FINITE MIXTURES OF DISTRIBUTIOIS; THE PROBLEM OF

ESTIMATING THE MIXING PRCPORTIONS

Mir-Mendi Razzaghi-Kashani

A thesis submitted for the degree of
Doctor of Philosophy
in the

University of London

RpinE

Pioas D ATHK
U” s RQ‘L,,J
RS k1 8 107’
ér-,tl‘i&, 7 Sep 'l-)

i

e i e e e (1 R e

Yoy miet

Department of Statistics and Cemputer Science

Royal Holloway College

London, February 1977



ProQuest Number: 10097439

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10097439
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



To Mehran

and my Parents



ABSTRACT

Constructing estimators for the parameters of a mixture of
distributions has attracted many statisticians. Giwven that the
distribution function Ge(.) of a random variable X is a mixturs of
k (1 < k < ») known distribution functions Fl(.),...,Fk(.) with mixing
propor;ions Bl,...,ek

and I ej = 1, and given that Ge(.) determines 8150050, uniquely,
J=1 -

respectively where O g_ej <1 for j =1,...,k

estimation of the mixing proportions is considered. Different estima—-
tion techniques are studied in depth and the properties of the
resulting estimators are discussed.

The necessary background to mixtures of distributions is first
given and an extension of the method of moments for estimating ~
61,...,8k is then proposed. The generalized (weighted) least squares
method, when the observations -are grouped into (m+l) intervals, is
considered and it is shown that the estimators possess certaln desired
asymptotic properties. The case when m > e is also investigated. Since
the set of equations ieading to the generalized least squares estimators
are not in general solvable, an iteration process is proposed and is
shown to produce satisfactory results after even one cycle.r Finally,

when k = 2, 6, =6 and 62 = 1-6, the problem of maximum likelihood esti-

1
mation of 6 is considered and the Fisher's scoring method is suggested

to solve the likelihood equation. Properties of the first and second

cycle sclutions are derived.
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CHAPTER 1

INTRODUCTION

1.1 General

In recent years, mixtures of distributions have received an
increasing amount of attention in statistical literafure, partly
because of interest in their mathematical aspects and partly
because of a considerable number of applied problems in which
mixtures.of distributions are encountered. In this thesis we

consider a mixture of k (1l<k<») distinct distribution functions

Fl(.),...,Fk(.) defined as
k
Golx) = T 6, F
o(%) I ° J(X)

for every x belonging to some measurable subset of the real line
’ k

with the condition that 035_65.5_1 for j=1,...,k and I Bj = 1.
J=1

We assume that the distribution functions Fl(')""’Fk(') involve

no unknown parameters and further that Ge(x) determines uniquely

81 5...,6 and Fl(.),...,Fk(.), i.e. Gy(x) is "identifiable". Ve
pose the problem of estimating the unknown parameters el,...,ek.

In this chapter, however, we give the preliminaries and the
background to mixtures of distributions. In Section 1.2, we state
our definitions and notations along with some of the elementary
properties of mixtures of distributions. In 1.3 we give a formal
statement of our problem together with a brief summary of the

subsequent chapters of the thesis. In Sections 1.4, 1.5 and 1.6,

we outline some of the problems arising in mixtures of distributions

together with a summary of the work of previous authors. In 1.7

we look at some applications.
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1.2 Definitions and Terminologies

Let F = {F(x;0); x€X, a €v4} be a family of cne-CGimensional
cumulative distribution functions F(xja) in the variable x € X
where X is a measurable subset of the real line to which every

p— . «n e ' -
member of “p assigns probability one. Each member of # 1is
. . . ) . _ (D) (s)y,
indexed by a finite dimensional parameter o = (a 50000 )
belonging to some measurable subset <A' of Bs, the o-field of the
Borel sets in RS. Suppose that for each a EeA’ , the set of points

to which F(.;a) assigns positive probability is independent of

L) (s

sesey and that F(x;a) is measurable on the product space

X xv‘q', a measurable subset of the (s+1)-dimensional Euclidean space
+ . . - . '
R l. For this, it suffices to stipulate that F(xj;o) be measurable

in a for all x € X (Teicher [55]). .
Denote byQ the class of non-degenerate s-dimensional cumulative
distribution functions Q(a) whose induced Lebesgue-Stieltjes

measure H. assigns measure one to«A . Then

Q

G(x) = Gg(x) =aé F(x;a) dQ(a) | x€X (1.2.1)

is a one—dimensional cumulative distribution function (Robbins [47])
called a "Q-mixture" or more briefly a "mixture" of 5. The family A
is called the "kernel" of the mixture while Q(.) ‘is referred to as the
"mixing distribution". Following Teicher [54], the family
j =ﬂ (QJ—") of mixtures G(.) of F resulting as Q(.) ranges over &)
is called the class of mixtures of F .

Now, in particular, if each Q eQis a step function with steps

at s¢5sees SV, OF equivalently if for each Q GQ,u is discrete

Q

(a countsble number of

*1
assigning positive measure only to LR

points in R°), then (1.2.1) reduces to



o0
G,(x) = I eJ. F(x;aj) x€X . (1.2.2)

where Bj is the mass assigned by Q(.) to aj for j = 1,2,... called

)'. Tt is clear tha

ck

the "mixing proportions" and ¢ = (6
~ [

1’92,...

0 5_ej <1 for j=1,2,... and I 6. = 1. Distributions of the
J=1
type (1.2.2) are called "countable" mixtures of distribvutionms.

Moreover if for each Q EC), the set {a } € R® contains only

120500

a finite number of elements B seeesly then the resulting mixture of

distributions is

G (x) = L @, F(x; a.) x€X (1.2.3)
6 i J J
~ J=
k . .
where 0 < 8, <1 for j =1,...,k, £ 6, =1and 6= (0_,...,0 )" = .
k J j=1 9 - 1

.zle. e. with ey 1 < J £ k being the k-dimensional vector with 1 at
gge jth position and zero: elsewhere.

Distributions of the type (1.2.3) are called "finite" mixtures
of distributions. The individual distribution functions F(.;aj);
j=1,...,k being mixed to produce a particular Ge(.) will be called
the "components" of GG(')' Finally, if in (1.2.5), the values of
Gy 0. 50 are known, 21.2.3) takes the form

k
Ge(x) = 2 ej Fj(x) x€X (1.2.4)

~ J=1

where Fj(.) = F(.;aj) for j = 1,...,k.
The following two special cases are noted:

(i) Lets=1l, F(xj;a) = F(x-a) in (1.2.1), then

GQ(x) =aé°4F(x—a) d Q(a) x€ X

and it is well-known that in this case GQ(.) is called the convolution
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of F(.) and Q(.) written as GQ(X) = F#Q(x) for x€X., 11X
and Y are two independent random variables with respsciive
distribution functions F(.) and Q(.) in R, then (Robbins [47])

the distribution GQ(.) of Z = X+Y is
GQ(x) = Prob [X+Y < x] = FzQ(x) x€X . (1.2.5)

However (1.2.5) is only necessary and not sufficient condition for
independence of X and Y.

Further, if we denote by ¢l(t), ¢2(t) and ¢(t) the cﬁaracteristic
functions corresponding to the distribution functions F(x), Q(x) and
GQ(x) respectively then GQ(X) = FxQ(x) if and only if |

o(t) = ¢ (£) « o (t) . -
(ii) If in (1.2.1), F(x;a) is defined for non-negative integers
o =0,1,2,... and it is tﬁe a:fold convolution of a given distribution
function F(x) with itself, i.e. F(x;a) = F (x) and Q(a) is the uni-
variate Poisson distribution with mean A, then the resulting mixture
of distributions |
> e—l 2

I = F % (x) xe X
a=0 -

is called a generalized Poisson distribution.

1.3 Statement of the Problem and Outlineé of the Thesis

In this thesis we shall be concerned with finite mixtures of
distributions of the type (1.2.4), i.e. a mixture of the one-
dimensional distribution functions Fl(.),...,Fk(.). It will be

assumed that these distribution functions are all continuous to the

right so that
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'Fj(x) = Fj(x+0) r€ X

for j = 1,...,k and therefore Ge(x) given by (1.2.4) is =2lso
continuous to the right. Furtﬂer, we will assume thza% the
component distribution functions Fl(.),...,Fk(.) of GS(') are
completely known and involve no unknown parameters, b;i pale)
knowledge about the mixing proportions 61,...,9k is availsble
except that they are k non-negative parameters adding up to unity.
The number of components k giving rise to the finite mixture of
distributions will always be assumed to be known.
The problem that we deal with in this thesis is the problem
of estimating the mixing proportions 61,;..,6k on the bésis of n
observations from a finite mixture of distributions. However, .
before the problem of estimation can meaningfully be considered,
the identifiability that 1s the question of unique characterization
of the mixture of distribution has to be establiéhed. Identifiability
of mixtures of distributions will be dealt with in Section 1.L4 and
necessary and sufficient conditions will be given for the identifisbility
of finite mixtures of distributions due to Teicher [56] and Yakowitz and
Spragins [60]. We assume throughout this thesis that the mixture of
distributions, whose mixing proportions are to be estimated, is known
a priori to be identifiable. We state the problém formally as follows:
"Given a set of n indepéndently and identically distributed

random variables X .,Xn with a common distribution

l’..
function Gé(.) given by (1.2.4), and with observed values

X)5e.05%  and given that Ge(.) is identifisble, it is

~

required to estimate the vector of the unknown mixing

proportions 6 = (61,...,6k)'."

Our estimate of 6 will be based on the empirical distribution

function Gn(.) defined as



12

1 P

= = < - =

Gn(x) = [no. of X seeesX < x] X ,

i.e. Gn(x) is the proportion of the observations which do not exceed
x. We denote by Pn(x) a random function whose realization is Gn(x)

for all x €X, so that

N .
T == < e¥X
(%) m [no. of X seeesX <] x . (1.3.2)
The functions Gn(.) and I’n(.) can also be represented in the
following forms: Let n(x) be the well-known Heaviside function

defined as

1 x>0
n(x) = .
0 x <0
‘l;,hen ~
l n o -
G (x) == ¢ n(x-x.) xeX (1.3.3)
n n ._ J
J=1
and similarly
n
r(x)== 2 n(x- X.) x € X (1.3.L4)
n 521 Jj

The statistical properties of I‘n(x) are well-known (Darling [16])

and we state here (without proof) some of its more important properties.

(i) The expected value of I‘n(x) is Ge(x) for every x € X and the
. .71
covariance of I‘n(x) and I‘n(y) is S e (Ge(x), Ge(y)) for every

~ -~

X, ¥ eX , Where

s (l-t)k s <t
c(s,t) = min(s,t)-st = (1.3.5)
t (1-s) s >t

for 0 < s,t <1

(ii) By the strong law of the large numbers



]
(@3]

Pn(X) -> Ge(x)

with probability 1 as ns» for each x € X

(iii) By the law of iterated logarithm,

It_(x) - Gg(x)l

lim sup vn = /CB(X) (1 - Ge(X))‘
n-ro Y2 log log n

~ -~

with probability 1 for each x € X .

(iv) By the multidimensional central limit theorem, for any set
of values {ti}m such that t; €X for i =1,...,m, the

i=1
random variables

/n (r (t.) = Gg(t,)) Si=1,...,m
have a Joint asymptotic m-dimensional normal distribution

with mean vector gmx = (0,0,...,0)! and an mxm covariance

1
matrix having c(Ge(ti), Ge(tj))lwith c given by (1.3.5) as

~

its (i,j)th element for i,j = 1,...,m.

(v) By Glivenko-Cantelli lemma

sup |T_(x) - G.(x)]> ©
x€x ° ]

with probability 1 as n-.

In Chapters 2 to 5, estimators of 6 will be derived and their
properties will be analysed. The results of some numerical studies
will also be used to provide further illustrationms. In Chapter 2,
we consider estimating"g by using the method of mdments. This method
which has attracted many statisticians dealing with mixtures of

distributions (c.f. Section 1.5), consists of equating as many sample



moments tc tleir corresponding expected values &as thsrz z2rz un-

-~ ®

known parameters. We consider somewhat a generalizszicz cZ this
method.  Assuming that the distribution of the rexndom variable X
is given by (1.2.4), the conventional method of momants is based

upon solving the set of equations resulted from equatin

n
i z xz for t = 1,...,k to their corresponding expectzd values, i.e.
i=1
. t . .
the expectation of X" for t = 1,...,k. Instead of using the function

(8]

Xﬁ, we define a real-valued function h(X,t) of X and t € R with the
property that h(x,t)be a right-continuous function of t € R for
each x € X . Also h(x,t) has to satisfy some further mild
restrictions (see Lemma 2.2.1). Instead of choosing t = 1,....k,
as in the method of moments, we choose a finite set of real value$
tl,...,tm where mﬁiﬁk. Since m may be greater than k, the set of .
equations resulted from equating the sample moments of h(X,tr);
r=1,...,m to their corresponding expected values, will have no
solution and so we use the method of least squares to find an estimate of
g. The properties of our.estimate will be investigated and it will
be discussed that using a generalized least squares, that is teking
the covariances between h(X,tr) and h(X,ts) for r,s = 1,...,m into
consideration,will improve our estimate. This will, however, cause
some difficulties unless the exact form cf h(x,t) for x € X and t €R
is known.

In Chapter 3 we consider a special form of h(x,t) namely

h(x,t) t€X, x<t

]
)

=90 otherwise

and will see that for this special case we are led to fitting the
values Gn(tl),...,Gn(tm) to Ge(tl),...,Ge(tm) respectively by the

method of generalized least squares. The underlying equations

whose root forms the generalized least squares estimator of ©



15

give rise to equations whose solution constitutes =z mimimm y2

estimate of 6 and we can thus establish the propertizs of our

difficult to solve in general, and we consider a sracial case

namely that the mixture of distributions Ge(x) given by (l.2.h1
consists only of two components and each c;mponent is the distribution
function of a uniformly distributed random variable. Ve study the
properties of the estimate of the mixing proportion in rors detail.

We finally let m, the number of chosen values of t}s, become very
large and consider the case when m>» and establish the properties

of the generalized least squares estimator of 6 in this case.

In view of the fact that the set of eqﬁations having the
generalized least squares estimator of 0 as their solution‘are N
very difficult to solve, even in simple situations, we propose an
iteration procedure in Chapter k. Sterting with a consistent but
inefficient estimator of 9, the iteration process after one iteration
yields en estimator which is consistent asymptotically normally
distributed and asymptotically fully efficient with respect to a
given set of values tl,...,tm. Analogous to Chapter 3, we consider
the situation when m>® and will see that the iteration process
converges to the maximum likelihood estimator of 9.

Finally in Chapter 5, we deal with the problem of maximum
likelihood estimation of g in the special situation when Ge(x)
given by (1.2.4) consists only of two components Fl(x) and~F2(x)

with respective mixing proportions 6, = 8 and 62 = 1-6. Thus we

1

have

Gg(x) = 8 F (x) + (1-8) Fy(x) x€ X

for 0 < 6 <1, It is seen that the identifiability (uniqueness) of
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Ge(x) is evident in this case for if

~

Ggx(x) = 0% F. (x) + (1-0%) F,(x) x€ X

~

1l
(]
®
e
(0]

for O < 6% < 1, then Ge(x) =

-~ ~

S(Fl(x)—Fg(x)) + FQ(X) = ¥ (Fl(x)—Fz(x)) + Fz(x)’

for all x €X if and only if 6 = 6% unless Fi () 2 F (). Ve
discuss the properties of the equation whose root constitutes the
maximum likelihood estimator of 6 (likelihood equation) and show
that certain regularity conditions are satisfied for 0<Q<1 so that
the well-known properties of maximum likelihood estimators are
applicable to our estimate in suchAsituations. We also discuss
the properties of the Fisher's informatioq function I(6) and give
sufficient conditions for the existence of a unique root of the
likelihood equation in (0,1). It turns out that the root of the
likelihood equation cannot, in general, be obtained directly. We
propose the use of an iteration process commonly known as Fisher's
scoring method (Rao [45])., We discover the properties of the
solutions given by the first and second cycles of the iteration
process when the process is started with an arbitrary value chosen
in (0,1) (independent of the observations). We see that the
properties of the solution provided by two cycles of the iteration
process are also applicable to the solutions obtained by the
éubsequent cycles.of the process.

Concluding our investigations in Chapter 6, we sugges# a few
areas, related to mixtures of distributioné, in which further

research could be carried out.
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1.4 TIdentifiability of Mixtures of Distributions

The question of identifiability of mixtures of ZSizZridutiors
concerns their unique characterization. Teicher [5&] was the first
to use this term and it has since been used by oth=rs.

Definition 1.4.1 (Teicher [55]) : The mixture Gg(x) of f}f

given by (1.2.1) is said to be identifiable in Cl if the ra=lation—

ship

GQ(x) 2 G.u(x)

Q*

[ Flx;0) @ Qla) = [ F(x;a) @ Q*(a)
oEA oEh
holds for all x €X if and only if Q(.) = Q*(.) for all Q and Q*
belonging to (:2 U 57 where 57 denotes the family of degenerate
distribution functions, i.e. 57 is the family of distribution
functions whose corresponding Lebesgue-Stieltjes measures assign .
. . . s <

measure one to a single point in R. If every F(x,a) E_ K
x €X s O 60)4 induces an identifiable mixture of distributions in
C), then the corresponding class of mixtures of distributions :?
is called identifiable 1n (with respect to T4 ).

Note that the identifiability of countable and finite mixtures
of distributions can be defined in a similar way. In particular

a countable mixture of distributions given by (1.2.2) is said to be

identifiable if the relationship

Ga(x) = Gyy(x)
i.e.
(o] [+
I 6. F(xja.) = I 0% F(x;a%)
i=1 * N J

holds for all x €X. if and only if for each positive integer 1,

there is another positive integer J such that ei = 6§ and @, = a§
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.

and similarly (1.2.3) is identifiable if the relaticzz'aiy

k k¥*
E ei F(x;ai) = Ie¥ F(x;azf)
1=1 J=1

holds for all x € X if and only if k = k* and for ezch 1 <ix<k

there is some 1 < j < k such that ei = 6; and a. = a?.
The lack of identifiability of a mixture of distributions is
not uncommon. Consider as an example the family of birnomial

distributions with density function
f(x;a) = (2) o (1~a)P7X x=0,1,...,n
where O < o < 1 is unknown and n is a fixed positive integer. Then
1
g.(x) = [ £(x;0) aQle)
Q 0

is a linear function of the first n moments of Q(a) given by

() _ & or
My = J of ala)
0

for r = l,00.0,0. Consequently, a necessary and sufficient condition
for any other gQ*(x) with mixing distribution Q*(a) be identical to
gQ(x) for x = 0,1,...,n is that the first n moments of Q¥(a) given by

(r) _ tr o,
Mgr = [ o aQ*(a)
0

for r = 1,...,n, be identical to for r = 1,...,n.

(r)

Q
The most thorough investigation of the problem of identifiebility

of a mixture of distributions has been undertaken by Teicher [ 5k, 55,

56] . Some conditions of identifiability are given in [S4, S5] as
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well as a discussion of the question of identifisoiiity Zor ssver
specific classes of mixtures of distributions. In [ 5Z] ze consiizrs
the problem of identifiability of finite mixtures of distributiozns
and shows that a necessary and sufficient condition for the class

k k

9 ={z06.F.(x); ¥, 0<0,<1 for j = 1,...,%, T8, =1}

(1.k.1)
of all finite mixtures of the finite family of distribution functions
.3: = {Fl(x),...,Fk(x); x €X} be identifiable is that there exists
k real values XpseeesXy with Xj € X for j=1,...,k for wanich the
determinant of the kxk matrix with Fi(xj) as its (i.__.j)th element for
i,j = 1,...,k, is non-zero. Usingthis result, the author establishés
the identifiability of the class of finite mixtures of normal
distributions and finite mixtures of gamma distributions.

Yakowitz and Spragins [6Q] have shown that a finite mixture
of distributions is identifiable if and only if the components are
linearly independent cumulative distribution functions, i.e. the
class (1.4.1) is identifiable if and only if

k

T c.F.(x) S0 forc. €Rand x € X< c =c =..=c =0 .

5=1 J J 172 k :
In fact they proved a rather more general result than stated, by
considering ¥ to be a measurable subset of Rm, i.e. each component
of the finite mixture of distributions is the distribution function
of an m—-dimensional random variable. From their important result,
they obtained the identifiability of finite mixtures of distributionsl
with each component being
(i) an m-dimensional normal distribution,
(ii) the product of m negative exponential distribufions,

(iii) one dimensional Cauchy distribution,
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(iv) the negative binomial distribution,

(v) either an m-dimensional normal distributicn oxr the
product of m negative exponential distridutions.

Notable contributions have been made by other authors such =s

Blischke [8] who gives a necessary and sufficient cordition for the

identifiability of mixtures of binomial distributions.

1.5 Estimation for Mixtures of Distributions

Vhen the identifiability of a family of mixtures of distributions
has been estabiished, one can discuss the problem of estimating the
unknowns. In the mixture of distributions GQ(.) defined by (1.2.1),
Qla) ; o Ech (and thus GQ(.)) is not in general known exactly, although
the form of F(.3a) ; a ed win usually be assumed known. Direct -
information on GQ(x) is supplied only by n observations X150 ee X being
the realizations of Xl,.v.,Xnnrespectively of the random varisble X
whose distribution is GQ(')' The observations are then used to
construct an empirical distribution functionm say Gn(.) being an
estimate of GQ(.).

The problem of exact estimation of the mixing distribution Q(.)
when Q could be any continuous distribution is of course an impracfical
task and this problem is closely related to the empirical Bayes |
Procedures, proposed first by Robbins [§8],-where the mixing distribution
Q(.) corresponds to the a priori distribution. Robbins [48] suggests
that if the a priori distribution function is known to the experimenter,
he can perform a Bayesian analysis of his experiment, but if such
information is not available then the a priori distribution function
has to be estimated. This is equivalent to estimating the mixing
distribution Q(.) in (1.2.1). As an exact estimate of Q cannot be
obtained, one constructs a sequence of random step functions

Qn(.) = Qn(Xl,...,Xn 3 .) and requires Qn(') to converge wa2axly to Q(.)
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with probability 1, i.e. that Prob[lim Q (a) = @(a) =zt svery
n-re o
continuity point « 604 of Q] = 1.

A common method of constructing a sequence of estimsztors for

D
(o]
|..J
w
ck
5
0
(1]

Q(.) is to determine Q (.) such that a suitable measure o
between G (.) and the empirical distribution function Cn( ) is

minimized. The motivation of such an approach is Tfound in Deely
and Kruse [18] who suggest the use of Kolmogorov-Smirnov distance

defined as

lleg - ¢, Il = ilelpxl Gg(x) - G| - (1.5.1)
Apparently, the amount of publication on the general problem

of estimating the mixing distribution is very few and in view of the

fact that same important families of distributions, while not

generating identifiable arbitrary mixtures of distributions (cf the

type .(1.2.1)), generate identifiable finite mixtures of distributions

(e.g. the family of normal distributions with mean and variance both

considered as parameters), most of the publications on problems of

estimation in mixtures of distributions are concerned with finite

mixtures of distributions. The estimation problems in this case

arise, for example, in the situation in which a finite set of experiments

{E Ek} gives rise to a sequence of random variables {Xl} as

13eees
follows: At each observation time 1 < j < k with probability éj’ et
the exclusion of the other experiments, experiment Ej is selected and
an observatién'xi, the realization of X, with distribution function
Fj(°)’ is made. This value x; is taken to be the observed value of
the ith element of the sequence {X }* .  The statistician does not
know the parameters 61,...,6k. He m;; not know the distribution

fuctions Fl(.),...,Fk(.), or even the value of k. He is told that

the component distribution functions are distinct and are all members



of a specifi=d family S; as defined in Sectioxn 1.Z2. Tne Troblen
is then to d2termine the unknowns solely on the availztle inform—
ation. It is to be emphasized that the statistician knows that

the mixture of distributions generated by F ..F with mixing

1°°° k
proportions 61,...,6k respectively is identifiable, but he is never

told which of the experiments E Ek was performed at any time. -

13000
We devote the remainder of this section to an outline of some of
the estimation problems in finite mixtures of distributions considered
by previous authors. For this reason, the term "mixture of
distributions" or simply "mixture" will refer to a finite mixture of
distributions.

The estimation problems dealt with in the past, all assume that
k is known (often taken equal to 2) and Fl,...,Fk may or may not

depend on some unknown parameters. The method of minimizing some

~

measure of distance between the true distribution Ga(.) given by
(1.2.3) and the empirical distribution function,has been considered
by some authors. Choi and Bulgren [11] use the Wolfowitz's distance

given by

WGy, ) = [ (Gq(x) - ¢ (x))? a ¢ (x) (1.5.2)

~ -~

and Bartlett and Macdonald [4] suggest the method of weighted least

squares using

(aG_(x) - acg(x))?
f n ¥ o (1.5.3)

dw(x)

where W(.) is a suitable increasing function. Macdonald [34] uses the

Cramér-Von Mises distance

CRSEEAILEENO (1.5.4)

-~ ~
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Deely and Kruse [18] use Kolmogorov-Smirnov distancs giwzzn =7
(1.5.1) and their solution is based upon solving a <wo-perscn
zero sum game after each observation. Macdonald [35] compares
the method of estimation suggested in Macdonald [3%] with that of
Choi and Bulgren [11] with fegard to some numerical studies based
on a mixture of two normal distributions.

The earliest attempt to separate a mixture of distributions
into its components was made by Karl Pearson .[41] in 189L.

Pearson attempted to estimate the means, the variances azd the mixing

proportions of a mixture of two normal densities

8 X— z 6, X-U 2
1 1 1 1 2 1 2
0 2 [0 ol (2] 2 o (2] i
S ar %1 °1 % % ‘

where 0 < 6, <1 and 6, = 176, for - ® < x < @, by using the method

of moments and equating the first five population moments to their
corresponding sample values. Solving these five equations in the

g, and 6. leads to a ninth degree polynomial

five unknowns Hys Hps 05 O, 1

equation having at least one real root. ©Each real root of the nonic
gives a set of estimates for the parameters. Pearson proposed that
the set of solutions making the sixth population moment nearest to the
sixth sample momént be used as the final estimate. Altﬂough the
computations are not difficult on a modern computer, the results are
only optimal in the sense of fitting the first six moments. Also the
procedure does not generalize easily to the case of a mixﬁure of more
than two populétions. Rao [ 45] applied the method of moments to a
mixture of two normal distributions with equal variances and showed that
Pearson's nonic reduces.to a cubic and the computation is considerably
simplified and Cohen [12] also showed how the computation of Pearson's
method can be lightened to some extent.

The most exhaustive statistical approach to mixtures of binomial
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distributions has been given by Blischke [3] who emplcr=d th=

first (2k-1) factorial moments of a mixture of k (k>2) Tinomizl

distributions,

k
gg(x) = z 8. () p: (1-p)"" (1.5.6)
=1 Jd X J J
- J= :
4
for x =0,1,...,0n, 0 <p., 6. <1; j=1,...,k and I 6. =1, to
obtain estimates of Pys---»p, and 81,...,6k. He then showed that

the estimates have joint asymptotically normal distribution and also
investigated the asymptotic efficiency relative to the Cramér-Rao
lower bound. Blischke found that if the mixing proportions are unknown
then the joint asymptotic relative efficiency of the estimates tends to
unity as the binomial parameter n = o, However, if the mixing propq;tions
are known, the relative efficiency approaches zero. No intuitive explan-
ationwas offered for this apparent anomaly.

The method of moments has also been used by Falls [20] to
estimate the five parameters of a mixture of two Weibull distributions,

- -1
gg(x) = 9171“11 xYl ' exp(- xYl/dl) + ezvzagl xYz exp(- xY2/12)
) (1.5.7)

for x > 0, O 5_91 <1, 6, =1-6,, YisYs > 0. In 1968, Tallis and
Light [52] suggested the use of the fractional moments. Considering
a mixture of two exponential distributions, they showed, by some
numerical studies, that if a so called "optimél comﬂination of
moments" is used, the efficiency of the estimates will increase.

A study of the bias and accuracy of the moment estimators with
particular reference to mixtures of two normal distributions has
been given by Robertson and Fryer fLol. Their results suggest that

although the method of moments generally leads to estimators which

are less efficient than the maximum likelihood estimates, their use
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can bte justified when the absolute maxima of the likelihood
function is unobtainable.

The method of Maximum Likelihood has also played an important
role in the estimation problems of the theory of mixtures of
distributions. The likelihood function of a mixture of

distributions based on the observations x X from the nixture

13000

is of the form
0. f(x ;aj) ajetA X, e¥ (1.5.8)

vhere f(. ; aj) is the density function corresponding to the
distribution function F(. ; aj) for j = 1,...,k. Recall from Section
1.2 that each aj qu is an s-dimensional vector. The maximum likeli-

hood estimators of 8 ek and o o, are those values which.

l,.--’ k

meximize (1.5.8) for fixed XyseeesX . The equations for the

120>

estimates usually turn out to be non-linear and difficult to solve.
A mixture of two or more normal densities has again been the
centre of attraction for many‘investigators. It is to bé stressed
that in such cases if means, variances and mixing proportions are
unknown, the likelihood function becomes unbounded near many points
in the parameter space (e.f. Section 5.1) and hence the method of
meximum likelihood breaks down. This important fact has been
observed by Dy [1T7] , Fryer and Robertson [21] and Behboodian [5].
(Incidently, a similar feature characterizes other mixtures of
distributions such as mixtures of displaced exponential densitieé).
By imposing sufficient restrictions on the parsmeter space (e.g.
equality of variances of the component.distributions), or using
coarsely grouped observations, the méthod of maximum likelihood can
reanirgflly be used and it often leads to efficient estimates.

The exz~ovle given by Behboodian [5] is that if in a mixture of two
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normal densities given by (1.5.5), u = = Uy then as an estimate

Y1
of y, the efficiency of the sample mean against the sample median

tends to zero as cl/c2 is made arbitrarily small or large. On

the other hand for o] = 0y, the sample mean is fully efficient for

the true mean.

Rao [42] was first to use maximum likelihood estimation in
mixtures of distributions. He considered a mixture of two normal
densities with equal variances and obtained grouped maximum likeli-
hood estimates for the means and the common variances of the
components and the mixing proportion of the mixture of densities.

He applied the method to a sample of size 45L, tested his results

with a chi-squared goodness of fit test. The fit turned out to be
reasonably good. vHasselblad [25] has proposed a general method of
iteration to obtain the maximum likelihood estimates of the k means,

k variances and k-1 mixing proportions of a mixture of k normal
densities from grouped data. In view of the fact thet the likelihood
function for ungrouped data is unbounded for this problem, Behboodian

[ 5] has proposed using the values corresponding to the largest
stationary maximum of the likelihood function as the estimates.

The method may well lead to 'reasonable' estimates in many cases, but
the estimetes will elearly not possess the optimal asymptotic
properties of the meximum likelihood estimates. Fryer and Robertson
[21] cleim that Behboodian's method is what Hasselblad [25] has proposed
in effect, since although Hasselblad starts by considering grouped
maximm likelihood estimates, he then assumes the width of each group
to be sufficiently small to allow us to replace each group probability
divided by its length by the appropriate value of the density function.
They believe that the effectiveness of Hasselblad's method will vary

a grest ezl depending on the parameter values. They discuss and

corpere ths esitimetes of the parameters of a mixture of k normal
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distributions obtained by (i) the method of moments, (ii) the
method of ﬁaximum likelihood from grouped observations and (iii)
the method of minimum x? again when the data is grouped. Their
comparison is based upon the bias and the mean squared error of
the estimates and they concluded, from some numerical studies,
that as regards the bias, minimum x2 estimators seem to be slighly
better than grouped maximum likelihood estimators, but the
difference between the two is often very small. Moment estimators
are sometimes better and sometimes worse than thé grouped estimators,
and furthermore the differences are often considerable. Comparing
the mean sqﬁared errors, they found that the grouped estimators are
usually markedly superior to the moment estimators. This
superiority, however, is not completely uniform, since the performances
of the moment estimators are often preferred to that of the grouped
estimates when the components of a mixture of distributions are not
well separated. > e
A comparison of the method of moments and the method of meximum

likelihood in estimation of the parameters of a mixture of two normal
densities has also been done by Tan and Chang [53]. To ensure the
existence of the maximum likelihood estimators, they restrict them—
selves to the case when the components have equal variances. Their.
comparison is based upon the asymptotic efficiencies of the
estimates and they concluded that maximum likelihood generally
results in better estimators especially when A = |(ul—u2)/o| is
small. Eere ¥y end uz'denote the means of the components and ¢
denotes their common standard deviation.

. Maximum likelihood estimators of the parameters of a mixture of
two normel densities have also been used by Dick and Bowden [19] and
“osmer [28].  They use numerical techniques to derive their estimators

semples from one or b>th components are available.
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Macdonald [34] uses an iteration techniqu: to darivs <z

h

maximum likelihood estimates of the parameSers of a —izturs
of k>2: normal densities when (i) the mixing provortions are
the only unknown parameters, (ii) the means and the cormon
variance of the components are also unknown. He orovides
FORTRAN computer programs for the calculations. ‘ Tey [17] has
considered a mixture of two multivariate normal densities with
identical but unknown covariance matrices. He derives
estimates for the mean vectors and the common covarisnce matrix
and also for the mixing proportions. He uses both the méthod of
moments and the method of maximum likelihood and finds that the
maximum likelihood estimators are generally better;
Unfortunately, the Bayesian analysis of the estimation
problems of finite mixtures of distributions has not been yet
fully investigated. The only publication on the subject is due
to Behboodian [6]. He considers a mixture of two densities

fl(.) and fg(.) viz:
ggx) = 0, £.(x) + (1-8 )5 (x) =~ x€X  (1.5.9)

for O 5_61 <1, in which the mixing proportion el is the only.unknown
parameter. By taking a beta distribution as the prior distribution
of the mixing proportion, he derives its posterior distribution based
on a sample of size n from the mixture (1.5.9). He shows that the
posterior distribution is a mixture of (n+l) beta distributions and
derives its mean and variance. Generalization to mixtures of more
than two components is considered. The following comment illustrates
a somewhét unusual characteristic of the Bayes estimator for the
mixing proportion in a mixture of two densities given by (1.5.9).

Let v(6) 3 0 <68 <1 be the prior distribution function of &,. Then
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the Bayes estimator under the square error loss funciiin (veirg

+ =
rvaticzs

8]
(|)

the mean of the Posterior distribution) based on tkre c>

xl,...’xn lS

1

J: H g(X)dY(e)
0 L J=1 9
fl " . (1.5.10)
n g.(x.) avy(s,) '
0 j=1 9 J 1
But
H ge(x ) = H [6 (f (x ) - £, (x )) + £, (x )]
J= J=1
2 n
= I8 A
r=0 1 Tan
where
A= z nf(x)nf(x)—f(x))
oM 4 <Ll §=1 I 5= l( J )
1 r
j# 11,...,5.r
- a .
for r = O,...,n, so that (1.5.10) gives, as the Bayes estimator of el,
n
rnj enr‘*‘ld_Y(e)
r-O > O
Pa [ e
¥ a y(e)
r—O r’no

and 1t is seen that fhe Bayes estimator depends only on the first
(n+l) moments of the q priori distribution and not on the g ppiori
distribution itself. Hence the class of all Bayes estimators can
be represented by the class of all vectors (gl""’€n+l)' where
Ei, i=1,...,ntl denotes the ith central moment of some q priori

distribution on [0,1].

1.6 Other Aspects of Mixtures of Distributions

Apart from estimation and identifiability of mixtures of
distributions, there have been comparatively very few publications

about other problems related to mixtures of distributions. In the
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area of hypothesis testing, Tiago De Oliveira [S5€] rz=s zxczosed

=

a procedure to test whether the distribution functicn of & giverz
random sample is either of the given discrete distfibuzion
functions Fl(x) and F2(x) or a mixture of them. Iis metkod,
however, is not efficient but only provides a renid procedure.
Given three random samples from three distinct populétions,
Thomas [57] gives a distribution free procedure to tesi whether
the distribution function of one of the populations is =z mixtufe
of the distribution functions of the remaining two populations.
His test statistic is based upon a function of the ranks of the
observations. Consistency and asymptotic normality of the test
statistic is proved. The author also gives a test statistic
for the hypothesis that the mixing-proportion is a constant
parameter against the alternative that it is a function whose
domain 1s the sample spéée of the three populations.

Anothe~ érea which has interested some statisticians is the
problem of finding lower bounds for the variance of the estimate

of the mixing proportion 8, in a mixture of two densities (1.5.10)

1
and their generalizations to mixtures of k (2 < k < =) densities.
It is known that under certain regulerity conditions (Zacks [611),

the variance of any unbiased estimator of Bl based on a random

sample of size n, cannot be less than the Cramér-Rao lower bound

—_— where I(6.) is the Fisher's information function in a
n I(el) 1
single observation. Hill [26] showed that the Cramér-Rao lower
bound is

8, (1 - el)

(1.6.1)

n (1 - S(el))
where

f (x) f£.(x)
[ 2
s(el) = I-——}iR;S———-dx
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and further derived series expansions for s(el) when tias densities

F
o]
13
w

fl(x) and fz(x) are density functions of (i) normel &istribut
with equal scale parameters, (ii) exponential distributions.
Boes [10] derived necessary and sufficient conditions for the
attainment of the bound (1.6.1). He generalized his results
to mixtures of k (2 < k < =) densities.

When the Cramér-Rao bound is not attained, it is sometimes
possible to derive greater lower bounds based on Bhattacharyya
matrix (Zacks [61] ). Denote by L(el) the likelihood function of
the mixing proportion Ol based on a sample of size n from the
ﬁixture of densities (1.5.13). Let T be an estimate of some

1

function of 61 having expected value T(Gl), then Var(T) > t'J %

where ’ ~

[

¢ = [—B-g— r(el)-, <o ¥s r(el))'

1 a0

-~ B

and J is the m*m matrix with its (r,s)th element being the expected

value of

o 1(e)) 9% L(e))

r S
881 361

(L(8))?

for r,s = 1,...,m, provided, of course that the derivatives exist.
Matrix J is called the Bhattacharyya matrix of order k. Whittaker
[59] derived the Bhattacharyya matrix for a mixture of two
distributions.

Behboodian [7] has given a numerical method for computation of
the Fisher's information matrix about the five parameters (two means,
two variances and the mixing proportion) of a mixturé §f two normai

densities. He shows that the computation of the information matrix
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)
i

leads to the numerical evaluation of an irtegral ari =zz3 vzrio

numerical techniques to solve the integral.

1.7 Applications of Mixtures of Distributions

Practical problems involving mixtures of distributions arise
in many different fields of study. These include biolozy,
engineering, fisheries, péycgology and medicine. A useful
account of some of these applications can be found in Blischke [9]
and in this section we refer to some of the authors who have used
mixtures of distributions in their investigations of various
applied problems.

For example, length-frequency data from a fish pépulation is
known to be best approached as a mixture of distributions. The °
population is composed of a number of component age gfoups mixed to-
gether in some proportions; “each age group has a distinct length-
frequency curve and the length-frequency curve for the population is
a mixture of these component distributions. Macdonald [34], Hosmer
[ 28] and Dick and Bowden [9] discuss thesg situations with respect
to sampling from a normal populations. Another area of biology in
which mixtures of distributions are frequently encountered is genetics
where one is concerned with the study of inheritance in both natural
and man-made populations. A proper genetic analysis of such
populations sometimes involves mixtures of distributions.  Rushforth
et al [50] have used a mixture of two normal distributions as a
model for the Blood glucose level of a sample of Pima Indians, a
population known to havé an éxtremely high prevalence of diabetes
mellitus.

A number of non-biological applications of mixtures of
distributions, mostly from the chemical industry, have been discussed

by Medgyessy [37]. These include the use of finite mixtures of
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normal distributions in the investigation of abscrziicn srscirs.
and of electrophoretical separation of proteins of differsnt
molecular weight contained in a solution. AMedgyessy also gives
some applications of finite mixtures of binomial distributions.

Mixtures of distributions are known to fit adscustely many
distributions arising in technological and physical zopplicsations,
particularly in the field of life-testing. Kao [31], for example,
discusses a problem in life-testing of the electron tubes subjected
to a sudden and delayed failure. Mendenhall and Hader [38] and
Cox [14] discuss a similar problem in life testing of radio equip-
ments. Falls [20] mentions that a wixture of two Weibull
distributions, as well as being an appropriate model in life-
testing, is also commonly used in the analysis of atmospheric data _
and consequently is of interest to aerospace scientists.

Amongst important applications of mixtures of distributions,
is its appropriateness as a model in various psychological
experiments. Lord [33] has discussed such applications in relation
to mental test theory and Thomas [57] uses a mixture of two

distributions as a model for psychological reaction time experiments.
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CHAPTER 2

THE METHOD OF MOMENTS

2.1 Introduction

The method of moments is probably the oldest method of estimatin
the unknown parameters in a distribution. It often lesds to equatiocns
which are more tractable thén those derived from cthsr methods. It
is mainly for this reason that the method is still being used although a
main disadvantage is the fact that it often results in irnefficient
estimates.

In the context of estimation problems related to mixtures of
distributioﬁs, K. Pearson [U1] was first to use the method to
estimate the five parameters of a mixture of two normal distributions.
The method consists of equating as many sample moments to their
corresponding expected values as there are unknown-parameters and )
solving the resulting equations. Tallis and Light [52] consideredva

. .
rathef different version of the method by taking fractional moments.
They showed that by using a so called "optimal combination of moments",
the efficiency of the estimates would increase.

In this chapter, we take a somewhat more general approach.

Denote by Ge(.) the distribution function of a mixture of distributions

~

with k components Fl(')’ cees Fk(') and with mixing proportions

12 k

common distribution function Ge(.)'with respective realizations

~

8 eee, B, respectively. Let the random variables Xl’ cees X have

Xps eees X Then the conventional moment estimators of 91’ cessy ek

are the solutions of

J xbac (x) = I x%aG (x) £ =1, vuey k
n
€% ° %X

where Gn(') is the empirical distribution function and X is that sub-

set of the real line to which each Fj(.); 1<2J=2k (end hence
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Ge(.))assigns probability one. Instead of using txzz zz=2le =223

-~

population moments of x¥ for t = 1, eeey k, we defirz = rezl-v=

td

function h(x,t) of x € X and the real value t € R 2and evaluate the
two quantities A (t) = J h(x,t) dGy(x) and An(t) = J h(x,t) dG_(x)
at tl’ coes tm; 1:13 k, chosen such~that the rank of the matrix A
formed WithJ h(X,ti) dFj(x) fori=1, .v., my, J =1, «c., kK as
its (i,j)th entry is k. The estimators of el, «e+> 8 are then
obtained by fitting ln(tl), cees Xn(tm) to Ae(tl), cees Ae(tm) by
the method of least squares. i )

It is shown that our estimates possess certain desired properties
and special attention is given to the more amenable case k = 2. At

the end of the chapter, we shall see how our estimators work in practice

in the light of some Monte Carlo studies.

2.2 Method of Estimation

Let
k .
Go(x) = = 8. F.(x) xeX, (2.2.1)
121 J d :
~ J.—
k
where 0 < Gj.i 1l for j=1, ..., Kk and I 6. = 1,denote a mixture of
j=1 |

k known distribution functions Fl’ eeey Fpoo Let e5» 1<J<kbe

the standard k-dimensional unit vector,i.e. a k—-dimensional vector

k

with 1 at the jth position and zero elsewhere and 6 = I ej ej =

~ J-=l ~
(91, ooy Bk)' be the vector of the unknown mixing proportions
91, cees ek' For a function a(.), integrable over X with respect to
Fl’ cees Fk, we define

E, (a(X)) = J o(x) aF;(x) j=1, ... k
~J .

and

Ee(a(X)) = J a(x) ng(x)

where X is a random variable whose distribution function is given by
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(2.2.1).
Let h(z,t) be a real-valued function, right-contizucus in t+ € =

for each x €X i.e.
h(x,t) = h(x, t + O) t €R

for each x €X. Let 7 ={t : t€R, E (|n(X,t)]|) < =} for
J k e,

~d
J=1, ..., k, so that j/= n D/J ={t :t€R, Ee(]h(x,t)l) < w},

J=1
Then _
xe(t) = Ee(h(X,t)) = J h(x,t) dGe(x) '(2.2.2)
and i i i
)\ej(t) = Eej(h(X,t)) = Jh(x,t) ar s (x) ‘ (2.2.3)

for j =1, ..., k are right—continuous functions of t Ej‘. For the
rest of this chapter, the variable t, defined in this way, will be =
confined to t EU/ unless otherwise stated.
Now, from (2.2.2) and (2.2.3), we have
k
Aglt) = -f e'j Ae_(t) - (2.2.4)
~ J=1 ~J .

and we estimate le(t) by

h(x, ,t) (2;2.5)

B~

An(t) = J h{x,t) dGn(x) = 2

where x., 1=1, cees n is the realization of the random variable Xi
vhose distribution is given by (2.2.1) and as before G;_l(.) is the
empirical distribution function being the realization of the random
function I'n(.). Denoting by Ln(t) the random function whose realized

value is )\n(t), we have

-MC‘

B
‘..-l
"
}_.A

16 = [Get) an,60 =% T n0x,e) (2.2.6)

and



= - = -'— 5. x (%), 9,9.,’7'
Eg(Ln(t)) Eg(h(X,t)) = Ag(t) j:w S5 e (8 (2.2.7,
We now write
k
= 0. : '
An(t) jil i Xej(t) + e(t) (272.8)

where €(t) is the realization of a random function &(t) such that

Ee(&(t)) =0 .

Note also that since Eé{lh(Xi,t)I} <o fori=1, ..., n, it follows
from the strong law of large numbers that Ln(t), being the sum of
independently and identically distributed random variables, converges

almost surely to Ee(h(Xi,t)) as n-~>®i,e,

a.s.
5 Ae(t) as n>o .

L, (%)

~

Choose distinct values t., ..., © E‘DJ, m > k in such a way
1 ' m -

that the rank of the matrix

(2.2.9)

es s el

Li‘sl(tm) ceene Ask(tm)

is k and therefore det(A'A) # O and A'A is invertible. It is shown
in the following lemma that by suitably restricting h(x,t), such
choices of tl, «ess t are alvays possible. Evaluating (2.2.8) at

tl, eees b, the linear model

A = A +e=A0 +¢ (2.2.10)
~n .0 - - -

~

- 1 = t
where 5n = (An(tl), cees An(tm)) . 59 (Ae(tl), cees Ae(tm)) and

e = (e(tl), cees e(tm))' is of full rank and 6 may be estimated by

using the least squares theories. Upon minimizing (én - 58)'(§n - 56)

with respect to 8, we obtain
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~

-1
= 1 1 Iz
?.n (A'A) A én ‘ (272f"'

as an estimator of 8.

~

Lermma 2.2.1: If

(i) the mixture Ge(x), given by (2.2.1), is identifiable,

(ii) for each x belonging to a compact subset S or X , the set

L

I a. hix,t.); 2 € Z+,
. i i

1=1

T = {h(x): h(x)

L .
a = (al, srey O JTER, tiGT, 1=1, .enp 2}

2
is everywhere dense in C(S), the space of all the continuous
functions on S with the property that

[n(x)] < 1 (x) A ' .

where Mh(x) is an integrable function with respect to

”

Fl(.), cens Fk(')’ i.e.
J Mh(x) dFj(x) exists for j=1, ..., 'k,

then we can choose distinct values tl’ cees b ET, m > k such that

the wvectors

A =(Ae.(tl)’ cecs

) ISR =1, «.us k

A
e
~J

are linearly independent.

Here, Z+ denotes the space of all positive integers. Note also

that the condition (ii) is equivalent to saying that every element of

C(S) is the limit as g + = of a member of T.

Proof: If suffices to show that there existskvalues tl, cees tm € j

such that for c,, ..., ¢, € R, the relation I c.; A_ (t:) = O holds
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1f and only 1if cl c2 . ck 0 for 1 1, ey 2.
The essence of the proof is the use of a fundz~anizl proversy of

Stieltjes integrals. It is known (e.g. Riesz and Hagy [L8])

that a necessary and sufficient conditon that the Stieltjes integral

J B(x) dp(x)
S

where S is compact, formed with a fixed function of bounded variation
p(x), be zero for every continuous function B(x) is that the function
p(x) be constant on a set everywhere dense in S.

Suppose now that on the contrary there exists real values

cl, cesy ck € R not all zero such that
k
Ioeia, (8) =0 , for every t €J  (2.2.12)

J=1 Y <3 N

then from (2.2.3), we have

-

k .
J B(x,t) a( 5 c; Fi(x)) =0  for every t € T - (2.2.13)
5= -

Since Fj(x) J=1, «.., k are bounded monoténic functions,
DY F.(x) is of bounded variation. Let S be a compact subset of
%;f then for any B(.) € C(S), there exists h(.) € T such that B(x) =
1lim h(x) for every x € S and thus

L0

k k '
js $( a(E o 73000 js Tin w83 e 7500,

Now since |h(x)] i_Mh(x) i.e. h(x) is bounded by an integrable function,

it follows from the Lebesgue dominated convergence theorem that

k k
J lin h(x) (T e Fi(x)) = 1imj n(x) a( 2 c: F.(x))
S e j=109 Y g /S j=1 9 9

L k
= lim J £ a. hix,t.) a&( £z c. F.(x))
g /S i=1 * o= 3



for some EERRAE GQER and tl, ceesy tSI, ET, and sz

[[J e BF-0Y

k % T

]

0 using (2.2.13) .

Thus by the (above mentioned) property of Stieitjes integrals,
k
L c.j F.(x) is constant on a dense set of every corpact subset of X .
5= |
Now, given any x. € X , there is a compact subset XK of X

0
containing Xy and therefore .1—2{_1 c. F.(x) is constant cn a dense set
D of K i.e. .
k
551 c'j Fj(x) =c

for every x € D. If X, € D, we can construct a sequence {xr} CD,.

r=1, 2, ... such that 1lim X. = x, and by letting r+w in

0
oo
kA ~
k
I c.F.(x)=c r=1,2, ...
jop 9T ‘
we have
k k )
e=1lim § c.F.(x)= I ec. F.(x (2.2.14
o ,J( T s d 3 O) : )
oo J=1 J=1
for every Xy € X that is a continuity point of Fl, cees Fk' If, on
the other ha.nd,xo is a discontinuity point of at least one of the
distribution functions Fl’ cees Fk’ then from the sequence {Xr} cD,
we can construct an increasing subsequence {Xr.} C D and a 'decreasing
i :
subsequence {xr,} C D such that
i
X t X, as r, >
i
and
X i as ri >
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Ed ,
and by letting r. and r§ tend to infinity in I c¢. F.(x ) = ¢ an3
k : : ,j=l o ™
I c. Fj(xr') = ¢ respectively, we find that (2.2.12) 21s0 nolis ==
Jj=1 i '
the discontinuity points. In particular, by letting x - —= in
k

I c¢. F.(x) =c, we get
j=lJJ

k

I e, F.(x) =0 x€X . (2.2.15)
je1 4 A

But (2.2.15) violates the.identifiability assumpticn of Ge(.).
We mentioned in Chapter 1 that it is shown by Yakowitz and Spr;gins [60]
that a necéssary and sufficient conditon for the mixture of distribution
Gy(.) given by (2.2.1) to be identifiable is that the components
Fl’ ... F, are linearly independent. Thus (2.2.14) holds if and only

if Cp = eee =€ = O which contradicts (2.2.12) and therefore there

k k )
exists at least one point tl.ezzr such that I cj Ae (tl) = 0 with
= S = i 1 = = =
cj R for J l, ..., k, 1f and only 1f cy c, eee Cp 0.
Finally, by the riéht continuity of le (t) for =1, «v.y k

~d

oni]ﬁ, it follows that the points neighb.uring t. and to the right

1

of it have the same property as t. and hence we can find tl’ censy tm € 7

1
such that the relation

z C-A (t-)'—'o C-eR,'i=l, ..;,m
. e. 1
=1 25 !

holds if and only if Cp T Cp T eee T Oy T O which completes the proof

of the lemma.

2.3 Properties of the Estimates

Let Zn denote s random vector whose realization is given by

(2.2.10). Then .

-1
z = (A'A) © A'L, - (2.3.1)
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where En = (Ln(tl), cees Ln(tm))'. It is clear trz:

| SEEL)
|J
n
)]
[}

unbiased estimator of g for

-1 . -1 -1
E [2] = (A" ' = (A ' = (A ' =
o121 = (A'A) "A Ey [L,] (A'4) ~A Ay (. A) TA'A 8 =9

(2.3.2)

from (2.2.6).
Proposition 2.3.1: If

ce(r,s) = COVé(h(X,tr), h(X;ts)) Tys =1, ceey m

= B, (n(%,t) - 2 (6 ) (it g =2 (£))
then
=1
Cove(Ln(tr), Ln(ts)) == ce(r,s)

Proof: From (2.2.5),

cOVQ(Ln(tr), L (t))

- ;\e(ts))J

1 B 1 2
E|(= 1t hiX,t) - a2, (t)N= 5 w(X.,t.))
bl Pim LT 8 TR 1TS

le

n
- %5, El (h(8,) = Agle) B (0 ) = 2gle)
, _[» | '
= dm,[ T (e - ()08 - 3g(e))
n n V
v I jil (n(x%,t,) - Ag(tr))(h(X3,ts) - Ag(ts){]
i) |

. |
_1 I:iz By (55,0 = 2 (5,0 (00G,5.) = 24 (8,))

n2 =1 .
n n T
+ I I Eg(n(X,8.) = A (t.)) Ee(h(xj’ts) = g (5g))
i=1l j=1 ~ ~ ~
i#j

since X cees X are independent. The term in the double sum vanishes

by (2.2.2) and the result follows.
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Proposition 2.3.2: With -;he notation of the previous trozosition,
k k :
eo(rss) = 1 08, ¢ (rys) + 5 6.(1-8.) 2 (t) x (t)
0 . e. " ? . .ort .
- =1 3 % =1 4 4 %3 &; S
k k ’
- £ 1 6.6.x (£)a (t)) - (2.3.3)
i=1 j=1 *9 & T %3 ®
i#j
and
k
e(rys) = 1 0. c (r,s) + © 6.0, a..(r) a..(s) (2.3.4)
9 j=1 J Ej i>j 13 13 1] ,
where
cei(r,s) = Cove_(h(X,tr), h(X,ts))

~J ~d

B, (n(X,t) - A, (¢ D (a(Xt ) - A, (£,))(2.3.5)

~J ~J . ~J
and
aij(r) = Xei(tr) - Aej(tr) r=1, ...om
Proof:
k
ce(r,s) = J h(x,tr) h(x,ts) -E 85 dFj(x)
k k
- £ 6,xr () £ 8.2 (%)
=109 %3 rog=m 95 %
k k
= - 2 ;
.E ej(ce.(r’s) + Ae.(tr) Ae.(ts)) 'El eJ Ae.(tr) Ae.(ts)
J= ~J ~J ~J J= ~J ~J
k k
-z T 68.08.x (t))a (t)
i=1 = Y9 00T %R
k17 X
= £ 8.c (r,s)+ £ 0.(1-8.)a_ () a_ (t)
. . . . r e. S
j=L Y9 Zj =t 4 9 Zj 23

k k

- I I eiej Ay (tr) Ao (t)

i=1 j=1 ST
ifd
which proves (2.3.3)
k .
Upon substituting I 6, =1~ Gj in (2.3.3),
i=1 '

i#J



k k e
c(rys) = ¢ 6. ¢c (r,s)* 2 £ 6.2. [x (=) a_ (£)
[ . T . =.Y» s VU3
< =1 4 % i=1 j=1 * 9 %Y OZs
i#j
- )‘e.(tr) )\e.(ts)]
-1 ~J
k k
= I 6,¢c_ (r,s)+ z£o.8. (% (t)xr ()
. e.
=1 4 3 i>j 4 % T g s
- Ae(tr) )‘e.(ts) + )‘e.(tr) le(ts) B )‘e.(tr) Ae-(ts))
i ~J ~J ~J ~J ~1
k k
= % @.c (r,s)+ I 6.6. a.:(r) a.:(s)
5=1 J Ej i 1 1d 1d

establishing (2.3.L4).
Denoting by V the covariance matrix of %n’ we have, by using

the result of the Proposition 2.3.1,

V= Cove(%n)

(ara) LA [Cove(Ln(tr), Ln(ts))]A(A'A)—l .

n

2 (aa) T arcaarmT | (2.3.5)

-

where [Cove(Ln(tr), Ln(ts))] and C are m x m matrices with Cove(Ln(tr),
Ln(ts)) ang ce(r,s) respectively as their (r,s)th entry for r,; =1, ees, m.
Thus én is al;o a consistent estimator of 9.

Further, it follows from (2.2.5) that since Ee(h(X,t)) and
Ee(hZ(X,t)) both exist and are finite, Ln(t) is th; sum of independently
a;d identically distributed random variables with finite firsf and
second moments and thus by the central limit theorem, the distribution
of Ln(t) approaches normality as n + =, Hence it follows from (2.3.1)
and by the standard properties of normal distributions that the
asymptotic distribution of gn’ being a linear function of independent

normally distributed random variables, is a k-variate normal distribution

with mean vector 8 and covariance matrix V. Therefore Zn is a consistent

~

asymptotically normal (CAN) estimator of 6.
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2.4 Adjustment of the Lst mators

We can adjust the estimating procedure to teke inio zccouzi tks
k
linear constraint I 6, = 1, To incorporate this information tkte
J=1
method of restricted least squares is used. We seek that value of

9 which minimizes (én - Ae)'(kn - X,) subject to tha restriction

1'e =1, where 1 = (1, 1, ..., 1)' is a k-dimensional vector of 1's,

~ ™

and An and Ae are as defined in Section 2.2. Therefore we rinimize
o(0,£) = (A, - 48)'(x - A8) - 2¢(1'8 - 1),

where £ is a Lagrange multiplier, with respect to 6 and £. Setting
the derivative of ¢(6,f) with respect to 6 equal to zero gives for

’ -~
the minimizing value 9;

_]_‘,_a_?_ = - 1 t A* -— * =
535 = " A'A, *(AtA) BX - E¥1 =0
whence : -
~ -1 -1 » -1
0% = (A'A) A"+ g¥(A'A) "1 =6 +E*(A'A) 71 (2.4.1)

where Bn, given by (2.2.11) is the unrestricted least squares estimator.

Premultiplying (2.4.1) by 1' gives

116% = 116 + £x10(A'A) 11
n ~ N ~ ~

imposing the restriction 1'93 =1 gives

1 -1'0
g = ——==T-
1'(atA) 71

where we notelthat 1'(A'A)—ll is only a scalar factor. Inserting this

back into (2.L4.1) yields

(a'a)1(2-1'8 )

6% =8+ =
~Il ~I} l'(A‘A) 1
(ara) ti1t] (ara) t1
=|l1-—m==19§ +— (2.4.2)

(a1 B o1rvara)™h
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where I is “he k x k identity matrix.

It is seen that the restricted estimator 6; diff=rs fron

)

unrestrictedoneen by a linear function of the amount (1 - n

-

2

by which the unrestricted estimator fails to satisfy the restriction.
The sampling properties of e: may be derived as follows. Denote dy

Z: the random vector whose realization in e;, then from (2.4.2)

(a'a) 111 (ara)
E [2¥] = |I ~-———>— B [2 ]+ —F—
9 -m 1r(aa) ) 2 ™
which from (2.3.2) gives
(ara) "ty (ata) ™1
E [z%] = | - ———————| 8 + ————~
6 -n 1r(aa) ™) v 1rara)™h

and by using 1'0 = 1, we have

*
Ee [«Zr n] ae. ES *

proving the unbiasedness ~f 6:. Further, the covariance matrix V¥

of Z; is given by

CUNEE TUNE-ARE
V* = Cov, (2%) = |I - ————| V |I -~ ——————
9 ~n 11(ara)"h C1rara) ™

where V is the covariance matrix of Zn given by (2.3.5) and therefore

(ara)™h1n o N 110 (ara) 7t
(a'a) A" C A(A'A) 7 |T - ———].
1'(a'a) 1

-~

(2.4.3)

n 1'(A'A) 1

The asymptotic normality of Z; follows almost immediately from the
fact that Zg is a linear function of Zn which was shown to have a
k-variate normal distribution as its limiting distribution.

In practice it may be more convenient to compute e; by first using
k k=1
. . . \Y —~
the restriction £ 6. = 1 and substituting 6, =1 - T ej in (2.2.7) (

. k .
j=1 9 =1
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to obtain

Alt) =2 (8)= £ 8. (A (&) -x (%) e(t) . (2.4.4
“k =1 3 £j Sk Preted - o - )

Evaluating (2.4.4) at distinct values tl, cens tm.E tT‘m_z k chosen,

as before, so that the rank of matrix A given by (2.3.8) is k, we can

write
AE =A% 97 4 ¢ (2.4.5)
~n ~ - . : TS
N + .
where 5§ =2 - Aek, 8 = (el, cees ek_l)' and A* is the m x (k-1)

matrix given by

A (t.) weuu. A ()} (A (£) eevee 2 (&)
& 1 k-1 V| [ Y &1
A¥ = : : - - .
A Et ) eeems A ) (t.) A Et ) eeees A Zt )
| %1 k1 ") (kT x T

(2.4.6)

We show in the following lemma that A* has rank k — 1, so that
(A*)'(A*) is invertible. Thus from (2.4.5), the least squares

estimator of 8+ is
6 = [(a%) (%)) H(a%)

~ A~

giving estimates 6;, 6;, cees Gi_l of Bys cees By qe We finally
estimate 6, by

A k_l A

o =1 - 351 e; .

Lemma 2.4.1: Given that the rank of A in (2.3.8) is k, then the rank

of A* in (2.4.6) is k - 1.
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Proof: Ve prove that the columns of A* are linsz=rl

Suppose that on the contrary there is a linear rels<iczszip batwsan
the columns of A¥,i.e. there are real values Cys =ees Cp g € R, not
all zero, such that

k-1 ‘

I c.(x (t:) -2 (t.)=0 i=1, .o, . (2.4k.7)

j=1 9 S5 7 Skt .
Choose e = (cl + oa.. + ck—l)’ then (2.4.7) can be written as

k

-E ¢ Ae_(ti) =0 i=1, «eo, . (2.4.8)

J=1 ~J

But since the rank of A is k, (2.4.8) holds if and only if e, =ep =

cee = C = ¢, = O contradicting (2.4.7).

2.5 Relation to Multinomial Distribution

Let sj ={x : x is a point of increase of Fj(')} for j =1, eoes K.

Assume that each x € X is the point of increase of at most one of

Fl(.), cees Fk(') so that Sl, cees Sk are disjoint i.e.
N = 3
8, s, = ¢ r#j
= Sr r =3
and k
U g.C x
j=1 9

Let nj be the number of observations contained in Sj and denote
by Nj the random variable whose realized value is nj..

Now

Ge(x) =0 Fr(x) for x€ 8, =1, eeey K

~

and

Pe(X € sr) = Js dGe(x) = js 6. dFr(x) =0
- r © T
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where Py is the probabiliiy measure corresponding to the distributicn

-~

function Ge(x). Then

n' n n
> 182 8.k
' t l " e ®
nl.ne....nkf 1 2 . k

1o wees N = nk) =

which is the familiar multinomial distribution. In this case it is

known that the minimum attainable covariance matrix of an unbiased

estimator of 6 is

fe _ _ _
l(l 61) 6162 elek
1 : Do, :
Z - n : : ,.. : (2.5.1)
‘ -elek —ezek ek(l—ek)J

~

in the sense that if I* is the covariance matrix of any other unbiased
estimator of 6, then (£* - I) is a positive semidefinite matrix. This
provides a practical check on (2.4.3).

Let m = k and define h(x,t) at t t, as follows

l, CIC I k
h(x,tj) =1 if xE€ Sj
j=l’ D.O’ k
=0 x& Sj s

then from (2.2.5),

= " 1 S' ] = LN
An(tj) [number of x's in J] j=1, > k

and from (2.2.3),

[}

e () = | Bt @il =1 ir x =g

0 otherwise

so that from (2.2.9), A = I and thus from (2.4.3),

1 l}' }}' !
vE == {I - _k_) C {1 - —1-:-) (2.5.2)



50

Now, from (2.3.5),

n

ce.(r,s)

1-1=0 r=s
~ J '

~Hh
2]

0] r

and therefore from (2.3.3),

[

ce(r,s)

6r(1—6r) r=s

=-0.6_ r#s

and so the matrix‘%-c whose (r,s)th element is %-ce(r,s) reduces to

Z in (2.5.1). But 1' £ =0' and £ 1 = O where O is a k-dimensional

~ ~ ~ -~

vector of O's. Hence (2.5.2) is identical to (2.5.1) and V* is the

minimum attainable covariance matrix in the sense defined above.

2.6 The Case k = 2

We now focus our attention on the case where the distribution

function of the mixture Ge(x) consists of two components Fl(x) and

Fg(x). We have

Ge(x) = 81 Fl(x) +‘92 FQ(X)

~

where 8 = (61’62)" 0 f_ej <1, j=1, 2 and B, + 8, = 1 and further

Ag(t) =85 Ay (£) + 0, 2, (%),
- b | =2
Let alg(tr) =X (tr) - Ae (tr) r=1, ..., mand a;, = (alz(tl),

~1 -2
cees alg(tm))'. Also denote by Cj j =1, 2, the m x m matrix with

Cq (r,s) as its (r,s)th r,s =1, ..., m entry.

~

From (2.4.2), we can write

- -1
. (Ara) h1ae 1 (A'A)"1

B% = |1 - ———| (ArA) AN b
~1 1'(A'A) 7L ' ~ 1'(A'A) 1

i

HA'A +D : (2.6.1) .
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where -1 Yy
_p  (ara) 711v(ara)
(Ata) = - —

m
Il

1r(ara) 11
and -1 ~ ~
(Aa'A) 1
1(ara) ™

We note that H is a 2 x 2 matrix with the property that

1'H (0,0) and H1 = [O} where 1 = (1,1)'

0

and therefore H must take the form

where o is a constant (possibly zero). If we write

_adj(a'a)

ray—L
(Ara) = = det(A'a)  °

we can express H and b as

adj(A'A)11" adj(A'A
adj(A'A) - 5

1
~ det(A'A) 1'adj(A'A)l

and
adj(A'A)1

b= T'ad)(A'A)L

But from (2.2.9), since k = 2, we have

A A A Ae_
~& ~5 ~31 ~22
(A'A) =
AT A AL
~%1 -2 ~$2 ~l2]
and so
At A At A
~& ~&5 ~& -5
adj(A'A) =
-\! AL
| ~81 ~%2 ~%1 ~%1 |
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which gives

B SEE
~¢2 ~%5 ~31 "3
adj(A'A)l = (1'adj(A'A))' =
ATUA AT
10 Mt s Mt |
[—(Ar. = At mw ] E
o B A
(AT = ar ) al A
I U I O |
1 3 U =a' A . | = !
and 1'adj(A'A)L = af) Se, T 22 Ze, T 212 12
Hence the leading diagonal element of H is
1
(512 &e )

1 Al 2

—_ A -
1 H
det(A'A) |~ey ~ey 8y, B,

. l
which after some elementary algebra leads to o e Therefore
1 : 212 212
a = ZT——E——~and we have =
~12 12
1 -1 -al_ A
1 -~ L.
. ana b = = | " "%
812 %12 -1 1 ~ %12 %12 | ar_a
~12 e
~1
. . f)\l
Substituting these values into (2.6.1) and writing A' = [“S1|, we get
A ’ A'
for 9; = (e{, eg)' the following form, \“fg
- 6% 1 -1} o 1 (~a! A
o% = | M = —— la R R e -2 -,
~l * 8 - t a b 1
92 ~12 212 1 1 ée &n 12 <12 le ie
~2 L ~1
[t P
§l2 (~n ~e2)
N » (2.6.2)
812 212 '
-~ l-ar, (A =2
%12 (~n ~el)

~

where it is seen that 5; + eg = 1. The estimates ef and 63 are clearly

unbiased for if Zi and Zg denote random variables with realizations



53

BI and E; 1espectively, then

By(23) = ——— |a B (E L
21 e e | e eg):l

= —T—l—~— -;' (A -Xx_ )| =09
210 212 712~ ~e 1

and similarly

—

1
E,(Z%) = —— —a' (E (L)—x
0 1
2% o | ~1_1
1 _
=1 O, =2 =0,.
]
212 212 L"lz & -8 2
.. - ~12 ~12
Further, by the use of proposition (2.3.1), we have Vare(Zi) = —
n(a), a;,)*
vhere, as before, C is the m X m matrix with ce(r,s) as its e
(r,s)th entry. Now, from (2.3.4), we can write R
c = ) + 0.6
e(r,s) N ? l(I':s) 5 C 2(r S) 1% 12(t ) a 12(t )
eSS T 1y, eeey M
so that C becomes
= G 6_6 al
C=8C +0,C, 5.5 85315
and therefore
+
1 0 215 G 2, + (19) 8l Gy 8 810
Var (Z#) == {a_(1-0.) +
6" 1 n 1 1 (a' a )2
~12 212
(2.6.3)

It is interesting to note that the variance of the estimator of 61

depends only on the two quantities (a C al2)/(a12 12)2 j=1, 2.

Thus in practice, to increase the eff1c1ency of the estimator, h(x,t)

and the values t ey tm should be chosen so that these two quantities

l’

become as small as possible.



2.7 Monte Carlo Studies

In order to investigate the practical value of tts rethod of
estimation discussed in this chapter, a small Monte Carlo exparimant
was carried out. A mixture of two normal distributions N(pl, oi) and

N(uz, o%), i.e. normal distributions with means u., and u, and variances

1

ci and o% respectively, was considered. The function h(x,t) was

xt . . .
chosen to be e, so that Ae (t), J =1, 2 is the conventional moment
~J
generating function of a random variable whose distribution is

N(Uja U%)s i.e.
02 t2

Aej(t) = exp {ujt + 32 } j=1,2 (2.7.1)

existing for all real values of t. Consequently

= + h
Ae(t) 0, Ael(t) 8, Aez(t) §

where 68, + 8, = 1, t € R and A (t) j =1, 2 is given by (2.7.1) is
-d

the moment generating function of the random variable X whose distribution
is the mixture of the two components N(ul, ci) and_N(uz, 0%)-

Recall that the distinct values t t, € R,m > 2 have to be

l’ LI
chosen in such a way that the rank of the matrix A given by

Rg (67) eenes Ay (t,)

~1 ~1
A'

I}

A (tl) ceees Ay (tm)

2 -2

is exactly 2. Thus it suffices to ensure that there are at least

two values tr and tS, say, such that

Ao (t.) A ()

! L4 . en .

X (t) 7 A (t) toF g T <r,s<m
S2 €

which after substituting for le (tr) and Ae.(ts) j =1, 2 from (2.7.1)
~d ~J
gives
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2 2
o - Q

(62 - o?)

(b, = H) + ——3—5———— (t.+t) #0 (2.7.2)

for some t_ # tg» t.s tg €Randl1<r,s<m
Further, we can gssume without loss of generality that ons of the

component distributions in the mixture, say N(ul, Gi),is the standard

normal distribution,i.e. ul = 0 and Ui = 1, This condition can always
. X-u
be maintained by the use of the transformation Y = ——3——l . That is,
1
if the distribution of X is the mixture of N(uj, o) and N(u,, 03),
X-u
then the distribution of Y = ———= is the mixture of N(0,1) and
Mp =¥y 93 o1 o T Hy o3
N —— s 7| Letting ’ B = — and o2 = —r , the required
1 1 1 o1

condition is maintained.
A sample of size n was generated from the mixture by sampling with

probability el from W(0,1) and with probability 92 =1 - el from

N(u, 02). Choosing the values tys eees t €R satisfying (2.7.2),"

the estimates ei and 65 were found according to (2.6.2) and the experiment

1 times with n . n, = N being a fixed number. Note also

that from (2.3.5),

was repeated n

Xt Xt X Xt

r s 5]
ce-(r,s) = Ee.(e . e )-Ee.(e ) Ee_(e )
~J ~J ~J ~J
= xej(tr + tS) - xej(tr) Asj(ts) (2.7.3)

for r,s =1, ..., mand j =1, 2. So, ce_(r,s) may be estimated by
substituting the estimates 5{ and 8; in zg.7.3). Having estimated
ce.(r,s), we can then estimate Vare(Zi) by using (2.6.3).

- Throughout the thesis, our nu;erical results will be compared
with Table 1 of Macdonald [35] where, as mentioned in Chapter 1, a
Monte Carlo comparison of two methods of estimation are given. The
first method is due to Macdonald [34] who minimizes

[ (6, - 6,002 a5t

~
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and the second method is due to Choi and Bulgren [11] whers
- 2
J (00 = 5,607 ag ()

is minimized. For completeness, we produce Table 1 of Macdonald [35]

(g™
here (Table 1.1) in which the standard error and the mean-square—error

-
Table 1.1

Estimate of 6.
Macdonald Choi & Bulgren
n (“2'“1)/01 °2/°1 el Mean MSE Mean MSE
50 0.25 1 0.5]0.438 + 0.038 | 0.392] 0.559 *+ 0.038| 0.392
10 0.5 - 1  0.5]0.536 + 0.0L0 [ 0.473] 0.852 + 0.0%0 | 0.596
10 1 1 0.5]0.495 + 0.017 | 0.137| 0.660 + 0.017 0.163
10 1 1 0.8]0.804 + 0.019 | 0.112| 0.968 + 0.020 | 0.1L2
20 5 1 3.5 0.493 + 0.011 | 0.017 | 0.530 + 0.011 | 0.018
10 0 2 0.5 0.372 + 0.030 | 0.290 | 0.367 + 0.032 0,321;
50 0 2 0.5 0.484 + 0.021 0.04L § 0.1485 0.020 { 0.0k1
10 0.5 2 0;5 0.504 + 0.0L41 | 0.262 0.695 + 0.0ko | 0.275

Each case is based on 100 to 500 samples of size n.

of each estimate is also given. These quantities are calculated by

letting 6(1) i=1, ..., n, be the estimator of 6, obtained by using

1 1

the ith sample of size n and

_ ny
0 Mea.n=-l"-— ): eil)
l i=1
where n, is the number of times a particular experiment is repeated.
Then 1f
ny
1 ~(1)
= —_— -9
s — z () )2

1 i=
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Fig. 2.1 - Mean-Square-Error and Estimate of variance of the estimator of @
the mixing proportion in .a mixture of two normal distributions N(0,1) and
N(1,1), for varying n.
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the standard error of 9 is defined by S/Vnl and

1L e |
Mean-Square-Error = J— I (9l -8)2 (.
1 i=1

In our Monte Carlo studies, we took m to be an even integer eni

tl, sees tm were chosen as follows;
= _ (m/2) - (§-1) I
tj = 160 J =1, «v., (m/2)
_J = (m/2 . A
= ﬂ——iéal—l j=(m/2) +1, ..., m

where it is clear that these choices are merely arbitrary and bear
no optimal properties. Table 2.2 gives estimates of Gl, corresponding
to Table 2.1, using the method of moments, described in this chapter,

for different values of m and for N = 5000.

T o,
Further, taking S =1, Pt 1 and 9 = 0.5, the mean-square-
. - 1
error of 6; and estimate of Vare(Zf) were plotted against n when

N = 5000 and m = 6. This is shown in Figure 2.1 where it is clearly

seen that as n becomes larger than 20, both quantities Vare(Zi) and

A -~

mean—square-error of 6{ decrease rapidly.

2.8 Conclusions

The asymptotic properties of the estimator of 9 derived in this
chapter, together with the Monte Carlo studies, indicate that the
estimates (2.2.11) and (Q?h.2) are reliable ard the method of estimation
works ¥ell in practice for moderate sample sizes. The first feature
of the method is its simplicity. It pfovides unbiased CAN estimates
in a very simple manner. However its rather general nature indicates
that we cannot hope for very efficient estimates in small samples.

The efficiency will, however, be improved if the generalized sum

of squares
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~

v L -
(5n - Ag) c (ﬁn A9) (2.8.1)

is minimized with respect to 6. Indeed the vzlue of & minimizing

-~

(2.8.1) is, by the Gauss Markoff theorem, the minimum veriancs linear

eees t . But

unbiased estimator of 6 for a given set of values t -

l’
minimizing (2.8.1) requires full knowledge (up to a constant multiple)

of C which is not available, since the elements ce(r,s) ryS =1, eeuy, m

~

of C depend on the unknown vector €. Thus some problems are caused

which will be discussed in the next chapter.



61

CHAPTER 3

LEAST SQUARES ESTIMATION

3.1 Introduction

It was indicated in the last chapter that to ircresase the effi-
ciency of the estimate of 6, the vector of the mixing provortions in
the mixture of distributions Ge(.) given by (2.2.1), the generalized
sum of squares given by (2.8.15 should be minimized. But since the
covariance matrix C with ce(r,s), given by (2.3.3), as its (r,s)th
element depends on 8, the ;inimization procedure becomes more complica-
ted than usual. In practice, however, it is suggested by some authors
that if the covariance matrix is not available, one should use an
estimate of it. Rao [U4] showed that by merely substituting an
estimate of the covariance matrix in the least squares estimate, the
optimal properties are not necessarily preserved and improvements,
depending on the structure of the covariance matrix,'can be made.
Gleser and Olkin [23] discuss the problem of maximum likelihood estima-—
tion of the covariance matrix in a linear model when the residual error
vector has a multivariate normal distribution.

In this chapter, we consider a special case of the method of

estimation suggested in the last chapter which is of particular

interest in itself. We define

h (x,t)

i}
[

t€X, x<t
=0 otherwise

so that the Ae.(t) j=1,...,k given by (2.2.3) become identical to fhe'
component dis%iibution functions Fj(t) for t € X and also An(t) given

by (2.2.5) becomes the empirical distribution function Gn(t) for t €X.
We shall see that in this case the elements ce(r,s); r,s =1,...,m of
the covariance matrix C become guadratic func%ions of ?. - Using this

property, C is inverted and the generalized Least Squares (GLS) -

estimation of 6 1s discussed.
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After the explanation of the GLS estimation of % ir s=2ction 3
the properties of the estimate are investigated in s=zction 3.3. In
section 3.4, the GLS estimator is derived for the class of mixtures
of two rectangular distributions and section 3.5 cczpares the method
of estimation discussed in this chapter with that of the previousv
chapter in the light of some Monte Carlo studies. Section 3.7 is
devoted to the discussion of the GLS estimator of 6 from ungrouped

-~

data.

3.2 Method of Estimation

Define h(x, t) =1 t€X and x<t

=0 otherwise ,

then from the definition of A (t) §j=1,...,k given in (2.2.3), we
<J
have

-

b () =B () =B, (£ <) =F(t) £€X §=1,..k

-

~J ~J ~J

where Pe is the probability measure corresponding to the distribution
~J
function Fj for j = 1,...,k. Similerly from (2.2.2), le(t) = Gs(t) and

-~ -

further from (2.2.5),

-1
An(t) " n

h(xi,t) =

B

(no. of X, <t) = Gn(t) t € 3&

s

i=1

where xs is the realization of the random variable Xi with GB(') as its

-~

distribution function. Thus we can write (2.2.8) as

k .
G (x) =z 8, F.(x)+elx) =x€X . (3.2.1)
n R
J=1
Choose distinct values tl,...,tm; tj GI for J=1,...,m and m 3_1{‘

such that the rank of the matrix A in (2.2.9) which now becomes
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A = . . (3.2.2)

L_Fl(tm) ... F (tm)

is exactly k. For this condition to hold, it suffices to ensure that
tl,...,tm are chosen so that for each pair of distribution functions

Fi and Fj i,j =1,...,k i # j, there is at least one value tr;

1 <r<m such that F(t )# Fj(tr). Since the choice of the values
tl,...,tm, m > k is not in general unique, the term "partition" or

"grouping" will be used to refer to any particular choice of these

values.
Evaluating (3.2.1) at tl,...,tm, we obtain the linear model <
G = A8 +c¢ _ (3.2.3)

where A is given by (3.2.2), G = (Gn(tl), cees Gh(tm))' and as before

€ = (e(tl), cens e(tm))' and 8 = (8 8. )'. Note that A = Ge =

120 2% ®

-~

1
(Ge(tl),...,Ge(tm)) .
The generalized least squares (GLS) estimator of 8 is defined as
that value of 6 minimizing the generalized sum of squares (GSS) given

by

2(6) = e'Cre = (¢_- A8)' ¢F (G_ - A6) (3.2.1)

and thus it is clear that the covariance matrix C has to be inverted so
that (3.2.14) can be minimized. But note that the (r,s)th element of

C is

i

ce(r,s)

-~

gove(h (X,tr), h(X,ts)) T,s =ll,...,m

Eg(n(x,t) « h(x,)) ~ Eg(n(X,t ) E (n(X,t))

~ -~ ~
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il

< mi - ¥ <t Y32 (x '—,'
Pe(X __mln(tr,ts)) Pe(x fEEE s )

-~ ~

= : - 2.
Go(min (t_,t)) Ge(tr) Ge(ts) | (3.2.5)
X<y
wvhere min(x,y) = {x . Therefore, we can see that sirce
Y ¥y <X

Ge(.) is a linear function of 9, ce(r,s) is a quadrztic in ?. We now

discuss the inversion and some of the interesting properties of the

covariance matrix C.

Without loss of generality, we can assume

tl < t2 < ... < tm s

and hereafter we suppose that t t are chosen in such a way that

l,coo, m

Fj(.);,l < Jj £k attains two distinct values when evaluated at tr and

ts r¥s, r,s=1,...,m, 1i.e.

E 3

Fj(tr) # Fj (ts) r#s r,s =1,.0..m J=1l,...,k .

Then by the monotonicity of Fj(')’ we have

Fj(tl) < Fj(tz) < ... < Fj(tm) J=1,...,k (3.2.6)
and consequently,

Ge(tl) < Ge(te) < ... < Ge(tm) . (3.2.7)

~ ~ -~

Thus from (3.2.5) ,

cglr,s) = min(Gy(t, ), Golt )) = Galt ) Gglt.) (3.2.8)

and so the matrix C may be written as
C = B-D ' _ (3.2.9)

where
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[ e .~ {4 7
Ge(tl) Ge(tl) Ge(tl) .o ea(ul) :a‘ul)
Ge(tl) Ge(tg) Ge(te) e Ge(te) Gattg)
G (t,) 6. (t.) G (t.) G,(t.) G~(t )
B\ "1 ) ) cee 9
B=| 2 6 2 "3 0" "3 8°73 (3.2.10)
Glty)  Gglt,) Golty)  eev Gole ) Goly )
__Ge(tl) Ge(t2) Ge(t3) cee Ge(tm_l) Gy (t )
— 1
and D = 96 . 96
Lemma 3.2.1: If Ge(tl) > 0, then
01*02 ‘92
TPy PytRg ~P3
p p,+p P .
-1
Bt = 3,03 Rl (3.2.11)
s Ppa Pp-1"Pn Pm
i -Dm Dm
where p. =[G.(t )]_l and p = [G.(t ) - G.(t )]_l
1 01 r 6 ' r 6 r-1
r=2, ..., m (3.2.12)

and therefore by (3.2.7) ¥ >0 j=1,....m .

Proof: If Ge(tl) > 0, then by (3.2.7) the rank of B is exactly m and

thus B—l exists. Define an mxm matrix R as follows
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Note that the rank of R is m and R © exists. Cousider

: -
Ge(tl)

~

Q = RBR' = Ge(tz)—Ge(tl)

~ ~

*s
.

Gy (£ )-Go (5, ) ]

i.e. Q is a diagonal matrix with Ga(tl) and G (t ) - Ge(tr—l)
r=2,...,m as its dlagonal elements. Therefore we have
Ql=r"1'8 R anasont=RrQ YR But

¢ 7]

Pl

=1
i P |

with pl,...,pm given by (3.2.12). Premultiplying Qfl by R' and post-—

multiplying by R, the result follows immediately.

Theorem 3.2.1: If Ge(tl) >0 and Ge(tm) < 1, then the covariance

~ -~

matrix C possesses an inverse of the form

-1 _ -1 1
C =B~ +7T G5 L (3.2.13)

vhere L is an m*m matrix with zero in all the entries except the last

element of the last column which is unity.
Proof: From (3.2.9), we can write
C=3I[I-B5"'D]

so that

p;t 57t . (3.2.14)
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I B | S | ,
Let H=B D=38 (99'99) = (B 99)'99

~ ~ - -~

and observe that the elements of the last column of B are identical

to the elements of Ge. Thus B—lGe gives the last column of the

identity matrix and hence

K 0 ver 0]
0 0 .o O
H= : . . .
0 0 .e. O
G (t,) Ge(tz) e Gylt,)

. Q
The m eigenvalues of H are the roots of the determinéntal equation
det (EI - H) = 0 i.e. E%N(g- Gyt )) = 0. Thus the eigenvalues of

H are gl = = ...=¢ = 0 and E, = Ge(tm) <1 i.e. all the

g2 m—-1

eigenvalues of H have moduli < 1. Therefore

(I-B)l=1+a+82+H3+ ... .
It is easy to see that the higher powers of H are given by

r

i =[¢ (tm)]r'l H r=1,2,00.

e

so that

(I-H) =1 + H + (Ge(tm)k{4-(ee(tm))2 H+ ...

-~ -~

1
4+ ——— |
1 - Ge(tm)

~

=1

and substituting in (3.2.1L4),

-1 _ N S -1, '
C - = [i T REW H] B (3.2.15)

~
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Finally, let L=H3 * = 3 - pp+ = g+ (Ge . eé) 3 -

-~ ~

— -

. -1 -1 . -1 . . .
i.e.,L = (B Ge)(B Ge)' since B T is a symmetric rmatrix. Further,

. -1 . - . . .
since B Ge 1s the last column of the identity matrix, we have

~

o
« O

o
O s

o0 8000

1. [%-1 T é o 1] (3.2.16)

-~ ~

which is the required result.
Having obtained theinverse of C, we now substitute (3.2.16) into

(3.2.4) to obtain the GSS. Thus

(e (¢ ) - Gyt ))?

- -— 1 -
@(9) - (gn 98) B (gn Ge) *

1- Ga(tm)

and by substituting for B L from (3.2.11), after some algebraic mani-

pulations, we get

m+l [(Gh(tr) - Gn(tr—l)) - (Ge(tr) - Ge(tr—l)ljz'
#(8) = = = .
~ r=1 Gt ) - Gyt _

~ ~

(3.2.17)

1)

where t_ is very small (possibly -=) so that Fj(to) = Gn(to) = 0 for

j=1,...,k and t . is very large (possibly +=) so that

1

k
= = .= o e . = .F.
Fj(tm+1) Gn(tm+l) 1 for j=1,...,k. Therefore Ge(to) 55163 J(to)
k k
= . . = T 6. =1. Note that also
and Gg(t,,)) jzlea By () 521 9



69
- & 1 = -+
Gn(tr) \n(tr_l) >0 since t >t . forr=2I,.. =+,

Hence the GLS estimator of 8 can be obtained by =izi=izing

<

(3.2.17) with respect to 6.

3.3 Properties of the GLS Estimator

Let O denote the k-fold Product space

©0={0,1] x[0,1] x ... x[0,1] .

Then it is clear that ¢(6) is a continuous function of & € 0.

Theorem 3.3.1: &(8) is a convex function of 6 € 0.

-~

Proof: It is known (Hardy, Littlewood and PSlya [2L]) that a necessary

and sufficient condition that %(6) should be convex in © is that
32

8. 960.
4

(ii) The matrix of the second partial derivatives is positive

(i) the second partial derivatives exists for i,j = 1,...,k.

semidefinite.
Differentiating (3.2.17) with respect to Bi and ej where

1<i, j<k, it is easy to see that

329 _ mtl (Fi(tf)—Fi(tr—l))(Gn(tr)-gn(tr—l))z(Fj(tr)—Fj(tr—l)]
90.936.
1 93

1
2 r=1 (G(t,) - Gyt 1))

(3.3.1)

which exists for all i,j = 1,...,k and is finite for every 8 € 0.
Denote by S a kxk matrix whose (i,j)th element is given by (3.3.1).

Then for any b = (b bk)' # 0,

l,ooo, =

1; ml b2 (F(v) - Fj(trl)]z(Gn(tr)—Gn(tr_l))z |

j=1 r=1 ' (c,e(tr) - Ge(tr_l))3 |

v o’
©
1o
"
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_ _ . L("" - \_m (- \\’r\,
, & b, (F (6 )-F (6 ) (6, (6 )= (v ))2{F. (= )-7 05, ))e,

Tyl - Gyl
i#] - 2

+1 c(t)-c(t_ )2 rx
- (G, e, te)) (z b, (F.(t) - F.(t l)}}z
r=1 | (6,(6) - 6y(x )3 Y= 9 T T i

-~ -~

(3.3.2)

which by using (3.2.7) shows that b' § b > 0, proving the positive semi-

definiteness of S. Hence the theorem is proved.

Corollary 3.3.1: If tj,...,t are chosen so that G (t ) # G, (t ) for
every 1 < r < m#l, i.e. if each of the intervals Ar =t -t 4

r=1,...,m*1 contains at least one observation, then ¥(8) is =

-~

strictly convex function of 6 € 0.

¥ »
Proof: &(8) becomes a strictly convex function of 6 € © whenever
(3.3.2) is strictly positive,i.e. when S, the matrix of the second
partial derivatives of 8(6) , is positive definite. Thus assuming
= * o0 + i ]
Gn(tr) # Gh(tr—l) for every r = 1,...,m+1l, it suffices to show that
k .

521 b (Fj(tr) - Fj(tr_l)) #0

for at least one 1 < r < m+l. Suppose on the contrary that

k
z b (F(t)—F( ))—o
Jl_

for every r = 1,...,mtl. Then

k k k k :
Ib.= Ib.F.(t)= Ib.F.(t .)=...= b, F.(¢t
) X . -1 . 1
j=1 9 =19 4B =19 9 ¢ je1 9 9
k
= Ib. Fa(t) .
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But since the rank of tha natrix A given by (3.2.2) is =sxzo:ly k

k

jil bj Fj(tr) =0 forr=1,...,m+l if and only if T, =0, % .=

b, = 0, contradicting the fact that b = (b

X ,...,bk)'# 0. Eence thera

1

is at least one r, 1 < r < m+l, such that

k
521 b, (Fj (t.) - F (t_4)) #0
proving the positive definiteness of S.

We conclude therefore, from the standard properties of convex
functions, that if @(9) has any stationary points then they must be
minimum points. Further any local minimum of &(8) is an absolute
minimuem for if ¢(?) has a local minimum at 90 € 0, then given any
8 € o0, Q(?o) 5;¢((1-a)go + ag} for sufficiently small O < a <1. By
using the convexity of @(9), @(90) < (1-a) @(90) + @(g) for all
6 €0. Thus (6 ) 5_@(9) for all 6 € 0 showing that 8  is an sbsolute
minimum point.

It is also worth noting that the condition of thé corollary 3.3.1
for $(8) becoming a strictly convex function of 9 € 0 is sufficient and
not in general necessary. However if &(8) is a strictly convex function
of 6 € 0, then ¢(8) has at most one unique minimum in ©. This is easy tosee
for if there are two points 90 and 9: in O at which the derivative with
respect to 8 of @(g) vanishes, then 8, and 9§ are both absolute minimum
points and thus @(go) < 9 (a 90 + (1-a) gi) and Q(gé) < ®(a 0, + (l—a)gg)

for every 0 < o < 1, Now

a 9(6,) + (1-a)8(6%) < a 8(a 0+ (1-a)6%) + (1-a) 3(a 0, + (1-a)0%)

- ola g, + (1=a) 87)

for every O < o < 1. This contradicts the strict convexity of #(8).

The asymptotic properties of the GLS estimator, obtairned by
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minimizirg ¢((8) in (3.2.17), can readily be es*tadliszned. Tet 7.(8)
be the probebility of having an observation in the irni=srval

Ai = ti - ti_l; i=1,...,m*l and let n. be the corresponding group

=]

frequencies. Note that Ai carries the mass p; = in the sample

S
n
distribution and the mass ni(e) in the hypothetical distribution.

Then it is immediately seen from (3.2.17) that

-5 32 2
m+l (n,(0) p.) m¥l p¥

o(8) = = = = I -1 (3.3.3)
=g ) =1 "3 (9)
+1 p?2
and it is well-known that n[mz ;—%67-— 1] has, for large n, a central
i=1 "i‘s

x2 distribution with m degrees of freedom (Cramér [15]). Hence minimizing

(3.3.3) constitutes the célebrated minimum X2 method of estimation.

~

The estimating equations are then obtained, by differentiating (3.3.3)

with respect to Oj for j = 1,...,k, to be

-

m+l p% aﬂi(F)
-z " =~ =0 J=1,....,k . (3.3.4)
i=1 ﬂi(?) aej

Rao [43] has proved that the estimating equations (3.3.4) have the

following properties;

A A

(i) With probability approaching unity, there is a root 6 = (el,...,ek)'
of the set of equations (3.3.%) with the property that if we denote

by 7 = (Zl,...,Z )', the random vector whose realization is

n k

~

en, then Zn converges in probability to the true parameter value

-~

¥ = *
o = (o}

~

ve..0¥)1 1o, B is a consistent estimator of 6%,
2 3 k ] n

(ii) This consistent estimator is unique in the sense that if there is
~ ~ A+ -~ . .
another root 6; = (6+, ceesB ) # en of the set of equations (3.3.L4)

. . T : .
which is also a consistent estimator of 6% and if Sn 1s the regli-

+ gt

+
zation of the random vector %n =(Z1,..., N

)t, then /a (Z -Z%) 50
.n n

in probability as n > .
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bound) .

(iv) With probability approaching unity, the absolute minimum o

[}

(3.3.3) is attained at a root of (3.3.4).

3.4 An Example
The estimating equations given by (3.3.4) cannot in general be
solved analytically. However, for the class of mixtures of rectangular
distributions analytic solutions may be obtained. In this section, we
consider a mixture of two rectangular distributions and obtain the
GLS estimator of 6 = (81,62)‘, the vector of the mixing proportions.
Let Fl(x) and Fz(x) be the distribution functions of two rectangu-
lar distributions. Then the mixture of Fl(x) and F2(x) with mixing
proportions 6. and 6, = 1-8_ with O 5_61 < 1 respectively, will depend

1 2 1

on the scalar parameter 6. only and may be written as

1

Ge(x) =0, F (x) + (1—61) FZ(X) 0<6#6

11 =1

1

vhere we assume that the ranges of Fl(x) and Fz(x) are independent of

] We further assert that, without loss of generality, one of the

1
component distributions, say Fl(x), can be assumed to be the distribution
function of a random variable, uniformly distributed over the interval
[0,1]. This cqndition can always be maintained by the use of the
transformation Y = Fl(X). That is if the distribution function of a
random variable X is the mixture of Fl(x) and F2(X) with ranges [ai,bl]
and [a2,b2] respectively with aj and bj j = 1,2 Dbeing finite and

independent of 91 so that
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[
0 x <&y
p o)
1
F. (x) = { a x<Db
1 bl al 1 1
Ll Xz_bl
and
,
0 b4 5_a2
x-a,
F_(x) = { a,<x <hb
2 b2 a2 2 2
L1 X z_bz

then the distribution function of the random varisble Y = Fl(X) is

the mixture of two rectangular distribution functions with ranges

-a b.~a
[b,l] and [:2-a1 ’ bz_al] respectively. .
11 11
a, —al bg-a
Letting a = and b = , the required condition is
b.-a - b, -a
11 11
maintained.
So let
x<0
Fl(x) = <x 0<x<1
1 x>1
and
0 x <a
X-a,
= — < <D
F2(x) T a<x<
1 x>D

where a and b are finite and independent of 6 The following three

1°

distinct possible situations are considered.

(1) b>a>1 (see Fig. (i))

then
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O X<O
elx 0<xx1
61 l<x<a
Gglx) = |
~ _ X-a b
el+(1el)b_ a<x<
Ul x>b
0] 1 a b
Fig. (i) )
>
Choose 0=1%t <t, <7.. <t = 1 l<aoa<mnm
o} 1 o - -
and a < ta+l < ta+2 < ,..% tm+l =b.

Note that no values of'{ti}?;l can be chosen in the interval
(1,a] since in such a case the condition (3.2.7) will not be satisfied.
Also since the probability of having an observation in that interval
is zero, the number of observations not exceeding 1 in magnitude is

equal to the number of observations not exceeding.a. Hence we have
= a
6 (1) = ¢ (a)

Now

T () = Golt;) = Golty 4 )=0, (%575 1) 1= 1.0
t -a
o+l

Ta1(8) = Galtyy) = Gole,) = &% (1-8)2=— -8

- ~

)ta+1_a
b - a

(1-8,
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.)ti't€—1
mi(0) = Glty) — Gyl; ) = (18 =

i=oa+2,...,mn+1 .

Substituting the above values in (3.3.L), we get

2 2 2

a 3 P m+l D4
- T T tl b-a [t OH-}a + I E—::_J'——J =0 (3.’4.1)
i i=1 “i “i-1 (1—91)2 o+l j=a+2 i Ci-1

where Oldenotes the least squares estimate of ©

~

1° and 5 1s estlmated
by 1-8;. The solution of (3.k.1) is
)
6 = i=1 % 7 %
1

(3.4.2)
« p2 41/2 p2 mtl o2 /2
1 . o+l 1
L] el 2 em]]
i=1 "1 Ti-1 o+l i=a+2 "1 Ti-1
- (A

In particular if we choose o

= Li.e. to =0, tl =1landt,=b

2 3
we have

P, = Gn(l) - Gn(o) = Gh(l)

P, =G (b) -6 (1) =G (v) -G (a)
so that (3.4.2) gives

R G (1) G (1)
9. = n =2
1 Gn(l) + Gn(b) - Gn(a) Gn(b)

(3.4.3)

which we now show is the maximum likelihood estimator of 6._.

1
The logarithm of the likelihood function is

L=n Gn(l) tn 6, + n(Gh(b) - Gn(a))(zn(l-el) -2n (b-a))

. 4. . . aL
and upon differentiating L with respect to el and solving It 0,
. . 1
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we obtain the root

Gn(l) Gn(l)

6, = 6, (1) + 6 (®) - G_(a) _ 6_(0)

which is identical to (3.4.3). Hence the estimator (3.4.3) has 211

the well-known asymptotic properties of the maximum likelihood

estimator (Cramér [15])

(i1) a>0 b <1l (See Fig. (ii))

then

elx O0<x<a

X-a
Ge(X) Slx + (1 61) oy a<x<hb | .

t

- < <
elx + (1 el) ) b<x<1

-

L 'V x >1

o a b 1

Fig. (ii)
> 7

= = .. < =5 < b, ... <t
Choose 0 to < tl < ... < ta a < ta+l < . <t < bl

O<a<B<m

If either a

O or b = 1 (but not both), obvious adjustments are made

in the choice ofv{ti}m
i=1

We therefore have
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I

6, 4, + (1-91) - i= atl,...,3

i
@
>

]
[}

14 i Bfl,...,m+l .

Substituting in (3.3.L), we get

2 1 ] ,
1 * T L-a’l B p} , ml pf
— I N _— T Z—+—"—_ z X—=O
92 i=1 °i . 1-6, 2 j=a+1 “i ei i=p+1 “i
1 D=
1 b-a
giving the least squares estimator of 61 as
2 2.1/2
o joi m+l jor
[z 2+ 3 -A—l]
“ i=1 "1  i=f+1 i
6, = .

1 2 2 _1/2 , 2.1/2
a ps  mtl - B p?

[1-(b-a)] [ z %— + I —Z)—l] ~+ (b-a)[ 1-(b-a)] 1/2[ I —"‘—]

i

i=1 71 i=B+1 "i =o+1 1

[

In particular if m = 2, sothat t =0,t =a, t, =b and t_ = 1, we

o 1 2 3
get

- /

G2(a) . (1 Gn(b))zJ1 2
~ a 1-b
B, = g .
. 2(a)  (1-6 (0))%1/2 1/2 |
[1-(b-a)] [G ranih [1-(b-2)]1 (G _(b)-G (a))
(3.k.4)

~

Let Zn be a random variable whose realization 6

;1
(3.4.4). We prove that Zn has the same limiting distribution as the

S given by

maximum likelihood estimator of Bl as n + », Recall that Ph(x), being

the random function with realization Gn(x), converges in probability to

L3

Ge(x).

Now, the logarithm of the likelihood function of 61 is

. 1-6 :
L=n Gn(a) n (el) + n(Gn(b) - Gn(a)) n [ef b_al) + n(l—Gn(b)) in (el).
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Differentiating with respect to 61,

G _(a) 1 - n(1 - ¢ (v))
dL _n n b-2 n
T R n(c (v) - G (a)) T-o. * 3 - (3.L.5)
0.+ 1 1
1l b-a

. + . . . . .
from which 91, the maximum likelihood estimator of 6., being the root

l,
of (3.4.5) is given by

_ Gn(a)+1 - Gn(b)

+

®, = a+l-b

+ . . . . + .
Let Zn be a random variable with realization Bl and consider

[rgm) G- rn(bnz]lfz

+ a 1-b
Znlp = 2(a) (1205172
(a+1—b)[ + ;_‘b ] + (a+1-b)(rn(b)—rn(a))
Fn(a) +1 - Pn(b)
* - a+1-b
1/2T2(a)  (1-T_(9}q1/2
(r ()T () (as1-0) |2+ SSB] (7 (eeaeT (6)))
) 1/2 r2(a)  (1-T_(b))2;1/2 1/2
(an10) t(ann) [ s =8|+ () ) - 1))

P P
Now, as n + = I'n(a) > Ge(a) = 6_a and I’n(b) > Ge(b) =0.b + (1—-61)

1 1
and since (Z'n_Z;) is a continuous function of I‘nZa) and I‘n(‘b), it is
seen that as n » =, Zn—Z; % 0. Therefore Zn and Z; have the same

asymptotic distributions, i.e. z is asymptotically normally distri-
buted with mean 6, and variance equal to the Cramér-Rao lower bound

1

which is easily found to be

N [el(b—a) + (1—91)]

n[1 - (v-2)]

(iii) O<a<l, b>1 (see Fig. (iii))
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Then
felx 0<x<a
8yx + (1-0,) F=2 a<x<1
GB(x) = s
- 6, + (1—61) oy 1<x<b
L x>b
0 a 1 b
Fig. (iii)
Choose O = to < tl < ... < ta =3a < ta+l < ... < tB =1< tB+l < tee %X
tm+l =b O<a<B<m
If a = 0, then we choose a = 0.
We therefore have
ni(e) = elAi i=1,...,0a
. Ai
= .+ (1-8.) — = atl,...
6.4, (1 el) T i=oa+l,...,B
A
= (1‘91) e i = B+l,...,m+l

and substituting in (3.3.4) we get

= I =+ 2= 5 2 I & =0
ei ;=1 8% . 1-67 d=l O (1-9 )2 i=p+1 “i

0.+

[ 1 Db-a ]

~

resulting in the following quartic equation in 6., the estimate of 61;

l’
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coe clel c 02 + ¢ B8, + ¢

where

0
]

1-w
- - S - == S
o) (1-u) [(l w) Sl,a * o+l,B w B+l,r1+l]

= —o(1- - S
c; 2(1~0)[ (1~kw) Sl,a + a+l,m+1]
= - 2 + - S - S B
c, = [(1-w) w(5w-4)] 1,0 " (1-w) wt1,8 YS 8+l,m+l]
= -2w) S
cg=2u (1-2w) 1.0
=2 S
€y = © 1,a
% p2
with w=-2- and S8 = 1 -+ lir<fzml
b-a R - -

It is known that the polynomials of degree up to and including
I are solvable. A quart&c is first reduced to a cubic and is then
solved. We can also solve the quartic (3.4.6) by Ferrari's method
based on dissecting the quartic into the difference of the squares
of a quadratic and a linear function of 61 (Archbold [2]) .

Thus it is possible to obtain 6. from (3.4.5), but unfortunately

1
the underlying solution becomes intractable. However with some

numerical values, the roots can easily be found.

3.5 Monte Carlo Studies

In order to compare the method of estimation of 8 suggested in
this chapter with that of chapter 2, we consider a mixture of two
normal distributions and derive the estimate of 8 = (61,92)' where

= ]~ < 8
62 1 61 and 0 < 1

We mentioned in section 2.7 that one of the component distribu-~

il.

tions can, without loss of generality, be assumed to be the distribution

function of the standard normal distribution N(0,1);i.e. a normal



distribution with mean zer> and variance unity. So l=t

Gylx) = elFl(x) + (1—91) F2(x) 0<e <1 (3.5.1)
—© < X < @
where
1 (%
F (x) = ———-J exp{- 3y%} dy
1 Yor J
and
T X
1 1
ra) == [ e %}
2 N o J 20 |
The values tl,...,tm can be chosen to be any m distinct ordered
finite real values such that tl < t2 DNIEERR R This gives
F. < F, <...<F. j = )
5(t) FJ(tQ) Fi(t) j=1,2

and consequently

-3

Ge(tl) < Ge(t2) < ... < Ge(pm) .

-~ -~

Hence the conditions of the lemma 3.2.1 and the theorem 3.2.1 are
satisfied and the covariance matrix given by (3.2.9) possesses an
inverse. Note that

(t

ni(g) = Ge(ti) - G, )) +

~ -~

j-1) = 0y (Fylt) - Fole,

(t.

11)) (3.5.2)

(1-61)(F2(ti) - F,

with to = —» gnd tm+l = +» , So by differentiating (3.5.2) with

respect to 61,

d . (8)
deif:' = (r () - P (5, ) = (Fylt;) - Fplt, 1)) (3.5.9

and therefore by substituting (3.5.2) and (3.5.3) in (3.3.}4), the
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estimatirg 2quation is obtained as

2 -
mwtl 27 (815~ Byy) Ne
L % p..+(1-6.)8 (3.5.4)
i=1 “1%11 1/P21

vhere Bji = Fj(ti) - Fj(ti_ ) for j =1,2 and for i = 1,...,m+1.

1

The root of (3.5.4) constitutes the GLS estimate of Sl.

A sample of size n was generated from the mixture (3.5.1) by
sampling with probability O 5.61 < 1 from N(0,1) and with probability
6, = 1—6l from N(p,02). Choosing the real values by <ty <l <t -
the root of (3.5.4) was obtained by using standard numerical techniques
on the computer. The experiment was repeated ng times where n.n, = N
being a fixed number.

In our Monte Carlo studies, the wvalues tl and tm were chosen as

t, = min (ul -r201, M, = 20,) (3.5.5)
and t = max (ul + 201, u, + 202) (3.5.6)
and the distance tmftl was divided into (m-1) equal intervals. The
values t. y..05t were then chosen as the division points, so that
2 m-1
tm..tl
b=t ¥ (i-1) — = i=1,...,m .

The choices of t, and t_ given by (3.5.5) and (3.5.6) respectively,

seem reasonable since over 95% of the observations from each component

of Ge(.) f£all in the interval tm—t Analogous to table 2.2, table 3.1

lo

give; the CLS estimator of 0, for different values of m when N = 5000.

1
The mean-square—error of each estimate and the standard error of each
mean are calculated as explained in section 2.7. Comparing the two

tables, it is seen that for large m, the estimate of el is improved.

To investigate the dependence of the GLS estimator of 61 upon
Uy = U
the number of division points m, we picked the case when _gg___l.= 1

1
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MSE
0.204
0.164
n=10
0.124
& S
0.08+4
0.04+
n=25%
— n=50
n=100
20 Lo 60 m

Fig. 3.1 - The Mean-Square-Error of the generalized Least Squares estimator
of the mixing proportion in a mixture of two normal distributions N(0,1) and

N(1,1), against m, the number of division points of the sample space,
for different sample sizes.
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MSE

0.15 7

0.10 |

0.05 ¢

20 40 60 80 100 120 n

Fig. 3.2 - The Mean-Square-Error of the generalized Least Squares estimate
of the mixing proportion in a mixture of two normal distributions N(0,1)
and N(1,1), for varying sample sizes.
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9]

2 8
and 5= 1 and plotted the mean-square error of our CGL3 estim
1

of 61 against m for different sample sizes. The valus of N was faksn

)
§ \

~or

¢

to be 5000. Figure 3.1 shows that for relatively large n, the effect
of choosing m greater than 20 is very little and perhaps, in some
cases, not worth the computational effort.

Finally, for the same values of (u2—ul)/o 62/61 and N and with

l’
m = 10, we plotted the mean-square-error of the GLS estimator of ©
against n in figure 3.2. Again, as in section 2.7; the sharp fall

of the curve as n increases, is noted.

3.6 Discussion
It can be argued that if the data is available ungrouped, then

both the number of classes m and the division points {ti}?; may

1
be chosen in many different ways and we always run the risk of
influencing our results by these arbitrary choices of the class
intervals. As R.A. Fisher points out "grouping causes a loss of
information. By grouping we sacrifice knowledge of the exact size of
the single observation, and hope to get compensation by an easier
collection of our data'.

The problem of finding the "best" choice of partitions of the
sample space is of crucial concern in statistics and.some authors have
considered the problem in spécific casés. Here, wé mention Just some
of the more important publications in this subject. Gjeddebaelk [22]
considers different problems concerned with the estimation of the mean
and variance of a normal population. He compares their maximum likeli-
hood estimators when the observations are grouped with the corresponding
estimates obtained from ungrouped data. The comparison is based on the
asymptotic efficiencies of the estimates and he concludes that the
loss of information due to grouping is not asymptotically significant

when the group intervals are about twice the standard deviation.
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The author gives examples of applications to some othax stziisticzl
problems. Also in the context of maximum likelihood esitimation,
Kulldorf [ 32] makes a thorough study of some of the specialized
problems of maximum likelihood estimation from groupsd data.

Cox [13] has considered the problem of groupinz in a more general
context. He associates a value Ei to the ith groun and this velue is
given to an individual falling in that group. Then the random variable
£(X) being a function of the random variable X, whose range is to be
partitioned, is defined by &(x) = gi where x is in the range corres-
ponding to the ith group. The author defines the loss due to grouping
an individual in the ith group as (x—Ei)z/o2 where 02 is the variance
of X. He then considers the problem of minimizing the expected loss
given by E [X - £(X)12/02. 1In the theory of y2-test also, the problem
of optimum grouping is discussed by some authors. Mann.and Wald [36]
suggest that the width of the class intervals be ‘determined so that
under the null hypothesis, specifying the distribution completely,
the probability content of the classes are equal.

It is now clear that there is no general theory of the choice of
partition points of the sample space. By the nature of the difficul-
ties of the problem, outlined above, a complete solution to the problem
is unlikely to be forthcoming soon.

' Now, as far as our estimation problem is concerned, we are, to
begin with, required to define what is meant by the "best" choices
of m and {ti}?;l. When the grouping is done for convenience of
exposition, aﬁy mathematical condition set up to define the "best"
system of grouping is bound to be somewhat artificial. It seems t
reasonable to try to minimize the variance of the estimate, but
unfortunately obtaining an explicit formulaé for the variance of the
estimate seems impractical.

In practice, we may form our class intervals with full knowledge

of the data and then proceed as though these intervals were known
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a priori, This seems intuitively plausible sincs any fiisd s=t of
class intervals leads to the same asymptotic distribution. Butf, in
small samples, to increase the accuracy, the general feeling of the
statisticians is to put more computational work by increasing the
number of intervals and choosing the intervals small enough to avoid
classes with high expected frequencies. Thus the necessity to
consider the case when m + « becomes evident and this is done in the

next section.

3.7 The Generalized Least Squares Estimation of 6 from Ungrouped Data

Let s = G.(x) for x €_F and define W (s) = G (x), 2 (s) =T (x).
5] n n n n
Put yn(s) =3 - Wn(s) and Yn(s) =5 - Qn(s). Then we have the linear

model .

s = Wh(s) + e(s) . (3.7.1)

where 0 <'s <1 and e(s) i: the realization of a random function &(s)

with Ee(&(s)) = 0 for every 0 < s <1, Similerly, let s' = Ge(x')

for x' €X and define Wn(s'), Qn(s') accordingly. Then

Ke(s,s') = Cove(Yn(s),Yn(s')) = Cove(Qn(s),Qn(s'))
= Cove(Pn(x),Fn(x')) = min(Ge(x),Ge(X')) - Ge(x)Ge(X')
= min(s,s') - ss' . (3.7.2)

It is well-known that Ke(s,s'L being a positive definite symmetriec

kernel, can be expressed uniquely in terms of its eigenvalues

jm, j =1,2,... and the corresponding eigenvectors sin(jms) as

2 % sin(jwrs) sin(jms')
Ke(sos')=?2- Z * v *

0 j=1 J
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where the series is uniformly and absolutely convergsznt (Anderson

and Darling [1]1).

To begin with, assume that s = GS(X) is a simple function of x € L

taking only distinct values sl,...,sm such that 0 < sl < S5 < ... < sm < 1.

Then, denoting by I, the m*m matrix with (i,j)th element given by

Ke(si,sj) for i,j = 1,...,m, from (3.7.2), we have

-~

~ -1 —2 —1
Sl Sl ..... sl sl 3152 ...... slsm
2
. sy 32 ..... 32 B 5182 s2 ceanes sgsm
; ; ..... é s SAS.  eeceas s2
1 2 m- “1m 2'm m -

Note that if in (3.2.9), we put s, = Ge(tj) for j =1,...,m, then I+

becomes identical to C. Hence analogous to the theorem 3.2.1, we have

[~ 1 1
—_— = R
ﬁsl 552 552
- L S 1
652 652 633 653
s1 2 1 1 1 1
= - 8
653 .. 653 65’4 . sh’ ..
2 r o, o1
Gsm—l SSm—l asm §Sm
1 ‘1 1
- %
5Sm Gsm Gsm+l
where st = sj - Sj—l j=1,...,m*1l and So = 0, sm+l = 1.

Denote by y, the mxl vector y = (yn(sl),...,yn(sm))' and let
= - L) = ) - W . for j = 1,...,m.
A(sj) yn(sj) yn(sj_l), Yn(sJ) Wn(sJ) n(sJ_l) or j seess

Then the GSS in the linear model (3.7.1) is given by
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.y m+l (A(s.))2 m+l 6Sj,— Yq(sj) 2
y'iy = & '_EEJ"' = I ( S } 8s. . (3.7.3)
- T =1 J J=1 J

For an appropriate sequence of progressively finer intervals 6sj,

j=1,...,m+l, it is seen that as m + =, the limit of (3.7.3) is

4G (x) - dG,(x)),

6 ‘ dGn(x) 2
@(g) = J dGe(x) dGe(x) = J[EE;(ET) dGe(x) -1.

~
~ -~

(3.7.%)

Thus the GLS estimator of @6 is that value e which minimizes (3.7.4).
It is interesting to note the similarity of (3.7.4) with the
measure of distance defined by Bartlett and Macdonald [4]. They define

the least squares estimator of 6 as the value minimizing .

(dGn(x) - dGe(x))z

aw(x)

where W is a suitable increasing function of x and conclude that the
best choice of W(x) is indeed GG(X) since with this choice, the estimate
of g will be asymptotically eff{cient. |

In the following, we establish the asymptotic properties of the
GLS estimator of 6, For simplicity, we deal with the case k = 2,

although there is an immediate generalization. Let 6 = (91,92)'

denote the vector of the mixing proportions 6,50 <8, <1 and
62 = 1—6l in the mixture
- ' €
Ge(x) elFl(x) + 92F2(x) x € X

~

and suppose 9* = (9{,8;? with O f_ei <1 and 65 = l—ei is the vector

of the true parameter values.



92

Notation: In the sequel, the well-knowa :ymbols o_{.) and 90(.)
will be used to denote the rate of convergence in probzbility.  Thus

if u = Op(wn) as n > «, then for any € > O,

2im Prob (U /W | >e€e) = 0
s n' 'n

and similarly U = Op(wn) if there exists a constant C, 0 < C < o,

such that

2im  Prob ([Un/Wn] <C) = 1 .

ni+o

Lemma 3.7.1: The function 2(0) given by (3.7.L4) is infinitely differen-

tiable with respect to 6. under the integral sign.

1

Proof: From (3.7.4),

>

G (x)"?f e (x)y2 |
@(9) =8, f [m} dFl(x) + (1-8,) Hd—GZG-)—} aF?_(x) -1

-~

=]

D

]

and using the Lebesgue dominated convergence theorem, $(6) is infinitely

differentiable with respect to 8, whenever

1
5T dGn(x) 2 :
— {EE’T§7} exists for r = 1,2,... and is bounded by a function of
30 ]
1 -

x € only (except possibly for a set of points to which Fl(.) and F2(.)
assign zero probability) which is integrable with respect to Fl(.) and

F2(.). Now

5T [dGn(x)]zl (1) l(dFl(X) - dFQ(X))r(dGn(x))2
—_— = (r+l1)!

-~
~

a6
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(dFl(x)—ng(x)}r [d-Gn(X))z

(r+1)! for x € {y: yX, d_?l(y)> a7, (y)}

(o, (aF, (x)-aF,(x}) rar(x)) "7

(a7, (x)-ap (x))7 (a5 (x))2

(r+1)! ror ¥Elys yeX. F.(v)< & (o)}
r (dFl(X)+(l—91)(ng(x)'dFl(X)))r+2 or ¥ L2 & (y

(ar, (x)-ar,(x)) " (ac_(x))2

(r+1)! (aF (x))r+2 for x € {y: y€X, aF, (y) > aF,(y)}
2
< 3
- ar_(x)-ar. (x)}* {ac 2
(rrny: )40 () o 602 x € {y: ye¥, & (y) < aF,(y))}

for r = 1,2,... . Thus the conditions of the domirnated convergence
theorem are satisfied and the lemma is proved. S
Suppose now that the distribution functions Fl(.) and F2(.) and

hence G6(°) are absolutely continuous and there exists densities

-~

aF (x) dF ,(x) acq (x)
fl(x) = — fz(x) = ——E}—c—— and ge(x) = —éT such that
glx) = 8, £ (x) + (1-0,) £,(x) xeX .

Theorem 3.7.1: If we denote by Zn = (21,22)' the random vector whose

realization en = (61’92)'is the GLS estimator of 6, then Zn is CAN

with asymptotic variance reaching the Cramér-Rao lower bound.

Proof: Using the lemma 3.7.1 and differentiating ¢(6), given by (3.7.4), -

with respect to 61, we see that Zq is the root of

(ar (x)-aG, (x))(aF, (x)-aF,(x)) ar_(x)

d@(g) 8
a0, 3Gy (x) b dGe(x)] ‘ (3.7.5)

-~ -~
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Now an(x) = Fn(x+Ax) - Pn(x) where Ax > (- is a very small guentity

and recall (c.f. equation (1.3.4))that

1
Ty(x) =2

N~

n(x—Xj) x€ ¥

J=1

where Xl,...,Xn are independent random variables with common distribution

function Ge(.) and n(.) is the well-known Heaviside function. Since

-~

E, [n(x—xj)] =‘ I n(x-t) dGe(t) = Ge(x) x€X ,

~ -~ -~

b
then Fn(x) > Ge(x) as n + © for every x €X and therefore

-~

x+Ax
P
Tn(X+AX) - Tn(x) > ge(t) at = GB(X+AX) - GB(X) .
x - - -
i = dGe(x) as n > ® ,
. dI‘n(x)
Hence for sufficiently large n, EE;TET =1+ op(l) and thus (3.7.5)
gives -
as(e) -, (ar _(x)-dacg(x))(ar, (x)-aF, (x))
~=-f n_ 8 L 2 (2 + o (1))
s, dGe(x) D

-~

which shows that for sufficiently large n, the influence of the term

involving op(l) is negligible and Z. is the root of

1
- ¢ @F, (x)-aF, (x) ¢ T (xj—f (x)
1 ) _ 1 2
J dGe(x) (dI‘n(x) - dG?(x)) = J —————ge(x) dI‘n(x)
1 rzl fl(xj)_fz(xj)
Doy gg(Xj)

(3.7.6)

and consequently 61 is the root of
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fl(xj)~f2(xj)
1 ge(xj)

n
iy
n .
J:
1""’Xn respectively.

But it will be shown later in section 5.2 that the root of

where X se 000X are the realizations of X

(3.7.7) corresponds to the maximum likelihood estimator of ei and
therefore by the well-known properties of the maximum likelihood

estimators, Zl (being the root of (3.7.6) for sufficiently large n)

possesses the asymptotic properties stated in the theorem.

3.8 Conclusions

The claim that the consideration of the covariance matrix in

=0 (3-7-7)

the minimization of the sum of squares, will improve the efficiency of

the estimate of the vector of the mixing proportions 6, is now justi-

fied. It is seen that by defining h(x,t) as in section 3.2, and

minimizing the generalized sum of squares, a fully efficient estimator

of 9 1s obtained.

The difficulties, however, are clearly in solving the resulting

equations. To solve (3.3.4) analytically is, of course, an impractical

task and unless some numerical approach, e.g. successive substitution

is teken, the estimation procedure cannot be usefully employed. This

approach is discussed in the next chapter.
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CHAPTER L

LEAST SQUARES ESTIMATION -~ USE OF ITERATTOY

4.1 Introduction

It is clear that since the covariance matrix C given by (3.2.9)
depends on © = (81, cees ek)', the estimating equations (3.3.L4) become

non-linear functions of 6 0. and thus the GLS estimator of 8,

1* """ Tk -
i.e. the value of g minimizing (3.2.17), becomes very cumbersome to
calculate. In fact, in most instances a solution cannct b= obtained
directly. In this chapter, we propose an iterative procadure whereby
the covariance matrix is calculated in each step and is used to find the
GLS estimate of g in the following step. It turns out that the sequence
of estimators obtained in this way has special characteristics and indeed
when m in (3.3.L4) is large, the process converges to the maximum -
likelihood estimate of 8.
In Section 4.2, the’iterative process is introduced and it is

shown that when

(i) the part{ioning of the sample space £ is done by fixing

the division points tl Sty < el <t satisfying (3.2.7),
(ii) the random sample Xl, cens Xn with realizations Xy sees X

n

respectively, from the mixture of distributions Gé(x) given
by (2.2.1), is grouped accordingly, -
(iii) +the iteration process is started with a consistent estimate
of 9,
then the estimator of 6 obtained after a l-cycle iteration is CAN with
minimum sttainable variance with respect to such a grouping. The results
of a small Monte Carlo study are presented in Section 4.3. Discussing
the iteration process for the ungrouped data in Section L. .4, e prove

that the process will converge to the maximum likelihood estimator of 6.

It is assumed in Section L.k that the densities fl(x), eees £ (x) ang
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k
hence ge(x) = I Gj fj(x), where 6 = (61, eesy 3, )'€ 8,02 tke distrivution
_ J=1 k -
functions Fl(x), cees Fk(x) and Ge(x) = I 9. Fj(x) raspectivaly exist
N j=1

and are differentiable with respect to x € . Recall from Section 3.3

that O denotes the k-fold product space [0,1] x [0,1] x ... x [0,1].

4,2 The Iteration Process

6(0) _ (e(O), cees 6;0))' is chosen

An arbitrary value of 6, say 6

K a(0) _ . . i .

in © such that Z eJ 1. This value is substituted in (3.2.13) for
8 = (61, cess Bk)' to obtain COl which i1s then inserted for C 1 in

(3.2.4) to give

' -1
= - AB)? - AB
QO(g) (~G-n A9) N (gn A9). (k.2.1)
k k
To impose the constraint I 6, =1, put 6, =1 - I 6., for some integer
izq J L - J R
J=1 j=1
~3#
L, 1 < 2 <k, in (4,2.1) and minimize it with respect to 6

6

* e 0 e
19 H
...i ik. (For convenience, we may choose £ = k and put
ek 1 - Zl ej in (4.2.1) and minimize it with respect to Bl, cers By g
5(1) J 2(1) 5(1) *(1)
l .." 2 l, 2,+1’ .?.’
eil) =1- 3 8, Then e(l) = ( (1), cees eél))' forms the GLS
J=1 '
J#e ' ~(1 )

estimator of 8 after a l-cycle iteration. We now substitute 6

2-1°
L+1°

Let 6 be the minimizing values and set

(3.2.13) for 8 to obtain Cll and the process 1s repeated so that after
the rth cycle of the process r =0, 1, 2, ..., the following steps

are taken;

(i) (r) (e(r), cees eir))' is substituted for 8 = (8, ..., ek)i
k
in Ge(ti) = '21 ej F.(ti) fori =1, «eep m
- J (r) (r)

(ii) Analogous to (3.2.12), Py s eess P 7 are calculated from

oy - fgm“ﬁ]d sna o{"! = Eg(r)(ti)
~I1 ~

-1
- Gg(r)(ti‘lT]

~n
for i= 2, 3, eeey MM
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(iii) > eees P are substituted for 0., ..., ¢ in (3.2.11

(r) (r)
plr mr 1° °. in (2.2.200

to obtain B;l.

(iv) Crl is calculated, analogous to (3.2.13), from

-1 -1 1
Cr TB tTTo, )
6(r) m

~n

L

where L, as before, is an m X m matrix with zero in all the
entries except the last element of the last cclumn which is
unity.

~1

(v) Cr » defined in this way, is inserted for ¢t in (3.2.4) to

give

1 -1 -
@ (8) = (g -48)c™ (G -48) (k.2.2)

= ' 1 1
where G (Gn(tl), cees Gh(tm)) and A is as given by

(3.2.2).
Fa ”n k
(vi) To impose the constraint I 6. = 1, pick 02 amongst
Jj=1
91, cees Gk for some integer 1 < & < k (possibily & =k
k
for convenience) and substitute 6, =1 - I 8. into
J=1
J#2

¢r(6), given by (4.2.2), and minimize @r(g) with respect

to Bl, cees 62_1, 92+l’ eeey B Call the minimizing values

k-

]
(r+1) o(r+1) 2(r+l) ~(r+l) ~(r+l) _
l k’ e 0y 82_1 9 e£+l 9 CICRCIEY ek and Set 62

1- 1 o) myen eir+l) = (e§r+l), e, 6£r+1))'forms

)

J=1

J#L ' )

the GLS estimator of & after r cycles of the iteration process.
+1) 4 r

SR

The iteration process is continued until a(e where d

is some suitable distance function defined over O, becomes negligible.
A practical choice of d may be
k 2

a(a,p) = |z (a; = 8;)?
R P
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for any a, ? € Rk where Rk is the space of k—-éirensioszal r22l vactors.
But this choice of d is clearly by no means unique.

We establish in the?%em 4.2.1 (below)the properties of %él), the
estimate of 8 provided by a l-cycle iteration in the above érocess.
To avoid unnecessary algebraic manipulations, the theorem will be proved
for the case k = 2,i.e. when the mixture of distributions Ge(x) given
by (2.2.1) consists only of two components Fl(x) and Fg(x).n The
generalization of the theorem to the case k > 2,i.e. when Ge(x) consists
of more than two components is laborious and lengthy and th; details

are given in Appendix B.

The mixture Ge(x) of two distribution functions Fl(x) and Fz(x)

~

vith mixing proportions O f-el-i 1 and © 1 - 0. respectively and

2 1

with the vector of the mixing proportions 6 = ( 8,)', will depend

Sl, 5

on the scalar parameter 8. only and_is written as

1
Gox) = &) F(x) + (1-0)) Fp(x)  0<o <1

- <€X (k.2.3)

Also, we can show that ¢r(e) r=0,1, ... given by (4.2.2) can be

written as

® (6) = & S =0,1,2, ... (h.2.4)
r(~) i=1 Tr-(e(r)) "
1 ~Nn

where, as before, p, = Gn(ti) - Gn(ti—l)’ ﬂi(g) = Ge(ti) - Gé(ti—l) and

min 7.(8) > O for i =1, ..., m + 1 and for every ® € 0. Substituting

. 1l ~ ~

i .
for Ge(x) from (4.2.3) and setting the derivetive with respect to 61 of
¢ (8) equal to zero, we find that the estimate of 91, after r + 1 cycles
T ~

of the iteration process is given by
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m+l (P-"B i ) ( Bli‘ggi)
X

n : 5(r)

8(r+1) _ i=1 . (6 )

1 = —3 (611 2 r=0,1, ... (k.2.5)
et U ,

i=1 "i<9nr))

B"'—" . - - - . 7 = .=1 w;'
where 3i FJ(tl) FJ(tl_ ) for j =1, 2 and for i =1, ..., m + 1 with

Fj(to) = Gn(to) = 0 and Fj(t ) =G (t_,.) =1. Further, the numerator

n mt+l
of (4.2.5) can be written as

a(r) _ ~(r)
" (p;—Bop) (By5=Fpy) _ m (p;=m5 (8, 7)) (B ;=Bos) + (7,(8,7")-8,:)(8,;-8,;)
i=1 n(J}H i=1 n.w(“)
i'~n 1 ~n

1 . =0 . - . 1 =
and since "1(9) B 3 F (1 91)82l fori=1, ..., m + 1, we have

5] - . o= . - R 1 = .
“i(~) 321 91 (811 521) fori=1, ..., m + 1. Thus

- - _— ralr) _
m;l (Pi B2i)(81 82i) _ m;l (Pi ﬂi(gn ))(Bli Bei)
L 2 (I:) & - 3 — A(r)
i=l "i(g n ) 1= Tri(gn )
_ 2
+ g(r) m;l (Bli 82 )
1 . A(r))
i=1 w (gn
- 2
) m+l p. (B, -B,;) ) m+l _ ~(p) B (B1 Bos)
= 3 gt (8, v 0T T —n—
i=1 w.(8‘F/) i= _ i=1 w.(8'T’)
i‘en ien
- . - 2
wrl D3 (8;5=Bp)  a(y) L (By5Bpy)
i=1 wm.(8'"7) i=1 wm.(8'7’)
i‘en iten
m+l . .
since iﬁl (Bli_82i) = Fl(tm+l) - F2(tm+l) = 0. Hence by substituting
(4.2.6) in (4.2.5), we obtain
mtl p; (By;-85;)
Z —..__—————»
. ~(r)
1=1 LA (6 )
(r+l) _ 2(x) -
" = o\ 4 =L r=0,1, ... (+.2.7)
1 1 mzl (ell 821)

i=1 ni(gér))
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We finally denote the true value o7 the varemstex» 2 = (2 3. )
by 8% = (8%, 8%)' where O 2072 12ndaf% =1-0%2n3 also use the

symbol op(.) introduced in Section 3.7.

Lemma 4.2.1: Let El, 52, ... be a sequence of random variables with

the distribution functions Fl’ Fys ««. . Suppose that Fn(.) tends to a
distribution function F(.) as n + «. Let Yy Yoo one be another sequence
of random variables, and suppose that Yn converges in probability to

a constant c¢. Then the distribution function of Yn = En Y tends to

F(x-c) as n +> =,

Proof: Cramer [15].

~

Theorem 4.2.1: Let Gér) = (Gir), 1 - éir))' be the realization of the

~

random vector Zﬁr) = (Zi?), 1- Zir))' forr=0,1, o...If eio) is a

-

-1
consistent estimator of Gi such that Zio) - Gi = op(n *) as n > ®, then

eil) has the property that Zil) is consistent asymp%otically normal

with esymptotic variance given by

m+1 (Bli"sei) -1
n L
i=1  w.(6%)
1~

Proof: Denote by Pi the random variable whose realization is p; = Gh(ti)

- Gn(ti_l) so that P, = r(¢) -1 (¢, ;) fori=1, ..., m+1. Write

zio) = B; + € and Pi = ni(g*) + ng for i =.l’ eesym+ 1. Then e = op(n *)

as n » « and since Pi is a random veriable admitting first and second

order moments, n, = op(n—a) as n > © for all a < 1. Thus from (4.2.7),

we have
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( ,'n—. 2 - 2 4
Z(l) _ Z(O) . m;l (m (9*)+n )(811 21) ugl _ gﬁll 52%) -
1 1 i=l E(Bl" 21‘ ) i=l ) I {\ :li—;ei)
R TR “ﬁ:*)tl M cryae
1~ J itl
(0 m;l (m; (8%)+n. ) (B, =B,;) ) e(8;-B,;)  ofe2
- : 7. (0%) m.(6%) 0(e?)
i=1 1~ L 2
wl (8. .-B..)2) "¢ 7
z i (e% + 0(e)
i=1 1~ |
m;l n. (8 82i) m;l n. (811 321)
(o), iz T30 = (@D
2 - €& - € — + 0(e -
l m;l (Bl BQi) m;-l (Bli 321)2
i=1 T (?o*) i=1 "(9*)
Hence
wtl n, (B, :-B,:)
n L 2 11 21
Fip) ey o dm "5
n(zl - 61) =T BBz T op(l) (4.2.8)
5 1i 9‘1
g1 "3(8%)

and by substituting n; = P. - n.(e*) in (¥.2.8), and using the lemma 4.2.1,

1
(1)

we see that the random variables /_(Z - ei) and

m+l P (B 15"
m+l (B )2
z
i=1

21)

. ‘-
11 B21
.(e*
v (5%)
have identical asymptotic distributions.

Now, it is shown in Appendix A that the joint asymptotic distribution

P is a (m+l)-variate normal distribution with mean wvector

of Pl’ cees P

1(8%) = (1y(8%)5 eey Ty (89"

and (m+l) x (m+l) covariance matrix-% L, where the (i,j)th element of &

is given by



103

Q
]

15 = (my (%) - w2(%)) i=j

i}

SRACOENCD i

-
e

fori, j=1, «.., m+tl, Let b = (bl, cees bm+l)' with

= B1i7Bos

ni(e*)
b. = — 7 i=1, .., mtl
1wl (8y;-8,;)

z Tl'(g"")

i=1 i

and P = (Pl’ cees Pm#l)" Then we can write Y = b'P and hence the
asymptotic distribution of Y is a univariate normal distribution with

mean

Epa(0) = 2'7(0%) _ B

and variance .

4

_ 1
Varg,(Y) =—Db' I b .
But
m+l
ni1 Az (Byymey)
b'm(e*) = I b, m(6%) = — — =0
-~ PR T _ m;l (B15-85;)
n¥
i1 (8%
since
m+l
I (B78y;) = Pty ) - Fplep ) =0
1=1
and
* 33 *
Ly gp=—2iotd=l m(er) W (0
L T Ty
=1 "0
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mtl T, (6%)(1-m, (8%))

- 2
L T e Bt
= - —
m+l (By;-8,;)
j=1 "3 (8%)
(B1:=Bs:) (B.:=Bs:)
2 my(e%) m(0%) ey . —He
iyt - is Tite
wtl (815855027
i m3(0%)
1 m+1 m+l
= - 7~ L L (By:=B,:)(B,:"B,:)
L T (e%)
i=1 it
N .

- —_ (’4.2.9)

m;l (81578502

i1 m3(8%)

since
m+]l m+l
z I (B :=B,:)(By:=B,:)
i=1 =1 11 "21°Y713 T2j

m+l 2

= -z (Bli-82i) = O .
1=1

Hence the asymptotic distribution of vn (Zil) - ef) is normal with
mean zero and variance given by (4.2.10). Thus the theorem is proved.

The following remark is of interest;

Remark: We can show that if the given random sample Xi, cees Xh with

171

into m + 1 intervals with the division points

common distribution Ge(x) =6, F (x) + (1—91) Fz(x); 0<6; <1, is grouped

~

t, <t < .0 <t <t
m

0 1 m+1
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where t. anil t
m

0 are as defined in Section 3.2, tkrsr ire

+1
information in a single observation with respsct to such a growping

coincides with the denominator in (4.2.10). This is easy to see since

* = - = 0% - .

m(8%) = Ggalt;) — Goult; 4) = 0F (B,5-8,:) + 6,

1

vhere, as before, Bji = Fj(ti) - Fj(ti-l) for i =1, ..., m+l and
j=1, 2.

This interesting coincidence shows that, under the condition of
Theorem L4.2.1, Zgl) is also asymptotically fully efficient in the

sense that its asymptotic variance is minimum with respect to a given

set of division points {ti}m .
i=1

4.3 Monte Carlo Studies | >
In this section, we continue our Monte Carlo study concerning
the problem of estimatiné thé mixing proportion in a mixture of two
normal distributions. This problem was considered in Sections 2f7 and
3.5 of Chapters 2 and 3 respectively.
Consider a mixture Ge(x) of two normal distributions N(0,1) and

N(u,02) that is (c.f. (3.5.1))

Gy(x) = & Fy(x) + (1-0)) Fo(x) . 0<e <1 (k3.1)
N — oo < X < o™
where
x
Fl(x) - = f exp {-3y2lay - <X < ®
VY
and
x 1
F (x) = 1 J exp {- — (y-w)%}dy -—wo<x<o .
ov2w /= 2g2

Choosing the values t,, -.+» t_ as in Section 3.5, an initial

l’
is chosen and by using (4.2.7)> successive estimates

1
of 6, may be obtained. The value eio) can be chosen in two ways. We

estimate eiO) of 6
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can choose an arbitrary va.ue in the interval [0,1] =zs +zis initisl
value. Like most other iteration processes, this artiirzry initizl choice
should not affect the final result if the number of iterations is

sufficiently large. But if only a small number of iterations are

taken, the estimate eio) is chosen to be a consistent (but inefficient)

estimator of 91. Here, we use the method of moments to find this

initial choice. Thus if the distribution of the random variable X is

Ge(.) given by (4.3.1), then

Ee(x) = (1—el)u

and

Ee(Xz) =9

~

y + (170, ) (o%+u?)

and in any random sample of size n; Xl, ey Xn with common distribution
function GB(') and with realizations X5 eees xn>iespectively, we

equate the first sample moment

n
x ='% I X
j=1 9
to Ee(x) to get
~(0) _, _X
0, 1 .

whenever y # O. If, on the other hand p = O, then the second sample

moment

M.Se. =

=R
nems
'...I
»
Caa N

~ ~ » -
is equated to EG(XZ) to obtain 6£0)' Thus 6§0) is defined as

~

~(0) _, _Xx 0
67 =1 -3 n#
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MSE
0.20 T
n = 10
0.16 T
0.12 4 -
0-08 ->
n =25
0.04 <+
B n = 50
n = 100
20 Lo 60 m

Fig. 4.1 - The Mean-Square-Error of the generalized Least Squares Estimator

of the mixing proportion, based on the l-cycle solution of the iteration

process, in a mixture of two normal distributions N(0,1) and N(1,1), against

m, the number of division points of the sample space, for different sample sizes.
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0.20 Tt

0.16 +

0.12 T

0.08 T

0.0k T

4 N " X
T t +

3
v v

100 120 n

Fig. 4.2 - The Mean-Square-Error of the generalized Least Squares estimator of
the mixing proportion, based on the l-cycle solution of the iteration process,

in a mixture of two normal distributions N(0,1) and N(1,1), for varying sample
sizes.
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Note that when u = O, then 02 # 1, for otherwise botZ cozzonznis ¢f
Ge(.) become identical which is a contradiction.

i In order to see the accuracy of the iteraticn process suggested in
this chapter, a table analogous to that of Table 3.1 was constructed

(Table 4,1). Each estimate of 6. is based on the solution of 2 l-cycle

1
iteration and, as in Sections 2f7 and 3.5, on n, = é%gg sarples of size
n. The mean—-square-error of each estimate and the standard error of
each mean are calculated as explained in Section 2.7. By comparison,
it is seen that although the mean-square-errors in Table hfl are
generally higher in most cases, a good approximation to the root of

(3.3.4) can be obtained by using a l-cycle solution of the iteration

process. The estimates improve as m increases and Figure 4.1 shows

how the mean-square-error of 3&1) depends on m for different values ?f
n vwhen uiyp =1 and-gg = 17 Comparing Figures hfl and 3.1, we find
that for iirge sample iiz?s there is not a substantial difference in the
accuracies of both methodsf Finally, for the same values of uc;fl and
;I and for m = 10, the mean-square—error of ail) is plotted against n

in Figure 4.2 where it is observed that for sample sizes of more than

50, the mean—-square-error is very small,

4.4 The Iteration Process in Ungrouped Data

Analogous to Section 3.7, in this section, we let the widths of

the intervals Ai =t. - t.

i i-1 i=1, ..., m + 1 become progressively

finer and eventually consider the situation when m * ®, We prove that
in this manner, -the iteration process defined in Section 4.2, converges
to the maximum likelihood estimator (MLE) of 9 as r, the number of
iterations, tends to infinity for any fixed sample size. TFirst, we
derive the set of equations which yield the MLE of 9.

Assume that in the miXture of distributions GG(X)’ given by

~
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(2.2.1), the component distribution functions Fl(x), ceey T {x) 2=3

hence Ge(x) are twice differentiable functions of x € X 50 thst the
~ k
densities fl(x), cees fk(x) ani hence ge(x) = jil 6j fj(x) by
Fl(x),..., Fk(x) and Ge(x) = I 0, Fj(x) respectively exist and are
-~ j=l
differentiable with respect to x. Given the observasions X5

the realizations of random variables Xl’ cees Xn respectively, from

vees X5

the mixture of distributions Ge(x), the MLE of 6% is that velue of O

which maximizes

n n
I .) = . ces .
i ge(x ) i (6l fl(xl) + + ek fk(xl))
1=l . =1
( n
or equivalently 2&n n g x) = I 4&n (© f(x) £ (x.))
K i=1 o i=1 1t Y e
subject to I 6. = 1. Here 2n(y) denotes the natural logarithm of the
=1 <
positive real argument y. Therefore we maximize )
k
9(0,8) = z om0, £ (x;) + s 0 £ (x)) + ¢ I e;-1
i=1 J=1
where £ is the Lagrange multiplier, with respect to el, cees ek and £.

Setting the derivative of ¢(6,f) with respect to 0.; 1 < j < k equal

J!
to zero gives
n f.(x.) h1)
z +& =0 (h.h.1
521 O £ (x;) +... +o, f(x;)

for j =1, oy K &

Multiplying (L4.4.1) by Sj and summing over j =1, ..., k, we get

k
n+ I 8.8&8=0;
J=1
k
imposing the restriction I 6, = 1 yields & = -n and upon inserting
J=1

this back into (L4.k.l), we have

f.
._Ji_l._).=]_ j

;1_
1ge( .)

1, ooy k (4.4.2)

IIMS
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whose root gives the MLE of 6%, Hereafter, the set 52 z2zusticns

(L.h.2) for j =1, ..., k will be referred to as the "lirelihocd

equations".

Theorem 4.Lh,1: If eir) denotes the estimate of € cbizined after rth

cycle in the iteration process defined in Section 4.2, then for any

fixed sample size n, and sufficiently large m

6 =(a 3 -..,6 )' =lim e(r)
~n 1 k o n

satisfies the likelihood equations.

Proof: Write

=1 - +
0y =1-(8, +8,+ ... 468, +0,  +..+0) 1<0<k.

Then we have

k ¥ ~
Ge(x) = ‘E ej (Fj(x) - Fz(x)) + Fi(x)
- J=1
and for a given set of partition points tl < t2 < s.. < tm’
kK

where Bji = Fj(ti) - Fj(ti_l) for j =1, eesy kand i =1, ceey m+ 1

with t. and t defined as before. According to step (vi) of the

0 +1
iteration process defined in Section 4.2, we minimize (L4.2.L4) with
respect to ej; j=1, ¢ees k, J # % to obtain ﬁhe estimate of 9 after
(r+1) cycles of the iteration. Thus substituting (4.4.3) into (L4.2.})
and setting the derivative with respect to ej 1<j<kJj#% equal to

zero, we get
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; (r)
o = e
6(.r+1) = = nl(~n ) = LoL b
J- m+l (B..-B,.)2 J=1, ..., k (L.L.k)
5 i L1 .
i=1 w.(6 r)) 7
1'~1n
- k
+ ~
e(r l) = l - z e(.r+l) r = O’ l, ..
L . 3
J=1
\ i

Analogous to the steps taken from the equation (4.2.5) to the equation

(4.2.7) in the case k = 2, here we can reduce (Lk.h.bh) to

mgl P; (B 21)
S _pln) LT 60

J J T omtl (B . )2
z ——J——— .
i=1 7. (B(r)) dJd # 2‘

i=1, ..., k (4.4.5)

k
-~ +l kg
e(r ) -1 -"g e(r+1)

Jj=1
D

Now, suppose that m is large so that the intervals Ai = ti - ti-l

i=1, ..., m +1 are uniformly small. Then since Fl(.), cees Fk(°) and

hence G6(°) are twice differentiable,

~

B.. F.(t.,) - F.(t._,)
il - J;,; — tJ i-17 _ f_(ti) + O(Ai)' (L.4.6)
i i % J
: for i =1, ..., mtl
and J =1, ..., k
and
m.(8) Gy (t ) = G (t._.)
1 6 i-1
~ - S =g (t.) + 0(a.)
Ay ti %51 8 1 *
for i =1, «e., mtl
and hence

m;l p(By5m8y) 4l p; (£5(%5) = £,(5;)) + 0(a;)
B (z) (&) * 00a;)
n .

i=1 . (e(r)) i=1
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mtl | p; (£5(¢:) - £ (¢;))

= I — + O(A.) . (“r.‘—oT)
i=l g«(r)(ti) 1
6 .
~n
Further, if tal, ta2, eees t, for some 1 i-al < ... < an < m coinciée
n
with the observations X5 eees X, WE have
1
Iy for 1 —alf""an
p; = Gn(ti) - Gh(ti—l) = . (L.%.8)
0 otherwise.

Finally p# letting r > @ in (4.4.5) and using (4.4.7) 2nd (L4.4.8), we

see that the left hand side gives zero and for

gn is the root of

1 n fj(xi) - fﬂ.(xi) _ .
n Go - ° I =
i=1 B %
~Il

Multiplying (4.4.9) by ej_and summing over J
X S
L 6, =1 we obtain,

J=1

;B fl(xi)

23—y =l
Bi=1 ggixi

| A

which is the 2th equation in the system of the

~

root Gn = (91, cees Gk)' given by (h.h.2). As

sufficiently large m,

1, eeey k o (4.%.9)

~

l, ..., k, by using

(4.4.10)

likelihood equations with

2 takes integers between

one through to k, the whole system of the likelihood equations is

obtained.

This completes the proof of the theorem.

It was stated in step (vi) of the iteration process suggested in

Section 4.2 that, after the rth cycle of the iteration process

k
r=0,1, ..., to impose the constraint I ej =1, we pick 6, amongst
J=1 k
61, «ees 6, for some 1 <% 2 k and substitute 6, =1 - jzi Bj in
i#e

¢r(6) given by (4.2.2) or equivalently (k4.2.k4).

We then minimize
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@r(g) with respect to 61, cees By 05 Bg41s *+vs 8, eni o221 The mininizing
valﬁes e§r+l), ceey ‘ir;l)’ eéiil), coesy g§r+l) so tzztl with é§r+l) =1
- '21 g§r+l)’ the estimate of 9 after r + 1 cycles of the iteration is

j=
foizid as E(r +1) (e(r+l), ey §§r+l))'. This choice of 8, is of
course arbitrary and is made according to the convenisrce of the
experimenter. It may, however, be argued that by mersly cho?sing an
arbitrary 6, for some 1 < & < k, and substituting 82 =1 - .gl 8., we

¥

are taking a non-symmetric approach even though the comstraint
k

L 6. =11s imposed. For this reason, we use the Lagrange multiplier
J=1
technique in the minimization of ¢r(e). Therefore we minimize

—_ . 1 _l p -— —
¢ (8,8) = (gn A9) C. (§n A8) 25(%'9 1) | (h-h-}l)

vwhere § is the Lagrange multiplier and 1 is the k-dimensional vector

-~

of 1's i.e. 1 =(1, ..., 1)',-with respect to & and £. Setting the

derivative with respect to 6, of (L.4.11) equal to zero gives for the

~(r+l)

minimizing values 8 and £¥,

~(r+l)

(arc_ gy N (A'C;lGn) - E¥1=0.

Since A has rank k, (A'C;lA) is of rank k and thus invertible. Therefore

glr+l) _ = (a'c, ta)” A'C;lGn + g% (A'c;lA)_ll (L.4.12)
and since C, is independent of B(r l), imposing the constraint
1'8(r+1) = 1, we have
l' (I'+l) 1'(A'C_1A)—l A'C—lG + E_,*l'(A'C-lA)_ll
~N ~ r r ~n ~ r nd
so that

._l —l ...l
- 7' (A" ' G
1-1 (A Cr A) A Cr ~n
_l

g* =
1'(A'C;1A) 1

-~
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where we note that l'(A'C;lA)—ll is only a scalar fect:r. ZIassriirg

£* back into (L4.4.12) yields

1 -1(arc )t are e
-1 r

o{rtl) _ (pr c. )t e = T (a'c, h™h
- - 1'(A'cr A) 71 ~

~

forr=0,1, 2, ... (k.bh.13)

It is to be stressed that both approaches yield the same result

(L.4.13) gives the MLE of 8 for large m as r > =. It is known that
if a function is to be minimized subject to certain restrictions, one
can use the Lagrange multiplier technique or equivalently, one can solve
the restrictions and substitute in the function and proceed with the
minimization of the function. The final result is not altered whichever

method is used. Here, we verify this fact for the case k = 2.

Proposition 4.4.1: If in the mixture of distributions Ge(x), given by

-~

(2.2.1), k = 2, then for any fixed number n of observations Xis eees X

from this distribution and for sufficiently large m,

= (‘l’ 2)' = 1lim eir)
>

-
6
~1

is the maximum likelihood estimator of 6 = (6 ,0,)', the unknown vector

~(r) _ (e(r) ér)),r

=1, 2, «.. 18

is chosen so that O < 6(0)

of the mixing proportions. Here B

given by (L4.4,13) and §£O) (9(0) (O))'

2(0) _ , _ al0)
end 62 =1 Bl .

Proof: Put R = (A'C-lA). Then R is a symmetric 2 x 2 matrix and by
—_— r
substituting A from (3.2.2) with k = 2 and C;l as defined in the step

(iv) of the iteration process given in Section 4.2, we see that if
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then
m+l Bii

e E Ry CO 1Y
i‘~n
+ .

B on o mtl Bli L

N CALD

i‘en
o o m;l Béi
22 ~

21 7 (6(T)y
1=1 “i(gn )

vhere, as before, Bji = Fj(ti) - Fj(ti—l) fori=1, ..., mtl and

j=1, 2 and Wi(g) = Gé(ti) - Gé(ti—l) fori =1, ..., mtl. Now,

~ ~

= = - 2
D = det(R) = Ry Ry, — R,
2 2 2
m+l Bli mtl 5. ml Bqs By
B R O N | Ry e oy Bl e EON
i=1 w. (0 =/ ) {i=1 ©.(6 ) i=1 7.(9 )
1l =~ 1 ~1 1l ~n

and by using the Cauchy-Schwartz inequality, D > O. Hence R_l exists

and
Roo R0
“1 _ eyl o 1
R (A C. A) 5 .
R Ry
-1 9 . L -1
Let Q = A'Cr G, = , then in (4.4.13), by substituting for R = and
- Q
Q, we have 2
p(rl R,, -R Q 2 1
1 _1 | #E Eh, Ry1Roo~Rip (Ronly Ry o8y Ry 1@57Ry 59y )
D Ry 17%R10%R50
glr+l) -R R Q 1
2 12 11 2

which after some algebra leads to
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- V2 -z
mi1 (Pi73p:0 % sm25)
z zxrl\
a(r+l) _ (9 7Q) + (Ryp=Ryp) 55 m (B0 (k1)
— -_— 2 Z "o T e g
1 Ry = 2Ryp + Byp md (B157304)
i=1 « (éér))
r=0,1, s
and
s(r+1) _ (Q;-Q) + (R)j-R),) s(r+l) _
5 =R - 2R T R =1 - 1 forr=0,1, ...
11 12 7 Fop
(4.4.15)

We now note that (4.4,1%4) is identical to (4.2.5) and therefore by
a proof parallel to that of Theorem 4.4.1, the proposition can be

established.

4.5 Conclusions

The iteration process introducéd in this chapter shows that in
Fractice, a reliable esti;atezof the vector of the unknown mixing
proportions 3= (91, ooy ek)' € O may be obtained in a very simple
way. It is believed that to obtain a relatively efficient estimate,
even a few iterations are sufficient in moderate sample sizes, provided
that the iteration is started with a consistent, but inefficient
estimator of g. The interesting result of Theorem 4.2.1 supports this
belief.

Further, we have seen that as we increase the number of intervals in
the grouping, our estimate,‘obtained by the iteration process, approaches
the maximum likelihood estimator of 9, as the number of iterations are
increased. The convergence of the iteration process to the maximum like-
lihood estimator of 3 when the widths of tﬁe intervals become very small
is of particular interest. The latter class of estimates, in general,
pa&y an important role in mathematical statistics. Applications and special

properties of this class in the framework of problem of mixtures of

distributions form the subject of the next chapter.
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CHAPTER 5

MAXTMUM LIKELIHOOD ESTIMATION

5.1 Introduction

Maximum Likelihood estimates, in general, form an important
class of estimates in the theory of point estimaticn. It is
well-known (Cramér [15]) that under very mild regularity
conditions, maximum likelihood estimators of the unknown vara-
meters in a distribution are CAN and asymptotically fully

efficient. Given a random sample X ,...,Xn with realizstions

1
XyseeesX) respectively, from a population with probability
distribution indexed by an unknown vector of parameters a,

-~

the likelihood function L is defined by

n
L(g: xl,...,xn) = 1 fa(xi)
1=1 .

L £

where fa(x) is the common probability density function of the random

varigbles X X . The method of maximum likelihood consists in

IRRERE LS
choosing, as an estimate of the unknown population value of a, the
particular value that renders L, or equivalently &n (L), as great as
possible.

Unfortunately, maximization of the likelihood functiqn often
leads to some intractable set of équations and indeed estimation
problems concernéd with mixtures of distributions are no exception.
The problem of maximum likelihood estimation of the unknown para-
meters in a mixture of distributions has been considered by severai
authors and the reader is referred to Chapter 1 for a survey of
the relevant literature. The results of the previous papers, al-
though interesting, are mostly empirical and based on numerical

studies and thus lack a theoretical justification. Further, they

consider specific cases and in particular mixtures of distributions
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consisting of components which are the distribution Zumeticzns of
normally distributed random variables with unknown mezns z2nd un-—
known variances. In such cases, as noted by Day [1T7] , Behboodian
[5] and Fryer and Robertson [21], unless sufficient conditions are
imposed on the variances of the components (e.g. a2guzliiy), each
sample point generates a singularity in the likelihood function.
This can be seen by considering the likelihood function gznerated
by observations Xjseee5x  from a population with density function

89(x) given by

2 -1 X4 2
- a2 _1
ge(X) .Z ei (2 m oi) exp 2 g.
- 1=1 1
for - @ < x <+ wvith 8 +6, =1, and vhere 8 = (6., 8,)", )
By is the mean, 0% is the variance and Bi is the

mixing proportion of the”ith "component in the mixture for i = 1,2.

Denote the likelihood function by L(el,ul, oo c6.); then

12 %
L(e, X;5 Uys O, 02) = L(e, Hys X5 Ops 0) ==

for i = 1,..,n. Hence the method of maximum likelihood estimation
clearly breaks down in this case. In view of the fact that the
likelihood function is unbgnded for this problem, Behboodian [5]
has proposed using the value corresponding to the largest stationary
maximum of the likelihood function as an estimate. _ However, when
the mixing proportions aré the only unknown parameters, as mentioned
by Hill [26] and Macdonald [35], the likelihood function is.a concave
function of the pérameters and therefore it has at most one relative
maxima.

In this chapter, we consider a mixture Ge(.) of two known

distribution functions Fl(.) and Fe(.) with mixing proportions 8, = 8,

1
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0<6 <1 and 62 = 1-8 respectively. "hus

Golx) = 8 F, (x) + (1-6) Fy(x) 0<8<1 x€X

~

where ? = (61, 62)' ana we note that the mixing proscrtion 8 is the
only unknown parameter. It is assumed that there exists a o-Tinite
measure Y on the Borel sets of ¥ dominating Fl(.) and F2(.) and
hence also Ge(.) so that by the Radon-Nikodym theorem there exists

densities fj(.) j=1,2 and ge(.) so that
gg(x) = 6 £, (x) + (1-8) £ (x) 0<8<1 x€X .
Thus if A is any Borel subset of X, , )

Po(X€A) = i gqlx) au

~ A

and
P (X€A) = [ £.(x) au i=1,2,
g A9

where pg and p J = 1,2 denote the probability measures corresponding
to the Aistrib;%ion functions Ge(.) and Fj(') Jj = 1,2 respectively.

We shall see that the reguiarity conditions under which a
maximum likelihood estimator possesses the well—kpown asymptotic
properties (Cramér [15]), are satisfied by gé(.) for every 8 € (0,1).
Thus confining 6 to the interval (0,1), we examine the likelihood
equation from a somewhat more theoretical point of view and give
sufficient conditions for the existence of a unigue root of the
likelihood equation in the interval (0,1) with probability approaching
unity as the sample size increases. As mentioned above, an analytic

solution of the likelihood equation seems unobtainable and we are.

naturally led to the consideration of the iterative solutions of the
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likelihood equation. We shall use the well-known Zis-nesr's

scoring method of iteration and establish the propertiss »f th

0

solutions given by the first and the subsequent iterations.
In the sequel, the following partition of the semple space

X will be used; let S, and S, be those subsets of X such that

for every x € Sl’ fl(x) exceeds f2(x) and similarly for every

x € 8,s fz(x) exceeds fl(x). Therefore

8, ={x:x€X, fl(x) > fe(x)} s (5.1.2)
5, = x:xe X, fl(x) < fg(x)} (5;1.3)
and hence Sl and 82 are disjoint subsets of 3€ s l.€. -
5, N 8, = ¢ ) {Fmpty set)
and further
s, Us, =X - {x : x€X, £,(x) = £,(x)} . (5.1.4)

5.2 Statement of the Problem and Existence of a Solution

Given n independently and identically distributed random

1 <sX) respectively and

with common density function

variables X ,...,Xn with realizations Xysee

|A
<D
1A
[

ge(x‘) =0 £1(x) + (1-6) £,(x) 0

-~

the maximum likelihood estimator (MLE) of 6% (the true value of the

parameter 0) is desired. The likelihood function based on the given
sample
n n
L(e: xl,...,xn) = I ge(xi) = I [e fl(xi) + (l"a) fZ(Xi)]

i=1 o i=1
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is a function of § only and it is positive differentizble For all

0 <8 <1. Thus the MLE of 8% is the solution of

oL _
26 = O
or equivalently

3 2n(L)

a8

where %n(y) denotes the natural logarithm of the real positive

argument y (Recall that logarithm is a monotone function). Then

n
i (L(e: x .,xn)) = I &% [8°F

1(x5) + (1-8) £,(x;)]
1=1

107"

and upon setting the derivative with respect to 6 equal to zero, we

obtain
fl(xi) - fz(xi) .
Sfl(xi) + (1-9) f2(xi) a

n .
vie) = I (5.2.1)

i=l
whose root constitutes the MLE of 6%, Hereafter, the equation
(5.2.1) will be referred to as the "likelihood equation”. We
further denote by ¥(8) the random function of 6 whose realized value

is ¢(8) and therefore

, D fl(Xi) -~ fz(Xi)

¥(e) = ;‘izl 9f1(Xi) + (1-0) fg(xi)

.

(5.2.2)

Note also that the Fisher's information function in a single

observation is given by

2 2[5 - 5]
F [ 1o (6,0] " = B[

J(fl(x) - fg(x))2
g(x)
0

1(0)

du(x) (5.2.3)

~
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so that ﬁ;—) is the conventional Crarir-Rao lowsr Ttound
sample of size n and thus the variance of any unbiased sstimsztor
of 6% on this sample is at least ;T%E;—)— .

It is shown in Cramér [15] that if the following conditions are
satisfied:
(i) For almost all x € I the derivatives ﬁ ln(ge(x))

—2- Rn(ge(x)) and W ln(ge(x)) exist for every 8 belonging

to a non—degenerate 1nterval of R.

(ii) For every 6 for which (i) is satisfied, we have

% gg(x) < A (x) —Zgﬁ(x) < Ay(x) end

33
503 M (gg(x))

< A3(x), the functions Al(x) and Ag(x) being

integrable over X while E, [AB(X)] < M, where M is independent

-~

of 6,

-

(iii) For every 6 for which (i) is satisfied,

I(e) = EB [ﬁ 2n (ge(X))]2 is finite and positive,

then the likelihood equation has a solution which converges in
probability to 6% as nv» ., This solution is an asymptotically normal

and asymptotically efficient estimate of 6%.

Provosition 5.2.1. The density function ge(x) given by ‘(5.1.1)
satisfies the regularity conditions (i), (ii) and (iii) for all values

of 6 satisfying 0<6<1.

Proof. From (5.1.1),
n (ge(x)) = fn (efl(x) + (1-6) fz(x))

where x € X and 0<o < 1. Thus we have
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3 fl(x) - f‘2(x)
B8 0 (gg(X)) = 61, (x) + (1-9) £,(x)

52 £ (x) - £,(x) 2

362 In (ge(")) = of, (x + (1-6) £ (x)) °
and i

53 £, (x) - £,(x) 3

ag7 *n (6 () =2 |57 Gy (T6) (%)

-~

vhich clearly show that the first three partial derivatives of

2n (ge(x)) exist for every 6 € (0,1). Further,

(x)

g0 | = 18,00 - 20| < £,(0) + 1,

and
32
367 E(%)

and therefore the first and the second partial derivatives of ge(x)

are bounded by integrable functions for every 6 € (0,1). Now

fl(x) - fg(x) 3
efl(x) + (1-6) fg(x)

33
357 18 (g4(x))

( fl(x) - f,a(x) 13

(S
of. (x) + (1-0) £.(x) for every x Sl
(1 2 %
( .3
] fg(x) - fl(x)
€
8f. (x) + (1-8) £, (x) for every x € §,
O 2' "
0 for every x € X -8, US

\ 1 %2
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(.12 . (£, (x) = £,(x))3 ror overy x € 8
o260 + (10)g,(x)) (20 + 28 £ ()2 !
(£.(x) - £.(x))3
= *(1—16)2 2 L 5 5 " for every x € 8,
(02, (x) + (1-0)2,(x)) (7gogy £3(%) + £,(x))
0 for everyxex--SlUS2
rl (fl(X) - fg(x))?’
for every x € §
6% Tor, (x) + (1-0)2,(x)) (£, (x))? Ty 1
1 (£,(x) - £,(x))3
< A0 = e Ter G (evE, ) (5,Ga)2 ToT evem x €5,
0] _ . Tor every x ex = Sl U82

end so i =

Eg [A5(x)] = / As(x)gg(x)au = é Ay (x) golxlan + f Aa(x) gqlx)au

- T 1 - S2

L[5 (x) = £,(x))? J(fz(x) - £,(x))3

= du + du
32- fz(x) (1-0)7% fé(x)
l

oz |

S

5o

fl(x) dp +W ff (x) du
2

1
S €
Pel (x € 8,) * o) Pe2 (x €s,)

CDNI'__,

where Pe and Pe are probability measures corresponding to the
-1 -2
distribution functions Fl(x) and F2(x) respectively. Now, for any

6 contained in the interval (0,1), the coefficients of Pe (x e sl)
°1
and Pe' (X € 5,) could be held bounded and thus (ii) is also verified.
)
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(£,(x) - 2,(x))?
To establish (iii), note that I(8) = J - au
ge(x}
and thus I(8) = 0 implies fl(x) = fg(x) almost everywrzrs i.
Further ,
£2(x) £ (x)f,(x) £2(x)
_ (1 _ 1 2 2
1te) = J_ge‘ﬁx) o - 22 EACII Jge(—.x) a
(X) £ (x)
= (2,00 = £,(0) gy an + [5y(x) - £ () gi(x) an
f (X) | f (x)
< f(fl(X) ,(x)) ( y au + f (£,(x) - £ (x)) ( du
S 8o (x)
1 - 2 -
(%)
3 00 - e — 20,
5, fl(x) o fz(x)
f,.(x)
+ 2 [ (£,0x) - £)(x)) ——2 au \
5, Tog f1(x) + £,(x)
<t (5,00 - £(x) a +—f (£,(x) - £,(x)) au
S

1 24

1
[Pel(XESl) - Peg(XESl)] Ay [Pe2(X€SQ) - Pel(xes2)]

¢In‘

< o for every 0 < 6<1

completing the proof of the proposition.

In the light of the Propositioﬁ 5.2.1, in the rest of this chapter,
we shall assume that the parameter 6 is confined to the interval (0,1)
unless otherwise stated. It is noted, however, that if 8 = 0 or 6 = 1,
then I(6) can become infinite and similarly Ee[s%%-zn (ge(x)ﬂ can become

-~

unbounded.

5.3 Properties of the Information Function

The information function I(8), given by (5.2.3), has certain
interesting properties. These properties will be useful in the

analysis of the likelihood equation and will be discussed here. Hill
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[26] has obtalnel Power series expansions for I(8) when =.{x)

NolT e

and fz(x) are both density functions of (i) negative exponsnzisl

distributions and (ii) normal distributions.

Now,

- (gn(x) = £,(x)) (galx)-£,(x)
o) = ((fl(X) 1‘2(x))"-du 1 J 0% T : 23
/ 6(1—6) ge(x)

Eg(x) o

1 L -J fl(x)fz(x) "

5(1-9) ENEY

and due to positivity of I(6), proved in proposition (5.2.1), we have

£
. f_f 1 () £,(x) w1

ga(X)

. 1 . . N . . . .
Since BTE:ET 1s the information function for 6 in a pure binomial
situation, we see that the additional uncertainty as to which of the

7 ~

two populations, in the mixture of distributions ge(x), an observation

~

comes from, is reflected in the factor

£ (x)£,(x)
1_J_1_f_2___du .

ge(X)

If the densities fl(x) and fz(x) do not overlap, then we obtain
the full binomial information, while if they are identical, the
information is zero. This clearly indicates that unless the densities
are rather well-separated, it will take an extremely large sample size

to get a reasonably precise estimate of 6.

Proposition 5.3.1. The information function I(8) is infinitely

differentiable under the integral sign.

Proof. Recall from the Lebesgue dominated convergence theorem that

for any function R.(x) depending on x and the parameter 6,

8



r
forr = 1,2,... if B_r Re(x) exists at 6 = 60 and if there exists
38

an integrable function H(x) such thet

i—R(X)

aer 0

< H(x)

almost everywhere Y, for every 6 belonging to some neighbourhood of

1 2

90. —
‘ r o |(£(x) - £,(x))?
9 1 2 .
Now clearly, exists and
20" g (x)
r _ , _1\T _ r+2;
3 _ Efl(x) fg(x))z:[ _ (1) £t (£(x) - £,(x))7
~ B + ~0
8 = 60
where .6_0 = (60, 1-60)' for r = 1,2,...
[ (£, (x) - £,(x)™8
r! 1 2 for every x € S
: r+l 1
gy (x)
.0
r+2
= | (f,(x) - £,(x))
= , 2 c
r! ey for every x S2
gy (x)
.0
0 foreveryxef -S, Vs, .
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(£, (x) - £,(x))""?

( I‘! c
eI‘+l (l—eo) r+l I\.-_. T :_j X Sl
0 f(x) + ——— £ (x)
1 ¢ 2
0
r+2
" (£,(x) = £ (x))
= { : 1 1% for every x € §,
1-6 1 2
0
LO for every x € X —SlUS
{ Y‘! R
ey fl(x) for every x € 8,
0
0
f_J____li;:i fQ(X) for every x € 82
(1-6,)
0 for everyxex —‘SlUS
forr=1,2,... . (5.3.1)

-

For anv neighbourhood of 6. contained in (0,1), the coefficients of

0]
fl(x) and fg(x) in (5.3.1) can be held bounded and hence

oF | (£ (x) = £,(x))?
20" gq(x)

r=1,2,...

is dominated by an integrable function. Therefore the conditions of

the Lebesgue dominated convergence theorem are satisfied by the
(fl(x) - fe(x))2
» completing the proof.

function
- By(x)

Corollary 5.3.1. The Cramér-Rao lower bound H—%Tg) is an infinitely

differentiable function of 6 € (0,1).

Proof. From the Proposition 5.3.1, I(8) is an infinitely differentiable
function of 6 € (0,1). Thus it clearly follows that E—%TET is also an

infinitely differentisble function of 6 € (0,1).

2
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1

Proposition 5.3.2. The Cramér-Rao lower bound )
N

is & concave

~

-~

function of 6 € (0,1).

Proof. Differentiating';—%T§T twice with respect to 6,

_ [(fl(X)-f2(X))2 ((fl(x)—fz(X))“ ((fl(x)—fz(x))3 2
VU T T T gm YT 2w @
a2 (1 ]_ - - -
a64 (nI(e)) (£, (x) - £,(x))2 3 .
n [ 25 0) du (5.3.2)
Now, by the Cauchy-Schwartz inequality, we have
2
(£,(x) - £, (x))3 (£.(x) - £,(x))? (£ (x) - £ (x))"
I = gg(x§ du 5,{ 1 2 AT J L 2 du

gq(x) g4(x)

~

which shows that the numerator of (5.3.2) is non;bositive. Thus the
second derivative of E—é%gy is non-positive for every 86€ (0,1) since
the denominator in (5.3.2) is positive for such values of 6. Hence

is a concave function of 6€ (0,1).

1
n I(8)

Corollary 5.3.2. The Cramér-Rao lower bound has a finite

1
n I1(8)

unique relative maximum in (0,1).

Proof. In view of the fact that is a continuous function of

1
n I(9)
8 € (0,1), its concavity implies that the function has a unique

maximum in (0,1).

5.4 Properties of the Likelihood Equation

Given the observations X oo e enXy from a distribution with

density function ge(x) given by (5.1.1), we assume that fl(xi) 3 fe(xi)
for i = 1,...,n. This assumption is plausible for if fl(xl) = fe(xz)

for some 1 < £ < n, then the information contained in Xy is zero and
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can be thus dismissed. Now, the likel“hcod equaticz %{8) given

by (5.2.1), is a decreasing function of 6 since

2
f,(x;) - £, (x;) ]
1o [0F(x;) + (1-0) £,(x.))

d .
36 ¥(8) =~

™~

is strictly negative. Let

%) (5.4.2)
q. = - for j =1,...,n 5.4.1

be the realization of the random variables Qj given by

_ fe(Xj)
Jj fg(xj) - fl(Xj)

for j =1,...,n (5.4.2)

where, as before, Xj is a random variable whose realized value is xj
for j = 1,...,n, We can assume without loss of generality that

Q < % < ... < Q, for if not, then qj's can be rearranged to satisfy
this condition. Denote by p, the probability that each qj,l <j=<n,

is non-positive, i.e.

P = prob. [Qj < 0 for some 1<j<n] = prob. [fl(Xﬁ) > f2(xﬁ) for some 1<j<n]

= prob. [Xj € S, for some 1<j<n] = f ge(x) du .

S1 -

1

Then

i
d
il

prob. [Qj > 0 for some 1<j<n] = prob.[Xj € 82 for some 1<j<n]

| &y(x) au .
5, -

Now, using (5.4.1), we can write ¥(6) as
n

=1
y(e) = ” E

which shows that ¥(8) is a continuous function of 6 for qj <ef<q_j+l

where j = 1,...,n-1 and finding the roots of y(8) = 0, leads to
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solving a polynomial of degree n-1 with leading coefZl:le¢nt unity.

Further for each 1 < j < n-1,

lb(qj +0) >+ o

and

\b(qj"'l - 0) > - ®

and therefore in view of the fact that ¢(8) is decreasing in the
intervals (qj, qj+l) j=1,...,n-1, it follows that it has a unique
root in each of these intervals. The function has simple poles at
Qyseeesd -

Further, if a9y g, < ... < qn_i 0, the probability of which
is pn, then the roots of Y(8) are negative and the value én =0 is °
chosen as the estimate of 6%, On the other hand, if
0 < ql< 4 < .. < a,> which happenﬁé with probability (l—p)n, then
with the same probability, 1 f.ql <4y < .. <. In this case,
the roots of ¥(6) exceed unity and we choose an== 1 as the estimate of
g*, In particular if qj's change sign at q. for some 1 < r < n-1
so that a. < 0 and S > 0, then there exists a unigque value of 8
satisfying ¢(8) = O such that q. <0 <q. which forms the estimate
of 6% (Figure 5.1). Hence the maximum likelihood estimator 6n of 6%

is defined as

rén =0 if ql<q2<...<qn§_0W
Q. <8 <a. satisfying w(en)=o if q,<q,<...<q <0

4 and 0<qr+l< ces <qn

for some 1<r<n-1

- 3 < < <
Len =1 if O Qq et

7

(5.4.3)

and if en is the realization of the random variable Zn’ by using



(5.2.2), we have

an =0 with probsbility gn
<Qr<zn<Qr+l for some 1<r<n-1 with probability |
and satisfies ¥(Z ) = 0 [1-p™-(1-p)™]
2, =1 with probability (1-p)-
7

It should be noted that the estimator of 8% defined by (5.Lk.3)
can take values outside the interval (0,1). Indeed the wvalue Sn >
Q. <6 <aq.,, with a,. < 0 and A4y > O defined by (5.4.3) satisfies

q. <0< 6 <1 29,4 if and only if

, 1 f (x ) - f (x ) . B _f (x.)
p(0) == = == I . 1 .
By fz(xi) i fz(x )
is positive and N
_ \
1 ® fl(xi) f2(xi) _ ; B f2(xi
i=1 171 i=1 "1'71
is negative. Thus defining
£, (x) £.(x)
(x) = and g = =2 ’
f, (x) 21 fl(x)

~

we have O < en < 1 if and only if the sample means of al2(x) and

aEl(X) given by

(xi) _ 1 n f‘(x.)

—— and a == I =1
( ) 21 n =1 fl(x )

H)H:

1=1

both exceed unity. Hence denoting by KiQ and Eil the random variables

whose realizations are Eie andlzél respectively, we have
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Prob(0<6_<1) = % - Prob(A,,<1) - Prob{A,__<i}.

12— 21—

In the following theorem, we give sufficient conditions for the
existence of a unique root of ¥(8) = O in the interval (0,1) in

large sample sizes.

Theorem 5.4.1. If I(0) and I(1),wlereI(8) is given by (5.2.3),

both exist and are finite, then with probability approaching unity

v(0) = 0 has a unique root in the interval (0,1).
Proof. From (5.2.2), we have

fEO{i)

fl(Xi)—f2(Xi)
fl(xi)

n n

1 1
‘l’(O)=H P -1:1- -
i=1 i=1

Thus ¥(0) and ¥(1) are both sums of independently and identically

distributed random variables with

Eq

-~

(£, (X)-£.(X) £o(x)-£,(x)
Ll 2 _ f_l_f____z_x_ [efl(x) + (1-e)f2(x)]du

f2(X) fe(x)

(£, (x)-£_(x))2 (£ (x)-£,(x))
8 J 1 " " du +J 17 F f2(x) du

X 7,0x)

8 I(0)

and similarly

E

£ (X)-£,(X) £ (x)-£,(x)
1( ) 2 _ J 1 Xt [efl(x) + (1—e)f2(x)] dp

8 fl(X) fl(x)

~

(5,52 J(f1<x)‘f2(x))

- (1-0) J £, (x) £ (x) au

fl(X)

]

- (1-8) I(1) .
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So, if I(0) and I(1) both exist and are finite, then Ty the week
law of large numbers ¥(0) and ¥(1) converge in probability to

8I(0) and -(1-0) I(1) respectively, i.e.

¥(0)

01(0) + © (1) _ Casn oo

and’ ©y(1)

- (l"e) I(l) + Op(l) as n > oo‘ .

Now, since I(0) and I(1) are both positive, with probability
approaching unity ¥(0) > O and ¥(1) < 0 as n*> . Hence with such
a probability there exists a unique root of ¥(8) = 0 in (0,1) as

n->e

Figure 5.1 ) : .

w(ei

— - m—— Gme wm Gme s wees Gmme e et Gt wnd mmm Gwwe Gee W e an G vm e W = e enAL
. o . — — Sw T —— . e oy e G S o] G n et —e e e e G S mew
<D

Ke]

T ‘ qr+l



137

5.5 Iterativ.: Solutions of the Likelihood Equation

The exis.ence of a root of ¥(8) = O formirg the maximum likelirood
estimator of 6% was discussed in previous sections. To obtain this
root is yet another problem since solving ¥(06) = 0, in general, is of
course an impracticaltask. We can, however, use nimerical technigues
to obtain the solution of y(8) = 0. The computational routines for
finding the roots of a likelihood equation has been the subject of
many papers. Barnett [3] gives an analysis of the various numerical
techniques used to approximate the roots of the likelihood egquation
and Kale [29, 30] investigated the large sample properties of
iterative processes. R.A. Fisher was the first to discuss and advocate
the use of successive iterations to solve the likelihood equztion.
Fisher argued that in many cases where the regularity conditions listed
in Section 4.2 are satisfied, it would be sufficiegt to execute only'
one cycle iteration in order to arrive at a good approximation.

Northan [39] has shown, however, that several cycles of iteration may
be required to obtain a reasonasble convergence. Barnett [3]
illustrates the properties of several successive approximation
techniques for small samples, when the random variables have a Cauchy
distribution depending on a location parameter.

Perhaps the most commonly used numerical method for locating the
relative maxima of the likelihood equation is the celebrated Newton-
Raphson method and other well-known techniques are variants pf it.

The Newton-Raphson method is based on the expansion of the likelihood
equation in Taylor's series around its root. Thus if 6n denotes the

root of y(8) = 0,

1}

I O R

0= y(e,) =

~

for some O < v < 1, where 6 is an initial solution. If we take .
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v=0 in (5.5.1), we obtain an approximstion for g iz (5.5.1),

namely

S(1) _ 50) _ [_u(e)
s 160 ] P ()
35 ¥(9) oo o (5.5.2)
and by using (5.2.1), we obtain
1 2 fl(xj) - :é(;j)
) ) TR B0
eil) - er(10) + n
- 2
1 2 rfl(xj) fg(xj)
n 5=1 L gé(O)(XJ) (5-5-3)
~
where 8(0) = (é(O), 1- 6(0))'. The value é(l) can be substituted °
-n n n n

in (5.5.3) for Bio) to obtain another value Gig), and so on.

Generally, starting from an initial solution (0)

6n , We generate a
sequence {Gir) 3y r=0,1,2,...}, which is determined successively by
the formula

1 g fl(xj) - fg(xiz
n . R X.
521 ge(r)( 3)
eir+l) = eir) + - . T=0,1,...
10 (Rl - 5000
n .l g (x.) (5.5.4)

~n

~

vhere 6'F) = (e(r), 1 -6y por y = 1,2,...
~1 n n
(0)

L ves chosen close to the root of the likelihood equation

If the initial

solution 6

-~

en, there is a good chance that the secguence generated by (5.5.h) will

converge to the root en.
It is shown in Zacks [61], that the Newton-Raphson method of

' . . .
iteration genially leads to a CAN and asymptotically efficient estimator

after the first cycle of the iteration process is completed, provided
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that the initial solutior. i5 a consistent estimztor. Tavs 1if
= (0) % ~(0)
en is chosen to be a consistent estimator of 6%, and if 8
is the realization of a random variable Z( ), then using (5.5.3),
by Zack's theorem we can say that the random variable Z( 1) given by
1 £06) — )
moi=1 200 (x.) + (1292 (x.)
(1) (0) n 1 3 n 273
A AR (5.5.5)
, B £, (X.) - £, (X.)' 2
= I
%=1 (O)f (x ) + (1- Z(O))f (X )

is asymptotically normally distributed with mean 6% and variance

1
n I(6%)"

The method of iteration that we adopt in here is the method of
"scoring for parameter" which is derived from the Newton-Raphson method
by replacing the denominator of the correction term in (5.5.2), namely

= ¥(8), bty its expected value given by

90
_ 2 - 2

o T wgof] oo R0 RO ) - 0002

CIEE 8 gq(X.) g, (x)

- - J 0
Thus choosing the initial solution 9( 0) , the sequence {G(r) H =0,1,...}
is generated by successive substitution in the formula

f .) - -
an n (r) Z g (X.) r - O,l,.-o
n1(6,7) j=1 Ep(n)'
~n (5-5'6)

where e(r) = (é(r)
n n

-~

(r)), for r = 0,1,2,... and I(6) is the Fisher's

s 1-6
information function.
The method of scoring for parameter was first introduced by Fisher
and it is argued by various authors (e.g. Kale [29]) that this method is
often more appropriate from the computational point of view in certain

cases specially for large sample sizes. Using the method of scoring

for parameter to find the root of ¥(6) = O, it turns out that the
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solution obtained after a l-cycle iteratlor has certelin intsrasting
properties when the initial solution is chosen to be zny arbitrzxy
value in the interval (0,1). In the followings, we investigate
these properties together with the properties of the solution
obtained after the second cycle of the iteration.

~(0)

Suppose that the value 6 is chosen (independent of the

observations) in the interval (0,1). Substituting 6(0) for eéo)

in (5.5.6) with r = 0, we get

. . n f (x.)- f.(x.)
R e O e ewes s e S
nI®E ') j=1 5(0)77] o
where 8(0) = (6(0), 1—6(0))', as the estimate of 6% obtained after the

~

(1) .

first cycle of the iteration. Let Zn be the random variable whose

1)

realization Gi is given by (5.5.7).

>

(1)

Theorem 5.5.1. The random variable Zn

converges almcst surely to

6* as now .
Proof. Consider

- n f£(X.) - £ (X.)
wel®) -2 3 Lo
=1 Ei(0)M

-~

=]

which is the sum of independently and identically distributed random
variables. Then a necessary and sufficient condition for W(e(o)) to

obey the strong law of large numbers is that

., £,(X) - £,(X)
1 g™

< o, . : | (5-508)

Now,
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(£ (x) = £,(x)

ng‘ (}j - for every x £ Sl
5(0)
£, (x) - £, (x)

N EY)
Be(0)*

fg(x) - fl(x)

o) (%)
(o)™

Ve [S
for every x 82

-~

0 foreveryxex—s U82

1

where Sl and 52 are, as before, defined by

Sl ={xeX : fl(x)>f2(x)} and S2 ={xe ¥ : fe(x)>fl(x)}.

Then
(1 fl(x) - fE(X)
~(0) 1 for every x € Sl
8 (£, (x)-£,(x)) + go—)' £,(x)
fl(x) - fe(x) _ 1 fg(x) - fl(x) E
z ) = ~(0) : 1 for every x 82
- - - + —
5(0) 1-9 (£,(x)-1, (x}) 0 £, (x)
' € - U
0 for every x I Sl 82
-l £ €s
5(0) : or every X 1
1
< A—F= for every x € S
- (0) 2
1-6
0 for everyxE:f —SlU82
1 ex
< ~10) AON for every x .
min (6'°/, 1 -8""")

Hence (5.5.8) holds since O < 6(0) < 1 and therefore by the strong law

~

of large numbers, w(e(o)) converges almost surely to
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l( x) f( ) . N
[_—?—)(-—-)— [9'(fl(X)—f2(X)) + £ (x)] an
i

(5, G0m,00)2 (£, (x)-£,(x)
) 8 (0)™) )

fl(X)—fe(X)
Eox —EEZQ)(X)

8 f (x) dp

aay(x) T2
Ea(0)'*

~

U}

(ox - 500, J(fl(x)_fQ(x))z

o™
(ke

(fl(x)—fg(x)) A(O)
+ J ga(o)(x) [6 (fl(x)-f2(x))+ fe(X)]'dU

-~

(ex - 80)y 1¢5(9)y 4 £(£, (x)-£,(x)) du

= (o% - 800y 1(5(9)) | (5.5.9)
Now, from (5.5.7),
- +(0)7
zfll) G —————-‘*’(9(0)) (5.5.10)
I(e"’)
which by using (5.5.9), we see that as ni= , Zil) converges almost surely
to
5(0) ~(0)
“(0) (0% ) 1(e777) o5
~(0) -
I(6 )
completing the proof of the theorem.
Theorem 5.5.2. The estimate éil) given by (5.5.7) is unbiased and
CAN with
(£, (x)-f,(x))2
(1), _1 1 J 17 2 2_4(0) 2}
Var [Zn I = n {12(6(0)) g%(o)(X) ge*(X) du = (6 8 )
. 9 ~

- (5.5.11)
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Proof. From (5.5.10),

fl(X)—fz(X)

(1) ~(0) 1

E o [2'77] =0 + —F—— E —_— = 6%

0% 1(5(0)) " | E:(0)®)
which proves the unbiasedness. Furthers
(1) 1 £, (X)-£,(X)
Var (2" ') = —————— Var,, [+
T nt o 12(gl0)y TTO¥ gé(o)(x)
N £ (0-2,00)2 £,(0)-1,(X))

[

—7~ 3E
o 12(8(0)y | 8% gé(o)(X)

-~

Q* gé(O)(X) J

-~ -~

. J(fl(x)-fz(x))z

%_2(0) ~(0)
nlz(é(o)) g?*(x)du - (e*-9 )212(e )

Z 3 ()
500"

which establishes (5.5.11).
Finally, since w(e(o)) is the sum of independently and identically

distributed random variables with finite first and second moments, by

the central limit theorem, the asymptotic distribution of W(B(o)) is

normal. Thus it follows from (5.5.10) that the asymptotic distribution
(1)

of Zn is also normal with mean 6% and variance given by (5.5.11).

(1)

n

Hence by using theorem 5.5.2, the variance of Z can be found

for any finite samples from the formulae (5.5.11). We shall now prove

~(1)

that although the estimator Sn is not uniformly minimum variance un-—

biased, it has, however, the optimal property of being locally minimum

(0).

variance unbiliased estimator at © First we define these terms and

in doing so, weidenote bye;{ the class of all unbiased estimates of 8%,

Definition 5.5.1. (Zacks [61]): An unbiased estimator of 6% say

¢ Eoﬁ{, which is the realization of a random varisble Z, is said to be
uniformly minimum variance unbiased (UMVU) estimator if given any other
unbiased estimator, say E'Gc/{ which is the realization of the random

—

variable Z, we have
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Vare(Z) j'Vare(Z)

~ ~

for every 6 = (6, 1-8)' with 6 € (0,1). The UMVU estimator is

often called the best unbiased estimator in statistical literature.

-

Definition 5.5.2. (zacks [61]): The estimator 6 defined above

is said to be locally minimum variance unbiased (ILMVU) estimator

at eo € (0,1) if

ar (Z)_<_Var (E)
% %

where 6. = (6

o 1—90)'and'z is as defined in Definition 5.5.1.

o’

Theorem 5.5.3. The estimate enl) given by (5.5. 7) is IMVU at e(o)

=

Proof. From Definition 5 5.1, it is clear that 6

o (1) is not UMVU

since n Vare(Zi )) obtained from (5.5.11) is not equivalent to the

inverse of the information function I(6). However, we can see from

(5.5.11) that

1)y o1

Var,\(o)( I(é(o))

which is the minimum attainable variance for an unbiased estimator
according to the Cramér-Rao inequality. Hence by Definition 5.5.2,
8ﬁl) is LMVU at 6(0)
The IMVU estimates, apart from being of interest on their own,
are often used in statistical estimation problems when UMVU estimates
of the unknown parameters in a distribution do not exist. Since

the essential element for the existence of a UMVU estimator is the

completeness of the family of distributions in the given statistical model

(Zacks [61]), aUMVU estimate will not exist in the absence of completeness.
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In such situations the LMVU estimators miy. however, sxisi zn

(o7

serve as a practical alternative.

Zacks [61] gives a useful general account of LMVU estimators
and proves that a necessary and sufficient condition for an un-
biased estimator to be LMVU at a certain point of the parameter
space is that the estimator should be uncorrelated with any un-—
biased estimator of O with a finite variance. Thus if n(X) is

an unbiased estimator of O such that

Ee[n(X)] =0

~

for every 68 = (8, 1-8)' with 6 € (0,1), by using theorem 5.5.3,

we have

cOvé(O)(zil), n(x)) =0

whenever

Vara(o)(n(x)) <>

~

a(1)

We have therefore established certain properties of en , the

estimator of 6% given by a l-cycle iteration of the Fisher's scoring

~(0)

method. But the choice of the starting solution 6 which is an

arbitrary point (independent of the observations) taken from the

~(1) ~(0)

interval (0,1) can, of course, influence en and thus 6 should be

chosen so that the anomaly associated with this choice is minimized

in some sense. We note from (5.5.11) that Vare*[Zil)] is a

continuous and differentiable function of 6%. Upon differentiating
it twice with respect to 6%, we obtain
d

—F (Vare*[Zgl)]) -

- 3
1 1 J(fl(x) fg(x)) au - 2(6*-8(0))

n I2(5(o))

~

200y (x)
(o)

N (5.5.12)
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and

2
L Ger, w1 = - 2 (5.5.13)

which shows that Vare%IZil)] is a concave function of 6% achieving

its maximum at the root of (5.5.12) given by

o* =

. (£, (X) - £,(x))3
6(0) 1 J aw . (5.5.1k)

+ ~

Substituting (5.5.1L4) into (5.5.11), we get

sup Varey[z(l)] —L — {1+ 1

0<B*<1 - n I(e(o)) L 13(6

- I(w:‘l(;c)—f%h)c))3 2
0 Y
) gg(o) x

(5.5.15)
~(0)

and by nminimizing (5.5. 15) with respect to 6 , we can determine the

-

arbitrary starting point so that the maximum variance after one

iteration is minimum (i.e. eil) is the minimax estimator under the
squared error loss function).

Let

(£.(x) - £.(x)"L
J (8) = J 1* 2~ du

gy (x)

-

for r = 0,1,... and for every 8 € (0,1) where 6 = (6, 1-6)'. Note

that in particular we have J.(8) = O for every 6 € (0,1) and

0

Jl(e) = I(68). Since Jr(e) has the property that
a5 020 =y
for r = 0,1,..., we can write (5.5.15) as
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'J‘ (é(i)))’z 3
(1)}_ 1)1 |2 1 {
sup Var [Z ]= =\ =7 +
o<gr<y  ortm Jom b LJi(e(O))J Jl(e(cé)}
1|l _a (2 L1 ]
n k| 4500) |5 (5(0)y J (6(0))j
i L 1 1

(5‘5016)
To minimize (5.5.16), we set its derivative, with resosct to 8(0),
equal to zero. We find that the stationary points of (5.5.18) are

the roots of

11 T, af 1 J,oafa T_,
2 46 Jl(e) de Jl(e) de Jl(e)

a | 2
s ]

from which

d 1
—_— ——1 =0
ae El(e):I

or

fo))

yields
J, =0
and
1 g2 1
fledy + =
5z [T (Y| 170

3,(0) = —r v e (5.5.17)

where A and B are real constants determined such that O < Jl(e) < o
for every 0 < 8 < 1.

By differentiating (5.5.16) twice, it will be seen that the
solution J2(9) = 0 corresponds to the minimum of (5.5.16) while (5.5.17)

corresponds to its maximum. But according to corollary 5.3.2, the
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equation

(f.(x) - £.(x))3
-4 (_ - 1 2 — -
J (e) (- 1(8)) = I gg(x) dp =0 (5.5.18)

de

-~

has necessarily a unique root in (0,1) and hence if this root is
used as the starting solution of the iteration process, then é(l)
the estimate of 8% given by a l-cycle iteration, is minimex under
the squared error loss function.

This result is intuitively plausible for if we denote the

unique root of (5.5.18) by 6 and substitute 8 in (5.5.15) for 6( )

we find that

(1)] 1 .
sup Var [Z = —F
0<B%<] 9* n n I(Gm)

1600 =g
- - m
which is minimum according to the Cramér-Rao inequality.
So far, we have established the properties of the estimafe of 6%
obtained after the first cycle of the iteration. The question
naturally arising now is the behaviour of the subsequent iterationms.

In the following theorem, we establish the properties of the

estimate of 6* obtained after the second cycle of the iteration is

completed. Thus suppose that enl) given by (5.5.7) is substituted

in (5.5.6) with r = 1, to obtain 6(2) and denote by Z( 2)

“(2)

variable whose realization is 6 . Hence

the random

~(2) “(1) ________~. n o f(x;) - f (XJ)
and ( ~? -
n f,{X £,(x
2(2) _ ,(1) | — 1 (Xg) (5.5 209
n n n I(Zh ) =1 gZ(l) 5
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(1)

where Z

(1) (Z(l) }' and as before é(l) (8\" ))'

-~

R l"Z
(In the following theorem,we use the symbols O (.) ana Op( ) introducsd

in Section 3.7).

Theorem 5.5.4. The estimator of 6% given by the second cycle of the

iteration process is CAN with asymptotic variance given by 1/(n I(8%)),

proving that it is asymptotically fully efficient.
Proof. Expanding (5.5.20) by Taylor's series about 6%, we get

n £, (X.)-f (X.)
+%zl,12g_

(2) _ (1)
yA =17

n n

n (fl(X )—f (. ))?
_9*) T _

~

+ op(zil)-e*)Z} {I’l(e*) + op(zﬁl)—e*)} (5.5.21)

£1(X) - £,(X)
Now g (%) is a random variable whose first and second moments
e* F &

exist and ~thus

£ X) - 5%
1 ge*(xj) P

n
2 z as n > «
n ._ :
J__

for every a <1 and similarly

1 2 (fl(xj) - fz(xj))2
n .- gé*(Xj)

= I(e%*) + oP (n~ %)

J_

for every a <1. So

(1) ; “(0) , -"—753‘ n £,(X.) —(igng)
1) §=1 8500
_ o), _2(0)y +,2(0)y o ~a
= - I(e(o)) {n (e%-67"7) 1(6°77) + o (n )}

= 6% + °, (%) for every o < 1.
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Hence from (5.5.21),

1 T 1 2
n s g9*(X )
2(2) = Z(l) + (Z(l) ) + o (n ) @ <1
n I(6%) n
and therefor
€ 1 ré fl(XJ)—fz(Xj)
/E'j=1 ge*(xj)
o (282) e - o {2y (5.5.00)
n 1(6%) P

for every o <1. Thus for every o such that <a<l, and by using the

1 g4(X.)
(2) .y 6% 7
lemma L4.2.1, we see that /EXZH 8%) and I(6%)
same asymptotic distributions. But

=

i~ B

N [
[

have the

fl(Xj) - f2(Xj)

[ e i =]

3 I
[}

-

I(e*). ;

is the sum of independently and identically distributed random
varigbles admitting first and second order moments and hence by the

central limit theorem its asymptotic distribution is normal with mean

1 rzl fl(Xj) - f2(Xj)
/E-j=1 ge*(Xj)
Egx I(6%) =0
and varlance
1 g fl(Xj) - fe(Xj)
/H.j=l ge*(xj)
- _ 1
Vargx I(6%) = 1(6%)

-~

which completes the proof of the theorem.
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5.6 Mont= Carlo Studies

This seztion is devoted to a small numerical study of the
Fisher's scoring method of iteration for finding the solution of
the likelihood equation. Similar to numerical studies performed
in previous chapters, we shall be concerned with a mixture of two
normal distributions. As indicated at the beginning of this
chapter, the estimation problems concerned with a mixture of two
normal distributions has created considerable difficulties in the
past, but since we are only estimating the mixing proportion with
other parameters known, the maximum likelihood estimator of the
mixing proportion exists.

Consider a mixture g.(.) of two normal density functions
0

1 1 2 )
f(x)-:——exp{—zx} . - 0 < ¥ < + @
1 fom
and B &=
1 2
£ (x) = exp { - =5 (x - w)?*} - eo<x<+=
2 ovaen 20 )
so that .
gglx) = 8 fl(X) + (1-8) £ (x) - @ <x <+

Q
v

where 6 = (6, 1-8)' with 6 € (0,1) and where 0 and p are known

parameters.

Given a random sample X .,Xn with observed values XyseeesX

1’ n

respectively, (5.5.6) was used for r = 0,1 to obtain the estimate of

0 after the first and second cycle iterationms. The initial solution

6(0) can be chosen to be any arbitrary point in the interval (0,1)

(independent of the observétions). Table 5.1 gives Bil) and 6£2)

~(0)

when 0 = 0.3 for mixtures of distributions considered in sections

2.7, 3.5 and L.3. The mean-square—-error of each estimate and the
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standard error of each mean are calculated as explainz=3 In S=zction
2.7. When n is large, eéz) has a smaller mean-squars-srror thzzo
Gil). This is in agreement with the theorem 5.5.4 which asserts
that eée) possesses the asymptotic properties of the meximum likeli-
hood estimator of 6. However, for small n, Bil) seerms to be prefersble.
In order to investigate the dependence of eil) on the choice of
6(0), we picked three following cases:
H, ~ M ]
(i) %——l=o.5 3-2—=1 n =75 I = 5000
1 1
Uy, = H Y
(ii) =1 -, 2.3 n=10 N = 5000
o o
1 1
Hy — H (o] .
(1ii) 21 -5 221 n =20 N = 5000 .
% %1

~(1)

and plotted the mean—-square—error of Bn against different values of

(1) 40

6(0) (Figure 5.2). The dependence of Bn in cases (i) and

(iii) seems to be negligible and in (ii) very small. This is believed

to be due to relatively large sample sizes in cases (i) and (iii).
, Vo ™ Hy
The mean—-square—error reduces substantially as Y. increases
1
which stresses the point, already discussed in Section 5.3, that the

more the components of a mixture of two distributions are separated,
the easier is the estimation of the mixing proportion based on a given

sample.
. N _ _ ~(1) ~(2)
Finally, in Figure 5.3, the mean-square—error of Bn and en
Uy — U o
21 .qa ;2 are as in (ii). Again it

~(2) . 1 o~)
is observed that en is to be preferred to en for large n, whereas

are plotted against n when

in small samples the latter has a much lower mean-square-error in

comparison with the former.
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Table 5.1

Maximum likelihood estimator of the mixing provortion, based on the

solution of the first and second cycles of the Fisher's scoring

method of iteration, for various mixtures of two normal

distributions

Estimate of 8 after the first—and second
Tterations

6(l) e(2)

n n
n (pe—ul)/ol 02/01 8 Mean MSE Mean MSE
50 0.25 1 0.5 [0.419 * 0.053]|0.285 | 0.421 + 0.047 |0.232
10 0.5 1 0.5 [0.456 + 0.029 | 0.Lk25 | 0.L6T + 0.032 | 0.517
10 1 1~ 0.5 |0.476 + 0.016 ] 0.126 | 0.490 * 0.025 }0.323
10 1 1 0.8 10.788 + 0.016] 0.130 ] 0.769 * 0.021 |0.231
20 5 1 0.5 |6.493 + 0.007| 0.013 | 0.493 + 0.007 | 0.013
10 0 2 0.5 {0.476 + 0.018] 0.168 | 0.457 + 0.020 | 0.202
50 0 2 0.5 |0.476 + 0.019] 0.037 | 0.476 + 0.018 | 0.037
10 0.5 2 0.5 (0.468 + 0.017{ 0.155 | 0.46T + 0.026 | 0.3L6

. 5000 ]
Each case is based on n, = samples of size n. The standard

error of each mean is given to indicate the accuracy of the Monte Carlo

computation.
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MSE
0.3 ¢4 .
0.2 ¢
(ii)
0.1 T
(iii)
0.3 0.6 0.9 5(0)

(1)

Fig. 5.2 - The mean-square—error of 6, ", the maximum likelihood estimator
of the mixing proportion, based on the l-cycle solution of the Fisher's
scoring method of iteration, in various mixtures of two normal distributions,

againstthe arbitrary starting point 5(0)_
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MSE
0.44
~(2)

0.3} /MSE of 5,
0.27

0.1 4

MSE of 6(1)
n
T ——
20 L0 60 80 100 v 120 n

Fig. 5.3 - The mean-square-error of eﬁl) and 852), the maximum likelihood estimatox

of the mixing proportion 6, based on the first and second cycles of the
Fisher's scoring method of iteration, in a mixture of two normal distributions

N(0,1) and N(1,1), for varying sample sizes.



156

5.7 Conclus:ons

The maximum likelihood estimator of the mixing provortion in
a mixture of two distributions is the root of an equation which
cannot be solved directly. Due to the interesting properties of
maximum likelihood estimates, we use iteration to obtain a close
approximation to the root of the likelihood edquation. It is seen
that a l-cycle iteration of the Fisher's scoring method yields a
CAN and locally minimum variance unbiased estimate whilst the
solution obtained after the completion of the second cycle of the

iteration process is CAN and asymptotically fully efficient.
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CHAPTER 6
CONCLUSTIONS

This chapter contains a brief sumary of the important points
raised in Chapters 2 to 5 and a short discussion of some topies for
further studies. In our investigations, we have attempted to throw
some light on the problem of estimating the mixing proportions in a
finite mixture of distributions by simple adaptation and utilization
of various well-known estimation techniques. The aim throughout the
thesis has been to construct estimators which are of value both in
theory and practice.

The extension of the method of moments in Chapter 2 has an
interesting feature and gives way to new methods of obtaining
reliable estimates. Although the method has some desirable asymptotic
properties and works well in practice, it relies ;ery much on the trial
and error procedure. On“'the other hand, when the observations are
grouped, the results of Chapter 3 show that the generalized least
squares estimators are asymptotically efficient with respect to a given
set of division points. The main problems, however, are to choose
the division points of the sample space and secondly to find the
solution of the underlying equations. With the advent of modern
computers, the latter is not an obstacle whilst there is no unified
theory of choosing the best set of class intervals and it is generally s
believed that the greater the number of division points, the better the
results. To this end, we have proved that as the number of division
points become infinite, the resultant estimators are asymptotically
fﬁlly efficient.

In order to obtain simple approximations to the root of the set
of equatgons whose root constitutes the generalized least squares
estimators of the mixing proportions, we have seen that the iteration

process proposed in Chapter L4 gives, after even one cycle, estimates
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which are asymptotically efficient with retpect to a given set of
division points. VWhen the lengths of the group intervals besconma
small, the solutions given by successive iterations approach the
maximum likelihood estimates.

The interesting features of the maximum likelihood estimates
are their asymptotic properties. Dealing with a mixture of two
distributions in Chapter 5, it is seen that the maximum likelihood
estimator of the mixing proportion always exists and possesses the
well-known asymptotic properties, provided that the mixing proportion
is strictly between zero and one. If the Fisher's information
function is defined and is finite at zero and one, then with
probability approaching unity the likelihood equation has a unique
root in the interval (0,1). Similar to Chapter 3, the main .
difficulty is to find the solution of the likelihééd equation and
by appealing to an iteration process commonly known as the Fisher's
scoring method, approximate solutions can be found. A deep study
of the first and second cycle solutions together with the results of
the Monte Carlo studies reveal the fact that even one or two cycles
are sufficient to produce close approximations to the solution of
" the likelihood equation. This, we believe, has an important
practical implication since by simple manipulations, an efficient
estimator of the mixing proportion can be obtained.

It is, nevertheless, clear that there are many interesting
questions, concerning finite mixtures of distributions, which require
further investigations. Firstly, in the broad sense, the problem of
hypothesis testing is an area which needs further research. A -
complete Bayesian analysis of mixtures of distributions is also still
to be undertaken.

The problem of identifiability of finite mixtures of distributions

can raise many interesting problems. Although the results of Teicher
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[56] and Yakowitz and Spragins [60] provide useful tools icr
checking the identifiability of a given finite mixturs of
distributions, it would be interesting to know that if a finite

mixture of distributions Ge(.) is not identifiable, then what

set of values of the mixing proportions give rise to the same

value of Ga(.).

~

Another area which has attracted some statisticians and could
have interesting implications when applied to mixtures of distributions
is the problem of inference about a change-point in a sequence of

random variables. A sequence of random varisbles Xl,...,Xn is said

to have a change-point at r (1 < r < n) if the common distribution

function of X X is Gl(.,el) whereas X

l,aa.’ r

distribution function G2(.,e2

r+l,...,Xn have a common

Y lyol
) where Cl(.,?l) # G2(.,92). Page Lol
used a cumulative sum technique to detect the existence of a

distributional change in the sequence X ,...,Xn. To make inference

1
about the change-point r, Hinkley [27] used arguments based on
maximum likelihood estimates, likelihood ratio tests and cumulative
sum tests and recently Smith [51] has treated the problem from a
Bayesian view-point. Now, in the context of mixtures of distributions,
the distribution functions Gl(. ,el) and G2(. ,92) may be taken to be
finite mixtures of distributions with different mixing proportions
(possibly involving the same components). The problem would then
be to estimate the unknown mixing proportions and the change-point r.

We finally close this thesis by bearing in mind the following
remark due to K. Pearson:

"No scientific investigation can be final; it merely represents
the most probable conclusion which can be drawn from the data at the
disposal of the writer. A wider range of facts, or more refined

analysis, experiment, and observation will lead to new formulae and

theories. This is the essence of scientific progress."
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APPENDIX A

ON THE JOINT ASYMPTOTIC DISTRIBUTION OF

Pl, LR Pm+l

Let X be a random variable whose distribution function GS(X)’

a mixture of distribution functions Fl(x),...,Fk(x), is given by

(2.2.1). Given the random variables Xl,...,Xn with cormon distribution

Ge(x) and with realizations Xy seee X respectively, denote by Gn(x)

tﬂe empirical distribution function based on this sample, i.e. the
proportion of the observations which are not greater than x. Let Gn(x)
be the realization of the random function Fn(x) and assume that the
sample space £ is partitioned into m+l intervals at the points

t <t, < ... <t <t
m

o 1 mt+l

where Gn(to) = Ge(to) = 0 and Gn(tmil) Ge(tm+l) = 1.

~ ~

Put 7. (8) = Gy(t;) - Gyt G (t,) -G (t;_

-~ -~

)

P

i-l) 1 1

end P, =T (t.)-T (t, ;) fori=1,...,m¢¥l. In this appendix,

1

we establish the joint asymptotic distribution of Pl""’Pm+l'

Proposition Al: The Jjoint asymptotic distribution of P_,....,P is a

mtl

1

(m+1)-variate normal distribution with mean vector

m(8%) = (my(0%), Lony myy (89)))

and (m+1)x(m+l) covariance matrix %-E where the (i,j)th element of I

is given by

o "i(?*)(l - "1(9*)) i=3

-
[

_ * * 1
"1(9 ) ﬂj(? ) i

for i,j = 1,...,m+1 . o (A.1)
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Here, ?* = (Bi,.. X

of parameters 9 = (81,...,8k)‘.

Proof: As in (1.3.3) , We can write

n
% I n(x-x.)
Jj=1

Gn(X)

where n(x)

1}
—t——
=
L
|v
@]

and therefore

n
T n(x=x.) .
Jj=1

1

Fn(X)

Define 1

fori=1,...,mt1 and j = 1,...,n.

-

By (U ) = Ege(n(ty-X,)) -

~ ~

= Ge*(ti) -G (ti

e*

-~ -~

for i =1,...,m*1 and j = 1l,...,n.

Vare*(Uij)= Vareﬁ[n(ti-Xj)] + Vare*[n(ti_l—x.)]

-~ -~

bt 2 COVe*[n(ti"Xj), n (ti_

-~

fori=1,...,m*1 and Jj =1,...,n.

But Vare*(n(ti—Xj)) = G

-~

%" "1

Uss = n(ti—Xj) - nlt,_ X,

-1

(¢.)(1 - G

.,0%)" denotes the true value of the unknown vactor

)

Then

Bgu(n(t;_y X))

-~

) = "1(9*)

Further,

J

0x(8:))

-~

and C°Ve*(“(ti‘xj)’”(tr’xj)) = min(Ggye(t; ), Goult )

- Ge*

~

for i,r=1,...,m*1 and j = 1,...

~ -~

() Goelt)

-~

,Nn  where

(A.2)

(A.3)
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min(x,y) = { .
Y Yy £X

Therefore, (A.3) gives

= - g2 + - g2
Vare*(Uij) Goults) = GRa(t.) + Goult; 1) = GE, (¢,
=2 Ggylt, 1) + 2 Ggplt,) Gult. )
= ) - . - ) - 6., (t
(Ggulty) = Ggult, 1)) = (Goulty) = Gyl

m. (%) - ng(g*)

fori=1,...,m*1 and j =1,...,n.

Also for r # i, we have

-~ -~ ~

-

(n(tr—Xj) - n(tr_l—Xj)H

Cove*(n(ti-Xj), n(tr—Xj)) = Covu(n(t,_;

-~ -~

- Cov

hﬂg;ﬁ),nurﬂ

e*

min ( Gye(ty), Guu(t)) = Goults) Goult)

~ ~ -~ -~

- min( Gy, (t. ;)5 Ggult D) + Goult, ) Goylt )

-~ -~ -~

e*

- min( Ge*(ti), Goult, 1)) + Ge*(ti) Gt 1)

-~ -~ ~ ~

+min( Gy, ;) Ggylt

~

-1 g% "r-1

))‘_ Cou(t; 1) Cgult, )

)

i-

K

(A.L)

—Xj ) H) n(tr-xj))

'Xj)) + Covegn(ti_l—xj), n(tr_l—Xj))

(A.5)

for i,r = 1,...,m*1l and j = 1,...,n. Let without loss of generality

i <r in (A.5), then either i = r-1 or i = 1,2,...,r-2.

(A.5) gives

If i

r1,



163

CoVu U1y 32Ung) = = (Goultyy) = G50, ) (305, - e, )

~

- ﬂr—l(g*) “r(g*) T = 2,000,041

while for i =1,...,(r-2), (A.5) yields

il

Coveu (U 5,U,5) = = (Gyu(t;) - e* )}(Ge*(t ) - ( )

~

!
It

- wi(g*) nr(g*) 1= 1,00e,r2

Y = 2,000,mtl .

Hence, if we define

cees U )0 1<j<n

then Uj is a (m+l)-dimensional random vector with
= #* - %)) = *
Ee*(gj) (nl(ih), s “m+l(i )) 3(8 )

and (m+1)x(m+l) covariance matrix I with 05 given by (1.1), as its
(i,3)th element.

Note that, since X ,...,Xn are independent random variables with
a common distribution, it follows that Hl’ Uss eees gn form a sequence
of independently and identically distributed random vectors admitting
first - and second order moments.

Now,

U

. = .) - t. ..
Pl rn(tl) I‘n( 1-1) 1 1d-

i
=l
R

J

for i = 1,.0.,m+l, Let P = (Pl’ ceey P

m+l)' , then by the multivariate

central limit theorem, the asymptotic distribution of vn (P - m(6%))
is Nm+1(0,2), that is an (m+l)-variate normal with zero mean and

(m+1)x(m+1) covariance matrix I with the density function

N +l(u‘O,Z) = (2r) ~(m+1)/2 lz]” : exp{- §(u—w(8*))'2 Hu-n(e®t))y -

~ o o~
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Here O denotes the (m+l)-dimensional vectcs of O's. IZance the proof

is completed.
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APPENDIX B

GENERALIZATION OF THE THEOREM Lh.2.1

In Chapter L4, an iteration process was introduced to find the

GLS estimator of 6% = (6%,...,6; ', the true value of the unknown

vector 8 = (91,...,6k)'. Here 6 is the vector of the mixing

-~

proportions in the mixture of distributions Ge(x) given by (2.2.1).
We proved in theorem 4.2.1 that for k = 2, if the iteration is

started with a consistent estimator of 6%, then the solution

-

obtained after a l-cycle iteration is CAN with asymptotic variance
being minimum with respect to a fixed set of division points

tl < t2 < . .. < tm of the sample space x . In this appendix, the

result of the theorem L4.2.1 is generalized for the case k > 2. ~
Recall that {ti}?;l are chosen so that the rank of the matrix A

given by (3.2.2) is exactly k :and that O < Ge(tl) < eee < Ge(tm) <1

-~
-~

for every 8 € 0.

k k-1 k
Since I 6, = 1, we put 6 =1- 1 8.1in Ge(x) = I 0.F.(x) to
j:l J j:]_ J -~ j:]_ d

get

Go(X) = 8] (F(x) = F,(x)) + .o + 9

-~

o1 (P (x) = F (x)) + F(x)

< 0. < j = N € . t B.. = F.(t.)-F.(t.
where O __SJ <1 for j=1,...,k-1 and x € X Let BJ1 FJ(tl) Fg(tl—l)
for J = 1,...,k and for i = 1,...,mt]l where as before Fj(tm+l) = 1 and
Fj(to) =0 for j=1,...,k, so that
k-1
= —_ = s T . + s .
m. (8) = Golt;) = Gylt; ;) jzl 6, (8Jl Bi) .t B | (B.1)

for i = 1,...,m+tl. Upon substituting ni(e) in @r(e) given by (L4.2.h)
and setting the derivative of ¢r(e) with respect to ej; J=1,....k"1,
equal to zero, a system of k~1 equations in k-1 unknowns is obtained

as follows,
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k—l ( _-n.(e)) B..-B .)
ag ® (e) z P ) Ji ki® _ g4 (B.2)
i=1 . (8 (r )
l ~1

where j = 1,...,k-1 and ?ir) (G(r) ,,,,eir));

is the estimate of 6% obtained after the rth cycle of the iteration

r =0,1,...,

process. Using (B.1), (B.2) yields

(8 ;) (8., )

+ "B -B . ik
61 mzl (Bl B, )ZB) kl) ‘o, m;l 2i (rgl Bi L
i=1 ™ (8:7) i= ENCNE
+ -
5 mzl (B(k )i )(B ki) _ m;l (pi B s )(BJl kl)
(k1) 55 7. (e(r)) i=1 v.(e(r))
i‘en
(B.3)
for J = 1,...,k-1.
Define by R(8) a symmetric (k-1) x (k-1) matrix whose (j,%)th
element is given by
m+tl (B..-B, .)(B .-B .)
R.,(8) = I K ﬁl(e)“l k1 3= 1,... %1
R it=
and let T = (Gl,...,ek_l)', then we can write (B.3) for j = 1,...,k-1
as
R(eﬁr)) T=b r = 0,1,... (B.4)

vhere b is a (k-1)-dimensional vector with its jth element defined as

?

m+l (p B )(B e )

b. = I (r) r = 0,1,
J = T. (9 )
for J = 1l,...,k-1. Further
) (pym, (817 X858, 1) w1 (r, (65))-8,,)(8,;-8,;)
b. = — . + —
d =1 r. (6(7)) i=1 7. (8 (r))
S ¢} 1 -~
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m+1 p.(B - .) m+1 ~(2) m+l (B 1 )(B )
=1 —J—("T—— I (8.8 )+ 6 I - -() i
i=1 w, (8)F’)  i=1 <t i= m. (s277)
1 ~ l 0
+1 (B,.-8,.)(B.. ) +1 (B .—B )(s..—&
+ eé r) mZ 21 ( Jl k1 L egkz ) mZ (x-1)1 ?1) i3
i=1 (e £y i=1 m. (8 Ty
m+1
for j = 1,...,k-1. Then by using £ (B i) = 0, we can write b as
i=1 -
o = a(6{™)) + r(o!T)) 2(¥) r=0,1,..

where Eﬁr) = (gir),..., gi)l))'

vector whose jth element is defined as

and q(e( )) is a (k—l) -dimensional

q_(e) = 3 ci di ki’ (]\3.6)

& »

for j = 1,...,k-1. Hence by substituting (B.5) in (B.lLt), we have

~(r) _ alr) “(r)y 2(r) -
R(gn ) T = ‘}(9n ) + R(?n ) T r =0,1,... (B.T)
- + ~ . .

whose root ir 1) _ (9(r+12...,85£i1g)' constitutes the estimates
e(r+1)’.'.,e(r+l) of 6* ves50¥ _ respectively which together with the

1 (k-1) k-1 K 1

estimate of 9; given by 6£r+l) 1- (r+l) form

- - “l

6(r+1) = (6(r+l), ..,6(r+l))' being the estimate of 6* obtained after

the (r+l)th cycle of the iteration process for r = 0,1,... .

Theorem B.1. Let ;ﬁr) = (e(r),..., E;)l)

(r) _ ¢ ir) ...,Zéizl))' for r = 0, :2.,) and let
0
— 1%

)' be the realization of a

random vector T

1’ ee B . 1)' If T( o) is chosen so that T

~(1) (1)
~n

™ = ( = gp(n-r')

as n + «, then has the property that T is consistent and its

asymptotic distribution is a (k-1)-variate normal distribution with

mean vector t¥ and covariance matrix given by'% R—l(e*).

~
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Proof. Let qj(B) given by (B.6) be the realization cf 2 random
function Qj(e) so that
+ . ee = .
m+l P.(B B, )

Q.(8) = ¥ 22— 2 (B.8)
I~ = m; (&)

for j = 1,...,k-1, where Pi’ i=1,...,m*l are as in Theorem L4.2.1.

Putting 9(9) = (Ql(e),...,c%k_l)(e))', from (B.T) we hzve

(1) _ (0) -1 ,.(0) (0)
Tn =T, *R (%n ) 9 (%n ) (3.9)
(r) _ _ a(r)
where Zn r=0,l,... is a random vector whose realization is 9
Write Z{O) =06% +¢. for j=1,...,k-1 and P. = w.(6%) + n. for
J dJ J 1 i~ 1

i=1,...,m+l. Then Ej = op(n—n) as n + ® and since Pi is a random.
variable admitting first and second moments, n; = op(n_u) as n > o

for all o < 1. Now from (B.1l)

k-1 :
(0) (0) = *
1(~n ) = 2 ZJ (B 1) * Bki B wl(e ) + E Ej (Bji 8ki)
=1 J=
and thus from (B.8), for £ =1,...,k-1,
*
1 (m.(8%) + n )(821 kl)
Q (Z(o)) - 3
2'°n . k-1
.fl es(BsiBys)
m.(6%) |1 + L
i~ 7. (6%)
k-1
z e (B.. )
* -
) m;l (. (8%)+n ) (Bg 5 By s) 521 517 Bk ' o (eer)
= % - *
i=1 my (8% “1(9 ) -
mt+1l ’
where € = (el,...,ek_l)' and by using izl (sji—ski) =0 for J =1,...,k"1,

we have



(o), ™ Pi(By.-B ) k1 fmrl (8..-3.)(8,.-8,;)
Qp(2 ") = I ey rry il B : —C))
- i=1 ; j=1 Jli=1 iv?
-8, + o(ff') 2=1,...,k-1
m+l k-1 n.e.(B..-B .)(B,.-B, .)
vhere S, = I I 10 31 kiT 21 KL g =1,...,k-1 and therefore
i=1 j=1 n%(e*)
a(z{?) = o(e%) - R(e%)e - 5 + O(ee) (B.10)
= 1
where ? (Sl""’sk—l) .
Further
-1, (0 -1
R (zﬁ1 )y = 5 l(e%) + o(e) (B.11)

and substituting (B.10) and (B.11l) into (B.9) yields

o(1) = (0)

N 200w (%) Q%) - e - RT(0%)s + (U+S) O(e) + O(ee")

m+l ni(Bli—Bki)
= ) - e ——t et s = 7 —
where U (U)5e50, )" Uy ~E = (6%) for & = 1,...,k-1.
1i=1 1.
Hence,
/o (Tlgl) — %) = /o R Y(e%) q(o%) + 0, (1) (B.12)

where op(l) denotes a (k-1) x 1 random vector whose (k-1) elements are

all op(l). Therefore, by an obvious extension of the lemma 4.2.1, the

asymptotic distribution of /E.(Tﬁl) - t*) is the same as the limiting
distribution of
Y = /o R “(6%) q(e¥) . (B.13)

Now, using the result of the Appendix A, the asymptotic distribution

of P = (?l,...,P

m+l)' is a (m+l)-variate normal distribution with mean



170

1=

vector f(?*) = (“1(9*)"' ,MT . (6%¥))' ari covarianc trix = I

m+l 2 TEEEE g

1

where I is an (m+l) x (m+l) matrix whose (i,j)th element % 3 i

given by the equation (A.1). Define a (k-1) X (m+l) matrix B

n

with its (i,j)th element Bij is given by

.. - B
B., = —= L

T.(0%
1] J(~ )

for i =1,...,k-1 and j = 1,...,m*tl. By using (B.8), we have Q(6%) =
and hence by the standard properties of normal distributions, the
asymptotic distribution of Q(6*) is a (k-1)-variate normal distribution

with mean vector Bm(0%) and covariance matrix %’B £ B'. TFinally, (B.13)

~ o~

shows that the asymptotic distribution of Y is a (k-1)-variate normal

distribution with mean vector va R (e“) B 7(6%) and covariance matrix

r (%) BIB' B 1(6%).

m+l
Using . J (B j) =0 fori=1,...,k-1, it is not difficult to

see that B n(e*) = 0 and further that the (i,j)th elemen*t of (B I B')

is given by

m+l m+l
' =
(BB )iJ 221 ril B.,0,.. Bjr
m+1 m+] m+l
= ¢ B. o B. + I ¥ B..o B .
0=1 18708752 2=1 r=1 18 4r 13
L#Fr
wl B, -B B.,-B, mL B B . B
=1 2. - 2. 2=1 2. =
m+l m+l B. -B -8
=1 r=1 2.
L #r
m+l (B . Bkl)(B . Bkl) (m+l ( ) m+1 ( )
= I " - |z (8.,-8B ] { T (8. ]
p=1 né? ) g1 i KL o1 jr Brr
= R (e*)
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Therefore B L B' = R(?*) and thus the covariance metriz o thes
asymptotic distribution of Y is R_l(e*). Hence the 1imiiing
distribution of /E.(Til) - T%), being the same as the asymptotic
distribution of Y , is a (k-1)-variate normal distribution with
mean vector O and covariance matrix R—l(e*). This completes
the proof of the theorem.

We finally remark that by a close examination of the metrix
[n R(g*)] , we see that it is in fact the Fisher's information
matrix for a grouped sample with division points being tl,...,tm.
This shows (analogous to the case k = 2) that under the condition

(1)

of the theorem B.l, the estimate Tn is also asymptotically
fully efficient with respect to a fixed set of division points

tl,...,tm.
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