
Wide-Sense Fingerprinting Codes and
Honeycomb Arrays

Anastasia Panoui

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

1

Standard logo

The logo should be reproduced in the primary colour,
Pantone 660c, on all publications printed in two or
more colours. Refer to the ‘Branded merchandize’
sheet for guidelines on use on promotional items etc.

The text, ‘University of London’, is set as a 50%
transparency of white.

Do not use a keyline see ‘Non standard backgrounds’
for exceptions.

The College name has been specially drawn; please
use the original digital artwork and do not try to
re-set.

xx

x

Clear area

No graphic or text should be placed in an area
around the logo equivalent to the width of the base
of the clocktower silhouette as shown.

≤ 30mm
Minimum size

The logo should be never be reproduced at less than 30mm in width. The
text, ‘University of London’, should be reproduced as 100% white ie. no
transparency

Printing on absorbent and unusual surfaces

The text, ‘University of London’, should be reproduced
as 100% white ie. no transparency. When it is printed on
absorbent paper ie newsprint, or any unusual surface ie metal
fabric or plastic.

Non standard backgrounds

A keyline should only be used if the logo is
placed on a background other than white or
the primary or secondary colours.
The width of the keyline is the width of the
letter ‘l’.

x

x

Royal Holloway logo guidelines

Reversed logo

A white logo may only be used on
Pantone 660 or black. Refer to the
‘Branded merchandize’ sheet for
guidelines on use on promotional items
etc.

‘Royal Holloway’ and the clocktower
silhouette should be reproduced in
the background colour. ‘University of
London’ prints 50% white.

2012

Wide-Sense Fingerprinting Codes
and Honeycomb Arrays

Department of Mathematics
Royal Holloway, University of London

stouc goneÐc mou,

MarÐa kai Jan�sh

To my parents,

Maria and Thanasis

2

Declaration of Authorship

I, Anastasia Panoui, hereby declare that this thesis and the work presented

in it is entirely my own. Where I have consulted the work of others, this is

always clearly stated.

Signed:

(Anastasia Panoui)

Date:

3

Acknowledgments

I would like to thank my supervisor Prof. Simon Blackburn for his guidance which

led to the composition of this thesis. Moreover, his useful and sharp comments on

my research led to the improvement and further development of my mathematical

education. The pleasant environment of our research discussions and his positive

view, helped me not only overcome any problems and disappointments that so of-

ten occur in research, but also to be pleased and proud of the good research results,

as small or big as they might be.

I wish to thank my friends from Greece, who despite the great distance, never

ceased to encourage and support me. Many thanks to my friends and fellow Ph.D.

researchers who made my stay in Egham very enjoyable and the environment in

McCrea building a great place to work. Special thanks to Liz Quaglia for her friend-

ship and support and to Gaven James Watson, who was always willing to offer ad-

vice and help. I am grateful to Jean Paul Degabriele, for in stressful times he helped

me view matters in a different and more relaxed perspective. I would also like to

express my gratitude for the College Research Scholarship that was offered to me

and made the three years of my Ph.D. studies possible.

Finally, I would like to thank my parents and my brother for their constant

support and faith in me throughout the years of my studies.

4

Summary

The thesis is divided into two independent parts. The first part examines the

main types of fingerprinting codes under four descendant models, while the

second investigates the combinatorial object called a honeycomb array.

Digital fingerprinting is a technique that is used to protect intellectual

rights by preventing illegal redistribution of digital data (films, music, soft-

ware, etc.). This technique is facilitated by the collection of codes called fin-

gerprinting codes. The thesis focuses on the following four fingerprinting

codes: traceability, IPP, secure frameproof and frameproof. These codes are

studied under four models, namely narrow-sense, expanded narrow-sense,

wide-sense and expanded wide-sense. These models refer to the ability of

malicious users (traitors) to produce the fingerprint in the illegal copy. In

particular, following an idea of Boneh and Shaw, it is shown that there only

exist trivial wide-sense traceability and IPP codes. In the matter of wide-

sense frameproof codes, enhancing the relation between these codes and

Sperner families first introduced by Stinson and Wei, we improve their up-

per bound on the size of this type of fingerprinting codes. The last two

results are original and we regard the latter to be the main original contri-

bution of this part of the thesis.

A honeycomb array of radius r is a set of n = 2r + 1 dots placed on the

hexagonal grid in such a way that the distance of every dot from a fixed

cell, the centre, is at most r. It is also required that in each column and in

each diagonal only one dot occurs and that the vector differences between

all pairs of dots are distinct. In the thesis it is proved that honeycomb arrays

5

can only be constructed using Costas arrays, which are configurations of

dots in the square grid similar to honeycomb arrays. Using the existing

Costas array database, all honeycomb arrays with r ≤ 14 are determined,

and two new arrays of radius 7 are presented.

6

Preface

This work is a composition of ideas and results from two independent areas.

Thus, it is appropriate to divide the thesis into two parts. The first is called

Fingerprinting Codes, and examines the interpretation of fingerprints into the

digital world as a method of protecting intellectual property rights. The

second part transfers Costas arrays to the hexagonal grid and studies the

properties and the behaviour of the resulting combinatorial object, called

Honeycomb Arrays.

7

Contents

I Fingerprinting Codes 14

1 Introduction 15

1.1 Protection of Intellectual Property 15

1.2 Outline . 15

2 Set Theory 18

2.1 Sperner Theory . 18

2.2 Intersecting Families . 23

3 The Fingerprinting Problem 32

3.1 Digital Fingerprinting and Applications 32

3.2 The Descendant Set . 36

3.3 Fingerprinting Codes . 38

3.3.1 Frameproof Codes . 38

3.3.2 Secure Frameproof Codes 39

3.3.3 IPP Codes . 41

3.3.4 Traceability Codes . 44

4 Related Work 50

4.1 Frameproof Codes . 50

4.2 Secure Frameproof Codes . 54

4.3 Identifying-Parent-Property Codes 56

4.4 Traceability Codes . 59

4.5 Beyond the Main Types of Fingerprinting Codes 61

8

4.5.1 Secure ε-Error Codes . 61

5 Relations Between Fingerprinting Codes 64

5.1 The Narrow-Sense Model . 64

5.2 Wide-Sense and Expanded Narrow/Wide-Sense Models on

Traceability and IPP Codes . 67

5.3 Frameproof and Secure Frameproof Codes 75

5.3.1 Secure Frameproof Codes 76

5.3.2 Frameproof Codes . 78

5.3.3 Unifying the Relations Between Fingerprinting Codes . 79

6 Wide-Sense 2-Frameproof Codes 81

6.1 Properties of 2-wFP codes . 81

6.2 Small Length Case . 84

6.3 Arbitrary Length Case . 88

6.4 2-wFP Codes of Length 5 . 101

II Honeycomb Arrays 108

7 Honeycomb Arrays 109

7.1 From Rooks to Semi-Queens . 110

7.2 Costas Arrays . 115

7.3 Honeycomb Arrays . 119

7.3.1 Construction of Honeycomb Arrays 119

7.3.2 Computational Results 125

7.4 Concluding Remarks . 134

Appendices 136

A Search of Honeycomb Arrays in C 136

Bibliography 141

9

List of Figures

5.1 Relations of fingerprinting codes under the narrow-sense model. . 66

5.2 Relations of traceability and IPP codes under the expanded narrow-

sense, wide-sense and expanded wide-sense model. 74

5.3 Relations of narrow-sense frameproof and secure frameproof codes

with traceability and IPP codes under all four models of descen-

dant set. 75

5.4 Relations of narrow-sense frameproof and secure frameproof codes

and traceability and IPP codes under all four models of descen-

dant set. 80

7.1 A Costas array. 110

7.2 A honeycomb array. 110

7.3 The hexagonal grid. 111

7.4 Hexagonal region. 111

7.5 Golomb and Taylor construction of honeycomb arrays from Costas

arrays. 112

7.6 The region Si(m). 114

7.7 The triangular board and how is covered by the region Si(n). . . . 115

7.8 The transformation of the hexagonal lattice into the square lattice. 121

7.9 The analogy between the neighbours in the hexagonal and square

array. 121

7.10 The black hexagonal sphere of order r is transformed into the

incomplete square S ′ of order n′ = 2r + 1. 122

10

7.11 Illustration of the inductive step. The extracted shapes show the

neighbour relation of the marked cell, as the hexagonal is trans-

formed into the square lattice. 123

7.12 The use of slope for the determination of whether or not a diago-

nal in the hexagonal sphere contains two dots. 124

7.13 The two members of the first equivalence class, where the second

honeycomb array is the vertical reflection of the first. 126

7.14 The two members of the second equivalence class, where again

the second honeycomb array is the vertical reflection of the first. . 126

7.15 The 3 × 3 Costas array and the corresponding Ar1 class of the

honeycomb arrays. 127

7.16 The 7 × 7 Costas arrays and the corresponding Ar3 class of the

honeycomb arrays. 128

7.17 The 7 × 7 Costas array and the corresponding Br3 class of the

honeycomb arrays. 128

7.18 The 9 × 9 Costas array and the corresponding Ar4 class of the

honeycomb arrays. 129

7.19 The 9 × 9 Costas array and the corresponding Br4 class of the

honeycomb arrays. 129

7.20 The 15 × 15 Costas array and the corresponding Ar7 class of the

honeycomb arrays. 130

7.21 The 15 × 15 Costas array and the corresponding Br7 class of the

honeycomb arrays. 130

7.22 The 15 × 15 Costas array and the corresponding Cr7 class of the

honeycomb arrays. 130

7.23 The 21 × 21 Costas array and the corresponding Ar10 class of the

honeycomb arrays. 131

7.24 The 27 × 27 Costas array and the corresponding Ar13 class of the

honeycomb arrays. 132

11

7.25 The 45 × 45 Costas array that produces the Ar22 the honeycomb

array. 132

7.26 TheAr22 class of the honeycomb arrays generated from the 45×45

Costas array. 133

7.27 The symmetry of the honeycomb arrays to Costas arrays. 134

7.28 The hexagonal symmetries with respect to the lines defined by

the three directions of the hexagonal grid. 134

12

List of Tables

3.1 The set of q` keys that are used to encrypt keys {s1, . . . , s`}. 34

3.2 The encryptions in the enabling block, where ` denotes the num-

ber of segments and q the number of marks. 34

6.1 Upper bounds on the size m of a 2-wFP code of odd length `. . . . 100

6.2 The Sperner family X0 and the corresponding codewords. 105

6.3 The Sperner family X0 and the corresponding ternary code. 106

7.1 The number of n× n Costas arrays found by exhaustive search. . 119

7.2 Enumeration results. 127

13

Part I

Fingerprinting Codes

14

Chapter 1

Introduction

1.1 Protection of Intellectual Property

Digital information, whether stored in a CD, DVD or reaching the recipi-

ent through the Internet, is distributed in a continually increasing manner.

However attractive is the ease of accessing and manipulating digital data,

such as movies, music, software or documents, the abuse of it is tantamount

to a criminal act. The protection of intellectual property is the aftermath of

the invention of printing, which allowed the effortless distribution of large

numbers of copies of documents and books. Today, due to the easy and

direct ways of exchanging digital data, the necessity of ensuring that the

rights of the creator/owner are intact is even greater. As a consequence, the

research on developing methods that protect these rights is particularly im-

portant. The infringement of intellectual property rights, or in other words

the illegal redistribution of data, is summarised in the word piracy. Digi-

tal fingerprinting, and in particular fingerprinting codes, provide a means

of limiting piracy. Similar to human fingerprints which are unique for each

person, the purpose of this type of code is to make identical copies of objects

unique.

1.2 Outline

The aim of this section is to describe in brief the contents of each chapter of

the first part of the thesis, which investigates fingerprinting codes. As the

mathematical background of this type of codes is based on set theory, the

15

preliminary section that comprises Chapter 2 introduces the necessary def-

initions and notions of set theory. In particular, the statements and proofs

of main results in the area of Sperner theory and the theory of intersecting

sets are presented. As the name fingerprinting codes indicates, coding the-

ory also plays a role in this topic. However, a related preliminary section

on coding theory is omitted, as only the basic notions are required and are

assumed to be familiar to the reader.

A detailed presentation of fingerprinting codes can be found in Chap-

ter 3. The environment within which fingerprinting codes are used con-

sists of the following characters: the distributor, the registered users and the

traitors. The distributor is the owner of the digital data, who is responsible

for its distribution to the registered users, who are the recipients of the data.

The characterisation traitors, refers to the subset of the set of registered users

who act maliciously and illegally redistribute the data. Chapter 3 describes

two main applications of fingerprinting codes that are based on different

settings. The first, introduced by Chor, Fiat and Naor [18], assumes that the

digital data reaches the recipients through broadcast transmission, while in

the second, which can be found in the survey paper by Blackburn [8], the

distribution is carried out via the Internet or in a CD/DVD format. The

same chapter also refers to the marking assumption, according to which the

traitors generate fingerprints for illegal copies of the data. Moreover, four

main types of fingerprinting codes are described, namely frameproof, se-

cure frameproof, IPP and traceability codes, which correspond to different

security notions, viewed from the distributor’s perspective. On the other

hand, taking into account the traitors’ capabilities in generating the illegal

fingerprint, the following four adversary models are defined: narrow-sense,

expanded narrow-sense, wide-sense and expanded wide-sense descendant

model. In order to provide good codes that capture both the security notion

from the distributor’s point of view and the adversary power, the four main

types of fingerprinting codes are defined under the four aforementioned ad-

16

versary models, resulting in total in sixteen different types of fingerprinting

codes. Lastly, Chapter 3 includes two new results. The first (Proposition

3.3.15), shows that expanded wide-sense IPP codes and totally secure codes

are the same object. The second result (Propositions 3.3.22 and 3.3.25), refers

to two natural ways of defining Hamming distance in the context of finger-

printing codes and proves that codes which use these two types of distance

are equivalent.

The next chapter, Chapter 4, is devoted to presenting related and previ-

ous work on fingerprinting codes. For each type of code, known construc-

tions are described and known bounds on the size of the codes are given.

Chapter 5 investigates the relations amongst the sixteen different types of

fingerprinting codes.

Finally, Chapter 6 is the chapter that presents the main original contribu-

tion of this part of the thesis. It focuses on the study of a particular type of

fingerprinting codes, namely wide-sense frameproof codes. Using the con-

nection between this type of codes with Sperner and intersecting families,

we obtain an improvement of the known upper bound on the size of such

codes (Theorem 6.3.8). Additionally, the chapter includes original results on

the size of wide-sense frameproof codes of small length.

17

Chapter 2

Set Theory

The purpose of this chapter is to selectively present known results from set

theory, that will be used in the subsequent chapters. These results relate to

Sperner theory and the theory of intersecting sets.

2.1 Sperner Theory

In 1928, Sperner [46] studies the family of sets with the property that no

member of the family belongs entirely to another. An important result of

his study is an upper bound on the size of the maximal such family, and

moreover, the type of sets that the family must contain, in order to achieve

this bound.

For the remainder of the thesis, the notation n-set (accordingly n-subset),

denotes a set of size n.

Definition 2.1.1 (Sperner family). Let n be a positive integer and F be a

family of sets over the ground set {1, . . . , n}. The family F is called Sperner

or has the Sperner property, if for all A,B ∈ F the sets A and B are incom-

parable, that is A 6⊂ B.

Theorem 2.1.2 (Theorem 1.1.1, [26], [46]). Let n be a positive integer and F be

a Sperner family. Then

18

(a)

|F| ≤



(
n
n
2

)
, if n is even

(
n
n−1
2

)
, if n is odd.

(2.1.1)

(b) Equality holds if and only if

F =



{X ⊆ {1, . . . , n} : |X| = n
2
}, if n is even

{X ⊆ {1, . . . , n} : |X| = n−1
2
} or

{X ⊆ {1, . . . , n} : |X| = n+1
2
}, if n is even.

Proof. It is easy to see that in both the even and the odd case, the family

F presented in the second part of the claim is Sperner and achieves the

bound from part (a). Therefore, it suffices to prove that there does not exist

a larger Sperner family. We first begin with the necessary notation. Let F be

a maximal Sperner family, and define

l = min{s : ∃F ∈ F s.t. |F | = s},

u = max{s : ∃F ∈ F s.t. |F | = s}

to denote the size of the smallest and the largest sets in F , respectively.

Moreover, let

G = {X ∈ F : |X| = l},

H = {Y ⊂ {1, . . . , n} : |Y | = l + 1 and ∃X ∈ G s.t. X ⊂ Y },

F ′ = (F r G) ∪H.

We next prove that F ′ is Sperner. Assume for a contradiction, that it is

not. Clearly, F r G is a Sperner family as a subset of F , and H also satisfies

the Sperner property, because it contains distinct sets of the same size. Thus,

there exist Y ∈ H and Z ∈ F r G, such that Y ⊂ Z. By the definition of H,

19

there also exists X ∈ G ⊂ F , such that X ⊂ Y , which implies that X ⊂ Z, a

contradiction, since both X and Z belong to F , and F is Sperner family.

Let l ≤ n−1
2

. Also, let N be the number of pairs (X, Y) such that X ∈ G,

Y ∈ H and X ⊂ Y . If X is fixed, then by adding one of the elements of

{1, . . . , n}rX to X , we obtain exactly n− l different sets Y that contain X .

This leads to

N = |G|(n− l).

On the other hand, if we fix a set Y the number of l-sets that are contained

in Y is
(|Y |
l

)
= l + 1, but since not all of them belong to G, we have

N ≤ |H|(l + 1). (2.1.2)

Combining the above results on N with l ≤ n−1
2

, yields

|H|
|G|
≥ n− l

l + 1
≥

n− n−1
2

n−1
2

+ 1
= 1,

where equality is attained if l = n−1
2

. The fact that F is Sperner means that

F ∩H = ∅, thus

|F ′| = |F| − |G|+ |H| ≥ |F|,

and the equality implies l = n−1
2

. Since we have chosen F to be the Sperner

family of the maximum size, from the analysis above it is clear that the case

l ≤ n−1
2

leads to contradiction, because it implies the existence of a Sperner

family of size greater than F .

If u ≥ n+1
2

, then we also reach a contradiction. The proof of this case

follows the same arguments as in the case where ` ≥ n−1
2

. The only differ-

ence is that here the family F ′ is formed by replacing all u-sets S in F by the

(u− 1)-sets R, such that R ⊂ S.

Hence, we can assume that l ≥ n−1
2

and u ≤ n+1
2

. When n is even, this

implies that the maximal Sperner family has size at most
(
n
n
2

)
, proving in

this way the claim.

20

Let n be odd. If l = u, then

|F| ≤
(
n
n−1
2

)
=

(
n
n+1
2

)
.

Hence, assume that l = n−1
2

and u = n+1
2

. From the above, we have that

|F| ≤ |F ′| ≤
(
n
n+1
2

)
,

and since F is maximal it must hold |F ′| = |F|, which means that in (2.1.2)

we have N = |H|(l + 1). This can occur only when all the l-subsets of a set

Y ∈ H belong to G, for all Y ∈ H. Examine the sets Y ∈ H and Z ∈ F r G,

such that |Y ∩Z| is the maximum. Since F contains only sets of size l = n−1
2

and l+ 1 = n+1
2

, then |Y | = |Z| = l+ 1. Clearly Y 6= Z and |Y ∩Z| being the

maximum implies that there exists y ∈ Y rZ and z ∈ Z r Y . As previously

mentioned G contains all l-subsets of any Y ∈ H, which implies that Y r{y}

is a member of G. Hence, Y ′ = (Y r {y}) ∪ {z} is a member ofH. However,

|Y ′∩Z| = |Y ∩Z|+1, which contradicts the fact that the intersection between

Z and Y is maximal. Hence, in the case where n is odd, the maximal Sperner

family has size
(n
n−1
2

)
and is attained by taking all sets of size n−1

2
or n+1

2
.

The next proposition, which can be found in the book Sperner Theory

by Engel [26], provides upper bounds on the size of a Sperner family that

depends on the sizes of the sets that it contains. The lemma that precedes

the proposition presents a necessary result for the proof of the proposition.

Lemma 2.1.3 (Corollary 2.3.2, [26]). Let F be a family of k-sets over a set of size

n ≥ 3 and define the familiesH and D as follows:

H = {Y ⊂ {1, . . . , n} : |Y | = k + 1 and ∃F ∈ F s.t. F ⊂ Y },

D = {D ⊂ {1, . . . , n} : |D| = k − 1 and ∃F ∈ F s.t. D ⊂ F}.

(a) If k ≥ n
2
+ 1, then |D| − |F| ≥ n

2
.

(b) If k ≤ n
2
− 1, then |H| − |F| ≥ n

2
.

21

Proposition 2.1.4 (Corollary 2.3.3, [26]). Let F = {F1, F2, . . . , Fr} be a Sperner

family over the set {1, . . . , n} and

l := min{s : ∃i ∈ {1, . . . , r} s.t. |Fi| = s},

u := max{s : ∃i ∈ {1, . . . , r} s.t. |Fi| = s}.

If l ≤ n
2
≤ u, then

r ≤



(
n

bn
2
c

)
− (u− l)n

2
, if n is even,

(
n

bn
2
c

)
− (u− l − 1)n

2
, if n is odd.

Proof. The cases n = 1, 2 are trivial, so let n ≥ 3. We prove the claim using

induction on the difference u − l and when n is even. The odd case can be

proved analogously.

If u− l = 0, then we obtain the bound (2.1.1) from the previous theorem,

Theorem 2.1.2. Hence, u − l ≥ 1. For the base case u − l = 1 and since

l ≤ n
2
≤ u, either l = n

2
− 1 and u = n

2
, or l = n

2
and u = n

2
+ 1. Due to

the symmetry of these cases, we prove the claim when l = n
2
− 1 and u = n

2
.

Similar to the proof of Theorem 2.1.2, we define the following:

G = {X ∈ F : |X| = l},

H = {Y ⊂ {1, . . . , n} : |Y | = l + 1 and ∃X ∈ G s.t. X ⊂ Y },

F ′ = (F r G) ∪H.

Since F consists of l-sets and (l+1)-sets, by replacing G withH the resulting

family F ′ contains only (l + 1)-sets. Clearly, the sets in H are different from

the sets in F r G, because otherwise the Sperner property of F would be

violated. This implies that F ′ is also Sperner. Since F ∩ H = ∅, applying

Lemma 2.1.3 on the family G, we obtain the following

|F ′| = |F| − |G|+ |H| ≥ |F|+ n

2
⇒ |F| ≤

(
n
n
2

)
− n

2
,

22

which proves the claim for the base case of the induction. For the inductive

step we assume that

|F| ≤
(
n
n
2

)
− kn

2
,

where k = u − l and we prove that when F is a Sperner family for which

u− l = k + 1, then

|F| ≤
(
n
n
2

)
− (k + 1)

n

2
.

Define G and F ′ = (F r G) ∪ H as previously, but this time the sets in

F ′ have different size. We next show that F ′ is Sperner. Assume that it is

not. Clearly, F r G and H are both Sperner families, as a subset of F the

former and as a family of distinct sets of the same size, the latter. Hence,

there must exist a set Y ∈ H such that Y ⊂ Z, for some Z ∈ F r G. By

definition of H, there also exists X ∈ G, such that X ⊂ Y ⊂ Z, which is a

contradiction to F being a Sperner family. Having removed G from F , leads

to the resulting family F ′ consisting of sets of size at least l′ = (l + 1). This

means that the difference between the sets of the largest and smallest size in

F ′ is u− l′ = u− l − 1 = k. By the inductive step,

|F ′| ≥
(
n
n
2

)
− kn

2
. (2.1.3)

Applying once again Lemma 2.1.3 on G, we have that |H| − |G| ≥ n
2
. Com-

bining this result with the bound (2.1.3) and the fact F ′ ∩H = ∅, we obtain

|F ′| = |F| − |G|+ |H| ≥ |F| − n

2
⇒ |F| ≤

(
n
n
2

)
− (k + 1)

n

2
,

which concludes the proof.

2.2 Intersecting Families

This section presents important results on intersecting families, an object

that has captured the interest of mathematicians for many years.

23

Definition 2.2.1. Let F be a family of sets over a ground set E. Then, F is

called t-intersecting if for every pair of sets A,B ∈ F we have |A ∩B| ≥ t.

The first result we present, is the Erdős-Ko-Rado Theorem [27], that pro-

vides an upper bound on the size of intersecting Sperner families that con-

tain sets of specific size. Apart from the result itself, the Erdős-Ko-Rado the-

orem plays a significant role in extremal set theory, as it introduces through

its proof the method of shifting. The proof that is presented here can be

found in the paper by Frankl and Graham [28], who have formalised the

shifting method, and present the original proof of Erdős, Ko and Rado us-

ing this formalisation.

For convenience, when t is not specified t-intersecting families will be

called intersecting. Below, we give the definition of the (i, j)-shift, followed

by some properties that are needed for the proof of the Erdős-Ko-Rado the-

orem. The proof of these properties is omitted, as they can be easily derived

from the definition of the (i, j)-shift.

Definition 2.2.2 (The (i, j)-shift, [28]). LetF be a family of sets over {1, . . . , n}.

For 1 ≤ i < j ≤ n, define

Sij(F) = {Sij(F) : F ∈ F},

where

Sij(F) =

 F ′ = (F r {j}) ∪ {i}, if j ∈ F, i /∈ F and F ′ /∈ F ,

F, otherwise.

Proposition 2.2.3 (Proposition 2.2, [28]). If F is a family of sets over {1, . . . , n},

then

(a) |Sij(F)| = |F |,

(b) |Sij(F)| = |F|,

(c) if F is intersecting, then so is Sij(F).

24

Now we can state and prove the Erdős-Ko-Rado thoerem.

Theorem 2.2.4 (Theorem 1, [28]). IfF = {F1, . . . , Fr} is an intersecting Sperner

family over the set {1, . . . , n}, such that for all i = 1, . . . , r we have |Fi| = s with

1 ≤ s ≤ n
2
, then

r ≤
(
n− 1

s− 1

)
.

Proof. The claim is proved by induction on n. We distinguish two cases:

Case 1: n = 2s

Let F be a s-set over {1, . . . , n} and F = {1, . . . , n} r F be its comple-

ment. Then, all s-sets over {1, . . . , n} can be partitioned into 1
2

(
2s
s

)
pairs

of complementary sets. Clearly, if F ∈ F then F /∈ F . Hence,

|F| ≤ 1

2

(
2s

s

)
=

(
n− 1

s− 1

)
,

which proves the claim.

Case 2: n > 2s

Define F0 = F and for i = 1, . . . , n − 1 let Fi = Sin(Fi−1). According

to Proposition 2.2.3(b) and (c), families F and Fn−1 have the same size

and since F is intersecting, Fn−1 is intersecting too. Define the families

G andH as follows:

G = {F ∈ Fn−1 : n /∈ F},

H = {F r {n} : n ∈ F ∈ Fn−1}

We have that |F| = |G|+ |H|. By definition, G is an intersecting family

over the set {1, . . . , n− 1}, which by induction leads to

|G| ≤
(
(n− 1)− 1

s− 1

)
=

(
n− 2

s− 1

)
.

We next prove that H is also intersecting. Assume for a contradiction,

that there exist setsH ,H ′ ∈ H such thatH∩H ′ = ∅. Since the size of the

25

sets inH is s−1, we have that |H∪H ′| = 2(s−1) < n−1, which implies

that there exists i ∈ {1, . . . , n− 1}, such that i /∈ H ∪H ′. By definition,

F = H ∪ {n} belongs to Fn−1. Moreover, n ∈ F , which implies that

through the shifting process, none of the members of F were replaced

by n. In other words, for all i ∈ {1, . . . , n − 1}we have Sin(F) = F ,

which means that (F r{n})∪{i} = H∪{i} ∈ Fi−1 and henceH∪{i} ∈

Fn−1. By assumption, H ∩H ′ = ∅. Thus, (H ∪ {i}) ∩ (H ′ ∪ {n}) = ∅, a

contradiction to the fact that Fn−1 is intersecting.

As both G and H are intersecting families over {1, . . . , n − 1}, with G

consisting of s-sets andH of (s− 1)-sets, we have

|F| = |G|+ |H| ≤
(
n− 2

s− 1

)
+

(
n− 2

s− 2

)
=

(
n− 1

s− 1

)
,

which is the desired bound.

The Erdős-Ko-Rado theorem refers to intersecting Sperner families that

consist of sets of certain size. Results regarding the general case, where the

intersecting Sperner family contains sets of arbitrary size, were provided

by Milner in [37]. The proof of Milner’s result is based on the following

theorem by Katona, which will not be proved here.

Theorem 2.2.5 (Theorem 2, [31]). Let F be a family of `-sets over {1, . . . , n},

that is k-intersecting. Let 1 ≤ g ≤ `, 1 ≤ k ≤ `, g + k ≥ ` and

B = {B : |B| = g and B ⊂ F, for some F ∈ F}.

Then,

|B| ≥

(
2`− k
g

)
(
2`− k
`

) |F|,
where strict inequality holds in the following two cases:

26

(a) g = `

(b) F consists of all `-sets over the set E ⊂ {1, . . . , n} of size |E| = 2`− k.

Theorem 2.2.6 (Theorem 1, [37]). IfF = {F1, . . . , Fr} is a k-intersecting Sperner

family over the set {1, . . . , n}, then

r ≤
(

n

bn+k+1
2
c

)
.

Proof. Let t = bn+k+1
2
c. Clearly, if all sets in F have size exactly t, then the

claim is trivially true. We consider two cases, depending on the sizes of the

sets that comprise the family F .

Case 1: For all i ∈ {1, . . . , r}, |Fi| ≤ t and there exists some i, such that

|Fi| < t.

In other words, if ` is the size of the smallest set in F , then we assume

that for 1 ≤ s ≤ n

` = |F1| = . . . = |Fs| < |Fs+1| ≤ . . . ≤ |Fr| ≤ t.

For the sets F1, . . . , Fs, let C1, . . . , Cq be the distinct (` + 1)-sets, such

that for some i ∈ {1, . . . , s} and j ∈ {1, . . . , q} we have Fi ⊂ Cj .

Then, since for every i, j ∈ {1, . . . , r} |Fi ∩ Fj| ≥ k, it also holds that

|Ci ∩ Fj| ≥ k, for all i ∈ {1, . . . , q} and j ∈ {s + 1, . . . , r}, which

means that the family {C1, . . . , Cq, Fs+1, . . . , Fr} is k-intersecting. Fur-

thermore, if there exist i ∈ {1, . . . , q} and j ∈ {s + 1, . . . , r} such that

Ci ⊆ Fj , then Fi ⊂ Fj , which violates the Sperner property of F .

Hence, the sets C1, . . . , Cq, Fs+1, . . . , Fr form a k-intersecting Sperner

family of size q + r − s.

For a set A, let A = {1, . . . , n}r A denote the complement of A. Then,

|Ci| = n− (`+ 1) and there exists i ∈ {1, . . . , q}, such that Ci ⊂ F j , for

j ∈ {1, . . . , s}. Also, for every i, j ∈ {1, . . . , s}

|F i ∩ F j| = |Fi ∪ Fj| = n− (|Fi|+ |Fj| − |Fi ∩ Fj|) ≥ n+ k − 2`.

27

Notice, that by assumption ` ≤ t−1 and hence n+k−2` ≥ 1. Applying

Katona’s theorem (Theorem 2.2.5) on {F 1, . . . , F s}, we have

q ≥

(
2(n− `)− (n+ k − 2`)

n− `− 1

)
(
2(n− `)− (n+ k − 2`)

n− `

) s =

(
n− k

n− `− 1

)
(
n− k
n− `

) s ≥ s, (2.2.1)

where the last inequality holds because n+ k − 2` ≥ 1.

If ` = t − 1, then for all {1, . . . , q} we have |Ci| = t, which leads to

{C1, . . . , Cq, Fs+1, . . . , Fr} being a k-intersecting Sperner family of t-sets

and size q + r − s. Using (2.2.1) we obtain the desired bound for r.

If ` < t− 1, then the claim is proved using induction on t− `.

Case 2: There exists some i ∈ {1, . . . , r}, such that |Fi| > t.

In this case, the family F consists of sets with different sizes, hence we

can assume the following:

|F1| ≤ . . . ≤ |Fs| < t ≤ |Fs+1| ≤ . . . ≤ |Fp| < |Fp+1| = . . . = |Fr| = `′,

where 1 ≤ s ≤ p < r. Let D1, . . . , Dq be the distinct t-sets, for which

there exists i ∈ {1, . . . , s} such that Fi ⊂ Dj , for some j ∈ {1, . . . , q}.

Then, following the same argument as in the previous case we obtain

q ≥ s. (2.2.2)

Let B1, . . . , Bu be the distinct (l′ − 1)-sets, such that there exists an i ∈

{p + 1, . . . , r} for which Bj ⊂ Fi, for all j ∈ {1, . . . , u}. Next, for j ∈

{1, . . . , u} and i ∈ {p+1, . . . , r}we count in two ways the numberN of

pairs (Bj, Fi) such that Bj ⊂ Fi. Recall, that |Bj| = l′ − 1 and |Fi| = l′.

For fixed j, there exist exactly n− (l′−1) sets Fi, such that Bj ⊂ Fi, and

since we have u sets Bj we get

N = u(n− l′ + 1). (2.2.3)

28

On the other hand, if we fix an i, the number of (l′ − 1)-subsets of Fi is

l′, but as not all of them belong to {B1, . . . , Bu}, we have

N ≤ (r − p)l′,

which combined with (2.2.3) yields

u(n− l′ + 1) ≥ (r − p)l′. (2.2.4)

As l′ > t, we have that

2`′ > n+ k + 1 > n+ 1, (2.2.5)

since F is intersecting and thus k > 0. Inequality (2.2.5) implies that

`′

n− `′ + 1
> 0

and so (2.2.4) gives

u > r − p. (2.2.6)

It is easy to check that the sets D1, . . . , Dq, Fs+1, . . . , Fp, B1, . . . , Bu form

a k-intersecting Sperner family. If l′ = t+1, then this family consists of

sets of size l′ − 1 and l′, and has size q + (p− s) + u. By Case 1, the size

of the family is

q + (p− s) + u ≤
(

n

`′ − 1

)
=

(
n

t

)
.

Combining inequalities (2.2.1) and (2.2.6) we have

r = q + (p− s) + u ≤
(
n

t

)
and the claim is proved.

If l′ > t + 1, then the desired bound is obtained by applying an induc-

tion argument on l′ − t.

29

A different approach on the study of intersecting Sperner families, was

introduced by a conjecture made by Purdy and proven true by Schonheim

[44]. Instead of looking at intersecting Sperner families, the conjecture con-

siders Sperner families with the property that the union of any two distinct

pairs of sets, does not cover the ground set.

Definition 2.2.7. Let F be a family over a ground set E. Then F is called

non 2-covering if for every pair of sets A,B ∈ F we have A ∪B 6= E.

Theorem 2.2.8 ([44]). Let {1, . . . , n} be a set of even size. IfF = {F1, F2, . . . , Fr}

is a non 2-covering Sperner family over {1, . . . , n}, then

r ≤
(

n
n
2
− 1

)
.

Proof. Let B1, . . . , Bs be sets in F that have size greater than n
2
. According

to a result in [20] by De Bruijn, Tengbergen and Kruijswijk, the set of all

subsets of {1, . . . , n} can be decomposed into pairwise disjoint symmetric

chains. Since F is Sperner, B1, . . . , Bs belong to different chains. Based on

the result of De Bruijn et al., for i = 1, . . . , s the set Bi can be replaced by the
n
2
-set Ci from the chain containing Bi. Then, since Ci ⊂ Bi, the condition

Bi ∪Bj 6= {1, . . . , n} implies that Ci ∪Cj 6= {1, . . . , n}. Furthermore, if F is a

set in F of size less than n
2
, then it also holds that Ci ∪ F 6= {1, . . . , n}, since

|Ci ∪F | < 2n
2
= n. Hence, this replacement does not destroy the property of

the initial family, that the union of any two sets do not cover the ground set

{1, . . . , n}.

Let Ci = {1, . . . , n} r Ci be the complement of Ci, for all i = 1, . . . , s.

Then Ci is also a n
2
-set, and since F cannot contain complementary sets, we

have

s ≤ n

2

(
n
n
2

)
,

which is smaller than or equal to
(

n
n
2
−1

)
. This proves the claim in the case

where F = {B1, . . . , Bs}.

30

Consider again the decomposition into pairwise disjoint chains and let

D1, . . . , Dt be sets of size less than n
2
. Then, since F is Sperner, D1, . . . , Dt

belong to different chains. There are
(

n
n
2
−1

)
disjoint chains that contain sets

of size less than n
2
, hence

t ≤
(

n
n
2
− 1

)
,

and the claim is proved when F = {D1, . . . , Dt}.

We now consider the general case. IfX is a (n
2
−1)-subset of a n

2
-set which

belongs to F , then since F is Sperner, no set from the chain containing X ,

belongs to F . Clearly, the n
2
-sets C1, . . . , Cs are pairwise intersecting, since

are members of F . Applying Theorem 2.2.5, we get that the number of sets

X is at least (
2n
2
− 1

n
2
− 1

)
(
2n
2
− 1
n
2

)s =
(
n− 1
n
2
− 1

)
(
n− 1

n
2

)s = s.

In total, we have that

|F| = s+ t ≤ s+

(
n

n
2
− 1

)
− s =

(
n

n
2
− 1

)
,

which completes the proof.

31

Chapter 3

The Fingerprinting Problem

This chapter introduces the notion of fingerprinting and the motivation be-

hind the research of fingerprinting codes. In particular, two applications of

fingerprinting are presented, followed by the definition of the four adver-

say models that describe the capabilities of the traitors: narrow-sense, ex-

panded narrow-sense, wide-sense and expanded wide-sense model. Next,

four main types of fingerprinting codes are described, namely frameproof,

secure frameproof, IPP and traceability codes, which correspond to four dif-

ferent security notions. The combination of these security notions with the

adversary models gives rise to the definition of sixteen types of fingerprint-

ing codes. Furthermore, an original result regarding expanded wide-sense

IPP codes (Proposition 3.3.15) proves that this type of codes is equivalent to

the type of fingerprinting codes called totally secure codes. The chapter con-

cludes with a new result on traceability codes, involving two natural ways

of defining the Hamming distance. Propositions 3.3.22 and 3.3.25 show that

traceability codes under the two different types of distance are in fact equiv-

alent.

3.1 Digital Fingerprinting and Applications

The ease of access to the vast collection of digital data that is provided by

the Internet, as well as by other means of exchanging data, requires the use

of methods that prevent the illegal distribution of the data, known as piracy.

Just as human fingerprints make each one of us unique and constitute a

way of identification, digital fingerprints give the property of distinctness

32

amongst the copies of the digital data. The idea of fingerprinting is not new.

As mentioned in [15] by Boneh and Shaw, hundreds of years ago mathe-

maticians used this technique in the logarithm tables. In order to make each

copy unique, they altered the least significant digit of randomly chosen val-

ues of log x, so that each copy had a different set of log x values altered. In

this way, once an illegal copy of the tables was found, it was possible to

identify the traitorous owner.

Digital fingerprinting is a method of personalising digital data, such as

music, films, documents, software, in order to eliminate illegal redistribu-

tion (piracy), by tracing the malicious users (traitors). Watermarking tech-

nologies provide another way of marking digital data and in some cases are

regarded to be the same as digital fingerprinting. However, in the present

content we consider watermarking to be a method of indicating the own-

er/creator of the object, whereas fingerprinting serves the purpose of de-

tecting the malicious users.

For a better understanding of the notion of digital fingerprinting, two

main applications are presented here, taken from the survey paper [8] by

Blackburn. The first was introduced in 1994, by Chor, Fiat and Naor in

[18]. According to their model, the data to be distributed reaches the regis-

tered users through broadcast transmission. This implies that the data can

also be received by unregistered users, since there is no way of controlling

broadcast signals. To avoid this situation from occurring, the distributor ap-

plies cryptographic techniques and instead of transmitting the clear data, he

transmits its encrypted form. For the encryption, it is necessary that the dis-

tributor creates a base set of keys S and a set Q of q marks. Then, he divides

the data into blocks and each block m, into ` segments. Next, he randomly

chooses two sets of keys from S, namely a set {s1, . . . , s`} of ` keys and a

set of q` keys, as presented in Table 3.1. The first set of keys, is used by the

distributor in constructing the session key s = s1⊕ . . .⊕s`, while the second

set, in encrypting the keys s1, . . . , s` (Table 3.2) in the following way: every

33

k1,1 k1,2 · · · k1,`

k2,1 k2,2 · · · k2,`

...
...

. . .
...

kq,1 kq,2 · · · kq,`

Table 3.1: The set of q` keys that are used to encrypt keys {s1, . . . , s`}.

Ek1,1(s1) Ek1,2(s2) · · · Ek1,`(s`)

Ek2,1(s1) Ek2,2(s2) · · · Ek2,`(s`)

...
...

. . .
...

Ekq,1(s1) Ekq,2(s2) · · · Ekq,`(s`)

Table 3.2: The encryptions in the enabling block, where ` denotes the number of
segments and q the number of marks.

key sj is encrypted under keys ki,j , for all i = 1, . . . , q. Finally, the distributor

first transmits the encryptions of the keys s1, . . . , s` (enabling block), and next

the encryption of the data block m under the session key s (cipher block).

At the receivers’ end, it is clear that only the users who possess the keys

used for the encryption, are able to decrypt the transmitted data. Hence, in

order for the registered users to obtain the clear data, the distributor pro-

vides each one of them with a smartcard, which the users use as input to a

decoder box. Each smartcard contains a different set of ` keys, that allow the

users to decrypt the encrypted message. Specifically, the set consists of one

key from each column of the table of keys ki,j (Table 3.1). In this way, all au-

thorised users are able to decrypt the received Ei,j(sj), since the encryption

was carried out using keys ki,j , for all i = 1, . . . , q and j = 1, . . . , `. Finally,

the decryption of the cipher block Es(m) is now possible, by constructing

the key s = s1 ⊕ . . .⊕ s`.

With regard to the actions of the traitors, we consider two cases. The

34

first case involves only one traitor, whereas the second a coalition, which

is formed by at most t authorised users. The case of a sole traitor is eas-

ily addressed, as his smartcard uniquely identifies him. On the other hand,

the case of a coalition is more complex. The traitors are aiming to help an

unauthorised user (pirate) create an illegal smartcard that will decrypt the

transmitted encrypted data. In order to achieve successful decryption, the

traitors must give away the keys from their smartcards. Since the smart-

cards uniquely identify the users, to avoid being captured, the traitors load

the pirate smartcard with a combination of their keys. This shuffle of keys

from different users result in breaking the connection between them and the

new created smartcard.

Another application of fingerprinting, which can also be found in the

survey paper by Blackburn [8], is the case where the digital data is dis-

tributed through the Internet or in a CD/DVD form. In this scenario, the

users do not receive the same copies of the data, but copies which are marked

differently. Let us consider the case where the creator/owner of the data,

distributes copies of a film written on DVD, to the registered users. The

distributor, associates each user with a codeword chosen from a code C of

length `. Next, he marks the copy with this codeword and sends the marked

DVD to the user. We call the collection of marks in each copy, a fingerprint.

In this way, each user corresponds to a different copy of the film, which

uniquely identifies him. This implies that if only one user acts traitorously

and redistributes his copy, then the illegal DVD trivially indicates him as a

traitor.

In the case where a coalition is formed, the traitors can hide their identity

by combining the different fingerprints that are embedded in their copies.

By the construction, the marks are imperceptible and hence the only way to

detect their presence is to examine the differences amongst the copies of the

coalition. This means that in the pirate copy, the traitors have the freedom to

modify the positions where their copies differ. In particular, they can apply

35

one of the following modifications in these detectable positions:

(a) use the values of the corresponding positions from their copies,

(b) use the values of the corresponding positions from their copies, delete

the value or turn it unreadable,

(c) use arbitrary values that comply with the alphabet that is used,

(d) use arbitrary values that comply with the alphabet that is used, delete

the value or turn it unreadable.

For the previous application it is clear that the only option for construct-

ing the illegal fingerprint is (a), as the fingerprint plays the role of the crypto-

graphic key. Moreover, even if the fingerprint does not have key properties,

method (a) could be applied by the traitors in the case where it is impossible

to detect the positions of the marks. Thus, the coalition can only combine

their fingerprints, without being able to modify them. In the case where the

marks are partially detected, the traitors could apply the model (b) and re-

move the fingerprints from the known positions. In opposition to the first

application, in the example with the DVD distribution, it is not essential for

the traitors to use the values from their fingerprinted copies. If the marks

are visible, but for some reason their extraction is either not feasible or it

would cause quality degrade of the data, then in order to hide their identity

the members of the coalition would modify the fingerprints by changing

their value (model (c)). Finally, when the fingerprints are visible and (par-

tially) removable, model (d) provides the best strategy, as it creates a pirate

copy whose fingerprint is as unconnected to the coalition’s fingerprints as

possible.

3.2 The Descendant Set

Both applications mentioned above, indicate that the traitors’ capability is

restricted. This restriction is described by the Marking Assumption:

36

the members of the coalition can only alter those coordinates of the fin-

gerprint in which at least two of their fingerprints differ,

as stated in [4]. To summarise, the fingerprinting problem focuses on the

construction of a code C with the property that the distributor is always

able to identify at least one member of the coalition, which has size at most

t.

Let Q denote for the remainder of the first part of the thesis, an alpha-

bet of size q. Also, let U = {u1, . . . , ut} denote the set of traitors and D =

{y1, . . . ,yt} the fingerprints that correspond to each ui, for all i = 1, . . . , t.

The set of the illegal fingerprints is called the descendant set, as all these

fingerprints derive from the fingerprints of the coalition. However, in the

literature the descendant set could be found under the name of envelope [4]

or feasible set [50, 15].

There are four different adversary models to create the descendant set

that correspond to the four options (a)-(d) above: the narrow-sense, the

wide-sense and their expanded versions. The first, the narrow-sense de-

scendant set, denoted by desc(D), is defined as the set of all x ∈ Q` which

are generated using letters only from the codewords in D:

desc(D) = {x ∈ Q` : xi ∈ {y1i , . . . , yti}}.

The wide-sense descendant set, denoted wdesc(D), allows the traitors to

substitute the marks that they are able to detect by any mark of the alphabet

Q: x ∈ wdesc(D) if and only if x = x1 . . . x`, where xi = y1i , if y1i = y2i = . . . = yti

xi ∈ Q, otherwise.

Each one of the defined descendant sets can be extended by introducing the

symbol ‘?’, which represents deletion or an unreadable mark. The expanded

narrow-sense and expanded wide-sense descendant sets, denoted desc∗(D)

and wdesc∗(D) accordingly, are defined as follows:

37

desc∗(D): x ∈ desc∗(D) if and only if x = x1 . . . x`, where xi = y1i , if y1i = y2i = . . . = yti

xi ∈ {y1i , . . . , yti} ∪ {?}, otherwise.

wdesc∗(D): x ∈ wdesc∗(D) if and only if x = x1 . . . x`, where xi = y1i , if y1i = y2i = . . . = yti

xi ∈ Q ∪ {?}, otherwise.

The example that follows describes in a concrete way the definition of

the descendant sets.

Example 3.2.1. Let D = {10021, 20221, 20021} be a subset of a code C over

Q = {0, 1, 2}. Then

desc(D) = {10021, 10221, 20021, 20221},

desc∗(D) = {10021, 10221, 10?21, 20021, 20221, 20?21, ?0021, ?0221, ?0?21},

wdesc(D) = {00021, 00121, 00221, 10021, 10121, 10221, 20021, 20121, 20221},

wdesc∗(D) = {00021, 00121, 00221, 00?21, 10021, 10121, 10221, 10?21, 20021,

20121, 20221, 20?21, ?0021, ?0121, ?0221, ?0?21}.

3.3 Fingerprinting Codes

This section presents the four main types of fingerprinting codes, namely

frameproof, secure frameproof, identifying parent property (IPP) and trace-

ability codes.

3.3.1 Frameproof Codes

As mentioned in both applications, if there is only one authorised user who

acts traitorously and redistributes his copy, then the illegal copy will iden-

tify him, since it bears his fingerprint. However, it is possible that the traitor

pretends to be innocent and asserts that he has been framed. Therefore,

38

it is necessary for the distributor to be able to identify the true traitor and

prevent the capture of innocent users. In 1995, Boneh and Shaw [15] intro-

duced a new notion of fingerprinting, which possesses exactly this property.

Instead of concentrating on tracing at least one traitor, the aim is to prevent

the members of the coalition from framing a member that does not belong

in the coalition. A code C that ensures that an innocent authorised user is

not framed by the traitors is called a frameproof code.

Definition 3.3.1. A code C over the alphabet Q is called t-frameproof or

narrow-sense t-frameproof, denoted by t-FP, if for every subset D of C with

|D| ≤ t, we have that desc(D) ∩ C = D.

Definition 3.3.2. A code C over the alphabet Q is called expanded narrow-

sense t-frameproof, denoted by t-FP∗, if for every subset D of C with |D| ≤ t,

we have that desc∗(D) ∩ C = D.

Definition 3.3.3. A codeC over the alphabetQ is called wide-sense t-frameproof,

denoted by t-wFP, if for every subset D of C with |D| ≤ t, we have that

wdesc(D) ∩ C = D.

Definition 3.3.4. A code C over the alphabet Q is called expanded wide-sense

t-frameproof, denoted by t-wFP∗, if for every subset D of C with |D| ≤ t, we

have that wdesc∗(D) ∩ C = D.

Notice, that the absence of any characterisation related to the type of

descendant set, implies that the narrow-sense model is used.

3.3.2 Secure Frameproof Codes

The second type of fingerprinting code is called a secure frameproof code

and was first introduced in [49] by Stinson, van Trung and Wei. More pre-

cisely, they defined secure frameproof codes under the wide-sense descen-

dant model. The situation that triggered the idea of this type of codes, was

the discouraging result of Boneh and Shaw [15] proving the non existence

39

of deterministic wide-sense fingerprinting codes, that can identify at least

one traitor. On the other hand, frameproof codes do not provide any form

of traceability. Hence, secure frameproof codes were defined in order to

strengthen the family of wide-sense fingerprinting codes. Let x be an illegal

fingerprint. Since x could have been produced by more than one coalition,

ideally we would like to identify as a traitor, the user whose fingerprint be-

longs to the intersection of all possible coalitions that could create x. As

this is an impossible situation (according to the result of Boneh and Shaw),

Stinson, van Trung and Wei required the following property: for every pair

of disjoint coalitions D1 and D2, their descendant sets are also disjoint. Sim-

ilarly to the frameproof codes, secure frameproof codes are defined differ-

ently, depending each time on the descendant set model.

Definition 3.3.5. A code C over the alphabet Q is called t-secure frameproof,

denoted by t-SFP, if for all distinct subsets D,D′ of C such that |D| ≤ t and

|D′| ≤ t, we have that if desc(D) ∩ desc(D′) 6= ∅, then D ∩D′ 6= ∅.

Definition 3.3.6. A code C over the alphabet Q is called expanded narrow-

sense t-secure frameproof, denoted by t-SFP∗, if for all distinct subsets D,D′ of

C such that |D| ≤ t and |D′| ≤ t, we have that if desc∗(D) ∩ desc∗(D′) 6= ∅,

then D ∩D′ 6= ∅.

Definition 3.3.7. A code C over the alphabet Q is called wide-sense t-secure

frameproof, denoted by t-wSFP, if for all distinct subsets D,D′ of C such that

|D| ≤ t and |D′| ≤ t, we have that if wdesc(D)∩wdesc(D′) 6= ∅, thenD∩D′ 6=

∅.

Definition 3.3.8. A code C over the alphabet Q is called expanded wide-sense

t-secure frameproof, denoted by t-wSFP∗, if for all distinct subsets D,D′ of C

such that |D| ≤ t and |D′| ≤ t, we have that if wdesc∗(D) ∩ wdesc∗(D′) 6= ∅,

then D ∩D′ 6= ∅.

40

3.3.3 IPP Codes

Codes with the identifying parent property were first introduced by Holl-

mann, van Lint, Linnartz and Tolhuizen [30] (the case of two pirates, t = 2)

and by Staddon, Stinson and Wei [47] for any set of traitors with at most

t members. In contrast to the previously defined types of fingerprinting

codes, IPP codes possess a strong traceability property, as they ensure the

detection of at least one member of the coalition. This is achieved by iden-

tifying as a traitor the user whose fingerprint belongs to the intersection of

fingerprints of all the coalitions of certain size, that could generate the illegal

fingerprint. For the definition of this type of codes, it is necessary to define

first the set of potential parents of a word and the descendant set of a code.

Definition 3.3.9. Let C be a code of length ` over the alphabet Q. For x ∈ Q`

define

Pt,C(x) = {D ⊆ C : |D| ≤ t and x ∈ desc(D)}

to be the set of all possible subsets of codewords that x descended from. The

set Pt,C(x) is called the potential parent set of x.

In the case where the wide-sense, expanded narrow-sense and expanded

wide-sense descendant is being used, the corresponding potential parent

sets are denoted by Pwt,C(·), P∗t,C(·) and Pw,∗t,C (·).

Apart from the descendant set of a subset of a code, we can also define

the descendant set of a code as follows:

desct(C) =
⋃

D⊆C,|D|≤t

desc(D) (narrow-sense model),

desc∗t (C) =
⋃

D⊆C,|D|≤t

desc∗(D) (expanded narrow-sense model),

wdesct(C) =
⋃

D⊆C,|D|≤t

wdesc(D) (wide-sense model),

wdesc∗t (C) =
⋃

D⊆C,|D|≤t

wdesc∗(D) (expanded wide-sense model).

41

As expected, each of the four types of the descendant set leads to differ-

ent definitions of IPP codes.

Definition 3.3.10. A code C over the alphabet Q has the t-identifiable parent

property, if for all x ∈ desct(C) we have that⋂
D∈Pt,C(x)

D 6= ∅.

We denote this code by t-IPP.

Definition 3.3.11. A code C over the alphabet Q has the expanded narrow-

sense t-identifiable parent property, if for all x ∈ desc∗t (C) we have that⋂
D∈P∗t,C(x)

D 6= ∅.

We denote this code by t-IPP∗.

Definition 3.3.12. A codeC over the alphabetQ has the wide-sense t-identifiable

parent property, if for all x ∈ wdesct(C) we have that⋂
D∈Pw

t,C(x)

D 6= ∅.

We denote this code by t-wIPP.

Definition 3.3.13. A code C over the alphabet Q has the expanded wide-sense

t-identifiable parent property, if for all x ∈ wdesc∗t (C) we have that⋂
D∈Pw,∗

t,C (x)

D 6= ∅.

We denote this code by t-wIPP∗.

Before introducing the fourth fingerprinting code, we present a new cat-

egory of codes, called totally secure codes that were first defined by Boneh

and Shaw in [15]. The reason these codes are examined here, is because they

are equivalent to IPP codes, as we will shortly prove, and hence the results

of totally secure codes can be applied to IPP codes and vice versa. Like IPP

42

codes, totally secure codes also possess the property of identifying a traitor

and in order to achieve this, the presence of a tracing algorithm is required.

This algorithm is thought of as a function A : Q` → {1, . . . , t}, which on

input the illegal fingerprint x ∈ Q` outputs a member of the coalition. In the

original paper [15], totally secure codes were defined over {0, 1} but here

are generalised over the alphabet Q.

Definition 3.3.14 (Definition 4.1, [15]). Let Q be an alphabet of size q. A

code C is totally t-wSecure∗ code of length `, if there exists a tracing algorithm

A : Q` → {1, . . . , t} satisfying the following condition: if a coalition D of at

most t users generates a word x ∈ wdesc∗(D), then A(x) ∈ D.

Next, we prove that these codes are equivalent to t-wIPP∗ codes.

Proposition 3.3.15. A code C is t-wIPP∗ if and only if C is a totally t-wSecure∗

code.

Proof. First, assume that C is a t-wIPP∗ code of length `, over the alphabet

Q. Let D0 ⊆ C with |D0| ≤ t and x ∈ wdesc∗(D0). In order to prove that

C is totally t-wSecure∗, we need to show that there exists an algorithm A :

Q` → {1, . . . , t}, such that A(x) ∈ D0. Since C is t-wIPP∗, then for every

x ∈ wdesc∗t (C) ⋂
D∈Pw,∗

t,C (x)

D 6= ∅.

As D0 ∈ Pw,∗t,C (x), we have that given the element x, there exists a y ∈⋂
D∈Pw,∗

t,C (x)D, which implies that y ∈ D0. In other words, there exists an

algorithm A : Q` → {1, . . . , t}, such that A(x) = y ∈ D0, which means that

C is totally t-wSecure∗.

For the reverse direction, assume that C is a totally t-wSecure∗ code over

Q and let x0 be an element of wdesc∗t (C). Since C is totally t-wSecure∗, there

exists an algorithm A : Q` → {1, . . . , t} such that on input a x ∈ Q` outputs

a member of the coalition that produced x. Let y0 = A(x0) and assume for

43

a contradiction that the intersection of all potential sets of parents of x0 is

empty, that is ⋂
D∈Pw,∗

t,C (x0)

D = ∅.

This implies that there exists a set D ∈ Pw,∗t,C (x0), such that y0 /∈ D, which

means that the property of totally t-wSecure code C failed for the set D. A

contradiction.

3.3.4 Traceability Codes

Traceability codes were the first type of digital fingerprinting to be intro-

duced and were defined by Chor, Fiat and Naor [18] in order to prevent

illegal redistribution of digital data. As they guarantee the identification of

a traitor once the illegal fingerprint is found, traceability codes are a subset

of the family of IPP codes. However, their important feature is the algorithm

they provide in order to accomplish the identification of the traitor. This al-

gorithm is deterministic and is based on the examination of the Hamming

distance between codewords and words of the descendant set. First are de-

fined the narrow-sense and wide sense traceability codes.

Definition 3.3.16. A code C ⊆ Q` is a t-traceability code, denoted t-TA, if for

every D ⊆ C with |D| ≤ t and for every x ∈ desc(D), there exists at least

one y ∈ D such that

d(x,y) < d(x, z) ∀z ∈ C rD,

where d(·, ·) is the Hamming distance.

Definition 3.3.17. A code C ⊆ Q` is a wide-sense t-traceability code, denoted

t-wTA, if for every D ⊆ C with |D| ≤ t and for every x ∈ wdesc(D), there

exists at least one y ∈ D such that

d(x,y) < d(x, z) ∀z ∈ C rD,

where d(·, ·) is the Hamming distance.

44

Before the definition of the expanded narrow-sense and expanded wide-

sense traceability codes, we introduce the following definitions of the dis-

tance between a codeword and a word that belongs to the descendant set.

This is a necessary definition, as in the expanded cases a word from the de-

scendant set might contain the ‘?’ symbol, which stands for the deletion of

the value on that position or an unreadable mark. The existence of ‘?’ gives

rise to two different ways of defining the distance. The first, denoted by

d1(·, ·), is the known Hamming distance, whereas the second, d2(·, ·) treats

the ‘?’ as being the same as the letter that is compared to, and thus the

distance is zero.

Definition 3.3.18. For every a ∈ Q and b ∈ Q ∪ {?} the distance d1(·, ·)

between a and b is defined as

d1(a, b) =


1, if a 6= b

1, if b =?

0, if a = b.

Definition 3.3.19. For every a ∈ Q and b ∈ Q ∪ {?} the distance d2(·, ·)

between a and b is defined as:

d2(a, b) =


1, if a 6= b and b ∈ Q

0, if b =?

0, if a = b.

It is easy to notice the relation between these two definitions of distance:

for all a ∈ Q and b ∈ Q ∪ {?}we have

d2(a, b) =

 d1(a, b), if b 6=?

d1(a, b)− 1, if b =?.
(3.3.1)

The above definitions can be easily generalised to the distance of words

of length greater than 1. Let n ≥ 2 be an integer, and a = a1 . . . an ∈ Qn,

b = b1 . . . bn ∈ (Q ∪ {?})n be words of length n. Then,

d1(a,b) =
n∑
i=1

d1(ai, bi)

45

and similarly

d2(a,b) =
n∑
i=1

d1(ai, bi).

The traceability code with the expanded narrow-sense descendant is next

defined, under both types of distance:

Definition 3.3.20. A code C ⊆ Q` is an expanded narrow-sense t-traceability

code under d1, denoted t-TA∗(d1), if for every D ⊆ C with |D| ≤ t and for

every x ∈ desc∗(D), there exists at least one y ∈ D such that

d1(x,y) < d1(x, z) ∀z ∈ C rD,

where d1(·, ·) is the Hamming distance, as defined in Definition 3.3.18.

Definition 3.3.21. A code C ⊆ Q` is an expanded narrow-sense t-traceability

code under d2, denoted t-TA∗(d2), if for every D ⊆ C with |D| ≤ t and for

every x ∈ desc∗(D), there exists at least one y ∈ D such that

d2(x,y) < d2(x, z) ∀z ∈ C rD,

where d2(·, ·) is the distance, as defined in Definition 3.3.19.

The next proposition shows that actually the two different definitions of

the distance, when applied to the expanded narrow-sense traceability code,

result in equivalent codes.

Proposition 3.3.22. A code C is t-TA∗(d1) if and only if C is t-TA∗(d2).

Proof. It suffices to prove the claim in the case where a word x from the ex-

panded narrow-sense descendant set contains a ‘?’, because otherwise from

equation (3.3.1), distances d1 and d2 are the same. Let r be the number of

times ‘?’ occurs in x. First, assume that C is a t-TA∗(d1) code and let D be a

subset of C of size |D| ≤ t. Then, for all y ∈ D d1(y,x) ≥ r. Following the

definition of expanded narrow-sense traceability code, for all x ∈ desc∗(D)

46

there exists y0 ∈ D, such that d1(x,y0) < d1(x, z), for all z ∈ C r D. The

above imply that d1(x, z) ≥ r for all z ∈ C rD, hence,

d1(x,y0) < d1(x, z) ⇒

⇒ d1(x,y0)− r < d1(x, z)− r ⇒

⇒ d2(x,y0) < d2(x, z),

where the last inequality is derived by applying equation (3.3.1) in every

position between the words x,y0 and x, z. As the set D was chosen arbi-

trarily, it follows that for every D ⊆ C with |D| ≤ t and for all x ∈ desc∗(D)

there exists a y ∈ D, such that d2(x,y) < d2(x, z), for all z ∈ C rD. In other

words, C is t-TA∗(d2).

The reverse direction of the claim is proved in a similar way. Assume

that C is a t-TA∗(d2) code and let D be a subset of C of size |D| ≤ t. Then,

by Definition 3.3.19, for all x ∈ desc∗(D) there exists y0 ∈ D, such that

d2(x,y0) < d2(x, z), for all z ∈ C rD,. But this implies that

d2(x,y0) + r < d2(x, z) + r ⇒

⇒ d1(x,y0) < d1(x, z),

where the last implication results from equation (3.3.1). Hence, we have

proved that C is t-TA∗(d1), that is, for every D subset of C of size at most

t, and for all x ∈ desc∗(D) we have d1(x,y0) < d1(x, z), for all codewords z

that do not belong to set D.

Finally, we present the definition of the expanded wide-sense traceability

code in both types of distance.

Definition 3.3.23. A code C ⊆ Q` is an expanded wide-sense t-traceability code

under d1, denoted t-wTA∗(d1), if for every D ⊆ C with |D| ≤ t and for every

x ∈ wdesc∗(D), there exists at least one y ∈ D such that

d1(x,y) < d1(x, z) ∀z ∈ C rD,

where d1(·, ·) is the Hamming distance, as defined in Definition 3.3.18.

47

Definition 3.3.24. A code C ⊆ Q` is an expanded wide-sense t-traceability code

under d2, denoted t-wTA∗(d2), if for every D ⊆ C with |D| ≤ t and for every

x ∈ wdesc∗(D), there exists at least one y ∈ D such that

d1(x,y) < d1(x, z) ∀z ∈ C rD,

where d1(·, ·) is the distance, as defined in Definition 3.3.19.

Similarly to the expanded narrow-sense traceability code, the t-wTA∗(d1)

and t-wTA∗(d2) codes are equivalent.

Proposition 3.3.25. A code C is t-wTA∗(d1) if and only if C is t-wTA∗(d2).

Proof. As the only difference between the distances d1 and d2 is the way the

positions with ‘?’ are being counted, the fact that the detectable positions

could also be any letter of the alphabet, does not complicate the proof. This

is because the case where a position of a member of the expanded wide-

sense set contains an arbitrary letter ofQ, is treated in the same way as in the

wide-sense traceability code. For this reason the proof of this proposition is

identical to the proof of Proposition 3.3.22 and is omitted.

As a consequence of Propositions 3.3.22 and 3.3.25 and also for consis-

tency with the previous definitions of traceability codes, when referring to

expanded narrow/wide-sense traceability codes, we use the Hamming dis-

tance d1(·, ·), without specifying it, and thus use the notation t-TA∗ and t-

wTA∗.

To conclude this section, we present two remarks regarding all finger-

printing codes that have been defined.

Remark 3.3.26. By the definitions of fingerprinting codes, it is directly im-

plied that a t-fingerprinting code C is also a t′-fingerprinting code for all

t′ ≤ t. This is because for all such codes, the coalition D can have size at

most t, and hence cover all cases where |D| = t′ for t′ ≤ t.

48

Remark 3.3.27. It is easy to check that any subset of a fingerprinting code is

also a fingerprinting code. For example, let us examine the case of wide-

sense frameproof codes. Let C be a t-wFP and C ′ a subset of C. Assume for

a contradiction that C ′ is not t-wFP. This means, that there exists a subset

D ⊆ C ′ consisting of at most t codewords, for which wdesc(D) ∩ C ′ 6= D, or

wdesc(D)∩C ′ ⊃ D. This is true due to the fact that D ⊆ wdesc(D), and thus

wdesc(D) ∩ C ′ 6= D implies that D is a non trivial subset of C ′. As C ′ ⊆ C,

we have wdesc(D)∩C 6= D, which leads to a contradiction to C being t-wFP.

49

Chapter 4

Related Work

The aim of this chapter is to describe the progress that has been made over

the past years on fingerprinting codes. Results and known constructions

are presented for each of the four types of fingerprinting codes, that were

defined in the preceding chapter. Additionally, a section is devoted to topics

closely related to these codes, for completeness.

4.1 Frameproof Codes

Recall from the previous chapter, that frameproof codes were introduced in

1995 by Boneh and Shaw [15], for the protection of innocent users. The

descendant model that they used to define this type of codes is the ex-

panded wide-sense. Furthermore, in [15] they present a construction of t-

wFP∗ codes, based on concatenation. As an outer code they choose a binary

t-wFP∗ code C1 of length and size t, which contains all words that have ex-

actly one ‘1’. The inner code C2, is a (N,L,D) error-correcting code over

an alphabet Q, that has minimum distance which satisfies the following

expression: D > (1 − 1
t
)L. The construction indicates that the large min-

imum distance constitutes a sufficient condition in order for the resulting

code to be frameproof. Choosing appropriately the parameters of the com-

ponent codes C1, C2, the result is a binary t-wFP∗ code of length ` and size

m = 2`/16t
2 . As the construction depends on the existence of error-correcting

codes with the desired characteristics, the concatenated code is not explic-

itly constructed. However, using expander graphs it is possible to make

this construction explicit, at the expense of reducing the size of the code to

50

m = 2
√
`/t. This construction is based on the paper by Alon, Bruck, Naor,

Naor and Roth [1] on expanders.

Frameproof codes under the wide-sense model were studied by Chee

[17] in his thesis, where using the same construction from expander graphs

[1], in combination with explicit construction of superimposed codes of pos-

itive rate, gives the first explicit construction of binary t-wFP codes with rate

bounded away from zero. Furthermore, Chee presented probabilistic con-

structions of binary 2-wFP code with rate (1−o(1)) log(2/
√
3). In the follow-

ing chapter we will see that wide-sense frameproof codes are also expanded

wide-sense frameproof, thus the results of Boneh and Shaw are also true for

the wide-sense model as well. Hence, Chee’s probabilistic results improve

those of Boneh and Shaw [15] in the wide-sense model. In 1998, Stinson and

Wei [50] presented a series of constructions of wide-sense frameproof codes

based on different combinatorial structures. This is achieved by associat-

ing the codewords with the rows of the adjacency matrix of a set system.

Since this matrix depicts the binary relation between elements and sets, the

corresponding codes are defined over {0, 1}. The combinatorial structures

that are used are k-designs, packing designs and perfect hash families. In

particular, using packing designs Stinson and Wei presented a non explicit

construction of binary 2-wFP codes, whose size m = 2(
√
` log `)/2t, is better

than the size if the code of Boneh and Shaw, but still with rate that tends

to zero. Furthermore, they introduce a method of extending existing frame-

proof codes in order to accommodate larger set of users. The same paper

[50] also presents an upper bound on the size of t-wFP codes, an improve-

ment of which is one of the challenges that this thesis meets, in the case

where t = 2.

The relation between combinatorics and frameproof codes is further stud-

ied by Staddon, Stinson and Wei [47], where using cover-free and separating

hash families the authors obtain an upper bound on the size of narrow-sense

frameproof codes, that depends on both the length and the alphabet size.

51

Theorem 4.1.1 (Theorem 3.7, [47]). For a t-FP code of length ` and size m over

the alphabet Q of size q, the following holds:

m ≤ t(qd
`
t
e − 1).

A similar problem regarding upper bounds, is considered by Blackburn

in [9]. In the case where the length ` of the code is less than the size t of the

coalition, then it is proved that the code cannot contain more than `(q − 1)

codewords, where q is the alphabet size. The main focus of the paper is to

examine the behaviour of the size of narrow-sense frameproof codes, when

the alphabet size tends to infinity. The result presented below, is derived

from the study of intersecting set systems:

Proposition 4.1.2 (Corollary 12, [9]). Let t and ` be integers, and suppose that

c ≥ 2 and ` ≥ 2. Let c ∈ {1, . . . , t} be such that c ≡ ` mod t. Let C be a q-ary

t-FP code of length `. Then

|C| ≤
(

`

`− (c− 1)d `
t
e

)
qd
`
t
e +O(qd

`
t
e − 1)

Apart from the cases where c = 1 and c = t, this bound improves upon

the bound of Staddon, Stinson and Wei [47]. Additionally, the same pa-

per [9], provides values on the size of 2-FP codes. Namely, 2-FP codes of

even length ` consist approximately of 2qd`/2e codewords, while for odd `

the leading term becomes 1. A survey on frameproof and on fingerprinting

codes in general was written by Blackburn and can be found in [8].

Staddon and Sarkar presented different constructions of narrow-sense

frameproof codes in [48]. The authors observed that the union of t-FP codes

of size m gives a larger code, and hence obtained t-FP codes of length `

and size m′ = 2im over an alphabet of size q′ = 2iq, where q is the size of

the alphabet of the initial code. Another result of [48] is the existence of

an infinite class of t-FP codes, which is shown via a recursive construction

of separating hash families. Additional constructions of frameproof codes

52

were studied in [25], where Cohen and Encheva obtain 3-FP codes from

Hadamard matrices.

In [57], Xing examines the rate of narrow-sense frameproof codes in an

asymptotic manner, by fixing the alphabet size and the parameter t and let-

ting the length tend to infinity. A lower bound on the rate in [57] is derived

from algebraic curves, which can be constructed explicitly in the case where

the related sequence of curves is explicit. Furthermore, this construction

gives better results than the explicit constructed codes derived from error-

correcting codes.

The research of frameproof codes shows that under the narrow sense

model, their size is of the order of qd`/te. With respect to the leading coeffi-

cient of that term, the bound of Proposition 4.1.2 is the best known, except

for the case c = 1 or c = t, where the best known value is given by The-

orem 4.1.1. Regarding explicit construction under the narrow-sense model

that produces good frameproof codes, this is given by Xing using algebraic

curves, while existence results are based on good error-correcting codes of

large minimum distance. The two constructions (explicit and existential)

of Boneh and Shaw in [15] of expanded wide-sense frameproof codes, are

based on error-correcting codes of large minimum distance and summarise

the known result on frameproof codes under this model. In the case of the

wide-sense model, the best explicit construction is given by Chee [17], while

his probabilistic approach gives good results on binary 2-wFP codes. The

best known upper bound is given by Stinson and Wei in [50]. Finally, as

the following chapter shows, expanded narrow-sense frameproof codes are

equivalent to narrow-sense and hence, t-FP∗ codes share the same results

with t-FP codes.

53

4.2 Secure Frameproof Codes

As mentioned in the previous chapter, the idea of secure frameproof codes

first appeared in the paper [49] by Stinson, van Trung and Wei, in order

to enhance the frameproof codes, under the wide-sense model. In the case

where the coalition is formed only by two traitors, the authors examined se-

cure frameproof codes from a graph theory point of view and they derived

the following:

Theorem 4.2.1 (Theorem 2.3, [49]). Suppose that C is a 2-wSFP code of length

` and size m and suppose that x is an unregistered word that is produced by a

coalition of size at most 2. Then, one of the following two possibilities must occur:

1. at least one guilty user can be identified, or

2. a set of three participants can be identified, two of which must be guilty.

Apart from the graph theory, in the same paper secure frameproof codes

were also studied through other combinatorial structures, such as sandwich-

free families and separating systems. Furthermore, [49] presents two ex-

plicit constructions based on perfect hash families and separating hash fam-

ilies. The first combinatorial structure yields a code of length ` = 3· 7j+1 and

size m = 72
j , for all j ≥ 0, while for the second, the code preserves the size

and reduces the length to ` = 9· 5j .

The case of narrow-sense secure frameproof codes is examined by Stad-

don, Stinson and Wei in [47]. Similar to [49], this paper also examines the

connection between secure frameproof codes and separating hash families.

As a result, the authors give an upper bound on the size of such codes:

Theorem 4.2.2 (Theorem 3.10, [47]). For a t-SFP code of length ` and size m

over the alphabet Q of size q, the following holds:

m ≤ qd
`
t
e + 2t− 2. (4.2.1)

54

Further research on this type of codes under the narrow-sense model,

was made in [55] by Tonien and Safavi-Naini, who gave explicit construc-

tions based on matrices defined in a specific way. They examine the case

of different alphabet sizes, while for certain parameters their constructions

produce exponentially large codes, compared to their length. In [36], Liu

and Shen provide explicit constructions of an infinite class of separating

hash families, which were derived from algebraic curves over finite fields,

and were then used to obtain secure frameproof codes:

Theorem 4.2.3 (Theorem 4.6, [36]). For any positive integers q and t, there exists

an infinite class of explicitly constructed q-ary t-SFP codes of size m and length

` = O(logm).

Furthermore, in [51] Stinson and Zaverucha provide an upper bound on

the maximum size of t-SFP codes through the existence of separating hash

families.

Proposition 4.2.4 (Corollary 2.8, [51]). If a q-ary t-SFP code of length ` and size

m exists, then

m ≤ (2t2 − 3t+ 2)qd
`

2t−1
e − 2t2 + 3t− 1.

To conclude, under the narrow-sense model secure frameproof codes of

the best asymptotic behaviour are explicitly obtained from algebraic curves,

while the upper bound on the size of such codes is of the order of qd
`

2t−1
e. Re-

garding the other models of descendants, only the wide-sense model was

studied and explicit constructions were presented in [49] by Stinson, van

Trung and Wei. As the next chapter shows, secure frameproof codes un-

der the expanded narrow-sense model are equivalent to narrow-sense SFP

codes, and hence the same results apply to t-SFP∗. A similar relation con-

nects t-wSFP∗ and t-wSFP codes and thus, the explicit constructions of t-

wSFP can produce t-wSFP∗ codes, as well.

55

4.3 Identifying-Parent-Property Codes

Aside from the definition of frameproof codes, Boneh and Shaw also in-

troduced totally secure codes under the expanded wide-sense model [15].

As proved in the previous chapter, this type of codes is equivalent to ex-

panded wide-sense IPP codes. The results of their paper are rather discour-

aging, since they proved that there do not exist t-wSecure∗ (or equivalently

t-wIPP∗) codes for t ≥ 2 and size m ≥ 3. The next chapter shows that the

same result holds for the IPP codes under all other descendants, apart from

the narrow-sense. Hence, all the results presented in this section relate to

narrow-sense IPP codes.

A first study of IPP codes, and in particular the case of two traitors, is

made by Hollmann, van Lint, Linnartz and Tolhuizen in [30]. The paper

provides bounds on the maximal size of 2-IPP codes of both small and arbi-

trary length. The small length case was also examined by Blackburn in [10],

proving the following result:

Theorem 4.3.1 (Theorem 2, [10]). Let C be a q-ary t-IPP code of length ` and size

m. Let u = d(t/2 + 1)2e. Then, whenever ` < u we have that

m ≤ 1

2
u(u− 1)(q − 1) + 1.

In the case of arbitrary length, Hollmann et al. [30] give explicit construc-

tion of 2-IPP codes, based on equidistant codes of length `, if the distance

d is odd and ` < (3/2)d, if d is even. In the case where q ≥ ` − 1, they

showed that Reed-Solomon codes with parameters [`, d`/4e, ` − d`/4e + 1]

have the IPP property and consequently proved that 2-IPP codes consist of

at least qd`/4e codewords. For large values of q this bound was improved in

the same paper by the following theorem:

Theorem 4.3.2 (Theorem 6, [30]). Let

F (`, q) := max{|C| : C ⊆ Q` is 2-IPP code, |Q| = q}.

56

For ` ≥ 3 there is a constant c such that

F (`, q) ≥ c (
q

4
)
`
3 .

The next chapter of the thesis shows that if a code is t-IPP, then it is also t-

SFP and t-FP. Hence, results of upper bounds on the size of frameproof and

secure frameproof codes could be applied to IPP codes as well. Specifically,

inequality (4.2.1) given by Staddon, Stinson and Wei [47], is an upper bound

for the t-IPP codes, as well. However, in the case of 2 traitors Hollman et al.

[30] provide a better bound. An important result of [47] is that t-IPP codes

exist under some conditions:

Proposition 4.3.3 (Corollary 2.8, [47]). If q ≤ t, there does not exist a q-ary t-IPP

code.

Narrow-sense IPP codes were also examined from the point of view of

hypergraphs, by Barg, Cohen, Encheva, Kabatiansky and Zémor in [5]. Par-

ticularly, subsets of a t-IPP code of size at most t, are thought of as edges of

a hypergraph. This approach leads to proving the following result for the

asymptotic behaviour of the rate of the code:

Theorem 4.3.4 (Theorem 3.8, [5]). Let Rq(t) = lim inf`→∞maxR(C`), where

the maximum is computed over all t-IPP codes C` of length `. Let u = d(t/2+12)e,

then

Rq(t) ≥
1

u− 1
logq

(q − t)!qu

(q − t)!qu − q!(q − t)u−t
.

The above result is proved by exploiting the relation between IPP codes

and partially hashing families, which are combinatorial structures intro-

duced by the authors. Additionally, [5] examines the case of small length

IPP codes and proves the existence of a sequence of linear ternary 2-IPP

codes C` of length `, with rate R(C`) ≥ (1/3) log3(9/7). In [2], Alon, Cohen,

Krivelevich and Litsyn investigate this new structure and provide better re-

sults on Rq(t), in the case where q = t+ 1:

57

Proposition 4.3.5 (Corollary 1, [2]). Let u = d(t/2 + 12)e. Then

Rt+1(t) ≥
t!(u− t)u−t

uu(u− 1) ln(t+ 1)
.

The codes that provide the above results on the maximum asymptoti-

cally attainable rate are not explicit. As previously mentioned, in order for

t-IPP codes to exist, it is required that q > t. On the other hand, when q < t2,

explicit constructions from error-correcting codes with large minimum dis-

tance, lead to asymptotically zero rate, since by the Plotkin bound the size

of the code is of the order of q. Hence, the question posed by Barg and Kaba-

tiansky in [6], is to explicitly construct t-IPP codes with rate bounded away

from zero, provided that t + 1 ≤ q ≤ t2. In their paper, they answer this

question by constructing a sequence of t-IPP codes with asymptotically non

zero rate, based on concatenation of an IPP and a linear code. Choosing the

component codes carefully (for example by taking a Reed-Solomon code as

the linear code) and the fact that the decoding uses the Guruswami-Sudan

algorithm, the identification is efficient under certain conditions.

New bounds on the maximum size of narrow-sense t-IPP of length `,

size m and alphabet size q, are proved by Alon and Stav [3]. The upper

bound in the following result is an improvement on a bound given in [10]

by Blackburn.

Theorem 4.3.6 (Theorem 2.1, [3]). There exist two functions c1(t) and c2(t), such

that for every `, q

(c1(t)q)
`
s(t) < m < c2(t)q

d `
s(t)
e
,

where

s(t) =

 t2

4
+ t, if t is even,

t2

4
+ t− 1

4
, if t is odd.

The above results show that in the case of small length, the maximum

size of t-IPP codes is of the order of the alphabet size q. Regarding arbitrary

58

length, the results can be interpreted in two ways. The first one would be to

fix the length ` and the parameter t of the IPP codes and let q tend to infinity.

Under this hypothesis and using the inequalities of the last theorem, we can

see that the maximum attainable rate is approximately bounded below from

1/s(t) and (1/`)d`/s(t)e from above. If instead the alphabet size q is fixed

and the length ` grows, then the result is given by Theorem 4.3.4.

4.4 Traceability Codes

The first note on traceability codes and their construction was made in 1994

by Chor, Fiat and Naor [18]. The paper begins with a discussion on the

problem of tracing traitors and continues by giving an application of finger-

printing in the broadcast setting, under the narrow-sense model. The t- and

(t, p)-traceability schemes are defined, where the latter contains a probabilis-

tic factor. Additionally, the authors prove the existence of a t-traceability

scheme and provide a sufficient condition for traceability. In particular, they

translated their construction into the language of coding theory and thus,

the sufficient condition becomes an expression of the minimum distance of

a code: find a code of size m, length ` = 4t2 logm and minimum distance d,

over an alphabet of size q = 2t2, such that d > (1− 1
t2
)`.

Using the same model of descendants, Stinson and Wei [50] explore bi-

nary traceability codes and their relation to set systems. A series of existence

results on t-TA codes is presented, based on k-designs and packing designs.

In particular, packing designs give traceability codes of size approximately

2` log `/t
2 , which is better than the size of the code given in [18]. However, the

alphabet size of the latter is much smaller. In [50], the authors also give an

upper bound on the maximum size of t-TA codes:

Theorem 4.4.1 (Theorem 5.5, [50]). If a q-ary t-TA code of length ` and size m

59

exists, then the following bound holds

m ≤

(q

d `
t
e

)(
`−1
d `
t
e−1

) .
As in the case of frameproof codes, the same paper presents a method

of enlarging the size of these codes, in order to cover bigger set of users.

Binary, narrow-sense traceability codes were also examined in [47] by Stad-

don, Stinson and Wei. Upper bounds on the size of t-TA codes were indi-

rectly derived from t-SFP codes, by exploiting the fact that traceability codes

are also secure-frameproof codes. Thus, according to inequality (4.2.1) a t-

TA code has at most qd`/te + 2t − 2 codewords. Using the result of Chor,

Fiat and Naor [18] regarding the connection between traceability codes and

codes of large minimum distance, Staddon, Stinson and Wei [47] presented

a q-ary t-TA code over an alphabet of size a prime power, length ` ≤ q + 1,

which contains qd`/t2e codewords. The construction is based on the existence

of Reed-Solomon codes of certain parameters.

The flavour of coding theory that accompanies traceability codes, intro-

duces efficient tracing methods that relate to error-correcting codes. One

of these methods appears in a paper by Silverberg, Staddon and Walker

[45], where the authors use list decoding on linear t-TA codes and narrow-

sense traceability codes based on Reed-Solomon codes of large minimum

distance.

In [12], Blackburn, Etzion and Ng proved that in the case of two traitors,

the size of 2-TA codes of length ` is at most cqdt/4e, where c is a parameter

depending on `. As mentioned in [47], when ` ≤ q + 1 there exists a Reed-

Solomon code with at most qdt/4e. Hence, the fact that a Reed-Solomon code

is 2-TA with size of the same order as the bound given by [12], shows that

error-correcting codes of large minimum distance result in good 2-TA codes.

Moreover [12] proves the following result, which shows the existence of

constant rate traceability codes of specific parameters:

60

Theorem 4.4.2 (Theorem 2, [12]). Let t and q be integers with t ≥ 2. When

t2 − d t
2
e+ 1 ≤ q or when t = 2 and q = 3,

there exists a constantR > 0 (that depends on q and t) and a sequence of t-TA codes

C1, C2, . . . over an alphabet of size q, such that C` has length ` and |C`| ∼ qR` as

`→∞.

From the above presentation of results we conclude that the upper bound

on the size of traceability codes under the narrow-sense model, is of the or-

der of qd`/te, though several constructions yield traceability codes of size

approximately qd`/t
2e. In the case of two traitors, it is shown that the up-

per bound is O(qd`/4e) and can be attained using error-correcting codes. Re-

garding the other three models of the descendant set, the following chapter

shows that t-TA∗, t-wTA and t-wTA∗ are equivalent to t-wIPP∗ codes, which

according to the result of Boneh and Shaw [15] do not exist for t ≥ 2 and

and size m ≥ 3.

4.5 Beyond the Main Types of Fingerprinting Codes

To conclude the chapter, this section describes in brief and for the purpose

of completeness two additional topics related to digital fingerprinting. The

first concerns t-secure ε-error codes, while the second refers to digital finger-

printing in the public key setting.

4.5.1 Secure ε-Error Codes

As mentioned in a previous section (Section 4.3), the results of IPP codes

under the expanded wide-sense models are quite discouraging, as in [15]

Boneh and Shaw proved that t-wIPP∗ codes exist only when t ≤ 1 or m ≤ 2.

For this reason, they defined a new type of fingerprinting code which con-

tain some randomness r ∈ {0, 1}∗ in the choices made by the distributor,

when he associates fingerprints with users. By keeping secret the way fin-

61

gerprints are distributed, they construct a scheme which identify a traitor

with high probability. The randomised fingerprinting scheme is now called

t-secure ε-error, where the parameter ε refers to the probability of misiden-

tification of a traitor.

Definition 4.5.1 (Definition 4.2, [15]). A fingerprinting scheme Cr is t-secure

with ε-error if there exists a tracing algorithm A satisfying the following

condition: if a coalition D of at most t users generates a word x then

Pr[A(x) ∈ D] > 1− ε,

where the probability is taken over the random bits r and the random choices

made by the coalition.

Randomized fingerprinting schemes were also studied in [4], by Barg,

Blakley and Kabatiansky. Using concatenation of codes, they obtain a binary

totally t-secure ε-error code with rate bounded away from zero. The authors

choose for the inner code a binary t-SFP code and for the outer, an extended

q-ary Reed-Solomon code. The paper also examines the case of two traitors,

and based on the aforementioned construction with a 2-SFP as inner code,

they obtain a 2-secure code with the following property: either one traitor is

identified with probability 1, or both with probability 1 − ε. More 2-secure

ε-error codes are constructed by Tô, Safavi-Naini and Wang in [54], using

the method of concatenation, as well. The inner code is a binary 2-secure ε′-

error code, while there are two choices for the outer structure: t-wTA∗ code

or perfect hash families. The main result of this paper is that the probability

of the error ε′ is very small and in the case where the illegal fingerprint

contains at least one ‘?’, the identification is correct.

Another way of addressing the problem of tracing traitors, is to use

public key schemes instead of combinatorial. The motivation behind this

approach, is that the symmetric model is based on the assumption of the

honesty of the distributor. Since the distributor holds all the information

62

on the fingerprints, it is possible to frame an innocent user. This scenario

was first considered by Pfitzmann and Schunter in [41], who presented con-

structions of asymmetric tracing schemes by combining known symmetric

fingerprinting schemes with cryptographic primitives that are provably se-

cure. Further investigation on the asymmetric model was made by Pfitz-

mann [40], Kurosawa and Desmedt [34] and Pfitzmann and Waidner [42],

who constructed schemes that address the problem of collusion of users.

Boneh and Franklin in [14] describe a more efficient tracing scheme, com-

pared to the previous ones, based on Reed-Solomon codes and under the

assumption that the decisional Diffie-Hellman problem is hard. In [38] Nac-

cache, Shamir and Stern introduce a technique for copyrighting functions,

algorithms and programs, that does not depend on the marking assump-

tion. As a result, either a traitor is traced or the data is extremely altered.

Kurosawa and Yoshida [35] use linear codes to obtain public key tracing

schemes and in [33] Kiayias and Yung present two tracing schemes with

constant transmission rate (that is, the growth of the size of keys and ci-

phertexts in relation to the plaintext size). An improvement to the transmis-

sion rate of the scheme proposed by Kiayias and Yung, was given in [16] by

Chabanne, Phan and Pointcheval. The same paper introduces the notion of

public traceability, which also allows the users, apart from the distributor,

to perform tracing.

This area, combining traitor tracing schemes with public key cryptog-

raphy, possesses a large collection of tracing schemes and continues to pro-

duce new results in order to cover the needs of protecting intellectual rights.

63

Chapter 5

Relations Between Fingerprinting Codes

This chapter presents a series of results with regard to the connections of all

sixteen types of fingerprinting codes, derived by combining the four secu-

rity notions with the four adversary models. Previous research has covered

the relations between traceability and IPP codes, and secure frameproof

and frameproof codes, under the narrow-sense descendant set. Proposition

5.1.2 bridges the gap by examining the relation between narrow-sense IPP

and secure frameproof codes. Regarding the remaining relations, these are

presented by Propositions 5.2.2, 5.2.3, 5.2.4, 5.2.13, 5.3.1, 5.3.2, 5.3.3, 5.3.4,

5.3.5, 5.3.6, 5.3.7 and 5.3.8. The results of these propositions are new, though

they require only minor modifications of previously known results. Ad-

ditionally, based on a result by Boneh and Shaw [15], Theorems 5.2.8, 5.2.9,

5.2.10, 5.2.11 and 5.2.12 present further original results, which show that IPP

and traceability codes under the wide-sense and the expanded wide-sense

model are equivalent.

5.1 The Narrow-Sense Model

This section investigates the relations between different fingerprinting codes,

which use the same type of descendant set. The first relation involves trace-

ability and IPP codes, and was proved by Staddon, Stinson and Wei in [47].

Proposition 5.1.1 (Lemma 1.3, [47]). A t-TA code is a t-IPP code.

Proof. Let C be a t-TA code and D be a subset of C with |D| ≤ t. Let x0 ∈

desc(D) and y ∈ D, such that d(x0,y) ≤ d(x0, z) for all z ∈ D. Combining

64

this with the property of t-TA codes, we obtain:

d(x0,y) ≤ d(x0, z), for all z ∈ C. (5.1.1)

Assume there exists a setD′ ⊆ C of size at most t, for which x0 ∈ descD′ and

y /∈ D′. Then, as C is t-TA, there must exist a codeword w ∈ D′, such that

d(x0,w) < d(x0,y). But this contradicts equation (5.1.1). Hence, for every

subset D of C with |D| ≤ t and for all x ∈ desc(D), there exists a y ∈ C such

that y ∈
⋂
D∈Pt,C(x)D, in other words, C is t-IPP.

Next, an example is presented demonstrating that the above relation is

one way and that a t-IPP code is not necessarily t-TA.

Example 5.1.1. The code C = {000, 011, 102, 220}, generated from the con-

struction introduced by Hollmann et al. in [30], is a 2-IPP code. Let D =

{011, 102} and x = 001 be a word which belongs to desc(D). Then, there

exists a z = 000 ∈ C r D, such that d(x,y) ≥ d(x, z) = 1 for all y ∈ D,

which contradicts the definition of traceability codes. Hence, C is 2-IPP but

not 2-TA.

A similar relation connects IPP with secure frameproof codes.

Proposition 5.1.2. A t-IPP code is a t-SFP code.

Proof. Let C be a t-IPP code andD,D′ subsets of C with |D| ≤ t and |D′| ≤ t.

Additionally, let x be a word in the intersection of desc(D) and desc(D′),

and thus we have D,D′ ∈ Pt,C(x). Then, as C is t-IPP, there exists a y ∈⋂
Di∈Pt,C(x)Di. Notice, that ⋂

Di∈Pt,C(x)

Di ⊆ D ∩D′

and consequently y ∈ D ∩ D′. Hence, for all distinct D, D′ subsets of C of

size at most t when desc(D) ∩ desc(D′) 6= ∅, then D ∩D′ 6= ∅, which proves

that C is t-SFP.

65

Example 5.1.2. The code C = {1002, 1201, 2001, 2212} is a 2-SFP code. For

the word x = 2002 in the set desc2(C) the potential parent sets of size 2 are:

D1 = {1002, 2001}

D2 = {1002, 2212}

D3 = {2001, 2212},

which do not intersect, and hence C is not 2-IPP.

Finally, we present the connection between t-SFP and t-FP codes, which

was examined in [49] by Stinson et al.

Proposition 5.1.3 (Theorem 2.2, [49]). A t-SFP code is a t-FP code.

Proof. Let C be a t-SFP code. Assume for a contradiction, that C is not t-FP.

Then, there exists a subset D of C with |D| ≤ t, such that desc(D) ∩ C 6= D.

Since D ⊆ C, we have that D ⊆ desc(D) ∩ C, which implies that here exists

a word y such that y ∈ desc(D) and y ∈ C, but y /∈ D. Let {y} = D′, then D,

D′ are subsets of C of size at most t and have empty intersection, D∩D′ = ∅.

As {y} ∈ desc(D) and {y} ∈ desc(D′), we have that desc(D) ∩ desc(D′) 6= ∅,

which contradicts the fact that C is t-SFP. Hence, C is indeed t-FP.

Example 5.1.3. Let us examine the 2-FP codeC={10110, 10201, 11000, 00100}.

For the disjoint subsets D = {10110, 10201} and D′ = {11000, 00100} of C,

there exists a word x = 10100 which belongs to both desc(D) and desc(D′).

Hence, C cannot be 2-SFP, asD∩D′ = ∅ and the definition of the t-SFP codes

is violated.

So far, the relations amongst the fingerprinting codes are summarised in

Figure 5.1.

t-FP t-SFP t-IPP t-TA

Figure 5.1: Relations of fingerprinting codes under the narrow-sense model.

66

5.2 Wide-Sense and Expanded Narrow/Wide-Sense Models

on Traceability and IPP Codes

Before proceeding with the examination of the remaining relations of fin-

gerprinting codes, we make the following remark regarding the size of the

codes.

Remark 5.2.1. Let us examine the cases where C is a fingerprinting code of

size 1 or 2. Let x be an illegal fingerprint under one of the four descendant

models. When |C| = |{y}| = 1, then the illegal fingerprint x coincides

with the codeword y, as the traitor knows nothing more than the letters of

his own fingerprint. In the case where |C| = |{y1,y2}| = 2 and x ∈ C,

then x = y1 or x = y2, and one traitor is directly identified. When |C| =

|{y1,y2}| = 2 and x /∈ C, then both codewords must correspond to traitors,

as the only way to produce an illegal fingerprint that does not belong to C,

is by combining their fingerprints. As in both cases, |C| = 1 and |C| = 2, the

identification of a traitor is direct, we call these codes trivial.

Next, we examine the connection between traceability and IPP codes

using the expanded narrow-sense, wide-sense and expanded wide-sense

models of descendant. Similar to the narrow-sense model, traceability codes

imply IPP codes under the remaining descendant models, as well. As the

proofs are identical to the proof of Proposition 5.1.1 and the only difference

is the use of the descendant set, they can be disregarded and are presented

here only for completeness.

Proposition 5.2.2. A t-TA∗ code is a t-IPP∗ code.

Proof. Let C be a t-TA∗ code and D ⊆ C of size at most t. Let x0 ∈ desc∗(D)

and y be the closest element to x in D, that is, d(x0,y) ≤ d(x0, z) for all

z ∈ D. Since C is t-TA∗, we have

d(x0,y) ≤ d(x0, z), for all z ∈ C. (5.2.1)

67

Assume for a contradiction that there exists D′ ⊆ C with |D′| ≤ t, such that

x0 ∈ desc∗D′ and y /∈ D′. Then, by the definition of t-TA∗ code there exists

a codeword w ∈ D′ such that d(x0,w) < d(x0,y), a contradiction to (5.2.1).

Hence, for every subset D of C with |D| ≤ t and for all x ∈ desc∗(D), there

exists a y ∈ C such that y ∈
⋂
D ∈ P∗t,C(x)D, in other words, C is t-IPP∗.

Proposition 5.2.3. A t-wTA code is a t-wIPP code.

Proof. Let C be a t-wTA code andD ⊆ C of size at most t. Let x0 ∈ wdesc(D)

and y be the closest element to x in D, that is, d(x0,y) ≤ d(x0, z) for all

z ∈ D. Since C is t-wTA, we have

d(x0,y) ≤ d(x0, z), for all z ∈ C. (5.2.2)

Assume for a contradiction that there exists D′ ⊆ C with |D′| ≤ t, such

that x0 ∈ wdescD′ and y /∈ D′. Then, by the definition of t-wTA code there

exists a codeword w ∈ D′ such that d(x0,w) < d(x0,y), a contradiction to

(5.2.2). Hence, for every subsetD ofC with |D| ≤ t and for all x ∈ wdesc(D),

there exists a y ∈ C such that y ∈
⋂
D ∈ Pwt,C(x)D, in other words, C is

t-wIPP.

Proposition 5.2.4. A t-wTA∗ code is a t-wIPP∗ code.

Proof. Let C be a t-wTA∗ code and D ⊆ C of size at most t. Let x0 ∈

wdesc∗(D) and y be the closest element to x in D, that is, d(x0,y) ≤ d(x0, z)

for all z ∈ D. Since C is t-wTA∗, we have

d(x0,y) ≤ d(x0, z), for all z ∈ C. (5.2.3)

Assume for a contradiction that there exists D′ ⊆ C with |D′| ≤ t, such that

x0 ∈ wdesc∗D′ and y /∈ D′. Then, by the definition of t-wTA∗ code there

exists a codeword w ∈ D′ such that d(x0,w) < d(x0,y), a contradiction

to (5.2.3). Hence, for every subset D of C with |D| ≤ t and for all x ∈

wdesc∗(D), there exists a y ∈ C such that y ∈
⋂
D ∈ Pw,∗t,C (x)D, in other

words, C is t-wIPP∗.

68

Now, let us recall for a moment totally t-secure codes, defined in Chapter

3, and present a result by Boneh and Shaw. We have already proved that to-

tally t-wSecure∗ codes are equivalent to t-wIPP∗, hence, the result on totally

secure codes holds for IPP codes, as well.

Theorem 5.2.5 (Theorem 4.2, [15]). There are no totally t-wSecure∗ codes C for

t ≥ 2 and size |C| ≥ 3.

The proof of the above theorem is based on the next lemma.

Lemma 5.2.6 (Lemma 4.1, [15]). If C is a totally t-wSecure∗ code, then

D1∩D2∩ . . .∩Dr = ∅ ⇒ wdesc∗(D1)∩wdesc∗(D2)∩ . . .∩wdesc∗(Dr) = ∅,

for all subsets D1, D2, . . . , Dr of C of size at most t.

Proof. Let C be a totally t-wSecure∗ code and D1, D2, . . . , Dr subsets of C

of size at most t with their intersection being the empty set. Assume for

a contradiction, that wdesc∗(D1) ∩ wdesc∗(D2) ∩ . . . ∩ wdesc∗(Dr) = x 6= ∅.

This implies that all sets D1, D2, . . . , Dr are suspect, as they correspond to

potential traitors. Since these sets do not intersect, it is not possible to deter-

mine which element is associated with the traitor, a contradiction to the fact

that there exists an algorithm that identifies a traitor. Hence, when a code

is totally t-wSecure∗ and D1 ∩ D2 ∩ . . . ∩ Dr = ∅, then the sets wdesc∗(D1),

wdesc∗(D2), . . ., wdesc∗(Dr) must also have empty intersection.

Proof of Theorem 5.2.5. It is sufficient to prove the claim for the totally 2-

wSecure∗ codes, since the non existence of totally 2-wSecure∗ codes of size

more that 2, implies the non existence of larger totally t-wSecure∗ codes with

t > 2.

Let C be a code of length ` and size m over an alphabet Q and y1,y2,y3

be distinct codewords. Define the majority word x =MAJ(y1,y2,y3) by

xi =


y1i , if y1i = y2i or y1i = y3i

y2i , if y2i = y3i

?, otherwise

69

Suppose that the coalition D consists of the codewords D = {y1,y2}. Then

one of the words in the set wdesc∗(D) is the majority word x. Furthermore,

this word belongs also to wdesc∗({y1,y3}) and to wdesc∗({y2,y3}), which

means that

x ⊆ wdesc∗(D) ∩ wdesc∗({y1,y3}) ∩ wdesc∗({y2,y3}).

However, the intersection of the coalitions D, {y1,y3} and {y2,y3} is the

empty set and thus by Lemma 5.2.6, C is not totally 2-wSecure∗.

Using the above theorem together with Proposition 3.3.15, we derive the

following result on IPP codes.

Theorem 5.2.7. There are no non trivial t-wIPP∗ codes.

Combining the previous theorem with the fact that any code C that is

t-wTA∗ is also t-wIPP∗, we obtain that t-wTA∗ codes are also trivial.

Theorem 5.2.8. There are no non trivial t-wTA∗ codes.

Proof. Assume for a contradiction, that there exists a non trivial t-TA∗ code

C. Then by Proposition 5.2.4 C is also a non trivial t-wIPP∗ code, which

contradicts Theorem 5.2.7.

Next, we prove similar results regarding the wide-sense traceability and

IPP codes.

Theorem 5.2.9. There are no non trivial t-wTA codes.

Proof. By Remark 3.3.26, it suffices to prove the claim for the 2-wTA codes.

Let C be a 2-wTA code of length ` and size m ≥ 3. In order to reach a

contradiction, is enough to find a subset D of C of size 2, for which the

following hold: there exists at least one x ∈ wdesc(D), such that for all

y ∈ D

d(x, z) < d(x,y), for some z ∈ C rD. (5.2.4)

70

Note that it is sufficient to prove the non-existence of a 2-wTA code of size

m = 3. This is because any code C with m ≥ 3 has a subset of size 3 from

which we can derive the contradiction. So let C = {y1,y2,y3} be a 2-wTA

code of size m = 3. Before we continue, it is necessary to introduce some

notation. We denote by Ij,k the set of positions where the words yj and yk

agree and for every combination of words we use the letter a to denote the

corresponding cardinality of the sets:

I123 = {i ∈ {1, . . . , n} : y1
i = y2

i = y3
i }, a1 = |I123|

I12 = {i ∈ {1, . . . , n} : y1
i = y2

i and y1
i 6= y3

i }, a2 = |I12|

I13 = {i ∈ {1, . . . , n} : y1
i = y3

i and y1
i 6= y2

i }, a3 = |I13|

I23 = {i ∈ {1, . . . , n} : y2
i = y3

i and y2
i 6= y1

i }, a4 = |I23|

Also, let I0 denote the set of positions where all codewords disagree:

I0 = {i ∈ {1, . . . , n} : y1
i 6= y2

i ,y
2
i 6= y3

i ,y
1
i 6= y3

i }, a5 = |I0|

Note that a1, a2, a3, a4, a5 must add up to `, which is the length of the code.

Without loss of generality, suppose that a2 ≤ min{a3, a4}. Let D = {y1,y2}.

We generate the descendant x ∈ wdesc(D) as follows:

xi =

 y1i , if y1i = y2i

y3i , otherwise.

Next, we calculate the distances between the codewords and the descendant

x:

d(x,y1) = `− |I12| − |I13| − |I123| = a4 + a5

d(x,y2) = `− |I12| − |I23| − |I123| = a3 + a5

d(x,y3) = |I12| = a2

Since a2 ≤ min{a4, a3}, we have that y3, which is not a member of the coali-

tion D, is closer to the descendant x, a contradiction to the definition of a

2-wTA code.

71

Now assume that C is a trivial code. We prove that C is 2-wTA. If C

has only one codeword, say C = {y}, then y belongs to the set D, as well

as to the wide-sense descendant set of D. In this case, the properties of a

2-wTA code are trivially true. Let C = {y1,y2} with y1 6= y2. If D consists

of only one codeword, say y1, then y1 ∈ wdesc(D) and hence C is 2-wTA

since d(y1,y1) < d(y1,y2). If D contains two elements, we have the sit-

uation where D = C, and thus the identification of at least one traitor is

straightforward.

Another way of proving the same result as Theorem 5.2.9 is through t-

wIPP codes. The idea is to exploit the relation between t-wTA and t-wIPP

codes, along with the following theorem stating that all t-wIPP codes are

trivial.

Theorem 5.2.10. There are no non trivial t-wIPP codes.

Proof. The proof is a modified version of the proof of the Theorem 5.2.5,

on totally secure codes. Again by Remark 3.3.26 we only need to prove

the claim for the case of 2-wIPP codes. Let C be a non trivial 2-wIPP code

over the alphabet Q, specifically let C = {y1,y2,y3}. Take the element x ∈

wdesc2(C) to be the majority word

xi =


y1i , if y1i = y2i or y1i = y3i

y2i , if y2i = y3i

α, otherwise,

where α is an arbitrary letter of the alphabet Q. Since x has been produced

with the wide-sense model, we have that x ∈ wdesc2(C). By the definition

of 2-wIPP codes, this implies that the intersection of all potential parent sets

of x must be non empty. For the majority word x, the potential parent sets

72

are all the possible 2-subsets of C:

D1 = {y1,y2} ∈ Pw2,C(x),

D2 = {y1,y3} ∈ Pw2,C(x),

D3 = {y2,y3} ∈ Pw2,C(x),

but since D1 ∩D2 ∩D3 = ∅, we reached a contradiction. Hence, all 2-wIPP

codes are trivial.

The same result holds for the t-IPP∗ codes as well, and as the proof fol-

lows the proof of Theorem 5.2.10, we include it only for completeness.

Theorem 5.2.11. There are no non trivial t-IPP∗ codes.

Proof. By Remark 3.3.26 we only need to prove the claim for the case of

2-IPP∗ codes. Let C be a non trivial 2-IPP∗ code over the alphabet Q, specif-

ically let C = {y1,y2,y3}. Take the element x ∈ desc∗2(C) to be the majority

word

xi =


y1i , if y1i = y2i or y1i = y3i

y2i , if y2i = y3i

?, otherwise,

Since x has been produced with the expanded narrow-sense model, we have

that x ∈ desc∗2(C). By the definition of 2-IPP codes, this implies that the

intersection of all potential parent sets of x must be non empty. For the

majority word x, the potential parent sets are all the possible 2-subsets of C:

D1 = {y1,y2} ∈ P∗2,C(x),

D2 = {y1,y3} ∈ P∗2,C(x),

D3 = {y2,y3} ∈ P∗2,C(x),

but since D1∩D2∩D3 = ∅, we have a contradiction. Hence, all 2-IPP∗ codes

are trivial.

73

Once more, we exploit the relation between traceability codes and IPP

codes, in order to obtain a similar result for the t-TA∗ codes.

Theorem 5.2.12. There are no non trivial t-TA∗ codes.

Proof. By Proposition 5.2.2, the existence of non trivial t-TA∗ codes imply the

existence of non trivial t-IPP∗ code, which contradicts Theorem 5.2.11.

The aforementioned theorems and propositions, regarding traceability

and IPP codes, lead to the conclusion that these codes are indeed equivalent,

since they are all trivial (Figure 5.2).

t-IPP∗

t-wIPP

t-wIPP∗

t-TA∗

t-wTA

t-wTA∗

Figure 5.2: Relations of traceability and IPP codes under the expanded narrow-
sense, wide-sense and expanded wide-sense model.

To connect these results with the fingerprinting codes under the narrow-

sense model, it suffices to prove an implication or an equivalence between

t-TA and t-wTA codes.

Proposition 5.2.13. A t-wTA code is a t-TA code.

Proof. Let C be a t-wTA code and D ⊆ C with |D| ≤ t. Let x ∈ desc(D) and

y ∈ C be the closest codeword to x than any other z ∈ C. In order to prove

that C is t-TA, we need to show that y ∈ D. As desc(D) ⊆ wdesc(D) we

have that x ∈ wdesc(D). Since C is t-wTA, then y ∈ D and hence C is also

t-TA.

The converse of the claim is not true, as the next example demonstrates.

74

Example 5.2.1. The code C = {11002, 10111, 22212} over the alphabet Q =

{0, 1, 2} is a 2-TA code, but not a 2-wTA, as the code is not trivial.

A summary of the relations amongst traceability and IPP codes that have

been proved so far, is given in Figure 5.3.

t-FP t-SFP t-IPP t-TA

t-IPP∗

t-wIPP

t-wIPP∗

t-TA∗

t-wTA

t-wTA∗

Figure 5.3: Relations of narrow-sense frameproof and secure frameproof codes
with traceability and IPP codes under all four models of descendant set.

5.3 Frameproof and Secure Frameproof Codes

This section investigates the connections amongst frameproof and secure

frameproof codes under the remaining models of descendant sets. More-

over, results are presented that connect these three models with the results

of section 5.1 on the narrow-sense model. The cases of frameproof and se-

cure frameproof are studied separately.

First, we examine the relation between t-wSFP and t-wFP codes. The

proof is the same as the proof of Proposition 5.1.3 on t-SFP and t-FP by

Stinson et al., apart from the different descendant set that is used, and is

included here for completeness.

Proposition 5.3.1. A t-wSFP code is a t-wFP code.

Proof. Let C be a t-wSFP code and assume for a contradiction that it is not

t-wFP. This means that there exists a set D ⊆ C of size a most t, for which

the intersection between the code and the set wdesc(D) is different from D.

75

Note that as D ⊆ wdesc(D), there must exist a word y /∈ D, but y ∈ C and

y ∈ wdesc(D). Let {y} = D′, then D∩D′ = ∅, but wdesc(D)∩wdesc(D′) 6= ∅,

which is a contradiction.

The following example shows that the converse of the claim is not true.

Example 5.3.1. The code C = {01210, 10310, 00100, 00011} is 2-wFP, over the

alphabet Q = {0, 1, 2, 3}. Let D = {01210, 10310} and D′ = {00100, 00011}

be subsets of the code. Then, the word x = 00010 belongs to the intersection

of wdesc(D) and wdesc(D′), while D ∩D′ is empty. Thus, C is not 2-wSFP.

5.3.1 Secure Frameproof Codes

Next, the relations between secure frameproof codes are presented, under

different types of descendant sets.

Proposition 5.3.2. A code C is t-SFP∗ if and only if C is a t-SFP code.

Proof. Assume thatC is t-SFP∗, which means that for all distinct pairs of sub-

sets D, D′ with |D| ≤ t, |D′| ≤ t, if D ∩ D′ = ∅ then desc∗(D) ∩ desc∗(D′) =

∅. Note, that desc(D) ⊆ desc∗(D) and desc(D′) ⊆ desc∗(D′) imply that

desc(D)∩desc(D′) ⊆ desc∗(D)∩desc∗(D′) and since desc∗(D)∩desc∗(D′) = ∅,

we also have that desc(D) ∩ desc(D′) = ∅ when D ∩ D′ = ∅. Hence, C is a

t-SFP code.

For the reverse direction, assume that C is t-SFP. Using the fact that for

every two subsets D, D′ of C, desc(D) ∩ desc(D′) ⊆ desc∗(D) ∩ desc∗(D′),

we get desc∗(D) ∩ desc∗(D′) 6= ∅ whenever desc(D) ∩ desc(D′) 6= ∅. Since by

the definition of t-SFP∗ code, desc(D) ∩ desc(D′) 6= ∅ imply D ∩D′ 6= ∅, we

automatically have that desc∗(D) ∩ desc∗(D′) 6= ∅ imply D ∩ D′ 6= ∅, which

means that C is t-SFP∗.

Proposition 5.3.3. A code C is t-wSFP∗ if and only if C is a t-wSFP code.

76

The following proof can be disregarded, as it is identical to the previous

one, with the only change being the type of descendant set. It is presented

here for completeness.

Proof. Assume that C is t-wSFP∗, which means that for all distinct pairs

of subsets D, D′ with |D| ≤ t, |D′| ≤ t, if D ∩ D′ = ∅ then wdesc∗(D) ∩

wdesc∗(D′) = ∅. Note, that the relations between the descendant sets, namely

wdesc(D) ⊆ wdesc∗(D) and wdesc(D′) ⊆ wdesc∗(D′), imply that wdesc(D) ∩

wdesc(D′) ⊆ wdesc∗(D) ∩ wdesc∗(D′) and since wdesc∗(D) ∩ wdesc∗(D′) = ∅,

we also have that wdesc(D) ∩ wdesc(D′) = ∅ when D ∩D′ = ∅. Hence, C is

a t-wSFP code.

For the opposite direction, assume that C is t-wSFP. Using the fact that

for every two subsets D,D′ of C, wdesc(D) ∩ wdesc(D′) ⊆ wdesc∗(D) ∩

wdesc∗(D′), we get wdesc∗(D)∩wdesc∗(D′) 6= ∅ if wdesc(D)∩wdesc(D′) 6= ∅.

Since by the definition of t-wSFP∗ code, wdesc(D) ∩ wdesc(D′) 6= ∅ imply

D ∩ D′ 6= ∅, we automatically have that wdesc∗(D) ∩ wdesc∗(D′) 6= ∅ imply

D ∩D′ 6= ∅, which means that C is t-wSFP∗.

In contrast to the above propositions, the relation between t-SFP and t-

wSFP codes is one way.

Proposition 5.3.4. A t-wSFP code is a t-SFP code.

Proof. Let C be a t-wSFP code. Then, observing that desc(D) ⊆ wdesc(D)

and desc(D′) ⊆ wdesc(D′), leads to desc(D)∩desc(D′) ⊆ wdesc(D)∩wdesc(D′)

and the claim follows directly. Specifically, by the definition of t-wSFP code,

D ∩ D′ = ∅ implies wdesc(D) ∩ wdesc(D′) = ∅, which means that when

D ∩D′ = ∅, then also desc(D) ∩ desc(D′) = ∅. Hence, C is t-SFP.

The next example shows that there are t-SFP codes which are not t-wSFP

codes, and hence the validity of the converse of the previous claim does not

hold.

77

Example 5.3.2. Let us examine the 2-SFP code C = {0000, 0111, 1120, 2021}.

Assume that it is also a 2-wSFP code and take the subsets D = {0000, 0111}

and D = {1120, 2021}. According to the definition of t-wSFP code, the

empty intersection of D and D′ implies that wdesc(D) and wdesc(D′) do

not intersect, as well. The word x = 0120 is a member of the wide-sense

descendant set of both D and D′, and thus wdesc(D)∩wdesc(D′) 6= ∅, which

contradicts the assumption that C is 2-wSFP. Hence, the code is not 2-wSFP.

5.3.2 Frameproof Codes

The connections between the different frameproof codes are similar to those

amongst the secure frameproof codes, as the following propositions prove.

Proposition 5.3.5. A code C is t-FP∗ if and only if C is a t-FP code.

Proof. Let C be a t-FP code, that is, for all subsets D of C with |D| ≤ t, we

have desc(D) ∩ C = D. The expanded narrow-sense descendant sets, apart

from the words formed with letters of the codewords in D, also consist of

words that contain the symbol ‘?’. As the code C does not include words

with ‘?’, the intersection between desc∗(D) and C has to contain words with-

out unreadable or deleted marks. This implies that for all D ⊆ C, we have

desc∗(D) ∩ C = desc(D) ∩ C, which indicates that C is both t-FP and t-FP∗

code.

Proposition 5.3.6. A code C is t-wFP∗ if and only if C is a t-wFP code.

The proof is the same as the previous proof and is included here for

completeness.

Proof. For all D ⊆ C, the set wdesc∗(D) contains words with unreadable or

deleted marks, along with words composed by alphabet letters. Therefore,

the intersection wdesc∗(D) ∩ C consists of words without the symbol ‘?’,

which leads to wdesc∗(D) ∩ C = wdesc(D) ∩ C. Hence, C being t-wFP, is

78

equivalent to C being t-wFP∗, as wdesc(D) ∩ C = D = wdesc∗(D) ∩ C, for

every D ⊆ C of size at most t.

Similar to the connection between t-wSFP and t-SFP codes, is the con-

nection of t-wFP and t-FP codes.

Proposition 5.3.7. A t-wFP code is a t-FP code.

Proof. Let C be a t-wFP code, then for every D ⊆ C with |D| ≤ t, we have

wdesc(D) ∩ C = D. Notice, that D ⊆ desc(D) ⊆ wdesc(D). This means that

wdesc(D) ∩C = D implies desc(D) ∩C = D, for all subsets D of C of size at

most t, or in other words, C is t-FP.

The following example shows that the opposite direction is not true.

Example 5.3.3. The code C = {10021, 00111, 20201} is a 2-FP code over the

alphabet Q = {0, 1, 2}, but not 2-wFP: for the subset D = {10021, 00111}, we

have

wdesc(D) = {00001, 00011, 00021, 00101, 00111, 01021, 00201, 00211, 00221,

10001, 10011, 10021, 10101, 10111, 11021, 10201, 10211, 10221,

20001, 20011, 20021, 20101, 20111, 21021, 20201, 20211, 20221}

and wdesc(D) ∩ C = C 6= D.

5.3.3 Unifying the Relations Between Fingerprinting Codes

In order to bridge the results on frameproof and secure frameproof codes

with those in Figure 5.3, it remains to examine the way t-wSFP and t-wIPP

codes are related.

Proposition 5.3.8. A t-wIPP code is a t-wSFP code.

The proof is similar to the proof of Proposition 5.1.2, except for the dif-

ferent descendant model and is included only for completeness.

79

Proof. Let C be a t-wIPP code and D, D′ subsets of C with |D| ≤ t and

|D′| ≤ t. Additionally, let x be a word in the intersection of wdesc(D) and

wdesc(D′). Thus, we have D, D′ ∈ Pwt,C(x). Then, as C is t-wIPP, there exists

y ∈
⋂
Di∈Pw

t,C(x)Di. Notice, that⋂
Di∈Pw

t,C(x)

Di ⊆ D ∩D′,

and consequently y ∈ D ∩ D′. Hence, for all distinct D, D′ subsets of C

of size at most t, when wdesc(D) ∩ wdesc(D′) 6= ∅ then D ∩ D′ 6= ∅, which

proves that C is t-wSFP.

The next example presents a code which is 2-wSFP but not 2-wIPP, prov-

ing that the converse of the claim above is not true.

Example 5.3.4. The code C = {1002, 1201, 2001, 2212} is a non trivial 2-wSFP

code and hence cannot be 2-wIPP.

The final picture of all the relations amongst the fingerprinting codes that

have been proved in this chapter, is given by Figure 5.4. Note, that when

the relation between two codes is denoted by the implication symbol (⇒),

is silently indicated that there exists an example showing that the opposite

direction does not hold.

t-FP t-SFP t-IPP t-TA

t-FP∗ t-SFP∗

t-wFP t-wSFP

t-wFP∗ t-wSFP∗

t-IPP∗

t-wIPP

t-wIPP∗

t-TA∗

t-wTA

t-wTA∗

Figure 5.4: Relations of narrow-sense frameproof and secure frameproof codes and
traceability and IPP codes under all four models of descendant set.

80

Chapter 6

Wide-Sense 2-Frameproof Codes

This chapter studies wide-sense frameproof codes and aims to establish a

good upper bound for the maximal size of such codes. The first section con-

sists of preliminaries on these codes, most of which relate to the minimum

distance of a code. Using these preliminaries, the section two presents re-

sults on the maximal size of wide-sense frameproof codes of small length.

The main result of this part of the thesis (Theorem 6.3.8) is presented in the

third section. The section studies the case of arbitrary length and provides

an upper bound on the maximal size of wide-sense frameproof codes, which

improves upon the bound in [50] by Stinson and Wei. Our bound, like that

of Stinson and Wei, does not depend on the alphabet size. Additionally, we

include a separate section that uses the techniques from the arbitrary length

case to obtain the maximal wide-sense frameproof code of length 5, on any

alphabets of size q. In particular, we prove that in the case where q = 2 or 3

the largest such code contains 6 codewords, whereas for q ≥ 4 the maximal

size is 8.

6.1 Properties of 2-wFP codes

We begin this section with a proposition which can be easily deduced from

Definition 3.3.3 of the wide-sense frameproof codes, and then we continue

with some properties regarding the minimum distance of the codes and the

common positions of the codewords.

Proposition 6.1.1 (Property of 2-wFP codes). A code C of length ` is 2-wFP if

and only if for all distinct words u,v, z ∈ C there exists a coordinate i ∈ {1, . . . , `}

81

such that ui = vi 6= zi.

Lemma 6.1.2. The minimum distance of a 2-wFP code of length ` ≥ 2 satisfies the

following inequality:

1 ≤ d(C) ≤ `− 1.

Proof. When ` = 2, it follows from Proposition 6.1.1 that we must have

d(C) = 1. In the case where ` > 2, Proposition 6.1.1 implies that no two

codewords can disagree in all positions, because the corresponding wide-

sense descendant set would consist of all words from the alphabet Q. Thus,

the minimum distance, d(C), of a 2-wFP code C of length ` containing at

least three words, is at most `− 1. Furthermore, d(C) cannot be zero, as we

are considering distinct codewords.

Proposition 6.1.3. Let C = {c1, . . . , cm} be a 2-wFP code of length ` and size

|C| = m. If there exists a position i ∈ {1, . . . , `} where c1i = c2i = . . . = cmi , then

there exists a 2-wFP code C ′ of length `− 1 and size |C ′| = m.

Proof. Without loss of generality, let the common position i be the first:

c11 = c21 = . . . = cm1 .

By hypothesis, the code C is 2-wFP, thus for all distinct j, j′, j′′ ∈ {1, . . . ,m}

there exists a position i such that cji = cj
′

i 6= cj
′′

i . Since i is not 1, as it would

violate the 2-wFP property of the codeC, we can remove the first coordinate

from all the codewords and still retain the 2-wFP property. Hence, we are

left with a 2-wFP code C ′ of length `− 1 and size m.

Next, we study the behaviour of wide-sense 2-frameproof codes with

regard to the size of the codes. In particular, we examine the changes of the

size, when the minimum distance takes its extreme values.

Proposition 6.1.4. If the minimum distance d(C) of a 2-wFP code C of length ` is

1, then |C| ≤ 2.

82

Proof. Suppose that |C| = 3 with C = {u,v,w}. Since d(C) = 1, there

exists a pair of codewords, say u and v, such that d(u,v) = 1. Without loss

of generality, assume that u and v agree in the first ` − 1 positions. From

the property of 2-wFP codes (Proposition 6.1.1) there exist distinct positions

i, j ∈ {1, . . . , `}, such that wi = ui 6= vi and wj = vj 6= uj . The choices for i

and j are the positions where u and v disagree, but since d(u,v) = 1, i and

j must be both equal to l, which is a contradiction. Since every 2-wFP code

of size |C| > 2 contains a 3-subset, Remark 3.3.27 concludes the proof.

Proposition 6.1.5. If the minimum distance d(C) of a 2-wFP code C of length

` > 2 is d(C) = `− 1, then |C| ≤ `+ 1.

Proof. Since C is 2-wFP and by Lemma 6.1.2 there do not exist two code-

words of distance `, d(C) = ` − 1 implies that C is equidistant. This means

that each pair of codewords agree in exactly one position. We begin with a

2-wFP code containing only two words and gradually add more words un-

til one of the conditions, either the 2-wFP property (Proposition 6.1.1) or the

distance restriction (Lemma 6.1.2), cease to hold. Let C = {c, c1} and with-

out loss of generality, assume c1 = c11, since we know that d(c, c1) = ` − 1.

We add a word c2 ∈ Q`. We claim that there cannot exist a position where

all three words agree. Assume for a contradiction that c1 = c11 = c21. In order

for C to be 2-wFP, there must exist a position i 6= 1, such that ci = c1i 6= c2i ,

which is a contradiction to the code C being equidistant. Hence, c, c1 and

c2 cannot agree in the first position. Hence, by the 2-wFP property

∃i ∈ {2, . . . , `} such that c2i = ci 6= c1i .

Without loss of generality, let i = 2. Add a word c3 ∈ Q`. Applying the

same constraints as above, the only choices for the position j ∈ {1, . . . , `}

such that

c3j = cj 6= ctj for t = 1, 2,

83

are j ∈ {3, . . . , `}. Without loss of generality take j = 3. Similarly, we have

c44 = c4, c
5
5 = c5 and so on, until we have used the `th position of c, by adding

the c` word, for which c`` = c` and c`` 6= ct` for all t ∈ {1, . . . , ` − 1}. Suppose

we add one more word, c`+1. Then, as in the previous cases,

∃j ∈ {1, . . . , `} such that c`+1
j = cj 6= ctj ∀t ∈ {1, . . . `}

Since all possible values of j have already been used, assigning a value from

{1, . . . , `} to j, leads to three words agreeing in the same position:

c`+1
j = cj = cjj.

This implies that codewords cj and c agree in two positions, which is a

contradiction. Hence, the word c` is the last we can add, preserving at the

same time the 2-wFP property and the distance restriction. Finally, counting

the added words we obtain the maximum size of the 2-wFP code C:

|C| ≤ 1 +
l∑

m=1

1 = `+ 1.

6.2 Small Length Case

This section examines each wide-sense 2-frameproof code separately, ac-

cording to their length. The values of the lengths to be considered are

` = 2, 3, 4. The of ` = 5 is also included in the thesis, however it is dis-

cussed in a subsequent section, as the examination of this particular length

requires further information on 2-wFP codes, which is obtained from the

case of arbitrary length.

Example 6.2.1. Codes C1, C2 and C3 are examples of 2-wFP codes of length

` = 2, 3, 4, respectively.

C1 = {10, 11},

C2 = {100, 010, 001, 111},

C3 = {1000, 0100, 0010, 0001, 1111}.

84

As the next propositions prove, the sizes of C1, C2 and C3 are the best pos-

sible for the corresponding lengths. Furthermore, these codes show that the

binary alphabet is sufficient for the codes to attain the maximum number of

codewords.

Proposition 6.2.1. Let C be a 2-wFP code of length ` = 2. Then |C| ≤ 2.

Proof. By the distance restrictions of Lemma 6.1.2 we have that d(C) = 1

and by Proposition 6.1.4 the size of C cannot be more than 2.

Proposition 6.2.2. Let C be a 2-wFP code of length ` = 3. Then |C| ≤ 4.

Proof. Assume |C| > 2. By Lemma 6.1.2 we have 1 ≤ d(C) ≤ 2. Thus,

we need to examine two different cases, d(C) = 1 or d(C) = 2. In the first

case, by Proposition 6.1.4 we get |C| ≤ 2 and in the second |C| ≤ ` + 1 = 4

(Proposition 6.1.5). Hence, the size of C is at most `+ 1 = 4.

Proposition 6.2.3. Let C be a 2-wFP code of length ` = 4. Then |C| ≤ 5.

Proof. Assume |C| > 2. By Lemma 6.1.2 we restrict to the cases where 1 ≤

d(C) ≤ 3 and by Propositions 6.1.4 and 6.1.5 we obtain the following:

• If d(C) = 1 then |C| ≤ 2.

• If d(C) = 3 then |C| ≤ 5.

Thus, the only case to examine is when d(C) = 2. Assume for a contra-

diction, that C = {c1, c2, c3, c4, c5, c6} is of size ` + 2 = 6. Since d(C) = 2,

there exists a pair of codewords, say c1 and c2, such that d(c1, c2) = 2. With-

out loss of generality assume that c1 and c2 agree in the first two positions:

c11 = c21 and c12 = c22. By the property of 2-wFP codes (Proposition 6.1.1) we

know that for every triple {c1, c2, cj}, where cj ∈ C r {c1, c2}, there exist

distinct positions i, k ∈ {1, . . . , `} such that

cji = c1i 6= c2i and cjk = c2k 6= c1k.

85

Since c1 and c2 agree on their first two components, the only choices

for i and k are the third and fourth position: (i, k) ∈ {(3, 4), (4, 3)}. Hence,

taking all the 3-subsets of C including c1 and c2, the choices for the co-

ordinates that we can use in order to satisfy the 2-wFP property, are the

third and fourth. The number of 3-subsets containing c1 and c2 is 4, namely

{c1, c2, c3}, {c1, c2, c4}, {c1, c2, c5} and {c1, c2, c6}. Without loss of gener-

ality, by choosing c1 = 1111 and c2 = 1100, we obtain the following cases:

Case 1: (i, k) = (3, 4), for three of the words in the set {c3, c4, c5, c6}, say

c3, c4 and c5:

c1 1 1 1 1

c2 1 1 0 0

c3 1 0

c4 1 0

c5 1 0

c6

Case 2: (i, k) =

 (4, 3), for two of the words of {c3, c4, c5, c6}

(3, 4), for the other two.

Without loss of generality assume the following:

c1 1 1 1 1

c2 1 1 0 0

c3 0 1

c4 0 1

c5 1 0

c6 1 0

In the case 1, since C is 2-wFP we know that the subset {c4, c5, c6} also

forms a 2-wFP code. By the 2-wFP property, there exist distinct i, j, k ∈

{1, . . . , `} such that

c4i = c5i 6= c6i , c4j = c6j 6= c5j and c5k = c6k 6= c4k

86

Since all three words agree in the last two positions, there are only two

choices for i, j, k, namely the first and the second position. This means that

using only the first two positions of c4, c5 and c6, we have formed a 2-wFP

code. But this contradicts Proposition 6.2.1, which states that the maximum

size of a 2-wFP code of length ` = 2 is 2. Hence, in the case 1, the best

possible size of a 2-wFP code is 5 = `+ 1.

For the case 2, let us consider the triples {c3, c4, cj} for j = 1, 2, 5, 6. Ac-

cording to the 2-wFP property, for every such triple there exist distinct po-

sitions (s, r) such that

cjs = c3s 6= c4s and cjr = c4r 6= c3r

Clearly, (s, r) ∈ {(1, 2), (2, 1)}. By assumption, codewords c1 and c2 are

determined, thus we either have c31c42 = c11c
2
2 = 11 or c32c41 = c12c

2
1 = 11. Due to

symmetry, assume c31c42 = 11:

c1 1 1 1 1

c2 1 1 0 0

c3 1 0 1

c4 1 0 1

c5 1 0

c6 1 0

Similarly, we next examine the relation between c3, c4, with codewords

c5 and c6. If for c5 we have (s, r) = (1, 1), which means that c51 = c31 = 1 and

c52 = c41 = 1, then there exist three codewords, namely c1, c2, c5, that agree

in the first two positions. As a subset of a 2-wFP code, {c1, c2, c5} is also 2-

wFP. However, by deleting the common positions of these three words, the

remaining code has length 2 and size 3 and by Proposition 6.2.1 it cannot be

a 2-wFP code, a contradiction. Hence c51 6= 1 and c52 6= 1. Similarly, the same

restriction holds for c6, as well. Thus, the only choice for c5 and c6 to agree

with c3 and c4, and follow at the same time the property of the 2-wFP code,

87

is the following:

c51 = c41 and c61 = c41

c52 = c32 and c62 = c32

This means that the two codewords are identical:

c5 = c41 c
3
2 0 1

c6 = c41 c
3
2 0 1,

which is a contradiction, as all codewords are distinct.

Since both cases led to contradiction, we conclude that there do not exist

2-wFP codes of length l = 4 and size |C| > 5.

6.3 Arbitrary Length Case

The aim of this section is to study the case of the wide-sense 2-frameproof

codes with arbitrary, but fixed length ` and as a result, to present an im-

proved upper bound on their size, compared to the bound of Theorem 5.2

[50] by Stinson and Wei. As mentioned in [50], the structure of these codes

is closely related to Sperner families. Here, we formally define this rela-

tion and moreover, present additional properties, which lead to a major im-

provement on the size of the code, in particular cases.

We first begin by defining the coincidence function, which on input of two

words gives the set of positions where these words coincide. As a follow-

ing theorem shows (Theorem 6.3.1), one way of obtaining such a function

is by considering a code and defining this function to return the common

positions of pairs of codewords.

Let M = {1, . . . ,m} and I :M ×M → P({1, . . . , `}) satisfy the following

properties:

1. For all j1, j2 ∈M I(j1, j2) = I(j2, j1)

2. (a) For all j ∈M I(j, j) = {1, . . . , `}

88

(b) For all distinct j1, j2 ∈M I(j1, j2) 6= {1, . . . , `}

3. For all j1, j2, j3 ∈ M and i ∈ {1, . . . , `}, if i ∈ I(j1, j2) and i ∈ I(j2, j3)

then i ∈ I(j1, j3)

Using the above properties of the coincidence function I , we define an

equivalence relation on the set M . For every i ∈ {1, . . . , `}, we say that

j1 is equivalent to j2 with respect to i if and only if i ∈ I(j1, j2). We denote

this relation by j1 ∼
i
j2. It is easy to show that the defined relation is an

equivalence relation:

(a) Let j1, j2 ∈ M , i ∈ {1, . . . , `} and j1 ∼
i
j2. By definition, i ∈ I(j1, j2) and

using property 1 of the coincidence function, we have that i ∈ I(j2, j1),

which is equivalent by definition to j2 ∼
i
j1. Thus, for all j1, j2 ∈ M

j1 ∼
i
j2 is equivalent to j2 ∼

i
j1 and thus the ∼

i
-relation is symmetric.

(b) Let j ∈ M , i ∈ {1, . . . , `} and j ∼
i
j. By definition, i ∈ I(j, j) = {1, . . . , `}

for all j ∈M (property 2(a)). In other words, the ∼
i

-relation is reflexive.

(c) Let j1, j2, j3 ∈ M , i ∈ {1, . . . , `} and j1 ∼
i
j2 and j2 ∼

i
j3. Then by

definition, i belongs in both I(j1, j2) and I(j2, j3), which from the third

property of the coincidence function is equivalent to i ∈ I(j1, j3). Thus

we have proven that the ∼
i

-relation is transitive: for all j1, j2, j3 ∈ M if

j1 ∼
i
j2 and j2 ∼

i
j3, then j1 ∼

i
j3.

Theorem 6.3.1. A function I is a coincidence function if and only if there exists an

alphabet Q = {0, 1, . . . , q − 1} of size q ∈ N and a code C = {c1, . . . , cm} ⊆ Q`,

such that for every j1, j2 ∈ {1, . . . ,m}, I(j1, j2) = {i ∈ {1, . . . , `} : cj1i = cj2i }.

Proof. We begin by proving the reverse direction of the claim. Let C =

{c1, . . . , cm} ⊆ Q` be a code and for all j1, j2 ∈ {1, . . . ,m} let I(j1, j2) be

the set of positions where the codewords cj1 and cj2 agree. We prove that

I(j1, j2) is the coincidence function, by showing that for all j1, j2 ∈ {1, . . . ,m},

I(j1, j2) has the properties 1, 2 and 3.

89

We can easily see that i ∈ I(j1, j2) if and only if i ∈ I(j2, j1), since both

relations indicate that the codewords cj1 and cj2 agree in position i. Hence

I(j1, j2) = I(j2, j1). When j1 = j2, then cj1 agrees with cj2 in every position,

thus I(j1, j2) = {1, . . . , `}. When j1 6= j2, then there exists a position i where

cj1 and cj2 disagree, which implies that I(j1, j2) 6= {1, . . . , `}. Hence, j1 = j2

if and only if I(j1, j2) = {1, . . . , `}, which summarises the properties 2(a)

and 2(b) of the coincidence function. To prove that I also satisfies the third

property, let i ∈ I(j1, j2) and i ∈ I(j2, j3). Then by the definition of the sets

I(j1, j2) and I(j2, j3), we have that cj1i = cj2i and cj2i = cj3i respectively, which

lead to cj1i = cj3i . The latter equality is equivalent to i ∈ I(j1, j3) and the first

part of the proof is completed.

For the other direction, given the coincidence function I our aim is to

prove the existence of a set C = {c1, . . . , cm} ⊆ Q`, such that for every

j1, j2 ∈ {1, . . . ,m} we have I(j1, j2) = {i ∈ {1, . . . , `} : cj1i = cj2i }. First, we

apply the ∼
i

-equivalence relation to the set {1, . . . ,m} and partition it into

equivalence classes:

{1, . . . ,m} = X
(i)
0 ·∪X

(i)
1 ·∪ . . . ·∪X(i)

ri
.

Since the partition depends on i, for every i ∈ {1, . . . , `}we have a collection

of equivalence classes X(i)
r , r = 0, . . . , ri. We define the size of the alphabet

Q to be q =max
1≤i≤`

ri and to each equivalence class we assign a letter from Q.

As for i 6= i′ the sets X(i)
r and X

(i′)
r are independent, we can assign the same

letters to equivalence classes that correspond to different values of i. For

j ∈ {1, . . . ,m} define cj = cj1 . . . c
j
` ∈ Q`, by cji = α if and only if j ∈ X(i)

α .

To complete the proof, we need to show that the words of the code satisfy

the following property:

∀j1, j2 ∈ {1, . . . ,m} I(j1, j2) = {i ∈ {1, . . . , `} : cj1i = cj2i }

and that the indices j1, j2 are distinct if and only if the corresponding code-

words cj1 , cj2 are also distinct.

90

By construction of the code C, it follows that for all j ∈ X(i)
α cji = α. In

other words, all codewords whose index j belongs to the same equivalence

class X(i)
α , agree in position i. Now, let i ∈ I(j1, j2). Then, by definition of

the equivalence relation we have i ∈ I(j1, j2) if and only if j1 ∼
i
j2, which

means that j1, j2 belong to the same equivalence class, say X
(i)
α . Thus, the

corresponding codewords agree in position i: cj1i = cj2i = α. Furthermore,

if i /∈ I(j1, j2) then j1 �
i
j2, which means that j1 and j2 belong to different

equivalence classes, say j1 ∈ X(i)
α and j2 ∈ X(i)

β . This implies that cj1i = α and

cj2i = β, in other words cj1i 6= cj2i . This proves that I(j1, j2) = {i ∈ {1, . . . , `} :

cj1i = cj2i }.

Finally, it remains to show that distinct indices j, j′ ∈ {1, . . . ,m} corre-

spond to distinct codewords cj, cj′ . Let j 6= j′ and assume for a contradic-

tion, that there exists a pair cj, cj′ ∈ C such that for all i ∈ {1, . . . , `} cji = cj
′

i .

But this is equivalent to j ∼
i
j′ for all i ∈ {1, . . . , `}, which by definition is

true, if and only if for all i ∈ {1, . . . , `} we have i ∈ I(j, j′). In other words,

I(j, j′) = {1, . . . , `}. Now using property (2) of the coincidence function we

get j = j′, a contradiction. Hence, j 6= j′ if and only if cj 6= cj
′ and the proof

of the theorem is concluded.

Having defined the coincidence function, the next step is to show the

way this function is connected to 2-wFP codes. Let C be a 2-wFP code of

length ` and size m. For cj ∈ C define the following family

Xj = {I(j, j′) : j′ ∈ {1, . . . ,m}r {j}}. (6.3.1)

Lemma 6.3.2. Let C = {c1, . . . , cm} be a code of length ` and size m, over an the

alphabet Q of size q. Then, C is 2-wFP if and only if for all j ∈ {1, . . . ,m} the

families Xj are Sperner.

Proof. Let C = {c1, . . . , cm} be a 2-wFP code. Then, for all {cj, cj′} ∈ C

we have that wdesc({cj, cj′}) ∩ C = {cj, cj′}. Suppose for a contradiction,

that there exists j ∈ {1, . . . ,m} such that the corresponding family Xj is not

91

Sperner. In other words, there exist distinct j1, j2 ∈ {1, . . . ,m} r {j} such

that I(j, j1) ⊆ I(j, j2). This means, that every i ∈ I(j, j1) is also a member

of I(j, j2) and by definition of the coincidence function, for all i such that

cji = cj1i , we also have cji = cj2i . Now, the wide-sense descendant set of cj, cj1

consists of all words x = x1x2 . . . x` ∈ Q` such that

xi =

 cji , if cji = cj1i

α ∈ Q, otherwise,

which is equivalent to

xi =

 cji , if i ∈ I(j, j1)

α ∈ Q, otherwise.

It is easy to see that cj2 ∈ wdesc({cj, cj1}): for all i ∈ I(j, j1) we have cji =

cj1i = cj2i and the remaining positions of cj2 are alphabet letters. But this

violates the 2-wFP property of the code C, because wdesc({cj, cj1}) ∩ C =

{cj, cj1 , cj2}. Hence, for all distinct j, j1, j2 ∈ {1, . . . ,m} we have I(j, j1) *

I(j, j2), which means that Xj is a Sperner family.

To prove the other direction of the claim, suppose that for all j ∈ {1, . . . ,m}

the family Xj is Sperner, which means that for all distinct j1, j2 ∈ {1, . . . ,m}

I(j, j1) * I(j, j2). Thus, there exists i ∈ I(j, j1), say i0, such that i0 /∈ I(j, j2).

All words x = x1x2 . . . x` ∈ Q` for which

xi =

 cji , if i ∈ I(j, j1)

α ∈ Q, otherwise

belong to wdesc(cj, cj1). Since cj2i0 6= cj1i0 = cji0 , by definition of the wide-

sense descendant, cj2 /∈ wdesc(cj, cj1). Hence, for all 2-subsets {cj, cj1} of C,

wdesc({cj, cj1}) ∩ C = {cj, cj1}.

The above lemma shows that the relation between Xj and the code C,

results in Xj having properties that are derived from the the fact that C is a

2-wFP code. Hence, it is possible that the incomparability of the members of

Xj might not be the only property that the family possesses. The next step

92

is to further examine the relation with the frameproof codes and present

additional properties of Xj , that will lead to an improvement of the bound

on its size and consequently, on the size of C. In particular, it is easy to see

that

|C| = |Xj|+ 1. (6.3.2)

Proposition 6.3.3. Let C be a 2-wFP code of length `, size m and cj ∈ C. Then

Xj is non 2-covering Sperner family.

Proof. Assume for a contradiction that the Sperner family Xj formed by

cj ∈ C is 2-covering. This means that there exist cj1 , cj2 ∈ C such that

I(j, j1) ∪ I(j, j2) = {1, . . . , `}. According to the 2-wFP property (Proposition

6.1.1), there exists i ∈ {1, . . . , `} such that cj1i = cj2i 6= cji . This implies that

i /∈ I(j, j1) and i /∈ I(j, j2), which contradict the fact that Xj is 2-covering,

as there would exist a position i that does not belong to the union of I(j, j1)

and I(j, j2). Hence, for a 2-wFP code C and a fixed word cj ∈ C, the corre-

sponding Sperner family Xj must be non 2-covering.

As previously proved, every 2-wFP code C is associated with a non 2-

covering Sperner family, by fixing a codeword and listing all the sets indi-

cating the common positions between every codeword with the fixed word.

Now, let us examine the behaviour of the size of the code, in the case where

one of the sets of the non 2-covering Sperner family consists of only one el-

ement. First, we prove a result on Sperner families containing a singleton,

that can be easily derived from the definition of a Sperner family and the

upper bound on its maximal size.

Proposition 6.3.4. LetF be a Sperner family over the set {1, . . . , n}. If there exists

a set F ∈ F such that |F | = 1, then

|F| ≤
(
n− 1

bn−1
2
c

)
+ 1.

Proof. According to the definition of a Sperner family (Definition 2.1.1), the

set F cannot be contained in any other set of the family. Thus, it is equivalent

93

to say that F consists of F and a family D of sets over {1, . . . , n}r F . As D

must also be Sperner, Theorem 2.1.2 yields

|D| ≤
(
n− 1

bn−1
2
c

)
,

which leads to the desired bound

|F| = |D|+ 1 ≤
(
n− 1

bn−1
2
c

)
+ 1.

Combining this proposition with equation (6.3.2) the following corollary

is easily inferred.

Corollary 6.3.5. Let C = {c1, . . . , cm} be a 2-wFP code of length ` over the al-

phabet Q. If there exist codewords cj, ck such that |I(j, k)| = 1, then

m ≤
(
`− 1

b `−1
2
c

)
+ 2. (6.3.3)

An important observation that is implied by the previous corollary, is the

fact that the size of the code does not depend on the choice of the fixed word.

This provides a flexibility that leads to direct conclusions, as the following

lemma demonstrates.

Lemma 6.3.6. Let ` be an odd number and C a 2-wFP code of length ` and size m.

Let Xj be the non 2-covering Sperner family, generated by the codeword cj, which

consists of sets of size `−1
2

. If Xj is not intersecting, then

(a) there exists a codeword cj
′ with j′ 6= j, whose corresponding family Xj′ con-

tains a singleton,

(b)

m ≤
(
`− 1

b `−1
2
c

)
+ 2.

94

Proof. Let X1, X2 be subsets of the family Xj . By hypothesis, |X1| = |X2| =
`−1
2

and let X1 ∩X2 = ∅, which imply that their union has size ` − 1. Recall

that X1 = I(j, j1) and X2 = I(j, j2), represent the sets of positions where the

codeword cj agrees with cj1 and cj2 respectively, for cj1 , cj2 ∈ Cr{cj}. Since

I(j, j1)∩ I(j, j2) = ∅ and |I(j, j1)∪ I(j, j2)| = `− 1, there is only one position

left for cj1 to agree with cj2 and so |I(j1, j2)| = 1. This means that the families

Xj1 , Xj2 , constructed by fixing the codewords cj1 and cj2 accordingly, contain

a singleton and the first claim of the lemma is proved.

Since the size of the code is independent to the codeword cj we choose to

fix, and consequently to the corresponding family Xj , using (a) and Corol-

lary 6.3.5, we obtain the desired bound

m ≤
(
`− 1

b `−1
2
c

)
+ 2.

The following theorem, proves the main result of the chapter, which is

an improvement of the upper bound on the size of a 2-wFP code, given by

Stinson and Wei in [50]:

Theorem 6.3.7 (Theorem 5.2, [50]). Let C be a 2-wFP code of length ` and size

m. Then

m ≤
(
`

b `
2
c

)
+ 1. (6.3.4)

Proof. Let cj be a fixed codeword of the 2-wFP code C, and Xj the corre-

sponding family, which according to Lemma 6.3.2 is Sperner. Since the sets

in Xj denote the positions where all codewords agree with cj , the Sperner

family is defined over the ground set {1, . . . , `}. An upper bound of a Sperner

family is given by Theorem 2.1.2, hence

|Xj| ≤
(
`

b `
2
c

)
.

Combining this result with (6.3.2), we obtain the desired bound.

95

Theorem 6.3.8. Let C = {c1, . . . , cm} be a 2-wFP code of length ` and size m

over the alphabet Q. Then

m ≤
(
`

b `
2
c

)
− `

2
+ 1. (6.3.5)

Proof. Let cj be a fixed codeword and Xj the corresponding family as de-

fined in (6.3.1). By Lemma 6.3.2, Xj is Sperner family. Then, equation (6.3.2)

indicates that in order to improve the size of the code C, it is sufficient to

improve the size of Xj . The proof is divided into two cases with regard to

the length of the code.

First, we examine the case where ` is even. In this case, the bound on the

size of the code is given by Theorem 2.2.8 (Schonheim [44]), as its conditions

are precisely the properties that family Xj possesses: all sets are incompa-

rable and the union of any pair does not cover the ground set {1, . . . , `}.

Hence, we have

|Xj| ≤
(

`
`
2
− 1

)
and using (6.3.2) we obtain the upper bound for m:

m ≤
(

`
`
2
− 1

)
+ 1. (6.3.6)

Clearly, the above inequality gives a better bound than the bound (6.3.5)

of the claim.

Next, we consider the case where ` is odd. Let Xj = A ∪ B, where

A = {A ∈ Xj : |A| ≤ `−1
2
},

B = {B ∈ Xj : |B| ≥ `+1
2
}.

Furthermore, we divide the family A = A− ∪ A0, where

A− = {A− ∈ Xj : |A−| < `−1
2
},

A0 = {A0 ∈ Xj : |A0| = `−1
2
},

96

and similarly the family B = B0 ∪ B−, where

B0 = {B0 ∈ Xj : |B0| = `+1
2
},

B− = {B− ∈ Xj : |B−| > `+1
2
},

We examine different cases according to the sizes of the sets that belong to

the family Xj .

Case 1: Xj = A = A− ∪ A0.

First, we observe that the union of any pair of sets from A− has size

less than ` − 3. To see this, let A1, A2 ∈ A−. Then, |A1 ∩ A2| ≥ 0 and

hence

|A1 ∪ A2| ≤ 2
`− 3

2
− 0 = `− 3.

Similarly, for every A0 ∈ A0 and A ∈ A−, the union A0 ∪ A does not

cover the ground set {1, . . . , `}:

|A0 ∪ A| ≤ `− 3

2
+
`− 1

2
− 0 = `− 2.

If the family A0 is not intersecting, then an upper bound on the size of

C is obtained by Lemma 6.3.6:

m ≤
(
`− 1
`−1
2

)
+ 2.

It is easy to see that the above bound is smaller than the one given by

(6.3.5). (
`− 1
`−1
2

)
+ 2 ≤

(
`
`−1
2

)
− `

2
+ 1

⇔ `+ 1

2`

(
`
`−1
2

)
+ 1 +

`

2
≤

(
`
`−1
2

)
⇔ `+ 2

2
≤ `− 1

2`

(
`
`−1
2

)
⇔ `(`+ 2)

`− 1
≤

(
`
`−1
2

)
,

where the last inequality is true for all ` ≥ 5.

97

Thus, we can assume that A0 is intersecting. For the family A, with A0

being intersecting, define A to be its complementary family:

A = {A ⊆ {1, . . . , `} : A = {1, . . . , `}r A, A ∈ A} = A− ∪ A0.

Then, A is 2-intersecting, since for all A1, A2 ∈ Awe have

|A1 ∩ A2| = `− |A1 ∪ A2| ≥ `− (`− 2) = 2

and using Milner’s bound from Theorem 2.2.6, we obtain the following

|A| ≤
(

`
`−1
2
− 1

)
.

The families A and A share the same cardinality, thus we can use the

above result and determine a bound on the size of C:

m = |Xj|+ 1 = |A|+ 1 = |A| ≤
(

`
`−1
2
− 1

)
+ 1,

which can be proved that is smaller than the bound of (6.3.5):(
`

`−1
2
− 1

)
+ 1 ≤

(
`
`−1
2

)
− `

2
+ 1

⇔ (
`− 1

`+ 3
)

(
`
`−1
2

)
≤

(
`
`−1
2

)
− `

2

⇔ `

2
≤ (

2

`+ 3
)

(
`
`−1
2

)
⇔ `(`+ 3)

4
≤

(
`
`−1
2

)
.

The last inequality holds for ` ≥ 5, as the order of the binomial coeffi-

cient exceeds the order of `2.

Case 2: Xj = B = B− ∪ B0.

By hypothesis, the code C is 2-wFP, which according to Proposition

6.3.3 implies that the Sperner family Xj is also non 2-covering.

Similarly to the previous case, we examine the complementary family

of B:

B = {B ⊆ {1, . . . , `} : B = {1, . . . , `}rB, B ∈ B} = B− ∪ B0.

98

Notice, that B is intersecting, as for all B1, B2 ∈ B we have

|B1 ∩B2| = `− |B1 ∪B2| ≥ `− (`− 1) = 1,

where |B1 ∪ B2| ≤ `− 1 because the family Xj , and subsequently B, is

non 2-covering. Now, we can apply the Erős-Ko-Rado Theorem 2.2.4

on B, since it consists of sets of size less than `−1
2

, and get

|B| ≤
(
`− 1
`−1
2
− 1

)
which in combination to (6.3.2) yields

m = |Xj|+ 1 = |B|+ 1 = |B|+ 1 ≤
(
`− 1
`−1
2
− 1

)
+ 1.

and we have already seen that this bound is an improvement to the

bound given in (6.3.5).

Case 3: Xj = A0 ∪ B0.

As previously proved, if the family A0 in not intersecting, then the

bound on the size of the code is given by Lemma 6.3.6. Hence, we ex-

amine the case whereA0 is intersecting. Moreover, the complementary

family B0 is also intersecting, as a result of B0 being non 2-covering. We

next prove, that A0 ∪ B0 is intersecting, as well. Assume for a contra-

diction, that there exist sets A ∈ A0 and B ∈ B0, such that A ∩ B = ∅.

This implies that A ⊆ B, which violates the Sperner property of Xj .

Hence, A0 ∪ B0 is indeed intersecting, and consists of sets having size
`−1
2

. Applying once more the Erős-Ko-Rado Theorem 2.2.4 on Xj , we

derive the following bound for C:

m = |Xj|+ 1 = |A0 ∪ B0|+ 1 = |A0 ∪ B0|+ 1 ≤
(
`− 1
`−1
2
− 1

)
+ 1,

which is smaller than the bound (6.3.5).

The same bound, regarding non 2-covering intersecting Sperner fami-

lies that contain sets of arbitrary size, was also proved by Katona [32],

under the name of qualitatively independent sets.

99

Table 6.1: Upper bounds on the size m of a 2-wFP code of odd length `.

The family Xj Upper Bound Characteristics

A− ∪ A0

(
`

`−1
2 − 1

)
+ 1 A0 intersecting

(
`− 1
`−1
2

)
+ 2 A0 not intersecting

B− ∪ B0
(
`− 1
`−1
2 − 1

)
+ 1 –

A0 ∪ B0

(
`− 1
`−1
2 − 1

)
+ 1 A0 intersecting

(
`− 1
`−1
2

)
+ 2 A0 not intersecting

A ∪ B and the difference

between the size of the smallest
(
`
`−1
2

)
− `

2 + 1 –

and the largest set is greater than 1

Case 4: Xj = A ∪ B, with A 6= ∅, B 6= ∅ and the difference between the size

of the smallest and the largest set in Xj , is greater than 1.

The bound on the size of C in this case follows directly from Proposi-

tion 2.1.4(a):

m = |Xj|+ 1 ≤
(
`
`−1
2

)
− `

2
+ 1.

Table 6.1 summarises the results derived from each case, when ` is odd.

We conclude this section with a discussion on the results on wide-sense

2-frameproof codes. Clearly, in the case where the length ` is even, the

100

leading term of the upper bound on the size of 2-wFP codes in this the-

sis improves the previous known upper bound (Theorem 6.3.7) by a factor

of `/(` + 2). On the other hand, when ` is odd the improvement is better,

but still the difference between this bound and the bound of [50] tends to

infinity as ` grows. However, the intermediate results that are presented in

Table 6.1 show that when the non 2-covering Sperner family is of particular

structure, the bound is significantly improved. For example, the family A0

being non intersecting, leads to an improvement by a factor that changes the

order of the initial upper bound of Stinson and Wei [50]. Furthermore, the

particular form of the non 2-covering Sperner family favours the construc-

tion of the code, since the relations amongst the codewords follow the sets

in the family, and hence are limited. The case which results in a minor im-

provement is when the non 2-covering Sperner family contains sets of size

greater than (` + 1)/2 and less than (` − 1)/2. Intuitively, when a Sperner

family consists of sets of distant sizes, its size is likely to be much smaller

than the upper bound (6.3.5), because a small set is included in many large

sets. Nevertheless, a rigorous and mathematical argument that will prove

the intuition is yet to be found.

6.4 2-wFP Codes of Length 5

The study of wide-sense 2-frameproof codes is concluded with the exam-

ination of length ` = 5. Even though this case belongs to the category of

2-wFP codes of small length, it is presented here because its analysis re-

quires some of the results on the structure of these codes, that were proved

in the previous section. The result of this case shows that the maximal size

of 2-wFP codes of length ` = 5 can be attained when using an alphabet with

more than three letters, while the binary and ternary case result in smaller

maximal size codes.

Following the notation defined previously, the coincidence function I(j, j′)

101

indicates the positions where codewords cj and cj
′ agree. For a fixed code-

word cj ∈ C = {c1, . . . , cm}, we denote by Xj the family of such sets I(j, j′),

where j′ ∈ {1, . . . ,m} r {j}. Lastly, d(cj, cj′) denotes the distance between

codewords cj and cj
′ and d(C) the minimum distance of the code.

Example 6.4.1. Codes C1, C2 are examples of 2-wFP codes of ` = 5 over an

alphabet of size 2 and 4, respectively.

C1 = {10000, 01000, 00100, 00010, 00001, 11111},

C2 = {01210, 01301, 10310, 10201, 11000, 00100, 00011, 11111}.

Clearly, C1 is also a ternary 2-wFP code. The following propositions show

that these sizes, |C1| = 6 and |C2| = 8, are the best possible for the binary,

ternary and arbitrary alphabet size, respectively.

Proposition 6.4.1. Let C be a 2-wFP code of length ` = 5 and size m. Then

m ≤ 8.

Proof. Assume for a contradiction that m > 8. Let c0 be a fixed codeword

and X0 be the corresponding non 2-covering Sperner family. As the length

is odd, according to Table 6.1, the only case that yields a code with more

than 8 codewords is the last one. This means that X0 contains sets of size

greater than or equal to `+1
2

= 3 and less than or equal to `−1
2

= 2. Also,

the difference between the smallest and the largest size of the sets in X0

is greater than 1. We consider different cases depending on the minimum

distance of C. Without loss of generality, if d(C) = d then there exists a

codeword cj such that d(c0, cj) = d. According to Lemma 6.1.2 the cases

that we need to examine are when d(C) = 1, 2, 3, 4. When d(C) = 1 or

d(C) = 4, Propositions 6.1.4 and 6.1.5 respectively, show that the size of C is

at most `+ 1 = 6 and thus lead to a contradiction.

Case 1: d(C) = 3

In this case, all sets in Xj have size at most 2, which is a contradiction,

since X0 must also contain sets of size greater than or equal to 3.

102

Case 2: d(C) = 2

The family X0 consists of sets that have size at most 3 and there exists

a codeword cj that agrees with c0 in 3 positions, that is |I(0, j)| = 3.

Let I(0, j′) ∈ X0 be the smallest set in X0, for some cj
′ ∈ C. Then by as-

sumption, its size is either 0 or 1. If |I(0, j′)| = 0, then we have reached

a contradiction, as by the property of 2-wFP codes (Proposition 6.1.1)

c0 and c1 must agree in at least one position. Hence, |I(0, j)| = 1, which

means that X0 contains a singleton. This leads again to a contradiction,

since in this case Corollary 6.3.5 indicates that the code has size at most(
4
2

)
+ 2 = 8.

As the only case that would produce a 2-wFP code of length ` = 5 and

size m > 8 leads to a contradiction, we conclude that the size of such code

is at most 8.

Next we examine the case of a binary 2-wFP code. Furthermore, as ex-

ample 6.4.1 shows that the maximal 2-wFP code requires an alphabet of size

at least 4, a ternary 2-wFP codes must also be studied. Before presenting the

results on the binary and the ternary case, we prove a useful lemma.

Lemma 6.4.2. Let C be a 2-wFP code of length ` = 5 and size m. Let c0 ∈ C be a

fixed codeword and X0 be the corresponding non 2-covering Sperner family. If X0

does not contain a singleton, then m ≤ 6.

Proof. Assume for a contradiction that m > 6. This implies that X0 has

size at least 6. Recall that A0 denotes the subfamily of X0 that consists of

sets of size `−1
2

= 2. In Table 6.1, and according to Lemma 6.3.6 the cases

where A0 is not intersecting, imply the existence of a family different from

X0 which contains a singleton. Hence, the only case where the family X0

does not contain a singleton and can lead to a code of size 6 or more, is the

last one. That is, when X0 contains sets of size greater than 2 and less than

3, and the difference between the size of the largest and the smallest set is at

103

least 2. Since the ground set {1, 2, 3, 4, 5} is of size 5, if X0 has a 5-set, then

|X0| = |{1, 2, 3, 4, 5}| = 1 and thus, m = 2, a contradiction. If X0 contains a

4-set, say |I(0, 1)| = 4, then we have that d(c0, c1) = 1. According to Lemma

6.1.2, the minimum distance of a 2-wFP code is at least 1, therefore we have

d(C) = 1 and by Proposition 6.1.4, m ≤ 2, again a contradiction. The last

case, where X0 has a 3-set, also leads to a contradiction, as it implies that the

smallest set in X0 must be a singleton.

Proposition 6.4.3. Let C be a ternary 2-wFP code of length ` = 5 and size m.

Then m ≤ 6.

Proof. Assume for a contradiction that C contains more than 6 codewords,

that is m = 7 or m = 8. If there exists a ternary 2-wFP code of size 8, then

by deleting one codeword we would have a code of size m = 7. Hence, it is

sufficient to investigate only the case where m = 7.

Let X0 be the non 2-covering Sperner family generated by the fixed code-

word c0. According to the previous lemma, the case that could lead to a

code of size greater than 6, is when X0 contains a singleton. Without loss of

generality, let {1} ∈ X0 be the singleton. Since the family X0 is Sperner, the

subfamily X̂0 = X0 r {1} must also be Sperner and in order for C to have

size 7, X̂0 must have size 5. This is derived from equation (6.3.2):

m = |X0|+ 1 = |X̂0|+ 2.

Moreover, since none of the sets in X̂0 can contain the letter ‘1’, as this would

violate the Sperner property of X0, the ground set for this Sperner subfamily

is {2, 3, 4, 5}. Let U denote the size of the largest set in X̂0 and L the size of

the smallest. Then, according to Proposition 2.1.4, the upper bound on the

size of |X̂0| for all possible values of the difference U − L, is the following:

� if U − L = 0, then m ≤
(
4
2

)
− 0(4

2
) = 6

� if U − L = 1, then m ≤
(
4
2

)
− 1(4

2
) = 4

104

Table 6.2: The Sperner family X0 and the corresponding codewords.

X0 C0

c0 11111

{2, 3} c1 1 1

{2, 4} c2 1 1

{2, 5} c3 1 1

{3, 4} c4 1 1

{3, 5} c5 1 1

{1} c6 1

� if U − L = 2, then m ≤
(
4
2

)
− 2(4

2
) = 2

� if U − L = 3, then m ≤
(
4
2

)
− 3(4

2
) = 0

From the above, it is clear that the only case we need to consider is when

U − L = 0, or in other words, when X̂0 contains sets of the same size. It

is easy to see that if X̂0 consists only of singletons, or 3-sets, or 4-sets, then

its size will not exceed 4. Hence, X̂0 contains only 2-sets. Without loss of

generality, assume that X̂0 = {{2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}}. Translating

this into codewords, we obtain the code of Table 6.2.

Notice, that reuse of letter ‘1’ would violate the Sperner property of X0,

thus, each one of remaining positions can be filled using the letter ‘0’ or ‘2’.

For the codewords c2 and c5, we have that I(0, 2) = {2, 4} and I(0, 5) =

{3, 5}. The intersection of these sets is empty, thus the transitivity of the

coincidence function implies that I(2, 5) cannot contain any of the positions

2, 3, 4 or 5. As by the property of 2-wFP codes (Proposition 6.1.1) any pair

of codewords must agree in at least one position, we have that I(2, 5) =

{1}. Without loss of generality, let ‘0’ be their common letter. Furthermore,

since the first is the only position that c2 and c5 agree, by the property of

2-wFP codes the letter ‘0’ cannot be used to fill the first position of any other

codeword.

105

Table 6.3: The Sperner family X0 and the corresponding ternary code.

X0 C0

c0 11111

{2, 3} c1 1 1

{2, 4} c2 0 1 1

{2, 5} c3 2 1 1

{3, 4} c4 2 1 1

{3, 5} c5 0 1 1

{1} c6 1

Similar situation also holds for c3 and c4:

I(0, 3) ∩ I(0, 4) = {2, 5} ∩ {3, 4} = ∅

and using the same argument as previously, we obtain I(3, 4) = {1}. Addi-

tionally, neither ‘1’ nor ‘0’ can be their common letter, as the former would

violate the Sperner property of X0, and the property of the 2-wFP codes, the

latter. Hence, the first position of c3 and c4 is filled with the letter ‘2’. The

code in Table 6.3 summarises these results.

As already mentioned, in order to retain the property of the 2-wFP code,

only the pair (c2, c5) can share the letter ‘0’ in the first position, while letter

‘2’ covers the same position of the pair (c3, c4) and this pair alone. Since

the alphabet consists only of three letters, there is no letter left to fill the

first position of c1, contradicting the assumption that there exists a ternary

2-wFP code of length ` = 5 and size m > 6.

Regarding a 2-wFP code over the binary alphabet, the following proposi-

tion is easily derived from the previous, in combination with example 6.4.1.

Proposition 6.4.4. Let C be a binary 2-wFP code of length ` = 5 and sizem. Then

m ≤ 6.

106

Proof. According to the previous proposition, when the alphabet size is 3,

then the maximal 2-wFP code of length ` = 5 has size 6. This implies, that

it is not possible to obtain a 2-wFP code of larger size over an alphabet with

fewer letters. Hence, in the binary case such a code contains at most 6 code-

words. Code C1 from example 6.4.1, shows that there exists a binary 2-wFP

code of length ` = 5 and size 6, and the proof is concluded.

107

Part II

Honeycomb Arrays

108

Chapter 7

Honeycomb Arrays

Honeycomb arrays are combinatorial objects that emerged from the study of

Costas arrays. Costas arrays were first introduced in an initially classified

report on signal processing, by J.P. Costas [19] and since then their study

is still evolving. Due to this close relation between the two objects, it is

necessary to examine Costas arrays as well.

The first section of this chapter presents the definitions of Costas and

honeycomb arrays and studies the way these combinatorial objects are con-

nected. A more detailed review on Costas arrays is presented in the sec-

ond section, and includes constructions and computational results regard-

ing their enumeration. Honeycomb arrays are covered in section three,

which is divided into two parts. The first part proves an original result

(Theorem 7.3.1) related to the construction of honeycomb arrays and shows

that the only way of constructing them is by using Costas arrays. The enu-

meration of honeycomb arrays was first initiated in 1984 by Golomb and

Taylor [29]. The second part continues this enumeration by filling the gaps

and updating the list of known honeycomb arrays. For a clearer view, a

classification of the known honeycomb arrays is also presented in the third

section, together with the corresponding Costas arrays that they generated

from. The chapter concludes with some remarks on the symmetric proper-

ties of honeycomb arrays.

109

7.1 From Rooks to Semi-Queens

Costas arrays are n × n matrices, on which we have placed n dots that sat-

isfy the following two conditions: we allow exactly one dot to be placed in

each row and in each column and we also require that the vector differences

between all pairs of dots, thought of as vectors, are different. Due to the

similarity to the move of the Rook on the chess board, the first condition is

sometimes called the non attacking Rook property.

Example 7.1.1. A simple example of Costas array is the 3 × 3 matrix with

the following dot configuration:

r r r
Figure 7.1: A Costas array.

It is easy to check that the six vector differences between all pairs of dots are

distinct.

Definition 7.1.1. A Costas array of order n is a configuration of n dots placed

on a n× n square grid in such a way that the following conditions are satis-

fied:

(a) in each row and in each column of the grid exactly one dot occurs and

(b) all n(n− 1) pairs of dots have distinct vector differences.

The hexagonal analogue of Costas array is called a honeycomb array. A

simple example of a honeycomb array with 3 dots is shown in Figure 7.2.

t
t

t
Figure 7.2: A honeycomb array.

110

As honeycomb arrays exist in the hexagonal environment, it is essential

to describe first the hexagonal board. Define the hexagonal grid to be the

lattice which is generated by the following two vectors:

qq q6

6

(0, 1)

(
√
3
2 ,−

1
2)

Figure 7.3: The hexagonal grid.

In contrast to the square, the directions defined by the hexagonal grid

are three. As Figure 7.4 shows, two follow the diagonals, while the third

direction is determined by the columns.

6

66

Figure 7.4: Hexagonal region.

Definition 7.1.2. A honeycomb array of order n is a configuration of n dots

placed on a hexagonal grid in such a way that the following conditions are

satisfied:

(a) in each diagonal (in both directions) and in each column of the grid at

most one dot occurs,

(b) all n dots lie in consecutive diagonals (in both directions) and in consec-

utive columns,

(c) all n(n− 1) pairs of dots have distinct vector differences.

111

Honeycomb arrays appeared in 1997, in a paper by Golomb and Taylor

[29] where they were derived from Costas arrays, using a shear- compres-

sion transformation. Let C be a Costas array and define the main diagonal

to be the diagonal that runs from the top right corner to the bottom left.

Using the similarity between the dot configuration of the Costas array and

the moves of the chess pieces, an attacking Queen is a configuration where

one dot can attack its row, column or its diagonals. Following the termi-

nology of Golomb and Taylor, an attacking semi-Queen can attack its row,

column and only the diagonal parallel to the main diagonal. If we apply

shear-compression to the Costas array with non attacking semi-Queen dot

configuration, then Figure 7.5 shows that the result is the hexagonal ana-

logue of that particular Costas array or in other words, a honeycomb array.

From the same figure it is clear that while the columns of the Costas array

are not affected by the transformation, the rows become diagonals.

s s

s
s

s

s
s

-

s s

s
s

s

s
s

-
shear

compression

t
t

t
t

t

t
t

Figure 7.5: Golomb and Taylor construction of honeycomb arrays from Costas ar-
rays.

Translating the properties of the Costas array into hexagonal terms, after

the shear-compression each diagonal (in both directions) and each column,

contains exactly one dot. Additionally, the property of the Costas arrays of

the distinct vector differences between all pairs of dots, is preserved.

Let ξ : R2 → R2 be the linear transformation which converts the square

into the hexagonal grid:

ξ(x, y) = (

√
3

2
x,−1

2
x+ y).

Clearly, the inverse of ξ, which maps (x, y) to (2√
3
x, 1√

3
x+ y), transforms the

112

hexagonal into the square lattice. Define a point of the hexagonal lattice to

refer to the centre of the hexagonal cell. The hexagonal distance between two

points x and y is the smallest r, such that there exists a path with r+1 points

x = p1, p2, . . . , pr+1 = y,

where pi and pi+1 are adjacent points in the hexagonal grid. Clearly, the

distance of adjacent points on the hexagonal lattice is one and thus, each

point is surrounded by 6 neighbours. Define the hexagonal sphere of radius r,

also known as Lee sphere, to be the area on the hexagonal lattice that consists

of a fixed point, the centre, together with all points that are at distance r or

less from the centre. Using these definitions we next introduce the notion of

a honeycomb array of radius r.

Definition 7.1.3. A honeycomb array of radius r is a configuration of n =

2r + 1 dots on the hexagonal grid with

(a) every dot being at distance at most r from a fixed hexagon (the centre),

(b) exactly one dot in each column and each diagonal (in both directions)

(non attacking bee-Rooks),

(c) distinct vector differences between all pairs of dots.

In [13] Blackburn, Panoui, Paterson and Stinson proved the following

theorem which shows that honeycomb arrays are actually honeycomb ar-

rays of radius r having an odd number of dots.

Theorem 7.1.4 (Corollary 2, [13]). Any honeycomb array is a honeycomb array

of radius r, for some integer r. In particular, a honeycomb array must consist of an

odd number of dots.

Proof. Define a hexagonal permutation π to be a collection of n × n dots

which satisfy (a) and (b) of Definition 7.1.2. Clearly, any honeycomb array

is a hexagonal permutation. Moreover, since a honeycomb array of radius

113

r is contained in a Lee sphere of the same radius, the proof of the theorem

is reduced to proving the following claim: for any hexagonal permutation

π with n dots, n is odd and the dots in π are contained in a Lee sphere of

radius n−1
2

.

By slightly abusing the notation, let ξ−1(π) denote the image of π in the

square grid. Also, for non negative integers i, m with 1 ≤ i ≤ m − 1, let

Si(m) denote the region depicted in Figure 7.6. It is easy to prove that all

dots in ξ−1 are included in a region of the form Si(n), for some 1 ≤ i ≤ n− 1

and they form a non attacking semi-Queen configuration (Lemma 3, [13]).

m

(m− 1)− i

m

i

Figure 7.6: The region Si(m).

If i = n−1
2

, which means that n is an odd number, the claim follows and

consequently the theorem is proved for this case. Assume for a contradic-

tion that i 6= n−1
2

. By reflecting π vertically in the hexagonal grid, we obtain

a permutation π′ such that the dots in ξ−1(π′) are included in a region of the

form S(n−1)−i(n). Hence, we can assume that i < n−1
2

, by replacing π with π′

if required.

Consider the triangular board of width w = n+ i (Figure 7.7(a)) contain-

ing Si(n) (Figure 7.7(b)). According to a result in [39] by Nivasch and Lev

and in [56] (P252 and R252) by Vaderlind, Guy and Larson the maximum

number of dots forming a non attacking semi-Queen configuration that can

be placed in a triangular board of width w is 2w+1
3

. Applying this to the

triangular board of width n+ i, we obtain

2(n+ i) + 1

3
.

114

Since 0 ≤ i ≤ n− 1 we have that

2(n+ i) + 1

3
≤ 2n+ (n− 1) + 1

3
= n

which is a contradiction. Thus, the only choice for i is to be equal to n−1
2

.

w

(a)

i n

n

i

(b)

Figure 7.7: The triangular board and how is covered by the region Si(n).

7.2 Costas Arrays

The research of Costas arrays is primarily directed by the following two

questions:

1. How many Costas arrays of order n are there?

2. How can they be constructed?

A detailed presentation of the known constructions of Costas arrays can

be found in [21] by Drakakis. For completeness, these constructions are

presented below. Let Fq be a finite field and α a primitive element of Fq. For

all x ∈ F∗q , define logα x to be the discrete logarithm of x to the base α.

Welsh construction [29] For every prime p, the Welsh construction gener-

ates Costas arrays of order n = p − 1 (W1), n = p − 2 (W2) and n =

p− 3 (W3) when α = 2:

115

W1 : For all i = 1, . . . , p − 1 and j = 0, . . . , p − 2, put a dot in position

(i, j) if and only if i = αj .

W2 : From the Costas array obtained from the previous construction,

delete the dot at (1, 0), together with the corresponding row and

column.

W3 : For α = 2, delete the two dots at (1, 0) and (2, 1) from the Costas

array generated from W1, together with the corresponding rows

and columns.

Lempel construction [29] In this construction q is any prime power, q = pk,

and yields Costas arrays of order n = q − 2 (L2) and n = q − 3 (L3)

whenever 2 is a primitive element of Fq:

L2 : For all i = 1, . . . , p − 2 and j = 1, . . . , p − 2, put a dot in position

(i, j) if and only if αi + αj = 1.

L3 : If 2 is a primitive element of Fq, then delete the dot at (1, 1) from

the Costas array constructed using L2, together with the corre-

sponding row and column.

Taylor construction (variant of Lempel) [29] This construction, denoted by

T4, can be applied when we have that α1 + α2 = 1 for the primitive

element α of Fq, with q = pk. In this case, by deleting the dots at (1, 1)

and (2, 1) together with the corresponding rows and columns from the

Costas array constructed using L2, we obtain a Costas array of order

n = q − 4.

Golomb construction [29] Let α and β be primitive elements of the field Fq,

where q is a prime power. Then, the Costas arrays constructed using

this method have order n = q−2 (G2), n = q−3 (G3) and n = q−4 (G4)

only when q = 2k and α + β = 1:

G2 : For all i = 1, . . . , p − 2 and j = 1, . . . , p − 2, put a dot in position

(i, j) if and only if αi + βj = 1.

116

G3 : If α1+β1 = 1, then from the Costas array obtained fromG2, delete

the dot at (1,1) together with the corresponding row and column.

G4 : For q = pk and when α1+β1 = 1 in Fq, delete the two dots together

with the corresponding rows and columns at positions (1, 1) and

(2, 2), from the Costas array generated by construction G1.

Golomb variant [29] This variant generates Costas arrays of order n = q −

4 (G∗4) and n = q − 5 (G∗5), both under some necessary conditions:

G∗4 : When α1 + β1 = 1 and α2 + β−1 = 1, where α and β are primitive

elements of Fq, then delete the dot at (1, 1) and (2, q − 2) from

construction G2.

G∗5 : This construction succeeds G∗4, since when deleting the dots at

(1, 1) and (2, q−2), the resulting Costas array has a dot at (q−2, 2)

which can also be deleted. This follows from the fact that if α1 +

β1 = 1 and α2 + β−1 = 1, then also α−1 + β2 = 1.

Taylor construction (variant of Golomb) [29] Taylor variant yields construc-

tions of Costas arrays of order n = q − 1 (T1) and n = q (T0). Instead

of deleting dots, the new arrays are produced by adding dots in spe-

cific positions, in such a way that the properties of Costas arrays are

preserved:

T1 : When q 6= 2k, then add a dot at one of the positions (0, 0), (0, q−1),

(q − 1, 0) or (q − 1, q − 1), such that the resulting array is Costas.

T0 : When q ≡ −1 mod 6, then add two dots at positions (0, 0) and

(q − 1, q − 1) or at (0, q − 1) and (q − 1, 0), such that the resulting

array is Costas.

Rickard construction [43] This construction is based on the periodicity prop-

erties of existing constructions. That is, a n×n Costas array is repeated

vertically and horizontally (double periodicity), in order to produce an

117

array that contains a Costas array in every n× n window. Since Taylor

[52] proved that for n > 2 such an array does not exist, Rickard [43]

modified the above method and instead of the double repetition, the

n× n Costas array is vertically repeated (single periodicity) and a row

between every two arrays is left empty. A Costas array is produced, by

taking a (n+ 1)× n window from this construction of repeated Costas

arrays, and searching the correct position to place the (n + 1)th dot in

the empty row (1-Gap Augmentation method).

The symmetries of the square allow us to partition the set of Costas ar-

rays into equivalence classes. For example, an equivalence class can be cre-

ated by rotating or reflecting a Costas array. In order to avoid confusion

when we enumerate the Costas arrays, it is necessary to define the follow-

ing parameters:

C(n) : the total number of n× n Costas arrays

c(n) : the number of equivalence classes of n× n Costas arrays

In 2008 a group formed by Taylor, Drakakis and Rickard [53] constructed

a toolbox of functions that carry out an exhaustive search for Costas arrays,

which led to finding all Costas arrays up to order n = 26. Later, Drakakis et

al. [24] completed an exhaustive search for n = 27. Recently, Drakakis, Iorio

and Rickard [22], and Drakakis, Iorio, Rickard and Walsh [23] presented all

Costas arrays of order n = 28 and n = 29, respectively. These enumeration

results are presented in Table 7.1. A list of all Costas arrays up to order

n = 200, that are constructed using the algebraic methods presented above,

can be found in the database of Beard [7]. The results of the exhaustive

search reveals the existence of sporadic Costas arrays, that is, arrays that do

not follow any of the aforementioned algebraic constructions.

118

Table 7.1: The number of n× n Costas arrays found by exhaustive search.

n 1 2 3 4 5 6 7 8 9 10 11 12

C(n) 1 2 4 12 40 116 200 444 760 2160 4368 7852

c(n) 1 1 1 2 6 17 30 60 100 277 555 990

n 13 14 15 16 17 18 19 20

C(n) 12828 17252 19612 21104 18276 15096 10240 6464

c(n) 1616 2168 2467 2648 2294 1892 1283 810

n 21 22 23 24 25 26 27 28 29

C(n) 3536 2052 872 200 88 56 204 712 164

c(n) 446 259 114 25 12 8 29 89 23

7.3 Honeycomb Arrays

7.3.1 Construction of Honeycomb Arrays

The constructions of Costas arrays, and in particular the Welsh method,

show that Costas arrays exists for infinitely many values of n. For honey-

comb arrays however, the scenario is not as encouraging. In [11] Blackburn,

Etzion, Martin and Paterson prove that the values of the radius r for which

there exist honeycomb arrays, are finite. In particular, the authors show that

honeycomb arrays do not exist for r ≥ 664. Regarding their construction,

one method was introduced by Golomb and Taylor in [29]. As previously

mentioned, it is based on applying shear-compression to a Costas array with

non attacking semi-Queens dot configuration. The lack of any other way of

constructing honeycomb arrays led to a conjecture claiming that these ar-

rays can only be constructed by Costas arrays, using shear-compression.

This section proves the conjecture to be true.

Recall that the inverse of transformation ξ, as defined in Section 7.1, con-

verts the hexagonal into the square grid.

119

Theorem 7.3.1. Let H be a honeycomb array of radius r. Then ξ−1(H) = C,where

C is a Costas array of size n = 2r + 1.

Proof. The claim will be proved in three steps. The first step shows that the

map ξ−1 is a bijection and when is applied to a hexagonal sphere, the re-

sulting shape is contained in a square. Second, we prove that in the derived

configuration, the vector differences between all pairs of dots are distinct.

Finally, we need to show that there is exactly one dot in each row and each

column of the constructed array (non attacking Rooks).

Step 1: The map ξ−1.

Since any linear transformation can be described by a matrix, in order

to show that ξ−1 is a bijection, it only suffices to show that the determi-

nant of its matrix is nonzero. The map ξ−1 corresponds to the matrix 2√
3

0

1√
3

1


whose determinant is 2/

√
3, thus ξ−1is a bijection.

We continue by showing that the centres of the hexagons in the hexag-

onal sphere are transformed via ξ−1 into a subset of the square lattice.

Without loss of generality, we begin with a small hexagonal sphere of

radius r = 1, centred at (0,0). We calculate the centres of the 7 hexagons

and apply ξ−1 to switch to the square grid (Figure 7.8):

O = ξ−1(O) = ξ−1(0, 0) = (0, 0),

A′ = ξ−1(A) = ξ−1(0, 1) = (0, 1),

B′ = ξ−1(B) = ξ−1(
√
3
2
, 1
2
) = (2√

3

√
3
2
, 1√

3

√
3
2
+ 1

2
) = (1, 1),

C ′ = ξ−1(C) = ξ−1(
√
3
2
,−1

2
) = (2√

3

√
3
2
, 1√

3

√
3
2
− 1

2
) = (1, 0),

D′ = ξ−1(D) = ξ−1(0,−1) = (0,−1),

E ′ = ξ−1(E) = ξ−1(−
√
3
2
,−1

2
) = (− 2√

3

√
3
2
,− 1√

3

√
3
2
− 1

2
) = (−1,−1),

F ′ = ξ−1(F) = ξ−1(−
√
3
2
, 1
2
) = (− 2√

3

√
3
2
,− 1√

3

√
3
2
+ 1

2
) = (−1, 0).

120

6

-

r
r

r
r

r
r
r

O

(0, 1)

A (
√
3
2
, 1
2
)

B

(-
√
3

2
, 1
2
)

C

(0, -1)

D(-
√

3
2
, - 1

2
)

E

(-
√
3

2
, 1
2
)

F

6

-

r
r

r
r
r

r
rr

r
(-1,-1)

E′

(0,-1)

D′

(-1,0) F′ O (1,0)C′

(1,1)

B′
(0,1)

A′

Figure 7.8: The transformation of the hexagonal lattice into the square lattice.

As Figure 7.8 shows, the resulting shape is an incomplete square, which

can be completed by adding the two missing points at the top left and

the bottom right corners. Let us generalize the above procedure in

terms of neighbour cells. Figure 7.9 shows the neighbours of the cen-

tral cell of the hexagonal array and the corresponding neighbour rela-

tion on the square array.

0
1

4

2
35

6

5
6

4
0
1

3
2

Figure 7.9: The analogy between the neighbours in the hexagonal and square array.

Using this relation it is easy to picture how the square array will be

constructed. We prove by induction on r that a hexagonal sphere of

radius r is transformed into an incomplete square of dimension n =

2r + 1.

Base Case

When r = 1, the hexagonal sphere is transformed into the square

of order n = 3. The calculations have already been done in a pre-

vious paragraph and are presented in Figure 7.8.

Inductive Hypothesis

121

Assume that the hexagonal sphere of radius r is transformed into

an incomplete square of order n = 2r + 1.

Inductive Step

Let H be a hexagonal sphere of radius r + 1 (Figure 7.10). By the

inductive hypothesis, the hexagonal sphere of radius r (the black

part of H in Figure 7.10) which is contained in H , is transformed

into an incomplete square S ′ of order n′ = 2r + 1 (Figure 7.10).

H S′

Figure 7.10: The black hexagonal sphere of order r is transformed into the incom-
plete square S′ of order n′ = 2r + 1.

For the remaining hexagonal cells, we use the neighbour relation

and as Figure 7.11 shows, it adds one more layer of square cells to

S ′. Hence, the final incomplete square S, has order n = n′ + 1 =

2r + 1 + 1 = 2r + 2, which completes the induction.

Step 2: The vector differences.

Let H = {w1, . . . ,wn} and C = {v1, . . . ,vn} be the sets of the centres,

described by vectors, that form the honeycomb and the incomplete

square array, respectively. Assume for a contradiction, that there are

four vectors vi,vj,vi′ ,vj′ ∈ C such that vi − vj = vi′ − vj′ and i 6= j,

122

x

H

-
ξ−1

x

S

Figure 7.11: Illustration of the inductive step. The extracted shapes show the neigh-
bour relation of the marked cell, as the hexagonal is transformed into the square
lattice.

i′ 6= j′. By construction, vk = ξ−1(wk) for all k = 1, . . . , n. Thus,

ξ−1(wi)− ξ−1(wj) = ξ−1(wi′)− ξ−1(wj′)

and hence

ξ−1((wi −wj)− (wi′ −wj′)) = 0,

which implies that

wi −wj = wi′ −wj′ .

Since one of the properties of the honeycomb array is the distinct vec-

tor differences, the last equality implies that i = i′ and j = j′, which

is a contradiction. Thus, the linear transformation ξ−1 preserves the

vector differences, and so if they are distinct in the honeycomb array,

they are distinct in the incomplete square as well.

Step 3: Non attacking Rooks.

We prove by contradiction, that the n × n array which is constructed

from the honeycomb array, has exactly one dot in each row and each

column. All the possible positions of the centres in the square grid are

123

of the form

λ(1, 0) + µ(0, 1), λ, µ ∈ Z

and in the hexagonal grid of the form

α(
√
3
2
, -1

2
) + β(0, 1), α, β ∈ Z

where {(1, 0), (0, 1)} and {(
√
3
2
, -1

2
), (0, 1)} are the basis for the square

and the hexagonal grid respectively.

Now, suppose that there exists a column in the n× n array with 2 dots

in positions e = (λ1, µ) and f = (λ2, µ). We apply the map ξ to switch

from the square to the hexagonal grid:

e′ = ξ(e) = (
√
3
2
λ1,−1

2
λ1 + µ)

f ′ = ξ(f) = (
√
3
2
λ2,−1

2
λ2 + µ)

In order to check whether the mapped dots occur in the same diag-

onal in the honeycomb array, we use the vector slope. If the vector

difference e′ − f ′ has the same slope with the basis vector (
√
3
2
, -1

2
), then

the mapped dots lie in the same diagonal. Since the hexagonal grid

has three directions, we also need to compare the slope of the vector

difference to the slope of (
√
3
2
, 1
2
) (Figure 7.12).

s s
6

-

6

6
6

e′

f′

Figure 7.12: The use of slope for the determination of whether or not a diagonal in
the hexagonal sphere contains two dots.

124

We calculate the vector difference and its slope:

e′ − f ′ = (
√
3
2
(λ1 − λ2),−1

2
(λ1 − λ2)),

λe′-f ′ =
−1
2
(λ1−λ2)√

3
2

(λ1−λ2)
= − 1√

3
.

The slopes of vectors (
√
3
2
, -1

2
) and (

√
3
2
, 1
2
) are:

λ
(

√
3
2
,-1
2
)
=

1
2√
3
2

= − 1√
3
,

λ
(

√
3
2
,
1
2
)
=

1
2√
3
2

= 1√
3

The relation λe′−f ′ = λ
(
√
3

2
,- 1

2
)

indicates that there exists a diagonal in

the honeycomb array with two dots, which is a contradiction.

As the transformation leaves the columns intact, if two dots occupy

the same column in the square array, then the corresponding column

in the honeycomb array would have two dots as well, which is a con-

tradiction.

Hence, the n× n array that is constructed by the honeycomb array has

exactly one dot in each row and column.

7.3.2 Computational Results

This section presents the complete list of known honeycomb arrays up to

radius r = 14 and one array of radius r = 22, which is mentioned in [29]

by Golomb and Taylor. The list appears in [13] for r ≤ 13, while recent

computational results on Costas arrays of order n = 29 [23] allowed the

search for honeycomb arrays of radius r = 14. Similar to the case of Costas

arrays, honeycomb arrays can also be partitioned into equivalence classes,

according to which symmetries of the hexagon they follow. According to

the notation of Golomb and Taylor

125

H(r) : denotes the total number of honeycomb arrays of radius r

h(r) : denotes the number of equivalence classes of honeycomb arrays of

radius r.

Example 7.3.1. The honeycomb arrays in Figures 7.13 and 7.14 are the four

known of radius 4 and they can be partitioned in two equivalence classes.

t
t

t

t

t

t

t
t

t

t
t

t

t

t

t

t
t

t

Figure 7.13: The two members of the first equivalence class, where the second hon-
eycomb array is the vertical reflection of the first.

t
t

t
t

t

t
t

t
t

t
t

t
t

t

t
t

t
t

Figure 7.14: The two members of the second equivalence class, where again the
second honeycomb array is the vertical reflection of the first.

Table 7.2(a) presents the results by Golomb and Taylor [29] on the enu-

meration of honeycomb arrays, while Table 7.2(b) exhibits the results of this

study, which completes the gaps of the first table up to radius r = 14. The

new results were derived by using the Costas arrays database [53] as an

input to an algorithm implemented in C language (Appendix A). The com-

puter search for honeycomb arrays resulted in four new arrays of radius

r = 7, that form two equivalence classes, each one consisting of two mem-

bers.

We continue by presenting the classification of all known honeycomb

arrays. In the following, the use of the capital letters A, B and C is arbitrary,

126

Table 7.2: Enumeration results.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 22

h(r) 1 1 0 2 2 ? ? ≥ 1 ? ? ≥ 1 ? ? ≥ 1 ? . . .? ≥ 1

H(r) 1 2 0 8 4 ? ? ≥ 2 ? ? ≥ 2 ? ? ≥ 2 ? . . .? ≥ 2

(a) The number of honeycomb arrays of radius r known in 1984.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . 22

h(r) 1 1 0 2 2 0 0 3 0 0 1 0 0 1 0 ? . . .? ≥ 1

H(r) 1 2 0 8 4 0 0 6 0 0 2 0 0 2 0 ? . . .? ≥ 2

(b) The updated table on the enumeration of honeycomb arrays.

and indicates the different equivalence classes, while the subscript of these

letters denotes the radius of the array.

Honeycomb arrays of radius r = 1. The only member of the equivalence

class of honeycomb arrays of radius r = 1 is depicted in Picture 7.15,

together with the corresponding Costas array of order n = 3, which is

generated by the Welsh construction over F5.

t
t t t

t
t

Figure 7.15: The 3 × 3 Costas array and the corresponding Ar1 class of the honey-
comb arrays.

Honeycomb arrays of radius r = 3. The Costas arrays of size n = 7 gener-

ate 8 honeycomb arrays that are divided into two equivalence classes,

Ar3 and Br3. Both Costas arrays of Figure 7.16 were constructed us-

ing the Rickard method with a 3 × 3 Costas array as a stub. The four

honeycomb arrays that were generated by the first Costas array, are

00, 1200, 1800 and 2400 rotation of the hexagon. The remaining rota-

127

tions appear in the honeycomb array that is produced by the second

Costas array of Figure 7.16.

s
s

s

s

s
s s

t
t

t

t

t
t

t

t
t

t

t

ttt

t
t

t

t

t
t

t

t
t

t

t

t t t
s s

s
s

s
s

s
t

t
t

t
t

t
t

t
t

t

t
t

t
t

Figure 7.16: The 7× 7 Costas arrays and the corresponding Ar3 class of the honey-
comb arrays.

The two remaining honeycomb arrays create the second equivalence

class, Br3, which is generated by the Costas array that was constructed

using the Lempel-Golomb construction over F32 (Figure 7.17).

s s

s
s

s

s
s

t
t

t
t

t

t
t

t t

t t
t

t
t

Figure 7.17: The 7 × 7 Costas array and the corresponding Br3 class of the honey-
comb arrays.

Honeycomb arrays of radius r = 4. Honeycomb arrays of radius r = 4 are

constructed by Costas arrays of size n = 9. Again, we have two equiv-

128

alence classes, Ar4 and Br4, each of which consists of two honeycomb

arrays. As shown in Figures 7.18 and 7.19, the equivalent honeycomb

arrays differ by a rotation of 600 degrees. Both equivalence classes are

produced by Costas arrays that were constructed using the Lempel

method. The first one is over F11 with α = 6 as the primitive element,

while in the second, the primitive element is α = 7.

s
s

s
s

s

s

s s
s

t
t

t

t

t

t

t
t

t

t
t

t

t

t

t

t
t

t

Figure 7.18: The 9 × 9 Costas array and the corresponding Ar4 class of the honey-
comb arrays.

s s
s

s

s

s
s

s
s

t
t

t
t

t

t
t

t
t

t
t

t
t

t

t
t

t
t

Figure 7.19: The 9 × 9 Costas array and the corresponding Br4 class of the honey-
comb arrays.

Honeycomb arrays of radius r = 7. In this case, we have in total six honey-

comb arrays which are divided into three equivalence classes, Ar7, Br7

and Cr7. Figure 7.20 shows the honeycomb array constructed in 1984

by Golomb and Taylor and Figures 7.21 and 7.22 depict the four new

honeycomb arrays that form two equivalences classes, each of which

consists of two members. The Costas arrays that generated the new

honeycomb arrays were both constructed by the Lempel method over

F17 with primitive elements α = 6 and α = 7, respectively.

129

r
r

r
r r

r r

r

r
r

r r
r

r
r

t

t

t

t
t

t
t

t

t
t

t
t

t

t

t

t

t

t

t
t

t
t

t

t
t

t
t

t

t

t

Figure 7.20: The 15 × 15 Costas array and the corresponding Ar7 class of the hon-
eycomb arrays.

r
r

r

r r
r

r r
r

r
r r

r

r
r

t

t

t

t
t

t

t
t

t

t

t
t

t

t

t

t

t

t

t
t

t

t
t

t

t

t
t

t

t

t
Figure 7.21: The 15 × 15 Costas array and the corresponding Br7 class of the hon-
eycomb arrays.

r r r

r

r
r

r
r

r

r
r

r

r r
r

t
t

t

t

t

t

t

t

t

t

t

t

t
t

t t
t

t

t

t

t

t

t

t

t

t

t

t
t

t

Figure 7.22: The 15 × 15 Costas array and the corresponding Cr7 class of the hon-
eycomb arrays.

Honeycomb arrays of radius r = 10. There exist only two honeycomb ar-

rays of radius r = 10, constructed by the 21× 21 Costas array, that was

produced by the Lempel construction over F23 with primitive element

130

α = 7. As shown in Figure 7.23 the honeycomb arrays differ by a 600

rotation.

r r r

r

r

r
r

r
r

r
r
r

r
r

r
r

r

r
r r

r
t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t
t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t
t

t

Figure 7.23: The 21× 21 Costas array and the corresponding Ar10 class of the hon-
eycomb arrays.

Honeycomb arrays of radius r = 13. As in the previous case, there is only

one class of honeycomb arrays of radius r = 13, consisting of two

members. Figure 7.24 shows the Costas array that generates this class

and the two equivalent honeycomb arrays. The 27 × 27 Costas array

was constructed using the Lempel construction over F29 with primitive

element α = 3.

Honeycomb arrays of radius r = 22. The two honeycomb arrays of Figure

7.26 belong to the same equivalence class and were derived from the

45×45 Costas array (Figure 7.25), constructed using the Lempel method,

over F47 with primitive element α = 11. As it is not known yet whether

the list of Costas arrays of order n = 45 is complete, there might be

more honeycomb arrays of this size.

131

r
r

r

r
r r

r

r r

r

r

r

r

r

r

r

r

r

r
r

r
r r

r
r

r
r

t

t

t

t

t
t

t

t
t

t

t

t

t

t

t

t

t

t

t
t

t

t
t

t

t

t

t

t

t

t

t

t
t

t

t
t

t

t

t

t

t

t

t

t

t

t
t

t

t
t

t

t

t

t

Figure 7.24: The 27× 27 Costas array and the corresponding Ar13 class of the hon-
eycomb arrays.

r

r
r

r

r

r

r r
r

r

r

r
r
r

r

r

r

r

r

r

r

r

r

r

r
r

r

r

r

r

r

r
r
r

r

r

r
r r

r

r

r

r r

r

Figure 7.25: The 45× 45 Costas array that produces the Ar22 the honeycomb array.

132

Figure 7.26: The Ar22 class of the honeycomb arrays generated from the 45 × 45
Costas array.

t

t
t

t

t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t
t

t

t

t

t
t

t

t

t
t

t

t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t
t

t

t

t

t
t

t

133

7.4 Concluding Remarks

A more thorough examination of the honeycomb arrays, shows that they

inherit the symmetries of the Costas arrays that have generated them. How-

ever, all known honeycomb arrays have one symmetry, reflection with re-

spect to the vertical line that passes through the centre, that is not obvious

to the corresponding Costas array. As Figure 7.27 shows, this is due to the

fact that this symmetry is not a symmetry of the square.

t
t

t

t

t
t

t r r
r

r
r r r

Figure 7.27: The symmetry of the honeycomb arrays to Costas arrays.

Another symmetry that is observed in honeycomb arrays, is the symme-

try with respect to the lines defined by the three directions of the hexagonal

grid. All known equivalence classes, apart from Ar3, consist of honeycomb

arrays that posses this symmetry. Figure 7.28 gives an example of this prop-

erty. Exhaustive search in [13] for honeycomb arrays of radius r = 31 and

less, having this type of symmetry did not lead to any new arrays.

t
t

t
t

t

t
t t

t

t
t

t

t
t t

t

t
t

t

t
t

Figure 7.28: The hexagonal symmetries with respect to the lines defined by the
three directions of the hexagonal grid.

The entries of Table 7.2(b), and in particular the number h(r), indicate

that as the radius increases, the number of honeycomb arrays decreases.

134

Moreover, the search of honeycomb arrays up to radius r = 98 using Costas

arrays that have been constructed using algebraic methods (Beard database

[7]), was not fruitful. Additional computer searches in [13] for arrays of

radius r ≤ 325, using the Costas arrays listed in Golomb and Taylor pa-

per [29], did not reveal any more examples of honeycomb arrays. All these

indications lead to the following conjecture:

Conjecture (Conjecture 1, [13]). The list of known honeycomb arrays is complete.

So there are exactly 12 honeycomb arrays, up to symmetry.

135

Appendix A

Search of Honeycomb Arrays in C

The following C code determines whether or not a Costas array can lead to

honeycomb array. The input to the algorithm is a n × n Costas array taken

from the database that was build by Taylor, Drakakis and Rickard [53]. A

necessary condition for the Costas array to generate a honeycomb array, is

that n must be an odd number. According to the Golomb-Taylor construc-

tion of honeycomb arrays [29], the Costas array must contain non attack-

ing semi-Queens, hence instead of examining the whole n× n Costas array,

the algorithm focuses on the region bounded by the lines y1 = i − 1 − r

and y2 = i + n + r, where r = (n − 1)/2. If all n dots of the Costas

array lie within this area and in addition, they create a semi-Queen con-

figuration, then the shear-compression method results in a honeycomb ar-

ray of radius r. These two conditions are examined by the function called

check and count. The function first checks if this area contains all n dots

and then examines whether or not the dots follow the non attacking semi-

Queens pattern. The first condition, checks if the number of dots in the

Costas array that belong to one of the lines between y1 and y2, is n. If this is

true, then in order to have a honeycomb array, every such line between y1

and y2, must contain exactly one dot from the Costas array.

136

/∗ ∗∗∗

Honeycomb a r r a y s

Input : The f i l e c∗ a l l . out from t h e C o s t a s a r r a y d a t a b a s e .

Output : The f i l e h∗ a l l . t x t , which c o n t a i n s t h e f o l l o w i n g :

1 . t h e number o f d o t s in e a c h l i n e y=i−1−r+k , f o r k = 0 , . . . , n−1

2 . (i f a honeycomb a r r a y was found) t h e p o s i t i o n in t h e C o s t a s

a r r a y f i l e , o f t h e C o s t a s a r r a y t h a t l e d t o t h e honeycomb

a r r a y .

t o t a l : The number o f C o s t a s a r r a y s .

n : The s i z e o f C o s t a s a r r a y (t h e number o f d o t s)

y [] : The a r r a y t h a t c o n t a i n s t h e d o t p o s i t i o n s on t h e C o s t a s a r r a y

∗∗ ∗ /

include<s t d i o . h>

include<math . h>

include<time . h>

define nmax 30

define t o t a l 2

void i n i (i n t) ;

i n t check and count (int , i n t) ;

FILE ∗ f r ,∗ fw ;

i n t E [nmax] , y [nmax] ;

void main ()

{

i n t i , j , r , n , dots ;

double cpu time ;

c l o c k t s t a r t , end ;

s t a r t =c lock () ;

137

n=nmax−1;

f r =fopen (” c29 . out ” , ” r+”) ;

i f (n%2==1) fw=fopen (” h 7 a l l . t x t ” , ”w+”) ;

f p r i n t f (fw , ”\ t Number of dots in diagonals \ t \ t Resul t s Row no .\n\n”) ;

for (j =1 ; j<=t o t a l ; j ++)

{

for (i =1 ; i<=n ; i ++)

{

f s c a n f (f r , ”%d” ,&y [i]) ;

}

f p r i n t f (fw , ” ”) ;

i f (n%2==1)

{

r =(n−1) /2;

i n i (n) ;

dots=check and count (n , r) ;

i f (dots==n)

{

p r i n t f (” Honeycomb Array in row j=%d \n” , j) ;

f p r i n t f (fw , ”\ t Honeycomb %d \n” , j) ;

}

e lse

{

f p r i n t f (fw , ”\ t − %d \n” , j) ;

}

}

}

f c l o s e (f r) ;

f c l o s e (fw) ;

end=clock () ;

cpu time = ((double) (end−s t a r t)) /CLOCKS PER SEC ;

p r i n t f (” cpu time = %f \n” , cpu time) ;

}

138

/∗ ∗∗

FUNCTIONS

∗∗∗ ∗ /

void i n i (i n t n)

{

i n t i ;

for (i =1 ; i<=n ; i ++)

{

E [i] = 0 ;

}

}

i n t check and count (i n t n , i n t r)

{

i n t i , k , f lag ,num;

for (i =1 ; i<=n ; i ++)

{

i f (i−1−r < y [i] < i +n−r)

{

f l a g =0;

k =0;

do

{

i f (y [i]== i−1−r+k) / / c h e c k s whe the r t h e r e i s a d o t in y [i]

{

E [k]=E [k] + 1 ;

f l a g =1;

}

k=k +1;

}

while (k<=n && f l a g ==0) ;

}

}

num=0;

for (i =1 ; i<=n ; i ++)

139

{

i f (E [i]==1) / / c h e c k s i f in l i n e E [i] o c c u r s on ly one d o t

{

num=num+1; / / c o u n t s t h e t o t a l number o f d o t s

}

f p r i n t f (fw , ” %d ” , E [i]) ;

}

return (num) ;

}

140

Bibliography

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth. Construction of

asymptotically good low-rate error-correcting codes through pseudo-

random graphs. IEEE Transactions on Information Theory, 38:509–516,

1992.

[2] N. Alon, G. Cohen, M. Krivelevich, and S. Litsyn. Generalized hash-

ing and applications to digital fingerprinting. In Proceedings of the 2002

IEEE International Symposium on Information Theory, page 436, 2002.

[3] N. Alon and U. Stav. New bounds on parent-identifying codes:

The case of multiple parents. Combinatorics, Probability & Computing,

13(6):795–807, 2004.

[4] A. Barg, G. R. Blakley, and G. A. Kabatiansky. Digital fingerprint-

ing codes: problem statements, constructions, identification of traitors.

IEEE Transactions on Information Theory, 49(4):852–865, 2003.

[5] A. Barg, G. Cohen, S. Encheva, G. A. Kabatiansky, and G. Zémor. A

hypergraph approach to the identifying parent property: The case of

multiple parents. SIAM Journal on Discrete Mathematics, 14(3):423–431,

2001.

[6] A. Barg and G. A. Kabatiansky. A class of I.P.P. codes with efficient

identification. Journal of Complexity, 20(2-3):137–147, 2004.

[7] J. K. Beard. Costas arrays database. http :

//jameskbeard.com/jameskbeard/ (last accessed October 2011).

141

[8] S. R. Blackburn. Combinatorial schemes for protecting digital content.

In Surveys in Combinatorics 2003, volume 307, pages 43–78. Cambridge

University Press, 2003.

[9] S. R. Blackburn. Frameproof codes. SIAM Journal on Discrete Mathemat-

ics, 16(3):499–510, 2003.

[10] S. R. Blackburn. An upper bound on the size of a code with the k-

identifiable parent property. Journal of Combinatorial Theory Series A,

102:179–185, 2003.

[11] S. R. Blackburn, T. Etzion, K. M. Martin, and M. B. Paterson. Two-

dimensional patterns with distinct differences: constructions, bounds,

and maximal anticodes. IEEE Transactions on Information Theory,

56(3):1216–1229, 2010.

[12] S. R. Blackburn, T. Etzion, and S. Ng. Traceability codes. Journal of

Combinatorial Theory Series A, 117(8):1049–1057, 2010.

[13] S. R. Blackburn, A. Panoui, M. B. Paterson, and D. R. Stinson. Honey-

comb arrays. Electronic Journal of Combinatorics, 17(1):R172, 2010.

[14] D. Boneh and M. K. Franklin. An efficient public key traitor tracing

scheme. In Proceedings of the 19th Annual International Cryptology Con-

ference on Advances in Cryptology, CRYPTO ’99, pages 338–353. Springer-

Verlag, 1999.

[15] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data

(extended abstract). In Proceedings of the 15th Annual International Cryp-

tology Conference on Advances in Cryptology, CRYPTO ’95, pages 452–465.

Springer-Verlag, 1995.

[16] H. Chabanne, D.H. Phan, and D. Pointcheval. Public traceability in

traitor tracing schemes. In Proceedings of the 24th Annual International

142

Conference on the Theory and Applications of Cryptographic Techniques, EU-

ROCRYPT ’05, pages 542–558. Springer-Verlag, 2005.

[17] Y. M. Chee. Turán-type problems in group testing, coding theory, and cryp-

tography. PhD thesis, Department of Computer Science, University of

Waterloo, Canada, 1996.

[18] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Proceedings of the

14th Annual International Cryptology Conference on Advances in Cryptol-

ogy, CRYPTO ’94, pages 257–270. Springer-Verlag, 1994.

[19] J. P. Costas. Project Medior – A medium-oriented approach to sonar

signal processing. Technical report, Lockheed Martin Marine Systems

and Sensors, Syracuse, NY, USA, 1966.

[20] N. G. de Bruijn, C. Tengbergen, and D. Kruyswijk. On the set of divisors

of a number. Nieuw Archief Wiskunde, 23(2):191–193, 1951.

[21] K. Drakakis. A review of Costas arrays. Journal of Applied Mathematics,

2006:1–32, 2006.

[22] K. Drakakis, F. Iorio, and S. Rickard. The enumeration of Costas arrays

of order 28. Information Theory Workshop (ITW), 2010 IEEE, pages 1–5,

2010.

[23] K. Drakakis, F. Iorio, S. Rickard, and J. Walsh. Results of the enumera-

tion of Costas arrays of order 29. Advances in Mathematics of Communi-

cations, 5(3):547–553, 2011.

[24] K. Drakakis, S. Rickard, J. K. Beard, R. Caballero, F. Iorio, G. O’Brien,

and J. Walsh. Results of the enumeration of Costas arrays of order 27.

IEEE Transactions on Information Theory, 54(10):4684–4687, 2008.

[25] S. Encheva and G. Cohen. Frameproof codes against limited coalitions

of pirates. Theoretical Computer Science, 273(1-2):295–304, 2002.

143

[26] K. Engel. Sperner Theory (Encyclopedia of Mathematics and its Applica-

tions). Cambridge University Press, 1997.

[27] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite

sets. The Quarterly Journal of Mathematics, 12(1):313–320, 1961.

[28] P. Frankl and R. L. Graham. Old and new proofs of the Erdős-Ko-Rado

thoerem. Journal of Sichuan University Natural Science Edition, 26:112–

122, 1991.

[29] S. W. Golomb and H. Taylor. Constructions and properties of Costas

arrays. Proceedings of the IEEE, 72(9):1143–1163, 1984.

[30] H. D. L. Hollmann, J. H. van Lint, J. P. Linnartz, and L. M. G. M. Tol-

huizen. On codes with the identifiable perent property. Journal of Com-

binatorial Theory Series A, 82(2):121–133, 1998.

[31] G. O. H. Katona. Intersection theorems for systems of finite sets. Acta

Mathematica Hungarica, 15:329–337, 1964.

[32] G. O. H. Katona. Two applications (for search theory and truth func-

tions) of Sperner type theorems. Periodica Mathematica Hungarica, 3:19–

26, 1973.

[33] A. Kiayias and M. Yung. Traitor tracing with constant transmission

rate. In Proceedings of the International Conference on the Theory and Ap-

plications of Cryptographic Techniques: Advances in Cryptology, EURO-

CRYPT ’02, pages 450–465. Springer-Verlag, 2002.

[34] K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmet-

ric schemes. In Proceedings of the International Conference on the The-

ory and Application of Cryptographic Techniques, EUROCRYPT ’98, pages

145–157. Springer-Verlag, 1998.

[35] K. Kurosawa and T. Yoshida. Linear code implies public-key traitor

tracing. In Proceedings of the 5th International Workshop on Practice and

144

Theory in Public Key Cryptosystems, PKC ’02, pages 172–187. Springer-

Verlag, 2002.

[36] L. Liu and H. Shen. Explicit constructions of separating hash families

from algebraic curves over finite fields. Designs, Codes and Cryptogra-

phy, 41(2):221–233, 2006.

[37] E. C. Milner. A combinatorial theorem on systems of sets. Journal of The

London Mathematical Society, 43:204–206, 1968.

[38] D. Naccache, A. Shamir, and J. P. Stern. How to copyright a function?

In Proceedings of the Second International Workshop on Practice and Theory

in Public Key Cryptography, PKC ’99, pages 188–196. Springer-Verlag,

1999.

[39] G. Nivasch and E. Lev. Non attacking Queens on a triangle. Mathemat-

ics Magazine, 78:399–403, 2005.

[40] B. Pfitzmann. Trials of traced traitors. In Proceedings of the First Inter-

national Workshop on Information Hiding, pages 49–64. Springer-Verlag,

1996.

[41] B. Pfitzmann and M. Schunter. Asymmetric fingerprinting. In Proceed-

ings of the 15th Annual International Conference on Theory and Application

of Cryptographic Techniques, EUROCRYPT ’96, pages 84–95. Springer-

Verlag, 1996.

[42] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger

collusions. In Proceedings of the 4th ACM Conference on Computer and

Communications Security, CCS ’97, pages 151–160. ACM, 1997.

[43] S. Rickard. Searching for Costas arrays using periodicity properties.

In IMA International Conference on Mathematics in Signal Processing, The

Royal Agricultural College, Cirencester, 2004.

145

[44] J. Schönheim. On a problem of Purdy related to Sperner systems. Cana-

dian Mathematical Bulletin, 17:135–136, 1974.

[45] A. Silverberg, J. Staddon, and J. L. Walker. Applications of list decoding

to tracing traitors. IEEE Transactions on Information Theory, 49(5):1312–

1318, 2003.

[46] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Math-

ematische Zeitschrift, 27(1):544–548, 1928.

[47] J. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of

frameproof and traceability codes. IEEE Transactions on Information The-

ory, 47(3):1042–1049, 2001.

[48] D. R. Stinson and P. Sarkar. Frameproof and IPP codes. In Proceedings

of the Second International Conference on Cryptology in India: Progress in

Cryptology, INDOCRYPT ’01, pages 117–126. Springer-Verlag, 2001.

[49] D. R. Stinson, T. van Trung, and R. Wei. Secure frameproof codes, key

distribution patterns, group testing algorithms and related structures.

Journal of Statistical Planning and Inference, 86(2):595–617, 2000.

[50] D. R. Stinson and R. Wei. Combinatorial properties and constructions

of traceability schemes and frameproof codes. SIAM Journal on Discrete

Mathematics, 11(1):41–53, 1998.

[51] D. R. Stinson and G. M. Zaverucha. Some improved bounds for secure

frameproof codes and related separating hash families. IEEE Transac-

tions on Information Theory, 54(6):2508–2514, 2008.

[52] H. Taylor. Non-attacking Rooks with distinct differences. Technical Re-

port CSI-84-03-2, EE Systems, University of Southern California, 1984.

[53] K. Taylor, K. Drakakis, and S. Rickard. Costas arrays database. http :

//www.costasarrays.org/ (last accessed October 2011).

146

[54] V. D. Tô, R. Safavi-Naini, and Y. Wang. A 2-secure code with efficient

tracing algorithm. In Proceedings of the Third International Conference

on Cryptology: Progress in Cryptology, INDOCRYPT ’02, pages 149–162.

Springer-Verlag, 2002.

[55] D. Tonien and R. Safavi-Naini. Explicit construction of secure frame-

proof codes. International Journal of Pure and Applied Mathematics,

6(3):343–360, 2003.

[56] P. Vaderlind, R. Guy, and L. C. Larson. The inquisitive problem solver.

Mathematical Association of America, 2002.

[57] C. Xing. Asymptotic bounds on frameproof codes. IEEE Transactions

on Information Theory, 48(11):2991–2995, 2002.

147

