maximum likelihood estimator of 0^, being the root 
of (3.^.5) is given by

G (a)+l - G (b)0 = -2 2---1 a+l-b

Let be a random variable with realization 0^ and consider

z -z"*"n n
(a+l-b)

a 1-b
r^Ta) (i-r^(b))2ni/2n
a

n ^ l  
L-b J + (a+l-b)(r (b)-r (a)) n n

r (a) + 1 - r (b) n__________ n
a+l-b

2l„\ Ct_i- fyA-Z.l/li/zrrAa) (i-r (b)? 
(r_(b)-r_(a)){(a+l-b) I ^  +n n 1-b -(r (a)+i-r (b))} n n

1/2 r^ffa) (l-r_(b)
(a+l-b) {( a+1 1/2+ (a+l-b) (r. (b) - r (a))}n n

Now, as n “ F (a) 5- G^Ca) = 0_a and F (b) 5- G_(b) = 0^b + (I-0 ) n D J. n Ü 1 L

and since (Z -Z ) is a continuous function of F (a) and F (b), it is n n n n
+ P +seen that asn->-«,Z-Z ->-0. Therefore Z and Z have the samen n n n

asymptotic distributions, i.e. Z^ is asymptotically normally distri­
buted with mean 0^ and variance equal to the Cramer-Rao lower bound 
which is easily found to be

0^ [ 0^(b-a) + (1-0̂ )] 
n [ 1 - (b-a)]

(iii) 0 < a < 1 , b > 1 (see Fig. (iii))
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Gg(x) =

X-a

'1 + c - 81) r-
x-a 

a

0 £  X £  a 

a £  X £  1

1 £  X £ b

X > b

Fig. (iii)

Choose 0 = = a < < ... < tg = 1 < < ... <

0 < a < 3 < m

If a = 0, then we choose a = 0. 
We therefore have

TT̂ (0) = 0^A^ i = I 5...,a
A.

= 0̂ A^ + (1-0̂ ) i = a+1,...,3

i = 3+1,...,m+l
A.

= (1-81) ^

and substituting in (3.3.^) we get

 ̂ TT*»! i-1 *i
[ v  e]

e pf 
-  ̂ -T1-8.1 i=o+l i

(h-a) H
(i-e^)2 i=e+i

=  0

resulting in the following quartic equation in 0̂ , the estimate of 0^;
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^o®! + =l®i + =2®i =3®1 =1 = ° (3.^.6)

where

C = ( 1-Ü) ) o (l-w) + S 1—w
1, a a+15 3 (Ü 3+1 ,m+l

=1 ■ (l+“) + Vl,m+l’

"2 = ' (l-w)' + w(5“-̂ )l ^l,a + (l-“) ^+1,6” “S

Cg = 2 w (l-2w) ^

=4 = \.a

^ £ P?
with w = -—  and S = xh-a r,£ . A.i=r 1

1 < r < £ < m+1

It is known that the polynomials of degree up to and including 
h are solvable. A quartic is first reduced to a cubic and is then 
solved. We can also solve the quartic (3.^.6) by Ferrari’s method 
based on dissecting the quartic into the difference of the squares 
of a quadratic and a linear function of 0^ (Archbold [2] ) .

Thus it is possible to obtain 0^ from (3.^.5)» but unfortunately 
the underlying solution becomes intractable. However with some 
numerical values, the roots can easily be found.

3.5 Monte Carlo Studies
In order to compare the method of estimation of 0 suggested in

this chapter with that of chapter 2, we consider a mixture of two
normal distributions and derive the estimate of 0 = where

0_ = 1-0, and 0 < 0̂  <1.2 1 —  1 —

We mentioned in section 2.7 that one of the component distribu­
tions can, without loss of generality, be assumed to be the distribution 
function of the standard normal distribution H(0,l),i.e. a normal
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distribution with mean zero and variance unity. So let

where

GgCx) = 0^F^(x) + (1-0^) F^(x) 0 < 0^ £  1 (3.5.1)
—00 <  X  <  oo

rx
F (x) = --- exp{- Jy^} dy

/2ïï

and

FL(x) =
rx

exp|- (y-y)^l dy

The values t^,...,t^ can be chosen to be any m distinct ordered 
finite real values such that t^ < t^ < ...< t^. This gives

F.(t ) < F.(t ) < ... < F.(t ) j = 1,2J -L ,1 ^ J inJ -L J
and consequently

Ge(ti) < Ggftg) < ... < Gg(tJ .

Hence the conditions of the lemma 3.2.1 and the theorem 3.2.1 are 
satisfied and the covariance matrix given by (3.2,9) possesses an 
inverse. Note that

ir.(e) = Gg(t.) - Gg(t._^) = 0^ (F^(t.) - F^(t._^)) +

(3.5.2)

with t = —» and t . So by differentiating (3.5-2) witho m+1
respect to 0^,

d IT. (0)
d0—  = (F^Ct.) - F^(t._^)} - (Fg(t.) - F2(t._i)) (3.5.3)

and therefore by substituting (3.5.2) and (3.5.3) in (3.3.U), the
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estimating squation is obtained as

- ®2i) r O

where 3.. = F.(t.) - F.(t._ ) for j = 1,2 and for i = l,...,m+l.J J- J X j X X
The root of (3.5*^) constitutes the GLS estimate of 8̂ .

A sample of size n was generated from the mixture (3.5.1) by
sampling with probability 0 £  0^ £  1 from N(0,1) and with probability
0o ~ l"8n from N(y,a^). Choosing the real values t_ < t < ... < t ,- J- 1 2  m
the root of (3.5*^) was obtained by using standard numerical techniques
on the computer. The experiment was repeated n^ times where n.n^ = N
being a fixed number.

In our Monte Carlo studies, the values t_ and t were chosen as1 m

t^ = min (y^ - 2o^, y^ - 2a^) (3.5*5)
r. ^

and t^ = max (y^ + 2o^, y^ + 20^) (3.5*6)

and the distance t^-t^ was divided into (m-l) equal intervals. The 

values '̂ 2’*‘**^m-l then chosen as the division points, so that

t -t
t . = t + (i-l) ---—  i = l,...,m .1 1 m-l

The choices of t^ and t^ given by (3.5-5) and (3.5.6) respectively,
seem reasonable since over 95^ of the observations from each component
of G_(.) fall in the interval t -t_. Analogous to table 2.2, table 3.1 D m l
gives the GLS estimator of 0^ for different values of m when N = 5000. 
The mean-square-error of each estimate and the standard error of each 
mean are calculated as explained in section 2.T. Comparing the two 
tables, it is seen that for large m, the estimate of 0^ is improved.

To investigate the dependence of the GLS estimator of 0^ upon
yp - y-,the number of division points m, we picked the case when —  ---± = q
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MSE

n=10

1+0 60 m20
Fig. 3.1 - The Mean-Square-Error of the generalized Least Squares estimator 
of the mixing proportion in a mixture of two normal distributions N(0,l) ^ d  
N(l,l), against m, the number of division points of the sample space, 
for different sample sizes.
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MSE

0.15 ■■

0.10

0.05 ..

6o1+0 80 100 12020 n

Fig. 3.2 - The Mean-Square-Error of the generalized Least Squares estimate 
of the mixing proportion in a mixture of two normal distributions ri(0,l) 
and îî(l,l), for varying sample sizes.
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^2and - 1 and plotted the mean-square error of our GLS estimator
1

of 0^ against m for different sample sizes. The value of IT vas taken 
to be 5000. Figure 3.1 shows that for relatively large n, the effect 
of choosing m greater than 20 is very little and perhaps, in some 
cases, not worth the computational effort.

Finally, for the same values of and N and with
m = 10, we plotted the mean-s quare-error of the GLS estimator of 9 
against n in figure 3.2. Again, as in section 2.7, the sharp fall 
of the curve as n increases, is noted.

3.6 Discussion
It can be argued that if the data is available ungrouped, then 

both the number of classes m and the division points (t.}?_ may 
be chosen in many different ways and we always run the risk of 
influencing our results by these arbitrary choices of the class 
intervals. As R.A. Fisher points out "grouping causes a loss of 
information. By grouping we sacrifice knowledge of the exact size of 
the single observation, and hope to get compensation by an easier 
collection of our data".

The problem of finding the "best" choice of partitions of the 
sample space is of crucial concern in statistics and some authors have 
considered the problem in specific cases. Here, we mention just some 
of the more important publications in this subject. Gjeddebaek [22] 
considers different problems concerned with the estimation of the mean 
and variance of a normal population. He compares their maximum likeli­
hood estimators when the observations are grouped with the corresponding 
estimates obtained from ungrouped data. The comparison is based on the 
asymptotic efficiencies of the estimates and he concludes that the 
loss of information due to grouping is not asymptotically significant 
when the group intervals are about twice the standard deviation.
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The author gives examples of applications to some other statistical 
problems. Also in the context of maximum likelihood estimation, 
Kulldorf [ 32] makes a thorough study of some of the specialized 
problems of maximum likelihood estimation from grouped data.

Cox [13] has considered the problem of grouping in a more general 
context. He associates a value to the ith group and this value is 
given to an individual falling in that group. Then the random variable 
Ç(x) being a function of the random variable X, whose range is to be
partitioned, is defined by Ç(x) = where x is in the range corres­
ponding to the ith group. The author defines the loss due to grouping 
an individual in the ith group as (x-Ç^)^/a^ where is the variance 
of X. He then considers the problem of minimizing the expected loss 
given by E [X - Ç(X)]^/a^. In the theory of x^"test also, the problem 
of optimum grouping is discussed by some authors. Mann and Wald [36] 
suggest that the width of the class intervals be determined so that 
under the null hypothesis, specifying the distribution completely, 
the probability content of the classes are equal.

It is now clear that there is no general theory of the choice of 
partition points of the sample space. By the nature of the difficul­
ties of the problem, outlined above, a complete solution to the problem
is unlikely to be forthcoming soon.

Now, as far as our estimation problem is concerned, we are, to
begin with, required to define what is meant by the "best" choices
of m and {t.}?__. When the grouping is done for convenience of 1 1—1
exposition, any mathematical condition set up to define the "best" 
system of grouping is bound to be somewhat artificial. It seems 
reasonable to try to minimize the variance of the estimate, but 
unfortunately obtaining an explicit formula^ for the variance of the 

estimate seems impractical.
In practice, we may form our class intervals with full knowledge 

of the data and then proceed as though these intervals were known
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a priori, This seems intuitively plausible since any fixed, set of 
class intervals leads to the same asymptotic distribution. But, in 
small samples, to increase the accuracy, the general feeling of the 
statisticians is to put more computational work by increasing the 
number of intervals and choosing the intervals small enou^ to avoid 
classes with high expected frequencies. Thus the necessity to
consider the case when m -> <» becomes evident and this is done in the
next section.

3.7 The Generalized Least Squares Estimation of 0 from Ungrouped Data

Let s = G_(x) for x and define W (s) = G (x), 0 (s) = F (x).o n n n n
Put y(s) = s -  W(s) and Y (s) = s -  n(s). Then we have the linear n n n n
model

s = W_(s) + e(s3 (3.7.1)n

where 0 ^  s ^  1 and e(s) it the realization of a random function &(s)
with Eg(ê(s)) = 0 for every 0 £  s ;< 1. Similarly, let s’ = Gg(x’)
for x’ and define W (s’), Ü (s’) accordingly. Then •n n

Kg(s,s’) = CoVq(Y^(s ) ,Y^(s’)) = CoVq(SÎ̂ (s ) ,fî (s’))

= CoVg(r^(x),r^(x’)) = min(Gg(x),Gg(x’)) - Gq(x )Gq(x ’) 

= min(s,s’) - ss’ . (3.7.2)

It is well-known that Kg(s,s’), being a positive definite symmetric 
kernel, can be expressed uniquely in terms of its eigenvalues 
jïï, j = 1,2,... and the corresponding eigenvectors sin(jws) as

K f s . s - ) = ^  Z sin(.î s) sin(jws:)
! ’' 0=1
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where the series is uniformly and absolutely convergent (Anderson 
and Darling [1] ).

To begin with, assume that s = Og(x) is a simple function of x G %
taking only distinct values s^,...,s such that 0 < s., < s^ < ... < s < 1.1 m 1 2  m
Then, denoting by I, the mxm matrix with (i,j)th element given by 
Kg(s^,Sj) for i,j = 1,... ,m, from (3.T.2), we have

I =

"l "l
Si Sg

L?1 ^2 m-*-

=1 V 2  ..... Sl=m

^ 2  .....

=2=%   -

Note that if in (3.2.9), we put s ̂ = Gg(t^) for j = 1,... ,m, then I' 
becomes identical to C. Hence analogous to the theorem 3.2.1, we have

-1

6s 6s,

6s.

6s.

6s 6s,

6s.

6s.

6s 6s,

6sm-l

6s1+-

6sm-l 6sm

aSm+1

where 6s^ = Sj - s^_^ j = l,...,m+l and s^ - 0, - 1.

Denote by y, the mxl vector y = ’ * * *’̂ n^^m^ ̂
A(s.) = y (s.) - y„(s. ,). yjs.) = w (s.) - W  (s. ) for j =J n j  n j J L  n j  xij n j - u
Then the GSS in the linear model (3.7.1) is given by
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y'l \  = Z
m+1 (a(s.))^ m+1 fôs. - Y

j=i
= Z

j=l
__ J

ÔS .J
ÔS (3.T.3)

For an appropriate sequence of progressively finer intervals 6sj, 
j = l,...,m+l, it is seen that as m -> «», the limit of (3.7.3) is

$ ( 0 ) =

dG (x) - dG.(x)l 2 •dG (x)'n 0
dG (x) =

? JdGg(x) J [dGg(x)j dG^(x) - 1 .

(3.7.%)

Thus the GLS estimator of 0 is that value 0^ which minimizes (3.7.^).
It is interesting to note the similarity of (3.7.^) with the 

measure of distance defined hy Bartlett and Macdonald [ %] . They define 
the least squares estimator of 0 as the value minimizing

 ̂ (dG^(x) - dGg(x))Z

dW(x)

where W is a suitable increasing function of x and conclude that the 
best choice of W(x) is indeed G^(x) since with this choice, the estimate 
of 0 will be asymptotically efficient.

In the following, we establish the asymptotic properties of the 
GLS estimator of 0. For simplicity, we deal with the case k = 2, 
although there is an immediate generalization. Let 0 = 
denote the vector of the mixing proportions ^ ^ and
0g = 1-0^ in the mixture

Gg(x) = e^F^(x) + e^F^(x)

and suppose 0* = (0p0|)' with 0 £  6* £ 1 and 6* = 1-0* is the vector 
of the true parameter values.
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Notation : In the sequel, the well-knowi i ymbols o^(.) and . )
will he used to denote the rate of convergence in probability. Thus 
if ) as n -> «», then for any e > 0,

2im Prob (|u /W I > s) = 0 
n-^ ^ ^

and similarly if there exists a constant C, 0 < C < <»,
such that

£im Prob (|U /W | £C) = 1 .n-H» ^ ^

Lemma 3.7.1: The function $(0) given by (3.7.^) is infinitely differen­
tiable with respect to 0^ under the integral sign.

Proof: From (3.7.^),

'dG (x)' 2 ' f
0(0) = 0., Ug(x)j dF^(x) + (1-8^)

'dG (x)'v̂
dG.(x)J ~  ^

and using the Lebesgue dominated convergence theorem, 0(0) is infinitely 
differentiable with respect to 0^ whenever

90.

dG (x)>|2n
dG (x)J exists for r = 1,2,... and is bounded by a function of

X only (except possibly for a set of points to which F^(.) and F^(.) 
assign zero probability) which is integrable with respect to F^(.) and
Fg(.). Now

90
gr (dGjxh  ̂

dGjx)0
= (r+1)!

(dF^(x) - dFg(x))^(dG^(x))2
(dGg(x)) r+2
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(r+1);

(r+1):

(aF^(x)-afg(x)y (dG^(x)}2 

{0^(dF^(x)-dF2(x))+dF2(x)}’̂'̂  ̂

(dF2(x)-dFj^(x))^ (dG^(x)]2 

(dF^(x)+(l-e^)(dFg(x)-dF (x))]

for X e {y: ysX, ÔF (y)>_ d? (y)}

— 2 for xe{y: ySX> dF^(y)£ dF2(y)}

(dF (x)-dF (x)h(dG (x))2 
(r+1): ------- :------ ^ ------- for X e {y: ysX, dF^(y) ^ dFg(y)}

(r+1):

(dF2(x)) 

(dF2(x)-dF^(x))^(dG^(x))
(dF (x))r+2

for X 6 {y: ySX, dF^(y) £ dF2(y)}

for r = 1,2,.,. . Thus the conditions of the dominated convergence 
theorem are satisfied and the lemma is proved.

Suppose now that the distribution functions F^(. ) and F^C.) and 
hence Gg(.) are absolutely continuous and there exists densities

dFL(x) dFL(x) dGg(x)

gg(x) = 0^ f^(x) + (1-0^) fgfx)

Theorem 3.7.1: If we denote by = (Z^^Z^)* the random vector whose
realization 0^ = (0^,02)’is the GLS estimator of 0, then is C M  
with asymptotic variance reaching the Cramër-Rao lower bound.

Proof: Using the lemma 3.7.1 and differentiating 0(0), given by (3.7.%),
with respect to 0^, we see that Z^ is the root of

d*(e) r (arn(x)-aGe(x))(aFi(x)-dF2(x)) ^
d0 dGa(x) 1 + aGo(x), (3.7.5)
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Now dr^(x) H r^(x+Ax) - r^(x) where Ax > C. is a very small quantityn
and recall (c.f. equation (1.3.%)) that

n
r (x) = - E n(x-X.) 

" j=i ■>

where are independent random variables with common distribution
function G^f.) and n(.) is the well-known Heaviside function. Since

Eg [n(x-Xj)] = n(x-t) dG (t) = G (x) X E 3o ,

then r^(x) ->-Gg(x) as n-»-» for every x EjC and therefore

x+Ax
r (x+Ax) - r (x) n n gg(t) dt = Gg(x+Ax) - Gg(x)

= dG^(x) as n » .

dr (x)
Hence for sufficiently large n, = 1 + o^(l) and thus (3.7.5)
gives

d$(8)
d9.

' (dr^(x)-dGQ(x))(dF^(x)-dF2(x))
dGg(x) (2 + Op(l))

which shows that for sufficiently large n, the influence of the term 
involving o (l) is negligible and is the root of

r dF (x)-dF (x)
dGg(x)- ( a f n ' x )  -  a c e f x ) )

r f^(x)-f^(x)
W —

n f (X.)-f (X.) 
—  2 —i u £ J_
“ j=i

(3.7.6)

and consequently 0^ is the root of
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1 n f (x.)-f (x.)
"  ■ °

where x^,..,,x^ are the realizations of respectively.
But it will be shown later in section 5*2 that the root of

(3.7.7) corresponds to the maximum likelihood estimator of 8* and 
therefore by the well-known properties of the maximum likelihood 
estimators, (being the root of (3.7.6) for sufficiently large n) 
possesses the asymptotic properties stated in the theorem.

3.8 Conclusions
The claim that the consideration of the covariance matrix in 

the minimization of the sum of squares, will improve the efficiency of 
the estimate of the vector of the mixing proportions 0, is now justi­
fied. It is seen that by defining h(x,t) as in section 3.2, and 
minimizing the generalized sum of squares, a fully efficient estimator 
of 0 is obtained.

The difficulties, however, are clearly in solving the resulting 
equations. To solve (3.3.%) analytically is, of course, an impractical 
task and unless some numerical approach, e.g. successive substitution 
is taken, the estimation procedure cannot be usefully employed. This 
approach is discussed in the next chapter.
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CHAPTER %
LEAST SQUARES ESTIMATION - USE OF ITERATION 

%.l Introduction

It is clear that since the covariance matrix C given "by (3.2.9) 
depends on 0 = (0^, ..., 0^) ’, the estimating equations (3.3.%) become 
non-linear functions of 0^, ..., 0^ and thus the GLS estimator of 0, 
i.e. the value of 0 minimizing ( 3.2.17), becomes very cumbersome to 
calculate. In fact, in most instances a solution cannot be obtained 
directly. In this chapter, we propose an iterative procedure whereby 
the covariance matrix is calculated in each step and is used to find the 
GLS estimate of 0 in the following step. It turns out that the sequence 
of estimators obtained in this way has special characteristics and indeed 
when m in (3.3.%) is large, the process converges to the maximum 
likelihood estimate of 0.

In Section %.2, the "iterative process is introduced and it is 
shown that when

(i) the paiijĵ ioning of the sample space j£ is done by fixing
the division points t^ < tg < ... < t^ satisfying (3.2.7), 

(ii) the random sample X^, ..., X^ with realizations x^, ..., x^ 
respectively, from the mixture of distributions Gg (x) given 
by (2,2.1), is grouped accordingly,

(iii) the iteration process is started with a consistent estimate 

of 0,
then the estimator of 0 obtained after a 1-cycle iteration is CAN with 
minimum attainable variance with respect to such a grouping. The results 
of a small Monte Carlo study are presented in Section %,3. Discussing 
the iteration process for the ungrouped data in Section %.%, we prove 
that the process will converge to the maximum likelihood estimator of 0. 
It is assumed in Section %.% that the densities f^(x), ..., f^(x) and
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k

hence ga(x) = E 6. f.(x), where 6 = (9 , 9, of the distribution
: j = i  ^ ^ ~ \

functions F (x), F (x) and Gq (x ) = E 9. F.(x) respectively exist
j * _ l  1 J

and are differentiable with respect to x ̂ 30 • Recall from Section 3.3 
that G denotes the k-fold product space [0,l] x [o,l] x ... x [o,l] .

U.2 The Iteration Process
'"(’o')An arbitrary value of 9, say 8 = (9̂  9 )' is chosen•. ~ ~ n 1 k

( o)in 0 such that E 9 . =1. This value is substituted in (3.2.13) for
0=1 -1 . . . -19 = (9^5 ..., 8^)’ to obtain which is then inserted for C in

(3.2.%) to give

iJ9) = (G - A8)' C”^ (G - A8). (4.2.1)
k k

To impose the constraint E 0. = 1, put 0. = 1 - E 0., for some integer
j=i J j=i

I ^  ̂ k, in (%.2.l) and minimize it with respect to 9^, ..., ®£-l’
8g , ..., 0 . (For convenience, we may choose 2 = k and put

k-1
0 = 1 -  E 0. in (%.2.l) and minimize it with respect to 0 , ..., 8,_, . k J X K ±
Let 0^ , ..., ®2+l’ •••’ the minimizing values and set
9(1) = 1 - E 9(1̂ . Then 0^^^ = (8^^^, ..., 0^^^ ' forms the GLS 2 J ~n I kJ--L

j A  .(1) .estimator of 0 after a 1-cycle iteration. We now substitute 9 inM ~n
(3.2.13) for 9 to obtain and the process is repeated so that after 
the rth cycle of the process r = 0, 1, 2, the following steps

are taken;
(i) 0^^^ = (0|^\ ..., 9^^))' is substituted for 0 = (0̂ ,̂ ..., 0^1'

in G (t.) = E 0. F.(t.) for i = 1, ..., m
- i=l  ̂ (r) (r)(ii) Analogous to (3.2.12), \  ..., are calculated from

i_~n

«n
for i = 2, 3, ..., m

°"(r)'V ^ and pj^^ =
~n



98

(iii) » •••9 are substituted for p^, __ , in (3.2.11)
—1to obtain Br

(iv) is calculated, analogous to (3.2.13), from

^
" " " - °g(r)(V

~n
where L, as before, i s  a n  m  x m  matrix with zero in all the 
entries except the last element of the last column which is 
unity.

(v) defined in this way, is inserted for C~^ in (3.2.%) to
give

0 (0) = (G - A8)' C ^ (G - A8) (%.2.2)

where G^ = (G^(t^), ..., Ĝ ( t̂ )) ’ and A is as given by 
(3.2.2).

f „ k
(vi) To impose the constraint Z 8. = 1, pick 0 amongst

j=l ^
0 , ..., 0 foe some integer 1 ̂   ̂^  k (possibily 2 = k 
^ ^ k
for convenience) and substitute 0_ = 1 - Z 0. into

j=l ^

0^^0), given by (%.2.2), and minimize 0^(8) with respect
to 0^, ..., 0£_2_9 02+29 ' 9 Qjj.* Call the minimizing values

 .... and =
1 - Z Then 8̂ "̂̂ ^̂  = (0̂ '̂̂ ^̂ , ..., 0^^’*'̂ )̂’forms

j=l J I k
j?̂ 2

the GLS estimator of 0 after r cycles of the iteration process

The iteration process is continued until d(8^ , 0^ ), where d
is some suitable distance function defined over 0, becomes negligible.
A practical choice of d may be

k
d(a,3) = Z (a. - 3-)^ 

i=l
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k. kfor any a , 3 E R where R is the space of k-dimensional real vectors.
But this choice of d is clearly by no means unique.

We establish in theroem %,2.1 (below)the properties of the
estimate of 0 provided by a 1-cycle iteration in the above process.
To avoid unnecessary algebraic manipulations, the theorem will be proved
for the case k = 2,i.e. when the mixture of distributions Gg(x) given
by (2.2.1) consists only of two components F^(x) and FgCx). The
generalization of the theorem to the case k > 2,i.e. when Gg(x) consists
of more than two components is laborious and lengthy and the details
are given in Appendix B.

The mixture Gg(x) of two distribution functions F^(x) and F^(x)
with mixing proportions 0 ̂  0^ 1 and Gg = 1 - 8^ respectively and
with the vector of the mixing proportions 0 = (8 , 0 )’, will depend~ 1 ^
on the scalar parameter 0 only and is written asX

Gg(x) = F^(x) + (1-0^) Fg(x) 0 1  1  1

X (%.2.3)

Also, we can show that 0^(0) r = 0, 1, ... given by (%.2.2) can be 

written as
m+1 (p. - IT (0))^

0 (0) = Z ' y"--- r = 0,1,2, ... (%.2.%)
^ ~ i=l w.(0^^^)1 ~n

where, as before, p^ = G^(t^) - ^^(t^.^)» TT̂ (8 ) = Gg (t^) -
min TT. (0) > 0 for i = 1, ..., m + 1 and for every 0 E 0. Substituting 
i 1 ~
for Gg(x) from (U.2.3) and setting the derivative with respect to 0^ of 
0 (0) equal to zero, we find that the estimate of 0^, after r + 1 cycles 
of the iteration process is given by
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= -  L l    r = 0, 1, ... (4.2.5)
I 11 -21

i=l 7r.(ê ^̂ )1 ~n

where = F^(t^) - for j = 1, 2 and for i = 1, ..., m + 1 with
F'(tn) = G_(tn) = 0 and F.(t = G (t = 1. P-orther, the numerator j u n u j in+± n m+t
of (U.2.5) can be written as 

m+1 (P j-g g jH e ^ ^ -B g -)  ^ m+1

i=l i T ( e ^  i=l n.(ê(r))1 ~n 1 ~n

and since %\(9) = 8^ 3^^ + (l - i = 1, ..., m + 1, we have
- 3g£ = 8^ (3^^ - 3g^) for i = 1, ..., m + 1. Thus

m+1 (p .-g g .) (B j^ .-B g .)  ^ m+1 (P j-^ j.(g |, ' '^ ) ) ( B i^ -g g j)

i=l 7T.(0 (%))  ̂ i=l TT.(ê ^̂ )1 " n 1 -n

, :(r) (Bli'Ppi)^
: i=i ..(SW)1 •>' n

m+1 p. (3 .-3 .) m+1 x m+1 (3.-3.)%
= i  -  4  " i . - ' . '  •  4 1 % ! % -

i~n 1 ~n

_ m+1 p . (B ^ .-g g .)  . ( r )  m+1 ( B i i - g g j )Z

'i=i : i=i ..(e(-))1 ~n 1 ~n

m+1
since E (3^-32i) = " ^2^^m+l^ = 0. Hence by substituting

i=l
(1+.2.6) in (i|.2.5), we obtain

m+1 PifBii-Bgi)E
' t  ̂\ . / \ i=l IT. (0^^^ )

= 4  + m+1 (g_.:L)' ' " = •••'11 "2i
i=l 7T.(0̂ ^̂ ) 1 »««n
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We finally denote the true value of the parameter 3 = (9 , 9 )**” 1 2
by e* = (8*, 8*)' where 0 8* <_ 1 and 8* = i - 9* and also use the
symbol o^(.) introduced in Section 3.J.

Lemma U.2.1: Let ... be a seq_uence of random variables with
the distribution functions F^, Fg, ... .Suppose that F^(.) tends to a
distribution function F(. ) as n Let Yg, ... be another seg_uenc(
of random variables, and suppose that Y^ converges in probability to
a constant c. Then the distribution function of Y = C + Y tends ton n n
F ( x - c ) as  n  

Proof: Cramer [15] .

Theorem U.2.1: Let 6^^^ = (8^^\ 1 - be the realization of the«n 1 1
random vector 1 - for r = 0, 1, .... If is a-n l„ 1 11
consistent estimator of 0* such that Z^^^ - 0* = o^(n **) as n ^ then

(p) . - ,0^ ' has the property that Z^ is consistent asymptotically normal 
with asymptotic variance given by

m+1 (e .-3p. ) ^ ”1 
n Z - --

i=l IT. ( 0 * )1 ~

Proof: Denote by P^ the random variable whose realization is p^ =
- G (t. ) so that P. = r (t.) - r (t. ) for i = 1, ..., m + 1. Writen 1-1 1 n 1 n i-l ^
2;(0) _ g* ^ g and P. = w.(0*) + n. for i = 1, ..., m + 1. Then e = o (n 1 1  1 1 "  1 P
as n + «> and since P^ is a random variable admitting first and second 
order moments, Pp = o^(n~^) as n -> «> for all a < 1. Thus from (U.2.T), 

we have
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(1) _ + m+1 (7T̂ (0*)+np) (3pp-32p)
i=l TT. (0*)1V  ' 1 + 7T̂ (0*)

m+1
L
1=1

(3^i ggp)

1 + '^li ^21^'
TTpCS*)

-1

+
m+1 (w^(0*)+np)(3^p-32p) 
i=l

1 - ïïp(0*) + 0(£^)

-1
+ 0( e )

m+1
„(o) , i=i
1 m+1 (Bii-ggi)^

i=l

m+1 p.(3 .-3 .)2 

i=i "i(g*)
Hence

a T
Æ(z(1) 6*) i=l %p(0*)

i=i

+ Op(l) (4.2.8)

and by substituting p. = P. - 7t.(0*) in (4.2.8), and using the lemma it.2.1,1 1 1 ~
we see that the random variables Æ(Z^^^ - 0*) and

Y =

^m+1 Pp(3pp-32p)

m+1
i=i

have identical asymptotic distributions.
Now, it is shown in Appendix A that the joint asymptotic distribution 

of P^, ..., is a (m+l)-variate normal distribution with mean vector

j,(8*) = (%i(8*), ..., *m+l(2*))'

and (m+l) x (m+l) covariance matrix^ Z, where the (i,j)th element of Z 

is given by
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a. . = (tT . (0*) - 7T?(0*) ) 1J 1 •“ 1 •-

TT.(0*) TT.(0*) 1 ~ J " i r j

for i, j =1, . . m+1. Let b = (b , . b with— j_ m+x

b.1

^li ^2i
TTp(0*)

i=i

and P = (Ppj •••9 Then we can write Y = b^P and hence the
asymptotic distribution of Y is a univariate normal distribution with 
mean

E.*(Y) = b'Tt(0*)V «W

and variance

Var^.(ï) = i  b' Z b .U II

But

m+1
b'7r(0*) = Z b. w.(0*) • — 1 1 1—J.

m+1
Æ  I (g-.-Bp.) 

i=l
m+1 (Bij-Bgj)^
i=l

= 0

Since
m+1
.Z (Bii-ggi) = - î’a ^ V i )  = °1=1

and

i+.

m+1 m+1 (g^p-ppi) (^lj"^2j)
 ̂  ̂ n.(0*) " T I W

b ’ E b n ~
i=i .1=1 "i":

m+1 (3pp“32i)̂ ' 
E
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m+1 IT, ( 0 * )  ( l-T T . ( 6 * )  )

m+l (gpp-32p)2

m+1 m+1

i=l j=l li ^2i''^lj ^2j

(4.2.9)

S in c e

m+1 m+1

.1 .1 (eii-ggiilBij-ggj)
1-1 J-1

m+1

(^ii-^2i>1=1
= 0

Hence the asymptotic distribution of Æ  - 0*) is normal with1 1
mean zero and variance given by (U.2,10), Thus the theorem is proved.

The following remark is of interest;

Remark ; We can show that if the given random sample X^, X^ with
common distribution Gg(x) = 0^ F^(x) + (l-0^) Fgfx); 0 < 0^ < 1, is grouped
into m + 1  intervals with the division points

to < < ... < < V i
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where an i are as defined in Section 3.2, then the Fisher's
information in a single observation with respect to such a grouping 
coincides with the denominator in (U.2.10). This is easy to see since

GQ*(tp) GQ*(tp_^) - 8* (3pp g^p) + ggi

where, as before, g .. = F.(t.) - F.(t._-,) for i = 1, .. ., m+1 andJ1 J 1 J 1
j = 1, 2.

This interesting coincidence shows that, under the condition of

Theorem 4.2.1, is also asymptotically fully efficient in the

sense that its asymptotic variance is minimum with respect to a given

set of division points (t.}°^ .
^ i=l

4.3 Monte Carlo Studies

In this section, we continue our Monte Carlo study concerning

the problem of estimating the mixing proportion in a mixture of two

normal distributions. This problem was considered in Sections 2.T and

3.5 of Chapters 2 and 3 'respectively.

Consider a mixture G (x) of two normal distributions N(0,l) and0
K()i,a^) that is (c.f. (3.5.1))

G (x) = 6^ F^(x) + (1-e^) Fg(x) 0 ^  8^ < 1 (4.3.1)

— 00 < X <00

where

and

1F (x) = --- exp {-§y^}dy - 00 < X < »

exp { —  (y-y)^}dy - » < x < «>
2q2

Choosing the values t^, ..., as in Section 3.5, an initial

estimate 6^^^ of 0., is chosen and by using (4.2.T)» successive estimates 1 1
of 0^ may be obtained. The value 0^ can be chosen in two ways. We
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can choose an arbitrary va!.ne in the interval [0,l] as this initial 
value. Like most other iteration processes, this arbitrary initial choice 
should not affect the final result if the number of iterations is 
sufficiently large. But if only a small number of iterations are

^(o) .taken, the estimate 0^ is chosen to be a consistent (but inefficient) 
estimator of 0̂ , Here, we use the method of moments to find this 
initial choice. Thus if the distribution of the random variable X is 
Gq (.) given by (4.3.1), then

and
Eg(x) = (i-e^)p

Eg(x2) = 8^ + ( l-e ^ )(o 2 + y 2 )

and in any random sample of size n ; X^, ...» X^ with common distribution
function G (.) and with realizations x_ , ..., x respectively, we 0 I n
equate the first sample moment

to E (X) to get

whenever y ^ 0. If, on the other hand y = 0, then the second sample 

moment

1 ^ 2 m.s. = ~  Z x4
"j=i J

A ̂ 0 )is equated to E (X%) to obtain 0 Thus 0^^) is defined as

_ m.s. - 
1 —

y = 0 .
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0.20

n = 100.l6

0.12

0.08

n = 25

O.OU

n = 50

n = 100

ho 6o20 m
Fig. 4.1 - The Mean-Square-Error of the generalized Least Squares Estimator 
of the mixing proportion, based on the 1-cycle solution of the iteration 
process, in a mixture of two normal distributions N(0,l) and N(l,l), against 
m, the number of division points of the sample space, for different sample sizes
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MSE

0.20 • -

0.16

0.12

0.08 "

0.04 ■■

20 40 60 80 100 120 n
Fig. 4.2 - The Mean-Square-Error of the generalized Least Squares estimator of 
the mixing proportion, based on the 1-cycle solution of the iteration process, 
in a mixture of two normal distributions N(0,l) and N(l,l), for varying sample 
sizes.
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Note that when y = 0, then ^ 1, for otherwise both components of
Gg(.) become identical which is a contradiction.

In order to see the accuracy of the iteration process suggested in
this chapter, a table analogous to that of Table 3.1 was constructed
(Table 4,1). Each estimate of 0^ is based on the solution of a 1-cycle
iteration and, as in Sections 2.7 and 3.5, on n^ = samples of size
n. The mean-square-error of each estimate and the standard error of
each mean are calculated as explained in Section 2.7. By comparison,
it is seen that although the mean-square-errors in Table 4.1 are
generally higher in most cases, a good approximation to the root of
(3.3.4) can be obtained by using a 1-cycle solution of the iteration
process. The estimates inprove as m increases and Figure 4.1 shows
how the mean-square-error of 0 depends on m for different values of
n when —  --  = 1 and = 1. Comparing Figures 4.1 and 3.1, we find

1 1
that for large sample sizes there is not a substantial difference in the

" \ ^2"^1 accuracies of both methods. Finally, for the same values of —   and
^2 ^(l) . ^—  and for m = 10, the mean-square-error of 0^ is plotted against n
in Figure 4.2 where it is observed that for sample sizes of more than
50, the mean-square-error is very small.

4.4 The Iteration Process in Ungrouped Data
Analogous to Section 3.7, in this section, we let the widths of 

the intervals = t^ - i = 1, ..., m + 1 become progressively
finer and eventually consider the situation when m We prove that
in this manner,the iteration process defined in Section 4.2, converges 
to the maximum likelihood estimator (MLE) of 0 as r, the number of 
iterations, tends to infinity for any fixed sample size. First, we 
derive the set of equations which yield the MLE of 9.

Assume that in the mixture of distributions Gq(x ), given by
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(2,2.1), the component distribution functions F^(x), ..., ?^(x) and
hence Gg(x) are twice differentiable functions of x ̂  2  so that the 

•» k
densities f (x), ..., f. (x) and hence ga(x) = I 0. f.(x) of

k - j=l  ̂ ^
F (x),..., F, (x) and G_(x) = Z 0. F.(x) respectively exist and are

j =1 ^
differentiable with respect to x. Given the observations x^, ..., x^, 
the realizations of random variables X^, ..., respectively, from 
the mixture of distributions Gq(x ), the MLE of 0* is that value of 0 
which maximizes

_n gg(x.) = n (e^ + ... + 9% fĵ (x.))
1—1 «. 1—1

or equivalently 2n 
k 1—1

I &n (0^ + ••• +
subject to E 0. = 1. Here &n(y) denotes the natural logarithm of the

j=l  ̂.
positive real argument y. Therefore we maximize

n
4(9,Ç) = Z (.ni8^ + ... + + 5

i=l
Z 0 . - 1

U=1 ^

where  ̂ is the Lagrange multiplier, with respect to 0 , ..., 0 and Ç. 
Setting the derivative of $(0,Ç) with respect to 0 j ; 1 j ^  k equal 
to zero gives

for j = 1, ..., k 
Multiplying (4.4.1) by 0̂  and summing over j = 1, ..., k, we get

k
n + Z 0.^ = 0;

j=l ^ k
imposing the restriction Z 0. = 1 yields  ̂= -n and upon inserting

j=i
this back into (4.4.1), we have 

_ n f . (x. )
1  E = 1  j = 1, , k (4.4.2)
“ i=i
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whose rooT gives the MLE of 6*. Hereafter, the set of epoaticns 
(4.4.2) for j =1, ..., k will he referred to as the "likelihood 
equations".

Theorem 4.4.1; If 8^^^ denotes the estimate of 6 obtained after irth 
cycle in the iteration process defined in Section 4.2, then for any 
fixed sample size n, and sufficiently large m

8 = ( 9 , . . . , e ) ' =  lim 8-n 1 k ^  -n

satisfies the likelihood equations.

Proof: Write

9% = 1 - («1 + + ... + + 6,^^ + ... + 8%) 1 < ( < k .

Then we have
k

G (x) = r 8, (F,(x) - F (x)) + F (x)
8 j=l j 8 *■

and for a given set of partition points t^ < t^ < ... < t^.

it.(e) = Gg(tp - Gg(t._^) = z 8j
~ ~ J—1

where 3,. = F.(t.) - F.(t. ) for j =1, ..., k and i = 1, ..., m + 1J1 J 1 0 ^
with t_ and t defined as before. According to step (vi) of the 0 m+1
iteration process defined in Section 4.2, we minimize (4.2.4) with 
respect to 0^; j = 1, ..., k, j f & to obtain the estimate of 0 after 
(r+l) cycles of the iteration. Thus substituting (4.4.3) into (4.2.4) 
and setting the derivative with respect to 0̂  1 j k j equal to

zero, we get
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J

(r+l)

i=l
Ji

TT. (0 (̂ ) ) 1 ~n
m+1 (3..-3p . )2
z

i=l ’'i(2n )

1 - z
j=l  ̂
j#

j = 1, ..., k (4.4.4) 

j ¥ a

r = 0, 1,

Analogous to the steps taken from the equation (4.2.5) to the equation

(4.2,7) in the case k = 2, here we can reduce (4.4.4) to

*(r+l) _ g(r) 
J 3

I(r+l) 
&

m+1 P-(3..-3p .)-ter
m+1 (3..-3o-)^
z ] --
i=l ir.(0^^^)1 «• n

1 -  z
j=l ^
jA

(4.4.5)

Now, suppose that m  is large so that the intervals = t^ - 

i = 1, ..., m + 1  are uniformly small. Then since F^(.), ..., F^(.) and 

hence (.) are twice differentiable.

- h-i
fj (tĵ ) + O(a ^) (4.4.6)

for i = 1, ,.., m+1 

and j = 1, ..., k

and

1 1 1-1
for i = 1, ..., m+1

and hence

i=i i=l Sg(r)(ti) + 0(Ai) 
~n
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m+l 
= Z 
i=l

+ 0(A.)

n
with the observations x^, x^, we have

p. = Gjt.) - G^(t._p =
-  for i =

0 otherwise.

(4.4.7)

Further, if t̂  , t^ , ..., t^ for some 1 1  “ <
1 2

, < a < 3. coincide n —

n
(4.4.8)

Finally 1:̂  letting r “ in (4.4.5) and using (4.4.7) and (4.4.8), we 

see that the left hand side gives zero and for sufficiently large m.

9 is the root of -n

n i=l S/v ( X. )0  ̂~n
=  0 j = 1, ..., k (4.4.9)

Multiplying (4.4.9) by 0. and summing over j = 1, ..., k, by using 
k  ̂ '
Z 0. = 1 we obtain,

j=l

1 “ . 
“ i = i W~n

1 < & < k (4.4.10)

which is the &th equation in the system of the likelihood equations with
root 0 = (0-, ..., 0, ) ' given by (4.4.2). As Z takes integers between**n 1 k
one through to k, the whole system of the likelihood equations is 
obtained. This completes the proof of the theorem.

It was stated in step (vi) of the iteration process suggested in
Section 4.2 that, after the rth cycle of the iteration process

k
r = 0, 1, ..., to impose the constraint Z 0. = 1, we pick 0 amongst

j=i k
0 , ..., 0, for some 1 < £ < k and substitute 0. = 1 - Z 0. in 1’ k - -  j=i• 1 J

jr&
0^(8) given by (4.2.2) or equivalently (4.2.4). We then minimize
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$^(0) with respect to 0̂ , 0^_^^ ®£-H» : 9^ ami call the minimizing
values ..., ®i+i^4 ..., so that vita = 1
- Z 0. ^ , the estimate of 6 after r + l  cycles of the iteration is
0=1 J

formed as ..., This choice of
course arbitrary and is made according to the convenience of the
experimenter. It may, however, be argued that by merely choosing an

k
arbitrary 9. for some 1 ̂  ^  k, and substituting 0 = 1 -  Z 0 ., we

0=1 ^

are taking a non-symmetric approach even though the constraint 
k
Z 0 . = 1 is imposed. For this reason, we use the Lagrange multiplier

j=I ^
technique in the minimization of 0^(0). Therefore we minimize

$ (0,C) = (G -A0)' C”^ (G -A0) - 25(1'0-1) (4.4.11)r «W A, I* A#II m,

where 5 is the Lagrange multiplier and 1 is the k-dimensional vector 
ofl's i.e. 1 =  (l, ..., l)',-with respect to 0 and 5. Setting the 
derivative with respect to 0, of (4.4.11) equal to zero gives for the 
minimizing values 0^^^^^ and 5*,

(A'C""̂ A) - (A'C”^G ) - 5*1 = 0 .r ~n r -n

Since A has rank k, (A'C ^A) is of rank k and thus invertible. Therefore

j(r+l) ^ (A'c'^A)"^ A'C ^G + 5* (A'C ^A) \  (4.4.12)A,n I" r ..n r —
^(r+l)and since C^ is independent of 0^ , imposing the constraint

= 1, we have

1 = = l'(A'C“^A)“^ A'C”^G^ + 5*1'(A'C~^A)"^1•«n "• r

1 - 1'(A'c”^A)”^ A'C“^G

Z* Z* «W%1
so that

1 .* =
l'(A'C ^A)“H  z* ^
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r
5* back into (4.4.12) yields

where we note that l'(A’C^ A) 1 is only a scalar fact:,r. Inserting

6~n = (A*c“^A) ^A'C + ■ r r ~n

for r = 0, 1, 2, ...

1 - 1'(A'C ^A) ^ A'C”^Gr ~n
l'(A'C^^A) ^1

(A'C_^A) \

(4.4.13)

It is to be stressed that both approaches yield the same result

i.e. (4.4 J_3) gives the MLE of 0 for large m as r It is known that

if a function is to be minimized subject to certain restrictions, one 

can use the Lagrange multiplier technique or equivalently, one can solve 

the restrictions and substitute in the function and proceed with the 

minimization of the function. The final result is not altered whichever 

method is used. Here, we verify this fact for the case k = 2.

Proposition 4.4.1: If in the mixture of distributions Gq(x), given by

(2.2.1), k = 2, then for any fixed number n of observations x^, 

from this distribution and for sufficiently large m.
n

(r)
2n = p̂-oo

is the maximum likelihood estimator of 0 = (0 ,0 ) ', the unknown vector
_L ^

of the mixing proportions. Here 0^^^ = (0^^\ Gg^^)' = 1, 2, ... is
given by (4.4,13) and 0^°^ = (0^^^, 0̂ *̂ )̂*is chosen so that 0 <_ 0^^^ _< 1 
and 0 0̂) = 1 - 0(0).

Proof: Put R = (A'C~^A). Then R is a symmetric 2 x 2  matrix and by
substituting A from (3.2.2) with k = 2 and c“^ as defined in the step
(iv) of the iteration process given in Section 4.2, we see that if

R11 R12
R =

R21 R22
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m+l 3
R__ = Z li

i=l w.(5(r))1 ~n

^12 ^21
\ i  ^2i

i=l TT. (0 (̂ ) ) 1 ~n

m+1 3p-
R_^ = Z

1 ~n

where, as before, 3.. = F.(t-) - F.(t._,) for i = 1, m+1 andJ1 J 1 J 1 -L
j = 1, 2 and tt̂ (0) = Gg(t^) - Gg(t^_^) for i = 1, .. ., m+1. Now,

D = det(R) = R^^ Rgg - R^g

m+1 3̂ .
Z - ^

m+1 3p-
Z ■

1-1=1 ..(êy))j

m+l Bgi
U=1 1 "* n

“1and by using the Cauchy-Schwartz inequality, D > 0. Hence R exists 

and
R22

■^2

-R12

R11

Let Q = A'C ^G = r ~n
Q, we have

-1, then in (4.4.13), by substituting for R and

*(r+ir

g(r+l)

^22 ^12

”^12 \ l Q,

^11^22 ^12 (^22^1 1̂2̂ 2~*~̂ 11̂ 2 ^12^1 ̂ 
R̂ 1"-2Ri2+R22

r = 0, 1, 2,

which after some algebra leads to
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m+l
Z

(P-î -Ç-)

g(r+l) _ (Qi'Qp) (Bgg-Bjg) _ i=l ,, ,
1 ■ Rii - 2Ri2 + R22 m+1 (Bii-gg,)"

r = 0, 1, ...

and

= 1 " "  • . o „ . o , . , . . .
(4.4.15)

We now note that (4.4.14) is identical to (4.2.5) and therefore hy 

a proof parallel to that of Theorem 4.4.1, the proposition can he 

established.

4,5 Conclusions
The iteration process introduced in this chapter shows that in

* «
practice, a reliable estimate of the vector of the unknown mixing
proportions 3 = (0 , ..., 0 )’ G 0 may be obtained in a very simple • • X  K.
way. It is believed that to obtain a relatively efficient estimate, 
even a few iterations are sufficient in moderate sanple sizes, provided 
that the iteration is started with a consistent, but inefficient 
estimator of 0. The interesting result of Theorem 4.2.1 supports this 
belief.

Further, we have seen that as we increase the number of intervals in 
the grouping, our estimate, obtained by the iteration process, approaches 
the maximum likelihood estimator of 0, as the number of iterations are 
increased. The convergence of the iteration process to the maximum like­
lihood estimator of 0 when the widths of the intervals become very small 
is of particular interest. The latter class of estimates, in general, 
paây an important role in mathematical statistics. Applications and special 
properties of this class in the framework of problem of mixtures of 
distributions form the subject of the next chapter.
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CHAPTER 3 
MAXim^ LIKELIHOOD ESTIMATION

5*1 Introduction
Maximum Likelihood estimates, in general, form an important 

class of estimates in the theory of point estimation. It is 
well-known (Cramer [15] ) that under very mild regularity 
conditions, maximum likelihood estimators of the unknown para­
meters in a distribution are CAN and asymptotically fully 
efficient. Given a random sample X^,...,X^ with realizations 
x^,...,x^ respectively, from a population with probability 
distribution indexed by an unknovm vector of parameters a, 
the likelihood function L is defined by

n
L(a: Xj^,...,x^) = n f^(x^)

i=l ~

where f^(x) is the common probability density function of the random 
variables X^,...,X^. The method of maximum likelihood consists in 
choosing, as an estimate of the unknown population value of a, the 
particular value that renders L, or equivalently £n (L), as great as 

possible.
Unfortunately, maximization of the likelihood function often 

leads to some intractable set of equations and indeed estimation 
problems concerned with mixtures of distributions are no exception. 
The problem of maximum likelihood estimation of the unknown para­
meters in a mixture of distributiais has been considered by several 
authors and the reader is referred to Chapter 1 for a survey of 
the relevant literature. The results of the previous papers, al­
though interesting, are mostly empirical and based on numerical 
studies and thus lack a theoretical justification. Further, they 
consider specific cases and in particular mixtures of distributions
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consisting of components which are the distribution f' 
normally distributed random variables with unknown means and un­
known variances. In such cases, as noted by Bay [IT] , Behboodian 
[ 5] and Fryer and Robertson [21] , unless sufficient conditions are 
imposed on the variances of the components (e.g. equality), each 
sample point generates a singularity in the likelihood function. 
This can be seen by considering the likelihood function generated 
by observations x^,...,x^ from a population with density function 
gû(x) given by

2 -§
; (x) = Z 0. (2 TT at) exp̂  
_ i=l  ̂ 1

x-y^

for - « < X < + «> with 0^ + 0  ̂= 1, and where 0 = (0^^ 0^)', 
y^ is the mean, a? is the variance and 0  ̂is the
mixing proportion of the'ith "component in the mixrbure for i = 1 ,2, 
Denote the likelihood function by L(0ĵ ,ŷ , y^, a^, a^); then

L(0, x^, yg, 0, Og) = L(0, y^, x^, a^, O) = «

for i = l,..,n. Hence the method of maximum likelihood estimation 
clearly breaks down in this case. In view of the fact that the 
likelihood function is unbc^nded for this problem, Behboodian [5] 
has proposed using the value corresponding to the largest stationary 
maximum of the likelihood function as an estimate. However, when 
the mixing proportions are the only unknown parameters, as mentioned 
by Hill [26] and Macdonald [35] , the likelihood function is a concave 
function of the parameters and therefore it has at most one relative 

maxima.
In this chapter, we consider a mixture Gg(.) of two known 

distribution functions F^(.) and Fg(.) with mixing proportions 0^ = 0,



121

0 ^ 8 ^ 1 and 0^ = 1-0 respectively. "Thus

Gg(x) = 0 F^(x) + (1-0) F (x) 0 1  6 £  1 X

where 0 = (0̂ ^ ^2 *̂ note that the mixing proportion 0 is the
only unknown parameter. It is assumed that there exists a a-finite
measure y on the Borel sets of3C dominating F^(.) and ?2(.) and
hence also Gg(.) so that by the Radon-Nikodym theorem there exists
densities f.(.) j = 1,2 and g.(») so that J 0

gg(x) = 0 f^(x) + (1-0) f^(x) 0 8 1 X

(5.1.1)
Thus if A is any Borel subset ofjE ,

and
Pg(XGA) = / ggtx) dy

A ^

Pe (^^A) = / f.(x) dy j = 1,2,
:j A

where Pg and p^ j = 1,2 denote the probability measures corresponding 
to the distribution functions Gg(.) and Fj(.) j = 1,2 respectively.

We shall see that the regularity conditions under which a 
maximum likelihood estimator possesses the well-known asymptotic 
properties (Cramer [15]), are satisfied by gg(.) for every 0 E (0,l). 
Thus confining 0 to the interval (0,l), we examine the likelihood 
equation from a somewhat more theoretical point of view and give 
sufficient conditions for the existence of a unique root of the 
likelihood equation in the interval (0 ,l) with probability approaching 
unity as the sample size increases. As mentioned above, an analytic 
solution of the likelihood equation seems unobtainable and we are 
naturally led to the consideration of the iterative solutions of the
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likelihood equation. We shall use the well-known Fis.'.ei's 
scoring method of iteration and establish the properties of the 
solutions given by the first and the subsequent iterations.

In the sequel, the following partition of the sample space 
X  will be used; let and be those subsets of 3C such that
for every x G s^, f^(x) exceeds f^(x) and similarly for every
X G Sg, fg(x) exceeds f^(x). Therefore

= {x : x e 30 , f^ (x )  > f^Cx)} , ( 5.1 .2)

Sg = {x : X E X  , f^(x) < fg(x)} (5.1.3)

and hence and are disjoint subsets of 3C , i.e.

n = ({) (empty set)

and further

U Sg =JC - {x : X ^ X ,  f^(x) = fg(x)} . (5.1.4)

5.2 Statement of the Problem and Existence of a Solution
Given n independently and identically distributed random 

variables X^,...,X^ with realizations x^,...,x^ respectively and 
with common density function

gg(x) = 0 f^(x) + (1-0) fg(x) 0 < 0 < 1

the maximum likelihood estimator (LILE) of 0* (the true value of the 
parameter 0) is desired. The likelihood function based on the given 

sample

n n
l(0: X.,,...,x ) = n g (x.) = n [0 f-,(x.) + (1-0) fg(x.)] 

^ ^ i=l _ i=l  ̂ ^
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is a function of 0 only and it is positive differentiable for all 
0 < 0 < 1. Thus the MLE of 0* is the solution of

H  = °

or equivalently
9 £n(L)

90 =  0

where £n(y) denotes the natural logarithm of the real positive 
argument y (Recall that logarithm is a monotone function). Then

n
£n(L(0: x^,...,x^)) = Z £n [0 f^(x^) + (l-0)

i=l

and upon setting the derivative with respect to 0 equal to zero, we 
obtain

n f (x.) - fp(x.)
'  " I, ef,(x.) + (1-6) f j x j  = ° (5.2.1)

'2 ' 1

whose root constitutes the MLE of 0*. Hereafter, the equation 
(5*2.1) will be referred to as the "likelihood equation". We 
further denote by Y(0) the random function of 0 whose realized value 
is 41(0) and therefore

n f (X.) - f (X.)
= n 8f,(X.) + (i-e) fg(X.) • (5.2.2)

Note also that the Fisher’s information function in a single 

observation is given by

1(0) = E, 90 £n (gJX))

(f^(x) - fp(x) )'
g(x)
0

= E.

dy (x)

f^(X) - fp(xT
gjx)

(5.2.3)
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is the conventional Crairir-Rao lower hound for an 1(8*)
sample of size n and thus the variance of any unbiased estimator
of 0* on this sample is at least — \ .n 110*;

It is shown in Cramer [15] that if the following conditions are 
satisfied:
(i) For almost all x E 3E , the derivatives £n(gg(x)),

g 2 g 3 —£n(gg(x) ) a n d £ n ( g g ( x ) )  exist for every 0 belonging
to a non-degenerate interval of R.

(ii) For every 0 for which (i) is satisfied, we have

30 < A^(x) , 98^ ̂0gjx) < A^(x) and

i F  (ge(x)) < A^(x), the functions A^(x) and A^(x) being
integrable over %  while Eg [Â (X)] < M, where M is independent 
of 0,

(iii) For every 0 for which (i) is satisfied,
1(0) = Eg [-^ £n (gg(X) )] ̂  is finite and positive,

then the likelihood equation has a solution which converges in 
probability to 0* as n-^ . This solution is an asymptotically normal 
and asymptotically efficient estimate of 0*.

Proposition 5.2.1, The density function gg(x) given by (5.I.I) 
satisfies the regularity conditions (i), (ii) and (iii) for all values 

of 0 satisfying 0 < 0 <1.

Proof. From (5-1.1) ,

£n (gg(x)) = £n (0f^(x) + (1-0) fp(x))

where x E X  and 0 < 0 < 1. Thus we have
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a / / - fgfx)
ië = 6f^(x) + ”(1-0) f^lx) ’

and

92
98?

93

^n (gû(x)) = -

(g (x)) = 2

f^(x) - f^(x)
I8f\(x) + (1-6) f_(x)J

f^(x) - fgfx)
[0f^(x) + (1-0) fgCx)]

vhich clearly show that the first three partial derivatives of 
(gg(x)) exist for every 0 E (0,l). Further,

and
l9

32 . .902 gg(x)

= |f^(x) - f2(x)| < f^(x) + fg(x)

=  0

and therefore the first and the second partial derivatives of gg(x) 
are hounded hy integrable functions for every 0 E (0,l). Now

93
90̂ (gû(x)) =  2

f^(x) - fg(x)
0f^(x) + (1-0) fg(x)

f^(x) - fg(x)
0f^(x) + (1-0) fg(x)

fgCx) - f^(x) 
0f^(x) + (1-6) fgfx)

for every x E S.

for every x E S,

for every x E 3C - U S,
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1 (fi(x) - fgtx)):
lor every x = a.

1
(1-8)2

(f^(x) - f^(x))3
(8f^(x) + (l-0)f2(x)) (̂ — -Q-j f^(x) + fg(x))2

for every x E S,

for every x e 3E - U

^ Ag(x) = ^

 ̂ (f^(x) - f^(x))^
0^ (0f^(x) + (l-0)fg(x)) (f^(x))2 for every x E S.

2 (fgfx) - f^(x))2
T î ^  (0f^(x) + (l-8)fg(x)) (fg(x))2 X E ^2

for every x E %  - U

and so

Eg [Â (x)l = / A^(x)gg(x)dii = / Ag(x) ĝ (x)d]j + / A^(x) g^(x)dy

= %%
(f^(x) - f^(x))2 ^

f^(x) (1-8)^ J
S

f(f_(x) - f_(x))3

< dp + YYLgy / fg(x) dp

where P and P are probability measures corresponding to the
Î1 Î2

distribution functions F^(x) and F^(x) respectively. Now, for any
0 contained in the interval (0,l), the coefficients of P (X E S^)

!l
and P (X E 8 ) could be held bounded and thus (ii) is also verified.

Î2 2
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f(f^(x) - fp(x)
T OTo establish (iii), note that l(0) = 

and thus l(0) = 0 implies f^(x) = f^fx) almost everywhere y. 
Further ,

1(e) =
'f?(x) ff (x)f (x) rf2(x)

ga(x) dp +
> e . g ( . x )

. f-,(x) fg(x)
= /(f^(x) - fg(x)) du + f(f^M - ay

f.(x) f (x)

f]̂ (x)
= i /  (f,(x) - fg(x))  ̂(1-8)

1 0 fgfx)
dp

fo(x)
+ / (fp(x) - f, (x)) — -----   dp

_1 / (f^(x) fg(x)) dp + / (fpfx) ” f^Cx)) dp
h  ' ' ^2 ,

= I  - P^^(xesp] + ̂  Pe^txesg) - p ^^O^s )̂]

< <» for every 0 < 0 < 1

completing the proof of the proposition.
In the light of the Proposition 5*2.1, in the rest of this chapter, 

we shall assume that the parameter 0 is confined to the interval (0,l)
unless otherwise stated. It is noted, however, that if 0 = 0 or 0 = 1,

:e‘ 38
9 3then 1(0) can become infinite and similarly E [t^  2n (g (x))] can become

unbounded.

5.3 Properties of the Information Function
The information function l(0), given by (5-2.3), has certain 

interesting properties. These properties will be useful in the 
analysis of the likelihood equation and will be discussed here. Hill
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[26] has obtaineî Power series expansions for 1(0) when f.(x)
and fg(x) are both density functions of (i) negative expo: 
distributions and (ii) normal distributions.

Now,

1(8) = .
(f^fx) - fgfx)):

gû(x) dy = - 1
8(1-0)

(gg(x) - f-|(x)) (g (x)-fp(x))
gn(x)

0(1-0) 1 -

f^(x)fg(x)
dy

dy

and due to positivity of l(0), proved in proposition (5.2.1), we have

0 <
rf^(x)f^(x)

gg(x) dy < 1 .

Since is the information function for 0 in a pure binomial0(1-0)
situation, we see that the additional uncertainty as to which of theat /?
two populations, in the mixture of distributions gg(x), an observation 
comes from, is reflected in the factor

'f (x)fp(x)
1 - — r-T  dy6e(x)

If the densities f^(x) and f^(x) do not overlap, then we obtain 
the full binomial information, while if they are identical, the 
information is zero. This clearly indicates that unless the densities 
are rather well-separated, it will take an extremely large sample size 
to get a reasonably precise estimate of 0.

Proposition 5.3.1. The information function 1(0) is infinitely 
differentiable under the integral sign.

Proof. Recall from the Lebesgue dominated convergence theorem that
for any function Rg(x) depending on x and the parameter 0,
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98'
/r .(x ) dy

90
= 0.

gfor r = 1,2,... if --- R^fx) exists at 0 = 0̂  and if there exists
90^

an integrable function H(x) such that

Ra(x)90r 0 < H(x)

almost everywhere y, for every 0 belonging to some neighbourhood of

®o- .
Now clearly.

90"
(f^(x) - fgCx))^

g (x) exists and

98"
(f^(x) - f̂ (x) F

gfl(x)
(-1)^ rl (f^(x) - fpCx))r+2

0 = 0,

where 0^ = (0^, l-O^)' for r = 1,2,...

(fn (x) - fp(x) )r+2

r;
(f (x) - f,, (x) )r+2

for every x E s.

for every x E s,

for every x E 3£ - 8^ U 8^
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r (f^(x) - fgfx))r+2

r:

fl(x) + g fo(x)

(f^Cx) - f^(x))

r+1

r+2

(1-80)r+1

fer every x E s.

for every x E s.

for every x E 3C - S U s,1 c

^  fn(x),r+l 1 
0

r!
(1-8^)

0

r+1 2f^(x)

for r = 1,2,

for every x ̂  S.

for every x E s.

for every x E 3G - U

(5.3.1)

For anv neighbourhood of 8^ contained in (0,l), the coefficients of 
f^(x) and fg(x) in (5.3.1) can be held bounded and hence

90-
(f^(x) - fpCx))^

ga(x) r = 1,2,

is dominated by an integrable function. Therefore the conditions of
the Lebesgue dominated convergence theorem are satisfied by the 

(f^(x) - f2(x))2 
function  g {x)----- ’ completing the proof.

Corollary 5.3.1. The Cramer-Rao lower bound —  j(~g~̂ is an infinitely 
differentiable function of 0 E (o,l).

Proof. From the Proposition 5.3.1, l(8) is an infinitely differentiable 
function of 0 E (0,l). Thus it clearly follows that —   ̂is also an
infinitely differentiable function of 0 E (0,l).



131

Proposition 5.3.2. The Cramer-Rao lower hound.— is a concave ----- '-----------------------   n
function of 9 E (o,l).

Proof. Differentiating — twice with respect to 9,

r(f-(x)-f_(x) r(f_(x)-f^(x))4
-  2

d8 .nl( 8),

gfi(x) dy 1 ' ' 2 
ga(x) dy -

(f (x)-f (x)) 3

n
(f^(x) - fgfxiyz

gû(x) dy (5.3.2)

Row, by the Cauchy-Schwartz inequality, we have

r(fn (x) - f (x))3
—  dyg«(x)

r(f^(x) - fg(x) )2
gn(x) dy

(f^(x) - fg(x))4
Y7Z1------ ühgn(x)

which shows that the numerator of (5.3.2) is non-positive. Thus the 
second derivative of -^q  ̂ is non-positive for every 8E (0,l) since 
the denominator in (5.3.2) is positive for such values of 0. Hence 
— & concave function of 0 E (0,l).

Corollary 5.3.2. The Cramer-Rao lower bound 
unique relative maximum in (0,l).

n 1(0) has a finite

Proof. In view of the fact that n 1(0) is a continuous function of
0 E (0,l), its concavity implies that the function has a unique 
maximum in (0,l).

5.  ̂ Properties of the Likelihood Equation
Given the observations x^,...,x^ from a distribution with 

density function gg(x) given by (5 .I.I), we assume that f^(x^) 4 fg(x^) 
for i = l,,..,n. This assumption is plausible for if f^(x^) = f^fx^) 
for some 1 <_ & n, then the information contained in x is zero and
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can be thus dismissed. Now, the likelihcod equation 
by (5.2.1), is a decreasing function of 0 since

2n
l9 - i=l

f^(x^) - fgCx^)
0f^(x^) + (1-0) fg(x^)

given

is strictly negative. Let

=j fgtXj) - q ( x j for j = l,...,n (5.^.1)

be the realization of the random variables Qj given by

1 ■
(5.k.2)

where, as before, X. is a random variable whose realized value is x. 
for j = l,..,,n. We can assume without loss of generality that 
q^ < qg < ... < q^ for if not, then qj's can be rearranged to satisfy 
this condition. Denote by p, the probability that each q^,l _< j _< n , 
is non-positive, i.e.

p = prob. [Q. £  0 for some l£j£n] = prob. [ f^(X. ) > f2(X.) for some l£0£n]

= prob. [X. E for some l£j£n] = / gg(x) dy .

Then
1-p = prob. [Qj > 0 for some l£j£n] = prob. [ X j E for some l̂ jĵ n] 

= / gg(x) dy .

Now, using (5.Î+.I), we can write ^(0) as

n

" j=l

which shows that ^^8) is a continuous function of 0 for qj < 8 < ̂ j+1 
where j = l,...,n-l and finding the roots of i[)(0) = 0, leads to
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solving a polynomial of degree n-1 with leading co; 
Further for each 1 _< j _< n-1.

iity,

]jj ( q j + 0 ) “>• + •»
and

-  0 ) ^  -

and therefore in view of the fact that i|̂(0) is decreasing in the 
intervals (q^, qj^^) j = l,...,n-l, it follows that it has a unique 
root in each of these intervals. The function has simple poles at 

Q-1J • • • » •
Further, if q^ < q^ < ... < q^ 0, the probability of which 

is p^, then the roots of ^(0) are negative and the value 0^ = 0 is 
chosen as the estimate of 0*. On the other hand, if 
0 < q^< q^ < ... < q^, which happenjls with probability (l-p)^, then 
with the same probability, 1 <_ q^ < q^ < ... < q^. In this case, 
the roots of #(0) exceed unity and we choose 0^= 1 as the estimate of 
0*. In particular if q^'s change sign at q^ for some 1 _< r  ^ n-1 
so that q^ ̂  0 and q^^ > 0, then there exists a unique value of 0 
satisfying ^(0) = 0 such that q^ < 0 < q^^^ which forms the estimate 
of 0* (Figure 5.1). Hence the maximum likelihood estimator 0^ of 0* 
is defined as

0 = 0n if q^<q^<... <q^0 

q^ < 8^ < q^+^ satisfying 4^0^)=O if q^<q2<...<q^iP
and 0<q^^<.. .<q^ 

for some l<r<n-l

0 = 1n if 0<q^<...<q^

and if 0^ is the realization of the random variable Z^, by using
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(5.2.2), we have

Z = 0  n
Q <Z <Q for some l<r<n-l r n r+1 ---
and satisfies Y(Z^^ = 0
Z = 1 n

nwith probability %
with probability 
[l-p̂ '-(l-p)̂ ]
with probability (l-p)^

It should be noted that the estimator of 0* defined by (5.^.3) 
can take values outside the interval (0,l). Indeed the value 0^ ,

< 8^ < q^l with £  0 and > 0 defined by (5.^.3) satisfies
q ^ l O < 0 ^ < l j <  q^+^ if and only if

n f^(x. ) - f (x. ) n f (x.)

is positive and

n f (x.) - f (x.)

is negative. Thus defining

f^(x) fp(x)
= î M  ^21 =

we have 0 < 0^ < 1 if and only if the sample means of and
&2^(x) given by

and a__ = — Z21 - n f^(xp

both exceed unity. Hence denoting by a.nd A^^ the random variables
whose realizations are a^g and a^^ respectively, we have
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Prob(O<0^<l) = 1 - Prob(A^2l^) “ Prob(A^,,_<l).n '21-

In the following theorem, we give sufficient conditions for the
existence of a unique root of ^(0) = 0 in the interval (0,l) in
large sample sizes.

Theorem 5.^.1. If l(0) and l(l), where l(0) is given by (5*2.3), 
both exist and are finite, then with probability approaching unity
4>(0) = 0 has a unique root in the interval (0,l).

Proof. From (5*2.2), we have

n f (X )-f (X ) n f (X.)-f (X.)
= ;  d ,  - a  v(x) = i

Thus Y(0) and Y(l) are both sums of independently and identically 
distributed random variables with

E, fgtx) = {■ [eq(x) + (i-8)fg(x)] ay

= 0 fg(x) dy +
(f^(x)-f2(x)) 

fg(x) f^(x) dy

and similarly

= 0 1(0)

f^(X)-fg(X)
q ( x )

rf^(x)-f2(x)
f^(x) [0f̂ (x) + (1-0 )f2(x)] dy

= - (1-0)
(f^(x)-f^(x))^

f^(x) dy +
r(f^(x)-f2(x))

f^(x) f^(x) dy

= - (1-0) 1(1) .
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So, if l(0) and l(l) both exist and are finite, then by the veak 
law of large numbers Y(0) and Y(l) converge in probability to 

0l(o) and - ( l -0 )  l ( l )  respectively, i.e.

Y(0) = 01(0) + 0^(1) 
and' ■ Y(l) = - (l-O) l(l) + o^(l)

as n ™
as n 0°

Now, since l(0) and l(l) are both positive, with probability 
approaching unity H'(O) > 0 and V(l) < 0 as n-^ . Hence with such 

a probability there exists a unique root of î (6) = 0 in (0,l) as

Figure 5.1

Y(0)

qr

1 < r < n-1
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5*5 Iterative Solutions of the Likelihood Equation
The existence of a root of ip(0) = 0 forming the maximum likelihood 

estimator of 0* was discussed in previous sections. To obtain this 
root is yet another problem since solving ^^0) = 0, in general, is of 
course an impracticaltask. We can, however, use numerical techniques 
to obtain the solution of t|j(0) = 0. The computational routines for 
finding the roots of a likelihood equation has been the subject of 
many papers. Barnett [3l gives an analysis of the various numerical 
techniques used to approximate the roots of the likelihood equation 
and Kale [29, 30] investigated the large sample properties of 
iterative processes. R.A. Fisher was the first to discuss and advocate 
the use of successive iterations to solve the likelihood equation.
Fisher argued that in many cases where the regularity conditions listed 
in Section U.2 are satisfied, it would be sufficient to execute only 
one cycle iteration in order to arrive at a good approximation.
Northan [39] has shown, however, that several cycles of iteration may 
be required to obtain a reasonable convergence. Barnett [3] 
illustrates the properties of several successive approximation 
techniques for small samples, when the random variables have a Cauchy 
distribution depending on a location parameter.

Perhaps the most commonly used numerical method for locating the 
relative maxima of the likelihood equation is the celebrated Newton- 
Raphson method and other well-known techniques are variants of it.
The Newton-Raphson method is based on the expansion of the likelihood 
equation in Taylor's series around its root. Thus if 0^ denotes the 

root of ^(0) = 0,

0 = *(8^) = (5.5.1)

*(0)for some 0 ^  u < 1, where 0^ is an initial solution. If we take
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v= 0 in (^.5.1), we obtain an approximation for 8̂  in (5.5*1) 3 
namely

;(1) ^ g(0)
n n

*(8)
.= e ( ° )n (5.5.2)

and by using (5.2.1), we obtain

e(i) = 8(0) +n n

n f (x.) - f (x.)
—  ̂ -I  ̂ J
" j=i

~n

1  :
" 0=1 Gl(o)(xj)

-,n
(5.5.3)

where 6 = ( 8 , 1 - 0  )’. The value 0 ~ can be substituted_n n ' n n
^(0) ^(2) 'in (5.5.3) for 0^ to obtain another value 0^ , and so on.

'' ( 0)Generally, starting from an initial solution 8^ , we generate a
"(r)sequence {0^ ; r = 0,1,2,...}, which is determined successively by

the formula

j ( r + l )
n

n f (x.) - fp(x.)JL    J  ___  ̂ J_
“ j=l 8.(r)(Xj)

~n

i I 
" j=i

ffl(xp - fg(x.)l 2
S:(r)(Xj)
_n

r = 0,1,...

(5.5.4)

where 8^*^ = (8 , 1 - 8 )' for r = 1,2,... . If the initial..n n n•̂ ( O)solution 0^ was chosen close to the root of the likelihood equation
0^, there is a good chance that the sequence generated by (5.5*^) will
converge to the root 0̂ .

It is shown in Zacks [6l] , that the Newton-Raphson method of 
riteration genially leads to a CAN and asymptotically efficient estimator 

after the first cycle of the iteration process is completed, provided
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that the initial solution is a consistent estimator. •in-as if
is chosen to be a consistent estimator of 9*, and if 0^^^ n n

is the realization of a random variable then using (5*5.3),
by Back's theorem we can say that the random variable given by

^(l) _ %(0) + 
n n

j=i z(°)f (X ) + (i-z(o))f (X )n 1 #1 n ^ ,1
n

n 0=1 (X.) + (l-Z^°hf„(X.)n J- J n J

(5.5.5)2

is asymptotically normally distributed with mean 8* and variance 
1

n 1(6*)'
The method of iteration that we adopt in here is the method of 

"scoring for parameter" which is derived from the Newton-Raphson method 
by replacing the denominator of the correction term in (5*5.2), namely 

%(8), by its expected value given by

E, = -
fi(x.) - fg(X.) 2 r

Sa(x) du = - 1(8)

^(0) ^(r)Thus choosing the initial solution 0^ , the sequence {0^ ; r = 0,1,...}
is generated by successive substitution in the formula

g(r+l) ^ '(r) ^ 
n n

n f (x.) - f (x. )  ̂ 1— J--- — a— tL
n I(ê7 8  0=1 G;(r)(*j)

..n

r = 0,1,...

(5.5.6)

where 8^^^ = \ 1-8^^^)' for r = 0,1,2,... and l(8) is the Fisher's
information function.

The method of scoring for parameter was first introduced by Fisher 
and it is argued by various authors (e.g. Kale [29] ) that this method is 
often more appropriate from the computational point of view in certain 
cases specially for large sample sizes. Using the method of scoring 
for parameter to find the root of ^(0) = 0, it turns out that the
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solution obtained after a 1-cycle iteration has certain interesting
properties when the initial solution is chosen to be any arbitrary
value in the interval (0,l), In the followings, we investigate
these properties together with the properties of the solution
obtained after the second cycle of the iteration.

 ̂( 0 )Suppose that the value 0 is chosen (independent of the
'̂ (O) "̂ (o)observations) in the interval (0,l). Substituting 0 for 0n

in (5.5.6) with r = 0, we get

g(l) ^ '(0) 1 "
° n I(ê^°8 j=l (5-5.7)

'“(o) ''(o) '‘(0)where 0 = (0 , 1-0 )', as the estimate of 0* obtained after the
(1)first cycle of the iteration. Let be the random variable whose

 ̂( 1) 'realization 0^ is given by (5.5*7).'

, (1) 
■‘n

0* as n-x» .
Theorem 5.5*1* The random variable Z ^ converges almost surely to

Proof. Consider

which is the sum of independently and identically distributed random
 ̂( 0 )variables. Then a necessary and sufficient condition for w(0 ) to

obey the strong law of large numbers is that

q(x) - fg(X)
< “. (5.5.8)

Now,
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- fgCx) 
g.(0)(x)

f^(x) - fg(x)
^e(o) (x)

f^(x)

s^(o) (x)

P

for every x ^ S1

for every x ̂  S,

for every x e X  " ^2

where and are, as before, defined by

= {x E 3E : f^(x)>f2(x)} and = {x e X  : f2(x)>f^(x)}.
Then

f^(x) - fgfx)
g.(0)(x)

f^(x) - fgfx)
(y(x)-fg(x))

fgfx) - f^(x)
1-0 °̂' y(x)

for every x ^ S.

for every x ̂  S,
1-1

for every x E X  - U

0 (0)
for every x ^ S1

1-
0

:(o) for every x E s.

for every x E %  - U

for every x E % .

Hence (5.5.8) holds since 0 < 0 < 1  and therefore by the strong law
 ̂( 0)of large numbers, Y(0 ) converges almost surely to
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EG*
'f^(X)-fg(X)' f^(x)-f2(x)

J g.(0 )(x)

= 0*
^(0) (x) dy + g-(0)

= (e* - ê ^ ° b (f. (x)-fk(x))2
g,(0)(x) dy

r(f (x)-f^(x)) \
^ --  [0 (f^(x)-f2(x))+ fg(x)] dy

'2(0)

= (0* - G^O)) 1(9(0 )) /(f^(x)-f^(x)) dy

= (0* - 0(°)) 1(0(0)) . (5.5.9)

Now, from (5.5.?),

(5.5.10)

which hy using (5.5.9), we see that as n-w> , converges almost surely
to

; ( o )  +
(6* - e^°b i(0^°b

I(0(°))

completing the proof of the theorem.

 ̂( 1 )Theorem 5.5.2. The estimate 0^ given hy (5.5-T) is unbiased and 
CAN with

(f^(x)-f2(x))Z
S;(o)(x)

gg*(x) dp - (0*-0^°b^|.

(5.5.11)
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Proof. From (5.5.10),

Eg* = ê(°) + — U(0)\ ^8*i(e' ')

f^(X)-fg(X)
g-

^  e(0)
(X) = 8*

vhich proves the ‘unhiasedness. Furthers

n 12(9(0)) Var6*

n l2(0^°b 

f(f,

E0* g-(0)(X) "6*

1' ' 2 ^
0*(x)dy - (8*-e(°))2l2(6(0))

0(0)

which establishes (5.5.11).
 ̂( 0 )Finally, since W(8 ‘) is" the sum of independently and identically

distributed random variables with finite first and second moments, by
 ̂( 0 )the central limit theorem, the asymptotic distribution of ¥(9 ) is

normal. Thus it follows from (5*5.10) that the asymptotic distribution 
of Z^^) is also normal with mean 0* and variance given by (5.5.11).

Hence by using theorem 5*5.2, the variance of Z^^) can be found 
for any finite samples from the formulae (5*5*11) * We shall now prove 
that although the estimator 0^ is not uniformly minimum variance un­
biased, it has, however, the optimal property of being locally minimum

(0 )variance unbiased estimator at 0 . First we define these terms and
in doing so, we denote by cÆ the class of all unbiased estimates of 0*.

Definition 5*5.1* (Zacks [61] ): An unbiased estimator of 0* say
0 Ec/(, which is the realization of a random variable Z , is said to be 
uniformly minimum variance unbiased (UîlVU) estimator if given any other 
unbiased estimator, say 0 Ee/^ which is the realization of the random 

variable Z, we have



Varg(Z) _< Var^U)

for every 0 = (0, 1-0)’ with 0 E (0,l). The UIWU estimator is 
often called the best unbiased estimator in statistical literature.

Definition 5.5.2. (Zacks [6l]): The estimator 0 defined above
is said to be locally minimum variance unbiased (LîiVU) estimator 
at 0Q G (0,1) if

Varg (Z) < Varg (Z)

where 0^ = (0^, 1-Og)'and Z is as defined in Definition 5.5.1.

Theorem 5.5.3. The estimate 0̂  given by (5.5*7) is LMVTJ at 0 .

f l)Proof. From Definition 5*5.1, it is clear that 0^ is not UMVU 
since n Varg(Z^^)) obtained from (5*5.11) is not equivalent to the 
inverse of the information function l(0). However, we can see from

(5.5.11) that

which is the minimum attainable variance for an unbiased estimator
according to the Cramer-Rao inequality. Hence by Definition 5*5.2,
*(1) ^(0)0̂  / is LIIVU at . n

The LMVU estimates, apart from being of interest on their own, 
are often used in statistical estimation problems when UMVU estimates 
of the unknown parameters in a distribution do not exist. Since 
the essential element for the existence of a UMVU estimator is the 
completeness of the family of distributions in the given statistical model 
(Zacks [61] ), a UMVU estimate will not exist in the absence of completeness.
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In such situations the LMVU estimators ma.y. however, exist and 
serve as a practical alternative.

Zacks [61] gives a useful general account of LMVU estimators 
and proves that a necessary and sufficient condition for an un­
biased estimator to be LMVU at a certain point of the parameter 
space is that the estimator should be uncorrelated with any un­
biased estimator of 0 with a finite variance. Thus if n(X) is 
an unbiased estimator of 0 such that

Eg[n(X)] = 0

for every 6 = (6, 1-8)' with 8 6 (0 ,1), by using theorem 5-5-3,
we have

whenever

Var\^Q)(n(X)) < « .

^(l)We have therefore established certain properties of 0^ , the
estimator of 0* given by a 1-cycle iteration of the Fisher’s scoring

''(O)method. But the choice of the starting solution 0 which is an
arbitrary point (independent of the observations) taken from the

^(l)interval (0,l) can, of course, influence 0^ and thus 0 should be
chosen so that the anomaly associated with this choice is minimized
in some sense. We note from (5.5.11) that Var_„[z( )] is an
continuous and differentiable function of 0*. Upon differentiating 

it twice with respect to 0*, we obtain

(Vara*[z!^)]) = i (d0* 0* n n l2(0(^)) '
r(f (x)-f (x))3 ../ V

e(o)
(5.5.12)
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and

(varg,[z(l)] ) = - 2 (5.5.13)

which shows that Var„„ [Z ] is a concave function of 6* achievingn
its maximum at the root of (5.5*12) given by

= ê^o) ^ -----1 ■{f. (x) - fp(x))3
2—  an .g.(0)(x) (5.5.14)

Substituting (5*5.1^) into (5.5.11), we get

T I T #
1 +

4 i3(e(°))

r(f^(x)-f2(x))3]2

0
(0) 
(5.5.15)

:(o)and by minimizing (5*5.15) with respect to 0 , we can determine the
arbitrary starting point so that the maximum variance after one

(1) .iteration is minimum (i.e. 0^ is the minimax estimator under the 
squared error loss function).

Let

J^(0) =
(f^(x) - fg(x))r+1

gl(x)
dy

for r = 0,1,... and for every 0 E (0,l) where 0 = (0, 1-0)’. Note 
that in particular we have 1^(0) = 0 for every 0 E (0,l) and 
J^(0) = 1(0). Since J^(0) has the property that

- r Jr+1

for r = 0,1,..., we can write (5.5*15) as
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sup Var 
0<8*<1 0* (1)

n
1 11 
n lU

1
n

-r2

#8(0))
(5-5.16)

To minimize (5-5.16), we set its derivative, with respect to 
equal to zero. We find that the stationary points of (5*5*l6) are 
the roots of

or

1 d^ 1 d 1 f. d 1
2 d02 J^(0) d0 J^(0) d0 J^(0) =  0

d 1 1
d0 J^(0) \2 d0? J^{e) .i} = 0

from which

yields

and

_d̂
d9 J^(0) = 0

=  0

1 d2
2 d9^ J^(0) + 1 = 0

has a solution of the form

J^(0) = - 02 + A0 + B (5.5.17)

where A and B are real constants determined such that 0 < J^(0) <
for every 0 < 0 < 1.

By differentiating (5.5.16) twice, it will he seen that the 
solution Jg(0) = 0 corresponds to the minimum of (5.5.16) while (5.5.17)
corresponds to its maximum. But according to corollary 5.3.2, the
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equation

, f(f, (x) - f^(x))8
Jg(8) = -^ (- 1(8)) = dy = 0 (5.5.18)

has necessarily a unique root in (0,l) and hence if this root is
"(1)used as the starting solution of the iteration process, then 6^ ,

the estimate of 6* given hy a 1-cycle iteration, is minimax under 
the squared error loss function.

This result is intuitively plausible for if we denote the
 ̂(0 }unique root of (5.5*18) hy 9^ and substitute 0^ in (5*5*15) for 0 ,

we find that

sup Var *o<0*<i :
2(1)
n n i ( e j

which is minimum according to the Cramer-Rao inequality.
So far, we have established the properties of the estimate of 0*

obtained after the first cycle of the iteration. The question
naturally arising now is the behaviour of the subsequent iterations.
In the following theorem, we establish the properties of the
estimate of 0* obtained after the second cycle of the iteration is

 ̂( 1 )completed. Thus suppose that 0^ . given by (5*5*7) is substituted
*(2) (2)in (5.5.6) with r = 1, to obtain 0^ and denote by the random

^(2)variable whose realization is 0^ . Hence

and

^ 7n
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where l-Z^^))' and as before 8^^^ = l-e^*))».n n _n n n
(in the following theorem,we use the symbols 0^^.) and o^(.) introduced 
in Section 3.7).

Theorem 5.5.^. The estimator of 6* given by the second cycle of the 
iteration process is C M  with asymptotic variance given by l/(n 1(0*)), 
proving that it is asymptotically fully efficient.

Proof. Expanding (5.5.20) by Taylor's series about 6*, we get

+ 0 ( z ( l ) - G * ) 2)  | l  1( 0* )  + 0 ( z ( ^ ) - 0* ) |  ( 5. 5. 21)p n J I P  n J

f^(X) - fg(X)
Now - — rnr  is a random variable whose first and second moments
exist and"thus

for every a < 1 and similarly

for every a<l. So

(1) ^ g(0) ^ 1 " ~
" n I(ê^°b, j=l 8.(0)(Xj)

= 0* + Op (n )̂ for every a < 1.
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Hence from (5.5.21),

i Z
n f (X.)-f (X.)

“ j=l
3(2) = 2(1) + --------------------------- - 0*) + o (n”“) o < 1n n

and therefore
1(8*)

n f^(X.)-fg(X.)
/Ü j=l

Æ" (Z^^^ - 8*) = -------------------- + o (n"^^"^^ ) (5.5.22)
1(0*)

for every a < 1. Thus for every a such that i <a<l, and hy using the
n f, (X.)-f^(X.)

lemma U.2.1, ve see that Æ"(Z^^^-6*) and 
same asymptotic distributions. But

1 i -1.1 

1(6*) have the

1 I W  -
Æ  j=i Gg*(Xj) 

1(0*)

is the sum of independently and identically distributed random 
variables admitting first and second order moments and hence by the 
central limit theorem its asymptotic distribution is normal with mean

6*
and variance

1 “ w  - w
Æ j i

1(0*) J =  0

Var0*

1 " fl(X.) - fgCK.)
/n j=i 8e*(Xj)

1(0*) 1(6*)

which completes the proof of the theorem.
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5.6 Monte Carlo Studies
This section is devoted, to a small numerical stuc3'' of the 

Fisher’s scoring method of iteration for finding the solution of 
the likelihood equation. Similar to numerical studies performed 
in previous chapters, we shall he concerned with a mixture of two 
normal distributions. As indicated at the beginning of this 
chapter, the estimation problems concerned with a mixture of two 
normal distributions has created considerable difficulties in the 
past, but since we are only estimating the mixing proportion with 
other parameters known, the maximum likelihood estimator of the 
mixing proportion exists.

Consider a mixture g A .) of two normal density functions

f (x) = —^  exp{- §x^} _ c o < x <  + «

and
f (x) = — —  exp f - (x - y)^} - CO < X < +

a Æ T

so that

|(x) = 0 f^(x) + (1-0) f^(x) - 00 < X < + «

where 0 = (0, 1-0)’ with 0 ^ (0,l) and where a > 0 and y are known 

parameters.
Given a random sample X^,...,X^ with observed values x^,...,x^ 

respectively, (5.5.6) was used for r = 0,1 to obtain the estimate of 
0 after the first and second cycle iterations. The initial solution 

can be chosen to be any arbitrary point in the interval (0,l)
^(l) ^(2)(independent of the observations). Table 5.I gives 0^ and 0^ 

when 0 = 0.3 for mixtures of distributions considered in sections
2.7, 3.5 and U.3. The mean-square-error of each estimate and the
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standard error of each mean are calculated as explained in Section
( 2)2.7. When n is large, 0^ has a smaller mean-square-error than

:(i)
n This is in agreement with the theorem 5*5*^ which asserts

:(2)that 0^ possesses the asymptotic properties of the maximum likeli-
(1)hood estimator of 0. However, for small n, 0^ seems to he preferable.
''(1)In order to investigate the dependence of 0^ on the choice of

^(0)0 , we picked three following cases:

Hp P-,
(i)    = 0.5 = 1 n = 50 IT = 5000

Hp - y-,
(ii) — - = 1 n = 10 W = 5000

(iii) = 5 n = 20 N = 5000

'‘(1)and plotted the mean-square-error of 0^ against different values of 
0 (Figure 5*2). The dependence of 0^ on 0 in cases (i) and 
(iii) seems to he negligible and in (ii) very small. This is believed 
to be due to relatively large sample sizes in cases (i) and (iii).
The mean-square-error reduces substantially as increases
which stresses the point, already discussed in Section 5*3, that the 
more the components of a mixture of two distributions are separated, 
the easier is the estimation of the mixing proportion based on a given 

sample.
''(1) ''(2)Finally, in Figure 5.3, the mean-square-error of 0^ and 0^

are plotted against n when —  ----  and ~  are as in (ii). Again it
*(2) ^ ^ ^(1)is observed that 0^ is to be preferred to 0^ for large n, whereas

in small samples the latter has a much lower mean-square-error in
comparison with the former.
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Table 5.1
Maximum likelihood estimator of the mixing prouortion, based on the 
solution of the first and second cycles of the Fisher's scoring 

method of iteration, for various mixtures of two normal
distributions

n Og/*! e

Estimate of 0 after the first"Iteration s "and second
ê(i)
n

g(2)
n

Mean M-SE Mean M-SE

50 0.25 1 0.5 0.^19 0.053 0.285 0.421 ± 0.047 0.232
10 0.5 1 0.5 0.^56 + 0.029 0.425 0.467 ± 0.032 0.517
10 1 1 0.5 O . U t 6 + 0.016 0.126 0.490 + 0.025 0.323
10 1 1 0.8 0.788 + 0.016 0.130 0.769 + 0.021 0.231
20 5 1 0.5 O.U93 ± 0.007 0.013 0.493 ± 0.007 0.013
10 0 2 0.5 0.176 + 0.018 0.168 0.457 + 0.020 0.202

50 0 2 0.5 0.1+76 + 0.019 0.037 0.476 ± 0.018 0.037
10 0.5 2 0.5 0.468 + 0.017 0.155 0.467 + 0.026 0.346

Each case is based on n^ = samples of size n. The standard
error of each mean is given to indicate the accuracy of the Monte Carlo 

computation.
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MSE

.3

0.2

(ii)

0.1

(iii)

(l) . . . 'Fig. 5.2 - The mean-square-error of 8^ , the maximum likelihood estimator
of the mixing proportion, based on the 1-cycle solution of the Fisher’s
scoring method of iteration, in various mixtures of tvo normal distributions,
againstthe arbitrary starting point
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MSE

MSE of0.3

0.2

0.1

4.
20 ho 60 80 100 120 n

(1)'n (2)Fig. 5.3 - Tlie mean-square-error of and 0%^', the maximum likelihood estimato:
of the mixing proportion 0, hased on the first and second cycles of the 
Fisher’s scoring method of iteration, in a mixture of two normal distributions 
N(0,1) and N(l,l), for varying sample sizes.
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5. T Con cl iis: ons

The maximum likelihood estimator of the mixing proportion in 
a mixture of two distributions is the root of an equation which 
cannot be solved directly. Due to the interesting properties of 
maximum likelihood estimates, we use iteration to obtain a close 
approximation to the root of the likelihood equation. It is seen 
that a 1-cycle iteration of the Fisher’s scoring method yields a 
CAN and locally minimum variance unbiased estimate whilst the 
solution obtained after the completion of the second cycle of the 
iteration process is CAN and asymptotically fully efficient.
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CHAPTER 6 
CONCLUSIONS

This chapter contains a brief summary of the important points 
raised in Chapters 2 to 5 and a short discussion of some topics for 
further studies. In our investigations, we have attempted to throw 
some light on the problem of estimating the mixing proportions in a 
finite mixture of distributions by simple adaptation and utilization 
of various well-known estimation techniques. The aim throughout the 
thesis has been to construct estimators which are of value both in 
theory and practice.

The extension of the method of moments in Chapter 2 has an 
interesting feature and gives way to new methods of obtaining 
reliable estimates. Although the method has some desirable asymptotic 
properties and works well in practice, it relies very much on the trial 
and error procedure. On ’the b)ther hand, when the observations are 
grouped, the results of Chapter 3 show that the generalized least 
squares estimators are asymptotically efficient with respect to a given 
set of division points. The main problems , however, are to choose 
the division points of the sample space and secondly to find the 
solution of the underlying equations. With the advent of modem 
computers, the latter is not an obstacle whilst there is no unified 
theory of choosing the best set of class intervals and it is generally 
believed that the greater the number of division points, the better the 
results. To this end, we have proved that as the number of division 
points become infinite, the resultant estimators are asymptotically 
fully efficient.

In order to obtain simple approximations to the root of the set 
of equations whose root constitutes the generalized least squares 
estimators of the mixing proportions, we have seen that the iteration 
process proposed in Chapter k gives, after even one cycle, estimates
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which are asymptotically efficient with respect to a given set of 
division points. When the lengths of the group intervals become 
small, the solutions given by successive iterations approach the 
maximum likelihood estimates.

The interesting features of the maximum likelihood estimates 
are their asymptotic properties. Dealing with a mixture of two 
distributions in Chapter 5, it is seen that the maximum likelihood 
estimator of the mixing proportion always exists and possesses the 
well-known asymptotic properties, provided that the mixing proportion 
is strictly between zero and one. If the Fisher's information 
function is defined and is finite at zero and one, then with 
probability approaching unity the likelihood equation has a unique 
root in the interval (0,l). Similar to Chapter 3, the main 
difficulty is to find the solution of the likelihood equation and 
by appealing to an iteration process commonly known as the Fisher's 
scoring method, approximate solutions can be found. A deep study 
of the first and second cycle solutions together with the results of 
the Monte Carlo studies reveal the fact that even one or two cycles 
are sufficient to produce close approximations to the solution of 
the likelihood equation. This, we believe, has an important 
practical implication since by simple manipulations, an efficient 
estimator of the mixing proportion can be obtained.

It is, nevertheless, clear that there are many interesting 
questions, concerning finite mixtures of distributions, which require 
further investigations. Firstly, in the broad sense, the problem of 
hypothesis testing is an area which needs further research. A 
complete Bayesian analysis of mixtures of distributions is also still 

to be undertaken.
The problem of identifiability of finite mixtures of distributions 

can.raise many interesting problems. Although the results of Teicher
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[56] and Yakowitz and Spragins [6ol provide useful tools : or 
checking the identifiability of a given finite mixture of 
distributions, it would be interesting to know that if a finite 
mixture of distributions Gg(.) is not identifiable, then what 
set of values of the mixing proportions give rise to the same 
value of Gg(.).

Another area which has attracted some statisticians and could
have interesting implications when applied to mixtures of distributions
is the problem of inference about a change-point in a sequence of
random variables. A sequence of random variables X^,...,X^ is said
to have a change-point at r ( l ^ r ^ n )  if the common distribution
function of X_,...,X is G_(.,0^) whereas X _,...,X have a common 1 r 1 %1 r+1 n
distribution function G2(.,02) where G^(.,0^) 4- G^C. ,0̂ ) • Page tUoL 
used a cumulative sum technique to detect the existence of a 
distributional change in the sequence X^,...,X^. To make inference 
about the change-point r, Hinkley [2Tl used arguments based on 
maximum likelihood estimates, likelihood ratio tests and cumulative 
sum tests and recently Smith [51] has treated the problem from a 
Bayesian view-point. Now, in the context of mixtures of distributions, 
the distribution functions Ĝ (.,0ĵ ) and G2(.,02) may be taken to be 
finite mixtures of distributions with different mixing proportions 
(possibly involving the same components). The problem would then 
be to estimate the unknown mixing proportions and the change-point r.

We finally close this thesis by bearing in mind the following 
remark due to K. Pearson:

"No scientific investigation can be final; it merely represents 
the most probable conclusion which can be drawn from the data at the 
disposal of the writer. A wider range of facts, or more refined 
analysis, experiment, and observation will lead to new formulae and 
theories. This is the essence of scientific progress."
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APPENDIX A
UN THE JOINT ASBIPTOTIC DISTRIBUTION OF

P P1’ * * *’ m+1

Let X be a random variable whose distribution function Gg(x), 
a mixture of distribution functions F^(x),...,F^(x), is given by 
(2.2.1). Given the random variables X^,...,X^ with common distribution 
Gg(x) and with realizations x^,...,x^ respectively, denote by G^(x) 
the empirical distribution function based on this sample, i.e. the 
proportion of the observations which are not greater than x. Let G^(x) 
be the realization of the random function I^(x) and assume that the 
sample space 3C is partitioned into m+1 intervals at the points

t < t_ < ... < t < t ^ _  o 1 m m+1
«

where G^(t^) = Gg(t^) = 0 and = 1.

Put r.(e) = Gg(t.) - Gg(t._^) , p. = G^(t.) - G^(t._p

and P. = r (t.) - r (t. -) for i = l,...,m+l. In this appendix,1 n 1 n 1—1
we establish the joint asymptotic distribution of P^,...,P^^^.

Proposition Al: The joint asymptotic distribution of 2̂.’***’̂ m+l ^
(m+l)-variate normal distribution with mean vector

7t ( 0 * )  =  ( T T ^ ( e * ) ,  . . . ,  F o + i ( 8 * ) ) '

and (m+T)x(m+l) covariance matrix ̂  Z where the (i, j ) th. element of Z 

is given by

^ij ” - 7r̂ (6*)) i = j

= -TT̂ (0*) 7Tj(0*) i ^ j
for i,j = l,...,m+l . (A.l)
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Here, 6* = (8*,...,8*)'denotes the true value of the unknown vector 
of parameters 0 = (0^,... ,0̂ )'.

Proof: As in ( 1.3.3) , we can write

1 ^G (x) = — I n(x-x.) n * j=i 8

rl X ^  0
where n(x) = •!

0̂ X < 0
and therefore

1 Kr (x) = -  Z n(x-X.) . n a j=i J

Define U.. = n(t.-X.) - n(t._ -X.)
1 J 1 J IL J. J

for i = and j = l,...,n. Then

= Gg*(ti) - Ge*(t._i) = TT.(e*) (A.2)

for i = l,...,m+l and j = l,...,n. Further,

V arg*(U^.)= Varg„( n(t^-X^)] + V a T g J  n C t ^ _ ^ - X ^ )]

for i = l,...,m+l and j = l,...,n.

But Varg*(n(t^-Xj)) = Gg*(t^)(l - Gg*(t^))

and CoVg*(n(t^-Xj),n(t^-Xj)) = min(Gg*(t^), Gg^(t^))

- Gg*(t.) Gg*(ty)

for i,r = l,...,m+l and j = l,...,n where
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X  X  <_ y

y y < X

Therefore, (A.3) gives

VargafU..) = Gg*(t.) - G2*(t.) + Gg*(t._i) -

- 2 + 2 Gg*(t.) Gg*(t._^)

= (Gg*(t.) - Gg*(t._^)) - (Gg*(t.) - Gg*(ti_^;)2

= 7T̂ (0*) - 71̂ (0*) (A.U)

for i = and j = l,...,n.
Also for r 4 i, we have

Cov0*(Ui^,Urj) = CoVgJ (n(t^-X^) - ,

= CoVg*(n(t^-Xj), n(ty-Xj)) - CoVg*(n(t^_^-Xj), n(t^-x^))

- CoVg*(n(t^-Xj), h(ty_i-Xj)) + CoVgin(t^_^-Xj), n(t^_^-Xj))

= min ( Gg*(t^), Gg*(t^)) - Gg*(t^) Gg*(ty)

- min( Gg*(t^_^), Gg^(t^)) + Gg*(t^_^) Gg^(t^)

- min( Gg*(t^), + Gg^(t^) Gg*(t^_^)

+ min( Gg^(t^_^), Gg^(t^_^)) - Gg^(t^_^) Gg*(t^_^) (a.5)

for i,r = l,...,m+l and j = l,...,n. Let without loss of generality
i < r in (A.5), then either i = r-1 or i = l,2,...,r-2. If i = r-1,

(A.5) gives
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= - Tr̂ (0*) r = 2,...,m+l

while for i = l,...,(r-2), (A.5) yields

G%*(Uij,U^j) = - (Gg*(t^) - Gg*(ti_^))(Gg*(t^) - Gg^(t^_^))

= - v^(e*) TT̂ (0*) i = l,...,r-2
r = 2,...,m+l .

Hence, if we define

then U. is a (m+l)-dimensional random vector withwj

C8*(yj) = :(y*)

and (m+l)x(m+i) covariance matrix Z with given hy (A.l), as its
(i,j)th element.

Note that, since X^,...,X^ are independent random variables with
a common distribution, it follows that U^,U^, ...,U form a sequence.,1' ^2' ^n
of independently and identically distributed random vectors admitting 
first - and second order moments.

Now,

1 %
P. = r (t.) - r (t. J  = - E u ..1 n 1 n 1-1 n • ijJ--L

for i = l,...,m+l. Let P = (P̂ , P^^^) ' , then by the multivariate
central limit theorem, the asymptotic distribution of i/n (P - ir(0*)) 
is N^^^(0,Z), that is an (m+1 )-variate normal with zero mean and 
(m+l)X(m+l) covariance matrix I with the density function

N (u|0,Z) = (2tt) |z I  ̂ exp(-i(u—it(0»)) » I”^(u—iï(0*) )}
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Here 0 denotes the (m+l)-dimensional vector of O's. Hence the proof 

is completed.
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APPENDIX B 
GENERALIZATION OF THE THEOBZ?/ 4.2.1

In Chapter 4, an iteration process was introduced to find the
GLS estimator of 8* = (6*,...,6*)’, the true value of the unknown
vector 9 = Here 0 is the vector of the mixing
proportions in the mixture of distributions Gg(x) given by (2.2.1).
We proved in theorem 4.2.1 that for k = 2, if the iteration is
started with a consistent estimator of 8*, then the solution
obtained after a 1-cycle iteration is CAN with asymptotic variance -
being minimum with respect to a fixed set of division points
t^ < tg < ... < t^ of the sample space ^  * In this appendix, the
result of the theorem 4.2.1 is generalized for the case k > 2.
Recall that {t^}T_^ are chosen so that the rank of the matrix A
given by (3.2.2) is exactly k and that 0 < G^Ct^) < ... < GgCt^) < 1

for every 0 ^ 0 .
' k k-1 k

Since Z 0. = 1, we put 0 = 1 -  Z 0 . in G_(x) = Z 6.F.(x) to
get

j=l  ̂ ^ j=l ̂  - j=l J J

Gg(x) = 0^ (F^(x) - F^(x)) + ... + (F^_^(x) - F^(x)) + Fĵ (x)

where 0 8. 1 for j = 1,... , k - l  and x G jC • Let B ■ • = F.(t. )-F• (t._. )
for j = l,...,k and for i = 1,—  ,m+l where as before F^ ^  ^ end
Fj(tQ) = 0 for j = l,...,k, so that

x.(e) = Gg(t.) - Gg(t._p = V  6. (B.. - B,^) + B,̂ . (B.l)

for i = l,...,m+l. Upon substituting tt̂ (0) in ^^(6) given by (4.2.4)
and setting the derivative of $ (0) with respect to 0.; j = l,...,k-l>^ - J
equal to zero, a system of k-1 equations in k-1 unknowns is obtained 
as follows,
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^  M  6) = 2 Y  = 0 (B.2)

where j = l,...,k-l and 6̂ ^̂  = ( 0̂  ,... » 8̂ ^̂  ) ; r = 0,1,...,~n _L K
is the estimate of 6* obtained after the rth cycle of the iteration 
process. Using (B.l), (B.2) yields

m+1 ($ .-$ .)( 6..-G .) m+1 ^^2i ^ki^ ̂ .̂ii \i^

)
(B.3)

1 ..n 1 -n

for j = 1,...,k-l.
Define by R(0) a symmetric (k-l) x (k-l) matrix whose (j,&)th 

element is given by

and
as

let T = (0^,...,0^_^)’, then we can write (B.3) for j = 1,— ,k-l

R(0^^^) t = b r = 0,1,... (B.4)

where b is a (k-l)-dimensional vector with its jth element defined as

>. ■ T  r ' u '
 ̂ i=l n^(0^^/) 

for j = l,...,k-l. Further

m+1 (p.-7T. (0̂ ^̂ ) X3-.-3, • ) m+1 (v (0̂ ^̂ )-3, • )(3---3, • )1 1 '~n ■ ■■■ ,11 ki .  ̂ i -n ' ki ji ki
= i=l x X e W )
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“H  “H  fp r 1 , ;(r)
i=i w.(eW)1 .̂n 1 ..n

. Ô(r) (B2i-Gki)(Bji-Bkj) -(r)
2 i:, ,.(êW) A1 ..n 1 _n

m+1
for j = l,...,k-l. Then hy using Z (B..-6 .) = 0, we can write b asi=l ki

h = + E(8(r)) T(r) r = 0,1,... A ~n _n

where  ̂ * ’ ' * *^(k-l) ̂ * and is a (k-l)-dimensional
vector whose jth element is defined as

m+1 p . ( 3 -. - 3- . )
" v A ( ï ) •• (B-G)

1—1 1 ~

for j = l,...,k-l. Hence by substituting (B.5) in (B.4), we have

R(0^^^) T = q(0^^^) + R(6(^)) r = 0,1,... (B.T)**n  ̂ -w -w%% *wG "wd

whose root »• • • ’ constitutes the estimates
g(r+l)^  ̂ ^g(r+l) ®i’***’®k-l respectively which together with the
estimate of 0* given by 0^^^^^ = 1 - Z g(r+l)

j—1 ^g(r+l) _ (gjr+l)^  ̂ ^g^r+l)^; the estimate of 0* obtained after

the (r+l)th cycle of the iteration process for r = 0,1,... .

Theorem B.l. Let = (0^^^,—  ’®(k-l)^* the realization of a
random vector T^^^ = (Z^^^,...,z|^2q))' for r = 0,1,... and let
T* = (0*,... ,0* )’. If is chosen so that T^^^ - T* = o (n )̂•M X X «W d *vd «• *** ]p-̂ (l) (x)as n -► o®, then has the property that T^ is consistent and its
asymptotic distribution is a (k-l)-variate normal distribution with
mean vector t* and covariance matrix given by R ^(0*).
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Proof. Let q.(9) given by (B.6) be the realization of a random J -

function Q.(6) so that J ~

m+1 P. ( 3. • - 3, . )
v?> ■ : (B.8)

for j = l,...,k-l, where P^, i = l,...,m+l are as in Theorem 4.2.1. 
Putting Q(0) = (Q^(0),... ,Q̂ ĵ _̂ j(0)) ’, from (B.T) we have

,p(l) _ ?(0) + (Z^^)) Q (%(^))-n ..n - ..n _ ~n (B.9)

where r = 0,1,... is a random vector whose realization is_n ~n
Write Z^^^ = 0% + s. for j = l,...,k-l and P. = tt.(G*) + r\. for J J J  ̂ 1 1 — 1
i = l,...,m+l. Then = o^^n *̂) as n and since P^ is a random^ 
variable admitting first and second moments, = o^(n )̂ as n ® 
for all a < 1. Now from (B^l)

J—1 0

and thus from (B.8), for & = l,...,k-l.

ittfi
Q„(Z^°q = I ----

i=l
ïï̂ (0*)

f Bki)
1 + ̂ ------------

TT̂ (0*)

m+1 (n^(0*)+n^)(3%i-B%.)
= z ---

i=l TT̂ (0*)

m+1
where c 
we have

G = (s^^...,E^_^)' and by using Z ^ j = l,...,k-l.
i=l
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(o)\ _
~n i=l 77. (9*)

- + O(eE’)

«... s . . T ?
i = l  j = l  77? ( 6 * )

= Q(e*) - R(G*)c - S + O(ee’)

I  =  1 , . . .  , k - l

,k-l and therefore

(B.IO)

where S = (S^,. . . '  

Further

e”^(z^°4  = E ^(e*) + 0(e)

and substituting (B.IO) and (B.ll) into (B.9) yields

^(l) = rp(O) ^ p l(6*j Q(8*) - £ - R 1(8*)S + (U+S) 0(e) + O(ee')

where U = (U^,. 
Hence,

m+1 

1=1 1 _
. ,k—1,

Æ " (T^^) - T*) = /n R ^(8*) Q(8*) + o (l) (B.12)

where o^(l) denotes a (k-l) x i random vector whose (k-l) elements are 
all o^(l). Therefore, by an obvious extension of the lemma 4.2.1, the
a s y m p to t ic  d i s t r i b u t i o n  o f  Æ* (T^^^ -  % *) i s  th e  same as t h e  l i m i t i n g  

d i s t r i b u t i o n  o f

Y = Æ" E ^(6*) Q(e*) . (B.13)

Now, using the result of the Appendix A, the asymptotic distribution 
of P = (P^,...,P^^^^' is a (m+l)-variate normal distribution with mean
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vector 7t(0*) = ( tt ( 0*),... ,tt (0*))' aril covariance matrix —  Z.w - 1  ̂ m+X m. n
where Z is an (m+l) x (m+l) matrix whose (i,j)th element is 
given hy the equation (A.l). Define a (k-l) x (m+l) matrix B 
with its (i,j)th element B^j is given hy

p. • -
B. . =ij v.(0*) J ^

for i = l,...,k-l and j = l,...,m+l. By using (B.8), we have Q(0*) = BP
and hence hy the standard properties of normal distributions, the
asymptotic distribution of Q(0*) is a (k-l)-variate normal distribution
with mean vector Btt(0*) and covariance matrix ̂  B Z B ’. Finally, (B.13)
shows that the asymptotic distribution of Y is a (k-l)-variate normal
distribution with mean vector Æ  R ^(0") B 7r(0*) and covariance matrix
r“^(0*) BZB’ r”^(0*). 

m+1
Using (B. --B, .) = 0 for i = 1,.. . ,k-l, it is not difficult to J—1 1J 0̂

see that B 7t(0*) = 0 and further that the ( i, j ) th elemen+ of (BZB*) 
is given by

m+1 m+1
(B Z B*)ij = Z

&=1 r=l

m+1 m+1 m+1

Z
£=1 £=1

m+1

R..(0*)
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Therefore B I B' = R( 8*) and thus the covariance matri:-: o' the 
asymptotic distribution of Y is R ^(6*). Hence the limiting 
distribution of Æ" (T^^^ - x*), being the same as the asymptotic 
distribution of Y , is a (k-l)-variate normal distribution with 
mean vector 0 and covariance matrix R ^(6*). This completes 
the proof of the theorem.

We finally remark that by a close examination of the matrix 
[n R(0*)] , we see that it is in fact the Fisher's information
matrix for a grouped sample with division points being t^,...,t^. 
This shows (analogous to the case k = 2) that under the condition 
of the theorem B.l, the estimate T^^^ is also asymptotically 
fully efficient with respect to a fixed set of division points

^1’* * * ’̂ m*
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